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Abstract 

In this thesis I evaluate the departures of three common assumptions 

in macroeconomic modeling and estimation, namely the Rational 

Expectations (RE) hypothesis, the representative agent assumption 

and the use of first-order approximations in the estimation of 

dynamic stochastic general equilibrium models. In the first chapter I 

determine how the use of survey data on inflation expectations in 

the estimation of a model alters the evaluation of the RE assumption 

in comparison to an alternative assumption, namely learning. In 

chapter two, I use heterogeneous agent models to determine the 

relationship between income volatility and the demand for durable 

goods. In the third chapter I analyze if the use of first-order 

approximations affect the evaluation of the Great Moderation. 

Resumen 

En esta tesis analizo desvíos de tres supuestos comunes en la 

elaboración y estimación de modelos macroeconómicos. Estos 

supuestos son la Hipótesis de Expectativas Racionales (ER), el 

supuesto del Agente Representativo, y el uso de aproximaciones de 

primer orden en la estimación de los modelos de equilibrio general. 

En el primer capítulo determino como el empleo de datos de 

expectativas de inflación en la estimación de un modelo puede 

alterar la evaluación del supuesto de ER en comparación a un 

supuesto alternativo como learning. En el segundo capítulo, utilizo 

modelos de agentes heterogéneos para determinar la relación entre 

la volatilidad de los ingresos y la demanda de bienes durables. En el 

tercer capítulo, analizo si el uso de aproximaciones de primer orden 

afecta la evaluación de la Gran Moderación. 



 



 ix

Foreword 
 

The main objective of macroeconomic research is to study 

fluctuations in economic aggregates such as production, 

employment and inflation. In doing so, economists rely on models, 

or theoretical constructs, that represent the underlying relationships 

among these aggregates.  Due to the enormous complexity of the 

real world, these models are based on various assumptions which 

allow them to be analytically tractable and to be estimated. The 

present thesis contains three essays that evaluate the relevance of 

some of these assumptions. 

In the first chapter I compare the performance of the New 

Keynesian model by Smets and Wouters (2007) in describing a set 

of macroeconomic indicators when this model is solved using two 

alternative assumptions of expectations formation: Rational 

Expectations (RE) and learning. The former one has become the 

benchmark assumption in macroeconomics since the influential 

work of Robert Lucas Jr. during the 1970s. It implies that agents 

have perfect knowledge of the structure of the economy and of the 

stochastic shocks that affect it, and therefore form their expectations 

in a model-consistent way. On the contrary, under learning agents 

do not have a perfect knowledge of the economy. As a 

consequence, they use historical data to update their perceptions 

about how the economy works and form their expectations about 

future variables using forecasting models that are updated whenever 

new data become available (see Evans and Honkapohja 2001).  



 x

The set of macroeconomic variables used in this chapter includes 

survey data on inflation expectations. This type of information has 

received a significant attention in monetary economics (e.g.  Adam 

and Padula (2011), Nunes (2010), Roberts (1997, 1998)). Yet, few 

studies have used such data in the estimation of a dynamic 

stochastic general equilibrium (DSGE) model. I fill this gap by 

including survey data on inflation expectations in the estimation of 

one of the benchmark models for empirical analysis, namely the 

medium-size New Keynesian DSGE model developed by Smets and 

Wouters (2007). To be more precise, one goal of this chapter is to 

determine how the use of survey data in the estimation of this model 

alters the evaluation of the two alternative assumptions of 

expectations formation, RE and learning, regarding their relative fit.  

Using a model comparison analysis, I find that the RE and learning 

solutions of the model by Smets and Wouters fit standard 

macroeconomic series in a similar way when not using survey data. 

This situation changes, however, once survey data are incorporated 

in the analysis: the learning solution is now clearly preferred as it is 

flexible enough to match the increases and decreases of inflation 

expectations during the late 1970s and the early 1980s. 

In the second chapter, which was written in collaboration with 

Wouter Den Haan, I evaluate the effect of income uncertainty on 

the demand for durable goods. The setup used in this chapter differs 

from the representative agent assumption on which most of the 

dynamic general equilibrium models rely. Under this assumption, 

the economy behaves as if it is inhabited by a single type of agent. 

Such an assumption could be justified by the existence of complete 



 xi

insurance markets for the agents’ idiosyncratic risk. However, it is 

hard to belief that this type of market exists. For this reason, I 

assume that agents can only imperfectly protect against income 

volatility, and I analyze how the existence of such uncertainty 

affects their decisions about purchases of durable goods. The 

relationship between uncertainty and the demand for this type of 

goods is currently used in consumption theories to explain the lack 

of a strong response of consumption to persistent income shocks, 

also known as the excess smoothness puzzle (see Xu (2010) and 

Luengo-Prado (2006) among others). Carroll and Dunn (1997) also 

use this relationship to explain some features of the US recession 

occurred during the period 1990-1991. These models are, however 

quite complex and difficult to incorporate into a fully-fledged 

macroeconomic model.  

The purpose of the second chapter is thus to illustrate the basic 

conditions necessary to generate a negative relationship between 

income uncertainty and the demand for durable goods. Our results 

show that neither the existence of an alternative saving asset, such 

as bonds, nor a non-negativity constraint in the purchases of durable 

goods are sufficient conditions to get a negative relationship. Using 

two-period and infinite-horizon models we find that the savings 

aspect of durable goods typically dominates the aversion of buying 

this type of goods when income volatility increases. 

Finally, in the third chapter I evaluate the reliability of the 

widespread practice to estimate first-order approximated policy 

functions (or solutions) of DSGE models with Bayesian methods. In 

particular, I focus on this type of estimation as a tool to determine 
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the key factors behind the substantial decline in the volatility of 

many macroeconomic indicator in the US (and other developed 

countries) over the last three decades, a phenomenon known as the 

Great Moderation. First-order approximations describe well the 

dynamic of a model around a particular equilibrium. Yet, the 

presence of significant nonlinearities in the model and the 

prevalence of large shocks may reduce their accuracy. Since the 

standard analysis of the Great Moderation compares parameter 

estimates obtained using first-order approximations for a period of 

low volatility (usually starting from the 1980s) with those obtained 

for a period of higher volatility (i.e. before the 1980s) – in the latter 

case both nonlinearities and shocks are more likely to occur – the 

appropriateness of first-order approximations is questionable. 

Based on a simulation exercise that consists of generating different 

series of three macroeconomic indicators (output gap, inflation and 

interest rate) which display similar volatility levels to the ones 

observed for the US during the period 1953-1984, we find 

significant biases in the estimations obtained when using first-order 

approximations. This is the case when the simulated series are 

obtained using second-order approximations and a monetary policy 

rule that does not react strongly to changes in inflation. Note, 

however, that we do not encounter such problems when the 

volatility level of the period 1953-1984 is due to higher volatility of 

the shocks affecting the economy. Changes in the volatility of the 

shocks and in the way how monetary policy was conducted are two 

of the most popular explanations of the Great Moderation (known 

as “good luck” and “good policy” hypothesis, respectively). Thus, 
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the results presented in this chapter show that when high volatility 

data are generated according to the “good policy” hypothesis, 

omitting second-order terms of the approximated policy functions 

could lead to an erroneous misinterpretation of the sources of the 

Great Moderation. 
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1. Using Survey Data on Inflation Expectations 

in the Estimation of Learning and Rational 

Expectations Models 

 

1.1 Introduction 

Survey data on inflation expectations have received significant 

attention in monetary economics. In particular, this information has 

been used as proxy for expected inflation in estimations of the 

Phillips curve (Adam and Padula (2011), Nunes (2010)), in 

calibrations of hybrid models with both backward-looking and 

forward-looking expectations (Roberts (1997, 1998)), to test 

rational expectations and informational rigidities (Mankiw et. al. 

(2003), Coibion and Goridnichenko (2010)), among other 

applications. However, few studies have used this information in 

the estimation of a dynamic stochastic general equilibrium (DSGE) 

model. We contribute to fill this gap by including survey data on 

inflation expectations in the estimation of one of the benchmark 

models for empirical analysis, namely the medium-size New 

Keynesian DSGE model developed by Smets and Wouters (2007). 

We estimate this model using two alternative ways to model 

expectations: on the one hand, we consider the benchmark 

assumption about expectations formation, namely Rational 

Expectations (RE), and on the other hand, we consider learning. 

The reasons for choosing these two alternatives are as follows.  
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First, even though the model by Smets and Wouters explains well 

the evolution of inflation and has higher predictive power than 

Bayesian VARs, it fails to match the evolution of survey data on 

inflation expectations when solved under the RE assumption and 

estimated with the standard set of macroeconomic indicators (see 

Figure 1.1). Therefore, the additional moment restriction implied by 

the use of survey data on inflation expectation in the estimation of 

the model might arguably affect the estimations of the parameters.  

Figure 1.1 

Inflation expectations: survey data and model-implied  

expectations under RE 
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Notes: The model-implied inflation expectations are obtained 

using the Kalman-filtered estimates at each set of parameter 

values that conforms the posterior distributions. The grey area 

represents the distance between the 5th and 95th percent 

confidence bands. 
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Second, as indicated by Slobodyan and Wouters (2009a,b), when 

assuming learning the estimation of the Smets and Wouters’ model 

leads to different outcomes depending on the employed forecasting 

model.
1
 This result reflects the main criticism on learning, namely 

that it relies heavily on the researcher’s (arbitrary) selection of the 

forecasting model used by agents to generate their expectations. In 

order to address this criticism, we employ survey data to determine 

the forecasting model that agents most likely use to predict 

inflation. 

Additionally, we use survey data on inflation expectations to pursue 

a model-comparison analysis between the RE and learning 

solutions. Similar to Del Negro and Eusepi (2010), we determine 

how the use of survey data in the estimation alters the evaluation of 

the two alternative assumptions of expectations formation regarding 

their relative fit. 

Our findings reveal the following. First, according to the model 

comparison analysis, the RE and learning solutions of the Smets 

and Wouters´ model fit the standard macroeconomic series in 

similar way. This situation changes, however, once survey data are 

incorporated in the analysis: the learning solution is now clearly 

preferred as it is flexible enough to match the increases and 

decreases in inflation expectations during the late 1970s and the 

                                                 
1
 Slobodyan and Wouters (2009a,b) point out that the dynamics of the model 

under learning do not tend to deviate from the RE outcomes when the forecasting 

models are compatible with the solution under RE, but they deviate significantly 

when small forecasting models are considered. 
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early 1980s. Second, the better performance of learning can be 

mainly explained by the selection of a small forecasting model for 

inflation with a high speed of learning. As mentioned previously, 

survey data are employed to determine the specification of this 

forecasting model. 

Third, with respect to the parameter estimates, we find that the 

additional moment restriction that represents the inclusion of the 

survey data on inflation expectations results in a higher persistence 

of exogenous shocks under RE, despite the fact that the model by 

Smets and Wouters incorporates nominal frictions such as price 

stickiness and indexation. In contrast, both price indexation and the 

learning process itself are the main sources of inflation persistence 

under learning. Additionally, under learning the use of survey data 

reduces the time-variability of the coefficients of the agents´ 

forecasting model. As a result, most of the stronger and more 

persistent responses of inflation to exogenous shocks are 

concentrated in the 1970s. In particular, in the same vein as Boivin 

and Giannoni (2008), we observe that unexpected monetary policy 

shocks have more destabilizing effects on inflation during the 1970s 

than afterwards. 

So far, few studies have incorporated survey data into the 

estimation of a DSGE model. Del Negro and Eusepi (2010) use 

survey data on inflation expectations in order to discriminate 

between a model with imperfect information about a time-varying 

inflation target as in Erceg and Levin (2003), and a model where 
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agents have perfect information about this target. Additionally, 

Carboni and Ellison (2009) incorporate the Greenbook 

unemployment forecast in the estimations implemented by Sargent 

et al. (2006). In so doing, they remove volatile and unrealistic 

beliefs of the Federal Reserve about unemployment-inflation 

dynamics. In contrast to the existing studies, we do not only exploit 

the additional moment restrictions implied by the use of survey 

data, but we also employ this information to “discipline” the way 

how the forecasting model for inflation is selected under learning. 

The remainder of this chapter is organized as follows. In the next 

section we summarize the main features of the model, characterize 

its solution under RE and learning, and discuss the specific learning 

setup employed in this study. Section 1.3 presents the series of 

macroeconomic indicators and the prior distributions used in the 

Bayesian estimation. Section 1.4 describes the forecasting model 

used for the learning specification and the results of the model 

comparison analysis. It also evaluates the changes in the parameter 

estimates obtained when using survey data in the estimation of the 

SW model and their effects over the relative importance of the 

sources of inflation persistence, the composition of inflation 

expectations, and the Impulse-Response functions analysis. Section 

1.5 contains some robustness exercises. Section 1.6 concludes and 

outlines possible avenues for future research. 
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1.2. The model and its solution under the RE 

assumption and learning 

Our estimation is based on a New Keynesian model similar to the 

model by Smets and Wouters (2007) (hereafter SW) with only one 

modification that is explained below. The optimization problem of 

the households, firms and government as well as the equilibrium 

conditions are described in detail in the Online Appendix. Readers 

interested in more details of the model are encouraged to refer to 

SW. 

In the remainder of this section we describe the model’s participants 

and its frictions, how participants’ decisions depend on forecasts of 

future variables, the minor modification to the SW model, and the 

representation of the model solution under the assumption of RE 

and learning. 

1.2.1 Model’s participants, main frictions and forward 

variables 

The New Keynesian model by SW is based on a neoclassical 

growth model augmented with several frictions affecting both 

nominal as well as real decisions of households and firms. 

Households maximize a utility function that depends on the 

consumption of goods and on the amount of labor supplied, over an 

infinite lifetime horizon. Consumption enters in the utility function 

relative to a time-varying external habit variable. This feature 

together with the possibility of consumption (and labor) smoothing, 
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which is possible through the purchasing and selling of a one-period 

bond, generates that current consumption depends on past and 

expected future consumption, on current and expected future hours 

worked and the ex-ante real interest rate of this bond. Households 

also rent capital services to firms and decide how much capital to 

accumulate given the capital adjustment costs they face. This 

friction creates a link between investment, the market value of the 

capital stock and past and expected future investment. In addition, 

the arbitrage condition for the value of the capital stock implies that 

this stock reacts positively to its expected future value and the 

expected future real rental rate of capital, but negatively to the ex-

ante real interest rate. Variations in the rental price of capital affect 

the level of utilization of the capital stock, which can be adjusted at 

increasing costs. 

Labor is differentiated by a union which determines wages taking 

into account the existence of nominal rigidities à la Calvo (1983). 

Thus, given the possibility of not being re-optimized within one 

period but only partially indexed to past inflation, wages depend on 

past and expected future wages and inflation. Firms produce 

differentiated goods, decide on the amount of labor and capital 

services to hire, and set prices. Prices are also affected by Calvo-

type rigidity and when not re-optimized they are partially indexed to 

past inflation rates. Therefore, prices are set as a function of current 

and expected future marginal costs, but are also determined by the 

past inflation rate. 
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Finally, the model is closed by adding an empirical monetary policy 

reaction function: the policy controlled interest rate is adjusted in 

response to inflation and to changes in the level of output from one 

period to another. Notice that in the original SW specification, the 

monetary policy rule does not react to the output growth but to the 

output gap (i.e. the difference between the output obtained under 

nominal rigidities and under flexible prices). This modification 

allows us to avoid the estimation of a parallel economy under 

flexible prices, which reduces the number of forward variables in 

the model considerably. As reported by Slobodyan and Wouters 

(2009a), we find that this modification, however, does not affect the 

results obtained by SW. 

The model contains the following 13 endogenous variables: 

output, y ; consumption, c ; investment, i ; value of the capital stock 

, kQ ; installed stock of capital, k ; stock of capital, k ; inflation,π ; 

capital utilization rate,u ; real rental rate on capital, k
r ; real 

marginal cost, mc ; real wages, w ; hours worked, L ; and interest 

rate, R . In addition, the stochastic part of the model is characterized 

by seven exogenous autoregressive processes, each of them 

including an iid-normally distributed error.
2
 The model is de-

trended with respect to the deterministic growth rate of the labor-

augmenting technological progress and linearized around the 

                                                 
2
 These shocks are the risk premium shocks and the investment-specific 

technology shocks (both of them affecting the intertemporal margin); the wage 

mark-up shocks and the price mark-up shocks (which impact on the intratemporal 

margin); two policy shocks, the exogenous spending and the monetary policy 

shocks; and last the total factor productivity shocks. 
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steady-state of the de-trended variables. The set of equations that 

describes the linearized dynamism of this model can be represented 

as follows: 

(1) 0 1 1 2 1 0
t t t t t

E Y Y Y e+ −Θ + Θ + Θ + Ψ =�  

(2) 1t e t t
e e εε−= Γ + Γ  

Y  is a vector that contains the 13 endogenous variables of the 

model, e  is the vector of exogenous shocks and ε  is the vector of 

iid-normal innovations. ( )
t

E ⋅�  is the expectations operator and 

indicates that expectations can be either rational (for which we use 

( )
t

E ⋅ ) or that they come from a learning process (represented by 

ˆ ( )
t

E ⋅ ). The matrices 0Θ , 1Θ , 2Θ , and Ψ  contain non-linear 

combinations of the parameters of the model but also zeros. The 

zero elements in these matrices reflect the fact that the model does 

not include the expected future values or past values of all the 

endogenous variables. 
e

Γ  is a diagonal matrix that contains the 

autoregressive coefficients of the exogenous shocks, and εΓ  is an 

identity matrix that additionally incorporates one element that 

reflects the effect of a productivity innovation over the exogenous 

spending shocks.
3
 

                                                 
3
 SW include this element motivated by the fact that, in estimation, exogenous 

spending includes net exports, which may be affected by domestic productivity 

developments.  
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1.2.2 The Rational Expectation solution of the DSGE 

model 

When dealing with expectations, researchers have traditionally 

adopted the RE assumption. This assumption implies that agents 

have perfect knowledge about the true stochastic process of the 

economy. There are several algorithms available to solve Equation 

(1) under the RE assumption. In particular, we use Uhlig (1999), 

although alternative algorithms include, among others, Blanchard 

and Kahn (1980), Binder and Pesaran (1997), Christiano (2002) and 

Sims (2002). 

Since we focus on the case of determinacy and restrict the 

parameter space accordingly, the resulting law of motion takes the 

following form: 

(3) 1 1 2 1 3

RE RE RE

t t t t
Y Y e ε− −= Φ + Φ + Φ  

Equations (2) and (3) imply a state-space representation of the 

DSGE model that can be estimated with Kalman filter, where the 

vector [ ] 'Y e  can be viewed as a partially latent state vector. 

1.2.3 The Learning solution of the DSGE model 

Since the high level of cognitive abilities and computational skills 

implied under the RE assumption are implausible in practice, 

researchers have developed models of imperfect knowledge and 

associated learning processes. One of the most popular learning 

mechanisms used in macroeconomics is a form of adaptive learning. 
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Under this approach agents use historical data to update their 

perceptions about how the economy works and form their 

expectations about future variables using forecasting models that 

are updated whenever new data become available (see Evans and 

Honkapohja 2001). 

Before presenting the learning algorithm used in this study, it is 

important to note that the forward looking nature of Equation (1) 

leads to a simultaneity problem in case the solution for 
t

Y  depends 

on reduced form coefficients of forecasting models relying on 

information up to t. The standard way to overcome this problem is 

to assume that agents make their forecast of 1t
Y +  based on estimates 

of the reduced form coefficients from the period t-1.
4
 Thus, 

expectations adopt the following representation: 

(4) 1 1
ˆ

t t t t
E Y Xβ+ −

′= ,     [ ]1 'X Y e⊂  

where X  is a vector that could include all endogenous and 

exogenous variables of the model as well as only a subset of them. 

It could also include a constant term in case agents use observable 

non-zero mean time series in their forecasting models. 1t
β −

′  is a 

matrix of linear combinations of the reduced form coefficients that 

defines the projection of 2t
X −  over 1t

Y − .
5
 

                                                 
4
 Alternatively, as indicated by Carceles-Poveda and Giannitsarou (2007), one 

may assume that Yt is not included in the information set when forming 

expectations, i.e. expectations are formed using data up to t-1. 
5
 Due to the use of observable time series in the forecasting model for inflation, 

the row of β ′  related to inflation expectations includes linear combinations of 
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In practice, in applied studies the forecasting model that agents use 

to form their expectations has been arbitrarily chosen by the 

researcher. All state variables of the model can be included to not 

depart to far from the RE setup; exogenous shocks and variables 

which are not observed in reality could be excluded under the 

assumption that agents and the researcher have the same set of 

information; one could even include a subset of those observed 

variables arguing that in so doing the overall fit of the model to the 

data is higher. One of the contributions of this study is to deviate 

from this arbitrary choice of the forecasting model, but to use 

survey data on inflation expectations to determine the actual 

forecasting models for inflation that agents most likely use.
6
 

With respect to the estimation of β , the literature on learning 

commonly assumes that agents update the coefficients of their 

forecasting models using constant-gain least squares (CG-LS). 

Under CG-LS, the most recent observations receive higher weights 

in the least square estimation. More precisely, the weight decreases 

geometrically depending on the distance in time to the most recent 

observation. This learning mechanism implies that agents are 

concerned about structural changes of the economy, which is a 

realistic feature of any type of econometric estimation in the real 

world. Additionally, the CG-LS receives empirical support because 

it outperforms other recursive parameter updating algorithms such 

                                                                                                               
the coefficients that define the projections among observable series (see 

derivations in subsection 1.4.1). 
6
 Section 1.4 contains the list of variables included in the forecasting model. 
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as recursive least squares and the Kalman filter in out-of-sample 

forecasting of inflation and output growth (see Branch and Evans 

(2006)). 

The recursive expression for the estimate of β under CG-LS 

conditional on information up to t is as follows: 

(5a) ( ) ( )
1

1 1 1 '
t t t t t t t

g R X Y Xβ β β
−

− − −
′= + −  

(5b) ( )1 1 1 1t t t t tR R g X X R− − − −
′= + −  

where g  represents the constant-gain parameter and 
t

R  the 

variance-covariance matrix of the regressors included in the 

forecasting model. The gain refers to the relative weight of the most 

recent observation and 1 g−  is the discount factor over less recent 

observations (in ordinary least squares, the gain is not a constant 

value but equals 1/t, where t is the position of the observation since 

the beginning of the sample). When g =0, β  is constant and equal 

to the value that starts the recursion. Otherwise, β  changes with the 

arrival of new information. Note that g  is the only parameter that is 

added to the set of structural parameters of the model. 

Substituting Equation (4) in Equation (1), and using Equation (2), 

we get the following expression: 

(6) 0, 1 1, 1 1 2, 1 1 3, 1

L L L L

t t t t t t t tY Y e ε− − − − − −= Φ + Φ + Φ + Φ  

The matrices 0, 1

L

t−Φ , 1, 1

L

t−Φ , 2, 1

L

t−Φ  and 3, 1

L

t−Φ  are non-linear 

combinations of the parameters of the model and the reduced form 
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coefficients of 1t
β − . The presence of the latter type of elements 

potentially makes these matrices time-varying. 

To sum up, the state-space representation of the model estimated 

under learning consists of Equations (6) and (2). Equations (5a) and 

(5b) are additionally required to get estimates for β  as well as some 

initial values for β and R  necessary for the CG-LS algorithm.
7
 

1.2.4 The Learning setting used in this study 

Survey data on inflation expectations are used to determine the 

forecasting model of inflation under learning. However, inflation is 

not the only variable that is measured in expectations in the model 

but also six further variables (consumption, investment, hours 

worked, real wages, real rental rate on capital and value of the 

capital stock).
8
 Thus, in order to restrict the differences in the 

estimates of the model solved under RE and learning to the use of 

survey data on inflation expectations, we restrict the learning setting 

for the other variables appearing in expectations to be as close as 

possible to the RE setting.
9
 The latter implies that the forecasting 

models for these variables include as regressors the same variables 

                                                 
7
 The criterion that we follow to define these initial values is explained in the 

following subsection. 
8
 This study focuses only on the use of survey data on inflation expectations. 

Three reasons motivate the selection of this series. First, survey data on inflation 

expectations have received significant attention in monetary economics (e.g. 

Roberts (1997,1998), Adam and Padula (2011), Nunes (2010), among others). 

Second, the quality of this information, jointly with survey data on output growth, 

has been evaluated by many studies (e.g. Ang.et.al. 2007). Third, they are 

available for most of the sample of interest in this study. 
9
 Notice that it is not possible to have both learning and rational expectations at 

the same time. 
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that appear in their solution under the RE assumption (Equation 3). 

It furthermore implies that the initial values of the elements of β  

and R related to these variables correspond to the respective rows of 

the matrices 1

REΦ , 2

REΦ  and 3

REΦ  and the unconditional second 

moments resulting from the RE solution, respectively.
10,11

 

Additionally, the mentioned variables and inflation have separated 

CG-LS recursion processes (therefore we consider two sets of 

equations (5a) and (5b)), which implies two gain parameters. 

Due to the incompatibility of the forecasting model for inflation 

with the rational expectation solution for this variable, it is 

unfeasible to use the coefficients or the implied second moments of 

this solution as initial conditions of the learning algorithm.
12

 For 

this reason, we use pre-sample estimates of β  and R to initialize the 

learning algorithm for inflation. As explained in Section 1.4, survey 

data on inflation expectations also play a role in the selection of 

these values. 

Finally, it is important to indicate that learning dynamics in our 

model is incomplete because it has no chance of converging to the 

RE equilibrium. This result arises by two reasons. First, the 

forecasting model for inflation is no compatible with the RE 

                                                 
10

 In case the gain parameter for these variables is equal to zero, their forecasting 

model will be completely compatible with the RE solution, not only at the 

beginning but through the entire sample. 
11

 One advantage of choosing the initial conditions of the learning algorithm is 

that it avoids a significant increase in the number of parameters to be estimated 

(they more than duplicate the number of structural parameters of the model). 
12

 The use of pre-sample estimations of β  and R  related to the other variables 

that appear in expectations does not affect our results. 
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solution for this variable. Second, the use of CG-LS in the presence 

of random shocks prevents the resulting dynamics to converge to 

the RE solution (Evans and Honkapohja (1995)). Honkapohja and 

Mitra (2003) show that incomplete learning with finite memory can 

have several attractive properties in standard frameworks. In 

particular, learning could be asymptotically unbiased in the sense 

that the mean of the first moment of the forecast is correct. 

Additionally, dynamics of incomplete learning result in good 

approximation to actual data, as argued by Marcet and Nicolini 

(1998) and Sargent (1999).
13

 

 

1.3. Data and priors 

The model is estimated using the same quarterly macroeconomic 

indicators for the US as in SW, but in addition we use survey data 

on inflation expectations provided by the Survey of Professional 

Forecasters (SPF). Although the model specifies that many of the 

important forecasts are made by households, and thus, it would be 

more appropriated to use survey data that collect directly these 

expectations, provided for instance by the University of Michigan’s 

Surveys, we opt for the SPF for the following two reasons. First, as 

pointed out by Del Negro and Eusepi (2010), the Michigan’s 

Surveys ask households about inflation in general, making it 

                                                 
13

 Marcet and Nicolini (1998) employ incomplete learning to explain the 

existence of hiperinflation processes in some Latin American countries. In the 

similar way, Sargent (1999) considers incomplete learning as an important 

element to explain the rises and decreases of inflation in the US. 
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impossible to relate this measure to a specific measurement of 

changes in prices, such as the Consumer Price Index or GDP 

deflator inflations. Second, the Michigan's surveys started collection 

information about inflation expectations in quantitative form only 

from 1978 onwards. As a consequence, it does not cover the years 

of the sample considered by SW, our benchmark reference. The 

SPF collects expectations on future GDP deflator inflation, a 

measurement that is compatible with the inflation series used by 

SW. Moreover, this series starts ten years earlier than the University 

of Michigan´s Surveys, and thus covers almost completely the 

sample considered by SW. 

Using the SPF we calculate the median value of the quarterly one-

period-ahead forecast for the percentage increase of the GDP 

deflator. The resulting series is referred to as “ , 1

e

t tdlP + ”. As this 

information is only available from 1968:4 onwards, this date marks 

the starting point of our sample. The sample covers all quarters until 

2008:2. Further macroeconomic indicators considered are the first 

difference of the logarithm of real GDP (“dlGDP”), of real 

consumption (“dlCons”), of real investment (“dlInv”), the real 

wage (“dlWage”) and the GDP deflator (“dlP”), as well as the 

logarithm of hours worked (“lHours”) and the federal funds rate 

(“FedFunds”). Please refer to the Online Appendix for a detailed 

description of the data. 



 

 18

The following set of measurement equations relates the mentioned 

macroeconomic indicators to the variables of the model when 

survey data on inflation expectations are not included: 

(7) 

1

1

1

1

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ

ˆ

ˆ

t tt

t tt

t tt

t tt

t t

t t

t t

y ydlGDP

c cdlCons

i idlInv

w wdlWage

lHours l l

dlP

FedFunds r R

γ

γ

γ

γ

π π

−

−

−

−

−    
     −    
 −   
     −= +     
    
    
    
    

     

 

where γ  represents the common quarterly trend growth rate, l  the 

steady state hours worked, π  the quarterly steady state inflation 

rate and r  the quarterly steady state nominal interest rate. 

When survey data are incorporated in the estimation of the DSGE 

model, we need to add an additional measurement equation. Under 

the RE solution, this equation has the following form: 

(8a) , 1 1 1, 2,
ˆe RE RE

t t t t t t t tdlP E Y eπ ππ π ζ π ζ+ += + + = + Φ + Φ +  

where 1,

RE

πΦ  and 2,

RE

πΦ  are the row of 1

REΦ  and 2

REΦ in Equation (3), 

respectively, that relate inflation to the vectors Y  and e . 
t

ζ  

represents an iid measurement error related to the surveys on 

inflation expectations. Hence, survey data are viewed as a noisy 

measure of actual expectations. Under learning, the extra 

measurement equation has the following form: 
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(8b) , 1 , 1

e

t t t t tdlP Xππ β ζ+ −
′= + +  

where , 1tπβ −
′  is the corresponding row of 1t

β −
′  in Equation (4). In 

this equation as well as in the previous one, we are implicitly 

assuming that both, inflation and inflation expectations, have the 

same steady state. 

The structural model contains 38 parameters. 33 of them are 

estimated while the remaining 5 are fixed at the values used in 

SW.
14

 The learning estimation adds two further parameters (the 

gains for inflation and for all the other variables appearing in 

expectations). When estimating the model with survey data, we 

consider one extra parameter, namely the standard deviation of the 

measurement error of the surveys (
t

ζ ). The prior distributions of 

the structural parameters are as in SW. Additionally, we use 

uniform distributions over the [0,1] domain for the gains and an 

inverse gamma distribution with zero mean and standard deviation 

of 2 for the standard deviation of 
t

ζ . The prior distributions for all 

the parameters are presented in Appendix A. 

The estimation of the DSGE model is performed using Bayesian 

estimation methods. Employing the random walk Metropolis-

Hastings algorithm, we obtain 250 000 draws from each model’s 

posterior distribution. The first half of these draws is discarded and 

                                                 
14

 These parameters are the depreciation rate (fixed at 0.025), the exogenous 

spending-GDP ratio (0.18), the steady state mark-up in the labor market (1.5) and 

the curvature parameters of the Kimball (1995) aggregators in the goods and 

labor market (both set at 10). 
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1 out of every 10 draws is selected to estimate the moments of the 

posterior distributions. 

 

1.4. Results 

The first step is to determine the forecasting model that agents most 

likely use to generate their expectations on future inflation. The 

resulting forecasting model defines the setup of learning used in this 

section. In a second step, we implement a model-comparison 

analysis between the solutions under RE and learning. Then we 

evaluate the changes in the parameter estimates obtained when 

using survey data in the estimation of the SW model and their 

effects over the relative importance of the sources of inflation 

persistence, the composition of inflation expectations, and the 

Impulse-Response functions analysis. 

1.4.1 Forecasting models for inflation 

In order to determine the forecasting model for inflation used under 

learning, we estimate different linear models for inflation where the 

regressors consist of (besides an intercept) all possible combinations 

of the lagged series of dlGDP, dlCons, dlInv, dlWage, dlP, 

FedFunds and lHours. These are the same macroeconomic series 

used in the estimation of the DSGE model, and thus, their use 

implies that the representative agent of the model has the same 

information as the econometrician. 
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We rank these models (127 in total) according to the resulting 

similarities between the one-period-ahead inflation forecast series 

and the survey data on inflation expectations. For the ranking we 

employ the Mean Squared Error (MSE). Table 1.1 shows the five 

best-performing forecasting models for the period 1968:4 – 2008:2 

and Figure 1.2 represents the one-period-ahead inflation forecast 

series of the best three models and the survey data.
15

 In general, the 

one-period-ahead forecasting series yielded by the best performing 

models are very similar . Moreover, they all track relatively well the 

increase in survey expectations during the 1970s and the reduction 

at the beginning of the 1980s. However, during some years of the 

1980s and 1990s the forecast series underestimate the survey data, 

while during the 2000s they overestimate it. In particular, note that 

the forecasting models under-predict inflation expectations during 

the year 1983. This result is related to the important reduction of 

inflation in the previous quarters which was not accompanied by a 

reduction in inflation expectations of the same magnitude. Thus, as 

indicated below, the evolution of inflation expectations is difficult 

to match during this year regardless of the expectation formation 

assumption. 

                                                 
15

 We elaborate the ranking following these four steps. First, we estimate each 

model using a recursive CG-LS. Second, we initialize this algorithm using pre-

sample estimates for which we employ ordinary least squares. Third, different 

values of the constant gain are employed to produce forecasts for each of the 

models (these values are taken from a grid of point between 0 and 1). Then we 

establish a ranking of these models taking into account the value of the constant 

gain that results in the lowest MSE for each of the model. Finally, given that the 

ordering depends on the choice of the pre-sample, we try different pre-samples 

and select the one with the lowest MSE among the top models. 
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Table 1.1 

Ranking of forecasting models for inflation 

Sample 1968:4-2008:2 

Rank Regressors Gain MSE

1 dlP      0.125 0.0294

2 dlP lHours        0.113 0.0300

3 dlP dlCons          0.100 0.0302

4 dlP dlCons lHours        0.125 0.0303

5 dlP dlGDP          0.125 0.0315  

Note: the models are estimated by recursive CG-LS. 

The initial conditions are obtained from the period 

1950:1-1968:3. Regression: dlPt = intercept + 

regressort-1 

The benchmark forecasting model for inflation is a model that 

includes as regressors only lagged inflation and an intercept (the 

first model in Table 1.1). In this case, the measurement equation for 

inflation expectations looks as follows:
16,17

 

(9) , 1 0, , 1 1, , 1

e

t t t t t tdlP dlPπ πβ β ζ+ − −= + +  

    0, , 1 1, , 1 1, , 1
ˆ

t t t t tπ π πβ β π β π ζ− − −= + + +  

Note, that the second equality is obtained using the measurement 

equation of 
t

dlP . 

                                                 
16

 The time-variability of the intercept included in the forecasting models implies 

that agents do not know the steady state values of the macroeconomic series used 

in the estimation. 
17

 Omitting 
t

ζ  and replacing 
, 1

e

t tdlP +
 by 

1
ˆ ˆ

t t
E π π+ + , we get: 

[ ]1 0, , 1 1, , 1 1, , 1
ˆ ˆ ˆ1

t t t t t t
E π π ππ π β β π β π+ − − −

′ = − + + 
, which represents the row of 

Equation (4) that corresponds to inflation expectations. If we add in both sides π  

and the measurement error in the RHS, we get Equation (8b). 
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The other forecasting models contained in Table 1.1 are considered 

in the robustness analysis in section 1.5. 

Figure 1.2 

Inflation forecasts and survey data on inflation expectations 
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1.4.2 Model comparison 

In this subsection we analyze which of the two assumptions of 

expectations formation (RE and learning) fits the data better. In 

particular, and similar to Del Negro and Eusepi (2010), we want to 

determine how the use of survey data on inflation expectations in 

the estimation of the SW model alters the evaluation of these two 

alternative assumptions regarding their fit. 

Table 1.2 shows the logarithm (log) of the marginal likelihoods of 

the RE and learning solutions, when survey data are included in the 
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estimation and when they are not. In the latter case, both solutions 

show similar log marginal likelihoods (see column 1). The log 

marginal likelihood difference of 3.96 points is not very robust (it 

goes down to less than 1 when choosing different priors)
18

, and 

thus, there is no clear evidence in favor of learning. However, this 

result changes significantly when survey data are included in the 

estimation (see column 2). Now learning clearly outperforms the 

RE solution with a difference of 64.36 points in the log marginal 

likelihood, which implies a posterior odd of 8.93E+27 in favor of 

the former specification. 

Table 1.2 

Model comparison 

Dataset Dataset

Log Marginal without with

Likelihood survey data survey data

(1) (2) (3) =(2)-(1)

RE -146.78 -19.14 127.64

Learning -142.82 45.22 188.04  

Notes: This table shows the log marginal likelihood for RE 

and Learning. Survey data on inflation expectations come 

from the SPF one-quarter-ahead median forecast of the GDP 

deflator. 

Does learning provide a better description of the survey data on 

inflation expectations than rational expectations? To answer this 

question we follow Del Negro and Eusepi (2010) and calculate how 

well the model fits the series of inflation expectations conditional 

                                                 
18

 Using uniform prior distributions, we find log marginal likelihood values for 

the RE and learning specifications of -120 and -119.2, respectively. Moreover, 

Del Negro and Schorfheide (2008) shows that even 5 points in the log marginal 

likelihood can be overturned by choosing a slightly different prior. 
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on the parameter distribution delivering the best possible fit for the 

rest of macroeconomic indicators. The object of interest has the 

following representation: 

1, 1, 1, 1, 1,( , ) ( , , ) ( , )e e

T T i T T i T i
p dlP Y M p dlP Y M p Y M dθ θ θ= ∫  

where 1,TY  and 1,

e

TdlP  represent the series of macroeconomic 

indicators of Equation (1.7) and the survey data on inflation 

expectations, respectively, with observations going from 1 to T. 

1,( , )
T i

p Y Mθ represents the posterior distribution of the parameters 

of the model, θ , which are obtained from the estimation of the 

model ignoring survey data. Finally, 
i

M  corresponds to the solution 

of the model that could be obtained either under RE or learning. 

Column (3) of Table 1.2 shows the logarithm of 1, 1,( , )e

T T i
p dlP Y M , 

which is determined by the difference between column (2), 

logarithm of 1, 1,( , )e

T T ip dlP Y M , and column (1), logarithm of 

1,( )T ip Y M . According to this measure, learning clearly 

outperforms RE in describing the evolution of the survey data. This 

result implies that the predictive power of the SW model can be 

improved by resorting to available survey data and to an admissible 

learning rule for the formation of expectations. 

A graphical evaluation of the model-implied series of inflation 

expectations also shows that learning improves the description of 

the evolution of survey expectations (see Figure 1.3). In particular, 
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the RE solution under-predicts survey expectations during the late 

1970s and the early 1980s. It also over-predicts surveys at the 

beginning and end of the sample. On the contrary, the solution 

under learning is flexible enough to match more closely the 

fluctuations in the survey data with a couple of exceptions.
19

 First, 

the model-implied inflation forecast over-predicts survey 

expectations in 1974:4. This result can be explained by the 

significant and sharp increase in inflation observed after the first oil 

crisis. And second, the model-implied inflation forecast obtained 

under learning, but also under RE, under-predicts survey data in 

1983. During this year and the previous one, the important 

reduction in inflation was not accompanied with a similar-sized 

reduction in inflation expectations of the SPF. The closely related 

dynamics of inflation and inflation expectations in the RE solution, 

on the one side, and the highly perceived inflation persistence in the 

learning specification estimated for this time, on the other side, 

constitute the reasons why both specifications fail to track the 

evolution of survey data for this period. 

                                                 
19

 The better performance of learning in matching the survey data on inflation 

expectations can also be measured by the correlation between surveys and the 

model-implied series of inflation expectations. When measured in levels, the 

correlation coefficients equal 0.870 and 0.938 for RE and learning, respectively. 

In first differences, the correlation coefficients for both cases are 0.201 and 0.276, 

respectively. These differences are statistically significant. 
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Figure 1.3 

Inflation expectations: survey data and model-implied expectations 

Database includes survey data 
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Notes: The model-implied inflation expectations are obtained 

using the Kalman-filtered estimates at each set of parameter 

values that conforms the posterior distributions. The grey and 

black areas represent the distance between the 5th and 95th 

percent confidence bands. 

 

1.4.3 Posterior estimates 

The next step is to compare the posterior estimates obtained under 

RE and learning when survey data on inflation expectations are not 

employed in the estimation of the DSGE model (see Table 1.3). 

Taking the estimates of the RE solution as the benchmark case 

(column 1), the estimation under learning (column 2) results in a 
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lower autocorrelation coefficient of the price mark-up shock, lower 

price stickiness, and higher price indexation. These results are 

compatible with Slobodyan and Wouters (2009b), but not, however, 

with the ones of Milani (2007). Milani (2007) finds that the 

introduction of learning forces the degree of habits in consumption 

and inflation indexation almost down to zero, while the 

autocorrelation coefficient of the supply shocks increases 

significantly (from a posterior mean of 0.02 in his rational 

expectations estimation (Table 1.3) to 0.854 in his benchmark 

learning estimation (Table 1.2)). As in Slobodyan and Wouters 

(2009b), we use small forecasting models for inflation while Milani 

uses forecasting models that are compatible with the RE solution of 

his model.
20

 Additionally, we employ external habits in 

consumption, and not internal type as Milani does. These 

differences may explain our discrepancies. 

When estimating both the RE and learning solutions using survey 

data on inflation expectations, we find that the most important 

changes in the parameter estimates are observed in the RE solution. 

In particular, we find that the price indexation significantly 

decreases (from a posterior median of 0.327 to 0.052), the 

autocorrelation coefficient of the price mark-up shocks increases 

(from a posterior median of 0.448 to 0.726), and the wage stickiness 

is slightly lower (from 0.554 to 0.468) (see Table 1.3, column 3). In 

the learning estimation, the only significant change in the parameter 

                                                 
20

 We refer as “small” forecasting model to those models that use fewer 

regressors than the implied RE solution of the DSGE model. 
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estimates is observed for the gain parameter for inflation, which 

decreases from 0.188 to 0.141 (see Table 1.3, column 4).
21

 As a 

result, the additional moment restriction that represents the 

inclusion of the survey data on inflation expectations highlights the 

differences in the sources of inflation persistence. Under the RE 

solution, despite the fact that the model incorporates nominal 

frictions such as price stickiness and indexation, inflation 

persistence depends on the persistence of the price mark-up shock. 

In contrast, under learning, both price indexation and the learning 

process itself are the main sources of inflation persistence. 
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 The use of more data in the estimation of a DSGE model could eliminate flat 

areas of the likelihood function related to some parameters or combinations of 

them, and thus, may help to solve problems of weak identification (as discussed 

by Canova and Sala (2009)). However, in this study, we basically do not observe 

such improvements when incorporating survey data on inflation expectations in 

the estimation of the DSGE model (with the exceptions of the gain parameter for 

inflation in the learning specification and the standard deviation of the price 

mark-up shock under rational expectations). 
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Table 1.3 

Posterior distribution statistics 

Symbol Median Std Median Std Median Std Median Std

Wage stickiness ξw 0.554 0.045 0.547 0.049 0.468 0.043 0.563 0.049

Price stickiness ξp 0.648 0.044 0.481 0.035 0.629 0.058 0.480 0.035

Wage indexation ιw 0.482 0.131 0.314 0.107 0.442 0.124 0.319 0.107

Price indexation ιp 0.327 0.155 0.544 0.108 0.052 0.025 0.515 0.119

TR: inflation rπ 1.666 0.130 1.396 0.116 1.711 0.114 1.398 0.104

TR: lag interest rate ρR 0.760 0.028 0.763 0.028 0.706 0.030 0.777 0.029

TR: change in output rΔy 0.199 0.046 0.203 0.046 0.187 0.044 0.210 0.047

aut. Price Mk up shock ρp 0.448 0.195 0.140 0.070 0.726 0.078 0.173 0.087

std. Price mkup shock σp 0.145 0.026 0.213 0.017 0.112 0.013 0.204 0.014

gain - inflation g
π

0.188 0.014 0.141 0.009

gain - others g
nonπ

0.031 0.042 0.019 0.031

Measurement exp error σexp 0.265 0.016 0.176 0.010

 Log. Mg. Likelihood

(3) (4)

-142.8

WITH survey dataWITHOUT survey data

RE Learning RE Learning

-19.1 45.2-146.8

(1) (2)

 

Notes: this table shows the median and standard deviation of the posterior distributions of those 

parameters most closely related to the dynamics of inflation. The Online Appendix contains the same 

statistics for the complete list of parameters of the model, their prior and posterior distributions and a 

convergence check of the random walk Metropolist-Hasting. 
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Additionally, I would like to comment particularly on the posterior 

median estimate obtained for the gain parameter for inflation as it is 

higher than the estimates reported by previous studies.
22

 For 

instance, Orphanides and Williams (2005a) consider a baseline 

calibrated value of the gain parameter of 0.02 and Milani (2007) 

and Slobodyan and Wouters (2009a) find posterior mean estimates 

that range between 0.0161 and 0.0247, and between 0.002 and 0.02, 

respectively. The high values for this parameter obtained in our 

study are related to the specification of the forecasting model. As 

the econometric exercise implemented in the subsection 1.4.1 

shows, the forecasting models for inflation that best fit the survey 

data require significant time variation of their coefficients (the gain 

parameters are equal or higher than 0.10). Moreover, the fewer 

variables are included in the forecasting model, the smaller the 

impact of the time-variation of their coefficients on the stability of 

the DSGE model. Thus, not only does the forecasting model for 

inflation require high levels of time-variability in its coefficients, 

but its specification actually allows us to estimate the DSGE model 

for these levels of time-variability. Finally, it is important to 

mention that Slobodyan and Wouters (2009b) also find a high 

                                                 
22

 Constant-gain parameter values of 0.188 and 0.141 imply that 75 percent of the 

information that people employ to generate their inflation expectations is 

contained in the 6.7 and 9.1 most recent quarterly data observations, respectively. 

Because the relative weight of the ‘j’ most recent observations in the estimation 

of the forecasting model is g(1-g)
j-1

, the number of observations required to 

accumulate the ‘p’ percent of information used in this estimation is given by 

log(1-p)/log(1-g). 
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degree of time-variability in the coefficients of the small forecasting 

models employed in their learning estimation. However, this result 

is not reflected in a high gain parameter because they do not use 

constant-gain but Kalman-filter learning. 

The reduction in the posterior mean of the gain parameter for 

inflation obtained once survey data are employed in the estimation 

of the DSGE model has some interesting effects on the evolution of 

the coefficients of the forecasting model of inflation, the 

composition of inflation expectations, and the evolution of the 

inflation target implied by the model. 

As shown by Figure 1.4, when survey data are not included in the 

estimation, the perceived inflation persistence 1,( )πβ  shows a sharp 

decline at the end of the 1970s with a subsequent increase. When 

survey data are included, the evolution of this coefficient does not 

exhibit this decline but remains high through all the second half of 

the 1970s and all the 1980s. Additionally, the increases in the 

intercept of the forecasting model 0,( )πβ  observed during the late 

1970s and the early 1980s are less important. 
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Figure 1.4 

Evolution of the coefficients of the forecasting model for inflation 

(a) Perceived persistence of inflation 
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(b) Intercept 
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These differences in the evolution of the coefficients of the 

forecasting model affect the composition of inflation expectations. 

Considering the form of the forecasting model, conditional inflation 

expectations can be represented as 1 0, , 1, ,( )
t t t t t

E dlP dlPπ πβ β+ = + . 

When survey data are included in the estimation, these expectations 
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are closely related to the evolution of the perceived persistence of 

inflation, 1, ,t t
dlPπβ , up to the beginning of the 1990s (see Figure 

1.5b). However, this is not the case when survey data are absent 

(Figure 1.5a). Notice that since the 1990s, both estimations indicate 

that inflation expectations are no longer related to the perceived 

persistence of inflation but to the perceived inflation mean.
23

 

                                                 
23

 Given the structure of the forecasting model for inflation, if the perceived 

persistence coefficient is close to zero, the intercept can be interpreted as the 

perceived mean of inflation. 



 

 35

Figure 1.5 

Composition of inflation expectations under learning 

(a) Not using survey data 
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(b) Using survey data 
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Finally, Figure 1.6 shows the evolution of the perceived long-run 

inflation target at each point in time expressed by 0, 1,(1 )π πβ β− . 
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According to this figure, at the beginning of the 1970s the expected 

quarterly inflation target was 0.59 percent, but it kept increasing 

until it reached the level of 2.44 percent in 1981:2. Afterwards, we 

observe an important reduction down to a level between 0.6 and 1 

during the 1980s. The timing and the magnitude of the reduction in 

expected inflation target are consistent with the belief that the 

Volcker recession at the beginning of the 1980s reduced inflation 

expectations. During the 1990s, the target steadily decreases until 

the early 2000s (in 2000:1 the target is situated at 0.37). After this 

point, the expected inflation target follows a positive path that is 

interrupted by the outbreak of the financial crisis in 2007. The use 

of survey data in the estimation avoids the presence of some outliers 

observed in the evolution of the inflation target. 

Figure 1.6 

Evolution of the inflation target under learning 
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1.4.4 Impulse-Response analysis 

Finally, we analyze how the use of survey data affects the Impulse-

Response functions (IRFs) analysis for inflation. We only focus on 

this variable as the introduction of survey data does not affect the 

IRFs for any further variables of the model.
24

 

Under the RE solution, there are no significant differences in the 

IRFs obtained with and without the use of survey data, except in the 

response of inflation to the wage mark-up shock. The reduction of 

the wage stickiness results in a less persistent inflation response to 

this type of shocks (see Figure 1.7a). Interestingly, despite the large 

reduction in the degree of inflation indexation, the impact of a price 

mark-up shock on inflation does not significantly alter with the use 

of survey data (see Figure 1.7b). The underlying reason is the 

compensation of declining price indexation by the increasing 

autocorrelation coefficient of the price mark-up shock. 

Under learning, adding survey data leads to a reduction in the time-

variability of the coefficients of the forecasting model for inflation, 

and thus to a reduction in the time-variability of the IRFs. As a 

result, most of the stronger and more persistent responses of 

inflation are concentrated in the 1970s. For instance, it is observed 

that unexpected monetary policy shocks have more destabilizing 

                                                 
24

 The Online Appendix contains the variance-covariance analysis for inflation. 

We find that the relative importance of the shocks depends on the assumption 

about how expectations are formed rather than on the use of survey data. 
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effects on inflation during the 1970s than afterwards (see Figure 

1.8). 

Figure 1.7 

IRFs under RE: response of inflation to price and 

wage mark-up shocks 

 (a) Wage mark-up shock           (b) Price mark-up shock 
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Notes: This figure shows the responses of inflation to a price and a wage mark-up 

shocks. Dotted lines are the 90% confidence intervals. 

This result is compatible with the study by Boivin and Giannoni 

(2008), who find weaker responses of inflation to unexpected 

changes in the interest rate for the post-1979 period in comparison 

to the previous period. When survey data are excluded from the 

estimation of the DSGE model, the higher time-variability of the 

coefficients of the forecasting model for inflation, generated by a 

higher gain parameter for inflation, produces some important 

responses of inflation to structural shocks during the 1990s and 

2000s, that otherwise would not be observed. 
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Figure 1.8 

IRFs under learning: Response of inflation to structural shocks 

 Without using survey data  Using survey data 

(a) Wage mark-up shock 
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(b) Productivity shock 
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(c) Monetary policy shock 
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Notes: This figure shows the responses of inflation to a wage mark-up, 

productivity and monetary policy shocks using the structure of the economy at 

every point in time. 
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1.5. Robustness exercises 

In order to test for robustness of our findings, we evaluate the 

following three variations of our benchmark specification. First, we 

use alternative specifications of the forecasting model for inflation 

under learning. Second, we analyze how our results change when 

loose uniform priors are used.
25

 Finally, we replace the CG-LS 

algorithm employed under learning by ordinary least squares 

(OLS). 

When using alternative forecasting models for inflation, the 

posterior statistics obtained under learning barely alter (see Table 

1.4, columns 2 to 5).
26

 In particular, the median values of the 

posterior distribution of price indexation and the autocorrelation 

coefficient of the price mark-up shock are close to 0.60 and 0.161, 

respectively and the gain parameter for inflation is close to 0.135. 

These numbers are very similar to those obtained under the 

benchmark specification of the forecasting model for inflation 

(column 1). 

 

 

 

                                                 
25

 The Online Appendix contains the list of prior distributions used for these 

estimations. 
26

 The forecasting models for inflation that are considered are those presented in 

Table 1.1. 
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Table 1.4 

Posterior distribution statistics: different specifications of the forecasting model for inflation 

Estimations include survey data on inflation expectations 

Symbol Median Std Median Std Median Std Median Std Median Std

Wage stickiness ξw 0.563 0.049 0.555 0.048 0.548 0.046 0.548 0.046 0.551 0.048

Price stickiness ξp 0.480 0.035 0.446 0.033 0.467 0.037 0.453 0.035 0.462 0.037

Wage indexation ιw 0.319 0.107 0.314 0.101 0.342 0.110 0.326 0.106 0.319 0.109

Price indexation ιp 0.515 0.119 0.584 0.118 0.553 0.118 0.618 0.112 0.674 0.101

TR: inflation rπ 1.398 0.104 1.432 0.111 1.404 0.121 1.468 0.111 1.423 0.115

TR: lag interest rate ρR 0.777 0.029 0.775 0.029 0.767 0.029 0.778 0.023 0.776 0.031

TR: change in output rΔy 0.210 0.047 0.210 0.045 0.203 0.046 0.214 0.044 0.206 0.046

aut. Price Mk up shock ρp 0.173 0.087 0.180 0.083 0.168 0.083 0.175 0.080 0.124 0.062

std. Price mkup shock σp 0.204 0.014 0.221 0.014 0.206 0.015 0.223 0.013 0.221 0.014

gain - inflation g
π

0.141 0.009 0.132 0.006 0.137 0.007 0.130 0.005 0.140 0.008

gain - others g
nonπ

0.019 0.031 0.023 0.022 0.028 0.049 0.019 0.021 0.019 0.032

Measurement exp error σexp 0.176 0.010 0.177 0.011 0.175 0.009 0.173 0.009 0.184 0.011

 Log. Mg. Likelihood

(1)

dlP

(benchmark)

45.2 38.6 43.3 40.4

(5)

dlP dlGDP

24.1

 lHours    

dlP lHours   

(2) (3) (4)

dlP dlCons   dlP dlCons

 
Notes: this table shows the median and standard deviation of the posterior distributions of those 

parameters most closely related to the dynamics of inflation. Each of the columns indicates the use of 

different specifications of forecasting models for inflation. These specifications are the ones that generate 

the series of one-period-ahead inflation forecasts closer to the series of survey data on inflation 

expectations. 
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With respect to the introduction of loose uniform prior distributions, 

we find that learning does not display a major change in the 

parameter estimates with the exception of the increases in wage 

stickiness and the coefficient of output growth in the Taylor rule 

(for details please refer to the Online Appendix). The latter result is 

also observed under RE. 

Table 1.5 

Model comparison: estimation using OLS learning 

Dataset Dataset

Log Marginal without with

Likelihood survey data survey data

(1) (2) (3)=(2)-(1)

RE -146.78 -19.14 127.64

Learning -148.35 -77.20 71.14  
Notes: This table shows the log marginal likelihood for RE 

and Learning. Survey data on inflation expectations come 

from the SPF one-quarter-ahead median forecast of the GDP 

deflator. 

Finally, the use of the OLS algorithm instead of CG-LS decreases 

significantly the log marginal likelihood of learning when survey 

data are included (Table 1.5, column 2). This result can be 

explained by the inability of this specification to match the 

evolution of the survey data. Using the OLS algorithm keeps the 

coefficients of the forecasting model very close to the initial 

conditions. Given that the initial conditions are obtained during a 

period of low and not persistent inflation (period 1950:1-1968:3), 

the model fails to replicate the increases in the expectations during 

the 1970s and beginning of the 1980s (see Online Appendix). Yet, 
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the RE solution also fails to match the evolution of the survey data 

as well as learning when the CG-LS is employed. 

 

1.6 Conclusions 

In this chapter, we provide evidence that the predictive power of 

DSGE models is improved when resorting to available survey data 

and to an admissible learning rule for the formation of expectations. 

In particular, we find that the solution under learning of the New 

Keynesian model developed by SW fits the data better than the RE 

solution once survey data on inflation expectations are included in 

the analysis. 

Moreover, we employ survey data on inflation expectations in the 

selection of the forecasting model for inflation under learning and 

thus, reduce to some extent the degree of freedom the researcher 

faces at the time of choosing the forecasting models. The resulting 

small forecasting model for inflation and the high speed of learning 

allows the SW model, when solved under learning, to match the 

increases and decreases in inflation expectations observed during 

the late 1970s and the early 1980s. 

Finally, the additional moment restriction that represents the 

inclusion of the survey data on inflation expectations leads to 

parameter estimates that highlight the differences in the sources of 

inflation persistence between RE and learning. Under RE, a highly 

persistent price mark-up shock is observed, despite the fact that this 
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model incorporates nominal frictions such as price stickiness and 

indexation. In contrast, both price indexation and the learning 

process itself are the main sources of inflation persistence under 

learning. 

There are several important issues that are not addressed in this 

study. First, we only use the median value of inflation expectations 

reported by the forecasters included in the SPF at each point in 

time. However, it is possible to exploit information about other 

moments – such as the dispersion –to evaluate issues like the 

credibility of the central bank or the effect of periods of high 

disagreement in expectations on the conduct of monetary policy. 

Second, survey data on inflation expectations may be employed to 

evaluate models particularly designed to better explain the low 

frequency movements of inflation observed during the late the 

1970s and the early 1980s in many developed countries. In light of 

our results, it is interesting to ask whether other perfect information 

setups (such as Sbordone (2007) or Ireland (2007)) can provide 

better descriptions of the survey data than learning. Finally, survey 

data are also available for a variety of other macroeconomic 

indicators besides inflation expectations. For instance, survey data 

on expectations of future output and investment growth might 

contain useful information for the identification of the mechanisms 

underlying the business cycle. 

To conclude, this study is one of the first to show that survey data 

contain useful information when estimating DSGE models. Yet, so 
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far, the information collected by surveys such as the Survey of 

Professional Forecasters (SPF), the Livingstone and Michigan 

surveys or the Greenbook, have been largely neglected by empirical 

macroeconomic studies. The use of this information could improve 

our understanding of how expectations are formed and their impact 

on the economy. 
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2. Macroeconomic Models with Durables and 
Uncertainty* 

 

2.1. Introduction 

Investment in durable consumption changes a lot more over the 

cycle than nondurable consumption. One reason is that the stock of 

durables is large relative to the investment in durables, which means 

that a certain drop in the investment in durables leads to much 

smaller drop in the level of durables. In addition, one would think 

that the increased probability of unemployment induces agents to be 

careful in making large purchases. Especially, if there is little risk 

sharing then an increase in idiosyncratic risk would imply a 

reduction in the demand for durables. This relationship between 

uncertainty and the demand for durables can be found in the model 

of Carroll and Dunn (1997) and Xu (2010). These models are quite 

complex and would be difficult to incorporate into a full-fledged 

macroeconomic model. 

The objective of this chapter  is to investigate whether an increase 

in uncertainty also leads to a reduction in models that incorporate a 

demand for durables using the standard (simple) setup. The short 

answer is no. The savings aspect of durables typically dominates 

and an increase in uncertainty tends to lead to an increase in the 

demand for durables. There are a few exceptions, for example if 

                                                 
*
 This chapter is written in collaboration with Wouter den Haan. 



 

 48

there is an elastic supply of bonds available to the economy as 

would be the case in a small open economy. 

 

2.2. Two-period models 

In this section, we use a two-period version of the models 

considered later in this chapter to derive some analytical results and 

to build intuition. 

2.2.1 Two-period model; no bonds and no non-negativity 

constraint 

We start with a model in which the agent can spend his income only 

on purchases of nondurable and durable consumption. This means 

that the only way he can save is through purchases of durables. The 

agent’s maximization problem is the following:

1
 

(1) 
1 1 1

1 11 1

1 1
1 2

, , , , ,

1 11 1
max

1 1 1 1

c dc d

c c i i d d
c d c d

c dc d
E

γ γγ γ

ψ β ψ
γ γ γ γ+ + +

− −− −

+ +
  − −− −

+ + +  
− − − −  

 

s.t. 

c pi y+ =  

1(1 )d i dδ −= + −  

1 1 1 1c p i y+ + + ++ =  

                                                 
1
 The scaling of the coefficients ψ  is different in the two periods. We choose the 

value of 2ψ  relative to 1ψ  such that the steady state values for c  and d  are the 

same in each period, a property that is also true in the infinite-horizon version of 

the model. 
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1 1 (1 )d i dδ+ += + −  

Throughout this section, the distribution of 1y+  is described by the 

following assumption. 

Assumption 1. The value of 1y+  is equal to y σ+  with probability 

1/2 and equal to y σ−  with probability 1/2. 

Assumption 1 implies that 

(2) [ ]( )
2 2

1 1 .E y E y σ+ +
 − =
 

 

The solution is determined by the following set of equations: 

(3) 1 2 1(1 ) ,c d dpc d E d
γ γ γψ β δ ψ− − −

+
 = + −   

(4) 1 1 2 1 ,c dp c d
γ γψ− −

+ + +=  

(5) ,c pi y+ =  

(6) 1 1 1 1,c p i y+ + + ++ =  

(7) 1(1 ) ,d i dδ −= + −  

(8) 1 1 (1 ) .d i dδ+ += + −  

Partial equilibrium. The main purpose of this chapter is to 

understand the effect of uncertainty on the demand for durables. 

Consequently, we take prices of durables as given. In particular, we 

assume that 

(9) 1 1.p p+= =  

The following proposition describes the effect of arbitrarily small 

increases in uncertainty on investment. 
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Theoretical results. 

Proposition 1 If assumption 1 holds and c , 1c+ , d , 1d+ , i , and 1i+  

are determined by equations 3 through 8, then 

d ( )
0  0,

d

d ( )
0  0.

d

i
if

i
if

σ
σ

σ
σ

σ
σ

= =

> >

 

Proof From the second-period first order condition, we get 

(10) 1 1 1 1 1 1d d (d (1 )d )
c d d
d c c d c i iγ γ γ δ+ + + + + += = + −  

From the budget constraint, we get 

(11) 1 1d d d .c iσ+ += ± −  

Combining these last two equations gives 

1
1

1 1

d ( d (1 )d )c

c d

d
d i

d c

γ
σ δ

γ γ
+

+

+ +

= ± + −
+

 

From the budget constraint in the first period, we get 

(12) d d .c i= −  

Using the last two results and the Euler equation for the first 

period, we get 

(13) ( )1 1

1 dc d

c d
c d i

γ γ
σ σγ ψ γ− − − −+  

( )

( )

2 , , 11

, , 1

, , 1 , , 1

2 , , 11

, , 1

, , 1 , , 1

d (1 )d
(1 )

.
2

-d (1 )d

d

d

d c hi

hi

c hi d hi

d c lo

lo

c lo d lo

d
d i

d c

d
d i

d c

σγ
σ

σ σ

σγ
σ

σ σ

ψ γ γ
σ δ

γ γβ δ

ψ γ γ
σ δ

γ γ

+− −

+

+ +

+− −

+

+ +

 
+ + − + 

+−  = −
 

+ −  + 
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Here the subscript σ  indicates the value of the variable at the value 

for σ  at which the increase in σ  is considered. If the increase in 

σ  is considered starting at σ  = 0, then 

, , 1 , , 1 , , 1 , , 1  ,
hi lo hi lo

c c and d dσ σ σ σ+ + + += =  

which means that  

(14) 
d

0.
d

i

σ
=  

Now consider an increase in σ  starting at a positive value for σ . 

Then 

(15) 
( )1 1 2

1

(1 )
d ...

2 (1 )c d

c d

i
c d X

γ γ
σ σ

β δ

γ ψ γ β δ− − − −

−
= −

+ + −
 

(16)    

 
2 , , 1 2 , , 1

, , 1 , , 1 , , 1 , , 1

... d ,
d d

d c hi d c lo

c hi d hi c lo d lo

d d

d c d c

γ γ
σ σ

σ σ σ σ

ψ γ γ ψ γ γ
σ

γ γ γ γ

− −

+ +

+ + + +

 
× −  + + 

 

where 

(17) 
2 , , 1 2 , , 1

, , 1 , , 1 , , 1 , , 1

/2.
d d

d c hi d c lo

c hi d hi c lo d lo

d d
X

d c d c

γ γ
σ σ

σ σ σ σ

ψ γ γ ψ γ γ

γ γ γ γ

− −

+ +

+ + + +

 
= +  + + 

 

It follows that 

(18) 
d

0
d

i

σ
>  

since 

(19)  , , 1 , , 1 , , 1 , , 1    >0.
hi lo hi lo

c c and d d forσ σ σ σ σ+ + + +> >  
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The result that d / d 0i σ =  at σ  = 0 is not surprising. When σ  is 

equal to 0, then the derivatives when 1y y σ+ = +  are equal to the 

derivatives when 1y y σ+ = − . Consequently, starting at the case of 

no uncertainty, the impact of an unexpected positive shock exactly 

offsets the impact of an unexpected negative shock. As the gap 

between y σ+ and y σ−  increases, the gap between , , 1 
hi

d σ +  and 

, , 1lo
d σ +  increases, which in turn increases the gap between the 

decrease in marginal utility (for the positive shock) and the increase 

in marginal utility (for the negative shock). This result described by 

this proposition is the opposite of the perceived wisdom described 

in the introduction. At best, investment does not respond, which 

only happens if the starting point is the unlikely situation of having 

no uncertainty at all and the increase in uncertainty is arbitrarily 

small. Starting at a positive amount of uncertainty, investment in 

durables increases when uncertainty rises even for marginal 

increases. 

Another way to understand the results is the following intuitive 

reasoning. Consider a (discrete) change in σ  from 0 to a positive 

number. Suppose to the contrary that i  decreases. If i  decreases, 

then c  increases which means that 1
c dc d

γ γψ− −−  decreases which 

means that 1
cE c

γ−

+
    decreases. This expectation can only decrease 

if either [ ]1E c+  increases or the variance of 1c+  decreases. The 

latter is not possible if we start at σ  = 0. Suppose that [ ]1E c+  

increases. This means that [ ]1E d+  decreases. The decrease in 
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1
cE c

γ−

+
    implies that 1

dE d
γ−

+
    also decreases. But this is 

impossible if [ ]1E d+  decreases. Consequently, it cannot be the case 

that i  decreases. 

Parameter values. The value of y  is set equal to 2. This is just a 

normalization. The value of β  is equal to 0.99 and the value of δ  

is equal to 0.025, which are standard values in the literature. As 

mentioned above, 1 1.p p+= =  We choose the values of 1ψ , 2ψ  

such that the values of c , 1c+ , i , and 1i+  are all equal to 1 if σ  is 

equal to 0. The benchmark value for σ  is equal to 0.5, but we also 

consider other values. This is a huge amount of uncertainty. When 

σ  is equal to 0.5, then agents face the possibility of a 25 percent 

drop and a 25 percent increase in their income. The benchmark 

value for both 
c

γ  and 
d

γ  is equal to 2, but we do consider other 

values as well. 

Quantitative results. The results of our numerical experiment are 

reported in top panel of Table 2.1. If we increase σ  from 0 to 0.15, 

then the value of i  increases from 1 to 1.000019, an increase of 

only 0.0019 percent. If we set σ  equal to 1, then the increases is 

still only 0.084 percent. A value of σ  equal to 1 means that the 

agent faces a 50 percent probability that income is equal to 50 

percent below expected income and a 50 percent probability that 

income is 50 percent above expected income. If we set 
c

γ  and 
d

γ  

equal to 10 and keep σ  at 1, then the increase is 0.31 percent. 

Given the high values of risk aversion, this is still a low number. 

Why does an agent with this much curvature not save more? The 
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reason is that an increase in the curvature would increase the 

demand for buffer stock savings, but also makes it more costly to do 

so, since building up the buffer stock requires a reduction in current 

period nondurable consumption. This is more costly with more 

curvature in the utility function. The importance of this argument 

can be highlighted with the following experiment. Suppose that we 

keep the values of 
c

γ  and 
d

γ  equal to 10 in the second period, but 

set these values equal to 0.5 in the first period.
2
 Thus, substituting 

out of nondurable consumption is now less costly. Now, investment 

increases with 4.22 percent, a nontrivial number. 

Table 2.1 

Investment in durables and uncertainty: two-period model  

without bonds (% change from zero uncertainty) 

A. Without non-negativity constraint 

 

B. With non-negativity constraint 

 

Notes: The table reports the percentage difference 

between the chosen level at the indicated level of σ  

relative to the chosen level when σ  is equal to 0. 

                                                 
2
 These values of 1ψ  and 2ψ  are such that the steady state remains the same. 
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2.2.2 Two-period model; no bonds and non-negativity 

constraint 

Next, we consider the version of the model in which agents cannot 

sell their durables in the second period. 

(20) 
1 1 1

1 11 1

1 1
1 2

, , , , ,

1 11 1
max

1 1 1 1

c dc d

c c i i d d
c d c d

c dc d
E

γ γγ γ

ψ β ψ
γ γ γ γ+ + +

− −− −

+ +
  − −− −

+ + +  
− − − −  

 

s.t. 

c i y+ =  

1 1 1c i y+ + ++ =  

1(1 )i d dδ −= − −  

1 1 (1 )i d dδ+ += − −  

1 0i+ ≥  

Prices are again set equal to 1 in both periods. The solution is 

determined by the following set of equations: 

(21) 1 2 1(1 ) ,c d dc d E d
γ γ γψ β δ ψ− − −

+
 = + −   

(22) 1 1 2 1 ,c dc d
γ γη ψ− −

+ + +− =  

(23) ,c i y+ =  

(24) 1 1 1,c i y+ + ++ =  

(25) 1(1 ) ,d i dδ −= + −  

(26) 1 1 (1 ) ,d i dδ+ += + −  

(27) 1 0,i+ ≥  
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where 1η+  is the Lagrange multiplier associated with the non-

negativity constraint. 

Theoretical results. If the value of σ  is such that the non-

negativity constraint is binding if the agent receives the low income 

realization in the second period, then the impact of uncertainty on 

this period´s demand for durables is the opposite of the one found 

above. As formally stated in the following proposition, a marginal 

increase in uncertainty reduces the demand for durables when the 

constraint is binding. 

Proposition 2 If assumption 1 holds and c , 1c+ , d , 1d+ , i , and 1i+  

are determined by equations 21 through 27 and the non-negativity 

constraint is binding, then 

d ( )
0.

d

i σ

σ
<  

Proof If the non-negativity constraint is binding in case the agent 

receives the low income realization, then 

(28) , , 1d  (1- )d .
lo

d iσ δ+ =  

If the agent has the high income realization, then we have (as 

before) 

, , 1

, , 1

, , 1 , , 1

d ( d (1 )d )
c hi

hi

c hi d hi

d
d i

d c

σ
σ

σ σ

γ
σ δ

γ γ
+

+

+ +

= + + −
+

 

From the budget constraint in the first period, we get 

(29) d d .c i= −  
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Using the last two results and the Euler equation for the first 

period, we get 

(30) ( )1 1

1 dc d

c d
c d i

γ γ
σ σγ ψ γ− − − −+  

( )2 , , 11

, , 1

, , 1 , , 1

1

, , 1 2

d (1 )d(1 )
.

2
(1 )d

d

d

d c hi

hi

c hi d hi

lo d

d
d i

d c

d i

σγ
σ

σ σ

γ
σ

ψ γ γ
σ δβ δ

γ γ

ψ γ δ

+− −

+

+ +

− −

+

 
+ + − +−  

+= −  
 − 

 

From this we get 

(31) 

( )
2 , , 1

1 1 2
, , 1 , , 11

(1 )
d d ,

2 (1 )

d

c d

d c hi

c hi d hic d

d
i

d cc d X

γ
σ

γ γ
σ σσ σ

ψ γ γβ δ
σ

γ γγ ψ γ β δ

−

+

− − − −
+ +

 −
= −   ++ + −  

 

where 

(32) 
2 , , 1 1

2 , , 1

, , 1 , , 1

/2,
d

dd c hi

d lo

c hi d hi

d
X d

d c

γ
σ γ

σ

σ σ

ψ γ γ
ψ γ

γ γ

−

+ − −

+

+ +

 
= +  + 

 

which implies that 

(33) 
d

0.
d

i

σ
<  

The reason for this result is fairly intuitive. An increase in σ  has no 

effect on , , 1lo
d σ +  at all but it does increase , , 1hi

d σ + , which means that 

the expected value of investing in durables is decreased. 

Consequently the demand for durables drops.  

The reason for this result is relatively simple. If the non-negativity 

constraint is not binding, then the increase in uncertainty increases 
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the value of 1
dE d

γ−

+
    and, thus, increases the expected return on the 

investment in durables. The reason is that the negative shock 

increase , , 1
d

lod
γ
σ

−

+  by more than the positive shock decreases , , 1
d

hid
γ
σ

−

+ . If 

the non-negativity constraint is binding, then durables in the second 

period are given by 

(34) 2

, , 1 (1 ) (1 ) (1 ) ,lod d iσ δ δ δ+ = − = − + −  

which means that a marginal change in the negative shock has no 

effect on , , 1
d

lod
γ
σ

−

+ . But the positive shock still decreases , , 1
d

hid
γ
σ

−

+ . 

Consequently, the value of 1
dE d

γ−

+
    decreases and the investment 

in durables should decrease as well. 

Quantitative results. Exact outcomes for some particular values of 

σ , 
c

γ  and 
d

γ  are given in the bottom panel of Table 2.1. The main 

result of this section is displayed in Figure 2.1, which plots the 

value of i  as a function of σ  for the case when there is and when 

there is not a non-negativity constraint. For low values of σ , the 

possible drop in income is not high enough to generate a binding 

non-negativity constraint. An increase in uncertainty then increases 

the demand for durables, i , as documented in the previous section. 

The value of σ  has be quite high before the constraint becomes 

binding, namely 1.025, which is 51.2 percent of the agent´s 

expected income. If the constraint is binding, a further increase in 

σ  would lead to lower values for i . Given the rise in i  up to this 

point, the value of σ  has to increase sufficiently above 1.025 

before i  is below the level corresponding to the case of no 
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uncertainty. However, this will happen quickly. The figure seems to 

suggest that the demand for durables drops rapidly with σ  when 

the constraint becomes binding. But this is not true. The demand for 

durables when the constraint is binding drops relative to the 

increase when the constraint is not binding, but both are changes are 

quantitatively small. When σ  = 1.2, then the investment in durables 

is still only 0.31 percent below the level without uncertainty. With 

such a minor drop in the investment in durables, the level of 

durables itself changes even less. 

The results so far can be summarized as follows. In this model, in 

which the consumer can respond to changes in uncertainty only by 

changing the mix of durable and nondurable consumption, the 

quantitatively effects of uncertainty on durable investment are 

small, both when the constraint is and when the constraint is not 

binding.
3
 

                                                 
3
 As mentioned above, the exception occurs when the curvature parameters 

change over time. 
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Figure 2.1 

Impact of uncertainty on durables investment:  

two-period model without bonds 

 
Notes: This graph plots the difference between the investment in durables 

chosen by an (unconstrained) agent at the indicated level of uncertainty 

relative to the chosen level when there is no uncertainty. 

 

2.2.3 Two-period model with bonds: with and without a 

non-negativity constraint 

One would expect that an increase in uncertainty would induce 

agents to consume less. In the model without bonds, the budget 

constraint implies that nondurable and durable consumption move 

in the opposite direction. That is, 

d d .c i= −  

Consequently, the agent cannot reduce both types of consumption 

commodities. The most logical outcome is that an increase in 

uncertainty induces the agent to increase i , since durables not only 

provide utility, but also are a savings vehicle. The results that a 

decrease in c  necessarily implies an increase in d  no longer holds 
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if the agent can also invest in bonds. Would an increase in 

uncertainty lead to a reduction in both types of consumption if the 

agent can invest in bonds? 

We analyze this question using the following model. 

(35) ( )
1 1 1

1 1
, , , , , ,

max ( ) ( ) ( ) ( )
c c b i i d d

u c U d E u c U dβ
+ + +

+ ++ + +    

s.t. 

c qb pi y+ + =  

1 1 1 1c p i y b+ + + ++ = +  

1(1 )d i dδ −= + −  

1 1 (1 )d i dδ+ += + −  

The solution to this problem satisfies the following set of equations. 

(36) 1 2 1(1 ) ,c d dpc d E d
γ γ γψ β δ ψ− − −

+
 = + −   

(37) 1 ,c cqc E c
γ γβ− −

+
 =    

(38) 1 1 2 1 ,c dp c d
γ γψ− −

+ + +=  

(39) ,c qb pi y+ + =  

(40) 1 1 1 1 ,c p i y b+ + + ++ = +  

(41) 1(1 ) ,d i dδ −= + −  

(42) 1 1 (1 ) .d i dδ+ += + −  

Theoretical results. Investments in both bonds and durables are 

both savings vehicles. The gross return on bonds equals 1/ q  and 

the gross return on durables excluding the utility flow is equal to 

1(1 ) /p pδ+ − . With constant prices the latter reduces to (1 )δ− . The 
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following assumption states that excluding the utility flow, bonds 

are a better savings vehicle than durables. 

Assumption 2  

(43) 
1

(1 ).
q

δ> −  

This is a weak condition. If it wouldn’t hold then there could be no 

positive demand for bonds. If this condition holds, then it is easy to 

show that the demand for durables decreases with the amount of 

uncertainty. This is formally stated in the following proposition. 

Proposition 3 If assumptions 1 and 2 hold and c , 1c+ , b , d , 1d+ , 

i , and 1i+  are determined by equations 36 through 42, then 

d ( )
0.

d

i σ

σ
<  

Parameter values. We use the same parameters as in the case 

without bonds. The value of q  is set equal to the discount factor. 

Quantitative results. Figure 2.2 plots the value of i  as a function 

of σ  for the model with bonds. First consider the case when there is 

no non-negativity constraint (or when the value of σ  is low enough 

so that it would not be binding). In contrast to the case without 

bonds, investment in durables decreases with σ . Not only the sign 

changes when bonds are introduced. Quantitatively, the change in 

σ  has a larger impact on the investment in durables. For example, 

suppose that 
c

γ  = 
d

γ  =2. If we increase σ  from 0 to 0.15, then the 

value of i decreases with 0.076 percent, still small, but much larger 

than the 0.002 percent increase observed for the case without bonds. 
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Nonlinearities are important and the results increase more than 

proportionally with σ . If we increase σ  to 1, then the reduction in 

i  is equal to 3.4 percent (see Table 2.2). 

Whereas the impact of changes in σ  on the investment in durables 

depends a lot on whether the agent can invest in bonds or not, the 

impact on nondurable consumption does not show this dependence. 

In both the model with and the model without bonds, increases in 

σ  have only a minor impact on nondurable consumption in the first 

period. In both models, the drop is less than 0.085 percent when σ  

increases from 0 to 1. 

Table 2.2 

Investment in durables and uncertainty:  

two-period model with bonds (% change from zero uncertainty) 

A. Without non-negativity constraint 

 

B. With non-negativity constraint 

 

Notes: The table reports the percentage difference between the chosen 

level at the indicated level of σ  relative to the chosen level when σ  is 

equal to 0. For bonds (which are zero when σ  = 0), the table reports 

the actual difference. 
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Now consider the case with a non-negativity constraint on 

investment. The constraint becomes binding at a somewhat higher 

value for σ , namely at σ  = 1.066. If the constraint is binding and 

the value of σ  increases, then investment in durables plummets.
4
 

For example, suppose that 
c

γ  = 
d

γ  =2. As σ  increases from 0 to 1 

the non-negativity constraint remains not binding and investment 

drops by 3.4 percent. As σ  increases further to 1.27 then 

investment falls to a level that is 23.5 percent below the level with 

no uncertainty. Most of the drop occurs when σ  exceeds 1.066, the 

value at which the non-negativity constraint becomes binding. 

Figure 2.2 

Impact of uncertainty on durables investment:  

two-period model with bonds 

 
Notes: This graph plots the difference between the investment in durables 

chosen by an (unconstrained) agent at the indicated level of uncertainty 

relative to the chosen level when there is no uncertainty. 

                                                 
4
 Note that the scale of the y-axis in Figure 2.2 is very different from the scale in 

Figure 2.1. 
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The results so far can be summarized as follows. If building up a 

buffer stock means reducing nondurable consumption to increase 

durable consumption then the effects of changes in uncertainty are 

quantitatively small. If building up a buffer stock means reducing 

the (large stock) of durable consumption to increase bond holdings, 

then the effects of changes in uncertainty are much larger. 

Caveat and general equilibrium. Proposition 3 shows that a very 

simple model can generate the desired result, namely that an 

increase in uncertainty leads to a decrease in the demand for 

durables. Moreover, the numerical results show that the results are 

quantitatively nontrivial. There is one caveat. The counterpart of the 

reduction in both types of durables is that the demand for bonds 

increases. In general equilibrium this can only happen if the supply 

increases as well. In a small open economy the increase in the 

supply could be provided by the international financial market. In a 

closed economy the government may be willing to supply these 

bonds at fixed bond prices.
5
 If there is no such elastic supply of 

bonds, then the bond price would increase. Suppose that the bond 

price increases until the demand for bonds is equal to zero. In that 

case, the demand for durables and nondurable consumption is equal 

to the outcome of the model without bonds.
6
 Consequently, the 

demand for durables again increases with uncertainty unless there is 

                                                 
5
 Of course, (perceived) effects of this increase in bonds by the government on 

the agents future budget constraint would have to be considered. 
6
 If the supply of bonds is equal to zero, then the bond price does not affect the 

equilibrium demand for the two consumption commodities. If the supply of bonds 

is not equal to zero, then the bond price does matter and the "equilibrium" version 

of the model with bonds would not be equal to the model without bonds. 
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a non-negativity constraint and the increase in uncertainty is 

sufficiently large. 

 

2.3. Infinite-horizon models and unconditional means 

In this section, we investigate whether the results for the two-period 

models carry over to models with an infinite number of periods. 

Here we focus on unconditional means. In particular, we investigate 

whether an increase in uncertainty increases or decreases the 

average amount of investment in durables. That is, we are interested 

in the sign of 

[ ]
.

E i

σ

∂

∂
 

There are several reasons why the analysis of the two-period model 

only provides a limited insight into the answer of this question. In 

the analysis above, the change in uncertainty only affects the 

situation in the next period. That is, whereas, 1y+  could take on a 

high and a low value, we kept the resources the agent started with 

fixed. Suppose that an increase in uncertainty induces an agent to 

hold more bonds to insure himself against unforeseen shocks. To 

build up this higher wealth level the agent would have to give up 

consumption. But if the agent has built up the desired buffer stock, 

the extra interest income will increase the average level of the sum 

of the two consumption expenditures. The effect of this extra 

income on i  is a channel that is not present in the two-period 

model. 
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There is another reason why the infinite-horizon model is not 

simply a multi-period extension of the two-period model. In the 

two-period model we kept first-period income fixed when we 

increased the amount of uncertainty. Moreover, we considered a 

level of income at which the agent was not at the constraint. An 

increase in the amount of uncertainty in the infinite-horizon also 

means considering a wider range of initial conditions, including the 

possibility that the agent is constrained. A binding constraint means 

that investment in durables would be less if there were no 

constraint. As uncertainty increases, then it is more likely that an 

agent is at the constraint. That is, it is more likely that investment in 

durables is not allowed to fall as much as the agent would like. 

2.3.1 Infinite-horizon without bonds 

Let e  be an indicator that is equal to 1 if the agent is employed and 

equal to 0 if the agent is not employed. If there is no non-negativity 

constraint, then the agent’s optimization problem is as follows: 

(44) [ ]1 1
, ,

( , ) max  ( ) ( ) ( , )
c i d

d e u c U d E d eυ β υ− += + +  

s.t. 

(1 )
e u

c pi ey e y+ = + −  

1(1 )d i dδ −= + −  

The stochastic process for income y  is characterized in the 

following assumption.
7
 

                                                 
7
 At the end of this subsection we show the results of a simulation exercise that 

includes a persistent income process. 
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Assumption 3 The process for y  is determined by a symmetric 

first-order Markov process. The switching probability is equal to 

1/2 and the two possible realizations are 
u

y y σ= −  and 

e
y y σ= + . Thus, the unconditional mean is equal to y  and the 

unconditional standard deviation is given by σ . 

The solution satisfies the following set of equations: 

(45) 1 1(1 ) ,c d cpc d E p c
γ γ γψ β δ− − −

+ +
 = + −    

(46) (1 ) ,
e u

c pi ey e y+ = + −  

(47) 1(1 ) .d i dδ −= + −  

Again we set 1p = . The parameters δ  and ψ  are chosen such that 

ss ss ss
c i dδ= = . 

Theoretical results. Taking the unconditional expectation of both 

sides of the budget constraint and rewriting gives 

(48) 
[ ] [ ]

[ ](1 ) .
e u

ss ss

E d E c
y E ey e y

d c
+ = ≡ + −  

Consequently, if [ ] ssE d d>  due to uncertainty, then [ ] ssE d c<  and 

vice versa.  

If we take unconditional expectations on both sides of the …first-

order conditions, then we get 

(49) ( )1 (1 ) .c dE c E d
γ γβ δ ψ− −   − − =     

Taking a second-order approximation of the terms inside the 

expectation, it can be shown that 
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(50) 
( )

( )

2

2

[ ]

1 ( 1) [ ] / [ ]
.

1 ( 1) [ ] / [ ][ ]

d

c

ss d d

c c

ss

E d

d V d E d

V c E cE c

c

γ

γ

γ γ

γ γ

 
 

+ +  ≈
+ + 

 
 

 

Here [ ]V x  is the variance of x . To understand the implication of 

this formula suppose that 
c d

γ γ= . If the variance of d  scaled by its 

squared mean is larger (smaller) than the scaled variance of c , then 

[ ]E d  is larger (smaller) than its steady state value and [ ]E c  is 

smaller (larger) than its steady value. If 
c d

γ γ≠ , then the same 

result holds except that additional scaling is required to quantify the 

relationship. 

This reasoning does not reveal whether [ ]E d  or [ ]E c  increases as 

σ  increases. The following proposition sheds light on this question 

by showing that according to the second-order perturbation policy 

rule [ ]E d  increases and [ ]E c  decreases with σ . 

Proposition 4 If the policy functions for c , d , and i  are 

determined by equations 45 through 47, then the demand for 

durables increases with uncertainty according to the second-order 

perturbation approximation. 

Proof Let ( ; )g z σ  be the policy function for nondurable 

consumption as a function of beginning-of-period resources, z , and 

the amount of uncertainty, σ . The second-order Taylor-series 

expansion of ( ; )g z σ  is given by 



 

 70

(51) 
, 0 , 0

( ; ) ( ; )
( ; ) ( ;0) ( )

z z z z

g z g z
g z g z z z

z σ σ

σ σ
σ σ

σ= = = =

∂ ∂
≈ + − +

∂ ∂
 

 
2 2 2 2

2 2

, 0 , 0

( ; ) ( ) ( ; )

2 2
z z z z

g z z z g z

z
σ σ

σ σ σ

σ
= = = =

∂ − ∂
+ +

∂ ∂
 

(52) 
2

, 0

( ; )
( )

z z

g z
z z

z
σ

σ
σ

σ
= =

∂
+ −

∂ ∂
 

21 1
( ) ( ) ( )

2 2
z zz z

g g z z g g z z g g z zσ σσ σσ σ= + − + + − + + −  

We have to show that 0gσσ > . To do this, we first …find 

expressions for 
z

g  and 
zz

g . It is well known that these do not 

depend on σ .
8
 Consequently, they can be solved from the Euler 

equation for the case without uncertainty. This Euler equation is 

given by 

(53) 
[ ]( )

0 ( ) .
(1 )( ( (1 )[ ( )]))

d

c

c

z g z
g z

g y z g z

γ
γ

γ

ψ

β δ δ

−

−

−

 −
= − +   + − + − − 

 

Since this equation holds for all z , the derivatives of both sides of 

the equation have to be also equal to each other for all z . Thus, 

(54) 
1

0 c

c z
g g

γγ − −=  

1
[ ] (1 )d

d z
z g g

γψγ − −− − −  

12(1 ) ( ( (1 )[ ])) [1 ].c

c z
g y z g g

γβ δ γ δ − −− − + − − −  

This equation also holds for all z , thus 

                                                 
8
 See for example, Schmitt-Grohe and Uribe (2004). 
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(55) 
1

0 c

c zz
g g

γγ − −=  

2 2( 1) c

c c z
g g

γγ γ − −− +  

1
[ ] d

d zz
z g g

γψγ − −+ −  

2 2( 1)[ ] (1 )d

d d z
z g g

γψγ γ − −+ + − −  

( )22 2(1 ) ( 1) ( ( (1 )[ ])) [1 ]c

c c z
g y z g g

γβ δ γ γ δ − −+ − + + − − −  

12(1 ) ( ( (1 )[ ])) c

c zz
g y z g g

γβ δ γ δ − −+ − + − −  

Evaluating this expression at z z=  and 0σ =  gives 

(56) ...
zz

g =  

( )

2 22 2

11 1 2

( 1) ( 1)[ ] (1 )
.

[ ] (1 ) ( (1 )[ ])

c d

cc d

c c z d d z

c d c

g g z g g

g z g g y z g

γ γ

γγ γ

γ γ ψγ γ

γ ψγ β δ γ δ

− − − −

− −− − − −

+ − + − −
=

+ − + − + − −
 

The sign of 
zz

g  can be either positive or negative. That is, the policy 

function for non-durables can be either convex or concave.
9
 We 

now return to the problem with uncertainty. Using the problem´s 

first-order conditions, we know that the function ( ; )g z σ  satisfies 

the following equation for all values of z  and σ : 

(57) ( ; ) ...cg z
γσ − =  

[ ]

1

^ ( ; )
... .

(1 ) ( (1 )[ ( ; )]; )

d

c

z g z

E g y z g z

γ

γ

ψ σ

β δ σε δ σ σ

−

−

+

−
=

 + − + + − − 
 

                                                 
9
 If the policy function for nondurables is concave (convex), then the policy 

function for the investment in durables is convex (concave). This follows directly 

from the budget constraint. 
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To simplify the notation we suppress the arguments and we use 

subscripts to denote derivatives and timing. For example, 

(58) 
( ; )

( ; )
g z

g g zσ σ

σ
σ

σ

∂
= =

∂
 

and 

(59) ( ), 1 (1 )[ ( ; )]; ...g g y z g zσ σ σε δ σ σ+ = + + − − =  

( (1 )[ ( ; )]; )
... .

g y z g zσε δ σ σ

σ

∂ + + − −
=

∂
 

Differentiation of equation (57) with respect to σ  gives 

(60) ( )1 1
0 [ ] ...c d

c d
g z g g

γ γ
σγ γ ψ− − − −= + − +  

( )1

1 , 1 1 , 1... (1 ) ( (1 ) ) .c

c z
E g g g g

γ
σ σβ δ γ ε δ− −

+ + + +
 + − + + −   

Differentiating this equation again gives 

(61) ( )2 2
0 ( 1) ( 1)[ ] ...c c

c c d d
g z g g g

γ γ
σ σγ γ γ ψ γ− − − −= − + + + − +  

( )1 1
[ ] ...c d

c d
g z g g

γ γ
σσγ γ ψ− − − −+ + − +  

1

1

, 1 , 1 1

1 , 1 , 1 1

, 1

( (1 ) )
... (1 ) ...

( (1 ) )( ( (1 ) ))

(1 )

c

c

z

z

z

g

g g g
E

g g g g

g g

γ

σσ σ σ

σ σ σσ σ

σσ

γ

ε δ
β δ

ε δ ε δ

δ

− −

+

+ + +

+ + + +

+

 
 

+ − − + −  + − + − −
  + − 

, 1 1 , 1... ( ( (1 ) ) ) ...zg g gσ σε δ+ + +− + + − ×

2

1 1 , 1 , 1 1... ( ) ( ( (1 ) ))c

c c zg g g g
γ

σσ σγ γ ε δ− −

+ + + + +
× + − −   

Evaluating this equation at the steady state and using that 

2

1 1E ε+
  =   gives 
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(62) ( )1 1
0 [ ]c d

c d
g z g g

γ γ
σσγ γ ψ− − − −= + −  

1

2 2

( )
(1 ) ,

( 1)

c

c

c zz

c c z

g g g

g g

γ
σσ

γ

γ
β δ

γ γ

− −

− −

 +
+ −  

− + 
 

which implies that 

(63) 
( )2 12

1 1

(1 ) ( 1)
.

(1 (1 )) [ ]

c c

c d

c c z c zz

zz

c d

g g g g
g

g z g

γ γ

γ γ

β δ γ γ γ

β δ γ γ ψ

− − − −

− − − −

− + −
=

− − + −
 

If 0
zz

g ≤ , then ( )2 12( 1) 0c c

c c z c zz
g g g g

γ γγ γ γ− − − −+ − > , which in turn 

implies that 0gσσ > . But as mentioned above, 
zz

g  could be 

positive. Suppose that 0
zz

g > . By rewriting equation (55), we get 

(64) 
2 12( 1) ...c c

c c z c zz
g g g g

γ γγ γ γ− − − −+ − =  

1
... [ ] ...d

d zz
z g g

γψγ − −= − +  

2 2... ( 1)[ ] (1 ) ...d

d d z
z g g

γψγ γ − −+ + − − +  

( )22 2... (1 ) ( 1) ( ( (1 )[ ])) [1 ] ...c

c c z
g y z g g

γβ δ γ γ δ − −+ − + + − − − +  

12... (1 ) ( ( (1 )[ ])) .c

c zz
g y z g g

γβ δ γ δ − −+ − + − −  

From this equation, we directly get that 

( )2 12( 1) c c

c c z c zz
g g g g

γ γγ γ γ− − − −+ −  and thus gσσ  are also positive 

when 0
zz

g > . This completes the proof.  

Similar to the discussion in the previous section, we will consider 

the case with and without the non-negativity constraint on 

investment in durables. The analysis above considered the case 
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without this constraint. Important for our analysis is that equation 

(48) also holds if the non-negativity constraint is present. This 

means that [ ]E c  and [ ]E d  still cannot move in the same direction 

when uncertainty increases. We provide no analytical results for this 

case, but there is one insight that immediately comes to mind. The 

demand for durables is an increasing function of income if there is 

no non-negativity constraint. If there is a non-negativity constraint 

then the flat part of this function for low values of income will 

convexify the function. Consequently, and increase in uncertainty 

will increase the demand for durables. 

Parameter values. We use standard values for β , 
c

γ , 
d

γ  and δ . 

In particular, 0.99β = , 2
c d

γ γ= = , 0.025δ = . We normalize y  

equal to 2 and we choose ψ  such that the steady state values of 

consumption and investment are equal to 1. As made explicit in 

assumption 3, we assume that the shocks are not serially correlated. 

Quantitative results
10

. The results are summarized in Table 2.3 

and Figure 2.3. The table gives some exact outcomes and Figure 2.3 

plots the average investment in durables as a function of the amount 

of uncertainty. It plots the results for the economy with and without 

the non-negativity constraint. First consider the case when there is 

no non-negativity constraint. Consistent with the theoretical results 

we find that the average demand for durables is increasing in 

uncertainty. Moreover, quantitatively the impact of uncertainty on 

the demand for durables is substantially stronger than the results in 

                                                 
10

 Appendix A describes the procedure we follow to get the numerical results 

presented in this and the following section. 
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the two-period model. Qualitatively the results are similar for the 

two-period and the infinite-horizon model. 

Table 2.3 

Investment in durables and uncertainty: infinite-horizon model 

without bonds (% change from zero uncertainty) 

A. Without non-negativity constraint 

 

B. With non-negativity constraint 

 

Notes: The table reports the percentage difference 

between the chosen level at the indicated level of σ  

relative to the chosen level when σ  is equal to 0. 

This is not the case for the model with the non-negativity constraint. 

Whereas the demand for durables falls with an increase of 

uncertainty in the two-period it increases in the infinite-horizon 

model. Moreover, the demand increases sharply with uncertainty. 

For example, the average demand for durables when σ  is equal to 

1.2 is 6.58 percent above the average demand for durables when 

there is no uncertainty. But this difference is due to the focus on 

different objects. In the two-period model, we focus on the demand 

for durables by an agent that is not constrained. In the infinite-

horizon model, we focus on the demand for durables averaged 
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across both constrained and not constrained agents.
11

 The sharp 

increase in the demand for durables when uncertainty increases is 

due to the direct positive effect of the non-negativity constraint on 

the demand for durables by the constrained agents. These agents 

would prefer a smaller level of investment in durables (namely a 

negative value), but are prevented from doing this by the non-

negativity constraint. 

Figure 2.3 

Impact of uncertainty on durables investment: infinite-horizon 

model without bonds 

 
Notes: This graph plots the difference between the average level of 

investment in durables chosen at the indicated level of uncertainty relative to 

the chosen level when there is no uncertainty. The average is across 

employed and unemployed agents where the latter could be constrained. 

To illustrate that the results for the infinite-horizon are not that 

different from the two-period model we calculate the demand for 

durables by an employed agent. This agent is not constrained in his 

demand for durables, just like the agent in the two-period model 

                                                 
11

 Another difference is the effect that a build up buffer stock of bonds has on 

spending power, but that effect is eliminated by setting the bond price equal to 1. 
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was not constrained in the first period. We cannot simply plot the 

demand for durables by an employed agent as a function of 

uncertainty. The reason is the following. In the infinite-horizon 

model, an increase in uncertainty not only increases uncertainty 

about future income realizations, but also increases the income of 

the employed agent (since we keep aggregate resources fixed). To 

make the comparison with the two-period model sensible, we keep 

the resources of the employed agent fixed.
12

 As documented in 

Figure 2.4, the effect of uncertainty on the demand for durables by 

an unconstrained agent in the infinite-horizon model is very similar 

to the impact on the demand for durables by an unconstrained agent 

in the two-period model. 

Alternative parameter values. 

Assumption 4 The process for y  is determined by an asymmetric 

first-order Markov process. The switching probability is equal to 

e
ρ  if the agent is employed (receives the high income realization) 

and equal to 
u

ρ  when the agent is unemployed (receives the low 

income realization). This means that the unconditional probability 

of being employed is equal to 
u e u

ρ ρ ρ+ . The two possible 

realizations are ( / )u u ey y σ ρ ρ= −  and ( / )e e uy y σ ρ ρ= − . 

This implies that the unconditional mean is equal to y  and the 

unconditional standard deviation is equal to σ . 

                                                 
12

 There are only two realizations for income and our numerical solution only 

gives the outcome for these two values of income. Instead of reducing the income 

level, we can reduce the amount of beginning-of-period durables. Since income 

shocks are i.i.d., only the sum of available durables and income matters and a 

reduction in the stock of durables is like a reduction in income. 
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Figure 2.4 

Impact of uncertainty on durables investment of an employed agent: 

infinite-horizon model without bonds 

 
Notes: This graph plots the time path of the average stock of durables 

(across agents) relative to its pre-shock level when idiosyncratic 

uncertainty increases. Aggregate resources remain the same, so with 

perfect risk sharing there would be no change. 

Parameter values. Up to this point we had considered 

0.5
e u

ρ ρ= = . Now, we reduce the switching probability of the 

employed agent to more realistic levels, 0.075
e

ρ = . This implies 

that the agent remains employed for longer periods and the 

unconditional probability of being employed increases from 0.5 to 

0.869. We keep the same previous values for the rest of the 

parameters (i.e. 0.99β = , 2
c d

γ γ= = , 0.025δ = ). 

Quantitative results. The results are summarized in Figure 2.5. 

Qualitatively the results are similar to those presented in Figure 2.3, 

namely that: a) the increase in uncertainty leads to more investment 

in durables; and b) the presence of a non-negativity constraint 

makes this type of purchases to increase sharply once the constraint 
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is binding. There are, however, some quantitative differences. First, 

as a whole the economy accumulate more durables. Second, the 

non-negativity constraint becomes binding for smaller levels of 

uncertainty. This happens because for the same level of uncertainty 

unemployed agent´s income ( ( / ) 2.582u ey yσ ρ ρ σ− = − ) is 

much smaller than when the income process is iid ( y σ− ). 

Figure 2.5 

Impact of uncertainty on durable investment 

 

Why does this economy invest more in durables if the probability of 

an employed agent of losing his job is smaller than in the case with 

iid income process? A comparison of the employed and 

unemployed agents between both economies is not direct: for a 

given level of uncertainty neither the level nor the persistence of 

income are the same. In order to make comparable the investment 

decisions in both economies we let the agent to be employed or 
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unemployed for several periods.
13

 By this way, the difference in 

income persistence is controlled. Additionally, we adjust the income 

of the employed and unemployed agent in order to make them 

identical in both economies.
14

 

Figure 2.6 

Impact of uncertainty on durable investment:  

agent employed for 1000 periods 

 

Figure 2.6 shows that an employed agent demands less durables in 

the economy with persistence in income, even after the adjustment 

in income. This reflect the fact that the probability of losing the job 

is much smaller ( 0.075
e

ρ = ) than in the economy with iid income 

                                                 
13

 Enough to ensure convergency in his demand for durable and non-durable 

goods. 
14

 We increase the amount of the beginning-of-period durables by 

(1 / )e uσ ρ ρ−  and ( / 1)u eσ ρ ρ −  for the employed and unemployed 

agents, respectively, in the persistent income economy. 
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process ( 0.5
e

ρ = ). In the case of the unemployed agent (see Figure 

2.7), the demand of durables is almost identical than in the economy 

with iid income process after the adjustment in income. Therefore, 

the higher demand for durables observed in the aggregate is 

explained by the fact that in the persistent income economy the 

agent spends more time as employed than in the case with iid 

income process. 

Figure 2.7 

Impact of uncertainty on durable investment: 

agent unemployed for 1000 periods 

 

2.3.2 Infinite-horizon with bonds 

If there is no non-negativity constraint on the purchases of durables, 

then the agent’s optimization problem is given by 

(65) [ ]1 1 1
, , ,

( , , ) max  ( ) ( ) ( ) ( , , )
c b i d

b d e u c U d P b E b d eυ β υ− − += + − +  
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s.t. 

1(1 )
e u

c qb pi ey e y b−+ + = + − +  

1(1 )d i dδ −= + −  

The interest rate is fixed and does not depend on the amount of 

money invested ( 0b > ) or the amount borrowed ( 0b < ). The 

function ( )P b  captures the idea that the cost (benefits) of borrowing 

(investing) will increase (decrease) if this activity increases. Such a 

property is not only realistic, but is also needed to keep the model 

well defined. An alternative is to let the interest rate charged depend 

on a function ( )P b . This is more realistic, but our specification is 

easier to interpret. The literature often uses borrowing constraints to 

keep the problem well behaved, which would correspond to a 

particular discontinuous specification for ( )P b .
15

 Some authors use 

a formulation like ours to approximate the non-negativity 

constraint. In this case ( )P b  is referred to as a penalty function. De 

Wind (2008) shows that many properties of models with a 

borrowing constraint are similar to those with a smooth penalty 

function. Here, we do not think of ( )P b  as an approximation to a 

borrowing constraint. We use this formulation because it introduces 

bonds into the model with the least possible changes. For example, 

if ( )P b  would have entered the budget constraint, then both the 

budget constraint and the first-order condition would have changed, 

whereas here only the first-order condition is affected. Introducing 

                                                 
15

 For example, the constraint that 0b ≥ , is implemented by the function ( )P b  

that is equal to 0 if 0b ≥  and equal to infinity if 0b < . 
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bonds in this minimal way into the model, helps us to understand 

how the possibility to invest in bonds affects the relationship 

between uncertainty and investment in durables. Obviously, if 

bonds are introduced into the model in more complex ways, then 

these additional aspects may affect this relationship as well. 

The solutions for c , d , i , and b  satisfy the following set of 

equations: 

 1 1(1 ) ,c d cpc d E p c
γ γ γψ β δ− − −

+ +
 = + −    

 1

( )
,c c

P b
qc E c

b

γ γβ− −

+

∂
 = − +  ∂

 

 1(1 ) ,
e u

c qb pi ey e y b−+ + = + − +  

 1(1 ) .d i dδ −= + −  

We assume that the penalty function is given by 

(66) 1 0

0

exp( )
( )

b
P b

η η

η

−
=  with 0 0η > , 1 0η > . 

which means that the Euler equation for bonds is given by 

(67) 1 0 1exp( ) .c cqc b E c
γ γη η β− −

+
 = − +    

Parameter values. The parameters that also appear in the problem 

without bonds take on the same value. In our benchmark case, we 

set 1q = . This means that we do not have the additional channel 

discussed at the beginning of this section that resources increase if 

agents build up a buffer stock. We set 1η  equal to (1 )β− , so that 
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the steady state values of c  and i  are again equal to 1 and the 

steady state value of b is equal to 0. 

Theoretical results. The advantage of the chosen parameter values 

related to the demand for bonds is that the theoretical results 

derived for the case without bonds carry over to the case with 

bonds. That is, the impact of an increase in uncertainty on the 

average demand of durables and nondurables must have the 

opposite sign. And according to the second-order approximation, 

the demand for durables should increase. 

Figure 2.8 

Impact of uncertainty on durables investment: 

infinite-horizon model with bonds 

 
Notes: This graph plots the time path of average investment in durables 

(across agents) relative to its pre-shock level when idiosyncratic uncertainty 

increases. Aggregate resources remain the same, so with perfect risk 

sharing there would be no change. 

Quantitative results. Figure 2.8 plots the average investment in 

durables as a function of the amount of uncertainty. It plots the 

results for the economy with and without the non-negativity 
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constraint. Some exact corresponding numbers are given in Table 

2.4. 

Table 2.4 

Investment in durables and uncertainty: infinite-horizon model with 

bonds (% change from zero uncertainty) 

A. Without non-negativity constraint 

 

B. With non-negativity constraint 

 

Notes: The table reports the percentage difference between the chosen 

level at the indicated level of σ  relative to the chosen level when σ  is 

equal to 0. For bonds (which are zero when σ  = 0), the table reports 

the actual difference. 

 

First consider the case without the non-negativity constraint. 

Qualitatively, the results are similar to the case without bonds. But 

this means that the results are quite different from the results in the 

two-period model. For the case without bonds, we find that 

uncertainty increases the demand for durables in both the two-

period and the infinite-horizon model. For the case with bonds, we 

find that uncertainty decreases the demand for durables in the two-

period model, but increases the demand for durables in the infinite 
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horizon model. To understand the difference let’s consider the 

budget constraint: 

(68) 1(1 ) .
e u

c qb pi ey e y b−+ + = + − +  

When considering the two-period model, we consider an increase in 

uncertainty keeping the value of 1b−  fixed. If an increase in 

uncertainty leads to an increase in the value of b , then both c  and i  

can decrease. When considering the infinite-horizon model, we 

focus on the unconditional means. This means that the value of 1b−  

is not kept fixed. If agents respond to the increase in uncertainty by 

building a buffer stock of bonds, then both b  and 1b−  increase. If 

1q < , then this leads to additional spending power. If 1q = , then 

this is not the case, but the increase in b  does not lead to a 

reduction in c pi+  as happens in the two-period model. 

Now consider the case with the non-negativity constraint. The graph 

shows that imposing the constraint has only a small impact on the 

results when the agent can invest in bonds. The reason is that with 

bonds the agent can insure himself quite well against negative 

shocks. If uncertainty is high enough he would choose negative 

investment levels when unemployed, but these negative values are 

not as low as those chosen by the unemployed agent in the model 

without bonds. Consequently, the non-negativity constraint has 

much less of an impact. 

General equilibrium. The fact that we do not impose general 

equilibrium in the bond market is not that problematic here as in the 

two-period model. The reason is the following. An increase in 
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uncertainty does lead to an increase in the demand for bond. But 

this increases both the average value of bonds in the right-hand side 

of the budget constraint and the left-hand side. More precisely, 

since 1q =  we have that 

(69) [ ] [ ] 2.E c E i+ =  

If we impose equilibrium in the bond market we get that [ ] 0E b = , 

which means that the sum of the two expenditure components is 

still equal to two. The values of [ ]E c  and [ ]E i  could still be 

different when equilibrium is imposed, but we found only very 

minor changes. 

 

2.4. Infinite-horizon business cycle models 

In the previous section, we analyzed the long-term impact of an 

increase in uncertainty. We found that an increase in uncertainty 

leads to an increase in the demand for durables even if agents can 

invest in bonds. If investment in durables is restricted to be non-

negative, then an increase in uncertainty leads to an even larger 

increase in the demand for durables. Although such a non-negativity 

constraint reduces the demand for durables of the employed agent, 

it is more than offset by the direct upward effect that unemployed 

agents cannot sell their durables. 

The analysis of the previous section ignores transition dynamics. A 

key aspect of the analysis in the previous section is that the change 

in the average demand for durables and the change in the average 
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demand for nondurables must have the opposite sign. This holds in 

the economy without bonds and in the economy with bonds when 

the bond price is equal to one.
16

 We found that durables increased 

and nondurables decreased. 

But the analysis of the previous section compares steady states, that 

is, it focuses on the long-term effects of an increase in uncertainty. 

In this section, we consider a model in which the economy switches 

between a low-uncertainty and a high-uncertainty regime. With this 

model, we can study what happens on impact and in the subsequent 

periods when the economy switches to the high-uncertainty regime. 

In particular, we analyze the responses of the average amount of 

nondurable consumption and investment in durable, where the 

average is across all agents in the economy. 

Aggregate output is the same in both regimes, but agents face a 

higher probability of being unemployed in the high-uncertainty 

regime. Since aggregate output is the same across time, the average 

amount of nondurable consumption and investment in nondurables 

still has to move in opposite directions if the agents cannot borrow. 

In contrast, if the agent can borrow, then there is no condition that 

the demand for durables and nondurables should move in the 

opposite direction, at least not in the short run. 

2.4.1 The model 

If the agent can invest in bonds, his optimization problem is given 

by 

                                                 
16

 If the bond price is less than one, then the interest income is on average 

positive and this extra income only provides an extra reason for the demand for 

durables to increase. 
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(70) [ ]1 1 1 1
, , ,

( , , , ) max  ( ) ( ) ( ) ( , , , )
c b i d

b d e r u c U d P b E b d e rυ β υ− − + += + − +  

s.t. 

1(1 )
e u

c qb pi ey e y b−+ + = + − +  

1(1 )d i dδ −= + −  

The economy without bonds is the same, except that the option to 

invest in bonds is no longer present. 

The model without and the model with bonds are identical to the 

corresponding models considered in the previous section, except 

that the transition probabilities and the value of 
e

y  depend on the 

regime r . There are two regimes, a low-uncertainty and a high-

uncertainty regime. The value of 
u

y  is kept constant. The 

probability a low-income worker to become a high-income worker 

is also kept constant. The main difference between the two regimes 

is the probability of switching from the high individual income state 

to the low income state. In the low-uncertainty regime, this 

probability is equal to 0.05 and in the high regime this occurs with 

probability 0.1. By concentrating the increase in uncertainty on the 

largest group of workers that also have the most purchasing power 

we give the increase in uncertainty the best possible chance of 

having a substantial effect. 

As in Krusell and Smith (1998), we choose the transition 

probabilities such that the fractions of high-income and low-income 

workers immediately jump to the new steady state levels when a 

regime change occurs. We are interested in a pure increase in 
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uncertainty, not in a change in aggregate resources. Consequently, if 

the economy switches to the high-uncertainty regime and the 

fraction of low-income agents increases, the level of 
e

y actually 

increases. 

Parameter values. Most parameters take on the same values as in 

the previous section. Only parameter values associated with the 

regime switch are different. The economy stays in the same regime 

with probability 7/8 and, thus, switches to the other regime with 

probability 1/8. The average across 
u

y  and 
e

y  is equal to 2 in both 

regimes. We set 
u

y  and the probability a low-income worker to 

become high-income worker equal to 0.3 and 0.5, respectively, and 

as mentioned above both values remain constant across regime 

changes. Let ,e hi
η  and ,e lo

η  be the fraction of high-income agents in 

the high-uncertainty and the low-uncertainty regime, respectively. 

These are given by the following steady state equations: 

(71) , , ,0.5(1 ) (1 0.1) ,
e hi e hi e hi

η η η= − + −  

(72) , , ,0.5(1 ) (1 0.05) .
e lo e lo e lo

η η η= − + −  

The value of ,e hi
η  is equal to 0.8333 and the value of ,e lo

η  is equal 

to 0.9091. As mentioned above, we choose transition probabilities 

such that there is an instantaneous adjustment to these levels if a 

regime change occurs. Since aggregate output is fixed, the value for 

,e hi
y  can be solved from 

(73) , ,2 (1 )
e e hi u e hi

y yη η= + −  
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and the value for ,e lo
y  can be solved from 

(74) , ,2 (1 ).
e e lo u e lo

y yη η= + −  

Quantitative results. Figures 2.9 and 2.10 display the key results. 

Figure 2.9 reports the results for the level of durables and Figure 

2.10 reports the results for the level of investment. Each figure 

displays the percentage change of the indicated variable relative to 

its pre-switch level when the economy changes from the low-

uncertainty to the high-uncertainty regime.
17

 The figures report the 

results for the economy with and without bonds. 

Figure 2.9 

Increase in idiosyncratic uncertainty and % change  

in stock of durables 

 

Notes: This graph plots the response over time of the level of durables when 

the economy switches from the low-uncertainty to the high-uncertainty 

economy. The numbers are expressed as percentage difference relative to 

the pre-switch value. 

                                                 
17

 The graph gives the results when there is no further regime change. The policy 

rules are calculated, however, under the assumption that a regime change occurs 

with probability 1/8. 
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In the economy without bonds, the switch to the regime with higher 

uncertainty leads to an increase in the demand for durables. This is 

not surprising. The same happened in the static model and the 

infinite-horizon model without aggregate uncertainty. 

More interesting is that in the economy with bonds, the switch to 

the regime with higher-uncertainty leads to a reduction in the 

demand for durables. Figure 2.9 shows that the desired stock of 

durables is below the pre-switch level for almost 40 periods. Not 

shown, the demand for nondurables also decreases. At some point, 

the reduction turns into an increase. This is not surprising. If the 

economy reaches a new steady state, then the extra savings cancels 

against the extra redemptions and there can be no change in total 

aggregate consumption.
18

 

The graph suggests that a very simple model can generate the 

desired result, i.e., a prolonged decrease in the demand for durables 

when uncertainty increases. Unfortunately, there are several reasons 

why this result is not that great. Although the increase in uncertainty 

is substantial, the reduction in the stock of durables is only 0.1 

percent. As shown in Figure 2.10, investment in durables drops by a 

bit more than 0.3% on impact. This is not a trivial drop, but 

investment only drops on impact. That is, the adjustment to the 

desired lower stock of durables occurs in one period. But most 

problematic is that one cannot expect this result to survive in 

general equilibrium. In this particular example, the aggregate 

                                                 
18

 Here we assume again that interest rate on savings is equal to 0. If the interest 

rate was positive, then there would be in the limit only upward pressure on the 

demand for durables. 
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demand for bonds increases (which makes the reduction in both 

consumption commodities possible). 

Figure 2.10 

Increase in idiosyncratic uncertainty and % change  

in investment in durables 

 
Notes: This graph plots the response over time of the level of durables 

when the economy switches from the low-uncertainty to the high-

uncertainty economy. The numbers are expressed as percentage difference 

relative to the pre-switch value. 

 

2.5. Conclusions 

In this study we evaluate the impact of increases in income 

volatility on the demand for durable goods using both two-period 

and infinite horizon models. In these models agents are subject to 

idiosyncratic risk against which they cannot perfectly insure. In 

some cases agents can use bonds in order to protect against income 

shocks. Notice that durables do not always serve as a perfect 

substitute for bonds because in some cases we add the existence of a 

non-negativity constraint on this type of goods. 
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Our results indicate that in most of the cases increases in income 

uncertainty leads to an increase in the demand for durables even if 

agents can invest in bonds. This result is due to the fact that 

durables are also used as a saving asset. There are, however, two 

exceptions to this general result. First, under the two-period model 

with bonds, agents reduce the consumption of durables in order to 

increase bond holdings which serve as a buffer stock. Second, the 

transition from a low-uncertainty regime to a high-uncertainty 

regime results in a temporal reduction of investment in durables. 

Yet, these two specific results are not expected to remain in a 

general equilibrium setup when the price of bonds increases to keep 

the aggregate net supply equal to zero.  

We plan to extend this simple framework in the following ways. 

First, we want to use a general equilibrium setup such that the price 

of the bond and the relative price of durables are determined in 

equilibrium. Second, we will incorporate the following features of 

durable goods: indivisibility and down payment requirements. 

Removing the fixed price assumption on the relative price of 

durables might mitigate our results because the demand for durables 

and non-durables react in opposite directions in most of the cases 

considered in our analysis. On the contrary, the fact that one needs 

to make a significant investment in order to acquire a durable good -

down payment requirements - is likely to cause agents to decrease 

more significantly their purchases of this type of good when 

uncertainty increases. 
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3. Great Moderation Debate: Should We Worry 
about Using First-Order Approximated Policy 
Functions? 

 

3.1 Introduction 

 

The Great Moderation - the phenomenon of a substantial decline in 

the volatility of many macroeconomic indicators in the US (and 

other developed countries) over the last three decades - and its 

sources are an important topic on the current academic and political 

agenda. Although most of the leading macroeconomists agree about 

its existence and (rough) timing, there is still disagreement about 

the key factors explaining its existence. One potential reason for 

this lack of consensus, as indicated by Canova and Gambetti (2010), 

is the use of various econometric techniques in this type of studies. 

Here, we focus on the reliability of first-order approximated policy 

functions (or solutions) of dynamic stochastic general equilibrium 

(DSGE) models when evaluating the sources of the Great 

Moderation. This type of approximation is commonly used in 

Bayesian estimations of structural models as it describes well the 

dynamic of the model around a particular equilibrium. However, the 

presence of significant nonlinearities in the model and the 

prevalence of large shocks reduce its accuracy. Since the standard 

analysis of the Great Moderation relies on the estimation of first-

order approximations during periods of high volatility –periods 

during which both, nonlinearities and shocks are more likely to 

occur - the suitability of this type of approximations is questionable. 
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This study aims at determining the effects of using first-order 

approximations when evaluating the sources of the Great 

Moderation. For this purpose we implement the following 

simulation exercise: First, we generate macroeconomic series which 

exhibit volatility levels similar to those observed during the high 

volatility period for the US economy (1954:3 - 1984:4). These 

series are obtained using second-order approximations of a New 

Keynesian model and two sets of parameter values. Both sets are 

obtained from the estimation of a New Keynesian model, where we 

use actual US data for a low volatility period (1985:1 – 2007:3). 

Three parameters are, however, chosen in a way that they allow us 

to reproduce the higher volatility observed in the period 1954:3 - 

1984:4. These parameters are those that define either the monetary 

policy rule or the standard deviations of the perturbation terms of 

the shocks that affect the economy. As explained below, these two 

sets of parameters represent the two most common hypotheses 

explaining the Great Moderation. Second, using the simulated 

series, we estimate a New Keynesian model but employ its first-

order approximation, as it is standard in Bayesian estimations. 

Finally, we compare the parameter estimates with the actual 

parameter values used to generate the series. This comparison 

allows us to evaluate the importance of omitting the second-order 

terms of the policy functions in the evaluation of the sources behind 

the Great Moderation. 

Our results show that when high volatility data are generated 

according to the “good policy” hypothesis, omitting the second-

order terms of the approximation could lead to an erroneous 
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misinterpretation of the sources of the Great Moderation. More 

precisely, we estimate a reduction in the volatility of the technology 

shock when the actual variation in the volatility of the data 

generating process is only due to changes in the coefficients of the 

monetary policy rule. However, we do not encounter such problems 

when the variations in the macroeconomic volatility between the 

periods 1954:3 - 1984:4 and 1985:1 – 2007:3 are due to a reduction 

in the volatility of the shocks affecting the economy (in other 

words, when we generate the data according to the “good luck” 

hypothesis). 

So far, few studies that incorporate estimations of DSGE models 

depart from the use of first-order approximations. For instance, An 

(2007), using a similar New Keynesian model and the same 

macroeconomic variables, does not find significant differences 

between parameters estimated using first and second-order 

approximations. However, the sample used in his study only 

includes the low macroeconomic volatility period. Fernández-

Villaverde and Rubio-Ramírez (2005) also do not find significant 

posterior statistics differences when they estimate the first and 

second-order approximations of a simple version of the 

Neoclassical model using information for the period 1964-2003. In 

contrast, our study considers a model with more nonlinearities and a 

sample of higher volatility level. Both elements might lead to 

significant biases in the parameter estimates generated by omitting 

the second-order terms.
1
 

                                                 
1
 Another references are An and Schorfheide (2007) and Fernández-Villaverde 

and Rubio-Ramírez (2007). 
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The remainder of the chapter is organized as follows. In the next 

section we discuss the potential problems related to the use of 

approximations. Section 3.3 presents the New Keynesian model and 

the macroeconomic indicators used in the simulation. Section 3.4 

describes the simulation exercise while section 3.5 shows the main 

results. Section 3.6 concludes and outlines possible avenues for 

future research. 

 

3.2. Second-order approximations: a simple example 

The use of first-order approximations of a model, together with the 

Kalman filter, is the most common way to fit models to the data. It 

does not require high computational power and there exist many 

toolkits that facilitate their implementation. On the contrary, 

second-order approximations are much less popular as their 

implementation requires much higher computational power. Since 

they are not widely known, in this section we use a simple model to 

evaluate the composition and the role of the second-order terms of 

this type of approximation. Additionally, we use a simulation 

exercise to analyze the effects resulting when omitting these terms 

from the estimation of the structural parameters. 

3.2.1 A simple model 

Let´s consider the following optimization problem of a 

representative agent: 

Max ∑
∞

=0

0 )(
t

t

t
CUE β  
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subject to:   1t t t t t
C Q A A Y++ = +  

where 
t

C  and 
t

Y  are the levels of consumption and income, 

respectively, in period t. A  is a risk free asset and Q  is its price. 

The income level, Y , follows the subsequent exogenous process: 

ttt YYY ησερρ +−+= − )1(1 .The stochastic term, ησε , is composed 

by a zero-mean normal perturbation, ε , with a standard deviation 

equal to 1. Following the notation of Schmitt-Grohe and Uribe 

(2004), σ  is considered as a scale factor and is equal to zero in 

steady state. ησ  defines the variance-covariance matrix of the 

perturbation term. 

In equilibrium, the risk free asset has a zero net supply (
t

A  = 0, ∀t), 

and therefore 
t

C  =
t

Y , ∀t. Given that the income, and therefore the 

consumption, is exogenous, the only variable to be determined in 

equilibrium is the price of the asset. The analytical expression for 

this price is obtained using the Euler equation derived from the 

optimization problem and a specific form of the utility function (in 

this case we choose a constant relative risk aversion (CRRA) utility 

function). Thus, 
t

Q can be represented as: 

1 1

1

'( )
( )

'( ) (1 )

t t t
t t t t

t t t t

U C C Y
Q E E E

U C C Y Y

θ

θβ β β
ρ ρ ησε

−

+ +

+

   
= = =   

+ − +   
 

Figure 3.1 represents the value of 
t

Q  for different levels of income 

around its steady state ( 1=Y ), and different values of θ  and ρ .
2
 

As we can see, the higher the level of income the more increases the 

                                                 
2
 We consider β=0.9901 and ε  equal to zero. 
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price of the asset in order to keep its net supply equal to zero. 

Additionally, prices react stronger for higher degrees of risk 

aversion (θ ) and lower persistency in the income process ( ρ ), 

reflecting a more convex policy function. 

Figure 3.1 

Asset price policy function 
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3.2.2 The approximated policy function 

Since most of the models used in economics are too complex to get 

an exact representation of their policy functions, it is common in the 

literature to use linear approximations of these functions. We use 

perturbation methods to get the first and second-order 

approximations for 
t

Q .
3
 The resulting approximations have the 

following representations: 

First-order policy function:  ( )
t t

Q a Y Yβ= + −  

Second-order policy function:  

2 21 1
( ) ( )

2 2
t t t

Q a Y Y b Y Y cβ σ= + − + − +  

where: 

1(1 )a Yθβ ρ −= −  

2(1 )[ (1 ) (1 )]b Yθβ ρ θ ρ ρ −= − − − +  

2(1 )c θβ θ η= +                  ∀θ > 0 

As we can see in Figure 3.2, the benefits of using second-order 

instead of first-order approximation depend on the curvature of the 

actual policy function (determined by the parameters θ  and ρ ) as 

well as on the deviation of Y from its steady state value, Y , (which 

is determined by σ ).  

                                                 
3
 The reader should refer to Judd (1998) for a detailed presentation of 

perturbation methods or to Schmitt-Grohe and Uribe (2004) for a paper-version 

exposition of this technique. In addition, Schmitt-Grohe and Uribe provide 

Matlab programs to obtain second-order approximations. 
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Figure 3.2 

1
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3.2.3 Simulation exercise and Bayesian estimation 

How does the omission of the second-order terms (of the 

approximation) affect the parameter estimates? 

To answer this question we simulate a series of the asset price using 

its second-order approximation. Then, we estimate two structural 

parameters (θ  and ρ ) of the model using standard Bayesian 

procedures.
4
 These procedures rely on using first-order 

approximations and the Kalman filter to compute the conditional 

likelihood function. We assume that only the asset price, Q , is 

observable. The simulated series for this variable contains 500 

observations and is generated using four different sets of parameter 

values for θ , ρ and σ . The rest of parameters have the following 

values: 1Y = , 1η = , β = 0.9901.  

Table 3.1 shows that omitting the second-order terms affects 

significantly the estimated parameters.
5
 In all cases the true 

parameter values are out of the confidence interval defined by the 

mean plus/minus two standard deviations of the posterior 

distribution.
6
 As expected, the size of the biases is related to the two 

                                                 
4
 We assume that the values of Y , η  and β are known. Additionally, because 

the only “observable” series used in the estimation is Q , it is not possible to 

identify θ , ρ  and σ  separately. Therefore, we also assume that σ  is known. 
5
 The Metropolis-Hasting algorithm searches for sequences of draws from the 

posterior distribution. Each of these sequences originally are composed by 5000 

draws from which the first 1500 are discarded. From the remaining draws, only 

one out of 10 are kept to reduce serial correlation. We consider uniform prior 

distributions for θ and ρ for the intervals [3 ; 15] and [0.05 ; 0.70], respectively. 
6
 We also generate series of the asset price using the first order approximation and 

implement the Bayesian estimation. For this case, each parameter’s posterior 
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following factors: the size of the curvature (measure by θ and ρ) 

and the magnitude of the volatility (σ). 

Table 3.1 

Posterior distributions 

Mean Std. Mean Std.

Case A: θ=4,   ρ=0.5, σ=0.1 5.36 0.52 4.33 6.39 0.62 0.03 0.55 0.69

Case B: θ=10, ρ=0.5, σ=0.1 19.44 0.48 18.49 20.39 0.72 0.01 0.69 0.74

Case C: θ=4,   ρ=0.1, σ=0.1 4.98 0.31 4.36 5.59 0.19 0.04 0.11 0.28

Case D: θ=4,   ρ=0.5, σ=0.2 7.31 0.35 6.62 8.00 0.69 0.01 0.66 0.71

θ

Conf. Interv.* Conf. Interv.*

ρ

 
*Confidence intervals = posterior mean +/- 2 posterior standard deviations. 

 

3.3. Model and data 

We use a small version of the New Keynesian model similar to the 

one used by Canova (2009). Despite its simplicity, this type of 

model fits relatively well the dynamic of the output gap, inflation 

and interest rates observed in the US. The following sub-sections 

contain the description of the model and the data used in the 

simulation exercise. 

3.3.1 The model 

The version of the New Keynesian model that we use is composed 

by three equations: an Euler equation, a Phillips curve and an 

empirical monetary policy rule. In this model households’ 

preferences are additive in consumption and leisure. Firms have 

monopolistic power in the goods market and have to deal with the 

presence of stickiness in prices. The production function is linear in 

the labor input, but does not include capital. The monetary policy 

                                                                                                               
mean lays inside of the confidence interval formed by the actual parameter value 

plus/minus one standard deviation of the posterior distribution. 
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rule is defined by a backward Taylor rule. The stochastic part of the 

model is constituted by three shocks: a demand shock, a technology 

shock and a monetary policy shock. The first two are first-order 

autoregressive processes while the latter is white noise.
7
 

The linearized version of this model is composed by the following 

equations: 

(1) [ ]1 1 1

1
t t t t t t t

y E y E i eπ
σ

+ += − − +  

(2) 1

(1 )(1 )
( ) ...

t t t t
E y

α αβ
π β π γ σ

α
+

− −
= + + −   

2

(1 )(1 )
... ( 1)

t
e

α αβ
γ

α

− −
− +  

(3) 1 1 1 3(1 ) (1 )
t i t i t i y t t
i i y eπα α α π α α− − −= + − + − +  

y , π , i  represent the output gap, inflation and the interest rate. The 

parameters that define the behavior of the private sector are the risk 

aversion (σ ), the inverse of the elasticity of labor supply (γ ) and 

the degree of price stickiness, in a Calvo staggered price setting, 

(α ). The monetary policy rule is described by three coefficients: 

the degree of interest rate persistency (
i

α ), the response of the 

interest rate to lagged inflation ( πα ) and lagged output gap (
y

α ). β  

defines the intertemporal discount factor. e1t, e2t and e3t represent 

the demand, technology and monetary policy shocks, respectively. 

                                                 
7
 See Canova (2009) for an exposition of the features of this type of model and 

alternative variations. 
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Our interest lies in matching the second moments of the output gap, 

inflation and the interest rate. Notice that severe identification 

problems arise with more complicated versions of the model if their 

estimation only includes the previously mentioned macroeconomic 

indicators. Therefore, we rely on this simple version of the New 

Keynesian model which suffices our purposes. Additionally, we 

would like to point out that Canova (2009) shows that despite its 

simplicity, this type of model fits relatively well the dynamic of the 

output gap, inflation and interest rates observed in the US.  

3.3.2 The data 

We use US quarterly data on the GDP index (normalized by the size 

of the working age population), CPI inflation and the effective 

Federal funds rates for the period 1954:3 – 2007:3. The source for 

this information is the FREDII databank of the Federal Reserve 

Bank of St. Louis. All series are filtered by the Baxter and King 

filter.
8
 We denote as output gap the resulting filtered series of the 

logarithm of the normalized GDP index.
9
 

Following Gali and Gambetti (2009), we divide our sample in a 

period of high volatility, which includes the observations between 

1954:3 and 1984:4 (called “pre-1984” period), and a period of low 

volatility, which includes the observations of the period 1985:1 – 

2007:3 (called “post-1984” period). Table 3.2 displays the standard 

deviations for each of the macroeconomic series during both 

                                                 
8
 The volatilities of the series do not change significantly by using other filters 

such as Hodrick- Prescott filter. 
9
 Because of the simplified nature of the model we use this statistically computed 

measure. 
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periods. As we can see, the reduction in the level of volatility in all 

the indicators is quite significant, and reflects what is called the 

Great Moderation. 

Table 3.2 

Great Moderation: standard deviations (%) 

pre-1984 post-1984 % variation

Fed interest rates 0.387 0.230 -40.7

Inflation 0.438 0.228 -48.0

Output gap 1.740 0.791 -54.5  

Note: “pre-1984” represent the period 1954:3-1984:4. “post-1984” 

represents the period 1985:1 – 2007:3. Series filtered by the Baxter 

and King filter. 

 

3.4. Simulation exercise 

The main simulation exercise implemented in this study has the 

following steps. 

Step 1: Obtaining the baseline parameter values 

We obtain the baseline parameter values by estimating the model 

summarized by equations (1)-(3) during the period of low volatility 

(“pre-1984”). We use Bayesian techniques and the first-order 

approximation to estimate the posterior distributions of 11 of the 12 

parameters of the model.
10

 First-order approximations serve 

probably as better approximation for this period than for the period 

of higher volatility. In fact, An (2007) does not find significant 

differences when estimating this type of model for a similar 

                                                 
10

 We fix the intertemporal discount factor to 0.9837 in order to reduce some 

identification problems. 
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volatility period (1987-2002) using first and second-order 

approximations. 

Table 3.3 contains some posterior distribution statistics of the 

parameters of the model.
11

 The posterior means of these parameters 

define our baseline values. 

Table 3.3 

Posterior distribution statistics: “pre-1984” period 

Symbol Mean Std.dv.

Coef. risk aversion σ 1.569 0.050

Inv. elasticity labour supply γ 2.626 0.032

Price stickiness α 0.797 0.011

T.R.: interest smoothing αi 0.887 0.006

T.R.: inflation απ 1.924 0.077

T.R.: output αy 0.728 0.034

Autoreg coeff. demand shock ρ1 0.831 0.007

Autoreg coeff. tech. shock ρ2 0.832 0.008

Std. dv. demand innov. σ1 0.231 0.021

Std. dv. tech. innov. σ2 0.293 0.023

Std. dv. monetary innov. σ3 0.092 0.005
 

Step 2: Parameter values for the high volatility period 

Our objective is to generate series of the output gap, inflation and 

interest rate using second-order approximations that replicate the 

higher volatilities of the actual macroeconomic indicators for the 

“pre-1984” period.
12

 In principle we use the baseline parameter 

values, except for three parameters. In one case, these three 

parameters are the standard deviations of the perturbation terms of 

the three exogenous shocks. When using this set of parameters, the 

                                                 
11

 We use uniform prior distributions for the Bayesian estimation. Appendix A 

contains the specific characteristic of these distributions. 
12

 We use the algorithm by Schmitt-Grohe and Uribe (2004) to get the second-

order approximations. 
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reduction in the volatilities of the macroeconomic indicators 

between the “pre-1984” and “post-1984” periods is caused by less 

severe shocks affecting the economy, explanation for the Great 

Moderation that is called the “good luck” hypothesis.
13

 

In the other case, the three parameter values that deviate from the 

baseline case are the coefficients of the Taylor rule. When using this 

set of parameters, the Great Moderation is explained by a change in 

the way how the monetary policy was conducted. In the literature 

about the Great Moderation, this explanation for the reduction in the 

volatility of the macroeconomic indicators is called the “good 

policy” hypothesis.
14

 

We simulate series of the output gap, inflation and interest rate 

using different values for each of the three parameters previously 

mentioned in each of the cases. The selected parameter values are 

those that minimize the sum of the squared difference between the 

variance of each simulated series and the actual one.
15

 For the 

parameters related to the “good luck” hypothesis (column 2 of 

Table 3.4), all standard deviations of the perturbation terms are 

much higher than in the baseline case. With respect to the 

                                                 
13

 Studies supporting this hypothesis are Sims and Zha (2006), Primiceri (2005), 

Canova and Gambetti (2005) and Stock and Watson (2003). 
14

 See Clarida et. al. (2000), Lubik and Schorfheide (2004) and Boivin and 

Giannoni (2006) for studies supporting this hypothesis. 
15

 The minimization procedure consists of evaluating the sum of the squared 

difference between the variance of the simulated series and the actual ones over a 

three dimensional grid of points. For the case of the standard deviations of the 

perturbation terms of the shocks, each dimension of the grid goes from 0.01 to 1. 

The dimensions of the grid employed to determine the values of the coefficients 

of the Taylor rule are the following: from 0.75 to 0.99 for the  degree of interest 

persistency, from 1.01 to 2.5 for the response of the interest rate to the inflation, 

and from 0 to 1.5 for the response of the interest rate to output gap. 
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parameters related to the “good policy” hypothesis (see column 3) 

we observe the following: the coefficients of lagged inflation and 

lagged output gap in the Taylor rule decreases significantly. In 

particular, the response of the interest rate to lagged inflation is 

close to one. 

Table 3.4 

Simulation exercise: sets of parameter values 

(1) (2) (3)

Good Luck Good Policy

Intertemporal discount factor β 0.984 0.984 0.984

Coef. risk aversion σ 1.569 1.569 1.569

Inv. elasticity labour supply γ 2.626 2.626 2.626

Price stickiness α 0.797 0.797 0.797

T.R.: interest smoothing αi 0.887 0.887 0.876

T.R.: inflation απ 1.924 1.924 1.015

T.R.: output αy 0.728 0.728 0.008

Autoreg coeff. demand shock ρ1 0.831 0.831 0.831

Autoreg coeff. tech. shock ρ2 0.832 0.832 0.832

Std. dv. demand innov. σ1 0.231 0.500 0.231

Std. dv. tech. innov. σ2 0.293 0.340 0.293

Std. dv. monetary innov. σ3 0.092 0.140 0.092

Symbol Baseline 
1/ High volatility 

2/

 
1/

 Posterior means obtained from the estimation of the New Keynesian model 

using data for the "pre-1984" period. 
2/

 Highlighted numbers indicate those parameters used to match the volatility 

levels for output gap, inflation and the interest rate observed for the "post-1984" 

period. 

How well do these sets of parameter values replicate the volatility 

of the three macroeconomic indicators used in this study? Table 

3.5 shows the standard deviations of the data using both sets of 

parameter values. In general, the simulated series overestimate the 

level of the volatility of the interest rate and inflation but are close 

to the level of the volatility of the output gap. However, these 

simulated series are close to match the relative reduction of the 

actual series between the “pre-1984” and “post-1984” periods. The 
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only exception is the interest rate under the “good policy” 

hypothesis. This result might imply that the “good policy” 

hypothesis by itself cannot account for the reduction in the 

volatility of all the series. Therefore, it could require the variation 

of some private sector parameters or the volatility of some of the 

shocks. These alternatives are, however, currently not considered. 

Table 3.5 

Simulation data: standard deviations (in %) 

pre-1984 post-1984 % variation pre-1984 post-1984 % variation

Fed interest rates 0.739 0.370 -50.0 0.417 0.370 -11.3

Inflation 0.637 0.348 -45.3 0.756 0.348 -53.9

Output gap 1.503 0.744 -50.5 1.724 0.744 -56.8

"Good luck" parameter values "Good policy" parameter values

 
Note: 2nd order approximation was employed to simulate the data for the "Pre-

1984" period. For the "Post-1984" period, first-order approximation is used 

instead. Each series contains 20 000 observations. 

Step 3: Estimation of the model using first-order approximations 

Using simulated series of the output gap, inflation and interest rate, 

we estimate the New Keynesian model presented in the previous 

section using only first-order approximation, as most studies do that 

implement Bayesian or likelihood estimations. As mentioned in the 

introduction, the goal of this study is to evaluate if we can rely on 

this type of estimation for periods of high volatility. In particular, 

the design of this simulation experiment allows us to determine if 

omitting the second-order terms of the policy functions could bias 

the analysis about the sources of the Great Moderation. 

The following section contains the results of this estimation. 
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3.5. Results 

We start this section presenting the posterior distribution statistics 

obtained from the simulation exercise. In particular, we evaluate if 

these estimates significantly differ from the actual parameter values 

used to generate the data. Additionally, we implement 

counterfactual and Impulse-Response Function (IRFs) analyses to 

determine whether potential biases in the parameter estimates affect 

the evaluation of the sources of the Great Moderation and the 

dynamic of the economy, respectively. 

3.5.1 Posterior distribution estimates 

Tables 3.6 shows the posterior mean and standard deviation for 

each of the parameters of the model. When the simulated data 

correspond to the “good luck” hypothesis (column 1 of Table 3.6), 

we find that three parameters lie outside of the confidence interval 

defined by the mean of each posterior distributions plus/minus 2 

posterior standard deviations. These parameters are the coefficient 

of the lagged output gap in the Taylor rule (
y

α ), the autoregressive 

coefficient of the technology shock ( 2ρ ) and the standard deviation 

of the perturbation term of this shock ( 2σ ). Despite the presence of 

these biases, the comparison of the estimates, which correspond to 

our simulated “pre-1984” sample and the parameter estimates 

obtained for the “post-1984” sample (column 3)
16

, highlights the 

reduction in the volatility of the shocks as the source of our 

simulated Great Moderation. In particular, the standard deviations 

                                                 
16

 For easy comparison the estimates of Table 3.3 are included in column 3 of 

Table 3.6. 
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related to the perturbation term of the demand and the monetary 

policy shocks decrease between these two samples (from a posterior 

mean of 0.499 and 0.145 to 0.231 and 0.092, respectively). We also 

observe a reduction in the persistence of the technology shock (from 

0.883 to 0.832). With respect to the Taylor rule, the estimated 

persistence of the interest rate (
i

α ) and the response of the interest 

rate to lagged inflation ( πα ) are not statistically different from their 

estimates for the “post-1984” sample (which are the actual values 

used to generate the data). The only potential source of 

misidentification when identifying the source of the Great 

Moderation constitutes the relatively high value of the coefficient 

that measures the response of the interest rate to the lagged output 

gap (from 0.832 in the “pre-1984” sample to 0.728 in the “post-

1984” sample). However, as the counterfactual and the IRF 

analyses show, this reduction does not have a significant impact on 

the volatility of the economy. 
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Table 3.6 

Posterior distribution statistics: "pre-1984" and "post-1984" periods estimates 

Symbol True Mean Std.dv. True Mean Std.dv. Mean Std.dv.

Coef. risk aversion σ 1.569 1.632 0.125 1.569 1.235 0.077 * 1.569 0.050

Inv. elasticity labour supply γ 2.626 2.604 0.180 2.626 2.625 0.178 2.626 0.032

Price stickiness α 0.797 0.799 0.007 0.797 0.847 0.006 * 0.797 0.011

T.R.: interest smoothing αi
0.887 0.890 0.005 0.876 0.880 0.003 0.887 0.006

T.R.: inflation απ
1.924 1.786 0.117 1.015 1.066 0.022 * 1.924 0.077

T.R.: output αy
0.728 0.832 0.051 * 0.008 0.002 0.002 * 0.728 0.034

Autoreg coeff. demand shock ρ1 0.831 0.831 0.009 0.831 0.965 0.004 * 0.831 0.007

Autoreg coeff. tech. shock ρ2 0.832 0.883 0.012 * 0.832 0.983 0.004 * 0.832 0.008

Std. dv. demand innov. σ1
0.500 0.500 0.019 0.231 0.061 0.005 * 0.231 0.021

Std. dv. tech. innov. σ2 0.340 0.293 0.019 * 0.293 0.404 0.012 * 0.293 0.023

Std. dv. monetary innov. σ3
0.140 0.145 0.003 0.092 0.094 0.002 0.092 0.005

"Pre-1984" period

Good luck Good policy
"Post-1984" period

(1) (2) (3)

 

Note: * indicates that the true parameter value is outside of the confidence interval defined by the posterior mean +/- 2 posterior standard 

deviations. 
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When the simulated data correspond to the “good policy” 

hypothesis, the results are quite different. In this case, almost all the 

posterior estimates are significantly different from the actual values 

of the underlying parameters (see column 2 in Table 3.6).
17

 In 

particular, the value of the standard deviation of the perturbation 

term of the technology shock, 2σ , is over-estimated (the posterior 

mean is 0.404 while the actual value is 0.293). This result is 

particularly interesting because it could lead to errors when 

determining the sources of the Great Moderation. Thus, after having 

evaluated the posterior estimates obtained from the “pre-1984” and 

“post-1984” samples, a researcher could erroneously conclude that 

the reduction of the macroeconomic volatility between these two 

periods is not only due to the change in the monetary policy rule but 

also to a reduction in the volatility of one of the shocks hitting the 

economy. In fact, the counterfactual and the IRF analyses reconfirm 

this erroneous conclusion. 

3.5.2 Counterfactual exercise 

Using the previous parameter estimates, we implement the same 

counterfactual exercise that Boivin and Giannoni (2006) employ to 

determine the sources of the Great Moderation. In so doing, we can 

determine the extent to which the statistically significant biases 

obtained for some parameter estimates could lead to erroneous 

                                                 
17

 The exceptions are the following three parameters: the inverse elasticity of the 

labour supply, the Taylor rule parameter that controls the degree of smoothness of 

the interest rate, and the standard deviation of the perturbation term of the 

monetary policy shock. 
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conclusions about the validity of the “good luck” or “good policy” 

hypotheses. 

The counterfactual exercise consists in calculating the variation in 

the volatilities of the simulated series for a given set of parameter 

estimates. This potential variation is due to the use of two posterior 

estimates (obtained for the “pre-1984” and “post-1984” periods) for 

a subset of parameters. All other parameters are fixed at the value of 

their estimates obtained for either the “pre-1984” period or the 

“post-1984” period. 

For this exercise we consider three subsets of parameters: the 

“stochastic processes” (SH) parameters, which include the 

autocorrelation coefficients of the exogenous shocks and the 

standard deviations of their perturbation terms; the “monetary 

policy” (MP) parameters, which contain the three coefficients of the 

Taylor rule; and the “private sector” (PS) parameters, which consist 

of the coefficient of risk aversion, the inverse of the elasticity of 

labor supply and the price stickiness. 

The result of this counterfactual exercise for the parameter 

estimates related to the “good luck” hypothesis can be found in 

Table 3.7. In the absence of any biases in the estimation, the result 

is pretty clear: only changes in the SH parameters can explain the 

reduction in the volatilities of the macroeconomic series. This result 

is precisely observed in rows 1-4 of Table 3.7. In each of these rows 

the only parameter values that change are the ones for the SH 

parameters. The PS and MP parameters correspond either to their 

values obtained for the “pre-1984” period (which we denote as 
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“pre”) or to their values for the “post-1984” period (denoted as 

“post”). Rows 5-8 show the same type of estimation, but this time 

only the MP parameters change when holding the others constant. 

The values contained in these rows show that changes in the 

parameter estimates of the Taylor rule have very low impact on the 

volatility of the series.
18

  

Table 3.7 

Standard deviations (in %) of Output gap, Inflation and Interest 

Rate in Counterfactual Experiments: the “Good policy” hypothesis 

Row Parameter combination Sd Sd Sd

Output gap Inflation Interest rate

Total reduction -51.4 -47.1 -51.5

A. importance of the shocks

1 mp (pre)   - ps (pre) -52.4 -46.2 -51.6

2 mp (pre)   - ps (post) -52.6 -46.5 -52.6

3 mp (post) - ps (pre) -50.5 -46.2 -51.7

4 mp (post) - ps (post) -51.8 -47.0 -51.4

B. importance of monetary policy

5 sh (pre)   - ps (pre) 0.4 -0.4 2.4

6 sh (pre)   - ps (post) 0.6 -1.1 -1.4

7 sh (post) - ps (pre) 4.4 -0.4 2.2

8 sh (post) - ps (post) 2.4 -2.0 0.9  

We repeat this exercise but this time using the parameter estimates 

related to the “good policy” hypothesis. As Table 3.8 shows, the 

results are not in line with what we expected, namely that changes 

in the values of the MP parameters are the only factor behind the 

reduction in the volatilities of the macroeconomic series. First, rows 

1-4 show that changes in the values of the SH parameters explain 

entirely the reduction in the volatilities of these series. Second, 

changes in the MP parameters reduce only the standard deviation of 

the output gap, and in some cases the standard deviation of 

                                                 
18

 Similar results are obtained when the PS parameter are the ones that change. 
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inflation. However, they lead to an increase in the volatility of the 

interest rate (see rows 5-8). Therefore, we find that the biases in the 

parameter estimates obtained using data generated according to the 

“good policy” data are not only statistically significant but could 

also cause erroneous conclusions about the sources of the Great 

Moderation. 

Table 3.8 

Standard deviations (in %) of Output gap, Inflation and Interest 

Rate in Counterfactual Experiments: the “Good policy” hypothesis 

Row Parameter combination Sd Sd Sd

Output gap Inflation Interest rate

Total reduction -70.1 -63.2 -50.8

A. importance of the shocks

1 mp (pre)   - ps (pre) -37.8 -51.5 -70.2

2 mp (pre)   - ps (post) -43.0 -45.4 -68.3

3 mp (post) - ps (pre) -56.0 -82.8 -74.0

4 mp (post) - ps (post) -58.7 -75.7 -72.7

B. importance of monetary policy

5 sh (pre)   - ps (pre) -32.6 32.5 54.5

6 sh (pre)   - ps (post) -23.1 15.3 50.8

7 sh (post) - ps (pre) -52.4 -52.9 34.9

8 sh (post) - ps (post) -44.2 -48.6 29.7  

3.5.3 Impulse-Response Functions (IRFs) 

Finally, we calculate IRFs using the parameters estimates and the 

first-order approximation and compare them with those obtained 

using the true parameter values and the correct specification of the 

approximation.
19

 The aim of this exercise is to determine how the 

                                                 
19

 Properties such as symmetry, scalability and path-independency of the IRFs for 

linear processes are not shared with nonlinear processes. In our calculations past 

history of the variables and shocks are fixed at their steady state level. We 

simulate various initial shocks and trace out the response distributions along the 

horizon. We did not find significant differences with respect to the responses 

obtained using first order policy functions, at least for shocks between plus/minus 

two standard deviations. 
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biases in the parameters and the use of a lower order approximation 

affect the dynamic of the economy. 

Figure 3.3 shows the IRFs related to the “good luck” hypothesis. 

The responses of the three macroeconomic variables to each of the 

three shocks do not alter significantly when we use the estimated 

parameter values and the actual ones (and the first and second-order 

approx. policy functions, respectively).  

Figure 3.3 

Impulse-Response Functions for the “good luck” case 
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This result, however, does not remain once we use estimates related 

to the “good policy” hypothesis. In particular, as Figure 3.4 shows, 

both demand and technology shocks have more persistent effect on 

the output gap, inflation and interest rate than when using the actual 

parameter values and correct policy functions. This result is due to 
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the over-estimation of the autoregressive coefficients of these 

shocks. 

Figure 3.4 

Impulse-Response Functions for the “good policy” case 
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Therefore, the biases in the parameter estimates obtained when the 

data are generated according to the “good policy” hypothesis not 

only alter our analysis of the sources of the Great Moderation but 

also have significant impact on the dynamic of the model.  

 

3.6. Conclusions 

This chapter provides evidence of potential problems related to the 

use of first-order approximations in the estimation of DSGE 

models. This evidence is based on a simulation exercise which 

consists on the following steps. First, we generate data for three 
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macroeconomic series (the output gap, inflation and interest rate) 

using second-order policy functions of a New Keynesian model. 

The simulated data are created to reproduce the high volatility 

observed during the period 1954:3 – 1984:4, and are obtained using 

parameter values that reflect the two competing hypothesis behind 

the Great Moderation: 1) the “good luck” hypothesis which 

postulates that the volatility level of the shocks affecting the 

economy determine the high volatility level of the macroeconomic 

series; and 2) the “good policy” hypothesis which stresses the way 

how monetary policy was conducted as the main cause behind the 

observed volatility level. Second, we estimate the structural 

parameters of the model considering only first-order policy 

functions as commonly used in Bayesian estimations of structural 

models. Finally, we compare the parameter estimates and the actual 

parameter values in order to determine whether omitting the 

second-order terms of the policy function could lead to erroneous 

conclusions about the sources of the Great Moderation. 

Our results show that when high volatility data are generated 

according to the “good policy” hypothesis, omitting the second-

order terms of the approximation could lead to an erroneous 

misinterpretation of the sources of the Great Moderation. This is not 

the case when the data are generated according to the “good luck” 

hypothesis. 

There are some interesting issues not addressed in this study. 

Firstly, in light of the evidence presented in this study, an 

estimation of the DSGE model using second-order approximations 

is required to evaluate the sources of the Great Moderation by using 
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DSGE models. Secondly, numerical methods can be employed to 

get a more accurate description of the policy functions. In so doing, 

it is possible to directly evaluate the areas in the parameter space 

where first-order (or higher order) policy functions lead to a bad 

approximation. Finally, the results presented in this study are 

probably model-specific. Therefore the estimation of more complete 

models, such as the model by Smets and Wouters (2007), are 

required to test the potential problems highlighted in this study. 

To conclude, the popularity that second or higher order 

approximations could reach in macroeconomics will depend on the 

existence of relevant questions where their use provides 

significantly better answers than first-order approximations. It will 

also hinge on the advances of computational algorithms and 

computing power which will allow for a reduction of the costs 

associated with their estimation. This study provides an example of 

an important topic where it is worth to invest in this type of 

estimations. 
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Appendix A: Prior distributions of structural parameters 

Symbol Distribution Mean Std.

Share of capital in production α Normal 0.30 0.05

Inv. Elasticity of Intertemporal substitution σc Normal 1.50 0.38

Fix cost in production Ф Normal 1.25 0.13

Adjust cost of investment S'' Normal 4.00 1.50

Habits in consumption η Beta 0.70 0.10

Wage stickiness ξw Beta 0.50 0.10

inv. Elast. labor supply σl Normal 2.00 0.75

Price stickiness ξp Beta 0.50 0.10

Wage indexation ιw Beta 0.50 0.15

Price indexation ιp Beta 0.50 0.15

Capital utilization elasticity ψ Beta 0.50 0.15

Taylor rule: response to inflation rπ Normal 1.50 0.25

Taylor rule: response to lagged interest rate ρR Beta 0.75 0.10

Taylor rule: response to changes in output rΔy Normal 0.13 0.05

Trend growth rate γ_bar Normal 0.40 0.10

Steady state of inflation π _bar Gamma 0.63 0.10

Steady state of hours worked l _bar Normal 0.00 2.00

Steady state of nominal int rate r _bar Gamma 1.15 0.30

Autocorrelation coef. Price Mk up shock ρp Beta 0.50 0.20

Autocorrelation coef. Wage Mk up shock ρw Beta 0.50 0.20

Autocorrelation coef. Product. Shock ρa Beta 0.50 0.20

Autocorrelation coef. Risk premium shock ρb Beta 0.50 0.20

Autocorrelation coef. Government shock ρg Beta 0.50 0.20

Autocorrelation coef. Investment-Specific shock ρq Beta 0.50 0.20

Autocorrelation coef. Monet policy shock ρr Beta 0.50 0.20

Correlation Government and productivity shocks ρga Normal 0.50 0.25

Std Price Mk up innovation σp Inv. Gamma 0.10 2.00

Std. Wage Mk up innovation σw Inv. Gamma 0.10 2.00

Std. Product. Innovation σa Inv. Gamma 0.10 2.00

Std. Risk premium innovation σb Inv. Gamma 0.10 2.00

Std. Government innovation σg Inv. Gamma 0.10 2.00

Std. Inv. Specific innovation σq Inv. Gamma 0.10 2.00

Std. Monet policy innovation σr Inv. Gamma 0.10 2.00

Gain - no inflation g
nonπ

Uniform 0.00 1.00

Gain - inflation g
π

Uniform 0.00 1.00

Std. measurement error on expectations σexp Inv. Gamma 0.10 2.00  
Note: for uniform distributions the values assigned as mean and standard 

deviation correspond to the range of the domain. 
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Appendix of chapter 2 
 
 

Appendix A: On the calculation of the wealth-income 

distribution
*
 

 

In the infinite-horizon model considered in this study there are two 

states variables: wealth ( w ) and current income ( y ). Wealth is 

defined either as the stock of durable goods (net of depreciation) or 

as the sum of the stocks of durable goods (net of depreciation) and 

bonds. 

In order to determine the unconditional means of the different 

variables of the model (e.g. investment in durables, stock of 

durables, nondurable consumption and stock of bonds) we need to 

calculate the stationary unconditional distribution of ( , )
t t

w y  pairs, 

( , ) Pr( , )
t t t

w y w w y yλ = = = . 

Considering the optimal policy function ( , )w g w y′ =  and the 

exogenous Markov chain P  that determines y , the law of motion 

for the distribution 
t

λ  is defined as: 

1 1 1Pr( , ) Pr( , )
t t

t t

w y

w w y y w w w w y y+ + +
′ ′ ′= = = = = =∑∑  

1Pr( ).Pr( , )t t t ty y y y w w y y+
′⋅ = = = =

 

                                                 
*
 The content of this appendix is based on Ljungqvist and Sargent (2004). 
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or 

1 1( , ) ( , ) Pr( ). ( , , )
t t t t

w y

w y w y y y y y I w y wλ λ+ +
′ ′ ′ ′= = =∑∑  

( , , )I w y w′  is an indicator function that for three consecutives nodes 

on the grid of w  ( 1i
w − ,

i
w  and 1i

w + ) adopts the following form: 

1

1
1

1

1
1

1

1

0,    if  ( , )

( , )
,    if  ( , )

( , , ) 1,    if  g( , )

( , )
,    if  ( , )

0,    if  ( , )

i i

i i
i i i

i i

i i

i i
i i i

i i

i i

g w y w

g w y w
w g w y w

w w

I w y w w y w

g w y w
w g w y w

w w

g w y w

−

−
−

−

−
+

−

+

<
 − ≤ <

−


′ = =
 −
 < ≤

−
 >

 

The indicator function ( , , )I w y w′  identifies the proportion of t 

states w , y  that are sent into w′  at time t+1. The previous equation 

can be rewritten as: 

(A1) 
{ }

1

: ( , )

( , ) ( , ) ( , )t t

y w w g w y

w y w y P s sλ λ+
′=

′ ′ ′=∑ ∑  

The stationary distribution λ  is the one that solves the previous 

equation ( 1t t
λ λ+ = ). It is possible to obtain this stationary 

distribution by iterating (A1). An alternative is to create a Markov 

chain that describes the solution of the optimum problem, then to 

compute an invariant distribution from the left eigenvector 

associated with a unit eigenvalue of the stochastic matrix. This 

procedure implies the following steps: 
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1. Map the pair of vectors ( , )w y  into a single state vector x . 

Because in our exercises y  could only take two values (
e

y  

and 
u

y ), x  adopt the following form:  

1 2 1 2[( , ), ( , ),..., ( , ), ( , ), ( , ),..., ( , )];
e e N e u u N u

x w y w y w y w y w y w y′ =

 

where N represents the total number of grid points used for 

w. Thus, x  is a vector Nx2. 

2. Define the Markov chain M  on 
t

x : 

1 1Pr[( , ) ( , )]t t t tM w w y y w w y y+ +
′ ′= = = = =  

1 1Pr( , ).Pr( )t t t t tw w w w y y w w y y+ +
′ ′= = = = = =  

( , , ) ( , ).I w y w P s s′ ′=  

where M  is a vector 2Nx2N. 

3. Calculate the stationary distribution π  of the Markov 

process M  using the eigenvector associated with a unit 

eigenvalue of this matrix. There is a result which says that 

for any Markov transition matrix M , there exists a vector π  

such that: 

(A2) Mπ π′ ′=  

Rearranging equation (A2) yields, 

(A3) ( ) 0I M π− =  

Therefore, π  is the eigenvector associated with matrix M . The fact 

that M  is a stochastic matrix (i.e., all its elements are nonnegative 
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and the sum of the elements of each row equals one) guarantees that 

M  has at least one unit eigenvalue, and that there is at least one 

eigenvector π  that satisfies equation (A3). 

4. Finally, "unstack" vector x  and use π  to get the stationary 

distribution λ : 

( , ) Pr( , ) ( )
i e t i e

w y w w y y iλ π= = = =  

and 

( , ) Pr( , ) ( )
i u t i u

w y w w y y N iλ π= = = = +  

For 1,..., .i N=  

An additional alternative to get the stationary distribution ( , )w yλ  is 

to simulate the model for a significant number of periods. After 

discarding the first observations to remove any bias due to initial 

conditions, find the stationary distribution by counting the number 

of periods the model enters in each pair ( , )w y . 

The results that we present in this study are generated using both 

approaches: simulation and using the eigenvector associated with a 

unit eigenvalue of M . The latter approach can be used in all the 

cases covered in this study with the exception of the economy with 

bonds and non-negativity constraint in investment of durables. This 

case requires the use of three state variables (durables, bonds and 

income), and as a consequence, the definition of the stochastic 

matrix M  becomes more tedious. For this specific case, we relying 

only on simulation. 



 

 132

In order to illustrate the importance of using an accurate procedure 

to get the distribution of wealth-income, we consider the case of an 

economy without bonds and no non-negativity constraint (as in 

section 3.1). For the parameter values 0.99β = , 2
c d

γ γ= = , 

0.025δ = , and 1σ = , we simulate the model for different number 

of periods. After discarding the first 10 000 observations, we 

calculate the unconditional mean of the stock of durables. We also 

use the eigenvector associated with a unit eigenvalue of M , as 

described previously. Table A1 summarized the results of this 

exercise: 

Table A1 

Unconditional mean of the stock of durables 

 

Additionally, Figure A1 shows the distributions of the stock of 

durables obtained under simulation and using the eigenvector of 

M . 
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Figure A1 

Stationary distribution of the stock of durables 

 

Notice that even though the income process y  is iid, it is required 

to simulate the economy for a significant number of periods (i.e. 

half a million) to get close to the results obtained using the 

eigenvector of M . Considering that the differences obtained in 

some of the models covered in this chapter are very small, accuracy 

in the simulation procedure is an important requirement. 
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Appendix of chapter 3 
 

Appendix A: Prior distributions used in the Bayesian 

estimations 
 

Prior distributions: Uniform distribution (Min,Max) 

Symbol Min Max

Coef. risk aversion σ 0.30 5.0

Inv. elasticity labour supply γ 0.10 5.0

Price stickiness α 0.10 0.90

T.R.: interest smoothing αi 0.05 0.95

T.R.: inflation απ 1.01 5.0

T.R.: output αy 0.001 3.0

Autoreg coeff. demand shock ρ1 0.10 0.99

Autoreg coeff. tech. shock ρ2 0.10 0.99

Std. dv. demand innov. σ1 0.001 1.0

Std. dv. tech. innov. σ2 0.001 1.0

Std. dv. monetary innov. σ3 0.001 1.0  
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