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Abstract

Rheumatoid Arthritis (RA) is one of the most prevalent autoimmune

diseases in the world and is characterized by the chronic inflammation

of the synovial joints. The origin of the disease is unknown but it

is actually accepted that it is caused by the complex interaction of

a genetic susceptibility background and environmental factors. To

date, the characterization of the genetic architecture of RA is far

from complete. In the present work we will use the power of two

distinct genomic approaches to identify new candidate genes for the

susceptibility to RA.

In the first genomic approach, we have used gene expression microar-

rays to characterize the in vitro transcriptional response of the syn-

ovial fibroblast (SF) to the stimulation with RA synovial fluid. Using

a reverse engineering approach, we have inferred the main transcrip-

tional regulatory network that governs the response to this complex

proinflammatory stimulus. We have then studied the genes in this

regulatory network as risk factors for RA susceptibility using a case-

control approach. We have analyzed the association of each gene

with disease independently, but we have also analyzed the presence of

higher order interactions associated with disease risk (i.e. epistasis)

using the Multifactor Dimensionality Reduction method.

In the second genomic approach, we have used whole genome geno-

typing microarrays targeting more than 300,000 SNPs (Single Nu-

cleotide Polymorphisms) markers to perform a Genome-wide Associ-

ation Study (GWAS) in RA. In order to increase the statistical power

of our study we have implemented a liability-based design. We have



subsequently validated those loci showing highest evidence of asso-

ciation using an independent replication cohort. Also, in order to

integrate our findings with the evidence of previous GWAS in RA,

we have determined those genomic loci showing increased clustering

of signals between studies. Finally, we have performed an exhaustive

genome-wide analysis of the two-way epistatic interactions associated

with RA applying parallel computation.

Using the SF in vitro stimulation model we have identified n = 157

genes significantly associated with the response to RA proinflamma-

tory stimulus. Within this set of differentially expressed genes there

are genes that have been clearly associated to RA pathophisiology but

also new genes not previously linked to this disease. From the differ-

ential expression data we have been able to identify a 13 gene Nuclear

Factor kappa-Beta (NF-kB) transcriptional regulatory network, as the

key transcriptional regulatory force in this RA SF model. Whilst

several of the genes in the network showed nominal association to

disease, we have identified a significant epistatic interaction between

interleukin 6 (IL6 ) and interleukin 4 induced 1 (IL4I1 ) genes.

In the GWAS approach we have identified several candidate genes for

RA, advanced RA and chronic arthritis risk. Using an independent

replication dataset we have found an intronic SNP in Kruppel-Like

Factor 12 (KLF12 ) gene as the most strongly associated SNP with

RA. The meta-analysis with previous GWAS results has also identi-

fied several genomic regions -including KLF12 locus- that are likely

to harbour new risk variants for RA. In the genome-wide epistasis

analysis we have found a number of SNP pairs associated with RA

with a significance close to the conservative multiple test correction

threshold. Also, we have found that two-way interactions including

the HLA region, the strongest main effect in RA, are ranked secon-

darily to many other potentially interacting loci, thus suggesting a

minor role for this locus in the epistatic susceptibility to disease.



The two alternative genomic approaches we present in this work have

identified a group of new loci which are likely to be associated with

the risk to RA. This group of candidate loci should be now validated

in independent populations to confirm their implication in RA sus-

ceptibility.
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Chapter 1

Introduction

“Why am I sick?” As soon as we have consciousness of our self we start asking

this question. People want to know the reason why their body is being harmed

and they feel unhappy. For many centuries, humanity has devoted much effort

in trying to understand this intrinsic aspect of life. One fundamental step in

this quest was the discovery that certain microscopic organisms can enter our

body and attack us. This was a simple answer to the disease origin question: it’s

the “invaders”. Fortunately, for many of these minute creatures we have been

able to find treatments that can fight them and reduce its impact on human life.

However, there are still some microorganisms like the human immunodeficiency

virus (HIV) which we still cannot defeat and that are a constant reminder that

we should never underestimate the power of nature, but also that we should never

overestimate our capacity to overcome threats.

1.1 Genes as disease causing agents

By the end of the nineteenth century, a new area of research appeared. For

centuries, health professionals had noticed that, for a particular disease, some

families carried more diseased individuals than others. Therefore, there needed

be something that parents passed on to their offspring that perpetuated the

manifestation of the disease. Using a robust methodological approach, Gregor

Mendel identified in 1866 the rules of heredity, practically 100 years before the

chemical structure of the hereditary material was resolved by James Watson and

1



1.2 Complexity in disease causality

Francis Crick. Once the hereditary molecule was characterized, a second cause of

disease emerged: the mutation of the DNA sequence. Genes give rise to proteins,

and proteins are the workhorse of the cells that build up our body; thus, from a

mechanistic point of view, it seemed clear that a faulty protein due to a mutation

in its encoding DNA should negatively influence those biological functions in

which it participates and, henceforth, it could end up causing a disease. To date,

more than 1,500 human diseases caused by mutations in a gene have been already

characterized (Peltonen & McKusick, 2001).

1.2 Complexity in disease causality

For many diseases however, neither an infectious agent nor a causal mutation

could be identified. And many of these diseases are quite prevalent in human

populations. Thus, by the end of the twentieth century, the research on human

diseases needed to broaden its view of causality and started to embrace complex-

ity. The introduction of technologies that can analyze thousands of biological

variables in parallel (i.e. high throughput technologies) has been crucial in this

transition. With these genomic technologies, researchers are now able to study

the organism taking into account all its elements and not just a limited set. This

way of performing research is conceptually new in biomedical research and it im-

plies profound conceptual changes; one of them is that we are less attached to our

subjective knowledge of the disease process. Deductions from the whole set of

transcripts, for example, are more powerful because they are more objective. But

also this analytical approaches offer a new possibility: to use this information in

conjuction to obtain a complete characterization of the normal and pathological

states. For this objective a new area of science, systems biology, is now rapidly

emerging.

The new view on biology that genomic technologies are providing is having a

profound impact on how we view diseases. Individuals are now seen as particular

“mosaics” of genetic variations which can have differential behaviours according

to the environmental factors with which their interact throughout their life. What

we previously defined as a single disease according to a set of signs and symp-

toms, it may now be described as a large heterogeneous collection of molecular

2



1.2 Complexity in disease causality

variations. In the present dissertation we will use the power of genomic technolo-

gies to identify new genetic variations associated with the risk to develop RA, a

complex and heterogeneous disease.

First strategy: genomics of expression and complexity

In the first strategy we have used gene expression microarrays to identify the

set of genes that are associated to the response to a pathogenic insult. Using a

bioinformatic approach called reverse engineering we have estimated the princi-

pal network of genes that govern this gene expression response. Once we have

identified the main regulatory network, we have studied the association of genetic

variation within these genes with the susceptibility to develop the disease. Given

that we have evidence that the gene products of these genes belong to a common

regulatory pathway, we have also studied the presence of epistasis associated with

disease risk.

Second strategy: genetic genomics and complexity

In the second strategy we have used whole genome genotyping microarrays to

directly identify SNPs associated to the risk to develop the disease. These mi-

croarrays are built upon tagSNPs which are highly informative SNPs that cover

most of the common variation in the genome. Using this approach we have objec-

tively assessed which genetic variations are more relevant to disease susceptibility.

In order to increase the power of the approach, we have introduced an epidemio-

logical design that maximizes the difference in liability between individuals. We

have compared our results with the results of previous genome-wide scans for the

same disease. Finally, we have conducted a genome-wide exploration to identify

two-way epistatic interactions associated with disease risk.

3



1.2 Complexity in disease causality

Summary of the Contributions

• Identification of the genes significantly associated with the SF response to

the RA proinflammatory environment.

• Identification of NF-kB as the main transcription factor governing the re-

sponse to RA synovial fluid.

• Characterization of the main transcriptional regulatory network associated

with the SF response to the RA environment. Under RA synovial fluid

complex stimulus, transcription factor NF-kB upregulates 11 genes and

downregulates 2 genes. While some of these genes are known to be regulated

by NF-kB, there are other genes that had never been previously associated

with the regulation by this transcriptional factor.

• Identification of a significant two–way SNP interaction associated with a

high risk to develop RA. Multifactor Dimensionality Reduction epistasis

analysis on the promoter SNPs of the 13 corregulated genes of the SF net-

work revealed that the interaction between IL4I1 and IL6 genes was better

at predicting disease status than any other higher level combination.

• First genome-wide association study performed in the Spanish population:

identification of a low impact of genetic structure albeit a predominant West

to East trend different from other European populations.

• Third GWAS study on RA: identification of a new gene for susceptibility to

RA. SNP rs1324913 located in the first intron of transcription factor KLF12

is associated to RA risk in a reproducible dominant model.

• Meta-analysis with previous GWASs: identification of genetic regions that

show increased probability to harbour a susceptibility variant for RA.

• First exhaustive genome-wide scan for epistasis performed for a complex

disease. The results for the top ranking SNP pairs are promisingly close

to multiple test corrected significance. Interactions of variations in the

HLA region with other non-HLA loci rank sensibly lower compared to other

genomic epistatic interactions.
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Chapter 2

Rheumatoid Arthritis

2.1 Epidemiological Perspective

Rheumatoid Arthritis is a chronic inflammatory disease that affects the synovial

joints. It is one of the most frequent autoimmune diseases in the world with a

worldwide prevalence of approximately 1%. To date, the most exhaustive epi-

demiological survey performed in Spain (Carmona et al., 2002) estimated a 0.5%

(0.25–0.8, 95% CI) prevalence. This value is similar to other Mediterranean coun-

tries like France (0.6%), Italy (0.3%) or Greece (0.3–0.7%), but relatively lower

than northern European countries like the UK (0.8–1.1%), Finland (0.8%) or

Sweden (0.5–0.9%). At the two prevalence extremes we find a relatively large

number of cases in native–American populations like the Chippewa (6.8%) (Har-

vey et al., 1981) (Harvey, Lotze et al. 1981) and Pima (5.3%) (Del Puente et al.,

1989) Indians and the lack of evidence from sub–Saharan populations like the

Nigerians (Silman et al., 1993b). In the European countries, incidence estimates

follow a similar trend to the prevalence estimates, with Northern countries having

a relatively higher occurrence of disease than Southern countries (0.44–0.8% vs.

0.31–0.5%, respectively).

In all countries examined, RA is characterized by an increased frequency in

females compared to males, in an approximate 3:1 ratio. This differential suscep-

tibility is common also for several other autoimmune diseases (Figure 2.1).

The aetiology of RA is still unknown but there is clear evidence that there is a

complex genetic architecture that increases the risk to develop it. Environmental

5



2.2 Pathophysiology of the disease

Figure 2.1: Incidence of different autoimmune diseases according to sex. Taken from
Whitacre (Whitacre, 2001).The numbers above the bars refer to the total number of
disease cases (x 1,000,000) in the USA.

factors have also an important role as disease triggers but, apart from cigarette

smoking (Odds Ratio (OR)∼12 in monozygotic twins) (Silman et al., 1996), there

is no other environmental factor that has been consistently associated with the

risk to RA. More specifically, there is yet no strong evidence in favour of an

implication of any microorganism in the generation of the disease. For all these

reasons, RA is actually classified as a common complex disease.

2.2 Pathophysiology of the disease

In order to understand the pathological processes that occur in RA, we must first

have a clear picture of the target organ of this chronic inflammatory disease: the

synovial joint.

6



2.2 Pathophysiology of the disease

2.2.1 The synovial joint

Evolution has brought to many species the ability to move. Being able to change

the spatial localization has important advantages: it increases the probability to

find necessary resources like food and it can also be a useful defence mechanism.

In higher vertebrates like humans, movement is performed by the combination

of internal rigid structures (i.e. bones) and soft contractile structures (i.e. mus-

cles and tendons). The contractions and distensions of muscles allow the relative

movement of the skeletal bones at specific angles that allow the execution of mul-

tiple necessary tasks like walking, grabbing tools, etc. Whilst some joints like the

skull synarthrosis or the vertebral ampharthrosys are attached by intermediate

connective tissue, the synovial joints do not have any rigid binding. Instead syn-

ovial joints have two opposing cartilage surfaces that interact through a viscous

lubricating liquid called synovial fluid. This is due to the necessity to perform

big angles of trajectory like rotation or flexion.

Embrionary development of the synovial joint

To better understand the synovial joint architecture, it is useful to revise

its embrionary development. The musculoskeletal system in its whole originates

from the mesoderm. Early in the development, part of this embryonic sheath dif-

ferentiates into a condensed group of cells called pre–chondrogenic tissue (Spitz

& Duboule, 2001). This cartilaginous tissue will rapidly expand and ramify, giv-

ing rise in very few weeks to a scaled version of the adult skeleton. Gradually,

through a process called endochondral ossification, the cartilage tissue will be

replaced by bony tissue. This transition is promoted by the growing vascular

system which gradually infiltrates the embryonic cartilage. Through the new

arteries and capillaries, monocytic cells will arrive and start to degrade the car-

tilaginous extracellular matrix (ECM) through the secretion of large amounts of

metalloproteinases. In parallel, the resident fibroblasts –called osteoblasts–will

start secreting collagen type I fibers and hydroxyapatite–like calcium phosphate

to replace the previous ECM (Bueno & Glowacki, 2009). This new matrix will

have the same composition as the adult bone and, therefore, it will already pro-

vide the embryo the structural properties that are characteristic of this tissue.

7



2.2 Pathophysiology of the disease

In parallel to the ossification process, certain groups of cells located in very

specific areas of the embryonic cartilage called interzones will initiate an alterna-

tive differentiation program (Figure 2.2). They will start by losing their ability to

synthesize ECM and they will gradually acquire a flattened morphology. These

interzone cells will finally die by apoptosis and will give rise to a tissue cavity

that will be the future intraarticular space (Francis– West et al., 1999). At each

side of this cavity, two dense populations of cells will then multiply and originate

the opposing joint cartilage tissues. Surrounding the intraarticular space and the

former cartilage tissues, a group of prechondrogenic cells will differentiate into

the articular capsule and the tendon tissues that will finally bind to the adjacent

muscular tissues. Linning the inner surface of the articular capsule, a slim but

highly vascularized connective tissue will begin to form. This tissue will be re-

sponsible for the synthesis of a viscous substance that will fill the intraarticular

space and lubricate the opposing cartilages. Since this fluid macroscopically re-

sembles the white of an egg (in Latin syn ovia) it was first called synovial fluid,

and the producing tissue the synovial membrane.

Figure 2.2: Articulating joint formation. Taken from Spitz and Douboule (Spitz &
Duboule, 2001). Schematic representation of the formation of the embryonic chick
limb. The formation of joints in the embryo is a sequential process involving many yet
unknown mechanisms.
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2.2 Pathophysiology of the disease

Fibroblasts are the main cellular type in the synovial joint

The synovial joint is composed by three types of connective tissue: cartilage,

subchondral bone and the synovial membrane. All connective tissues in the hu-

man body have one common cellular type: the fibroblast cell. Fibroblasts are

responsible for most of the ECM synthesis that is characteristic of these tissues.

Given that they are more easily obtained and cultured than other human cell

types they have been much used in in vitro studies. Until recently, however, fi-

broblasts were thought to be a rather homogeneous and “dull” cell, carrying out

just mere structural functions in the organism. Recently, new evidence has pro-

portioned a more sophisticated view on the roles of fibroblasts. A comprehensive

study of the transcriptional profiles of a large panel of human fibroblasts using

microarray technology (Chang et al., 2002) demonstrated that this cell type is in

fact a very heterogeneous family. The consequences of this discovery are very im-

portant at many levels. It means, for example, that experimental results obtained

with one fibroblast type need not be reproducible in another fibroblast type, and

consequently it raises the importance of carefully selecting the experimental cell

type. There is also increasing evidence that fibroblasts have fundamental roles

in immunity and in the generation of malignant tissues. For example, the de-

velopment of the extensive immune cell repertoir requires the interaction with

resident stromal cells in the bone marrow (Wilson & Trumpp, 2006). Also, there

is increasing evidence that fibroblasts residing at the different connective tissues

in the organism are fundamental for the signal cross–talk that takes place during

an immune response (Pierer et al., 2004). In cancer, there is also evidence that

the tumor progression is less an absolutely autonomous process and it crucially

depends on the interaction with the cells of the surrounding connective tissue

(Elenbaas & Weinberg, 2001).

Cartilage fibroblasts, the chondrocytes, are the unique cell type present in this

tissue. The cartilage has no vascular system and, therefore, the metabolism of

chondrocytes depends on the diffusion of nutrients from the synovial fluid. The

chondrogenic progenitors are placed in the basal zone, limiting with the subchon-

dral bone. They are flat cells that secrete very little ECM but, as they differentiate

into mature chondrocytes, they start acquiring a rounded shape and producing

high amounts of ECM, mainly, collagen II fibers and aggrecan. The composition
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of this matrix is essential for the functions of the cartilage: minimal friction and

maximal resilience. The negative charges of the aggrecan proteoglycan attract

large amounts of water molecules which provide the tissue the necessary levels of

compressibility that are associated with the articular movement and scaffolding

under gravity. In RA, the chronic inflammation state leads to the destruction

of this tissue by different mechanisms, including synovial fibroblast invasion, in-

creased synthesis of matrix metalloproteinases (Page-McCaw et al., 2007) and

by the cytokine induction of chondrocyte apoptosis (McInnes & Schett, 2007)

(Figure 2.3). The loss of cartilage in RA causes the friction between the adjacent

bone tissues, which gradually leads to further structural damage, loss of function

and pain.

Figure 2.3: Pathways regulating chondrocyte activation and cartilage degradation in
rheumatoid arthritis. Taken from McInnes and Schett (McInnes & Schett, 2007). Car-
tilage tissue degradation in RA is a multistep process based on the simultaneous acti-
vation of different cell types.

The process of endochondral ossification that takes place during the embri-
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onary development removes almost all the cartilage tissue from the skeleton. Only

the distal regions of the bones, the epiphyses, will retain this type of tissue up to

the adult phase of the organism. Specialized macrophages called osteoclasts will

destroy the cartilage whilst tissue–specific fibroblasts, the osteoblasts, will syn-

thesize the new ECM. This cellular duet will remain active throughout all the life

of the organism maintaining a constant renewal of the tissue. Interestingly, when

an adult bone is fractured, the healing process recalls the embrionary process:

first chondrogenic precursors fill the lesion with cartilage tissue which is subse-

quently replaced by new bone tissue through the osteoblast–osteoclast system

(Page-McCaw et al., 2007). In RA, the increased production of proinflammatory

cytokines like RANKL, TNFα, IL1β or IL17 breaks the balance of this system

in favour of an increased number of active osteoclasts (Kong et al., 1999). This

cytokine–mediated osteoclastogenesis is going to be responsible for the observed

subchondral bone erosion characteristic of RA patients (Figure 2.4). In some

extreme cases, the bone can actually disappear which, in the case of the cervical

synovial joints, could lead to paralysis and death.

Figure 2.4: Typical subchondral bone lesions in the hand joints of RA patients. The
osteoclasts front, promoted by proinflammatory cytokines, gradually erodes the bone
and forms cavities (left image, red arrow) which are filled by the soft proinflammatory
tissue (i.e. pannus). If the chronic inflammation is not controlled, this will finally
destroy the subchondral bone leading to joint luxation (right image, asterisk) or fusion.

Similar to the bone, the synovial tissue is also composed by fibroblasts (also
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called “type B synoviocytes”) and macrophages (also called “type A synovio-

cytes”). These two cell types concentrate in the intimal layer of the synovial

membrane, facing the intraarticular space filled with synovial fluid (Figure 2.5).

In this way, synovial fibroblasts can more easily refill the intraarticular space with

hyaluronic acid and lubricin, the molecules responsible for the viscous and lubri-

cating properties of the synovial fluid (Khurana, 2009). Also, macrophages can

capture and remove debris from this fluid matrix, thus maintaining the desired

physicochemical properties of the synovial fluid. In its basal layer, the synovial

membrane is rich with vascularization. The diffusion of plasma from the synovial

vascular network is essential for the maintenance of the metabolic necessities of

the articular cartilage.

Figure 2.5: Electron micrography of the synovial membrane. (Taken from Shikichi et
al. (Shikichi, Kitamura et al. 1999)). Synovial fibroblasts secrete large amounts of
hyaluronic acid and lubricating proteins into the synovial fluid. In the image, synovial
fibroblasts of the horse project microvilli into the intraarticular cavity, whereas synovial
macrophages have a spherical shape and have lamellipodia.

The synovial membrane, a rather acellular tissue in normal conditions, be-
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comes hyperplasic in RA. Whilst the intimal layer is still composed by fibrob-

lasts and macrophages, the subintimal zone is colonized by multiple elements

of the innate and acquired immune response including macrophages (Firestein

and Zvaifler 1997), mast cells (Woolley, 2003), CD4+ T lymphocytes (Kremer

et al., 2003), CD8+ T lymphocytes (Haworth et al., 2008), Natural Killer cells

(Perricone et al., 2008), B lymphocytes and plasma cells (Edwards et al., 2004).

All these cell types interact through multiple cytokine networks that lead to the

chronic state of inflammation characteristic of RA. To date, more than 20 differ-

ent cytokines are considered to be “key” in the pathogenesis of RA (McInnes &

Schett, 2007), reflecting the complex nature of the disease but also the level of

ignorance that we still have on the mechanisms underlying this pathology.

From all the cell types in the RA synovial membrane, synovial fibroblasts

(SFs) seem to have a leading role in joint destruction (Meyer et al., 2006). They

display a tumor–like phenotype (Firestein, 1996) with the capacity to attach

to the neighbouring cartilage and deeply invade its ECM (Huber et al., 2006).

SFs synthesize large amounts of TNFα, IL1β and IL6 proinflammatory cytokines

which induce the production of ECM degrading enzymes like matrix metallo-

proteinases, aggrecanases and cathepsins (Pap et al., 2000). Also, they promote

the migration, activation and survival of T and B lymphocytes into the synovial

membrane by expressing the required chemokines and cytokines (i.e. TNF, IL16,

IL15, BAFF and IL7). RANKL, the main cytokine promoting osteoclastogenesis,

is produced by T cells in the synovial membrane that have been activated by SFs

expressing the CD40 receptor ligand (Lee et al., 2006). Finally, SFs promote an-

giogenesis in the synovial membrane by the production of vascular growth factors

like VEGF, bFGF, oncostatin M and IL18 (Firestein, 1999). For all these rea-

sons, the characterization of the molecular pathways and regulatory mechanisms

of the SF in RA will be essential to understand the initiation and progression of

this disease.

Once we have viewed the elements of the disease scenario we will now describe

the process of constitution of RA as a distinct clinical entity. We will then revise

which are the different complex immunopathological features of RA and how they

were characterized.
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2.3 Rheumatoid Arthritis as a clinical entity

2.3 Rheumatoid Arthritis as a clinical entity

The first step to find a solution to a problem is to have a clear definition of the

problem. Hippocrates (Greece, V–IV centuries B.C.) was aware of this notion and

applied with unprecedented rigour to the problem of human healing. In his view

of health, which prevailed in occidental medicine up to the seventeenth century,

there was an equilibrium between the four “fundamental fluxes” (“rheuma” in

Greek) that constitute the human body. If one such fluxes accumulated in an

organ, then disease developed. In the middle ages, for example, most articular

diseases were commonly classified as gutta (drop in Latin), exemplifying the

hippocratic notion of the abnormal accumulation of fluids in the joint.

In the seventeenth century, the French physician Guillaume de Baillou was

the first to use the term “rheumatism” to specifically describe the accumulation

of harmful “fluxes” in the joints. Some years later, Thomas Syndenham, consid-

ered the “English Hyppocrates” for its observational capacity and methodological

rigour, differentiated two forms of arthritis, one chronic and destructive which he

called “rheumatic gout” (i.e. the equivalent of RA) and another acute that gener-

ally occurred in young individuals which he called “rheumatic fever”. From this

time onwards, RA was successively reclassified under different names like “chronic

rheumatism”, “rheumalgia” or “scorbutic rheumatism” which added little more

than confusion. It was finally the English physician Alfred Garrod who in his 1859

medical treatise used for the first time the term “Rheumatoid Arthritis” to design

and define this clinical entity (Storey, 2001). However, it was not until 1922 that

the English National Health Services accepted the use of this clinical definition.

Why did it take more than 60 years to accept RA as disease entity on its own?

This delay was most probably due to two fundamental aspects of RA: the lack

of a specific clinical diagnostic test and the high level of clinical heterogeneity.

These two aspects are still present in RA and they are fundamental to understand

the difficulties associated with this heterogeneous disease including the lack of an

early diagnosis or the lack of replicability of many research findings. The latter

was and still is a matter of much concern between rheumatology specialists. For

this reason, in 1957 the American College of Rheumatology (ACR) established

the first standardized diagnostic system for RA (Ropes et al., 1957). It was based

14



2.4 Rheumatoid Arthritis: immunopathology

on a set of 11 clinical criteria which were used to categorize patients either as

“definitive” RA (6 ≥ criteria), “probable” RA (3 to 5 criteria) or “possible” RA

(using other aspects). Only one year later, a fourth category representing the

most specific form of phenotype was included: “classic” RA, where ≥7 criteria

had to be fulfilled. The ACR 1957 diagnostic criteria for RA prevailed in the

clinical practice of Rheumatology for the next 30 years. Its extended use greatly

improved the acquisition and diffusion of knowledge in the clinical research of RA

and, consequently, patients benefited from an earlier diagnostic as well as a better

targeted treatment. However, its extended use also showed several weaknesses.

For this reason, the ACR published in 1987 a reformulation of the diagnostic

system of RA (Arnett et al., 1988). This new system was now constituted by 7

criteria from which a patient had to fulfil at least 4 to be diagnosed as RA (Figure

2.6). This time, no intermediate qualifications of the disease were considered.

Figure 2.6: Table of 1987 revised ACR criteria. Excerpt from the original 1988 article in
which the American Rheumatology Association committee defined the new diagnostic
criteria (Arnett et al., 1988).

2.4 Rheumatoid Arthritis: immunopathology

Rheumatoid Arthritis is a disease where the immune system is chronically acti-

vated in the synovial joints. Thus, the advances in the knowledge of the patho-

physiological mechanisms of RA have been inevitably linked with the progress

in the understanding of immunology. One crucial step in immunology’s timeline
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was the identification at the end of the nineteenth century of blood as the essen-

tial tissue for immune activity by Emil von Behring and Shibasaburo Kitasato

(Kantha, 1992). Behring and Kitasato formulated the humoral theory of immu-

nity which states that there are elements in the human serum that are able to

bind bacterial toxins and cancel their harmful action. Some years later, Jules

Bordet showed that this defence system could be subdivided into two subtypes

according to the resistance to heating. Based on this categorization, Paul Ehrlich

hypothesized that the thermorresistant component was the product of a specific

cellular recognition system which he called “antibody”. According to Ehrlich,

the antibody would have a double function: to bind and neutralize the invasive

agent (called “antigen”) and to bind to the thermolabile component of the serum.

The latter process, he devised, would be a mechanism to increase the neutralizing

efficacy of the antibody and consequently he called the thermolabile substance

“complement”.

2.4.1 The discovery of the Rheumatoid Factor and au-
toimmunity

The recognition of the serum as an essential executor of the immune response

stimulated the study and identification of different serum reactivity processes as-

sociated to human diseases. Two months before the Nazi occupation of Norway

during the Second World War, Norwegian researcher Eric Waaler published a

manuscript (Waaler, 1940) in which he described the distinct capacity of serum

from RA patients to agglutinate sheep red blood cells compared to control indi-

viduals. Later, American immunologist Noel Rose rediscovered the same agglu-

tinating factor and concluded that it could be essential in the diagnostic of the

disease (Rose et al., 1948). A few years later, Waaler’s and Rose’s factor was

called “Rheumatoid Factor” (RF) and it was not until 1957 that it was charac-

terized as an anti–IgG antibody.

An antibody binding to other antibodies? It was clear that some new biolog-

ical process was being discovered which seemed to confront to the basic principle

of immunity, that is, the discrimination of “self” from “non–self”. Up to that

moment, immunology researchers had been working with the conviction that

16



2.4 Rheumatoid Arthritis: immunopathology

there was a principle of no autoaggresssion (or “horror autotoxicus” as Ehrlich

described it). However, there was increasing evidence that in many human dis-

eases the activation of immune system was not associated to the presence of an

invasive microorganism. Finally, the works of Roitt and Rose at the end of the

50’s clearly demonstrated the existence of autoimmune-type reactions in the hu-

man pathology. The first author observed that mixing serum of patients with

Hashimoto’s disease (an autoimmune disease of the thyroid gland) with purified

thyroglobulin, he could observe red blood cell precipitates, clearly demonstrat-

ing the presence of autoantibodies against this thyroid–specific protein in these

patients (Campbell et al., 1956). Rose also studied Hashimoto’s disease but, in-

stead, he showed that rabbits developed autoimmune thyroiditis after they were

immunized against their own thyroglobulin protein (Rose et al., 1965). In an at-

tempt to formalize this new aetiology phenomenon, German immunologist Ernest

Witebsky published in 1957 a group of 3 postulates defining autoimmune diseases

(Rose & Bona, 1993) (Table 3.1).

Table 3.1 Witebsky’s postulates of autoimmunity

- An autoimmune reaction is identified in the form of autoantibody or cell-
mediated immune reaction
- The corresponding antigen is known
- An analogous response causes a similar disease in experimental animals

However, as Waaler already noted in his 1940 manuscript, not all RA patients

were positive for RF. Also, patients with other diseases could produce this au-

toantibody in their sera. Therefore, RA did not fall into Witebsky’s established

definition of autoimmune disease.
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2.4.2 HLA association with RA

One key aspect in the understanding of the immune response was the identi-

fication of the clonal selection process. This mechanism discovered by Francis

Burnett in 1959 and later demonstrated by James Gowans, describes the prin-

ciples by which the cells of the acquired immunity, the lymphocytes, operate

(Rajewsky, 1996). The clonal selection theory can be divided into several phases:

first, there is an initial repertoire of lymphocytes that are able to recognize all

possible 3–Dimension molecular structures. In the first stages of the life of the

organism, those lymphocytes that recognize “self” molecular structures are elimi-

nated. The surviving lymphocytes will then migrate to the periphery of the body

where they will wait for the antigen to appear. When a microorganism comes to

scene, those lymphocytes that are able to recognize its 3D structures (i.e. anti-

gens) will proliferate. Finally, these proliferating lymphocytes will give rise to

two different subpopulations of cells: the effector cells which will direct antigen

elimination and eventually will disappear, and memory cells that will be stored in

the organism so that faster and stronger immune responses are elicited in future

infections of this same microorganism.

In 1974, Rolf Zinkernagel and Peter Doherty showed that the last phase of the

clonal selection theory, the lymphocyte recognition of the antigen, was not per-

formed directly on the infecting microorganism (Zinkernagel & Doherty, 1974).

Instead, the microorganism had first to be processed by other types of cells (i.e.

Antigen Presenting Cells or APCs) and then exposed to lymphocytes by a specific

group of proteins called the Major Histocompatibility Complex in mice or the Hu-

man Leukocyte Antigen (HLA) in humans. Once discovered this HLA–restricted

lymphocyte recognition mechanism, researchers started asking themselves if this

system would be the key to the origin of autoimmune diseases. In 1976, American

physician Peter Stastny saw that peripheral blood mononuclear cells (PBMCs)

isolated from RA patients cocultured with PBMCs from control individuals had

normal growth rates but when they were cultured together with PBMCs of other

RA patients they had very poor proliferation levels (Stastny, 1976). Importantly,

Stastny saw that this lack of stimulation had a strong correlation with their HLA

serotype. Although HLA typing at that time could only be performed at the
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protein level, it was the first strong evidence that there was genetic variation

associated with RA.

The association of genetic variants to disease risk can be a very useful way

to discover fundamental aspects of the disease aetiology. In some cases, however,

the identification of the precise role of the genetic variation with the disease

predisposition can be very challenging. One such example is the association of

HLA variability with RA. More than 30 years after the association of the HLA

locus with RA and still there is no convincing explanation of its implication in

the disease. Initially it was thought that, similar to other autoimmune processes

like Hashimoto’s thyroiditis, there should be an organ–specific antigen which

could raise an immune reaction in predisposed individuals (Gregersen et al., 1987;

Verheijden et al., 1997). Since no clear arthritogenic antigen has been identified,

many other alternative hypotheses for the implication of the HLA have been

formulated but, to date, there is not enough evidence for any of them (Firestein,

2003). Nonetheless, the recognition of a T cell mediated effect has been very

useful in the development of efficacious therapies in RA. In particular, the study

of Collagen Induced Arthritis (CIA) (a T cell model of RA in mice) showed that

the blockade of the TNFα cytokine was very efficient reducing the inflammation

and joint damage (Williams et al., 1992). This evidence was the firm rationale

from which therapies blocking systemic TNFα started to be evaluated in RA

patients in the mid 90’s (Lipsky et al., 2000). Actually, TNFα blocking therapies

have proven a major success in RA treatment and are a clear landmark in the

treatment of chronic inflammatory diseases (Smolen et al., 2007).

2.4.3 Cytokines and new T cell subtypes associated with
RA

Multicellular organisation is possible through the existence of powerful commu-

nication networks between cells. The nervous system can communicate through

long distances through axons, and the endocrine system, through mediators that

travel in the blood can reach distant targets. However, there is a short–range

communication system that is fundamental for multicellular cross-talk and, es-

pecially for immune cell communication. These messengers are small molecular
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weight proteins called cytokines, although previously they have also been known

as interleukins, interferons or colony–stimulating factors (CSFs) The develop-

ment of essential molecular biology techniques like DNA cloning during the 70s

contributed to a boom in the identification of multiple cytokines during the 80s

that is still ongoing. The discovery of these diverse communication systems has

been extraordinarily influential in our understanding of many pathological pro-

cesses. Importantly, they have significantly improved the treatment of many

common diseases like cancer (i.e. haematopoietic reconstitution with CSFs after

chemotherapy ) or autoimmune diseases (i.e. prevention of bone erosion in RA

with TNFα blocking agents).

One of the first consequences of the knowledge of the diverse cytokine reper-

toire was the acknowledgement of distinct CD4+ lymphocyte (T–Helper) subsets

according to their cytokine profile. In 1986, Robert Coffman and Tim Mossman

demonstrated that there were two major CD4+ subtypes: cells expressing inter-

feron gamma (IFNγ), IL2 and TNFα which they called TH1, and cells expressing

IL4, IL5 and IL10 which they called TH2 (Cherwinski et al., 1987). TH1 cells

are fundamental in the defence against virus and bacteria since they are able to

activate macrophages, cytotoxic (CD8+) T cells, and can induce the production

of specific antibodies that neutralize (i.e. opsonize) these infecting agents. TH2

cells are key elements in the defence against parasitic and mucosal infections since

they are able to induce B cells to produce large quantities of antibodies specific for

this type of microorganisms. In the course of an infection, dendritic cells migrate

to the secondary lymphoid organs where they present the processed antigens to

the näıve T cells through the HLA system. Once the CD4+ cells specific for those

antigens have activated, they proliferate and migrate to the infection focus where,

according to the local profile of cytokines, they differentiate into the TH1 or the

TH2 phenotype. The TH1/TH2 theory was a key intellectual breakthrough not

only for the definition of new subphenotypes but also because it introduced the

notion that cells of one T cell subtype can inhibit the formation of cells of the

other subtype (Coffman, 2006).

On the basis of studies in rodent models, RA was initially though to be a

TH1–cell mediated disease (Courtenay et al., 1980; Remmers et al., 2007). How-

ever, like in many other autoimmune diseases, the evidence obtained from human
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samples did not fit the established TH1/TH2 model. Although high levels of

TNFα cytokine were detected in RA synovial biopsies, only small amounts of

IL2 or IFNγ could be found. Recent findings, however, are broadening our vision

on the CD4+ subtype paradigm. In 1995, Sakaguchi and colleagues (Sakaguchi

et al., 1995) showed that a particular subset of CD4+ lymphocytes was essential

to prevent the development of autoimmune processes in mice, including arthritis.

These cells express the IL2 receptor (i.e. CD25) and are called T regulators or,

more commonly, Tregs. Tregs have been also found in humans (Misra et al., 2004)

and, obviously are now an objective of intense research in many autoimmune dis-

eases including RA (Ehrenstein et al., 2004). Its implication in RA aetiology

however is still not clear. Several studies, for example, have reported an enrich-

ment of Tregs in the synovial fluid of RA patients (Raghavan et al., 2009) but

there is notable controversy regarding the frequency of CD4+CD25+ Tregs in

the peripheral blood (Sarkar & Fox, 2008). Some authors have suggested that

Tregs in RA could have lost their suppressive capacity although several other

researchers show different evidence. More promising it could be the link between

Tregs and its relation to the response to anti–TNFα treatment. In this regard,

we have shown (Julià et al., 2009b) that patients that don’t respond to TNFα

blockade therapy tend to have lower CD4+CD25+ Tregs at baseline compared

to those patients that will respond. In this sense, we hypothesize that the reduc-

tion of the high TNFα levels in RA will be beneficial only to those patients with

sufficient baseline Treg cells to suppress the autoimmune activity.

More recently, a new CD4+ T cell subtype has been identified that could

also be crucial to understand the complex immunophatology of RA. IL17 was

identified in 1995 as a T cell derived cytokine that promotes inflammation and

neutrophil activation (Yao et al., 1995); however it was not until 2005 that the

cell source of this proinflammatory cytokine was identified in mouse (Harrington

et al., 2005). The IL17 producing lymphocytes were consequently named TH17

and their role has been in various situations associated with inflammation and

ECM destruction. TH17 cells are characterized by the expression of the proin-

flammatory cytokines IL17A, IL17F and IL22. IL17A has been found in the

synovial membrane (Chabaud et al., 1999) and the synovial fluid (Kotake et al.,

1999) of RA patients and it is associated with disease severity (Kirkham et al.,
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2006). Its deficiency has also been found to have profound antiarthritic effects in

mice (Lubberts et al., 2004; Nakae et al., 2003). A recent line of research is work-

ing on the hypothesis that the increased IL1β and IL6 production from synovial

fibroblasts observed in RA would be the responsible for the shift of CD4+ T cells

towards this subtype. Once sufficient numbers of TH17 are been generated, the

inflammatory process may then become autonomous with IL17 dominance and

independence of TNFα or IL1β activation (van den Berg & Miossec, 2009).

The discovery of new pieces of the complex immunology puzzle is still on-

going. For example, apart from the Treg and TH17 cells, there are new CD4+

subtypes that are being characterized like the T follicular helper cells, the TH22

cells and the TH9 cells (Bluestone et al., 2009). Will these new cell types be also

fundamental in the aetiology of RA? How will they fit into the complex scenario

of activated fibroblasts, antibody production and chronic lymphocyte infiltration

of RA? It is clear that this and many more fundamental answers will need the

detailed study of multiple molecular and cellular mechanisms. Perhaps, the iden-

tification of genetic variation associated to disease risk will be fundamental to

disentangle the key immunological factors that cause RA.
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Chapter 3

Genetics and Genomics

3.1 The concept of heredity and Mendel’s laws

Heredity is a relatively modern concept in human history. Hippocrates, for ex-

ample, conceived that both parents produced a seed (“semen” in Greek), that

intermingled to produce the embryo. However, he could not find a satisfactory

explanation of why certain traits appeared in the offspring and others did not.

For more than 1,500 years, researchers weren’t able to find any consistency in

their observations and, therefore, the heredity concept wasn’t developed. In the

seventeenth century, the introduction of theory, dissection and experimentation

into the study of biological phenomena lead to important advances in the un-

derstanding of the generation of life, namely, the identification that egg cells in

female organisms and spermatozoa in male organisms as essential elements for

reproduction. Still, however, nobody accounted for the underlying heredity of

traits. The definite advance came thanks to the industrial revolution in the eigh-

teenth and nineteenth centuries. This key period in Europe’s history started in

the United Kingdom and, a part from other important advances, it promoted a

major improvement in agricultural production. Robert Blakewell, a British agri-

culturalist, was the first to consciously select and cross specimens with the best

productive qualities from around the UK to generate better livestock, that is, he

discovered selective breeding (Cobb, 2006).

In the nineteenth century, Brno (Czech Repuplic) was considered one of the

European capitals of textile and sheep breeding. As such, there was an inten-
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sive intellectual life around the problem of breeding and trait production in the

descendants. It is under this particular environment that the Czech monk Gre-

gor Mendel was stimulated to produce his fundamental studies on the heredity of

traits. In his 1866 article “Versuche über Pflantzen–Hybriden” on plant breeding,

Mendel discovered two fundamental aspects of heredity:

• Organisms have two factors that give rise to any particular trait, one coming

from each parent. When organisms have offspring, any of the two possible

factors is chosen randomly and transmitted (i.e. segregated) to them.

• The transmission of a factor from one parent occurs independently of the

transmission of the factor of the other parent, independently for each off-

spring and independently of each trait.

These two key observations are considered the birth of genetics and are known

as the “segregation” and “independent segregation” laws of genetics, respectively.

To arrive to these conclusions Mendel had performed an exemplar approach to

the study of heredity. First he used a model organism that was easy to grow and

to selectively reproduce: the pea plant. Second, he registered the results on the

crossing of more than 10,000 of such plants, accurately annotating the phenotypic

features observable at each generation. Third, he used homogeneous breeds, that

is, plants that systematically expressed the same type of trait to precisely observe

the effects of crossing in the next generations. Using these approaches he finally

was able to confirm that the origin or genesis of the traits needed to be binomial.

Unfortunately for him, Mendel’s work did not have impact during his life-

time. It was in 1906, during the English Royal Horticultural Society conference,

when his findings were finally acknowledged. During this conference, Cambridge

biologist William Bateson, who is the responsible for Mendel’s rediscovery, used

for the first time the term “genetics” to describe this new phenomenon. Apart

from disseminating Mendel’s research, Bateson itself made also substantial con-

tributions to genetics. Using the Mendel’s research methodology he studied the
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inheritance of traits in pea and chicken dihybrids, that is, hybrids (i.e. heterozy-

gotes in modern notation) for two different traits. He found that, for certain

combinations of two traits, the observed frequencies in the offspring were differ-

ent from the predicted frequencies according to Mendel’s laws. He saw, however,

that some of these deviations could still be explained by the heredity lawss if the

existence of a more complex mechanism was assumed. Bateson found that some

observed inheritance patterns could be explained by the presence of a masking

effect of one trait upon another. He termed this effect “epistasis” (in Greek “to

stand upon”).

3.2 Hardy–Weinberg, the chromosomal view of

heredity and Fisher

The rediscovery of Mendel’s laws posed new questions in the characterization

of heredity. One of these questions was to understand the consequences of the

segregation law in a population with the absence of perturbing selection forces.

German pysician Wilhem Weinberg and British mathematician Godfrey Hardy

independently answered to this problem: they demonstrated that no matter what

genotype frequencies are in a population, these will always reach a stable fre-

quency with only one generation of random mating. This principle was called

the “law of pancmictic equilibrium” but now is more commonly known as the

Hardy–Weinberg equilibrium. The identification of this mathematical relation

has had profound implications in the genetic study of populations as well as

practical utilities in association studies of complex traits (Balding, 2001).

In the study of the inheritance of dihybrid crossings William Bateson together

with Richard Punnet concluded that, for some traits, there needed be some sort of

physical coupling between them. This hypothesis was confirmed some years later

by the heredity studies of American geneticist Thomas Morgan using Drosophila

as a model organism. Morgan, who initially was critical with the chromosomal

theory of heredity, ended up suggesting that those traits showing coupling should

be located in the same pair of homologous chromosomes. In order to account for

the observation of non–parental combinations in the offspring (i.e. recombinants)

he proposed that when two homologous chromosomes paired during meiosis, they
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could occasionally exchange parts. Using these principles, one of Morgan’s stu-

dents, Alfred Sturtevant, built up in 1913 the first chromosomal map of an or-

ganism (Sturtevant, 1913). For this purpose, he used the estimated number of

cross–overs as an indirect measure of physical distance within the chromosome.

Charles Darwin’s evolutionary theory, published in 1859, is one of the most

important milestones in human knowledge. In this manuscript, Darwin described

the principle of natural selection which elegantly combines the struggle for life,

heritable variation and differential reproduction. Stemming from these discover-

ies, most biological researchers started to study the heredity of quantitative traits.

However, even after the rediscovery of Mendel’s laws, Darwinians were reluctant

to accept a particulate view of heredity that seemed to clash with the principle

that selection acted on variations in quantitative characters. It was not until

1918 that the English statistician, Ronald Fisher, finally reconciled both views

in his work “The Correlation between Relatives on the Supposition of Mendelian

Inheritance”. Fisher showed that the apparent continuous variability observed

for many traits could be explained by the cumulative effects of many Mendelian

inherited factors acting together in an additive manner. Notably, in his 1918

paper, Fisher accounted for those particular genetic models in which the cumu-

lative effects of genes (which he called Mendelian factors) that do not follow the

additive model:

“(. . . ) A similar deviation from the addition of superimposed effects may

occur between different Mendelian factors. We may use the term Epistacy to

describe such deviation, which although potentially more complicated, has similar

statistical effects to dominance.”

Thus, whilst Bateson used the term “epistasis” to describe a masking or re-

versing effect between two genes, Fisher used the term “epistacy” to describe

the statistical interaction between two genes. The different meaning between

both terms (qualitative vs. quantitative) and the fact that just the term epis-

tasis prevailed, has generated some confusion between statistical and biological

researchers (Cordell, 2002).
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3.3 DNA and the basic dogma of biology

During the industrial revolution, chemistry had been rapidly evolving. In 1869,

German physician Friedrich Miescher had already isolated an organic acid with

high phoshporous content from cell nuclei which he called “nuclein”. Some years

later, the also German physician Albrecth Kossel elucidated the chemical nature

of both DNA and RNA which he called “thymonucleic” and “yeast nucleic” acids,

respectively. By then it was known that the nucleic acid molecule was made of

two purines (adenine and guanine), two pyrimidines (cytosine and thymidine in

DNA or uracil in RNA), a phosphate group and a pentose sugar. In 1909, chemist

Phoebus Levene identified the pentose sugar in the “yeast nucleic acid” to be a

ribose, and so this substance was now called ribonucleic acid (RNA). However,

it took Levene’s group 20 more years of research identify the 2’–deoxyrribose

as the conforming pentose of the “thymonucleic acid”, which was then called

deoxyrribonucleic acid (DNA).

In his 1944 book “What’s Life” Physicist Erwin Schrödinger suggested that

an “aperiodic crystal” should be the basis of hereditary information. This same

year, Oswald Avery and coworkers proved that the transforming principle –the

chemical principal that is able to transform a non–virulent Pneumococcus strain

into a virulent form–was DNA (Avery et al., 1944). Boosted by this discovery Er-

win Chargaff performed a detailed chemical analysis on DNA and identified that

its nucleotide composition followed some precise rules, that is, there is the same

quantity of Thymidines as Adenines as there is the same quantity of Guanines

as Cytosines (Vischer & Chargaff, 1948). Therefore, the last step to character-

ize the “molecule of life” was to determine its 3–Dimensional chemical structure.

Finally, molecular biologists James Watson and Francis Crick solved in 1953 this

fundamental stereochemistry problem: the DNA has a double–helical structure

(Watson & Crick, 1953). With the knowledge of the structure of DNA, research

rapidly moved into “cracking” this information encoding system. Francis Crick,

Sydney Brenner and other authors were responsible for its final characterization.

First, they discovered that RNA was the “messenger molecule” that linked DNA

with the protein product. Second, they concluded that the chemical code embod-

ied in a gene consisted in non–overlapping groups of 3 DNA bases (i.e. codons).
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By 1966, the codons of all 20 aminoacids necessary for life had been identified.

With this discoveries, the central dogma of biology (i.e. the transmission of ge-

netic information from DNA to RNA and from RNA to protein) had been finally

established (Crick, 1970).

Once the genetic code was cracked, the DNA molecule became central to bi-

ological research. Alan Maxam and Walter Gilbert provided in 1977 the first

method for determining the sequence of DNA (Maxam & Gilbert, 1977), to

be later superseded by Frederick Sanger’s chain–terminating dideoxy method

(Sanger et al., 1977). Another fundamental technical breakthrough in the char-

acterization of the DNA sequence was the development in 1983 of the Polymerase

Chain Reaction by American biochemist Kary Mullis (Saiki et al., 1985). This

method, which allows the exponential amplification of the DNA sequence of in-

terest, has been a crucial to speed the characterization of the DNA sequences of

thousands of species. This way, in 1986 the scientific World was confident enough

to start one of the most ambitious projects of humanity: the determination of

the complete sequence of the Human Genome (DeLisi, 2008).

3.4 Heritability, linkage and linkage disequilib-

rium

In the 50s epidemiologists were aware that epidemiology, the study of the de-

terminants of disease in populations, had yet not approached genetics. Those

diseases following Mendelian inheritance patterns were rare and, perhaps, less

“interesting” from an epidemiological perspective. However, with the knowledge

of the DNA sequence and the increasing number of available markers, epidemiol-

ogists started the difficult quest to study more prevalent diseases but with more

complex genetic background. It could be said that genetic epidemiology, as such,

began as a new discipline at the end of the 70s with the publication of the first

book entirely devoted to it (Morton & Chung, 1978). One of the first objectives

that genetic epidemiologists tackled was the determination of the heritability of

complex traits. Heritability is a descriptive statistic that refers to the proportion

of phenotypic variability of any particular trait that can be accounted for ge-

netic variability amongst individuals (Visscher et al., 2008). Francis Galton, who
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was cousin of Charles Darwin and who was interested in separating the “nature”

vs. “nurture” from certain human developmental and human traits, pioneered in

1875 the use of twins to evaluate the relative importance of genetic factors in a

trait: if a trait was due to genetics, twins under equal nurture should manifest

it equally. Some years later, Weinberg realized from his medical student work

at the obstetrics clinic that there had to be two kinds of twins: those becoming

from a same “egg” (monozygotic) and those coming from two eggs (dizygotic).

Therefore, the comparison of the correlation of a trait between monozygotic twins

against the correlation between dizygotic twins should provide a good estimate

of the size of the genetic effects influencing it.

After the implication of genetic factors in complex diseases it became then

necessary to find the gene(s) underlying this risk. However, it took 40 years af-

ter Sturtevant maps in Drosophila to characterize the first autosomal linkage in

humans. In 1951 Jan Mohr, a Norwegian physician, determined the presence of

linkage between the Lutheran and Lewis blood groups (Mohr, 1951). Soon after-

wards, American geneticist Newton Morton developed a fundamental statistical

method for the detection of linkage in families: the LOD score. Morton himself,

used the LOD score to identify one year later the presence of linkage between

the gene causing elliptocytosis –a rare monogenic disease affecting red blood cell

shape–and the Rh blood type genes (Morton, 1956).

From this moment onwards, the interest in identifying linkage for human

diseases grew exponentially, with medical researchers collecting large pedigrees

showing high frequency of a disease and trying to link them to the growing number

of available enzymes and proteins whose chromosomal location had already been

estimated. It was not until 1979, when Solomon and Bodmer used the fragment

length polymorphism (RFLP) technique, that DNA was directly used to study

linkage of human traits (Solomon & Bodmer, 1979). In this technique, the vari-

ations in the DNA sequence become differential targets for bacterial restriction

enzymes and, therefore, the digestion fragments can be used as markers to study

the correlation with the disease inheritance in a family (Donis-Keller et al., 1987).

However, the definite impulse to the study of linkage with familial traits came

with the invention of the Polymerase Chain Reaction (PCR) technology. With

this technology a new type of DNA polymorphism in the human genome could
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be discovered: the microsatellite. Microsatellites are tandem repetitions of short

DNA sequences and they presented several advantages: they are ubiquitous in the

genome and they have a high degree of polymorphism which makes them much

more informative than the previous RFLPs (Weissenbach et al., 1992). With only

400–500 microsatellite markers it was now possible to scan the whole genome of

pedigrees to search for regions showing linkage with disease. The drawback of this

approach is that, since linkage mapping depends on the number of recombination

events –and the number of recombinatorial events per family is of necessity low–,

the resolution was quite low (i.e. in the order of several megabases). Nonetheless,

this approach had a tremendous success in identifying the genes responsible for

many monogenic diseases. The first gene to be mapped using this approach was

the gene responsible for Huntington’s disease, and was discovered by analyzing

the linkage patterns in a large pedigree from a Venezuelan town which had a very

high incidence of the disease (Gusella et al., 1983).

The family–based linkage approach showed to be very useful to identify those

genes responsible for diseases following Mendelian patterns. However, for those

diseases not following Mendel’s inheritance rules, the linkage approach seemed

to be rather inefficient (Julià & Marsal, 2003). After much frustrated efforts to

characterize genes for susceptibility for many common diseases using linkage, it

started to become clear that this group of diseases had to have a more complex

origin. In this new scenario, complex diseases are not considered to be “caused”

by mutations in one gene but instead they are “induced” by a genetic risk back-

ground in combination with multiple triggering environmental factors (Cordell &

Clayton, 2005). This genetic risk background would be composed by multiple

DNA variants at different loci, each adding a small increase in the penetrance

upon the phenotype. If this low penetrance variants escape linkage studies, how

will we be able to detect them? Eric Lander, a mathematician working at the

Whitehead Institute for Biomedical Research in Boston, described in 1996 what

he thought it would be the research on human traits after the human genome

sequence was available (Lander, 1996). In this illuminating paper entitled “The

New Genomics: Global Views of Biology”, Lander hypothesized that common

diseases were caused by genetic variations of modest effect but, importantly, that

these variations should be common in the general population, a theory known
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as the “Common Disease–Common Variant” hypothesis. It seemed that genetic

susceptibility to common diseases would not be characterized by using linkage

on large pedigrees but instead, by using association in case and control samples

obtained from the general population.

Lander’s vision on the characterization of the genetic basis of human variabil-

ity was largely based in the increased acceptance of linkage disequilibrium as a

powerful analysis tool. Linkage disequilibrium (LD) is the non–random associa-

tion of alleles within a population, and was first described by American biologist

Richard Lewontin in 1960 when studying the dynamics of polymorphisms in dif-

ferent organisms (Lewontin & Kojima, 1960). LD stems from the assumption

of a “founder” effect, that is, the spread of a genetic variation in a population

from one first individual carrying the mutation (i.e. the founder) after a large

number of generations. After hundreds or thousands of successive chromosomal

recombinations, only those alleles that are very close to the original mutation

will remain highly correlated with it (i.e. in high LD). Therefore, if one finds

a polymorphism associated with a disease using a case and control cohort from

a population, he can be certain that the causal genetic variation is very close

(Cardon & Bell, 2001). Although this concept had been originally proposed by

Lander and Botstein in 1986 (Lander & Botstein, 1986), it was not until 1994

that a study on a human disease exploited it to refine the location of the causal

gene. In their influential 1996 paper “The Future of Genetic Studies of Complex

Human Diseases” Risch and Merikangas showed that linkage studies were under-

powered to find such genes and that association studies exploiting LD would have

more statistical power to identify risk loci (Risch & Merikangas, 1996).

3.4.1 Single Nucleotide Polymorphisms and the develop-
ment of microarray technology

It became apparent that the primary limitation for conducting genome-wide asso-

ciation analyses was not a statistical one but a technological one. A large number

of genetic markers had to be first identified and then genotyped in a cost–effective

way. The existence of single nucleotide polymorphisms (SNPs) in the genome had

been known since the introduction of the RFLP technique in early 80’s. With
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time, it was seen that SNPs have very useful properties for association studies:

they are highly ubiquitous (1 SNP per 1,000 kb), unlike microsatellites they are

highly stable markers (i.e. they “mutate” less throughout generations) and they

have greater potential for automation. SNPs had therefore a great potential to be-

come a good biomarker for human complex traits, including diagnosis, prognosis

and the response to treatment. For all these reasons they became an interesting

target not only for research institutions but also for many pharmaceutical and

technological companies. In 1999 the SNP Consortium, a collaboration between

private companies and public research institutions (Masood, 1999) was launched

with the initial objective to discover 300,000 SNPs from the yet incomplete hu-

man genome sequence. The final results exceeded the initial expectations and, in

just 2 years 1.4 million SNPs had been already released into the public domain

(Sachidanandam, Weissman et al. 2001).

In 2001 Lander and coworkers clearly demonstrated that LD in human pop-

ulations is not monotonic and, instead, the genome is made up of regions with

variable levels of LD (Daly et al., 2001). In those genomic regions with high

LD, alleles are so much correlated between them that they can be considered

as single blocks or, more commonly, haplotype blocks. The identification of the

block–like nature of the human genome was soon viewed as a useful means to

increase the analytic power in population–based association studies. If one knew

a priori the LD pattern of a region of interest, then it would be possible capture

most of the genetic variation with just a reduced set of highly informative SNPs

(i.e. tagSNPs), and avoid the expense of genotyping redundant markers. In order

to characterize this type of variation in the whole genome, an international con-

sortium called the HumanHap project was launched in 2002 (IHC, 2003). Using

a collection of individuals from four human populations of very different ancestry

(European Caucasians, Japanese, Chinese and Nigerian Yorubans), this project

identified thousands of tagSNPs that allowed more powered genetic association

studies. Although the first phase of this ambitious project was completed in 2005

(Altshuler et al., 2005), it has successively been extended with the inclusion of

new human populations as well as an increased coverage of the genome SNP con-

tent largely due to the introduction of high–throughput genotyping technologies
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One of the first approaches to increase the genotyping throughput were DNA

microarrays. Based on the same principles of Edwin Southern’s 1973 “South-

ern blot”, microarrays are solid surfaces on which specific DNA sequences are

fixed (Southern, 1975). These fragments are then used as probes to capture the

complementary DNA chain from a complex mixture (i.e. genomic DNA from

an individual, mRNA from a tissue reverse–transcribed to cDNA, . . . ); after

hybridization the non–complementary DNA is washed away and the level of hy-

bridization is then measured, generally, through fluorescence detection. However,

the first widely used genomic application of DNA microarrays was not SNP geno-

typing but mRNA gene expression. Pat Brown’s lab in Stanford had devised in

1995 a self–made robot to print DNA probes in a solid support (i.e. a glass

slide) and, with these so–called “academic” microarrays, they could characterize

the mRNA expression patterns of any cell type or tissue (Schena et al., 1995).

Closely, Santa Clara based biotechnological company Affymetrix also developed a

microarray devise using approaches derived from the manufacturing of computer

processors (Wang et al., 1998). Microarrays were able to interrogate thousands of

different DNA sequences and it was just a matter of time that this high through-

put would scale up to hundreds of thousands or even millions of probes. Thus,

with the completion of the Human Genome Project in 2001, the foundations for

Genome-wide Association Studies (GWAS) were laid (Lander et al., 2001).

On February 2007 the first comprehensive GWAS study on a complex disease

was published (Sladek et al., 2007). It took 6 years from the Human Genome

Project completion and the development of extremely high–throughput technolo-

gies to attain this milestone. To date, more than 250 genetic variants associated

with complex polygenic traits have been identified using GWAS, confirming Risch

1996 predictions on the high power of this approach (Risch & Merikangas, 1996).

Before diving into the impact of the GWAS approach in RA, we will first revise

the study of the genetic basis of this disease in the “pre–genomic” era.
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3.5 Genetics of Rheumatoid Arthritis

3.5.1 Heritability of RA

As soon as RA started to be a distinct clinical entity, the evidence of an inher-

ited susceptibility component became apparent. In his description of “Chronical

Rheumatism” included in the 1806 treatise of Medicine, the English physician

William Heberden concluded with a significant phrase “Is this not in some degree

hereditary?”. Although there was empirical evidence, the lack of a standardized

definition of RA, hindered the robust assessment of heritability in RA. In 1928 the

German physician J Kroner published the first study reporting an outstanding

presence of RA in a single family, where 4 generations of women had developed the

disease (Lawrence, 1970). With the gradual approach of epidemiologists to the

study of the inherited component in complex diseases, more rigorous approaches

were introduced. In 1950, Lewis–Fanning used a predecessor of the actual famil-

ial risk statistic to estimate that first order relatives of RA patients had 2 times

more probability to develop the disease than matched healthy controls.

During the 50s and 60s several epidemiological initiatives in Europe and the

United States began to collect large cohorts of individuals. Using these detailed

collections it was now possible to obtain more robust estimates of the degree of

heritability in RA. The nationwide Finnish Twin Cohort, for example, collected

4,137 monozygotic and 9,162 dyzigotic twins, from which estimates of 12.3% and

3.5% concordance for RA could be obtained, respectively (Aho et al., 1986). In

1993, a large cohort from the UK, the Arthritis Research Campaign, reported

similar estimates of twin concordance: 15.4% monozygotic concordance vs. 3.6%

dizygotic concordance (Silman et al., 1993a). However, although the comparison

of concordance rates between twins can inform about the presence of a heritable

component, it is known to be affected by the prevalence of the disease in the pop-

ulation. For this reason, Fisher’s variance components approach to the measure

of heritability is actually preferred. Using the data from the two previous Euro-

pean cohorts, the proportion of liability to RA accounted for genetic factors was

estimated to be of 60% (53% and 65% heritabilities for Finnish and UK cohorts,

respectively) (MacGregor et al., 2000).
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3.5.2 HLA genetic association with RA

The findings of the association of HLA serotypes and RA performed by Stastny

(Stastny, 1976), did not come unnoticed by geneticists. With the introduction of

the recombinant DNA and sequencing techniques during the 70s, the genes from

the HLA region were progressively characterized. The extended HLA region as

it is now known, covers a total of 7.6 megabases on the short arm of chromo-

some 6 and harbours approximately 250 protein codifying genes (Horton et al.,

2004). One of such genes, HLA–DRB1, belongs to the immunoglobulin superfam-

ily which mediates antigen recognition in the acquired immunity. HLA–DRB1

codifies for the Beta–chain of the heterodimer protein that antigen presenting

cells use to present exogenous peptides to lymphocytes. In 1987, the American

rheumatologist Peter Gregersen, identified an aminoacidic pattern in this protein

that was more prevalent in RA patients than in controls (Gregersen et al., 1987).

He hypothesized that the structural variation of this “shared epitope” would in-

fluence the interaction of the HLA molecule with the T cell receptor and promote

the appearance of RA, either by shaping the thymic selection of lymphocytes or

by modulating the antigen presentation during the immune response. To date,

however, there is no consistent evidence supporting either possibility, as there is

no evidence supporting any other hypothesis (Firestein, 2003).

3.5.3 The determination of the non–HLA risk component:
linkage and association

Once the association between the HLA locus and the RA risk had been confirmed,

the next question was: are there other genomic regions that contribute to RA

susceptibility? For the robust estimation of the contribution of genetic variation

in complex diseases, genetic epidemiologist Neil Risch proposed the Relative Risk

statistic or λR (Risch, 1990). With this statistic the risk of having a disease in

relatives is compared with the probability of having the disease in the general

population (i.e. the prevalence). λR started to become extensively used to char-

acterize the genetic contribution of genetic loci to complex traits (Risch, 1987).

In adult onset diseases like RA, λR was generally calculated using the siblings

of the affected proband (i.e. λsib). Using this type of samples, λsib in RA has
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been estimated to lie between 5 and 10 (Julià & Marsal, 2003). From this global

estimation, the fraction attributable to the HLA region is around 30% (Cornelis

et al., 1998; Deighton et al., 1989; Rigby et al., 1993; Shiozawa et al., 1998). This

means that, more than 50% of the genetic variation associated with the risk to

RA remained to be discovered.

As soon as the first RFLP maps were available, linkage studies started to pro-

liferate. However, it was not until microsatellites were characterized and faster

genotyping techniques like capillary sequencing were developed that the boom

of linkage studies in complex traits really began. The first whole genome link-

age study to be performed in RA was done in 1998 by Cornelis and coworkers

(Cornelis et al., 1998). In this linkage scan, they studied the transmission of 309

microsatellite markers in 97 nuclear families with 114 affected sib pairs. Only the

HLA region withstood the multiple test correction considered for these studies

(LOD score >3), although other genomic regions showed nominal evidence of

linkage (LOD score <3–1). This same year, a similar study in Japanese families

(n = 41 affected sib–pairs, 358 microsatellite markers) identified three genomic

regions (chromosomes 1, 8 and X) with significant LOD scores but none over-

lapped with the previous linkage scan (Shiozawa et al., 1998). In 2001, Gregersen

and collaborators performed the first linkage scan in North American families (n

= 257, n = 301 affected sibling pairs, n = 379 microsatellite markers) and found

high linkage for the HLA region as well as significative evidence in chromosomes

1, 4, 12, 16 and 17 (Jawaheer et al., 2001) (Figure 3.1). From these, only the

genomic region in chromosome 16 seemed to overlap with the previous study in

European families, and there was no overlap with the Japanese families’ results.

Using the affected sibling samples from the Arthritis Research Campaign (n =

252, n = 182 families, n = 365 microsatellite markers), a genome linkage scan

was also performed in UK families (MacKay et al., 2002). Similar to the North

American scan, the HLA region was strongly linked to RA susceptibility and

there were several other genomic regions showing suggestive evidence of linkage.

In this case, there seemed to be an increased degree of overlap with other nominal

peaks of the two previous linkage scans on Caucasian samples.

Given the lack of a strong non–HLA signal and the weak evidence of secondary

peaks, genetic researchers started to question the merits of the linkage–based ap-
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Figure 3.1: Whole genome LOD score results in 257 North American families. (Taken
from Jawaheer et al. (Jawaheer et al., 2001)). The strongest linkage signal is found in
the short arm of chromosome 6, where the HLA locus resides (only the partial linkage
peak is shown). Apart from the HLA region, only one other region in chromosome 4
shows significant linkage at the genome-wide level (LOD score >3).

proach in the identification of new genes for RA (Jawaheer & Gregersen, 2002).

Even for regions showing some degree of overlapping between studies, it was cer-

tainly daunting to try to find the causal gene. The genomic regions “linked” to

disease by this approach encompassed several megabases; in order to better map

the location of the causal gene, either more family samples had to be recruited

(which was generally unfeasible due to the late age of onset of the disease) or

a case–control association study was implemented. In many cases, the later ap-

proach was generally discontinued by the lack of replicability. There is, however,

one important exception to this lack of success which was the identification of

PTPN22 as a candidate risk locus for RA. Peter Gregersen, in collaboration with

other public and private partners (including Craig Venter’s Celera company), per-

formed a case–control study of candidate genes for RA, either by family linkage

analysis or by direct implication in the disease pathophysiology (Begovich et al.,

37



3.5 Genetics of Rheumatoid Arthritis

2004). In this case, they restricted the study only on functional SNPs, that is,

exonic SNPs whose variation introduced either aminoacid substitutions or trans-

lation stop codons (Botstein & Risch, 2003). From all 87 functional SNPs finally

tested, they identified a SNP codifying the change of Arginine to Tryptophan at

position 620 of Protein Phosphatase 22 as strongly associated to RA susceptibil-

ity. This SNP had been because of the fact that it lay within the chromosome

1 linked region the previous scan in North American families. It can be said,

however, that they had certain luck to find such association because the SNP was

notably far from the original linkage peak (>9 megabases) and, furthermore, it

was shown not to be the main responsible for the observed linkage singal.

The introduction of more sophisticated cellular and molecular biology tech-

niques lead to important advances in the characterization of the pathophysio-

logical processes in complex diseases. Genetic researchers were aware of such

progresses and exploited this knowledge to perform an alternative search for can-

didate genes to test for association. Although linkage mapping also produced

candidate genes, it was common to call the biological knowledge approach the

“candidate gene” approach. In 2003 our research group performed a case–control

association study using the Corticotrophin Releasing Hormone (CRH ) gene as a

candidate for RA susceptibility. It had been previously shown both in RA patients

and in rodent models of the disease, that there was an evident deregulation of the

hypothalamo–hypophysary axis, from which the CRH is a key hormone (Chikanza

et al., 1992; Sternberg et al., 1989a,b). Following this evidence, in 2000 a research

group from the Guy’s King’s and St. Thomas’ School of Medicine (London, UK)

tested for association in the CRH locus and found a significative association (Fife

et al., 2000). In collaboration with this group, we decided to provide the first

replication study of this locus in an independent population. However, although

having a similar statistical power to detect association we found no evidence of

significant association between the CRH locus and RA in the Spanish population

(Julià et al., 2003, 2004). What could explain the discrepancy? Was our study a

false negative finding or was it the English a false positive? Or were they both

true positives? Under these circumstances, which have been very common in the

study of complex diseases (Hirschhorn et al., 2002), genetic researchers generally

tend to be conservative in their reasoning and follow “Occam’s razor” principle
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(that is, to choose the simplest explanation from all possible explanations). In the

case of genetic association studies of complex diseases, this has generally meant

to regard the lack of replication in independent populations, as a proof of the

lack of association with the disease.

3.6 GWAS studies in RA

The introduction of the first genome-wide genotyping technologies in 2006 lead

to an explosion of GWAS studies on common disease traits that is still ongo-

ing (Figure 3.2). RA was one of the first complex diseases to be analyzed using

this approach. In August 2007, the Wellcome Trust Case Control Consortium

(WTCCC) in UK published a combined GWAS approach with seven common

diseases including RA (WTCC, 2007). For each disease they collected approx-

imately 2,000 cases which were compared to a common 3,000 control cohort.

Apart from providing new candidate loci for this group of diseases, the WTCCC

study is now considered a fundamental milestone in the GWAS approach, pro-

viding the reference methodology for most subsequent studies. These methods

include varied quality control analyses, genotyping algorithms, the characteriza-

tion of genetic variation associated to geographic ancestry as well as several other

statistical approaches now idiosyncratic for GWAS.

Regarding RA, the WTCCC study showed unequivocal association to the

HLA–DRB1 and the PTPN22 loci (P = 2.6 e–27 and P = 4.9 e–26, respectively).

From all studied diseases, it was the only one to have a marker differentially

associated to RA, according to sex. In particular, the sex-stratified analysis

identified a SNP in chromosome 17 to be highly associated in females but not

in males, which was certainly appealing because of the strong sex bias that is

characteristic of RA. Within the so–called “moderate” range of association (P

= 1e–7 to 1e–5), nine new loci were associated with the risk to develop RA.

Compared to posterior GWAS studies, however, the WTCCC did not provide

a replication study of the most significant loci (i.e. one-stage design). Thus,

the robustness of these associations would remain questioned until other studies

provided further confirming evidence.
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Figure 3.2: Number of GWAS studies on disease traits. Number of different studies
reporting SNP–trait associations with P <1e–5, according to the National Human
Genome Research Institute Catalog (http://www.genome.gov/gwastudies/)

Only one month after the publication of the WTCCC study, Peter Gregersen

and collaborators identified a SNP between TRAF1 and C5 genes in chromosome

9 to be associated with RA (Plenge et al., 2007b). Compared to the WTCCC

GWAS, however, in this study only RA patients that were positive to anti–cyclic

citrullinated peptide antibodies (anti–CCP) were used. The RA cohort was made

up of North American patients (n = 908) and Swedish patients(n = 485). The

integration of both cohorts was essential in choosing SNPs for replication since,

separately, none reached multiple–test significance. Compared to the WTCCC

study, replication cohorts -North American and Swedish, as well- were used to

identify true positive associations from statistical fluctuations (i.e. two-stage

design). It is important to note, however, that whilst the North American repli-
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cation samples (n = 676) showed a clear association with the TRAF1–C5, the

Swedish replication cohort (n = 568) did not show any significant association.

Also, looking back at the association signals in the WTCCC for this region, they

did not find any evidence of association even having genotyped a SNP in complete

LD with the associated SNP. Together, these results evidence the difficulties of

replicating low penetrance loci in complex diseases even for relatively large co-

horts.

In November 2007, the same UK and USA research groups that partici-

pated in the previous GWAS, simultaneously published an association of the

TNFAIP3–OLIG3 locus with RA (Plenge et al., 2007a; Thomson et al., 2007).

The TNFAIP3–OLIG3 locus is located in the long arm of chromosome 6 and it

was one of the nine ”moderately associated” loci identified in the WTCCC study.

With a replication cohort of 1,860 RA patients and 2,938 controls, the UK group

only validated this candidate SNP from all nine tested. In the USA study, they

used a different analysis strategy. First they performed a GWAS study with a

moderate sample size (n = 397 RA patients -not included in the previous GWAS-

and n =1,211 controls). Then, they tried to validate the top 90 SNPs showing the

highest statistical evidence in a very large cohort (n = 5,063 cases and n = 3,849

controls, including individuals from the TRAF1–C5 study). Interestingly, from

this large list of candidate SNPs, only the only the SNP in the TNFAIP3–OLIG3

locus (ranking in the 77th position showed a significant P value in the replication

analysis. This means that 89 GWAS candidate SNPs were in fact false positive

associations.

After the GWAS studies in RA in the UK, North American and Swedish

populations, we published in 2008 a genome-wide search for candidate loci in

RA in the Spanish population (Julià et al., 2008). Using a two–stage design, we

identified a set of loci which were associated to the risk of RA. From these, a

SNP in the KLF12 gene showed the strongest association to RA susceptibility.

In Chapter 5 we present this work, describing in detail the rationale of the study

design and the different methodological approaches that we implemented.

Two months after our GWAS publication, the UK and USA groups published a

collaboration study in RA. In this study they performed a meta-analysis with the

data generated in the previous GWAS (total: n = 3,393 cases, n = 12,462 controls)
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from which they selected the 31 most associated SNPs for validation in a large

replication cohort of autoantibody–positive (i.e. RF positive and/or anti-CCP

positive) RA patients (n = 3,929 vs. n = 5,807 matched controls) (Raychaudhuri

et al., 2008). They significantly replicated the SNPs in the CD40 and CCL21 loci,

and found suggestive evidence of association for the MMEL1–TNFRSF14, CDK6,

PRKCQ, KIF5A–PIP4K2C loci. Independently, the UK research group also

performed a replication study on the 49 most significant SNPs from the original

WTCCC study (P values from 1e–4 to 1e–5) (Barton et al., 2008). Contrary

to the meta-analysis approach, they did not select the replication RA patients

based on their autoantibody status (n = 4,106 RA patients, n = 11,238 controls).

However, two of the 3 positively replicated loci were common with the meta-

analysis: kinesin KIF5A and PRKCQ genes. The third replicated locus was the

IL2 receptor IL2RB locus in chromosome 22. Noticeably, these three loci did not

show differential association effects according to the antibody status. This is an

important finding since it suggests the existence a common genetic risk core in

RA patients irrespective of the presence of autoantibodies.

In 2009 two new GWAS studies in RA have been published. In June 2009,

Peter Gregersen and collaborators identified an association of the REL locus

with the risk to RA. They used a two–stage association design: in the GWAS

stage they expanded the cohort previously used to identify the TRAF1–C5 locus

up to a final number of 2,418 patiens and 4,504 controls, and in the replica-

tion stage they used a total of 2,604 RA patients and 2,882 controls. Following

the trend of the previous approaches, they used cohorts with a highly predom-

inant seropositivity (i.e. either CCP autoantibodies or RF). In November 2009,

the same research group published significant associations at the CD28, PRDM1

and CD2/CD58 loci (Raychaudhuri et al., 2009b). In this case, however, they

used a completely different approach to select the candidate genes for replication.

From the previous GWAS it had become increasingly evident that there were

functional commonalities between the associated genes. For example, there were

genes associated with T cell activation by APCs (HLA–DRB1 and PTPN22 )

and genes from the NF–kB pathway (CD40, TRAF1, TNFSF14, TNFAIP3 and

REL). Based on this evidence, it seemed very likely that part of the yet unidenti-

fied risk loci for RA should also belong to these genetic pathways. Their relatively
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low penetrance, however, would have ”buried” them within the group of nom-

inally associated genes (P <0.05) in the previous GWASs and, therefore, they

wouldn’t have been recognized as suitable candidate genes. To rescue this group

of functionally related candidate genes, genetic researchers from the Broad In-

stitute (Massachussets, USA) recently built a data mining tool called “GRAIL”

(Raychaudhuri et al., 2009a). Briefly, GRAIL uses the list of robustly replicated

loci and the list of nominally associated loci to search for relationships between

them based on previously published evidence. In this study, the list of established

loci consisted on n = 16 SNPs, whereas the list of candidate loci consisted on the

group of n = 179 SNPs that showed nominal association in the previous UK-USA

meta-analysis (Raychaudhuri et al., 2008). After applying GRAIL’s text mining

approach they found significant connectivities with 22 new candidate loci. Using

a very large sample size of 7,957 autoantibody-positive RA patients and 12,462

controls, they could statistically validate the three mentioned loci (i.e. CD28,

PRDM1 and CD2/CD58 ), as well as suggesting further candidate genes.

3.7 Complexity component in RA

The GWAS approach has been a great success in identifying new loci associate

to RA risk. Before the “GWAS era”, only two loci had been robustly associated

with the disease susceptibility, and now more than twenty loci have been robustly

associated with RA. These genes have provided new insights into the disease

pathophysiology as well as characterized new subgroups of patients. However,

there is still a large fraction of the genetic architecture that is not captured by

this main effect analysis approach. The total percent variance explained by all

known non–HLA common genetic variants is approximately 4%. Considering that

around 60% of RA risk is thought to be genetic, and one–third comes from the

HLA locus, this indicates than more than half of the genetic variation associated

with still needs to be elucidated. It would seem that we are reaching a point

reminding Zeno’s paradox of “Aquiles and the tortoise”: larger and larger sample

sizes are being used to discover smaller and smaller genetic effects. Following

this reasoning, this should lead to an infinite sum of risk loci which is, evidently,
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impossible. Thus, what type of genetic component remains to be identified and

how we will be able to detect it?

Common diseases are considered to be complex for their large number of ae-

tiological factors from which we only know a portion. However, complexity can

manifest in other different forms (Thornton-Wells et al., 2004). Together these

complex causes can be subdivided into two groups: heterogeneity and interac-

tions. Heterogeneity happens when there are multiple independent factors that

can cause the disease but also when there are multiple phenotypic variables. In

the first case, we can observe heterogeneity when several alleles from the same

locus can cause the disease sometimes with opposite effects (i.e. allelic hetero-

geneity or also pleiotropy), when several independent loci can cause the disease

(i.e. locus heterogeneity) or when genetic and non–genetic factors can give rise

to the same disease (i.e. phenocopies). In the second case, RA is an exemplar

case of a heterogeneous disease with patients showing a wide range of phenotypic

manifestations although all included within the same clinical entity. Interactions

appear when the effect of two or more factors upon the phenotype cannot be

predicted by the independent effects of each factor. Interactions occur between

genes and environment but also between genes themselves. Thus, it is evident

that the analysis of interactions should be taken into consideration, if we want to

complete the architecture of all common complex diseases. This was already true

before the GWAS approach but now it is compulsory after the practical exhaus-

tion of the main effects approach for the analysis of complex diseases (Moore &

Williams, 2009).

In the present dissertation, we present two genetic studies which use alterna-

tive strategies to confront the complexity of RA. In Chapter 4 we use a whole

genome gene expression analysis on synovial fibroblasts and a sophisticated bioin-

formatic analysis to identify the principal regulatory network of the response to

the complex proinflammatory insult in RA. We then use this new set of candidate

genes to study the presence of gene–gene interactions associated with the risk to

RA using the Multifactor Dimensionality Reduction algorithm. In Chapter 5 we

use a RA liability–based design and a whole genome association approach to iden-

tify new genetic variants associated with RA. We perform main effect analysis

and also we use, for the first time, a genome-wide approach for the identification
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of epistatic interactions in RA. Finally, in Chapter 6 we discuss the results from

both these studies in the context of the actual knowledge of RA pathophysiology

and susceptibility mechanisms.
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Chapter 4

Genomics of expression and
complexity

4.1 The failure of the candidate gene approach

Candidate genes for susceptibility risk have been traditionally selected on the

basis of biological hypotheses or the location of the candidate in a previously de-

termined region of linkage. In the latter case, we have seen how the scarce overlap

between the different linkage studies in RA families discouraged the continuation

of the positional–cloning approach. In the former case, researchers are indeed

subject to the partial knowledge of the pathophysiological process of a disease

(Hirschhorn & Daly, 2005). By 2005, more than 200 non–HLA loci had been

studied in relation to RA using this approach (Plenge et al., 2005) from which

less than 10 showed some level of acceptable association (i.e. defined as a signif-

icance value of P <0.001 in one study or P <0.05 in two or more studies). As

Risch and Merikangas had envisioned (Risch & Merikangas, 1996), the LD–based

approach should have more power to detect loci associated to complex traits so,

perhaps, it was the way we were choosing our candidates that was inappropriate.

4.2 Microarray analyses to guide candidate gene

selection in RA

Reasonably, most of the candidate genes evaluated in RA have been genes asso-

ciated with the HLA antigen presenting process (Marsal et al., 1994) (i.e. TAP
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genes, TCR genes, CTLA4 ...) and with those genes involved in the cytokine sig-

nalling system (i.e. messenger proteins, cell receptors and downstream signalling

effectors) that were found to be overexpressed in RA synovial samples. However,

the introduction of the microarray technology in biomedical research at the be-

ginning of the twenty-first century has opened new ways to the selection of disease

candidate genes (Gregersen, 1999). Gene expression microarrays allow, for the

first time, to analyze the expression levels of all the genes in the genome in a par-

ticular organism, tissue or cell type (i.e. the transcriptome). With the adequate

design one should be able to identify which genes are actually being modulated in

each particular pathological process and thus, identify a set of strong candidates

for association with disease risk.

4.2.1 Transcriptional factors are the master regulators of
gene expression activity

Cellular life depends on the correct response to varying internal and external

stimuli. But, how do cells manage to appropriately regulate their gene expression

levels? The key regulating cellular elements are transcription factors. Transcrip-

tion factors are intracellular proteins that under expression and/or activation bind

to specific sequences in the genome and modulate the levels of mRNA transcrip-

tion of genes. The most recent estimates indicate that approximately 1,391 loci

–around 6% of the human protein–coding genes–are transcription factors (Vaque-

rizas et al., 2009). Together, the transcription factor and the set of genes that

it regulates define a transcription regulatory network. Therefore, if a disease is

caused by the inappropriate functioning of a cell type/s, it is essential that we

identify which are the transcription regulatory network/s that are implicated.

4.2.2 The synovial membrane fibroblasts are fundamental
to RA

Synovial fibroblasts (SFs) are a key cell type in RA pathophysiology. Together

with macrophages, they are present in high densities in the forefront of the RA

synovial membrane (i.e. the pannus), where they actively produce proinflam-

matory cytokines like TNFα and IL1β as well as ECM–degrading enzymes like
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matrix metalloproteinases (Pap et al., 2000; Ritchlin, 2000). In RA, this active

front progressively invades the neighbouring cartilage and bone, leading to joint

structural damage and loss of function.

4.2.3 Altered behaviour of RA SFs

Culture studies and evidence from animal models indicate that this is due to

the acquisition by the SF of a ”transformed” phenotype (Firestein, 1996). For

example, several authors have identified a loss of contact inhibition in cultured

SFs which is reminiscent of neoplastic activity, although the possibility of this

being a pseudo–cancerous state has been rather inconclusive (Davis, 2003; Pap

et al., 2000). Another important evidence of this transformed activity comes from

the Severe Combined Immunodeficiency (SCID) mouse coimplantation model of

RA (Muller– Ladner et al., 1996). This animal model harbours a mutation that

prevents the formation of B and T lymphocyte lineages and thus, it is appropriate

to perform in vivo tests of human tissue biopsies without the interference of the

immune response of the host. In the RA SCID model, SFs isolated from RA

patients are engrafted together with normal human cartilage under the renal

capsule or the skin of the animal. After several days, it can be clearly seen how

RA SFs have destroyed and invaded the coengrafted cartilage tissue, confirming

the preservation of their altered behaviour.

4.3 Objectives of the study

The present study was designed to try to answer the next questions:

• What is the principal transcriptional regulatory network that governs the

SF activity in RA?

• Is the genetic variation of the genes within this network associated with the

susceptibility to RA?
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4.4 The study design

4.4.1 The synovial fluid in vitro challenge will reveal the
main transcriptional regulatory network of RA SFs

The first important aspect in this design was how to capture the relevant gene

expression pattern from RA SFs. Synovial membrane biopsies offer a direct in

vivo signature associated with the disease process; however, they are complex

mixtures of different cell types other than SFs and, thus, it would be difficult,

if not impossible, to attribute the observed gene expression changes only to the

activity of SFs. Another possibility is to isolate SFs from a synovial membrane

biopsy, culture them and analyze their gene expression pattern. Previous mi-

croarray studies had shown that fibroblasts retain their gene expression pattern

even after several rounds of culture so, in this sense, it seemed a safe model from

which to obtain valid conclusions. The next difficulty was to find a way that

could evidence the transcriptional regulatory network that the SF used in the

RA environment. Previously, other authors had studies single cytokine stimula-

tions to study the gene expression patterns of RA SFs (Pierer et al., 2004; Zhang

et al., 2004). Whilst these models can be useful to identify particular mechanisms

associated to the response to each cytokine, they are clearly an oversimplifica-

tion of the transcriptional program of the cell. Furthermore, it is possible that

by not taking into account the in vivo complexity, we could be observing highly

misleading results. Thus, if we want to see the activity of a SF in a real complex

scenario, shouldn’t we try to mimic this complex scenario as much as possible?

The synovial fluid of RA patients is a complex mixture from the secretions of all

the immune and non–immune cell types that populate the synovial joint (Distler

et al., 2005). As such, it acts as a channel for information flow between different

cell types in the joint, including SFs. Furthermore, most SFs lie in the intimal

face of the synovial membrane, in direct contact with the fluid. Most likely,

an important amount of the external inputs that affect SF functionality will be

coming from the elements diffusing in the synovial fluid. For these reasons, in

order to capture the relevant transcriptional regulatory network in RA, we have

performed an in vitro stimulation of SF using synovial fluid obtained from a joint

of a RA patient showing high inflammatory activity.
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It could be argued, however, that the synovial fluid sample from one individual

does not necessarily need to represent the complex proinflammatory pattern from

all RA synovial fluids. To clarify this, we performed a multiplex analysis of several

cytokines using a protein microarray on synovial fluids from activated joints from

other 5 RA patients. What we could observe is that, although there is some

variation in the absolute concentration of these cytokines, the relative quantities

between these cytokines is highly constant (Figure 4.1).

Figure 4.1: Clustering and heatmap of the cytokine concentrations in the synovial fluid
of five patients having active RA. It can be seen that, except for 1 patient (synF.c)
the correlation between the cytokine profiles is very high (average Pearson’s prod-
uct–moment correlation >0.94). The colour gradient denotes cytokine levels (red: low
expression, white: high expression).
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4.4.2 The selection of the microarray technology for ge-
nomic expression analysis

At the time the study was conceived, new commercial microarray platforms ap-

peared. Following the success of so–called ”academic” cDNA microarrays (Schena

et al., 1996) and Affymetrix high density synthetic oligonucleotide arrays in the

early 2000’s, other biotechnological companies proposed new microarray devices.

One of these companies was UK based Amersham company, which had recently

been acquired by the American multinational General Electric. We decided to

use this platform for several reasons. First, cDNA microarrays although prov-

ing useful in many cancer studies, are associated with a considerable amount of

technical problems. Although more expensive, commercial microarrays provide

higher technical reproducibility which, in the case of studies where the biological

source is limited (i.e. most studies with human samples, excluding neoplastic

cells), it is a major advantage. Second, Affymetrix commercial microarrays, al-

though highly reproducible, could be further improved. The principal reason was

that, due to the characteristics of their manufacturing process (i.e. photolithog-

raphy on silicon wafers) (Lipshutz et al., 1999) , only DNA probes up to 25–mers

(i.e. 25 bases of DNA) could be fixed on the array. It was shown, however, that

the optimal specificity and sensibility parameters for DNA hybridization in mi-

croarrays could be reached with larger probes. This fact was exploited by several

competing industries, including Amersham, who developed their own technology

to synthesize gene expression microarrays with 50–mer probes. Given this evident

technological superiority, we chose to use Amersham’s CodeLink microarrays to

evaluate the transcriptional response to synovial fluid stimulation in SFs.

4.4.3 R: open–source bioinformatic analysis toolbox

Gene expression microarrays introduced two fundamental aspects in biomedical

data analysis which had been rarely seen previously. The first is a computa-

tional one: gene expression microarrays are able to interrogate tens of thou-

sands of different transcripts per sample, each transcript generating a single data

point. This high dimension of data means that typical Excel–type spreadsheets

and statistical software are no longer practical for microarray data handling and
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analysis. However, whilst different information technology companies developed

user–friendly applications for this specific objective, an open–source initiative had

a big impact: the R–language. “R” is an object–oriented statistical programming

language initially built as an open–source version of the commercial statistical

language ”S” by Ross Ihaka and Robert Gentleman (Ihaka & Gentleman, 1996).

The R–language had many aspects that favoured its use in the microarray arena:

it was fast with high dimensional data, it allowed functional programming (i.e.

using directly many mathematical functions), it had strong data and model visu-

alization capabilities and, above all, it was open–source which means it was free

to download and its source code available for anyone to inspect and modify. Soon,

“R” created a large user and developer community in many different aspects in-

volving statistical analysis. Without a doubt, one of the most productive ones

was the analysis of gene expression microarray data. It became so popular that in

2001 it finally springed out as a specific computational biology and bioinformat-

ics project called Bioconductor (Gentleman et al., 2004). Thus, in the present

project we used the R statistical language to perform several microarray data

analysis steps including quality control, normalization and differential expression

analysis. However, it is important to note that, at that time, R packages for

microarray analyses had been developed either for two–colour cDNA microarrays

or single–colour Affymetrix microarrays. Amersham microarrays were concep-

tually more close to the probe printing process of cDNA microarrays but were

single–coloured like Affymetrix. For this reason, none of the available R packages

suited the recently appeared CodeLink microarrays. One of the technical chal-

lenges in this study was that we had to program our own version of the quality

control, normalization and differential analysis steps for this platform.

4.4.4 Mining the genomic data: Gene Ontologies

The comparison between the gene expression patterns between synovial fluid

treated SFs and non–treated SFs helped us determine the relevant set of genes

that we were looking for. One common first approach to characterize long lists

of differentially expressed genes is to perform Gene Ontology analysis. Gene On-

tologies are a controlled vocabulary that is used to define and characterize genes
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according to the knowledge that we actually have from their protein product.

Gene Ontologies are defined in a hierarchical manner stemming from 3 terms

which are biological process (i.e. what is their biological role), cellular compo-

nent (i.e. where are they localized), and molecular function (i.e. what particular

biochemical activity they perform). In order to determine the significantly over-

represented Gene Ontologies in the differentially expressed genes, we used Tim

Beissbarth’s webserver analysis tool GOstat (Beissbarth & Speed, 2004). Using

the set of over and underexpressed genes, GOstat searches for their corresponding

Gene Ontology definitions from the GO database (Consortium, 2001), and uses

the Fisher’s exact test to determine if the differences between the two groups

are statistically significant. Finally, since the chance of calling a false positive

increases with the number of null hypothesis tested simultaneously (i.e. the mul-

tiple–test problem), we chose to correct the nominal significance values using

Bonferroni’s method.

4.4.5 Inference of RA SF transcriptional regulatory net-
work: reverse engineering

We have found the elements of the network, the differentially expressed genes,

however we have not identified the network system that relates them. How can

we infer the system from its constituent parts? A similar situation had already

been found by hardware engineers during the 80s and 90s, when they faced the

technical problem of having to clone a complex hardware system that 1) they had

not developed and 2) the only available information from the system was the one

obtained from separately examining the parts. They called the process of build-

ing a system out of the study of its constituent parts ”reverse engineering”. As

soon as the first gene expression microarray datasets were produced, many bioin-

formatics researchers started to search for methods to ”reverse engineer” gene

networks from the gene expression measures. Whilst several methods inferred

global networks in the purest mathematical sense (Basso et al., 2005), other

methods proposed the use of the growing biological knowledge on promoter and

transcription factors to build more specific transcriptional regulatory networks.
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One of the first methods to implement the latter approach was CARRIE or Com-

putational Ascertainment of Regulatory Relationships Inferred from Expression.

This method was developed in Zhiping Weng’s bioinformatics Lab in Boston Uni-

versity and published in 2004 (Haverty et al., 2004). Briefly, the method works

as follows: once we have defined a group of genes that have significant differential

expression, CARRIE starts by determining an equally sized set of genes which

have the least expression changes (i.e. genes that are expressed in SFs but that

do not vary between treatment conditions). Using the promoter sequences from

both sets of genes and the Position Specific Scoring Matrix (PSSM) associated

with each transcription factor, CARRIE calculates a binding score. With the

empirical distribution of these scores in the negative set, CARRIE determines

the score threshold at which binding in the positive score can be deemed sig-

nificant. Finally, using the binomial probability distribution function, CARRIE

calculates 1) the probability that a particular transcription factor binds to the

sequence and 2) the probability that a specific transcription factor regulates the

entire positive set of differentially expressed genes. If our SF in vitro model uses

a specific transcription factor, this should appear as statistically significant in the

last computational step. At that time, CARRIE’s reverse engineering approach

had been thoroughly validated in well–known yeast activation models, but in

humans, it had only been tested in the human skin fibroblast response to serum

stimulation (Haverty et al., 2004). Thus, our study was the first time this method

was applied to infer the transcriptional regulatory network on a disease–related

design.

4.4.6 Analysis of epistatic interactions in the main tran-
scriptional regulatory network responding to syn-
ovial fluid

Once we have identified the transcriptional regulatory network that governs SF

response to RA synovial fluid we can answer the second question: is the genetic

variation in these genes associated with the risk to develop RA? Following the

general approach, genetic markers from each locus could be selected, genotyped

in a case–control study design and examined for independent effects. However,
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having identified that such genes belong to a common regulatory network, the

assumption of independence of effects upon phenotype cannot reasonably hold.

If we accept that genomes tend to “buffer” negative genetic variations (i.e. canal-

ization), wouldn’t it be more plausible that the variation associated with disease

is a combination of elements from this network rather than either one alone? As

Bateson already proposed at the beginning in the twentieth century, gene–gene

interaction effects (i.e. epistasis) should be accounted for, if we really want to

understand the complexities of genotype–phenotype relations.

4.4.7 High–level interactions analysis: Multifactor Dimen-
sionality Reduction

The identified SF transcriptional regulatory network was composed of 13 cor-

regulated genes. Thus combinations between any of these 13 genes could give

rise to the fibroblast altered activity. Perhaps it was the genotypic combinations

between 3 genes that were harmful. Or maybe more. We had to find a method

that would help us search through all possible gene combinations those that

were associated with the disease. Logistic regression, the generalization of linear

regression to binary (case–control) data, is well suited to detect low–level inter-

actions but fails when the number of predictor variables (i.e. genetic markers)

is high (Ritchie et al., 2001). The task of identifying relevant patterns amongst

a large group of possible explanatory variables seems to be better conducted by

data mining methods. Data mining can be defined as the science of looking for

patterns within large datasets using computers. One of the first authors to use

data mining strategies for the problem of identifying high–level genotypic com-

binations associated with phenotype traits was Matthew Nelson. He developed

a method called ”Combinatorial Partitioning Method” (CPM) to identify sets of

partitions of multi–locus genotypes that can predict the variability of a quantita-

tive trait (Nelson et al., 2001). First, for each combination of ”n” loci, the CPM

determines the number of individuals having one particular genetic combination

(i.e. 9 possible combinations in 2–loci combinations, 27 possible combinations

in 3–loci combinations, etc.). In the second step, the genotype combinations are

partitioned into k disjoint sets according to an objective function that maximizes
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the proportion of phenotypic variance explained. Finally, in order to evaluate the

consistency of the combinatorial models, the full process is embedded in a cross

validation structure. Cross–validation is a data mining technique that consists in

the division of the sample into nonoverlapping subsamples of training and testing

data. For each partition, the genetic model is built using the information from

the training data and subsequently validated in the testing data. We can then

use the average performance of the predictions in all subsamples as a measure of

the accuracy of the model. The power of this method stems from the fact that

the training process is performed without using the information from the testing

set, thus giving an unbiased measure of the association of the model with the

trait. In the present study, we have used a method derived from Nelson’s CPM

called Multifactor Dimensionality Reduction (MDR) (Ritchie et al., 2001). This

method was devised by Prof. Jason Moore from Dartmouth Medical Centre (New

Hampshire, US) for the determination of relevant high order interactions between

genotypes and binary traits. In collaboration with Prof. J Moore, we therefore

used MDR to determine the presence of epistatic interactions in the identified

NF–kB transcriptional regulatory network associated with RA.

4.4.8 Hypernormal controls: epidemiological strategy to
increase statistical power

Up to the association analysis of the SF transcriptional regulatory network genes

we had addressed several levels of complexity. However, even if a genetic varia-

tion for RA risk existed in these genes, would we be able to statistically detect it?

The 295 RA patients cohort that we had collected was sufficiently well–powered

to detect main effects similar in size to the HLA–DRB1 locus (OR∼2.4). How-

ever, the lack of replication from many previous non–HLA loci had raised logical

concerns about the statistical power to detect true associations in RA. We there-

fore sought to look for a strategy that would increase the statistical power of

our case–control design. The answer came from an epidemiological concept de-

scribed in 1961 by English physician C Carter and later developed by geneticist

B Falconer (Falconer, 1967) called liability. In their search for the heritable com-

ponent observed in non–Mendelian diseases (i.e. complex diseases), Carter and
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4.4 The study design

Falconer theorized on the existence of a continuous but yet unmeasured variable,

directly associated with the cause of the disease. At a certain threshold this

variable or liability would give rise to the disease. Consequently, if we are able

to select individuals at the two extremes of this liability variable, we will clearly

have a greater statistical power to detect true associations. The problem for us

was how we could implement this epidemiological feature to increase the power

of our analysis. For a long time, physicians have been noticing the presence of

an increased aggregation of autoimmune diseases within families. In the clinical

experience of our group, we were readily aware that RA patients tend to have

relatives with RA but also with other types of autoimmune manifestations. Thus,

in order to increase the power of our study, we hypothesized that there should

be a shared genetic risk component between RA and other autoimmune diseases.

We consequently selected control individuals so that they were as free as possible

from this common genetic risk. To fulfil this “hypernormality” condition, the

selected control individuals had to be the age of risk for RA (>40 years old) and

they should not have any trace of autoimmunity in them or in any of their first

order relatives (i.e. parents, siblings and offspring). This was possible thanks

to the collaboration with the IRCIS BioBank (Hospital San Joan de Reus, Tar-

ragona) and the access to their randomized control collection, which is one of

the best characterized control cohorts in Spain. According to Newton Morton

–the inventor of the popular LOD score for family linkage analysis- using this

epidemiological strategy we would be entitled to increase our statistical power up

to 4 times compared to a study using normal controls (Morton & Collins, 1998).
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Abstract

Altered synovial fibroblast (SF) transcriptional activity is a key factor in the disease progression of rheumatoid arthritis (RA). To determine the
transcriptional regulatory network associated with SF response to an RA proinflammatory stimulus we applied a CARRIE reverse engineering
approach to microarray gene expression data from SFs treated with RA synovial fluid. The association of the inferred gene network with RA
susceptibility was further analyzed by a case–control study of promoter single-nucleotide polymorphisms, and the presence of epistatic
interactions was determined using the multifactor dimensionality reduction methodology. Our findings suggest that a specific NF-κB
transcriptional regulatory network of 13 genes is associated with SF response to RA proinflammatory stimulus and identify a significant epistatic
association of two of its genes, IL6 and IL4I1, with RA susceptibility.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Rheumatoid arthritis; Synovial membrane; Fibroblast; DNA microarrays; Bioinformatics; Transcription factor; Promoter; SNPs; Genetic epistasis;
Genetic susceptibility

Rheumatoid arthritis (RA) is a chronic inflammatory
disease with a prevalence of approximately 1% that primarily
affects diarthrodial joints, in which synovial inflammation
leads to cartilage and bone destruction. The synovial mem-
brane, a rather acellular tissue in normal conditions, becomes
hypertrophic and is composed mainly of synovial fibroblasts
(SFs) [1]. SFs in RA display an activated phenotype, which
significantly contributes to disease initiation and progression
[2,3]. Although several transcription factors like AP-1 [4],
NF-κB [5], or p53 [6] have been previously associated with SF
altered activity, no precise transcriptional regulatory network
has been associated with RA pathophysiology. With the advent
of microarray technology, global gene expression data can now

be used to model transcriptional networks associated with
molecular disease mechanisms.

Modeling transcriptional regulatory networks is considered a
reverse engineering problem. By reverse engineering we
understand the process of determining the structure of a system
by reasoning backward from observations of its behavior [7].
Different methods have been recently described to determine
functional networks from microarray gene expression data.
After providing success with lower eukaryotes [8] they are also
proving successful in defining regulatory networks in the first
studies with human gene expression data [9].

Microarray analysis of cultured SFs treated with a single
factor can be useful to study molecular mechanisms relevant
to RA [10,11]. However, the synovial environment in RA is
extremely complex, with the interplay of cytokines, chemo-
kines, matrix-degrading enzymes, growth factors, and immune
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cell particles [12]. Furthermore, several RA proinflammatory
factors like TNF and IL1β can regulate gene transcription via
convergent signaling pathways. Synovial fluid is known to
contain most of the proinflammatory factors associated with RA
pathophysiology. Thus we hypothesize that SF in vitro
treatment with a complex proinflammatory stimulus like RA
synovial fluid can help to identify the specific SF transcriptional
network associated with this disease.

Transcriptional regulatory networks are theoretically prone
to the presence of epistatic effects [13]. Epistasis, or more
specifically, genetic epistasis, can be defined as the noninde-
pendent effect of genetic polymorphisms over a particular trait
in an individual [14]. Until now, the analysis of epistatic effects
on human diseases has been limited by the exponential number
of combinations to be analyzed in multilocus models. Recently,
however, data mining approaches for dimensionality reduction
in the analysis of gene×gene and gene×environment interac-
tions have proven useful in the detection and characterization of
epistatic effects in human diseases [13,15].

The present study was therefore designed to determine, first,
whether a particular transcriptional regulatory network is
involved in SF response to RA synovial fluid stimulation and,
second, whether promoter polymorphisms in the genes of this
network are associated with susceptibility to RA via epistatic
interactions. To answer these questions we studied the
differential gene expression profiles from cultured synovial
fibroblasts with and without RA synovial fluid stimulation. We
applied CARRIE, a new method of transcriptional network
ascertainment that couples gene expression analysis with
promoter sequence information to infer regulatory relationships
[16], to the results. After defining the associated transcriptional
network, we analyzed the presence of epistatic interactions
associated with RA susceptibility between promoter single-
nucleotide polymorphisms (SNPs) from the coregulated genes
by using the multifactor dimensionality reduction (MDR)
method [17].

Results

Differentially expressed genes and significant Gene Ontology
(GO) terms

Using conservative criteria for differential expression we
obtained a total of 157 genes differentially expressed between
treatment groups (Supplementary Table S1). A partial list
(fold change >3) of differentially expressed genes is shown
in Table 1.

To evaluate the global gene expression changes on SF in
response to an RA synovial fluid stimulus we compared GO
terms from differentially expressed genes. Statistically over-
represented GO terms (p<0.05) were immune response (GO:
0006955), response to biotic stimulus (GO: 0009607), defense
response (GO: 0006952), receptor binding (GO: 0005102),
cytokine activity (GO: 0005125), and response to wounding
(GO: 0009611). The complete list of genes associated with each
differentially expressed GO can be found in Supplementary
Table S2.

Analysis of transcriptional regulatory networks

Determination of significant transcription factor matrices
We determined those transcription factors that most likely

control the response of SFs to RA synovial fluid using CARRIE.
We found that, from all significant matrices (Fig. 1), the NF-κB
distribution matrix stands out as the most clearly associated.
NF-κB has a p value four orders of magnitude more significant
than the immediate associated transcription factor (TF).

Determination of NF-κB regulatory network
We inferred the transcriptional regulatory network of NF-κB

involved in the SF response to RA synovial fluid using
CARRIE (Fig. 2). Although no significant expression change
was observed for NF-κB itself, a significant relationship with 13

Table 1
Three-fold differentially expressed genes in cultured synovial fibroblasts after
RA synovial fluid treatment

Accession
No.

Gene Description Fold
change a

NM_016584 IL23A Interleukin 23, α subunit p19 7.9
NM_000641 IL11 Interleukin 11 6.7
NM_006329 FBLN5 Fibulin 5 5.7
NM_000963 PTGS2 Prostaglandin-endoperoxidase synthase 2

(prostaglandin G/H synthase and
cyclooxygenase)

5.4

NM_000759 CSF3 Colony stimulating factor 3
(granulocyte)

4.4

NM_000675 ADORA2A Adenosine A2a receptor 4.1
AK058127 — Homo sapiens cDNA FLJ25398 3.8
NM_000758 CSF2 Colony stimulating factor 2

(granulocyte–macrophage)
3.7

NM_005623 CCL8 Chemokine (C–C motif) ligand 8 3.6
NM_001432 EREG Epiregulin 3.6
NM_006443 C6orf108 Chromosome 6 open reading frame 108 3.6
NM_002192 INHBA Inhibin, βA (activin A, activin ABα

polypeptide)
3.5

NM_000346 SOX9 SRY (sex determining region Y)-box 9
(campomelic dysplasia, autosomal
sex-reversal)

3.5

NM_033035 TSLP Thymic stromal lymphopoietin 3.4
NM_031437 RASSF5 Ras association (RalGDS/AF-6) domain

family 5
3.4

NM_021724 NR1D1 Nuclear receptor subfamily 1, group D,
member 1

3.3

NM_004049 BCL2A1 BCL2-related protein A1 3.2
NM_002089 CXCL2 Chemokine (C–X–C motif) ligand 2 3.1
NM_001682 ATP2B1 ATPase, Ca2+ transporting, plasma

membrane 1
3.0

NM_002692 POLE2 Polymerase (DNA directed), ε2
(p59 subunit)

–3.1

NM_001684 ATP2B4 ATPase, Ca2+ transporting, plasma
membrane 4

–3.1

NM_139314 ANGPTL4 Angiopoietin-like 4 –3.2
NM_000331 SAA1 Serum amyloid A1 –3.2
NM_006283 TACC1 Transforming, acidic coiled-coil-

containing protein 1
–3.3

NM_002084 GPX3 Glutathione peroxidase 3 (plasma) –3.4
NM_012242 DKK1 Dickkopf homolog 1 (Xenopus laevis) –3.8
NM_006006 ZBTB16 Zinc finger and BTB domain

containing 16
–4.5

a p<0.00001.
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coregulated genes was assessed. Of these, 11 were up-regulated
by NF-κB action, whereas 2 were down-regulated.

Population-based association analysis of NF-κB-coregulated
genes

To evaluate the association of the regulatory regions of the 13
genes included in the NF-κB network we genotyped SNPs from
or near to the proximal promoter. We finally analyzed a total of
22 SNPs, listed in Table 2. We found all polymorphisms to be in
Hardy–Weinberg equilibrium (p>0.001, data not shown). From
all polymorphisms tested rs1290754 (IL4I1), rs2633958
(COL7A1), rs4694636 (IL8), and rs344589 (CD70) were
associated at p<0.05 although significance was not maintained
after Bonferroni correction. We found strong pairwise linkage
disequilibrium (LD) between markers from the same genetic
region (D′>0.98), except for CD70 (D′=0.78). None of the
estimated multimarker haplotypes was significantly associated
with RA (Table 2).

Genetic epistasis analysis of NF-κB-coregulated genes

We analyzed the presence of epistatic interactions evaluating
all possible two- to seven-way SNP combinations. From these,
the two-SNP combination of rs1290754 (IL4I1) with rs1800797
(IL6) was the best model for RA risk prediction (Fig. 3, left).
The testing accuracy of the selected model was 0.599 (p<0.02
based on a 100-fold permutation test). The odds ratio for this
model was 2.23 (95% CI 1.51, 3.28). Notably, when these two
SNPs were merged as a single variable and the data reanalyzed
it clearly came out as the best model, with a testing accuracy of
0.6 and a cross-validation count of 10 of 10 (Fig. 3, right). The
entropy analysis [18] of the interaction between SNPs (Fig. 4)
clearly shows the strong synergistic interaction between these
two SNPs.

Discussion

This study shows that a particular transcriptional regulatory
network is involved in SF response to RA synovial fluid
stimulation. We found that from all transcriptional networks
analyzed, the NF-κB regulatory network is markedly signifi-
cant. In contrast, other known networks, like AP-1 or p-53,
seem to have a secondary role in the response to this complex
proinflammatory stimulus.

This study also shows that polymorphisms in genes of this
transcriptional network are associated with susceptibility to RA
via epistatic interactions. We found that high-order interactions
between SNPs from IL4I1 (rs1290754) and IL6 (rs1800797) are
significantly associated with risk to develop RA.

NF-κB transcriptional network

NF-κB is one of the TFs most strongly associated with RA
pathogenesis, regulating the activities of many different genes
in many cell types [19,20]. We determined a highly statistical
overrepresentation of NF-κB binding sites in the promoter
regions of the coregulated genes (p<1×10−9, Fig. 1). In this
model, NF-κB is not differentially expressed, which is in

Fig. 2. Inferred transcriptional regulatory network mediating SF response to RA proinflammatory stimulus. Solid arrows between NF-κB (i.e., in red, not differentially
expressed) and its target genes represent direct regulation predicted by ROVER. The “+” symbols represent stimulatory relationships and the “−” symbols denote
inhibitory relationships.

Fig. 1. Detection of the TF responsible for gene expression changes in SF treated
with RA synovial fluid. Each horizontal bar represents the log10 p value for
overabundance for a specific TF. Only the 15 most significant TFs are plotted.
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accordance with the fact that its activation takes place mainly at
the posttranscriptional level through IκB phosphorylation and
degradation [21]. Strikingly, however, we found a clear cutoff
between NF-κB and the rest of the TFs (i.e., four orders of
magnitude with the second most associated TF). Since synovial
fluid is a complex mixture of various stimulating proinflamma-
tory factors we would rather expect a less pronounced main TF
prediction. It is even more striking if we compare the similarity
between this result and the results obtained using the same
inference methodology in yeast perturbation experiments [16].
In these studies different single-factor stimulation experiments,

from which the main TF was already known, were used to
validate CARRIE methodology.

In the present study we determined a specific transcriptional
regulatory network of 13 genes for which there is evidence
supporting their roles in SF NF-κB-mediated response in RA.
CXCmotif chemokines—CXCL1, CXCL2, CXCL3, and IL8—
are regulated by NF-κB [22,23], are overexpressed by TNF and
IL1β stimulation [24], and have been demonstrated to be
overexpressed in RA fibroblasts [22]. Similarly CSF3, IL1F9,
CD70, and COL7A1 can be activated in RA fibroblasts or
other cell types after TNF and IL1β stimulation [24–27] or in

Fig. 3. Summary for IL4I1 (rs1290754) and IL6 (rs1800797) promoter SNP combinations associated with risk to RA as (left) independent variables and as (right) a
single merged variable. High-risk combinations appear as dark gray and low-risk combinations as light gray: the left bar in the boxes represents the frequency in cases
and the right bar represents the frequency in controls.

Table 2
Association analysis of promoter SNPs of NF-κB transcription regulatory network genes

Gene Accession
No.

SNP MAF-Hap MAF p-Genot a p-Allelea p-Haploa

FAM5B NM_021165 rs2049162 0.06 0.04 0.58 0.37 0.95
FAM5B NM_021165 rs6665358 0.04 0.04 0.68 0.46 —
FAM5B NM_021165 rs725416 0.18 0.17 0.42 0.57 —
IL4I1 NM_152899 rs1290751 0.42 0.47 0.65 0.52 0.7
IL4I1 NM_152899 rs1290754 0.46 0.41 0.028 0.96 —
COL7A1 NM_000094 rs1264194 0.36 0.31 0.5 0.94 0.08
COL7A1 NM_000094 rs2633958 0.05 0.06 0.026 0.016 —
SAA1 NM_000331 rs1533723 0.22 0.35 0.78 0.58 0.68
SAA1 NM_000331 rs874957 0 0.35 0.67 0.44 —
IL8 NM_000584 rs2227306 0.34 0.37 0.08 0.23 0.26
IL8 NM_000584 rs4694636 0.42 0.4 0.06 0.04 —
IL6 NM_000600 rs1800797 0.48 0.38 0.28 0.94 —
CSF3 NM_000759 rs2227321 0.34 0.36 0.42 0.48 —
CD70 NM_001252 rs344589 0.21 0.14 0.034 0.028 0.06
CD70 NM_001252 rs168259 0.19 0.12 0.41 0.46 —
CXCL1 NM_001511 rs3117600 0.29 0.31 0.11 0.75 —
CXCL2 NM_002089 rs3806792 0.34 0.41 0.48 0.32 —
CXCL3 NM_002090 rs370655 0.36 0.41 0.91 0.72 —
IL1F9 NM_019618 rs13014143 0.48 0.44 0.92 0.98 0.98
IL1F9 NM_019618 rs13392494 0.15 0.16 0.57 0.8 —
TRIB3 NM 021158 rs6139007 0.18 0.22 0.45 0.3 0.66
TRIB3 NM 021158 rs6084242 0.33 0.36 0.1 0.46 —

MAF-Hap, minor allele frequency in HapMap Caucasian European samples; MAF, minor allele frequency in Spanish hypernormal controls; p-Genot, p value for
genotypic test; p-Allele, p value for allelic test; p-Haplo, p value for haplotypic test.
a Nominal p values, not corrected for multiple tests (in bold p<0.05). All SNPs demonstrated Hardy–Weinberg p values >0.001.
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RA animal models [28]. IL6, one of the crucial proinflammatory
cytokines in RA and which is clearly associated with RA fibro-
blast altered expression, has a demonstrated NF-κB-induced up-
regulation [29], together with IL4I1 [30], TRIB3 [31], and
SAA1 [32]. The latter, however is significantly down-regulated
in our study, an effect for which we have no explanation. Finally,
FAM5B (i.e., BMP/retinoic acid-inducible neural-specific pro-
tein) is a recently characterized gene with a perforin-like
conserved domain structure [33] and, to our knowledge, this
study is the first evidence for NF-κB transcriptional control.

IL4I1×IL6 epistatic model for RA risk

Several lines of evidence point to the relevance of epistatic
effects in RA etiology. The most compelling data come from
quantitative trait analysis on mouse [34] and rat [35,36] RA
models. Although epidemiological modeling studies of the
disease have provided the theoretical framework for epistasis in
RA [37], very few studies have analyzed the presence of such
interactions in humans [38,39]. One of the reasons for the lack
of these studies is the statistical and computational challenge
that is associated with the analysis of genetic polymorphism
combinations and disease susceptibility [18]. The multifactor
dimensionality reduction approach used in this study attempts to
address this limitation and is able to determine the multilocus
combinations associated with high risk to develop disease [13].

Analysis of main effects in the IL4I1 promoter SNPs showed
a modest association at the genotypic level for rs1290754
(p<0.05, Table 2) although not significant after Bonferroni
correction (data not shown). To our knowledge, this is the first
study to analyze the association between IL4I1 gene poly-
morphisms with RA. On the other hand, IL6 polymorphisms
association with RA have already been studied in the Spanish
population [40] and, in agreement with this previous study, we
did not detect a significant main effect after allelic and
genotypic analysis (Table 2). However, by analyzing the high-
order interactions between all candidate polymorphisms and
RA using MDR we identified a significant interaction between
IL6 promoter SNP rs1800797 and IL4I1 promoter SNP

rs1290754 (OR 2.2; 95% CI 1.5109, 3.2806; p<0.02). Even
after merging both SNPs as a unique variable, it is still the
model (i.e., single variable model in this case) with the highest
testing accuracy (Fig. 3).

How does this epistatic effect increase the susceptibility to
develop RA? While IL6 is a well-known proinflammatory
cytokine clearly associated with RA pathology, the role of IL4I1
in RA still needs to be explored. One intriguing evidence that
could support the active role of this protein in RA pathophy-
siology could be its identification as an autosomal H locus [41].
H loci are minor histocompatibility antigens that are processed
by MHC class I and class II molecules and that can be
responsible for allograft rejection in transplant therapies.
Studies in mice found that the H46 locus, containing Il4i1
(i.e., the murine homologue of IL4I1), synthesizes a peptide that
is presented by MHC class II that has the potential to elicit
CD4+ T cell responses in autoimmunity. Autoantigen activation
of T cells is one of the main models for the etiology and
pathogenesis of RA [12]. The interaction dendrogram method
implemented in MDR software (Fig. 4) allowed us to determine
the nature of the interaction as a high-degree synergy between
IL6 and IL4I1 promoter polymorphisms. Thus, it is tempting
to speculate that high-risk combinations in this two genes could
led to the proactive role of the synovial fibroblast in the devel-
opment of RA.

Limitations of the approach

In our view, the scope of the study could be limited mainly in
two ways. First, is the stimulation of synovial fibroblasts with
RA synovial fluid a valid model to study RA pathophysiology?
Second, is CARRIE a valid reverse engineering approach to
characterize relevant transcriptional regulatory networks in
human disease?

RA synovial fluid is formed by the secretions of multiple
activated immune and nonimmune cells, which give rise to a
complex proinflammatory environment that contributes to the
progression of disease. Thus, the transcriptional profiling of SF
stimulated with RA synovial fluid should yield more valuable

Fig. 4. Dendrogram of interactions between NF-κB transcription regulatory network polymorphisms. The colors used depict the degree of synergy, ranging from red
(highest information gain) to blue (highest information redundancy). Note that for the interaction between IL4I1 (rs1290754) and IL6 (rs1800797) promoter SNPs, the
degree of synergy (gain of information) between them is highest.
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insights into disease molecular mechanisms than single
cytokine stimulation. Accordingly, several significantly differ-
entially expressed genes we have detected, like INHBA [42],
IL11 [43], PTGS2 [44], IL6 [22], or IL23A [45], have been
previously associated with RA synovial pathophysiology (Table
1 and Supplementary Table S1). Furthermore, by using this
experimental model we have been able to identify a two-loci
epistatic interaction that is significantly associated with sus-
ceptibility to developing RA.

Reverse engineering is a new kind of analytical approach that
has been only recently used with human data [9]. For this study
we have made the assumption that the inference method im-
plemented in CARRIE can efficiently model the transcriptional
regulatory network associated with SF response to an RA
synovial fluid stimulus. One of the limitations of this metho-
dology is that it is subject to the completeness of the TRANS-
FAC human database. Therefore, statistical error could have
been introduced by absent position-specific scoring matrices
(PSSMs) or weak promoter binding sites. However, the highly
significant statistical association of the NF-κB transcriptional
regulatory network and the previous implication of several of its
genes in RA pathophysiology give strong support to the
effectiveness of this methodology. To our knowledge, this is
the first study to apply CARRIE methodology on human data.

Conclusion

In summary, this study shows that a specific NF-κB
transcriptional regulatory network is significantly associated
with synovial fibroblast response to RA synovial fluid and that
an epistatic interaction between two of its genes, IL6 and IL4I1,
is significantly associated with the risk of developing RA.
Although other relevant SF regulatory networks cannot be
excluded in RA pathophysiology, it is the first demonstration of
a transcriptional regulatory network associated with this
disease. We believe that the definition of relevant transcriptional
networks by reverse engineering can greatly accelerate the
search for disease susceptibility genes.

Materials and methods

Cell culture and synovial fluid

Osteoarthritis (OA) SFs have been widely used as a reference for the
experimental study of synovial membrane. In this study, synovial membrane was
obtained from an OA patient undergoing knee joint replacement surgery. The
membrane was thoroughly minced to∼1mm3 and incubated for 2 h at 37°C with
1 mg/ml collagenase I A (Sigma, Spain) under continuous agitation. Cells were
pelleted and cultured in DMEM with L-glutamine (Gibco Life Technologies,
Spain) with 10% FCS and penicillin–streptomycin (50 IU/ml) (Gibco Life
Technologies, Spain) at 37°C with 5% CO2 in a humidified atmosphere.

Synovial fluid was obtained from an inflamed knee joint of a 55-year-old RA
female patient in a sterile nonheparinized tube. From the time of extraction to
centrifugation (1500g, 10 min) the sample was continuously kept at 4°C. The
acellular supernatant was kept at −20°C until cell treatment.

Synovial fibroblast stimulation and microarray analysis

After the third passage, the synovial cell culture was divided into control and
treatment groups. Control cells were cultured with fresh medium (DMEM)

without FCS, whereas treated cells were cultured in a fivefold diluted synovial
fluid (80% DMEM). After 12 h of treatment, total RNAwas extracted from both
cell groups using a column affinity purification method (RNeasy; Qiagen,
Spain). For each class three RNA samples were obtained and analyzed
separately in Human IA CodeLink Expression Bioarrays (General Electric
Healthcare, Spain) representing ∼20K UniGene entries. Briefly, each RNAwas
in vitro amplified, hybridized, stained, and scanned using the manufacturer’s
instructions. Signal and background intensities were also extracted using the
manufacturer’s recommended software (CodeLink version 2.3.2). Normal-
ization of background-corrected intensities was performed stepwise: intraclass
replicates were normalized using cyclic lowess normalization and both classes
were finally normalized using quantile normalization. Data transformation and
normalization were carried out using the libraries provided as part of the R
statistical language package version 2.1.0 (http://cran.r-project.org). Primary
data and supplementary tables can also be accessed at http://www.urr.cat.

Differential gene expression and gene ontologies

Differentially expressed genes in fibroblasts stimulated with RA synovial
fluid compared to controls were identified using the two-sample Welch t statistic
implemented in Bioconductor’s “multtest” package (http://www.bioconductor.
org). To correct for multiple testing, a modified Bonferroni correction procedure
was used. Since for each class we have analyzed RNA samples belonging to the
same biological source (i.e., same individual) we decided to use a more stringent
statistical cutoff as a measure of differential expression (i.e., ≥2-fold change in
mRNA abundance, adjusted p value <0.00001).

Functional analysis of differentially expressed genes was performed using
the program GOstat (http://gostat.wehi.edu.au/). Briefly, significantly over-
expressed genes were selected as a test group and underexpressed genes were
selected as the reference group. GO terms from both groups are then compared
via Fisher’s exact test and approximated p values are computed for each of them.
Since the number of GO terms tested is large, we corrected the nominal p values
using the Bonferroni correction procedure.

Reverse engineering of the transcriptional regulatory network
associated with SF response to synovial fluid using CARRIE

Normalized data and differential expression significance p values were
uploaded into the CARRIE server (http://zlab.bu.edu/CarrieServer/html/).
CARRIE is a computational method for transcriptional regulatory network
inference from microarray analysis using promoter sequence information [16].
Briefly, microarray results are used to discriminate positive (altered expression)
from negative (expressed but constant) groups of genes. From these two
groups, statistically overrepresented TFs whose binding sites are more
abundant in the positive set relative to the negative set are determined using
the ROVER algorithm. Moreover, ROVER also identifies overabundant
promoters that are likely to be regulated by the predicted TFs. All the
information is finally gathered into CARRIE, where a graphical network is
computed highlighting regulatory relationships between TFs with regulated
genes.

We used the same criteria for significant expression change as for differential
expression analysis (i.e., adjusted p<0.00001, fold change ≥2). PSSMs for
human TF binding sites were obtained from the TRANSFAC Professional
version 7.2 database. Promoter sequences for the list genes in CodeLink Human
IA Bioarrays were downloaded using the PromoSer server (http://biowulf.bu.
edu/zlab/PromoSer/) version 3.0 (based on NCBI Build 34). For each gene 2000
bases upstream of the transcription start site (TSS) and 50 bases downstream of
the TSS were retrieved, selecting only the sequence that was closest upstream to
the 5′ end, excluding guessed entries and ignoring promoter region overlaps or
assembly gaps. The frequency of significant binding sites for a single TF in a
random promoter was set to 0.0001 and the cutoff for binding site
overabundance was p=0.001.

Since the TRANSFAC collection of matrices contains, in some cases, many
matrices for a particular TF, we applied redundancy reduction to obtain only the
highest scoring PSSM for each group. Significance values were also corrected
for multiple testing using the default Benjamini and Yekutieli stepped correction
for control of the FDR.
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Gene association study: population selection

To increase the power of the sample-based case–control design we used the
hypernormal control group strategy described by Morton and Collins [46].
Hypernormal controls are defined as those individuals with the lowest liability to
develop the disease. By using extreme discordant phenotypes the efficiency of
the association study is usually much greater than with normal controls. The
details of the hypernormal control group (n=181) and the cohort of RA patients
(n=257) are given in Ref. [47]. This study was approved by the ethics
committee of the Institut de Recerca Hospital Universitari Vall d’Hebron.

Gene association study: SNP selection and genotyping

For all 13 genes coregulated in NF-κB transcriptional network we selected
SNPs in or close to their proximal promoter (2000 bases upstream from TSS).
We used Entrez dbSNP (Human Build 35.1) and HapMap (HapMap Public
Release 18) database information to select the most informative SNPs. We used
the following selection criteria: (i) heterozygosity >0.2 in Caucasian European
samples and (ii) in the proximal promoter or in the LD block that encompasses
this region, built under standard definition [48]. In those cases in which the
second criterion did not apply we favored the selection of multiple close SNPs to
increase the informativeness of the locus by building multimarker haplotypes.

Genotyping was done on a MALDI-TOF mass spectrometer (MassArray
System) using the Spectrodesigner software (Sequenom) for primer selection
and multiplexing and the homogeneous mass-extension process for producing
primer extension products. We regenotyped >30% of the samples in cases and
controls with a genotype concordance of 100% between independent runs.
Genotyping was done at the CEGEN, Nodo de Santiago, Santiago de
Compostela, Spain. All primer sequences are available on request.

Population-based association analysis

All association analyses were performed using R (version 2.1.0). Hardy–
Weinberg equilibrium was tested using the Genetics package. Association
analysis of each SNPwas performed using Pearsonχ2 test of the null hypothesis,
and exact p values were obtained by Monte Carlo simulation (2000 replicates).
Haplotype analysis was performed using the Genecounting/Permute program
implemented in the Gap package. Briefly, case–control haplotypes are analyzed
using model-free analysis and permutation tests of allelic association [49].

Genetic epistasis analysis using multifactor dimensionality reduction

We analyzed high-order interactions between NF-κB transcriptional
regulatory network SNPs using the MDR method. MDR is a nonparametric
model-free method designed to analyze gene×gene or gene×environment
interactions [13]. Traditionally, the analysis of such high-dimensional data has
been hampered by the limitations of statistical modeling techniques. MDR
attempts to address this limitation using a data reduction approach called
constructive induction [18]. Basically, multilocus genotypes (n dimensions) are
pooled into a single risk predictor variable with only two dimensions (i.e., high
risk or low risk). The predictive performance of the best model is then assessed
through k-fold cross-validation and its significance determined through Monte
Carlo permutation testing. It is important to note thatMDR assigns a data point as
“unknown” when there are no data points for that genotype combination in the
training set. This becomes of particular relevance for larger n-way combination
analyses, since more contingency-table cells can contain no observations.

The present analysis was performed with the MDR software Beta 1.0.0 RC1
(http://www.epistasis.org/open-source-mdr-project.html). Statistical interpreta-
tion of the significance of the MDRmodel is facilitated by the visualization of an
interaction dendrogram. This dendrogram is built from a hierarchical cluster
analysis of entropy-based measures of interaction information between
polymorphisms.

Appendix A. Supplementary data

Supplementary data associated with this article can be found,
in the online version, at doi:10.1016/j.ygeno.2007.03.011.
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Chapter 5

Genomics of genetic variation
and complexity

5.1 Factors preceding GWAS: technological de-

velopment

At the beginning of the 20th century everything was ready for whole genome as-

sociation studies. Susceptibility to common diseases was now thought to be due

to common genetic variations in populations, the LD–based association approach

had been proven to have increased statistical power compared to the previous

linkage approach, and millions of SNPs in the human genome had been already

identified. However, the definite step for GWAS studies came when the biotech-

nological industry finally managed to develop a technology that could massively

genotype these polymorphisms in a fast and relatively cheap manner. Thus,

from a commercial perspective, it could be said that the GWAS “era” started on

June 28th 2004, when Affymetrix publicly announced the availability of microar-

ray–based genotyping systems for over 100,000 SNPs. With the same photolithog-

raphy technology they had been using for the manufacturing of gene–expression

microarrays, and using the same DNA hybridization properties Ed Southern had

already exploited in the 70s (Wallace et al., 1979), they were able to offer to

biomedical scientists a first tool for genome-wide analysis of genetic variation.
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5.2 AMD as a model of a GWAS approach

In 2005, Josephine Hoh and collaborators published the first study that identi-

fied a susceptibility variant associated to a common disease (Klein et al., 2005).

Using Affymetrix 100K platform, they were able to identify a polymorphism in

the complement factor H (CFH ) gene statistically associated with Acute Mac-

ular Degeneration (AMD), the most common form of blindness in the elderly.

This finding was the first proof of concept that the hypothesis–free, LD–based

approach of whole genome studies could be used to identify relevant genetic vari-

ation associated to a complex disease. From this moment to date, an exponential

number of genome-wide association studies for complex diseases and other rele-

vant human traits have been published.

5.2.1 Coverage of the genome using the indirect associa-
tion method

The AMD GWAS study is useful to highlight several fundamental aspects that

we encounter in the genome-wide analysis approach. Similar to the microsatel-

lite panels available for family linkage studies, the 100,000 SNPs that composed

the Affymetrix 100K array had been selected randomly and evenly distributed

throughout the genome. In other words, we should expect that we would analyze

a SNP every 30,000 pb of the genome. If LD was sufficiently strong between

each neighbouring SNP, then almost all genetic information should be covered up

by this approach. However, as Lander’s team had already demonstrated in 2001

(Daly et al., 2001), LD is not monotonic along the chromosomes and, instead,

it behaves like a block–like structure with regions of high and regions of low

LD. Therefore, the even–marker spacing approach used by Affymetrix should be

deemed to have lower power to detect relevant associations. If one really wanted

to cover the (common) genetic variability information of the genome using the

least number of markers possible, one should use its LD information: using less

markers in high LD regions and using more markers in regions of low LD. Today

we know that the 100K microarray used by Hoh only covers less than 1/3 of the

total genetic variation that can be obtained by the GWAS approach (Barrett &
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5.2 AMD as a model of a GWAS approach

Cardon, 2006). Thus, Hoh and collaborators were quite lucky to hit the right

SNP.

5.2.2 Genomic studies: the multiplicity problem

Another relevant aspect of the AMD study relates to the sample size that was

used. With only 96 cases and 50 controls they were able to conclude that one SNP

was ”(...) significantly associated with disease status”. Whilst this might seem

a rather normal situation for a single variant analysis, it is extremely surprising

if we take into account that more than 100,000 genetic variants were analyzed

in parallel. In statistical analysis, it is assumed that, the more hypothesis one

tries to test simultaneously, the more likely that any of them will appear to be

significant just by random variation. This is called the multiple test problem and

it is a fundamental statistical issue to which extensive research has been devoted.

One of the first (and still most used) methods to deal with this problem is the

Bonferroni correction method (Hochberg, 1988). In this method, the different

significance values (i.e. P values) are assumed to be true and to come from a

normal distribution function. Then, the Bonferroni adjusted P value becomes

the probability of rejecting at least one Hypothesis given that all null Hypothesis

are true. Thus, the Bonferroni corrected family–wise error (i.e. the probability of

rejecting a true null Hypothesis) is simply calculated by dividing the desired ex-

perimental family–wise error (i.e. alpha value) by the number of tests performed.

This means that for a SNP to be statistically associated in Hoh’s GWAS design it

should have a P value of 0.05/100,000 = 5e–7 (or, more precisely 4.8e–7 because

the Affymetrix GeneChip consisted of some more SNPs). In the AMD GWAS

analysis, the CFH SNP showed a P value of 4.15e–8 and thus it was considered

significant.

5.2.3 Factors influencing the statistical power of a GWAS

How probable it was for Hoh’s study to obtain a significant result with such a

small sample? The answer is not straightforward since it depends on many factors.

As we have just seen it depends on which markers we choose: if we include the

causal SNP or a SNP in high LD with the causal genetic variant we will have high

68



5.2 AMD as a model of a GWAS approach

power to detect the association. We have also seen that it depends on the type

I error rate, alpha, and the multiple testing burden. However, there are several

other factors that influence our ability to statistically detect one genetic variant

associated with the disease. Some of the most relevant factors that influence the

power to detect an association are:

i The frequency of the associated allele (p): the closer it is to 0.5, the higher

the probability to detect the association.

ii The sample size: like any other statistical analysis, the power is proportional

to the sample sizes of cases and controls that we are studying.

iii The disease prevalence in the general population: the higher the prevalence,

the higher the probability we will be able detect a true positive result.

iv The genotyping error: like any other measuring technique, genotyping tech-

niques have a level of error which can negatively influence our ability to

detect true results or, even, can induce false positive results.

v The genetic model of disease risk: the power depends on the mathematical

description on how each of the possible genotypes contributes to the disease

(i.e. much less samples are needed to detect a multiplicative model of risk

compared to a recessive model).

vi The effect size: it depends on how strong is the association of the genetic

variant with the trait.

vii The level of complexity in the disease: which includes trait and/or genotype

heterogeneity, and the presence of epistasis or gene–environment interac-

tions.

viii The presence of confounders: the existence of population stratification or

admixture.

Thus, if we assume that we are typing the causal SNP (or in very high LD, r2

>0.99), the corrected significance after 100,000 simultaneous tests, the reported

disease allele frequency (p = 0.45), the number of cases and controls (n = 95 and
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n = 50), the prevalence of AMD in the US Caucasian population (p ∼ 0.015),

absence of genotyping error, a multiplicative model of risk, a high effect size

(i.e. the reported allelic OR was 4.2), minimal presence of heterogeneity and/or

interaction effects and minimal effect of stratification effects (i.e. all individuals

were American ”white and non–Hispanic”), the final answer is yes, there was

enough power. More specifically, taking into account all of the above parameters,

there is a probability P >0.8 of rejecting the null hypothesis given that it is false

(i.e. the probability that we will not make a type II error). No wonder, however,

why it took two more years to publish a second GWAS study on a complex

disease.

5.2.4 Pre–GWAS scenario: scepticism vs. enthusiasm

The AMD study proved that the genome-wide approach was a useful strategy for

the study of complex diseases, raising much enthusiasm and expectations within

the biomedical community. There was also, however, some level of scepticism on

the probability of finding such a favourable combination of parameters in other

diseases or other complex traits. Who would be right? Like in the previous whole

genome family linkage studies there was no other way out: it had to be tried. It

is within this high expectations and scepticism moment that our research group

planned to conduct a GWAS study in RA.

5.3 Objectives of the study

The present study was designed to try to answer the next questions:

• Are there new genomic regions associated to RA disease risk?

• Which genomic regions show increased signals when integrating the results

of our GWAS with previous GWASs in RA?

• Are there any significant epistatic interactions associated with the suscep-

tibility to RA?
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5.4.1 Selection of the whole genome genotyping platform

The first step was to choose the genotyping technology. At that time, Affymetrix

microarrays (wwww.affymetrix.com) were evidently the first option. They had

dominated the commercial microarray gene expression scenario, with a high vol-

ume of bioinformatic methodology developed around them. Illumina, a San Diego

biotech company (www.illumina.com), had been developing a microarray technol-

ogy based on new composite material. These were called BeadChips because they

were based on arraying micrometric beads, each one carrying a sequence com-

plementary to a specific sequence and specific SNP allele. After allele–specific

hybridization, an enzymatic–based extension is performed in which labelled nu-

cleotides are incorporated. After extension, these nucleotides will be visualized

by a sandwich–based immunohistochemistry assay (Figure 5.1).

Figure 5.1: Illumina microarray technology for SNP allele identification. (Taken from
Gunderson et al. (Gunderson et al., 2005). After the amplification of the genomic
DNA, this is hybridized to the 50–mer probes attached to micrometric beads in the
array. Finally, an enzymatic allele–specific primer extension is performed. The level of
synthesized DNA is quantified using fluorescence and will be used to infer the genotype
of the individual.

Similar to the gene expression counterparts, there was a good advantage of

the Illumina system over the Affymetrix technology: the probe size. The Illumina
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system could fix to their beads 50 nucleotide oligomers whereas Affymetrix could

only synthesize probes up to 25 bases long. Thus, although SNP genotyping is

not affected by technical noise to the level of mRNA gene expression data, we

decided to minimize the risk of false calling due to a lower signal to noise ratio

and we chose the Illumina platform. At the time we started planning the study,

Illumina had only 1 microarray model available: the Human–1 Beadchip. This

model was called ”exon–centric” because it was enriched for SNPs within tran-

scribed sequences or in very close proximity to a gene. Although it did not cover

untranslated regions like the 100K or the newly introduced (and more expensive)

500K from Affymetrix, the Human 1 seamed the most promising option at the

moment. However, the biotechnology industry was already a fast–evolving sector

and only some months after the launching of the Human–1 there was a second

version capable of genotyping more than 300,000 SNPs. This was called the Hu-

manHap 300 Beadchip and unlike the previous version, it used the LD information

generated from the HapMap project (IHC, 2003). The first phase of the HapMap

project, which had officially started in 2002 and was completed in 2005, had al-

ready characterized the frequencies of several millions of SNPs throughout the

genome using three human populations with very different ancestry: European

Caucasians, Yoruba Indians from Nigeria and Japanese–Chinese. With this dense

genetic information it was now possible to determine the haplotype–block struc-

ture of the genome and, from this, select the minimal set of SNPs which would

give maximal informativity of the genetic variation (i.e. tagSNPs). Therefore,

although it had approximately 180,000 less SNPs than its immediate competitor

Affymetrix 500K, its “intelligent” selection of SNPs allowed superior coverage of

the whole genome variability (75 vs. 65% coverage, respectively)(Barrett & Car-

don, 2006). For all these reasons we finally decided to upgrade to the HumanHap

300 microarray for our GWAS in RA.

5.4.2 Selection of study subjects

The second important aspect in our study design was the sample selection. It

was clear that it was going to be a non–randomized retrospective case–control

design and it was also clear the number of samples we could afford to genotype.
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Although the only precedent was Hoh’s successful AMD study with a sample size

five times smaller than ours, we chose to implement a study design that could

increase the power of our study. Whole genome linkage studies in RA had only

successfully replicated the HLA region so it seemed unlikely that there could exist

a genetic variant of a similar effect size. Like in the gene expression candidate

approach described in Chapter 4, we chose to implement Morton’s liability ap-

proach to increase the power of our study. This time, however, we did not only

select hypernormal control patients but we also extended the liability concept to

produce other analysis subgroups. We hypothesized that, on the other extreme of

liability, not only patients diagnosed with RA but also patients from other chronic

inflammatory disease would be sharing part of their susceptibility background.

Also, within RA patients, we considered two levels of heterogeneity: RA patients

recently diagnosed as RA following the ACR criteria (broadest heterogeneity)

and RA patients diagnosed following the ACR criteria but having a longstanding

disease with severe joint damage (highest homogeneity). The collection of such

specific sets of patients was possible thanks to the collaboration with Spanish

rheumatologists Dr. Javier Ballina (Hospital Universitario de Asturias), Juan

de Dios Cañete (Hospital Cĺınic de Barcelona), Jesús Tornero (Hospital Univer-

sitario de Guadalajara) and Alejandro Balsa (Hospital La Paz, Madrid). They

are all well–known specialists in the Spanish Rheumatology field, and they are

active clinical researchers. Some had their own repository of genomic DNA which

helped to speed out the sample collection process.

5.4.3 The importance of QC analysis in GWAS data

An important aspect in any scientific study, quality control analysis is crucial in

data generated from high–throughput technologies. Although there was no doubt

that the genotyping platform chosen was robust, it was compelling to determine

that no technical artefact could be affecting our results. One first quality con-

trol measure is the genotyping call rate, that is, the percentage of SNPs in one

array that is assigned to a particular genotype with sufficient confidence. As we

commented previously, Illumina genotyping technology is based on the comple-

mentary hybridization to two sets of beads, each one representing one of the 2
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possible alleles (Figure 5.2).

Figure 5.2: Examples of intensity clusters for two different SNPs. The probe intensities
for two SNPs are shown in Cartesian (left) and polar (right) coordinates. Each dot
represents the genotype of an individual and the three colours, the cluster assignment
to each of the 3 possible genotypes. The upper SNP is an example of a neat clustering
and genotype call, whilst the lower SNP has a high level of variability which makes it
difficult to ascertain certain genotypes with confidence (i.e. missing genotypes, black
dots in the figures).

Thus, if one individual is homozygous for a specific SNP, only one of the two

sets of bead will hybridize and emit fluorescence. Consequently, in the heterozy-

gous case, a similar amount of hybridization and fluorescence emission will occur

in both sets of beads. For each individual and for each SNP we will have three

levels of possible intensity per allele bead and two beads per SNPs from we will

be able to infer the genotype. Nonetheless, genotype inference (or genotype ”call-

ing”) is not a white or black process there can be a huge amount of variability

depending, principally, on the probe sample labelling, the probe hybridization

and the scanning steps. Also, each set of SNP probes has its own particular ther-

modynamics and, consequently, there is a quite large amount of different signal

distributions produced. This means that genotype calling performed in a single

individual can be very prone to error. Instead, genotyping algorithms use multi-
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ple samples to estimate the 3 possible genotype clusters (i.e. the two homozygous

and the heterozygous genotypes) per each SNP. Like for any other unsupervised

analysis technique, the more samples we have, the better our cluster estimates

will be and the more confident we can be on the estimated genotypes. On aver-

age, more than 98% of the SNPs were called with high confidence (Figure 5.3),

confirming the quality of the chosen technological platform.

Another SNP–level quality control measure comes from the determination of

the deviance from the Hardy Weinberg Equilibrium. In a non–isolated population

like the Spanish population, were random mating and lack of selective pressure

can be assumed, the genotype distribution for any genetic marker should tend

towards Hardy–Weinberg Equilibrium. However, if we observe a high statistical

deviance from HWE in the distribution of a SNP in the control group, it is gen-

erally assumed to be due to bad quality genotyping and the SNP is consequently

discarded from any further analysis. Logically, we cannot assume the same if

Hardy Weinberg deviations occur only in the case group: if the SNP is associated

with the disease, this will tend to cause altered genotype frequencies. In fact, sev-

eral authors have proposed to use this property and build association tests based

on exclusively genotype frequencies in case individuals (Nielsen et al., 1998).

5.4.4 The fear of population stratification: the TDT test

During the 90’s one of the greatest fears of genetic epidemiologists was the possi-

bility of confounding due to population stratification. One most commented work

regarding this negative effect is the article from Knowler and colleagues published

in 1988 (Knowler et al., 1988). In this study they found a statistically significant

association of a particular HLA haplotype with non–insulin–dependent diabetes

mellitus (NIDDM) in Pima Indians (i.e. a North American native Indian tribe

with a high prevalence of this disease). This haplotype, however, is not present

in full–blood native Pima Indians but, instead, it had been introduced by re-

cent admixture with Caucasian European populations. Thus, by comparing two

sample groups which differed in the level of admixture in their ancestry, they

had created a spurious association between a genetic loci and disease. Genetic

75



5.4 The study design

Figure 5.3: Barplots of different GWAS Quality Control measures. As expected, most
of the SNPs are common in the general population with minor allele frequencies >5%
(upper left plot). Also, deviations from Hardy Weinberg Equilibrium are extremely
rare in the control group (upper right plot). The Illumina genotyping platform has a
high calling rate, with most of the SNPs having less than 5% missingness (down left
plot). The coverage of the array is represented by the LD measures: most SNPs have
pairwise LD values r2 >0.2 (down right plot).
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epidemiologists feared that this could happen to their studies and so, new an-

alytical approaches were developed to fight against it. From these, the method

that became most popular was the Transmission Disequilibrium Test (TDT) by

Richard Spielman and Warren Ewens (Spielman et al., 1993). In the first version

of the method, family trios (i.e. the proband and its two parents) were ana-

lyzed: the parental alleles that were not transmitted to the offspring were then

used as a matched pseudo–control, thus avoiding the problem of differential an-

cestry albeit with a reduction on statistical power. However, after several years

of using the so called Family–Based Association Tests (FBATs), the number of

loci consistently associated to complex diseases did not increase. It seemed that,

if one was careful enough to avoid collecting samples with evident population

stratification (i.e. like the Pima Indians), the loss of power of FBATs seemed

not to compensate the effort. FBATs were gradually superseded by traditional

case–control approaches were the negative effect of stratification was prevented

by rational sample ascertainment. Nonetheless, with the progressive introduction

of high–throughput genotyping technologies, the search for methods for the iden-

tification and control of the population stratification continued. It was evident

that, although stratification was not the big problem it had been initially thought,

it could be a considerable bias factor when trying to address the association of

genetic variations with relatively low penetrance (Clayton et al., 2005).

5.4.5 Bayesian approaches to correct for population strat-
ification

One of the good things of working with a high number of genetic markers is that

the problem of population stratification can be more robustly solved. In this

case, the basic working assumption is that most genotyped markers will not be

associated with disease, which is not a hard assumption when we are genotyping

thousands of markers. Bernie Devlin and Katthryng Roeder devised in 1999

a Bayesian approach to deal with stratification called Genomic Control (GC)

(Devlin & Roeder, 1999). This approach is based in the assumption that, if there

is stratification within the genotyped samples, this should lead to a distribution

of association statistics different from what is expected under the null hypothesis.
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Thus, under no stratification, the median value of the observed chi–square values

should be equal to the median of a 1 degree of freedom chi–square distribution

which is 0.456. The ratio of both measures (i.e. observed vs. expected) will

inform us about the degree of stratification in our sample or, as they call it,

genomic inflation (λ). The more our genomic inflation factor deviates from a

ratio of 1, the more we should worry that there is a stratification problem in our

sample.

5.4.6 A priori identification of population outliers

We do have a method to detect stratification using thousands of markers but,

wouldn’t it be possible to exclude outlying individuals using a small set of mark-

ers and avoid genotyping them in expensive high throughput technologies? At the

same time Devlin and Roeder described their GC method, Jonathan Pritchard

from Stanford and Noah Rosenberg from Oxford described an alternative method

to test for stratification called STRUCTURE (Pritchard & Rosenberg, 1999). In

this last method, they used the genetic information from a reduced set of mark-

ers to cluster individuals into a predefined number of clusters (i.e. populations).

Through simulation studies, they showed that with a reduced number of mark-

ers (around 15 microsatellites or approximately 30 SNPs) this objective could be

reached. Since at that time there was little notion about the level of population

stratification in the Spanish population, we decided to carry out an a priori fil-

tering approach to try to discard strong outliers from our case–control cohorts

before genotyping them with the Illumina array. In order to look for the best

ancestry–informative markers, we used a set of SNPs (n = 34) that had been

validated as informative for forensic–based purposes by an international consor-

tium (Phillips et al., 2007). In order to have a positive control for stratification,

we included two individuals that had a clear different ancestry from the general

Spanish population: a Moroccan and a Peruvian Andean women. The analysis

was performed using STRUCTURE by our group and by an independent genet-

ics research group who was blind to the origin status of the individuals. Neither

they nor we did find any trace of population stratification but, unfortunately,

neither they nor we managed to identify any of the two outliers as such (Figure
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5.4). Thus, the validity of the approach was clearly at stake: either the method

was inappropriate or the chosen SNPs were not that informative. Regarding the

last possibility, using this same set of markers a recent study was able to identify

the origin from several of the unmatched DNA samples of the 11th March 2004

terrorist bomb attack (Phillips et al., 2009). However, one crucial difference with

our study is that they precisely targeted only two specific populations (i.e. Mo-

roccan and Spanish) and they were able to first train their predictor model with

an independent dataset. Still, they were only able to assess with confidence the

origin of 4 of the 7 unmatched samples.

Figure 5.4: Mulitidimensional Scaling Analysis of ancestry–informative markers. Each
point in the graphic corresponds to an individual in the study; the distance between
individuals is proportional to their genetic differences in their genetic markers.

5.4.7 Ascertainment of geographic origin

With the previous approach we were unable to discriminate with certainty nei-

ther the presence of stratification nor individual outliers. Nonetheless, what we

could do is to reduce the probability of this happening by an appropriate epi-

demiological control. As much as possible, we obtained the information from the
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geographical origin from the grandparents of the probands. The perfect proband

was one from which we could ascertain the Spanish origin from all of the four

grandparents. If there was any evidence of non–Spanish origin in either of the

ancestors, the individual was discarded and not genotyped. However, obtaining

the records of the geographical origin of the grandparents is a costly process,

especially, for old aged probands like many longstanding RA patients were it was

difficult to obtain such information with reliability. Overall, we were able to ob-

tain the complete information of all 4 grandparents from 30% of the all recruited

individuals.

Genetic outliers identified using Principal Component Analysis

Discarding individuals by their place of birth or the place of birth of their

ancestors is a good first line of defence against stratification issues. However,

there still may be some level of geographic variation which escapes from this

epidemiological measure. The history in the Spanish territory is quite rich in

episodes of population admixture (Bosch et al., 2001) and, therefore, there is

a chance that some of these events might be still hidden in our genomes. The

Genomic Control is a good measure to quantify the amount of ancestry hetero-

geneity present in our samples and it can even be used to adjust the association

statistics. However, it tends to be an overconservative measure since it treats all

SNPs exactly the same way. STRUCTURE is also not particularly well suited

for whole genome data since it requires many computational resources and it also

requires that one specifies the number of expected underlying clusters which, in

many cases, it is an unknown parameter. Thus, we need a method that is capable

to measure the presence of this unwanted genetic variability, that weights each

individual according to how much it is influenced by this variability and, finally,

that is computationally practical. Almost 30 years ago, Italian population ge-

neticist Luigi Cavalli–Sforza, proposed the use of Principal Component Analysis

technique (PCA) to extract the main components of variation (Menozzi et al.,

1978) from a group of markers. The PCA technique was first devised by statisti-

cian Karl Pearson in 1901 when he searched for a mathematical method to find

the plane that would best fit a system of points of multiple variables. With this
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method, the original data set is transformed into a new set of variables (the prin-

cipal components or eigenvectors) which are uncorrelated and which are ordered

so that the first few retain most of the variation present in all of the original

variables. With this technique, Cavalli–Sforza was able to demonstrate that a

high proportion of geographic variation of allele frequencies within the European

continent can be explained by only the first principal component of variation. Ex-

tending Cavalli–Sforza’s implementation, in 2006 Nick Patterson, Alkes Price and

David Reich from Harvard University, devised a PCA–based method for GWAS

data (Price et al., 2006). Their method is called Eigenstrat and they were able to

demonstrate in real GWAS data that it was an effective means on capturing the

principal axis of variation and, optionally, correct the association statistics using

this information. In the present study, we used the Eigenstrat method to infer

the Principal Components of variation in our Spanish cohort.

Exclusion of ascertainment bias

The genomic inflation factor in our sample was very close to the null (λ =

1.01, λnull = 1). This was the first evidence that our sample ascertainment

criteria had been efficient in minimizing population stratification. Secondly, we

determined the principal components of variation in our genomic data. Much like

the WTCCC study, we found that the two first principal components captured

most of the variation within the genome. However, whilst the WTCCC found

a NorthWest to SouthEast trend in the genetic variation in the UK population,

we found that the predominant trend of genetic variation in the Spanish popu-

lation was principally from West to East. Interestingly, three months after the

publication of our work, Novembre and collaborators published a comprehensive

analysis of the genomic variation present in European populations (Novembre

et al., 2008). In this study they used Affymetrix 500K genotyping arrays and

the same PC analysis. On one hand, they demonstrated that genomic variation

in European subpopulations is sufficiently informative to predict with relatively

high accuracy the place of birth of an individual (i.e. 90% individuals predicted

within 700 km of their place of birth, 50% within 310 km). On the other hand,

it corroborated our finding of the predominance of the West to East trend in the

81



5.4 The study design

sample of Spanish origin (n = 131 in their study) compared to the predominant

North to South variation in other European populations (Figure 5.5).

Figure 5.5: Genetic variation in the European population. (Taken from Novembre et
al. (Novembre, Johnson et al. 2008)). Using the two principal components of variation
inferred from GWAS data, the genetic variation in European Caucasian populations is
shown to mirror the geographical variation.

The Eigenstrat method performs an outlier detection and exclusion method

based on the relative distance of each individual towards the mean of each PC. If

any individual is more than 6 standard deviations away, it is excluded from the

sample and the eigenvectors are re–calculated. This process is repeated up to a

user defined number of iterations or until no further genetic outlier is found in

the sample. In our study we did found a similar number of outliers in the case

and control cohorts (χ2–test, P = 0.34), so we could conclude that there was no

ascertainment bias.
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5.4.8 Replication of GWAS candidate loci

The repeatability of an initial finding is a fundamental aspect of the scientific

progress. In the study of the genetics of complex diseases, where the effects of

genetic variation upon phenotype are generally small, this is a compelling issue.

As we have previously seen, there are many potential factors that affect our study

and lead to spurious assumptions. Although one of the most cited GWAS, the

WTCCC 2007 study (WTCC, 2007), did not include a replication set, it is now

indispensable to perform such validation studies. Even for Hoh’s precocious 2005

GWAS, in less than three months a replication study (conducted by Hoh her-

self and collaborators), was immediately published confirming in an independent

dataset the original association of the CFH gene with AMD. Thus, the natural

question arises: which SNPs should be chosen to conduct replication? At the time

we planned our replication strategy, this was already a highly debated issue. From

the most conservative point of view, the answer is straightforward: to replicate

only those SNPs that withstand Bonferroni’s multiple test correction. However,

the experience from other previous GWAS showed that even Bonferroni correction

was not a safeguard against false positives. Furthermore, studies including SNPs

that were only nominally significant (i.e. only significant without applying the

multiple correction procedure) could replicate them in an independent dataset.

One striking example is the GWAS study in RA conducted by Robert Plenge

and collaborators were they included all SNPs under a nominal P value <0.001,

when the Bonferroni–corrected P value is 1,000 times lower (∼ 5e–7). From all

90 tested SNPs, only the SNP ranking in the 77th position in the GWAS study

was reproducibly replicated in an independent dataset (Plenge, Cotsapas et al.

2007). In our study, we chose two alternative strategies to select the candidate

SNPs for the replication phase. The first strategy was based on a conditional

probability approach: we selected those SNPs with nominal association in the

extreme liability comparison (i.e. longstanding RA vs. hypernormal controls, P

<0.001) that still had a nominal association in the lower liability comparison (i.e.

heterogeneous RA vs. hypernormal controls, P <0.001). In the second strat-

egy we used a statistical learning technique called bootstrapping to obtain an

alternative measure of significance. Bootstrapping is a resampling–based method
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that can give a better statistical inference when the parameters of the underlying

distribution are unknown or in doubt (Efron, Halloran et al. 1996). Using both

strategies, we finally selected 34 SNPs for replication in the independent set. As

a positive control, we also included SNPs from genomic loci previously associ-

ated to RA: Protein Tyrosine Phosphatase 22 (PTPN22 ) (Begovich et al., 2004),

PADI4 (Suzuki et al., 2003) and CTLA4 (Rodriguez et al., 2002) genes.

After performing the replication analysis in an independent cohort of cases

and controls (n = 410 and n = 394, respectively) we found that only three SNPs

showed nominal significance values (P <0.05). Importantly, from the previously

associated genes, only PTPN22 was positively replicated in this sample (P =

0.022), although CTLA4 showed a trend towards association (P = 0.06). The

other nominally associated SNPs were rs7313861 (in the 3rd intron of SV2 Related

Protein or SVOP, P = 0.043) and rs1324913 (in the 1st intron of Kruppel–like

factor 12 or KLF12, P = 0.013). Was validation at the nominal level enough to

support the association of these two new candidates to RA susceptibility? We

sought to look for further evidence that could support this genetic association. At

the time we completed the replication analyses, the first GWAS studies in RA had

been recently published in three Caucasian populations: the WTCCC study in

UK population (WTCC, 2007), the Brigham and Women’s Rheumatoid Arthritis

Sequential Study (BRASS) in North–American population (Plenge et al., 2007a),

and the North American Rheumatoid Arthritis Consortium (NARAC) and the

Swedish Epidemiological Investigation of Rheumatoid Arthritis (EIRA) with pa-

tients from North America and Sweden (Plenge et al., 2007b). The integration

of the genome-wide association signals from our study together with the signals

from these previous studies could give additional information on relevant genetic

loci associated to RA. Nonetheless, we had to limit the meta-analysis to those

association signals that were made available by the authors of these studies (i.e.

complete for WTCCC, P <0.001 for BRASS and P <0.0001 for NARAC–EIRA

GWASs). Although not an orthodox meta-analysis in the traditional statistic

sense, our bioinformatic approach was able to identify several genomic regions

showing high clustering of association signals, like the recently associated TN-

FAIP3 locus (Plenge et al., 2007a) between our study and the BRASS study

and, importantly, the KLF12 locus between our study and the WTCCC study.

84



5.4 The study design

5.4.9 Genome-wide Scan for Epistasis

Most common diseases like RA have been categorized as complex diseases. The

complexity attribute recognizes both the multifactorial origin of the disease as

well as the potential existence of interactions between several of these factors.

Interactions occur when the effect of one factor upon phenotype (i.e. disease),

is modulated by other factors. Thus, unless we don’t consider the joint dis-

tribution of these interacting factors, we will not be able to find this type of

genotype–phenotype effects. Interactions in genetic epidemiology come in two

forms: Gene x Environment interactions (GxE) and Gene x Gene interactions

(GxG or also called epistasis).

Limitations of interaction analysis

The study of GxE interactions is very appealing for epidemiologists since it

opens the possibility to perform preventive strategies: if the environmental input

is avoided, the disease could also be avoided. The study of GxE interactions

affecting disease risk is however limited by the lack of reliable and extensive

environmental data. At present, obtaining reliable and complete measures of en-

vironmental exposure of humans is of paramount difficulty, if not impossible. It

is envisaged, however, that future initiatives will be carried out to improve the

collection of this type of data using large population cohorts. In the study of

epistasis there is no such limit since high throughput genotyping and ultimately

sequencing technologies have allowed us to capture almost all the genetic infor-

mation of an individual. However, other types of limits appear that hamper the

genome-wide analysis of epistasis: the methodological limit and the computa-

tional limit. In other words, do we have the appropriate tools to detect epistasis

and, even if we have them, can we use them in a genome-wide scale? But before

digging into these two fundamental aspects of genome-wide epistasis analysis, we

will overview the evidence and theory supporting this complex genetic mechanism.

Epistasis is pervasive in model organisms

One strong evidence in favour of the existence of a particular biological mech-

anism in humans is the demonstration of its existence in model organisms. Re-
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garding epistasis, there is an increasing evidence that it is a fundamental feature

of life ranging from the simple bacteria (Maisnier– Patin et al., 2005) and yeast

(Segre et al., 2005) to more complex organisms like birds (Carlborg et al., 2003),

mammals (Kim et al., 2001), Drosophila (Sugiyama et al., 2001) and plants (Es-

hed & Zamir, 1996). But, why should ever exist such a mechanism in nature?

Why should evolution permit it? One strong argument in favour of the existence

of epistasis comes from the idea of canalization (Moore, 2003). In the life of an

organism, there are many threats to is survival either in the form of environmen-

tal inputs or in the form of inherited or de novo mutations. Canalization theory

says that organisms have evolved towards a system that is resistant to these per-

turbing phenomena. The existence of interconnected gene networks would be the

basis of this compensating mechanism. Thus, whenever one perturbing agent (en-

vironmental or genetic) affects one gene of this network, the other non–affected

genes will act as compensators and effectively dissipate the negative impact to the

organism. The existence of this buffering mechanism would explain, for example,

why genetic variants in common diseases explain very little risk: only when mul-

tiple elements of this robust gene network are affected, does the system fail and

lead to disease.

Historical interpretations of epistasis

William Bateson was the first to use the term “epistasis” (from Greek “to

stand upon”) to describe the masking effect of one locus upon another locus

(Bateson, 1909). He was trying to describe the mechanism by which the offspring

of certain dihybrid crossings deviated from the expected Mendelian ratios. Some

years later, Fisher used the term “epistacy” to describe those statistical models

in which the joint contribution of two factors towards a phenotype deviates from

the additive model. Traditionally, the first definition has been adopted by bi-

ologists, since it matches the physical conception of molecular interactions (i.e.

DNA, RNA or protein) studied in the laboratory. The second definition is purely

mathematical and, therefore, it has been more commonly used by statisticians

when implementing Fisher’s linear modelling framework. How these two different

definitions (biological vs. mathematical) relate is still a challenge for modern ge-

netics. In the case of the genetic architecture of complex diseases, however, until
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we do not find true genetic interactions that are associated with these traits, this

will stay as a mere philosophical question rather than a real scientific problem.

The computational limit: using supercomputation to exhaustively

search the genome

Genomic technologies are generating vast amounts of biological data. One

non–trivial issue is now the necessity to have sufficient computational power to

analyze this information. In the case of the genome-wide analysis of epistasis,

the problem grows exponential with the number of marker combinations that one

wants to analyze (also known as “the curse of dimensionality” as Richard Bell-

man described it(Bellman, 1957)). In our study design if we want to analyze all

possible 2–way combinations of the SNPs in the HumanHap 300 array, we should

need to execute 45,000 e6 epistasis tests. If we wanted to explore the 3–SNP

dimension, it would take 100,000 times more (45,000 e11 tests). If our analysis

algorithm calculates each test in only 0.001 seconds (a fairly fast implementation)

it would take 520 days to compute all 2–way interactions and 142,692 years to

compute all 3–way interactions. At first sight either option would seam infeasible

for obvious reasons. However, in the former case there is one possibility: the use

of parallel computation. Supercomputers are big computational infrastructures

that can harbour thousands of interconnected computer processors that can be

used to perform extremely demanding computational tasks. Fortunately, at the

time we were starting the GWAS study, a powerful supercomputation resource

had been recently built in Barcelona: the Mare Nostrum supercomputer. With

more than 4,000 processors it was the most powerful supercomputer in Europe

and the fifth in the World. But, compared to other supercomputing centres, Mare

Nostrum, was built to host both public and private research initiatives, including

biomedical research projects like ours. We therefore submitted our project pro-

posal to the Barcelona Supercomputing Centre (www.bsc.es) and we were granted

the computational power to perform the first genome-wide epistasis analysis in

RA.
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The methodological limit: evaluating alternative algorithms

One crucial aspect for the genome-wide analysis of epistasis was the choice of

the analysis algorithm. Following our previous candidate–gene approach (Julià

et al., 2007), our first option was to evaluate the use of Multifactor Dimension-

ality Reduction (MDR) (Ritchie et al., 2001). In collaboration with Prof. J

Moore and Prof. Josep Lluis Gelṕı from BSC Life Science team, we implemented

MDR in Mare Nostrum’s parallel architecture. Briefly, the original method had

been implemented in Java programming language and had to be translated into

a parallel computing amenable language. One of the most commonly used pro-

gramming languages for this purpose is the C language. However, even working

with the most powerful supercomputer in Europe there were several restrictions

that we had to apply to MDR’s approach. Perhaps, the most influential was

the reduction of the n–fold cross validation scheme to a simple one–fold vali-

dation. Cross–validation is a useful machine learning technique to evaluate the

predictability of a model; however it has the important drawback that it is com-

putationally intensive. Thus, in an exponential calculation like the present, it was

not possible to fully take advantage of this method. A second problem was the

negative influence of main effects. MDR is an epistasis analysis algorithm that

can be very powerful “in the absence of main effects” (Pattin et al., 2009). In our

MDR analysis, we learnt that this method’s limitation was a real burden for the

interpretation of the genomewide epistasis results. In an ordinary GWAS scan

there are thousands of markers that will show nominal association (P <0.05) just

by chance. With the MDR analysis of our GWAS data we found that the most

significant SNP–pairs were plagued with SNPs having also moderate to strong

main effect. Therefore, we concluded that MDR would not help us sort out the

presence of epistasis in RA.

Simple but powerful algorithm: the OR test

Given that MDR method could not be fully exploited and we could not asso-

ciate SNP pairs to RA susceptibility with confidence, we looked for alternative

methods. As we commented previously, the archetypal statistical analysis of in-

teractions is the linear model framework devised by R Fisher. In particular, the

logistic regression implementation is more commonly used in the analysis of SNP
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to phenotype associations (Henshall & Goddard, 1999). In this method, SNP

genotypes are codified as numbers (i.e. 0, 1 and 2 according to the number of

minor alleles in the genotype) and the binary response variable (the case–control

status) is transformed using the logistic function. The logistic model, in this case

including an SNP–SNP interaction coefficient, is then fitted via the least squares

or the maximum likelihood estimation methods. Although logistic regression is

not suited for high–level interaction analyses due to the sparsity of the factor

combinations, it can be well implemented in a 2–way level as the one we require

for our study. However, the calculation of the linear regression coefficients is a

computationally costly technique and would be highly impractical even with a

supercomputer like Mare Nostrum. At that time, Harvard statistician Shaun Pur-

cell implemented an open–source software for the analysis of GWAS data called

PLINK (Purcell et al., 2007). Within the analysis methods implemented, there

was a simple algorithm for the analysis of epistasis. This method uses the inter-

locus allelic association (i.e. OR) in cases and in controls to compute a z-score

that is a measure of the deviance from additivity. This method has two important

advantages: first, it is computationally very fast compared to the logistic regres-

sion algorithm, and second, we could ascertain that it has a statistical power very

close to the logistic regression approach (Figure 5.6).

Fortunately, as well, the method was already implemented in the C++ lan-

guage which enormously facilitated its adaptation to Mare Nostrum supercom-

puter. Briefly, one of the fundamental tasks was to include the call to the Message

Passing Interface protocol which allows the communication between the super-

computer nodes and effectively distributes the millions of epistasis tests between

them. Finally, the genome-wide analysis of epistasis in RA took 48 hours using

256 CPUs in parallel.
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Figure 5.6: Statistical power comparison between logistic regression (Y–axis) and epis-
tasis OR test (X–axis) evaluated of 50 different epistasis models using simulation. The
correlation between both analysis methods is shown to be very high (r2 >0.95).
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Objective. To identify new genes associated with
susceptibility to rheumatoid arthritis (RA), using a
2-stage genome-wide association study.

Methods. Following a liability-based study design,
we analyzed 317,503 single-nucleotide polymorphisms
(SNPs) in 400 patients with RA and 400 control sub-
jects. We selected a group of candidate SNPs for repli-
cation in an independent group of 410 patients with RA
and 394 control subjects. Using data from the 3 previous
genome-wide association studies in RA, we also looked
for genomic regions showing evidence of common asso-
ciation signals. Finally, we analyzed the presence of
genome-wide epistasis using the binary test imple-
mented in the PLINK program.

Results. We identified several genomic regions
showing evidence of genome-wide association (P < 1 �

10�5). In the replication analysis, we identified KLF12
SNP rs1324913 as the most strongly associated SNP (P
� 0.01). In our study, we observed that this SNP showed
higher significance than PTPN22 SNP rs2476601, in
both the genome-wide association studies and the rep-
lication analyses. Furthermore, the integration of our
data with those from previous genome-wide association
studies showed that KLF12 and PTPRT are the unique
loci that are commonly associated in 3 different studies
(P � 0.004 and P � 0.002 for KLF12 in the Wellcome
Trust Case Control Consortium study and the Brigham
and Women’s Rheumatoid Arthritis Sequential Study
genome-wide association study, respectively). The
genome-wide epistasis analysis identified several SNP
pairs close to significance after multiple test correction.

Conclusion. The present genome-wide association
study identified KLF12 as a new susceptibility gene for
RA. The joint analysis of our results and those from
previous genome-wide association studies showed
genomic regions with a higher probability of being
genuine susceptibility loci for RA.

Rheumatoid arthritis (RA) is one of the most
prevalent autoimmune diseases in the world (1). In RA,
chronic inflammation of the synovial joints leads to
progressive articular damage, which can result in major
functional disability (2). The etiology of RA is unknown,
but several family aggregation and twin studies (3,4)
clearly demonstrate a heritable component of the dis-
ease. Part of this genetic component of susceptibility has
been consistently associated with the HLA class II locus
variation. The remaining 50–75% of the genetic compo-
nent includes several other genomic regions that are
more difficult to identify due to their lower penetrance
or more complex models of action (5,6).

Linkage scans and candidate gene studies have
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successfully identified a small number of candidate genes
for RA susceptibility, ranging from the robust association
of PTPN22 (7) to the more modest association of PADI4
(8) and CTLA4 (9). Together with these important steps in
the characterization of RA genetic architecture, the candi-
date strategy has also produced a large number of genes
that have failed to show convincing association (10). Link-
age scans, an extremely powerful methodology for identi-
fying genes with simple genetic models of inheritance, have
several limitations for common diseases such as RA
(11,12). Recently, genome-wide association studies have
enabled the combination of 2 fundamental advantages of
the previous approaches: the unbiased analysis of whole
genome linkage scans and the power and resolution of
case–control studies (13).

To date, 3 genome-wide association studies in
RA have been performed, providing important advances

in the characterization of genetic susceptibility in RA.
The Wellcome Trust Case Control Consortium
(WTCCC) performed an unprecedented genome-wide
analysis of 7 common diseases in the UK population
(14). This approach enabled not only the identification
of strong candidate regions for each disease but also the
identification of common susceptibility regions between
different diseases. More recently, 2 genome-wide studies
using North American and Swedish cohorts identified
and replicated TRAF-C5 (15) and TNFAIP3 (16) as new
genetic loci strongly associated with positive anti–cyclic
citrullinated peptide antibodies in RA subtype suscepti-
bility. These important findings demonstrate the effec-
tiveness of the genome-wide association study approach
and represent important steps toward the identification
of RA genetic architecture.

Here, we report the results of a 2-stage genome-

Figure 1. Liability-based model used in the present genome-wide association study. In this model, a continuous latent risk variable is truncated to
specify affection, which in this case is a chronic inflammatory disease. Those individuals with the highest liability have a specific group of genes that
condition to a particular outcome (i.e., disease diagnostic). Those individuals with the lowest liability are resistant to inflammatory illnesses; hence,
they are “hypernormal” for these conditions. RA � rheumatoid arthritis.
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wide association study performed in the Spanish popula-
tion. In contrast to the 3 previous genome-wide studies, we
used a design based on disease liability to both RA and
chronic inflammatory diseases. We also performed a rep-
lication analysis of a selected group of new candidate
single-nucleotide polymorphisms (SNPs) in an indepen-
dent sample. In order to look for common associated
genomic regions, we contrasted our results with those of
the 3 previous genome-wide association studies. Finally, we
also analyzed more complex genetic models through a
genome-wide analysis of gene–gene interactions (i.e., ep-
istasis) associated with RA susceptibility.

PATIENTS AND METHODS

Study design. We performed a 2-stage genome-wide
association study in RA. In the first stage, 400 patients with RA
and 400 control subjects were analyzed for 317,503 genomic
SNPs. From these results, a selection of new candidate SNPs
was further genotyped in an independent group of 410 patients
with RA and 394 control subjects. In the genome-wide analysis,
both case and control groups were formed by 2 subgroups (n �
200 each) based on the liability model shown in Figure 1. This
model assumes that there is a continuous latent risk of chronic
inflammatory diseases. Those individuals with the lowest risk
of developing any type of chronic inflammatory diseases are
defined as “hypernormal” (17). In the high-risk zone, the
continuous variable is truncated to specify a chronic inflam-
matory disease. Therefore, this model integrates the increasing
evidence of shared genetic risk for common inflammatory
diseases (14,18,19) and the specific genetic variants that deter-
mine each particular condition.

Informed consent was obtained from all individuals,
according to the Declaration of Helsinki. The study was
approved by the Institut de Recerca de l’Hospital Universitari
Vall d’Hebron ethics committee.

Whole-genome association study subjects. Patients
with RA were recruited from 5 Spanish hospitals: Hospital
Universitario Central de Asturias, Hospital Universitario de
Guadalajara, Hospital Clı́nic i Provicial de Barcelona, Hospital
Universitario de La Paz (Madrid), and Hospital Universitari
Vall d’Hebron (Barcelona). All patients fulfilled the revised
American College of Rheumatology (ACR; formerly, the
American Rheumatism Association) 1987 criteria for the
classification of RA (20). Two hundred patients were selected
for having a longstanding disease with severe radiologic and
functional disability (longstanding RA). The remaining cases
were selected from among a group of patients with RA who
were attending early arthritis clinics and had been followed up
for a minimum of 2 years (early RA).

Control subjects were selected according to the liability
model described previously. In order to capture the genetic
component that is specific for RA and different from other
chronic arthritides, we selected a group of 200 patients with
non-RA inflammatory arthritis (non-RA). This group of pa-
tients and those with early RA were selected from the same
early arthritis clinics, and the non-RA group comprised spon-
dylarthritis (34%), undetermined arthritis (26%), psoriatic

arthritis (20%), connective tissue disorders (15%), and other
less common inflammatory arthropathies (5%). To increase
the efficiency of our study, we selected a group of 200
individuals with the lowest liability for RA or any other chronic
inflammatory disease, whom we here describe as hypernormal
control subjects. Using the randomized control collection of
IRCIS BioBank (Hospital San Joan de Reus, Tarragona,
Spain), we selected only those individuals whose age placed
them at risk of RA (�40 years old), were Caucasian, and had
a 3-generation Spanish origin. We reduced the genetic liability
in this group by excluding those individuals with �1 first-
degree relative with a chronic inflammatory disease (including
autoimmune diseases). All 4 subgroups had the female-to-male
sex distribution (3:1 ratio) that is characteristic of RA (21).

Replication study subjects. We collected an indepen-
dent group of 410 patients with RA (347 women and 63 men)
from the same 5 hospitals. All patients fulfilled the ACR 1987
revised criteria for the classification of RA and were Caucasian
and of Spanish origin. A control group of similar size (n � 394
[284 women and 110 men]) was obtained from the Spanish
National DNA Bank repository (Banco Nacional de ADN,
Salamanca, Spain). All control subjects were Caucasian and of
Spanish origin, were older than age 30 years, and did not have
an autoimmune disease.

Sample preparation for whole-genome and replication
genotyping. Although most samples analyzed were from local
DNA collections, �20% of them were extracted from whole
blood using the Flexigene purification system (Qiagen, Chats-
worth, CA).

More than 317,000 SNPs were genotyped in each of
the 800 individuals in the genome-wide association study, using
the HumanHap300 BeadArray system (Illumina, San Diego,
CA). The selection of highly informative markers (tagSNPs)
included in this system provides strong coverage of the whole
genome (22). Samples were amplified, labeled, and hybridized
according to the Illumina Infinium II assay. After scanning in
an Illumina BeadArray reader, fluorescence intensities were
automatically converted to genotypes using Illumina BeadStu-
dio software version 2.0.

Replication genotyping and cross-platform quality con-
trol were performed using the MassARRAY SNP genotyping
system (Sequenom, San Diego, CA) (23). Genotype calling was
performed using the automatic call system implemented in Se-
quenom Typer software. All genotyping assays were performed at
the Centro Nacional de Genotipado (Barcelona, Spain).

Whole-genome association study quality control. For
the 800 individuals analyzed, the average genotyping rate was
98.8%. To this data we subsequently applied several quality
control filters, as follows: 1) exclusion of those SNPs with more
than 10% of values missing (2.2%), 2) exclusion of individuals
with more than 10% of values missing (none), 3) uninformative
SNPs (minor allele frequency � 0.01) (0.1%), and 4) SNPs under
Hardy-Weinberg disequilibrium (P � 0.0001) (0.3%). Although
6,590 SNPs (2%) were in very high pairwise linkage disequili-
brium (r2 � 0.99), we did not exclude them from further analyses.

Population structure analysis. The presence of struc-
ture in a population can be an important confounder in genetic
association studies. In order to detect strong variability com-
ponents in our genome-wide association study samples, we
performed the principal components analysis (PCA) imple-
mented in Eigenstrat software (24). The PCA technique
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effectively decomposes the variability present in high-
dimensional data sets into lower dimensions. The top axes of
variation (i.e., the principal components) should reflect the

geographic trends (if such trends exist) in our sample. As a
more indirect measure of population structure, we also calcu-
lated the genomic inflation factor (�observed) (25), a measure of

Figure 2. A, Principal components (PCs) informative for ancestry. For 246 individuals in the genome-wide association study, complete
information regarding the province of birth of all 4 grandparents was available. Based on this information, individuals were divided into 6
geographic regions in Spain. The graph shows the 2 principal components informative for ancestry, demonstrating a west-to-east trend. B,
Scatter plot of P values before (x-axis) and after (y-axis) correction for structure. Correcting for geographic structure using the
ancestry-informative PCs as covariates does not show a trend with signals above and below the diagonal line.
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the “overdispersion” of the association statistic (i.e., allelic
chi-square). The closer this value is to the null value (�null �
1), the lower the probability of the presence of population
structure in the sample.

Genome-wide association analysis, SNP selection, and
replication analysis. We performed chi-square allelic tests for
the 299,918 SNPs that remained after quality control filtering
using PLINK software (26). Following the liability model
described previously, we performed 3 different analyses: a
global comparison (all patients with RA versus all control
subjects), an extreme liability comparison (patients with long-
standing RA versus hypernormal control subjects), and a
chronic arthritis liability comparison (all patients with RA and
those with non-RA inflammatory arthritis versus hypernormal
control subjects). Using Benjamini and Hochberg correction
for multiple testing, only HLA class II SNPs and a single
marker in chromosome 3 (rs11129989) were significant. Tables
showing the complete results are available online at http://
www.urr.cat.

Several criteria have been proposed for selecting SNPs
for replication that do not withstand conservative multiple test
correction methods. Some studies have used the significance
rank to select a relative arbitrary number of SNPs (27), while
others use biologic information to favor a group of candidate
SNPs (28). In our study, we observed an increased number of
non-HLA SNPs showing strong signals (P � 1 � 10�5) in the
extreme group comparison (7 SNPs) compared with the global
comparison (1 SNP). Therefore, we decided to use the infor-
mation from this comparison in 2 different selection strategies.

In one strategy, we began by genotyping a group of
highly significant HLA SNPs (n � 13) (data not shown) in the
replication group. All of these SNPs were positively replicated.
Next, we calculated a bootstrapped P value for the genome-
wide association study extreme comparison (n � 1,000 resam-
plings). From this resample-based rank, we selected all non-
HLA SNPs that had higher significance values than any of the
positively replicated HLA class II SNPs (7 SNPs). In the
second strategy, we selected those SNPs with significance of
P � 1 � 10�3 in the extreme group comparison (326 SNPs)
and that also had significance of P � 1 � 10�3 when tested in
the early RA versus hypernormal control subject data sets (27
SNPs). Both methods yielded a total number of 34 SNPs that
were genotyped and analyzed in the replication group. In order
to provide a measure of contrast of our results in the replica-
tion group, we included SNPs from known candidates for RA.
This included PTPN22 (rs2476601), CTLA4 (rs231804), and
PADI4 (rs2240340). Like the whole-genome association study
analysis, the replication association analysis was performed
using the allelic chi-square test (P � 0.05).

Genome-wide scan for epistasis. We performed the
binary test of epistasis (SNP � SNP method) implemented in
PLINK. Performing the �45 � 10�9 pairwise analyses would
take several weeks in a typical workstation. In order to make it
a feasible analysis, we modified the PLINK software so that it
could be run in MareNostrum, a supercomputer with 10.240
64-bit Myrinet-connected processors with a final calculation
capacity of 94.21 Teraflops (Barcelona Supercomputing Cen-
tre, Barcelona, Spain). Chromosome X SNPs were excluded

from the analyses. Tables showing the extended results are
available online at http://www.urr.cat.

Comparison with previous genome-wide association
studies. Using the available data from each of the 3 previous
genome-wide association studies, we looked for genomic re-
gions that share indicative association signals with our study.
For the WTCCC study, results for all 500,000 SNPs are
available (14), while in the Brigham and Women’s Rheumatoid
Arthritis Sequential Study (BRASS) (16) and North American
Rheumatoid Arthritis Consortium (NARAC) and the Swedish
Epidemiological Investigation of Rheumatoid Arthritis
(EIRA) (15) studies, only those SNPs with P values of �1 �
10�3 and �1 � 10�4, respectively, are directly accessible. In
order to perform a more informative analysis, we selected the
most significant SNPs in one study (P � 1 � 10�4) (study 1)
and searched for those neighboring SNPs in the other study
showing an indicative significance (P � 0.005) (study 2). We
considered 2 SNPs from different studies to be suggestive of a
common association if their genomic distance was �200 kb.
The results for all analyses are available online at http://
www.urr.cat.

RESULTS

Using a liability-based design, we genotyped
317,503 SNPs in 400 patients with RA and 400 control
subjects. After applying several filtering criteria, 299,918
high-quality SNPs were finally selected for subsequent
analyses.

Population structure. A dense set of SNPs cov-
ering the genome enables the robust identification of
population outliers, using multidimensional analysis
techniques (24,26). In our study, using the PCA tech-
nique, we identified and removed 41 outlier individuals
(17 patients with RA and 24 control subjects). Analyzing
the top principal components, we found that 2 of them
captured a west-to-east trend, although they were less
efficient in reflecting the north-to-south geographic vari-
ation (Figure 2A). Adding these 2 principal components
as covariates in the genome-wide association analysis did
not show a strong trend in the data (Figure 2B). This is
in agreement with the low genomic inflation factor
detected (�observed � 1.01, �null � 1). Therefore, the
results reported do not correct for structure.

Genome-wide association study findings. We
performed allelic association analyses to identify
those loci associated with RA susceptibility and with
general susceptibility to chronic inflammatory arthri-
tis. Results for the strongest signals (P � 1 � 10�5)
outside the HLA region are shown in Table 1. Except
for rs2225966, rs2002842, and rs1328132, the other 19
SNPs are intronic or located within 100 kb from the
closest gene. SNP rs11129989 in the extreme liability
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analysis is the unique non-HLA SNP that was still
significant after correction for multiple testing (cor-
rected P � 0.013). This SNP was selected for replica-
tion in the independent sample.

As expected, several HLA class II–region SNPs
showed a strong association in the global and extreme
liability analyses (P � 1 � 10�9) but were also the strongest
markers in the chronic arthritis analysis (data not shown).
In particular, SNPs rs6457617 and rs9275390 were statisti-
cally significant in all 3 analyses after correction for multi-
ple testing. Both of these SNPs are between HLA-DQA1
and HLA-DQA2, 5 kb apart from each other.

Replication study findings. Using 2 different
approaches, we selected a total group of 34 candidate
SNPs for replication in an independent cohort of 410
patients with RA and 394 control subjects. The esti-
mated genotyping error rate was extremely low (0.3%),
indicating strong reproducibility of the results.

The results for the final 38 SNPs are shown in
Table 2. Among all markers tested, only 5 SNPs showed
a nominal association (P � 0.05). Two of them
(rs10864382 and rs7006821) showed an effect opposite
to that detected in the genome-wide association study
analysis. The other 3 SNPs were the coding SNP from
PTPN22 (rs2476601; P � 0.022) and 2 intronic SNPs,

one from the third intron of SVOP (rs7313861; P �
0.043) and the other from the first intron of KLF12
(rs1324913; P � 0.013). All 3 SNPs showed a good
correlation with the size of the genetic effect detected in
the genome-wide association study analysis (for the
genome-wide association studies and the replication
studies, respectively, the odds ratios [ORs] were 1.47
and 1.49 for rs2476601, 1.33 and 1.23 for rs731861, and
0.73 and 0.77 for rs1324913).

Genome-wide epistasis. We performed a
genome-wide analysis of all SNP � SNP combinations
and their association with susceptibility to RA and
chronic arthritis. Although correction for the �45 �
10�9 tests performed determined a very high signifi-
cance threshold (P � 1.2 � 10�12), we observed
several SNP pairs that were very close to this value
(Table 3).

Genomic regions common with those in previous
genome-wide association studies. The integration of our
results with those from the previous genome-wide asso-
ciation studies identified several genomic regions show-
ing common association signals. The closest SNPs (�50
kb) are shown in Table 4. Within this group, 2 SNPs
from CSMD2 showed the most significant common
association (P � 2.99 � 10�5 for rs10914783 in WTCCC,

Table 1. SNPs showing the strongest evidence of association in the GWAS analysis*

GWAS analysis SNP Chr Gene MA MAF OR P

Global rs2002842 18 SALL3 A 0.49 1.61 5.52 � 10�6

Extreme liabilities rs11129989 3 ZNF662 G 0.08 0.32 2.47 � 10�7

Extreme liabilities rs1328132 6 OFCC1 T 0.20 0.46 3.52 � 10�6

Extreme liabilities rs11086843 20 PTPRT C 0.54 1.96 3.79 � 10�6

Extreme liabilities rs9878975 3 AGO61 C 0.11 0.41 6.71 � 10�6

Extreme liabilities rs2060396 2 CTNNA2 A 0.20 0.47 7.24 � 10�6

Extreme liabilities rs2225966 1 LPHN2 C 0.26 0.50 8.99 � 10�6

Extreme liabilities rs7968375 12 MANSC1 A 0.36 0.52 9.06 � 10�6

Chronic arthritis rs6739713 2 R3HDM1 G 0.36 0.56 1.47 � 10�6

Chronic arthritis rs946908 14 DAAM1 C 0.16 0.51 1.60 � 10�6

Chronic arthritis rs2822383 21 C21orf81 T 0.27 2.11 3.21 � 10�6

Chronic arthritis rs309137 2 DARS C 0.43 0.58 3.22 � 10�6

Chronic arthritis rs309160 2 DARS A 0.43 0.58 3.29 � 10�6

Chronic arthritis rs1108929 1 LOC127540 A 0.20 0.55 3.66 � 10�6

Chronic arthritis rs11129989 3 ZNF662 G 0.11 0.49 3.82 � 10�6

Chronic arthritis rs4314247 4 KIAA0992 G 0.45 0.58 4.44 � 10�6

Chronic arthritis rs10915577 1 AJAP1 A 0.50 1.73 5.38 � 10�6

Chronic arthritis rs4624474 21 BRWD1 T 0.48 1.74 6.28 � 10�6

Chronic arthritis rs309143 2 DARS G 0.23 0.56 6.47 � 10�6

Chronic arthritis rs1324913 13 KLF12 A 0.28 0.58 6.53 � 10�6

Chronic arthritis rs6986405 8 SGCZ A 0.35 1.83 8.86 � 10�6

Chronic arthritis rs2823580 21 C21orf34 C 0.25 2.04 9.51 � 10�6

Chronic arthritis rs2807873 1 HLX1 T 0.24 0.57 9.73 � 10�6

* Single-nucleotide polymorphisms (SNPs) from the whole-genome association study (GWAS) analyses
showing the strongest significance values (P � 1 � 10�5). Only SNPs outside the HLA region (25–35 Mb
from chromosome 6) are shown. Chr � chromosome; MA � minor allele; MAF � minor allele frequency;
OR � odds ratio.
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Table 3. Top pairwise SNP � SNP interactions identified in all 3 genome-wide comparisons*

GWAS SNP 1 Chr Gene SNP 2 Chr Gene P

Global rs9752494 2 PPM1B rs1569020 12 GPR133 1.22 � 10�12

Global rs10465885 1 GJA5 rs2302502 18 PTPRM 3.62 � 10�11

Global rs950675 2 TPO rs1569020 12 GPR133 4.84 � 10�11

Global rs12755965 1 GJA5 rs6776932 3 ACPP 5.41 � 10�11

Extreme liability rs259401 6 RAB32 rs2322140 17 DNAH9 7.73 � 10�11

Extreme liability rs2244817 8 SULF1 rs3826296 17 AKAP1 8.56 � 10�11

Extreme liability rs2244817 8 SULF1 rs998113 17 AKAP1 9.52 � 10�11

Chronic arthritis rs10171653 2 RTN4 rs7033413 9 GLIS3 5.69 � 10�12

Chronic arthritis rs2580768 2 RTN4 rs7033413 9 GLIS3 2.63 � 10�11

Chronic arthritis rs4849025 2 CNTNAP5 rs2392829 8 PXDNL 9.07 � 10�11

* The binary test implemented in PLINK was used to identify several single-nucleotide polymorphism (SNP) pairs close to the threshold for
correction for multiple testing (P � 1.11 � 10�12). Interaction association can be detected by neighboring SNPs, as can be seen for the
SULF1–AKAP1 interaction in the extreme liability analysis and the RTN4–GLIS3 interaction in the chronic arthritis analysis. GWAS � genome-wide
association study; Chr � chromosome.

Table 2. Results for selected SNPs in the replication study*

SNP Chr Gene
Selection
criteria MA MAF P, global

OR,
global OR P

rs10889271 1 INADL Bootstrap T 0.4 0.0016 0.72 1.00 0.977
rs10864382 1 SLC2A5 SC C 0.37 0.0058 1.36 0.79 0.028
rs2807873 1 HLX1 Bootstrap T 0.23 0.00028 0.65 1.17 0.162
rs524331 1 TRIM67 SC T 0.42 5.50 � 10�5 1.54 0.83 0.069
rs2240340 1 PADI4 Known A NA NA NA 1.09 0.411
rs2476601 1 PTPN22 Known A 0.12 0.029 1.47 1.49 0.022
rs10490105 2 FANCL SC A 0.21 2.99 � 10�5 0.61 1.22 0.084
rs2060396 2 CTNNA2 Bootstrap A 0.23 0.0016 0.69 1.01 0.958
rs6739713 2 R3HDM1 SC G 0.38 0.1188 0.85 1.11 0.311
rs231804 2 CTLA4 Known C 0.45 0.02059 0.79 0.83 0.060
rs7609518 2 GPC1 Bootstrap C 0.31 0.0051 1.39 0.95 0.625
rs11129989 3 ZNF662 MTS G 0.1 7.62 � 10�5 0.54 1.30 0.092
rs4677179 3 RYBP SC A 0.22 0.0032 1.48 1.11 0.436
rs6802500 3 PDZRN3 SC T 0.4 2.18 � 10�5 1.59 1.03 0.777
rs1022079 4 LOC132321 SC A 0.29 0.00097 1.48 1.12 0.366
rs306364 4 LOC132321 Bootstrap A 0.49 0.086 1.2 0.95 0.585
rs4314247 4 KIAA0992 SC G 0.45 0.0023 0.73 0.87 0.154
rs289079 4 PCDH7 SC T 0.49 0.00085 1.43 0.93 0.477
rs7725585 5 DAB2 SC A 0.45 0.0001 1.53 1.07 0.494
rs713584 5 SPOCK SC A 0.35 0.0021 0.72 1.01 0.937
rs3130299 6 NOTCH4 SC G 0.3 0.00048 0.68 0.82 0.069
rs682946 6 COL9A1 SC C 0.33 4.00 � 10�5 1.61 1.06 0.624
rs1565441 6 FRMD1 SC T 0.49 8.86 � 10�5 1.51 0.91 0.358
rs3823833 7 ICA1 SC C 0.41 0.00035 0.69 0.93 0.503
rs9656200 7 GPR85 SC A 0.12 0.0014 0.62 0.93 0.596
rs7793728 7 Sep-07 SC G 0.22 4.05 � 10�5 0.62 0.95 0.672
rs7006821 8 EYA1 SC C 0.09 0.00018 2.29 0.68 0.030
rs1241799 11 B3GAT1 SC A 0.1 0.011 1.62 0.93 0.691
rs1468796 12 TMPO SC T 0.42 3.68 � 10�5 1.56 0.84 0.091
rs7313861 12 SVOP SC T 0.42 0.0079 1.33 1.23 0.043
rs1324913 13 KLF12 SC A 0.28 0.0047 0.73 0.77 0.013
rs1886925 13 SLC10A2 SC A 0.42 0.0022 0.73 1.03 0.768
rs769426 17 OR1A1 SC G 0.3 0.597 0.94 1.08 0.489
rs2002842 18 SALL3 SC A 0.49 5.52 � 10�6 1.61 0.90 0.287
rs1329820 20 C20orf23 Bootstrap A 0.23 0.0012 1.52 1.04 0.735
rs6030267 20 PTPRT Bootstrap A 0.21 0.0021 1.52 0.94 0.646
rs2823580 21 C21orf34 SC C 0.24 0.028 1.32 0.92 0.490
rs2836982 21 BRWD1 SC C 0.5 0.0022 1.37 1.12 0.272

* Among all 38 single-nucleotide polymorphisms (SNPs) tested, 5 showed nominal significance. The 2 most associated SNPs are KLF12 rs1324913
followed by PTPN22 rs2476601. Two SNPs (SLC2A5 rs10864382 and EYA1 rs7006821) show an effect opposite to the estimated effect in the
genome-wide association study analysis. Chr � chromosome; MA � minor allele; MAF � minor allele frequency; OR � odds ratio; SC � subgroup
comparison; NA � not applicable; MTS � multiple testing significance.
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and P � 2.56 � 10�5 for rs1108929 in our study). This
association is the strongest detected, even after extend-
ing the analysis to a distance of 200 kb.

We found 2 genomic regions to be common in
both the WTCCC study and BRASS. KLF12 SNPs
rs1887346 and rs9318228 in our study were associated
with BRASS SNP rs9318225 (P � 0.002) (Table 4) and
with WTCCC SNP rs1887346 (P � 0.0049). PTPRT
intronic SNPs rs6030267 (P � 4.08 � 10�5) and
rs11086843 (P � 2.07 � 10�6) were commonly associ-
ated with BRASS SNP rs10485690 (P � 5 � 10�4) and
WTCCC SNP rs2223542 (P � 0.0015).

DISCUSSION

We performed a 2-stage genome-wide associa-
tion study for RA in the Spanish population, using 400
patients with RA and 400 control subjects. From these
results, we selected a group of candidate SNPs and

performed a replication study in an independent group
of 410 patients with RA and 394 control subjects. In our
study, we found KLF12 to have stronger significance
than previously associated non-HLA SNPs. We also
integrated our association results with those of the 3
previous genome-wide association studies in RA. KLF12
and PTPRT are the 2 unique genes that are in common
regions in our study and both the WTCCC study and
BRASS. Finally, we performed a genome-wide analysis
for epistasis and found several SNP pairs with statistical
values close to significance even after correction for
multiple testing.

In the present study, we followed a liability model
that could underlie susceptibility to chronic inflamma-
tory diseases and, thus, susceptibility to RA. Results of
several recent studies support this model. NALP1 has
been recently associated with vitiligo and several other
autoimmune diseases, including RA (18). Fc receptor–

Table 4. Genomic loci showing common signals between the present genome-wide association study and
the 3 previous genome-wide association studies*

Region
Gene in
region Study 1 Top SNP P Study 2 Top SNP P

13q22 KLF12 URR rs1887346 6.03 � 10�5 BRASS rs9318225 2.00 � 10�3

URR rs9318228 3.66 � 10�5

1p35.1–p34.3 CSMD2 URR rs1108929 2.56 � 10�5 WTCCC rs10914783 2.99 � 10�5

5p15 TAS2R1 URR rs13159275 8.92 � 10�5 WTCCC rs10513046 0.0021
11p15.1 NAV2 URR rs10833197 4.86 � 10�5 WTCCC rs2568127 0.00051
4p14-p12 ATP8A1 BRASS rs10517039 2.00 � 10�6 URR rs4370169 0.0021

URR rs6447164 0.0044
URR rs10517035 0.0009
URR rs10517038 0.0048
URR rs3811768 0.00042

10q22–q23 NRG3 BRASS rs10509440 6.00 � 10�5 URR rs12358407 0.0043
10q23.1 KIAA1128 BRASS rs10491033 1.00 � 10�7 URR rs1572430 0.00057
12q24.1 TBX5 BRASS rs10507251 4.00 � 10�5 URR rs11830449 0.00029
1p35.1–p34.3 CSMD2 WTCCC rs10914783 2.99 � 10�5 URR rs1108929 2.56 � 10�5

URR rs10799004 0.00047
URR rs10799006 0.0022

1p31.1 IFI44 WTCCC rs11162922 1.80 � 10�6 URR rs7416587 0.0038
URR rs4384179 0.0035

5q14.1 CMYA5 WTCCC rs7343 8.28 � 10�5 URR rs1129770 0.0049
6q23 EYA4 WTCCC rs2677821 2.48 � 10�13 URR rs2327358 0.00073
8q13.3 EYA1 WTCCC rs4133002 6.17 � 10�5 URR rs13274769 0.0028
8q23 OXR1 WTCCC rs16874205 9.43 � 10�10 URR rs13364828 0.0025
10p12 PTER WTCCC rs12269329 5.80 � 10�6 URR rs11253931 0.0012
15q21.3 WDR72 WTCCC rs1711029 3.61 � 10�12 URR rs1021744 0.0047
18q23 SALL3 WTCCC rs2941794 1.27 � 10�10 URR rs2002842 0.00092

URR rs2941811 0.0047
22q13.1 C1QTNF6 WTCCC rs743777 7.92 � 10�6 URR rs229527 0.0038

* The top single-nucleotide polymorphisms (SNPs) from the first study (study 1; P � 1 � 10�3) were
examined in the second study (study 2; P � 0.005) for signals within a 50-kb flanking region. No matches
with the North American Rheumatoid Arthritis Consortium and the Swedish Epidemiological Investiga-
tion of Rheumatoid Arthritis studies were found at this genomic distance. URR � Unitat de Recerca de
Rheumatologia (present study); BRASS � Brigham and Women’s Rheumatoid Arthritis Sequential
Study; WTCCC � Wellcome Trust Case Control Consortium.
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like protein (29) and STAT-4 (19) have been associated
with susceptibility to both RA and systemic lupus ery-
thematosus. PTPN22 itself was studied and associated
with RA after demonstrating its association with suscep-
tibility to type 1 diabetes mellitus (7). The WTCCC
genome-wide scan also provides several genomic regions
linking chronic inflammatory diseases such as RA, type
1 diabetes mellitus, and Crohn’s disease (14). Following
this model, we selected individuals in whom the risk of
developing chronic inflammatory disease was lowest
(hypernormal controls) and also individuals in whom a
different chronic inflammatory arthritis (non-RA) was
diagnosed. In order to increase the contrast, we also
included individuals in the RA group who had a highly
erosive phenotype. This strategy always adds substantial
power to the traditional case–control design (17), al-
though the difficulties associated with obtaining such
individuals generally limit its extended use.

Several lines of evidence support the association
of KLF12 with RA susceptibility. First, in our popula-
tion, SNP rs1324913 showed a stronger association with
RA compared with PTPN22 SNP rs2476601. This was
observed in the genome-wide and the replication analy-
ses. Although this does not imply a stronger genetic
effect (for PTPN22 and KLF12, the estimated ORs were
1.49 and 1.3, respectively), it provides further evidence
of association. The allelic association analyses per-
formed in the present study assume a multiplicative
genetic model (30) (i.e., the risk of developing the
disease multiplied by a factor for each susceptibility
allele carried). However, exploration of alternative ge-
netic models (i.e., dominant, recessive, and genotypic)
can give additional information on relevant genetic
associations. In our replication analysis, the dominant
model of rs1324913 had a significance of P � 0.005; no
other replicated SNP showed such an increase in signif-
icance (data not shown). In order to check the consis-
tency of this observation, we performed the same model
analysis in our genome-wide association study data. We
observed that the dominant model also had the strongest
association in the extreme liability analysis (PDominant �
1 � 10�5 versus PMultiplicative � 1 � 10�4) and the global
analysis (PDominant � 6 � 10�4 versus PMultiplicative � 5 �
10�3).

Other important evidence supporting KLF12 as-
sociation is that, together with PTPRT, they are the only
2 genomic regions commonly found when comparing our
study with the BRASS and WTCCC studies. In the
extreme liability analysis, 2 SNPs in the KLF12 tran-
scribed region had a significance of P � 1 � 10�4

(rs1887346 and rs9318228 with P � 6.02 � 10�5 and P �

3.66 � 10�5, respectively). Both SNPs are only 8.2 kb
apart from each other, and are only 1.7 kb and 9.9 kb,
respectively, from the SNP rs9318225 in BRASS (P � 2
� 10�3) (Table 1). When comparing our study with the
WTCCC, we found rs1184596 (same intron, 170 kb
upstream) to have an indicative association (P � 4.9 �
10�3). Although it is more distant to SNPs rs1887346
and rs9318228, it is closer to the replicated KLF12 SNP
rs1324913 (38 kb). This finding supports the replicability
of this association in different populations.

KLF12 (activator protein 2� [AP-2�] repressor)
is a member of the family of Kruppel-like transcriptional
regulatory factors (31), which play fundamental roles in
differentiation and development. KLF12 is known to
repress the transcription of AP-2� transcription factor
after binding to the general correpressor protein
C-terminal binding protein 1 (32). The expression pat-
terns of AP-2�–regulated genes, including the gene for
tumor necrosis factor � (TNF�), have been implicated in
malignant transformation and stress responses (33,34).
Thus, genetic variations could increase susceptibility to
RA through various mechanisms: either by facilitating
the transformation of local connective cells (32) or by
promoting lymphocyte survival (35). More intriguingly,
the recent characterization of AP-2–mediated TNF�
gene expression in B19 parvoviral infection could add an
alternative mechanism. This type of infection can pro-
duce a chronic inflammatory arthritis that can fulfill the
diagnostic criteria for RA. For many years, B19 has been
studied as a possible trigger for RA, although with
controversial results (36,37). The observed genetic asso-
ciation of KLF12 with RA and its direct implication in
TNF� regulation could represent a new perspective on
genetic and environmental interactions associated with
RA susceptibility.

The integration of our results with those of
previous genome-wide association studies identified sev-
eral relevant genomic regions. PTPRT and KLF12 are
the only loci associated in both the WTCCC study and
BRASS. Protein tyrosine phosphatase (PTP) receptor T,
the most frequently mutated PTP in human cancers, has
been recently characterized as a key inhibitor of STAT-3
(38). STAT-3, in turn, mediates transcriptional activa-
tion in response to several cytokines, including RA-
associated interleukin-6. The common signal at CSMD2
in our study and the WTCCC study is the strongest
association detected. CSMD2 is a recently cloned gene
(39) whose functionality still needs to be identified.
Recently, CSMD1, a gene with high structural similarity
to CSMD2, has been implicated in the inhibition of
complement activation (40), which could suggest a com-
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mon functionality. In addition, the results from our
analysis along with previous genome-wide association
studies also identified several SNPs from the newly
associated TNFAIP3 locus (rs643571 at P � 6 � 10�3

and rs6915853 at P � 2 � 10�3 in our study). This
finding confirms the power of our analysis method to
identify genomic regions that are relevant to RA suscep-
tibility.

Although the same technologic platform was
used, comparison of our study with the NARAC and
EIRA studies did not reveal evidence of association for
any of the TRAF1-C5–region SNPs. This lack of associ-
ation, which was also observed in the WTCCC study
(15), could be largely attributable to the restricted
analysis of anti-CCP antibody–positive RA patients in
the NARAC and EIRA cohorts. Therefore, an exact
comparison would have required specifically addressing
the association in anti-CCP antibody–positive patients
only. However, a more detailed analysis of the associa-
tion in this region showed additional results. We found
several indicative signals (4 SNPs at a significance level
of P � 0.01) in the 5�– and 3�–untranslated regions of
FBXW2. This gene is 109 kb from TRAF1 and encodes
for a protein that participates in the ubiquitin/
proteasome degradation system (41). Therefore, our
analysis suggests that, in this genomic region, FBXW2
seems to be associated with RA susceptibility.

There is increasing evidence that gene–gene in-
teractions (epistasis) could be of major relevance in
susceptibility to complex diseases (42,43). A recent study
demonstrated that complete genome-wide analysis has
more power to detect relevant SNP pairs than methods
that use filtering strategies, even after correction for
multiple testing (43). In the present study, we performed
an exhaustive analysis of all autosomal SNP pairs and
found several of them with significance close to the
threshold of significance for multiple testing. An impor-
tant observation is that no known main-effect SNP was
observed in this group of top SNPs. In fact, HLA class II
SNPs appear only at the level of P � 1 � 10�8 to P � 1
� 10�7. This could probably indicate that, although the
possibility of epistasis with this region cannot be dis-
carded, other regions with marginal main effects seem to
show stronger interactions associated with disease risk.
This also confirms the need to perform exhaustive
analyses in the search for epistasis. To our knowledge,
none of the top SNP pairs (P � 1 � 10�10) belong to
genes from a known common biologic pathway. Protein
phosphatase 1B, a regulator of NF-�B transcription
factor, has a strong interaction in the global analysis with
protein G–coupled receptor 133, which, to date, has no

associated biologic function. In the extreme liability
analysis, the human sulfatase 1 gene (SULF1), a heparan
sulfatase involved in tumor progression and inflamma-
tion (44), is also interacting with 2 SNPs from the A
kinase anchor protein 1 gene (AKAP1). The latter has
been associated with cAMP-mediated signal transduc-
tion and messenger RNA trafficking (45).

The present study is one of the first genome-wide
association analyses in RA. Using a liability-based de-
sign, we found several new candidate SNPs for RA and
chronic inflammatory arthritis. We performed a replica-
tion analysis in an independent subset of SNPs, from
which KLF12 emerged as a new candidate susceptibility
gene for RA. A comparison of our results with those
from the 3 previous genome-wide association studies
confirmed the relevance of the KLF12 locus and also
identified several other regions of interest for subse-
quent studies. In order to search for more complex
genetic models involved in RA susceptibility, we per-
formed a genome-wide analysis for epistasis. The results
presented here add important aspects to the continuing
definition of RA genetic architecture. Consistent repli-
cation of these results in different populations will
confirm the association of the genomic regions to RA
susceptibility.
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2. Firestein GS. Evolving concepts of rheumatoid arthritis [review].
Nature 2003;423:356–61.

3. MacGregor AJ, Snieder H, Rigby AS, Koskenvuo M, Kaprio J,
Aho K, et al. Characterizing the quantitative genetic contribution
to rheumatoid arthritis using data from twins. Arthritis Rheum
2000;43:30–7.

4. Cornelis F, Faure S, Martinez M, Prud’homme JF, Fritz P, Dib C,
et al, for the European Consortium on Rheumatoid Arthritis
Families. New susceptibility locus for rheumatoid arthritis sug-
gested by a genome-wide linkage study. Proc Natl Acad Sci U S A
1998;95:10746–50.

5. Jawaheer D, Li W, Graham RR, Chen W, Damle A, Xiao X, et al.
Dissecting the genetic complexity of the association between
human leukocyte antigens and rheumatoid arthritis. Am J Hum
Genet 2002;71:585–94.

6. Chapman J, Clayton D. Detecting association using epistatic
information. Genet Epidemiol 2007;31:894–909.

7. Begovich AB, Carlton VE, Honigberg LA, Schrodi SJ, Chokkal-
ingam AP, Alexander HC, et al. A missense single-nucleotide
polymorphism in a gene encoding a protein tyrosine phosphatase
(PTPN22) is associated with rheumatoid arthritis. Am J Hum
Genet 2004;75:330–7.

8. Suzuki A, Yamada R, Chang X, Tokuhiro S, Sawada T, Suzuki M,
et al. Functional haplotypes of PADI4, encoding citrullinating
enzyme peptidylarginine deiminase 4, are associated with rheuma-
toid arthritis. Nat Genet 2003;34:395–402.

9. Rodriguez MR, Nunez-Roldan A, Aguilar F, Valenzuela A,
Garcia A, Gonzalez-Escribano MF. Association of the CTLA4 3�
untranslated region polymorphism with the susceptibility to rheu-
matoid arthritis. Hum Immunol 2002;63:76–81.

10. Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K. A com-
prehensive review of genetic association studies [review]. Genet
Med 2002;4:45–61.

11. Risch N, Merikangas K. The future of genetic studies of complex
human diseases. Science 1996;273:1516–7.

12. Reich DE, Lander ES. On the allelic spectrum of human disease.
Trends Genet 2001;17:502–10.

13. Hirschhorn JN, Daly MJ. Genome-wide association studies for
common diseases and complex traits [review]. Nat Rev Genet
2005;6:95–108.

14. Wellcome Trust Case Control Consortium. Genome-wide associ-
ation study of 14,000 cases of seven common diseases and 3,000
shared controls. Nature 2007;447:661–78.

15. Plenge RM, Seielstad M, Padyukov L, Lee AT, Remmers EF,
Ding B, et al. TRAF1-C5 as a risk locus for rheumatoid arthritis:
a genomewide study. N Engl J Med 2007;357:1199–209.

16. Plenge RM, Cotsapas C, Davies L, Price AL, de Bakker PI, Maller
J, et al. Two independent alleles at 6q23 associated with risk of
rheumatoid arthritis. Nat Genet 2007;39:1477–82.

17. Morton NE, Collins A. Tests and estimates of allelic association in
complex inheritance. Proc Natl Acad Sci U S A 1998;95:11389–93.

18. Jin Y, Mailloux CM, Gowan K, Riccardi SL, LaBerge G, Bennett
DC, et al. NALP1 in vitiligo-associated multiple autoimmune
disease. N Engl J Med 2007;356:1216–25.

19. Remmers EF, Plenge RM, Lee AT, Graham RR, Hom G, Behrens
TW, et al. STAT4 and the risk of rheumatoid arthritis and systemic
lupus erythematosus. N Engl J Med 2007;357:977–86.

20. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF,
Cooper NS, et al. The American Rheumatism Association 1987
revised criteria for the classification of rheumatoid arthritis.
Arthritis Rheum 1988;31:315–24.

21. Doran MF, Pond GR, Crowson CS, O’Fallon WM, Gabriel SE.
Trends in incidence and mortality in rheumatoid arthritis in
Rochester, Minnesota, over a forty-year period. Arthritis Rheum
2002;46:625–31.

22. Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs
RA, et al, for the International HapMap Consortium. A second

generation human haplotype map of over 3.1 million SNPs. Nature
2007;449:851–61.

23. Buetow KH, Edmonson M, MacDonald R, Clifford R, Yip P,
Kelley J, et al. High-throughput development and characterization
of a genomewide collection of gene-based single nucleotide poly-
morphism markers by chip-based matrix-assisted laser desorption/
ionization time-of-flight mass spectrometry. Proc Natl Acad Sci
U S A 2001;98:581–4.

24. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA,
Reich D. Principal components analysis corrects for stratifica-
tion in genome-wide association studies. Nat Genet 2006;38:
904–9.

25. Devlin B, Roeder K, Wasserman L. Genomic control, a new
approach to genetic-based association studies [review]. Theor
Popul Biol 2001;60:155–66.

26. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA,
Bender D, et al. PLINK: a tool set for whole-genome association
and population-based linkage analyses. Am J Hum Genet 2007;
81:559–75.

27. Winkelmann J, Schormair B, Lichtner P, Ripke S, Xiong L,
Jalilzadeh S, et al. Genome-wide association study of restless legs
syndrome identifies common variants in three genomic regions.
Nat Genet 2007;39:1000–6.

28. Wang K, Li M, Bucan M. Pathway-based approaches for analysis
of genomewide association studies. Am J Hum Genet 2007. E-pub
ahead of print.

29. Kochi Y, Yamada R, Suzuki A, Harley JB, Shirasawa S, Sawada T,
et al. A functional variant in FCRL3, encoding Fc receptor-like 3,
is associated with rheumatoid arthritis and several autoimmunities.
Nat Genet 2005;37:478–85.

30. Balding DJ. Handbook of statistical genetics. West Sussex (UK):
John Wiley & Sons; 2001.

31. Bieker JJ. Kruppel-like factors: three fingers in many pies. J Biol
Chem 2001;276:34355–8.

32. Schuierer M, Hilger-Eversheim K, Dobner T, Bosserhoff AK,
Moser M, Turner J, et al. Induction of AP-2� expression by
adenoviral infection involves inactivation of the AP-2rep transcrip-
tional corepressor CtBP1. J Biol Chem 2001;276:27944–9.

33. Kannan P, Buettner R, Chiao PJ, Yim SO, Sarkiss M, Tainsky MA.
N-ras oncogene causes AP-2 transcriptional self-interference,
which leads to transformation. Genes Dev 1994;8:1258–69.

34. Wajapeyee N, Somasundaram K. Cell cycle arrest and apoptosis
induction by activator protein 2� (AP-2�) and the role of p53 and
p21WAF1/CIP1 in AP-2�-mediated growth inhibition. J Biol
Chem 2003;278:52093–101.

35. Zhou M, McPherson L, Feng D, Song A, Dong C, Lyu SC, et al.
Kruppel-like transcription factor 13 regulates T lymphocyte sur-
vival in vivo. J Immunol 2007;178:5496–504.

36. Simpson RW, McGinty L, Simon L, Smith CA, Godzeski CW,
Boyd RJ. Association of parvoviruses with rheumatoid arthritis of
humans. Science 1984;223:1425–8.

37. Takahashi Y, Murai C, Shibata S, Munakata Y, Ishii T, Ishii K, et
al. Human parvovirus B19 as a causative agent for rheumatoid
arthritis. Proc Natl Acad Sci U S A 1998;95:8227–32.

38. Zhang X, Guo A, Yu J, Possemato A, Chen Y, Zheng W, et al.
Identification of STAT3 as a substrate of receptor protein tyrosine
phosphatase T. Proc Natl Acad Sci U S A 2007;104:4060–4.

39. Lau WL, Scholnick SB. Identification of two new members of
the CSMD gene family small star, filled. Genomics 2003;82:
412–5.

40. Kraus DM, Elliott GS, Chute H, Horan T, Pfenninger KH,
Sanford SD, et al. CSMD1 is a novel multiple domain comple-
ment-regulatory protein highly expressed in the central nervous
system and epithelial tissues. J Immunol 2006;176:4419–30.

41. Yang CS, Yu C, Chuang HC, Chang CW, Chang GD, Yao TP, et
al. FBW2 targets GCMa to the ubiquitin-proteasome degradation
system. J Biol Chem 2005;280:10083–90.

GENOME-WIDE ASSOCIATION ANALYSES IN RA 2285



Chapter 6

Discussion

We hope that our work has demonstrated the contributions of two genomic ap-

proaches to the characterization of the genetic risk of RA. Using a simple but

powerful in vitro model of synovial fibroblast activation and a reverse engineer-

ing approach, we have identified the basic transcriptional regulatory network

associated with the response to the complex proinflammatory environment in

RA. We have used this regulatory network as a powerful candidate gene set for

RA susceptibility, from which we have identified a significant two–locus epistatic

effect. Using a liability–based epidemiological design, we have performed the

first genome-wide association scan for RA in the Spanish population. We have

provided strong evidence of a new candidate gene for RA, KLF12, and we have

identified a group of signals which are likely to yield additional susceptibility loci.

In this study, we have also performed the first genome-wide exploration for epis-

tasis performed in a complex disease which provides new insights into RA genetic

architecture.

In Chapter 1, we have listed the main contributions of the present thesis work,

so we will conclude by elaborating a subjective view of the results. We will now

discuss potential implications of these results for the study of RA genetic basis.

Finally, we will briefly comment on the current and future work based on these

results.

There is now little doubt about the usefulness of genomic approaches for

the identification of genetic variants associated with complex traits. Gene ex-

pression microarrays were the first of such high throughput technologies to be
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massively utilized in biomedical research. Actually, almost all common diseases

have been explored using microarrays and, with the gradual reduction of manu-

facturing costs, the number of biomedical features explored using this technology

will most likely be exponential. With this increasing amount of biological infor-

mation stored in public databases it will be able to discover fundamental features

of human pathologies. One such approach has been recently conducted (Dudley

et al., 2009) with over 8,340 microarrays including data on more than 230 dis-

eases and performed in 122 different tissues. In this meta-analysis they did not

only find a high degree of correlation between studies analyzing the same disease

but, importantly, they found that this correlation was higher between different

tissues of the same disease compared to the same tissue examined under different

conditions. Thus, in the next years, systematic approaches like reverse engineer-

ing that exploit this connectivity will be essential to discover the fundamental

features of common diseases.

The regulation of the gene expression within a cell is a highly complex mech-

anism. Information is gathered from various sources, processed in multiple intri-

cate ways and finally used, rejected or stored for later use. Transcription factors

are the key mediators of this information flow; however, the knowledge of their

activity in multiple biological conditions is only starting to be characterized with

detail. Feedforward loops, single–input modules or dense overlapping regulons are

only some of the complex potential mechanisms by which transcription factors

can regulate gene expression (Alon, 2007). However, even before trying to char-

acterize these functional features in human diseases it will be essential to find the

appropriate experimental model from which we can generalize. In this sense, we

advocate the use of SF stimulation with synovial fluid as a simple but powerful

model to find relevant mechanisms in RA pathophysiology. To the best of our

knowledge, this is the first study that has performed a genomic analysis using

this approach.

How can we say that our SF stimulation model is useful for RA molecular

characterization? We have previously demonstrated the robustness of the cy-

tokine profile in RA synovial fluid. We could, nonetheless, criticize that using a

unique synovial fibroblast line should have insufficient generalizability on a dis-

ease condition. However, the fact that many of the differentially expressed genes
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have been associated to RA pathophysiology gives strong support for this simple

model. Of interest is IL23A gene, which appears to be the most overexpressed

gene (∼8–fold) in the synovial fluid stimulated SF and has also been recently

found to be highly expressed in RA synovial samples (Brentano et al., 2009)

and not in control (i.e. osteoarthritis) samples. The IL23 pathway itself, has

been strongly associated through GWAS association to the genetic susceptibility

to other chronic inflammatory diseases like Inflammatory Bowel Disease (Duerr

et al., 2006), Psoriasis (Nair et al., 2009) and Psoriatic Arthritis (Liu et al.,

2008). Although there is no evidence for genetic variation in the IL23 gene in

the genetic susceptibility of RA, the in vitro and in vivo evidence clearly point

out for a role of this gene or its pathway in RA pathophysiology. Of interest,

other non–previously associated genes are also associated with RA SF response

to synovial fluid; these genes clearly deserve future study to understand their

implication in the disease.

It is becoming increasingly clear that the immunological response is a coordi-

nated task that is not only circumscribed to blood–borne cells but also to other

cell types. In the case of RA it is clear that SFs are not innocent bystanders

but are also active mediators of the immune response. We have shown that

SFs express multiple cytokine and chemokine signals under the RA proinflamma-

tory environment, and that the main driver of this activity is NF–kB transcrip-

tion factor. This proactive role in RA pathology of SF has been very recently

strengthened by the discovery that SFs are the responsible for the spreading of

RA from affected joints to unaffected joints (Lefevre et al., 2009). This finding

has been experimentally identified in human RA SFs and cartilage xenografts in

the SCID mice. If this transmigration mechanism, reminiscent of cancer metas-

tasis, is finally confirmed in RA patients, it will be more than ever necessary

to fully characterize the intricate mechanisms of SF activity. The inclusion of

other systematic approaches like high throughput proteomic and metabolomic

technologies will be also essential for this objective.

Comprehensive studies on model organisms are identifying epistasis as a very

pervasive mechanism. In Drosophila, for example, it is clearly becoming a fun-

damental mechanism for complex trait variation (Yamamoto et al., 2008). Basic
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mechanisms like Hedgehog or Notch signalling and many others were first dis-

covered in flies and they are now known to exist in humans. Thus, it would be

rather unexpected not to find any trace of evolutionary conservation regarding

epistatic mechanisms. So, what could be the explanation for the lack of strong

and reproducible epistatic interactions associated with disease risk in humans?

Although epistasis has been known since the beginning of the twentieth century,

only recently there has been the ideal scenario to study it. Genotyping has be-

come increasingly cheap and fast and, above all, the search for main effects in

common diseases seems to have finally arrived to its limits, at least, under the

common–disease common variant assumptions. In the present study we have

proposed two alternative strategies to identify epistatic interactions: a “path-

way–based” approach that exploits the identified connectivity between genes,

and an “agnostic” approach were all possible combinations are evaluated. Clearly,

both strategies have advantages and disadvantages but, a priori, it is impossi-

ble to predict which one will be more successful. It is our view that only after

comprehensive evaluation of all possible approaches and the development of more

powerful analytical methods we will be able to identify the epistatic component

of complex traits like RA.

In only three years, GWAS studies have provided more than 400 loci robustly

associated to common complex diseases. In the case of RA architecture, this has

meant passing from an “adobe–like” structure of 2 loci to a sophisticated “build-

ing” of more than 20 susceptibility loci. These findings are having a tremendous

impact on how we now look at this heterogeneous disease. For example, the

everlasting association of the HLA locus with RA seems now to be confined ex-

clusively to those patients having positive autoantibody status (Raychaudhuri

et al., 2009b). Nonetheless, anti–CCP and RF negative patients do not show a

disease phenotype that is distinguishable from their positive counterparts. True

differential genetic origin? Phenocopies? One of the most striking lessons from

the study of common chronic diseases using the GWAS approach has been the

confirmation that many chronic inflammatory diseases do share a common ge-

netic background. At first glance, this could seem to contradict the observation

of genetic differences within RA; however, it is our view that both aspects need

not be exclusive and that it will rather depend on the level of characterization
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of the phenotype. In our GWAS study we specifically selected a subgroup of RA

patients showing advanced erosions in hands irrespective of their autoantibody

status. Thus, it could be possible that KLF12 variation is associated with this

specific aspect of RA heterogeneity; if this parameter is not accounted for in

future association studies, the replication could potentially be missed.

The characterization of the genetic risk basis for many common complex dis-

eases is actually in a crossroad. How can one explain that after identifying dozens

of loci there is a substantial part of heritability that remains still unaccounted

for? One possibility is that we have been targeting the wrong genetic marker. In

this sense Copy Number Variants (CNVs) have received much interest recently.

CNVs are segments of DNA that can range from 500 bases to several megabases in

length, which can be present in different numbers in the genome (i.e. as deletions

or as amplifications). Although this type of variations had been already known

for many years, especially for their association in cancer phenotypes and neuro-

logical syndromes, they have been only recently implicated in common disease

suceptibility. In particular common CNVs, also called Copy Number Polymor-

phisms, could well be alternative markers, targeting other genomic loci where

SNPs can hardly be found or genotyped. Several recently associated CNP loci

like the β–Defensin (Hollox et al., 2008) and LCE3 (de Cid et al., 2009) CNPs

in Psoriasis or the IRGM locus in Crohn’s disease (Hollox et al., 2008) have

supported to this possibility. Nevertheless, a recently published whole genome

study using the study groups of the WTCCC consortium seems to have sensibly

lowered the prospects for his kind of marker (Conrad et al., 2009); in this study

they demonstrate that, for most CNVs, there will be a neighbouring SNP in high

LD that can capture most of the association to disease, thus giving additional

support to the previous SNP–based genomic approach.

Another possibility for the missed genetic heritability is the possibility of a

Rare Variant Common Disease scenario. That is, instead of genetic variants hav-

ing a minor allele frequency of >1% in the general population, highly infrequent

but highly penetrant polymorphisms culd be associated with disease. With whole

genome resequencing technologies having become today a technical reality, it is

possible that these variants, if they exist, will be characterized. However, some

caution is in order. Before devoting millions of research funding in resequencing
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it should be made clear what kind of realistic expectations can be made from

this expensive technology. Pharmaceutical companies, for example, made heavy

investments in the characterization of SNPs, from which they expected that they

would have gross benefits in return. So far, little transference onto the medical

aspects has been obtained from all this heavy investment in genotyping. Should

we expect a different scenario after resequencing? Whole genome resequencing

must be done but, in our view, until analytical designs that confront biological

complexity are not developed and this becomes a mature field, we will repeatedly

find ourselves in front of the same obstacle.

The work we have presented here is a small part of a continuing line of research

of our group on genomic approaches to the study of Rheumatoid Arthritis and

other chronic inflammatory diseases. Gene expression microarrays, for example,

have been used for the characterization of multigenic predictors of the response to

biological therapies like infliximab (Julià et al., 2009b) or rituximab (Julià et al.,

2009a). Also, the Grup de Recerca de Reumatologia is actually coordinating one

of the most comprehensive genomic projects in several Immune–Mediated Inflam-

matory Diseases (IMIDs) including RA. With the collaboration of more than 50

clinical departments from around Spain we are working together to translate the

analytical power of the new technologies into meaningful tools for clinicians so

that we can contribute, as much as we can, to the improvement of the lives of

patients with chronic inflammatory diseases.
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Appendix A

Bioinformatic tools used

A.1 General programming languages

- Statically typed languages: C, C++.

- Dynamic typed languages: Python, Perl.

- Database managing languages: MySQL.

- Text processing languages: Latex (http://www.latex-project.org/).

A.2 Statistical software

- Open-source: R statistical language (http://cran.r-project.org/).

- Private: SPSS.

A.3 General bioinformatics tools

- Bioconductor (R extension for Bioinformatic analysis, http://www.bioconductor.org/).

- Biopython (Python extension for Bioinformatic analysis, http://biopython.org/).

- Bioperl (Perl extension for Bioinformatic analysis, http://biopython.org/).

A.4 Genetic analysis software

- Population genetics: Arlequin (http://cmpg.unibe.ch/software/arlequin3/).

- Family-based association testing: Transmit (http://www-gene.cimr.cam.ac.uk/

clayton/software/).
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A.5 Webserver bioinformatic programs

- Microsatellite association analysis: CLUMP (http://www.smd.qmul.ac.uk/statgen/

dcurtis/software.html).

- LD, haplotype analysis: FastEHplus (http://linkage.rockefeller.edu/soft/), Haploview

(http://www.broadinstitute.org/haploview/), Gap (R package).

- GWAS analysis tool: PLINK (http://pngu.mgh.harvard.edu/∼purcell/plink/).

- Principal Component Analysis: EIGENSTRAT (http://genepath.med.harvard.edu/

∼reich/Software.htm).

- Epistasis analysis: Multifactor Dimensionality Reduction (http://www.epistasis.org/

software.html), OR test (PLINK function).

A.5 Webserver bioinformatic programs

- Genotyping data management: SNPator (http://www.snpator.org/)

- Gene Ontology analysis: Gostat (http://gostat.wehi.edu.au/)

- Reverse engineering of transcriptional regulatory networks: CARRIE

(http://zlab.bu.edu/CarrieServer/html/)
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