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Abstract 
 

 

onocular cues are spatial sensory inputs which are picked up exclusively from 

one eye. They are in majority static features that provide depth information and 

are extensively used in graphic art to create realistic representations of a scene. 

Since the spatial information contained in these cues is picked up from the retinal 

image, the existence of a link between it and the theory of direct perception can be 

conveniently assumed. According to this theory, spatial information of an environment 

is directly contained in the optic array. Thus, this assumption makes possible the 

modeling of visual perception processes through computational approaches. In this 

thesis, angular variation is considered as a monocular cue, and the concept of direct 

perception is adopted by a computer vision approach that considers it as a suitable 

principle from which innovative techniques to calculate spatial information can be 

developed.     

 
The expected spatial information to be obtained from this monocular cue is the 
position and orientation of an object with respect to the observer, which in computer 
vision is a well known field of research called 2D-3D pose estimation. In this thesis, the 
attempt to establish the angular variation as a monocular cue and thus the achievement 
of a computational approach to direct perception is carried out by the development of 
a set of pose estimation methods. Parting from conventional strategies to solve the pose 
estimation problem, a first approach imposes constraint equations to relate object and 
image features.  In this sense, two algorithms based on a simple line rotation motion 
analysis were developed. These algorithms successfully provide pose information; 
however, they depend strongly on scene data conditions. To overcome this limitation, 
a second approach inspired in the biological processes performed by the human visual 
system was developed. It is based in the proper content of the image and defines a 
computational approach to direct perception.     
 
The set of developed algorithms analyzes the visual properties provided by angular 
variations. The aim is to gather valuable data from which spatial information can be 
obtained and used to emulate a visual perception process by establishing a 2D-3D 
metric relation. Since it is considered fundamental in the visual-motor coordination 
and consequently essential to interact with the environment, a significant cognitive 
effect is produced by the application of the developed computational approach in 
environments mediated by technology. In this work, this cognitive effect is 
demonstrated by an experimental study where a number of participants were asked to 
complete an action-perception task. The main purpose of the study was to analyze the 
visual guided behavior in teleoperation and the cognitive effect caused by the addition 
of 3D information. The results presented a significant influence of the 3D aid in the 
skill improvement, which showed an enhancement of the sense of presence. 
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Chapter 1 
 

Introduction 
 

 
 

The interpretation of the visual world by the human visual system is achieved by the 

performance of a number of complex processes distributed through different neural 

links of the brain. These processes are dedicated to perceive color, motion, form and 

depth, which are considered basic cues that together provide the interpretation of the 

environment and can even give rise to profound emotions. The perception of depth or 

distance could be considered the most important property of the visual system. It is 

capable of extracting 3D information from bidimensional retinal images, thus a 

conception of space is achieved. Effortlessly tasks executed in daily life such as 

grasping an object are accomplished due to this spatial conception. It is considered a 

visual perception process, which requires a previous visual analysis by part of the 

brain to control action and is fundamental to interact with the environment.  

 
An efficient performance of an action-perception application involves a developed 
visual guided behavior. It integrates body movements as an intentional motor action in 
response to visual stimulation. To acquire an accurate coordination, the organism 
seems to depend on experience, where the active interaction with the perceived spatial 
environment is essential. According to the theory of direct perception, this spatial 
information is directly contained in the optic array. It holds that through movements 
caused by the interaction with the environment, there are certain attributes that remain 
preserved. This implies that determined visual processes are not influenced by a 
further evaluation and integration of other cues. Instead, the spatial information is 
contained fully within the retinal image projected in the eyes.  
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In this thesis, the theory of direct perception is conveniently adopted. It serves as a link 
between depth cues represented by image features contained in the retina and the 
biological processes performed by the human visual system to perceive space. This 
important relation makes possible the modeling of visual perception processes through 
computational approaches. It is a suitable principle from which computer vision 
techniques can rely on to develop innovative methods to calculate spatial information. 
Since it can be considered as an emulation of the complex processes carried out by the 
human visual system, it can be inferred that the accomplishment of a general and 
accurate solution to this problem is not trivial. Nevertheless, as a support to the direct 
perception theory, a first assumption entails that the visual effect created by the 2D 
distortion of angular variation is an important source of 3D information that might be 
modeled. This apparent distortion is a result of the linear perspective and thus presents 
changes depending on the position of the observer. It is therefore the main focus of this 
thesis the analysis and the extraction of the spatial information given by angular 
variations, thus a computational approach to direct perception is achieved. The angular 
variation is consequently referred as a monocular cue from which 3D information is 
obtained. 
 
Implications of a direct perception approach may be of significant importance in 
mediated environments. These are environments that are reinforced by technology to 
overcome sensorial limitations caused by the physical separation between the operator 
and the workspace. A considerable aid in this type of applications is the recovery and 
presentation of lost spatial information. In this sense, through the implementation of a 
computational approach, as it calculates 3D information from the captured images, it is 
possible to enhance the optical stimulus of the operator by the introduction of more 
spatial cues. This leads to assume that the estimation of the orientation of teleoperation 
tools with respect to the camera is capable of providing the egocentric information 
necessary to effectively link action and perception. An enhanced view of the 
workspace would be the inclusion of a new computer generated sight of the scene. The 
knowledge of this orientation permits to select any angled spot of the workspace, 
acting as a subjective camera. Thus, self-initiated movements are integrated with the 
perceived environment providing the operator with the sense of presence necessary to 
interact with the visual world.  
 
This first chapter is an introduction of this dissertation in which an overview of the 
relation between the 2D-3D pose estimation problem and the spatial perception is 
presented. It states the proposed strategy and hypotheses formulated to extract 3D 
information from images and the efficient application of the obtained data as a 
perceptual aid in mediated environments. A significant importance has been granted 
to the visual behavior performed by the human visual system. It interprets visual data 
to perceive space, thus it is possible to interact properly with the environment. The 
emulation of certain processes related to this visual function is therefore considered 
useful in the development of this thesis and a model to fulfill its proposed objectives. 
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1.1. OBJECTIVES 
 
Angles play a fundamental role in the content of this thesis. They are defined as the 
figure formed by two lines sharing a mutual endpoint. A perspective representation of 
this geometric configuration on a flat surface presents a distorted appearance that 
changes depending on the position of the observer. This angular variation is a result 
derived from the linear perspective, which is a monocular cue that provides a 3D 
visual effect. An example of this visual effect could be given by the angles conformed 
at the vertices of a cube. They are a source of 3D information that undoubtedly 
provides the observer the perception of a real 3D object. Even with only one vertex 
presented, at least a relative 3D orientation of the cube could be perceived. This spatial 
effect created by angular variations is the key that gives rise to the assumption that this 
is a 3D visual property that may be described by a computational approach.  
 
The extraction of spatial information from angular variations depicted in images is 
thus the main objective of this thesis. These angular variations are a consequence of 
changes produced by the perspective distortion and can be generated by two 
intersecting lines or the rotational motion of a single line. This leads to regard angles as 
monocular cues for spatial perception with the aim to fulfill this general objective, 
which has been divided in these partial objectives: 
 
 Study visual properties employed by the human visual system to perceive space 

and establish 2D-3D metric relations by the modeling of visual processes. This 
computational approach could be therefore considered as an emulation of 
determined biological vision processes related to direct perception.  

 
 Generate contributions to computer vision techniques dedicated to the spatial 

referencing of objects in a scene through bidimensional images. This implies the 
study and evaluation of innovative visual properties and the development of new 
pose estimation methods with real-time capability and dispensable of 3D scene 
data knowledge and initial conditions. 

 
 Analyze the projective properties of angles formed by sets of lines or derived by 

rotational motions. This leads to the identification of the minimum requirements 
from which a unique solution to the pose estimation problem is achieved. 

 
This set of partial objectives could be summarized as the obtaining of valuable 3D 
scene information from images. As it can be considered as an emulation of a visual 
perception process, its applications in the form of a computational approach and the 
study of its cognitive effect conform an objective of this thesis as well. This objective is 
focused in the perception enhancement and has been separated in this set of partial 
objectives:  
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 Design and develop tools and interfaces dedicated to efficiently enhance the spatial 
perception in environments mediated by technology. As a proposed aid to improve 
the mediation between action and perception, the importance of the assistance is 
not contained in the 3D information extracted: instead, it is given by how it is 
presented to the operator.  

 
 Integrate the use of these tools in real visually guided applications. There are a 

variety of applications with a strong dependence on indirect perception to fulfill 
action-perception tasks. Minimally invasive surgery (MIS) is an example and can be 
benefited from this aid. The integration of suitable interfaces should therefore 
augment the sense of presence.  

 
 Evaluate the cognitive effect produced by the addition of the aid. It implies the 

verification of the perceptual enhancement and its implication in the visual-motor 
coordination.  

 
1.2. SYNOPSIS OF DISSERTATION 
 
The content of this thesis is organized following a continuous structure in which the 
whole approach is described as an emulation of a biological visual process. This 
structure aims to emphasize the complexity of the human visual system, a fundamental 
sensory factor to interact with the environment, and its importance as a model to 
develop new methods in order to fulfill the proposed objectives. As a consequence, the 
structure is organized in three parts. The first part introduces the concept of visual 
perception and the complexity of its artificial interpretation. The second implements 
this knowledge establishing 2D-3D metric relations to develop a computational 
approach to direct perception. And finally, the third part applies this metric relation 
and studies its implications in environments mediated by technology. 
 
The introductory part starts in Chapter 2. It presents the human visual system as the 
most sophisticated procedure developed to interpret the visual world. The components 
and processes involved in the biological image formation are described in conjunction 
with the sensory cues required to perceive space. Chapter 3, on the other hand, 
presents this biological interpretation of sight as a complex however feasible procedure 
to be emulated through computer vision. The significance of the visual perception is 
therefore highlighted and described as a process beyond the simple capturing of visual 
light. 
 
2D-3D metric relations are developed in the next two chapters. These relations are 
represented by the geometric description of the visual projection. The pose estimation 
from angular variations is initially performed in Chapter 4 using a conventional 
strategy relating scene and image features. This strategy is based in the rotational 
motion of lines and provides two algorithms. In Chapter 5, the angular variation is 
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formerly considered as a monocular cue in the sense that the pose estimation problem 
is seen as part of a visual perception process. It develops an algorithm that formulates 
the problem regarding the angular changes as a consequence of perspective distortion. 
These two chapters constitute the second part of the structure of this thesis and define 
a computational approach to direct perception. 
 
The study of the implications of the developed direct perception approach is carried 
out in Chapter 6. It is assumed that the knowledge of the orientation of objects in a 
scene is capable of enhancing the sense of presence in visually guided applications. An 
application of particular interest in this thesis is the minimally invasive surgery (MIS). 
Therefore, the cognitive tools developed to assist the operator are designed and 
employed in order to effectively improve the performance in this type of application. 
The evaluation of the cognitive effect caused by the addition of the aid is demonstrated 
by an experimental study that simulates this action-perception task. Thus, this study 
combined with concluding remarks presented in Chapter 7, constitute the third and 
final part of this thesis.   
 
       
 



   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Chapter 2 
 

Introduction to the human visual system 
 

 

2.1. INTRODUCTION 
 
The interpretation of the visual world by the human visual system implies a number of 
processes concerned with the formation of spatial images and their further cognitive 
manifestation. In the initial stage of vision, the optical function of the eyes is to capture 
and focus radiant light to obtain detailed images, thus they can be transformed into 
neural form and transmitted to the brain for analysis [1]. There, the visual information 
is recombined with stored visual memories and processed in order to form the 
conscious visual perception [2]. This allows conceiving the cognitive, emotional and 
creative insight of the environment and, since one is unaware of the number of 
processes involved, it can be qualified as a simple body function. This is a completely 
misconception, which is mended by analyzing the distribution of visual information 
along the brain and the complexity of its processes: a group of coordinated tasks 
responsible of representing an environment described by a bewildering array of 
overlapping textures, colors and contours undergoing a constant change depending on 
the position of the observer [3]. 
 
This chapter introduces the visual system, beginning with a description of the image 
formation and continuing with the processes involved in the visual perception. This 
final stage of the visual processes is required to interpret and perceive objects, events 
and people in a coherent manner. It is of significant importance to the development of 
the visual behavior and hence, of special interest in the content of this thesis. The more 
advanced is the understanding of the visual system, the more accurate and efficient 
new computational approaches dedicated to the artificial interpretation of sight are 
developed. A particular relevance is dedicated to the cognitive processes involved in 
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the perception of space, from which a number of depth cues are combined. These cues 
can be monocular, if they require a single eye for their reception, or binocular if they 
require both. Each of them possesses depth and distance information, and their 
interaction is what provides the sense of space. 
 
Two major approaches contend different theories about the interaction of the spatial 
cues and have been influential in the guiding of the research of perception.  The first, 
according their historical development, is the constructivist approach. This approach 
assumes that depth perception is based on the conjunction of previous experience and 
knowledge of the spatial environment with the evaluation of the acquired depth cues. 
Thereby, the observer integrates this information and constructs the perception [4]. On 
the contrary, the leading critic to the constructivist position was held by Gibson [5], 
and according to his theory the visual stimuli acquired in the environment contained 
sufficient information to perceive the physical world directly. This theory is known as 
the direct perception approach, and contends that the perceptual system have been 
designed to detect perceptual invariants directly and without the necessity of past 
experience [2]. From the computational point of view, the basic idea of the direct 
perception is accepted since it involves mathematical oriented analysis and modeling 
of the visual perception processes and, as it is shown through the next chapters, it 
could be considered convenient.  
 
2.2. ANATOMY OF THE EYE 
 
The first stage of the visual system is the formation of detailed spatial images. It is 
achieved by the reception of physical stimulus through the eye in the form of light 
energy. Light rays enter the eye through a curved and translucent membrane called the 
cornea, which converges them to a focus on the rear surface of the eye and are regulated 
by the iris (Figure 2.1). The iris is a contractile structure that varies in size as a function of 
light intensity and also controls the focal length of the light beam [3].  The rear surface, 
where focused light is received, is photosensitive and is called the retina. There, 
photoreceptors absorb light energy in order to transform the information into neural 
activity. This sequence of processes responsible of transforming light energy to retinal 
images is complex and is carried out through elaborated anatomical structures. In this 
section these basic anatomical structures and their functions are described in detail. 
Thus, functions and properties of the human optical system may be further compared to 
the components and features of a photographic camera, from which a number of 
similarities are present.        
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2.2.1. The cornea 
 
The cornea is the transparent front surface of the eye. It is a powerful refracting surface 
of about 0.5 to 0.6 mm thick at its center, with a mean refractive index of about 1.376 and 
a radius of curvature of about 7.7 mm [6]. It is normally clear, there are no blood vessels 
to interfere with its transparency, and thus it can refract light properly. Its main function, 
apart of being a protective layer from germs or dust, is the control and focus of light into 
the eye. The cornea contributes approximately the 75% of the total focusing power of the 
eye [7]. This optical power is a key contributor to aberrations, which due to its conic 
shape are reduced about one-tenth of that in the spherical shape lenses with similar 
power [8].  
 
 

Figure 2.1. Schematic of the cross section of the human eye. The optical system constituted by 
the anatomical structure of the eye forms detailed spatial images by transforming the 

incoming light to an array of neural activity, which is considered as the initial stage of the 
complex process of visual perception (Adapted from [6]). 
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 2.2.2. The iris and the pupil 
 
The colored concentric disk visible through the transparent cornea is called the iris. It is a 
thin membrane composed of connective tissue and smooth muscle fibers, which is 
unique for a given individual and is considered a better identification indicator than the 
fingerprints [9]. The iris controls the amount of light entering the eye. It is a contractile 
structure that changes in size as a function of light intensity and distance of objects, and 
regulates the focal length of the light beam [6]. The high pigment serves to block the light 
and limits it to the pupil. The pupil is the round black center of the iris. Its size 
determines the amount of light entering the eye, for which a measure between 2 and 3 
mm provides a high image quality. 
 
2.2.3. The lens 
 
The crystalline and flexible lens is located behind the iris and the pupil. It is surrounded 
by a ring of muscular tissue called the ciliary body, which helps to control fine focusing 
of light to precisely position the visual information. The lens is composed by a sequence 
of layers with different refracting index. The refraction increases as the lens thickens. 
With light rays coming from far targets, an easy focus is obtained, as they can be 
considered parallel. However, with relatively close targets, the light rays are divergent 
form each other and are focused behind the photoreceptor surface if they are not 
properly refracted [1]. Therefore, an automatic adjustment process changes the shape of 
the lens. This process is called accommodation, and increases the lens curvature to be 
capable to focus on near objects. 
 
2.2.4. The retina 
 
The light sensitive tissue at the inner surface of the eye is called the retina. It is the most 
photosensitive component of the human central nervous system and converts the 
captured light rays into neural activity [3]. There are two types of photoreceptors in the 
retina: rods and cones. The retina contains approximately 125 million rods. They are 
spread through the periphery of the retina and are most sensitive to light brightness 
changes, suitable for dim light, shape and movement. While the cones, which are 
concentrated essentially in the fovea, are most sensitive to one of the three colors: red, 
green or blue. There are approximately 6 millions cones and, as they are sensitive to 
color, they are used to appreciate fine details.  
 
As it is shown in Figure 2.2, the neuronal structure of the retina is organized in cellular 
and fiber layers. It is a network of interconnections between the photoreceptors and the 
optic nerve. Rods and cones are connected to intermediate cells called bipolar cells, and 
this cells, are connected to ganglion cells, whose axons are the optic nerve and finalize 
the vertical neural connection. While two layers of horizontal connections serve to link 
the adjacent bipolar and ganglion cells [2]. The horizontal cells lay between the 
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photoreceptors and the bipolar cells, and the amacrine cells lie between the bipolar 
cells and the ganglion cells. By one side, a high acuity is promoted by the independent 
connections of cones, while at the other; a high sensitivity is provided by the 
convergence of rods to intermediate ganglion cells [4]. 
 
2.3. VISUAL PATHWAY TO THE BRAIN 
 
The optical functions of the eye involve the formation of spatial images by the 
transformation of captured energy to an array of neural activity in the retina. Since this 
visual information at this stage is only a set of neural activity without information 
processing, a conscious sense of visual perception could not be achieved [3]. Therefore, 

Figure 2.2.  Schematic of the neural structure of the retina. The network of interconnections 
converts the captured light rays to neural activity (Adapted from [10]). 
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a further processing is necessary, which having the resulting retinal images as neural 
input, follows the visual pathway through a complex network of neural structures to 
the major center of the visual system, the visual area of the brain [1]. There, the 
majority of the visual information is sent to separate cortical areas devoted to the 
primary visual processing, while the remaining is processed for functions such as 
multiple sensory integration or visually guided motor control [11]. 
 
The visual pathway shown in Figure 2.3 starts with the transmission of visual 
information from the ganglion cells in the retina to the brain through the optic nerve. 
The majority of the optic fibers in the optic nerve go to the lateral geniculate nucleus 
(LGN) in the thalamus. These fibers are of several types, from which the 90% of them is 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Schematic of the visual pathway from the ganglion cells in the retina to the 
primary visual cortex. The visual information is divided, thus each hemisphere of the brain 
processes its corresponding visual field. The left hemisphere is related to the right field and 

the right hemisphere to the left (Adapted from [10]). 
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constituted by the M-cells and the P-cells. M-cells are sensitive to low spatial 
frequencies, while P-cells are sensitive for wavelengths and high spatial frequencies 
[12]. The remaining 10% is constituted by different kinds of cells that together with the 
M and P cells form a set of data, which is distributed through different routes for 
parallel processing. This distribution of visual information starts by its division 
according to the visual field. The right visual field is related to the left hemisphere of 
the brain, and the left visual field with the right hemisphere. It is a separation achieved 
by a convergence of the optic nerve at the optic chiasm. There, the optic fibers from the 
nasal half of the retina cross, while the fibers from the temporal half stay on the same 
side. Therefore, this is a crossing point that ensures the reception of visual information 
of a determined side of the visual field to the same hemisphere of the brain, which 
means that information captured in the same side of both eyes is processed in the same 
hemisphere. 
 
After the division of the visual information according to its visual field, the majority of 
axons of the ganglion cells synapse with the corresponding LGN cells on each 
hemisphere. The pathway where this visual information is sent is called the optic tract. 
Through this connection, the visual information is processed in a systematic manner, 
thus a representation of the retinal image is mapped in the LGN [1]. From there, 
neurons transmit the visual information by optic radiations to the occipital lobe of the 
cerebral cortex, which is located at the back of the brain, as shown in Figure 2.4, and is 
referred to as the primary visual cortex or Visual Area 1 (V1). This is the primary route 
of the visual information flow and is responsible of the conscious visual perception [3]. 
It is concerned with the basic level processing, primary the detection of features and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Schematic of the major areas of the brain involved in the conscious visual 
perception (Adapted from [12]). 
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their orientations. Thereafter, this visual information is distributed to distinct areas of 
the cortex, which in conjunction form the area called the extrastriate cortex. Each one 
specialized on a determined function to process specific features.  
 
2.3.1. Functional specialization 
 
The transmission of visual information along different pathways consists in the 
distribution of specific neural signals through specific areas of the brain, thus its 
parallel processing provides the conscious visual perception. Since the majority of 
axons of the ganglion cells project to the LGN, the second primary route synapse with 
cells at the superior colliculus at the top of the midbrain. It is responsible of controlling 
the orientation of eye movements and appears to be related to spatial location and 
visual-motor processing [2]. Others functions such as processing of color, form and 
analysis of movement appears to be related to the extrastriate cortex, which in 
conjunction with primary visual cortex and their interactions with the temporal and 
parietal lobe, form two streams of visual information. These streams are independent 
and have been proposed to represent the ‘what’ system, which is related to object 
identification, and the ‘where’ system, which is related to the spatial localization [13]. 
The ‘what’ system, also called ventral stream, projects to the cortex of the inferior 
convexity (IC) and the ‘where’ system, also called the dorsal stream, projects to the 
dorsolateral prefrontal region (DL) as shown in Figure 2.5 [14].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.5. Schematic of the two streams of visual information, from which the theory of the 
two independent pathways, ‘what’ and ‘where’, is represented. With PS as principal sulcus, 
PP as posterior parietal cortex, IT as inferior parietal cortex, DL as dorsolateral frontal cortex 

and IC as inferior convexity of the frontal cortex (Adapted from [11]). 
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As a summary, it has been observed that the visual pathway to the brain is a complex 
structure of neural links between cortical areas. It starts with the physical stimulus in 
the retina and the subsequent transmission of visual information through two major 
pathways, the superior colliculus and the LGN. The primary visual information is 
subsequently transmitted to the visual cortex, situated in the occipital lobe, to be 
rerouted to parts of the extrastriate cortex, including regions of the parietal and 
temporal lobes of the cortex. Each subcortical area is related to a determined function 
and contains a separate map of visual space [15]. They process the visual information 
differently and from the formation of the ventral and dorsal streams, it has been 
suggested that IC mediates working memory for objects, while DL mediates spatial 
working memory [11].  
 
 2.3.2. Perception and action 
 
The interpretation of the environment, the conscious visual perception, as has been 
demonstrated requires a number of complex processes within the visual system. From 
the objective point of view of the basic functions of the visual system, it is not 
constrained to the understanding of the environment. The visual stream concerned 
with the object recognition, which would be the ‘what’ system or ventral stream, in 
functional terms works in conjunction with the spatial information provided by the 
dorsal stream to interact coherently with the environment. Having the two separated 
streams, an alternative approach has been proposed in which a ‘what’ system is related 
to a ‘how’ system to guide action [16]. In this approach it is supposed that the spatial 
information from the dorsal visual stream passes directly to the motor guidance system 
without being consciously perceived. Nevertheless, recent experiments on subjects 
performing grasping tasks show a significant influence on past experiences and 
learning behavior from which a conscious calibration of perceived actions occurs [17]. 
 
2.4. VISUAL PERCEPTION 
 
This overview about the human visual system would not be complete without 
mentioning and explaining the functional consequence resultant from the series of 
neural links. The main function of the visual system is more than the transformation 
and transmission of an array of light signals; it produces the interpretation of the visual 
world, and coordinates and executes motor outputs. These functions, apart from the 
sophisticated anatomy and complex processing dynamics, are what highlight the 
capacity of the human visual system over any other man-made visual processor. 
Although the brain works as a unitary system, it distributes visual information thus 
specific parts are processed separately in order to perceive the environment. Features 
as color, form, motion and depth constitute the basic cues that together provide the 
best interpretation and even might create profound emotional effects, as they are 
perceived.   
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2.4.1. Perception of color 
 
An important property of the human visual system is its capacity to distinguish colors. 
It is an additional source of information, which forms part of the object identification 
process and provides a solid impression of the visual environment. The perception of 
color depends more on the wavelength than on the intensity of the light. The visible 
spectrum for humans ranges from 380 to 760 nm. A light ray referred as red, comes 
from the range of short wavelengths, while a light ray referred as blue comes from the 
range of long wavelengths. Color information at the early stage of vision is determined 
by the wavelength of the reflected light from objects. It is decomposed in three physical 
attributes of light: hue, brightness and saturation. Hue is related to the wavelength, 
thus it is the main component and represents the true meaning of color. Brightness is 
related to light intensity and saturation to its spectral purity [18]. A color perception 
theory proposed by Young-Helmholtz maintains that only three different ocular 
sensors, each one with its corresponding spectral sensitivity to red, green and blue, are 
required to produce the visible spectrum [19]. Therefore, three types of cones in the 
retina are sensitive to these three wavelengths. On the contrary, an opponent theory 
was held by Ewald Hering [20]. In his theory he proposed three opponent mechanisms, 
each one divided in pairs, which are antagonistic to each other: a red-green pair excited 
by red and inhibited by green or vice versa; a blue-yellow and a white-black [3]. More 
recent studies by Hurvich and Jameson [21], confirm the two theories dividing the 
complete process in two stages: the processing of wavelength information in the retina 
by different types of cones and the three antagonistic processes at neural level. 
Therefore, the sensation of color is a product of the visual system. 
 
2.4.2. Perception of form 
 
Object recognition is the result of a combined number of separated processes, which 
depend strongly on the neural activity within the ventral stream. There, visual 
information is processed hierarchically from the primary visual cortex to the anterior 
occipitotemporal cortex [22]. Visual cortical neurons are specialized to respond to 
contours and contrast, while higher up in the ventral stream, cells are specialized to 
respond to distinguish patterns and shapes [3]. To obtain the meaning of this sensory 
input, a perceptual organization based on two basic approaches, bottom-up and top-
down; simplify the analysis by organizing the complete process. The bottom-up 
processes begin with simple features, which afterward are combined to construct a 
defined pattern or shape; while the top-down processes begin with complex sensory 
input as a global set of information, which aided with previous experience and 
knowledge creates a first interpretation of the environment, to afterwards emphasize 
on details. Since the amount of information possibly contained in a captured sight of a 
scene is beyond the capabilities of the visual system, it filters and selects the relevant 
information. Details are strongly related to the frequency of contrasting light and dark 
areas, thus patterns with high spatial frequencies contain fine details, while patterns 



Chapter 2 17

with low spatial frequencies are part of broad elements. On the other hand, a selective 
process, called attention, permits to extract only relevant information of the 
environment. It is a sophisticated process affected by experience and nonsensory 
factors such as emotions, intentions or expectations. Thus, the amount of information is 
reduced and a conscious visual perception is produced in only selected areas [1]. 
 
2.4.3. Perception of motion 
 
The interpretation of motion information is a significant property of the visual system 
since it is essential to interact and navigate through the perceived environment. 
Detection of location, orientation and rate of movement are basic functions highly 
developed through different motion-sensitive components along the human visual 
system. They start at the ganglion level in the retina with the M-cells, which are 
dedicated to react to moving stimuli, specifically object directions [23]. Thereafter, a 
convergence of information projects through the LGN to the primary visual cortex, 
where a detailed processing of moving objects is performed to finally distribute the 
motion information to higher levels of the visual cortical system for further processing. 
The medial temporal (MT) lobe of the cortex is one of the most important higher level 
areas involved in the processing of visual motion and serves to integrate information 
from large regions of the visual field. The optical stimulation to perceive motion is 
detected by a succession of neural activity of neighboring retinal elements. Therefore, 
the perception of real movements is achieved by the relation of motion information 
directly detected in the retina with the one obtained from head or body movements [1]. 
As a person moves through the environment the retinal images continually changes, 
these changes create a pattern called optic flow, which provides information about the 
direction of the person’s movements. In the same way, changes of the relative size of a 
stationary object produce a retinal expansion, which provides information about the 
rate of movements and, as can be used as a collision indicator, it can also be considered 
a source of spatial information. It is generally produced by the distorted perception of 
movements, which is explained in detail in the next subsection and, as it is shown 
further in Chapter 5, it is a useful visual property that together with other spatial cues, 
provide 3D information. 
 
2.4.4. Perception of space 
 
The perception of depth or distance could be considered the most important property 
of the visual system. It is capable of extracting 3D information from bidimensional 
retinal images, thus a conception of space is achieved. This reconstruction of the third 
dimension is the product of a complex processing structure from which different 
sensory inputs are analyzed. These sensory inputs are called spatial cues and can be 
picked up from the retinal image formed in the optical array of one eye, in which case 
are called monocular cues, or from the information provided by the two eyes, which 
are called binocular cues.  
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Monocular cues 
Monocular cues are in majority static features picked up from the scene that provide 
depth information. They are known as pictorial cues due to their use in graphic art to 
achieve a realistic representation of depth and consequently an impression of space 
[24]. Nevertheless, some cues are present only through motions of elements in the 
scene or self-movements. The monocular cues are: 
 
 Occlusion. This monocular cue is also known as interposition and provides relative 

depth information. It is manifested by the overlapping and covering of elements in 
the scene. An object is nearer as it can partially or completely conceal those behind 
it. This cue only indicates which object is nearer from others it occludes (Figure 2.6).  

 
 Size. A relative judgment about the depth of an object is given by its size. The 

larger it is, the closer is the distance from the viewer. This judgment is strongly 
dependent on past experience and familiarity with similar objects. However, 
representations of different sizes of the same object within a static retinal image 
provide a sensation of depth without previous knowledge of the object (Figure 2.7).   

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.6. Occlusion cues provide a relative perception of depth by the overlapping and 
interposition of objects. In this example the circle appears to be the nearest object. 

Figure 2.7. The relative size of objects contributes to the perception of depth even without the 
influence of past experience. In this example different sizes of the same object provide a 

sensation of depth as they reduce their size (Adapted from [3]). 



Chapter 2 19

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Shading. The fall of light on objects is a source of depth information. Normally the 

surface closer to the emitted light is the brightest and provides clues about its 
orientation with respect to other objects in the environment. In the same way, as an 
object is illuminated with a single light, the effect given by a created pattern of 
bright and dark areas produce a perception of its 3D shape (Figure 2.8). 

 
 Aerial perspective. This is a monocular cue effective for the relative depth of 

objects at long range distance. It is due to the fact that the atmosphere causes light 
to be scattered, thus perceived colors of objects vary depending on their distance 
and as further they are, their contrast appear to decrease. As textures, the clearer 
they appear to be, the closer they are (Figure 2.9). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.8. Shading cues provide a relative perception of 3D shape. This effect is created by 
the pattern of bright and dark areas produced by the fall of light (Adapted from [25]). 

Figure 2.9. Aerial perspective cues are effective for long distance objects where scattering of 
light at the atmosphere produce distant elements to reduce their contrast (Adapted from [26]). 
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 Linear perspective. As a 3D scene is projected to the retinal image, it suffers a 

systematical reduction of element’s size and the space among them according to 
their distance. It is a transformation of geometric properties that serve to interpret 
depth. Its potential is of relevant importance in graphic artwork due to its capacity 
to provide a 3D impression on a flat surface. As it is shown in Figure 2.10, 
physically parallel lines converge at a single point. 

 
 Motion parallax. This is a monocular cue in which motion is required, by part of 

objects in the scene or by self-movements, to perceive depth. The displacement of 
the retinal images of objects varies depending on their distance. Near objects 
appear to move faster than those at far distances (Figure 2.11). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.10. The linear perspective is described by a transformation of geometric properties. 
Parallel lines converge at a single point and the space and size of object reduce as they become

distant (Adapted from [27]). 

Figure 2.11. The depth effect provided by motion parallax cues derives from the apparent 
velocity of objects in the retina. As the observer moves, elements move at different velocities 

depending on their distance. 
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 Accommodation. As the eye muscles adjust and control the shape of the eye in 

order to focus the lens and form a sharp retinal image, depth information is 
obtained. A different response is obtained according to the distance of the object. 
This monocular cue is effective only at short distances (Figure 2.12). 

 
Binocular cues 
Although monocular cues are effective as sources of depth information, a complete 
perception of the 3D aspect of the environment would not be possible without the 
information provided by the two eyes. Binocular vision is effective for acute depth 
perception of short and medium range distances, and are composed by this set of cues: 
 
 Convergence. This binocular cue, as the monocular accommodation, is an 

oculomotor cue for depth perception of nearby objects. It is an automatic 
coordinated action where the two eyes converge in order to focus a determined 
object. The closer the object is from the observer, the more the eyes should turn to 
each other to obtain a sharp focus (Figure 2.13). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.12. Accommodation cues consist in the capacity of the eye to control the lens’ shape 
through the ciliary muscles in order to focus sharply (Adapted from [26]). 

Figure 2.13. The convergence of both eyes is an oculomotor action that contributes to perceive 
relative depth. The resultant angle represents the relative distance of a determined element. 
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 Binocular disparity and stereopsis. Parting from the visual information captured 

by each of the two eyes, there is a region of the visual field in common that contains 
depth information. Despite this information represents the same area of a 
determined scene; the images of the left and right eye are slightly different. This 
difference or disparity supplies a reliable source of depth information, especially 
for short range distances. Further elements appear to have a higher disparity than 
those close to the viewer. The final perception, from the disparity of the two 
perceived images, is a unique and acute conception of the 3D environment. This 
solid depth effect is known as stereopsis and plays an important role in spatial 
vision (Figure 2.14). 

 
Interaction of cues 
The complete process of space perception is a combination and evaluation of depth 
cues. As a natural image is composed by multiple cues, the visual system integrates 
them in order to reconstruct the 3D environment. The more depth cues are presented; 
the better is the sense of depth (Figure 2.15) [28]. Some depth cues can be classified as 
physiological, since they depend on oculomotor mechanisms of adjustment of the eye 
and are conformed by the accommodation, motion parallax, convergence and 
binocular disparity. While the rest of the depth cues (interposition, size, shading, aerial 
perspective, linear perspective and stereopsis), are considered psychological cues, as 

Figure 2.14. Focusing a single object results in slightly different images by the left and right 
eyes. The binocular disparity of this couple of images provides a powerful source of depth 

information (Adapted from [26]). 
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they require a higher level processing in the neurological system of the brain. These 
psychological cues separated from their coherent nature in a bidimensional image can 
be ambiguous and, as is shown in Figure 2.16, illusions may be achieved [29]. An 
approach to spatial perception contends that the way the brain processes and interprets 
the combination of depth cues is based on previous experience, knowledge of the 
environment and evaluation of the spatial cues. This approach is called the 
constructivist and proposes that higher level neural processing is responsible of the 
reconstruction of the space [3]. In opposition, the direct approach presented by Gibson 
holds that depth information is contained in the optic array and the interpretation of 
space is directly perceived without processing [5]. Therefore, according to the direct 
approach to spatial perception, computational approaches can be developed, since 
depth information is presented directly in the image. Changes of geometric properties 
due to perspective transformations, as is explained in Chapter 5, show to be a reliable 
source of depth information.       
 
 
 
 

Figure 2.15. Pictorial example of the integration of cues. Different monocular cues are used to 
augment the sensation of depth (Adapted from [28]). 

Figure 2.16. The misuse of coherent spatial cues causes a confusing representation of apparent 
real objects. Impossible figures, as the cube presented in this example defy the laws of 

geometry (Adapted from [30]). 
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Chapter 3 
 

Computer vision: towards an artificial 

interpretation of sight 
 

 

3.1. INTRODUCTION 
 
Technology advances and the anxiety to understand and emulate biological vision, 
have led the emergence of computer-oriented techniques dedicated to artificially 
interpret the environment through visual stimulus. Initially connected to mathematics 
and computer science, these techniques were focused on the common objective of 
making a computer see, giving rise to a new discipline called computer vision. Since 
the interpretation of the visual world is beyond the capturing and collection of single 
images, disciplines such as psychology and neuroscience have been added, as they are 
involved in the visual perception. The perception of motion, forms, color and depth in 
the human visual system, as is outlined in the previous chapter, are the result of a 
conjunction of a number of different complex processes from which the suggestion of 
being emulated by a computer seems to be an unreachable task. Nevertheless, attempts 
based on image feature analysis and specially the variation of their geometric 
properties depending on the point of view of the observer, have obtained significant 
achievements.  
 
The idea of developing new techniques based on biological processes appears to be 
appropriate to create a reliable artificial vision system. With the better understanding 
of the biological visual system, the better computational approaches dedicated to 
model perceptual processes can be developed. These models are useful to simplify the 
complexity of visual processes, some of them slightly understood, and permit to take 
practical advantage of the human vision properties in certain applications. Examples of 
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these applications are the color television or the image compression. The color 
resolution in the human visual system is lower than the brightness [1], thus a limited 
bandwidth is required. In the same way, the concept in which image compression is 
based on, takes advantage of the low spatial frequency property. The human eye is not 
capable of perceiving detail in high frequency areas, which are regions of the retinal 
image with high rate of variations in luminance [2]. Thus, a suppression of detail in 
these areas is not perceived.  
 
In this chapter the potential of computer vision techniques is presented as a capable 
approach to the artificial interpretation of sight. Parting from the detection of light to 
the image formation, camera models and projections; the conception of an optic system 
consistent with its biological counterpart, results in an array of components that 
constitute sets of contours and shapes that describe a determined scene. From this 
visual information, biologically inspired techniques have been developed to emulate 
the visual perception. It could be seen as the translation of the complex neural 
processes carried out in the brain through mathematic equations and geometric 
relations, which are implemented in order to fulfill certain visual tasks. Some of these 
computational approaches are described in this chapter, with a special emphasis in the 
estimation of spatial attributes of elements. Pose estimation is a relevant field of 
computer vision implied in the calculation of these spatial attributes and, though its 
methods are not highly influenced by biological processes, it is an important field to 
introduce. Since it is developed to model and perform a visual perception function, it 
can be devised as other methods, taking advantage of the human vision properties, 
inspired in cognitive and biological processes.   
 
3.2. IMAGE FORMATION 
 
The process of image formation in an electronic camera and the eye is similar. Both 
optical systems are based on the capturing and filtering of light emitted from elements of 
a scene to subsequently be focused onto an imaging sensor. There, the visual information 
is transformed to a video signal, which in the biological case is represented by neural 
activity, while in a camera is represented by electric charge. As can be seen in Figure 3.1, 
functions of specific components of the anatomy of the eye are emulated in the mechanic 
structure of the camera. The amount of light entering to the optical system of the camera 
is controlled by an adjustable barrier, which acts as the iris of the eye. The diameter of 
this barrier permits to supply the imaging sensor with the light intensity it can handle. 
Afterwards, the light rays are focused through the lens to project the image onto a flat 
surface. An appropriate focus permits to obtain a sharp projection of objects and is 
achieved by moving the lens toward or away from the imaging sensor, instead of 
deforming the flexible structure of the eye’s lens by the ciliary muscles [3]. These light 
rays are therefore focused on the imaging sensor, which transforms the visual stimulus 
to electric charge, acting as the sensitive surface at the rear of the eye, the retina. 
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In an electronic camera, the light sensitive tissue of the retina is emulated by an array of 
photodetectors sites, or potential wells, in a silicon substrate. This photosensitive array 
built in an integrated circuit is called charge coupled device (CCD), and serves to sample 
the light intensity. The charge accumulated in each potential well is proportional to the 
number of incident light photons and represents a sample of the light pattern [4]. Each 
sample is called pixel and its intensity value ranges from 0 to 255 after analog to digital 
conversion (Figure 3.2). These quantization levels display a grayscale image, having a 
value of 0 for black and 255 for white, and are suitable for data managing as they 
correspond to a single byte. Color imaging is therefore represented by three values for 
each pixel (one value for each intensity of the three primary colors: red, green and blue). 
The more pixels are added to represent an image; the better is its quality. However, this 
increment of resolution also augments the amount of data to manage.     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1. The structure of an electronic camera resembles the optical system of the eye. Two 
major components, the lens and the photoreceptive surface (CCD), present a key role in the 

image formation (Adapted from [3]). 

Figure 3.2. Each sample of light intensity is called pixel. The more is the number of pixels; the 
better is the quality of the image. This example shows a grayscale array of 8x8 pixels with 

their corresponding values. 
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3.3. CREATING AN IMAGE-BASED FRAMEWORK 
 
The visual information obtained by the camera results in an array of samples that 
represents the projected image of a determined scene. At this early stage of vision, the 
visual world is limited to a set of data encoded in the spatial domain. The information of 
objects and entities is described by intensity discontinuities or sample contrasts, which 
require further analysis to be recognized. As their visual interpretation relies on the 
extraction of basic image features as edges and contours, the artificial perception of the 
visual environment appears to be a non-trivial task. However, accurate quantitative 
models of cameras have been defined in order to develop metric measurements from 
images [5]. This framework describes the nature of perspective projection and the 
geometric properties of image features. Thus, perceptual functions of the visual system 
such as object recognition, shape, motion and depth information could be calculated. In 
this section, this quantitative approach to the image formation and the geometric 
properties involved are presented. It starts with a brief introduction of the simplest 
model of the optical system, followed by an introduction of the perspective projection, 
and finalizes with an important property derived by this kind of projection, which is the 
geometric invariance.  
 
3.3.1. Optical system model 
 
The simplest camera model that describes the mapping of 3D entities to a bidimensional 
image is the pinhole camera. It is a suitable model for perspective projection and consists 
of a center of projection (o) and the image or retinal plane. As is shown in Figure 3.3, the 
projection of a scene point corresponds to the intersection of a line passing through this 
point and the center of projection with the image plane. Therefore, having the center of 
projection as the origin of a Euclidean coordinate frame, the mapping of a 3D point         
X = (X, Y, Z)t, is an image point x = (x, y)t, which is the intersection of the line joining o 
and X with the image plane at Z = f, being f the focal length. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3. Schematic of the pinhole camera model. The mapping of a 3D point is obtained by 
the intersection of the line uniting the point and the center of projection with the image plane 

(Adapted from [6]). 
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Using similar triangles, it can be seen that the Euclidean mapping of the 3D point X is 
described by: 
 
 

(3.1) 
 
 
 
This 3D-2D relation is useful to represent geometrically spatial properties of the image 
features and expresses the perspective transformation in the image plane. Nevertheless, 
though most cameras are described by the pinhole model, other specialized models have 
been developed to describe and take advantage of some properties defined according to 
their application [6].  
 
3.3.2. Perspective mapping and projective geometry 
 
The central projection described by the pinhole camera model can be specialized to a 
general projective camera and expressed in a simpler form. As the 3D-2D mapping 
represented in (3.1) is non-linear, homogeneous coordinates permit to express the 
projection by the matrix: 
 
 
 

(3.2) 
 
 
 
If the 3D point is now represented by the homogeneous 4-vector X and the image point 
by a homogeneous 3-vector x, the perspective transformation expressed in (3.2) could be 
represented as: 
 

(3.3) 
 
Having P as the transformation matrix, which defines the camera matrix for the model of 
central projection [5]. It is assumed that the origin of this central projection coincides 
with the world frame origin. However, in practice it may not be physically possible. 
Thus, the mapping adds two variables (px, py), representing the coordinates of the 
principal point. This point is the intersection of the perpendicular axis of the camera 
frame to the image plane and its addition is expressed as: 
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If the matrix K is: 
 
 

(3.5) 
 
 
 
the transformation described in (3.3) can be rewritten as x = K[I|0]X, where [I|0] 
represents the 3x3 identity matrix plus a column vector of zeros. Thus, now P = K[I|0], 
with K known as the camera calibration matrix [6]. Since it is assumed that the camera 
coordinate system coincides with the world coordinate system, the 3D point X can be 
called Xcam. This point is generally expressed in world coordinates, thus it is necessary to 
be translated and rotated to the camera coordinate system, which is done by: 
 
 
 

(3.6) 
 
 
 
with R as the 3x3 rotation matrix and o the 3-vector representing the position of the 
camera center in the world coordinate system [7]. This leads to have this expression: 
 
 

(3.7) 
 
which represents the mapping described by a pinhole camera, a representation that can 
be generalized by adding the possibility of having non-square pixels. Thus, by this 
addition the calibration matrix may be written as: 
 
 
 

(3.8) 
 
 
where, if the pixel dimensions in the x and y directions are represented by mx and my 
respectively, αx = fmx and αy = fmy, and the principal point coordinates in terms of pixel 
dimensions is given by x0 = mxpx and y0 = mypy. These parameters form the calibration 
matrix that defines pixel coordinates of image points with respect to the camera frame, 
and are called the camera intrinsic parameters. 
 
There is a strong relation between the perspective projection and projective geometry. 
An important aspect of the projective geometry is the representation of projective 
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transformations as a matrix multiplication by the inclusion of homogeneous coordinates. 
A number of computer vision methods take advantage of these properties to easily solve 
problems, which some of them might be impossible using Euclidean geometry. Some of 
the major contributions of projective geometry to vision are the described linear method 
for determining the projective transformation matrix for a camera, the computation of 
the orientation of planes from vanishing points, camera motion from n matched points 
and projective invariants [8]. This last contribution is of significant importance in this 
thesis and serves as the basis for the spatial estimation method proposed in Chapter 5. 
Nevertheless, approaches based on Euclidean coordinates are introduced previously in 
Chapter 4, as an initial attempt to extract spatial information from the perspective 
transformation of angles.  
 
3.3.3. Geometric invariance 
 
The significant importance of the invariance of geometric configurations comes from 
their property of remaining unchanged under an appropriate class of transformations 
[9]. Having created an image-based framework for visual perception, where the 
perspective projection is represented by the collineation of the spatial and image point 
through the central projection, decisive tasks for the recognition of objects and spatial 
description of the environment are the extraction of projected geometric configurations 
and the determination of invariants. An example of invariance is the length under 
Euclidean transformations. Having the Euclidean distance of two points D(x1, x2)2, their 
displacement can be expressed as (x1 – x2) = R(X1 – X2), with X1 and X2 as their 
representation after the rotation, for any rotation matrix RtR = I. Therefore, under 
Euclidean transformations the distance between two points, as well as angles and areas 
are preserved.   
 
In computer vision, invariants are commonly the property of interest from which many 
methods are based on [10] [11] [12]. Since the image features that describe an object 
change depending on the point of view, the invariance of certain geometric 
configurations under perspective transformations is an important source of 
information, which can be applied for their recognition. Shape descriptors of 3D objects 
constructed from the correspondence of specific geometric configurations of two 
different views also permit to reproduce their 3D projection in any other view without 
camera calibration [8]. The construction of these invariants comes from their 2D 
projection in the image plane and therefore, their computation requires more image 
features than the Euclidean case. Concurrency, collinearity, intersections and the cross-
ratio are invariant properties of projective transformations [13]. The cross-ratio, which 
represents the ratio of ratios, is one of the most important invariant properties with a 
several number of applications, and as it is explained in Chapter 5, it is strongly related 
with the angular variation.  
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3.4. COMPUTATIONAL APPROACHES TO VISUAL PERCEPTION 
 
The interpretation of the environment by the human visual system, as is described in 
the previous chapter, is achieved by the performance of a diversity of complex 
processes distributed through brain. The perception of color, motion, form and depth 
constitute the basic cues that together provide the interpretation of the visual world. 
An artificial emulation of this perceptual function is the objective of computer vision. It 
is the fact that would confirm that a machine could really see. Although the 
accomplishment of this objective is regarded as difficult and even ambitious, several 
computer vision methods have succeeded in the emulation of determined visual tasks. 
Some of these methods are inspired in the biological functions of the human visual 
system. Motion or depth perception is achieved following processes as binocular 
disparity, accommodation, motion parallax, optical flow or shading patterns. In this 
section, a further explanation of the principles of some of these methods dedicated to 
perceive spatial information from monocular cues is presented. These methods have 
had a relevant interest and formed their own field in computer vision research. Thus, 
after the accomplishment of image formation and the creation of a special framework 
from which spatial metrics can be performed, computational approaches have led the 
ambitious task of visual perception as at least an accessible objective to fulfill.  
 
3.4.1. Optical flow 
 
An important cue used by the human visual system to perceive motion is the analysis 
of changes in the retinal image caused by head or body movements or by dynamics of 
the environment. It is expressed in the retina as a succession of neural activity of 
neighboring elements, which produce optical flow patterns. In the image plane of a 
perspective camera, these neighboring elements are replaced by intensity samples. 
Each sample represents the movement of the projection and serves to identify image 
brightness patterns from which motion information of local regions can be measured 
from a sequence of images [14]. Therefore, since motion represents spatial changes over 
time, it is a useful cue for object detection and 3D reconstruction. 
 
A number of computer vision methods have been developed to estimate optical flow 
vectors. Their initial hypothesis is based on the approximately constancy of intensity 
structures of local time-varying image regions under motion for at least a short 
duration [15]. It is assumed that intensity changes are due only to translations and also 
the objects visualized in the environment are rigid. The computation procedure starts 
with the measurement of spatio-temporal intensity derivatives, followed by the 
integration of normal velocities into full velocities [16]. Thus, the problem can be stated 
by expressing the intensity function as:    
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(3.9) 

 
where x represents the displacement at the image region (x, t) after time t, as shown 
in Figure 3.4. This is a good approximation for small translations, which after being 
expanded (3.9) in Tailor series is expressed as: 
 

(3.10) 
 
with I = (Ix, Iy) and It as the first order partial derivatives and O2 as the second and 
higher order terms, which are assumed to be small and can be ignored. Thus, 
subtracting I(x, t) on both sides and ignoring O2, the resultant equation: 
 

(3.11)  
 
having v = (vx, vy) as the image velocity of pixel (x, y) at time t and representing the 
motion constraint equation [17]. The computing of full image velocity consists in the 
addition of more constraints and an example of its results is shown in Figure 3.5.    
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Figure 3.4. The motion constraint equation of differential optical flow assumes that the 
intensity of regions is approximately constant after short intervals of time for small 

translations (Adapted from [16]). 

Figure 3.5. Example of the optical flow of a cylinder and a sphere (Adapted from [15]). 
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3.4.2. Motion parallax 
 
The monocular cue given by the relation between the apparent displacement of 
elements in the retina and the distance of objects in the scene is also used in computer 
vision methods. Together with optical flow form the field known as structure from 
motion, which are based on the extraction of motion information from multiple images 
to obtain depth. In this case, the optical effect given by the resultant displacement of a 
determined scene feature in an interval of time is the source of information from which 
depth can be calculated. As mentioned in the previous chapter, near objects appear to 
move faster than those at far distances.  
 
Several methods have been proposed to produce a 3D description of a scene based on 
this monocular cue. An accurate camera calibration is fundamental to obtain good 
results. This could be considered as the first step of the 3D reconstruction process and 
can be performed before the application (pre-calibrated) or at run time (online 
calibrated). Parting from the assumption that determined image features can be 
identified in a set of multiple projections; it can be considered that the obvious and 
simpler form to compute depth is by triangulation. However, the presence of noise 
complicates the problem, generating back projection rays that do not meet in 3D space 
[7]. Algorithms based on image feature reconstruction have been developed in order to 
tackle this problem by finding a suitable point of intersection [18]. In the case of 
feature-based reconstruction, performance is dependent on the accuracy of the feature 
detection process and its respective correspondence in other frames [19] [20]. While in 
the case of densely matched pixels, the assumption of dense temporal sampling leads 
to optical flow as an efficient approximation of sparse feature displacements [21].  
 
Alternative approaches developed for 3D reconstruction are based on the volumetric 
representation of scene structure by discretizing the scene space into a set of voxels [22] 
[23] or recover the surface description of objects using variational principles to deform 
an initial surface [24]. This last approach tackles the 3D reconstruction as a surface 
evolution problem and can be solved by choosing a surface that minimizes this energy 
function: 
 

(3.12)   
 
with (X) small in good matching locations, which can be selected by the summed 
square errors of the matching pixels: 
 

(3.13) 
 

(3.14) 
 
 Thus, minimizing (3.12), a surface S can be calculated using gradient descent [7]. 
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 3.4.3. Depth from focus 
 
A different approach to those methods based on motion is the extraction of spatial 
information from changes in the optical system of the camera that form a sharp 
projection of scene elements. As the monocular depth cue used by the eye in which its 
shape is adjusted in order to focus the lens, the optic system of the camera finds the 
correct focus of an object by changing the distance between the lens center and the 
image plane [25]. Computer vision methods emulate this accommodation process by 
the formulation of a correctly focused expression. It is the representation of finding a 
sharp image, which is the presence of high spatial frequency content, without blurring, 
at a determined position [26] [27].  
 
With a first assumption that the focal length f is constant, the correctly focused 
expression of a defocused spatial point P is given by the finite circular blurry region 
resultant of its projection in the image plane: 
 

(3.15)  
 
 
Having d as the diameter of the blur circle, in an optical system where A is the lens 
diameter, Z is the depth of the spatial point P in focus and Z0 the depth of the spatial 
point P’ out of focus, as seen in Figure 3.6. Thereafter, the intensity distribution is 
approximated to a two dimensional Gaussian function: 
 

(3.16) 
 
 
where  is the standard deviation given by the product of the diameter d of the blur 
circle and a constant k given by the camera.  
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Figure 3.6 Schematic of the optical system properties used to compute depth from focus. A 
correctly focused expression provides depth information from the blur circle created by a 

defocused spatial point P’ (Adapted from [26]). 
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3.4.4. Shape from shading 
 
The visual effect given by projected patterns of bright and dark areas in the retina as a 
consequence of the fall of light is a monocular cue used by the human visual system to 
perceive depth. This shading cue has also been emulated by computer vision methods 
to calculate depth and is the last example of computational approaches to visual 
perception presented in this section. As the human visual system takes advantage of 
the information provided by the shading depth cue, computational approaches have 
been developed based on gradations of reflected light intensity to determine the shape 
of objects as well. It relates the angles of scattered reflected rays with the incident light 
on a determined surface. As is shown in Figure 3.7, there are three angles of 
importance: The incident angle, formed between the incident ray and the surface local 
normal; the emittance angle, formed between the local normal and the emitted ray; and 
the phase angle, between the incident and emitted rays. Thus, it is possible to obtain 
the surface shape if the reflectivity and the position of the light sources are known [28].      
 
That initial formulation of the shape from shading defined it as a simple problem 
where a nonlinear first-order partial differential equation was enough to calculate the 
solution [29]. This equation related the brightness image I with the reflectance map R, 
and is expressed as: 
 

(3.17)  
 
where (x1, x2) are image coordinates of a point x and n is the normal vector to the 
surface. Nowadays, it is known that the solution of this problem is not unique [30] [31]. 
There is a concave/convex ambiguity and a change of the estimation of the lighting 
parameters. Thus, assuming that the scene is Lambertian, the reflectance map is the 
cosine of the incident angle. It leads to this expression:  R = cos(l, n), where the incident 
light vector l, together with R and n depend on (x1, x2) [32]. 
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Figure 3.7 Schematic of the three angles involved in the formulation of the shape from 
shading problem. If the incident (i), emittance (e) and phase (g) angles are known the shape of 

the surface can be determined (Adapted from [27]). 
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3.5. POSE ESTIMATION 
 
Although there have been developed a number of vision techniques specialized on the 
extraction of depth information inspired by biological processes, a different approach 
to visual perception takes advantage of indirect geometric properties of projected 
features to estimate the position and orientation of scene objects. This approach is a 
well known problem in computer vision. It is known as the 2D-3D pose estimation and, 
as the biological inspired approaches presented in the previous section, it has created 
its own research field. The pose problem can be defined as the estimation of the 
position and orientation of a 3D object with respect to a reference camera frame, as 
shown in Figure 3.8. Therefore, it can be considered as the estimation of the extrinsic 
parameters of the camera or a solution to the exterior orientation problem. It provides 
valuable 3D data and leads to the assumption that this spatial information may benefit 
significantly the cognitive mediation between action and perception in artificial vision 
applications. 
 
The indirectness from which the pose estimation problem is formulated is what 
differentiates this approach from biologically inspired methods. While computer vision 
techniques based on the emulation of determined functions of the human visual 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 Description of the 2D-3D pose estimation problem. The objective is to calculate the 
rigid body motion that achieves the best fit between object and image features. It represents 

the position and orientation of the object with respect to the camera. 
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system take advantage of spatial cues developing computational models for shape and 
depth calculations, the pose estimation problem generally formulates the problem 
indirectly imposing constraints equations to relate object and image features [33]. The 
resultant pose is estimated by minimizing an error measure through constraint 
equations, instead of applying closed form solutions or using invariants. Most of the 
developed techniques use the perspective camera model to work with a real 
representation of scene objects. They are normally separated in categories depending 
on the type of scene features from which the pose is calculated. There is therefore, a 
strong dependence on the correspondence of features, which in most cases is assumed 
to be known by the pose estimation methods.         
 
Pose estimation methods based on points were the first attempts to deal with this 
problem and thus, a number of algorithms have been proposed. The spatial 
information obtained from these methods comes from the identification and location of 
feature points in the image plane [34]. They start with the assumption that the scene is 
composed by rigid objects. However, their geometric models are not explicitly 
provided. In general, the problem is seen as the fitting of a set of N object points with 
its corresponding projection in the image plane [35]. The minimum number of 
correspondences that provides a finite number of solutions is three [36]. In the case of 
four coplanar and noncollinear points, a unique solution is given. As N increases, the 
accuracy of the estimation also increases [37]. Early works focused with a small 
number of correspondences applied iterative numerical techniques [38] [39]. Applying 
Newton-Raphson minimization, it was shown that the use of numerical optimization 
techniques was capable of real-time performance. Other methods apply direct linear 
transform (DLT) for a larger number of points [40], or reduce the problem to close-form 
solutions applying orthogonal decomposition [41]. Dual quaternions have also been 
used to estimate the pose by representing the rotation and translation through the real 
and dual part of the dual quaternion respectively [42]. 
 
An extension of the point configuration concept for pose estimation is the use of higher 
order geometric entities. It is a generalization of the used features that first introduces 
correspondences between a 2D line and a 3D point or 2D lines and 3D lines [33]. This 
different approach is considered a separate category and deals with lines, curves, 
planar surfaces or quadric surfaces as the features that should be identified in the 
image plane. Thus, as the 3D object is described by a series of more complex features, it 
is necessary to know its 3D model to calculate its pose [43]. Some of the methods based 
on this type of geometric entities are explained in more detail in the next two chapters. 
Lines are the feature of interest in this thesis and as it is first introduced in Chapter 4, 
there is a solution of the pose problem using numerical techniques and external angle 
information. Nevertheless, it is shown in Chapter 5 that an improved solution inspired 
in the biological processing is possible using geometric invariants, without requiring 
external angular information. 
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Chapter 4 
 

Line-based rotational motion analysis 
 

 

4.1. INTRODUCTION 
 
Computer vision methods dedicated to the analysis and understanding of a 3D scene 
have experienced a notable development over the last decades. Most of the increasing 
interest in this research field is due to the necessity of interpreting the 3D space from its 
projection on a flat surface. It could be seen as the recovery of 3D physical attributes of 
objects represented in images. These attributes can be expressed by its position and 
orientation with respect to a reference frame, and consequently, spatial information of a 
3D scene is provided. To accomplish this task specific geometric configurations are 
extracted from the captured camera view in the form of projected image features. The 
angular variation, as a monocular cue used by the human visual system, could be 
capable of supplying the required data to calculate this 3D information mathematically 
as well. In this chapter, this geometric configuration is introduced as the responsible to 
achieve this task. It could be considered as a first attempt to fulfill the objective proposed 
in this thesis of obtaining spatial information relating variations between 3D angles and 
their 2D projections. 
 
The previous chapter describes several methods proposed to estimate the orientation of 
a rigid object. The first step of their algorithms consists on the identification and 
location of some kind of features that represent an object in the image plane [1] [2]. 
Most of them rely on feature points and apply closed-form or numerical solutions 
depending on the number of objects and image feature correspondences [3] [4]. Lines, 
however, are the features of interest in this chapter. As higher-order geometric 
primitives, describe objects where part of its geometry is previously known. These 
kinds of features have been incorporated to take advantage of its inherent stability and 
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robustness to solve pose estimation problems [5] [6] [7]. A diversity of methods has 
been proposed using line correspondences, parting from representing them as Plücker 
lines [8] [9], to their combination with points [10] [11], or sets of lines [12] [13].  
 
In the case of sequence of images, motion and structure parameters of a scene can be 
determined. These motion parameters are calculated by establishing correspondences 
between selected features in successive images. The specific field of computer vision 
which studies feature tracking and correspondence is called dynamic vision [14] [15]. 
Using line correspondences, it takes advantage of its robustness. Nevertheless, as it is 
benefited from its stability, it also has to confront some disadvantages: more 
computationally intensive tracking algorithms, low sampling frequency and 
mathematic complexity [16]. Therefore, some early works have chosen solutions based 
on set of nonlinear equations [17], or iterated Kalman filters through three perspective 
views [18]. Recently, pose estimation algorithms have combined sets of lines and points 
for a linear estimation [12], or used dynamic vision and inertial sensors [16]. The 
uniqueness of the structure and motion was discussed for combinations of lines and 
points correspondences, and their result was that three views with a set of 
correspondent features, two lines and one point, or two points and one line give a 
unique solution [19].   
 
This chapter is focused in the analysis of changes in the image plane determined by 
selected feature correspondences. These changes are expressed as angular variations, 
which are represented differently depending on their orientation with respect to the 
camera. They are induced applying a sequence of specific transformations to an object 
line. Some properties of these motions are useful to estimate the pose of an object 
addressing questions as the number of movements or motion patterns required which 
give a unique solution. Making use of a monocular view of a perspective camera, some 
of these questions are answered in this chapter by the development of two proposed 
methods. The first of them requires 3D angular information and introduces the line to 
plane correspondence problem, while the second improves its dependence on 3D 
information by the addition of new specific transformations of the object. Both of them 
are based on the accomplishment of a certain 3D structure produced by selected 
rotations of the object represented by a 3D line, thus determined constraints are applied 
in order to obtain a unique solution. It could be seen as an exterior orientation problem 
where objects in the scene are moved to calculate their pose. Therefore, it is shown how 
knowing the transformations applied, it is possible to estimate the relative orientation of 
the 3D line with a number of different rotations and the relative position if the length 
information of the line segment is provided. 
 
 
 
 
 
 



Chapter 4 47

4.2. PROJECTIVE NATURE OF LINES 
 
A line can be described as the shortest connection between two points or the 
intersection of two planes. In Euclidean 3-space a straight line is infinitely extended in 
both directions. It is usually defined in terms of a point and an orientation. Thus, 
having the Cartesian coordinates of the position vector of a point p in the line and its 
orientation vector b, the line L can be parameterized in the real variable t with the 
resulting expression: 
 

(4.1) 
 
Although this representation of a line, defined as a set of points in 3-space, is 
commonly used, a number of different representations have been proposed [20]. They 
differ in their mathematical complexity and are applied by pose estimation methods 
depending on their suitability for calculus operations [21]. In the image plane, their 
projections are extracted in order to determine displacement information through their 
correspondences.  It is a robust feature, since edges are normally captured and can be 
reliably extracted. However, the complexity of the problem increases, since the motion 
information needs more constraints to be calculated than point-based methods [22].   
 
The projective nature of lines presented in this section serves as an introduction of the 
utility of this geometric configuration in computer vision applications, particularly to 
solve pose estimation problems. The methods proposed in this chapter are focused in 
the angular relations between a rotated 3D line and its derived projections. Therefore, a 
description of different line representations in 3-space is presented. It is followed by an 
introduction to the line to plane problem, which is a technique commonly used by pose 
estimation applications. It is strongly related to the line based rotational motion 
analysis, as they are based on similar imposed constraints. 
  
4.2.1. Representation of lines 
 
The representation of a line in Euclidean 3-space given in (4.1) is a basic definition 
which presents several disadvantages, all of them related to the lack of uniqueness. It is 
a point and orientation representation where infinity of points p and orientation 
vectors b serve to describe the same line. Having also an ambiguity introduced by the 
sign of the orientation vector, where vectors b and –b describe the same line as well. 
There have been a number of attempts to remove extra parameters and improve the 
representation based in some desired properties as the 1-1 correspondence between the 
set of lines and the set of representations; and a continuous mapping from lines into 
representations, or from representations to lines [20].  
 
 

{ }, .L p tb t= + −∞ < < ∞
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Plücker originally presented a method to represent a line as the intersection of two 
planes [23]. It can be expressed as: 
 

(4.2) 
 
Where the four parameters, κ, λ, µ and ν, are used to describe the line. However, this 
representation presents a singularity with lines perpendicular to the z axis. Therefore, a 
new approach was presented based in the use of homogeneous coordinates. Lines in the 
3-space have four degrees of freedom, thus it is a difficult geometric configuration to 
represent. It would be a homogeneous 5-vector, which cannot be freely used in 
mathematical expressions since points and planes are represented by 4-vectors [21]. To 
overcome this problem an elegant representation was proposed: 
 

(4.3) 
 
Where m = p × b is the moment of the line about the origin, which is a six parameter 
representation called Plücker coordinate. It has interesting properties as the intersection 
of two lines, (b1, m1) and (b2, m2), if b1.m2 + b2.m1 = 0.  
 
In the same way, the previous definition for a line presented in (4.1) may obtain a unique 
representation by the imposition of some constraints. This is a point and orientation 
representation where the equivalence of different values of vectors p and b to describe 
the same line is reduced in order to obtain a single instance. It is possible by selecting p 
as the point of the line L nearest to the origin of the reference frame and constraining b to 
be a unit vector. Thus, it is achieved by these non-trivial constraints equations: 
 

(4.4) 
 

(4.5) 
 
Even though these two constraints define a unique physical line in 3-space, there is still 
an ambiguity determined by the sign of b. Therefore, this orientation vector must be 
limited to a single half-space to get uniqueness [20], which is accomplished by choosing 
the sign of the z axis component of b positive: bz ≥ 0. In the case bz = 0, the y axis 
component of b should be chosen so that by ≥ 0. And if both bz = by = 0, the x axis 
component of b should be set to 1.  
 
 The outlined representations differ in their mathematical complexity. They are selected 
depending on their suitability on a required application. Plücker coordinates provide an 
elegant representation of lines and are useful in algebraic derivations. However, the 
representation through point and orientation describes physical attributes of lines in a 
natural form. Thus, it is used in this chapter, as it provides an easier handling of this 
geometric configuration to derive desired orientations. 

{ }( , , ) , .L x y z x z y zκ λ µ ν= = + = +
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 4.2.2. Pose estimation from lines 
 
The representation of lines in 3-space with respect to a camera reference frame is the 
purpose of the pose estimation from line correspondences. Since the input data are the 
projection of segments of lines in the image plane, a 3D-2D relation must be established 
in order to obtain the desired representation. Having X, Y and Z as the camera 
coordinates of a space point P, which is projected to the image at p, the first relation 
given in the previous chapter leads to: 
 
 

(4.6) 
 
 
where x and y are the 2D image plane coordinates of p and f is the focal length. Thus, 
with this point constrained to lie on a projected line with equation: 
 

(4.7) 
 
A relation between the 3D line and its projection in the image plane can be expressed as: 
 

(4.8) 
 
which is the equation of the projection plane that pass through the center of projection o, 
the 3D line and the image line, with a normal vector n as seen in Figure 4.1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Xx f Z=

Yy f Z=

0.ax by c+ + =

. 0.aX bY cZ n oP+ + = =

Figure 4.1. Projection of a 3D line in the image plane. A projection plane is created and passes 
through the center of projection, the projected line and the object line. 
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The pose of the 3D line with respect to the camera reference frame is given by a 3×3 
rotation matrix R and a translation vector t. If the 3D line is represented by a point vector 
m and an orientation vector b, the rigid transformation from the object frame to the 
camera frame can be expressed as: 
 

(4.9) 
 

(4.10) 
 
Where m’ and b’ represent the 3D line in point and orientation respectively in the camera 
reference frame. Therefore, to estimates the coefficients of the rotation matrix and the 
translation vector, some constraints must be applied. Considering the fact that the object 
line, the projected line and the center of projection are coplanar, a plane constraint can be 
imposed by: 
 
 

(4.11) 
 
 
With a point and orientation representation, the number of unknown parameters to 
describe a 3D line is six, three for rotation and the other three for translation. This implies 
that the two constraints provided by a single line are not enough to calculate its pose. 
Furthermore, it demonstrates the necessity of at least three line correspondences. 
Therefore, since three lines can be built from a variety of combinations from points, a 
solution to this problem can be taken from the general solution for point and line 
correspondences for any number of correspondences [24]. The minimum of input data 
sets is three points or three lines. This general solution is given by:   
 

(4.12) 
 
It solves the problem of N line correspondences as is solved the problem of a set of 2N 
nonlinear constraints, which is equivalent to solving the problem of minimizing the error 
function. This is a general solution for N ≥ 3, where from 2N point correspondences can 
be built N line correspondences.  
 
4.2.3. Line to plane correspondences 
 
Normally reference features of the same form are extracted from images to estimate the 
position and orientation of an object with respect to a determined coordinate frame. As 
presented above, correspondences between sets of points or lines are commonly used 
and provide the required information. A different approach to fulfill this task is the 
selection of lines as the sensory features and planes as the matched reference feature [25]. 
This is generally known as the line to plane correspondence problem and is based on 
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determining the transformation in which the set of lines corresponds to their respective 
projection planes. It is strongly related to the theory involved in the pose estimation 
methods proposed in this chapter, as a 3D line is rotated in order to obtain its respective 
projection plane until the complete set of concurrent lines satisfy the plane constraint. 
 
The general representation point and orientation of a line requires six parameters. 
Knowing that each pair of corresponding features provides two equations, it is evident 
that at least three feature pairs are required to solve the problem. If Li = pi + tbi is the 
representation of a 3D line, where pi is a point in the line and bi is its direction, and li its 
2D projection in the image plane, which define a projection plane Si with normal vector 
ni, the orientation problem is formally stated as: 
 

(4.13) 
 
Where ni and bi are unit vectors and i = 1, 2, 3. If the proper rotation R is calculated, the 
rotated line direction vector will be perpendicular to the projection plane normal, as 
shown in Figure 4.2. Once the rotation has been calculated, the translation can be easily 
computed knowing that: 
 

(4.14) 
 
Where t is the translation vector and Pi is the position of a point in Li, with pi representing 
the distance from the center of projection to Si, as it is a point and orientation 
representation of a line. Thus, when the proper translation is calculated, the transformed 
point will lie in the plane.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.t
i in Rb =

( ) .t
i i in RP t p+ =

Figure 4.2. Projection of a set of three concurrent lines. The line to plane correspondence first 
transforms the lines Li to a configuration in which each one is made perpendicular to its 

corresponding plane Si. 
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A number of degenerate configurations of lines and planes have been addressed in 
[25], where no solution can be determined. Nevertheless, for valid configurations a 
closed-form solution was established in order to provide a solution for three lines to 
plane correspondences. It results in an eight degree polynomial with one unknown. 
Thus, having the model lines, the method first rotates it in a way the orientation of the 
fist line b1 lies in its corresponding plane S1, achieving a perpendicularity with its 
normal vector n1. This rotation is performed through an axis e = n1 × b1, which forms a 
coordinate system with n1 and b1’ = e × n1. It can be seen as the coordinate frame x, y 
and z axes, where the normals and the rotated model lines are represented. In this 
configuration, L1 has only two degrees of freedom in rotation. It implies that there are 
only two unknowns left; hence the problem has been simplified. This resulting 
configuration is called canonical configuration [26], and can be expressed as:  
 
 
 

(4.15) 
 
 
 
where θ and ρ are the two unknowns to be determined. Consequently, substituting 
equation (4.13) in (4.15), a fourth degree equation is obtained: 
 

(4.16) 

 
And taking the squares of both terms of the equation, an eighth degree equation with 
one unknown results: 
 

(4.17) 
 
where the coefficients σi are functions of the components of b2, n2, b3 and n3. The roots 
of P(ρ) can be calculated by numerical operations with no established initial conditions. 
However, there are certain special feature configurations that a closed-form solution 
can be obtained. As an example, there is the case of a coplanar configuration, where the 
three line orientation vectors have a common origin and lie in a plane. This coplanarity 
is b1.b2 × b3 = 0. If it is assumed that this plane is x = 0, the expression of P(ρ) becomes: 
 

(4.18) 
 
It could be seen as a fourth degree polynomial with cos2(ρ) as the unknown, which can 
be solved analytically. Orthogonal and parallel configurations are the two other cases 
from which a closed-form solution can be obtained and are based on polynomial 
formulations as well. 
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4.3. POSE FROM LINE-BASED ROTATIONAL MOTION ANALYSIS 
 
The selection of line features as the required geometric configuration to determine the 
pose of an object has demonstrated to be a suitable and robust option. As said before, 
techniques based on this type of feature are normally focused on the establishment of 
correspondences with lines or planes. This provides a set of constraints that leads to 
obtain the 3D representation of the object line. As the relation between 3D and 2D 
angular variations is of significant importance in this research, motion analysis of 
feature lines is the base of the pose estimation algorithm developed in this section. It 
serves as a first approach, being a reconstruction of a set of 3D concurrent lines. In this 
case known 3D rotations of a line and its subsequent projections in the image plane are 
related to compute its relative position and orientation with respect to a perspective 
camera. Vision problems as feature extraction and line correspondences are not 
discussed and we suppose the focal distance f as known. The main goal is, having this 
image and motion information, estimate the pose of an object represented by feature 
lines with the minimum number of movements and identify angular patterns that 
permit to compute a unique solution without defined initial conditions.   
 
4.3.1. Mathematical analysis 
 
A 3D plane is the result of the projection of a line in the image plane. It is called the 
projection plane and passes through the projection center of the camera and the 3D 
line. This 3D line, in this case, is the representation of an object. With three views after 
two different rotations of the object, three lines are projected in the image plane. Thus 
three projection planes can be calculated. These planes are Sa, Sb and Sc, and their 
intersection is a 3D line that passes through the projection center and the centroid of 
the rotated object; being the centroid the point of rotation. Across this line a unit 
director vector vdd can be determined easily by knowing f and the intersection point of 
the projected lines in the image plane. The intention is to use this 2D information to 
formulate angular relations with the 3D motion data.  
 
Working in the 3D space permits to take advantage of the motion data. In this case 
where a 3D line represents the object, the problem could be seen as a unit vector across 
its direction that is rotated two times. In each position of the three views this unit 
vector lies in one of the projection planes as seen in Figure 4.3. It is first located in Sa, 
then it rotates an angle αab to lie in Sb and ends in Sc after the second rotation by an 
angle αbc. To estimate the relative orientation of the object the location of the three unit 
vectors, va, vb and vc, must be obtained. They should coincide with the 3D motion data 
and lie on their respective planes. To do this, it is known that the scalar product of: 
 

 (4.19) 
 

 (4.20) 

. cosa b abv v α=

. cosb c bcv v α=
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And calculating the angle γ between the planes formed by vavb and vbvc from the 
motion information a third equation is introduced: 
 

 (4.21) 
 
which after applying vector identities, it can be expressed as: 
 

 (4.22) 
 
With the set of equations conformed by (4.19), (4.20) and (4.22), the three unit vectors 
are related. However, although there are more unknowns than equations, there is not a 
unique solution, thus constraints must be applied. 
 
4.3.2. Projection planes constraint 
 
There are many possible locations where the three unit vectors can satisfy the 
equations in the 3D space. To obtain a unique solution unit vectors va, vb and vc must 
be constrained to lie in their respective planes. Unit vector va could be seen as any unit 
vector in the plane Sa rotated through an axis and an angle. Using unit quaternions to 
express va results in: 
 

 (4.23) 
 

( )( ) cosa b b cv v v v γ× × =

. cos cos cosa c ab bcv v α α γ= −

*
a a av q vq=

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Unit vectors va, vb and vc are constrained to lie on planes Sa, Sb and Sc respectively. 
Their estimation can be seen as a semi sphere where their combination must satisfy the angle 

variation condition. 
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where qa is the unit quaternion applied to va, qa* is its conjugate and v is any unit vector 
in the plane. For every rotation about an axis e, of unit length, and angle Ω, a 
corresponding unit quaternion q = (cos Ω/2, sin Ω/2 e) exists [27] [28]. Thus va is 
expressed as a rotation of v, about an axis and an angle by unit quaternions 
multiplications. In this case e must be normal to the plane Sa if both unit vectors va and 
v are restricted to be in the plane. 
 
Applying the plane constraints and expressing va, vb and vc as mapped vectors through 
unit quaternions, equations (4.19), (4.20) and (4.22) can be expressed as a set of three 
nonlinear equations with three unknowns: 
 

 (4.24) 
 

 (4.25) 
 

 (4.26) 
 
The vector to be rotated is vdd, which is common to the three planes, and their 
respective normal vectors are the axes of rotation. Therefore, extending the set of 
equations (4.24), (4.25) and (4.26), multiplying vectors and quaternions, it can be 
appreciated that there are only three unknowns that are the angles of rotation Ωa, Ωb 
and Ωc. 
 
4.3.3. Relative position and orientation estimation 
 
Applying iterative numerical methods to solve the set of nonlinear equations, the 
location of va, vb and vc with respect to the camera frame in the 3D space is calculated. 
Now there is a simple 3D orientation problem that can be solved easily by a variety of 
methods as least square based techniques. However, in the case where motions could 
be controlled and selected movements applied, this last step to estimate the relative 
orientation would be eliminated. Rotation information would be obtained directly 
from the numerical solution. If we assume one of the coordinate axes of the object 
frame coincide with the moving unit vector and apply selected motions, as one 
component rotations, a unique solution is provided faster and easier. 
 
The estimation of the relative orientation serves now to compute the relative position. 
It is necessary to track the projection of the end point of the 3D line that represents the 
object. The relation between the 3D position of this end point, (X, Y, Z), and its 
projection in the image plane, (x, y), can be expressed as x=fX/Z and y=fY/Z. In our case 
where we know the 3D transformations applied to the object and its image projections, 
the relative position can be easily calculated rotating them to camera frame coordinates 
and by relating point position differences ∆X, ∆Y and ∆Z and their projections ∆x and 

* *
1cosa d a b d bq v q q v q α=

* *
2cosb d b c d cq v q q v q α=

* *
1 2cos cos cosa d a c d cq v q q v q α α γ= −
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∆y. Thus two views are sufficient to obtain the position of the centroid if the length to 
its end point is provided. 
 
4.3.4. Uniqueness of solution and motion patterns analysis 
 
The pose estimation algorithm explained above guarantee a unique solution. With two 
views, there would be many combinations of unit vectors constrained to their planes 
that satisfy the angular variations condition. The third view constrains the set of 
combinations, thus the solution is unique. It is estimated from two rotations and is 
considered as a robust orientation method due to the use of angle between lines. A 
pattern of motions analysis is useful in the case movements are controlled and can be 
selected to simplify calculations. 
 
In the form the orientation estimation is tackled by this method, where small rotations 
in different axes provide a unique solution and the object is represented by a 3D line, 
some selected rotations provide faster computations. If it is assumed that one of the 
axes of the coordinate frame of the object is the unit vector that describes the 3D line 
direction, with two different one component rotations, the relative orientation result 
comes directly from the numerical solution. With normal axes of rotations the angle 
between the planes formed by vavb and vbvc is π/2, as seen in Figure 4.4. It also serves 
to reduce calculations. This is relevant when applications require real time 
performance, providing fast results that in many cases should be updated frequently.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4. Two selected rotations through normal axes simplify computations. Having a 
determined aperture of planes γ, the angular variation could generate a different pattern even 

when αab and αbc are equal. 



Chapter 4 57

4.4. POSE FROM CONSTRAINED ROTATIONS 
 
The line-based rotational motion analysis described on the previous section served as 
an introduction to the visualization of projective properties of the angular variation. It 
demonstrates the possibility to estimate the relative orientation of an object line 
through defined rotations. However, as this algorithm is based on exterior or 3D 
constraints by the imposition of lying in projection planes, the 3D rotation angles are 
required as an input. In this section an extension of this algorithm is proposed. It 
improves its dependence on 3D information by the addition of new specific rotations of 
the object. Therefore a relation of the 2D-3D angles is applied, in which geometric 
invariants of projected features serve as the base to determine Euclidean magnitudes. 
First the orientation of the object is estimated through simple determined motions. 
Subsequently, according to its orientation, specific registered positions are identified to 
fulfill some geometric conditions. This permits to estimate the 3D angles and 
consequently the orientation of the object with respect to the camera, as well as its 
position.  
 
4.4.1. Projected geometric invariants 
 
Projected features of the rotated object are represented in the image plane by lines. A 
perspective camera maps these projections where certain geometric properties are 
preserved [29]. Straight lines map to straight lines. Presenting the line-based rotational 
motion problem as in the previous section, where three projection planes Sa, So and Sc 
correspond to three views of the object after two rotations around a centroid, it is 
possible to approximate the 2D-3D angular relation if small rotations are performed 
about the same axis. This is due 3D angles, which are Euclidean invariants, are not 
preserved under perspective mapping. Therefore, if the object line is rotated about the 
same axis by a determined angle, according to this property, the angles between 
projection planes are approximately equal. This is: 
 

(4.27)  
 
where na, no and nc are the normal unit vectors to planes Sa, So and Sc respectively. Thus 
projective features provide relevant information through Euclidean invariants. The 
smaller are the 3D angles of rotation, the more approximated are the projection planes 
separated.   
 
Applying the line-based rotational motion analysis, this set of equations is obtained: 
 

 (4.28) 
 

 (4.29) 
 

. .a o o cn n n n≈

. cosa ov v α=

. coso cv v α=
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 (4.30) 
 
having va as a unit vector representing the initial orientation of the object, and vo and vc 
representing the orientation after two subsequent rotations. Since the 3D angles αao and 
αoc are equal, they are expressed by α. And according to the principle of this three unit 
vector configuration, cos(γ) of equation (4.21) is -1, as the rotations are performed about 
the same axis. With this set of equations the three unit vectors can be calculated only if 
the 3D angles are provided. Therefore, constraints must be applied considering the 
properties of projective mapping of feature lines.  
 
4.4.2. Projection planes constraint 
 
Applying the same concept presented in the previous section, the infinity of possible 
orientations which satisfy the set of equations (4.28), (4.29) and (4.30), is constrained 
through the imposition of unit vectors va, vo and vc to lie in their respective projection 
planes. Thus, using unit quaternions to represent the unit vectors as a result of a rigid 
transformation, equation (4.28) can be expressed as: 
 

(4.31) 
 
which is an example of the representation of one of the equations of the set. Where qa is 
the unit quaternion applied to va, qa* is its conjugate and vdd is the unit director vector 
that connects the center of projection and the centroid. The vector to be rotated is vdd, 
which is common to the three projection planes, and its normal vector na is the axis of 
rotation. Thus, applying the constraint to (4.29) and (4.30) as well, with no and nc as 
their respective axes of rotation, a set of three nonlinear equations is obtained. This 
constraint simplifies calculations resulting in three unknowns which are the angles of 
rotation through their respective projection planes: Ωa, Ωb and Ωc. 
 
Although the projection plane constraint simplifies the equations, it is not sufficient to 
estimate the 3D angles. Therefore, it is necessary to include 3D information and take 
advantage of the projective invariant approximation. It can be accomplished by 
rotating the instrument two consecutive times about the same axis a determined angle 
(αao = αoc = α). This permits to reduce the unknowns, Ωa, Ωb and Ωc, to only one Ω due to 
the approximation of equation (4.27). If the unit vectors va, vo and vc lie on a plane, with 
angles αao and αoc equal, and are constrained to their projection planes, there are two 
possible combinations to satisfy the equations. The first is centering vo, it is Ωb = π/2, 
and va and vc rotated in opposite directions, Ωa = Ω- π/2 and Ωc = π/2-Ω, as seen in 
Figure 4.5. And the second Ωa, Ωo and Ωc equal to Ω. 
 
The projective invariant approximation reduces the three unknowns to only one in the 
case there are three unit vectors lying in a plane. It is possible by the establishment of a 
rule, to apply plane constrained rotations. The first combination mentioned above is 

( )( ) 1a o o cv v v v× × = −

* * cosa dd a o dd oq v q q v q α=
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the rule implemented in order to obtain a unique solution. The second is not useful in 
this application: it is a singularity where the plane formed by the three vectors 
coincides with the projection plane. However, this case can be avoided applying 
different motions, or simply by augmenting or decreasing the produced angle. 
 
The reduction of unknowns facilitates the estimation of the 3D angles; however there 
are many possible locations to satisfy equations (4.28), (4.29) and (4.30). In order to 
obtain a unique solution, 3D information is included. As seen in Figure 4.6 a second 
plane is added formed by three unit vectors. This plane is perpendicular to the formed 
by va, vo and vc, with equal angular rotations. It forms a right circular cone shape with 
the intersection of the two planes as its axis. Thus, only two unit vectors are added, vb 
and vd, with vo as the cone axis. 
 
With the inclusion of a second plane forming a right circular cone a new set of 
nonlinear equations is produced. To satisfy the angular condition of unit vectors 
around the central axis, as αao = αoc = αbo = αod, equations (4.28) and (4.29) lead to:  
 

 (4.32) 
 
and as the two planes are perpendicular: 
 

 (4.33) 

. .a c b dv v v v=

( ).( ) 0a d b dv v v v× × =

Figure 4.5. Unit vectors va, vo and vc are constrained to lie on projections planes Sa, So and Sc 
respectively. There is the same angle between the planes. Having the condition that αao = αoc, 

the constrained unit vectors can be estimated by rotating vdd in a determined relation of 
angles. 
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Applying the projective invariant approximation and the relation of angles established 
as rules in each of the two perpendicular planes, the result is a set of two nonlinear 
equations with two unknowns: Ω1 and Ω2. Having a plane conformed by va, vo and vc in 
which the projective constraint is implemented with their respective unit quaternions 
with the common rotated unit vector vdd and unknown Ω1. And the perpendicular 
plane conformed by vb, vo and vd, with unknown Ω2. Solving the set of equation 
conformed by (4.32) and (4.33) a unique solution is obtained. Thus, as the 3D angles 
have been estimated, the orientation of the unit vectors, and consequently the relative 
orientation of the object can be calculated. Moreover, once having calculated the 3D 
angle, the position of the centroid can also be estimated knowing the transformations 
applied. 
 
 
 
 
 

Figure 4.6. Determined transformations are applied to the object to obtain a unique solution. 
Unit vectors are estimated in order to calculate the 3D angles produced by the rotations, 

forming in this case a right circular cone with the intersection of the two planes as its axis. 
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4.5. EXPERIMENTAL RESULTS 
 
In order to analyze the angular variation produced by 3D transformations, and to 
validate the two proposed algorithms developed in this chapter, a series of simulations 
and real world data tests were carried out. First, simulations were performed to obtain 
a profile of the effects of different 3D angular amplitudes over the perspective angular 
variation. And subsequently, validations of the line-based rotational motion analysis 
and the constrained planes algorithms were performed using real data, from which 
interesting properties and drawbacks were found and are presented in this section.    
 
4.5.1. Angular variation analysis through simulations 
 
Simulations were performed through a graphics interface application where 3D 
transformations could be handled. The rigid object to be transformed was a line 
segment where one of its end points was the centroid. The position in the 3D space of 
the viewpoint was known and represented the center of projection of the camera. The 
input parameters were the angles of rotation of the object, α1 and α2, and the angle 
between the planes generated by these rotations, γ. Line features were identified in the 
image plane by straight-line detection algorithms. It served to measure the projected 
angles, β1 and β2 as the slope of its respective lines, and the unit vectors that described 
their projection planes to compute the relative orientation. 
 
In Figure 4.7 can be observed the angular variation from the projected angles, β1 and 
β2, as a result of changes of γ. It is an example to depict the changes of the projected 
angles through specific rotations in a determined pose of the centroid. With static 3D 
angles, α1 and α2, and only variations of γ, it is shown that not only the projected angle 
differs from the 3D angle, but it also varies depending on its point of view. This is 
represented by the contrast between the constancy of the measured angle β1, resultant 
from motions over an unchanged orientation, and the variations of β2, which changes 
its orientation due to increments of γ. There are values of γ where the angular variation 
is higher with small variations of α. Thus γ can be employed to determine the 
minimum number of movements to estimate the orientation easier and decrease errors. 
In the case of 3D transformations with high angular variations, the 2D difference 
decreases constantly. This case is not useful. Motions with such a magnitude are not 
always applicable. Figure 4.8 is shows the performance of the orientation estimation 
through the rotational motion analysis. It can be observed the percentage error and the 
computation time with variations of α1 and α2. The error decreases with increments of α 
and provide good results for small and middle angles. On the other hand, the 
computation time increases exponentially with increments of α, due to the greater 
number of iterations required to solve the nonlinear set of equations. This example in 
particular results from calculations performed over a computer equipped with a 
Pentium IV@2GHz processor.   
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Figure 4.7. Example of the 2D angular variation induced by 3D rotations. The pose of the 
object was selected in such a form that variations of γ could only affect the orientation of the 

second motion. As a result uniform values of β1 were obtained, while values of β 2 changed. It 
implies that there are angular variation patterns determined by the point of view of the 

observer. 
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4.5.2. Line-based rotational motion analysis results 
 
Real world data was used to validate the algorithm. Experiments were carried out 
through a robotic test bed that was developed in order to get high repeatability. It 
consisted on an articulated robotic arm with a calibrated tool frame equipped with a 
tool, easily described by a line, which was presented in different precisely known 
orientations to a camera. The camera field of view remained fixed during the image 
acquisition sequence. The tool center of rotation was programmed to be out of the field 
of view, as it would be presented in an action-perception application.  
 
With this premises, a standard analog B/W camera equipped with known focal length 
optics was used. This generated a wide field of view that was sampled at 768x576 

Figure 4.8. Relative error and computation time of the orientation using the rotational motion 
analysis algorithm. 
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pixels resolution. After image edge detection, Hough Transform was used in order to 
obtain the tool contour and the straight line in the image plane associated to it. Tool 
contour was supposed to have the longest number of aligned pixel edges in the image. 
 
Having this setup, feature lines were identified and located in a sequence of images. 
These images captured selected positions of the rotated tool. Once the equations of the 
lines projected in the image plane were acquired, unit vectors normal to the constraint 
planes and vdd could be calculated. This unit vectors and the motion angles α1 and α2 
served as the input to the proposed algorithm. The intersection of the lines was needed 
to calculate vdd. This calculation is prone to errors due to be located out of the field of 
view. It means the intersection of a different number of lines is not usually a single 
concurrent point. Table 1 shows the standard deviation in pixels of the intersection 
points calculated through different motion angles. The intersections converge to a 
single point when the angles between lines are higher. 
 
 
 

Table 1. Standard deviation of intersecting lines (in pixels) through different motion angles, 

being the intersection point defined by coordinates Xint and Yint of the image. 
 

Degrees Xint Yint Standard. Dev. 

5 895.81 264.11 62.31 
10 928.28 278.91 35.65 
15 861.41 250.71 6.58 
20 876.67 256.52 5.83 

 
 
 
The orientation of the object line attached to the robotic arm was calculated by the 
algorithm performing a sequence of determined rotations. It related this 3D angular 
information to the projected lines detected by the vision system. Tests for motions with 
an aperture angle γ between 5 and 20 degrees were carried out. Figure 4.9 shows the 
percentage error for different angles α1 and α2. Which were selected to be equal (α1 = 
α2), thus the three required views were given by each position of the object. There can 
be seen a common feature to the entire test results, it is the considerable high error at 
small values of angles α1 and α2. It implies that at small rotation angles, there is not an 
enough projected angular difference to be appreciated. This identification of angular 
difference is a crucial factor to obtain an optimum solution and is determined by the 
resolution of the line feature extraction method applied. This effect can also be seen 
through the error decreasing tendency as the rotation angles increase. Therefore, small 
aperture angles γ influence as well in the solution of the algorithm and explain the 
stability of a high error even when the motion angles increase.  
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Figure 4.9. Orientation error using the rotational motion analysis algorithm. There is an 
important source of errors at small angular differences. 

Figure 4.10. Algorithm performance comparison between 10 and 20 degrees, with a first 
rotation α1 followed by a second α2 of the same magnitude. 
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Figure 4.10 compares the algorithm performance for 10 and 20 degrees aperture angles. 
There the error varies differently. It can be seen as two tests that are below and above a 
threshold determined by the capacity of the line extraction method to detect precisely 
angular measures from the image plane. In the case of 10 degrees, the test is below the 
threshold, thus the error remain stable even with increments of α1 and α2. On the other 
hand, in the case of 20 degrees, the test is above the threshold. Hence the error is 
reduced as the angular measures become appreciable. It is also notable the effect of the 
intersection point, the calculation of vdd has a great impact.  
 
4.5.3. Constrained rotations results 
 
Having the setup conformed by the object line attached to a robotic arm, feature lines 
were identified and located in a sequence of images. These images captured selected 
positions of the rotated object. Once the equations of the lines projected in the image 
plane were acquired, unit vectors normal to the constraint planes and vdd were 
calculated online. Therefore, having the facilities given by the calibrated configuration, 
the 3D points P0, Pa, Pb, Pc and Pd needed to build the right circular cone were located. 
vdd was calculated by the intersection of feature lines. This calculation is prone to errors 
due to be located out of the field of view.  
 
Having the right circular cone formed by determining the 3D points P0, Pa, Pb, Pc and 
Pd, the resulting angles between the projection planes can be observed in Figure 4.11. 
There, two couples of projective planes are easily distinguished. The projective planes 
Sa and Sc containing va and vc which lie on a plane, and Sb and Sd with vb and vd which 
lie on its perpendicular. As the 3D angle of rotation (α) increases, the angle between 
couples of planes tends to separate. This demonstrates that in this case, the projective 
invariant property can be implemented with small angles. However, as shown in 
Figure 4.12, the percentage error grows exponentially with increments of α, which on 
contrary to the previous algorithm tests, was estimated from its angular projection. 
There the length of the object line was estimated in order to determine the position of 
the centroid. Therefore the applicability of the algorithm is strongly influenced by the 
motions performed, especially by the magnitude of the angles and the reliability of the 
approximation. As in the previous tests, there is an error increment when angular 
magnitudes are small. It is consequence of the resolution of the line extraction method, 
where angular differences cannot be appreciated. In the same way, the reliability of the 
approximation is not easy to be achieved. Thus, although it is possible to estimate 3D 
information directly from image data, this method requires a set of conditions that are 
difficult to fulfill.   
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Figure 4.11. Angular variation between projection planes in an arbitrary view. Two couples of 
projective planes are distinguished. Sa-So-Sc as va, vo and vc lie on a plane, and Sb-So-Sd, as vb, 

vo and vd lie on its perpendicular. As the 3D angle of rotation of the instrument (α) increases, the 
angle between couples of planes tends to separate. 

Figure 4.12. Object length error estimated with the constrained planes motion analysis 
algorithm in an arbitrary view. The error increases as the projected lines approximation 

deviates. 
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4.6. DISCUSSION 
 
The angular variation produced by projections of an object line under 3D rotations 
presents interesting properties from which spatial information can be obtained. A 
simple line feature resultant from the perspective mapping of an object line can 
provide relevant 3D information through angles formed by its own motion or by a set 
of concurrent lines. It has been seen in this chapter that 3D angles are mapped 
differently in an image. Their magnitudes vary depending on the point of view of the 
observer. This fact suggests that there is a relation between the angular variation 
performed by a certain object line and its orientation with respect to the camera. 
Therefore, two methods are proposed to estimate the pose of an object through the 
analysis of the angular variation caused by 3D rotations.  
 
A common aspect of the two proposed algorithms is the imposition of 3D constraints. 
Since the information provided by a projected line is not enough to obtain a unique 
solution, the application of constraints over the lines to lie on their respective 
projection planes reduces the range of possible solutions. Thus, applying this 
constraint to a set of projected lines, a unique solution can be obtained by the 
accomplishment of a certain 3D structure. For the first algorithm, the line-based 
rotational motion analysis, the set of concurrent lines must be at least of three. 
However, the 3D angles between them must be known. It shows that with only two 
rotations the angular variation between lines provides sufficient information to 
estimate the relative orientation of the object. This motion analysis produced answers 
to addressed questions as the uniqueness of solution for the minimum number of 
movements and possible motion patterns to solve it directly. 
 
The second proposed algorithm, the constrained planes motion analysis, adds new 
movements or lines to be projected in the image plane to calculate the spatial 
information. On contrary to the previous algorithm, it first estimates the angular 
magnitudes between the 3D lines. It requires an increased number of constraints due to 
the lack of supplied 3D information. Thus, a cone-shaped structure should be 
described by the rotated object line. This is a notable drawback of the method, which in 
order to accomplish this type of 3D structure specific rotations must be performed. 
This is not a common model; therefore it should be manipulated, as in the experiment 
tests, by a robotic arm. This algorithm also makes use of an angular approximation, 
which aside of being difficult to fulfill, is based on a determined orientation of the 
cone. As a right circular cone, its base is conditioned to remain tangent to a sphere 
centered at the origin of the camera frame. Thus, the approximation can be considered 
reliable.  
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Chapter 5 
 

Perspective distortion model as a function 

of angular variation 
 

 

5.1. INTRODUCTION 
 
The angular variation has demonstrated to be a stable and reliable feature which 
provides 3D information. Previous approaches described in Chapter 4 were developed 
as an attempt to introduce this feature as a monocular cue for spatial perception. 
Although both proposed algorithms, from the simple line-based rotational motion 
analysis [1], to the more sophisticate cone-shape line rotation structure [2], successfully 
provide pose information, they are strongly dependent on certain scene data conditions. 
They are based on the application of 3D constraints on 2D input data. It implies that 
angular information extracted from images must satisfy 3D conditions based on a 
specified scene structure. This is a relevant limitation when 3D information is not 
available or the required structure cannot be accomplished. An alternative approach is 
described in this chapter. Inspired in the monocular cues used by the human visual 
system for spatial perception, it is based on the proper content of the image. It is focused 
on the distortion of geometric configurations caused by the perspective projection. Thus, 
the necessary information is completely contained within the captured camera view. 
  
The monocular cue for spatial perception used in this approach is the linear perspective. 
It is related with the appearance of objects under perspective transformations on a flat 
surface. This bidimensional view generated by the representation of a 3D object is the 
result of a planar projection. It is obtained by mapping each point of the object onto a 
plane through passing lines emanated from a center of projection. Depending on the 
desired visual effect derived by the representation, this mapping may be different. It 
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could show the general appearance of an object or depict its metric properties. When the 
center of projection is finite, a perspective projection is obtained. It presents an object as it 
is seen by the eye and is generally used in computer vision applications.   
 
A perspective projection provides a realistic representation of an object. An impression 
of depth is created on a 2D surface and its 3D shape can be visualized. However, to 
provide this impression the geometry of the object is strongly distorted. Different parts 
are represented at different scales and parallel lines converge at a single point. It implies 
that such a projection is not considered by the principles of Euclidean geometry [3]. 
Under perspective transformations distances and angles, which are Euclidean invariants, 
are not preserved. Nevertheless, different properties of geometric configurations remain 
unchanged. For instance, a straight line is mapped to a straight line. 
 
The invariance of geometric configurations under perspective transformations plays an 
important role in computer vision. It is a geometrical description of objects from 
perspective images which prevail unchanged, a useful property in object recognition and 
navigation [4]. In many cases projective invariants are the only properties of interest on a 
perspective image. However, the changes on geometric configurations derived by 
perspective transformations can provide useful 3D information as well.  
 
In this chapter the particular interest is focused on the analysis of the perspective 
distortion. The visual representation of an object depends on the point of view of the 
observer. This implies that 3D information, as position and orientation of an object, could 
be estimated from changes on geometric configurations. In this case the geometric 
property to analyze is the angular variation. This simple property is deeply influenced 
by perspective transformations and serves to model the perspective distortion. 
 
The angle between two projected straight lines varies depending on their orientation 
with respect to the camera. In a series of coplanar incident 3D lines separated by a 
constant angle, a perspective projection affects its appearance changing each angular 
magnitude differently. The only geometric property that remains invariant is its cross-
ratio. Since the locus of points that forms the pencil of lines is a conic curve, the 
invariance of the cross-ratio is an important property to take into account. It serves as the 
base of the perspective distortion model developed in this chapter to establish the nature 
of the projection. It describes the distribution of angular magnitudes of the projected 
pencil of lines, and consequently, the orientation of the 3D plane where they lie can be 
estimated. 
 
Numerous techniques have established conics as the ideal features to estimate the pose 
of an object. Particularly circles are considered as compact geometric primitives with 
enough 3D information [5]. The perspective projection of a circle in any arbitrary 
orientation is always an exact ellipse [6]. Thus, the first step adopted by previous 
approaches to solve the model analysis of circular features has been the estimation of the 
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elliptical parameters by least-square fitting techniques [7] [8] [9]. In our case, straight 
lines are the features to be extracted and the angular magnitudes are the geometric 
properties from which the elliptical parameters are obtained.  
 
The position and orientation of a circular feature can be completely specified by the 
coordinates of its center and the surface normal vector [10]. The projection of this center 
does not correspond to the ellipse center [11]. An analysis of this position distortion 
model of the projected center was proposed in [12]. It studies the visual effect caused by 
perspective projection. However, it requires projections of the circular feature and its 
center as well. Through the perspective distortion model developed in this chapter, the 
angular variation specifies the axis and angle on which the constructed circular surface is 
oriented. This novel approach is accurate and simple. We show its feasibility in static 
images, using a pencil of lines, as in a sequence with a moving line feature. 
 
5.2. PROJECTIVE NATURE OF CONICS 
 
A conic is a plane curve obtained by the intersection of a right circular cone with a 
plane. Since this intersection does not pass through the vertex of the cone, the resulting 
curve can also be called a non-degenerate conic section or proper conic [13]. In 
Euclidean geometry proper conics can be differentiated as parabolas, ellipses and 
hyperbolas. However, in 2D projective geometry these types of proper conics are 
equivalent as they describe the same properties under projective transformations [14]. 
An ellipse, including a circle as a special case, is a conic in which its intersecting plane 
cuts all the elements of one half of the cone. This geometric configuration in particular 
plays an important role as a common feature to extract from images due to its regular 
presence and the spatial information it contains. It is a curve strongly related to the 
cross-ratio and defined in terms of its invariant nature.  
 
The hypothesis of modeling the perspective distortion, further developed in this 
chapter, is based on the identification of variation patterns which describe the spatial 
relation between the object and the observer. It could be surprising to find out that 
these variation patterns are related, as will be shown later, with the projective 
invariance of specific geometric configurations. In this section the concept of the conic 
as a projective invariant is introduced. It is presented as a useful geometric 
configuration and explains its importance in a diversity of computer vision 
applications. Especially, it is presented as a key feature to provide visual cues to space 
perception through pose estimation algorithms or, as in this case, describing the 
perspective distortion derived by a projective transformation and its relation with 
angles.   
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5.2.1. Conics and the cross-ratio 
 
A notable fact to emphasize in terms of projective invariant theory over the projective 
nature of conics is that it is a curve defined by the cross-ratio. It is a result of Chasles’ 
Theorem: 
 
A proper conic is the result of the locus of four coplanar points, no three collinear, which forms a 
pencil of lines with point of incidence in the same plane preserving a constant cross-ratio. 
 
This projective invariant property can be compared to the Euclidean construction of 
the circle. It is formed by the locus of points with a fixed distance from a determined 
point. In that case distance is the invariant under Euclidean transformations [4].  
 
The strong relation between the cross-ratio, a fundamental projective invariant, and 
conics provides answers to general ambiguities raised by the analysis of uniqueness of 
projections which involves planar conics. As stated by the Chasles’ Theorem, a cross-
ratio is also defined for a set of four points on a proper conic. It can be seen in Figure 
5.1 that having a set of points xi, 1 < i  < 4, on the proper conic Γ, and another point p 
also on Γ, the lines from p to xi define a cross-ratio which is by definition independent 
on the choice of point p [15].  
 
The order in which the points are taken on a line or a conic affects the value of the 
resultant cross-ratio (Cr). There are 4! = 24 possible permutations, nevertheless due to 
the symmetries there are only six distinct values and come in reciprocal pairs. These 
permutations can be produced by selecting all the point combinations. However, there 
exists a rotational function called the j-invariant [16], which is independent of the order 
of the points and is defined by this equation: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. Definition of the cross-ratio by a set of four points on a proper conic. The value of 
the cross-ratio is independent of the choice of p. 
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(5.1) 

 
It is a relevant property in computer vision applications, particularly in object 
recognition through image feature invariance, the possibility to acquire a unique value 
of the cross-ratio independent of the order in which they were taken. Nevertheless, as 
is the interest of this approach, the invariant property of the cross-ratio also provides 
an extent source of projective cues to visual perception of space as will be shown in 
next sections.  
 
5.2.2. The projection of a circle 
 
The realistic impression of depth represented on scene painting or artistic drawing is 
achieved following certain rules based on the laws of perspective.  These rules were 
first introduced by Greek painters and geometers during classical antiquity [3]. The 
fact that the appearance of objects under projective transformations is not preserved 
and, in particular, the necessity to understand how these shape changes could be 
represented, led geometers to formalize the effect of perspective on geometric 
properties. A notable feature they took into account about the effect caused by 
perspective was the dependence of the distortion of a geometric configuration on the 
point of view of the observer. This dependence has been studied as a source of space 
information in computer vision applications, especially in conics, where the effect of 
perspective distortion is pronounced. 
 
A circle, a special case of ellipse, is a geometric configuration strongly distorted under 
projective transformations. As is shown in Figure 5.2, the nonparallel projection of a 
circle is an exact ellipse in which its projected center and the center of the ellipse do not 
coincide. This is an important feature extensively used in computer vision applications. 
Having a distorted circle and its center, the exterior orientation can be determined by a 
diversity of methods. In contrast, it is important to mention another projective property 
of the projected circle, which is invariant to Euclidean transformations. This is the 
absolute conic, a particular conic contained in the plane at infinity [17]. As some 
applications take advantage of the perspective distortion, others make use of this 
invariance, especially in camera self-calibration algorithms. In general the absolute 
conic demonstrates that there are four positions of a circle with known radius, which 
corresponds to a given image conic [4].  
 
The projected circle, as a conic, is strongly related with pencils of lines. As it is stated in 
the Chasles’ Theorem, conics can be constructed by the locus of points that conform a 
pencil of lines with a fixed cross-ratio. The projective property of this geometric 
configuration, represented by a set of concurrent lines, is the invariance of the cross-
ratio defined by the angles between its lines. Since a conic is distorted by projective 
transformations, the angular distribution between these lines must satisfy the constant 
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cross-ratio property. Nevertheless, while the ratio of ratios represented by the angles is 
invariant, the angular distribution varies in a pattern that depends on the orientation of 
the conic with respect to the observer. This angular variation pattern serves as the base 
of this approach and through it; the perspective distortion caused by projective 
transformations can be modeled. 
 
5.2.3. Pose estimation from conics 
 
Numerous computer vision applications have used conic features for 3D pose 
estimation. Particularly the circle is considered as a compact geometric primitive in 
which the pose information of an object is contained. This feature is common in nature or 
man-made objects. Applications as the estimation of the pose through structured light in 
cylindrical workpieces [12], or camera calibration algorithms [18], have used the regular 
presence of this feature.  
 
A closed-form solution was reported in [19] for determining the pose from a single 
image. It is an analytical solution based on a reduction of the general equation of 
conicoids. However, it has the exception of a two possible orientations solution. Since an 
elliptical shape is the result of the perspective projection of a circle in any arbitrary 
orientation, a second image was suggested in [5]. It uniquely determines the 3D motion 
parameters based on the eccentricity change of the circle. Thus, based on the elliptical 
parameters of the projection, the 3D orientation can be estimated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2. Example of the projection of a circle. As a conic is the result of the intersection of a 
right circular cone with a plane, the projection of a circle is an ellipse.  
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The estimation of the projected elliptical parameters is considered as the first step to 
determine the 3D pose of a circular feature with known radius. Subsequently, the 
problem is defined as the estimation of the pose of the plane that intersects a given cone 
and generates a circular curve. This given 3D conic surface is described by a base, which 
is the projection of the circular feature in the image plane, and a vertex, which is the 
center of projection.  
 
The general form of a quadratic curve can be expressed as follows:   
 

                                        (5.2) 
 
It represents Γi, the circular base of the cone. With image axes u and v parallel to xc and yc 
respectively. In a camera coordinate system Ωc(xc,yc,zc), with center of projection o and zc 
axis perpendicular to the image plane Πi, as shown in Figure 5.3.  
 
In a perspective camera with focal length f, these axes are related by 
 

. /c cu f x z=                                                               (5.3) 

. / .c cv f y z=                                                             (5.4) 

 
It permits to represent the conic surface, with vertex o, in the camera coordinate system 
by the following equation: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. The transformation of a conic under perspective projection is a conic. A circular 
object projected in any arbitrary orientation is mapped to an ellipse in the image plane. 
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2 2 2 0c c c c c c c c cAx Bx y Cy Dx z Ey z Fz+ + + + + =                              (5.5) 

 
which can be expressed in matrix form: 
 

 0t
c cCΩ Ω =                                                             (5.6) 

 
with the conic coefficient matrix C given by 
 
  

(5.7) 
 
 
An orthonormal transformation of the reference frame Ωc must be applied to obtain a 
new cartesian coordinate frame centered on the same origin and aligned with the 
principal axis of the cone. This new reference frame Ωe(xe,ye,ze) results from a 
transformation of Ωc by a rotation matrix R. Thus Ωe = R Ωc, with ze as the axis of the 
cone. 
 
The expression of (5.6) after the transformation is:  
 

0t t
e eR CRΩ Ω =                                                          (5.8) 

 
which is the equation of the cone in its central form and can be represented in a more 
compact form as:  
 

2 2 2
1 2 3 0e e ex y zλ + λ + λ =                                                   (5.9) 

 
where λ1, λ2 and λ3 are eigenvalues of RtCR. The parameters of matrix R can be calculated 
since it is a diagonalizing matrix for C, which is RtCR=Diag(λ1, λ2, λ3) [4]. 
 
The pose of the circular feature can be specified by the coordinates of its center and the 
surface normal vector. Therefore, having the equation of the cone, the required vector is 
defined by the normal to the plane 
 

                                                    (5.10) 
 
whose intersection with the cone is a circle. Thus the solution can be expressed as the 
determination of the coefficients l, m and n, where l2+m2+n2=1. 
 
Methods focused on the pose estimation from conics have been commonly used and are 
based on the intersection of the cone, obtained from the image projection of the circle, 
with a determined plane. Geometric constraints, such as the change of eccentricity in a 
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second image or error compensation of the circle center, have been applied to obtain a 
unique solution.  
 
In this approach conics are not the features of interest. Nevertheless, since it is a curve 
that can be constructed from the cross-ratio, it is strongly related with the projective 
properties of angular variation and consequently with the perspective distortion model 
developed in this chapter. 
 
5.3. PERSPECTIVE DISTORTION MODEL 
 
As mentioned above, the base of the perspective distortion model developed in this 
approach is the variation pattern of geometric configurations under perspective 
projection. A notable property of this type of projection is the natural representation of 
objects in the image plane. It gives a real appearance, as if they are seen by the eye. 
However, their shape is not preserved and their geometry is strongly distorted. Since 
these changes of a geometric configuration can be classified in a pattern, determined by 
the point of view of the observer, a distortion model exists from which 3D pose 
information of an object can be calculated. 
 
A perspective projection is characterized by the convergence of lines, the diminution of 
size and nonuniform foreshortening [3]. Parallel lines converge to a single point if they 
are not parallel to the projection plane. This point is called vanishing point, and is the 
intersection of the projection plane and a line through the center of projection parallel to 
the set of parallel lines. This convergence of parallel lines results, as shown in Figure 5.4, 
in the diminution of size and nonuniform foreshortening of objects. As the distance from 
an observer increases, objects of equal size appear smaller. Likewise, depending on the 
position of the observer, parallel lines are unequally foreshortened. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. The diminution of size and nonuniform foreshortening are a consequence of the 
convergence of lines under a perspective projection. 
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Figure 5.5. Angular difference of a pencil of lines from radial perspective views. The unequal 
foreshortening of lines depends on the position of the observer. It produces an increment of 
the angular difference as the parallelism between the projection plane and the pencil of lines 

deviates. 

Under perspective projection geometric configurations of objects are strongly distorted. 
Only parts parallel to the projection plane preserve their shape. In the case of a pencil of 
lines separated by a constant angle, the concurrent lines are unequally foreshortened. 
The angular difference, as can be seen in Figure 5.5, varies depending on the point of 
view of the observer. This variation increases as the parallelism between the projection 
plane and the pencil of lines deviates. From radial perspective views this increment is 
progressive. Nevertheless, an abrupt growth is produced when the pencil is angled 
towards the observer. This is an area of extreme perspective, where distortion is notably 
pronounced. Therefore, the angular variation is a simple geometric configuration deeply 
influenced by perspective transformations and serves to model the perspective 
distortion. 
 
5.3.1. Projective properties of lines 
 
The change of geometric configurations under perspective transformations, particularly 
the angle between lines, plays an important role in modeling the perspective distortion. 
However, certain configurations invariant to these transformations present essential 
properties necessary to describe the nature of the projection. A qualitative property of 
this invariance is that the mapping of a straight line is a straight line. Likewise, as the 
ratio of distances is not preserved, the ratio of ratios of distances is invariant. This 
quantitative invariant is called cross-ratio, which in the case of four lines is given by:  
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Where the four lines (U1, U2, U3, U4), are incident at a single point, forming a pencil of 
lines in which its cross-ratio is defined in terms of the angles between them.  
 
The invariance of the ratio of ratios defines the angular distribution of the projected 
pencil, in this case, the distribution of uniformly separated coplanar lines. Figure 5.6 
shows first the 3D rotation of the circle in which the pencil is contained and afterward its 
resulting projection. There can be seen a tendency of the projected lines to concentrate 
closer to the axis of rotation with progressive increments of the angular difference 
between them. This tendency grows with the applied angle of rotation, having the 
property of maintaining a constant cross-ratio.  
 
An exact ellipse is the result of a projected circle if it is not parallel to the projection plane 
(Πi). It is the locus of points that forms the pencil of lines, confirming the geometric 
property of the construction of conics from the cross-ratio. The invariance of this 
property is strongly related with the angular distribution of the projected pencil of lines, 
and consequently, with the eccentricity of the ellipse. It provides information about the 
orientation of the object, knowing that the eccentricity (e) of the ellipse can be expressed 
as a function of the angle of rotation (γ) in the form e = sin (γ) [20] [21].  
 
The unequal angular variation of the projected pencil of lines depends on the eccentricity 
of the formed ellipse. As shown in Figure 5.7, as the eccentricity grows, the set of 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.6. Perspective projection of a pencil of lines: a) The rotated circle in which the pencil 
is contained is projected to an ellipse in the image plane; b) An angular variation pattern is 

produced bringing the lines closer to the major axis of the ellipse. 
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coplanar lines deviates from the parallelism with the projection plane. It is shown by the 
higher concentration of lines with a low angular difference at the extremes and an abrupt 
growth at the center as a result of eccentricity increments. This is an example of angular 
difference measures carried out between the lines of a pencil with an angular separation 
of 20 degrees under different rotations, being the parting point of the cumulative angle 
the axis of rotation (U1). It implies an enhancement of the unequal foreshortening, and 
consequently, more projected lines concentrated at the axis of rotation. This axis is not 
the major axis of the ellipse. However, they are parallel if the center of projection and the 
incident point of the pencil are aligned. Likewise, the point of incidence of the pencil and 
the center of the ellipse are not coincident. Therefore, the distortion pattern represented 
by the angular variation appears to be described by a normal like function, where from 
any pose of the pencil of lines, a constant cross-ratio is obtained.   
 
5.3.2. Aligned center model 
 
The angular variation pattern of a projected pencil of lines provides sufficient 
information to model the perspective distortion. It describes the resulting projection of a 
determined angle depending on the position of the point of incidence of the pencil and 
the orientation of the circle it forms. It could be seen as a circle rotated about an axis. In 
the case the center of projection is aligned with the point of incidence of the pencil, this 
axis is coplanar to the circle and parallel to the major axis of the resulting ellipse. 
Therefore, the pose of the pencil with respect to the center of projection is defined by the 
angle of rotation of the circle (γ), which is given by the eccentricity of its own projection.   
 

Figure 5.7. Example of the unequal angular variation of a 20 degrees projected pencil of lines. It 
depends on the eccentricity of the conic, which is function of the angle of rotation. The 

cumulative angle, parting from the major axis, shows a higher concentration of lines on the 
extremes and an abrupt change at the minor axis generated by eccentricity increments. 
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Aligning the centers is the simpler case to model. Nevertheless, serves as starting point 
to analyze the projective properties of a rotated circle. If a sphere is centered at the center 
of projection (o), shown in Figure 5.8, with radius Zo, which is the position of the point of 
incidence, the axis of rotation is coplanar to the circle Γr, and tangent to the sphere at the 
point of incidence. This implies the possibility to estimate the pose of the pencil of lines 
by an axis and an angle of rotation defined by the angular variation model. The axis is 
given by the tangent line (where the projected lines concentrate), which is the point of 
minimum angle difference between the lines of the pencil. The angle of rotation (λ), 
however, as the eccentricity of the ellipse (e), must be calculated from the angular 
variation model.  
 
The cross-ratio defines the conic constructed by the series of concurrent projected lines. 
To be calculated, a minimum of four lines is needed. If they are part of a pencil or form 
part of a sequence of a rotated line, it is necessary a constant angle between them. The 
rest of projected angles are calculated knowing the cross-ratio. Thus, parting from the 
axis of rotation, line U1, the angular variation pattern of a projected pencil of lines can be 
determined. It can be expressed by the relation between the 3D applied angular changes 
and its projected angular data.  
 
The angular variation model developed in this chapter describes the relation between a 
3D angle and its own mapping in the projection plane. It is based on the rotation of a 
circle Γr, formed by the pencil of lines, about a determined axis. In the case of aligned 
centers, the axis of rotation is perpendicular to the z axis, as shown in Figure 5.8. Having 
the rotated circle, with radius R, centered at Zo; an angle α is the projection of the 3D 
angle θ at Zp, which is the position of the projection plane Πi. This 3D angle θ is the angle 
of rotation around the circle of a line with length R, centered at Zo. Therefore, if the angle 
θ leads to a point P along the circle, the projected angle α is formed by the angle between 
the projection of P at Zp and the axis of rotation of the circle. It can be expressed as: 
 

Figure 5.8. The alignment of the center of projection with the point of incidence of the pencil 
of lines describes the distortion model as the rotation of the pencil about an axis: a) Angle of 
rotation γ, from lateral view; b) Cumulative angle θ of the rotated line with length R, from 

frontal view. 
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                              (5.12) 
 

Where, having the x axis as the axis of rotation, the slope of the projected line in Πi 
describes the projected angle through xp and yp, which are the respective components of 
P in the plane xy. Similarly, the same projection in the base plane preserves the angle α 
through x0 and y0 as the respective components of the projection of P at Zo. Thus, by the 
geometry of the configuration, under a rotation γ, in the yz plane: 
 

         (5.13) 

 
Having R’ as the component of R in the y axis, it is: 
 

                            (5.14) 

  
This leads to the expression of y0 by: 
 

                  (5.15) 

 
 

Similarly, in the plane xz at Zo, x0 can be expressed as: 
 

               (5.16) 

 
 

It implies the function which describes the angular variation in an aligned center 
configuration, knowing the relation e = sin(γ), is defined as: 
 

                 (5.17) 

 
This model satisfies the fact that length and scale are not influential in the angular 
variation pattern of a projected pencil of lines. It is function of the applied 3D angle and 
the eccentricity of the ellipse. Figure 5.9 shows the influence of the angle of rotation γ in 
the projection of a rotated line around a circle. It parts from the axis of rotation, which is 
the point of minimum angular difference, to the minor axis of the ellipse, which is the 
point of maximum angular variation. This effect, in conjunction with the angular pattern 
extracted from the projected lines, make possible the calculation of the eccentricity of the 
ellipse. It is carried out by fitting the angular data to the model. Thus, the orientation of 
the circle is calculated. 
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5.3.3. General case model 
 
Generally the point of incidence of the pencil of lines is not aligned with the center of 
projection along the z axis. Its projection can be located at any position in the image 
plane Πi and represented, in this case, by a unit director vector vd from the center of 
projection. Using the concept of the sphere centered at o, presented in Figure 5.10, a 
tangent circle Γp is not parallel to the image plane, as would be in the aligned center case 
and consequently, the axis of rotation of the circle Γr is not parallel to the major axis of 
the projected ellipse. It implies an enhancement on the complexity of the configuration. 
However, the projective properties are equally satisfied by the angular variation pattern.  
 
The methodology used in this general case approach is based, as in the aligned center 
model, on the calculation of the axis and angle of rotation of the circle Γr formed by the 
pencil of lines. Having the angular relation in (5.17) of two circles representing the 
rotation of a tangent circle about an angle, the general case configuration can be divided 
in two simpler aligned center models as shown in Figure 5.11. This is due to fact that in 
(5.17) it is assumed the image plane Πi is tangent to the sphere, and therefore, 
perpendicular to the axis of projection defined by vd. Thus, the first part is conformed by 
the rotated circle Γr and a tangent circle Γp; and the second part by Γp and a circle Γi 
coplanar with Πi. Both parts are individual aligned center models. It can be seen as the 
result of the projection of the rotated circle in a tangent plane, and its consecutive 
projection in the image plane.    
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9. Effect of the eccentricity on the projection of a 3D angle. It parts from the axis of 
rotation to the point of maximum angular difference (minor axis of the ellipse). 
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Figure 5.11. Division of the general case configuration in two simpler aligned center models. 
The rotated circle Γr is projected in a tangent plane to the sphere, and its consecutive 

projection in the image plane. 

Figure 5.10. Using the concept of the sphere centered at o, the aligned center case is modeled 
referencing the orientation of the rotated circle to the tangent circle Γi. In the case the centers 
are not aligned, two concentric spheres, Φi and Φp, serve to establish a relation between the 

new reference tangent circle Γp and the image plane. 
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The projection of the tangent circle Γp in the image plane could be considered as the first 
step to define the model, since the initial data is contained in the image. The extraction of 
the feature lines of the pencil defines the angular pattern of the projection; and the 
orientation of Γp with respect to Πi through vd provides the axis of rotation ui. This 
permits to describe the relation between the angle of rotation θp, around Γp, and the 
angle θi, around Γi, which is the result of the rotation of Γp about a given angle γi. 
Applying the center aligned model, this relation can be expressed as: 
 

                    (5.18) 
 

Equally, the angular relation between the angle of rotation 3D θr, around Γr, and its 
projection in the tangent plane θp can be expressed by the aligned center model having γr 
as the angle of rotation of Γr and ur as the the axis determined from (5.18).  
 
The two parts of the divided configuration are related by the tangent circle Γp. However, 
the alignment of the two axes of rotation ui and ur is only a particular case of the model. 
Therefore, to relate the 3D angle θr with the angle projected in the image θi, the difference 
between these two axes must be taken into account. If this difference is defined by the 
angle δ, the angular variation pattern of Γr in the tangent plane is given by: 
 

              (5.19) 
 

which in conjunction with (5.18) express the angular variation of the 3D angle in the 
image plane as: 
 
 

 (5.20) 
 
 
The projected angular variation depends on the angles of rotation with the respective 
tangent and image plane, and the difference between their axes of rotation δ. If there is 
no difference between these axes and the image plane is tangent to the sphere, the 
equation is reduced to the aligned center model. In any other case, γi and δ are 
determined from the image data. Thus, through the fitting of the angular data to the 
model, γr can be estimated and consequently, the orientation of the circle with respect to 
the center of projection can be calculated.  
 
5.4. EXTERIOR ORIENTATION ESTIMATION 
 
The perspective distortion model developed in the previous section describes the effect 
of the perspective projection on a rotated 3D line. It is based on the angular variation 
pattern depicted by the line features projected in the image plane. Since this pattern is 
affected by the position of the observer, spatial information of the 3D line with respect 
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to the camera can be calculated. This spatial information can be considered the 
orientation of the 3D line as a first approach given by the output parameters of the 
model. There are three output parameters, γi, γr and δ, which describe the angular 
variation pattern. Once they have been calculated, there is enough information to 
estimate the orientation of the 3D line. Therefore, parting from the input data provided 
by the image extracted features, spatial information is obtained.  
 
The input features acquired from the captured images represent the Euclidean 
transformations of the 3D line. These transformations can be originated by 3D rigid 
rotations or directly constructed by a set of concurrent lines. The extraction of their 
image projection in the form of line features, despite of being considered implicit to the 
orientation estimation process, could be regarded as its first step. Thus, after having 
this 2D angular information, the perspective distortion model is applied in order to 
estimate the orientation of the line. This is a process that leads to follow a sequence of 
steps. Each of these steps performs a task with the general objective of calculating the 
output of the model through the fitting of the input data [22]. 
 
Normally regression analysis methods are used to fit sample data to a determined 
model. To achieve a close agreement between values of the regression model and the 
collection of sample data, a number of model parameters are adjusted. Thus, a smooth 
continuous function is obtained. It describes the sample data at certain values of the 
independent variable [23]. This independent variable, also called predictor variable, 
represents the input to the model, while the dependent variable represents its 
response. In this case, if these variables are x and y, respectively, the perspective 
distortion model could be expressed as: 
 
 

(5.21) 
 
 
where b1,b2 and b3 are the parameters to be adjusted. Certainly, the perspective 
distortion model describes the relation between 3D and 2D angular variations. Therefore, 
the response of the model is the projected angular variation caused by a 3D rotation. 
Nevertheless, the important values taken into account to obtain spatial information are 
the adjustable parameters:  b1= γr, b2= δ and b3= γi. Which are the required parameters to 
calculate the exterior orientation and hence the output of this fitting process. This process 
is shown by a block diagram in Figure 5.12.  
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Figure 5.12. Block diagram of the process to calculate the required orientation parameters. The 
necessary information is provided by the adjustable parameters of the regression. 
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The regression analysis is based on the agreement between the sample data and the 
regression model. The measurement of this agreement is called the merit function. The 
idea is to adjust the model parameters to obtain the smallest value resultant from the 
merit function. It represents a close agreement between the collected data and the 
regression model.  Therefore, the parameters are adjusted iteratively in order to obtain 
the best fit [24]. In this case the model has a nonlinear dependence on the adjustable 
parameters. Thus, the iterative process starts with some initial conditions, which become 
starting point for the next iteration and continue until the merit function achieves its 
minimum value [25] [26]. 
 
In the block diagram shown in Figure 5.12, the parameter calculation process of the 
perspective model could be divided in three parts. The first is the extraction of the line 
features from the image plane. The second is the preparation of the angular data as an 
ordered collection of samples. And third, the calculation of the output parameters from 
the nonlinear regression analysis. The preparation of the angular data, though it seems to 
be a simple arrangement of data, is an important part where a specified amount of 
determined samples are essential to obtain a good fit. In this particular case, the response 
of the model is not continuous. It is shown in Figure 5.13. As it is defined by 
trigonometric tangent functions, smooth continuous periods are clearly identified. 
Therefore, the collection of sample data is chosen in a way the regression analysis is 
performed in a single period.  
 
The selection of the samples which conform a single period provides an optimum 
collection of data to achieve a good fit. It is considered a good fit a result with a merit 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13. Response of the model to rotations of a pencil plane with a separation of five 
degrees between lines. The projected angle (θi), which is the response of the model, describes a 

non-continuous function. However, smooth periods are clearly identified.   
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function below an error threshold. It guarantees the agreement between the sample data 
and the regression model. By this means, there is enough data to perform a good fit 
choosing the samples of an entire period. The more measurements are given to be fitted; 
the better is the agreement with the model. However, despite the collection of samples 
represents a continuous part of the model function, the angular shift from where the 
measurements were taken with respect to the axis of rotation is unknown. This fact 
causes the regression analysis to fail, as it is unable to perform a good match when the 
collection of measurements does not correspond with the real angular shift.  
 
An option to prevent the disparity between the real measured data and the model is 
adding a new variable. This new adjustable parameter (b4) serves to add an angular shift 
to the independent variable and consequently an offset. Therefore the collection of 
samples is adjusted to coincide with the model through the regression analysis. This 
addition of a new variable, though it solves the sample correspondence problem, implies 
more calculations and increases the difficulty of the regression algorithm to obtain a 
good fit. However, having the projection of the 3D lines intersection in the image plane, 
the unit vector vd can be calculated. Thus, the angle γi, which is one of the model 
parameters, can be considered as known (vd.k = cos(γi), having k as the unit vector normal 
to the image through the z axis). It changes the equation (5.21), except for the number of 
parameters to adjust that remain in three, and is expressed as:  
 

(5.22) 
 
 
Finally, the exterior orientation is estimated from the model parameters. They can be 
seen as the path, through angular shifts, to move from the camera reference frame to the 
circle normal vector. This is accomplished by a sequence of rigid body transformations, 
which represent the orientation of the object. First, parting from the z axis unit vector k, 
to the unit director vector vd. And afterward, from vd to the circle normal unit vector nr, 
as seen in Figure 5.14.  
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Figure 5.14. The exterior orientation is estimated from a sequence of rotations given by the 
model parameters: γi, γr and δ. 
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5.5. EXPERIMENTAL RESULTS 
 
The perspective distortion model developed in this approach was validated by using 
real world data. The experimental setup consisted on a fixed standard analog B/W 
camera equipped with known focal length optics and a mobile frontal frame able to 
perform a desired orientation. The calculation of the best-fit parameters to the model 
was determined by the DataFitXTM nonlinear regression software. It utilized a merit 
function that minimized the sum of the squares of the distances between the actual 
data points and the regression line. The Levenberg-Marquardt method was the 
algorithm used to adjust the variables, having the parallel and center aligned position 
as initial condition and an error threshold of 0,001.  The tests carried out were aimed to 
analyze the response of the model to different 3D angle inputs under a range of 
rotations of the frontal frame. Two sets of tests were employed to analyze the angular 
variation and its response to the model. The first set was focused on a single rotated 3D 
angle, while the second on a pencil of lines. 
 
5.5.1. Single angle tests 
 
A single 3D angle is formed by the intersection of two lines. It can be seen as the 
difference of the slope of each line on a plane, which is how the projected angle in the 
image plane was calculated. This angle served as input to the model, where its angular 
shift with respect to the axis of rotation, as a required parameter, was known. It is a 
drawback of the method using single angles. It is solved, as will be shown further by the 
use of a sequence of concurrent lines. According to the model, the angular variation of a 
single angle under rotation is depicted in Figure 5.15. It can be seen, parting from the 
parallelism between the image and the frontal frame, the reduction of the projected angle 
under rotations. Likewise, as the resolution of the response depends on the detected 
angular variation, it does not only increase with higher 3D angles, it also augments as the 
angle of rotation increases. As the area of extreme perspective provides enough angular 
variation with the more accurate response, the area of minor rotations provides 
negligible variations and consequently a misread response. 
 
The sensitivity of the model is highly affected by the line feature error and the 
resolution of its acquisition method. Since the model response depends on the 
projected angle, its extraction using real world data is prone to inaccurate detections, 
particularly with small angles. The resulting effect of this line feature error is an 
unstable and poor performance of the model below a sensitivity threshold. Equally, the 
negligible variation at minor rotations produces a misread response below a threshold 
caused by the low perspective distortion.  
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Figure 5.16 shows the performance error of the model in the single angle test having 
real world data as input. Two areas of notable high error are differentiated along the 
applied rotations. The first is located below the distortion threshold, where minor 
rotations were applied. This is an area in which the error is uniformly high 
independently of the 3D angle used. It is caused by the resolution of the line feature 
extraction method and the low perspective distortion. The second area, in contrast, is 
located at long rotations. It decreases as the 3D angle applied augments, caused by the 
sensitivity of the model with reduced angles at long rotations. In general, as can be 
expected, the error decreases with increments of the 3D angle applied. 

Figure 5.15. Angular variation of a single projected angle under rotation. The response of the 
perspective distortion model is highly affected by line feature errors and the resolution of its 
acquisition method: a) reduced projected angles caused by long rotations produce unstable 

performance under a sensitivity threshold; b) the response resolution, dependent on the 
angular variation rate, misreads data under a distortion threshold. 
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Figure 5.16. Oblique and frontal view of the performance error of the single angle test. The 
response of the model is prone to errors with negligible variations at minor rotations and 

small projected angles. This improves as the 3D angles augments. 

Single angle error under rotation 

Frontal View 

Oblique View
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5.5.2. Pencil of lines tests 
 
The second set of tests employs pencils of lines of different constant angle separations. 
Figure 5.17 shows an example of the perspective distortion of a 15 degrees pencil at 
four distinct rotations. The method used to estimate the model parameters is based on 
the fitting of sample data, which are the projected measured angles, thus the model is 
satisfied. It requires at least four line samples to calculate the cross-ratio or three in the 
case it is known. It permits to calculate the next angles of the sequence of concurrent 
lines and consequently more samples to obtain an improved fit.  
 
According to the invariant property of the pencil of lines, the distribution of the angles 
is unequal, while the cross-ratio is constant. Figure 5.18 shows the tendency of this 
angular distribution along rotations of the pencil plane. It presents the performance 
sensitivity to line feature error.  As in the previous set of tests, the model response is 
highly affected by the resolution and error of the line feature extraction method at 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17. Example of the perspective distortion in a rotated pencil of lines separated a 
constant angle of 15º. Four extracted feature lines are enough to apply the model if the cross-

ratio is unknown. 
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minor rotations. The standard deviation of the angular distribution of the pencil 
indicates a superior performance of the model with pencils of higher 3D angle 
separation. It implies that the model response is prone to errors below a sensitivity 
threshold. This is depicted in Figure 5.19, where real world data was used. Only one 
area presents a notable high error. It is located where minor rotations were applied. In 
contrast to the previous set of tests, this error is caused by the low angular distribution 
variation. The change at this area is not only negligible, which depends on the 
resolution of the line feature extraction method, it is also highly sensitive to line feature 
errors since the pencil angles are similarly distributed.  
 
In general the use of pencil of lines improves the performance of the model. It does not 
require the angular shift from the axis of rotation and provides a robust response at 
high 3D angle separations. Nevertheless, as the estimation is based on the fitting of 
sample data, this 3D angle separation is limited due to the lack of measured samples. It 
is also suitable for real time applications, where a moving line feature forms the pencil 
of lines and its angular variation is modeled by its perspective distortion.  
 
 
 
 

Figure 5.18. Angular distribution variation in a rotated pencil of lines. The model response is 
highly affected under a sensitivity threshold caused by line feature errors at minor rotations. 
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Figure 5.19. Performance error of the pencil of lines test. The poor performance of the model at 
long rotations is improved, while the 3D separation angle of the pencil is limited. 

Pencil of lines error under rotation 

Frontal View

Oblique View 
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5.6. DISCUSSION 
 
The capacity of the human visual system to perceive 3D space from a monocular view is 
described by a set of stimulus and processes. As its perception of depth on a flat surface 
is enhanced by the use of linear perspective, a set of geometric properties from the 
projective transformation provide enough 3D information to effectively calculate the 
pose of an object from 2D images. In this chapter a model of the variance of a geometric 
configuration under perspective transformation has been developed. Particularly, this 
geometric configuration is the angular variation caused by the perspective distortion. 
Since the resulting projected variation depends on the position of the observer, the 
exterior orientation of the camera can be determined by the model.  
 
In contrast to the previous approaches developed in Chapter 4, 3D information is not 
required with the use of the perspective distortion analysis. There is no necessity to 
measure angular samples from a determined 3D structure. Thus, this new approach 
could be considered as an improvement or evolution of the aforementioned algorithms. 
All of them are based on the angular variation. However, this last approach owns the 
particularity of containing the complete required information in the image plane.  
 
The projective nature of conics served as the base of this approach. Since angular 
variation is the geometric configuration analyzed, the rigid rotations applied to a 3D line 
provide the Euclidean transformations that describe a circle. The perspective projection 
of this circle is an ellipse in which its eccentricity depends on its orientation with respect 
to the center of projection. Applying the concept of a tangent plane to a sphere centered 
at the center of projection, it has been shown that the unit vector directed to the point of 
tangency is perpendicular to the vanishing point of the projected line. If the plane in 
which this tangent line is contained is not tangent to the sphere, this line is unique. 
Additionally, in the case its point of rotation is aligned to the center of the image plane 
and the center of projection, this 3D line is the axis of rotation and consequently the 
mayor axis of the projected ellipse.  
 
The projective properties described by perspective transformations effectively supply a 
real physical interpretation of a rigid body motion. It has been modeled by the geometric 
distortion where the 2D angular variation is the response to 3D rotations. Experimental 
results show the efficiency and robustness of the method, in this case using a single angle 
and a set of concurrent lines. However, its accuracy is highly affected by the reliability of 
the line feature extraction technique applied.  
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Chapter 6 
 

Perception enhancement in visually 

guided applications 
 

 

6.1. INTRODUCTION 
 
The spatial information calculated from the proposed methods presented in the 
previous chapters is expressed by the estimation of the position and orientation of a 
determined object with respect to a camera. This is the recovery of the 3D physical 
attributes of the object that were lost in its 2D projection. To accomplish this task, line 
features are extracted from the image plane. The angular variation of these features 
presents properties that provide spatial information. Thus, as it is used by the human 
visual system, certain 3D attributes of the object can be calculated by a computer vision 
system as well. As this angular variation is used as a monocular cue for spatial 
perception, it would be reasonable to think that interactive applications, where sensory 
input is limited to 2D visual information, could be benefited by an enhancement of 
perceptual cues through this calculated data. In this chapter, the effect of this 
perceptual enhancement due to the introduction of spatial information is evaluated. It 
is carried out by the study of task performance on a teleoperation application; 
specifically a Minimally Invasive Surgery (MIS) based application, where the normal 
function of the surgeon’s perceptual-motor system is highly affected.    
 
The perceptual-motor coordination is the ability to link the organism’s perception with 
its self-initiated movement in the performance of visually guided tasks [1]. These tasks 
can be simple and normal activities executed in daily life. Effortlessly tasks such as 
grasping a pencil or bounce a ball, involve an intentional motor movement in response 
to optical stimulation. This associates the visual perception and hand-eye coordination, 
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and requires the ability to translate this visual perception into motor functioning; 
which involves motor control, motor accuracy, motor coordination and psychomotor 
speed [2]. Therefore, visually guided applications such as teleoperations are notably 
affected since there is a physical separation between the working space and the 
operator. In Minimally Invasive Surgery (MIS) a 2D window on a 3D world is 
imposed. The surgeon is limited to work physically separated from the operation site 
and must rely heavily on indirect perception [3]. To effectively link action to perception 
it is necessary to integrate body movements with other senses such as vision. Thus, in 
this chapter is suggested that locating the instruments with respect to the surgeon 
through computer vision techniques serves to enhance the cognitive mediation 
between action and perception and can be considered as an important assistance in this 
type of surgery.  
 
It is the main purpose of this chapter the study of the effect derived by the introduction 
and integration of visual cues in action-perception applications. The suggested 
hypothesis states that the spatial perception enhancement over the 2D visual input 
provided by a camera view, improves the visual-motor link through the inclusion of 
orientation depth cues. This provides a sense of presence due to the understanding of 
the operative site, and relating this with the external environment, the orientation 
disengagement is reduced by an improved sense of place. To demonstrate this, the 3D 
attributes of an object line are estimated using the perspective distortion model, which 
supplies the orientation information included in the application. In this case, the 
application is based in MIS, due to its compliancy with the rotational motion analysis, 
which in fact was devised as assistance motivated in this type of operations.   
 
6.2. MEDIATING ACTION AND PERCEPTION IN MIS 
 
The introduction of minimally invasive surgery (MIS) as a common procedure in daily 
surgery practice is due to a number of advantages over some open surgery interventions. 
In MIS the patient body is accessed by inserting special instruments through small 
incisions. As a result tissue trauma is reduced and patients are able to recover faster. 
However, the nature of this technique limits the surgeon to work physically separated 
from the operation site. This implies a significant reduction of manipulation capabilities 
and a loss of direct perception. Therefore, robotic and computer-assisted systems have 
been developed as a solution to these restrictions to help the surgeon. 
 
There are some solutions currently proposed to overcome the limitations concerning the 
constrained workspace and the reduced manipulability restrictions. Approaches 
dedicated to assist the surgeon are basically aimed to provide an environment similar to 
conventional procedures. In this sense, robotic surgery developments are especially 
focused on the enhancement of dexterity, designing special hand-like tools or adding 
force-feedback by direct telerobotic systems [4] [5]. Other systems aid the surgeon 
through auxiliary robotic assistants, as is the case of a laparoscopic camera handler [6] 
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[7]. Nevertheless, though the limitation of the visual sense has been tackled by robotic 
vision systems capable of guiding the laparoscopic camera to a desired view [8] [9], the 
3D perception and hand-eye coordination reduction in terms of cognitive mediation 
have not been extensively developed.  
 
6.2.1. Computer assistance in MIS 
 
The visual sense in the MIS environment is limited. It imposes a 2D window of the 
operative site. Therefore, approaches focused to assist the surgeon are fundamentally 
based on image content recognition and presentation. As an example of this computer 
assistance, there are a number of approaches focused on the experimental verification of 
surgical tool tracking to be presented in the center of the image [10], the study of the 
distribution of markers to accurately track the instruments [11], the establishment of 
models for the lens distortion [12]. These examples are emergent techniques to assist the 
surgeon by the enhancement of the image content. The work in which this chapter is 
focused, however, is based on the integration of visual and motion information to 
perceptually locate the instruments with respect to the surgeon. 
 
Healey in [3] describes the mediation between action and perception in the MIS 
environment and states the necessity to effectively link action to perception in egocentric 
coordinates. In this approach it is suggested that the integration of egocentric 
information, as visual and limb movements can be provided by the capacity to locate 
surgery instruments at a desired position in the operative site and the knowledge of their 
orientation with respect to the laparoscopic camera. As a result, the surgeon perception 
is enhanced by a sense of presence. Thus, computer vision issues such as the 2D-3D pose 
estimation and exterior orientation, deal with this problem and can be applied to aid the 
surgeon in this kind of procedures. 
 
It can be seen in Figure 6.1 the schematic of an application where exterior orientation is 
used and presented through enhanced visual information to assist the surgeon. This 
presentation is commonly performed by augmented reality. There have been early 
approaches in which this type of resource is used in different kinds of applications [13], 
others more specialized in surgery, recognize objects seen by the endoscope in cardiac 
MIS [14], or design a system for surgical guidance [15], being a visual enhancement 
which has served as a human-machine interface. In this chapter, the position and 
orientation of surgery instruments is the information to be imposed in the visual 
information. It serves to integrate egocentric information, as vision and limb movements, 
to provide a sense of presence and relate it with the external environment to give a sense 
of place. Nevertheless, the camera-tool calibration must be calculated. This problem can 
be tackled by computer vision techniques, as the perspective distortion model presented 
in the previous chapter. Thus, the computer assisted system can be expressed as a 
process as shown in Figure 6.2.  
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Figure 6.1. Schematic of an application of the exterior orientation as a tool to assist the 
surgeon in MIS. It permits to control action through the perception enhancement. 

Figure 6.2. Visual enhancement process to assist the surgeon. Motion and visual information 
is related to calibrate the surgical instrument with respect to the camera. 
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6.2.2. Robotic assistance in MIS 
 
Robotic assistants, as specialized handlers of surgical instruments, have been developed 
to facilitate the surgeon performance in MIS. Since the patient body is accessed by 
inserting surgical instruments through small incisions, passive wrists have been 
incorporated for free compliance with the port of entry. With this wrist configuration it is 
only possible to locate accurately an instrument tip if its port of entry or fulcrum point is 
known. This is a 3D point external to the robotic system and though it has a significant 
influence on the passive wrist robot kinematics, its absolute position is uncertain. 
 
A number of approaches are focused on the control and manipulability of surgical 
instruments in MIS through robotic assistants. As can be seen in Figure 6.3, 3D 
transformations are applied to produce pivoting motions through the fulcrum point. The 
more accurately has been estimated this port of entry, the more accurately the 
instrument tip is positioned at a desired location. Some of the approaches evade this 
difficulty by the incorporation of special mechanisms with actuated wrists [16]. Others 
based on passive two joint wrists tackle the problem by control strategies.  Thus, error 
minimization methods are applied to determine the outside penetration [17] [18], and 
compensate the fulcrum location imprecision [7]. 
 
A reasonable alternative approach to tackle the passive robot wrist problem is by adding 
computer vision methods. Since the laparoscopic camera captures the workspace sight, 
specialized vision algorithms are capable of estimating 3D geometrical features of the 
scene. The 2D-3D pose estimation problem serves to map these geometric relations 
estimating the transformation between coordinate frames of the instruments and the 
camera. There are several methods proposed to estimate the pose of a rigid object. The 
first step of their algorithms, as described in Chapter 3, consists on the identification and 
location of some kind of features that represent an object in the image plane.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3. Minimally invasive robotic surgery systems with passive wrist robotic assistants. 
The location of the instrument tip depends on the knowledge of the fulcrum point. 
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In the case of image sequences motion and structure parameters of the 3D scene can be 
determined. Correspondences between selected features in successive images must be 
established. This provides motion information and can be used, as is in this case, to 
estimate the pose of a moving object. Figure 6.4 shows the pivoting motion of the surgery 
instrument through the fulcrum point. As can be seen, instruments are represented by 
feature lines and are visualized by the laparoscopic camera. In this example, three views 
after two different rotations generate three lines in the image plane. Each of them defines 
a 3D plane called the projection plane of the line. These planes pass through the 
projection center and their respective lines. Their intersection is a 3D line from the origin 
of the perspective camera frame to the fulcrum point. 
 
6.3. APPLICATION AND COGNITIVE EFFECTS ASSESSMENT 
 
The recovery and presentation of at least the basic sensorial cues to perceive elemental 
attributes of a workspace is the main purpose of an environment mediated by 
technology. Commonly, it is constrained by imposing a 2D window of the operative site. 
Thus, approaches focused to enhance the sensorial cues and assist the operator are 
fundamentally based on image content recognition and presentation. This presentation is 
usually performed by augmented reality, where computer generated virtual objects are 
accurately registered with real attributes of the scene [19]. Applications of this 

Figure 6.4. 3D transformations of the instrument manipulated by a robotic assistant produce a 
pivoting motion through the fulcrum point. It results in 3D rotations at the workspace 

captured by the camera through projection planes. 
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technology in mediated environments range from fields as telerobotics by improving the 
remote view by wireframe drawings of structures [13], entertainment by creating virtual 
studio environments [20], or training simulators [21], to medical 3D model visualization 
[22] [23], or image guided surgery [14] [15], which is a field highly benefited from this aid 
and is viewed as one of the most important to develop. 
  
The imposition of virtual arrangements on a bidimensional view of a real scene has 
demonstrated to exert a strong influence over the perceptual conception of space [24]. In 
mediated environments, the concept of presence has become a representative property 
from which a sense of immersion is obtained. It is described as the experience of being 
there, which becomes more convincing as media content is more perceptually realistic 
and interactive [25]. The level of presence is augmented, as changes in the environment 
are perceived in response of one’s own movements. Healey in [3] describes the 
mediation between action and perception in teleoperation. There, it is stated that it is 
necessary to effectively link action to perception in egocentric coordinates to overcome 
the indirect cognitive mediation. Therefore, the orientation estimation of the instruments 
with respect to the camera in an action-perception application may be considered 
capable of providing such information [26]. 
 
In this work, a computational approach to direct perception of space is proposed as 
useful information to augment the sense of presence in mediated environments. It 
calculates 3D information from the captured images. Therefore, more spatial cues may be 
introduced in order to enhance the optical stimulus of the operator. In this case, a new 
computer-generated sight of the scene represents the additional information provided. 
This is possible due to the previous calculation of orientation data, which permits to 
select and visualize any angled spot of the workspace to perform action-perception tasks. 
Thus, the cognitive effect resultant from the implementation of this aid serves to improve 
the visual-motor coordination in mediated environments.  
 
An experimental study carried out simulating a real action-perception application with 
previous knowledge of the tool’s exterior orientation is described in detail in the next 
subsection and demonstrates the utility of this perceptual information.  
 
6.3.1. Material and Methods 
 
Participants. Twenty individuals with ages between 20-40 years of both genders and 
without any experience related to teleoperation, remote control or robotics participated 
in the study. All of them presented normal or corrected-to-normal vision. 
 
Apparatus. The experimental setup illustrated in Figure 6.5 was composed by two 
workstations, a workspace and an operator’s control center, divided by a mobile 
occluding screen. The workspace represented the remote environment where the action-
perception task took place. Therefore, it was equipped with a robot arm to perform 
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actions with a long line-form object as the tool attached to its end-effector ending with an 
angled tip. The operative site was complemented with a cylinder located in a determined 
position with respect to the robot arm. This cylinder was shaped with a carved curved 
route and represented the objective to be traced by the tool (Figure 6.6). In addition, two 
analog RGB cameras equipped with known focal length optics were located orthogonally 
directed to the operative site. One was directed to the frontal face of the route of the 
cylinder and the other to the lateral face. The captured images were sampled at 768x576 
pixel resolution and represented the visual feedback of the workspace.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 6.6. The workspace of the experimental setup simulated the remote environment 
which was composed by: a) A robot arm with a line-form object attached to its end-effector 

and two orthogonally located cameras; b) A cylinder with a carved curved route, which 
represented the operative site. 

Figure 6.5. The experimental setup conformed by an operator’s control center and a 
workspace simulated a teleoperation system. It created a mediated environment and 

demanded efficient visual-motor coordination. 
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The operator’s control center, representing the local environment, was the location where 
orders were transmitted to the robot by a 6D mouse and the visual feedback of the two 
cameras was received. Captured images were presented in a wide monitor in 
conjunction with a virtual enhanced view of the robot. This virtual representation of the 
robot and its tool was an accurate triangle-based model developed to simulate robotic 
proximity queries and collision detection [27], and served to depict the robot actions 
from any angled spot (Figure 6.7). Thus, a desired view could be selected and changed 
by the operator in real-time. Furthermore, it was possible to save a selected position of 
the robot during the performance and visualize it as a fixed semi-transparent tool, which 
guided the operator by providing a spatial reference. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.7. The operator’s control center was equipped to manipulate the robot by a 6D 
mouse, obtaining visual information from a set of monitors (a). A virtual representation of the 

robot and its tool served as the additional aid (b), which in conjunction with the two views 
captured by the orthogonal cameras (c), conformed the indirect visual feedback to the 

operator.   
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The robot kinematics was restricted to move through a pivoting point. It was as though 
the tool was introduced into an incision. Thus, the control of motions was carried out by 
moving the base of the tool, which was the end-effector of the robot arm. Collisions of 
the tool were detected by a torque/force sensor located at its base, and the trajectory 
performed by the robot, as well as the selected views of the virtual scene, could be 
registered by the system. 
 
Procedure. The task to be performed consisted in the alignment of the tool with respect 
to the cylinder. Subsequently, it should be introduced maintaining the angled tip 
through the curved route carved in the cylinder’s wall until the end point was 
encountered, and afterwards, perform the route back to get out of the cylinder. There 
were three conditions to perform the task. The first presented the workspace directly. 
Thus, the operator could see the complete scene without the occlusion screen (first test). 
In the second, the visual feedback was provided by the monitor and depended 
completely on the two orthogonal views supplied by the cameras (second test). And the 
third presented the view of only the frontal camera and the aid provided by the virtual 
view of the robot (third test). These three tests were carried out by each of the 
participants, and each test was performed four times. 
 
A training process was held prior to the tests. Since the features of the system were not 
intuitive due to robot kinematics restrictions and 6D mouse operation, it was an 
extensive process. Participants had thirty minutes of training to handle the system, 
having the opportunity to complete the task using visual feedback and were instructed 
about the capabilities of the aid provided by the virtual view. Only one trial of each of 
the three tests was performed per day, and each day participants had five minutes for 
training. Therefore, there were four sessions of three tests per day. According to the 
participant session number the order of the test was different. 
 
The completion time to correctly fulfill each task was measured in order to evaluate the 
performance of each test. It was complemented by a quality indicator, which was 
measured by the time without collision during the performance, and by the traced 
trajectory. 
 
Statistical analysis. Completion time variables are expressed as mean±standard error of 
the mean. Differences between group means were assessed by ANOVA for multiple 
comparisons. A value of P < 0.05 was considered significant. 
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6.3.2. Results 
 
The completion time differed between tests as shown in Figure 6.8a. Each of the tests 
presented a tendency to decrease through trials. However, an optimum performance 
was observed in the direct view test, as well as a better performance in the enhanced 
view test compared to the two cameras test. Significant differences between these tests 
were evaluated by the statistical analysis, which employed the data of the twenty 
participants. Each data point represented the average of the completion time for its 
corresponding trial of each test. There was a significant difference between the direct 
view test and the other two in all the trials (P < 0.005). The effect of the sensorial 
restrictions provided to the operator was notable. The other two tests presented a 
difference between them, nevertheless, statistically significant differences were only 
observed on the first two trials (P = 0.025 and P = 0.038, respectively). The third trial was 
especially where the difference was slighter and therefore, was statistically not 
significant (P = 0.58). And in the fourth trial, which appeared to be a clear difference, it 
was observed that it was not significant either (P = 0.054). It could be attributed to the 
order of the test performance, lack of training before the trial sessions or the knowledge 
acquired through trials.  
 
A learning curve was depicted by the tendency to decrease in the completion time of all 
the tests. It was a performance improvement that in the direct view test changed from 
163.55 ± 13.89 sec. on trial 1 to 85.21 ± 5.29 sec. on trial 4. This test presented a relative 
constant standard deviation from the trial 2 to trial 4. In the second test, although the 
performance level was not as high, there was an improvement from 303.11 ± 26.8 sec. on 
trial 1 to 145.58 ± 12.3 sec. on trial 4. This was a notable improvement having limited 
perceptual information. However, the performance level became higher with the 
introduction of the enhanced view. In this test, performance improved from 227.72 ± 
16.21 sec. in trial 1 to 117.15 ± 7.3 sec. in trial 4. A similar order in performance level 
could be observed by the quality evolution shown in Figure 6.8b. While the percentage 
of time without collision relatively remained constant trough trials in the first test, a 
tendency to increase was presented in the two others. The second test, with the lowest 
quality level, improved from 49.1% in trial 1 to 58.04% in trial 4. And the third test 
improved from 59.27% in trial 1 to 72.49% in trial 4, which is a measure that approached 
the mean quality obtained in the first test (73.87%). Figure 6.9 shows this mean quality 
values, which compared to the other two tests (51.95% in the second test and 63.91% in 
the third test), indicated that the performance level in trials with indirect perception was 
higher using the enhanced view test.  
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Figure 6.8. Performance level evolution of each test according to completion times and 
quality: a) A learning curve is expressed by the mean values obtained from the completion 

times; b) Quality evolution is expressed by the percentage of completion time without 
collision. Even though skills were improved in the three tests, a difference of performance 

level was observed. 
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Complementary information useful to differentiate performance levels of the tests was 
given by the registered trajectories. A determined trajectory described the traced route 
for each trial and was the measure of the Cartesian position of the end-effector of the 
robot during the completion of the task. Figure 6.10 illustrates the trajectory description 
of the test through two examples, one was executed with direct view and the other was 
occluded. As the initial position of the tool and the location of the cylinder were different 
and fixed in all the trials, the first process to carry out was their alignment. It consisted in 
the positioning of the tool parallel to the cylinder and the introduction of the angled tip 
of the tool through the narrow incision. Even though this trajectory information was 
subjective, different behaviors were distinguished. In the occluded view example, 
although the alignment process was not deviated, there were various fail attempts of 
insertion and several additional motions along the cylinder’s route. 
 
A comparison of the three tests by the performance evolution through trials could be 
observed by the registered trajectories. Figure 6.11 shows the trajectories of the three tests 
separated by trial. An improvement in trajectory performance was identified. The 
trajectory in the two indirect perception tests became similar to the performed by the 

Figure 6.9. Test performance difference by the mean quality. The direct view test presented 
the highest percentage with a 73.87% of the completion time without collision, while the 

enhanced view test a 63.91% and the two cameras test, the lowest, with a 51.95%. 
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direct view. Nevertheless, some notable deviations were registered. It was observed that 
once a participant was disoriented, it was difficult to encounter the correct position. It 
was a situation that was solved easier by the enhanced view. This was a fact confirmed 
by the trajectory performance evolution of each test between trials shown in Figure 6.12. 
Trajectories became relatively uniform as the learning advanced, resulting in a consistent 
trace for the direct view test, compared to the slightly deviated of the enhanced view test 
and the randomly disperse of the two cameras view. 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10. Example of two trajectories executed with two different conditions. A test carried 
out with an occluding view may present more difficulties than one executed with a direct 

view. The objective of the test can be described by these trajectories and the visual behavior of 
the operator can be analyzed. 
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Figure 6.11. Test performance difference by the traced trajectory. Skills improved as the 
registered traces became more uniform through trials. However, as is shown in the trial 3 of 

this example, occasional disoriented behavior was observed with the two cameras test. 
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Figure 6.12. Test performance evolution by the traced trajectory. As experience was gained 
through trials, performance level improved. Nevertheless, the evolution was different. In this 
example trajectories were similar with the direct view test, while in the enhanced view they 
evolved from a disperse trace to a more direct, and in the two cameras test their trace was 

randomly dispersed through trials. 
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6.3.3 Discussion 
 
The experimental setup developed to evaluate participant’s performance was based on 
the measurement of the completion time of the task, quality of the execution and the 
traced trajectory. An extensive training process was carried out prior to the first trial due 
to the complexity of the system. The robot control was not intuitive since it was handled 
by a 6D mouse and its kinematics was restricted, moving the angled tip of the tool in 
opposition to its base. Even though participants adapted satisfactorily to the system, a 
shorter training session was held prior to every trial session due to the time separation 
between them. The action-perception task was complex and required efficient visual-
motor coordination. Therefore, sessions of three trials per day, one of each test, were 
carried out in order to avoid fatigue. However, it was observed that on a simple session, 
participants learned and their skills improved by each repetition of the task and, 
although tests were performed in an altered order, it exerted an influence in the 
performance level. 
 
The learning curve shows that participants adapted to the sensorial cues provided by the 
system. Completion times decreased through trials for the three tests. The direct view 
test evolution presented a notable difference over the two others, as was expected. 
Nevertheless, though a superior performance was observed in the enhanced view test 
with respect to the two cameras test, the difference was not as notable. This was 
confirmed by the statistical analysis, from which significant differences were obtained 
only in the first two trials. It could be attributed to the test order, in which a poor training 
process prior to a first test derived in a notable inferior performance compared to the 
third. Therefore, the memory of spatial relations between objects and actions is 
important [28]. A cognitive map of the route was constructed and associated actions and 
perception of objects in the scene. 
 
The sensorial cues provided by the two cameras, though limited, offered a slight 
conception of 3D space since they were located orthogonally to the cylinder. The 
cognitive effect given by this perceptual information was observed in the alignment 
process, which presented an acceptable performance. However, this performance level 
decreased strongly inside the route. This effect was supported by the percentage of 
completion time without collision measured in all the trials. The quality level for trials 
carried out with the two cameras view was significantly inferior. Furthermore, it was 
observed that independently of the experience and learning level of the participant in 
this test, their capacity to solve disorientation problems due to incorrect motions was 
considerable lower. This could be observed through the trajectory information registered 
by the system, which was a useful tool that permitted visualize different traces employed 
to fulfill the task. These trajectories became relatively uniform as participants gained 
experience. 
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An enhancement of the perception of space was obtained through the addition of the aid. 
The inclusion of the virtual view exerted a strong influence in the visual guided behavior 
of participants. This could be observed from trajectory and quality measures. For 
completion times, though presented slight differences in some trials with the two 
cameras tests, a superior performance was also observed. Thereby, the cognitive effect 
provided by the aid could be considered relevant, counting on the fact that in the real 
case only one camera would capture the view of the workspace, in contrast to the two 
orthogonal. The possibility to change and select the view of the robot from the virtual 
representation augmented the sense of presence. Although participants presented 
different strategies to complete the task, the majority selected an exterior view of the 
robot. Thus, a conception of space and place was achieved by perceiving where they 
were in the scene. This agrees with Gibson’s approach [29] and was achieved with only 
the representation of the robot and its tool. The cylinder or any other object of the scene 
was not represented. Therefore, the perception of one’s orientation with respect to a self 
created reference of the world and the effect of one’s actions in the environment 
contributed to augment the sense of presence. 
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Conclusion 
 

 
 

The 3D visual effect supplied by the appearance of objects under perspective projection 

is an essential sensory component to perceive space. Particularly, the effect created by 

the projection of angles provides a convincing 3D conception that has led to direct this 

research considering this simple geometric feature as a monocular cue. The response of 

the human visual system to the visual stimulus created by the angular variation can be 

appreciated by simply observing the vertices of a cube or the corners of a table. This is 

a visual process dedicated to determine spatial information and therefore, an ideal 

model from which the computer vision approach developed in this thesis was inspired.  

 

The link established between depth cues represented by image features and biological 

processes performed by the human visual system have led to qualify the developed 

2D-3D metric relation as a computational approach to direct perception. It has been an 

appropriate principle from which this approach has been based on and has represented 

its ultimate aim, which was the artificial emulation of a specific function of sight. The 

perspective distortion model resultant from the 2D-3D geometric relation developed 

and evaluated through the angular variation analysis, has demonstrated to be a reliable 

technique focused to extract 3D information from bidimensional images. Since it is a 

method based on the analysis of the proper content of images and their invariant 

entities, the concept of direct perception appeared and showed to be suitable to 

describe the angular variation. Although the modeling of this geometric property has 

confirmed the fact that the optic array is a direct provider of spatial information, it only 

describes a visual behavior under a determined stimulus. Thus, it is not a conclusive 

proof to the direct perception theory. However, it is a convincing support. 
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A set of methods was developed in order to extract spatial information from images 

using angular variation. Each method has determined visual properties from the 

angular projection. Parting from conventional strategies, relating image and object 

features, to invariant properties of geometric configurations, these methods have 

demonstrated that the perspective distortion of angles is an explicit and reliable source 

of spatial information. This information specifically describes spatial orientation of 3D 

features, which in conjunction with external 3D data provides position and scale. The 

set of developed conventional strategies has been based on the rotational motion 

analysis and its derived cone-shape line motion structure. Both of these methods are 

practical and useful in determined applications. However, the analysis of the 

perspective distortion offers a biologically inspired method to calculate spatial 

information directly from the projective nature of angles. Therefore, the development 

of a perspective distortion model, in addition to be a computational approach to direct 

perception, has shown to be a simple, fast and robust technique. Since it is focused in 

changes produced in the proper content of the image, it is independent of explicit 

external data. Thus, from the set of developed methods, this technique can be qualified 

as an improvement or evolution of the other methods, where 2D-3D relations were 

applied indirectly through a set of geometric constraints. As a result, the projective 

nature of angles was modeled and from its characteristics was concluded that a single 

angle possess quantifiable information only in restrictive conditions. Therefore, it 

requires additional information provided by the inclusion of more angles or produced 

by rotational motion. 

 

Implications of the significant quality provided by the content of images to represent 

sensorial information were studied. The interpretation of monocular cues, as it is 

performed by the human visual system, has been resembled by a computer vision 

algorithm and thus, 3D information of the scene has been calculated. In action-

perception applications this is a useful tool that supplied in a suitable form improves 

the visual-motor coordination and hence, increases performance skills to complete 

determined tasks. Experimental results have shown a positive effect on the cognitive 

mediation between action and perception under tasks aided with a complementary 

view of the scene. As the only needed information was the orientation between the 

self-moved tool and the camera, a key role is given to the hand-eye relation. Therefore, 

the visualization of one’s own actions in a self-referenced environment provides 

relevant cognitive information necessary to augment presence and improve the visual-

motor coordination in mediated environments.  
 
The potential of this computational approach, as has been demonstrated in the previous 
chapter, is prominent in various applications; parting from simple calibration tasks to 
presence enhancement in immersive teleoperations. The studied link between projected 
visual cues and their interpretation to determine spatial information has resulted in the 
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development of a computational approach, which instigates to extend future research in 
the analysis of different geometric entities as additional descriptors of visual perception 
processes. This modeling of geometric variations captures the visual behavior in 
response to stimuli generated by the interaction with the environment and permits to 
identify and understand certain processes employed by the human visual system. 




