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Summary 

During the last decade, integrated pest management programs based 

on the augmentation and conservation of zoophytophagous predators have 

been successfully developed in horticulture greenhouses. In sweet pepper, 

the release of Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) and 

Orius laevigatus Fieber (Hemiptera: Anthocoridae) has provided effective 

control of two key pests, the Western flower thrips Frankliniella occidentalis 

Pergande (Thysanoptera: Tripidae) and the whitefly Bemisia tabaci Gennadius 

(Hemiptera: Aleyrodidae). Despite being a zoophytophagous predator, the 

phytophagous behaviour of O. laevigatus has not been previously explored 

in depth, nor has the impact of phytophagy on plant physiology. In the 

first objective of this PhD, the hierarchical significance of O. laevigatus feeding 

on sweet pepper was compared with other behaviours. Orius laevigatus spent 

the majority of its time (38%) feeding on apical meristems and apical fresh 

leaves, which were also preferred residence locations. The phytophagous 

feeding behaviour of O. laevigatus on sweet pepper was shown to trigger 

defensive responses in the plant. These O. laevigatus plant induced defences 

were then shown to contribute to the repellence or attraction of pests or 

natural enemies, respectively. Specifically, O. laevigatus-punctured sweet 

pepper plants induced repellency for the whitefly B. tabaci and the thrips 

F. occidentalis. In contrast, the whitefly parasitoid Encarsia formosa Gahan 

(Hymenoptera: Aphelinidae) was significantly attracted to O. laevigatus-

punctured plants. The plant responses to O. laevigatus punctures included 
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the release of an altered blend of volatiles and activation of the jasmonate 

acid and salicylic acid signalling pathways. These results highlight an 

interesting facet to the biology of O. laevigatus, in which the ability of the 

predator to induce defensive responses in sweet pepper plants may serve to 

improve the biological control (BC) of both thrips and whiteflies. Indeed, the 

results could explain the great success achieved by IPM programs based on 

the release, establishment and conservation of O. laevigatus in sweet pepper 

crops.

Nevertheless, sweet pepper pest management is still fronting 

problems because of aphids in the crop. To maintain aphids’ population 

below an economic thresholds, multiples release of specialized natural 

enemies are needed. This strategy results in a complicated food web due to 

the large number of species released that which ends up making the release 

program too expensive for producers. In recent years, looking for alternative 

aphid’s natural enemies which could be integrated with the current and 

systematically-implemented BC practices in sweet pepper has been one of 

the research priorities. In this line, the role of predatory mirids (Hemiptera: 

Miridae) in managing aphids in sweet pepper has been highlighted in several 

studies. In addition to their services as predators, mirid predators are able 

to induce plant defences by phytophagy. However, whether this induction 

occurs in sweet pepper and whether it could be an additional benefit to 

their role as BC agent in this crop remains unknown. These questions were 

addressed in the second objective of this PhD, and were investigated in two 

model insects, the mirids Nesidiocoris tenuis Reuter and Macrolophus pygmaeus 

Rambur. Plant feeding behaviour was observed in both N. tenuis and 

M. pygmaeus on sweet pepper and occupied 33% and 14% of total time spent 
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on the plant, respectively. The punctures caused by mirid plant feeding 

induced the release of a blend of Volatile Organic Compounds (VOCs) 

which repelled the herbivore pests F. occidentalis and B. tabaci, whereas 

attracted the whitefly parasitoid E. formosa. The repellent effect on B. tabaci 

was observed for at least 7 days after initial exposure of the plant to N. tenuis, 

and attraction of E. formosa remained functional for 14 days. Feeding induced 

plant defences by mirid predators, their subsequent effects on both pests and 

natural enemy behaviour, and the persistence of these observed effects open 

the door to new control strategies in sweet pepper crop. Further application 

of this research is discussed within this chapter, such as the vaccination of 

plants by zoophytophagous mirids in the nursery before transplantation.

A next step to integrate the possible use of these mirids on sweet 

pepper BC practices would be to ascertain their potential control on the 

whitefly B. tabaci and the thrips F. occidentalis. In the third objective of this 

PhD, a comparative study to measure the efficacy of predation by N. tenuis, 

M. pygmaeus, and Dicyphus maroccanus Wagner (Hemiptera: Miridae) on the 

two sweet pepper key pests mentioned above, was conducted. This study 

was carried out under two greenhouses with different temperatures, 20 ºC 

and 27 ºC, which simulated the mean temperature registered in the two 

main crop cycles in Spain (the winter and summer planting period). Both, 

N. tenuis and M. pygmaeus, were able to establish on sweet pepper and 

significantly reduced the number of F. occidentalis and B. tabaci adults, larvae 

and nymphs. Macrolophus pygameus has the highest density at 20 ºC, whereas 

N. tenuis was more abundant at 27 ºC. In contrast, D. maroccanus did not 

achieve the required level of control and from our observation could not 

be selected as a biocontrol agent for F. occidentalis and B. tabaci in this crop. 
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None of the three mirids were observed to cause any damage on the pepper 

plant. The implications of these results for the use of mirids in sweet pepper 

crops were discussed within this chapter.

In the fourth objective of this PhD, the practical integration of one 

of these two predatory mirids with A. swirskii to enhance sweet pepper 

pest management was studied. Firstly, the co-occurrence of both mirid 

species when released together with A. swirskii in presence and absence of 

Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) eggs as alternative prey 

was investigated. This was compared to the standard release of O. laevigatus 

with A. swirskii. Secondly, the efficiency of each combined release (either 

N. tenuis, M. pygmaeus or O. laevigatus combined with A. swirskii) in reducing 

F. occidentalis, B. tabaci and the aphid Myzus persicae Sulzer (Hemiptera: 

Aphididae) infestations was evaluated under greenhouse conditions. 

Both, N. tenuis and A. swirskii were involved in a bidirectional intraguild 

predation (IGP). Contrary, this interaction (IGP) was apparently unidirectional 

in the case of M. pygmaeus with A. swirskii and O. laevigatus with A. swirskii. 

Both, M. pygmaeus and O. laevigatus significantly reduced the abundance 

of A. swirskii. However, in the greenhouse, IGP seemed to be neutralized. 

Mirids with A. swirskii significantly suppressed thrips, whitefly and aphid 

infestation, suggesting complementarity in the effects of these two predator 

species. Contrary, the combined use of O. laevigatus with A. swirskii did not 

reached a satisfactory control for aphids, despite it reduced effectively the 

level of thrips and whiteflies. Therefore, our results suggest that the use of 

mirids, instead of O. laevigatus, combined with A. swirskii, could result in 

more efficient and robust BC programs in sweet pepper crops.
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In summary, together with the newly discovered ability of predatory 

mirids to induce plant defences, we expect that future BC of sweet pepper in 

commercial greenhouse could rely on the release of A. swirskii with predatory 

mirids. What is clear is that the use of mirids in sweet pepper is possible 

and can be more effective than the current system based on O. laevigatus, 

which motivates me to suggest that mirids deserve more attention in the BC 

of sweet pepper pests.
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Resumen

Durante la última década, los programas de gestión integrada de 

plagas (GIP) basados ​​en el aumento y la conservación de depredadores 

zoofitófagos se han desarrollado con éxito en invernaderos hortícolas. 

En pimiento dulce, la liberación de Amblyseius swirskii Athias-Henriot 

(Acari: Phytoseiidae) y Orius laevigatus Fieber (Hemiptera: Anthocoridae) 

ha proporcionado un control efectivo de dos plagas clave, el trips 

Frankliniella occidentalis Pergande (Thysanoptera: Tripidae) y la mosca 

blanca Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae). A pesar de ser un 

depredador zoofitófago, el comportamiento fitófago de O. laevigatus no ha sido 

explorado previamente en profundidad, ni ha tenido un impacto de fitofagia 

sobre la fisiología de las plantas. En el primer objetivo de esta tesis doctoral, 

se comparó la importancia jerárquica de la alimentación de O. laevigatus 

con otros comportamientos sobre pimiento. Orius laevigatus pasó la mayor 

parte de su tiempo (38%) alimentándose de meristemo apical y hojas frescas 

apicales, las cuales también fueron su ubicación preferida. Se ha demostrado 

que el comportamiento fitófago de O. laevigatus en pimiento desencadena 

respuestas defensivas en la planta, las cuales contribuyen a la repelencia o 

atracción de plagas o enemigos naturales, respectivamente. Específicamente, 

las plantas de pimiento picadas con O. laevigatus inducen una repelencia a 

mosca blanca B. tabaci y al trips  F. occidentalis. Por el contrario, el parasitoide 

de mosca blanca Encarsia formosa Gahan (Hymenoptera: Aphelinidae) se ve 

significativamente atraído por plantas picadas con O. laevigatus. Las respuestas 
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de la planta al comportamiento fitófago de O. laevigatus incluye la liberación 

de una mezcla alterada de compuestos volátiles y la activación de las vías de 

señalización del ácido jasmonato y ácido salicílico. Estos resultados ponen de 

manifiesto una faceta interesante de la biología de O. laevigatus, en la cual la 

capacidad del depredador para inducir respuestas defensivas en las plantas 

de pimiento puede servir para mejorar el control biológico (CB) del trips y la 

mosca blanca. De hecho, los resultados podrían explicar el gran éxito logrado 

por los programas de GIP basados ​​en la liberación, el establecimiento y la 

conservación de O. laevigatus en el cultivo de pimiento.

Sin embargo, el control de plagas en pimiento todavía tiene 

problemas debido a los pulgones. Actualmente, para mantener la población 

de pulgones por debajo del umbral económico, se necesita múltiples 

liberaciones de enemigos naturales especializados. Esta estrategia resulta en 

una red trófica complicada debido a la gran cantidad de especies liberadas, 

además de cara para los productores. En los últimos años, la búsqueda de 

enemigos naturales alternativos para pulgones y que puedan ser integrados 

con las prácticas actuales de CB en pimiento ha sido una de las prioridades 

en la investigación sobre este cultivo. Siguiendo esta línea, el papel de los 

míridos depredadores (Hemiptera: Miridae) en el manejo de pulgones en 

pimiento ha sido destacado en varios estudios. Además de sus servicios 

como depredadores, los miridos zoofitófagos pueden inducir defensas en 

las plantas debido a su fitofagia. Sin embargo, hasta ahora no se sabe si esta 

inducción se produce en el pimiento y si podría ser un beneficio adicional a 

su papel como agente de CB en este cultivo. Estas preguntas se abordaron 

en el segundo objetivo de esta tesis doctoral y estudiaron sobre dos especies 

de míridos modelo y comerciales actualmente, Nesidiocoris tenuis Reuter y 
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Macrolophus pygmaeus Rambur. El comportamiento de fitofagia sobre la planta 

de pimiento se observó tanto en N. tenuis como en M. pygmaeus y ocuparon 

el 33% y el 14% del tiempo total que estuvieron sobre ésta, respectivamente. 

Las picaduras alimenticias de los míridos indujeron la liberación de una 

mezcla de Compuestos Orgánicos Volátiles (COV) que repelieron los 

herbívoros F. occidentalis y B. tabaci y atrajeron al parasitoide de mosca blanca 

E. formosa. El efecto repelente sobre B. tabaci se observó durante al menos 

7 días después de la exposición inicial de la planta a N. tenuis y la atracción 

de E. formosa permaneció funcional durante 14 días. Las defensas inducidas 

en planta debido a las picaduras alimenticias por míridos depredadores y la 

persistencia de estos efectos abren la puerta a nuevas estrategias de control de 

plagas en pimiento. La aplicación adicional de esta investigación se analiza 

en este capítulo, como la vacunación de plantas por míridos zoofitófagos en 

el vivero antes del trasplante.

Un siguiente paso para integrar el posible uso de estas dos especies de 

míridos en las prácticas de CB de pimiento fue determinar su posible control 

sobre la mosca blanca B. tabaci y el trips F. occidentalis. En el tercer objetivo de 

esta tesis doctoral, se llevó a cabo un estudio comparativo para estudiar la 

eficacia de depredación por N. tenuis, M. pygmaeus y Dicyphus maroccanus 

Wagner (Hemiptera: Miridae) sobre las dos plagas clave de pimiento 

mencionadas anteriormente. Este estudio se llevó a cabo en dos invernaderos 

con diferentes temperaturas, a 20 ºC y 27 ºC, que simularon la temperatura 

media registrada en los dos principales ciclos de cultivo en España (el período 

de siembra de invierno y de verano). Ambos, N. tenuis y M. pygmaeus, 

pudieron establecerse en pimiento y redujeron significativamente el número 

de adultos, larvas y ninfas de F. occidentalis y B. tabaci. Macrolophus pygameus 
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tiene la densidad más alta a 20 ºC, mientras que N. tenuis es más abundante a 

27 ºC. Por el contrario, D. maroccanus no alcanzó el nivel de control requerido 

y por tanto no sería seleccionado como agente de CB de  F. occidentalis y 

B. tabaci en este cultivo. Ninguno de los tres míridos se observó que causa 

ningún daño en la planta de pimiento. Las implicaciones de estos resultados 

para el uso de los miridos en los cultivos de pimiento se han discutido en 

este capítulo.

En el cuarto objetivo de esta tesis doctoral, se estudió la integración 

práctica de uno de estos dos míridos depredadores con A. swirskii para 

mejorar el manejo de plagas en pimiento. En primer lugar, se investigó la 

coexistencia de ambas especies de miridos cuando se liberaron junto con 

A. swirskii en presencia y ausencia de huevos de Ephestia kuehniella Zeller 

(Lepidoptera: Pyralidae) como presa alternativa. Esto se comparó con la 

versión estándar de uso que consta en la liberación de O. laevigatus con 

A. swirskii. En segundo lugar, la eficacia de cada liberación combinada 

(ya sea N. tenuis, M. pygmaeus u O. laevigatus combinada con A. swirskii) en 

la reducción de F. occidentalis, B. tabaci y el pulgón Myzus persicae Sulzer 

(Hemiptera: Aphididae) fue evaluado en condiciones de invernadero. 

Ambos, N. tenuis y A. swirskii estuvieron involucrados en una depredación 

intragremial bidireccional (DIG). Contrariamente, esta interacción DIG fue 

aparentemente unidireccional en el caso de M. pygmaeus con A. swirskii y 

O. laevigatus con A. swirskii. Ambos, M. pygmaeus y O. laevigatus redujeron 

significativamente la abundancia de A. swirskii. Sin embargo, en el invernadero, 

la DIG pareció estar neutralizada. El uso de miridos con A. swirskii suprimió 

significativamente el trips, la mosca blanca y la infestación de pulgones, 

sugiriendo complementariedad en los efectos de estas dos especies de 
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depredadores. Contrariamente, el uso combinado de O. laevigatus con 

A. swirskii no alcanzó un control satisfactorio para los pulgones, a pesar de 

que redujo efectivamente el nivel de trips y moscas blancas. Por lo tanto, 

nuestros resultados sugieren que el uso de mirids, en lugar de O. laevigatus, 

combinado con A. swirskii, podría resultar en programas de CB más eficientes 

y robustos en el cultivo de pimiento.

En resumen y junto a la capacidad por parte de los míridos zoofitófagos 

de inducir defensas en plantas, esperamos que el futuro CB de pimiento 

en invernadero comercial pueda contar con la liberación de A. swirskii con 

míridos predadores. Lo que está claro es que el uso de miridos zoofitófagos 

en el pimiento es posible y puede ser más efectivo que el sistema actual 

basado en la liberación de O. laevigatus, lo que me motiva a sugerir que los 

míridos merecen más atención en el CB de plagas en pimiento.
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Resum

Durant l’última dècada, els programes de gestió integrada de plagues 

(GIP) basats en l’augment i la conservació de depredadors zoofitòfags s’han 

desenvolupat amb èxit en hivernacles hortícoles. En pebrot, l’alliberament de 

Amblyseius swirskii Athias-Henriot (Acari: fitoseid) i Orius laevigatus Fieber 

(Hemiptera: Anthocoridae) ha proporcionat un control efectiu de dues plagues 

clau, el trips Frankliniella occidentalis Pergande (Thysanoptera: Tripidae) i la 

mosca blanca Bemisia tabaci Gennadius (Hemiptera: aleiròdid). Tot i ser un 

depredador zoofitòfag, el comportament fitòfag d’O. laevigatus no ha estat 

explorat prèviament en profunditat, ni ha tingut un impacte de la fitofagia 

sobre la fisiologia de les plantes. En el primer objectiu d’aquesta tesi doctoral, 

es va comparar la importància jeràrquica de l’alimentació d’O. laevigatus amb 

altres comportaments sobre pebrot. Orius laevigatus va passar la major part 

del seu temps (38%) alimentant-se del meristem apical i de les fulles fresques 

apicals, les quals també van ser la seva ubicació preferida. S’ha demostrat 

que el comportament fitòfag d’O. laevigatus en pebrot desencadena respostes 

defensives a la planta, les quals contribueixen a la repel.lència o l’atracció de 

plagues o enemics naturals, respectivament. Específicament, les plantes de 

pebrot picades amb O. laevigatus indueixen una repelència a la mosca blanca 

B. tabaci i al trips F. occidentalis. Per contra, el parasitoid de mosca blanca 

Encarsia formosa Gahan (Hymenoptera: Aphelinidae) es veu significativament 

atret per plantes picades amb O. laevigatus. Les respostes de la planta al 

comportament fitòfag d’O. laevigatus inclou l’alliberament d’una barreja 
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alterada de compostos volàtils i l’activació de les vies de senyalització de 

l’àcid jasmonic i l’àcid salicílic. Aquests resultats posen de manifest una 

faceta interessant de la biologia d’O. laevigatus, en la qual la capacitat del 

depredador per induir respostes defensives en les plantes de pebrot pot servir 

per millorar el control biològic (CB) del trips i la mosca blanca. De fet, els 

resultats podrien explicar el gran èxit assolit pels programes de GIP basats 

en l’alliberament, l’establiment i la conservació d’O. laevigatus en el cultiu de 

pebrot.

No obstant això, el control de plagues en pebrot encara té problemes 

a causa dels pugons. Actualment, per mantenir la població de pugons per 

sota del llindar econòmic, es necessita múltiples alliberaments d’enemics 

naturals especialitzats. Aquesta estratègia resulta en una xarxa tròfica 

complicada a causa de la gran quantitat d’espècies alliberades, a més de 

cara per als productors. En els últims anys, la recerca d’enemics naturals 

alternatius per pugons i que puguin ser integrats amb les pràctiques actuals 

de CB en pebrot ha estat una de les prioritats en la investigació sobre aquest 

cultiu. Seguint aquesta línia, el paper dels mírids depredadors (Hemiptera: 

Miridae) en el maneig de pugons en pebrot ha estat destacat en diversos 

estudis. A més dels seus serveis com a depredadors, els mírids zoofitòfags 

poden induir defences a les plantes a causa de la seva fitofagia. No obstant 

això, fins ara no se sap si aquesta inducció es produeix en el cultiu del pebrot i 

si podria ser un benefici addicional al seu paper com a agent de CB en aquest 

cultiu. Aquestes preguntes es van abordar en el segon objectiu d’aquesta 

tesi doctoral i estudiar sobre dues espècies de mírids model i comercials 

actualment, Nesidiocoris tenuis Reuter i Macrolophus pygmaeus Rambur. 

El comportament de fitofagia sobre la planta de pebrot es va observar tant 
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en N. tenuis com a M. pygmaeus i van ocupar el 33% i el 14% del temps 

total que van estar sobre aquesta, respectivament. Les picades alimentàries 

dels mírids van induir l’alliberament d’una barreja de compostos orgànics 

volàtils (COV) que van repel·lir els herbívors F. occidentalis i B. tabaci i van 

atreure al parasitoid de mosca blanca E. formosa. L’efecte repel·lent sobre 

B. tabaci es va observar durant almenys 7 dies després de l’exposició inicial 

de la planta a N. tenuis i l’atracció d’E. formosa romandre funcional durant 

14 dies. Les defenses induïdes en planta a causa de les picades alimentàries 

per mírids depredadors i la persistència d’aquests efectes obren la porta a 

noves estratègies de control de plagues en pebrot. L’aplicació addicional 

d’aquesta investigació s’analitza en aquest capítol, com la vacunació de 

plantes per mírids zoofitófagos al viver abans del trasplantament.

Un següent pas per integrar el possible ús d’aquestes dues espècies 

de mírids en les pràctiques de CB de pebrot va ser determinar la seva 

possible control sobre la mosca blanca B. tabaci i el trips F. occidentalis. 

En el tercer objectiu d’aquesta tesi doctoral, es va dur a terme un estudi 

comparatiu per estudiar l’eficàcia de depredació de N. tenuis, M. pygmaeus 

i Dicyphus maroccanus Wagner (Hemiptera: Miridae) sobre les dues plagues 

clau de pebrot esmentades anteriorment. Aquest estudi es va dur a terme en 

dues hivernacles amb diferents temperatures, a 20 ºC i 27 ºC, que van simular la 

temperatura mitjana registrada en els dos principals cicles de cultiu a Espanya 

(el període de sembra d’hivern i d’estiu). Tots dos, N. tenuis i M. pygmaeus, 

van poder establir-se en pebrot i van reduir significativament el nombre 

d’adults, larves i nimfes de F. occidentalis i B. tabaci. Macrolophus pygameus té 

la densitat més alta a 20 ºC, mentre que N. tenuis és més abundant a 27 ºC. 

Per contra, D. maroccanus no va aconseguir el nivell de control requerit i així 
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no seria seleccionat com a agent de CB de F. occidentalis i B. tabaci en aquest 

cultiu. Cap dels tres mírids es va observar que causa cap dany a la planta 

de pebrot. Les implicacions d’aquests resultats per a l’ús dels mírids en els 

cultius de pebrot s’han discutit en aquest capítol.

En el quart objectiu d’aquesta tesi doctoral, es va estudiar la 

integració pràctica d’un d’aquests dos mírids depredadors amb A. swirskii 

per millorar el maneig de plagues en pebrot. En primer lloc, es va investigar 

la coexistència de les dues espècies de mírids quan es van alliberar juntament 

amb A. swirskii en presència i absència d’ous de Ephestia kuehniella Zeller 

(Lepidoptera: Pyralidae) com a presa alternativa. Això es va comparar 

amb la versió estàndard d’ús que consta en l’alliberament d’O laevigatus 

amb A. swirskii. En segon lloc, l’eficàcia de cada alliberament combinada 

(ja sigui N. tenuis, M. pygmaeus o O. laevigatus combinada amb A. swirskii) 

en la reducció de F. occidentalis, B. tabaci i el pugó Myzus persicae Sulzer 

(Hemiptera: Aphididae) va ser avaluat en condicions d’hivernacle. 

Tots dos, N. tenuis i A. swirskii van estar involucrats en una depredació 

intragremial bidireccional (DIG). Contràriament, aquesta interacció DIG va 

ser aparentment unidireccional en el cas de M. pygmaeus amb A. swirskii i 

O. laevigatus amb A. swirskii. Tots dos, M. pygmaeus i O. laevigatus van reduir 

significativament l’abundància d’A. swirskii. No obstant això, a l’hivernacle, 

la DIG va semblar estar neutralitzada. L’ús de mírids amb A. swirskii va 

suprimir significativament el trips, la mosca blanca i la infestació de pugons, 

suggerint complementarietat en els efectes d’aquestes dues espècies de 

depredadors. Contràriament, l’ús combinat d’O. laevigatus amb A. swirskii 

no va aconseguir un control satisfactori per als pugons, tot i que va reduir 

efectivament el nivell de trips i mosques blanques. Per tant, els nostres 
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resultats suggereixen que l’ús de mirids, en lloc d’O. laevigatus, combinat 

amb A. swirskii, podria resultar en programes de CB més eficients i robustos 

en el cultiu de pebrot.

En resum i junt la capacitat per part dels mírids zoofitòfags d’induir 

defenses en plantes, esperem que el futur del CB de pebrot en hivernacle 

comercial pugui comptar amb l’alliberament d’A. swirskii amb mírids 

depredadors. El que està clar és que l’ús de mírids zoofitòfags en el pebrot 

és possible i pot ser més efectiu que el sistema actual basat en l’alliberament 

d’O. laevigatus, el que em motiva a suggerir que els mírids mereixen més 

atenció en el CB de plagues en pebrot.
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General Introduction 

1.1. Sweet pepper crop 

Sweet pepper, also known as bell pepper, pepper, or capsicum is 

a cultivar group of the species Capsicum annuum L., which is a perennial 

herbaceous plant from the Solanaceae family (nightshade family). Of the 

family, the genus Capsicum is the second most important vegetable crop 

in the world, following tomato (Rubatzky and Yamaguchi, 1997a, 1997b). 

Peppers are native to Mexico, Central America, and northern South America, 

and have been historically associated with the voyage of Columbus (Heiser, 

1976). Pepper seeds were imported to Spain in 1493, since then peppers 

have spread to other European, African, and Asian countries.

1.1.1. Economic importance 

Sweet pepper together with tomato is the crop that occupies most 

of the area among protected species around the world. Pepper cultivation 

is almost entirely carried out in open fields, however the extension 

of protected, greenhouse cultivate peppers has intensively increased. 

China is leading the world production with 16,000,000 tons (FAOSTAT, 

2016). Spain occupies the fifth position with 1,130,340 tons, of which 733,744 

tons were exported in 2016, thus, it is ranked as the second exporter in the 

world after Holland (Hortoinfo, 2017). Last year, the volume of the Spanish 
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exported pepper represented 22.3% of the total world exportation, with a 

complete value estimated at 990.5 million Euros, at an average price of 1.35 

Euros per kilo (MARM, 2017). 

In Spain, over 18,513 hectares (ha) are devoted to the production 

of peppers, wherein Andalusia is the major production region (Hortoinfo, 

2017). Approximately two-thirds of the area dedicated to this crop is 

inside greenhouses while the remaining one-third is cultivated in open 

fields (Simón et al., 2016). The provinces with the largest area in 2015-2016 

were Almeria (9,611 ha), Murcia (1,450 ha), Malaga (580 ha), Granada (300 

ha) and Alicante (250 ha) (Hortoinfo, 2017). The province of Almeria is 

the biggest producer of sweet pepper for export, focusing its production 

mainly during the autumn and winter months, from September to March. 

In contrast, the commercialization of sweet pepper in Murcia begins in 

March and ends in summer. The Murcia production shares the time period 

and market destination with the Dutch pepper of traditionally high quality 

(Fernández-Zamudio et al., 2006).

1.1.2. Pest status in protected sweet pepper 

Sweet pepper is susceptible to several pests which can reduce fruit 

quality and yield (Table 1.1). Insects and mites associated with pepper 

can cause both direct and indirect damage (Brodsgaard and Albajes, 1999; 

Weintraub, 2007). Indirect damage occurs mainly when pests are vectors 

transmitting viruses, whereas direct damage occurs when pests damage 

roots, stems, flowers and fruit. As an alternative to exclusively treating pest 

with insecticides, integrated pest management (IPM) based on biological 

control (BC) tactics have been successfully adopted in various confined and 
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open production areas around the world. The principle sweet pepper pests 

and their corresponding natural enemies are summarized in table 1.1. 

Since Western flower thrips (WFT) Frankliniella occidentalis 

Pergande (Thysanoptera: Thripidae) (Fig.1.1.A) appeared in Europe it 

has become one of the most serious pest species of sweet pepper, both in 

greenhouse and in open field (Tavella et al., 1991; Tommasini and Maini, 

1995). Thrips generally prefer to live in closed areas such as the flowers, 

under the calyx of the fruit and in newly opening leaves, which makes 

them difficult to reach with insecticides (Fig.1.1.D). With their piercing-

sucking mouthparts; epidermal and parenchymal cells are punctured 

by both adults and nymphs, and the contents of the cells sucked out, 

resulting in silvery chlorotic spots. Direct damage is due to feeding and 

oviposition on plant leaves, flowers and fruit (Shipp et al., 1998), while 

indirect damages is caused by virus transmission, of which tomato spotted 

wilt virus (TSWV) is the most economically important (Ullman et al., 1997). 

Currently, F. occidentalis has become resistant to major insecticide groups 

(Bielza, 2008), therefore IPM based on BC is the alternative strategy for the 

control of WFT (van Lenteren and Loomans, 1998; van Driesche et al., 1998; 

Riudavets et al., 1993) (Table 1.1). 

Considerable damage to the sweet pepper crop is also attributed to 

two species of whiteflies, the sweet potato whitefly, Bemisia tabaci Gennadius 

(Fig.1.1.B) and the greenhouse whitefly Trialeurodes vaporariorum Westwood 

(Hemiptera: Aleyrodidae) (van Lenteren and Woets, 1988). Whitefly adults 

and nymphs feed on the phloem (Fig.1.1.E,F), causing direct damage. 

While indirect damage is caused from the adult’s virus transmission of, 

mainly, the Tomato yellow leaf curl virus (TYLCV) by B. tabaci and Tomato 

infectious chlorosis virus (TICV) by T. vaporariorum, and/or by sooty mould 
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which develops on their excreted honeydew, thus, reducing the rate of leaf 

photosynthesis (Jones, 2003). The developed resistance to several chemical 

classes of insecticides, including the neonicotinoids which were commonly 

used for B. tabaci control (Elbert and Nauen, 2000), increase the need for BC 

of this pest. Several natural enemies are currently used for the management 

of whiteflies in sweet pepper (Gerling et al., 2001; Naranjo, 2001; Arnó et al, 

2010b) (Table 1.1). 

Aphids are also among the most problematic pests in protected crops. 

Several polyphagous species, such as Myzus persicae Sulzer (Fig.1.1.C), 

Macrosiphum euphorbiae Thomas, Aphis gossypii Glover and Aulacorthum solani 

Kaltenbach (Hemiptera: Aphididae), are reported to induce considerable 

damage in sweet pepper (Fig.1.1.F,G) (Blom, 2008; Sánchez et al., 2011). 

Aphids are difficult to control due to their high reproductive capability and 

short developmental period which can quickly lead to resistance to many 

different insecticide classes. Their BC can be successfully achieved by the 

augmentative release of natural enemies (Table 1.1) and the introduction of 

banker plants. This is true for A. gossypii and M. persicae which can be well 

controlled in greenhouse sweet pepper; however, the other two species 

M. euphorbiae and A. solani are not satisfactory managed (Sánchez et al., 

2011; Pérez-Hedo and Urbaneja, 2015). 
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The two-spotted spider mite Tetranychus urticae Koch (Acari: 

Tetranychidae) is a common pest in greenhouse pepper (van de Vrie et al., 

1972). Damages are related to the pest feeding on the underside of leaves, 

piercing the chloroplast-containing cells and causing significant injury to the 

crop. The broad mite, Polyphagotarsonemus latus Banks (Acari: Tarsonemidae), 

is a destructive pest whose attacks cause serious malformations after injecting 

toxins in the leaf tissue while feeding. It is very small and difficult to detect, 

thus, the pest is most often only identified when it has already caused severe 

economic losses (Coss-Romero and Pena, 1998). Phytoseiidae predatory 

mites are the main component in the commercial BC programs aimed to 

control T. urticae and P. latus in sweet pepper (Griffiths, 1999) (Table 1.1).

A B C

D F GE

Figure 1.1.
Sweet pepper key pests, Frankliniella occidentalis (A, D), Bemisia tabaci (B, E, F), 
Myzus persicae (C, F, G).
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Several species of leafminers have become serious pests in pepper 

growing areas (Table 1.1). Direct damage occurs as a consequence of larval 

feeding inside the leaf and adult feeding punctures on the upper side of the 

leaf (Dik et al., 1999). A high amount of leaf mines cause a significant decrease 

in photosynthetic assimilate production that may lead to desiccation and 

premature leaf fall. Indirect damage is the result of viral disease transmission 

and pathogen penetration into the leaves via female feeding punctures. 

Several natural enemies can develop on the larvae and pupae of the 

Liriomyza spp. miners (Diptera: Agromyzidae) (Table 1.1), (Onillon, 1999). 

Many Lepidopteran species of the family Noctuidae cause considerable 

damage to pepper crops (Dik et al., 1999). For their control locating them 

in early stages is very pertinent as they live grouped in very specific areas, 

hiding during the day and feeding during the night (Table 1.1). The green 

stink bug, Nezara viridula Linnaeus (Hemiptera: Pentatomidae), has recently 

become one of the main pest in greenhouse pepper cultivation. This bug 

was easily controlled by insecticide treatments; however, with the increase 

of BC farming systems, N. viridula has become a very destructive pest. 

This is especially true when high populations are distributed throughout 

the greenhouse. Egg parasitoids can be used for the BC of this bug, although 

their use is not common (Table 1.1) (Catalán and Verdú, 2005).
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1.1.3. Current status of biological control in sweet pepper

In Europe throughout the last ten years pest control in protected crops 

has shown noticeable improvement through the replacement of chemical 

control with BC (Heimpel and Miles, 2017; van Lenteren et al, 2018; Barratt 

et al., 2018). The green revolution, the international market demand and the 

restrictive legislation minimising the number of authorised chemical products 

have resulted in a quick shift from chemical insecticide dependency to the 

implementation of IPM programs based on BC for various horticultural 

crops. In less than 10 years the total greenhouse area grew from 1,400 hectares 

biologically controlled in 2006 to 26,372 ha in 2014 (Sanchez et al., 2014). 

One of the most impressive success stories of BC occurred in the 

sweet pepper crop in Southern Spain (Blom, 2017). Since the end of the last 

century, attempts to implement BC of sweet pepper started in Campo de 

Cartagena region. In contrast, in the Almeria region, the leader of sweet 

pepper production in Spain, BC implementation was delayed mainly due 

to pest pressure during the summer planting period. However, nowadays, 

this delay has been overcome and sweet pepper areas under BC program 

in Almeria have increased from a mere 200 ha in the 2005-2006 season to 

about 7,500 ha in 2008-2009. Currently the area has surpassed the 10,000 ha 

in 2015-2016 (Fig.1.2) (Calvo et al., 2015; Blom, 2017). 

In greenhouse sweet pepper, BC programs are now based on the 

release of generalist predators, the predatory mite Amblyseius swirskii 

Athias-Henriot (Acari: Phytoseiidae) together with the minute pirate bug 

Orius laevigatus Fieber (Hemiptera: Anthocoridae). Both predators are 

achieving great success in managing the key sweet pepper pests; B. tabaci 

and F. occidentalis (Calvo et al., 2015). 
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1.1.3.1. Amblyseius swirskii 

The predatory mite A. swirskii (Fig 1.3) originated in the Mediterranean-

Middle east area. Since 2005, it has been reared and commercially available as 

a BC agent for whiteflies and thrips in different crops (Nomikou et al., 2001, 

2002; Belda and Calvo, 2006; Messelink et al., 2008; Calvo et al., 2011, 2015). 

The ability of A. swirskii to establish even before the appearance of the pest, owing 

to its capability of feeding on alternative food sources, enhances its efficiency 

as a BC agent. Among these alternative food sources of pollen, nectar, small 

insects and mites, such as T. urticae and P. latus, other non-prey food, including 

eggs of the Mediterranean flour moth Ephestia kuehniella Zeller (Lepidoptera: 

Pyralidae) or decapsulated dry cysts of the brine shrimp Artemia franciscana 

Kellogg (Anostraca: Artemiidae) have been reported (Nomikou et al., 2002; van 

Houten et al., 2005a, 2005b; Messelink et al., 2006, Messelink et al., 2010, van 

Maanen et al., 2010; Nguyen et al., 2013; Calvo et al., 2015).  

Figure 1.2.
Sweet pepper area (ha) under BC (A); Percentage of farms with BC (B) (Almería region), 
(Blom, 2017; Calvo et al., 2015). 
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In Spain during the 2012-2013 season total greenhouse areas under 

BC using A. swirskii exceeded the 18,000 ha (Calvo et al., 2015). As mentioned 

before, releases of this predaceous mite have been extensively used with 

remarkable success for the control of B. tabaci in sweet pepper (Calvo et 

al., 2008, 2009a, 2012a). A rate of 50-75 A. swirskii/m2 combined with the 

releases of the parasitic wasp Eretmocerus mundus Mercet (Hymenoptera: 

Aphelinidae) provided excellent suppression of B. tabaci in sweet pepper 

greenhouses (Calvo et al., 2009a). 

Amblyseius swirskii mainly preys on eggs and crawlers (Nomikou 

et al., 2001, 2004), whereas E. mundus parasitizes nymphal instars of 

B. tabaci but especially the second and third (Urbaneja and Stansly, 

2004). Thus, released together, both predators provided satisfactory 

results. Amblyseius swirskii is also an effective predator of thrips in sweet 

pepper (Belda and Calvo, 2006; Calvo et al., 2012a) and other crops. 

Previous laboratory results on cucumber leaves showed A. swirskii to be 

Figure 1.3.
Adut Amblyseius swirskii.
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more effective than Neoseiulus cucumeris Oudemans (Acari: Phytoseiidae) 

which had been previously used to control this pest (Messelink et al., 

2006). Later, Messelink et al. (2008) observed that A. swirskii was also 

able to control the greenhouse whitefly T. vaporariorum in cucumber in 

the presence of F. occidentalis. More confirmation in cucumber crops, 

were observed by Calvo et al. (2011) who, at a release rate of 50-75 

A. swirskii/m2, adequately managed F. occidentalis and B. tabaci both 

alone and simultaneously. Accordingly to the above mentioned results, 

the adapted release of A. swirskii significantly reduced the infestation 

of B. tabaci and F. occidentalis. However, in the case of sweet peppers, 

thrips was not adequately controlled in flowers enough to mitigate the 

risk of (TSWV) infections (Lacasa and Contreras, 1993; Belda and Calvo, 

2006). Therefore, combining the phytoseiid with the anthocorid bug, 

O. laevigatus, satisfies the requirements of the BC of sweet pepper pests 

(Weintraub et al., 2011; Calvo et al., 2012a). 

1.1.3.2. Orius laevigatus 

The generalist anthocorid predator O. laevigatus (Fig.1.4), is a western 

Palaearctic species, widespread along Mediterranean and Atlantic coasts. 

This anthocorid has various characteristics which make it a promising agent 

of BC. For example, O. laevigatus lacks expressed diapauses, presents high 

fecundity, a long life span and is polyphagous (Tommasini and Nicoli, 1996). 
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Orius laevigatus is considered to be key predator in the BC of thrips, 

preying on both larvae and adults. It can also be effective against B. tabaci 

(Chambers et al., 1993; Dissevelt et al., 1995; Frescata and Mexia, 1996; Hamdan 

and Abu-Awad, 2007, 2008). In addition, O. laevigatus can consume other 

arthropod pests such as aphids and mites (Alvarado et al., 1997; Venzon et al., 

2002). Nowadays, this predator is produced by many commercial insectaries 

(since 1993) and largely used in IPM programs. The number of Orius spp. 

released to control thrips in greenhouse varies in published literature, 

ranging from 0.4 to 2 individuals per plant (Chambers et al., 1993; Tavella 

et al., 1996; van Schelt, 1999; Sánchez and Lacasa, 2002; Bosco et al., 2008). 

The best time for the release of O. laevigatus on the pepper crop is about one 

month after transplanting, when the plants are flowering and fully grown 

(Bosco et al., 2008). 

Like many other anthocorids, O. laevigatus is primarily predaceous; 

however, this predator is also able to exploit plant resources including pollen 

and plant juices (Frescata and Mexia, 1996; Cocuzza et al., 1997; Armer et al., 

1998; Lattin, 1999; Shakya et al., 2009). Plants fulfil several roles throughout 

the life cycle of Orius bugs. They represent an egg-laying substrate but also 

serve as a source of moisture and supplementary nutrients (Coll, 1996; Lattin, 

Figure 1.4.
Female Orius laevigatus laying eggs (A), Eggs of O. laevigatus inserted in sweet pepper 
stem (B), First instar nymph (N1) (C), Adult (D).
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1999). Using radio labelling experiments, Armer et al. (1998) observed adults 

of O. insidiosus Say (Hemiptera: Anthocoridae) feeding on the mesophyll of 

soya bean plants by ingesting small amounts of sugars, starches and amino 

acids. It can also obtain water from xylem of the same plant. Besides the 

feeding behaviour of adults, Lundgren et al. (2008) reported that neonate 

O. insidiosus were able to feed on nutritious phloem, allowing them to 

survive on plant materials for several days. This phytophagous characteristic 

of anthocorid bugs results in important behaviour which helps predator 

establishment and population maintenance during the absence of protein-

rich food. This alternative feeding, thus, maintains the predator on the crop. 

Therefore, plant feeding by Orius bugs is an interesting aspect which still has 

yet only been slightly explored. Plant feeding is generally associated with 

chemical and physiological interactions to fine-tune the predatory attack 

(section 1.3). Therefore, we hypothesized that plant feeding could result in 

physiological changes on sweet pepper plants (such as induction of plant 

defences) which might constitute an additive effect for pest management. 

Therefore, we focused Chapter 2 of this thesis on studying the feeding 

behaviour of this predator and its ability to induce plant defence in sweet 

pepper.

1.1.4. Gaps in the biological control of aphids 

Despite the success of the current BC program in sweet peppers, 

good management of aphids on the sweet pepper crop is still hard to 

achieve (Blom, 2008; Bloemhard and Ramakers, 2008). Aphid populations 

can develop so quickly that the introductions of natural enemies are 

often unsuccessful (Rabasse and van Steenis, 1999). Habitually, aphids 
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are controlled through multiple releases of natural enemies (Blom, 2008). 

The parasitoid Aphidius colemani Viereck (Hymenoptera: Braconidae), 

the specialist predatory midge Aphidoletes aphidimyza Rondani (Diptera: 

Cecidomyiidae) (Blümel, 2004) and other generalist predators, such as those 

of the chrysopidae, syrphidae, and coccinellids (Pineda and Marcos-García, 

2008; Messelink et al., 2011b, 2013) are regularly used for managing 

aphids in sweet pepper. Myzus persicae and A. gossypii can be sometimes 

controlled with the use of banker plants infested with the cereal aphid 

Rhopalosiphum padi Linnaeus (Hemiptera: Aphidiidae) (Huang et al., 2011). 

Introductions of natural enemies are done on these banker plants so their 

populations increase considerably before aphid move to the crop (Calvo and 

Urbaneja, 2004b). The specialised predatory midge is mainly released for 

controlling high densities of aphids. The generalist predators (chrysopidae, 

syrphidae, or coccinellids) are also frequently released against the two 

aphid species. However, their failure to establish in the absence of aphids 

lowers the efficacy of their use (Messelink et al., 2011b; Messelink et al., 2013). 

Overall, these augmentative releases are not always sufficiently effective, not 

only because the release of parasitoids can be disrupted by the abundance 

of hyperparasitoids in south eastern Spain (Belliure et al., 2008, Sánchez et 

al., 2011), but also because the final cost of the biocontrol program in sweet 

pepper is considerably elevated (Messelink et al., 2011a). Additionally, the 

occurrence of intraguild predation (IGP) between generalist thrips and 

whitefly predators with specialist aphid natural enemies has complicated 

the management of aphids even more in sweet pepper (Messelink et al., 

2012). According to Messelink et al. (2011b) the predatory mite A. swirskii 

used for managing thrips and whiteflies in sweet pepper can seriously 

disrupt the BC of aphids by preying on the eggs of the predatory midges. 
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Christensen et al., (2002) also observed how Orius spp. bugs can prey on 

eggs and larvae of A. aphidimyza and, therefore, act as an intraguild predator 

(Alvarado et al., 1997). 

Thus, the BC control of aphids in sweet pepper requires improvement. 

Facing this need, several reports recently highlighted the positive role of 

zoophytophagous mirid predators in managing aphids in sweet pepper 

and other crops (Perdikis and Lykouressis, 2004, Messelink et al., 2011a; 

Messelink et al., 2015; Pérez-Hedo and Urbaneja, 2015; De Backer et al., 

2015). Hence, according to these previous encouraging results we focused 

chapters 4 and 5 of this thesis, on studying the efficiency of predatory mirids 

in managing sweet pepper pests including thrips, whitefly and aphid. 

1.2. Zoophytophagous predators

Increased attention has recently been directed at the role of 

generalist omnivores as regulators of insect herbivore populations in 

agricultural ecosystems. Zoophytophagous predators are a special case 

of omnivory defined as predators that feed on prey and plant during the 

same developmental stage (Wheeler, 2001). Their ability to switch between 

zoophagy and phytophagy enhanced their establishment and sustained 

population densities. In turn the population was capable of controlling 

incipient pest outbreaks early in the season following the initial colonization 

of the crop by pests or later in the season following a period of pest scarcity 

(Sánchez and Lacasa, 2008; Castañé et al., 2011). In this group, predatory 

mirid bugs (Hemiptera: Miridae) such as Nesidiocoris tenuis Reuter (Fig.1.5) 

and Macrolophus pygmaeus Rambur (Fig.1.6) are important predators of 

several agriculture pests.
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Figure 1.5.
Developmental stages of Nesidiocoris tenuis, 1st instar (N1) (A), 2nd instar (N2) (B), 3rd instar 
(N3) (C), 4th instar (N4) (D), 5th instar (N5) (E), Adult (F), Female laying eggs (G), Egg of 
N. tenuis inserted in sweet pepper stem (H). 

Figure 1.6.
Developmental stages of Macrolophus pygmaeus, 1st instar (N1) (A), 2nd instar (N2) (B), 3rd 
instar (N3) (C), 4th instar (N4) (D), 5th instar (N5) (E), Adult (F).
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1.2.1. Mirids as biocontrol agents

Currently, N. tenuis and M. pygmaeus are widely used as BC 

agents to manage some major greenhouse pests including, whiteflies, 

thrips, leafhoppers, leaf miners, spider mites and Lepidoptera species 

in greenhouses (Perdikis and Lykouressis, 2002; Calvo et al., 2009a; 

van Lentereen, 2012; Urbaenja et al., 2012; Pérez-Hedo and Urbaneja, 

2015). Macrolophus pygmaeus has been commercially available since 1994 

and its use as a generalist predator has steadily increased in European 

tomato greenhouses with a medium commercial value (10.000-100.000 

individuals sold per week). However, the use of N. tenuis started in 

2003 with a large commercial value (hundreds of thousands to millions 

of individuals sold per week) (Malausa and Trottin-Caudal, 1996; van 

Lenteren, 2003, 2012; Cock et al., 2010). Both predators feed by inserting 

the stylet and sucking out the body contents of the prey. Two distinctive 

strategies may be adopted for the use of these predators as BC agents 

depending on the crop and pest pressure:

 

• Conservation: Spontaneous appearance.

• Augmentation: Either an inoculative release after transplantation 

or a nursery release on seedlings.

Conservation BC is based on the fact that both N. tenuis 

and M. pygmaeus are two endemic natural enemies that appear 

spontaneously in several crops of the Mediterranean Basin (Alómar et 

al., 2002; Sánchez et al., 2003, Calvo and Urbaneja, 2003, Stansly et al., 

2004, Urbaneja et al., 2005). Their ability to colonize alternative plants 
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as mentioned below (Section 1.2.2) (Table 1.2) allows the conservation 

of both predators and then their establishment during the crop season.  

However, the appearance of mirid predators in the greenhouses 

can be too late to guarantee pest control (Perdikis et al., 2011). 

Therefore, conservation BC should be directed to identify which non-

crop host plants support high numbers of these predators early in 

the season (Gabarra et al., 2004). For example, in tomato unheated 

greenhouses, Arnó et al. (2000) showed tobacco plants to serve as 

a refuge for  M. pygmaeus  during winter, enhancing the timely and 

efficient colonization of the following spring tomato crop. Overall, the 

successful implementation of conservative BC, requires future research 

efforts to focus on the investigation of various aspects, such as, the 

correct identification of the mirid species and the non-crop plant, the 

evaluation of the dispersal ability on the non-crop plant and guarantee 

the early colonization of the target crop (Perdikis et al., 2011).

As mentioned above, both N. tenuis and M. pygmaeus are 

mass-reared and commercially available to release in augmentative 

BC programs against different pest (Gerling et al., 2001, Calvo and 

Urbaneja, 2004a, Alómar et al., 2002; Calvo et al., 2009a, Urbaneja et al., 

2012). Augmentative BC is based on the inoculation of the crop with the 

predator before or after pest outbreaks. In greenhouse tomato, inoculation 

with N. tenuis at a rate of 1-2 individual(s)/m2, was a common practice 

usually performed 4-5 weeks after transplantation which effectively 

controlled whiteflies. This strategy allowed a reduction of 81%-96% in 

B. tabaci abundance (Calvo et al., 2009b). The same management practise 

achieved great success against T. absoluta on tomato crops. The release 

of 1-2 M. pygmaeus or N. tenuis adult(s) per m² reduced leaflet and fruit 
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infestation of T. absoluta by up to 97% and 100% with N. tenuis and 76% 

and 56% with M. pygmaeus, respectively (Mollá et al., 2009). On infested 

sweet pepper plants, 1 reproductive couple of N. tenuis, M. pygmaeus 

and/or Dicyphus maroccanus Wagner (Hemiptera: Miridae) per plant, 

successfully reduced M. persicae infestation nearly 100%, for both 

predators (Pérez-Hedo and Urbaneja, 2015). However, the success of 

this latter strategy requires a certain predator density in the crop (Calvo 

et al., 2009a). The problem is that reaching a sufficient mirid population 

level takes 5-8 weeks, and in many occasions pests could appear earlier 

in the crop which could result in serious damage. When established, 

the infestation may not be able to be solved by predators (Mollá et al., 

2011; Urbaneja et al., 2012). Another weak point in this strategy in late 

crop cycles without heating, is the mirid reproduction rate is not high 

enough to reach the desired population levels (Urbaneja et al., 2012). 

Therefore, the nursery release of predatory mirids, before transplanting, 

could be an alternative strategy, that shortens the establishment period 

and improves predator distribution in the crop. This technique was 

used initially with M. pygmaeus (Lenfant et al., 2000; Trottin-Caudal 

et al., 2012). Adult predators were released on the seedlings, and 

initially fed eggs of the fastidious prey E. kuehniella. The eggs laid by 

M. pygmaeus hatch very soon after transplantation, allowing population 

growth to start earlier (Trottin-Caudal et al., 2012). The preplant release 

rate of N. tenuis at 0.5-1 N. tenuis/plant, satisfactorily manage B. tabaci 

and T. absoluta populations, without evident damages caused by the 

phytophagy of N. tenuis. In this strategy, E. kuehniella eggs are used 

as substitute prey to enable predator establishment and to increase its 

abundance prior to pest outbreaks, which might accelerate the response 
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of the predator and considerably reduce pest incidence (Calvo et al., 

2012a, 2012b). The fact that N. tenuis females need to mate periodically 

in order to maintain a sufficient sperm supply to fertilize their eggs 

(Franco et al., 2011) and predator populations are more concentrated 

when released before planting are well known. This might result in a 

higher encounter rate, giving more opportunities for adults to mate and 

to fertilize maturing eggs, which would increase the number of progeny, 

and therefore predator abundance in the subsequent generation. Also, 

fecundity, longevity and preimaginal survival of N. tenuis were observed 

to increase when the predator was fed E. kuehniella eggs (Urbaneja et al., 

2005). Thus, addition of E. kuehniella eggs during the first weeks after 

release, a normal procedure in use, should also have the positive effect 

of enhancing establishment of N. tenuis and M. pygmaeus. The prior 

release of M. pygmaeus with a weekly application of supplemented food 

(E. kuehniella eggs + decapsulated cysts of the brine shrimp A. franciscana), 

was reported to increase the population of the predator to very high 

densities which favoured the control of M. persicae (Messelink et al., 

2011a; Messelink et al., 2015). Five weeks after predator release the 

aphid density remained below 1 aphid per plant, while it exceeded the 

1000 aphids per plant in untreated greenhouse plots. These results again 

suggest that a high predator/prey ratio is needed to achieve sufficient 

control. Aphids multiply extremely fast by viviparous parthenogenetic 

reproduction, resulting in relative growth rates on sweet pepper of 

0.36 females per female per day (Dewhirst et al., 2012). Aphids will 

quickly outnumber mirid predatory bugs which have a relatively 

low reproduction rate (Perdikis and Lykouressis, 2004). Thus, the 

numerical response of the predators is far too slow to control aphids. 
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Preventive releases of predators can solve this problem, thus, prior to 

pest establishment releases can result in relatively high initial predator/

pest ratios which are enough to control aphids. Therefore, inoculative 

release of predatory mirids prior to planting is the best strategy for their 

successful use as BC agents. This strategy can, however, have some 

negative sides effects mainly related to tomato crops, but perhaps, not 

for sweet pepper. In any case, the monitoring of the predator population 

density is mandatory to avoid any possible damages induced by the 

plant feeding behaviour of mirid predators. 

1.2.2. Phytophagous behaviour of mirid predators

Thanks to their adaptation to living on plant surfaces covered 

with non-glandular and/or glandular trichomes (Voigt et al., 2007; 

Voigt and Gorb, 2010), N. tenuis and M. pygmaeus have been reported 

on several plants species including wild and cultivated host plants 

(Table 1.2). Macrolophus pygmaeus offers the advantage of obtaining 

carbohydrates and other nutrients by feeding directly on plant tissues 

making it independent of nectar and prey availability (Hansen et al., 

1999; Perdikis and Lykouressis, 2000, 2002; Portillo et al., 2012). It was 

reported to survive 3.67 days without any food and 25.67 days by 

feeding exclusively on eggplant young leaves (Mohd Rasdi et al., 2009). 

Immature development by M. pygmaeus was observed to be completed 

only when tomato, eggplant, cucumber, pepper, green bean, broad 

bean or melon were available (Perdikis and Lykouressis, 1999, 2000; 

Lykouressis et al., 2001). In the absence of prey, the order of suitability for 

M. pygmaeus longevity, fecundity, and population increase is eggplant 
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then tomato and finally sweet pepper. The lower suitability of pepper 

sap compared to that of eggplant or tomato may positively affect the 

predation rate of M. pygmaeus on pepper because omnivorous predatory 

bugs may have a stronger tendency to search for and feed on prey on 

low quality host plants rather than on high-quality plants (Abrams, 

1987). Nymphs with access to a water source (moistened cotton), can 

successfully reach adulthood when fed exclusively bee pollen and on 

stamens cut from fully bloomed flowers of the weed Ecballium elaterium L. 

(Cucurbitaceae), without any other plant or prey material (Perdikis and 

Lykouressis, 2000). The same authors also showed when bee pollen 

pellets were added to a diet of eggplant leaves, the development period 

of M. pygmaeus was significantly shortened and completed within a 

period similar to that when it was fed on eggplant leaves with the aphid 

prey, M. persicae. In addition to cultivated plants, M. pygmaeus was 

reported to complete development on Solanum nigrum L. (Solanaceae) 

without prey and can also reproduce when infested by its main native 

aphid pest (Lykouressis et al., 2008). Whereas, plant feeding seems 

important for M. pygmaeus, its performance as predator depends on the 

plant food. However, its best development was always observed when 

it fed on prey (Lykouressis et al., 2001, 2008; Perdikis and Lykouressis, 

2004; Ingegno et al., 2011). On the contrary, Lykouressis et al. (2014) and 

Maselou et al. (2014) supported the idea that exclude a negative effect 

between plant feeding and predator functional response. In fact, the 

predation rate of M. pygmaeus did not differ on leaves of four host plants 

(tomato, pepper, eggplant and black nightshade) of varying suitability 

for development and/or reproduction. 
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The range of plant species on which N. tenuis has been recorded is 

large (Table 1.2). This predator can feed on all the aerial parts of tomato 

plants but has a strong preference for the three uppermost leaves and 

the apical bud, which is where up to 80% of the predator population 

is found (El-Dessouki et al., 1976; Castañé et al., 2011). Contrarily 

to M. pygmaeus, a diet exclusively derived from vegetable substrate 

(tomato, sweet pepper and eggplant) is insufficient for the development 

of N. tenuis (Urbaneja et al., 2005). Although, tomato seems to favour 

its development compared to eggplant and pepper, a supplemental 

food (E. kuehniella eggs) is mandatory for N. tenuis to complete its 

development, when prey are absent. According to Urbaneja et al. (2005), 

sweet pepper was the least suitable host plant, allowing only 10% of the 

nymphs to survive through the first instar, survivorship was the lowest, 

and nymphal development time was the longest. In another series of 

experiments studying the functional response of N. tenuis on various host 

plants, tomato was also the most suitable plant for predation activity on 

T. vaporariorum (Hassanpour et al., 2016), when compared to cucumber 

and eggplant. Solanum indicum L. (Solanaceae) is also reported to be a 

suitable host plant for N. tenuis development and oviposition (Biondi et 

al., 2016). Sesame is very rich in protein, carbohydrates, and minerals so 

it probably provides the protein fraction needed for N. tenuis to continue 

its development (Mbaebie et al., 2010).                                    
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1.2.3. Plant damage by mirid predators

Phytophagous behaviour of some mirid predators have been reported 

to induce plant damage which affects growing plant tissues, stems, leaves 

and fruit (El-Dessouki et al., 1976; Castañé et al., 2011). To date, no evidence 

has been found identifying the exact vascular tissue on which N. tenuis and 

M. pygmaeus insert their stylet; however, according to Wheeler (2001), mirid 

predators are classified as phloem feeders of stem and petioles. During the 

seventies, the microscopic examination of tomato parts damaged by N. tenuis 

through disections of stem and petiole, illustrated obvious destruction of 

tissues (El-Dessouki et al., 1976). Cell walls were found to be broken in most 

of the cells, thus, indicating that N. tenuis sucks out the intracellular juice 

with its stylet. The predator destroys the epidermis cell, then it rolls its stylet 

inside the cortex tissue and extends it to break up the endodermal layer and 

some of the xylem, phloem and pith cells (El-Dessouki et al., 1976). 

Therefore, plant feeding by N. tenuis was reported to cause plant 

damage, thus, this predator was habitually considered to be a pest in 

different parts of the World. In tomatoes, repetitive insertion of the stylet 

on vascular tissue induces necrotic rings on stems, leaves or flower petioles 

that may reduce plant vigour or cause flower abortion (El-Dessouki et al., 

1976). Recently, Sánchez et al. (2016), observed feeding activity of N. tenuis 

to produce a significant variation in the concentration and distribution of 

assimilates (i.e. amino acids and sugars) in tomato stems. This chemical 

change in tomato was observed to inhibit the transfer of nutrients in the 

phloem and negatively affect the fitness of nymphs that develop on those 

parts of the plant (Sánchez et al., 2016). The intensity of injuries on tomato 

crops is proportional to the availability of the prey (Arnó et al., 2010a; Calvo 
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et al., 2009b). Describing the damages produced by N. tenuis on greenhouse 

tomato, Sánchez (2008) found the highest damage incidence (5 necrotic rings 

on the upper 20 cm of the plant shoot) was produced when about 3 N. tenuis 

individuals per leaf occurred in a period when the number of the whitefly 

population was low. Thus, this predator is following the feeding model 1 

proposed by Gillespie and McGregor (2000). According to this model, a 

decrease in the availability of prey increases the phytophagy, which would 

only occur when the prey is scarce and the predator is forced to change 

his feeding habits. Nevertheless, according to Calvo et al. (2012b), N. tenuis 

can also follow the feeding model 2, which means phytophagy increases 

when zoophagy increases (Gillespie and McGregor, 2000). These authors 

observed necrotic rings on tomato plants when the predator had abundant 

E. kuehniella eggs and whitefly nymphs, they hypothesized that N. tenuis 

tended to increase its feeding behaviour in the presence of the prey due 

to the necessity of obtaining water for their extra-oral digestion (Calvo et 

al., 2012b). Hence, as concluded by Castañé et al. (2011), these models are 

appropriate for explaining the behaviour of individual predators and are 

not mutually exclusive: individuals could behave according to one model 

or another depending on crop circumstances and plant feeding is essential 

rather than facultative. Overall, phytophagous behaviour of N. tenuis seems 

to affect the final number of fruit per plant and may lead to some economic 

loss (Sánchez, 2009; Arnó et al., 2010a). However, according to Sánchez and 

Lacasa (2008), such loses might be compensated by the greater weight of the 

remaining fruit. Indeed, these authors did not observe yield when population 

levels of N. tenuis ranged from 0.53 to 35.2 individuals per plant.

In contrast to N. tenuis, M. pygmaeus has been generally considered 

as safe and plant damages have been observed only with very high predator 
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densities on tomato, zucchini, and gerbera under experimental conditions, 

but no such damage has been observed under cropping conditions (Castañé 

et al., 2011). With high predator densities and low prey availability, 

M. pygmaeus was observed to cause dimples, pits and distortion on fruit under 

laboratory conditions (Castañé et al., 2011). In a field survey conducted in the 

UK Sampson and Jacobson (1999) reported distorted tomato leaf growth, 

necrotic spots on leaves, scars on fruit and fruit drop with high predator 

densities (50-300 individuals per plant) and very low prey abundance. 

Recently, Moerkens et al. (2016, 2017), reported that M. pygmaeus can cause 

economic feeding damage on tomato fruit at high population densities and 

severity of crop damage is significantly enhanced when plants are infected 

with pepino mosaic virus PepMV. This virus causes, from a few dimples to 

yellowish discoloration and deformed fruits. The same authors suggest the 

minimum economic density threshold to be estimated at 0.32 M. pygmaeus 

per leaf. 

In general, crop damage is often the result of complex interactions 

between the morphological, physiological and behavioural traits of the 

natural enemy, plant, crop type, and certain environmental factors. Castañé et 

al. (2011) examined scanning electron microscopy images of the mandibular 

and maxillary stylets of D. tamaninii Wagner (Hemiptera: Miridae), N. tenuis 

and M. pygmaeus with from which, they concluded great similarly in their 

shape. The mandibular stylets of all three species had between 10 and 12 teeth 

and their maxillary stylets had at least 4 strongly curved teeth. Therefore, the 

differences observed in the types and intensities of the damage produced 

by N. tenuis and M. pygmaeus does not seem be directly related with the 

morphologies of their respective stylet bundles. Indeed, damages are not 

primarily produced mechanically but are the result of a chemical process 
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by which the affected cells are killed by salivary enzymes (El-Dessouki et al., 

1976; Halitschke et al., 2011).

Whereas, the relation between mirids and plants seems to be 

profound (as described above); studies on plant defensive response to the 

phytophagous behaviour of these groups of predators have been rare. 

Recently, the phytophagous behaviour of the mirid predators (N. tenuis, 

M. pygmaeus and D. maroccanus) and also the oviposition behaviour of the 

anthocorid bug O. laevigatus was investigated and provides clear evidence 

of inducing plant responses as strictly herbivores do in tomato plants 

(De Puysseleyr et al., 2011; Pérez-Hedo et al., 2015a, 2015b, Pappas et al., 2015, 

2016; Naselli et al., 2016). These finding might provide an explanation for the 

great success recently achieved by the use of mirids as key biocontrol agents 

for tomato crop (Pérez-Hedo et al., 2017a).

1.3. Plant defence mechanisms 

In nature plants are in continuous interaction with the ecosystem. 

Plants avoid unfavourable conditions thanks to their defence mechanisms 

(Maekawa et al., 2011). The occurrence of abiotic stress (i.e. drought, flooding, 

salinity, extreme temperatures or intense light), enhance plants to develop 

several mechanisms to protect themselves from disturbance involving the 

activation of different biochemical pathways leading to the production of 

either defensive compounds or morphological changes (Bartels and Souer, 

2004; Krishna, 2004). Mechanical damages also induce stress responses and 

the activation of plant defence mechanisms. However, plant tissue damage 

can be caused by either noticeable or invisible lesions. Some lesions, with 

small diameters are not detected visually; nonetheless, they might contribute 
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to the activation of wound-responses to prevent further damage (Pullin and 

Gilbert, 1989). Besides the described stressful conditions, plants are also 

faced with a plethora of attackers including herbivorous arthropods and 

plant pathogens, where insects are among the most important invaders. 

To survive, plants have developed a stunning array of structural, chemical, 

and protein-based defences designed to detect invading organisms and stop 

them before they are able to cause extensive damage (Karban and Baldwin, 

1997; Walling, 2000; Heil and Ton, 2008; Ponzio et al., 2013; Kessler, 2017). 

Plant defence strategies can be generalized with two categories: constitutive 

defences, which include physical and chemical barriers that exist even before 

insect attack, and inducible defences, which are activated after detection of 

insect attack, therefore minimizing the metabolic cost of defence for the plant 

(Dicke and van Poecke, 2002; Agrawal and Heil, 2012). Two types of inducible 

defences have been observed in plants: direct defences and indirect defences 

(Fig. 1.7). 

Figure 1.7.
Model of plant-insect her-
bivore interactions and as-
sociated chemical defence 
mechanisms. Feeding insects 
above and below ground face 
direct chemicals defence re-
sponses. Indirect defences 
are represented by extraflo-
ral nectar that can attract ants 
or natural enemies to defend 
the plant by the emission of 
volatile organic compounds 
(Mithöter and Boland, 2016).
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Direct defences rely on the plant structure by the construction 

of a physical barrier either through the formation of a waxy cuticle 

(Agrawal et al., 2009; Hanley et al., 2007), and/or the development of 

spines, setae, thorns, and trichomes, (Sharma et al., 2009; He et al., 

2011). Structural defences includes morphological and anatomical 

traits that confer a fitness advantage to the plant by directly deterring 

the herbivores from feeding (Agrawal et al., 2009) and range from 

prominent protuberances on a plant to microscopic changes in cell wall 

thickness as a result of lignifications and suberizations (He et al., 2011; 

Hanley et al., 2007). The second direct line of defence is the chemical 

one which includes secondary plant metabolites, protein inhibitors of 

insect digestive enzymes, proteases, lectins, amino acid deaminases and 

oxidases. These chemical lines are used by the plant to offset attackers 

via the production of toxins, along with anti-digestive and anti-nutritive 

compounds (War et al., 2012, Fürstenberg-Hügg et al., 2013). In addition 

to direct defence, plants also benefit from indirect defence through 

the recruitment of natural enemies (i.e. parasitoids or predators) that 

actively reduce the number of herbivores. Indirect defences generally 

start with the recognition of insect elicitors, then plants emit and/or 

receive chemical information from other plants that plays an important 

role in behavioural choices of individuals, and consequently influences 

the spatial distribution of populations on larger scales (Vet, 2001; Lof 

et al., 2008; Vinatier et al., 2011). The combined action of mechanical 

damages and elicitors from attacking herbivores induces the production 

of secondary metabolites (Iason et al., 2012) which result in the emission 

of specific volatile organic compounds (VOCs) called herbivore induced 

plant volatiles (HIPVs) (Price et al., 1980; Kessler and Baldwin, 2001; Dicke 
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and Baldwin, 2010; Hare, 2011). Recently plants have been documented to 

respond to herbivore oviposition by releasing oviposition-induced plant 

volatiles (OIPVs) which can recruit egg parasitoids of insect herbivores 

(Hilker and Meiners, 2010). In some studied cases, a combination of 

oviposition and feeding activity of the herbivore host was required to 

trigger natural enemy attraction (Colazza et al., 2010; Conti and Colazza, 

2012). These plant volatiles are classified as synomones because they 

benefit both the emitting plant as well as the responding natural enemy 

(Vet et al., 1991).

In short, after being attacked by herbivores, plants quickly 

generate herbivore-specific signals, and through complicated networks, 

these signals are further converted to large scale biochemical and 

physiological changes. In addition to these changes in attacked plant 

parts, certain signals are also conveyed to different parts of the plant 

where they activate “systemic” defences (Li et al., 2002). Cell membrane 

depolarization, ion flux, mitogen-activated protein kinase (MAPK) 

activation, phytohormone modulation, production of reactive oxygen 

species (ROS) and probably nitric oxide (NO) are all associated with 

herbivore attack and the activation of these responses (Reymond et al., 

2004; De Vos et al., 2005; Bodenhausen and Reymond, 2007; Wu et al., 

2007).

The network of phytohormones that plants have is crucial not 

only for regulating plant growth, development and reproduction, but 

also for the above mentioned induced defences (production of VOCs). 

It has been well established that jasmonic acid (JA), salicylic acid (SA) 

and ethylene (ET) play pivotal roles in the regulation of the signal-

transduction pathways that lead to the activation of different sets of 
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defence related genes (von Dahl and Baldwin, 2007; Howe and Jander, 

2008). In general, defences against biotrophic pathogens and phloem-

feeding herbivores are regulated by the phytohormone SA, while defences 

against necrotrophic pathogens and chewing herbivores are regulated 

by JA, in particular jasmonic acid-isoleucine (JA-Ile) (Glazebrook, 2005; 

Erb et al., 2012). Complex hormonal interaction networks enable the 

tailoring of defences, often via cross-talk, and modulate growth/defence 

tradeoffs (Pieterse et al., 2012; Huot et al., 2014). Although, abscisic acid 

(ABA), auxins, gibberellins (GB), cytokinins (CK) and brassinosteroids 

(BR) have received less attention as potential factors that modulate 

herbivore resistance, in the recent literature various reports also indicate 

these hormones to play an important role in mediating specificity in 

herbivore-induced defence responses (Erb et al., 2012).

1.3.1. Herbivore induced plant volatiles (HIPVs)

Herbivore attack results in the induction of plant defences 

affecting changes in plant quality. However, the level of this induction is 

not always the same; many factors interact to produce the final response 

of the damaged plant. This response was shown to differ with herbivore 

specie (Voelckel and Baldwin, 2004); and also between herbivore strain 

(Kant et al., 2008). In addition, this response varies subsequently with 

multiple herbivore species or a singular attack (Voelckel and Baldwin, 

2004; Poelman et al., 2008). The order of arrival of different species on the 

same plant may also determine the defence that is induced, and affect the 

outcome of interactions among herbivore species (Kessler and Baldwin, 

2004; Erb et al., 2011). It has been suggested that species from the same 
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feeding guild or sub-guild (Soler et al., 2012) affect each other negatively 

through the stimulation of the same defensive pathways; whereas, species 

from different feeding guilds may affect each other positively or not at all 

due to the negative cross-talk between the different defensive pathways 

which they induce (Howe and Jander, 2008). Finally, this induced defence 

can be suppressed by the action of a second attacker (Alba et al., 2011, 

2015). Although this is to the benefit of the individuals that suppress 

plant defences, it may also have positive effects on competitor species 

(Kant et al., 2015; Godinho et al., 2016).

As described above, when a plant is attacked by an herbivore 

it emits of a specific blend of volatile compounds known as HIPVs. 

In the 1980s, the first studies reported the ecological effects of HIPVs 

when released from damaged plants and target external organisms in a 

resistance-related context (Fig.1.8) (Heil, 2014). HIPVs are complex blends 

that can be composed of up to several hundred individual compounds 

(Pichersky and Gershenzon, 2002; Dudareva et al., 2006; Pichersky et al., 

2006). The following definition of HIPVs was suggested by Dicke and 

Baldwin (2010): “volatiles that a plant produces in response to herbivory. 

These can either be compounds that a plant does not biosynthesize unless 

it is damaged or compounds that are also synthesized by undamaged 

plants but normally in smaller amounts. Because the information content 

of volatile blends is in the mixture of the compounds, it is also important 

to consider compounds that are produced by plants but repressed when 

plants are attacked”.
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With more than 1700 currently known compounds (Dudareva et al., 

2006), volatiles play an important role in the mechanisms of plant interactions 

within the environment. Numerous functions are allocated to HIPVs: firstly, 

they are reported in the concept of “plant-plant communication” via the 

transfer of information between and within plants. This communication 

is done through the airborne transport of signals that lead to the priming 

Figure 1.8.
Illustration of milestone articles that depicts the chronology in the discovery of the 
herbivore induced volatile organic compound (HIPVs) releases that act on the receivers: 
interplant communication (Baldwin and Schultz, 1983; Rhoades, 1985), predatory 
mites (Dicke and Sabelis, 1988), parasitoid wasps (Turlings et al., 1990), predatory 
bugs (Drukker et al., 1995), predatory lady beetles (Ninkovic et al., 2001), herbivorous 
moths, which are repelled (de Moraes et al., 2001), parasitic plants (Runyon et al., 2006), 
nematodes (Rasmann et al., 2005), systemic parts of the same plant (Karban et al., 
2006), predatory birds (Mäntylä et al., 2008), resistance to pathogens (Yi et al., 2009) 
and hyperparasitoid (Poelman et al., 2012). Predatory bugs (N. tenuis and M. pygmaeus) 
induced VOCs via plant feeding behaviour (Pérez-Hedo et al., 2015a; Pappas et al., 
2015), adapted from (Heil, 2014).
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or expression of defences in neighbouring plants or in distal parts of the 

emitting plant (Baldwin and Schultz, 1983; Rhoades, 1985; Heil and Karban, 

2010; Karban et al., 2014). In addition, HIPVs are generally known to mediate 

tritrophic interactions by attracting herbivore natural enemies, which may 

confer protection to the plant, referred to as “a cry for help” (Turlings et al., 

1990; Dicke et al., 1990; Drukker et al., 1995; Ninkovic et al., 2001). It was also 

reported that even hyperparasitoids use HIPVs to locate their parasitoid hosts 

(Poelman et al., 2012). These volatiles can also be used by herbivores to locate 

suitable hosts or to avoid resistance-expressing plants (repellence effect) (de 

Moraes et al., 2001; Ballhorn et al., 2013), to inhibit pathogen colonization 

(Goodrich-Tanrikulu et al., 1995; Zhang et al., 2006), and as reported more 

recently, to attract herbivores (Bedoya-Perez et al., 2014). In summary, 

HIPVs aid in the host-location behaviour of diverse animals and enhance the 

presence of natural enemies that can benefit the emitting plant.

Herbivore induced plant volatiles are released from the disrupted 

cellular compartments, where they were stored. Such VOCs are released 

from the damaged sites immediately. They are released through leaf stomata 

and, in case of the lipophilic volatiles such as terpenes, also through the 

membrane of epidermal tissues and from other structures, such as trichomes 

(Baldwin, 2010). Such VOCs can also be emitted from the undamaged sites of 

plants with some time delay from the moment of the attack (Holopainen and 

Blande, 2012). VOCs can also be released as newly, “de novo”, synthesized 

compounds. This usually occurs as part of the systemic defence response. 

The blend of volatiles may vary quantitatively and qualitatively depending 

on both biotic and abiotic factors, and are specific to each plant-herbivore 

association and to the nature of the damage (feeding and/or oviposition) 

(Ingegno et al., 2011; Silva et al., 2017). Plants react distinctly when they are 
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attacked by a leaf chewer or by a phloem feeder or when attacked by more 

than one organism (Dicke et al., 2009; Gosset et al., 2009; Zhang et al., 2009; 

Zhang et al., 2013). Such specificities and diversity are very important for 

mediating specific interactions of plants with herbivores, carnivores and 

other plants (Sabelis et al., 2007; McCormick et al., 2012). Similar to above-

ground interactions, below-ground ones can be specific at both the plant and 

herbivore levels (Dudareva et al., 2006; Rasman and Turling, 2007).

Volatile blends are generally dominated by two major classes of 

compounds: terpenoids and fatty acid derived green leaf volatiles (GLV) 

(Arimura et al., 2009; Mumm and Dicke, 2010). Terpenoids represent the 

largest class of secondary metabolites in plants (Dudareva et al., 2006) and are 

synthesized via two independent alternative pathways from the five-carbon 

compound, isopentenyl diphosphate (IDP) and its allylic isomer dimethyl 

allyl diphosphate (DMAPP). While, green leaf volatiles (GLVs) which are 

six-carbon compounds including the alcohols, aldehydes and their esters, 

are formed via the hydroperoxidelyase pathway of oxylipin metabolism 

(Matsui, 2006). Green leaf volatiles are mainly released immediately upon 

wounding, while others, including terpenoids, are newly synthesized 

“de novo” and released from several hours up to several days after attack 

(Paré and Tumlinson, 1997; Turlings et al., 1998). 

1.3.2. Zoophytophagous predator induced plant defence

Response of arthropod predators to volatile chemicals emanating from 

plants infested by their prey has been demonstrated for predatory bugs since 

1995 (Drukker et al., 1995; Kessler and Baldwin, 2001). Such evidence has also 

been obtained for N. tenuis, M. pygmaeus and O. laevigatus, who responded to 
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the odour emitted from prey infested plants (Moayeri et al., 2006; Ingegno et 

al., 2011; Lins et al., 2014; De Backer et al., 2015; Rim et al., 2015, 2017; Vaello 

et al., 2017). Recently, the activity (feeding behaviours and oviposition) of 

zoophytophagous predators was observed to induce HIPVs (De Puysseleyr 

et al., 2011; Pérez-Hedo et al., 2015a, 2015b; Pappas et al., 2015, 2016; Naselli 

et al., 2016). As explained above, these HIPVs can influence the response of 

phytophagous pests and their natural enemies either by attraction or by 

repellence (Paré and Tumlinson, 1997). According to Raman et al. (1984), 

plant feeding of the predatory mirid N. tenuis on tomato causes biochemical 

changes in wounded tissue, leading to increased levels of oxidative enzymes 

and phenolic compounds which may result in the production of volatile 

compounds. Halitschke et al. (2011), observed an induction by feeding of 

mirid Tupiocoris notatus Distant (Hemiptera: Miridae), that renders the native 

tobacco plant Nicotiana attenuata S. (Solanaceae) more resistant to more 

damaging herbivores such as hornworms. This special case of induced cross-

resistance, termed ‘plant vaccination’, leads to a net benefit for mirid-damaged 

tobacco plants in their native habitats when multiple herbivore species are 

present (Kessler and Baldwin, 2004). More recently, Pérez-Hedo et al. (2015a) 

demonstrated that a 24h contact between tomato plant and N. tenuis affects 

the response of the whitefly, B. tabaci. The continuous feeding activity of this 

predator activates the abscisic acid (ABA) and jasmonic acid (JA) signalling 

pathways in tomato plants; which turn makes it less attractive to B. tabaci, 

while more attractive to the whitefly parasitoid Encarsia formosa Gahan 

(Hymenoptera: Aphelinidae). Interestingly, the same authors found N. tenuis 

activated tomato plants are able to prime neighbouring plants. Certainly, a 

blend of volatile organic compounds is released in the atmosphere assuring 

the communication between predatory activated plants and non-activated 
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ones, thus, sending out an alert. More confirmation of inducing plant defence 

in tomato thanks to the phytophagy behaviour of mirids was observed by 

Pérez-Hedo et al. (2015b). N. tenuis, M. pygmaeus and D. maroccanus tested 

females differ in their activation potential in tomato after having had contact 

for 24h. Nesidiocoris tenuis induced, as mentioned above, repellence of 

B. tabaci and T. absoluta, while E. formosa was attracted to the volatiles emitted 

by plants previously contacted by N. tenuis. In contrast, tomato plants exposed 

to M. pygmaeus and D. maroccanus for 24h were not able to repel B. tabaci and, 

interestingly, became more attractive to T. absoluta. On the other hand, 

E. formosa was always attracted to volatiles emitted from predator associated 

plants. Both studies provide a possible explanation for the great success of 

these mirids as BC agents in tomato. Their ability to activate the plant defence 

mechanisms will undoubtedly improve BC. More evidence was obtained in 

a recent study conducted by Naselli et al. (2016), showing all motile stages 

of N. tenuis to trigger defensive responses in tomato plants. In fact, young 

nymphs (2nd-3rd nymphal instars), mature nymphs (4th-5th nymphal instars), 

males and females all activate ABA and JA pathways, resulting in reduced 

attractiveness for B. tabaci and enhanced attractiveness for E. formosa, relative 

to undamaged plants with a slight moderation between the considered 

stages. In addition, Pappas et al. (2015, 2016) in agreement with Pérez-Hedo 

et al. (2015b), demonstrated M. pygmaeus´ ability to induce plant defence in 

tomato crops. These authors showed the exposure of tomato plants to adult 

M. pygmaeus females, fifth instar nymphs and unmated females (virgin), 

increased locally and systematically an accumulation of transcripts and 

activity of proteinase inhibitors. These inhibitors are known to be involved 

in plant responses, resulting in reduced performance of the subsequently 

infesting spider mite herbivore, T. urticae, but not of the greenhouse whitefly 
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T. vaporariorum. More interestingly, Pappas et al. (2015), showed M. pygmaeus 

tomato induction vaccinates the plant for a period of two weeks. Therefore, 

when predators were released in the nursery prior to pest infestation, the 

defence mechanism was activated with the newly emerged nymphs possibly 

renewing the induction (Naselli et al., 2016).

Besides the feeding behaviour of the mirid predator, the endophytic 

oviposition of O. laevigatus was shown to increase plant resistance to feeding 

damage of F. occidentalis in tomato. The predator elicits a JA mediated 

wound response, resulting in reduced thrips feeding. A strong accumulation 

of hydrogen peroxide (H2O2), a molecule involved in different parts of the 

wound response, in leaf tissue surrounding the predator eggs or oviposition 

puncture sites was observed (De Puysseleyr et al., 2011). 

Overall, zoophytophagous organisms form community structure 

by both their predation on herbivores and their phytophagy, resulting in a 

tomato crop system which is ready to withstand herbivore attack. Despite the 

importance of this facet of research, literature emphasizing this focus is rare 

and has begun to be published only recently. Therefore, Chapters 2 and 3 

of this thesis focus on the implication of the phytophagous behaviour of 

O. laevigatus, N. tenuis and M. pygmaeus in inducing defence responses in 

sweet pepper. The additional effect of defence mechanism stimulation by 

this predator together with the predacious potential are expected to enhance 

BC in this crop (Chapters 4 & 5). 
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1.4. Thesis outline 

The main aim of my PhD thesis is to enhance sweet pepper pest 

management through the exploitation of zoophytophagy.

To achieve this goal, four objectives were planned:

• To study sweet pepper plant feeding behaviour by the predatory 

anthocorid, O. laevigatus and determine whether phytophagous 

behaviour can induce plant defences by modulating pest and natural 

enemy behaviour: attraction and repellence.

• To quantify sweet pepper plant feeding behaviour by the 

predatory mirids, N. tenuis and M. pygmaeus, and determine whether 

this phytophagous habit can elicit direct defences: antixenosis and 

attraction by parasitoids.

• To determine the pest management potential of three predatory 

mirids, N. tenuis, M. pygmaeus and D. maroccanus, against thrips and 

whiteflies in sweet pepper under two different temperatures.

• To study the impact of species co-occurrence on population 

dynamics of predatory bugs, O. laevigatus, N. tenuis and M. pygmaeus, 

with A. swirskii and elucidate the potential of combined release for the 

management of sweet pepper pests. 
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Meritxell Pérez-Hedo

Journal of Pest Science (2018), 91(1): 55-64

Abstract

Orius laevigatus is a generalist predator that is widely used in augmentative 
strategies against the key pest of sweet pepper, Frankliniella occidentalis. 
Despite being a zoophytophagous predator, the phytophagy behaviour of 
O. laevigatus has not been previously explored in depth, nor has the impact 
of phytophagy on plant physiology. Here, the hierarchical significance of 
O. laevigatus feeding on sweet pepper is compared with other behaviours. 
Orius laevigatus spends the majority of its time (38%) feeding on apical meristems 
and apical fresh leaves, which were also preferred residence locations. Here, the 
phytophagous feeding behaviour of O. laevigatus on sweet pepper is shown to 
trigger defensive responses in the plant. These O. laevigatus plant induced defences 
are then shown to contribute to the repellence or attraction of pests or natural 
enemies, respectively.  Specifically, O. laevigatus-punctured sweet pepper plants 
induce repellency for the whitefly Bemisia tabaci and the thrips species F. occidentalis. 
In contrast, the whitefly parasitoid Encarsia formosa was significantly attracted to 
O. laevigatus-punctured plants. The plant responses to O. laevigatus punctures 
include the release of an altered blend of volatiles and activation of the jasmonate 
acid and salicylic acid signalling pathways. These results highlight an interesting 
facet to the biology of O. laevigatus, in which the ability of the predator to induce 
defensive responses in sweet pepper plants may serve to improve the biological 
control of both thrips and whiteflies.

Key words: minute pirate bug, behaviour, plant response, herbivore induced plant 
volatiles, sweet pepper.
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2.1. Introduction

	Many species of the genus Orius Wolff, 1811 are considered to be 

important beneficial insects for a variety of agroecosystems (Hernández 

and Stonedahl, 1999). Orius species are highly polyphagous, yet show 

preferential tendencies for immature and adult thrips (Chambres et al., 1993; 

Ruidavet, 1995; Frescata and Mexia, 1996) and to a lesser extent eggs, nymphs 

and adult whiteflies (Gerling et al., 2001; Arnó et al., 2008). As a result of 

these prey preferences, some species of Orius are commercially produced 

for augmentative release as biological control agents in various crops 

worldwide (Chambers et al., 1993; Sánchez and Lacasa, 2002; van Lenteren 

and Bueno, 2003; van Lenteren et al., 2018). In Europe, the minute pirate 

bug Orius laevigatus Fieber (Hemiptera: Anthocoridae) has become the most 

successful Orius species for biological control, and it is hence widely used 

in augmentative release programs. The prey range of O. laevigatus is broad 

and includes agricultural pests such as aphids, whiteflies, lepidopteran 

eggs, mites, and thrips with a distinct preference for the latter group of pests 

(Venzon et al., 2002; van Lenteren and Bueno, 2003). In south eastern Spain, 

the release of O. laevigatus together with the predatory mite Amblyseius swirskii 

Athias-Henriot (Acari: Phytoseiidae) is key to successful pest management 

in more than 10,000 ha of protected sweet pepper crops (Blom et al., 1997; 

Sánchez et al., 2000; Calvo et al., 2009a; Blom et al., 2009). 

	The genus Orius can also feed on plants, for example on the 

pollen and sap, which contributes to population survival in the absence 

of a primary source of protein-rich food in the crop (Cocuzza et al., 1997; 

Armer et al., 1998). Indeed, O. laevigatus can complete its development 

by feeding exclusively on fresh pollen from sweet pepper (Vacante et al., 
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1997). Armer et al. (1998) demonstrated that Orius species can also feed on 

xylem and mesophyll contents, which consists of mostly water with small 

amounts of sugars, starch and amino acids. The presence of amylase in 

O. insidiosus Say (Hemiptera: Anthocoridae) indicates that it can digest starch 

and therefore can take advantage of feeding directly on the plant (Zeng and 

Cohen, 2000). Plants are not only a source of nutrients but also a substrate 

for oviposition. Orius females insert their eggs underneath the cuticle in the 

epidermal to subepidermal cell layers, which enhances offspring survival 

(Lundgren et al., 2008). During the early developmental stages, O. insidiosus 

can take nutrients from phloem tissue and survive solely from plant material 

for several days (Lundgren et al., 2008). All this supports that feeding on 

plant material is common and ecologically relevant for omnivorous Orius. 

	Whereas plant-mediated interactions among herbivores have been 

relatively well-studied, the effect of phytophagy by omnivorous predators on 

plant defences and the subsequently induced insect behaviour have not been 

investigated until recently. De Puysseleyr et al. (2011) showed that increased 

tomato plant resistance to Frankliniella occidentalis Pergande (Thysanoptera: 

Thripidae) feeding was produced via the jasmonic acid (JA)-mediated wound 

response during O. laevigatus ovipositing. More recently, several papers have 

demonstrated the capacity of different species of zoophytophagous species 

(plant-feeding carnivore), including mirid bugs (Hemiptera: Miridae), to 

induce plant responses in tomato plants (Pérez-Hedo et al., 2015a, 2015b; 

Pappas et al., 2015, 2016). 

	It is hence hypothesised that O. laevigatus would be able to induce 

plant responses in sweet pepper as has been demonstrated in other plant-

zoophytophage systems. As a first step to better understand the interaction 

between O. laevigatus and sweet pepper, the behaviour of O. laevigatus on 
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the plants was studied and plant feeding behaviour quantified to compare 

general behaviours. A series of experiments were then conducted to 

determine whether O. laevigatus feeding punctures on sweet pepper induce 

plant defence responses and whether these in turn lead to behavioural 

responses in pest and natural enemy species. In parallel, targeted gene-

expression analysis was used on plants previously exposed to O. laevigatus 

to ascertain which signaling pathways could be involved in plant defensive 

responses. Finally, the volatile compounds released as part of the plant 

response to O. laevigatus feeding punctures were characterized. 

2.2. Material and methods

2.2.1. Insects and Plants 

Adult O. laevigatus, the whitefly Bemisia tabaci Gennadius (Hemiptera: 

Aleyrodidae) and the parasitoid Encarsia formosa Gahan (Hymenoptera: 

Aphelinidae) were supplied by Koppert Biological Systems, S.L. (Águilas, 

Murcia, Spain), all were less than 5 days old. Frankliniella occidentalis 

adults were obtained from a colony established at Instituto Valenciano 

de Investigaciones Agrarias (IVIA) in 2010 and originally collected from 

Campo de Cartagena (Murcia, Spain). Thrips colonies were maintained on 

the common bean (Phaseolus vulgaris L. Fabales: Fabaceae) and housed in a 

climatic chamber at 25 ± 2 ºC, 65 ± 10% RH and a 14:10 h (L:D) photoperiod 

at IVIA.

Pesticide-free sweet pepper seedlings cv (‘Lipari’) [Capsicum annuum 

(Solanaceae)] (Dulce italiano, Mascarell semillas S.L, Valencia, Spain) were 

individually transplanted to plastic pots (8 x 8 x 8 cm) containing a mixture 
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of natural soil with local peat moss and housed undisturbed in climatic 

chamber at 25 ± 2 ºC, 60-80% RH and 14:10 h (L:D) photoperiod at IVIA. 

Once the sweet pepper plants had approximately 6 fully developed leaves 

(approximately 15 cm in height) they were used for the study of O. laevigatus 

behaviour, older plants of approximately 20 cm in height were used for the 

rest of the experiments. 

To obtain O. laevigatus-punctured plants, four intact sweet pepper 

plants were enclosed for 24 hours in a 60 x 60 x 60-cm plastic cage (BugDorm-2 

insect tents; MegaView Science Co., Ltd., Taichung, Taiwan) and exposed to 

100 O. laevigatus adults, all less than 4 days old (sex ratio 1:1). All individuals 

were removed from the plants before the experiment. Prior to their use, 

O. laevigatus were released into a plastic cage (30 x 30 x 30 cm) (BugDorm-1 

insect tents; MegaView Science Co., Ltd., Taichung, Taiwan) with water 

supplied on soaked cotton plugs, and starved for twenty-four hours. 

2.2.2. Behaviour of O. laevigatus on sweet pepper

The behaviours of both male and female O. laevigatus on sweet pepper 

plants in the absence of prey items was observed during 30 minute assays 

under laboratory conditions (T= 25 ± 2 ºC, RH= 60-80%). Less than 4-day-old 

males and presumably mated females of O. laevigatus were individually 

placed inside a plastic 5-ml vial and starved for 24 h before use. Water was 

supplied on soaked cotton plugs.

A clean sweet pepper plant was placed inside a 60 x 60 x 60 cm plastic 

cage (BugDorm-2 insect tents). A single predatory O. laevigatus (male or 

female) was gently released and observations began once the individual 

walked freely onto the plant for the first time. The different observed 
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behaviours were recorded continuously for 30 minutes. Behavioural 

observations were made by three researchers using a hand held magnifying 

glass after first quantifying their reliability. The sweet pepper plant was 

replaced before the start of each behavioural assay. Observations were 

repeated until 20 replicates for each sex had been observed. 

Locations were defined as off plant (plastic cage, plastic pot or soil) 

and on plant (distinguishing between apical and basal regions). The apical 

region was considered the first 5 cm of the plant formed by the apical stem, 

young leaves and 2 fully developed leaves. Conversely, the rest of the 

plant, approximately 10 cm with 4 fully developed leaves, basal stem and 

cotyledons, represented the basal region. Seven behavioural states were 

defined as follows:

• Grooming (G): The predator’s forelegs are used to clean mouthparts 

or another part of the body. 

• Feeding (F): The predator inserts its stylet into the plant and stylet 

movements can be observed.

• Oviposition (O): The predator presses its whole abdomen onto 

plant and the ovipositor is inserted into the plant.

• Resting (R): The predator stands motionless.

• Antennating (A): The predator is at rest but moves its antennae. 

• Walking (W): The predator walks on different regions of the plant 

without moving its antennae. 

• Walking-Antennating (WA): The predator walks on different 

regions of the plant and moves its antennae at the same time. 

Because the main interest was in quantifying the feeding behaviour 

compared to other behaviours, only the analysis of the timed behaviourals 

grouped in the apical and basal regions of the plant are presented. 
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2.2.3. Plant selection mediated by O. laevigatus

A Y-tube olfactometer experiment was conducted to test the olfactory 

responses of B. tabaci, F. occidentalis and E. formosa females to sweet pepper 

plants that were previously punctured by O. laevigatus relative to intact plants. 

The Y-tube olfactometer (Analytical Research Systems, Gainesville, FL) 

consisted of a 2.4 cm diameter Y-shaped glass tube with a 13.5-cm long base 

and two arms each 5.75-cm long (Pérez-Hedo and Urbaneja, 2015). Both side 

arms were connected via high density polyethylene (HDPE) tubes to two 

identical glass jars (5 l volume) each of which connected to an air pump that 

produced a unidirectional humidified airflow at 150 ml min-1 (Pérez-Hedo 

and Urbaneja, 2015). Four 60-cm fluorescent tubes (OSRAM, L18W/765, 

OSRAM GmbH, Germany) were positioned 40 cm above the horizontally 

disposed Y-shaped glass tube. The light intensity registered 2,516 lux over 

the Y-tube and was measured using a ceptometer (LP-80 AccuPAR, Decagon 

Devices, Inc. Pullman, WA, USA). All Y-tube experiments were conducted 

under the following environmental conditions, 23 ± 2 ºC, 60 ± 10% RH.

A single individual female of B. tabaci, F. occidentalis or E. formosa was 

introduced into the tube (entry array) and observed until she had walked 

at least 3 cm up one of the arms or until 15 min had elapsed. A minimum 

of 33 valid replicates from each species were recorded for each pair of odor 

sources. Females that did not choose a side arm within 15 min were recorded 

as ‘no-choice’ and were excluded from data analysis. After recording 

5 responses, the Y-tube was rinsed with soap water and acetone and left to 

dry for 5 min. The odor sources were subsequently switched between the 

left and right side arms to minimize any spatial effect on choice. Both types 
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of plants (intact and punctured) were used only once to test the response of 

10 females and then were replaced with new plants. 

2.2.4. Plant gene expression analysis

The apical region of the sweet pepper plants, as defined above, were 

subjected to targeted gene expression analysis to detect: (i) ASR1 (abscisic 

acid stress ripening protein 1) a marker gene for ABA, (ii) PIN2 (wound-

induced proteinase inhibitor II precursor) a marker gene for JA and (iii) 

PR1 (basic PR-1 protein precursor) a marker gene for the SA signalling 

pathway. Samples of the sweet pepper apical region were collected from 

both intact and O. laevigatus-punctured plants. After homogenization in 

liquid nitrogen, total RNA was extracted using Trizol (Invitrogen, CA, USA) 

according to the manufacturer’s instructions (Pérez-Hedo et al., 2015a; 

Naselli et al., 2016). After homogenizing the sample with TRIzol™ Reagent, 

chloroform was added to separate RNA of protein and DNA, and subsequent 

isopropanol and 1.2 Mm NaCl was added to precipitate the RNA. The RNA 

pellets resulting from the precipitation were washed twice with 70% ethanol, 

dried at room temperature and eluted in water. The RNA was quantified 

and then treated with the Turbo DNA-free DNase kit (Applied Biosystems) 

to eliminate any traces of genomic DNA, according to the manufacturer’s 

protocol. cDNA was synthesized by adding to the samples (1 µg/µl), 

RT buffer, 10 µM Oligo dT and prime script™ RT reagent kit (perfect real 

time) (TAKARA Bio, CA, USA). The reaction mixture was then incubated 

in the thermo-cycler for 15 min at 37 ºC and for 5 s at 85 ºC. Real-time PCR 

amplifications were performed with Maxima SYBR Green qPCR Master Mix 

(Thermo Fisher Scientific, MA, USA). Capsicum annuum forward and reverse 
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specific primers (0.5 µl) were designed and added to 5 µl of Syber green/

ROX qPCR MM and 1 µl of cDNA and then brought to 10 µl total volume 

with Milli-Q sterile water. PCR reactions were run in duplicate according 

to manufacturer recommendations. Quantitative PCR was carried out using 

the LightCycler® 480 System (Roche Molecular Systems, Inc., Switzerland) 

and the protocol consisted in 95 ºC for 10 min followed by 40 cycles of 

95 ºC for 15 s, 56 ºC for 30 s and 72 ºC for 30 s. Melting curve analysis was 

performed at 95 ºC for 5 s, 60 ºC for 1 min and then a continuous increase 

of temperature until 95 ºC finalizing the process. Data acquisition and 

calculation were performed with the thermal cycler’s software and then 

were collected and analyzed in Microsoft Excel. Each qPCR data point is the 

average of 8 independent experiments. EF1 (elongation factor-1) was used as 

a standard control gene for normalization. The nucleotide sequences of the 

gene-specific primers are described in Table 2.1.

Primers Forward Reverse

ASR1 5’-TGTGCAATTTGTCTTGTGGAA-3’ 5’-CGGACATGACGAGTTCGATA-3’

PIN2 5’-CTTGCCCCAAGAATTGTGAT-3’ 5’-GCCCTAGCGTATTACGGAGA-3’

PR1 5’-ACGTCTTGGTTGTGCTAGGG-3’ 5’-CCATACGGACGTTGTCCTCT-3’

EF1 5’-CCTGGACAGATTGGAAATGG-3’ 5’-GACCACCTGTCGATCTTGGT-3’

Table 2.1.
Forward and reverse sequences of ASR1, PIN2, PR1, and the constitutive gene EF1.
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2.2.5. Composition of volatile blends

Volatile compounds were collected by means of solid phase 

microextraction (SPME) and separated and detected by means of gas 

chromatography coupled to mass spectrometry (GC/MS). Volatiles were 

adsorbed in a 65-µm PDMS/DVB SPME fiber (polydimethylsiloxane/

divinylbenzene; Supelco, Bellefonte, PA, USA). The adsorbent-coated fiber 

was mounted on an SPME fiber holder, and injected through the first septum 

of the sample container. Agitation of the atmosphere inside the container 

was achieved by pumping at 5 ml/min using an injected syringe through the 

second septum of the sample container.

Each sample was performed for 3 hours. Four replicates for the intact 

plant and three replicates for O. laevigatus-punctured plant treatments were 

conducted. After collection, the fiber was retracted into the needle and the 

SPME device was removed from the container for GC-MS analysis. 

Desorption was performed by means of a CombiPAL autosampler 

(CTC Analytics) at 250 ºC for 1 min in splitless mode in the injection port of 

a 6890N gas chromatograph coupled to a 5975B mass spectrometer (Agilent 

Technologies). To prevent cross-contamination, fibers were cleaned after 

desorption in an SPME fiber conditioning station (CTC Analytics) at 250 ºC 

for 5 min under helium flow. Chromatography was performed on a DB-5ms 

(60 m, 0.25 mm, 1.00 µm) column with helium as carrier gas, at a constant 

flow of 1.2 ml/min. The GC interface and MS source temperatures were 

260 ºC and 230 ºC, respectively. Oven programming conditions were 40 ºC 

for 2 min, 5 ºC/min ramp until 250 ºC, and a final hold at 250 ºC for 6 min. 

Data were recorded in the 35-300 m/z range at 5 scans/s, with electronic 
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impact ionization at 70 eV. Untargeted analysis of the chromatograms was 

performed with MetAlign software (WUR, http://www.metalign.nl).

Kovats retention indexes (KIs) were calculated for the compounds. 

Differentially emitted compounds were first tentatively identified by the 

comparison of their mass spectra with those in the NIST 05 Mass Spectral 

Library. When available, identity was confirmed by coelution with pure 

standards (Sigma-Aldrich). To quantify the selected compounds, one specific 

ion was selected for each compound, and the corresponding peak area from 

the extracted ion chromatogram was integrated by means of the ChemStation 

E.02.02 software (Agilent Technologies). The criteria for ion selection were 

the highest signal-to-noise ratio and specificity to that particular region of 

the chromatogram to provide good peak intergration.

2.2.6. Data analysis 

The different behaviours of O. laevigatus on sweet pepper plants and 

the predator location were analyzed using three-way analysis of variance 

(ANOVA), taking as factors, sex, observer researcher and either behaviour 

or location. Tukey’s test was used for mean separation at α< 0.05. Since only 

three of the 20 tested female O. laevigatus oviposited on plants, this behaviour 

was excluded from the analysis. The data from the olfactory responses were 

analyzed using a χ2 goodness of fit test based on a null model where the odor 

sources were selected with equal frequency. Individuals who did not make 

a choice were excluded from the statistical analysis. The data from gene 

expression analyses and volatile profiling were analyzed using one-tailed 

Student’s t-test (P< 0.05). For volatile profiling, discriminant compounds 
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were determined by the analysis of the data obtained from the untargeted 

chromatogram and the results expressed as the means ± standard error. 

2.3. Results

2.3.1. Behaviours and locations of O. laevigatus on sweet pepper

Orius laevigatus showed preference to the apical region of the sweet 

pepper plants where the majority of the observed behaviours were performed 

(F2,110= 108.33; P< 0.0001) (Fig.2.1). Neither sex nor the observer researcher 

was found to be significant (F1,110= 0.11; P= 0.7415 and F2,110= 0.06; P= 0.9374, 

respectively). 

Figure 2.1.
Residence time (mean ± 
SE) of O. laevigatus adults 
on sweet pepper plants. 
Bars with different letters 
are significantly different 
(ANOVA, Tukey’s multiple 
comparison test α< 0.05) 
(n=40).
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Orius laevigatus spent 38% of their time feeding on plant tissues, 

which was significantly higher than the time spent on all other activities 

(F5,221= 21.01; P< 0.0001) (Fig.2.2). Neither the sex nor the observer were 

significant in the statistical analysis of the behaviours, (F1,221= 0.12; P= 0.724 

and F2,221= 0.48; P= 0.6211, respectively).

Figure 2.2.
Time (mean ± SE) spent 
exhibiting different be-
haviours by O. laevigatus 
adults on sweet pepper 
plants during a period 
of 30 min. Bars with dif-
ferent letters are signifi-
cantly different (ANOVA, 
Tukey’s multiple compari-
son test α< 0.05) (n=40). 

2.3.2. Plant selection mediated by O. laevigatus

In the Y-tube experiment, females of F. occidentalis showed preference 

for the odor emitted from intact plants over that from O. laevigatus-

punctured plants (χ2= 19.931; P< 0.0001) (Fig.2.3). In the case of B. tabaci, 

tested females were also attracted to the odor emitted by intact sweet pepper 

plants in comparison to O. laevigatus-punctured plants (χ2= 17.071; P< 0.0001) 

(Fig.2.3). In contrast to both phytophagous insects, the parasitoid E. formosa 

significantly chose O. laevigatus-punctured plants over intact plants in the 

olfactometer assay (χ2= 6.250; P= 0.0124) (Fig.2.3).



Sarra Bouagga

60

2.3.3. Plant gene expression analysis

Transcriptional analysis showed that plant feeding by O. laevigatus 

on the apical portion of sweet pepper plants increased the expression of the 

PIN2 gene (JA pathway) (t= 2.161, P= 0.019) and the PR1 gene (SA pathway) 

(t= 1.835, P= 0.039) (Fig. 2.4.a,b). In contrast, the ASR1 gene (ABA pathway) 

was not affected in O. laevigatus-punctured plants (t= 0.113, P= 0.455) 

(Fig.2.4.c).

56.75%

21.21%

18.20%

29.72%

69.70%

69.70%

-80,00% -40,00% 0,00% 40,00% 80,00%

(n=34)
*

* (n=33)

(n=33)

(n=34)

*

*
O. laevigatus-punctured plantsIntact plants

Figure 2.3.
Response in Y-tube olfactometer of females of F. occidentalis (n=33), B. tabaci (n=33) and 
E. formosa (n=34) to the odor emitted by intact sweet pepper and by sweet pepper plants 
previously exposed to O. laevigatus. Significant differences based on a χ2-test are marked 
using * (P< 0.05).
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Figure 2.4.
Transcriptional response 
of the defensive genes 
ASR1 (a), PIN2 (b) and 
PR1 (c) responsible for 
the change in level of the 
phytohormones ABA, JA, 
and SA, respectively, in 
O. laevigatus- punctured 
plants. Data are present-
ed as the mean of eight 
independent analyses of 
transcript expression rel-
ative to a housekeeping 
gene ± SE (n=8). Signifi-
cant differences based on 
t- test are marked with (*) 
(P< 0.05).
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2.3.4. Composition of volatile blends

Quantitative differences were recorded in the herbivore-induced plant 

volatiles (HIPVs) profile of O. laevigatus-punctured and intact sweet pepper 

plants. Untargeted analysis of the volatiles emitted allowed the identification 

of ten compounds with significantly increased levels in punctured plants, 

while no compounds with decreased levels were identified. The emission 

of discriminant compounds increased in the range of 2 to 100-fold and 

corresponded to terpenoids (1 monoterpenoid, 4 sesquiterpenoids and 

1 norisoprenoid), a set of two (Z)-3-hexenyl esters, methyl salicylate and 

another unknown compound (Table 2.2).

Type Compound Kovats 
RI

Fold 
change t P

Terpenoids: 
monoterpenoids Linalool* 1103 6.42 2.5353 0.0327

Terpenoids: 
sesquiterpenoids

Sesquiterpene1 1418 33.80 4.593 0.0029

Sesquiterpene2 1459 4.30 6.739 0.0005

(E)-nerolidol* 1574 7.55 7.036 0.0004

Sesquiterpenoid 1583 97.95 2.557 0.0254
Terpenoids: 
norisoprenoids Unknown3 1117 4.30 2.71 0.0211

Green leaf volatile 
esters

(Z)-3-hexenyl propanoate* 1096 3.04 2.353 0.0327

(Z)-3-hexenyl benzoate* 1596 3.10 5.722 0.0011
Systemic acquired 
resistance (SAR) Methyl salicylate* 1215 17.01 3.47 0.0089

Other Unknown4 1664 2.52 2.151 0.0421
*Unequivocal identification (confirmed with a pure standard); Tentative identification based on mass 
spectra: 1 beta-elemene, 2 alpha-bergamotene, 3 norisoprenoid (C11H18) and 4 methyl dihydrojasmonate

Table 2.2.
Significant relative levels (fold changes) of the volatiles emitted by O. laevigatus punctured 
plants relative to intact plants. Student’s t-test (P< 0.05).
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2.4. Discussion

Here, for the first time O. laevigatus induced defensive response in 

sweet pepper plants due to the described phytophagy behaviour. This is of 

particular interest as the predator O. laevigatus has been one of the most 

studied and successfully used augmentative biological control agents 

in sweet pepper (van Lenteren et al., 2018). Furthermore, the modulated 

behaviour of both pest species (B. tabaci and F. occidentalis) and a natural 

enemy (E. formosa) associated with sweet pepper, in response to an induced 

plant response by the zoophytophage O. laevigatus, is documented for the 

first time. 

Previous studies on the behaviour of several species of Orius under 

different conditions (availability of prey and/or pollen, quality of the plant as 

a feeding and/or oviposition substrate, architecture of the plant) have been 

reported (Fritshe and Tamó, 2000; Yano et al., 2005; Jonathan and Fergen, 

2006; Lundgren et al., 2008). However, to our knowledge, no other study 

has quantified the time that a specific Orius species spends feeding on sweet 

pepper. Here, O. laevigatus feeding behaviours are described and quantified, 

and reveal both females and males feed on plant tissue by inserting their 

stylets, a behaviour which represents 38% of time spent on the plant. 

When comparing this plant feeding behaviour with the other observed 

behaviours under experimental conditions, plant feeding was the preferred 

activity by O. laevigatus, occupying the greatest proportion of time. Individuals 

tested in the behavioural experiment were starved 24 hours, with access to 

just water, before their release into the experimental arenas. The reason for 

both female and male O. laevigatus plant feeding behaviour upon their release 

could well be due to the need to obtain nutrients from the plant and not so 
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much because of the need for hydration. Indeed, the sequential behaviour 

of importance was searching for prey (the sum of the Antennating-A and 

“Walking-Antennating-WA behaviour). The experimental conditions (starved 

O. laevigatus, the size of sweet pepper plants and the absence of prey after 

release) were standardised according to conditions O. laevigatus would 

encounter in the field when released in augmentative biological control 

programs. The next step would be to quantify the plant feeding behaviour 

in the presence of prey in sweet pepper plants, and whether under this 

situation, defensive plant responses are also activated. 

It is known that predators avoid laying eggs where prey are scarce 

or absent as in our study (Evans and Dixon, 1986; Hemptinne et al., 1992). 

Nakashima and Hirose (2002) observed that females of O. sauteri Poppius 

(Hemiptera: Anthocoridae) oviposited at higher rates in prey-rich patches 

than in prey-deficient patches. O. laevigatus individuals used in this study 

were subjected to a very similar procedure before their use (starvation 

with access to water for 24 h) as in Nakashima and Hirose (2002), and 

only three of the 20 tested females of O. laevigatus oviposited on plants. 

The time represented by oviposition occupied just 0.2% of total observation 

time. These results suggest that plant defence response can be induced by 

plant feeding behaviour in addition to the oviposition behaviour described 

by De Puysseleyer et al. (2011) in tomatoes. Recently, Naselli et al. (2016) 

demonstrated that all motile stages of the mirid Nesidiocoris tenuis Reuter 

(Hemiptera: Miridae) can induce plant responses in tomato plants, although 

such responses may differ slightly depending on the stage considered. 

Similarly, knowing if immature O. laevigatus individuals can trigger defensive 

responses in sweet peppers would also be of interest. 
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Most of the plant defence mechanisms against insects are activated 

by signal transduction pathways mediated by JA, SA and ethylene 

(Shivaji et al., 2010; Gill et al., 2010). Little had previously been described on 

the subject of plant responses to the feeding of O. laevigatus before this study. 

It is shown here that activation of the JA and SA pathways in O. laevigatus-

punctured plants is associated with aversion of both arthropod pests, 

B. tabaci and F. occidentalis and by contrast, the whitefly parasitoid E. formosa 

was significantly attracted to O. laevigatus-punctured plants. Pérez-Hedo 

et al. (2015a) observed that the feeding activity of the predatory mirid N. tenuis 

on tomato plants activated the ABA and JA signaling pathways, which made 

plants exposed to mirids less attractive to B. tabaci and more attractive to 

E. formosa. Additionally, Pérez-Hedo et al. (2015b) showed that three different 

zoophytophagous predators [N. tenuis, Macrolophus pygmaeus Rambur and 

Dicyphus maroccanus Wagner (Hemiptera: Miridae)] had different capacities 

to induce specific responses in tomato plants. Tomato plants exposed 

to N. tenuis were less attractive to B. tabaci as mentioned above but also to the 

lepidopteran Tuta absoluta Meyrick (Lepidoptera: Gelechiidae). By contrast, 

tomato plants exposed to M. pygmaeus and D. maroccanus were not able to 

repel B. tabaci and, more interestingly, became more attractive to T. absoluta. 

All three zoophytophagous mirid predators activated the JA signaling 

pathways, which resulted in the attraction of the parasitoid E. formosa to 

punctured tomato plants. 

Pappas et al. (2015, 2016) observed that the performance of 

Tetranychus urticae Koch (Acari: Tetranychidae) decreased as a result of the 

prior exposure of tomato plants to M. pygmaeus. This was accompanied by a 

locally and systematically increased accumulation of transcripts and activity 

of proteinase inhibitors that are known to be involved in plant responses. 
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Similarly, a further step in the research with O. laevigatus will be to investigate 

the performance, by evaluating different life history traits, of B. tabaci and 

F. occidentalis on O. laevigatus-punctured plants.

It is well documented that non-consumptive effects triggered by 

arthropod predators can modulate behaviour, physiology, development 

and morphological traits of a subsequently infesting herbivore (Werner and 

Peacor, 2003). This non-consumptive effect relies on the ability of prey to 

perceive chemicals and visual cues directly emitted by predators, before 

being preyed. Escape, avoidance, reduced oviposition, reproduction and 

reduced feeding are some of the solutions prey employ to avoid predation risk 

(Nomikou et al., 2003; Sendoya et al., 2009; Ninkovic et al., 2013; Wasserberg 

et al., 2013; Lee et al., 2014). No chemical compound has yet been isolated 

which could be related to an O. laevigatus chemical cue, since all differentially 

identified chemical compounds were emitted from the plant. Therefore, the 

responses of B. tabaci, F. occidentalis and E. formosa were a direct consequence 

to the odor emitted from the O. laevigatus-punctured sweet pepper plants.

The results presented here showed increased emission of HIPVs 

in sweet pepper punctured by O. laevigatus compared to intact plants. 

These volatiles belong to already identified volatile groups activated in 

plants being injured by true phytophagy, the green leaf volatiles group 

(GLVs), terpenoids and methyl salicylate (Kessler and Baldwin, 2001; Kessler 

and Baldwin, 2002; War et al., 2011). It is known that HIPVs are released by 

most plant species (McCormick et al., 2014). However, each species of plant 

could emit a specific blend of volatiles and that the relative amounts of HIPVs 

could vary widely between species and with the type of damage (Kigathi 

et al., 2009; Ponzio et al., 2014; Ardanuy et al., 2016). In this chapter, it has 
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been shown that the particular volatile profile emitted by the O. laevigatus-

punctured plant repelled B. tabaci and F. occidentalis and attracted E. formosa. 

In summary, these results show that the effectiveness of O. laevigatus 

as a biological control agent in sweet pepper is due to not just its predatory 

role but also to its ability to induce plant defensive responses. These results 

open the doors to new management methods for B. tabaci and F. occidentalis. 

Once the volatile(s) responsible for the repellency of both pests have been 

identified, new repellent products can be developed. In parallel, plant 

breeding programs aimed at obtaining plants with an ability for greater 

emission of these volatiles could be implemented.
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Abstract

In addition to their services as predators, mirid predators are able to induce plant 
defences by phytophagy. However, whether this induction occurs in sweet pepper 
and whether it could be an additional benefit to their role as biological control agent 
in this crop remains unknown. Here, these questions are investigated in two model 
insects, the mirids Nesidiocoris tenuis and Macrolophus pygmaeus. 
Plant feeding behaviour was observed in both N. tenuis and M. pygmaeus on sweet 
pepper and occupied 33% and 14% of total time spent on the plant respectively. 
The punctures caused by mirid plant feeding induced the release of a blend 
of Volatile Organic Compounds (VOCs) which repelled the herbivore pests 
Frankliniella occidentalis and Bemisia tabaci and attracted the whitefly parasitoid 
Encarsia formosa. The repellent effect on B. tabaci was observed for at least 7 days 
after initial exposure of the plant to N. tenuis, and attraction of E. formosa remained 
functional for 14 days. 
Feeding induced plant defences by mirid predators, their subsequent effects on both 
pests and natural enemy behaviour, and the persistence of these observed effects 
open the door to new control strategies in sweet pepper crop. Further application 
of this research is discussed, such as the vaccination of plants by zoophytophagous 
mirids in the nursery before transplantation. 

Key words: Nesidiocoris tenuis, Macrolophus pygmaeus, phytophagy, HIPV’s, plant 
response, vaccination.
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3.1. Introduction 

Predatory mirid bugs (Hemiptera: Miridae) have been extensively 

studied in the last few decades for their ecological significance and role 

as predators of agricultural pests (Schaefer et al., 2000; Wheeler, 2001). 

In recent studies, their importance as biocontrol agents in sweet pepper has 

been highlighted (Messelink et al, 2011a, 2015; Pérez-Hedo and Urbaneja, 

2015).The use of generalist natural enemies in sweet pepper crops is widely 

common and has been proven successful (Sánchez and Lacasa, 2002; van 

Lentren, 2012; van Lentren et al., 2018). If properly managed, the release and 

the conservation of the predatory mite, Amblyseius swirskii Athias-Henriot 

(Acari: Phytoseiidae) together with the anthocorid Orius laevigatus Fieber 

(Hemiptera: Anthocoridae) can successfully manage the population of the key 

pepper pests; sweet potato whitefly, Bemisia tabaci Gennadius (Hemiptera: 

Aleyrodidae), greenhouse whitefly, Trialeurodes vaporariorum Westwood 

(Hemiptera: Aleyrodidae) and western flower thrips, Frankliniella occidentalis 

Pergande (Thysanoptera: Thripidae) (Calvo et al., 2012a, Weintraub, 2011). 

Moreover, the polyphagous behaviour of A. swirskii and O. laevigatus 

contribute to the management of secondary pests, such as spider mites 

and Lepidoptera (Park et al., 2010; van Maanen et al., 2010).  In this system 

aphids manage to evade the control of both predators (Belliure et al., 2008, 

Sánchez et al., 2011) and so the multiple release of natural enemy species 

is usually practiced, which can have considerable implications in the final 

cost of the biocontrol program in this crop (Blom et al., 2008; Messelink et 

al., 2011a). Alternative biocontrol strategies in which mirid predators are 

included have hence been recently explored. Nesidiocoris tenuis Reuter, 

Macrolophus pygmaeus Rambur and Dicyphus maroccanus Wagner (Hemiptera: 
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Miridae) were shown to effectively control the aphid Myzus persicae Sulzer 

(Hemiptera: Aphididae) on sweet pepper (Pérez-Hedo and Urbaneja, 2015). 

Furthermore, M. pygmaeus was found to be the most effective agent for the 

control of M. persicae in sweet pepper when compared with three other mirid 

species, Dicyphus errans Wolff, D. tamaninii Wagner and Deraeocoris pallens 

Reuter (Hemiptera: Miridae) (Messelink et al., 2015). Under combined release, 

intraguild interactions between M. pygmaeus and O. laevigatus did not result 

in population imbalances of either predatory species, but a better control 

strategy for both thrips and aphids on sweet pepper resulted (Messelink and 

Janssen, 2014).

	Within the mirids, omnivory is common (Wheeler, 2001)  and 

they are able to exploit both plant and prey resources during the same 

developmental stage (Castañé, 2011; Sánchez et al., 2016). This flexibility 

in their behaviour increases survival rates by taking advantage of plant 

resources when prey is either less abundant or completely absent (Sánchez 

et al., 2004; Urbaneja et al., 2005; Biondi et al., 2016). As in herbivores, the 

phytophagous behaviour of mirid predators may also induce indirect plant 

defences (Pérez-Hedo et al., 2015a, 2015b; Pappas et al., 2015, 2016; Naselli 

et al., 2016). It is well known that plants can respond to the damage induced 

by phytophagous insects, involving several signal transduction pathways 

that are mediated by phytohormones. Jasmonic acid (JA), salicylic acid (SA), 

abscisic acid (ABA) and ethylene (ET) are the main targeted components and 

their accumulation in the plant activates signalling cascades that regulate 

transcriptional response (Burce and Pickett, 2007; How and Jander, 2008; 

Bari and Jone, 2009; Karban, 2011; Dicke and van Loon, 2014). Indeed, plants 

damaged by herbivores often produce a blend of volatiles, commonly 

referred to as herbivore induced plant volatiles (HIPV’s) (Takabayashi and 
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Dicke, 1996; Paré and Tumlinson, 1999; Mumm and Dicke, 2010; Nasseli et al., 

2017). These HIPV’s consist of a mixture of the so-called green-leaf volatiles 

(C6 aldehydes, alcohols and esters), terpenes (monoterpenes, sesquiterpenes, 

homoterpenes) and aromatic compounds among others (Arimura et al., 

2009; Pichersky, 2006). Consequently, natural enemies use the change in the 

composition and concentration of these released volatiles as a cue for the 

presence of potential prey or hosts (Sabelis et al., 1999; Dicke and van Loon, 

2000; Verkerk, 2004).

In this work, the potential of N. tenuis and M. pygmaeus to induce 

plant defences in sweet pepper is investigated and whether this could be 

an additional benefit to their role as a biological control agent in this crop. 

The behaviour of N. tenuis and M. pygmaeus on sweet pepper was first 

explored in order to quantify feeding activity on the crop. Secondly, the level 

of the phytohormones involved in the plant defence and the expression of 

several marker genes was evaluated, both in intact plants (without mirids 

punctures) and in mirid-punctured plants. A non-targeted analysis of the 

volatile compounds differentially released by mirid-punctured and intact 

plants was then performed by means of headspace solid phase microextraction 

(HS-SPME) coupled to gas chromatography-mass spectrometry (GC-MS). 

Thirdly, the response of two key sweet pepper pests, F. occidentalis and 

B. tabaci, and the whitefly parasitoid Encarsia formosa Gahan (Hymenoptera: 

Aphelinidae) to the odour emitted by mirid-punctured and intact plants was 

tested under dual choice experiments. Finally, the persistence of the plant 

response induced by N. tenuis was observed. 
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3.2. Material and Methods 

3.2.1. Plants and insects 

Pesticide free Capsicum annuum (cv. Lipari) (Dulce italiano, Mascarell 

semillas S.L, Valencia, Spain) seedlings were used for the study. Two weeks 

after germination, seedlings were transplanted into a mixture of soil and 

local peat moss in plastic pots (8 x 8 x 8 cm), housed in climatic chambers at 

25 ± 2 ºC, 60-80% RH and 16:8 h (L:D) photoperiod at Instituto Valenciano 

de Investigaciones Agrarias (IVIA). Plants with 6 fully-developed leaves 

(approximately 15 cm in height) were used for the study of N. tenuis and 

M. pygmaeus behaviour and for the rest of the experiments plants were 

used once 10 leaves had fully-developed (approximately 20 cm in height). 

Two sweet pepper plant treatments were required, mirid-punctured 

plants and intact plants (control plants free from any arthropod contact). 

Mirid-punctured plant were obtained by exposing sweet pepper plants to 25 

adult N. tenuis or M. pygmaeus (sex ratio 1:1) for 24 hours in a 30 x 30 x 30-cm 

plastic cage (BugDorm-1 insect tents; MegaView Science Co., Ltd., Taichung, 

Taiwan). 

Nesidiocoris tenuis, M. pygmaeus and B. tabaci adults, and E. formosa pupae, 

were provided by Koppert Biological Systems, S.L. (Águilas, Murcia, Spain). 

Cultures of N. tenuis and M. pygmaeus were maintained in climatic chamber at 

25 ± 2 ºC, 60-80% RH and 16:8 h (L:D) photoperiod 25 ± 2 ºC, 60-80% RH and 

16:8 h (L:D) photoperiod at IVIA. Both mirid cultures were separately caged 

on sweet pepper plants with access to Ephestia kuehniella Zeller (Lepidoptera: 

Pyralidae) eggs (Entofood®; Koppert B.S.) as supplemented food until their 

use in the bioassays. Five day old adult N. tenuis and M. pygmaeus were used in 
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all the experiments. Newly emerged adult B. tabaci (less than 2 day old) were 

similarly reared on sweet pepper plants caged in 60 x 60 x 60-cm BugDorm-2 

insect tents. In the case of E. formosa, pupae were enclosed in a Petri dish 

(9 cm diameter) and allowed to emerge under ambient laboratory conditions 

(25 ± 2 ºC), with a small drop of honey provided as food. Females E. formosa 

were used at less than two days old all experiments. 

Frankliniella occidentalis adults were obtained from a culture 

established at IVIA in 2010, originally collected from Campo de Cartagena 

(Murcia, Spain). The thrips culture was maintained on bean plants 

(Phaseolus vulgaris L.; Fabales: Fabaceae) and housed in a climatic chamber 

at 25 ± 2 ºC, 65 ± 10% RH and a 14:10 h (L:D) photoperiod at IVIA. All female 

F. occidentalis used for experimentation were less than five days old.

3.2.2. Mirid behaviour on sweet pepper 

Direct observations for both male and female N. tenuis and M. pygmaeus 

behaviour were carried out on intact sweet pepper plant for 30 minutes under 

a hand magnifying glass (5cm of diameter and a magnification of 2.5x-5x) 

(Entomopraxix, Barcelona, España). The experimental arena consisted an 

intact sweet pepper plant inside a plastic cage 60 x 60 x 60-cm (BugDorm-2 

insect tents), (T= 25 ± 2 ºC, RH= 60-80%). A single mirid predator (male or 

female) was then released onto the plant. Recording began when the first 

behavioural activity was observed (typically: walking, though any of the other 

recorded behaviours were also considered). Duration of each behaviour and 

the corresponding location on the plant was noted. For each assay (species and 

sex), twenty replications were carried out and the sweet pepper plant replaced 

by new intact plant for each of the subsequent observations.
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Observed behaviours were the following: Walking (W): 

Predator walking behaviour on the different regions of the plant. 

Antennating (A): Stationary searching activity, characterised by moving the 

antennae. Walking-Antennating (W-A): Non-stationary searching activity 

characterised by moving the antennae and walking. Feeding (F): The predator 

uses labium to probe the feeding sites and then inserts the stylet vertically 

into the plant. Oviposition (O): The predator firstly probes the oviposition 

site with the labium, then the whole abdomen is pressed onto the plant and 

the length of the ovipositor inserted into the plant, egg deposition is visible. 

Grooming (G): Cleaning mouthparts with forelegs and/or cleaning another 

part of the body. Flying (Fl): Flying movement typically from the plant to the 

cage walls or the opposite. Resting (R): The predator is at rest, stationary and 

not carrying out any other described behaviour.

The plant locations visited by the predator during the observation 

were defined. One location off-plant (plastic cage, plastic pot or soil) and 

two locations on-plant (apical region and basal region) were defined. 

The apical region of sweet pepper plant was defined as the first 5 cm of the 

plant formed by apical stem, young developing leaves and 2 fully developed 

leaves. The basal region was the rest of the plant, approximately 10-12 cm 

with 4 developed leaves, basal stem and cotyledons. 

3.2.3. Phytohormone analysis and plant gene expression

In order to identify the phytohormone profile of 1) N. tenuis-

punctured plants, 2) M. pygmaeus-punctured plants and 3) sweet pepper 

intact plants, the hormones, abscisic acid (ABA), salicylic acid (SA), jasmonic 

acid (JA) and JA-isoleucine (JA-Ile) were analysed by ultra-performance 
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liquid chromatography coupled with mass spectrometry (UPLC-MS) (Flors 

et al., 2008, Forcat et al., 2008; Pérez-Hedo et al., 2015a).The apical region 

of the pant, as defined previously, from each treatment was removed 

and stored at -80 ºC until analysis. Five replicates were collected for each 

treatment. Analyses were carried out using an Acquity ultra-performance 

liquid chromatography system (UPLC; Waters, Mildford, MA, USA) and the 

chromatograph interfaced to a triple quadrupole mass spectrometer (TQD, 

Waters, Manchester, UK). MassLynx NT software version 4.1 (Micromass) 

was used to process the quantitative data from calibration standards and 

the plant samples. The calibration curves were obtained by using solutions 

containing increasing amounts of ABA, SA, JA and JA-Ile commercial 

standards (Sigma-Aldrich, http://www.sigma-aldrich. com). 

Expression of (i) ASR1 (abscisic acid stress ripening protein 

1) a marker gene for ABA, (ii) PIN2 (wound-induced proteinase inhibitor II 

precursor) a marker gene for JA, and (iii) PR1 (basic PR-1 protein precursor) 

a marker gene for the SA signalling pathway, were quantified for each of 

the three plant treatment samples taken from the apical region of the sweet 

pepper plants. Samples were cut and then ground in liquid nitrogen and a 

portion used for RNA extraction. Total RNA (1.5 µg) was extracted using 

Trizol (Invitrogen, CA, USA) according to the manufacturer’s instructions 

(Pérez-Hedo et al., 2015a; Naselli et al., 2016). Samples were homogenized 

with TRIzol™ Reagent and then chloroform was added to separate protein 

RNA and DNA. RNA was precipitated with the addition of isopropanol 

and 1.2 Mm NaCl. After quantification, the RNA was treated with the 

Turbo DNA-free DNase kit (Applied Biosystems) to eliminate any traces 

of genomic DNA, according to the manufacturer’s protocol. cDNA was 

then synthesized using prime script™ RT reagent kit (perfect real time) 
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(TAKARA Bio, CA, USA). The reaction mixture was then incubated in the 

thermo-cycler for 15 min at 37 ºC followed by 5 s at 85 ºC. Real-time PCR 

amplifications were performed with Maxima SYBR Green qPCR Master Mix 

(Thermo Fisher Scientific, MA, USA). Capsicum annuum specific forward and 

reverse primers (0.5 µl) were designed and added to 5 µl of Syber green/ROX 

qPCR MM and 1 µl of cDNA and then brought to 10 µl total volume with 

Milli-Q sterile water. PCR reactions were run in duplicate, in accordance with 

manufacturer recommendations. Quantitative PCR was carried out using 

the LightCycler® 480 System (Roche Molecular Systems, Inc., Switzerland), 

under the following amplification conditions, 95 ºC for 10 min followed by 

40 cycles of 95 ºC for 15 s, 56 ºC for 30 s and 72 ºC for 30 s. Melting curve 

analysis was performed at 95 ºC for 5 s, 60 ºC for 1 min and then a continuous 

increase of temperature up to 95 ºC to finalise the process. Data acquisition 

and calculation were performed with the thermal cycler’s software and were 

then collected and analysed in Microsoft Excel. Each qPCR data point is the 

average of 8 independent experiments. EF1 (elongation factor-1) was used as 

a standard control gene for normalization. The nucleotide sequences of the 

gene specific primers are the same used in chapter 2 (Table 2.1).

3.2.4. Determination of plant volatile compounds 

Volatile compounds emitted from 1) N. tenuis-punctured sweet 

pepper plants, 2) M. pygmaeus-punctured plants and 3) intact plants 

were collected using 5 L volume glass jars as used in Y-tube olfactometer 

described below (Analytical Research Systems, Gainesville, FL) (Pérez Hedo 

and Urbaneja, 2015). One sweet pepper plant was introduced (either intact 

or mirid-punctured) into each jar. After closing the jar, an adsorbent-coated 
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SPME fibre (PDMS/DVB (65 μm polydimethylsiloxane/Divinylbenzene; 

Supelco, Bellefonte, PA, USA) was mounted on the fibre holder, and injected 

through the first septum (top of the jar). Agitation of the atmosphere inside 

the container was achieved by pumping at 5 ml/min using a syringe injected 

through the second septum (bottom of the jar). The three jars were maintained 

in the Y-tube olfactometer table at a light intensity of 2516 lx. The volatiles 

emitted were captured over a 3 hours period, and 5 replicates per treatment 

were performed. After collection, the fibre was retracted into the needle and 

the SPME device was removed from the container. The compounds absorbed 

in the SPME fibre were separated and detected by means of GC-MS.

Desorption was performed by means of a CombiPAL autosampler 

(CTC Analytics) at 250 ºC for a duration of 1 min in splitless mode in the 

injection port of a 6890N gas chromatograph coupled to a 5975B mass 

spectrometer (Agilent Technologies). To prevent cross-contamination, fibres 

were cleaned after desorption in an SPME fibre conditioning station (CTC 

Analytics) at 250 ºC for 5 min under helium flow. Chromatography was 

performed on a DB-5ms (60 m, 0.25 mm, 1.00 µm) column with helium as 

carrier gas at a constant flow of 1.2 ml/min. GC interface and MS source 

temperatures were 260 ºC and 230 ºC respectively. Oven programming 

conditions were 40 ºC for 2 min, 5 ºC/min ramp until 250 ºC, and a final 

hold at 250 ºC for 6 min. Data were recorded in the 35-300 m/z range at 

5 scans/s, with electronic impact ionization at 70 eV. Untargeted analysis 

of the chromatograms was performed by means of the MetAlign software 

(WUR, http://www.metalign.nl).

Kovats retention indices (KI) were calculated for each of the 

compounds. Differentially emitted volatiles were first tentatively identified 

by comparing their mass spectra with those in the NIST 05 Mass Spectral 



3Induced Defences by Mirids in Sweet Pepper
chapter

81

Library. When available, identity was confirmed by coelution with the pure 

standards (Sigma-Aldrich). For quantitation of the selected compounds, one 

specific ion was selected for each compound, and the corresponding peak 

area from the extracted ion chromatogram was integrated by means of the 

ChemStation E.02.02 software (Agilent Technologies). The criteria for ion 

selection were the highest signal-to-noise ratio and being specific enough in 

that particular region of the chromatogram in order to provide good peak 

integration.

3.2.5. Response to induced sweet pepper plants 

The olfactory response of the sweet pepper pests F. occidentalis and 

B. tabaci and the whitefly parasitoid E. formosa, to both mirid punctured 

plants and intact plants was firstly investigated in the Y-tube olfactometer. 

The Y-tube olfactometer consisted of two 5 L volume jars connected with 

a 2.4 cm diameter Y-shaped glass tube (Pérez-Hedo and Urbaneja, 2015), 

with a 13.5-cm long base and two arms each 5.75 cm long. Both side 

arms were connected via high density polyethylene (HDPE) tubes to the 

two identical glass jars. Each glass jar was connected to an air pump that 

produced a unidirectional humidified airflow at 150 mL min-1 (Pérez-Hedo 

and Urbaneja, 2015). Four 60-cm fluorescent tubes (OSRAM, L18W/765, 

OSRAM GmbH, Germany) were positioned 40 cm above the horizontal 

Y-shaped glass tube. The light intensity registered 2,516 lux over the Y-tube 

and was measured using a ceptometer (LP-80 AccuPAR, Decagon Devices, 

Inc. Pullman, WA, USA). All Y-tube experiments were conducted under the 

following environmental conditions, 23 ± 2 ºC, 60 ± 10% RH.
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In the entrance of the Y-tube we individually introduced each of the 

tested females of either B. tabaci, F. occidentalis or E. formosa. The result of the 

choice test was only recorded once the female had walked at least 3 cm up 

one of the arms or the assay was terminated after 15 minutes had elapsed and 

excluded from the data analysis. A total of 30-40 valid replicates from each 

species were recorded for each pair of odour sources. For each 5 collected 

responses the Y-tube was rinsed with soap, water and acetone and then left 

for 5 minutes to dry. Odour sources were switched between the left and 

right side arms to minimize any spatial effect on choice. All test plants were 

replaced after recording 10 responses. 

To confirm the Y-tube observation a second choice experiment was 

conducted using 16 plastic cages (60 x 60 x 60 cm) (BugDorm-2 insect tents) 

maintained in a climatic chamber at 25 ± 2 ºC, 60-80% RH and 14:10 h (L:D) 

photoperiod. Inside each cage, three intact plants and three mirid-punctured 

plants (either by N. tenuis or M. pygmaeus) were arranged alternately in a circle. 

One hundred F. occidentalis or 100 B. tabaci adults were released separately 

in the centre of the circle of plants. Frankliniella occidentalis and B. tabaci were 

allowed to freely forage within the cage for 24 hours, the number on each plant 

treatment group (intact or mirid-punctured) were counted. The experiment 

was replicated four times for both F. occidentalis and B. tabaci to test their 

response to N. tenuis-punctured plants and M. pygmaeus-punctured plants. 

3.2.6. Persistence of plant induction

In the Y-tube olfactometer we evaluated the persistence of the 

attraction or antixenosis induced by N. tenuis in order to induce indirect 

defences. The response of B. tabaci and E. formosa were tested at 4, 7 and 
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14 days after exposure to N. tenuis. Twenty-four hours after activation, 

N. tenuis adults were removed and punctured plants were left in enclosed 

plastic cages (30 x 30 x 30 cm) (BugDorm-1 insect tents) where the experiment 

was conducted. A total of 30 responses were recorded. 

RNA extraction and gene expression (ASR1, PIN2 and PR1) (Table 2.1; 

Chapter 2) was conducted to confirm Y- tube results. Eight apical regions from 

intact plants and from N. tenuis-punctured plants were collected. The same 

protocol as described above for quantitative PCR reaction was followed. 

According to the olfactometer results, the relative expression of defensive 

genes was performed 14 days after exposure to N. tenuis in comparison to 

intact plants. 

3.2.7. Statistical analysis

Mirid behaviour on sweet pepper was analysed using two-way analysis 

of variance (ANOVA) to differentiate between predator species and sex, 

followed by comparison of means (Bonferroni post-tests) at α< 0.05. One-tailed 

Student’s t-test (P< 0.05) was performed to compare oviposition behaviour 

between the two mirid species. To compare between intact plants, N. tenuis-

punctured plants and M. pygmaeus-punctured plants, the volatile profile from 

mirid-punctured plants and intact plants, phytohormone profile and defensive 

gene expressions were normalized using a logarithmic transformation and 

then analysed using a one way analysis of variance (ANOVA), followed by 

comparison of means (Tukey’s test) at α< 0.05. In the no-choice experiment, 

the number of thrips and whiteflies was compared between intact plant assays 

and mirid-punctured plant assays using a one-tailed Student’s t-test (P< 0.05). 

To evaluate the persistence of plant defence induction, a one tailed t-test 
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(P< 0.05) was performed to compare the quantified expression of defensive 

genes between intact plants and N. tenuis-punctured-plants over the time 

increments. Chi-square (χ2) goodness of fit tests based on a null model were 

used to analyse data collected from the olfactory responses where the odour 

sources were selected with equal frequency. Individuals which did not make 

a choice were excluded from the statistical analysis. Results were expressed as 

the mean ± standard error.

3.3. Results  

3.3.1. Mirid behaviour on sweet pepper 

Both mirid species were found to spend the most time feeding on the 

plant (Table 3.1), with N. tenuis spending significantly more time feeding 

than M. pygmaeus (F1,76= 22.37, P< 0.0001). Feeding behaviour between 

the sexes was not significantly different (F1,76= 0.09, P= 0.75). However, a 

significant interaction between sex and species was found (F1,76= 4.57, P= 0.03) 

with N. tenuis males tending to feed on the plant for a longer duration than 

females, whereas the contrary was observed for M. pygmaeus. Time duration 

of walking activity was higher for M. pygmaeus than that of N. tenuis (F1,76= 8.46, 

P= 0.0048) and males of both species spent significantly more time walking 

than females (F1,76= 9.137, P= 0.0034). In contrast, females of both species 

spent significantly more time walking-antennating (walking accompanied 

by exploratory behaviour of the antennae) than males (F1,76= 4.034, P= 0.0481), 

with no significant differences between species observed (F1,76= 1.55, P= 0.22). 

For all other observed behaviours (antennating, grooming and flying), both 
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mirid species and sexes behaved similarly, with no significant difference 

observed (Table 3.1 and Table S1). 

Residency on different plant localities was found to vary between 

species. Nesidiocoris tenuis was found to spend a significantly longer duration 

of time in the apical region of the sweet pepper plant than M. pygmaeus 

(F1,76= 6.80, P= 0.01), while the opposite occurred in the basal region (F1,76= 4.7, 

P= 0.03). No differences were found in residency between the sexes either in 

the apical (F1,76= 3.739, P= 0.05) or in the basal regions (F1,76= 0.80, P= 0.37). Males 

of both species remained for significantly longer time periods off-plant than 

the females (F1,76= 4.75, P= 0.03) with no significant difference observed in time 

spent off-plant between the two mirid species (F1,76= 6.21, P= 0.01) (Table 3.1). 

Nesidiocoris tenuis Macrolophus pygmaeus 
Behaviours Female (n= 20 ) Male (n= 20 ) Female (n= 20 ) Male (n= 20)

Grooming 105.1 ± 25.7 A 72.5 ± 27.3 A 72.7 ± 28.5 A 31.8 ± 11.2 A
Feeding 492.0 ± 74.1 A 660.6 ± 86.9 A 313.8 ± 74.1 B 187.9 ± 46.7 B

Flying 2.3 ± 1.0 A 4.4 ± 2.0 A 2.5 ± 1.5 A 5.4 ± 1.8 A
Ovipositing 28.4 ± 10.5 A - 78.6 ± 30.4 A -

Resting 504.9 ± 51.2 A 555.6 ± 34.9 A 605.4 ± 106.3 A 728.3 ± 105.1 A
Antennating 144.3 ± 41.5 A 90.6± 24.0 A 270.6 ± 76.0 A 175.3 ± 59.8 A

Walking 84.6 ± 20.7 B 201.2 ± 49.8 B* 193.6 ± 45.3 A 483.8 ± 114.7 A*
Walk.- Antenn. 338.0 ± 66.4 A 186.5 ± 62.6 A* 231.7 ± 63.6 A 145.6 ± 40.3 A*

Locations
Apical region 1407 ± 114.4 A 1232 ± 159.7 A 1134 ± 149.8 B 749.7 ± 150.4 B

Basal region 154.7 ± 83.4 B 185.6 ± 89.9 B 482.2 ± 131.7 A 321.7 ± 113.5 A
Outside 132.7 ± 85.2 A 346.3 ± 117.5 A* 136.6 ± 68.7 A 677.3 ± 167.8 A*

Values followed by different letters and * in each row were significantly different between predator 
species and sexes, respectively (ANOVA P< 0.05)

Table 3.1.
Time in seconds (mean ± SE) spent by males and females of N. tenuis and M. pygmaeus in 
eight different behavioural states on sweet pepper plant, and the resident time (mean 
± SE) of each predator on the three designed locations. Observation were performed 
during 30 minutes. 
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3.3.2. Mirids impact both ABA and JA signaling pathways 

The feeding behaviour of both mirid predators significantly altered 

the hormonal profile of sweet pepper plants (Fig.3.1). Nesidiocoris tenuis and 

M. pygmaeus feeding behaviour significantly increased the levels of ABA, JA and 

JA-Ile when compared to intact plants (F2,14= 20.27, P< 0.0001 for ABA; F2,14= 20.14; 

P< 0.0001 for JA; F2,14= 9.36; P= 0.004 for JA-Ile) (Figs.3.1.a, c, d). Furthermore, the 

level of ABA was significantly higher following inoculation with N. tenuis which 

may suggest a higher impact on plant’s metabolism than M. pygmaeus feeding 

behaviour. In the case of SA, plants punctured by feeding behaviour of either mirid 

species displayed increased concentrations of this hormone, but these differences 

were not significantly different between species (F2, 14= 3.26; P= 0.074). 

Figure 3.1.
Comparison between the phytohormone levels in the apical regions of intact sweet pepper plants, 
N. tenuis-punctured plants and M. pygmaeus-punctured plants, (a) ABA, (b) SA, (c) JA and (d) JA-Ile. 
The presented results are the mean hormone level of five independent analyses ± SE (n=5). Bars 
with different letters are significantly different (ANOVA, Tukey’s multiple comparison test α< 0.05).
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Figure 3.2.
Quantification of defensive genes in the apical regions of intact sweet pepper plants, 
N. tenuis-punctured plants and M. pygmaeus-punctured plants, (a) ASR1, (b) PIN2 and 
(c) PR1. Data are presented as the mean of eight independent analyses of transcript 
expression relative to a housekeeping gene ± SE (n=8). Bars with different letters are 
significantly different (ANOVA, Tukey’s multiple comparison test α< 0.05).

3.3.3. Mirids significantly altered the volatile blend following 

inoculation 

The untargeted analysis of the volatiles emitted by the tomato plants 

facilitated the identification of 14 compounds differentially emitted between 

mirid-punctured and intact plants (Table 3.2) based on their mass spectra and 

coelution with pure standards, when available. Compounds were identified 

as terpenoids (2 monoterpenoids, 3 sesquiterpenoids and 1 norisoprenoid), 

The quantification of ASR1, PIN2 and PR1 gene expression displayed 

upregulation of the ASR1 and PIN2 genes in plants punctured by either mirid 

species (F2, 21= 10.10, P= 0.001 for ASR1 and F2, 21= 15.27, P= 0.0005 for PIN2), 

whereas only N. tenuis was able to upregulate the gene PR1 (F2, 21= 10.29; 

P= 0.0017) (Fig.3.2) when compared with the intact sweet pepper plants. 



Sarra Bouagga

88

green leaf volatiles (5 esters ((Z)-3-hexenyl acetate, (Z)-3-hexenyl propanoate, 

(Z)-3-hexenyl butanoate, (Z)-3-hexenyl 3-methylbutanoate and (Z)-3-hexenyl 

benzoate) and their common precursor (Z)-3-hexenol), and two further 

compounds methyl salicylate and octyl acetate. Octyl acetate was only 

detected in M. pygmaeus punctured plants (Table 3.2). All of the identified 

compounds showed significantly increased emission in punctured plants 

when compared to intact, ranging from 9-fold to 130-fold. 

3.3.4. Mirid infestation triggers parasitic wasp attraction and 

induces pest antixenosis

In the Y-tube olfactometer, the phytophagous species F. occidentalis and 

B. tabaci displayed a significant positive response towards the odour source 

emitted by intact sweet pepper plants when compared to either N. tenuis-

punctured plants (χ2= 10.90; P= 0.001 and χ2= 6.67; P= 0.0098, respectively) or 

M. pygmaues punctured plants (χ2= 10.45; P= 0.0012 and χ2= 10.45; P= 0.0012, 

respectively) (Fig.3.3.a, b). In contrast, E. formosa displayed a significant 

attraction towards the sweet pepper plants punctured by N. tenuis (χ2= 6.48; 

P= 0.01) and M. pygmaeus (χ2= 11.08; P= 0.0009) relative to intact plants 

(Fig.3.3).
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Intact plants N. tenuis-punctured plants

(a)

Intact plants M. pygmaeus-punctured plants

(b)

Figure 3.3.
Olfactory response of the selected insects to mirids-punctured plants in comparison to intact 
plants. (a) Response of F. occidentalis (n=36), B. tabaci (n=41) and E. formosa (n=30) in the 
Y-tube olfactometer when exposed to intact sweet pepper plants and N. tenuis-punctured 
plants. (b) Response of F. occidentalis (n=36), B. tabaci (n=39) and E. formosa (n=30) in the 
Y-tube olfactometer when exposed to intact sweet pepper plants and M. pygmaeus-punctured 
plants. Significant differences based on a χ2-test are marked using * (P< 0.05).
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In the cage experiments containing both N. tenuis punctured and 

intact plants a significantly lower number of F. occidentalis (t= 5.55; P= 0.0007) 

and B. tabaci (t= 3.60; P= 0.006) were found on N. tenuis-punctured plants than 

the control plants. In cage experiments containing M. pygameus-punctured 

plants and intact plants, again significantly lower numbers of F. occidentalis 

and B. tabaci individuals were found on M. pygmaeus-punctured plants 

(t= 5.07; P= 0.0011; t= 5.68; P= 0.0006, respectively) (Figs.3.4.a, b).
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Intact plants M. pygmaeus-punctured plantsN. tenuis-punctured plants

Figure 3.4.
Herbivores choice between mirid punctured plants and intact plants. (a) Number of 
F. occidentalis adults per plant (X ± SE) captured 24 hours after releasing 100 F. occidentalis 
in the centre of a cage containing 3 intact plants and 3 N. tenuis/M. pygmaeus-punctured 
plants. (b) Number of B. tabaci adults per plant (X ± SE) captured 24 hours after releasing 
100 B. tabaci in the centre of a cage containing 3 intact plants and 3 N. tenuis/M. pygmaeus-
punctured plants. Both mirid species were in contact with the plants only 24 h and then 
removed. Significant difference resulting from a one tailed t-test are marked with (*) 
(P< 0.05).
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3.3.5. Indirect defences triggered by N. tenuis last for several weeks

The parasitoid, E. formosa, was significantly attracted to N. tenuis-

punctured plants which were previously activated by the mirid, N. tenuis, 

4, 7 and 14 days before (χ2= 9.60; P= 0.0019; χ2= 6.25; P= 0.0124; χ2= 4.27; 

P= 0.04 for 4, 7 and 14 days, respectively). In contrast, the phytophagous 

pest species B. tabaci was significantly repelled to N. tenuis-punctured plants, 

but only those plants activated 4 and 7 days before (χ2= 9.80; P= 0.0017; 

χ2= 4.27; P= 0.04, respectively). This repellent effect was not observed at 

day 14, where both plant treatments induced similar attraction response in 

B. tabaci (χ2= 0.26; P= 0.60) (Fig. 3.5.a). The relative expression of the genes 

ASR1, PIN2 and PR1 quantified at day 14 after activation showed that the 

three genes were upregulated in N. tenuis-punctured plants when compared 

to intact plants (t= 4.51, P= 0.004; t= 4.101, P= 0.006 for ASR1, PIN2 and PR1, 

respectively) (Fig. 3.5.b). 



3Induced Defences by Mirids in Sweet Pepper
chapter

93

Figure 3.5.
Persistence of sweet pepper induction following N. tenuis punctures. (a) Response of 
E. formosa and B. tabaci, respectively to N. tenuis-punctured plants vis intact plants after 
4 days, 7 days and 14 days exposure ended. Significant differences based on a χ2-test 
are marked using * (P< 0.05). (b) Relative expression of defensives genes ASR1, PIN2 and 
PR1 in intact sweet pepper plants with comparison to N. tenuis-punctured plants, 14 days 
after exposure ended. Data are presented as the mean of eight independent analyses of 
transcript expression relative to the constitutive EF1 gene ± SE (n=8). Significant difference 
from a one tailed t-test are marked with (*) (P< 0.05).
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3.4. Discussion 

In this study, feeding activity by the zoophytophagous mirid 

predators, N. tenuis and M. pygmaeus has been shown to induce defensive 

responses in sweet pepper plants for the first time. Both predatory mirid 

species spent significantly more time feeding than any other activity on sweet 

pepper plant, an important behaviour known to facilitate establishment of 

the predator in the crop and maintain a population in periods of prey scarcity 

(Perdikis and Lykouressis, 2000; Urbaneja et al., 2005). When released after 

24 hours of starvation, (Montserrat et al., 2000; Durate et al., 2014)  N. tenuis 

feeding behaviour was observed at 33% of total observed activity, more than 

double that of M. pygmaeus (14%). Both species displayed a preference for 

feeding on the apical region of the sweet pepper plant, though the strongest 

preference was observed in N. tenuis, with 93% of feeding activity occurring 

in this region opposed to 64% in M. pygmaeus. These observations are in 

line with earlier studies which showed that both predatory species occupy 

different strata of the tomato plant when cohabitating the same plant, with 

N. tenuis spending significantly more time on the uppermost region of the 

plant and M. pygmaeus on the lower leaves of apical region (Perdikis et al., 

2014). 

Despite the large amount of time spent by both species of mirids 

feeding on the sweet pepper plants, as of yet, neither of the two species have 

been described producing crop damage which could affect yield (Urbaneja 

et al., 2005). Indeed, M. pygmaeus is considered a safe and efficient candidate 

to be used for sweet pepper IPM strategies in Northern Europe to supplement 

aphid control (Messelink et al., 2015; Pérez-Hedo and Urbaneja, 2015). 

The use and conservation of N. tenuis as a biocontrol agent in sweet pepper 
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is uncommon in Europe, particularly in the Mediterranean basin where this 

mirid is naturally abundant. However, in other pepper producing regions 

such as greenhouses in Kochi Prefecture, Japan, N. tenuis is considered a key 

natural enemy against whiteflies, aphids and thrips, where despite reaching 

high populations it has not been described to cause damage through plant 

feeding (Komi, 2016). 

Despite significant differences in plant feeding behaviour between the 

two mirid species, the level of cell wounding was sufficient in both species 

to activate the defence mechanisms in sweet pepper, as has been described 

in tomato plants (Pérez-Hedo et al., 2015a, 2015b; Pappas et al., 2015, 2016; 

Naselli et al., 2016). A significant increase in ABA and JA signalling pathways 

was found in both N. tenuis and M. pygmaeus-punctured plants which are 

co-regulated in response to wounding. This was in accordance with the 

results of the relative expression of the target defensive genes, ASR1 and 

PIN2, respectively. Nevertheless, the levels of the phytohormone SA, which 

has been described as an herbivore repellent in previous studies, (Erb et al., 

2012; Shi et al., 2016; Liu et al., 2016) were not significantly different between 

mirid-punctured plants and intact plants, although there was a tendency 

for it to be higher in punctured plants. Furthermore, the related gene PR-1 

was upregulated for N. tenuis-punctured plants but not for M. pygmaeus-

punctured plants. PR-1 has been recognised as a SA marker gene, but it is 

also responsive to external stimuli and internal signals such as azelaic acid 

or pipecolic acid which were not determined in the present study (Jung 

et al., 2009; Návarová et al., 2012). It is therefore likely that mirid inoculation 

enhances the levels of other internal stimuli. In addition, MeSA, a compound 

which plays an antagonistic role with free SA levels and a synergistic role 
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with JA signalling (Boachon et al., 2014), is significantly increased following 

inoculation by either mirid species.

The results confirmed that the release of VOCs by punctured-sweet 

pepper induces the observed repellency and attractiveness to the tested 

phytophage and natural enemy species. Indeed, plants exposed to N. tenuis 

and M. pygmaeus feeding were associated with repellence of both arthropod 

pests, F. occidentalis and B. tabaci, and attraction of the parasitoid E. formosa. 

Similarly, the feeding activity of N. tenuis in tomato plants have been found 

to be responsible for the repellence of B. tabaci and Tuta absoluta Meyrick 

(Lepidoptera: Gelechiidae), and for the attraction of E. formosa (Pérez-Hedo 

et al., 2015a, 2015b). However, unlike the induced plant response to N. tenuis 

feeding activities, those induced by M. pygmaeus and Dicyphus maroccanus 

Wagner (Hemiptera: Miridae) were found not to repel B. tabaci and became 

attractive to T. absoluta (Pérez-Hedo et al., 2015b).These results in tomato were 

found to be related to the upregulation of ABA and JA signalling pathways 

(Pérez-Hedo et al., 2015a), and suggest that M. pygmaeus causes a distinct 

response in tomato and pepper and are consequently capable of emitting 

different blends of volatiles. 

The HIPVs identified in this work were classified in three important 

groups, green leaf volatiles (GLVs) involving the fatty acid/lipoxygenase 

biosynthesis pathway, terpenes (the isoprenoid pathway) and methyl 

salicylate, MeSA, (the shikimic acid pathway). A future step would be 

to identify the role of each HIPV within the blend and their capacity to 

repel and/or attract different sweet pepper pests. Of the identified volatile 

compounds, octyl acetate was only recorded in M. pygmaeus-punctured 

plants. Octyl acetate has been described as a specific compound acting as 

sexual pheromone emitted by females on some species of the Miridae family 
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such as Phytocoris spp (Millar et al., 1997; Millar and Rice, 1998; Zhang and 

Aldrich, 2008). It could be that this compound was emitted by M. pygmaeus 

and traces were left on the plant. In any case, the role of this volatile on 

M. pygmaeus deserves further investigation. 

Under cage conditions, choice experiments showed that B. tabaci and 

F. occidentalis were both less likely to reside on mirid-punctured plants than 

on intact plants. This lower preference might be a consequence of indirect 

defence induction mediated by mirids. VOCs inside the box might be mixed-

up, hence the consequence of unequal distribution of both pests may be 

attributed to the contact and feeding upon the plants with high content on 

JA, which can be a feeding deterrent for arthropod pests (Santamaria et al., 

2013; Zhurov et al., 2014). Macrolophus pygmaeus-punctured tomato plants 

were observed to increase locally and systematically the accumulation of 

transcripts and activity of protease inhibitors that are known to be involved 

in plant responses, resulting in the decreased life history traits of the two-

spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) (Pappas 

et al., 2015). In the case of sweet pepper, further research should be done to 

elucidate these direct defence effects on subsequent herbivore development 

and reproduction. 

Tomato plants exposed to M. pygmaeus with all individuals 

subsequently removed, as in this study, were previously described to remain 

vaccinated for up to two weeks (Pappas et al., 2015). The impact of N. tenius 

in sweet pepper is demonstrated to remain active for 7 to 14 days. The latter 

finding would be useful for growers applying a nursery release of N. tenuis 

as a vaccine, adopting such a practice on sweet pepper crops might increase 

resilience to pest attacks. This would be an added benefit of N. tenuis and 

M. pygmaeus in order to effectively manage the key sweet pepper pests, 
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B. tabaci and F. occidentalis. After vaccination, mirids could become established 

in the crop so they could further contribute to the management of sweet 

pepper pests. However, the efficacy of N. tenuis and M. pygmaeus preying 

upon a mixed diet of sweet pepper pests and their compatibility with other 

natural enemies already adapted to sweet pepper, such as A. swirskii or 

O. laevigatus warrant further investigation. Another application derived from 

this study would be the ability to manipulate the attractant and repellent 

capacity of sweet pepper by exposure to HIPVs. As an example, the use of 

volatile dispensers to emit regular concentrations of one or a blend of these 

volatiles could result in saturated repellent and attractant environments for 

pests and natural enemies, respectively. Exploring the capacity to activate 

plant defences in intact sweet pepper by exposing the plants to these volatiles 

or volatile blends, would open the door to new ways of pest control in sweet 

pepper as successfully demonstrated in tomato plants (Pérez Hedo et al., 

2015a). 
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Supporting Information

Behaviours Species Sex Species * Sex

Grooming F1,76 = 2.28, P= 0.13 F1,76= 2.30, P= 0.13 F1,76= 0.03, P= 0.86

Feeding F1,76 = 22.37, P < 0.0001 F1,76= 0.10, P= 0.76 F1,76= 4.58, P= 0.03

Flying F1,76 = 0.11, P= 0.74 F1,76= 2.30, P= 0.13 F1,76= 0.07, P= 0.78

Ovipositing t1,38 = 1.56, P= 0.13 / /

Resting F1,76 = 2.85, P= 0.09 F1,76= 1.15, P= 0.29 F1,76= 0.20, P= 0.66

Antennating F1,76 = 3.82, P= 0.05 F1,76= 1.90, P= 0.17 F1,76= 0.15, P= 0.70

Walking F1, 76 = 8.46, P= 0.0048 F1,76= 9.14, P= 0.003 F1,76= 1.67, P= 0.20

Walk.- Antenn. F1,76 = 1.55, P= 0.22 F1,76= 4.03, P= 0.05 F1,76= 0.31, P= 0.58

Locations

Apical region F1,76 = 6.81, P= 0.01 F1,76= 3.47, P= 0.06 F1,76= 0.52, P= 0.47

Basal region F1,76 = 4.75, P= 0.03 F1, 76= 0.81, P= 0.37 F1,76= 0.37, P= 0.54

Outside F1,76 = 2.61, P= 0.11 F1, 76= 4.75, P= 0.03 F1,76= 6.28, P= 0.014

Table S.1.
Statistics (P, F and degree freedom values) for the two-way ANOVA comparison of time 
spent by males and females of N. tenuis and M. pygmaeus in eight different behavioural 
states on sweet pepper plant, and the resident time of each predator and sex on the 
three designed locations. 
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Abstract	

Pest management in protected sweet pepper crops mainly rely on biological control 
strategies. Recently, the zoophytophagous predatory mirids, Nesidiocoris tenuis, 
Macrolophus pygmaeus, and Dicyphus maroccanus, proved to be effective in the control 
of aphids on sweet pepper, for which the current biological control strategies have 
been meagre. The next step to integrate the possible use of these mirids in sweet 
pepper biological control practices would be to ascertain their potential control 
on other sweet pepper pests. In this research, a comparative study to assess the 
establishment and the efficacy of N. tenuis, M. pygmaeus, and D. maroccanus on the 
two sweet pepper key pests; the thrips, Frankliniella occidentalis, and the whitefly, 
Bemisia tabaci, was conducted. This study was carried out with two different 
temperatures regimes, 20 ºC and 27 ºC, which simulated the mean temperature 
registered in the two main crop cycles in Spain (the winter and summer planting 
period). Both, N. tenuis and M. pygmaeus; were able to establish on sweet pepper and 
significantly reduced the number of F. occidentalis and B. tabaci adults, larvae and 
nymphs. Macrolophus pygameus had the highest density at 20 ºC, whereas N. tenuis 
was more abundant at 27 ºC. In contrast, D. maroccanus was less abundant under 
both temperatures studied; and did not reduce neither F. occidentalis nor B. tabaci 
infestations in this crop. None of the three mirids were observed to cause any 
damage to the pepper plant. The implications of these results applied to the use of 
mirids in sweet pepper crops are discussed.

Key words: Nesidiocoris tenuis, Macrolophus pygmaeus, Dicyphus maroccanus,  
biological control, temperature regime.
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4.1. Introduction

Protected sweet pepper (Capsicum spp.) is one of the most strategic 

horticulture crops, widely cultivated in the South-eastern Spain. During the 

last twenty years, the ever demanding standards for healthy, residue-free 

products have pushed the growers to explore and adopt environmentally 

friendly strategies to manage sweet pepper pests (Calvo et al., 2009a; van 

Lenteren, 2012). The western flower thrips, Frankliniella occidentalis Pergande 

(Thysanoptera: Tripidae), is one of the most serious pests of sweet pepper, 

both in the greenhouse and in the open field (Tommasini and Maini, 1995; 

Van Driesche et al., 1998). In addition to the direct damages, such as fruit 

abortion or fruit scarring, caused by F. occidentalis, it may cause important 

indirect damages through its role as a vector of the tomato spotted wilt virus 

(TSWV) (Lacasa et al., 1991; Peters, 1996). Additionally, the sweet potato 

whitefly, Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae), is considered 

to be a secondary pest; which causes direct injury as a result of sap removal, 

honeydew build-up with sooty mould, physiological disorders, and the 

transmission of plant viruses (De Barro et al., 2011; Fortes et al., 2012). 

Therefore, the biological control of both pests in sweet pepper has become 

a priority in South-eastern Spain. Since the end of the last century, many 

natural enemies of thrips and whiteflies have been reported and evaluated 

for their efficacy (Sánchez et al., 2000, Sánchez and Lacasa, 2002; Urbaneja 

et al., 2001, 2002; Stansly et al., 2005; Blom et al., 2003). All these studies 

have led to the current pest management strategy in sweet pepper, which is 

based on the release of the generalist biocontrol agents, the predatory mite 

Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) and the minute 

pirate bug Orius laevigatus Fieber (Hemiptera: Anthocoridae) (Calvo et al., 
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2009a). The augmentative release of both predators successfully manages 

two of the key pests of this crop, B. tabaci and F. occidentalis (Blom, 2008, 

Calvo et al., 2009a).

Despite the success of the current biological control-based 

management program in sweet pepper, better control of aphids in this crop 

is still needed (Bloemhard and Ramakers, 2008; Belliure et al., 2008, Sánchez 

et al., 2011). Traditionally, aphids have been managed through the release 

of a combination of specialized predators, mainly the predatory midge 

Aphidoletes aphydimiza Rondani (Diptera: Cecidomyiidae) and parasitoids, 

mainly Aphidius Colemani Viereck (Hymenoptera: Braconidae) (Blom, 2008). 

However, the need for multiple releases of natural enemies increases the 

final cost of the biocontrol program (Messelink et al., 2011a). In addition, 

these releases can be disrupted by the abundance of hyperparasitoids 

(Sánchez et al., 2011), and by predator interference, where A. swirskii and 

O. laevigatus display intraguild predatory behaviour on the eggs of the 

midge (Messelink et al., 2011b; Hosseini et al., 2010). Therefore, there is 

a continuous need of investigations to identify and evaluate alternative 

natural enemies that can be used for the management of aphids in this crop. 

Generalist predators are widely known to contribute to the 

management of a wide range of agricultural pest, including aphids, around 

the world (Perdikis and Lykouressis, 2004, Messelink et al., 2011a, 2015; 

Pérez-Hedo and Urbaneja, 2015; Sylla et al., 2016). Previous studies have 

demonstrated that under laboratory conditions the zoophytophagous mirid 

predators, Nesidiocoris tenuis Reuter and Macrolophus pygmaeus Rambur 

(Hemiptera: Miridae), successfully feed upon the most commonly occurring 

sweet pepper aphid, Myzus persicae Sulzer (Hemiptera: Aphididae), also 

known as the green peach aphid (Perdikis and Lykouressis 2002, 2004; 
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Valderrama et al., 2007; Fantinou et al., 2009). More recently, under semi-

field conditions, Pérez-Hedo and Urbaneja (2015) observed how N. tenuis, 

M. pygmaeus, and Dicyphus maroccanus Wagner (Hemiptera: Miridae) 

significantly reduced the number of M. persicae in sweet pepper plants, 

reaching a level of aphid reduction close to 100%. Furthermore, Messelink 

et al. (2015) and De Backer et al. (2015) showed the release of M. pygmaeus 

and D. tamaninii Wagner (Hemiptera: Miridae) prior to infestation in 

combination with the application of supplemented food enhanced the 

management of M. persicae on sweet pepper. These results suggest the 

use of mirids in sweet peppers may just be the alternative needed in 

aphid management. However, the capacity of mirids to reduce thrips and 

whiteflies in sweet pepper crops has not been completely characterized.

To this end, we evaluated the efficacy of N. tenuis, M. pygmaeus and 

D. maroccanus as predators of thrips and whiteflies and also assessed the 

establishment of the mirids, on sweet pepper plants under two different 

temperature regimes (20 ºC and 27 ºC). Both selected temperatures 

simulated the registered means in the two main sweet pepper planting 

cycles in the Southeast of Spain.

4.2. Material and methods

4.2.1. Insects and Plants 

Nesidiocoris tenuis, M. pygmaeus, and the whitefly, B. tabaci were 

obtained from a commercial supplier (NESIBUG® and MYRICAL®; 

Koppert Biological Systems, S.L., Águilas, Murcia, Spain). Each mirid 

species was provided in plastic bottles containing 500 individuals (mature 
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nymphs and young adults), approximately 3-day-old specimens (FJ Calvo, 

Koppert BS; Personal Communication). Each predator species was released 

separately on sweet pepper plants “var. Lipari” (Dulce italiano, Mascarell 

semillas S.L, Valencia, Spain) until used, inside 60 × 60 × 60-cm plastic cages 

(BugDorm-2 insect tents, MegaView Science Co., Ltd., Taichung, Taiwan) 

and supplied with Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) eggs 

(Entofood®; Koppert B.S.) as additional food. Bemisia tabaci adults were kept 

on sweet pepper plants (the same cultivar, as described above) inside plastic 

tents in 30 × 30 × 30-cm plastic cages (BugDorm-1 insect tents, MegaView 

Science Co., Ltd., Taichung, Taiwan), until their use. The individuals of the 

third mirid species, D. maroccanus, were obtained from a laboratory colony 

on pesticide free tomato seedlings “var. Optima” which had already been  

established in the Instituto Valenciano de Investigaciones Agrarias (IVIA), 

as described in Pérez-Hedo and Urbaneja (2015). 

The F. occidentalis adults, were also obtained from a colony 

previously established at IVIA in 2010 originally collected from Campo 

de Cartagena (Murcia, Spain). The thrips colony was raised on bean plants 

(Phaseolus vulgaris L., Fabales: Fabaceae). All stock colonies described above 

were housed in climatic chambers at 25 ± 2 ºC, 65 ± 10% RH under a 14:10 

h (L:D) photoperiod at IVIA. 

The pesticide-free sweet pepper seedlings (Capsicum annuum L. var. 

“Lipari”) were transplanted into plastic pots (8 × 8 × 8 cm) containing a 

mixture of natural soil with local peat moss and were housed in a climatic 

chamber under the same environmental conditions as described above. 

Plants (approximately 25 cm in height) with 12 fully developed leaves were 

used for the experiments described below.
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4.2.2. Experimental design and sampling 

The experiment was conducted in plastic screened cages (60 × 60 

× 60-cm BugDorm-2, as described above), which were maintained in two 

identical cabinets of a glasshouse located at IVIA, under two different 

temperature regimes, 20 ± 2 ºC and 27 ± 2 ºC. The relative humidity was 

65 ± 10% and the natural photoperiod was used. Temperature and relative 

humidity were maintained during the entire duration of the experiment 

by the climate controller Ambitrol 500 (Sistemes Electrònics Progrès SA, 

Bellpuig. Spain). The experiment was carried out during the eleven weeks; 

between mid-March to the beginning of June, 2015.

To evaluate the efficiency of N. tenuis, M. pygmaeus, and D. maroccanus 

to control a mixed infestation of F. occidentalis and B. tabaci on sweet pepper 

a randomized complete block design with four treatments (release of 

N. tenuis, release of M. pygmaeus, release of D. maroccanus and a control 

without predator release) replicated four times each (cage=replicate) 

were used in both of the two glasshouse cabinets. Mirids were released 

stimulating the strategy of predator in first (pre-plant release) (Calvo et al., 

2012b). This strategy entails mirids being released in the nursery 5-7 days 

before transplanting the sweet pepper plants upon which mirid individuals 

had already laid eggs; therefore, small nymphs and adults were still 

present. In each replicate, eight healthy sweet pepper plants (25 cm high) 

and four couples (male/female) of each species of mirid were introduced 

on the same day (1 adult/plant). Each mirid species was separately released 

in quadruplets. The control treatment did not receive mirid releases. 

During the first two weeks of the experiment, approximately 0.1 g / plant 

of frozen eggs of E. kuehniella were equally distributed on the plants by 
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manually sprinkling. The addition of this alterntative food facilitated mirid 

establishment and oviposition (Urbaneja-Bernat et al., 2015). The plants 

were irrigated twice a week throughout the experiment.

Two weeks after the release of mirids, 8 couples (male/female) 

(5 adults/m2) of F. occidentalis and 16 couples (10 adults/m2) of B. tabaci were 

introduced per cage eight times (1 infestation per week). Both pests were 

separately introduced into Petri dishes that were then left open at the 

base of the plant in each of the cages. These selected rates were chosen to 

simulate a strong and early whitefly and thrips infestation. 

One week after the first pest infestation, the samplings were started 

in both of the glasshouse cabinets at 20 ± 2 ºC and 27 ± 2 ºC. From four 

randomly selected plants per replicate; three leaves (one from the upper, 

one from middle, and one from the lower part of the plant) were inspected 

and the number of live F. occidentalis and B. tabaci adults, larvae, and 

nymphs were recorded. The same whole plants were also inspected to 

count the total number of mirid adults and nymphs. Eight evaluations (one 

per week) were conducted. Special care was always taken to sample the 

control cages first and then the cages containing the predators, to reduce 

the risk of accidental contamination among the treatments.

4.2.3. Statistical analysis

The total number of F. occidentalis and B. tabaci per sampled leaf 

and the total number of mirids per plant were log (x+1) transformed 

prior to analysis using Generalized Linear Mixed Models (GLMM). 

Treatment was considered to be a fixed factor while time in weeks, a random 

one. Each GLMM used a normal distribution and identity link function. 
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Untransformed values are presented in the figures. Whenever a significant 

difference was found, pairwise comparisons of the fixed factor levels were 

performed with the least significant difference (LSD) post-hoc test (P< 0.05). 

To calculate the percentage of F. occidentalis and B. tabaci reduction; Abbott’s 

formula was applied (Abbott, 1925) using the number of F. occidentalis 

and B. tabaci accumulated at the end of the experiment (week 8; the area 

under the duration of the experiment incidence curve) (Calvo et al., 2009b). 

To know whether differences between the percentages of reduction existed, 

data were log transformed then a one-way analysis of variance (ANOVA) 

followed by comparison of means (Tukey’s test) at α< 0.05 or one-tailed 

Student’s t test (P< 0.05) was performed. The results were expressed as the 

means ± standard error.

4.3. Results

4.3.1. Frankliniella occidentalis management

In the glasshouse at 20 ºC, the three species of mirids significantly 

reduced the populations of F. occidentalis, when compared to the control 

(Fig.4.1.a) (Table 4.1). However, the number of F. occidentalis was significantly 

lower in the cages where N. tenuis and M. pygmaeus were released when 

compared to the cages in which D. maroccanus was released. 
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Treatments 20 ºC 27 ºC

t124 P t124 P

C vs. Dm 2.881 0.005 3.914 < 0.001

C vs. Mp 6.572 < 0.001 6.677 < 0.001

C vs. Nt 5.950 < 0.001 6.601 < 0.001

Dm vs. Mp 3.691 < 0.001 2.763 0.007

Dm vs. Nt 3.070 0.003 2.687 0.008

Mp vs. Nt 0.621 0.536 0.076 0.940

Table 4.1.
P values for the pairwise comparison of the number of F. occidentalis (adults + larvae) per 
leaf which received a release of D. maroccanus (Dm), M. pygmaeus (Mp), N. tenuis (Nt) and 
control without release (C). Values in bold correspond to significant differences between 
the treatments.

No significant difference in the percentage of F. occidentalis reduction 

was found between the sweet pepper plants that received releases of N. tenuis 

or M. pygmaeus. At week 8, N. tenuis and M. pygmaeus reduced the infestation 

of F. occidentalis by 82% and 87%, respectively. In contrast, D. maroccanus only 

achieved a 33% reduction, which was significantly lower when compared to 

the reduction achieved by M. pygmaeus and N. tenuis (F2-11 = 12.42; P= 0.003) 

(Fig.4.1.b). Similar results were recorded from cages maintained in the 

glasshouse at 27 ºC (Table 4.1). Nesidiocoris tenuis and M. pygmaeus were more 

voracious and reduced the infestation of F. occidentalis by 89% and 90%, 

respectively, at week 8 (F2-11 = 16.95; P= 0.001). Dicyphus maroccanus was less 

efficient and reduced 45% of the F. occidentalis population when compared 

to control treatment (Fig.4.1.d). At this temperature, no differences were 

observed between the percentages reduction of F. occidentalis in sweet pepper, 

which received releases of N. tenuis, and those which received M. pygmaeus 

(Table 4.1).
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Figure 4.1.
(a) Number (mean ± SE) of F. occidentalis (adults + larvae) per sweet pepper leaf at 20 
ºC, (b) percentage reduction (Abbott) (mean ± SE) of F. occidentalis individuals at 20 ºC, 
(c) number (mean ± SE) of F. occidentalis (adults + larvae) per sweet pepper leaf at 27 ºC, 
and (d) percentage reduction (Abbott) (mean ± SE) of F. occidentalis individuals at 27 ºC in 
a glasshouse experiment comparing the effectiveness of the mirid predators, N. tenuis, 
M. pygmaeus, and D. maroccanus at different time intervals under the two temperature 
regimes mentioned above. Bars with different letters are significantly different (ANOVA, 
Tukey’s multiple comparison test α< 0.05).
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4.3.2. Bemisia tabaci management

The number of B. tabaci per sampled leaf in the cages maintained in the 

glasshouse at 20 ºC was low for all the treatments. The release of M. pygmaeus 

and N. tenuis significantly reduced the B. tabaci infestation when compared 

to the D. maroccanus and control cages. No significant differences were found 

between the numbers of B. tabaci counted in D. maroccanus and control cages 

(Fig.4.2.a) (Table 4.2).

The infestation by B. tabaci at week 8 was reduced by 82% and 65% 

by M. pygmaeus and N. tenuis, respectively (t6 = 2.263; P= 0.108) (Fig.4.2.b). 

A similar trend was observed when the experiment was conducted at 

27 ºC; however, under this temperature the three mirid species significantly 

reduced the B. tabaci infestation when compared to the control. The number 

of B. tabaci was significantly lower in the N. tenuis and M. pygmaeus cages 

Treatments 20 ºC 27 ºC

t124 P t124 P

C vs. Dm 1.736 0.085 2.509 0.013

C vs. Mp 5.413 < 0.001 5.257 < 0.001

C vs. Nt 4.456 < 0.001 5.262 < 0.001

Dm vs. Mp 3.677 < 0.001 2.748 0.007

Dm vs. Nt 2.720 0.007 2.753 0.007

Mp vs. Nt 0.957 0.340 0.005 0.996

Table 4.2.
P values for the pairwise comparison of the number of B. tabaci (adults + nymphs) per 
leaf which received a release of D. maroccanus (Dm), M. pygmaeus (Mp), N. tenuis (Nt) and 
control without release (C). Values in bold correspond to significant differences between 
the treatments.
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when compared to that in the D. maroccanus cages (Fig.4.2.c) (Table 4.2). 

A reduction of 96% of the infestation was obtained by M. pygmaeus and 

N. tenuis, whereas, D. maroccanus was less efficient and only reduced the 

B. tabaci populations by 46% (F2-11= 7.06; P= 0.015) (Fig.4.2.d). 

Figure 4.2.
(a) Number (mean ± SE) of B. tabaci (adults + nymphs) per sweet pepper leaf at 
20 ºC, (b) percentage reduction (Abbott) (mean ± SE) of B. tabaci individuals at 20 ºC 
(c) Number (mean ± SE) of B. tabaci (adults + nymphs) per sweet pepper leaf at 27 ºC, 
and (d) percentage reduction (Abbott) (mean ± SE) of B. tabaci individuals at 27 ºC in 
a glasshouse experiment comparing the effectiveness of the mirid predators, N. tenuis, 
M. pygmaeus, and D. maroccanus at different time intervals under the two temperature 
regimes mentioned above. Bars with different letters are significantly different (ANOVA, 
Tukey’s multiple comparison test α< 0.05).
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4.3.3. Mirid populations

At 20 ºC, M. pygmaeus, with an average of 1.6 ± 0.2 individuals/plant, 

was significantly more abundant than N. tenuis (1.15 ± 0.3), which in turn was 

higher than D. maroccanus (0.3 ± 0.2) (Fig.4.3.a) (Table 4.3). In contrast, when 

the experiment was conducted at 27 ºC, N. tenuis was the most abundant 

predator with an average of 2.1 ± 0.4 individuals/plant, which was significantly 

higher than both the M. pygmaeus and D. maroccanus populations (Table 4.3). 

Significant differences were obtained between the M. pygmaeus (1.2 ± 0.2) and 

D. maroccanus (0.25 ± 0.05) population numbers, with the latter being very 

low throughout the entire experiment (Fig.4.3.b) (Table 4.3).

Treatments 20 ºC 27 ºC

t124 P t124 P

Dm vs. Mp 7.292 < 0.001 3.992 < 0.001

Dm vs. Nt 4.886 < 0.001 7.754 < 0.001

Mp vs. Nt 2.406 0.018 3.762 < 0.001

Table 4.3.
P values for the pairwise comparison of the number of mirids (adults + nymphs) per plant 
that received D. maroccanus (Dm), M. pygmaeus (Mp), and N. tenuis (Nt) releases. Values in 
bold correspond to significant differences between the treatments.
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Figure 4.3.
Number (mean ± SE) of N. tenuis, M. pygmaeus, and D. maroccanus (adults + nymphs) per 
sweet pepper plants at different time intervals under two temperature regimes (a) 20 ºC 
and (b) 27 ºC.
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4.4. Discussion

Our results show that the pre-plant release strategy of the three 

selected predatory mirids, supported by the addition of E. kuehniella eggs, 

successfully established on sweet pepper plants although the number of 

mirids per plant was much lower in the case of D. maroccanus. Accordingly, 

the number of individuals established by the release and augmentation of              

N. tenuis or M. pygmaeus before the infestation of thrips and whiteflies 

resulted in continuous suppression of both pests. The low abundance of 

D. maroccanus was relative to the level of control reached by both pests, 

which remained around 40% in both temperature regimes. 

Although, the members of Miridae are common predators in 

Mediterranean agroecosystems and spontaneously colonize various 

agricultural crops, including sweet pepper (Perdikis and Lykouressis, 1996; 

Tavella et al., 1997; Castañé et al., 2004; Gabarra et al., 2004), their commercial 

use in this crop is underrepresented. The mirid predators are known to be 

generally associated to hairy plants (Wheeler, 2001), but our results and 

previous studies have shown their establishment and reproduction to also be 

possible in plants lacking hair and or trichomes (Perdikis and Lykouressis, 

2004; Urbaneja et al., 2005; Barbara et al., 2011; Messelink et al., 2015; Pérez-

Hedo and Urbaneja, 2015). 

Our results illustrated differences in the abundance of each predator 

species in the two temperatures tested. Macrolophus pygmaeus showed strong 

preference for the lower temperature tested where it was significantly 

more abundant in all the released cages when compared to N. tenuis and 

D. maroccanus. Conversely, N. tenuis was the most abundant at 27 ºC. These 

trends linked to temperature are in accordance with the observations made 
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by Sánchez et al. (2003), who reported that M. pygmaeus was more abundant 

than N. tenuis in the spring and early summer in horticultural crops in 

inland areas of South-eastern Spain, whereas N. tenuis was the predominant 

species found naturally in the coastal areas where temperatures were higher. 

Previous studies confirmed that N. tenuis is more thermophilous than any of 

the other Dicyphinae members, such as M. pygmaeus, M. caliginosus Wagner, 

and D. tamaninii Wagner (Hemiptera: miridae) (Sánchez et al., 2009). The 

optimum temperature required by N. tenuis ranges between 20 and 30 ºC, 

with a high fertility rate observed at 30 ºC, that allows this mirid better 

adaptation to high temperatures (Sánchez et al., 2009; Hughes et al., 2009, 

2010). Indeed, in this research we observed how N. tenuis was able to double 

its population at 27 ºC. 

Temperature is not the only factor that could have influenced the 

distinct development of the mirids. The availability of prey could also 

have influenced the population dynamics obtained. Prey scarcity was 

more evident at 20 ºC, especially in the case of B. tabaci, which is better 

adapted to higher temperatures (Bonato et al., 2007; Naranjo et al., 2010). 

Macrolophus pygmaeus can continue its immature development by feeding 

exclusively on the plant tissue although its survival is highly affected 

(Perdikis and Lykouressis, 1996, 2000; Portillo et al., 2012). However, N. tenuis 

is prey dependent (Urbaneja et al., 2005), which could have accentuated the 

thermal differences between both species even more. Prey preference and 

switching behaviour to feeding on the most preferred prey are additional 

characters to be considered when evaluating the potential of polyphagous 

predators in multi-pest agroecosystems. However, in the case of Hemipteran 

predators, developmental rate and fecundity are usually enhanced when 

they are fed multi-prey diets (Wheeler, 2001), which may indicate that even 
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in the case of strong preferences for one prey, the necessity to diversify the 

diet can be very influential. Mixed diets are known to have a positive effect 

on reproduction in some predator species (Evans et al., 1999). For example, 

in greenhouse cucumber, better control was achieved by the predatory mite 

A. swirskii due to the positive effect of a mixed diet of thrips and whiteflies 

(Messelink et al., 2008).

Macrolophus pygmaeus being slightly less abundant at 27 ºC than 

at 20 ºC was more effective at 27 ºC than at 20 ºC. The strong reduction in 

B. tabaci populations in the presence of F. occidentalis and vice versa could 

be due to an increased response by M. pygmaeus to higher prey availability 

(Holt, 1977; Holt and Lawton, 1994). Several previous studies support the 

idea of numerical responses by M. pygmaeus depending on the number of 

available prey (Fauvel et al., 1987; Alómar et al., 2002). In accordance with 

our results, Fantinou et al. (2008), observed an increase in the predation rate 

of M. pygmaeus on M. persicae at 30 ºC where the amount of susceptible prey 

was higher than at lower temperatures where the availability of prey was 

lower. The reasons for this shift in the predator’s behaviour when foraging 

at higher temperatures may be related to increased metabolic rates and 

behavioural changes of the predator and/or prey, which could result in more 

successful predatory searches (lower search time) or less effective defence by 

the prey (Fantinou et al., 2008).

The third tested mirid species, D. maroccanus, failed to successfully 

establish throughout the length of the experiment at both temperatures 

studied. In previous studies, D. maroccanus was observed to successfully 

establish itself and prey on Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) 

on tomato crops (Abbas et al., 2014), and on M. persicae on sweet pepper plants 

(Pérez-Hedo and Urbaneja, 2015). The reasons that could explain its failure 
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to establish itself remain unclear, but perhaps thrips and whiteflies were not 

suitable prey species for this predator. As a result of the low abundance of 

D. maroccanus, neither of the two pests were adequately suppressed, despite 

the lower population levels of them when compared to the control cages. 

All the plants treated with D. maroccanus appeared unhealthy at the end of 

the experiment, with no visual differences observed between them and the 

control cages.

Our results are not the first to describe the efficiency of N. tenuis and 

M. pygmaeus in managing thrips and whiteflies; this has already been seen 

in several agricultural crops (Castañé et al., 1996; Riudavets and Castañé, 

1998; Blaeser et al., 2004; Bonato et al., 2006; Sánchez and Lacasa, 2008; 

Calvo et al., 2012b; Malo et al., 2012). However, in the case of sweet pepper, 

this is the first study that evaluates the effectiveness of both mirids when 

pre-plant release was done without combining them with other natural 

enemies. Indeed, Calvo et al. (2009a) evaluated the potential predation of 

N. tenuis combined with that of the parasitoid, Eretmocerus mundus Mercet 

(Hymenoptera: Aphelinidae), and A. swirskii. In that study, the combined 

release of N. tenuis with A. swirskii did not improve the biological control of 

B. tabaci on sweet pepper. However, Messelink and Janssen (2014) confirmed 

the combination of M. pygmaeus and O. laevigatus to enhance the biological 

control of F. occidentalis and M. persicae in sweet pepper crops.

Overall, our results, together with those of previous studies 

(regarding the efficiency of mirids in managing aphids on sweet pepper, 

could help to develop new strategies for pest management in commercial 

sweet pepper crops using generalist predators. Moreover, the efficacy of 

N. tenuis and M. pygmaeus preying upon a mixed diet of sweet pepper pests 

including aphids warrants further research. Biological control agents are 
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frequently used in combination; however, the success of a biological control 

program can be disrupted by direct and or indirect interactions, such as 

competition, apparent competition, intraguild predation, and behavioural 

interference, between natural enemies. Hence, we have planned a study on 

the compatibility of N. tenuis and M. pygmaeus with other natural enemies 

already adapted to sweet pepper, such as A. swirskii, to evaluate their 

combined efficacy in this crop. 
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Abstract
The combined release of Orius laevigatus with Amblyseius swirskii provides effective 
control of sweet pepper key pests, such as thrips and whiteflies. However, the 
management of the aphids can still be improved. Recently, the predatory mirids 
Nesidiocoris tenuis and Macrolophus pygmaeus have been found to be effective in the 
control of aphids, thrips and whiteflies when tested alone. Hence, integrating one 
of these two mirids with A. swirskii might enhance sweet pepper pest management. 
In this work, we began by investigating the co-occurrence of both mirid species 
when released together with A. swirskii. This was compared to the standard release 
of O. laevigatus with A. swirskii. Nesidiocoris tenuis and A. swirskii were involved in 
a bidirectional intraguild predation (IGP). On the contrary, this interaction (IGP) 
was apparently unidirectional in the case of M. pygmaeus with A. swirskii and 
O. laevigatus with A. swirskii. Both, M. pygmaeus and O. laevigatus significantly 
reduced the abundance of A. swirskii. Secondly, in a greenhouse experiment, 
where the same release combinations were tested (either N. tenuis, M. pygmaeus or 
O. laevigatus combined with A. swirskii), IGP seemed to be neutralized. Mirids with 
A. swirskii significantly suppressed thrips, whitefly and aphid infestations. Contrarily, 
the combined use of O. laevigatus with A. swirskii did not reached a satisfactory 
control for aphids, despite the reduction in thrips and whitefly densities. Therefore, 
our results suggest that the use of mirids combined with A. swirskii could result in 
more efficient and robust biological control programs in sweet pepper crops.

Key words: Intraguild predation, Nesidiocoris tenuis, Macrolophus pygmaeus, 
Orius laevigatus, biological control.
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5.1. Introduction

Biological control (BC) programs, especially in greenhouse crops, 

are increasingly based on releases of several species of generalist predators 

against common greenhouse pests (Calvo et al., 2009a, 2012a; van Lenteren, 

2012, van Lenteren et al., 2018). One of the most impressive success stories 

of BC was observed is sweet pepper crops in southeast Spain (Calvo et al., 

2015). This success was achieved thanks to the combined release of the 

anthocorid bug Orius laevigatus Fieber (Hemiptera: Anthocoridae), and the 

predatory mite, Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) 

which can control two important sweet pepper pests, the thrips species, 

Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) and the 

whitefly Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae). The release 

of O. laevigatus is mainly focused for controlling thrips, but when well-

established it can also contribute to the management of whiteflies (Arnó et 

al., 2008), aphids (Alvarado et al., 1997), and spider mites (Venzon et al., 2002). 

Complementary, A. swirskii is released for controlling whiteflies (Nomikou 

et al., 2002; Calvo et al., 2009a) but it can also manage thrips (Messelink 

et al., 2006), broad mites (van Maanen et al., 2010) and to a lesser extent, 

spider mites (Messelink et al., 2010). In spite of the broad diet range of both 

predators, the BC system is still challenged due to aphids. The management 

of aphids requires the release of a combination of specialized parasitoids and 

predators (Blom, 2008; Messelink et al., 2011b, 2013). However, the abundance 

of hyperparasitoids in southeastern Spain (Belliure et al., 2008, Sánchez et al., 

2011) and the interference occurring among generalist thrips predators and 

specialist aphid natural enemies (Messelink et al., 2011b), have negatively 

affected the outcomes of this BC program in sweet pepper. To make matters 
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worse, the program can end up being extremely expensive (Messelink et al., 

2011a).

In recent years a line of research to improve the BC of aphids has 

been focusing on identifying the generalist zoophytophagous predators able 

to be established in the sweet pepper crop prior to aphid arrival. This could 

result in rapid responses to new aphid infestations and would prevent aphid 

establishment (Messelink et al., 2011a). The effectiveness of zoophytophagous 

mirid predators (Hemiptera: Miridae) such as Macrolophus pygmaeus Rambur, 

Nesidiocoris tenuis Reuter, Dicyphus maroccanus Wagner and D. tamaninii 

Wagner has been explored in sweet pepper crops. Either, their inoculation or 

their release after pest outbreaks resulted in effective aphid management in 

this crop (Messelink et al., 2015; Pérez-Hedo and Urbaneja, 2015). In addition, 

some of these mirid species, such as N. tenuis and M. pygmaeus can also be 

effective to control whiteflies and thrips in sweet pepper under different 

temperatures (chapter 4). Therefore, the next step would be to know whether 

the pre-pest establishment of both species of mirids in sweet pepper could 

manage the populations of the three pests, whiteflies, thrips and aphids. 

For this, the combined use of either N. tenuis or M. pygmaeus and A. swirkii to 

reduce the populations of F. occidentalis, B. tabaci and Myzus persicae Sulzer 

(Hemiptera: Aphididae) was evaluated under greenhouse conditions. The 

contribution of A. swirskii, in the end, is currently so notably positive for BC 

in sweet pepper that a hypothetical use of mirids would inexorably be linked 

to the release of A. swirskii. Both alternative strategies were compared with 

the standard release of O. laevigatus and A. swirskii.
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Nonetheless, generalist zoophytophagous predators do not only feed 

on pests or plant-provided food, but also on other natural enemies (Rosenheim 

et al., 1995; Rosenheim, 1998). This feeding on other natural enemies can be 

classified as intraguild predation (IGP) when the competitors share prey 

and thus contend for it (Polis et al., 1989; Holt and Polis, 1997; Rosenheim et 

al., 1995). Therefore, the combined release of a pair of generalist predators 

could result in a negative outcome on BC of the target pest (Rosenheim et 

al., 1995; Rosenheim and Harmon, 2006; Janssen et al., 2006). As mentioned 

above, both predatory mirids and A. swirskii are true omnivores (Coll and 

Guershon, 2002) feeding on several trophic levels such as plant materials 

(pollen, nectar, plant sap), herbivores and other natural enemies, which 

can increase the probability of IGP. Indeed, Messelink et al. (2011b) showed 

that the predatory mite A. swirskii can seriously disrupt BC of aphids by 

preying on the eggs of the predatory midges, Aphidoletes aphidimyza Rondani 

(Diptera: Cecidomyiidae). Orius bugs can also prey on eggs and larvae 

of A. aphidimyza, and therefore act as an intraguild predator (Christensen 

et al., 2002). However, this outcome could also results positive for BC. 

Messelink and Janssen (2014), observed that IGP between M. pygmaeus and 

O. laevigatus did not affect BC of thrips and aphids, at contrary the combined 

augmentative release of both predator increased pest suppression.

Therefore, a laboratory experiment was conducted in order to study 

the interaction between predatory mirids and A. swirskii in combined release, 

in comparison to the standard release of O. laevigatus with A. swirskii. In this 

caged-experiment whether the intensity of IGP (if any) affects the abundance 

of the predatory bugs (N. tenuis, M. pygmaeus and O. laevigatus) or the predatory 

mite (A. swirskii) when co-occurring  on sweet pepper plants provided or 

deprived of eggs of the shared prey, Ephestia kuehniella Zeller (Lepidoptera: 
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Pyralidae) was studied. Then, under greenhouse conditions we evaluated 

the efficacy of each the mixed releases (N. tenuis with A. swirskii; M. pygmaeus 

with A. swirskii and O. laevigatus with A. swirskii) in reducing F. occidentalis, 

B. tabaci and M. persicae infestation in sweet pepper. Implications of these 

results for the future of BC of sweet pepper pests are discussed. 

5.2. Materials and Methods

5.2.1. Plants and insects

The plants used in all experiments were pesticide free-sweet pepper 

seedlings [Capsicum annuum (Solanaceae)] cv (‘Lipari’) (Dulce italiano, 

Mascarell semillas S.L, Valencia, Spain). Two weeks after germination 

seedlings were transplanted in plastic pots (8 × 8 × 8 cm) containing a mixture 

of natural soil with local peat moss and were housed in a growth chamber at 

25 ± 2 ºC, 60-80% RH and 14:10 h (L:D) photoperiod at the Instituto Valenciano 

de Investigaciones Agrarias (IVIA). 

Nesidiocoris tenuis, M. pygmaeus, O. laevigatus and A. swirskii adults, 

were obtained from a commercial supplier (NESIBUG®, MYRICAL®, 

THRIPOR®, SWIRSKI-MITE®, Koppert Biological Systems, S.L., Águilas, 

Murcia, Spain). Each predatory bug was provided in plastic bottles 

containing 500 adult individuals approximately 3-days-old (FJ Calvo, 

Koppert BS; Personal Communication). Amblyseius swirskii was supplied 

in bottle or in sachet according to the experimental requirements. Frozen 

E. kuehniella (Entofood®; Koppert B.S.) eggs were used as additional food 

to enhance mirids establishment in sweet pepper. Frankliniella occidentalis 

adults were obtained from a colony established at IVIA initiated in 2010 with 
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individuals originally collected from Campo de Cartagena (Murcia, Spain). 

The thrips colony was reared on bean plants (Phaseolus vulgaris L.; Fabales: 

Fabaceae) and housed in a growth chamber at IVIA, at the same conditions 

mentioned above. The M. persicae (green phenotype) colony was obtained 

from a laboratory insect culture established on sweet pepper plants in IVIA, 

as described in Pérez-Hedo and Urbaneja (2015). 

5.2.2. Co-occurrence between predatory bugs and A. swirskii 

Under laboratory conditions, we studied the co-occurrence of 

predatory bugs’ N. tenuis, M. pygmaeus, O. laevigatus and the predatory mite, 

A. swirskii on sweet pepper plants provided or deprived of E. kuehniella eggs. 

Four different treatments were assayed per predatory bug: 1) Predatory 

bug alone, 2) Predatory bug + E. kuehniella, 3) Predatory bug + A. swirskii 

and 4) Predatory bug + A. swirskii + E. kuehniella. In addition two treatments 

with A. swirskii were also conducted 1) A. swirskii alone and 2) A. swirskii + 

E. kuehniella. There were four replicates of each treatment. For this, 56 screened 

plastic cages (30 x 30 x 30 cm) (BugDorm-1 insect cages; MegaView Science 

Co., Ltd., Taichung, Taiwan) were maintained in a climatic chamber at IVIA 

(same conditions mentioned above). In each cage (replicate), one sweet pepper 

plant with 6 fully-developed leaves (approximately 15 cm in height) was 

placed inside. Two couples (male and female) of each predatory bug (N. tenuis, 

M. pygmaeus or O. laevigatus) and 50 A. swirskii individuals were released at the 

same time. The number of adults and nymphs of each predatory bug species 

and the number of A. swirskii individuals (adults, protonymphs, deutonymphs 

and larvae) per plant was weekly recorded using a manual magnifying glass. 

The experimental period lasted six consecutive weeks. 
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5.2.3. Greenhouse efficacy experiment

The experiment was carried out in a greenhouse equipped with 

drip irrigation system located at IVIA in Moncada (Valencia, Spain). 

The greenhouse was divided into 24 experimental cages with access through 

an isolating double mesh door. Cages were screened with “anti-thrips” 

polyethylene mesh of 220 x 331 μm interstices and had concrete floors. 

Each experimental compartment measured 4 x 3 x 3 m (length × height × 

width) and were equipped with five hydroponic substrate containers 

(growbag). Each cage was accessed by a separate door secured with a zipper. 

The climatic conditions including temperature and relative humidity 

were recorded using a data-logger (model TESTO 175-H2, Amidata S.A. 

Pozuelo de Alarcón, Madrid), that was placed in the central cage. The average 

temperature during the experiment ranged between 24.9 ºC on May 4th, 2016 

and 32.7 ºC on June 9, 2016 with a minimum and maximum temperature 

of 21.1 ºC and 43.5 ºC, respectively. The average relative humidity varied 

between 55.4% on May 4th, 2016 and 98.6% on June 9, 2016 with absolute 

minimum and maximum values of 33.7% and 99.7%, respectively.

Four different treatments were considered: 1) N. tenuis + A. swirskii, 

2) M. pygmaeus + A. swirskii, 3) O. laevigatus + A. swirskii and 4) control, 

without any predators released. Four replicates per treatment were 

made. Each replicate was assigned to one cage, hence 16 cages were used. 

The experiment started by inoculating sweet pepper seedlings in the nursery 

with either N. tenuis or M. pygmaeus at a release rate of one predator per plant 

(Fig.5.1). To help predator establishment and oviposition, frozen eggs of the 

factitious prey E. kuehniella, approximately 0.1 g per plant were supplied as 

alternative food (Urbaneja-Bernat et al., 2015). One week later, either inoculated 
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or non-inoculated sweet pepper plants (depending on the treatment) were 

transplanted and moved to the greenhouse. In each cage, 20 plants were 

transplanted to hydroponic substrates at a rate of 4 plants per growbag. The day 

following transplantation one sachet of A. swirskii, containing around 125 mites of 

mixed ages, was hung on the first plant node on every three sweet pepper plant. 

One week after transplantation the infestation of the plants with weekly releases 

of F. occidentalis (5 adults/m2, 40 adults/cage), B. tabaci (10 adults/m2, 80 adults/

cage) and M. persicae (30 aphid of mixed age/plant) was initiated. Six releases 

were conducted for F. occidentalis and for B. tabaci. In the case of M. persicae only 

three releases were made due to the rapid proliferation of aphids in the control 

treatment. These release rates and their frequency were chosen to simulate a 

strong and early pest attack. Four weeks after transplantation, sweet pepper 

plants began flowering and O. laevigatus individuals were released in the cages 

corresponding to “O. laevigatus + A. swirskii” treatment at the rate of 1 adult/plant. 

Two releases of O. laevigatus were done at an interval of 7 days. One week later 

the pest infestation samplings were initiated and continued until the end of the 

experiment which was 6 weeks later. For this, five random plants per cage were 

selected and the number of F. occidentalis, B. tabaci, M. persicae and the number 

of predators (immature and adults) per plants were recorded. Special care was 

always taken to count the replications in the control compartment first and then 

the cages with the predators to reduce risk of accidental contamination among 

treatments. The full experiment ran for nine weeks, from beginning of May to 

the end of June 2016. The experiment was stopped after the sixth data collection 

date due to the high attack in the control cages which resulted in the total 

collapse of the control plants. Plants were irrigated twice a week throughout the 

experiment. A graphical scheme summarizing the release calendar is shown in 

Fig.5.1. 
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5.2.4. Statistical analysis

In the co-occurrence experiment, the accumulated number 

of predatory bugs (adults + nymphs) and predatory mites (nymphs, 

protonymphs, deutonymphs and adults) during the course of the trial were 

calculated. The resulting estimates of insect per days (=area under the weekly 

incidence curve) was log transformed and then subjected to a one-way 

analysis of variance (ANOVA) joined with a Tukey’s test for mean separation 

(α< 0.05). Treatments with zero values during the 6 weeks of the analysis 

were excluded from the analysis. Therefore, in N. tenuis treatment, one-tailed 

Student’s t-test (P< 0.05) was conducted since only two treatments were 

compared. For the greenhouse experiment, the total number of F. occidentalis, 

B. tabaci, M. persicae and predators per sweet pepper plants were log (x+1) 

transformed prior to analysis using the generalized Linear Mixed Models 

(GLMM). Treatment was considered to be a fixed factor and time (weeks) 

as a random one. Each GLMM used a normal distribution and identity link 

function. Whenever a significant difference was found, pairwise comparisons 

of the fixed factor levels were performed with the least significant difference 

(LSD) post-hoc test (P< 0.05). Untransformed value are presented in figures. 

To calculate F. occidentalis, B. tabaci and M. persicae percentage of reduction, 

Abbott’s formula was applied, 100 × [1- (treated/control)] (Abbott, 1925) using 

the accumulated number of F. occidentalis, B. tabaci and M. persicae. To know 

whether differences between the percentages of reduction existed, data were 

log transformed and then a one way ANOVA followed by comparison of 

means (Tukey’s test) at P< 0.05 was conducted. The results were expressed 

as the means ± standard error.
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5.3. Results

5.3.1. Dynamics of predatory bugs when co-occurred with A. swirskii

The population dynamics of the three predatory bugs was 

significantly different among the four release treatments (released alone, 

released together with A. swirskii, released with the addition of E. kuehniella 

eggs and released together with A. swirskii with the addition of E. kuehniella 

eggs (N. tenuis: t1,7= 2.51, P= 0.046; M. pygmaeus: F3,15= 296.8, P< 0.001 and 

O. laevigatus: F2,11= 230.7 P< 0.001) (Fig.5.2). The highest population density 

for the three predators was observed in treatments receiving E. kuehniella 

eggs as additional food. Both N. tenuis and O. laevigatus were unable to 

survive and reproduce in the absence of E. kuehniella eggs. Nevertheless, 

M. pygmaeus was able to survive 7 weeks after its release on sweet pepper 

plants deprived from alternative prey, although at a very low density 

(Table 5.1; Fig.5.2). When predatory bugs were released together with the 

predatory mite on those plants provided with the addition of E. kuehniella 

eggs, N. tenuis significantly decreased its population density (Fig.5.2.a). 

However, the density of O. laevigatus and M. pygmaeus was not negatively 

affected when released with A. swirskii in the presence of E. kuehniella eggs 

(Figs.5.2.b,c). 
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Figure 5.2.
Variation in the abundance 
of predatory bug (a) N. tenuis 
(Nt), (b) M. pygmaeus (Mp) and 
(c) O. laevigatus (Ol) (adults + 
nymphs, mean number ± 
SE) per sweet pepper plant 
in single species treatment 
and in mixed treatment 
with A. swirskii (As) when the 
shared prey E. kuehniella (Ek) 
eggs were and were not pro-
vided. Different letters indi-
cate significant differences 
of predator bug numbers of 
the same species between 
treatments.
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Figure 5.3.
Variation in the abundance of A. swirskii (As) (adults + deutonymph + protonymph + nymphs, 
mean number ± SE) per sweet pepper plant in single specie treatment and in mixed treatment 
with predatory bugs when the shared prey E. kuehniella (Ek) eggs were (a) and were not provided 
(b). Different letters indicate significant differences of A. swirskii numbers between treatments.

5.3.2.Dynamics of A. swirskii when co-occurred with predatory bugs

The number of A. swirskii per plant was not different when comparing the 

population dynamics of the treatment where A. swirkii was released alone with 

the population dynamics of those treatments where A. swirskii was released with 

one of the three predatory bugs tested (F3,15= 0.52, P= 0.68) (Fig.5.3.a). In spite the 

general trend, the populations of A. swirksii decreased from the date they were 

released. This predatory mite was able to survive in the sweet pepper plants 

without access to prey during the 7 weeks of the experiment, independent of the 

presence or absence of a predatory bug. Nevertheless, the population dynamics 

of A. swirskii were significantly different between the four treatments where the 

releases of A. swirskii were supplemented with eggs of E. kuehniella (F3,15 = 24.02, 

P< 0.001) (Fig.5.3.b). The combined release of any of the three predatory bugs 

with A. swirskii in the presence of E. kuehniella significantly reduced A. swirskii 

populations when compared to the treatment when A. swirskii was released with 

E. kuehniella alone. Indeed, the combined release with O. laevigatus was the one 

that was significantly more detrimental for the phytoseiid populations (Fig.5.3.b). 



5Mirids and A. swirskii against Sweet Pepper Pests
chapter

139

5.3.3. Predators abundance under greenhouse conditions 

The three predatory bugs established themselves on sweet pepper 

plants when released together with A. swirskii and remained active until 

the end of the experiment, although significant differences were observed 

among their abundances (F2,69= 13.10, P< 0.001) (Fig.5.4.a) (Table 5.2). 

Nesidiocoris tenuis was significantly the most abundant predator in comparison 

to the number reached by M. pygmaeus and O. laevigatus (Table 5.2; Fig.5.4.a). 

On the contrary, the number of A. swirskii per plant was similar when released 

in a mixed treatment with either N. tenuis, M. pygmaeus or O. laevigatus 

(F2,69= 1.90; P= 0.16) (Table 5.2; Fig.5.4.b). However, it should be mentioned 

that the number of A. swirskii per plant was abruptly reduced after the 

release of O. laevigatus (Fig.5.4.b), although when compared to the number 

of A. swirskii in the other two predatory bug treatments, no differences were 

found.

Treatments Predatory mite Predatory bug

t69 P t69 P

Nt+As vs Mp+As 0.31 0.76 3.50 0.001

Nt+As vs Ol+As 1.50 0.14 4.98 <0.001

Mp+As vs Ol+As 1.82 0.07 1.48 0.14

Table 5.2.
P-values for the pairwise comparison of the number of A. swirskii (As) and predatory bug 
(O. laevigatus, N. tenuis, M. pygmaeus) per sweet pepper plant in the following treatments 
(N. tenuis + A. swirskii (Nt+As), M. pygmaeus + A. swirskii (Mp+As) and O. laevigatus + A. swirskii   
(Ol+As)). Values in bold correspond to significant differences between treatments.
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Figure 5.4.
(a) Dynamics of the predatory 
bugs’ N. tenuis (Nt), M. pygmaeus 
(Mp) and O. laevigatus (Ol) (adults 
+ nymphs, mean number ± SE) per 
sweet pepper plant when released 
combined with A. swirskii. (b) Dy-
namics of A. swirskii (As) (adults 
+ deutonymph + protonymph + 
nymphs, mean number ± SE) per 
sweet pepper plant in different 
combined treatments with preda-
tory bugs under greenhouse ex-
perimental conditions. Different 
letters indicate significant differ-
ences of predators’ numbers be-
tween treatments.

5.3.4. Pest management 

The number of F. occidentalis per sampled plant was continuously 

suppressed at significant levels in the three treatments which received 

releases of predators (Nt+As, Mp+As and Ol+As) when compared to the 

control (F3,92= 13.66; P< 0.001) (Table 5.3; Fig.5.5.a). The infestation by 

F. occidentalis was significantly reduced to 97%, 95% and 75%, in the Nt+As, 

Mp+As and Ol+As treatments, respectively, without differences between 
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them (Fig.5.5.b). In a similar way, B. tabaci was significantly reduced in 

the three treatments with predator releases (Nt+As, Mp+As and Ol+As) 

when compared to the control (F3,92= 22.475; P< 0.001) (Table 5.3; Fig.5.5.c). 

The percentage of whitefly reduction was not significantly different 

between treatments and was 95%, 82% and 89% in Nt+As, Mp+As and Ol+As 

treatments, respectively (Fig.5.5.d). Aphid densities significantly differed 

among treatments (F3,92= 15.66; P< 0.001) (Table 5.3). Sweet pepper plants 

managed with either Nt+As or Mp+As, harbored significantly lower density 

of aphids when compared to Ol+As and to the control. The abundance of 

aphids was also significantly lower in Ol+As when compared to the control 

(Fig.5.5.e). Aphid infestation was significantly reduced in Nt+As (90%) and 

Mp+As (77%) in comparison to Ol+As (35%) (Fig. 5.5.f). 

Treatments Frankliniella occidentalis Bemisia tabaci Myzus persicae

t92 P t92 P t92 P

C vs Nt+As 5.37 <0.001 6.54 <0.001 6.36 <0.001

C vs Mp+As 5.55 <0.001 6.80 <0.001 4.60 <0.001

C vs Ol+As 4.54 <0.001 6.76 <0.001 2.03 0.04

Nt+As vs Mp+As 0.18 0.85 0.26 0.80 1.77 0.08

Nt+As vs Ol+As 0.82 0.41 0.23 0.82 4.33 <0.001

Mp+As vs Ol+As 1.00 0.312 0.03 0.97 2.55 0.01

Table 5.3.
P-values for the pairwise comparison of the number of F. occidentalis, B. tabaci and 
M. persicae per sweet pepper plant that received a release of N. tenuis + A. swirskii (Nt+As), 
M. pygmaeus + A. swirskii (Mp+As), O. laevigatus + A. swirskii (Ol+As) and control without 
release (C). Values in bold correspond to significant differences between treatments.
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Figure 5.5.
(a) Number (mean ± SE) of F. occidentalis (adults + nymphs) per sweet pepper plant, 
(b) percentage reduction (Abbott) (mean ± SE) of F. occidentalis individuals (c) Number (mean 
± SE) of B. tabaci (adults + nymphs) per sweet pepper plant, (d) percentage reduction (Abbott) 
(mean ± SE) of B. tabaci individuals, (e) Number (mean ± SE) of M. persicae (adults + nymphs) 
per sweet pepper plant, (f) percentage reduction (Abbott) (mean ± SE) of M. persicae individuals 
in a greenhouse experiment comparing the effectiveness of predatory bug (N. tenuis (Nt), 
M. pygmaeus (Mp) and O. laevigatus (Ol)) when released in mixed treatment with A. swirskii (As) 
each, at different time intervals. Bars with different letters are significantly different (ANOVA, 
Tukey’s multiple comparison test α< 0.05).
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5.4. Discussion

Under laboratory conditions, sweet pepper plants maintained 

M. pygmaeus at a very low developmental level during approximately two 

months. In contrast, N. tenuis and O. laevigatus were not able to build up 

a significant population when prey was absent on the plant. The ability of 

M. pygmaeus to continue its immature development by feeding exclusively 

on plant tissue is already known (Perdikis and Lykouressis, 2000; Portillo 

et al., 2012), while N. tenuis is prey dependent (Urbaneja et al., 2005) 

and O. laevigatus survival and reproduction are dependent on the presence 

of either prey or pollen (Cocuzza et al., 1997). Interestingly, we observed that 

even when one of the three predatory bugs co-existed on the same plant with 

A. swirskii, despite the need of N. tenuis and O. laevigatus for a protein source, 

the three predators ignored the predatory mite and vice versa. On the contrary, 

when E. kuehniella eggs were provided as a shared prey, only N. tenuis was 

negatively affected by A. swirskii. The population levels of A. swirskii were 

negatively affected by the three predatory bugs and significantly more 

affected by the presence of O. laevigatus than that the presence of mirids 

(Fig.5.3.b). Urbaneja et al. (2003) previously observed O. laevigatus preying 

on Neoseiulus cucumeris Oudemans (Acari: Phytoseiidae) in sweet pepper 

greenhouses. Because N. cucumeris was released in large quantities in a 

period of prey scarcity, prior to the release of O. laevigatus, these authors 

pointed out that the availability of N. cucumeris (intraguild prey) facilitated 

the establishment of O. laevigatus (intraguild predator). In our experiment, 

it seems that when E. kuehniella eggs were provided as shared prey, which 

is a high quality food for both of the predatory bugs (Cocuzza et al., 1997; 

Castañé et al., 2006) and the predatory mite (Nguyen et al., 2014), competition 
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occurred. However, reasons why A. swirskii only negatively affected the 

stability of N. tenuis is still an open question.  

Intraguild predation among predators is widespread and both 

unidirectional and bidirectional. IGP appears to be common and associated 

with natural enemies used in greenhouse production systems (Rosenheim et 

al., 1995). Based on theory, IGP is not expected to benefit BC (Rosenheim et al., 

1995), and could be a determining factor in the abundance and distribution 

of BC agents (Lucas and Alómar, 2001; Perdikis et al., 2014). However, in 

practice, results are diverse and the potential risk of IGP disrupting BC 

appears to be low in many cases (Janssen et al., 2006; Messelink and Janssen, 

2014). This is also the case of the current study, where, despite being 

involved in IGP, the mixed release of N. tenuis and A. swirskii, which were 

involved in a bidirectional IGP in the laboratory experiment, was virtually 

the best combination in the suppression of thrips, whiteflies and aphids 

under our greenhouse conditions. Availability and variability of prey (thrips, 

whiteflies and aphids) and food provided by the plant (pollen, nectar, 

plant sap) might be the reason for this non-aggressive coexistence. Indeed, 

an increase in extraguild prey density has been suggested to decrease the 

likelihood of predation events occurring among members of the predator 

guild (Polis et al., 1989, Lucas et al., 1998; Holt and Huxel, 2007). The within 

plant distribution and patch occupation by both predators, might have also 

reduced the encounter rate. Amblyseius swirskii on sweet pepper is generally 

found on the tuft domatia of the vein axils, a special structure of the sweet 

pepper leaves, which constitute a refuge for this mite and therefore might 

reduce the intensity of IGP under field conditions (Walter, 1996; Schmidt, 

2014). The treatment involving M. pygmaeus with A. swirskii was as effective 

in pest suppression as N. tenuis with A. swirskii, however M. pygmaeus was 
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significantly less abundant than N. tenuis. It is well known that M. pygmaeus 

is less thermophilous than N. tenuis (Sánchez et al., 2009), hence the high 

temperatures registered (mean of 30 ºC) during the experimental period 

could have hampered the development of this predator. The combined 

release of O. laevigatus with A. swirskii successfully reduced F. occidentalis 

and B. tabaci populations at levels similar to those that provided treatments 

based on predatory mirids. However, in the cages that received the combined 

release of O. laevigatus and A. swirskii, aphids were far from being controlled, 

which resulted in the collapse of all the plants. 

In this experiment, we adopted the pre-plant release strategy for 

mirids suggested by Calvo et al. (2012b) for tomatoes. This strategy is widely 

used today in greenhouse tomato crops in Southeastern Spain (Pérez-Hedo 

and Urbaneja 2016; Pérez-Hedo et al., 2017a). At transplantation, mirids had 

already laid eggs and the establishment was easier thanks to their ability to 

feed on plant tissue along with the addition of E. kuehniella eggs. 

Overall, in order to extrapolate our experimental conditions to field 

conditions the availability of prey must be high. This high availability of prey 

is necessary to maintain the population of the mirids after their pre-plant 

release. In this sense, this strategy could be valid for summer plantings when 

the level of prey is high when the transplant occurs. However, in late winter 

plantations where prey availability is low, it is necessary to supplement 

the pre-plant release of mirids with the alternative food source. This could 

possibly make the system more expensive. In any case all these conditions 

have to be evaluated before making a decision regarding the use of mirids 

under true field conditions. 

In conclusion, our study provides further evidence that the release 

of natural enemies involved in IGP does not necessary have negative effects 
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on BC. Additional success by mirids in managing sweet pepper pests was 

confirmed throughout this study. Together with the newly discovered ability 

of predatory mirids to induce plant defence (Bouagga et al., 2017, 2018), we 

expect the future BC of sweet pepper in commercial greenhouse could rely 

on the release of A. swirskii with predatory mirids.  What is clear is, the use of 

mirids in sweet pepper is possible and can be more effective than the current 

system based on O. laevigatus, which motivates us to suggest that mirids 

deserve more attention in the BC of sweet pepper pests. 
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General Discussion and Conclusions 

The awareness of BC as a principle strategy for managing sweet 

pepper pests has increased tremendously in Spanish greenhouses. Since 2007, 

the willingness of consumers to pay for pesticide free fresh produce and 

the restrictive legislation minimising the number of authorised chemical 

products has resulted in a shift from insecticide use to the implementation 

of integrated pepper management programs based on the introduction of 

natural enemies in an extensive area (Blom et al., 2008; Calvo et al., 2009a, 

2012a; van Lenteren, 2012). This shift was quick, subsequently BC in sweet 

pepper became outstandingly successful thanks to the selection and release 

of BC agents native to the Mediterranean basin. Nowadays, in South-eastern 

Spanish sweet pepper greenhouses the use of the anthocorid bug O. laevigatus 

and the phytoseiid predatory mite A. swirskii is done in augmentative releases 

to control the key pests, thrips and whiteflies (Blom et al., 2008; Calvo et al., 

2012a; Calvo et al., 2015).

Omnivorous predators, including O. laevigatus, are known to 

supplement their carnivorous diet by plant feeding, consuming sap, pollen, 

and nectar (Cocuzza et al., 1997; Armer et al., 1998; Lundgren et al., 2008). 

Feeding on a wide range of prey was widely described for O. laevigatus. 

The piercing-sucking mouth parts allow the predator to inject saliva into 

a prey substrate by a specialized salivary canal in an elongated maxillary 

stylet. Salivary components pierce and liquefy the solid substrates of its 

prey before ingestion through the maxillary food canal (Walker, 2003). 

6
CHAPTER
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Studying gene expression in the salivary glands of O. laevigatus Baek and 

Lee (2014), determined the presence of a hemolysin-like protein known 

to destruct cells; digestive enzymes and antimicrobial proteins were also 

identified. Genes related to homeostasis, antioxidation, anticoagulation 

and neuropeptide or peptide hormone processing were also found to be 

transcribed in the salivary gland, likely facilitating O. laevigatus prey feeding. 

However, as mentioned above, O. laevigatus can also puncture the plant 

and inject its toxic saliva which consequently is expected to induce plant 

damages. In the second Chapter of this thesis, we showed plant feeding 

to be a common and important behaviour for O. laevigatus. We clearly 

observed how O. laevigatus inserts its stylet into sweet pepper tissue to pump 

out essential nutrients. This phytophagous behaviour was quantified (38% of 

the observation time) and was classified as the preferred behaviour for this 

predator in both males and females in comparison to the rest of the activities 

which we also recorded during our observations. Consequently, our results 

concluded that mechanical damages caused by stylet insertion, perhaps with 

the injection of salivary secretion and regurgitates (Herbivore Associated 

Molecular Patterns, HAMPs) of O. laevigatus resulted in the induction of 

plant defences as those which generally occur in response to herbivore 

attacks (Karban and Baldwin, 1997; Kessler and Baldwin, 2001). 

Against herbivores, plants deploy varying mechanism to overcome 

their attacks. Such defences can be displayed constitutively or can be 

induced. In general, constitutive defences are always present, and induced 

plant defences are activated by herbivory (Karban and Baldwin 1997; Kant 

et al., 2015). Omnivorous predators also induce plant defence thanks to their 

phytophagy behaviour; however, information describing this mechanism of 

defence is scarce. In this second chapter, using a test model consisting of 
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sweet pepper plants, O. laevigatus, F. occidentalis, B. tabaci and the whitefly 

parasitoid, E. formosa, we observed that the exposure of sweet pepper plants 

to the activities (mainly feeding) of this predatory bug, increased resistance 

to sweet pepper pests directly by the up regulation of defensive genes (JA 

and SA pathways) and indirectly by the increased emission of HIPVs, which 

have modulated insects’ behaviours. The volatile blends from O. laevigatus-

punctured plants and intact sweet pepper plants differed quantitatively. 

This quantitative change constitutes a repellence effect for thrips and 

whiteflies, while an attraction for E. formosa. In plants the two major resistance 

mechanisms against herbivorous insects are antixenosis (interference with 

insect behaviour) and antibiosis (interference with insect physiology) (War 

et al, 2012). Here, for the first time we are confirming the phytophagous 

behaviour of O. laevigatus induce antixenosis in sweet pepper. This result 

reinforces and explains the potential use of O. laevigatus in sweet pepper 

greenhouse and illuminates how the predator efficiency is not only due to its 

predation, but also to its ability to induce plant defences. This novelty can be 

further explored to develop new approaches for pest management.

Despite the success of the current BC program in sweet pepper 

(combined release of O. laevigatus with A. swirskii against thrips and whiteflies) 

aphid management is still difficult to accomplish (Messelink et al., 2012). 

Therefore, much attention has been given during the last lustrum to find 

alternative natural enemies which could satisfy aphid management in this 

crop (Pérez-Hedo and Urbaneja, 2015; Messelink et al., 2015). Investigations 

focused on this theme stated how the use of mirid predators might 

significantly improve BC of aphids (Messelink et al., 2011a). Mirid predators 

combine zoophagy and phytophagy to complete their development and 

reproduction. Hence, with such predators, establishment can be prior to pest 
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infestation. The highest density achieved by these kinds of predators before 

pest outbreak is key to their final successful use as BC agents (Arnó et al., 2010a, 

Urbaneja et al., 2012; Pérez-Hedo and Urbaneja, 2015; Messelink et al., 2015). 

In addition, mirid predators were recently observed to induce an ecological 

change in tomato after feeding. This change was described by Pérez-Hedo 

et al. (2015a, 2015b) as an induced defensive response in tomato plants and 

later on, confirmed by Pappas et al. (2015, 2016). In the third chapter of this 

thesis, we observed plant feeding to result in an important behaviour for 

N. tenuis and M. pygmaeus; this phytophagy habit elicits plant defence in 

sweet pepper. The quantification of plant feeding by both male and female 

predators turned out to be an important activity when compared to the 

rest of the described behaviours. Interestingly, we observed that N. tenuis 

(33%) spent twice as much time feeding on sweet pepper than M. pygmaeus 

(14%). However, both predators were able to induce plant injuries that 

activate the mechanisms of defence. Punctured sweet pepper plants by 

either N. tenuis or M. pygmaeus, resulted in activating the phytohormonal 

routes of ABA and JA. Similar results were recently obtained by Zhang et 

al. (2018); both phytohormones were accumulated in sweet pepper leaves 

exposed to M. pygmaeus. To further confirm plant defences, we have 

identified the HIPVs that produced sweet pepper following mirid feeding. 

The quantitative change in the blend of volatiles induced by either N. tenuis 

or M. pygmaeus incites plant resistance in punctured plants by modulating 

pest behaviour (attraction of E. formosa and repulsion of F. occidentalis and 

B. tabaci). The major differential peaks on the chromatogram of the volatile 

blend obtained from our results compared to the volatile blend recently 

obtained by Pérez-Hedo et al., (2017b) on tomato plants, concluded similarity 

in the response of both plants. Four GLV ((Z)-3-hexenol, (Z)-3-hexenyl 
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acetate, (Z)-3-hexenyl propionate, (Z)-3-hexenyl butyrate) and methyl 

salicylate, were induced by both predators on both plants and interestingly 

were found to repel B. tabaci and attract E. formosa (Pérez-Hedo et al., 2017b). 

Methyl salicylate is one of the main components of the volatile blends released 

by damaged plants. It is well known that this compound can have repellent 

and deterrent effects on phytophages (Groux et al., 2014). Application of this 

compound on bean or cucumber leaves decreased the time spent by adult 

thrips on the lamina, reduced the number of eggs laid and the degree of 

damage (Koschier et al., 2007). Methyl salicylate is also reported to be a 

general attractant for natural enemies of pest species (James and Price, 2004; 

Mallinger et al., 2011; Gadino et al., 2012). Besides, quantitative changes 

in the volatile blend between mirid-punctured plants and intact plants, a 

qualitative change was also observed. Octyl-acetate was only emitted from 

M. pygmaeus-punctured plants. In accordance with our results, Pérez-Hedo et 

al. (2017b) detected octyl-acetate and characterized this volatile to be specific 

to M. pygmaeus, suggesting its possible contribution in the management of 

the tomato key pest, T. absoluta, in relation to previous results by the same 

authors, describing T. absoluta´s reaction to M. pygmaeus-punctured tomato 

plants (Pérez-Hedo et al., 2015b). Overall, we concluded that new approaches 

for pest management can be explored from the obtained results. The use 

of powerful chemical pest repellents applied on the crop is an innovative 

approach that has not yet been properly investigated and certainly not 

developed into an effective commercial product. Establishment of natural 

enemy attractant dispensers in the areas of pest concentration would 

reduce predator search time and prevent the migration of the predator 

in the case of low prey density. This technique would probably increase 

the effectiveness of BC agents in the presence of the pest or preventively, 
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before the appearance of the pest. It would be expedient to, both, find other 

highly attractive volatiles among the natural and synthetic compounds and 

to improve the methods of application of the most promising compounds. 

Another possible application of our results is the integration of plant breeding 

programs in selecting commercial varieties with higher emission rates of 

one of the most active volatile organic compounds. Among our results, we 

have observed that once sweet pepper is activated by the feeding punctures 

of N. tenuis, plants are still protected for a period of two weeks. With the 

feeding puncture of M. pygmaeus it was also observed perseverance of the 

effect during two weeks (Pappas et al., 2015). The persistence of this plant 

defence encourages the strategy of the pre-plant release (see below, chapter 

4). Nursery inoculation will ensure plant robustness before pest outbreak 

and will delay the infestation due to the repellent effect. 

Besides, the above described mechanism of plant defences induced 

by N. tenuis and M. pygmaeus, mirids are essentially predators, and have 

been successfully used for managing various pests (Urbaneja et al., 2012; 

Zappalá et al., 2012, 2013, Calvo et al., 2012b, 2012c; van Lenteren et al., 2018; 

Pérez-Hedo et al., 2017a). In particular, unlike other predatory bugs, the 

Orius genus is not hampered by glandular trichomes (Coll and Ridgway, 

1995), tomato plants represent a very suitable host for mirids (Riudavet and 

Castañé, 1998; Tavella and Goula, 2001; Urbaneja et al., 2005). Therefore, 

inoculation with N. tenuis in Southern Europe and M. pygmaeus in Northern 

Europe and conservation of their natural populations have been very 

effective for controlling key tomato pests, including B. tabaci and T. absoluta 

(Arnó et al., 2010b; Calvo et al., 2012c; Gabarra et al., 2008; Gerling et al., 2001; 

Urbaneja et al., 2012). Unlike tomato, sweet pepper plants have smooth, waxy 

leaf surfaces with trichomes clustered in domatia only on the abaxial side 
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(Ferreira et al., 2008); this lack of trichomes could be a disadvantage for hairy 

plant associated bugs like N. tenuis and M. pygmaeus and might explain the 

scarce use of mirids in sweet pepper crops (Tavella and Goula, 2001; Sánchez 

et al., 2003). However, even if sweet pepper is not the preferred host plant 

(Urbaneja et al., 2005), in the fourth chapter of this thesis, we have observed 

that N. tenuis and M. pygameus were successfully established on sweet 

pepper and effectively managed thrips and whiteflies. The strategy of the 

pre-plant releases or “predator in first” (Calvo et al., 2012b), enhanced by the 

addition of alternative food of the factitious prey E. kuehniella was crucial to 

ensure predator establishment and to assure an adequate predator: prey ratio 

which positively affects BC. However, provision of alternative food increases 

BC costs; the price of E. kuehniella fresh eggs is approximately $400 per kg 

(Urbaneja-Bernat et al., 2015). Therefore, the development of inexpensive 

alternative food sources is one of the major opportunities and challenges for 

enhancing BC in greenhouse crops in the near future. Many artificial diets 

have been tested with the aim of developing less expensive mass rearing 

techniques (Castañé and Zapata, 2005; Bonte and de Clercq, 2008; Nguyen 

et al., 2013; Urbaneja-Bernat et al., 2015), but these diets are currently not 

applied to support predator populations in commercial crops. In addition to 

the importance of alternative diet in the success of mirids in sweet pepper, 

another criterion that should be considered during the selection of predators 

is the thermal requirement of each. Among the fourth chapter results, 

we have observed how N. tenuis was more abundant and more effective 

at a higher temperature (mean of 27 ºC), whereas M. pygmaeus was more 

abundant at a cooler temperature (mean of 20 ºC), but was still effective 

for both temperatures. Despite, the observed difference among predator 

abundance, both of them successfully reduced the mixed infestation of 
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thrips and whiteflies. Macrlophus pygmaeus showed an interesting behaviour 

that could benefit its use as a BC agent. The low abundance of this predator 

at 27 ºC did not negatively affect the management of the mixed diet, on the 

contrary, we observed an increase in pest suppression. Overall, our results 

along with previous studies (Messelink and Janssen, 2014; Pérez-Hedo 

and Urbaneja, 2015; Messelink et al., 2015) expect the future of BC in sweet 

pepper to possibly be based on mirids. Paying special attention to mirid 

families may result in the selection of other efficient predators for the BC of 

horticulture crops. Although, we did not obtain encouraging results for the 

use of D. maroccanus in sweet pepper, many species from the genus Dicyphus 

are promising BC agents.

As we have seen above (chapters 2 and 3), N. tenuis and M. pygmaeus 

increase resilience in sweet pepper, both by inducing defensive responses 

and by predation. However, the best control strategies are mainly based on 

the combined releases of multiple natural enemies, the current success of 

the BC in sweet pepper (O. laevigatus and A. swirskii) attests this approach. 

Nevertheless, the use of different natural enemies for the BC of diverse pest 

species results in the creation of complex artificial food webs in agricultural 

crops. This implies how pest densities are not only managed by their natural 

enemies, but also by direct and indirect interactions with other pests and 

other natural enemies; thus, such interactions can affect BC (Rosenheim et al., 

1995; Janssen et al., 1998). Intraguild predation (IGP) has been described for 

many natural enemies that are used for BC in greenhouse crops (Rosenheim 

et al., 1995). Although, in theory we do not expect IGP to benefit BC, several 

examples in the literature have mentioned lacks of negative effects (Janssen 

et al., 2006). In the fifth chapter of this thesis, this approach was supported 

and our results reveal that, despite being involved in a bidirectional 
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IGP, the combined release of N. tenuis-A. swirskii under semi-field 

conditions resulted in a more effective suppression of thrips, whiteflies 

and aphids in sweet pepper. Among our results, we have also observed 

an apparently unidirectional IGP, where M. pygmaeus and O. laevigatus 

intraguild prey on A. swirskii when shared food (E. kuehniella) was added 

to the plant. Diverse results were obtained from laboratory and semi-field 

conditions. The population of A. swirskii was observed to be similar in the 

three mixed release combinations (predatory bugs with predatory mites). 

Possible coexistence between predatory bugs and predatory mites was 

resolved under field conditions by the availability of a mixed diet (thirps, 

whiteflies and aphids) and an increase in plant density which may have 

offered refuge and the avoidance of possible interactions among predators. 

The infestation by thrips and whiteflies were effectively managed in 

the three treatments; however, where O. laevigatus-A. swirskii were released, 

aphids destroyed the plants and resulted in lower affectivity. Although, in 

the first chapter we observed O. laevigatus to induce plant defence in sweet 

pepper, we assume that the strategy employed in its release on flowering 

pepper may not benefit plants from the induced defence. One of the possible 

reasons is having plants which are already infested by herbivores that are 

also inducing plant defences. Thrips have a different feeding mode from 

whiteflies and aphids; hence, different defensive pathways are induced in 

the plant on which they feed (Wetering et al., 1998; Walling, 2008). Probably, 

the pathways induced by both feeding modes can negatively interfere with 

the pathways induced by O. laevigatus feeding or oviposition (De Puysseleyr, 

2011) and the induced response will be suppressed. Howe and Jander (2008), 

mentioned that negative cross-talk between distinct defensive pathways 

induced by species from different feeding guilds might suppress the induced 
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defence. On the contrary, in our experiment, mirids were released in the 

nursery, thus, upon planting, plants were already activated. The persistence 

of this activation (Chapter 3) motivated the defence response before pest 

outbreak; thus, delaying infestation which results in better management of 

pepper pest with either the inoculative release of N. tenuis or M. pygmaeus 

with A. swirskii. Specific temperature requirements of each predatory bug 

(Chapter 4) should also be considered for the use of mirids, because from 

our results, M. pygmaeus was less abundant than N. tenuis due to the higher 

registered temperature in the greenhouse (May-June, 30 ºC).

According to the results presented in this PhD thesis, it can be 

concluded that pest management in sweet pepper could be enhanced by the 

exploitation of zoophytophagy. The anthocorid plant bug and mirids, are 

able to induce defence responses in sweet pepper plants. The information 

generated in this regard can serve as the basis for future developments in 

crop protection. 

Overall, our results illustrate how mirids can be successfully employed in 

BC programs in sweet pepper. The results of this thesis support these conclusions: 

i) Their aptitude to establish on this crop is improved by supplemental food, 

ii) The safety of their feeding behaviour in sweet pepper is marked by the 

absence of economic damage, iii) The positive outcome of their phytophagous 

behaviour induces plant defence eliciting resistance mechanisms that reduce 

pest infestation, iv) Their polyphagy and their performance on managing sweet 

pepper key pests including thrips, whiteflies and particularly aphids and v) 

Their combined release with the predatory mite A. swirskii is without negative 

outcomes on the BC final balance. All together, these are sufficient reasons for an 

evaluation of mirids in commercial greenhouses that could rely on and reinforce 

their future commercial use in sweet pepper. 
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