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Abstract

The practice of music composition often stems from a small idea or motif that blos-
soms into a complete work through careful application of repetition, variation and
a dash of inspiration. In the highly rhythmic and repetitive strain of music that is
electronic dance, this motif is the fundamental building block known as the loop, and
is accorded greater importance than any other style. While other genres can depend
upon long-established rules governing things like harmonic structure and form, many
dance tracks do not stray far from its fundamental central theme in the traditional
sense. Rather, the craft of this unique music is revealed through complex, layering
arrangements of timbre and intensity arising from the liberal application of rhythmic
activity and sonic effects.

This dissertation explores computational methods for generating and varying that
rhythmic activity that is so pivotal in composing effective loops. We begin the journey
in the symbolic domain, and draw upon a wealth of historical methods for algorithmic
composition coupled with the state of the art in rhythmic similarity perception to build
GenDrum, an intelligent drum machine using genetic algorithms. Our listener survey
reveals the validity of the approach, but we question the general adroitness of purely
symbolic means in capturing the acute essence of timbre.

Modern approaches to composing electronic music are distinguished by the liberal
use of sampling and appropriation of existing sounds as well as the design of purely
synthesised new sounds. Concatenative synthesis applies high-level rules and criteria
that seek to combine phrases of sounds together in a more intelligent and systematic
manner. It is a content-based approach that uses music information retrieval research
to work directly with audio and its latent encoding of multidimensional spectral and
timbral character.

In the second contribution of the thesis we examine the relevance and application of
concatenative synthesis in the specific context of electronic dance music production.
We present a comprehensive review of key works in the area of concatenative syn-
thesis and summarise the algorithmic underpinnings that tend to drive these systems.
PyConcat, a research oriented synthesis framework, is offered to encapsulate many of
the key approaches along with some novel improvements to the field and state of the
art in the area of timbral feature choice as well as unit selection with Hidden Markov
Models.

But, above all, the concern remains with the implications of designing concatenative
systems that consider the needs of the user and the place of such systems in their
existing composition and production workflows. The final contribution of the thesis
delivers RhythmCAT, a visually appealing virtual instrument plugin with a unique in-
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teraction metaphor for exploring concatenative synthesis in a practical, user-friendly
manner. This focus on the user implications of concatenative synthesis leads natur-
ally to the question of evaluation: not only in our system but also the wider ecosystem
of generative and creative computational agents. Another evaluation methodology is
proposed that expands on the one conducted in the symbolic domain and the results
are presented and discussed in detail. The thesis concludes with our critical impres-
sions of the work presented and the possible directions for future study.



Resum

La pràctica de la composició musical part sovint d’una petita idea o motiu que floreix
en una obra completa mitjançant una acurada aplicació de la repetició, variació i una
mica d’inspiració. En música electrònica de ball (que és altament repetitiva i basada
en el ritme), aquest motiu conegut com loop és el seu component fonamental, i ad-
quireix una importància més gran que en qualsevol altre estil. Mentre altres gèneres
poden dependre de regles establertes per regir l’estructura harmònica i la forma, els
temes de música electrònica de ball no s’allunyen molt del seu motiu central fonamen-
tal en un sentit tradicional. Aquesta particular música s’elabora a través de complexos
arranjaments de capes tímbriques i d’intensitat que sorgeixen a partir d’una aplicació
lliure de l’activitat rítmica i dels efectes de so.

Aquesta tesi explora mètodes computacionals per a la generació i variació de l’ac-
tivitat rítmica, que és un peça clau en la composició de loops efectius. Comencem
en el domini simbòlic, basant-nos en múltiples mètodes clàssics de composició algo-
rítmica, i en el coneixement més avançat sobre percepció de similitud rítmica per a
construir GenDrum, una caixa de ritmes intel·ligent basada en algoritmes genètics.
Una avaluació amb oients demostra que és un enfocament vàlid, però ens qüestionem
l’habilitat de mètodes purament simbòlics per a capturar l’essència del timbre.

Els mètodes més moderns de composició de música electrònica es distingeixen per
un ús liberal del samplejat i l’apropiació de sons preexistents, així com del disseny de
nous sons purament sintetitzats. La síntesi concatenada aplica regles d’alt nivell i cri-
teris que intenten combinar frases de sons d’una manera més intel·ligent i sistemàtica.
Aquest enfocament basat en contingut utilitza la recerca en recuperació d’informació
musical per treballar directament amb àudio i amb una codificació latent i multidi-
mensional de l’espectre i de les característiques tímbriques.

Com a segona contribució d’aquesta tesi, examinem la rellevància i aplicació de la sín-
tesi concatenada per a producció de música electrònica de ball. Presentem una revisió
exhaustiva de treballs clau en l’àrea de la síntesi concatenada i resumim els fonaments
algorítmics en què se solen basar aquests sistemes. PyConcat, un entorn per a síntesi
orientat a la recerca, encapsula molts dels mètodes més importants juntament amb al-
gunes millores per a la selecció de característiques tímbriques, i la selecció d’unitats
amb Models Ocults de Markov.

Però, especialment, segueixen sent clau les implicacions en considerar les necessitats
dels usuaris en el disseny de sistemes concatenats, i el lloc que aquests ocupen en els
seus processos compositius i de producció. La contribució final de la tesi és Rhythm-
CAT, un instrument virtual visualment atractiu i amb una metàfora d’interacció única
per a l’exploració de la síntesi concatenada d’una manera pràctica i fàcil d’utilitzar.

XI



XII RESUM

Aquest èmfasi en les implicacions de l’usuari de la síntesi concatenada porta natural-
ment a la qüestió de l’avaluació, tant en el nostre sistema com en l’ampli ecosistema
d’agents computacionals generatius i creatius. Proposem una altra metodologia d’a-
valuació que amplia la realitzada en el domini simbòlic, i discutim els resultats en
detall. Finalment, presentem les conclusions sobre la nostra feina i possibles direcci-
ons per a treballs futurs.

(Translated from English by Juanjo Bosch)



Resumen

La práctica de la composición musical parte a menudo de una pequeña idea o motivo
que florece en una obra completa mediante una cuidadosa aplicación de la repetición,
variación y una pizca de inspiración. En música electrónica de baile (que es altamente
repetitiva y basada en el ritmo), dicho motivo, conocido como loop es su componente
fundamental, y adquiere una importancia mayor que en cualquier otro estilo. Mientras
otros géneros pueden depender de reglas establecidas para regir la estructura armónica
y la forma, las piezas de música electrónica de baile no se alejan mucho de su motivo
central fundamental en un sentido tradicional. Esta característica música se elabora a
través de complejos arreglos de capas de timbres e intensidad que surgen a partir de
una aplicación libre de la actividad rítmica y de efectos de sonido.

Esta tesis explora métodos computacionales para la generación y variación de la acti-
vidad rítmica, que es un pieza clave en la composición de loops efectivos. Comenza-
mos en el dominio simbólico, basándonos en múltiples métodos clásicos de compo-
sición algorítmica y en el conocimiento más avanzado sobre percepción de similitud
rítmica, para construir GenDrum, una caja de ritmos inteligente basada en algoritmos
genéticos. Una evaluación con oyentes demuestra que es un enfoque válido, pero nos
cuestionamos la habilidad de métodos puramente simbólicos para capturar la esencia
del timbre.

Los métodos más modernos de composición de música electrónica se distinguen por
un uso liberal del sampleado y de la apropiación de sonidos preexistentes, así como
del diseño de nuevos sonidos puramente sintetizados. La síntesis concatenativa aplica
reglas de alto nivel y criterios que intentan combinar frases de sonidos de una manera
más inteligente y sistemática. Este enfoque basado en contenido utiliza la investiga-
ción en recuperación de información musical para trabajar directamente con audio y
con una codificación latente y multidimensional del espectro y de las características
tímbricos.

Como segunda contribución de esta tesis, examinamos la relevancia y aplicación de
la síntesis concatenativa para producción de música electrónica de baile. Presenta-
mos una revisión exhaustiva de trabajos clave en el área de la síntesis concatenativa
y resumimos los fundamentos algorítmicos en los que se suelen basar estos sistemas.
PyConcat, un entorno para síntesis orientado a la investigación, encapsula muchos de
los métodos más importantes junto con algunas mejoras para la selección de caracte-
rísticas tímbricas, y para la selección de unidades con Modelos Ocultos de Markov.

Pero, especialmente, siguen siendo clave las implicaciones al considerar las necesi-
dades de los usuarios en el diseño de sistemas concatenativos y el lugar que estos
ocupan en sus procesos compositivos y de producción. La contribución final de la
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tesis es RhythmCAT, un instrumento virtual visualmente atractivo y con una metáfora
de interacción única para la exploración de la síntesis concatenativa de una manera
práctica y fácil de usar. Este énfasis en las implicaciones del usuario de la síntesis con-
catenativa lleva naturalmente a la cuestión de la evaluación, tanto en nuestro sistema
como en el amplio ecosistema de agentes computacionales generativos y creativos.
Proponemos otra metodología de evaluación que amplía la realizada en el dominio
simbólico, y discutimos los resultados en detalle. Finalmente, presentamos las con-
clusiones sobre nuestro trabajo y posibles direcciones para trabajos futuros.

(Translated from English by Juanjo Bosch)
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The following is a list of different symbols used in the dissertation along with a short
description of each symbol.

Symbol Description

i, j,k,n Indices
N,K Length of discrete signal or size of set
A,B Sets representing two binary string representations of rhythm

patterns for comparison, or a transition matrix and emission
matrix respectively in a HMM

ai,b j Element (or onset) i and j
f General fitness of a genetic algorithm
λ A specification for a HMM
π Initial probability distribution of a HMM
O A set of observation symbols in a HMM
S A set of hidden symbols in a HMM
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Chapter 1
Introduction

“What is music but organised noises?”
(Varèse & Wen-chung, 1966)

If music is indeed, as Varèse suggested, to be distilled summarily to “organised
noises” in time, then surely the art of music composition has amongst its most ef-
fective tenets the dialectical balance between repetition and variation. For a musical
motif, idea or theme to be memorable, the composer must use repetition to exploit
the human’s application of memory in establishing patterns and context between se-
quences of notes, or so maintains Levitin:

“Repetition, when done skillfully by a master composer, is emotionally
satisfying to our brains, and makes the listening experience as pleasur-
able as it is.” (Levitin, 2007)

But to dispel boredom and make it really interesting and engaging it unquestionably
needs to be varied; the composer must carefully choose which musical parameters are
coaxed from their centres to confound expectation and break new ground within the
oeuvre. Even as the unabashed antagoniser of tradition, Pierre Boulez, concedes:

“...a high level of interest in repetition and variation (analogy and differ-
ence, recognition and the unknown) is characteristic of all musicians.”

(as cited by Campbell (1997))

For common practice period Western Art music, repetition is used to turn melodic and
rhythmic fragments into concrete themes, but repetition of course is also dominantly
utilised in macrostructural arrangement of form, most notably in the ternary-based

1
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sonata - where thematic material is introduced, developed and recapitulated in a sys-
tematic manner that aids listeners navigate dense and complex works (Benward &
Saker, 2008).

Later, African-American roots music such as blues and R&B would centre its aes-
thetic on bite-sized, guitar-driven ostinatos known as "riffs", subsequently sowing the
seeds for the explosion of rock and pop culture (Middleton, 2009; Hatch & Millward,
1987). Minimalist composers such as Steve Reich, Philip Glass, LaMonte Young and
Terry Reilly (Reich & Hillier, 2011; Nyman, 1999) would push the mantra of "doing a
lot with a little" through exaggerated repetition to its extremes1, mirroring prior move-
ments in literature (e.g. Beckett) and the visual arts. Minimalism, in its essence, tips
the weight of repetition and variation; repetition is so deeply ingrained and rife in the
process2 that any slight change or variation introduced is overwhelmingly noticeable
and immensely consequential.

The stylistic intentions of this thesis however, are largely concerned with Electronic
Dance Music - a subset of electronic music first appearing roughly in the 1980s in-
tended initially for dancing at events like raves or nightclubs (McLeod, 2001; Butler,
2006). In dance music,3 small, repeated patterns known as "loops" provide the core
building blocks for compositions (Neill, 2002; Patricio & Dittmar, 2016). A single
idea, perhaps consisting of a drum pattern, a keyboard vamp or often a recontextual-
ised, “borrowed” audio sample - as a result of careful listening to myriad musical or
sonic sources - can become the seed for an entire track4, as Neill observes:

“Just as composers in earlier historical periods often worked within a
given set of large-scale formal parameters (sonata form, dance forms,
tone poems etc.), innovative pop electronic composers use steady pulse,
loop-based structures and 4/4 time as a vehicle for a wide range of com-
positional ideas and innovations” (Neill, 2002)

Electronic dance music is ultimately a product of the technology on which it is created
during a nascent time span, a music born out of the limitations of the tools available.
Initially these tools comprised synthesisers, samplers and drum machines, but as the
digital computer became viable for consumers, they increasingly involved sophistic-
ated software that virtualises modern recording studio capability.

So with a music so seemingly mechanical and so intrinsically coupled with the ma-
chine, naturally it is pertinent to ask: are the machines themselves capable of fulfilling

1Reich, like his predecessor Varèse gained notoriety for instigating "the last great musical scandal
of the 20th century" (Ross, 2007). During the concert premiere of his seminal Four Organs an audience
member was purported to have ran down the aisles, screaming “All right, I confess!”.

2Nyman and Reich both use the term “process music” in distinguishing their work as well as that of
Cage from works by post-war serialists and perhaps more maximalists such as Xenakis and Stockhausen

3Nomenclature will be dealt with in the following chapter
4We shall see in Chapter 2 - in the case of “drum & bass” - how a particular motif can also spawn

an entire subgenre within dance music.
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the role of the composer? Or to put it in other words, rather than the composer choos-
ing and organising the sounds that the systems generate, can we go one step further
and call on the machine to choose and organise sounds also? Of course what we are
describing here is algorithmic (Roads, 1996), or generative music (Collins, 2008) -
where computer programs are used to compose music - a topic that has fascinated re-
searchers, composers and musicologists alike for over half a century (Burns & Helen,
1994; Fernández & Vico, 2013), undoubtedly preceding the global rise of dance music
culture. Successful automatic algorithmic composition of works are heavily depend-
ent on the intended style and the algorithmic techniques chosen. Building on a wealth
of knowledge historically available in matters of harmonic counterpoint and voice
leading, Cope (1991), for example, has for some time now created convincing syn-
theses of Bach chorales, but acceptable attempts at modelling modern pop music are
only recently beginning to emerge (Ghedini et al., 2015; Deltorn, 2017; Pachet et al.,
2017)5. Attempting to capture the entire gamut of creative musical endeavour with
computational means seems a lofty, and for now, rather intractable prospect, but what
about processes that offer the composer a helping hand?

Thus, in this thesis I examine computational, algorithmic or otherwise generative ap-
proaches that assist the composer in creating rhythm-centric loops suitable for dance
music production. I emphasise assist to contrast with traditional algorithmic compos-
itional systems that may focus on producing complete works or output with little or
no interaction or intervention from the user other than setting some initial parameters.
As Pasquier explains when introducing what he terms “musical metacreation”:

“Such systems will tend to produce – ideally musically successful – vari-
ations of the same composition rather than creating completely novel
outputs with each run.” (Pasquier et al., 2017)

Like Pasquier, I emphasise assist to describe situations where the composer has an
idea (i.e. a loop) they want to expand and develop through intelligent and system-
atic repetition and variation, while maintaining the impression that what is generated
remains truly something they can call their own, rather than any deus ex machina.

My process is an iterative one, perhaps, echoing the evolution of dance music produc-
tion practices, which has itself moved from primitive symbolic control of hardware
devices to more signal focussed methods that manipulate and process sampled sound.
I draw from knowledge in the literature, propose advancements where they are lack-
ing, build prototypes, then most crucially, evaluate the work with other active users.

Initially I describe how symbolic methods, coupled with perceptual knowledge of
similarity between rhythm representations, can be combined to create a perceptually
motivated generative drum machine that seeks to create convincing patterns. Follow-
ing a user evaluation of the system, I highlight some limitations we see in purely

5http://www.flow-machines.com/tag/flow-machines-press/

http://www.flow-machines.com/tag/flow-machines-press/
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symbolic domains. These limitations I feel justify a shift to more content-based tech-
niques such as concatenative synthesis, in order to build systems that can harness state
of the art research in machine listening and the thriving field of music information re-
trieval (MIR) for repurposing existing audio in a logical and efficient manner. We
describe concatenative synthesis from a research perspective, and offer some novel
improvements for addressing some shortcomings in Hidden Markov Model (HMM)
driven approaches, for instance. Subsequently, a system is proposed from the user
perspective, demonstrating clearly how to distil the state of the art techniques typic-
ally found in research oriented concepts, to deliver a tool that is visually and creatively
appealing, compelling and viable for the modern music producer.

For now though, the rest of the introduction will continue with a definition of my
motivations and the wider context of my work within the GiantSteps project. The
introductory chapter concludes with a detailed overview of the contents of each sub-
sequent chapter in the dissertation.

1.1 Motivations and The GiantSteps Project

Most of my own artistic output I would broadly categorise as “beatless” or “beat-
oriented”. My ‘beatless’ music tends to be electroacoustic music written for fixed me-
dia, or some combination of electronics with solo instruments or ensembles. Nearly
all of these efforts involve some labour divested through formal computational pro-
cesses, whether this be real-time compositional algorithms (Ó Nuanáin & O’Sullivan,
2014) or advanced analysis and resynthesis procedures afforded by musical program-
ming languages and environments. These works are produced largely within the para-
meters I define, or perhaps based on some crude personal abstraction of some well-
established musical form or aesthetic such as serialism or minimalism.

Over the years I have also listened to more and more electronica and ‘dancefloor’
music (which I will summarise from my own perspective and taste in Chapter 2). My
curiosity extended to its composition, and naively I assumed that, with its machine-
centric rigidity and perceived primitiveness compared to more ‘serious’ music, not
only could I produce such beat-oriented tracks with relative ease, but that I could
deftly devise algorithms that could automate many of the repetitive aspects it pos-
sesses. I soon realised I was quite mistaken! But turning to others’ works, and per-
using the extent of academic discourse I noticed a marked absence of treatment when
compared to the computational and musicological investigation of more established
genres. My curiosity encouraged me to pursue its study more formally, and luckily I
was able to join an effort devoted to that very end.

The GiantSteps project is a European Union led initiative launched in 2013 with the
intention of creating the “Seven-League Boots” for music production in the next dec-
ade and beyond (Knees et al., 2016). Three main goals of the project embrace:
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1. Developing and integrating musical expert agents, supportive and inspirational
systems for melody, harmony, rhythm, structure or style, based on symbolic,
audio and metadata analysis.

2. Developing improved interfaces and paradigms for musical human-computer
interaction and collaborative control of multi-dimensional parameter spaces us-
ing novel visualisation techniques.

3. Addressing low cost portable devices by developing low-complexity algorithms
for music analysis and recommendation tailored to their capabilities.

The research consortium consisted of multidisciplinary bodies drawing from aca-
demia, industry and the arts, including Universitat Pompeu Fabra, Johannes Kepler
University, STEIM, Reactable Systems and Native Instruments. One of the primary
successes of the project has been the constant focus on user analysis, that has been
pivotal in helping guide and shape the advancement of the state of the art. Through
active engagement at workshops, conferences and festivals worldwide such as Red
Bull Music Academy, Sónar, Music Hack Day, considerable effort has been devoted
to study DJs’, producers’ and composers’ needs, desires, and skills; investigating their
processes and mental representations of tasks and tools; and evaluating their responses
to prototypes that consolidate research into practical realisations.

1.2 Thesis Goals and Outline

As the title indicates, the overarching goal of the thesis is to investigate computational
means for the generation, variation and evolution of rhythmic loops for the genre of
electronic dance music. But to reach that point we intend to build a body of know-
ledge that extends to musicological criticism and analysis, symbolic rhythm analysis,
musical signal processing, MIR and applied AI techniques in general. So this is a
technical thesis, but the end goals are irrefutably artistic. Chapters will be peppered
with references and digressions to realised works and concerns, not only pertinent to
dance music but also to the wider sphere of modern composition, and I will not hesit-
ate to break from the first person plural to emphasise a subjective personal impression
where appropriate. The thesis shall be structured as follows.

Before delving into the science, Chapter 2 offers a critical introduction to electronic
dance music from a cultural and musicological perspective. Dance music is a relat-
ively recent phenomenon compared its precursory roots in electroacoustic and con-
temporary composition, already the subject of many key texts as well as devoted
gatherings for its academic discourse. Furthermore the context for computational and
musicological analysis for earlier eras of Art music as well as popular styles like
rock and jazz are historically well-established. We therefore offer the case for why
electronic dance music is interesting to study, how its various subgenre strands have
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developed and its compositional traits which shall hopefully inform our analysis and
enventual synthesis using computational means.

In Chapter 3 we will begin our journey by introducing algorithmic composition or
generative music as that corner of computer music concerned with using computa-
tional resources and programmatic techniques to derive aesthetically pleasing music.
As we delve further into this, we reveal how natural aspects of music such as rhythm
can be recreated using symbolic representational structures informed by the study of
how we perceive such facets when they are performed or composed by humans. We
propose a system that can recreate such rhythms automatically, embedding our inter-
pretation of this knowledge within an interactive genetic algorithm aimed at fulfilling
the needs of electronic dance music producers. We pay close attention to how one can
evaluate such systems from a user perspective. Based on this user evaluation, we give
a frank appraisal of our own personal impressions of the system and explain how this
motivates a change of direction and focus.

Chapter 4 provides a contextual basis for our shift of focus by introducing state of
the art techniques in art and in academic literature that demonstrates the aesthetic re-
use of content. By content we mean existing objects that exist in the wild, that can
be exploited, shifted and reused, malleable for repurposing in creating new work. In
terms of electronic music, we describe the particular practice of sampling - whereby
existing sounds and music are directly adapted and recontextualised in the aforemen-
tioned manner - tracing its historical trajectory from the early days of tape experiments
through to modern dance music and contemporary efforts. As is most pertinent to the
ambitions of this thesis, we are expressly concerned with those works that seek to
automate or aid the composer to perform sampling in some systematic or hopefully
intelligent manner using computer resources. This leads us naturally to concentrate
on granular synthesis initially, with the second portion of the chapter extensively re-
viewing state of the art in concatenative synthesis.

With this context in place, Chapter 5 delves in depth into the practical aspects of
crafting and experimenting with concatenative systems. Building on the state of the
art methods introduced in Chapter 4, theoretical, algorithmic and mathematical mech-
anisms are detailed. In the area of unit selection - one of core tasks in concatenative
synthesis - some shortcomings are highlighted concerning the application of Hidden
Markov Models (HMMs), so some novel techniques are proposed to overcome them.
The PyConcat library is delivered as a culmination of our efforts in this course of
study, intended as a research focussed, easy-to-use framework for exploring concat-
enative synthesis’ fundamental concepts.

In Chapter 6 we return to one of the other goals of our thesis: adapting state of the art
research from academia to deliver new musical software that considers the needs of
our user (rather than the researcher). To this end, the RhythmCAT system is presented,
an easy to use virtual software instrument that encapsulates the sampling capabilities
of concatenative synthesis along with some new visual and interaction paradigms that
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seeks to enhance the creativity of the modern electronic dance music producer and
composer.

As purported in Chapter 7, the systematic evaluation of computer music platforms is
an oft-neglected activity, especially in academic efforts where the designer-researcher
might also be the sole user. As the work in Chapter 6 is so user-focussed, there needs
to be a well thought out framework in place to validate it for its efficacy and efficiency
in addressing the needs of those users. This chapter is devoted to devising such a
framework, that we hope delivers a substantial contribution to the music software
making community working towards similar goals.

To conclude the thesis, Chapter 8 reflects on the overall scope and findings of the
research delivered. We summarise the achievements, highlight some criticisms and
lay a clear path for continuing with future work.





Chapter 2
A Musicological Overview of

Electronic Dance Music

Electronic Dance Music (EDM) is a highly repetitive and rhythm-centric genre based
on the liberal use of looping motifs consisting of layers of sampled and synthesised
sound sources. Obviously, it is a style that is primarily intended for dance, at clubs,
organised but illegal gatherings known as "raves" and large festivals but, as we will
see, as the movement has evolved, that distinction has become quite blurred. In terms
of nomenclature, it is often referred to as dance music or simply "dance" by its pro-
ponents (and opponents) in anglophonic Europe. Its abbreviation, EDM, as Reynolds
- a music culture author and researcher who has been reporting on dance culture for
many years - notes, seems to be a North American labelling that has been applied
to a marked resurgence in dance music over the past decade primarily in the United
States6. For the purposes of this thesis I will use the term dance music, as it is what
I have always called it. Should there be ambiguity between electronic dance mu-
sic and say, dance forms from Western Art music or folk, I will make the necessary
distinctions clear.

Dance music is made up of a bewildering taxonomy of deeply branched sub-genres
that are defended rigorously by their disciples with an almost religious fervour. A
glance at Ishkur’s excellent online resource "Ishkur’s Guide to Electronic Music" 7

(Figure 2.1) reveals 7 high level strands that include "House", "Trance", "Techno",
"Breakbeat", "Jungle", "Hardcore" and "Downtempo"8. Within House, for example,
we can see a complicated network of arches tracing its genesis from other non-
electronic dance music specific genres in the 1970s (e.g. disco) to its many different
modern incarnations.

6https://www.theguardian.com/music/2012/aug/02/how-rave-music-conquered-america
7http://techno.org/electronic-music-guide/
8A more formal catalogue is presented by McLeod (2001), but Ishkur’s guide is infamous enough to

be referenced by many other articles in serious literature (Leimeister et al., 2014; Pampalk et al., 2005).

9

https://www.theguardian.com/music/2012/aug/02/how-rave-music-conquered-america
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Figure 2.1: Ishkur’s guide to electronic music.

Three of these top level sub-genres are what we would deem representative and am-
bassadorial in describing dance music, namely techno, house and jungle, and we will
expand on each of them now in turn, followed by some remarks on another interesting
direction in electronic music that defies easy categorisation.

2.1 House

The act of going to a venue purely to dance and listen to recorded music carefully
selected by a DJ existed well before the arrival what we now know as electronic dance
music, as is clear from the disco era in the 1970s. Clubs such as “Paradise Garage”
and “Studio 54” became focal points for the general public as well as artists living in
New York, and were revered for their sound systems and resident music selectors. It
was at these lengthy sessions that the cult of the DJ would nurture, with one of the
most notable emerging being DJ Larry Levan. Levan would pioneer many aspects
of what is now understood as the classic “DJ Set”, and was particularly celebrated
for his ability to “read the crowd” - to adapt and change his sequencing and mixing
depending on the mood of the audience of a given night. He was instrumental in
developing the practice of remixing music, and in later years started to incorporate
samplers and drum machines when repurposing older R&B records for his dance
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Figure 2.2: The Roland Tr-303 (top-left), TR-808 (bottom-left) and TR-909 (bottom-right)
(Image from Synth Mania)

floor.

The enduring legacy of disco left the most lasting impression on the city of Chicago,
where it enjoyed heavy rotation in its venues long after its demise in other urban
centres (Reynolds, 2013). Disco’s fading popularity meant that new releases were
less forthcoming, inevitably leading DJs in the city scrambling to remix and update
existing records à la Larry Levan, in order to stay fresh and current for audiences.
One of Levan’s disciples, Frankie Knuckles, was a resident at the Warehouse club
in Chicago, where his blending of regular disco and the electronic leaning Italo-disco
from Italy (Giorgio Moroder would be its most notable export) soon became morphed
and intertwined with his own bass lines and drum tracks (Butler, 2006). Eponymously,
the name for this style was eventually shortened to become what is now known as
“house”.

Listening to classic house tracks, it is rooted unequivocally in a “four on the floor”
regular 4/4 bass drum pattern, supplanted with synthesised claps and snares on the
second and fourth backbeats, indicative of the equipment it was built on: the infamous
TR-808 drum machine (Figure 2.4)(Blashill, 2002). Owing to its disco roots, house
music is often described as the most “soulful” of dance music styles, in no small part
due to syncopated baselines based around the root and the fifths, with short, jazzy
electric piano style vamps providing harmonic context for catchy vocal hooks.

Towards the latter half of the 80s, the Chicago house scene gave way to a more
stripped back, harder sound known as acid house. A classic example of how a singu-
lar misuse of technology can redefine an entire genre, acid house built its entire iden-
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tity out of another Roland product, this time the TR-303 bass synthesiser (McLeod,
2001)9. The production team “Phuture” discovered that by constantly modulating
the frequency cutoff and resonance parameters of the bass pattern, they managed to
create a frantic new “squelching” bass sound that both diminished the roles of tra-
ditional layering techniques using keys and vocals and emphasised the value of new
production tricks, deliberate or accidental (Vitos, 2014).

Acid house was to prove most influential, however, when the first records made their
way across the Atlantic to the United Kingdom. In London and Manchester clubs
such as Shroom and the Hacienda (the latter owned and managed by the label Factory
Records along with its flagship group New Order (Hook, 2009)) heavy rotation of acid
house tracks triggered what would eventually become known as the “rave” movement.
The rave movement was centred around large, spontaneous but entirely unlicensed
gatherings focussed on marathon sessions of dancing to acid house and, much to
the chagrin of authorities, consumption of club drugs such as MDMA. Rave culture
would reach its peak during 1988-1989, culminating in what is now referred to as
the “Second Summer of Love” (Gore, 1997). High profile coverage in the tabloid
newspapers caused ‘moral panic’ (Martin, 1999), and demonised and politicised rave
music, so much so that the controversial 1994 Criminal Justice Act included a clause
granting police full authority to halt any event involving the “emission of a succession
of repetitive beats” (Gilbert, 1997) 10 .

2.2 Techno

Around the end of the 1980s a similar musical development to house was burgeon-
ing in the city of Detroit, Michigan. Detroit was already a complicated city with a
chequered past; it was here that Motown records was formed, with artists like Marvin
Gaye producing some of the most defining soul music of the 1960s and early 1970s.
The name Motown, a portmanteau of motor and town, acknowledges Detroit as the
“motor city” - once the epicentre for the American car industry in the early part of the
20th century. Towards the second half of the century this once booming complex col-
lapsed due to increased overseas competition from countries like Japan and national
economic decline. Today the graveyard of abandoned factories in downtown Detroit
serve as a bitter reminder of these greater years (Sicko, 2010).

The continued de-industrialisation, suburbanisation and the eventual relocation of the
legendary soul label Motown Records to Los Angeles in 1972 had a devastating im-
pact on the cultural output of the urban centre. But bubbling under the surface in
Detroit’s suburbs three middle class African American high school friends, known as

9https://youtu.be/TLQwwtjtiY4
10Veteran duo Autechre (who could hardly ever be accused of basking in repetitivity) in response

released Anti EP containing a track “programmed in such a way that no bars contain identical beats”,
with the warning: “...we advise DJs to have a lawyer and a musicologist present at all times to confirm
the non-repetitive nature of the music in the event of police harassment” (Atkinson, 2007)

https://youtu.be/TLQwwtjtiY4
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the “Belleville Three”, were planting the seeds for what would become techno. Juan
Atkins, Derrick May and Kevin Saunderson were obsessed with sci-fi, technology and
futurism, and raised on a diet of George Clinton funk and Italo-disco coupled with fre-
quent visits to Chicago for injections of house, however it is widely acknowledged that
their greatest influence would be German electronic group Kraftwerk (Pope, 2011).
This was largely due to a seminal local radio show hosted by Charles Johnson a.k.a.
“The Electrifying Mojo”11, mixing artists like Prince with European new wave, italo-
disco and krautrock (Reynolds, 2013; Sicko, 2010). But it’s no coincidence Atkins,
May and Saunderson latched on to Kraftwerk forthright. Kraftwerk’s albums revealed
a group enamoured with the themes of transport, progress and movement, from the
Beach Boys inspired ode to German motorways “Autobahn”, to the pan-European
romanticism of rail travel on Trans-Europe Express (Albiez & Pattie, 2010). This
naturally resonated with the Detroit trio’s formulating ideas of Afro-futurism, against
the backdrop of a city once so intertwined with the machinery of transportation and
automobilisation.

Like Chicago house, Detroit techno was constructed and produced using the tools
available at the time, inevitably the gamut of Roland’s drum machines and bass se-
quencers, coupled with whatever other synthesisers and sampling equipment was on
hand. Tempo markings are also similar than house, most frequently in the 110 to
140 bpm range. So what distinguishes techno from house then? Techno at least, is
considered more minimal and mechanical than house, less rooted in the more soulful
influences of disco and soul as artist May points out:

“House still has its heart in 70s disco; we don’t have any of that respect
for the past, it’s strictly future music. We have a much greater aptitude
for experiment.” (Collins et al., 2013)

There is a driving energy to techno that discriminates it from house tracks, the tonality
is often more dissonant and ominous. Kraftwerk style vocoder driven vocals and titles
such as “No UFO’s” [sic] and “Time Space Transmat” highlight the futurist, utopian
themes and aesthetic that makes this era of Detroit techno idiosyncratic.

Techno would go full circle and transport itself back to Germany, where clubs such
as Tresor and Berghain in the capital of Berlin soon became shrines for techno lovers
from around the world. Berlin takes its techno very seriously. Tresor and Berghain
are housed in huge, imposing former power plants12 and factory warehouses, with the
latter recently receiving the same tax status13 as other more historic cultural centres
such as opera and concert halls 14. These industrial settings have moulded and shaped

11http://daily.redbullmusicacademy.com/2015/05/electrifying-mojo-feature
12Suffice it to say, Kraftwerk is the German word for “power station”
13http://pitchfork.com/news/68211-berghain-declared-high-culture-venue-by-berlin-court/
14Berghain’s legal representative successfully argued that “concertgoers may achieve a similar in-

toxicating effect from a Mahler symphony as from a DJ set”

http://daily.redbullmusicacademy.com/2015/05/electrifying-mojo-feature
http://pitchfork.com/news/68211-berghain-declared-high-culture-venue-by-berlin-court/
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Figure 2.3: Berghain club in Berlin, housed in a former power plant. Image from Resident
Advisor.

the sound of techno further, just like acid house did with its softer earlier incarnations.
German techno sounds big, heavy and dark. Kick drums are brutal, relentless and
reverberated, the reliance is more on metallic, machinery inspired sound design than
on any easily discernable pitched, melodic or harmonic material. Nye (2013) has also
traced this trajectory of evolution (or perhaps devolution?) and observes a marked
‘minimalism’ of the sound compared to its trans-Atlantic predecessor.

In a fitting closing observation, it is interesting to note that Kraftwerk, many years
later, have acknowledged their influence on techno as well as the cultural duality
shared by these two cities seemingly so far apart: on their track “Planet der Visionen”
the refrain is "Detroit/Germany/We’re so electric".

2.3 Jungle and Drum ‘n’ Bass

As the innocence and hope of rave dream started to disentangle and disintegrate in
an increasingly volatile post-Thatcherite Britain, a radically new sound rose up from
the ashes. Jungle, hardcore or drum ‘n’ bass drew its inspiration from two rather
disparate influences. Firstly, in New York in the 1970s, DJ Kool Herc realised that by
sequencing two copies of the same record, and looping the isolated “break” section
- a short passage of drum soloing from funk and R&B records - he could create a 5
minute performance for the purposes of “break” dancing and for an MC (Master of
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Ceremonies or Microphone Controller) to rhyme over (Smith, 2000).

As such, Kool Herc essentially devised the underpinnings of a musical framework
for emerging hip hop culture and rap music. Hip hop, as opposed to say, house and
techno, is sample-oriented music, meaning that manipulation of existing recordings
of audio are utilised far more than raw signal generating synthesisers. Jungle builds on
hip hop’s sampling aesthetic and heavy reliance on breaks but takes it to completely
new extremes. With the development of sophisticated hardware production tools such
as the Roland MPC (Music Production Centre) and, subsequently, the personal com-
puter, endless new possibilities for complex and finely grained sample manipulation
was within reach of homegrown bedroom producers.

Jungle’s other roots is the direct result of United Kingdom’s past as a colonial power.
Migration from the Commonwealth Caribbean island of Jamaica15 to London brought
with it reggae, dub music and sound system culture in general. Dub reggae was
already a technology-centred form of music way before dance producers began twid-
dling with Roland gear. Engineers like Lee Scratch Perry would take instrumental
versions of reggae tracks and remix them live using a slew of mixing desk tricks and
exaggerated drenching of outboard effects (most prominently using the Roland Space
Echo), blurring the lines between what constitutes the boundaries of the producer,
performer and composer. Dub was performed at dedicated events with massive sound
systems and MCs, somewhat prototypically anticipating central aspects of hip hop
and rave.

Just as reggae’s basic rhythm inverted the traditional downbeat and upbeat pattern
of rock, jungle completely upends the traditional symmetry and repetition of house/-
techno dance music. Equally, just as the combined rhythm section of the bass guitar
and drums (referred to as the riddim) takes a more pivotal role in reggae, the drums in
jungle and drum and bass are easily the most dominant element. As Simon Reynolds
observes:

“In jungle, the rhythm is the melody; the drum patterns are as hooky as
the vocal samples or keyboard refrains” (Reynolds, 2013)

Where jungle departs greatly from its spiritual predecessor however is the actual ar-
rangement of rhythmic patterns and its tempo. Reggae songs like chugs along typic-
ally around the 80 BPM mark; jungle can easily reach BPMs of almost double that16.
Drum production in jungle music is based around creating endlessly complex and
dizzyingly intricate resequencing and reinterpretations of breakbeats. Many break-
beat samples have been used over the past decades, but the most infamous and en-
during undoubtedly remains the “Amen Break”, a short 4-6 second drum solo on the

15In fact, DJ Kool Herc was born in Kingston, Jamaica, and would have been exposed to dancehall
culture before emigrating to the United States at the age of 12 (Chang, 2007).

16And wreaking havoc on BPM detectors!
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song “Amen Brother" by 1960s R&B group The Winstons (Collins, 2007b). Along
with an excerpt from “Funky Drummer" by James Brown, they hold the contentious
titles of being the most sampled breaks in music, contentious because the artists in
question have received little or no royalty payments for its reproduction.

2.4 Warp Records and Artificial Intelligence

By the early 1990s electronic dance music was already maturing to a point where it
began to look inward at itself in reflection and contemplation. After a long night of
hedonism, ravers were not likely to listen to more punishing dancefloor oriented beats
but rather sought out a more subdued, laid back sound to match abating moods.

Warp Records, a Sheffield-based techno label anticipated this development and de-
cided to capitalise on the emerging trend in a defining series of compilations known
as Artificial Intelligence. Looking at the green cover of the first release, it depicts a
lone automaton comfortably seated in an armchair, facing a stereo system and a shelf
of vinyl records. The intention is clear: this is not music for dancing, and as if the
image wasn’t enough, the subtitle below proclaims “Electronic Listening Music From
Warp”. The Artificial Intelligence series would go on to release seven other albums,
proving highly influential in the trajectory of dance music and bolstering Warp Re-
cords’ reputation as a bastion for “groundbreaking music” and, later on, branching
into video and cinema. They cleverly managed to usher in an era of album format
electronica, thus securing their longevity by doing away with the single release model
responsible for the short lifespan of many a prior dance music imprint.

The early music released by Warp Records was swiftly retitled by fans as Intelligent
Dance Music (IDM), a catch all label that largely grew out of discourse between
members of Usenet forums discussing rave music to describe “music that moves the
mind, not just the body” (Alwakeel, 2009). Immediately the term was controversial,
even by those who would be considered its most respected innovators. The problem
with the IDM label is that it not so much describes a sound, rather than a collective
ethos that just simply eschews conventional dancefloor geared sounds and production
aesthetic. Richard D. James (Aphex Twin) takes further umbrage at the supposed
elitist connotations it conveys:

“I just think it’s really funny to have terms like that. It’s basically saying
’this is intelligent and everything else is stupid.’ It’s really nasty to every-
one else’s music. It makes me laugh.” (Haworth, 2015)

Comparing Warp Records’ stalwart roster of Aphex Twin, Squarepusher, Autechre
and Boards of Canada under this umbrella term proves how divisive and varied the
actual musical output is. Scottish duo Boards of Canada blend an uneasy mix of
woozy, tape modulated hip hop beats with nostalgic samples from old VHS cassettes
on their classic albums Music Has The Right To Children and Geogaddy. This is light
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Figure 2.4: Cover sleeve for Warp Records’ Artificial Intelligence. Image from Warp.net.

years removed from, for example, the increasingly cold, angular and austere precision
that has characterised most of Autechre’s exhaustive back catalogue. Starting out
with reasonably symmetric post-techno repetitions and melodic analog synthesis on
albums like Incunabula and Tri Repetae, Autechre’s music has become more abstract
and hard to pin down over time, owing as much sonically and aesthetically to Greek
composer/theorist Iannis Xenakis as to any Detroit pioneer.

Mostly this transformation has arisen out of their shifting and maturing use of tech-
nology. Albums like Confeld betray a pair of experimentalists enamored with al-
gorithmic composition, particularly using the Max/MSP environment. Regarding
their continuing use of interactive software in live contexts they have described17 how
their processes differ from more traditional laptop performances:

“I mean, there’s no actual music "there"—it’s not like we make music,
then use the system to replay it in new ways. The system itself is making
the music each time, it’s all about the capabilities of the system dictating
what the music’s like”

Indisputably however, it is Aphex Twin who has become the bona fide poster boy
for Warp Records and IDM as a whole. The Cornish producer started out with two
double albums exploring ambient techno and beatless ambient music on Selected Am-
bient Works 85–92 and Selected Ambient Works Volume II respectively. Later albums

17https://www.residentadvisor.net/features/2756

https://www.residentadvisor.net/features/2756
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delved further into extreme recontextualisation and interpretation of earlier jungle and
drum ‘n’ bass - often referred to by its detractors as “drill ‘n’ bass” due to its harshness
and intensity - culminating in his most personal and broad record: Drukqs. Over two
discs, this album leaps from Satie-esque furniture music on “Avril 14th” to musique
concrète (“Gwarek2”, “Gwety Mernans”), as well his many brutally complex post
jungle workouts on tracks like “Vordhosbn” and “Mt Saint Michel + Saint Michaels
Mount”.

Richard D. James and his labelmates, with their supposed “intelligent" take on dance
music, managed to win much favour and legitimacy in contemporary and art mu-
sic circles. The 2006 compilation Warp Works & Twentieth Century Masters mixed
pieces of Aphex Twin and Squarepusher pieces alongside performances of Ligeti,
Varèse and Cage, while London-based chamber ensemble Alarm Will Sound have
recorded careful and faithful arrangements of Aphex Twin and Autechre on albums
such as A/Rhythmia. What’s striking about listening to these experiments is how
natural and appropriate they sound compared to many forced and kitsch attempts at
orchestrating rock music for instance.18

As suggested in the introductory chapter, this has been an attempt to provide a short
familiarisation with dance music from cultural, musicological and, in places, soci-
opolitical perspectives. It was not my intention to be exhaustive nor authoritative; I
understand there are countless subgenres of dance music that I have omitted for the
sake of brevity and enthusiasts and experts alike may take umbrage with those I’ve
chosen to retain and my summaries of them. What I would hope is that the reader
gains a flavour of my understanding of dance music and appreciate its scope for our
forthcoming study.

18Perhaps this is more of a personal aversion - I played in orchestras in my youth and I absolutely
loathed those light medley arrangements of Beatles and Beach Boys that sanctified all the dangerous
elements of rock ‘n’ roll.



Chapter 3
Generative Symbolic Music

3.1 Introduction

As long as computers have been available, a curiosity has prevailed as to whether com-
puters are capable of being creative (Cardoso et al., 2009). Indeed the multidisciplin-
ary area known as computational creativity (Boden, 1998; Wiggins, 2006; Boden &
Edmonds, 2009; Boden, 2009; Colton & Wiggins, 2012) gathers researchers from ar-
tificial intelligence, cognition, philosophy and the arts, in order to investigate this lofty
aspiration. In the wider sphere of computer music, algorithmic composition (Jacob,
1996; Fernández & Vico, 2013) endeavours to construct programs19 that could auto-
matically generate (or help generate) works of music for human listeners. With some
composers, the goal is to model style conforming compositions (Cope, 1987, 1991)
so convincingly that they pass some interpretation of the Turing test (Ariza, 2009),
while, others accept algorithmic composition for what it is - a different type of music,
hence accepting all its limitations or possibilities, or as Pease puts it:

Figure 3.1: Excerpt from the Illiac Suite by Lejaren Hiller. Image from Morgan & Legard
(2015)

19Although most texts introducing algorithmic composition will be at pains to emphasise that al-
gorithmic composition - in the context of some systematic application of rules for composing, like in
Mozart’s Dice game or in twelve-tone technique and serialism - in fact predates the computer.

19
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“Turing Test is largely inappropriate for the purposes of evaluation in
Computational Creativity, since it attempts to homogenise creativity into
a single (human) style” (Pease & Colton, 2011)

In the early days of computer music composition, digital synthesis was only in its
theoretical infancy, so algorithmic composition experiments typically involved gen-
erating some form of symbolic medium for later realisation as something audible.
For instance, composers such as Hiller used supercomputers to generate a numerical
computer score (Figure 3.1) which was then transcribed manually to staff notation
and performed by a live string quartet (Hiller & Isaacson, 1979). Iannis Xenakis,
in his treatise Formalized Music (Bradshaw & Xenakis, 1973), explains how he har-
nessed supercomputer capability to generate large stochastic distributions that gen-
erated parameters for written compositions also to be realised by live performers. It
is interesting to hear how Xenakis calls attention to the role that computer programs
play in assisting him in his creative practice, rather than holistic generation of entire
works20:

“the computer has not actually produced the resultant sound; it has only
aided the composer by virtue of its high-speed computations”

(Cope, 2000)

Later, with the advent of General MIDI, music-oriented programming environments
such as Max, Pd and OpenMusic were used to procedurally control note informa-
tion and parameters of external hardware synthesisers and samplers automatically.
One of my prior works (Ó Nuanáin & O’Sullivan, 2014) explored tangible table-top
interfaces modelled on the Reactable (Jordà et al., 2005) for interactive control of
real-time compositional algorithms, in a bid to expand the controller space offered by
other real-time composition practitioners such as Karlheinz Essl (Essl, 1992). These
experiments comprised a collection of Max/MSP patches that sent streams of algorith-
mically generated MIDI control information to a virtual bank of synthesisers and
samplers hosted in a DAW.

3.2 Algorithmic Composition Techniques

Programmatic techniques employed in algorithmic composition range from the very
rudimentary (simple random number generators) to very sophisticated arrangements
of agents borrowing from artificial intelligence. Algorithmic composition systems
can be qualified as stochastic (the output is unpredictable), deterministic (the output
is predictable) or hybrid, where one or more aspects of the system are determined.

20There are obvious parallels to be drawn here with Autechre’s statement regarding their live work
in Chapter 2.
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There exists a wealth of conceptual approaches exist for algorithmic composition that
have fallen in and out of flavour over the years. We summarise key ones here that we
feel are representative of the current state of the art and pertinent to the arguments put
forth within the thesis. For a thorough treatment of historical methods for algorithmic
composition we suggest consulting the Computer Music Tutorial (Roads, 1996) or
surveys reported by Fernández & Vico (2013) and Papadopoulos & Wiggins (1999).

3.2.1 Stochastic Processes

Stochastic processes are largely concerned with strategic applications of probabilistic
procedures. When composers defer some aspect of their creative activity to some
element of chance they are invoking a stochastic process; whether this be the flip of a
coin to choose which section to enter in a large musical structure or using a random
number generator to select pitch values on their synthesiser, for example.

3.2.1.1 Probability Distributions

Composers using random processes in a serious way (like Hiller and Xenakis) nat-
urally gravitate towards methods of influencing the outcomes in some systematic
manner. They utilise probability table lookups to shape a specified probability dis-
tribution geared towards a desired musical elemental goal. Most computer music ori-
ented software environments have some sort of facility for creating such distributions
interactively, and in fact Max/MSP provides a visual table object for drawing dis-
tributions explicitly. They can be used to create standard mathematical distributions
such as linear, bell-shaped, skewed etc., and The Computer Music Tutorial (Roads,
1996) gives derivations for many of them in the chapter dealing with algorithm com-
position. Ames (1990) also gives insight into similar statistically grounded modes of
composition.

Sometimes a more musically specific distribution is required. Using the example of
a probability distribution influencing the outcome of pitches available from the 88
notes of a conventional keyboard, we could envisage a distribution that only allows
notes from the major scale, and favours the root, fourth and fifth as prevalent in many
Western musical idioms.

Thinking further about this, if an analysis can be performed on a suitable set of rep-
resentational data (such as a score, MIDI file or features extracted from audio), the
distribution of pitches in the scores of Chopin or based on pitch histograms in a se-
lection of Javanese Gamelan recordings, one may surmise a very elemental manner
of encapsulating the notion of style within a composition system.

Instinctively however, the fundamental feature lacking is any information about the
appropriateness of the pitches given the surrounding context and overall trajectory.
One extremely applicable method of addressing this is through the use of Markov
processes.
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3.2.1.2 Markov Processes

A Markov chain is a probabilistic system that satisfies the Markov property of memory-
lessness. It consists of a set of discrete states with each state having an associated
probability weighting of moving to every other state in the system. At any point in
discrete time, the probability of a future event is solely determined by the current
state (or a few states depending on the order) of the system without knowledge of the
preceding past events. This can be expressed more formally by Eq. 3.1.

P = (Xt+1|Xt = xt ,Xt−1 = xt−1, ...,X0 = x0)

= (Xt+1|Xt = xt)
(3.1)

where Xt is the state occupied by the state machine at time t in its discrete history. To
build a Markov chain, a transition matrix is defined that determines the probability of
moving from one state to each other, often by analysing or modelling some real world
examples. The order (i.e. the number of states in the right hand side of the second line
of Eq. 3.1) of this transition matrix is the number of states that are considered when
determining the probability of the next state. A first order Markov chain, for example,
considers the probability of jumping to the next state based on the current state, while
a second order chain would use the current state and the previous state in determining
where to move to next.

Markov chains have enjoyed widespread application in simulating stochastic pro-
cesses, and in music they are employed routinely for algorithmic composition (Fernán-
dez & Vico, 2013; Eigenfeldt, 2009; Jordà et al., 2016). A simple Markov chain for
generating notes in a particular style could be achieved by building a transition matrix
from the number of times the root note of a scale transitions to every other note in a
corpus of MIDI files. This could be expanded to include a concurrent transition mat-
rix that contains probability of transition of observed note rhythm values. Some of our
colleagues in GiantSteps have also addressed drum pattern generation with a system
of Markov Chains derived from style specific corpora addressing various strands of
electronic dance music Jordà et al. (2016); Gómez-Marín et al. (2016).

With The Continuator, Pachet (2002) has garnered considerable exposure in the ap-
plication of Markov chains in call and response style interaction with a human per-
former21. The allure of Pachet’s work has been its satisfaction of a number of Turing
style tests (Pachet, 2008). More recently its successor AI, FlowMachines (Pachet
et al., 2008), has stirred up great publicity22 with its generation of the first artificially
intelligent pop song23. In their usage of Markov chains, they have acknowledged their
facility for modelling temporal phenomena such as music, but emphasise the chal-
lenge in reconciling them for interactive control. To solve this they have proposed a

21And we shall see later Biles (1994) achieves something similar with his means of “trading fours”
with a real-time listening GA.

22http://www.flow-machines.com/tag/flow-machines-press/
23With the caveat being a human wrote the lyrics and arranged and performed the final work.

http://www.flow-machines.com/tag/flow-machines-press/
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class of hybrid Markov chain system that includes elements of constraint satisfaction,
known as an Elementary Markov Constraints (EMC) (Pachet & Roy, 2011), proving
fundamental for chord generation in the Continuator (Pachet et al., 2011; Barbieri
et al., 2012).

Music generated by Markov Chains can be deceptive in their ‘low-level’ convincing-
ness but it is still very localised in contrast to larger human-composed works with
careful macroscopic attention to form. As Collins & D’Escrivan (2017) comment on
The Continuator: “it is fundamentally parasitic on the duration data passed to it” and
has “difficulty with longer-term structure”.

To combat this the composer can increase the order of the Markov system - thereby
lengthening the ‘memory’ of consideration in the state machine - or similarly length-
ening the size of the snippets of symbolic music atoms that are to be used for chaining,
but the results still baulk at a point. As Roads observes when studying hymns gener-
ated with a Markov chain by Brooks et al. (1993).

“...low-order chains generated meandering, random melodies, while high-
order chains consist of parts of the original hymns spliced together, such
as the first half of one hymn crudely spliced onto the second half of an-
other hymn. This can be explained as a strong probabilistic tendency
towards coherence over several notes that is broken suddenly by a more
unlikely event, at which point a new coherent melody starts”

(Roads, 1996)

Jordà concurs in his own evaluation of his own compositions for live computer music
generating jazz chord progressions.

“Markov music usually presents a very short correlation, sounding much
better over brief fragments, than over long ones. (Jorda, 1991)

With these criticisms in mind, maybe this makes the case for hybrid systems that can
scale with the demands of larger scale computer music composition. By invoking a
layered approach with multiple agents perhaps taking the role of a meta-composer for
the purposes of coherent musical form. In fact Eigenfeldt does talk about this in the
context of musical meta-creation (Eigenfeldt et al., 2016), and prior to that defines
some mechanism that is rudimentarily capable of doing something to that effect. In
GESMI - the Generative Electronica Statistical Modeling Instrument (Eigenfeldt &
Pasquier, 2013) - for example, expert annotations of aspects of electronic dance mu-
sic including subdivisions into section labels such as ‘lead-in’, ‘intro’, ‘verse’ and
‘breakdown’ are used by a genetic algorithm to dictate higher-level surface features
while Markov chains generate localised motifs as usual. In another work (Eigenfeldt,
2016a), another high-level meta-agent defines a series of parametric curves that affect
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Figure 3.2: GTTM metrical hierarchy grouping. Image from ?.

overall compositional aspects such as speed, density and complexity that are adhered
to by other reactive generative agents.

3.2.2 Formal Grammars

Continuing with the goal of epitomising style in computational models and generat-
ive procedures, we turn to another approach that tries to achieve this using language
theory. Formal grammars have long been used to interpret hierarchical relationships
in syntactical aspects of language (Chomsky, 1957), and are an essential element
of compiler theory and programming language design (Garshol, 2003; Wirth et al.,
1996).

The controversial debate continues as to whether music can really be considered a
universal language (Campbell, 1997; Savage et al., 2015) but, nevertheless, applying
formal grammar theory has enjoyed considerable utility in the systematic analysis of
musical concepts as well as generative tasks. In his famous Harvard lecture series
“The Unanswered Question”24(Bernstein, 1977), the conductor Leonard Bernstein
pondered whether music could be characterised using Chomsky’s formal generative
grammars (Chomsky, 1957). Subsequently inspired by this hypothesis, musicologist
Fred Lerdahl and linguist Ray Jackendoff (1985) joined forces to compile “A General
Theory of Tonal Music (GTTM)”, one of the most complete compendiums to classify
Western classical music using grammar techniques. A dense and complex work, it
nevertheless provides a methodological framework for understanding what we hear
when we listen to common practice works. The metrical structure rule for instance,
positions beats in a tree structure such that it accounts for the natural strong and weak
grouping of accentuation that occurs at different metrical levels of pulse as can be
seen in Figure 3.2.

24https://youtu.be/MB7ZOdp__gQ

https://youtu.be/MB7ZOdp__gQ
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Lerdahl and Jackendoff’s GTTM represents, as Roads suggests, an “analysis of syn-
tactic structures” where musical events are parsed into syntactic hierarchical struc-
tures (Roads, 1996). Conversely he contrasts the analytical viewpoint with the syn-
thetic: “starting from a specification of large-scale syntactic structure fill in the details
for each of these structures”.

The GTTM essentially comprises an analysis or distillation of style, the style loosely
being common practice era Western art music. Composer David Cope (1991) has, us-
ing his musicological expertise, performed a similar analysis of music from this era,
but with a more finely grained focus, initially on Bach chorales. More importantly the
primary goal of this analysis is to inform the eventual synthesis of style. Cope distills
his Experiments in Musical Intelligence (EMI) (Cope, 1987) process into three crit-
ical stages that mirror Roads’ observations regarding duality of musical application
involving formal grammars. In any case he identifies them as:

Deconstruction - segmentation and analysis of existing representative work

Signatures - identifying demonstrative motifs and traits that distinguish a styl-
istic genre or composer’s proclivity

Compatibility - recombine deconstructed elements into fresh cohesive and co-
herent musical works

Controversy aside, what Cope perhaps highlights most of all is the role of the de-
signer in building computer composition systems. As is evident, building a software
that can achieve the output of Experiments in Musical Intelligence (EMI) is no easy
feat, demanding a Bach scholar with knowledge of the nuances of voice leading, coun-
terpoint, as well as computational musicological skills that include awareness of AI
methods and programming in LISP25 for example. On a more philosophical note, it
should follow that the designer then must impart some aesthetical footprint on works
produced by such systems. So if we can hear which part reveals a piece to be Bach,
then which part is the designer? Which part is the computer?

Cope has available 5000 examples of computer generated Chorale in MIDI format
on his website, and has continued his experiments to include more larger scale works
extending into the common practice era and beyond (e.g. Mozart and Mahler (Mus-
cutt, 2007; Cope, 2009)). His efforts have had an enduring and frequently contentious
impact not only in academia (Wiggins, 2008) but also in the public’s psyche; by ad-
dressing well known and easily identifiable stylistic goals (verifiable once again with
musical style Turing tests) he establishes clear markers in the sand for what is achiev-
able with algorithmic composition.

25LISt Processor (LISP) is a programming language with a long association in the field of AI and by
extension, computer music (Taube, 1991, 2004; Assayag et al., 2006).
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3.2.3 Genetic Algorithms

Genetic Algorithms (GAs), as introduced in seminal works by Holland (1975) and
Goldberg (1989), are a class of heuristic search solutions modelled on the theory
of natural selection (Koza, 1992; Srinivas & Patnaik, 1994). Along with artificial
neural networks and emergent systems they can be classified as a biologically inspired
computing method that employs some well understood process from natural sciences
to help solve a more complex computational task (Mitchell, 1998).

In a GA, potential solutions to a conceptual problem are encoded with a genome string
representation (usually with binary bitstrings). Using a series of genetically-inspired
operations such as crossover and mutation these strings are “evolved” until their qual-
ity reaches a satisfactory level, hence performing an implicit search sweep over a large
space of candidates. Central to the operation of evolutionary algorithms and determ-
ining genomic quality is the fitness function, which determines the individuals that are
allowed remain in successive populations. Naturally effective representations are im-
portant to ensure effective use of evolutionary algorithms - a badly defined encoding
can skew the performance towards that of exhaustive search.

Several logical stages are involved in a genetic algorithm which we now discuss in
turn:

Initiation: To initiate the search space, a population of individuals is generated ran-
domly, though some rules-based procedures can assist in “kick starting” a faster, more
informed process.

Fitness: The fitness function is a problem-dependent evaluation procedure that de-
termines the suitability of the candidate solution to the problem. There are no hard
and fast rules as to what determines a “good” fitness function; this is - along with spe-
cifying an appropriate representation - part of the craft in evolutionary algorithms. An
alternative is to use an interactive fitness function, which involves using an external
agent (typically a human critic) to determine suitability of candidates.

Selection: In accordance with Darwinist theory, the fittest f individuals are more
likely to be chosen for reproduction and generation of future population members.
This is in essence probabilistic, and one popular selection schema is roulette wheel
selection, or fitness proportionate selection. Here, the probability assigned to an in-
dividual is given by the proportion of the individual fitness to the overall population
(Eq. 3.2).

pi =
fi

∑
N
i=1 fi

(3.2)

Where pi is the probability of individual i being chosen and fi is the fitness of that
individual.
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Figure 3.3: Sorted best to worst list of candidates (left). Truncated selection of top 4 can-
didates (middle). Probabilistic roulette wheel selection (right). Image from Dissecting Rein-
forcement Learning26

Roulette wheel selection derives its nickname from being akin to reserving a portion
of a spinning roulette wheel in a casino. In Figure 3.3 this can be graphically com-
pared to truncation selection which simply selects the top N members from the list
when sorted by fitness.

To create the offspring, genetic operators are applied to the parent individuals, the two
most common being:

Crossover - pick a splice point s in the bit strings of the genome, take bits 0 - s
from parent A and combine with bits s - n from parent B.

Mutation - a certain (small) portion of the newly generated population is chosen
at random and within these individuals a random bit is flipped. As in nature,
the mutation procedure allows for genome sequence combinations that may not
occur using crossover alone.

3.2.3.1 Evolutionary Music

Genetic algorithms have certain qualities that make them an attractive choice for ar-
tificial creativity, so much so that there exists an ardent strand of research devoted
entirely to what has come to be known as “evolutionary art” (Romero et al., 2008;
McCormack, 2013) and furthermore, evolutionary music (Miranda & Biles, 2007) .

Undoubtedly, they are an elegant and easy to comprehend search heuristic, and the
underlying concept of generating a bunch of candidate solutions that hopefully con-
verge on some ideal is appealing to the process of an artist. So too is the idea of the
interactive fitness function, where humans can directly appraise potential candidates
subjectively. Naturally this is the most optimal method aesthetically but the slowest
method performance-wise, especially in highly temporal domains such as sound and
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Figure 3.4: GenJam architecture with different populations and interaction with performer.
Image from Miranda & Biles (2007).

vision, where it is typically referred to as the “fitness bottleneck” (Todd & Werner,
1999; Biles, 2001; Gartland-Jones & Copley, 2003).

One of the most well known applications of genetic and evolutionary algorithms to
music has been Al Bile’s GenJam system (Biles, 1994, 2002, 2003, 2007) which in-
teractively generates streams of monophonic solo melodies in bebop jazz style. It is
a classic example of an interactive genetic algorithm Figure 3.4, where the composer
considers himself a “mentor” to the system, actively incrementing and decrementing
fitness of generated phrases as they arise in real time from the program. Internally,
the genetic algorithm actually maintains two populations of structures. The phrase
population contains a list of indices that reference measures in the measure popula-
tion. A measure is considered a short eight-note phrase of MIDI pitch values, with
special symbols for silence and held notes. One of GenJam’s unique feature is the
ability to “trade fours” with the live performer whereby pitch detection is performed
on a monophonic input source, and the phrase that is altered using genetic modifiers
is played back to the performer.

Now that we have seen a glimpse of basic methods for symbolic algorithmic com-
position, we will begin our study of symbolic generation focussing on rhythm using
computer processes. We will turn our attention to some key works presented in the
literature and describe a new method of target-based rhythmic pattern generation us-
ing genetic algorithms. An evaluation will unearth the feasibility of such methods
for rhythm pattern generation and the limitations that can be identified that informs a
revision of the models used.
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Figure 3.5: Roland TR-808 drum machine.

3.3 Symbolic Rhythm Generation

3.3.1 Representation

As evident from such designs as Léon Theremin’s ‘Rhythmicon’, the Wurlitzer ‘Sideman’
and Raymond Scott’s ‘Rhythm Synthesizer’27 (Tindale, 2009; Malmberg, 2010; Arar
& Kapur, 2013), there have been many esoteric early incarnations at building and in-
corporating drum computers, with these strange experiments in the early half of the
20th century paving the way for a more unified design aesthetic emerging towards the
latter half.

Most notably, one can not underestimate the profoundly influential impact of the
designs of Ikutaro Kakehashi and the Roland Corporation on the shape and history
of electronic music and its culture. Originally considered a commercial flop due to
its perceived inauthentic synthesis of natural drum sounds, the Roland TR-808 drum
machine (Figure 3.5) has since become the icon of post 1980s dance oriented mu-
sic, and its distinctive synthetic character soon became synonymous with techno and
house styles (Théberge, 1997).

The TR-808 was intended as a rhythm accompaniment device, and as such was de-
signed to be easy to use by non drummers. Its operation involved selecting the re-
quired drum sound and inputting a pattern using a row of 16 buttons corresponding
to discrete points in time based on a global tempo. This binary based approach has
continued on into computer music platforms and virtual instruments.

This simple but concise metaphor of representing basic patterns has been adapted
also in the literature dealing with the musicological study of rhythm, most notably
by Toussaint (2013) who has carried out considerable research into geometric ap-
proaches for rhythm analysis and similarity. The binary input mechanism is clearly
a convenient medium for transferring to computational analysis while remaining de-

27The Rhythm Synthesizer would sow the seeds for a later drum machine called ‘Bandito the
Bongo Artist’ which would be used on the ground-breaking proto-ambient record Soothing Sounds for
Baby(Collins & D’Escrivan, 2017)
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Figure 3.6: Different forms of symbolic rhythm representations. Image from (Toussaint,
2003).

scriptive and intuitive for human comprehension. Figure 3.6 shows how a particular
rhythm can be represented in a number of different symbolic representations includ-
ing traditional staff notation forms.

The fifth form in the figure, the most familiar to drum machine interfaces, is referred to
as the Time Unit Box System (TUBS). It is considered easier by many ethnomusico-
logists in depicting and grasping complex rhythmic structures such as polyrhythms
not typical in Western Art Music (Nzewi et al., 2008; Koetting, 1970).

Continuing in this line, other representational schemes have been devised in attempt
to represent rhythms in a more holistic and natural manner, given its cyclical and
hierarchical centricity. Often rhythms are portrayed using a circle or necklace system
with beats and onsets occupying geometric portions of the structure, as can be seen in
Figure 3.7. These are frequently used to depict more complex rhythmic patterns that
exist in African and Latin traditions, giving a different perspective and insight into
their latent balance and symmetry.

These circular representations have proved alluring for computer music practitioners,
and a number of rhythm focussed applications have been developed exploiting this
necklace paradigm. Xronomorph (Milne & Dean, 2015; Milne et al., 2016), provides
an environment for experimenting with rhythms that conform to mathematical proper-
ties of perfect balance and well-formedness. As a unified mobile application, Rhythm
Necklace29 is a visually appealing application for iPad for experimenting with geo-

29http://rhythmnecklace.com/

http://rhythmnecklace.com/
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Figure 3.7: Necklace depictions of some popular rhythms. Image from Ethan Hein28.

metrical approaches to rhythm generation.

3.3.2 Measuring Rhythmic Similarity

One of the primary tasks that has dominated symbolic rhythm study has been the
formalisation of methods for measuring the degree of similarity between two rhythmic
patterns. It was previously shown how natural rhythms can be distilled down to a
very simple representational form suitable for computational analysis (and hopefully
generative composition).

Obviously, there is a wealth of knowledge and systematic approaches for measuring
similarity borrowing from information sciences when dealing with computer readable
data, or in particular, strings. Methods of comparing strings, or string metrics, are
an essential aspect of coding theory. Symbolic rhythmic study has adapted many
of these metrics for its analysis and Toussaint (2004a) has summarised many of the
key matching techniques. Superficially, we can take a distance measure, feed it some
rhythms encoded as binary strings and do some basic normalisation/algebra to convert
it to some degree of “similarity”.

The key question here is how do these objective information metrics compare with the
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(a)

(b)

Figure 3.8: (a) XronoMorph interface. Image from Milne et al. (2016)., (b) Rhythm Necklace
app. Image from Ethan Hein30.
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Figure 3.9: Same hamming distance for three different patterns

cognitive human impression of similarity? With this very shallow abstraction of what
a rhythm is, we must surely lose a great deal of latent information that undoubtedly
must contribute to similarity perception; consider the influencing factors of accen-
tuation, swing, timing imperfections, instrumentation, timbre, production, genre and
surely, culture.

Regardless, the foundations of understanding rhythmic similarity need to begin some-
where. We turn our attention now to methods of estimating similarity of simple binary
string representations of rhythmic structures and discuss their relevance and applica-
tion for generative purposes in a practical system in due course.

3.3.2.1 String Similarity and their Application to Rhythms

The primary advantage of the simple binary representation exemplified by the TUBS
notation is its malleability for simple bit comparison and string analysis using com-
mon algorithms. We summarise a number of them here for clarification, but Toussaint
offers a more thorough synopsis of many of them and their application to rhythm.

Edit Distance: The edit distance or Levenshtein distance is a widely-used measure
of difference between two strings of information. It counts the number of insertions,
deletions and substitutions required to transform one string into the other. The Leven-
shtein distance between the two strings “kitten” and “sitting” for example returns 3,
based on two substitutions and one addition. The edit distance can operate on strings
of differing lengths, and is solved using recursion or dynamic programming tech-
niques.

Hamming Distance: The hamming distance counts the number of positions in which
two equal length strings differ. A simple measure that is easy to compute for the ma-
chine and easily comprehensible for the human. Hence it is a restricted version of the
edit distance, limiting itself solely to substitutions of symbols.

Swap Distance: As Toussaint (2013) notes, one of the problems with the edit dis-
tance and the Hamming distance is that they don’t capture the horizontal aspect of
string similarity so well. In Figure 3.9 for instance, comparing string A to string B
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Figure 3.10: Swap and Hamming distance compared.

and string C both return a distance of 2, even though comparing them horizontally
they are clearly very different.

To this effect, Toussaint proposes the use of the swap distance, actually borrowed
from similar computations that take place in the realm of bioinformatics, to capture
the number of placewise shifts to make one string match the other. as he did in his
study of African ternary rhythms (Toussaint, 2003). In the simple case of binary
encoded rhythms with equal number of onsets or 1s - known as one-to-one mapping
- the distance can be computed by summing the absolute differences in their indices
(Toussaint & Oh, 2016) - essentially the L1-Norm or “Manhattan” distance (Eq. 3.3)
when considering element ai and bi from two strings A and B.

DS(A,B) =
N

∑
i=1
|ai−bi| (3.3)

Of course natural rhythms can have different numbers of onsets and this does make
computing swap like similarity considerably more complex. To handle this extended
case of many-to-many, Díaz-Báñez et al. (2004) have applied what is known as the
directed-swap in their analysis of flamenco patterns, which stipulates, when compar-
ing a pattern A with more onsets than pattern B that:

1. Each onset in pattern A must move to an onset in pattern B.

2. Every onset in pattern B must receive at least one onset from pattern A.

In Figure 3.10, we can see a visual comparison of the directed-swap distance as com-
pared to the Hamming distance, as well as the different distance values they return.
Conceptually, we can at least surmise that the directed-swap, with its ability to en-
code the horizontal displacement of onsets, should give a richer description of the
similarity between two rhythms, such as embodying an impression of the syncopa-
tion introduced. if we were to move between both patterns.

Actually computing this distance is also a more involved task. One proposed, which
works in O(n2) time, solution is to consider the task as finding the shortest path within
a weighted acyclic graph, in the context of solving what is referred to as the restric-
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Figure 3.11: Comparing the identical IOI of two very different rhythms. Image from Dixon
et al. (2004).

tion scaffold assignment problem in computational biology (Colannino & Toussaint,
2005).

3.3.2.2 Other Symbolic Rhythmic Descriptors

Here we summarise other useful descriptors pertinent to symbolic rhythmic analysis
that are not exclusively based on determining similarity between two rhythms.

Inter-Onset Interval: Rather than computing the difference between two rhythmic
patterns based on the location of the onsets in time, the Inter-Onset Interval (IOI)
summarises a rhythm based on the time elapsed between each onset - or in other words
the offset time (Toussaint, 2013). For example the clave son would be encapsulated
in the string of time elapses as {3,3,4,2,4}, using some unit of reference such as 1 =
1
4 note.

Clusters of inter-onset intervals that occur periodically, at a regularly rate that can be
quantified per unit time, are referred to by some in the literature as “temporal atoms”
or tatum (Bilmes, 1993; Sethares, 2007; Jehan, 2005). Essentially we can consider
the tatum of a score or recording as the fastest note division in which it is written or
performed (Sethares, 2007). We shall learn later in Chapter 4 that the notion of tatum
is important in extracting the tactus or, in musical information retrieval parlance, beat
tracking. The computational task of beat tracking involves determining from a signal
where a human is likely to tap their foot31 when listening to music with a clearly
discernable rhythm.

While IOIs are unedeniably one of the most important contributors to the impression
of accent and pulse perception in music (Parncutt, 1994), they are not the most useful
feature for comparing rhythms (which is what we are trying to achieve). Firstly as
Dixon et al. (2004) correctly point out, two rhythms can have the same distribution of
inter-onset intervals, but depending on the length of the notes themselves, the percep-
tion of their similarity can turn out to be very dissimilar indeed. In Figure 3.11 the
two rhythms have identical inter-onset intervals but the rhythm above is more typical
of a Cha Cha rhythm while the rhythm below is clearly more syncopated and betrays
more stylistically that of Rumba.

31Or more formally, the period at which the conductor swings their baton
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Figure 3.12: Chronotic distance of Clave Son. Image from Toussaint (2004a).

Chronotonic Distance: Addressing the aforementioned shortcomings intrinsic to
IOI-based comparisons, Gustafson (1987) expands the IOI representation to a two-
dimensional structure that also encapsulates interval time by the integrated area of the
rectangle. This elegant depiction allows for clear visual comprehension of rhythmic
patterns32 as we can see in Figure 3.12 with the familiar Son.

(Toussaint, 2004a) explains how to compare two patterns summarised by their chro-
notonic distances by treating them as probability distributions and using standard stat-
istical distance measures. While he reports that the chronotonic distance edges past
the swap distance based on the criteria of simplicity, goodness of fit, clustering, and
“ancestral” rhythm generation (rhythms that serve as the seed for many many oth-
ers), Guastavino et al. (2008) provide experimental evidence that the directed-swap
correlates more highly with classically trained musicians’ perceptual impression of
dissimilarity when comparing rhythms.

3.4 A Genetic Algorithm based on Similarity

The previous section introduced symbolic representation schemas for rhythm, and
symbolic rhythm descriptors, with a particular focus on similarity measures between
two rhythms. In this section we will explore how this systematic knowledge can be
encapsulated in generative systems. We will begin with a glimpse into some exist-
ing relevant work, firstly looking at generative systems that deal with Toussaint style
measures of similarity, followed by systems that use genetic algorithms to generate
rhythm. Subsequently, we introduce our own proposed work that seeks to specifically
merge perceptual measures of rhythmic similarity with genetic or evolutionary al-
gorithms in a system we call GenDrum. We discuss the evaluation of the system and
our conclusions that motivates our progression from the symbolic domain to direct
content-based analysis and recombination of audio.

32Actually originally intended for scrutiny of rhythm within phonetic study
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3.4.1 Generative Rhythmic Systems

3.4.1.1 Generative Rhythmic Systems using Similarity Measures

Publications dealing with generative applications of symbolic rhythmic similarity ex-
ist in the span of literature, but are not so widespread. The Hamming distance, with
its easy comprehensible and computable qualities has naturally served a number of
systems. Paiement et al. (2007) describe a paper centred around utilising the Ham-
ming distance for generative modelling and prediction of simple rhythms trained in
jazz and pop idioms. Vogl & Knees (2017) present a tablet application that uses
the Hamming distance combined with a restricted Boltzmann machine - a type of
artificial perceptron neural network - trained on many drum styles from the Native
Instruments Maschine33 collection. A modified extension has also been extended to
database interpolation from that same collection in an earlier publication (Vogl et al.,
2016). Other distance metrics have been exploited less so, and we have found no
instances of the directed-swap distance being used in generative tasks.

3.4.1.2 Generative Rhythmic Systems using Genetic Algorithms

Generative systems addressing rhythm with the means of GA are more abundant. Ei-
genfeldt (2006) describes his Kinetic Engine as a software component that generates
rhythms in general, not specific to drum sounds. His approach to fitness evaluation
is perhaps a controversial one, but not uncommon in musical applications. As in Al
Biles’ GenJam system, the role of fitness is simply eliminated. Thus the only real ele-
ments of genetic algorithms conserved are crossover and mutation. One may right-
fully suspect that such a simplification renders the algorithm commensurate with a
randomised search. Consequently a common solution used in such scenarios is to seed
the initial population with a known dataset of good input. Another approach could be
to embed some rule-based logic that restricts what type of candidates can be generated
legally in the seeding process, as we carried out in (Ó Nuanáin & O’Sullivan, 2014).

Bernardes (2010) approaches genetic drum pattern generation from the point of view
of style emulation. Like Eigenfeldt, they do not incorporate a fitness function, but
choose to perform prior analysis on user-supplied or preset MIDI files in a particular
style. This process gathers a probability distribution of weighted possible onset times
in a 16-step pattern. The population is then seeded with candidates that have patterns
generated according to this distribution.

A short paper by Horowitz (2004) suggests a multi-dimensional objective fitness
function based on the combination of functional evaluations of syncopation, dens-
ity, downbeat, beat repetition, etc.. Unfortunately the publication is rather scant on
actual details regarding the implementation and evaluation of such a method.

Kaliakatsos-Papakostas et al. (2013) also use the notion of a a target pattern in their
evoDrummer software, and define their fitness function by determining what they

33https://www.native-instruments.com/en/products/maschine/

https://www.native-instruments.com/en/products/maschine/
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Figure 3.13: SimpleGA Pure Data help patch

refer to as divergence in terms of “mean relative distance” to a base rhythm. The
distance is computed based on a set of 40 features extracted from patterns, including
descriptions of density, syncopation and loudness intensity. Indeed this is perhaps the
most related work to our proposed system.

3.4.2 Developing a Genetic Algorithm that can Generate Rhythm

We set out to design a rhythmically motivated genetic algorithm that was capable
of self-evaluation based on the similarity of the patterns it outputs compared to a
user-provided seed target pattern. One can envisage this concept being extended to
a system that can perform self-evaluation against a previously analysed dataset of
patterns that conform to some notion of style.

This section introduces the tools we created in our research: SimpleGA, the genetic
algorithm itself that can target the two well known music programming environments
Pd and Max, and subsequently encapsulated in the real-time Max for Live instrument
GenDrum. Max for Live is an extension of the Max programming environment in-
habited in the popular DAW Ableton Live (Manzo & Kuhn, 2015). Ableton Live34,
in turn, is one of the most popular DAWs in the dance music community due to its
non-linearity and grid-focussed arrangement of loops.

We continue with a detailed discussion of the implementation of the distance meas-

34https://www.ableton.com/

https://www.ableton.com/
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ures and representational issues. Finally there is a description of the design of the
experiment for evaluating the research.

3.4.2.1 Software Implementation

SimpleGA is a basic, general purpose genetic algorithm external object we developed
for the Pure Data (Puckette, 1997) and Max/MSP environments in C++ using the
cross-platform Flext framework (Grill, 2004) . It can handle binary, numerical and
alphanumerical strings. A target string is supplied to the object and fitness is de-
termined by measuring its distance to the generated strings using the Hamming or
directed-swap distance as was introduced in Section 3.3.2.1. Bang35 messages to the
leftmost “hot” inlet causes the genetic algorithm to undergo a generational stage of
evolution, then to output its fittest individual from the pool. Figure 3.13 shows the
help patch for the object with this functionality explained visually.

Next we created the GenDrum instrument, a Max for Live device that uses the Sim-
pleGA genetic algorithm to create polyphonic drum patterns of synthesised kick,
snare, hi-hat and crash/clap type sounds that emulate the style of a pre-conceived
(by input from the user) pattern (Figure 3.14). These four sounds are mapped onto a
single 16-step row to create a 4x16 drum pattern matrix as is evident in the figure. The
operation of the instrument is intended to be as simple as possible. The user inputs
a desired pattern into the pattern matrix and assigns this as the target pattern. New
target patterns can then be generated by clicking on “Get New Pattern”. This assigns
the best candidate in the current population to the grid and reports its fitness in the
number box. In the yellow number box a target fitness can be issued to the genetic
algorithm and clicking “Accelerate!” will increase the speed of the algorithm until
it reaches this target. Patterns that increasingly approach perfect fitness now emerge
from the algorithm, repeating and contrasting with the target pattern through repeated
stages of GA evolution.

The instrument also attempts to provide some visual feedback on the evolutionary
process using a type of force-directed graph. The fittest individual from each pop-
ulation is represented as a node with its fitness determining the size and distance in
relation to the target individual.

Algorithm Details

Linear vs. Parallel Operation

As the previous section explains, the instrument is intended as a fully functional drum
machine, and hence is polyphonic with the possibility of multiple sounds concurring
in time. As seen in the literature, similarity studies are predominantly focused with

35The “bang” is a fundamental message in Pd and Max that basically means “do your thing!” (Wink-
ler, 2001)
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Figure 3.14: GenDrum main user interface

examining monophonic patterns such as the single sound clave son36. How we deal
with the polyphonic implications in our research is outlined here.

Our first naive implementation of the genetic algorithm converts the 4x16 drum pat-
tern matrix into a single “linear’” 64-digit binary string. Evidently this is a simplistic
“brute force” approach that does not explicitly take into account any musical or per-
ceptual aspect of the application. Specifically it does not embed any knowledge about
the constituent sounds and the separation between them in the genome string. Essen-
tially, we’re treating it as a single sound 64-step pattern, with crossover and mutation
happening at the halfway point between the first 16 bits of the kick and snare pattern
and the second 16 bits of the cymbals/crashes.

Another approach is to force some kind of logical separation between the different
polyphonic timbres in the pattern. By assigning a separate instance of the genetic
algorithm to each timbre an overall mean fitness can be derived from the individual
outputs. This we implemented and labelled as “parallel” mode. Since the genome pat-
tern length is now split from one single 64-bit string to four concurrent 8-bit strings,
the time it takes for the genetic algorithms to reach the target fitness is considerably
reduced. Some tweaking of the parameters is required to reduce this convergence time
and maintain a healthy level of diversity. Setting the population size parameter to 30
and increasing the mutation rate parameter to between 20% to 40% has been found
to work well in our experience. Figure 3.17 shows the flowchart and design of the
GenDrum instrument and it’s encapsulation of the SimpleGA GA in the aforemen-
tioned linear and parallel configurations. Next we turn our attention to the distance
measures used to derive the fitness function of these genome patterns.

Hamming Distance

In the review of the state of the art, we referenced how Post and Toussaint have
surveyed the effectiveness of the edit distance in determining rhythmic similarity
between two binary patterns (Post & Toussaint, 2011). Recall that the edit distance
allows for insertion, deletion and substitution of symbols within the string. A sim-
plification can be made if operations are restricted to substitutions only, and string
lengths are equal (as is always the case in our representations) in which case it be-
comes the Hamming distance.

36The clave son is a two bar measure of either a 3-2 or 2-3 pattern that is integral in many forms of
latin dances (Sethares, 2007).
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Figure 3.15: Genetic algorithm flowchart for GenDrum. The target string can either be fed to
one single GA (left) or split by timbre, processed by 4 parallel GAs then recombined (right).

To derive a fitness function using the Hamming distance (Eq. 3.4, using the⊕ exclus-
ive OR operator to determine where the two binary strings are not equal), the number
of positions where the two strings a and b match are counted and then divided by
the total string length (64 for the linear string and 8 for each string in the parallel
implementation).

f =
1
N

N

∑
i=1

ai⊕bi (3.4)

Directed-Swap Distance

The Hamming distance takes into account the correct positional scores between two
patterns, but it does not give any indicator as to how different a pattern is in terms of
the horizontal displacement. Intuitively one would think this horizontal displacement
would reflect the important phenomenon of rhythmic syncopation. For example there
may exist two different patterns with equal distance, but one pattern has more onsets
aligned closer to the original pattern or exhibit a similar distribution of the strong and
weak beats in the bar. For these reasons, we decided to test also the directed-swap
distance metric as described by Díaz-Báñez et al. (2004) in the study of flamenco
rhythms, with the hopes that it better captures the spatial comparison between the our
generated patterns and the target.
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Figure 3.16: Solving the directed-swap distance for strings A = {0,2,7,12} and B =
{1,4,11}. Image and example taken from Colannino & Toussaint (2005)
.

Since no implementation existed for the algorithm proposed by Colannino & Tous-
saint (2005), we implemented it ourselves, using the Dijkstra implementation in the
Boost C++ graph library (Siek et al., 2002) to compute the final distance37. The deriv-
ation and proofs are described at length in their article (Colannino & Toussaint, 2005)
but the basic steps are as follows:

1. Convert the two binary rhythms under scrutiny to two sets of indices respect-
ively. For example the pattern A = {0,0,0,1,0,1,0,0} would reduce to the
index vector A = {3,5}.

2. Construct a weighted directed acyclic graph from two index vectors A and B by
firstly creating the set of vertices vi, j where 1 ≤ i ≤ |A| and 1 ≤ j ≤ (i+ |B|−
|A|).

3. For each vi, j add an edge to vi, j+1 with weight |bi−a j+1|, and an edge to vi+1, j+1
with weight |bi+1−a j+1|, if vi, j+1 and vi+1, j+1 exist.

4. Create a start note and add an edge from that node to v1,1 with weight |s1− t1|.

5. The directed-swap distance is given by the cost shortest path through the graph,
solvable with Dijkstra’s algorithm (Figure 3.16).

3.4.2.2 Operation and Performance

One way to measure the performance of a genetic algorithm is to plot the fitness
values it outputs over a succession of generations. In Figure 3.17 we can see the best
fitness and average fitness for all possible configurations of the genetic algorithm over
100 generations. Notice that the linear string representation causes convergence on
the target within 40 generations. Notice also that the parallel representation converges
prematurely in areas of local maxima, particularly using the swap distance. This can

37https://github.com/carthach/SimpleGA/blob/master/SwapDistance.cpp

https://github.com/carthach/SimpleGA/blob/master/SwapDistance.cpp
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Figure 3.17: Fitness plots for the various configurations of the genetic algorithm

be alleviated through some encouragement of diversity by tweaking the population
size and mutation rate.

3.4.3 Listener Evaluation & Discussion

When evaluating this research and its resulting tools, our goals were to investigate:

The overall correlation of distance with perceived experience.

Comparing the impact of the Hamming distance versus the directed-swap dis-
tance on the perceived experience of similarity

Comparing the impact of the linear versus parallel string representation.

The more informal, subjective issue of the musical “interestingness” of the
rhythmic patterns created.

We decided to conduct a simple listening survey to get listener feedback regarding on
these aspects. The survey was web-based and unsupervised38; participants were sent
a link with instructions on how to complete it.

38See Appendix E for more information
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Figure 3.18: Rock, electronic and Son-based patterns used in symbolic listening survey.

The listening portion of the survey was divided into two parts. The first part examined
similarity ratings by presenting the user with the target pattern and the algorithmically
generated patterns. Participants were then asked to rate the perceived similarity on a
five-point Likert ranging from “Highly Dissimilar” to “Highly Similar”.

The second part then examined the “interestingness” of generated patterns. To enable
the participant to ascertain this, the patterns were arranged in a soundfile as TPx2,
GPx2, TPx2, GPx2 (TP=Target Pattern, GP=Generated Pattern) i.e. a two-bar loop of
the target pattern is followed by a two-bar loop of a generated pattern and the whole
sequence is repeated. This choice of configuration was quite arbitrary, but it was
reasoned that in order to get a sense of the interplay between the target pattern and
the generated pattern it was necessary to repeat the sequence at least once.

Once again a five-point Likert scale graded the ratings, this time with labels ranging
from “highly disinteresting” to “highly interesting”. Regarding the subjective inter-
pretation of “interestingness”, we instructed the participants to consider how the tar-
get pattern and generated pattern “flows” from one to another, and how the generated
pattern “develops” on the target pattern in terms of introducing stimulating variation.

Three target patterns were used for the purposes of the test: a standard straight 8
rock pattern, a four-on-the-floor electronic pattern and a son-based latin pattern (Fig-
ure 3.18). Table 3.1 summarises all the variables under consideration for the evalu-
ation. This resulted in a total of 72 Wave Audio Format (WAV) files with 3 fitness
levels (inversely corresponding to the distance scores).

Twenty-two participants took part in the survey, mostly drawn from music students
and researchers. All of the participants confirmed that they played an instrument, 7 of
whom specified a percussive instrument. Eighteen out of the 22 participants reported
the ability to read music. It took approximately 15 minutes to complete.
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Question Measure String Pattern Fitness

Similarity Hamming Linear Rock Low

Interesting Swap Parallel Latin Med

Elec High

Table 3.1: Listener survey variable summary.

3.4.4 Results

Before carrying out the statistical analysis the responses were summarised by comput-
ing the mode39 of the Likert scores for each stimulus. Two “interestingness” stimuli
out of the total 72 (36 for similarity, 36 for interestingness) were removed due to high
divergence of opinion (50% or more of the responses deviated by 2 or more Likert
scale values from the mode).

Figure 3.19a shows the overall fitness (normalised from its original range of [0-100]
to the Likert range [1, 5]) against the mean and standard deviation of the Likert scores
by each stimulus. The dip in the middle can be attributed to the different ranges of dis-
tance and corresponding fitness produced by the two string measures; the Hamming
measure outputs values in a much higher and narrower range. This is more evident
looking at the divided plots in Figure 3.19b , which plots fitness against Likert scores
for each combination of string measure and representation type.

3.4.4.1 Similarity Ratings

Our first task when looking at the data was to confirm whether inverse pattern distance
and the fitness of the genetic algorithm correlates with the perceived similarity as
determined by the participants.

The data appears to suggest that this hypothesis is confirmed. Table 3.2 presents the
Spearman ranked correlation matrix of fitness, distance and the mode scores received
for each stimulus. There is a clear, strong negative correlation coefficient (ρ = -0.71,
p < 0.05) between the distance measure and the perceived similarity to the target.
This correlation is not as clear with the fitness function, which can be attributed to the
fact that fitness as a function of distance is evaluated differently for the two distance
measures.

Figure 3.20 shows the separated distance and fitness correlations against the mode
scores for the Hamming and directed-swap distance measures. The fitness correlation
values are 0.784 and 0.625 respectively and the distance correlation values are -0.784

39Median or mode are generally considered more appropriate measures of central tendency when
handling ordinal data such as Likert, and we use Spearman’s Rho when performing correlation analysis
for similar reason (Boone & Boone, 2012; Lantz, 2013).
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Figure 3.19: Mean and standard deviation of fitness versus Likert scores for (a) each stimulus
(b) measure and string type.

Distance Fitness Score

Distance 1.0000 -0.4145 -0.7134

Fitness -0.4145 1.0000 0.4353

Score -0.7134 0.4353 1.0000

Table 3.2: Overall similarity correlation matrix
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Figure 3.20: Fitness and distance for Hamming and swap distance metrics

and -0.716 respectively (p < 0.05). It can be seen that the Hamming distance has
slightly better correlation.

Figure 3.21 shows the separated distance and fitness correlations against the scores
when we discriminate between linear and parallel pattern strings. The fitness correl-
ation values are 0.525 and 0.480 respectively, and the distance correlation values are
-0.852 and -0.576 respectively (p < 0.05). The linear representation scheme appears
to correlate better with human judgement.

Post hoc analysis using a t-test and a Kruskal-Wallis non-parameteric ANOVA H-test
compared the two different conditions - linear vs. parallel and hamming vs. directed-
swap - and discovered a significant difference for the ratings of the distance measure
(p < 0.05), but not in the case of the string representation type. Out of interest, we
also examined the participants’ musical experience in reading notation or playing a
percussive instrument, but they had no significant effect on the ratings (p > 0.05) in
both instances.

We can draw some tentative conclusions based on this data. Firstly, the strong correl-
ation between the overall distance and similarity ratings suggest that, even for poly-
phonic string representations of drum patterns, distances such as the Hamming and
directed-swap are useful measures of perceived similarity. Secondly, splitting and re-
combining the bit strings by timbre, as carried out in the parallel operation, does not
seem to offer improvement over the simplistic, long bit string representation. Finally,
the more complex directed-swap algorithm, with its ability to capture the “horizontal”
displacement between two drum patterns, does not appear to reflect an increase in sim-
ilarity scores in our survey, confirming Toussaint’s finding but also extending it to the
case of polyphonic patterns.
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Figure 3.21: Fitness and distance for linear and parallel string computation

3.4.4.2 Subjective “Interestingness” Evaluation

Table 3.3 presents the correlation matrix corresponding to the results of the users’ im-
pression regarding the "interestingness" of the patterns when heard in a sequence with
the target. Curiously, the distance and fitness correlation coefficients are both posit-
ive, despite the fact that distance is inversely proportional to the fitness of the genetic
algorithm but the p-values are so high (0.211 and 0.1887 respectively) that this data
is not reliable. It is impossible to draw some meaningful or significant conclusions
based on the disparity and inconsistency across subjects.

Disregarding the difficulty in appraising musically subjective output, the reason for
this problematic data is largely attributable to the way in which we considered the
notion of “interestingness” and how the question was formulated. Asking the par-
ticipants to rate two essentially diametrically opposing qualities - i.e. variation (re-
lated to dissimilarity) and repetition (related to similarity) was a flawed approach that
caused confusion. This became immediately apparent from some of the user feedback
at the end of each survey session. For example:

“I noticed that I somehow prefer rhythms that are a natural evolution of
the previous pattern, instead of being totally different. But if the simil-
arity with the previous pattern is too high, the result is still uninteresting
to me, because the resulting pattern is too predictable and loses every
appeal.”

To complete the survey then, users often reverted to their own rules to determine their
ratings, as evident from these comments:

“Interestingness” was hard for me to evaluate. In the end I rated with a
‘good’ interesting ‘bad’ interesting system: if it’s weird but i like it, it’s
in the first case, if not, in the second case.”
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Distance Fitness Score

Distance 1.0000 -0.5419 0.2201

Fitness -0.5419 1.0000 0.2310

Score 0.2201 0.2310 1.0000

Table 3.3: ‘Interestingness’ correlation matrix

“.. There are some times on experiment 2 that the new rhythm might not
be interesting for a complete section but that might be useful as a bridge
or as a temporal loop marking the end of a section."

Another participant made the point that the pattern sequence may have forced some
‘expectation’ regarding the concept of “interestingness”:

“... I have also the feeling that having the pattern repeated (ie AB twice),
and therefore, having to come back to A again after having been in B,
conditions very much the results.”

Despite the apparent issues with our method of evaluation, the data and informal
feedback does suggest that the genetic algorithm creates “interesting” musical output.
Nineteen stimuli out of the 34 analysed registered a mode score value higher than 4
as seen by the 56% green positive region in Figure 3.22 (there were two responses
for “Strongly Disagree”, but these were the two that were disregarded due to high
divergence of opinion). The task ahead is to review the evaluation strategy in order to
quantify and explain this aspect in a more coherent and predictable manner, decoup-
ling the interdependency of the questioning between similarity and interdependence.

3.4.5 Improving the System - Adding More Features

The evaluation shows that our implemented methods do behave predictably in return-
ing increasingly similar patterns to a target as the mean fitness of the genetic algorithm
converges on its maximum. It also shows, despite deficiencies in the mode of ques-
tioning, that listeners do perceive these patterns favourably, given the sounds used and
some localised awareness of style.

However we still felt that similarity methods alone were not capturing all of the sub-
tleties inherent in symbolic rhythm patterns, features that other systems might include
that prove more fruitful in analysis and generation. Another iteration of development
on the genetic algorithm included three additional improvements that are described
here.
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Figure 3.22: Distribution of responses for ‘interestingness’.

3.4.5.1 Timbre Weighting

Other than allowing the separation of the pattern into its constituent timbres for dis-
crete generation in the parallel mode, our generative system makes no additional effort
to extrapolate and delineate the obvious hierarchical and emergent roles the separate
timbres induce in the sensation of drum patterns.

Our brains process rhythm streams with different timbres and spectral profiles differ-
ently, and awareness and study of this fact goes some of the way to explaining why
across different styles and cultures dispersion of timbres exhibit similar proportions
across different frequency bands. To be precise we often see liberal placement of
high-frequency, short attack timbres like hi-hats across all beats, while the kick drum
usually enforces the downbeat40 and start of bar and finally the mid-range snare drums
fills in the backbeat41. As Merchant et al. (2015) observes in the general scope of pop
music

“...the vast majority of drum patterns in popular music have bass drum
hits on the downbeat (e.g. beats 1 and 3 of a 4/4 pattern) and snare
hits on the upbeats (beats 2 and 4). While not inviolable, this statistical
generalization leads listeners familiar with these genres to have strong
expectations about how to assign musical events to a particular metrical
position, thus using learned top-down cognitive processes to reduce the
inherent ambiguity of the musical surface.” (Merchant et al., 2015)

40Let’s forget about reggae for now!
41Jazz and rock music attribute far greater importance to the backbeat though, which, much to

the irritation of musicians, is not obvious to all concertgoers who insist on clapping on the ‘one
and three’ (http://www.ethanhein.com/wp/2013/the-backbeat-a-literature-review/). A very entertain-
ing video shows a live concert where pianist Harry Connick Jr. uses rhythmic displacement to in-
sert a bar of 5/4 in a 4/4 piece of music. This intentionally shifts the clapping audience from
‘one and three’ to the ‘two and four’ backbeat, much to the relief and gratitude of the drummer!
(https://www.youtube.com/watch?v=--qv9SI6vws)

http://www.ethanhein.com/wp/2013/the-backbeat-a-literature-review/
https://www.youtube.com/watch?v=--qv9SI6vws)
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Other researchers also point to the salience of the kick and snare drums in the infer-
ence of downbeats and upbeats in rhythm perception and, consequently, its compu-
tational analysis (Zils et al., 2002; Panteli et al., 2014; Gómez-Marín et al., 2017).
Leaving aside why exactly this is the case 42, it is clear that not all drum timbres are
created equal, and generative systems such as ours should incorporate some cognis-
ance of that important fact.

To remedy this, a weighting scheme was used to assign different degrees of import-
ance to the separate timbre streams when operating in parallel mode. The exact for-
mulation weights are not important, just that they are weighted sufficiently to bias
the fitness function as desired, so for example we weigh the 4 streams successively
from bottom (kick) to top (perc or cymbal) with the set W = {2,1,0.5,0.25}. These
weights are also parametric to account for different timbres assigned to the different
streams.

3.4.5.2 Syncopation

“Syncopation is the spice of rhythm” (Toussaint, 2013)

Just as musical ideas blossom through the balance between repetition and variation
of a motif or loop, rhythms are made infinitely interesting by resolving the tension
arising from anticipation and reinforcement of the beat and the deliberate disruption
of that expectation. The Harvard Dictionary of Music defines syncopation simply as:

“Syncopation: a momentary contradiction of the prevailing meter or
pulse” (Apel, 1969)

Gómez et al. (2005) expand on this definition:

“Moreover, syncopation can be materialized either as a momentary change
of the primary character of the meter or as a contradiction between
strong and weak beats against other parts of the musical texture whose
metrical context is fixed”

Up until now, our algorithm has only been considering the similarity of generated
rhythms in relation to the target, and has no facility to gauge the level of syncopation
present in the target or the generated rhythms. It would be a useful parameter of
the GA to allow the user to increase bias for selecting candidates based on relative
syncopation of strong and weak beats in a particular track, and this was the next
feature that was implemented.

42Hove et al. (2014) proposes that “its our superior time perception for lower musical pitch”.
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Figure 3.23: Toussaint’s Off-Beatness measure. Image from McGill.

Eigenfeldt & Pasquier (2013) incorporate a rudimental quantifier for level of synco-
pation into their hybrid rhythm algorithm by simply counting the number of onsets
that do not fall on the expected strong beats in the metre (4/4).

To expand our system to include knowledge of syncopation, we turned once again to
perceptual literature to see if there were any established analytic methods that prove
more grounded in observation rather than blindly devising our own. Gómez et al.
(2005) sum up 4 such measures including:

The Rhythmic Oddity Property (Arom, 2004) is not really a measure, it is
simply a boolean value indicating whether there exists two onsets in a pattern
that divide the set equally or not.

Toussaint’s Off-Beatness (Toussaint, 2004b) finds those geometric shapes that
divides an N length rhythm necklace evenly (Figure 3.23). These are the on-
beats. The number of onsets that lie outside of these geometric entities give the
degree of off-beatness.

Keith’s Measure (Keith, 1991) defines syncopation in terms of three events,
hesitation (a note starts on a beat but ends off a beat), anticipation (a note starts
off a beat but ends on a beat) and syncopation as a combination of of hesitation
and anticipation within a rhythm. Weights are assigned to these three event
categories (like our own timbre weightings used in Section 3.4.5.1, these are
subjective by the author) and the weighted sum of instances of these constitute
the measure of syncopation in the measure.

Gómez et al. (2005) criticises Keith’s measure in its arbitrary assignment of weights
but, more crucially, its restriction to binary metres (explained in depth the article).
They offer a new measure to address these limitations and coalesce some elements
inherent in Toussaint’s off-beatness. The key tenet of the Weighted Note-to-Beat Dis-
tance (WNBD) is that “notes are supposed to end where the next note starts”. Onsets
that land off strong beats are given the smaller weighting and weighting increases to
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Figure 3.24: GenDrum interface with expanded feature parameter control to the right.

a maximum as notes cross over strong beats - which they posit gives the strongest
sensation of syncopation.

“the closer a note is to a strong beat, the more syncopated it sounds; and
second, the syncopation effect is stronger when a note crosses over only
one strong beat of the meter.” (Gómez et al., 2007)

While Song et al. (2013) has some reservations of this model and we could find no
instances of surveys that evaluated its correlation with human listeners, it does seem
a reasonable distillation of syncopation for our purposes, compared to the other for-
mulations. WNBD is distance-based model that can be easily integrated into our
fitness function with comparative ease. Based on a reference implementation offered
in Synpy (Song et al., 2015), a Python environment for syncopation modelling, we
expanded the genetic algorithm to include the WNBD in its fitness function.

3.4.5.3 Density

The density of a rhythm is an easy feature to comprehend, Wiggins et al. (2012)
defines it as the “mean number of events per tactus beat”. We simply added another
metric for the fitness function to consider, given by the average number of onsets per
pattern (Eq. 3.5), where xi is onset number i and N is the total number of onsets.

d(x) =
∑

N
i=1 xi

N
if xi = 1 (3.5)

Having influence over density in a generative drum machine is a desirable control to
have and has actually been shown to be a useful descriptor in modelling rhythmic
similarity, specifically in dance music signals (Panteli et al., 2014). Within the Gi-
antSteps project the Agnostic Density Transformer (Jordà et al., 2016) is a generative
drumming system that is focussed on density control of individual drum sounds based
on corpus analysis, and has since been expanded into a mobile app by Reactable Sys-
tems43.

43https://reactable.com/snap/

https://reactable.com/snap/
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The weighted linear combination of these three features coupled with the new parallel
timbre weighting scheme comprise the new fitness function for the genetic algorithm.
Since these additional features represent a considerable departure from the general
string analytics offered by the SimpleGA object, we decided to encapsulate it in a
separate, specialised object called RhythmGA. Figure 3.24 shows the revised inter-
face for GenDrum that uses the new GA, along with the new similarity, syncopation
and density sliders that adjust the relevant parametric weights.

3.4.6 Conclusions and Closing Remarks

In this chapter we presented a way of generating drum patterns automatically using
genetic algorithms. Rather than relying on the commonly used interactive fitness
function, our method was shown to use the notion of a “target pattern”, with fitness
derived from the distance of the generated patterns to the target. This was devised
to address the way dance music composers derive tracks from a bottom-up approach
that begins with a small loop or idea that is iteratively expanded through repetition
and variation of its key features.

Following a review of various approaches to establishing the distance between rhythms
as present in the literature, we demonstrated the implementation and incorporation of
two such measures - the Hamming distance and the directed-swap distance - into a
genetic algorithm instrument for polyphonic drum pattern creation. We believe this
work, and the accompanying articles, constitute the first integration of perceptual
symbolic similarity research in rhythmic pattern generation with genetic algorithms.

To evaluate the research carried out, we conducted a listening survey to determine
participants’ reaction to the generated patterns in terms of the similarity and “interest-
ingness” related to the target pattern. It was shown that the distance ,and thus fitness,
correlates strongly with user perception in terms of similarity. Crucially we showed
that the Hamming distance alone is a worthwhile quantifier of rhythmic similarity
even in the case of polyphonic patterns. Our approach to gauging users’ response
to the concept of “interestingness”, however, needs review and presents a complex
challenge for future work.

Based on the feedback ascertained during the evaluation, a second iteration of the
genetic algorithm along with the accompanying instrument was developed that as-
similated an expanded feature set as well as enhanced parametric control for the user.
By adjusting these parameters, relative weightings of rhythmic attributes such as sim-
ilarity, syncopation and densities can bias the fitness function as appropriate. While
our own informal appraisal of these additions was favourable, a more rigorous evalu-
ation and listening survey was not conducted. This was due to a shift of focus away
from symbolic algorithm composition towards approaches involving content-based,
MIR-driven synthesis of real audio.

The reasons for this change of tack were multifold. Firstly, while genetic algorithms
coupled with an appropriately formulated fitness function demonstrably provide a le-
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gitimate mechanism for generating rhythms for dance music, methods proposed by
our colleagues that invoke specialised metrics (Gómez-Marín et al., 2015) or know-
ledge trained on large corpora representing style (Jordà et al., 2016) are perhaps more
suited. This has been confirmed in a collaborative evaluation conducted by ourselves
along with others in the GiantSteps consortium (Vogl et al., 2016). Our GA did not
fare better in various listening tests against neural networks and a database-driven
method both trained on human derived patterns from the Maschine software and hard-
ware environment (and understandably so, as the two methods indisputably embed
more knowledge). However it did return more “interesting” results and was rated
higher in its facility for creating more unique fill patterns.

But most of all, based on an overall critique of the myriad approaches to generating
rhythms using symbolic conventions and similarity analysis (including our own ex-
periences building systems that utilise them), we sensed that there are some subtleties
inherent in real recordings and performances of rhythms that are not encapsulated via
these means. Namely we could identify:

The notion of verticality or interdependence between concurrent elements at
discrete points in time that are not completely captured by concepts such as
metrical hierarchy and weighting.

Stress and accents that affect the dynamics of onsets in a pattern, not captured
by the pervasion of binary representations that exists in literature and associated
realised systems. This perhaps can be addressed by analysing and estimating
rhythms in terms of real or floating point numerical forms.

Related to stress and accents there are other difficult phenomena of human
factors in music that include groove and swing. These are notoriously dif-
ficult facets to define and quantify by musicologists, and even harder to es-
timate and recreate using computational means. The need to replicate human
qualities of time within conventional music production systems is clear how-
ever. Most DAWs at least include some ability to adjust metrical positioning of
note information according to some percentage factor ostensibly tantamount to
groove.

The timbral qualities - or the sounds and processing used to derive the patterns
- we contend have a profound impact on the perceptual response and aesthetic
impression of the loop. Simply assembling rhythms according to perceptual
similarity measures using arbitrary sounds (all too frequently coarse MIDI ap-
proximations) does not always produce the desired results, at least in generative
attempts at dance music.

All these factors were carefully considered and it became more apparent that perhaps
the symbolic domain was not sufficient for our goals. The focus of the thesis turns to



56 GENERATIVE SYMBOLIC MUSIC

investigating whether these methods can be refined, adapted and extended to systems
that generate rhythms using signals and thus connecting time with timbre.



Chapter 4
State of the Art in Sampling-Based

Composition

“It’s not where you take things from, it’s where you take them to.”

(Jean-Luc Godard)

“Rip it up and start again.”44

(Edwyn Collins with Orange Juice)

As we move away from the symbolic leanings of the previous chapter and head to-
wards audio content-based approaches to music generation, we pause once again from
the deeper technical discourse to establish some context, both artistic and historic, be-
fore before providing a thorough definition of a concatenative synthesis - a form of
synthesis that is rooted deeply in audio sampling - and its key works from the literat-
ure and community.

I use the term “audio content-based” here interchangeably here with sampling for
good reason. The term actually stems from MIR parlance, used to dermarcate re-
search that deals directly with audio data and signals from those that analyse notated
information and metadata (Veltkamp et al., 2008; Casey et al., 2008). It also enforces
the idea that we are working with elements extracted from found and realised ob-
jects and artefacts, which we will soon discover has a long and illustrious history as a
creative aesthetic.

44Also the title of another Simon Reynolds book on music culture, this time charting the rise of
post-punk from 1978-1984 (Reynolds, 2009).

57
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Figure 4.1: Cross-referential Cubist works by Picasso and Braque.

4.1 Artistic Context

Historically, reusing existing material for the purposes of creating new works has been
a widely practised technique in all branches of creative arts. The manifestations of
these expressions can be wholly original and compelling or otherwise derivative, un-
inspiring and potentially copyright infringing depending on myriad factors, including
the domain of the work, the scale of the reuse, and its cultural context.

In the visual arts, reusing or adapting existing material is most immediately under-
stood in the use of collage, where existing works or parts thereof are assembled to
create new artworks. Cubist artists such as George Braque and Pablo Picasso ex-
tensively referenced, appropriated and reinterpreted their own works and the works of
others (Figure 4.1), as well as common found objects from their surroundings (Green-
berg, 1971). Collage would later serve as direct inspiration for bricolage, reflecting
wider postmodernist trends towards deconstructionism, self-referentiality, and revi-
sionism that include the practice of parody and pastiche (Lochhead & Auner, 2002).

4.1.1 Musique Concrète and Elektronische Musik

In music and the sonic arts, its natural corollary came in the form of musique con-
crète (Holmes, 2008), a movement of composition stemming from the experiments of
Pierre Schaeffer and, later, Pierre Henry at the studios of Radiodiffusion-Télévision
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Française in Paris during 1940s and 1950s (Battier, 2007). In contrast to the arti-
ficially and electronically generated elektronische musik spearheaded by Karlheinz
Stockhausen at the WDR in Cologne (Collins & D’Escrivan, 2017; Bates, 2009), the
French composers sought to conceive their works from existing recorded sound, in-
cluding environmental sources like trains and speech. Seemingly unrelated and non-
musical sounds were organised in such a way that the listener discovered the latent
musical qualities and structure they inherently carry.

It is important to note that, in music composition, general appropriation of work pred-
ates these electronic advancements of technology. In Western art music, for example,
composers like Bela Bartók – himself a musicologist - have often turned to folk music
for its melodies and dance music styles (Bartók, 1993), while others such as Debussy
(Tamagawa, 1988) became enchanted by music from other cultures such as Javanese
Gamelan, studying its form and incorporating the ideas into new pieces. Quotations,
or direct lifting of melodies from other composers’ works, frequently crossing into
classical, are also quite common, and has become a frequent, and often with the in-
tention of being amusing, rudiment in jazz music practice (Mangani et al., 2006)45.
For more on appropriation and quotation music a good reference is compiled by Met-
zer (2003).

4.1.2 Granular Synthesis of Microsound

Granular synthesis is composition at the microscale of sound - or to use Curtis Roads’
term microsound (Roads, 2004). It is a molecular viewpoint of music that Thomson
(2004) maintains finally promises the composer the possibility for “total composi-
tion”, thereby dictating the parameters of everything from higher-order forms and
structures all the way down to infinitesimal sonic minutiae.

It is generally agreed that the physicist Dennis Gabor first proposed the first quantum
theory of sound that suggested “large, complex sound events are composed of simple
acoustic particles, or sonic grains’ (Miranda, 1995). This was later reiterated and
expanded on by Xenakis in Formalized Music (Bradshaw & Xenakis, 1973), who
laboriously arranged small snippets of tape material to produce Analogique B (for 9
string instruments and tape, 1959) (Robindore & Xenakis, 1996).

Curtis Roads lays claim to developing the first digital implementation of granular
synthesis (Roads, 1988), during the latter half of the 1970s (on punchcards!) and
has composed with it and written about it capaciously ever since (Roads, 1985, 1991,
1996, 2004) Barry Truax successfully achieved real-time granular synthesis during
the 1980s with the composition of Riverrun (Truax, 1988), using Poisson distributions
and tendency masks to control the limits of typical granular parameters like frequency
range, grain duration, modulation index, and delay.

45Appel (2002) recounts an anecdote of Stravinsky attending a Charlie Parker gig at his residency in
the Birdland club in New York and “[roaring] with delight, pounding his glass on the table” on hearing
a snippet of the opening of his Firebird Suite from the saxophone of the bebop pioneer.
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Practically speaking, granular synthesis is, as Roads (1988) suggests, a type of ad-
ditive synthesis. Rather than mixing pure signals generated by oscillators to generate
complex sounds, small ‘grains’ (within the realm of 20-200ms) of existing sounds46

are superimposed to create dense amalgamations or ‘clouds’ of sound grains (Collins
& D’Escrivan, 2017; Thomson, 2004). Nowadays granular synthesis is widespread
in computer music practice and most music programming environments like Pd, Max
and Reaktor, and even commercial synthesisers and DAWs, provide extensive tools
and tutorials for its pursuit. Listening to the works of glitch artists like Kim Cas-
cone47(Latartara, 2010), or the more meditative washes of sound from drone and
noise luminaries Tim Hecker or Fennesz, reveals an instantly recognisable applica-
tion of the technique.

I have used granular synthesis (Figure 4.2) frequently in my own music for generat-
ing large indeterminate textural material from smaller fragments of composed musical
ideas or interesting samples I have stumbled on. Recently this included a work for vi-
olin, distortion and granular synthesis presented as part of the concert programme48

of the Sound and Music Computing (SMC) conference49 as well as a quadrophonic
soundscape that was installed at the Sonic Environments/Australasian Computer Mu-
sic Conference (ACMC) satellite event that took place as part of New Interfaces for
Musical Expression (NIME) in 201650.

4.1.3 Bring the Noise - Hip Hop Culture and the Birth of the Breakbeat

In Chapter 2 we briefly highlighted the contribution of DJ Kool Herc, who used two
turntables to produce an extended looping, collage of drum sections (the breakbeats)
from identical vinyl records (Forman & Neal, 2004). Kool Herc’s contemporaries,
Afrika Bambaataa and Grandmaster Flash observed his discovery and augmented it
with more rudiments such as backspin, punch phrasing and, of course, record scratch-
ing which would widen the idiomatic vocabulary of turntablism within the burgeoning
subculture of hip-hop (Smith, 2000).

Vinyl would not reign king for too long however. The modern notion of sampling,
at least in non-electroacoustic or contemporary composition circles, stems from the
advent of the digital sampler and its eventual explosion of adaptation in hip-hop. The
arrival of easy to use, self-contained hardware systems like the Akai Music Produc-
tion Controller (MPC) offered the rhythmic sequencing facilities of the Roland TR
range but with the groundbreaking ability to import one’s own sounds (or more cru-

46Though these grains can, and often do, come from signal generators.
47The ideals of which are put forth in his influential manifesto “The aesthetics of failure: “Post-

digital” tendencies in contemporary computer music”, the most cited article in The Computer Music
Journal (Cascone, 2000)

48Incidentally, Barry Truax premiered a new work during the same conference
49http://www.maynoothuniversity.ie/smc15/concert2.html
50http://www.sonicenvironments.org/program.html

http://www.maynoothuniversity.ie/smc15/concert2.html
http://www.sonicenvironments.org/program.html
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Figure 4.2: Screenshot of my four-channel granular synthesiser for Max51

cially, other artists’ sounds), and all this with a reasonable price tag attached (Rodgers,
2003).

Hip-hop producers quickly latched onto the possibilities of these new tools. Artists
such as Public Enemy and Beastie Boys, on albums like It Takes a Nation of Millions
to Hold Us Back and Paul’s Boutique respectively, painstakingly assembled bewilder-
ing permutations of musical samples, soundbites and miscellaneous other recorded
materials that sought to supplant the many cultural references that permeated their
lyrics (Sewell, 2013, 2014).

As was also identified in Chapter 2, the influence of hip-hop production would later
inform the sample-heavy arrangements of jungle and drum and bass, in particular
with its exhaustive re-rendering of the infamous “Amen Break” and James Brown’s
“Funky Drummer”. In fact these breaks had already been dissected previously in hip-
hop, long before UK producers got their digital surgical scalpels to them. The Amen
Break appears on NWA’s landmark gangster rap album Straight Outta Compton and
James Brown’s “Funky Drummer” shows up on tracks by Run DMC and LL Cool J
(Frane, 2017), leading Oliver (2015) to observe that “it is [Funky Drummer] sampled
and recontextualized so extensively as to achieve near ubiquity in a wide range of
popular music genres”.

Jungle and drum ‘n’ bass was dealt with sufficiently in Chapter 2 so it is hopefully
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not necessary to restate its relevance and impact on sample-based composition here.
It is prudent to point out though that, since we are edging towards computational
models and processes that automate audio content-based composition, that there is
already a strong body of work that specifically addresses computational aspects of
breakbeat analysis and its sequent generative synthesis. Nick Collins for example,
has dedicated much of his academic dissemination to algorithms that can replicate
the distinctive stuttering and glitching tropes that pervade in jungle, drum & bass and
post jungle emergent styles like breakcore (Collins, 2001, 2002, 2006b). Hockman
has also devoted significant output to MIR-oriented analysis of timbral and rhythmic
aspects unique to these styles (Hockman, 2007; Hockman et al., 2012; Hockman &
Davies, 2015).

4.1.4 Plunderphonics and Metamusic

“I quote from others the better to express myself ”

(Michel de Montaigne)

I think it’s rather appropriate that the quote above I did not discover myself, instead
I lifted it from an article dealing with the appropriation and quotation of other works
in music (Holm-Hudson, 1997). The article is mostly concerned with the implica-
tions arising from the work of John Oswald, an artist who has gained much notoriety
in his career by directly challenging musical copyright law for artistic gain. As hip-
hop producers were trailblazing a new sound through intimate operation of the digital
sampler, the inevitable direction was the bootlegging of other artists’ music for cre-
ative repurposing, thus sparking the huge copyright debate. Record companies and
legal representatives struggled to react to the huge paradigm shift in cultural produc-
tion whose commercialisation was no longer under their total jurisdiction. The ethics
of all this are outside the scope of this thesis obviously, but at least a few legal com-
mentators at the time recognised that perhaps the long established laws governing
creative ownership were no longer fit for purpose:

“...copyright doctrine incorporates notions of Romantic authorship that
assume independent and autonomous authorship and even genius in the
creation of original musical works. This individualistic and autonom-
ous vision of musical authorship, which is central to copyright law, has
deemphasized the importance and continuity of musical borrowing prac-
tices generally” (Arewa, 1979)

Returning to John Oswald, who, capitalising on the polemics and its scope for creat-
ive interpretation, coined the name “plunderphonics” and set out his artistic intentions
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in a suitably subtitled 198552 essay "Plunderphonics, or Audio Piracy as a Compos-
itional Prerogative” (Oswald, 1985). The Canadian composer and media artist, in-
spired by the Dadaist cut-up literary technique practised by beat writer William S.
Burroughs as well as sound collages by James Tenney (Cox & Warner, 2004), began
to use tape-splicing techniques to create deliberately recognisable montages of other
musical recordings, particularly pop music such as Michael Jackson or Led Zeppelin.
If granular synthesis represents, as Thomson (2004) indeed suggests, a path to “total
composition”, then Oswald’s modus operandi for composition is, as Holm-Hudson
(1997) describes it, the “total importation” of pieces involving “reinterpretation or
rehearing of existing recordings” (Cutler, 1994).

Nowadays artists such as Girltalk and DJ Danger Mouse5354 create extremely com-
plex and multi-referential intersections of popular music harnessing the powerful beat
matching and synchronisation capabilities of the modern DAW (Humphrey et al.,
2013). The style has become known widely as “mashups” or “bastard pop” (Mc-
Granahan, 2010) and straddles the fine line of what constitutes and can be protected
under the auspices of fair usage (Mongillo, 2009), the very same doctrine that allows
us to include images from other sources in this thesis in good faith.

Many computational works have emerged that explicitly mention and address the mu-
sical goals of mashup (Tokui, 2008; Davies et al., 2013b, 2014a,b; Lee et al., 2015;
Smith et al., 2015; Meroño-Peñuela et al., 2017), and we shall see that the direct
consequence of concatenative synthesis can facilitate the realisation of elements of
mashup.

4.2 Concatenative Synthesis

Recent associated research efforts in computer music, signal processing and music
information retrieval afford us the opportunity to develop automated and intelligent
systems that apply the aforementioned aesthetic of sampling and artistic reuse.

The term “concatenative synthesis” (or musical mosaicing (Zils & Pachet, 2001))
has been extensively used to describe musical systems that create sound by recyc-
ling existing ones automatically, according to some well-defined set of criteria and
algorithmic procedures (Schwarz, 2000). Concatenative synthesis can be considered
the natural heir or big brother to granular synthesis. With concatenative synthesis,

52Interesting then, that around this time Truax and Roads were still getting to grips with granular
synthesis.

53Danger Mouse availed of the tendency in rap music to realise acapella versions of records for the
purposes of remixing to create The Grey Album: a well-received mashup of The Beatles’ White Album
with Jay Z’s The Black Album (Gunderson, 2004)

54And much prior to that, experimental ensemble Negativland faced the legal backlash of record
labels when they released the EP U2, which contained misleading artwork and unauthorised sampling
of the rock group, but ironically catapulted them into public notoriety (Herman & Sloop, 1998; Lysloff
& Gay Jr, 2003).
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the grains of sound become “units” and are more related to musical scales of length,
such as notes and phrases. Most importantly, descriptive information is attached to
these units of sound: crucial features that allow the temporal, spectral, harmonic and
timbral characteristics of the sound to determine the sequencing of final output.

The criteria governing the procedure of concatenative synthesis is usually applied in
relation to some reference sound or target that the composer wishes to emulate, and
with this in mind, Bernardes gives a more thorough definition of the discipline:

“[Concatenative Synthesis] is a technique for synthesizing sounds by
concatenating short audio segments (called units). It relies on a large
database of segmented and descriptor-analyzed sound snippets (called
corpus) to assemble a given target phrase by selecting the units that best
match the target specification according to a distance measure in the
descriptors” (Bernardes et al., 2013)

In Chapter 3 we described symbolic methods that could take a seed or target rhythm
pattern typical of dance music and replicate and variate it through similarity know-
ledge embedded in the fitness function of a GA. With concatenative synthesis, we
have a computational framework that can extend this notion of looping repetition and
variation to audio.

Just as granular synthesis invokes Heisenberg’s Uncertainty Principle to blur the lines
of time and frequency at the microscale of sound (Truax, 2005), we can view concat-
enative synthesis as a macroscale manipulation of the dichotomy between originality
and theft determined by the scale of the unit - larger units of scale are more fully-
formed but are more likely to be recognised as being lifted from other sources, while
smaller units eventually approach granular levels of abstraction.

4.3 Survey of Concatenative Synthesis Systems

Other authors have previously provided insightful summaries of research trends in
concatenative synthesis. In particular we suggest those by Schwarz (2005, 2006)
and Sturm (2006). These surveys are over 10 years old however, so we offer here a
more recent compendium of state of the art systems as we see them, based on our
investigations of previous publications up until now.

4.3.1 Unit Selection Synthesis of Speech

Before music, concatenative synthesis has enjoyed successful application in the area
of speech processing, specifically in the synthesis of Text-to-Speech (TTS).

Hunt & Black (1996) were the first to propose unit selection synthesis using Hidden
Markov Models (HMMs) as a means for combining phoneme units extracted from
existing audio recordings of speech. Conkie (1999) remarks that “for unit selection
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Figure 4.3: Target (Ct ) and concatenation (Cc) costs in a TTS HMM compared.

synthesis, typically phone-based, it is possible to produce sentences that sound sur-
prisingly natural and intelligible from a large database’. Since then many researchers
(Conkie, 1999; Balestri et al., 1999; Schröder, 2001; Tihelka et al., 2010; Lakkavalli
et al., 2010) and software systems (Black & Taylor, 1994; Beutnagel et al., 1999;
Young et al., 2002) have cemented the popularity of the technique.

We will treat unit selection and HMMs more thoroughly in Chapter 5 but essentially
HMMs extend Markov chains (Section 3.2.1.2) by assuming that the states in the state
machine are now hidden but can output observable symbols. The Viterbi algorithm
can return the most probable sequence of hidden states given a particular sequence of
observed symbols. In concatenative synthesis, this maximum probabilistic model is
inverted to facilitate minimal cost computations thereby encoding the dissimilarity of
unit sounds.

Formulating the problem in terms of a HMM enables us to capture two important
contributors to a successful synthesis via the target cost and the concatenation cost
(Figure 4.3). The target cost estimates the penalty of matching a corpus unit with the
current target unit based on a target specification that stipulates factors like funda-
mental frequency or pitch, duration, position in the syllable and surrounding context
of phonemes. The concatenation cost then estimates the quality of the join between
two potential corpus units if they were to be selected, hence allowing a means of pen-
alising selections that introduce unwanted jumps in energy and pitch (for example)
that could lead to an unnatural sound. The Viterbi algorithm efficiently searches the
state space of database units and outputs indices corresponding to the optimal state
sequence for the target, based on a consolidated linear combination of the aforemen-
tioned costs (Black & Campbell, 1995; Hunt & Black, 1996).

4.3.2 Musical Concatenative Synthesis

Schwarz directly applied Hunt’s HMM approach for musical purposes in his Caterpil-
lar (Schwarz, 2003). He notes, however, that the HMM approach can be quite rigid for
musical purposes since it produces one single optimised sequence without the ability
to manipulate the individual units. To address these limitations, he reformulates the
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task into a constraint satisfaction problem which offers more flexibilities for interac-
tion. A constraint satisfaction problem models a problem as a set of variables, values
and a set of constraints that allows us to identify which combinations of variables and
values are violations of those constraints, thus allowing us to quickly reduce large
portions of the search space (Russell & Norvig, 2002).

Constraint satisfaction for concatenative synthesis was first introduced previously by
Zils & Pachet (2001), in what they describe as musical mosaicking or, to use their
portmanteau, musaicing. They define two categories of constraints: segment con-
straints and sequence constraints. Segment constraints control aspects of individual
units (much like the target cost in a HMM-like system) based on their descriptor val-
ues. Sequence constraints apply globally, and affect aspects of time, continuity and
overall distributions of units. The constraints can be applied manually by the user, or
learned by modelling a target. The musically tailored “Adaptive Search” algorithm
performs a heuristic search to minimise the total global cost generated by the con-
straint problem. One immediate advantage of this approach over the HMM is the
ability to run the algorithm several times to generate alternative sequences, whereas
the Viterbi process always outputs the most optimal solution.

A simpler approach is presented in MatConcat (Sturm, 2004), using feature vectors
comprising six descriptors and computing similarity metrics between target units and
corpus units. Built for the Matlab scientific computing environment, the interface is
quite involved, and the user has control over minute features such as descriptor tol-
erance ranges, relative descriptor weightings as well as window types and hop sizes
of output transformations. On his website are short compositions generated by the
author using excerpts from a Mahler symphony as a target, and resynthesised using
various unrelated sound sets, for instance pop vocals, found sounds and solo instru-
mental recordings from saxophone and trumpet.

As concatenative synthesis methods matured, user modalities of interaction and con-
trol became more elaborate and real-time operations were introduced. One of the most
compelling features of many concatenative systems is the concept of the interactive
timbre space. With the release of CataRT (Schwarz et al., 2006) the authors provided
an interface (Figure 4.4a) that arranges the units in an interactive two-dimensional
timbre space. The arrangement of these units is made according to a user-selectable
descriptor on each axis. Instead of using a target sound file to inform the concatena-
tion procedure, the user’s mouse cursor becomes the target. Sounds that are within a
certain range of the mouse cursor are sequenced according to some triggering options
(e.g. one-shot or looped) and, most crucially, with real-time output.

Bernardes takes inspiration from CataRT and also from Tristan Jehan’s Skeleton (Je-
han, 2005) to build his EarGram system for the Pure Data environment (Bernardes
et al., 2013). Built on top of William Brent’s excellent feature extraction library tim-
breID (Brent, 2010), it adds a host of interesting features for visualisation and classi-
fication. For instance, as well as the familiar waveform representation and previously
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(a)

(b)

Figure 4.4: (a) CataRT GUI. Image from IRCAM. (b) earGram User Interface. Image from
SMC (INESCTEC). Both images show a clear realisation of an explorable 2D timbre space.
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described 2D timbre representation (Figure 4.4b) (with various clustering modes and
dimensionality reduction implementations), there are similarity matrices that show
the temporal relations in the corpus over time. Some unique playback and sequen-
cing modes also exist, such as the infiniteMode, which generates endless playback
of sequences, and the soundscapeMap, which features an additional 2D control of
parameters pertaining to sound scene design. Another system that adapts a 2D timbre
space is Christian Frisson’s AudioGarden (Frisson et al., 2010), which offers two
unique mapping procedures. The first of which, “Disc” mode, places units by as-
signing the length of the audio file to the radius of the unit from the centre, with the
angle of rotation corresponding to a principal component of timbre (MFCCs). In the
other Flower mode, a point of the sound is positioned in the space according to the
average MFCC coefficients of the entire sound file. Segments of the particular sound
are arranged in chronological fashion around this centre point.

There have been some concatenative systems tailored specifically with rhythmic pur-
poses in mind. Xiang proposes Granuloop (Xiang, 2002) for automatically rearran-
ging segments of 4 different drum loops into a 32 step sequence. Segmentation is
done manually, without the aid of an automatic onset detector, using the Recycle
sample editing software. Segmented sounds are compared using the inner product of
the normalised frequency spectrum, supplemented with the weighted energy. These
values become weights for a Markov-style probability transition matrix. Implemented
in Pd, the user interacts by moving a joystick, in a 2D space, this then affects the over-
all probability weightings determining which loop segments are chosen. The system
presents an interesting approach but is let down by its lack of online analysis. Ringo-
matic (Aucouturier & Pachet, 2005) is a real-time agent specifically tailored for com-
bining drum tracks, expanding on many of the constraint-based ideas from their prior
musaicing experiments. They applied the system to real-time performance following
symbolic feature data extracted from a human MIDI keyboard player. They cite, as
an example, that a predominance of lower register notes in the keyboard performance
applies an inverse constraint that creates complementary contrast by specifying that
high-frequency heavy cymbal sounds should be concatenated.

As demonstrated in EarGram, concatenative synthesis has been considered useful
in sound design tasks, allowing the sound designer to build rich and complex tex-
tures and environments that can be transformed in many ways both temporally and
timbrally. Also in connection to sound design, Cardle et al. (2003) report on their
Directed Sound Synthesis software as a means of providing sound designers and mul-
timedia producers a method of automatically reusing and synthesising sound scenes
in video. Users select one or more regions of an existing audio track, and can draw
probability curves on the timeline to influence resynthesis of these regions (one curve
per region) elsewhere. Soundscapes by Hoskinson & Pai (2001), in a nod to granular
synthesis, refers to their segments as ”natural grains” and seek to synthesise end-
less streams of soundscapes. The selection scheme by which segments are chosen
is based on a representation of each segment as a transition state in a Markov chain.



4.3 SURVEY OF CONCATENATIVE SYNTHESIS SYSTEMS 69

(a)

(b)

Figure 4.5: Two different visualisation of timbre: (a) AudioGarden “Disc” visualisation. Im-
age from Frisson et al. (2010). (b) AudioGuide clustering visualisation around target. Image
from Schwarz & Hackbarth (2012).
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Its interface features knobs and sliders for interactively controlling gain and paramet-
ers of multiple samples. To evaluate the platform they conducted an additional study
(Hoskinson & Pai, 2007) to reveal whether listening subjects found the concatenated
sequences convincing compared to genuinely recorded soundscapes.

More specific and applied use cases of concatenative synthesis include Hackbarth
(2011), who works intimately with the possibilities of concatenative synthesis in large
scale music composition. He has worked with Schwarz to provide an alternative
interface for exploring variations based on a force-directed graph (Figure 4.5b) to give
a visual impression of the perceptual distances units in relation to a central target,
not unlike the feedback we provided in our GenDrum instrument (see Chapter 3).
O’Connell describes a graphical system for Pd that demonstrates the use of higher
level perceptual concepts like mood (happy vs sad) for informing selection in audio
mosaics (O’Connell, 2011).

Commercial implementations also exist for concatenative synthesis. Of particular
note is Loopmash55, a software plugin and mobile application for automatically cre-
ating mashups from existing looped content. The interface consists of a number of
tracks in a timeline arrangement. One track is set as a master, and slices in the mas-
ter are replaced with matching slices from the other slave tracks. Users interact by
manipulating “similarity gain” sliders that control the influence of each track in the
slice selection algorithm. Other applications exist more as MIDI sampler systems
attempting to model the performance qualities of natural sources such as orchestral
ensembles56 or the human voice57.

There are many other concatenative systems that are too numerous to discuss in de-
tail here. Table 4.1 compiles a summary of all the systems we came across in our
research, with remarks on interaction and visualisation features, support for rhythm,
and whether any user evaluation was carried out.

4.3.3 Future Directions - Mixing and Source Separation

Most concatenative synthesis systems we have studied (including those techniques
we propose) tend to consider the concatenation process in purely horizontal and tem-
porally inclined terms. Naturally, it is pertinent to question whether the same process
can be accomplished systematically in the vertical dimension characterised by the
frequency spectrum. Or, in more simpler terms - can we stack units on top of each
other systematically in addition to chaining them in sequence? While not the focus of
this thesis (but certainly a promising avenue for further study), we briefly summarise
relevant topics of interest and techniques that are or can be used.

55https://www.steinberg.net/en/products/mobile_apps/loopmash.html
56https://www.synful.com/
57https://www.vocaloid.com/en

https://www.steinberg.net/en/products/mobile_apps/loopmash.html
https://www.synful.com/
https://www.vocaloid.com/en
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4.3.3.1 Vertical Selection with Mixture Models

Hoffman et al. (2009) have outlined a system that seeks to recreate the target spectrum
by, as Coleman describes it (2010), superimposing (using convolution) a series of
spectra from a corpus. To reduce the complexity associated with high dimensionality,
a search space reduction with a Markov Chain Monte Carlo (MCM) is applied.

In a version of AudioGuide by Hackbarth (Hackbarth et al., 2013), they also out-
line the system’s facility for enabling “layered sounds” and “vertically stratified com-
plexes” based on formulas (Tardieu, 2008) developed for a prior system in the Open-
Music environment called Orchidée or Automatic Orchestration Tool (Carpentier &
Bresson, 2010). The goal of their work is to transfer some of the principles of tradi-
tional orchestration (combining and arranging for instruments to create desired blends
of timbre) to the realm of computer music by allowing prediction of mixtures as well
as concatenations to match a target specification of a sound.

Hackbarth (Hackbarth, 2011) describes the derived “Subtractive Spectral Algorithm”
for superimposition. When an appropriate unit is selected from the corpus as a can-
didate match for the target, its time-varying Mel-amplitudes are subtracted from the
target sound and a ‘residual’ target spectrum remains. The unit selection procedure
is performed repeatedly until it halts when the residual target spectrum energy falls
below a certain threshold. The resulting units are then mixed together additively. A
visual depiction of this over several mixtures can be seen in Figure 4.6. Clearly the
algorithm tends towards selection of louder units initially, with gradually softer ones
emerging as the subtracted target energy diminishes.

Coleman (2015) invokes the term “mixtures” to describe concatenative synthesis prob-
lems where the corpus might not have all the features to effectively simulate a target,
but a carefully selected combination of them might. He uses the analogy of several
single notes combining to form a chord, except the synthesis engine would use a
weighted combination of superimposed frames mixed together.

4.3.3.2 Vertical Segmentation with Source Separation

We shall note in Section 5.3.3.1, in the case of the missing fundamental frequency,
our auditory system is remarkable in its processing ability and inference engine. More
remarkably, perhaps, is its innate capacity for on the fly separation of real-time audio
signals at will, or to give it its technical term, blind source separation. In pyschoacous-
tic auditory scene analysis research (Bregman, 1994), source separation is illustrated
usually in terms of the “Cocktail Party Effect”: how is a human, at a social event,
able to separate voices from background noise and home in on particular conversa-
tions? In musical source separation this is even more elusive - consider picking out
individual instruments in an orchestral passage, especially when, as Miron (2017)
stresses, sources are likely to be correlated in time and frequency. Computational
auditory scene analysis seeks to replicate this extraordinary human processing ability
through digital signal processing means (Wang et al., 2006).



72 STATE OF THE ART IN SAMPLING-BASED COMPOSITION

Figure 4.6: Visual depiction of spectral subtraction algorithm in AudioGuide. Image from
Hackbarth (2011).

Initial efforts in computational source separation often involved matrix decomposi-
tion methods such as non-negative matrix factorisation, as demonstrated in the work
of Fitzgerald (2004). Fitzgerald’s initial focus was on automatic drum transcription
via source separation but later gained wider recognition with some some successful
demixing and upmixing from mono to stereo of recovered archive Beach Boys re-
cordings (Fitzgerald, 2004). More recent state of the art approaches are once again
successfully exploiting deep learning methods trained on large sets of musical data in
genres like Western classical (Miron, 2017; Miron et al., 2017).

Just as a concatenative synthesis system will use onset detection to split larger sound
files into smaller units along the time domain, source separation opens up the possib-
ility of theoretically segmenting complex sounds in the frequency domain according
to instrument, or more accurately, streams that hopefully contain related instruments
(all depending of course on the material to be separated and the models upon which
the system has been trained).

We envisage this as particularly useful in concatenative synthesis of drum rhythms.
Perhaps a producer might want to decompose a number of kits into their constituent
parts and mix and match with sounds from other sources. Mixing electronic drum
sounds generated by a drum machine with naturally recorded acoustic drum sounds is
a common strategy in dance music and source separation could prove invaluable here.
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Chapter 5
Specifying and Exploring
Concatenative Synthesis

5.1 Introduction

As we discovered in Chapter 4 there exists a bewildering number of systems that pro-
pose or apply some level of concatenative synthesis technique. However widespread
these methods are, some commonality arises across the majority of these when they
are examined in closer inspection. Some of the important common stages that we
identify across this landscape include:

1. Unit Decomposition - Automatically segmenting larger sound files into con-
stituent units using musically and perceptually relevant criteria.

2. Feature Extraction - Selecting and applying meaningful combinations of multi-
level music descriptors than can be utilised to summarise and compare units of
sound effectively.

3. Unit Selection - Combining units of sound according to some criteria, com-
monly using some notion of a target to compare constituent features against.

This chapter explores in depth these key facets. We describe the most common al-
gorithms and techniques used in the literature and offer novel improvements in the
areas of feature extraction and unit selection. In practical terms, all of the research
carried out is implemented and encapsulated within a framework for Python we call
PyConcat, described in more detail in Appendix C.

5.2 Unit Decomposition

Musical signals and sounds convey meaningful information at hierarchical levels of
temporal scale. Choosing which level to work with naturally depends on the goals
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Figure 5.1: Annotated waveform, spectrogram and (approximate) drum transcription of “My
Sound” by Joey Beltram (R&S Records)

of the composer in tandem with the musical context. Figure 5.1 visually depicts
the different levels of scale that we can work with in concatenative synthesis tasks,
beginning with the low-level framewise snippets in either the time or frequency do-
mains. Framewise units are most typically used in granular synthesis, but combined
with feature analysis they are also found in many concatenative systems. Larger units
can naturally be extracted uniformly (at regular time intervals), but the most com-
mon unit timescale used in concatenative system is as a result of performing some
class of onset detection procedure. Onset detection algorithms are used to automatic-
ally detect events in audio signals. With an appropriately implemented algorithm and
careful adjustment of its parameters based on the program material, the idealised out-
put provides a list of time indices that correspond to the placement of a musical note.
At the highest level of scale, we can use more involved and complex feature analysis
to extrapolate units based on beat tracking and/or estimated tempo, for example.
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5.2.1 Framewise Segmentation

At the lowest level of unit decomposition is the framewise unit. In granular synthesis
many combinations of microsound timescales of typically 20-200 ms are combined
to create dense masses of sound “clouds”. Granular synthesis systems typically con-
trol the recombination of these sounds in a parametric fashion; the user specifies or
manipulates controls determining endmost pitch, length and envelope qualities. As
Schwarz (2003) notes, granular synthesis is “rudimentarily data-driven” but can be
significantly augmented with pre-feature analysis - what we seek to achieve by per-
forming concatenative synthesis.

Granular synthesis is generally performed in the time domain, directly moulding and
shaping the portions of the waveforms themselves using, for example, an amplitude
envelope or windowing function based on Gaussian or linear patterns (Roads, 1996,
2004). Another option is to take frame sizes of orders of 2n (512, 1024, 2048 etc).
and transform them to the frequency domain using a Fast Fourier Transform (FFT).
Resynthesised signals can be reconstructed later in the time domain using the In-
verse Fast Fourier Transform (IFFT) with overlap and add. While not an overly com-
mon approach to concatenative synthesis, it has been alluded to by Kobayashi (2003),
Puckette (2004), An et al. (2012), and some practical artistic applications have been
summarised by Schwarz (2006). The former describes how IFFT synthesis was used
in the theatre piece La Légende des Siècles (2002) to assemble FFT frames based on
a target specification of pitch and energy. Frame-based segmentation and Fourier re-
synthesis are available as unit scale options in PyConcat, but have only been used and
tested sporadically. The drawbacks of operating at this minuscule order of scale is the
sheer level of data handling and computation it entails. Furthermore, if the composer
is additionally working in the frequency domain they need to take extra care with
continuity and phase, something a HMM-based unit selection scheme (Section 5.5.4)
might help address.

5.2.2 Onset Detection for Unit Decomposition

5.2.2.1 Onset Detection Function

At the heart of an onset detection algorithm lies the extrapolation of a detection func-
tion. The detection function, also referred to as the novelty, change or reduction
function, is critical in reducing the complete audio signal from its higher sample rate
to a lower frequency function of candidate peaks that reveal potential onsets. A detec-
tion function tries to detect moments of large change or flux, such that these drastic
points of disparity in a signal quality like its energy signify the occurrence of a mu-
sical note or percussive transient. Time domain approaches work by taking a frame
of audio samples of size N, summing the rectified absolute values (as in an envelope
follower) or computing the Root Mean Square (RMS), then calculating the 1st-order
differential of those values (Laroche, 2003; Duxbury et al., 2002).
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More robust methods typically operate in the frequency domain. Critics of time do-
main methods point to its difficulty in recognising change of events in signals with
high energy or noisy background (Grzywczak & Gwardys, 2014; Eyben et al., 2010).
By operating in the frequency domain we can pick up on more information, in addition
to energy/envelope changes, that might prove efficacious in the characterisation of a
note event, such as the change of pitch revealed by its shifting spectrogram (Schloss,
1985; Lerch, 2012). Three of the most popular spectral methods include:

Spectral Flux: Calculate the distance between two consecutive frames of the
magnitude spectrum, using some distance measure such as Euclidean or abso-
lute value.

F(n) =
1
N

N
2 −1

∑
k=1

√
(Xk(n)−Xk(n−1))2 (5.1)

Complex Flux: Bello et al. (2004) proposed extending the spectral flux method
to incorporate phase information in addition to magnitude. By tracking the
instantaneous phase of the complex spectrum, the real frequency can be calcu-
lated as per the phase vocoder (Roads, 1996). If the pitch of a note corresponds
to a (mostly) steady state frequency then, in theory, deviations from the expec-
ted phase of a signal should reveal note events of signals where large energy
changes are not such prominent indicators.

High Frequency Content (HFC): Many percussive events are broadband in their
frequency content, most notably those involving cymbals or snare sounds. To
emphasise the contribution of higher frequencies to the novelty function, fre-
quency bins of the spectrum can be weighted proportionally then summed to
produce a framewise HFC descriptor more tailored for percussive sounds.

F(n) =
1
N

N
2 −1

∑
k=1

Wk|Xk(n)|2 (5.2)

Deep Learning Approaches: Reflecting recent trends in the arena of machine
learning towards deep learning and application of neural networks, state of the
art methods are also delivering some of the most promising results for creat-
ing usable novelty functions. Marolt et al. (2002) first proposed using a neural
network, trained on a corpus of synthesised piano performances, to detect the
presence of onsets in the amplitude envelopes of an IIR filterbank of 22 filtered
signals. Lacoste & Eck (2007) proposed using supervised learning of a neural
network trained to classify onset or non–onset in frequency representations of
the signal, using an STFT and a Constant-Q Transform. Convolutional neural
networks, such as those outlined by Schlüter & Böck (2013, 2014) borrow from
object classification tasks in computer vision research to analyse streams of
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spectrograms. Naturally, and in contrast to the more traditional signal pro-
cessing methods, the success of supervised learning methods relies greatly on
the data used for training.

5.2.2.2 Thresholding and Peak Picking

The novelty functions returned by those methods described in the previous section re-
turns candidate peaks, or, in the case of neural network oriented methods, probabilities
of candidates that potentially correspond to onset times. To filter out spurious peaks
and retain those local maxima, the novelty function needs to be processed through
thresholding and application of a peak picking algorithm.

Fixed thresholding retains only those peaks from the novelty function that exceed a
constant threshold value. This works well for program material occupying smaller
dynamic ranges, as in highly compressed music or percussive recordings. For ma-
terial that varies in dynamics over time it is rather crude and inflexible - for such
scenarios an adaptive thresholding procedure is preferable. Adaptive thresholding es-
sentially computes another function that gives an instantaneous threshold value for
each sample of the novelty function based on some analysis of that very function.
Standard methods proposed by Bello et al. (2005), Dixon (2006), Böck et al. (2012)
and Böck & Widmer (2013), choose a window of time w around the current nov-
elty function sample and derive a rolling average or low pass filtered version of the
function, and reject peaks below some multiple of that threshold function.

Peak picking, as summarised by Böck et al. (2012) can finally be attained by con-
straining the novelty function F(n) to a set of criteria as in:

P(n) = max(F(n−w : n+w))

P(n)≥ mean(F(n−w : n+w))+δ

n−nlast > β

(5.3)

where n is the current frame number, w is a window of frames around n, δ is a
threshold multiplier to be applied to the rolling average and β is used to reject po-
tential onsets if they occur within a number of frames of a previously detected onset.
Naturally, this set of criteria assumes that the source signal already exists in its entirety
as in a pre-recorded sound file.

For real-time onset detection it is more challenging and less accurate as we do not have
access to future frames of audio, unless some pre-delay is utilised (as is done in look
ahead limiters and processors that need some advance information in order to duck the
signal). Even if no pre-delay is applied, novelty frames can only be compared to those
captured in the past, which at least incurs a delay penalty of w ∗N/SR milliseconds
given frame length N and sample rate SR and frame window w.
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5.2.2.3 Evaluation of State of the Art Onset Detection Algorithms

Our intention in this thesis is not to reinvent the wheel in basic building blocks for mu-
sical signal processing, thus we propose no new methods for onset detection tasks. We
do however, need to evaluate the state of the art methods currently available and com-
pare their suitability for our needs in concatenative synthesis, which is documented in
this section.

Datasets To evaluate the respective performance of each method, we gathered a
number of datasets that are used in the literature and were made available, comprising:

ENST-Drums: Provided by Télécom ParisTech (Gillet & Gaël, 2006), contains
an audio-visual annotated dataset of performances by 3 professional drummers
using multi-track studio recording in a variety of configurations (single hits,
phrases and accompaniments) and a variety of styles including jazz and rock.

Modal (Musical Onset Dataset And Library): Hand annotated, contains 501
onsets across 71 files, with a mix of mostly monophonic events from sources
like voices, bass, guitar and percussion. (Glover et al., 2011)

JKU: Contains 321 files with 27,774 total onsets. Compiled from a number
of different sources by Sebastian Böck for evaluating his SuperFlux algorithm
(Böck & Widmer, 2013). The algorithm was developed especially to handle
vibrato, and accordingly the dataset contains a large number of samples that
purposely address vibrato, such as samples from opera or Western classical
string technique.

Algorithms Three different exemplar onset detection methods, available in the Es-
sentia (Bogdanov et al., 2013) and the Madmom (Böck et al., 2016) libraries, were
integrated into our own PyConcat framework and their performances were estimated
on the previously described datasets. The specifics of the algorithms themselves are
explained as followed:

Essentia-OnsetRate: Essentia’s “OnsetRate” algorithm combines the HFC and
Complex domain novelty function detection methods. The two functions are
multiplied by each other in order to emphasise those frames in agreement with
each other.

Madmom-Superflux: Madmom’s implementation of the Superflux algorithm
as proposed by Böck et al. (2013). It expands on the spectral flux approach to
handle program material that contains soft attacks, and instruments with vibrato
tendencies such as strings, winds and the voice, that are difficult to capture
using energy differences alone.
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Madmom-CNN: Uses a convolutional neural network to detect likelihood of
onsets within a frame by frame basis (Schlüter & Böck, 2013, 2014). This
algorithm achieved the highest scoring F-Measure and Recall and the second
highest scoring Precision of the Onset Detection task as part of MIREX 2016.

Procedure Onsets were extracted using a batch procedure on all of the audio files
with each algorithm using our PyConcat framework. For each audio file a single
text file was produced with estimated onset times. These were then compared with
the ground-truth annotations using the mir_eval python package, a Python library for
evaluating MIR related tasks according to MIREX guidelines (Raffel et al., 2014).
An onset is defined as correctly identified if the time annotation is within +/- 50 ms
of the ground truth annotation. Errors are categorised as either false positives or false
negatives:

False Negative: No onset estimation exists for a ground truth annotation

False Positive: An onset estimation outside the tolerance window for any ground
truth annotation

Scores are computed for each file according to the standard information retrieval frac-
tional measures of precision and recall as well as the F-measure, a derived measure
that attempts to consolidate both previous measures for easy comparison of overall
algorithms’ performance. Borrowing from the definitions provided in the sci-kit learn
python machine learning library documentation58, but adapted for the specific task
of onset detection, we can define them as follows (where Tp signifies true positives
- correctly identified onset, Fp signifies incorrectly identified onsets and Fn indicates
onsets not identified).

Precision: the fraction of total estimations that are correct:

P =
Tp

Tp +Fp
(5.4)

Recall: the fraction of the total annotations that are correctly retrieved:

R =
Tp

Tp +Fn
(5.5)

F-Measure: an aggregate score incorporating both precision and recall, defined
as the harmonic mean of both:

F1 = 2∗ P∗R
P+R

(5.6)

58http://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html

http://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html
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Algorithm Precision Recall F-Measure

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

CNN 0.9208 0.1452 0.9073 0.1603 0.9062 0.1568

SuperFlux 0.8719 0.1817 0.8702 0.1849 0.8550 0.1898

OnsetRate 0.8412 0.2166 0.7523 0.2287 0.7779 0.2128

Table 5.1: Onset detection algorithm results

CNN OnsetRate SuperFlux
Algorithm

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Measure
precision
recall
f-measure

Figure 5.2: Boxplots of results for each algorithm and measure in onset detection evaluation

5.2.2.4 Results

Results for all the files from each dataset were collated and statistics computed using
mean and standard deviations, as summarised in Table 5.1, while Figure 5.2 provides
corresponding box plots visually depicting the distributions. As is evident, the onset
detector based on the Convolutional Neural Network (CNN) is the highest scoring
and most consistent of the onset detectors measured based on overall mean values
and the small degree of spread in the box plots. Superflux also delivers excellent
results, albeit with the introduction of more variance across samples. The combined
methods present in Essentia’s OnsetRate algorithm performed the most poorly, with
the highest degree of spread across all measures.

Table 5.2 shows in more detail the statistics for each algorithm separated by the par-
ticular datasets evaluated and with the highest precision, recall and F-measure high-
lighted for each. It is interesting to note that all the algorithms deliver good results on
the ENST dataset, which is entirely percussive. Superflux and CNN perform much
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Figure 5.3: Mean and error of the running times of each algorithm over n=10 runs

better on the JKU dataset on which it is been designed. These algorithms demonstrate
their robustness on program material of all types, including sustained vibrato sounds
as well as clear transient heavy percussive material.

The smaller Modal dataset appears to cause the most difficulty for all algorithms, but
relaxing the tolerance time-window constraint from its default of 25ms (the default
tolerance in Madmom’s evaluation scripts59) to 50ms (actually the tolerance time used
for MIREX tasks) improves the accuracy for all algorithms by a significant factor,
suggesting it could be an issue of ground truth annotation style compared with the
other datasets.

In terms of running time and overall algorithm performance, Figure 5.3 compares the
averaged time and standard error (not visible due to low variance of < 1.0 s between
consecutive runs). Recent trends towards deep learning solutions, while displaying
promising returns in terms of accuracy over other supervised learning methods, fre-
quently pale in comparison when considering efficiency and running times of the
solution. Even with Madmom’s built-in facility for distributing computational loads
over multiple processors, the CNN method performs much slower than the two flux-
based approaches. Quite possibly the scale of the datasets is much larger than typical
applications for concatenative synthesis, but the comparative performance of onset
detection methods is an important point to consider when we look at real-time or at
least quasi real time applications in due course.

59https://github.com/CPJKU/madmom/blob/master/madmom/evaluation/onsets.py

https://github.com/CPJKU/madmom/blob/master/madmom/evaluation/onsets.py
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5.2.2.5 Beat Tracking and Tempo Extraction

It seems, from our impression of the literature, that in concatenative synthesis sys-
tems the typical unit length is of the onset (or to give it its perceptual equivalent, the
note)(Schwarz et al., 2006; Frisson et al., 2010; Bernardes et al., 2013) - as extrapol-
ated from a suitable onset detection process in the manner previously described. Units
detected via onset detection are reasonably straightforward to compute and represent
musically relevant building blocks for producing larger sequences of sounds. But lar-
ger musically relevant unit sizes are also a possibility. Building on top of state of the
art techniques in onset detection, MIR researchers are actively trying to coalesce this
research with knowledge of tempo and rhythm to pursue algorithms that can perform
automatic beat detection within signals. We summarise some of the key works in
this area including their respective MIREX results and expose them as possible unit
decomposition options within our own framework.

Figure 5.4 consolidates various rhythmic concepts from the onset to the bar level
and how they relate to the waveform representation and timeline of a typical musical
recording. Beats are defined as the perceptual tactus or dominant metrical pulse level
that corresponds to where humans are most likely to tap their foot (Jehan, 2005; Ellis,
2007; Stark et al., 2009). A stream of beats implies a certain tempo or Beats Per
Minute measure of frequency that allow us to understand and compare the speed of
musical works, and beat tracking and tempo detection are considered related tasks
(McKinney et al., 2007). As Korzeniowski et al. (2014) note, there are many factors
in real-world musical recordings that hinder computational facility to determine beats
with ease, such as syncopation, hemiola and any other rudimental technique that seeks
to thwart regular pulsation. By using tempo estimation and probabilistic prediction of
where beats should be when they aren’t, beat tracking algorithms try to account for
these factors.

McKinney et al. (2007), provide an excellent summary of the existing state of the
art methods at their time of publication, organising the methods by differing imple-
mentations of a two-stage process. The process consists initially of the driving stage,
which produces features directly from the signal. This is followed by periodicity
stage, which outputs estimates of tempo and/or beats based on the analysis of those
features (McKinney et al., 2007).

As was emphasised previously, beat tracking studies typically build on onset detection
research, as beats essentially represent a perceptual and synchronous subset of onset
locations in time. Thus most features HMM derived for the driving stage consist of
applying an onset detection method to produce candidate onset times (Brossier, 2006;
Dixon, 2006; Ellis, 2007; Degara et al., 2012; Zapata et al., 2014) but not always.
Antonopoulos et al. (2007) for example, use self-similarity of the MFCC frames as
its input. Degara et al. (2012)60 build upon their existing offering by integrating mul-
tiple input features that include energy flux, spectral flux, difference of Mel bands

60Also one of the beat trackers available in Essentia.
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Figure 5.4: Perceptual and physical concepts of rhythm in a Scott Joplin ragtime. Image from
Sethares (2007).

etc. Multiple candidates arising from the various feature inputs are resolved using a
method of query by committee and maximum mutual agreement (MaxMA) proposed
by the author previously in other work (Zapata et al., 2012, 2014).

The periodicity stage, or where the features are filtered to produce beat locations is
where the algorithms deviate the most from each other in terms of approach but many
methods in the literature at least start from a probabilistic standpoint. Ellis (2006;
2007) uses onset detection followed by autocorrelation to get an initial estimate of
the overall tempo of the track. This information is used by the beat-tracking module
to compare the idealised beat times against computing the globally optimised set of
beat times using IOIs and dynamic programming in a manner not so far removed from
that proposed by Alonso et al. (2007). Degara also utilises a HMM-based algorithm,
augmented with an intrinsic framework that models sequences of non-beat states as
well as beat states.

A multi-agent system for detecting periodicity has been employed by a number of
investigators (Goto, 2001; Dixon, 2007; Oliveira et al., 2012). In the case of Dixon,
for instance, an initial tempo hypothesis and potential first beat from an initial set of
onsets are assigned to several agents. Predicted beat times are then generated from
the initial onset and hypothetic tempo, and onsets falling within a tolerated window
of those predictive times are labelled as actual beats. A complex resolution system
examines the degree of agreement between agents to decide on the final beat locations.
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Key Name Authors F-Measure
SMC MAZ MCK Mean

BK1 DBNBeatTracker.2016 S. Böck, 56.8313 57.5286 63.6093 59.3231
F. Krebs

BK3 DBNDownBeatTracker S. Böck, 52.8343 73.8911 62.5299 63.0851
F Korzeniowski

BK2 CRFBeatDetector.2016 S Böck, 52.3142 55.1651 62.7315 56.7369
F Krebs

SB9 BeatRoot Vamp Plugin S. Böck 52.097 58.9357 63.8961 58.3096
SB8 QM Tempo Tracker S. Böck 49.8366 52.2792 63.8436 55.3198
JZ1 MultifeatureBT-Inf-7odf-Repet J. R. Zapata 36.8192 50.63 52.6104 46.6865
JZ2 MultifeatureBT-Reg-7odf-Repet J. R. Zapata 36.4073 47.874 53.2314 45.8376
CD3 QM Tempo Tracker C. Cannam, 33.663 49.6229 52.8758 45.3872

M. Davies
CD2 BeatRoot Vamp Plugin C.Cannam 30.34 41.5218 52.6579 41.5066

S.Dixon

Table 5.3: Mirex 2016 beat tracking results

Current State of the Art and Deep Learning Approaches Table 5.3 shows the F-
Measure scores for every algorithm submitted to the 2016 MIREX competition. The
datasets under scrutiny include:

SMC - 160 30-second excerpts of music in a variety of instrumentation and
styles but with a stable tempo. 20% of the examples contain non-binary meter.

MAZ - 367 Chopin Mazurkas with shifting tempos.

MCK - 217 tracks of roughly 40s long, with 19 “easy” and 198 “hard” excerpts
from Romantic music, film soundtracks, blues, chanson and solo guitar.

Beat tracking is a significantly more complex task compared to onset detection, and
evidently the results reflect this. Ranges of accuracy vary greatly across the different
datasets and, while no single algorithm achieves the highest F-Measure, at least Böck
and Korzeniowski’s DBNDownBeatTracker manages to attain the highest mean per-
formance. Once again we see the headway deep learning based methods are making
in all manner of pattern recognition and machine learning tasks, as this method relies
on a recurrent neural network armed with a bank of resonant comb filters.

5.3 Describing Sounds with Features

The previous Section 5.2 described the crucial first step in building a concatenative
synthesis system, namely segmenting larger sounds into smaller units at a timescale
suitable for repurposing. While many timescales are used, we emphasised the par-
ticular importance of onset detection and this is the timescale we assume henceforth,
unless otherwise specified. This section now turns to the task of analysing these
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units of sound, and the challenge of choosing the most descriptive set of features for
summarising and comparing sounds succinctly, beginning with time-based temporal
descriptors and progressing to frequency domain spectral derivatives.

5.3.1 Temporal Descriptors

5.3.1.1 Intensity and Loudness

Physically speaking, sound is a medium transporting mechanical energy via waves. In
recorded media, analog or digital signals are converted to electrical and magnetic en-
ergy that push speakers backwards and forwards in a manner analogous to the original
waveform captured.

Digital signals are essentially a series of amplitude values sampled at a particular
sampling frequency. Taking the absolute value at an instantaneous sample point or
the maximum absolute value over a window of samples gives us the peak amplitude.
Unless the peak amplitude occurs frequently, in itself it is not a very useful indicator
of the overall amplitude of the signal, thus the Root Mean Square (RMS) is computed
on the window of samples to get a better statistic of the general power of the signal
(Puckette, 2006):

ARMS{x[n]}=
√

1
N
(x[1]2,x[2]2, ...,x[N]2 (5.7)

where N is the length of the discrete time signal x and x[n] are the individual samples.
Most other works we have encountered related to concatenative synthesis use RMS
as their principal loudness descriptor, particularly Sturm (2004) and Bernardes et al.
(2013), but Jehan (2005) computes his loudness descriptor from energy in the fre-
quency domain.

Human perceptual response to increments in amplitude is intrinsically logarithmic,
thus to aid relative comparisons and metering purposes, amplitude values are often
computed as a ratio of some reference value and reported using the deciBel (dB)
scale, as Puckette (2006) indicates.

d = 20log10
a
a0

(5.8)

Intensity, power, energy etc. are all objective physical concepts. We use the term
loudness to describe the subjective human perceptive experience that we feel when
exposed to intensity of sound. As Lerch (2012) points out, the decibel is neither
a true indicator of loudness because "equal-sized steps on the decibel scale are not
perceived as equal-sized loudness steps by human listeners", or as Stevens (1955)
puts it more succinctly: "equal steps do not sound like equal steps".

Perceived loudness depends on many factors, and, as the long established Fletcher-
Munson equal-loudness contours reveal, it is heavily skewed by frequency. Intro-
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Figure 5.5: Equal-loundness curves in red with ISO revisions in blue. Image from Wikipedia.

duced in the 1930s (Fletcher & Munson, 1933), subsequently revised as an ISO stand-
ard in ISO 226:2003 (2003), this set of curves (Figure 5.5), produced using listening
tests, estimates frequency versus sound intensity pressure level where listeners per-
ceive loudness to be roughly equal. To make matters worse, these curves change
according to overall intensity, such that at the difference is more pronounced between
frequency ranges at low intensities, while gradually flattening out as intensity in-
creases.

Luckily, more pyscho-acoustically aware measures that take into account such sub-
tleties and phenomena are implemented and available as content analysis features.
The European Broadcasting Union (EBU), for example, proposes the EBU R 128
metering standard in an effort to enforce normalisation consistency across differing
programme material in broadcasts61 (ITU-R BS.1770-3, 2013; Lerch, 2012). It con-
sists of a perceptually tuned K-weighting filter followed by mean square power es-
timated at momentary, short-term and longer-term intervals.

We are using content analysis mainly for our unit selection algorithm to compute sim-
ilarity between feature vectors so advanced metering standards like the EBU R 128
are a bit complex for our purposes, and we haven’t seen any instances of its usage
in synthesis systems. Another, more basic loudness descriptor available in Essentia’s
library implements Stevens’ Power Law. Stevens’ Power Law arose out of efforts
to improve on the Weber-Fechner pyschophysics laws that relate changes in phys-

61And combat au-fait advertising and music producers exploiting dynamic range compression to
make their products stand out from others.
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ical stimuli with perceptual response to those changes (Stevens, 1975; Skovenborg &
Nielsen, 2004). Its formulation is elegant (Eq. 5.9).

S(i) = k.in (5.9)

where S is the sensation (perceived magnitude), i is the intensity, k is a unit dependent
constant and n is an exponent that depends on the stimulus. Through many percep-
tual experiments, Stevens produced exponents for a wide variety of physical stimuli,
ranging from brightness of light to taste when exposed to sucrose or salt, for example.
In the case of loudness, that exponent is estimated at 0.67 (Stevens, 1975), and in
Essentia it is implemented as the signal energy (5.10) raised to that exponent (5.11).

E{x[n]}=
n=∞

∑
n=−∞

|x[n]|2 (5.10)

L{x[n]}= E{x[n]}0.67 (5.11)

We use the Stevens’ Law based descriptor in our systems as it provides (in our view)
an acceptable trade off between ease of integration and grounding in some awareness
of perceptual theory. Loudness is a scalar feature, and one of two features we compute
solely in the time domain. It is an extremely important quantity that is essential in
ensuring that units selected match not only the overall naturalness and dynamics of the
target sound, but also remain consistent over the continuous trajectory of the sequence
subsequent to concatenation.

5.3.1.2 Log-Attack Time

The evolution of the energy in a sound is frequently described in terms of its attack,
decay, sustain and release envelope (Peeters, 2004; Kim et al., 2006a; Brossier et al.,
2004) and is a central facet of modular and digital sound synthesis (Russ, 2004).

Technically it is resolved by taking the logarithm of the time taken from t0 to t1,
where t0 is some initial energy percentage of the envelope, while t1 is some maximal
percentage of the envelope, indicating the end of the attack and the start of the decay
or sustain portion (Eq. 5.12).

lat = log(t1− t0) (5.12)

The reason for taking the logarithm is justified because, just like other perceptual re-
sponses to physical stimuli, studies have found higher degrees of correlation in stud-
ies examining timbre discrimination when the logarithm is applied (McAdams et al.,
1995, 1999; Agres et al., 2016). The log attack time is obviously very useful for dis-
criminating sounds that have distinctive attack profiles (Herrera-Boyer et al., 2003),
such as the flute versus a snare drum for example, so naturally this feature makes more
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sense for “one-shot” instrumental classification versus excerpts of recordings for the
purposes of genre detection.

5.3.2 Spectral and Timbral Descriptors

Timbre is an extremely complex and elusive aspect of sound for a very simple reason:
it is a quality that is likely an emergent property, with indeterminate dimensionality
(Elliott et al., 2013; Siedenburg & McAdams, 2017) or even dimensionality exclusive
to a particular timbre (Krumhansl, 1989). A typical definition usually follows along
the lines of that issued by the Acoustical Society of America:

“That attribute of auditory sensation which enables a listener to judge
that two nonidentical sounds, similarly presented and having the same
loudness and pitch, are dissimilar” (ANSI, 1994)

An elegant distillation undoubtably, but other researchers point out (Siedenburg &
McAdams, 2017) there is difficulty in these so-called “wastebasket” reductionist at-
tempts that leave us none the wiser:

“timbre tends to be the psychoacoustician’s multidimensional waste-basket
category for everything that cannot be labeled pitch or loudness.”

(McAdams & Bregman, 1979)

“This is, of course, no definition at all. [...] The problem with timbre is
that it is the name for an ill-defined wastebasket category. [...] I think
the definition [...] should be this: ‘We do not know how to define timbre,
but it is not loudness and it is not pitch.’ [...] What we need is a better
vocabulary concerning timbre.” (Bregman, 1994)

5.3.2.1 Fourier Analysis (and Synthesis)

A working knowledge of Fourier analysis and awareness of the first point (ANSI,
1994) does give a starting point for many systems that deal with timbre. Fourier’s
theorem says that any sound in the time domain can be transformed to a sum of
sinusoid functions and associated amplitudes in the frequency domain or spectrum
(Roads, 1996). Overlapping frames of samples taken from a longer signal can be
multiplied by a suitable window function, giving a better indication of the evolution
of the sound over time, in what is known as a the STFT or spectrogram (if observing
just the magnitude) (Collins, 2010)(Eq. 5.13).

X [n,k] =
N−1

∑
n=0
{w[n]x[mH +n]e− j2πkn/N} (5.13)
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where w[n] is a window function, H is a hopsize, m is the hop number and k is the fre-
quency bin number. If two sounds have the same pitch and loudness - or objectively
speaking, the same perceived fundamental frequency and amplitude - then perhaps
examining the spectrogram should give us a better indication as to what discriminates
the two. Examining different sounds using Fourier analysis shows us how different
sounds are made up of spectrograms that not only have different magnitudes at dif-
ferent peaks, but also these magnitudes and peaks can evolve over time according
to unique envelopes. These peaks in the spectrum are known as partials. When ex-
amining musical signals in a spectrum, we call the first partial that is at the lowest
frequency in the signal as the fundamental frequency or first harmonic62. Any partial
above this fundamental frequency that is related to the fundamental by an integer ratio
is furthermore labelled as the second, third, fourth harmonic and so on, forming the
harmonic series (Puckette, 2006).

Fourier theory also gives us a constructionist framework for additive synthesis of
sounds - by carefully mixing parameters of a bank of sinusoids we can arrive at more
complex sounds and even try to mimic some of those found via analysis. But ad-
ditive synthesis gets very complicated very quickly. Besides having to keep track of
large sets of parameters, computing huge banks of sinusoid functions concurrently is
computationally expensive. Typical analog and digital synthesisers in the music pro-
ducer’s arsenal approach the problem from the other direction. Complex signals such
as squares, sawtooths, or certain shapes drawn in a wavetable are filtered and sculpted
to arrive at the desired sound in a process known as subtractive synthesis. Frequency
Modulation (FM) synthesis also famously uses parametric control of a carrier signal’s
frequency modulated by a modulation frequency to produce a wide palette of sounds,
but its minimal set of parameters can prove notoriously complex and difficult in trying
to fathom a preconceived sound.

Getting back to spectral and timbral analysis63, the Fourier transform and its spec-
trogram is a central concept in musical signal processing, and while usually not em-
ployed directly as a raw feature in itself, it forms the basis for numerous other al-
gorithms (recall its role in flux-based onset detection) and descriptors in MIR literat-
ure and systematic practice which we will now turn to.

5.3.2.2 Spectral Centroid

The spectral centroid gives a scalar value indication of the “centre of gravity” in the
spectrum of the signal, and as such is computed as the weighted mean of the spectral
bin frequencies, with the magnitudes acting as weights (Eq. 5.14).

62Though the human cortex has the extraordinary ability to “fill in” a missing fundamental (or pitch
of residue (Weihs & Jannach, 2009)) for a complex harmonic tone even when absent.

63It’s also worth mentioning spectralism here, a post-Serialist movement in European composition
that ran tandem to the burgeoning minimalism across the Atlantic. At IRCAM, Gérard Grisey and
Tristan Murail harnessed computational analysis of spectra to inspire dense scores on chamber works
such as Les espaces acoustiques and Gondwanda (Ross, 2007; Harvey, 2000)
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c =
∑

N
i=1 f (i)m(i)

∑
N
i=1 m(i)

(5.14)

where f (i) is the centre frequency of bin i, and m(i) is its associated magnitude. It
is considered a robust and reliable indicator of the perceptual “brightness” of a sound
(Schubert et al., 2004), and is utilised in a variety of systems that classify sounds.
In Figure 5.6 we can see three different impressions of a drum pattern (programmed
in Ableton with a TR-909 preset). The top image shows the “symbolic” step pattern
notation as would be used in a MIDI-based production environment such as Ableton.
The middle image the shows the rendered waveform (or time-domain representation)
of the drum pattern. Finally in the bottom image the log frequency/ power spectrum
shows the frequency domain impression of the signal. Overlaid on the spectrogram,
in green, is the spectral centroid computed for every frame of the spectrogram. As we
can see the centroid follows the envelope shape of the centre of energy for the spectral
evolution of the signal.

5.3.2.3 Spectral Flatness

Another feature computed on the spectral profile at each frame is the spectral flatness.
The spectral flatness or “Wiener entropy” gives an indication of how peaky or flat the
spectrum is. Peaky spectra tend towards 0.0 and are indication of more harmonic or
tonal sounds while a perfectly flat spectrum of 1.0 indicates stochastic noise. Math-
ematically it is defined as the geometric mean of the bin amplitudes of the spectrum
divided by the arithmetic mean of the same bin amplitudes (Eq. 5.15).

f =
N
√

∏
N−1
n=0 X(n)

∑
N−1
n=0 X(n))

N

(5.15)

In Figure 5.6 in the middle image we observe the spectral flatness has been plotted
against the waveform view. Since the range bounds of spectral flatness fall between
0.0 and 1.0 this makes more sense than trying to normalise it into a range that can be
plotted easily against the spectrogram. In any case, it can be clearly seen how the flat-
ness function, while reasonably correlated with spectral centroid overall, deviates and
approaches the origin for the kick timbre. While percussive sounds are generally con-
sidered to be less “tonal” overall compared to their non-percussive counterpoints, low
frequency membranes such as kick drums and tom-toms do exhibit more discernible
pitch compared to the clearly more broadband profiles in the snare and hi-hat, and this
is evident simply by looking directly at the relevant time points in the spectrogram.
Indeed, typical recipes for synthesising electronic kick drums (such as those found
in Roland gear) often suggest combining a sine wave with an envelope controlling a
sharp decay in frequency with some short impulse of filtered noise (to create a per-
cussive “click”) (Risset & Wessel, 1999; Reid, 2002).
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Figure 5.6: Symbolic grid representation of drum pattern (top). Waveform with spectral
flatness (middle). Audio spectrogram with spectral centroid (bottom).

5.3.2.4 Cepstrum Analysis

Effective analysis of complex timbres in musical and natural signals typical employ
derived features that exploit some understanding of human perception. The human
ear is typically believed to respond to the dynamic limits of 0-120dB and frequency
ranges of roughly 20Hz - 20kHz6465. But as we know, human sensation to stimuli
is not linear - we don’t perceive phenomena in the same way physical measurements
are made. The upshot of this is that important information "spreads out" at higher
frequencies compared to the more compact resolution of the lower bands.

64Thanks to many years of ignoring advice on earplugs, I strain to hear anything above 14kHz!
65A famous anecdote recounted by revered console designer Rupert Neve claims that Beatles engin-

eer Geoff Emerick discovered an anomaly in a desk that was attributed to an oscillation at 54kHz (Winer,
2012), but later they concede that this was probably due to suboscillatory spillage into the audible range.
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Figure 5.7: Different perceptual scales (normalised) for the audible frequency range

Pitch is the perceptual description we give to the way our brains organise frequency
for the purposes of music. If a tone is perceived to have a pitch at a particular fre-
quency, doubling the frequency of that tone is perceived as the same pitch except one
octave unit higher.

Depending on when (what era) and where (what culture) you were born in the world,
how that octave is divided up can be very different (take for example, just intonation or
Indian art music). Assuming the chromatic scale based on equal temperament tuning,
its octave is divided into 12 semitones using the following formula:

p = 69+12∗ log2(
f

440
) (5.16)

where p is the resulting chromatic pitch and f is the frequency in Hz. What is essen-
tially happening here is a type of frequency warping - compressing sound frequency
onto a smaller, perceptual scale that is more tuned for human perception and cogni-
tion. In fact, there are other frequency warping formula in the literature that serve to
warp frequency according to some conceptually pyschoacoustical or perceptual scale.
Figure 5.7 shows a number of perceptual scales and their normalised output with fre-
quency in Hz as input, notice how they all exhibit a sharp rise that flattens out as it
approaches the upper bounds of human response to frequency.

Cepstrum analysis has been one of the most dominating analysis techniques in speech
processing for a long time. The word cepstrum itself rearranges the first four letters
of the word spectrum, and has been described variously as a type of “spectrum of a
spectrum”. Its usage within speech analysis stems from the fact that it allows to sep-
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arate the two dominant spectra of a vocal sound - the initial glottal impulse excitation
and the slower resonance of the vocal tract (Roads, 1996; Kim et al., 2006a).

To compute cepstrum is comparatively straightforward. The FFT of the signal is taken
as normal. The magnitude is retained and the log magnitude spectrum is computed.
Finally, the inverse FFT (IFFT) is applied to the log magnitude spectrum. However,
normally some frequency warping formula is exercised to compress the spectrum in
some pyschoacoustic and perceptually motivated manner, and it is here we derive the
family of features that include Mel-Frequency Cepstral Coefficient (MFCC), Bark-
Frequency Cepstral Coefficient (BFCC) and GFCC (Gammatone Frequency Cep-
strum Coefficients warped according to Equivalent Rectangular Bands (Shao et al.,
2009)). Figure 5.8 shows the computed coefficients and the ranges of these features
side by side for visual comparison.

MFCCs MFCCs are the most common flavour of cepstrum analysis (Kim et al.,
2006a). MFCCs use a Mel-spaced filterbank to convert the spectrum to energy in
Mels (Figure 5.7). The Mel scale, based on perceptual experiments performed by
Stevens et al. (1937), provides a mapping from frequency to Mel pitches that listeners
have deemed equal to each other in distance, in a manner similar to the equal-loudness
contours previously. While not visible in the normalised representation in Figure 5.7,
as Kim et al. (2006a) notes, the Mel scale and frequency are actually linearly corres-
pondent up until around 500Hz, at which point it begins to space out across the upper
range.

The formula for converting frequency in Hz to Mel pitches is given by:

m = 2595log10(1+
f

700
) (5.17)

To compute the MFCCs the following steps are taken (Logan, 2000; Lyons, 2015):

1. Perform the STFT as given by Eq. 5.13.

2. Get the magnitude given by M(n) = |X(n)|.

3. Get the log magnitude given by L(n) = log(M(n)).

4. Warp the log-magnitude spectrum to the Mel scale using 40 triangular filters
according to (6.1).

5. Finally take the Discrete Cosine Transform (5.18) of the Mel-Frequency log
spectrum to obtain the 40 MFC coefficients.

Xk =
N−1

∑
n=0

xncos[
π

N
(n+

1
2
)k] (5.18)
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Figure 5.9: Signal flow and Essentia algorithm graph for MFCC computation.

Figure 5.9 shows how MFCC extraction is performed in the Essentia environment,
showing the signal flow through the various stages, conceptually encapsulated as al-
gorithms. Essentia processes data in a graph-based network, not unlike signal flow
languages such as Pd and Max; objects (or algorithms) are connected virtually to
each other, and more complex algorithms (composite algorithms) can be assembled
by combining other algorithms with processing routines. This is actually the case
with the MFCC algorithm, which as can be seen in the figure receives a spectrum,
uses the MelBands algorithm to filter the spectrum, computes the logarithm then fi-
nally outputs the MFCC result from the DCT algorithm.

Interpreting exactly the meaning of each of the MFCC coefficients (Figure 5.8) is not
as simple as is examining each bin of an FFT for instance. However, in most discourse
dealing with MFCC analysis the emphasis appears to be on the first 13 coefficients as
higher order coefficients are considered to contain increasingly redundant information
(Logan, 2000). Additionally, the first coefficient is usually correlated most with the
energy of the signal and is also frequently omitted in further usage. We follow suit
also, since we are already computing energy using the specially designed Stevens’
Power Law descriptor.
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Library Language MFCC BFCC GFCC

Aubio (Brossier, 2006) C & Pd Yes No No

MIR Toolbox (Lartillot et al., 2008) Matlab Yes No No

LibXtract (Bullock, 2007) Pd Yes No No

TimbreID (Brent, 2010) Pd Yes Yes No

Essentia (Bogdanov et al., 2013) C++ & Python Yes No Yes

Librosa (Mcfee et al., 2015) Python Yes No No

Madmom (Böck et al., 2016) Python Yes No No

Table 5.4: Availability of MFCC, BFCC and GFCC descriptors in common audio labelling
libraries.

5.3.2.5 BFCCs

If the MFCC feature uses the Mel scale for warping the spectrum, then the extremely
related BFCC feature differs only in its warping procedure using the Bark scale. The
Bark scale maps frequency to Barks using this formula:

b = [26.81∗ f
(1960− f

)]−0.53 (5.19)

Aside from that the procedure is pretty much the same as for MFCC computation.
Overlapping filterbanks tuned to the bark scale are applied to the spectrum, the logar-
ithm is taken and finally the DCT transform is completed to produce the coefficients.

The BFCC feature has not enjoyed the same level of popularity as its MFCC coun-
terpart, most probably since it is not available as an extractor in the major feature
extraction and analysis environments (Table 5.4).

The Mel scale is an extremely robust and reliable warping scale for many applic-
ations, but it is still prudent to experiment with other feature extractions methods
depending on the application area its associated data. We decided to examine the ap-
plicability of the Bark scale following the findings of William Brent, who maintains
that BFCCs are the most accurate single feature in his own experiments in percussive
timbre identification (Brent, 2009a,b). His TimbreID toolkit, due to its ease of use and
implementation within the Pure Data environment has been popular in creative applic-
ations. As a consequence his suggested usage of the BFCC feature has been taken up
in other works (Monteiro & Manzolli, 2011; Neupert & Gossmann, 2013; Tomás &
Kaltenbrunner, 2014), including some tailored towards rhythm classification (Miron
et al., 2013; Vogiatzoglou, 2016; Jathal, 2017), with the latter also reporting slightly
better classification results over MFCCs. Considering the frequent rhythmic purposes
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type = ’power’

weighting = ’linear’

lowFrequencyBound = 0

highFrequencyBound = 8000

numberBands = 26

numberCoefficients = 13

normalize = ’unit_max’

dctType = 3

logType = ’log’

liftering = 22

Table 5.5: BFCC parameters for matching output of Ellis (2005).

of our own research, and the percussive, attack quality of dance-oriented electronic
music in general, it suggests applicability in our system.

While a consolidated BFCC extractor doesn’t exist in Essentia, a BarkBands filter
does, and the algorithm structure in Figure 5.9 hints that all that is required is simply
swapping the two filter types, which we did. What was a bit more difficult was veri-
fying if the extractor was then outputting correct coefficients and comparable coef-
ficients compared to other implementations - due to the lack of existing implement-
ations. However, Ellis (2005) has done some work on reproducing the feature of
outputs of different implementations such as those found in Hidden Markov Model
Toolkit (HTK) (Young et al., 2002) or the Auditory Toolbox (Slaney, 1998), and has
some routines for producing BFCCs, so we decided to follow a similar procedure.

One of the first stumbling blocks came with the existing BarkBands filter, as it uses
2766 pre-cooked Bark band frequencies that are hard-coded in the algorithm itself,
rather than allowing parametric control of the lower and upper frequency bounds and
the number of desired bands. To remedy this, we first created a TriangularBarkBands
algorithm according to Ellis’ specifications that provides precise parametric control
of these crucial settings, in this way we can tweak settings to produce comparable
feature outputs with Essentia. Next we modified a copy of the existing composite
MFCC algorithm and swapped in the TriangularBarkBands to create the new BFCC
extractor. After some experimentation we were able to achieve almost identical BFC
coefficients as Ellis’ “Rastamat”67 implementation in Matlab (Figure 5.10) using the
parameter settings in Table 5.5. With this implementation, and the existing MFCC and

66The standard number is typically 24, but Herrera et al. (2003) suggests, in order to increase ac-
curacy in drum classification, increasing the resolution at lower frequencies by splitting lower order
filters.

67http://www.ee.columbia.edu/ln/rosa/matlab/rastamat/

http://www.ee.columbia.edu/ln/rosa/matlab/rastamat/
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Figure 5.10: BFCC outputs with errors for Rastamat and our Essentia implementations.

GFCC extractors, Essentia is now the only “off the shelf” feature extraction library
that provides all three cepstrum descriptors.

5.3.2.6 GFCCs

Our final warped cepstrum feature is the GFCC (or GTCC to give its alternative ac-
ronym by some investigators (Valero & Alias, 2012; Fathima & Raseena, 2013)). The
GFCC derives its warping mechanism from the gammatone filter (Eq. 5.20), whose
impulse response is purported to correlate closely with the auditory response of the
cochlea in mammals (Patterson et al., 1987; Valero & Alias, 2012).

g(t) = atn−1e−2πbtcos(2π f t +φ) (5.20)

Here what we are seeing is basically a cosine waveform at a frequency f with initial
phase φ and amplitude a modulated by the gamma function (the exponential compon-
ent) at order n with a bandwidth b. Practically speaking, they are implemented using
as set of ERB rectangular filters tuned to the gammatone properties. The computa-
tion is slightly more involved than the Mel or Bark approaches but in Essentia, just
like our port of the BFCC algorithm, these filters are modelled on a Matlab version
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made available in by Ellis (2009), who in turn formulated his solution as a response to
the more computationally expensive routines available in Slaney’s Auditory Toolbox
(Slaney, 1998).

As Zhao & Wang (2013) note, the ERB scale has finer resolution at lower frequen-
cies (where pitch information is more compressed perceptually) than the Mel scale
used in MFCC computation. The other difference is the addition of a cubic root rec-
tifier in place of the typical log. They posit that these adjustments over usual MFCC
approaches provide more robustness in the case of speaker identification in speech
processing tasks. Indeed, GFCC analysis has proved fruitful in many works dealing
with speech (Abdulla, 2002; Schlüter et al., 2007), but has yet to prove widespread
in musical or non-speech experiments. Recently however we have seen the intro-
duction of GFCC feature extraction in singer identification (Cai et al., 2011), struc-
tural segmentation (Tian & Sandler, 2016), genre classification (Johnson-Roberson &
Sudderth, 2017; Grekow, 2017), environmental sounds (Valero & Alias, 2012) with
improvements over classical Mel-based scaling approaches in many cases.

5.3.2.7 Tristimulus

An interesting, alternative viewpoint of timbre, first proposed by Pollard & Jansson
(1982), takes inspiration from primary colour mixing model of light and attempts
to model an equivalent for sound. Using information from the estimated fundamental
frequency and harmonic peaks in the spectrum, the energy ratios of the first harmonic,
the second, third and fourth harmonics and finally the rest of the harmonics form the
three values of Tristimulus descriptor (Peeters, 2004).

Tristimulus is obviously very useful for visualisation, as we can map it directly to
colour (Sequera, 2006), or to 3-dimensional space (Figure 5.11) without resorting to
dimensional scaling. Also, in a more creative application of the feature, Fox & Carlile
(2005) use tilt data in an accelerator equipped glove for Tristimulus-based formant
and timbre control of a synthesiser.

Compared to more pitch “agnostic” timbral impressions such as cepstrum analysis,
tristimulus features are more applicable for analysing signals with high degree of
harmonicity, as Terasawa et al. (2006) note:

“[Tristimulus], however, is limited by the inability to represent inhar-
monicity and a rather arbitrary delineation of the three frequency com-
ponents.”

For succint and effective analysis of a broad range of signals Tristimulus should likely
be aggregated with descriptors that are more suited for capturing those attributes, such
as inharmonicity or spectral moments (Peeters, 2004; Chudy & Dixon, 2010).
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Figure 5.11: Tristimulus plot for 3 different classes of instruments, taken at random from the
Philharmonica set.

5.3.3 Musical Specific Descriptors

The features we have previously described and will evaluate in due course are extrac-
ted with the sole intention of matching target unit sounds with corpus units based on
some perceived notion of “timbre”. We distinguish here two features that are extrac-
ted with the intention of fulfilling more “musical” (of course timbre and music are
inextricably intertwined) purposes such as:

1. Pitch Tracking: Returning units that contain the same pitch, or transforming/post-
processing units to contain the same pitch.

2. Harmonic analysis: Returning units that containing similar harmonic profiles
i.e. might contain similar tonality in terms of localised chord or overall key.

5.3.3.1 Fundamental Frequency and Pitch

Fundamental Frequency (f0) detection or pitch tracking attempts to determine the
lowest frequency within a signal, with the hopes that this matches the listeners per-
ceptual impression of pitch (Gerhard, 2003). Algorithms for pitch detection exist
in both the time and frequency domain. Time domain methods usually stem from
some sort of autocorrelation of the signal, whereby the signal is compared with itself
in increasingly delayed time lags to discover periodic repetitions whose reciprocal
corresponds to the fundamental frequency given by 1/ f = T . Due to the harmonic
nature of musical signals, autocorrelation methods often return octave errors, where
multiples of the actual fundamental frequency are reported incorrectly.
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The well-known YIN68 algorithm (de Cheveigné & Kawahara, 2002) addresses these
errors and more by adding some correction stages such as absolute thresholding and
parabolic interpolation, and is available within Essentia. Brossier (2006) defines a
YIN equivalent called PitchYinFFT in the frequency domain, taking advantage of
convolution/multiplication equivalency to reduce some of the computation overhead
inherent in the time domain method. Given the modular nature of feature extraction in
Essentia, and since we are already computing the spectogram for cepstrum analysis,
it makes sense that we use this version for our pitch tracking needs.

5.3.3.2 Chroma and (H)PCPs

Just as the middle stage in the previous cepstrum analysis methods warped the fre-
quency spectrum to a compressed non-linear scale, the chromagram feature also rep-
resents a collapse of the spectrogram (though without any further cepstrum trans-
form), this time into musically relevant pitch classes based on Pitch-Class Profiles
(PCPs) (Fujishima, 1999) or Harmonic Pitch-Class Profiles (HPCPs) (Gómez & Her-
rera, 2004) or chroma extractors (Orio, 2006). The resulting feature contains the
integrated intensities of the spectrum with respect to the 12 semitones of the diatonic
scale assuming equal temperament, although further ratio resolutions (return vectors
of size 24 or 48 for example) of the semitone are also used.

HPCP computation, as proposed by Gómez (2006) is carried out as follow.

1. Perform the STFT

2. Locate peaks in the spectrum using a peak picking procedure as we saw in the
onset detection stage (See Section 5.2.2.2).

3. Use the PCP procedure to map the spectral peaks to folded intensities in a set
containing the desired number of pitch classes.

4. Normalise values based on the maximum.

HPCPs are less useful for timbral analysis69, as it is not really their intended purpose.
They are naturally effective features for systems that need to understand harmonic
qualities such as chord recognition (Fujishima, 1999) and key detection (Gómez &
Herrera, 2004). Indeed, within the GiantSteps project our colleagues have adapted
customised key profiles that can extend to the stylistic peculiarities of tonality and
key that pervade dance music (Faraldo et al., 2016, 2017a,b).

68The name is derived from the yin and yang principle of contrary forces in Chinese philosophy, as
the algorithm itself is a tradeoff between autocorrelation and cancellation.

69Our classification experiment later on will add weight to this.
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Figure 5.12: Summary tree of orchestral samples for classification.

5.3.4 Feature Combination and Evaluation

To evaluate the ability of some of the features we have described here in classifying
musically relevant timbres, we trained and tested two models with a number of clas-
sifiers. Our goal is not to provide a comprehensive work on timbral classification but
rather serve as a broader sanity check to confirm two queries:

Are the features we have chosen appropriate for timbral classification and sim-
ilarity analysis, and more specifically, analysis for rhythmic and percussive
sounds?

Do more exotic Cepstrum warping procedures like our implemented BFCC and
the GFCC outperform the more commonplace MFCC?

To address the requirements in our classification task, two distinct datasets were com-
piled. The first set focusses on sections and instruments of the orchestra and the
second focusses on percussive timbres of a typical drum set or drum machine.
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Drum Dataset(1051)

Kicks (160) Snares (284) Hats (256) Cymbals (133) Toms (109) Perc (90) Claps (19)

Figure 5.13: Summary tree of drum samples for classification

Orchestral Dataset The orchestral dataset comprises professionally recorded or-
chestral samples kindly made available for free download by London’s Philharmonia
Orchestra70, and has already been used in a number of existing works for both ana-
lysis (Hulshof et al., 2016; Donnelly & Sheppard, 2016; Pishdadian et al., 2017) and
interactive performance (Miller & Hammond, 2010). The total number of sound files
exceeds well over 10,000 so we restricted ourselves to the standard instrumentation
of the three choirs (strings, woodwinds and brass) as well as percussion, and omitted
extended instruments such as guitar or banjo. All 148 percussion samples were se-
lected from the set, and ranged from typical instruments such as the bass drum and
cymbals to more exotic items like the washboard and whip. Figure 5.12 shows a tree
structure summary of the distribution of the samples across instrumentation and the
respective sections. 200 samples from each of the instruments were taken at random,
with a wide variety of dynamics and articulations.

Drum Dataset The drum dataset was compiled to address better the rhythmic goals
of this thesis and comprises over 1000 one shot samples of drum sounds. The samples
themselves were sourced from freely availably libraries on the internet, including one
large repository provided by the popular musician focussed website Music Radar71.
We have found one article in the literature (Masood et al., 2015) that uses Music Radar
samples for timbral classification of multiple instruments using a neural network. Our
dataset contains a mixture of regular kit sounds and some percussion sounds from
acoustic recordings as well as electronic drum machines like the Roland TR range.
After verifying the trustworthiness with some random auditioning of the samples, we
relied on the existing labelling in the filenames to divide up into appropriate classes
for training and testing, which are summarised in the tree in Figure 5.13.

5.3.4.1 Classifier Summary

For our classification and feature evaluation experiments we compared the perform-
ance of the various feature configurations on 3 distinct classifiers. We have relied on
the availability of those available with "black-box" functionality in the scikit-learn

70https://www.philharmonia.co.uk/explore/sound_samples
71http://www.musicradar.com/news/drums/sampleradar-1000-free-drum-samples-229460

https://www.philharmonia.co.uk/explore/sound_samples
http://www.musicradar.com/news/drums/sampleradar-1000-free-drum-samples-229460
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Figure 5.14: Input, hidden and output layers for multilayer perceptron classifier

library for Python (Pedregosa et al., 2012), and apart from some minor adjustment of
high-level parameters, we have not gone too deep into their inner workings.

Nearest Neighbours (kNN) For any experiments involving supervised learning and
classification of labelled observations, the k-Nearest Neighbours (k-NN) classifier
should ideally be the first considered. kNN invokes a voting based system where
k is the number of neighbouring instances that decide which class a new observation
belongs to based on some distance metric. kNN is attractive due to its conceptual
simplicity, and has delivered favourable results in many timbre classification applica-
tions (Herrera et al., 2002, 2003; Herrera-Boyer et al., 2003; Cano & Koppenberger,
2004; Cano et al., 2005; Mandel & Ellis, 2005b; Wang et al., 2006; Somerville &
Uitdenbogerd, 2008). Unfortunately it is a lazy form of learning, meaning all compu-
tation needs to be carried out when a new observation needs to be classified, thus it
might not scale sufficiently depending on the problem application. In our evaluation
we choose k = 1 after experimenting with k = 3,5 and not achieving better accuracy.

Support Vector Machines Support Vector Machines (SVMs) as a classification
mechanism, and in comparison to nearest neighbours methods, are significantly more
complex in their conception. In a nutshell, an SVM algorithm will try to find an ideal-
ised hyperplane that separates instances into multiclasses in multidimensional space
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Feature Grouping Features

Temporal (4) loudness.mean (1), loudness.var (1)

logattacktime.mean (1), logattacktime.var (1)

Spectral (4) flatness.mean (1), flatness.var (1)

logattacktime.mean (1), logattacktime.var (1)

BFCC (26) bfcc.mean (13), bfcc.var (13)

GFCC (26) gfcc.mean (13), gfcc.var (13)

HPCP (24) hpcp.mean (12), hpcp.var (12)

MFCC (26) mfcc.mean (13), mfcc.var (13)

Table 5.6: Feature configurations for classifier testing.

that is more complex - with ‘added’ dimensions - than the original one (Chih-Wei
Hsu, Chih-Chung Chang & Lin, 2008). At lower dimensionality, linear separation is
not always possible, so a “kernel function” is used to artificially transform the prob-
lem set to higher dimensionality for easier separation between the classes (Xu et al.,
2003). Luckily the availability of libraries such as LibSVM (Chang & Lin, 2011) (also
integrated into scikit-learn) means this algorithm can be easily incorporated into clas-
sification experiments. SVM have been used successfully in classification of Western
and Chinese classical instruments (Liu & Xie, 2010), drum sounds (Herrera et al.,
2002, 2003) as well as general instrument and timbre classification (Herrera-Boyer
et al., 2003; Krey & Ligges, 2010; Agostini et al., 2003; Deng, 2008).

Artificial Neural Networks An Artificial Neural Network (ANN) is inspired by
the pattern recognition capabilities of the human brain, specifically through the use of
the multilayer perceptron. Multiple layers of digital neurons - Threshold Logic Units
(TLUs) that ‘fire’ a value when a weighted sum of the inputs exceed a threshold value
- are arranged in a fully-connected, feedforward (generally cycles aren’t used) archi-
tecture (Russell & Norvig, 2002). They can be trained to learn from example through
the use of ‘back-propagation’, a procedure that determines the error and distributes
the blame back through the network so the weights can be adjusted to finally settle on
minimal error (Gurney, 1996).

Figure 5.14 shows an example topology of a network trained with 3 hidden layers of
8 perceptron units for each of the 8 features chosen from the temporal and spectral
feature classes (mean and variance for loudness, log-attack time, spectral centroid
and flatness). Artificial neural networks are particularly sensitive to feature scaling
and disparate ranges, thus we standardised each feature for mean centred at µ = 0
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k-NN SVM ANN

Temporal 0.21 (+/- 0.03) 0.24 (+/- 0.03) 0.27 (+/- 0.05)

Spectral 0.50 (+/- 0.06) 0.49 (+/- 0.04) 0.55 (+/- 0.03)

Temporal+Spectral 0.62 (+/- 0.03) 0.54 (+/- 0.06) 0.67 (+/- 0.06)

BFCC 0.89 (+/- 0.04) 0.93 (+/- 0.04) 0.93 (+/- 0.03)

BFCC+Temporal+Spectral 0.91 (+/- 0.03) 0.94 (+/- 0.03) 0.95 (+/- 0.03)

GFCC 0.91 (+/- 0.03) 0.95 (+/- 0.02) 0.95 (+/- 0.03)

GFCC+Temporal+Spectral 0.92 (+/- 0.03) 0.96 (+/- 0.02) 0.96 (+/- 0.03)

HPCP 0.45 (+/- 0.04) 0.44 (+/- 0.05) 0.42 (+/- 0.05)

HPCP+Temporal+Spectral 0.58 (+/- 0.04) 0.69 (+/- 0.06) 0.69 (+/- 0.05)

MFCC 0.86 (+/- 0.03) 0.90 (+/- 0.04) 0.91 (+/- 0.04)

MFCC+Temporal+Spectral 0.89 (+/- 0.02) 0.93 (+/- 0.03) 0.93 (+/- 0.03)

Table 5.7: Mean classification accuracy and 95% confidence interval for each classifier and
feature configuration with the Orchestral dataset.

and standard deviation at σ = 172.

5.3.4.2 Results

To determine the interaction and ability of different feature sets we divided the base
level features into temporal, spectral, harmonic and timbral groupings and experi-
mented with a number of combinations of these groupings (Table 5.6). In terms of
preprocessing, all features were normalised using min-max normalisation, except for
the neural network which seemed to respond better to data standardisation versus nor-
malisation. For each classifier 10-fold cross validation was performed, then the results
were aggregated and reported along with their 95% confidence interval.

Table 5.7 shows the accuracy results for each classifier applied to the various con-
figurations of descriptors when run on the orchestral dataset. The neural network
and SVM returned the highest classification accuracy run on the whole collection of
features using GFCC cepstral analysis.

Table 5.8 shows the accuracy results for each classifier applied to the various con-
figurations of descriptors when run on the drum dataset. k-NN returned the highest
classification accuracy with, once again, the whole collection of features using GFCC
cepstral analysis.

72The other classifiers used are Min-max normalised.
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k-NN SVM ANN

Spectral 0.61 (+/- 0.08) 0.56 (+/- 0.10) 0.62 (+/- 0.12)

Temporal 0.37 (+/- 0.10) 0.40 (+/- 0.08) 0.44 (+/- 0.11)

Temporal+Spectral 0.66 (+/- 0.10) 0.59 (+/- 0.09) 0.69 (+/- 0.11)

BFCC 0.86 (+/- 0.05) 0.86 (+/- 0.07) 0.83 (+/- 0.08)

BFCC+Temporal+Spectral 0.85 (+/- 0.07) 0.86 (+/- 0.06) 0.85 (+/- 0.09)

GFCC 0.86 (+/- 0.08) 0.84 (+/- 0.08) 0.84 (+/- 0.11)

GFCC+Temporal+Spectral 0.87 (+/- 0.08) 0.86 (+/- 0.09) 0.85 (+/- 0.12)

HPCP 0.53 (+/- 0.17) 0.55 (+/- 0.14) 0.50 (+/- 0.14)

HPCP+Temporal+Spectral 0.64 (+/- 0.12) 0.71 (+/- 0.08) 0.69 (+/- 0.08)

MFCC 0.83 (+/- 0.10) 0.84 (+/- 0.10) 0.84 (+/- 0.09)

MFCC+Temporal+Spectral 0.83 (+/- 0.09) 0.85 (+/- 0.07) 0.85 (+/- 0.04)

Table 5.8: Mean classification accuracy and 95% confidence interval for each classifier and
feature configuration with the Drum dataset.

The accuracy of classification is lower overall for our percussion dataset, which we
can attribute as follows. Intuitively, the wider palette of sounds within an orchestra
given the timbre of different instruments, dynamic ranges, articulations and so forth
are bound to exhibit greater variance in the feature statistics that can aid us in sep-
arating the instances into their correct classes more easily. Looking at the confusion
matrix (Figure 5.15) for one of the test validations (GFCC+Temporal+Spectral trained
with the SVM) we can see where the trends of the false positives lie. For example
we can observe some misclassification between toms and kicks which is to be expec-
ted - they are both lower frequency membranes without wires (unlike the snare). Also
there is some misclassification of hi-hats and cymbals which are all broadband in their
spectral profiles. It is also important to realise that, in drum machines at least, these
sounds are generated using the same limit set of modules of oscillators and filters
etc., so even the most astute listener would be at pains to discriminate between many
synthesised claps, snares, or hi-hats generated by certain vintage drum machines.

From these two experiments we can draw some conclusions. Firstly, cepstral methods
alone are extremely robust descriptors on their own, with temporal and spectral addi-
tions to the configurations only contributing a few percent improvement to the overall
accuracy scores in all cases. However, combining the full set of features does return
the highest classification accuracy for both datasets. The second conclusion that we
can draw is that alternative approaches to cepstral analysis using the Bark scale and
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Figure 5.15: Confusion matrix for misclassification in drum dataset

Gammatone/ERB filterbanks do improve over classical Mel approaches. Finally of
these two cepstral methods, the GFCC based has slight advantage over BFCC, and
probably for good reason - its gammatone filter was first proposed as an improvement
to existing Critical Band scaling methods and supposedly more grounded in models
of the auditory filter system. In turn, the Bark scale itself was proposed to address
certain limitations with the Mel scale, and our results reflect this progression. We
would stress that these methods be given serious consideration in any classification
experiment for comparison and raising their reputation amongst wider research.

5.4 Combining Sounds Algorithmically - Unit Selection

Unit selection solves the problem of determining what sounds to select from the cor-
pus and the systematic structuring of the selected sounds for outputting logical con-
catenated sequences, or as Schwarz defines:

“[Concatenative sound synthesis uses] a unit selection algorithm that
finds the sequence of units that match best the sound or phrase to be
synthesized, called the target. The selection is performed according to
the descriptors of the units, which are characteristics extracted from the
source sounds, or higher level descriptors attributed to them.”

(Schwarz, 2006)
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Many unit selection schemata have been proposed and there exists no standard or best
method. However some specific procedures have presented themselves repeatedly
which we will summarise in the following subsections, including.

1. Linear Search

2. k-D Trees

3. HMMs and Viterbi Decoding

4. Constraint Satisfaction

5.4.1 Linear Search

At the most basic level a linear search criteria for unit selection simply computes
the (dis)similarity of every unit in the target sequence with every possible unit in
the corpus, according to some distance measure (Schwarz, 2011). For example, a
weighted variation of Euclidean could be utilised (taking care to normalise the feature
vectors) that would allow the composer to place emphasis on certain features in the
similarity computation as given by Eq. 5.21.

d(t i,c j) =

√
K−1

∑
k=0

wk(t i
k− c j

k)
2 (5.21)

Here d(t i,c j) refers to the distance or dissimilarity between a target unit t i and a
corpus unit c j, index k represents the individual feature value from the full set of K
features and wk represents a weighting to be attached to that feature during the dis-
tance computation. The closest corpus unit s that should be selected for concatenation
is then given by Eq. 5.22.

s = arg min
0< j<N

d(t i,c j) (5.22)

It is a conceptually simple and robust technique that has been corroborated in numer-
ous systems (or at the least regular non-weighted Euclidean distance) (Dannenberg,
2006; Maestre et al., 2006; Sturm, 2006; Collins, 2007a; Stoll, 2013). In fact, for ease
of implementation, we have adopted the linear search method ourselves in developing
a real-time system for concatenative synthesis of rhythms as described in Ó Nuanáin
et al. (2016b, 2017a), which we examine in more depth in Chapter 6. The overlying
problem with this approach is that it only considers the disparity between the target
and the corpus unit, and neglects treating the continuity or context of consecutive
units within the output sequence. Depending on the size of the corpus it may also be
prohibitively slow (but not in our informal usage, at least not compared to HMMs),
which can be remedied by applying a structure such as a k-d Tree.
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Figure 5.16: Hyperplane division (left) and binary tree (right) arrangement of 2-dimensional
dataset with a k-D Tree of depth 4. The origin is the top left and the size of the grid is 128x128
units. Image from Linköping University73.

5.4.1.1 Faster Search with k-D Trees

As Collins (2007a) and Dannenberg (2006) have noted, the brute force nature of ex-
haustive linear search computation may not lend itself to scalability for larger data-
sets. The former suggests using k-D Tree structures for more strategically optimising
the search process, and has also been utilised in systems by Schwarz et al. (2009),
Einbond & Schwarz (2010), Stoll (2013) and Klügel et al. (2014).

A k-D Tree organises points in space with a binary tree by successivly cycling through
each dimension of the problem space (its full name is k-Dimensional Tree), splitting
the data at its median and assigning the two newly partitioned sets to the branches
of the nodes at each level. The branching aspect of binary search trees allows us
to eliminate vast portions of the search space when performing nearest neighbour
searches.

It is important to realise that they are only approximate solutions so they may not
return the actual nearest neighbour (which is an important factor to consider if it
is to be used for accurate classification). A new instance may be routed down a
branch too hastily, based on its proximity in a single dimension, even though the
closest match based on the combined Euclidean distance may belong to a different
branch. Also, as Russell & Norvig (2002) stress, k-D Trees are only useful so long
as the number of examples exceeds the number of dimensions in the problem space,
otherwise it is no more efficient than exhaustive, linear scanning. Many k-D Tree-
inspired Approximate Nearest Neighbour (ANN) algorithms exist for dealing with

73http://www.ida.liu.se/opendsa/OpenDSA/Books/Everything/

http://www.ida.liu.se/opendsa/OpenDSA/Books/Everything/
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high dimensionality problem domains, at a possible sacrifice in accuracy (it may not
return the exact nearest neighbour). For instance, in OpenCV a fast approximate k-D
Tree is implemented using a Best-Bin-First algorithm (Kaehler & Bradski, 2016). In
PyConcat we avail of the implementation in the SciPy scientific package for python
(Jones et al., 2014).

5.4.2 Unit Selection with Viterbi Decoding of Hidden Markov Models

The Viterbi algorithm was first applied by Hunt for the purposes of speech synthesis
by performing unit selection of speech phonemes samples from a prior corpus (Hunt
& Black, 1996). It was then adopted for musical purposes by Schwarz in his Cater-
pillar System (Schwarz, 2003). By representing a unit selection system as a Hidden
Markov Model we can not only consider the disparity between the target and corpus
unit (encoded in the emission matrix) but also the “best fit” of continuity between two
consecutive units in the output sequence, as determined by the transition matrix of the
hidden states (Figure 5.16).

As with shortest path problems, unit selection requires finding the minimisation of a
set of costs (Hunt & Black, 1996), namely the target cost Ct between target and cor-
pus units (Eq. 5.23, which is an identical derivation to Eq. 5.21 in the linear search
method), and the concatenation cost Cc (Eq. 5.24) between the consecutive concaten-
ated units (Schwarz, 2003). This is in contrast to the usual goal of Markov processes,
which of course is concerned with maximisation of probabilities.

A linear combination is finally performed with weights wt and wc to give the total
cost C (Eq. 5.25). The constituent costs themselves are derived by computing the dis-
similarity between the feature vectors of the associated units using a suitable distance
metric and a set of wk. The feature sets and accompanying weights can (and typically
do) differ for the two different cost functions.

Ct(t i,c j) =

√
K−1

∑
k=0

wk(t i
k− c j

k)
2 (5.23)

Cc(c j,c j−1) =

√
K−1

∑
k=0

wk(c
j
k− c j−1

k )2 (5.24)

C = wt .Ct +wc.Cc (5.25)

One of the motivations for working with more complex unit selection schemes like
HMMs is that we can specify what we consider important for target cost computa-
tion separately to the concatenation cost computation, by weighting accordingly or
even choosing completely different features sets. For example, in speech synthesis
we might choose features and weightings for the target cost that prioritises matching
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of length and linguistic context versus more prosodic configurations for the concaten-
ation cost that encourage stability of energy and pitch.

5.4.3 Constraint Satisfaction

Schwarz notes, however, that the HMM approach can be quite rigid for musical pur-
poses because it produces one single optimised sequence without the ability to ma-
nipulate the individual units. To address these limitations, he reformulates the task
into a constraint-satisfaction problem, which offers more flexibility for interaction. A
constraint-satisfaction problem models a problem as a set of variables, values, and a
set of constraints that allows us to identify which combinations of variables and values
are violations of those constraints, thus allowing us to quickly reduce large portions
of the search space (Nierhaus, 2009).

As explained in Section 4.3.2, Zils & Pachet (2001) and later Aucouturier & Pachet
(2006) are credited with applying constraint satisfaction techniques to concatenative
sound synthesis, in a procedure they refer to as musaicing. They define two categories
of constraints: segment and sequence constraints. Segment constraints control aspects
of individual units (much like the target cost in an HMM-like system) based on their
descriptor values. Sequence constraints apply globally and affect aspects of time,
continuity, and overall distributions of units. The constraints can be invoked manually
by the user or learned by modelling a target. The musically tailored “adaptive search”
algorithm performs a heuristic search to minimise the total global cost generated by
the constraint problem. One immediate advantage of this approach over the HMM
is the ability to run the algorithm several times to generate alternative sequences,
whereas the Viterbi process always outputs the most optimal solution.

5.5 Extensions to Hidden Markov Model-Based Unit
Selection

The singular output issue that Schwarz raised as a result of HMM-based unit selection
piqued our interest as we were delving into the specifics of unit selection of concat-
enative synthesis ourselves. While it seems like an ideal mechanism for capturing
the deep connectionist and interdependent arrangement of units that a successful and
natural synthesis should ideally exhibit, it also runs counter productive to the very
musical goals of creating and exploring heterogenous variations of a motif or loop.

To solve this limitation we propose a new method of HMM-based unit selection that
can return the k-Best concatenated sequences given a target, a corpus of sounds and
the number of desired sequences k (Ó Nuanáin et al., 2017c). Before this can be
introduced however, we need to examine HMMs and the Viterbi algorithm in more
depth, which until now hasn’t been treated with sufficient rigour.
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5.5.1 Hidden Markov Models

Recall from Chapter 3 that a Markov chain is a probabilistic system that satisfies the
Markov property of memorylessness. It consists of a set of discrete states with each
state having an associated probability weighting of moving to every other state in
the system. At any point in discrete time, the probability of a future event is solely
determined by the current state of the system without knowledge of past events (see
Eq. 3.1).

A hidden markov model λ = (A,B,π) extends the concept of a Markov chain by
considering the transition states as hidden (Rabiner, 1989). The hidden states have a
transition matrix A as before, but each hidden state also emits an observable symbol
from a set of symbols that have a probability distribution encapsulated in an emis-
sion matrix B. Finally, to initiate the HMM there also exists the initial probability
distribution π , which determines the probability of which state to commence.

The subtleties of Hidden Markov Models don’t become immediately clear until we
start working with some common problems and especially their role in sound and
music analysis and generation, but there are three traditional problems that are usually
studied, as identified by Rabiner in his tutorial (1989).

1. Evaluation - Given an observable sequence of emissions O=(O1,02,O3, ...,OT ),
what is the probability that the sequence was generated by a certain model λ .
This is particularly useful when benchmarking or comparing different models.

2. Decoding - Given an observable sequence of emissions O=(O1,02,O3, ...,OT ),
what is the most likely sequence of hidden states that produced that observation
O.

3. Learning or Training - Given a model with its parameters λ = (A,B,π) and an
observable sequence of emissions O = (O1,02,O3, ...,OT ), how do we adjust
the parameters to maximise the probability of the observable sequence O.

5.5.2 The Viterbi Algorithm

The Viterbi algorithm solves the decoding problem in HMMs (Rabiner, 1989), namely,
for a given observation sequence O = (O1,02,O3, ...,OT ) we wish to determine the
highest probable hidden state sequence S = (S1,S2,S3, ...,ST ) that would produce out-
put O given by:

S∗= argmax(P(S|O)) (5.26)

A brute force solution executed on T observations over N states would involve com-
puting all the cartesian products of the possibilities; NT involving exponential time
complexity. Viterbi’s algorithm enables us to reduce this complexity to O(T.N2), us-
ing dynamic programming techniques. Rather than exhaustively computing all the
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possibilities, we maintain two data structures alpha (α) and phi(φ ). At any point t
in the sequence to be decoded, we store the score of the maximum probability for
emitting the observed symbol for each hidden state, along with the index or argument
of the maximum probable state that led there. To get the optimal state sequence we
get the index of the final highest scoring hidden state and backtrack through the phi
structure beginning with that index, returning the accumulated list. We can express
this formally in the recurrence expression 5.27-5.30.

In the initialisation of the algorithm we use the initial probabilities and the observed
symbol to calculate the starting probabilities of each hidden state in α , and, as there
can be no previous states, φ is set to 0.

The recursion step continues until T , the length of the observed sequence. We first
calculate the maximum of the probability of each previous state multiplied by the
transition probability to the current state. The winning maximum probability is mul-
tiplied by the emission probability of the observed symbol and stored in α while the
index of that winning previous state is logged in φ .

The elegance of the Viterbi algorithm should be apparent here. Rather than computing
the Nt−1 possible combinations of all the previous states, dynamic programming is
used to store the result of the calculations in a matrix for later retrieval.

When recursion halts, the highest final probability is computed and its index is used
finally the backtrack through the state machine and thus returning S∗, the sequence of
highest scoring hidden states that most likely produced the observed sequence O.

1) Initialisation: t = 1

α1(i) = πiBi(O1) 1 < i < N

φ1(i) = 0 (5.27)

2) Recursion: t = 2, ..., t = T

αt( j) = maxi∈N(αt−1(i)Ai jB j(Ot)) 1 < j < N

φt( j) = argmaxi∈N(αt−1(i)Ai j) 1 < j < N (5.28)

3) Termination:

p∗ = maxi∈N(αT (i))

S∗T = argmaxi∈N(αT (i)) (5.29)

4) Backtracking: t = T −1, ..., t = 1

S∗T = φt +1(S∗t+1) (5.30)
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O = (‘normal’, ‘cold’, ‘dizzy’)

S = (‘Healthy’, ‘Fever’)

π = {‘Healthy’: 0.5, ‘Fever’: 0.4}

A = {

‘Healthy’ : {‘Healthy’: 0.5, ‘Fever’: 0.4}

‘Fever’ : {‘Healthy’: 0.4, ‘Fever’: 0.6}

}

B = {

‘Healthy’ : {‘normal’: 0.5, ‘cold’: 0.4, ‘dizzy’: 0.1}

‘Fever’ : {‘normal’: 0.1, ‘cold’: 0.3, ‘dizzy’: 0.6}

}

Table 5.9: HMM parameters for Wikipedia Viterbi decoding example

The Viterbi algorithm has been around for quite a while now (Viterbi, 1967),
and implementations exist in many frameworks and programming languages (Bird,
2016; Guéguen, 2005). It is a fundamental technique in bioinformatics and natural
language and speech processing. Part of Speech (PoS) tagging for example, uses a
HMM trained on a large corpus of text with each word labelled with its constituent
part of speech (e.g. noun, verb, article etc.). It proves more robust results in identify-
ing new samples of text, as the transition matrix helps determine the context of each
word within the sequence.

Figure 5.17 shows a trellis diagram showing the highlighted trace of the de-
coded path (S = (0,0,1)), for the observed sequence O = (0,1,2) (or ‘normal’, ‘cold’
and ‘dizzy’ to give it its string labels) along with its calculations, computed by our
own reference implementation of the Viterbi algorithm74, through the state space of
the example problem in the Wikipedia article on Viterbi decoding75. The parameters
of the model are given in Table 5.9. Notice how the dynamic programming stage
intuitively computes and stores the necessary probabilities for each state at each time
step through the trellis.

5.5.3 HMMs in Musical Applications

HMMs’ facility for pattern recognition has been exploited for computational
musical tasks. Score following, for instance, tries to consolidate the position of a
live performance of a musical piece with its score representation automatically (Orio
et al., 2003). Using Viterbi decoding, an alignment can be established by extracting
features for the observed live performance, and comparing them against idealised

74https://github.com/carthach/kBestViterbi/blob/master/kBestViterbi.py
75https://en.wikipedia.org/wiki/Viterbi_algorithm

https://github.com/carthach/kBestViterbi/blob/master/kBestViterbi.py
https://en.wikipedia.org/wiki/Viterbi_algorithm
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Figure 5.17: Viterbi decoding of Wikipedia example using our decoder

features within the model to return the expected location of the performance within
the score.

HMMs also lend themselves quite naturally to the task of chord recognition
(Papadopoulos & Peeters, 2007; Cho et al., 2010; Sheh & Ellis, 2003). The former
demonstrate a method whereby they compare the PCP representation of the signal
corresponding to 24 possible chord labels (12 notes for major and minor) indicated
by the emission matrix, coupled with the most probable chord sequence defined in the
transition matrix, derived from prior musical knowledge or training on musical scores
and transcriptions.

Compared to Markov chains, HMMs have been exploited somewhat less in
generative or compositional applications (apart from concatenative synthesis, as we
shall discover). Some methods however are summarised in Fernández & Vico (2013)
and Nierhaus (2009), with the latter making the observation that “when applied to
algorithmic composition, HMMs are appropriate to add elements to an existing com-
position”.

5.5.4 Adjusting Viterbi to Handle Unit Selection in Concatenative
Synthesis

As already stated, Markov systems try to maximise probabilities while concat-
enative synthesis systems try to minimise cost. The costs should be pre-computed
by calculating the target cost Ct for every target unit ti and database unit c j, and the
concatenation cost Cc for every combination of unit c j. These costs form the emission
matrix A and transition matrix B parameters for our HMM respectively. We can then
discard the initial probability matrix π and reformulate the Viterbi algorithm with the
necessary changes for cost minimisation as in expression 5.31-5.34. Note that the re-
cursion and termination steps now use the min and argmin function and sum the final
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costs.

1) Initialisation: t = 1

α1(i) = Bi(O1) 1 < i < N

φ1(i) = 0 (5.31)

2) Recursion: t = 2, ..., t = T

αt( j) = mini∈N(αt−1(i)+Ai j +B j(Ot)) 1 < j < N

φt( j) = argmini∈N(αt−1(i)+Ai j) 1 < j < N (5.32)

3) Termination:

p∗ = mini∈N(αT (i))

S∗T = argmini∈N(αT (i)) (5.33)

4) Backtracking: t = T −1, ..., t = 1

S∗T = φt +1(S∗t+1) (5.34)

5.5.5 Exploring Alternatives in HMMs

The Viterbi algorithm has proved a robust and reliable solution in many prob-
lem applications. As we emphasise in this thesis and in Ó Nuanáin et al. (2017c)
however, it only outputs the maximum probability path from the model. This has been
observed by other researchers as being restrictive when wanting to explore alternative
paths through the system (Schwarz, 2003; Brown & Golod, 2010). Rabiner and Juang
also observe, in the context of dynamic time warping, that the single solution Viterbi
is often too sensitive and it is desirable to produce a “multiplicity of reasonable can-
didate paths so that reliable decision processing can be performed" (Rabiner & Juang,
1993).

One of the most thorough and cited articles dealing with k-Best or, “List De-
coding” as the author describes it, has been provided by Seshadri & Sundberg (1994)
who proposes two different methods to extend the regular Viterbi algorithm to mul-
tiple output. These methods he clarifies as operating in parallel or serial modes. We
summarise these methods here, and provide an implementation of the parallel ap-
proach for unit selection and concatenative synthesis.

As we were implementing the parallel decoder, we began to notice the com-
parisons between the search process Viterbi takes through the hidden state space in
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a HMM and the way that shortest path algorithms such as Dijkstra’s find the path of
least resistance through an acyclic directed graph, as we already saw in the compu-
tation of the directed-swap distance in Section 3.4.2.1. In fact there are methods in
graph research that can retrieve the k-Shortest Paths sequentially. To this end, we
also demonstrate a method of reformulating a cost-based HMM used in concatenative
synthesis as a directed acyclic graph in order to avail of shortest path methods.

5.5.5.1 Parallel Decoder

The parallel decoder (Seshadri & Sundberg, 1994) or List Viterbi decoding
Algorithm (LVA) is so-called because, instead of keeping track of the winning path
leading into each state at time step t, it now stores the top k paths leading into the states
in one pass through the state space or trellis. This is distinct from the serial decoder
which takes several passes through the trellis in order to return multiple candidates.

To convert the regular Viterbi decoder to a k-Best parallel decoder. the follow-
ing steps are required.

1. Expand the α and φ matrices of the HMM to account for T ∗N ∗K entries that
correspond to T discrete steps, N states and K sequences.

2. When computing the probabilities of the transitions from the previous states
leading into the current state as per the recursion step in the equation, insert
them into a continuously sorting data structure like a priority queue76 (we use
Python’s heapq)

3. Remember that there is now the possibility of a previous state leading to the
current state more than once (because that previous state now also has k previ-
ous states that are highly probable). Thus we need to another structure (such as
a dictionary) to keep track of the ranking of multiple probabilities of the same
previous state if it enters the current state more than once.

4. At the termination step insert the final probabilities into the queue to find the
final top k scoring paths.

5. Backtrack as before while taking care to adhere to the ranking of multiple in-
stances of the same previous state.

Curiously, we couldn’t find any existing fully-formed implementations for the
parallel decoder, at least not in any usable state of reproducibility, so once again we
have implemented and made available ourselves a version in Python. Figure 5.18

76 A heap queue is a binary tree with the special condition that every parent has a value less than
or equal to that of its children (this is a minimum queue, a maximum is naturally the inverse). The
important function in our case is the push function, which adds items to the tree and maintains the sorted
heap property in O(logn) time.
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Figure 5.18: Viterbi decoding of Wikipedia example using the parallel decoder. Final delta
and phi matrices indicate the top k highest scoring probabilities and the state indices that led
there. As the two previous states are different we don’t need to consider the ranking here. The
path is the solid line through the trellis, while k=2 is indicated by the dashed line.

shows how our newly implemented parallel decoder computes the first and second
highest probability paths (k = 2) through the Wikipedia example previously evaluated
with the regular Viterbi decoder in Figure 5.17.

5.5.5.2 Serial Decoder

The Serial Decoder, also proposed by Seshadri & Sundberg (1994), differs from
the parallel decoder just implemented in that it first computes the single best state
sequence using the regular Viterbi decoder, then returns the remaining k one by one.
Despite the less efficient connotations that the serial versus parallel labelling musters
up, the authors maintain it can perform less computations as “the kth best candidate
is computed only when the previously found k - 1 candidates are determined to be in
‘error”’ (Seshadri & Sundberg, 1994).

We have not implemented the Serial decoder (yet - see Chapter 8 for future
work!), as once again no reference code is available and its derivation is a bit harder
to decipher from its scant treatment in the literature (Seshadri & Sundberg, 1994;
Rabiner & Juang, 1993; Nill & Sundberg, 1995), than in the case of its parallel equi-
valent.

5.5.5.3 k-Shortest Paths

We hinted that the traversal of a state space in a HMM bears considerable re-
semblance to that of a Directed Acyclic Graph (DAG) of vertices, edges and a set of
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costs to be associated with those edges. This should also be visually apparent from
the trellis diagrams presented in Figure 5.17 and Figure 5.18.

Shortest path algorithms aim to solve the problem of finding the path between
two given vertices with the least cost. Two well-known algorithms for achieving
the shortest path include Dijkstra (1959) and Bellman-Ford (Bellman, 1958; Ford Jr,
1956). Computing the k-Shortest paths then entails returning an ordered list of the
shortest paths between the two desired vertices (from what is often called the source
to the sink).

One of the first algorithms proposed for tackling k-Shortest path problems is
known as Yen’s Algorithm (Yen, 1971). Yen’s algorithm only operates on simple or
loopless graphs (like DAGs or trellis diagram representations of a HMM) and uses a
regular shortest path algorithm such as Dijkstra or Bellman-Ford in order to find the
best k=1 shortest path initially. Assuming the previous k−1 paths have already been
found, the algorithm searches the previous path for branches that deviate with higher
associated cost. It is for this reason we need to have the best initial shortest path
from an existing shortest path algorithm. Thankfully, many implementations exist
for k Shortest Path routing so we don’t need to worry about its inner workings too
greatly and can rely on its black-box functionality in many graph-based programming
libraries. We avail of Yen’s Algorithm in Python using the NetworkX Hagberg et al.
(2008) graph library.

With the availability of k shortest path routing methods and the already identi-
fied similarity between a HMM trellis and DAG, we propose here a way to reformulate
a HMM trellis as a DAG for k-Best Viterbi decoding with k-shortest paths. The steps
taken are as follows:

1. A Hidden Markov Model can be considered as a weighted directed acyclic
graph or trellis graph. For a series of T discrete observations and n hidden
states, the graph contains n ∗T nodes and n2 ∗T edges connecting n nodes at
t = i with n nodes at t = i+1. Edge weights correspond to the joint probability
of the transition cost for each pair of nodes and the emission cost of the output
symbol.

2. First create n∗T nodes for step t of the trellis.

3. Next create the necessary n2∗T edges and calculate the appropriate edge weights
as given by Ai j ∗B j ∗ (Ot).

4. Add a start node and create edges connecting to each of the nodes at t = 0 with
weights encapsulating the initial probabilities πi ∗Bi ∗ (O1).

5. Create a sink node and connect it to all the nodes at t = T with a zero weighting.

6. Before we can run the shortest path algorithm we must make one final change to
address the impedance mismatch between graph-based cost minimisation and
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Figure 5.19: Shortest Paths applied to the Wikipedia Viterbi example. The source node −1
begins on the bottom left of the graph, with 2 shortest paths computed to the sink at node 6.
The second best path diverges from the best path for edges {0,3} and {3,5}.

Markov probability maximisation. The edge weights need to be converted by
converting to negative log-space as in Eq. 5.35 for a probability p.

c =−log(p) (5.35)

7. To recover the original probability just apply the inverse (Eq. 5.36)

p = exp(−c) (5.36)

Suffice it to say that step 6 and 7 are not required in unit selection for concat-
enative synthesis since the state space is already based on cost. Figure 5.19 shows an
autogenerated trace of the k shortest paths, with k = 2, applied to a graph reformula-
tion of the Wikipedia HMM example. The order of the states are reversed, so the two
output sequences are actually S1 = (0,0,1) and S2 = (0,1,1) respectively.

5.6 Developing a k-Best Concatenative Synthesiser

This chapter has hopefully presented a thorough treatise of the technical under-
pinnings of the key aspects of concatenative synthesis, organised by the conceptual
stages of unit decomposition, analysis and unit selection, along with the presentation
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of two substantial contributions. Firstly, we implemented and verified the suitabil-
ity of different cepstrum methods for timbre classification with two disparate data-
set. Secondly, we improved HMM approaches to unit selection to enable output of
multiple candidate sequences using k-Best, list decoding or graph based algorithms.
Now we turn the effort to putting all these components together to actually create
some sounds, coupled with some experimental evidence that exposes and confirms
the validity of our contributions.

5.7 PyConcat - Python Framework for Concatenative
Synthesis

PyConcat is devised in the context of this thesis as a framework for research-
oriented exploration of concatenative synthesis, coalescing the previously described
state of the art methods as well as novel ones like k-Best unit selection. We stress
research-oriented as it does not address user interaction and is not suitable for real
time applications. The scope of this chapter is also still general to all stylistic inten-
tions. In Chapter 6 a system is described that tailors such methods specifically for
rhythm-centric dance production as stipulated in the introduction of the thesis.

To perform a concatenative synthesis task with PyConcat the composer first re-
quires a corpus of interesting sounds and a target sound they wish to emulate the sonic
character of. They then provide parameters and issues instructions for performing the
three key stages that are required77. A more detailed technical introduction to the
usage of PyConcat is offered in Appendix C along with example code, but this sec-
tion is intended to give a broad enough insight in order to conduct some preliminary
experiments.

5.7.1 Onset Detection and Segmentation

The composer must choose the unit scale for segmenting sounds into their con-
stituent units. The unit scales need not be the same for the target and the corpus. The
options we provide include

Framewise - slice the samples at uniform length N.

Framewise FFT - slice the samples at uniform length N and convert to the
frequency domain. Overlap-add IFFT is performed on selected units before
final concatenation.

Onset - slice the soundfiles according to an onset detector.

77In fact, the system is sufficiently decoupled that any of these logical stages can be performed sep-
arately for their own purpose. For example the tool can be used solely for slicing sounds, or performing
batch feature analysis on a library for the purposes of MIR.
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Beats - slice the soundfiles according to a beat detector.

None - do not perform segmentation and use the entire soundfile.

5.7.2 Feature Extraction

In order to effectively describe our audio content and produce meaningful sim-
ilarity measures between constituent units, both in the target sequence and the corpus
of segmented units, we need to choose a suitable set of descriptors. Selecting appro-
priate features is a trade-off between choosing the richest set capable of succinctly
describing the signal, on the one hand, and the expense of storage and computational
complexity, on the other.

We expose all the features discussed in this chapter as options for analysing
sounds, so the composer can combine any of the following:

Temporal: loudness, attack

Spectral: flatness, centroid

Timbral: BFCCs, MFCCs, GFCCs

Musical: f0, HPCPs

5.7.3 Unit Selection

Extracted features for the target units and corpus units and are stored in two
matrices T and C. Next the distance matrices A= T ∗C and E =C∗C are calculated to
avoid unnecessary computation later. Beforehand, however, it is important to perform
any normalisation or standardisation and weighting of individual features as required.

A unit selection procedure is engaged to return a sequence of corpus indices
using:

Linear Search - return an ordered list of the closest corpus units to each target
unit.

k-D Tree - return the approximate nearest neighbours for each target unit.

Viterbi - return the sequence with the minimised target and concatenation costs.

k-best Viterbi - the top k sequences with the minimised target and concatena-
tion costs using parallel list decoding.

k-shortest Paths - return the top k sequences with the minimised target and
concatenation costs using k shortest paths.
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5.7.4 Transformation and Concatenation

The unit selection stage returns a vector of indices of length N, or a matrix of
k ∗N indices, where N is the number of target units and k is the number of sequences
from the k best schemes. These indices correspond to individual sound units within
our corpus. To produce the final audio representation, we simply concatenate the
floating point samples uniformly back to back, but there’s no reason why they can’t
be overlapped and crossfaded at their boundaries for further smoothing as applied by
Schwarz (2006).

Unlike other investigators such as Coleman et al. (2010) we don’t focus on
complex post-selection transformations, but if there is a large discrepancy between
the lengths of the target units and the corpus units or its pitch needs to be adjusted,
some time compression or pitch-shifting can be applied, which we facilitate through
the a transformation stage utilising the open source Rubber Band Library78 which is
also used in the systems of Davies et al. (2013b) and Smith et al. (2015).

5.8 Analysis of the k-Best Unit Selection

In Chapter 7 we shall formulate an evaluation methodology and framework
and conduct a stringent and rigorous appraisal of the more fully-formed concaten-
ative synthesis system described in Chapter 6, which uses a type of linear search
selection method coupled with a stripped-back combination of timbral, spectral and
loudness features. To conclude this chapter, however, we give a brief analysis of the
two specialised k-best and k shortest selection units for comparative reference, using
our PyConcat system.

5.8.1 Algorithm Performance

To compare the running times of the two implemented algorithms we took a
small recording of the 8 notes of the C major scale being performed on a piano and
resynthesised it with itself. Figure 5.20 shows side by side of the running times for
both algorithms based on the number of paths returned. Our implementation of the
parallel decoder outperforms the NetworkX Graph approach considerably. This is
mostly due to the added layer of complexity of expanding the Hidden Markov Model
to a fully connected directed acyclic graph. Others have noted however that Net-
workX, on account of being implemented purely in Python, performs slower than
other compiled graph libraries such as graph-tool or igraph.

It will be worth benchmarking against these implementations or reimplement-
ing completely in C/C++. In any case, it is worth bearing in mind the real culprit
in these applications: audio signal processing. The segmentation and analysis of the
units took 10s for all runs.

78http://www.breakfastquay.com/rubberband/

http://www.breakfastquay.com/rubberband/
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Figure 5.20: Running time comparisons for both algorithms.

5.8.2 Equivalence and Correctness

Figure 5.21 shows the optimal sequence generated for regular Viterbi decoding
and sequences 1≤ k≤ 4 for the parallel decoder and graph decoder respectively. The
single straight line indicates that using the chosen acoustic features and weightings,
the baseline Viterbi decoder correctly reassembles its own input. The parallel and
graph decoders both correctly return this sequence as the first optimal path also (ob-
scured by the subsequent paths in the diagram). Looking at the other returned paths,
we see very slight deviations of only one unit per path (k is very small relative to the
total possible paths). The possible paths, and their ordering, are identical for both
algorithms.

5.8.3 Pitch and Timbre Preservation

To study the HMM’s acoustical output, we selected energy, fundamental fre-
quency ( f 0) and MFCC features, and chose a weighting scheme that gave preference
to the f 0 in the target cost while giving preference to the MFCCs in the concatenation
cost. This allows us to focus on the specific ability of the target cost in preserving the
pitch between each onset in the target sample and the selected units from the corpus,
while the concatenation cost attempts to preserve a continuous and coherent evolu-
tion of timbre from a variety of timbres in the corpus. We used the same piano scale
sample as a target, but this time using a corpus of samples from a completely differ-
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Figure 5.21: Equivalency of unit selection algorithms. Graph A (top) shows correct reas-
sembly of target units with the regular Viterbi decoder. Graph B (middle) shows the first 4
paths returned by parallel decoder. Graph C (bottom) shows the first 4 paths returned by the
graph-based decoder.

ent set of instruments. From a collection of orchestral samples provided freely by the
London Philharmonia, 610 violin, viola, clarinet and trumpet samples were gathered
with notes ranging from MIDI A3 to G7.

As we can see from Figure 5.22, and after some median filtering to remove
spurious spikes, the steady states of each pitch match for generated path 1 and gener-
ated path 10 taken as examples.

MFCC plots are always a bit difficult to decipher, but while it is clear that the
MFCC overall profile of the target (Figure 5.23) contrasts with the targets, we can see
the eight notes of the sequence reproduced and the difference in attacks that are also
present in the plots of the fundamental frequencies. Again, notice lower values of k
produce very similar results when the size of the corpus is large, differing only by a
couple of units.
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Figure 5.22: Fundamental frequency of 3 different k-Best Sequences.

5.9 Conclusion

This chapter provided a dense review of the core aspects of concatenative syn-
thesis, summarising how they are used to build cohesive systems and improving on
some key facets. Based on our study of the multifarious and heterogenous systematic
approaches to concatenative synthesis across the scope of the literature, we distilled
the stages to those of decomposition, analysis and recombination.

Beginning with decomposition, we emphasised the pivotal stage of segmenting
collections of sounds into their constituent units for eventual concatenation. Segment-
ation can operate on different scales, ranging from very short frames of milliseconds
to the musical notions of notes and beats that may or may not adhere to a tempo. Due
to its correspondence to the perceptual concept of a note, the onset detector is a par-
ticularly appropriate tool for segmenting units in concatenative synthesis. As such,
we provided a complete review of the methods used as well as an evaluation of the
most outstanding methods on a number of publicly available datasets.

In order to summarise and compare the segmented units of sound adequately,
descriptive features encompassing their temporal, spectral and timbral characteristics
need to be extracted from the sounds. We presented many common features spanning
the domain of MIR, but with the greatest attention on timbre motivated descriptors
that apply cepstrum theory, of which the MFCC has proved the most dominant and
pervasive. But other cepstrum extractors exist, and we implemented a version of the
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Figure 5.23: MFCC plots of 3 different k-Best Sequences.

BFCC, based on the Bark perceptual scale. An extensive classification experiment
was carried out on two newly compiled corpora, and our results revealed the en-
hancement of alternative cepstrum features such as our BFCC and GFCC for timbre
discrimination.

The responsibility of intelligent recombination of segmented and analysed units
of sound falls to the task of unit selection. Numerous methods have been proposed
and administered for unit selection, but HMMs offer a strikingly rich impression of
the evolution of discrete parts of sound, in particular when analysing the phonetic
makeup of speech. Not only does it facilitate matching between target units and
units from a corpus, it can also account for the quality of continuity between chosen
units for concatenation. Unfortunately, the Viterbi algorithm - used for finding the
most probable sequence of states within a model - only returns one single sequence,
which for many musical operations is undesirable. To rectify this, we propose the
application and implementation of two algorithms that can return lists of potential
candidate sequences.

Finally we discussed the development, usage and evaluation of PyConcat, a
programming framework that allows the composer and researcher to explore and ex-
periment with the theoretical offerings discussed throughout the chapter. Some tent-
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ative preliminary evidence verifies and validates our claims and methods when syn-
thesising some simple musical targets.



Chapter 6
Implementing User-Tailored
Concatenative Synthesis for

Electronic Music

6.1 Introduction

Chapter 5 offered a deep, technical description and implementation of key
methods in concatenative synthesis systems, culminating in the proposal of some
novel contributions that it is hoped will improve the state of the art in a meaning-
ful and valuable manner. This chapter, on the other hand, is all about the practical
aspects of adapting concatenative synthesis for everyday integration into the work-
flows of our target user - the dance music producer. The two biggest challenges we
face here can be distilled to:

1. Interface - devising appealing visualisation strategies and interaction metaphors
for communicating gesture and feedback.

2. Performance - striking a balance between accuracy and feasibility in delivering
usable, real-time or quasi real-time results.

The first section deals with visualisation and interaction in concatenative syn-
thesis systems, and traces the emergence of the principal HCI pattern, the interactive
timbre space. The following section introduces the RhythmCAT79 software that fi-
nally amalgamates elements of our concatenative synthesis methods with a rich inter-
active interface for the user.

79Not to be confused with Rhythm Cat, an educational game for iPad that trains a user to read music
with the help of a friendly feline mascot (https://melodycats.com/rhythm-cat/). We acknowledge the
name needs a bit of work!
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6.2 Visualising and Interacting with Sound

Up until now the conversation with our synthesis engine has been abstract and
textual. Content is fed to the system, some parameters are set and the patient user,
after a time, receives the rendered output. For some users80 and their musical applic-
ations, this is a perfectly acceptable way of creating sounds. For many other users,
and we mean here dance music producers, who are accustomed to a wide range of
user friendly and appealing music interfaces, it is clearly not an ideal metaphor for
visualising their sounds or interacting with them.

6.2.1 Sound and Music Computing Interface Metaphors

Metaphor, in the context of human computer interaction and the craft of design-
ing interfaces can reduce the complexity of a system for a human user by abstracting
some of the difficult concepts or as Rogers et al. (2011) qualify, “[providing] familiar
entities that enable people to readily understand the underlying conceptual model and
know what to do at an interface”.

Most people are already familiar with the desktop metaphor, that superseded
the textual interface as the primary modality for interfacing with an operating system.
The desktop metaphor exploits several real world objects, such as an office desk,
folder and bin81, in order to establish a relatable channel communication between
man and system (Helander, 2014). In sound and music domains there are also several
metaphors that have sprung up to handle its manipulation via software and hardware.
Duignan et al. (2010); Fels et al. (2002) have published frequent works in a bid to
classify this landscape but we highlight some of the key ones here. Fels et al. (2002)
also discusses metaphors for in the context of mapping and expressivity.

The Waveform Metaphor The waveform metaphor is “a conventional metaphor
for computer tools that deal with audio” (Duignan et al., 2004) and the dominant
interface for sound editors and multi-track studio DAW software like Pro Tools and
Cubase.

It offers an immediate view of the temporal evolution of the amplitude over
time and allows for intuitive manipulation of the same dimensions via splicing, copy-
ing and pasting and fades that also draws its inspiration from the medium of tape.

The Loop Grid Metaphor The waveform metaphor provides an appropriate inter-
face and interaction for recording and editing performances or events with a fixed
start, end and progression through time, but as Duignan et al. (2005) comment, it
and derived timeline taxonomic containers and structures are “highly biased towards
eager linearisation”.

80And computer music composers of a certain vintage.
81Or ‘thrash’ for our North American English speakers.
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Dance music practitioners and DJs make music differently. They usually oper-
ate “in the box” (studio jargon for mixing engineers who work with software rather
than physical consoles and outboard processors) and increasingly perform live con-
certs solely with software. For the dance music producer the loop is king: they require
an intrinsically non-linear method of on the fly branching and combining of looped
material in situations that do not have the traditional fixed boundaries of a start and
end.

In the early days, Berlin techno veterans Apparat and Modeselektor82 developed
their own ‘looper’ tools in Max to cope with the specific requirements of delivering
engaging live dance music. Nowadays dance music producers are catered for mostly
by Ableton’s Live8384 software and more recently Bitwig8586. The revolutionary ar-
chetype brought upon by Live (and subsequently Bitwig re-created) was the ‘Session
view’, an intuitive, visual matrix system allowing seamless and endless combinations
of that the fundamental unit - the loop - all in real time.

The Modular Metaphor The modular metaphor derives its interaction paradigm
by visually connecting virtual cables to logical units or objects akin to connecting
electronic equipment in the physical real world. The ubiquity of visual dataflow pro-
gramming languages such as Pd, Max and Reaktor shows the utility of this metaphor
not just in simulating audio connectivity but also as an alternative mental paradigm
for general purpose computer programming.

One of the most compelling variations of the modular metaphor is the Reactable
(Jordà et al., 2005), which provides a tangible table-top interface for virtual modular
synthesis. Physical blocks with visual patterns engraved on them are placed on a
table and represent different functions (e.g. oscillators or filters). A computer vision
component recognises the functions of those blocks and visualises and synthesises the
flow of audio and control data between them virtually.

6.2.2 Timbre Spaces and Dimensionality Reduction Techniques

The problem with the dominant metaphors for sound and music visualisation
and interaction is that they lack sufficient faculty for representing the dense, hetero-
genous entity that is timbre. In MIR research this is also a huge challenge, and there
are plenty of examples of work devoted to studying and devising visualisations of all
types of musical analysis as well as timbre (Hoashi et al., 2009; Cooper et al., 2006a).
One way of creating a visual and mental map of sounds organised by their timbre

82http://daily.redbullmusicacademy.com/2016/08/modeselektor-on-the-life-and-death-of-50weapons
83http://www.ableton.com
84Early proof of concepts of Ableton were drafted in Max/MSP by its founder, Berlin-based techno

musician and computer scientist Robert Henke aka Monolake.
85http://www.bitwig.com
86Founded by a group of ex-Ableton employees.

http://daily.redbullmusicacademy.com/2016/08/modeselektor-on-the-life-and-death-of-50weapons
http://www.ableton.com
http://www.bitwig.com
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is to produce a scatter plot representing their point in space according to some para-
meters or dimensions related to that timbre, known as a timbre space. In Chapter 4,
this notion of representing timbral aspects was revealed to be a central visual tool in
interacting with concateantive synthesis in a more intimate and meaningful manner.

In CataRT (Schwarz et al., 2006), timbreID (Brent, 2010) and earGram (Bern-
ardes et al., 2013) for example, the sounds are positioned in a timbre space by as-
signing a specific feature (or dimension of a vector feature) to each axis, with a third
dimension assigned to RGB colour scale 87. This is particularly useful in the case
of scalar features with a very coherent perceptual correspondence. In Figure 6.1 we
see a plot of every combination of temporal and spectral features used in the classi-
fication in Chapter 5 . Assigning loudness and spectral centroid (or “brightness” to
give it some perceptual labelling), for instance, presents a meaningful organisation of
sounds in 2D timbre space (top-right in the figure) and are easily comprehensible by
the lay user. But choosing only two features from a rich set of descriptors in mul-
tidimensional timbre space can discard potentially important statistics that can give
good separation between points. Furthermore, while loudness and “brightness” are
lucid qualities for many users, expecting them to compare and decipher higher order
cepstral coefficients is perhaps not so transparent.

To address some of the shortcomings of visualisation based on raw singular
feature values, it is often useful to apply some form of dimensionality reduction tech-
nique that can provide an ‘automatic’ projection of the higher-order feature space
into the timbre space suitable for visualisation of the data, while hopefully retaining
most of the important trends latent within the data. Projections of higher order timbre
spaces using dimensional scaling have been talked about in the literature for quite
some time, one of the key innovators in the usage of timbre spaces for creative or
generative purposes has been David Wessel. By taking measurements of subjective
responses to timbral stimuli, dimensionality reduction schemes are used to present a
map of timbral references in space that can be then used to provide a spatial reference
for generation and control of additive synthesis (Wessel, 1979, 1976).

Many dimensional reduction techniques span the literature as it is an important
tool in general statistical analysis and machine learning. Specifically in the context of
organising and exploring multimedia collections based on similarity, Christian Fris-
son’s (2015) and Sebastian Stober’s (2012) doctoral theses both offer a broad intro-
ductions to the main techniques and are worthwhile references. Here we summarise
the principal methods that we have experimented with in our work.

6.2.2.1 Principal Component Analysis

Principal Component Analysis (PCA) is a statistical procedure applied to data
that can discover trends in order to preserve those with the most variance, effectively

87Though Bernardes does extend the option for dimensionality reduction using Star Coordinates
(Cooprider & Burton, 2007), a technique based on summing the feature vectors.
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Figure 6.1: Visualisation of all temporal and spectral (taking the mean only) 2-feature com-
binations for kick, snare and hat drum sounds.
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allowing us to compress data from high-dimensional space into lower-dimensional
space without considerable “loss” of salience (Hackeling, 2014). Practical applica-
tions of PCA includes reducing redundant data (i.e. features with low variance) for
more efficient machine learning tasks, and for producing coordinates that can make
comparative visualisation of data possible in 2 or 3 dimensions.

It is the second application that interests us here, and in fact PCA has seen con-
siderable application already in visualisation for musical applications (Cooper et al.,
2006b). Many of these involve organising large musical collections, such as those pro-
posed by Tzanetakis & Cook (2000a,b, 2001); Brazil & Fernström (2002); Pavlidis
et al. (2006). Pampalk’s (2001). “Islands of Music” is perhaps one of the most fa-
miliar and recognisable of these types of music collection visualisers and interfaces,
using the concept of exploring many geographical islands inhabited by musical se-
lections clustered according to genre characteristics. While a Self-Organising Map
(SOM) coupled with a type of voting system is actually used to perform the final
visualisation, PCA is used to reduce the initial set of features from a massive 1,200
dimensions down to 80.

PCA involves a few stages of matrix algebra and is implemented already in
many libraries and frameworks so we won’t concern ourselves with its derivation here.
However the key stages are summarised in an excellent tutorial by Smith (2002). Ba-
sically, the method uses eigenvalues and eigenvectors to extract the axes of maximum
variance from the covariance matrix of the original data, and the highest eigenvectors
are the principal components. As many principal components can be retained as re-
quired, with the assumption being that the loss will be minimal even as successively
more components are discarded.

6.2.2.2 Multidimensional Scaling

Multi-Dimensional Scaling (MDS) actually refers to a taxonomy of methods
for dimensionality reduction including ‘classical’ or Principal Coordinate Analysis
(PCoA), and metric and non-metric MDS. MDS uses a distance or dissimilarity mat-
rix as input and attempts to reduce the dimensions while preserving pairwise distance
between entities, compared to PCA which tries to preserve maximum variance. Fris-
son (2015) puts it more succintly: “MDS uses a distance matrix whereas PCA uses a
correlation matrix”.

Regarding musical applications, apart from the early experiments of Wessel
(1976, 1979) and Grey (1977); Grey & Moorer (1977); Grey & Gordon (1978), MDS
has been used somewhat less than PCA. Within the GiantSteps project though, our
colleagues have been studying the effects of symbolic rhythmic features on the organ-
isation of symbolic rhythmic patterns in dance music when dimensionality reduction
techniques such as PCA, MDS and t-SNE (see Section 6.2.2.3) are applied (Gómez-
Marín et al., 2017, 2016). This expanded on previous perceptual dimensional scaling
studies conducted by Gabrielsson (1973a,b) in the 1970s, who performed similarity
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ratings on many parameters of rhythmic similarity of drum machine patterns and tried
to find the most salient parameters that influenced the positioning of the patterns in a
reduced MDS space.

6.2.2.3 t-Distributed Stochastic Neighbour Embedding

t-Distributed Stochastic Neighbour Embedding (t-SNE) is a relatively recent
prize-winning88 approach to data visualisation that is tailored specifically for effective
reduction of high-dimensional datasets (Van Der Maaten & Hinton, 2008). Based on
a previous method known as Stochastic Neighbour Embedding (SNE), one of the im-
provements it offers is reductional strategies for preventing crowding or over-layered
clusters in the centre of the map, an artefact inherent in traditional SNE methods.
Essentially this is achieved by using a Student-t distribution rather than Gaussian for
computing dissimilarity between points in low-dimensional space (Van Der Maaten
& Hinton, 2008).

The t-SNE algorithm is gaining considerable favour in music information tasks
as a way of navigating large collections of complex data representations (Hamel &
Eck, 2010; Grill, 2012; Frisson et al., 2014b,a; Flexer, 2015; Martín, 2017; Font &
Bandiera, 2017). In a comparative evaluation of MDS, PCA and t-SNE based on three
criteria Dupont et al. (2013) revealed that t-SNE outranks PCA which in turn outranks
MDS in three tasks related to musical loops and sound effects, based on experimental
criteria including classification error rate, ‘trustworthiness’, and continuity of the re-
duction when compared with the higher dimensional representation.

Returning to our own tasks of visualising feature vectors of drum sounds, Fig-
ure 6.2 shows these three dimension reduction techniques applied to 50 instances each
of kick, snare and hi-hat sounds based on the full gamut of features extrapolated with
the GFCC+Spectral+Temporal configuration. One thing that’s immediately apparent
across all methods is their increased use of the 2-dimensional space in comparison
to the individual assignment of features to axes as we saw in Figure 6.1, as well as
exhibiting less crowding in overlapping clusters.

Most methods are quite capable of sorting the distinctive low frequency mem-
brane kick sounds from the snares and hi-hats. There is, however, less separation of
the more broadband cymbal and snare sound classes in both the MDS and PCA reduc-
tion methods. We see more overlapped clustering in the PCA method in this instance,
but in other reduction experiments this has often been reversed. In an ideal world, a
concatenative system would have some trained mechanism for performing all three
procedures then choosing the one with the best separation.

88https://lvdmaaten.github.io/tsne/

https://lvdmaaten.github.io/tsne/
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Figure 6.2: MDS, PCA and t-SNE dimension reduction processes applied to kick, snare and
hi-hat sounds.
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6.2.2.4 Interacting with Sounds and Creating a Metaphor

Undoubtably, the timbre space paradigm represents a much richer modality
for organising sound spatially and provides a vital window into understanding the
procedures governing concatenative synthesis. We have seen how exactly rendering
these spaces is not trivial and it poses a unique set of challenges and tradeoffs to get a
usable and meaningful landscape for exploration.

Equally challenging, once a timbre space has organised a visual map of sound,
is how to interact with those sounds. How can the user effectively navigate this sonic
terrain and avail of suitable gesture and metaphor to arrange the sounds in the desired
manner? How do existing concatenative synthesis deal with these challenges? To
complicate matters further, our system is inherently rhythm driven. How do those
sound exploration devices extend to our unique problem domain?

In CataRT the primary interaction metaphor is simple and intuitive: the target is
the real-time position of the mouse cursor and a resizable radar around the target filters
the range of sounds within its proximity. How these sounds are triggered depends on
the mode selected. The triggering modes include:

Bow - triggers closest unit each time you move the mouse

Fence - like a stick dragging along a fence, triggers when a new unit becomes
closer to the target

Beat - triggers according to metronome

Chain - triggers after previous unit finishes

Quant - non-functional quantised mode

Seq - triggers via external sequencer

Cont - play back units in order

In earGram the SpaceMap mode also triggers units based on proximity to
the mouse pointer target, but defines three different triggering modes distinct from
CataRT:

continuousPointer - continuously play units at a specified rate

pointerClick - same as continuousPointer but “played in response to a control-
ler command” (the meaning of this is not exactly clear from the description
provided)

colorPicker - selects units based on colours

liveInput - feature analysis of live input sets pointer position
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Figure 6.3: RhythmCAT first prototype. Entire waveforms are represented in space using
PCA reduction of the MFCC. A small mouse radar scans the space and onsets are played at
random from the files in proximity.

AudioGarden appears to adapt the mouse radar approach of CataRT also, but
the positioning of multiple radars in the timbre space means multiple grains can be
triggered for a single target unit in time which is a very simple and useful method of
mixing corpus units vertically in addition to concatenating them horizontally.

6.2.3 A Prototypical Rhythmic Concatenative Synthesiser Interface

6.2.3.1 First Iteration

Our first attempt at a prototype interface that was capable of performing rudi-
mentary rhythm-driven concatenative synthesis was naturally extremely crude and
experimental (Figure 6.3) but a valuable learning experience and necessary stepping
stone.

Developed in openFrameworks89, the application used MFCC features com-
puted on the entire audio file, then positioned the sound in space (along with its file-
name string) according to PCA reduction of the features. To explore the sounds we

89http://openframeworks.cc/

http://openframeworks.cc/
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Figure 6.4: RhythmCAT second prototype, implemented as a VST plugin.

adapted the radar style navigation metaphor introduced in CataRT, but this immedi-
ately raised the question of how to trigger the sounds. This early incarnation simply
selected an onset chosen at random from within radar proximity to the mouse target
and triggered at each beat according to a 1/16 grid subdivision of the tempo.

6.2.3.2 Second Iteration

The next iteration was largely concerned with implementation. We reasoned
that the typical dance music producer would not use software like this unless it was
integrated into their existing workflow of tools, meaning we needed to consider how to
interface it with a DAW like Ableton. So, we spent some time developing a streaming
real-time plugin using Virtual Studio Technology (VST) that could synchronise with
the tempo information received from a VST-host enabled DAW, and also allow the
user to select different beat subdivisions.

While this version was more streamlined and featured a slicker interface built
with the aid of JUCE, fundamentally it performed the same functionality. The points
in space referred to complete sound files and a mouse radar filtered the points by prox-
imity. Targeting could be controlled by external systems via the OSC or automatic-
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ally and algorithmically using Boids (Reynolds, 1987), a flocking algorithm that has
been used in other systems for controlling spatialisation and granulation parameters
in electroacoustic works (Kim-Boyle, 2006; Wilson, 2008; Barreiro, 2010).

But these are arbitrary and deferential extensions that still just scrub the surface
features of the visual space. Using the tool as a rhythm generation tool reveals the
deficiency of the mouse radar exploratory method. A typical drum pattern is made
up of complementary sounds in different timbres and hence occupy different zones
of the timbre space at different points in time. This is conceivably better served by
the multi-circle model of Frisson et al.’s AudioGarden (2010), which could be used
to place three circles in the timbre space corresponding to the kick, hat and snare, as
an example.

Most critically, these prototypes did not yet integrate the possibility that an
audio target could that intelligently define where the system should search for units
to select. We will now discover how these two outstanding concerns are resolved by
adapting a graph model, inspired by the modular metaphor, that shows the spatial con-
nection and temporal evolution between consecutive units selected for concatenation,
in the breadth and span of a timbre space, given a target sound specification.

6.3 RhythmCAT

Building on all the topics we have been discussing in this dissertation, Rhyth-
mCAT was conceived as “a user-friendly system for generating rhythmic loops that
model the timbre and rhythm of an initial target loop” (Ó Nuanáin et al., 2017b).
This system was first introduced at New Interfaces for Musical Expression (NIME)
in 2016 (Ó Nuanáin et al., 2016b)90, subsequent papers dealt with its evaluation (Ó
Nuanáin et al., 2016c,a) culminating in a summary journal article for the Computer
Music Journal in 2017 (Ó Nuanáin et al., 2017b)91.

6.3.1 Developing the System

In this section, we will describe our implementation of the RhythmCAT system,
beginning with an explanation of the musical analysis stages of onset detection, seg-
mentation and feature extraction. This is followed by an examination of the interact-
ive user interface and the pattern generation process. Figure 6.5 gives a diagrammatic
overview of these important stages, which can be briefly summarised as:

1. Sound Input

2. Onset Detection & Segmentation

90Also received the Best Paper Award.
91A demo video is available at https://www.youtube.com/watch?v=hByhgF_fzto

https://www.youtube.com/watch?v=hByhgF_fzto
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3. Audio Feature Extraction

4. Storage & Data Representation

5. Pattern Synthesis

6. Real-time Audio Output

The system is developed in C++ using the JUCE framework 92, the Essentia
musical analysis library (Bogdanov et al., 2013) and the OpenCV computer vision
library (Bradski, 2000) (for matrix operations and PCA).

6.3.1.1 Sound Input

The first stage in building a concatenative music system generally involves
gathering a database of sounds to select from during the synthesis procedure. This
database can be manually assembled but in many musical cases the starting point is
some user-provided audio that may range in length from individual notes to phrases
to complete audio tracks.

The two inputs to the system are the Sound Palette and the Seed Sound. The
sound palette refers to the pool of sound files we want to use as the sample library for
generating our new sounds. The seed sound refers to the short loop or audio fragment
that we wish to use as the similarity target for generating those sounds. The final
output sound is a short loop (maximum of one to two bars) of concatenated audio that
is rendered in real time to the audio host.

6.3.1.2 Onset Detection and Segmentation

In cases where the sounds destined for the sound palette exceed note or unit
length, the audio needs to be split into its constituent units using onset detection and
segmentation.

We covered onset detection methods at length in Chapter 5, and we showed how
how the most accurate methods come at a cost of increased computational complexity,
especially when involving the use of state of the art deep learning techniques. What’s
more, the CNN algorithm (Schlüter & Böck, 2013) is only available in the Python
Madmom library, which excludes it from being a possible method in our compiled
and monolithic plugin at the present time. A port of Superflux is available in Essentia,
but for best results it requires considerable tweaking of the parameters that depends
heavily on the program material to be analysed, meaning it was quite hard to find
a generalised configuration to cover a wide range of possible input sounds to the
instrument.

92https://juce.com/

https://juce.com/
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Figure 6.5: Block diagram of functionality in RhythmCAT system.
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To this end we rely on the standard ‘OnsetRate’ method that at least returned
acceptable results when concentrated on the percussive datasets used in the evalu-
ation (Table 5.2). As a reminder, this invoked two methods based on analysing signal
spectra from frame to frame (at a rate of around 11 ms). The first method involves es-
timating the high-frequency content in each frame (Masri & Bateman, 1996) while the
second method involves estimating the differences of phase and magnitude between
each frame (Bello et al., 2005).

The onset detection process produces a list of onset times for each audio file,
which we use to segment into new audio files corresponding to unit sounds for our
concatenative database.

6.3.1.3 Audio Feature Extraction

As stressed, successful feature extraction is a tradeoff between choosing the
richest set of features capable of describing the signal succinctly at the expense of
storage and computational complexity. This is more important than ever in the design
of a real-time instrument such as here. Whereas the PyConcat environment offered
powerful selection and combination of a wide set of descriptors, RhythmCAT has
a smaller subset that is more manageable complexity-wise. These features are as
follows, along with their intended perceptual label (Figure 6.6 - B).

Power - computed using Stevens’ Law to estimate "Loudness".

Spectral Centroid - for estimating "Brightness".

Spectral Flatness - for estimating "Harmonicity".

*FCC [2-13] - for abstracting "Timbre". At the moment we use regular MFCC
as our implementation of BFCC has not been fully optimised and is slightly
slower.

6.3.1.4 Pattern Synthesis and User Interaction

Further on we will describe a bit more on how the seed or target audio signal is
actually received from the VST host, but in terms of analysis on that seed signal, the
process is the same as before: onset detection and segmentation followed by feature
extraction.

The resulting feature vectors are stored in two matrices: the palette matrix and
the target matrix. The palette matrix stores the feature vectors of each unit of sound
extracted from the sound palette and, similarly, the target matrix stores feature vectors
of units of sound extracted from the seed loop.
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6.3.1.5 Pattern Synthesis

This section details the visible, aural and interactive elements of the system as
they pertain to the user. Figure 6.6 gives a glimpse of the user interface in a typical
pattern generation scenario.

Workflow The layout of the interface was the result of a number of iterations of
testing with users who, while praising the novelty and sonic value of the instrument,
sometimes expressed difficulty understanding the operation of the system. One of
the main challenges faced was how best to present to the user the general workflow
in a simple and concise manner. It was decided to represent the flow of the various
operations of the software emphatically by using a simple set of icons and arrows, as
is visible in Figure 6.6.

The icons (Figure 6.6 - a) indicate the four main logical operations that the user
is likely to do, and opens up the related dialogs, namely:

The Palette Dialog - as indicated by the folder icon

The Seed Dialog - as indicated by the jack cable icon

The Sonic Dialog - as indicated by the square feature space icon

The Output Dialog - as indicated by the speaker icon

Sound Palette The user loads a selection of audio files, or folders containing audio
files, which are analysed to create the sound palette as has previously been discussed.
Next, dimensionality reduction is performed on each feature vector of the units in
the sound palette using Principal Component Analysis (PCA). Two PCA components
are retained and scaled to the visible area of the interface to serve as coordinates for
placing a circular representation of the sound in two-dimensional space. These visual
representations, along with their associated audio content, we term sound objects.
They are clearly visible in main timbre space window in Figure 6.6 (pane D).

Seed Input Seed audio is captured and analysed by recording directly from the in-
put audio of the track on which the instrument resides in the audio host. Using the
real-time tempo and bar/beat information provided by the host, the recorder will wait
until the next bar starts to begin capture, and will only capture complete bars of au-
dio. This audio is analysed as before but with one exception. Since the goal of the
instrument is to integrate with an existing session and generate looped material, we
make the assumption that the incoming audio is quantised and matches the tempo of
the session. Thus, onset detection is not performed on the seed input; rather, seg-
mentation takes place at the points in time determined by the grid size (Figure 6.6 -
C).
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An important aspect to note: since the instrument is fundamentally real-time
in its operation, we need to be careful about performing potentially time consuming
operations such as feature extraction when the audio system is running. Thus, we
perform the audio recording stage and feature extraction process on separate threads
so the main audio playback thread is uninterrupted. This is separate to yet another
thread that handles elements of the user interface.

Sonic Parameters Clicking on the square sonic icon in the centre of the workflow
component opens up the set of sliders shown in (Figure 6.6 - B) that allows us to adjust
the weights of the features in the system. Adjusting these weightings has effects in
terms of the pattern generation process but also in the visualisation. Presenting their
technical names (centroid, flatness and MFCCs) would be confusing for the general
user, thus we have relabelled them with what we consider their most descriptive sub-
jective labelling. With the pattern generation process, these weights directly affect
the features when performing similarity computation and unit selection, as we will
see in the next section. Depending on the source and target material, different com-
binations of feature weightings produce noticeably different results. Informally we
have experienced good results using MFCCs alone for example, as well as combin-
ations of the flatness and centroid. In terms of visualisation, when the weights are
changed, dimensionality reduction is re-initiated and hence positioning of the sound
objects in the timbre space changes. Manipulating these parameters can help disperse
and rearrange the sound objects for clearer interaction and exploration by the user in
addition to affecting the pattern generation process.

Once the palette and seed matrices have been populated, a similarity matrix
between the palette and seed matrix is created. Using the feature weightings from
the parameter sliders, a sorted matrix of weighted Euclidean distances between each
onset in the target matrix and each unit sound in the palette matrix is computed as per
Eq. 5.21 in Chapter 5.

Unit Selection In Chapter 5 we summarised the various unit selections ranging from
the basic linear search procedure to Viterbi style decoding. We then proposed two
novel unit selection methods that expand Viterbi decoding further to produce a k-Best
list of potential sequences for exploring variations.

While these methods provide increasingly richer and more interconnected syn-
theses of a target sound, the complexity increases and the performance suffers, as we
saw in the analysis of the two k-Best methods. Evidently this poses problems for
real-time scenarios, as Coleman has noticed:

“None of the systems cited in this section use advance planning by minim-
izing transition costs (in contrast to some of the systems [...], i.e. Cater-
pillar, Musaicing, or Audio Analogies). This is likely due to its high com-
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putational cost. Instead, more immediate selection methods are used.”
(Coleman, 2015)

Which reiterates an earlier remark by Schwarz with regards to CataRT:

“Because of the real-time orientation of CataRT, we cannot use the glob-
ally optimal path-search style unit selection based on a Viterbi algorithm
as in Caterpillar, neither do we consider concatenation quality, for the
moment. Instead, the selection is based on finding the units closest to the
current position x in the descriptor space, in a geometric sense...”

(Schwarz, 2006)

So this likely rules out the Viterbi decoding methods we have described, even
though we should emphasise that our tool is not strictly real-time - in the sense that
it computes complete loops based on the analysis of one bar in a given tempo in
order to capture a temporal context - thus we would qualify it as quasi real-time.
Regardless, for performance, in RhythmCAT we only consider the target cost when
concatenating output sequences, thus making its unit selection scheme a variation on
linear search. While we do sacrifice the continuity factor that is inherent in Viterbi
decoding, when considered, it might not hold the same sway for rhythm purposes as
it would for synthesising voice or solo instrument performance. Given that a kick
and snare have, or should have, very different spectral and timbre profiles, efforts
to constrain the slope of features between them should really only concentrate on
ensuring some consistency of energy93.

The unit selection algorithm is quite straightforward, and to allow for flexible
exploration of variations instead of returning the nearest neighbour sequence we allow
any mixing and matching of units from the corpus sorted by similarity to the targets.
For each unit i in the segmented target sequence (e.g. 16-step) and each corpus unit
j (typically many more), the target unit cost Ci, j is calculated by the weighted Euc-
lidean distance of each feature k as per usual.

These unit costs are stored in similarity matrix M. Next we create a matrix
M′ of the indices of the ascendingly sorted elements of M. Finally, a concatenated
sequence can be generated by returning a vector of indices I from this sorted matrix
and playing back the associated sound file. To retrieve the closest sequence V0 one
would only need to return the first row.

Returning sequence vectors as rows of a (sorted) matrix limits the number of
possible sequences to the matrix size. This can be extended if we define a similarity

93In the absence of any magical timbre feature analysis techniques that we know of that can be used
to isolate and ensure unit selection comes from similar timbre of just the room profile, recording chain
or album and not the instrument timbre, or in other words, only retaining those features that contribute
to the ‘album effect’(Mandel & Ellis, 2005a; Kim et al., 2006b)
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threshold T and return a random index between 0 and j−T for each step i in the new
sequence.

Pattern Generation and Interaction In our description of the early prototypes we
highlighted the challenge of coming up with an effective visualisation and interaction
paradigm that could show the map of sounds in timbre space as well as the temporal
evolution and connection of a rhythmic-centric concatenated sequence that makes its
way through that timbre space in accordance to some target. The interaction metaphor
we propose to tackle this is to represent a rhythm as a path through that graph or
network, with edges connecting each sound in space as appropriate. This obviously
borrows heavily from the Modular metaphor explained at the shart of the chapter and
Roma & Herrera (2010) uses a similar graph grammar style metaphor for navigating
the Freesound94 library. More recently, Font & Bandiera (2017) propose a similar
tool for the same task that uses the t-SNE reduction method to arrange samples.

Facilitating the efficient UI visualisation and interaction of sequences of units
in space is enabled with the use of a linked list data structure to contain the necessary
information of each unit. Linked lists, as explained in any introductory text on data
structures, are an efficient way of ordering data in a linear fashion and are an apt
container for chaining the series of nodes in our graph model.

To create a pattern when the user hits the “New Pattern” button (Figure 6.6 -
C), a new linked list of objects we term “sound connections” is formed, represent-
ing a traversal through connected sound objects in the timbre space. The length of the
linked list is determined by the grid size specified by the user, thus if the user specifies
a grid size of 1/16 for example, a one bar sequence of 16th notes will be generated.
The exact procedure whereby we generate a list is detailed in Algorithm 1. The vari-
ance parameter affects the threshold of similarity by which onsets are chosen. With
0 variance, the most similar sequence is always returned. This variance parameter is
adjustable from the Accuracy/Variety slider in the lower left corner of the instrument
(Figure 6.6 - C).

Algorithm 1 Get Onset List for Concatenative Sequence

for n in GridSize do
R = Random number 0 < Variance
I = Index from Row R of Similarity Matrix
S = New SoundConnection
S->SoundUnit = SoundUnit(I)
Add S to Linked List

return LinkedList

In the main timbre space interface (Figure 6.6 - D), a visual graph is generated
in the timbre space by traversing the linked list and drawing line edges connecting

94https://freesound.org/

https://freesound.org/
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each sound object pointed to by the sound connection in the linked list. In this case
a loop of 16 onsets has been generated, with the onset numbers indicated beside the
associated sound object for each onset in the sequence. An animated trace shows the
units triggered in time with each beat of the tempo source from the VST host. Of
course the most compelling aspect of this is that the user is free to manipulate these
sound connections to mutate these patterns by touching or clicking on the sound con-
nection and dragging to another sound object. Multiple sound connections assigned
to an individual sound object can be group-selected by double tapping then dragging,
useful for changing all instances of a hi-hat or a snare for example

On the audio side, every time there is a new beat, the linked list is traversed
and if a sound connection’s onset number matches the current beat the corresponding
sound unit is played back. One addition that occurred after some user experiments
with the prototype (see Chapter 7) is the linear waveform representation of the newly
generated sequence Figure 6.6 - E). Users felt the combination of the 2D interface
with the traditional waveform representation made the sequences easier to parse visu-
ally as well as being able to manipulate the internal arrangement of sequence itself
once generated.

6.4 Post-Processing and Transformation

One interesting recent addition to RhythmCAT is a stage of pitch quantisation
of output units before playback. While RhythmCAT’s main goal is concatenative
synthesis of rhythmic patterns matching a target (like a drum loop), part of its appeal
is matching the target with non-rhythmic samples such as instrumental loops, vocals
or found sounds. In these cases it is frequently desirable to tune the concatenated
sequence to a particular key in order to match the tonality of the broader track. In fact,
in electronic dance music styles, many low register drum components often contain
tuned components such as sub oscillators that could benefit from pitch correction.

Visually, this feature introduces a new ‘keyboard’ icon to the menus on the top
lift. Clicking this icon opens up the ‘Key Dialog’ below it, revealing a coloured tone
wheel corresponding to two cycles of fifths: the major cycle surrounding its relative
minor equivalents (Figure 6.7). Clicking on any of these segments will select that key
for pitch adjustment and quantisation on units in the database. It is important to stress
that this quantisation is performed based on the detected fundamental frequency of
the signal, which works well for monophonic sources, but is can obviously lead to
unpredictable results in the case of polyphonic or noisy and complex sound sources.

To estimate the fundamental frequency ( f 0) we apply Brossier’s variation of
the YIN algorithm adapted for the frequency domain, as discussed in Section 5.3.3.1.
Since we are using the short-time Fourier transform over successive frames in each
audio unit, we need to accumulate the framewise f 0 estimations and find a central
tendency to correctly describe the overall fundamental of the unit. For other spectral
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Figure 6.7: Pitch quantisation component for RhythmCAT.

and timbral descriptors it makes sense to work with mean and variance. With funda-
mental frequency the mean is unsuitable, frames in the attack and decay portions can
contain silence or noise that can incorrectly skew an average. It is more prudent in
this case to use the mode of the most frequent values, or in our case, the median of
the frequency in the centre of the signal.

With the estimated f 0 now completed, we need to figure out, based on the
scale’s chosen root note and mode (currently ionian major and natural minor), how
to “correct” the unit’s pitch in order to fit in scale. The first stage is to build a vec-
tor of frequencies corresponding to the MIDI notes in the desired scale. Two arrays
store the offsets needed for the the major and minor scale respectively. We then loop
until 5000Hz pushing the result of the frequency conversion of incrementing MIDI
note values. Outside the bounds of 20-5000Hz we don’t apply quantisation, reas-
oning that the highest note on the piano is just under this upper bound. With this
vector populated, it can be used as a lookup for finding the nearest neighbour fre-
quency. In RhythmCAT sequences are “concatenated” by real-time playback from
sample buffers of selected units. Thus, without resorting to expensive pitch adjust-
ment algorithms like we used in Section 5.7.4 adjust correct the pitch we need to
calculate the table read increment based on the detected fundamental frequency and
the target scale frequency, which is given by:
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ratio = target f req/ f 0 (6.1)

Additionally the key selection can be selected externally by other applications
by passing OSC messages formulated as followed.

/tonic <PITCH-CLASS [0-11]>
/mode <0 = MAJOR, 1 = MINOR>
/pcset 0. 2. 4. 5. 7. 9. 10.

This was developed with the intention of allowing communication and tonal
synchronisation with other generative agents developed by the GiantSteps consor-
tium. For example RhythmCAT, along with other systems like Reactable’s Rotor can
act as a slave to the House Harmonic Filler, a Pd system that generates MIDI house
style chord vamps (Faraldo et al., 2017c). Real-time tonal information communicated
over OSC dictates the pitch quantisation applied to RhythmCAT based on the chords
it is outputting at a given instant. This type of multi-agent ‘ensemble’ communica-
tion is also seen in the Musebot project (Bown et al., 2013, 2015; Eigenfeldt, 2016b)
and harkens back to the practice of networked music as espoused by North American
groups the “League of Automatic Music Composers” and “The Hub” (Bischoff et al.,
1978; Gresham-Lancaster, 1998).

6.5 Conclusions

This chapter concerned itself with the practical implications of adapting many
of the concatenative synthesis concepts expounded in Chapter 5 for the specific case
of dance music producers. We articulated that the biggest challenges faced in deliv-
ering a user-tailored concatenative system firstly lies in the delicate tradeoff between
accuracy and performance and, secondly, building a convincing and usable interface
that is appealing for the user.

Visualisation and interaction modalities from key works in the literature were
dealt with, leading naturally to the discussion of dimensionality reduction with the
goals of building timbre space representations of sound material, as well as metaphors
that affords users intimate control of the timbre space.

With these fundamentals introduced, the rest of the chapter recounted the design
and development of RhythmCAT, a user-friendly VST plugin that interactively cre-
ates rhythmic loops under the auspices of concatenative synthesis. Using a stripped
back set of features and simplified unit selection procedure, an interative develop-
ment process charted its evolution from early prototypical stages. Arising from this
process, a unique chaining visualisation and interaction metaphor was developed to
account for the temporal arrangement of units in a rhythmic sequence. Of course,
with our increased emphasis on user engagement, the question of evaluation becomes
an increasingly pertinent one, and is addressed in Chapter 7.





Chapter 7
Evaluation

7.1 Introduction

One of the primary difficulties faced with designing instruments for creative
and compositional tasks remains the elaboration of an appropriate evaluation meth-
odology. Indeed, this is a trending challenge facing many researchers (Barbosa et al.,
2015), and numerous papers address this directly with various proposals for method-
ological frameworks, some drawing from the related field of HCI (Hsu & Sosnick,
2009; Kiefer et al., 2008; Hiraga et al., 2004). More generally the evaluation of com-
puter composition systems has also been the subject of much discussion in the liter-
ature. As we alluded to in Chapter 3 a frequent benchmark for evaluating algorithmic
music systems is a type of Turing test where the success criterion is determined by the
inability of a human listener to discern between human and computer-generated mu-
sic. As Abdulla (2002) notes however, these kind of tests can be problematic for two
reasons. Firstly, it makes the assumption that the music generated by the algorithm is
intended to sound like music produced by humans, rather than something to be treated
differently. Secondly it ignores other facets of the system that imperatively need eval-
uation, such as the interface and the experience. Pachet & Roy (2015) also finds issue
with simplistic Turing test approaches to music evaluation. They repeat, for instance,
the view that, unlike the traditional Turing test which evaluated the ability to synthes-
ise believable natural language, no such ‘common-sense; knowledge exists for aspects
of music that transcends the “skills, culture and interests” of a listener (Pachet & Roy,
2015).

As we were researching many of the existing works in Table 4.1, we were
struck by the absence of discussion regarding evaluation in most of the accompanying
articles. Some of the articles provided descriptions of use cases (Cardle et al., 2003) or
at least provided links to audio examples (Sturm, 2004). Notably, many of the articles
(Simon et al., 2005; Hackbarth, 2011) consistently made references to the role of
“user”, but only one of those actually conducted a user experiment (Aucouturier &
Pachet, 2005). By no means is this intended to criticise the excellent work presented
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by these authors. Rather it is intended to highlight that although evaluation is not
always an essential part of such experiments - especially in "one-off" designs for
single users such as the author as composer - it is an underexplored aspect that could
benefit from some contribution.

We can identify two key characteristics of our research that can inform what
kind of evaluation can be carried out. Firstly it’s a retrieval system, and can be ana-
lysed to determine its ability to retrieve relevant items correctly. Secondly it is a
system that involves users, or more precisely musical users. How do we evaluate this
crucial facet?

Coleman has identified and addressed the lack of subjective evaluation factors
in concatenative synthesis (Coleman, 2015). In his doctoral thesis he devotes a chapter
to a listening survey conducted to determine the quality of a number of different
algorithmic components of the system under consideration. He asks the listeners to
consider how well the harmony and timbre of the concatenated sequences are retained.
In Chapter 3 we conducted a similar-style listening survey to determine the ability of
a genetic algorithm to create symbolic rhythmic patterns that also mimic a target
input pattern. Evaluation strategies need to be tailored specifically for systems, but
if the system is intended to retrieve items according to some similarity metric, and
the material is musical, then a listening survey should be critical. Furthermore, and
echoing Coleman’s work, we would emphasise that whatever the application of a
concatenative system, the evaluation of the timbral quality is essential.

We conducted extensive evaluation of our own system, both quantitatively and
qualitatively. In the quantitative portion, we set out to investigate two key aspects.
First, if we consider the system as a retrieval task that aims to return similar items, how
accurate and predictable is the algorithm and its associated distance metric? Second,
how does this objective retrieval accuracy correspond to the perceptual response of
the human listener to the retrieved items? Also, rather than fit the subjective factor
into some sort of haphazard Turing test box, can we determine simply if the listener
likes what comes out?

The qualitative evaluation consisted of interactive, informal interviews with in-
tended users — mostly active music producers but also music researchers and students
as they used the software. We gathered their responses and impressions and grouped
them according to thematic analysis techniques. As alluded to in the introduction,
both the quantitative evaluation and the qualitative evaluation have been previously
reported in separate publications, but we include summaries of each here for refer-
ence.

7.2 System Evaluation

We describe here the qualitative portion of the evaluation, first by introducing
the experimental setup used, then presenting and comparing the results of the al-
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gorithm’s ‘objective’ retrieval accuracy with the ‘subjective’ ratings from the listener
survey.

7.2.1 Evaluation and Experimental Design

Given the rhythmic characteristics of the system we formulated an experiment
that evaluated its ability to generate new loops based on acoustic drum sounds. We
created a small dataset (Appendix B) of 10 breakbeats ranging from 75 BPM to
142BPM and truncated them to single bar loops. As we introduced in Chapter 2,
breakbeats are short drum solo sections from funk music records in the 1970s and are
exploited frequently as sample sources for hip-hop and electronic music. Chapter 4
also showed that computational use of breakbeats has been of interest to the scientific
community, as evident in work by Ravelli et al. (2007), Hockman & Davies (2015)
and Collins (2006a).

Each of these loops was then used as a seed loop for the system with the sound
palette derived from the remaining 9 breakbeats. Four variations were then generated
with 4 different distances to the target. These distances correspond to indices into
the similarity matrix we alluded to in Section 2, which we normalise by dividing the
index by the size of the table. The normalised distances then chosen were at 0.0 (the
closest to the target), 1.0 (the furthest from the target) and two random distances in
ranges 0.0 - 0.5 and 0.5 - 1.0.

Repeating this procedure 10 times for each target loop in the collection and
for each of the distance categories, we produced a total of 40 generated files to be
compared with the target loop. Each step in the loop was labelled in terms of its drum
content, for example the first step might have a kick and a hi-hat. Each segmented
onset (a total of 126 audio samples) in the palette was similarly labelled with its
corresponding drum sounds producing a total of 169 labelled sounds. The labellings
we used were K = Kick, S = Snare, HH = Hi-hat, C = Cymbal and finally X when
the content wasn’t clear. Figure 7.1a shows the distribution of onsets by type in the
full corpus of segmented units. Another useful statistic is highlighted in Figure 7.1b,
which plots the distribution of onsets for each step in the 16 step sequence for the
predominant kick, snare and hi-hat for the 10 target loops. Natural trends are evident
in these graphs, namely the concentration of the kick on the 1st beat, snares on the
2nd and 4th beat and hi-hats on off beats.

7.2.1.1 Retrieval Evaluation

The aim of the experiment was first to determine how well the system was able
to retrieve similarly labelled ”units” for each 1/16th step in the seed loop. To evaluate
the ability of the algorithm to retrieve correctly labelled sounds in the generated loops
we defined the accuracy A by Eq. 7.1, based on a similar approach presented by
Thompson et al. (2014). We made a simplification that corresponding HH and X and
C labels also yield a match based on our observation that their noisy qualities are very
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(a)

(b)

Figure 7.1: Distribution of labels in corpus (a). Distribution of labels by onset number in a
16-step sequence

similar, and some of the target loops used did not have onsets sounding at each 1/16th
step.

A =
number o f correctly retrieved labels

total number o f labels in target
(7.1)

Retrieval Results By studying the Pearson’s correlation between the retrieval ac-
curacy ratings (using A from Eq. 7.1) and the distance, we can confirm the tendency of
smaller distances to produce more similar patterns by observing the moderate negat-
ive correlation (ρ =−0.516, p = 0.001) between increased distance and the accuracy
ratings (Figure 7.2a).
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(a)

(b)

Figure 7.2: Scatterplot and regression line of retrieval accuracy for distance for (a) all drum
Sounds (b) kick and snare isolated.
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Figure 7.3: Central tendencies of retrieval accuracy ratings for the similarity/distance cat-
egories.

An interesting observation is that when we isolate the retrieval accuracy ratings
to kick and snare we see this correlation increase sharply to (ρ =−0.826, p = 0.001),
as can be seen in Figure 7.2b.

Delving into the data further, we can identify 3 different categorical groupings
that demonstrate predictable trends in terms of the central tendencies and descending
retrieval accuracy (Figure 7.3). We label these categories A, B and C with the break-
down of the number of patterns and their corresponding distance ranges as follows:

A - 10 Patterns - 0.0

B - 9 Patterns - [0.2 - 0.5]

C - 21 Patterns - [0.5 - 1.0]

Listener Evaluation The retrieval accuracy gives the objective ratings of the sys-
tem’s capability for retrieving correctly labelled items. This information may not be
consistent with the human listener’s perceptual impression of similarity, nor does it
give any indication whether the retrieved items are musically acceptable or pleasing.
To assess the human experience of the sonic output and to compare with the objective
ratings of the system, we conducted a listening survey which will be described here.
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To directly compare and contrast with the retrieval evaluation, the same 40
loops generated by the system and used in the retrieval analysis were transferred to
the listening survey. The survey itself was web-based using a modified version of the
listening survey tool95 used in Chapter 3 and took roughly 15-20 minutes to complete.

Participants were presented with the seed pattern and the generated patterns and
could listen as many times as they liked. Using a 5 point Likert scale the participants
were then asked to rate their agreement with the following statements:

Is the rhythmic pattern similar?

Is the timbre similar?

Do you like the loop?

Twenty one participants took part in total, drawn from researchers at the au-
thors’ institute of UPF as well as friends and colleagues with an interest in music.
Twenty out of the 21 participants declared they were able to play a musical instru-
ment. Ten of the 21 participants specified they played a percussion instrument and 9
reported they could read notation. In the instructions we provided brief explanations
of the key terms and audio examples demonstrating contrasting rhythmic patterns and
timbres.

Listener Evaluation Results The survey data was analysed using Spearman’s rank
correlation on the mode of the participants’ responses to each loop stimulus with the
associated distance of that loop. We identified a moderate to strong negative correla-
tion of -0.66, -0.59, -0.63 respectively for each of the pattern, timbre and "likeness"
aspects (p < 0.01 in all instances). This can be observed in the red values in the
correlation matrix presented in Figure 7.4.

It should be evident that the subjective listening data conforms quite well to
the findings of the objective retrieval rating. Increased distance resulted in decreased
retrieval accuracy which in turn corresponded to a decrease in listener ratings for qual-
ities pertaining to pattern similarity and impression of timbral similarity in the sounds
themselves. Furthermore, it was revealed that the aesthetical judgement of the gen-
erated loops, encapsulated by the "likeness" factor, also followed the trend set out by
the objective algorithm. We were curious to establish whether any particular subject
did not conform to this preference for similar loops, but examining the individual cor-
relation coefficients revealed all to be negative (all participants preferred more similar
sounding patterns).

95SeeAppendix E
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Figure 7.4: Correlations between distance and subjective ratings of pattern similarity, timbre
similarity and liking.

7.3 User Experience Evaluation

In February 2016 we conducted several days of intensive interactive user dis-
cussions with a prototype of our system. The interviews took place at Universitat
Pompeu Fabra in Barcelona and at Native Instruments Headquarters in Berlin. These
interviews complement the more stringent evaluation of the system in terms of per-
ceptual output and retrieval performance we just saw in the previous section and pub-
lished in Ó Nuanáin et al. (2016c).

The profiles of the users for the qualitative evaluation could be divided into
roughly four categories. In Barcelona, they were mostly researchers on one side, and
students with a background in Sound and Music Computing on the other side. Nearly
all of these participants worked with digital music in some form or other. In Berlin the
users were drawn from Red Bull Music Academy (RBMA)96 associated artists based
in the city, as well as employees of Native Instruments. The RBMA was initiated in
1998 with the aim of gathering young music producers and DJs at worldwide events
for the purposes of lectures, workshops and performances. RBMA collaborated in
the GiantSteps project (Knees et al., 2015) to provide access to these upcoming artists
for research interaction and evaluation. These Berlin participants included producers,
promoters, DJs, musicologists, product designers, engineers and graphic designers.
United by the influence of the city, nearly everyone identified themselves as producers
of techno and/or house, whether it be full-time or as a hobby.

With each participant we explained briefly the instrument and guided them
through the process of generating sounds with the instrument. Mostly, the participants

96http://www.redbullmusicacademy.com

http://www.redbullmusicacademy.com
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Figure 7.5: Testing station setup at RBMA in Berlin

were eager to start playing with the instrument as soon as possible, which we were
more than happy to oblige. Test stations were set up throughout the venue with a
laptop, monitor and headphones as shown in Figure 7.5.

While the interviews themselves were kept informal we at least tried to steer
the individual sessions with some common questions or themes in order to elicit con-
versation. These included statements such as:

Did the overall concept make sense to you?

Was the interface intuitive? What elements were confusing?

Would you use this system to make music?

Would you use this system in production scenarios, live performance or both?

What did you like, what didn’t you like?

What improvements would you make?

What features would you like to see?

7.3.0.1 Positive Reactions and Outcomes

Before delving into the specifics, we will first highlight the overall extremely
positive feedback received from the participants. The word cloud in Figure 7.6 shows
a culmination of some of the frequent positive descriptions participants attached to
the system during the course of the tests.



166 EVALUATION

Figure 7.6: Wordcloud of most frequent positive descriptions.

Some of the more detailed positive remarks give further insights into exactly
why the system appealed to them:

“It’s an excellent tool for making small changes in real time. The in-
terface for me is excellent. This two dimensional arrangement of the
different sounds and its situation by familiarity, it’s also really good for
making these changes.”

“I’m really interested in more visual, more graphic interface. Also the
fact that you can come up with new patterns just by the push of a button
is always great.”

“It’s inspiring because this mix makes something interesting still, but
also I have the feeling I can steal it.”

“The unbelievable thing is that it can create something which is so ac-
curate. I wouldn’t believe that it’s capable of doing such a thing.”

Many of the producers we spoke to reflected a particular trend in dance music at
the moment for working with hardware and modular systems. This is often borne out
of a desire to break out of the typical computer or digital audio workstation workflow
and seek another path for inspiration.
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“I just jam for quite a while and then try to build something that I like
and then bring it to computer and then add stuff from computer. You have
to jam out really. The biggest issues come with recording.”

The most encouraging outcome from our studies conducted with these users
was that the “interesting” and “different” design of our system offers these discour-
aged users a way “back in” for composing with the computer once again. This was
suggested by comments such as:

“I think something I’ve been looking to do in terms of experimentation
and generating ideas melodically, is looking to go a bit more modular,
use some modular stuff. To me, this is a digital form of it.”

“Yeah. I use a lot of hardware, but if I’d use ... a few disco breaks or
something or funk breaks that would be kind of nice, totally.”

7.3.0.2 Thematic Analysis

We will now touch upon some of the common recurring themes that arose dur-
ing the course of the interviews, and describe our own interpretations and plans to
address them in future.

Usage Scenarios With respect to specific use cases, users provided some interesting
scenarios where they could see the tool being used in their own interest. Numerous
users were curious as to the ability to record and analyse live input such as instru-
mental performance or beatboxing for example.

“This is great! Ah, but wait. Does it mean I could like beat box really
badly some idea that I have... and then bring my samples, my favourite
kits and then it will just work?”

Live performance input was not something we had previously considered but is
theoretically possible since the host would handle the capture of input audio. It would
however require continuous re-analysis and computation of the similarity matrices
which could be computationally costly. Still, other users have also expressed a desire
for the possibility to continuously analyse incoming audio so it will be investigated.

Quite a number of users weren’t interested in using the targeting capability
of the synthesis engine whatsoever, and wondered if it was possible to start building
patterns from scratch by selecting the onsets manually one by one. For example, refer-
ring to the fact that the dry signal is the original and the wet signal is the concatenated
output:
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“I’ve got this fully on wet straight away, which tells you the direction I’d
be going with it.”

“...you just want to drag in 100 different songs and you just want to
explore without having this connection to the original group. Just want
to explore and create sound with it.”

This is entirely possible; in fact, we had another "exploration" mode previously
that gave the option to scan and audition the timbre space with a circular mouse radar
that triggered the enclosed sounds, CataRT style, as described in Section 6.2.2.4. The
motivation for this was to allow users to explore and audition the timbre space freely
to identify regions of interest before proceeding to build their patterns. Merging this
auditioning ability to create a sequence of patterns from zero would also stem the
frustration of many of the users who wanted to create sounds straight away without
capturing target input.

Traditional Navigation A very early outcome of the user testing was the realisation
that although users were more than open to this new way of dealing with their sound,
they still wanted a link to the familiar - the 2D waveform/timeline paradigm they are
so used to dealing with in existing tools such as DAWs.

“It’s a bit hard to figure out which sixteenth you are looking for, because
you are so used to seeing this as a step grid.”

“It’s kind of good to see a different interface and not always follow the
same timeline,..., But it could just be mirrored in a timeline”

“You have a waveform or something... Then I know, okay, this is the
position that I’m at.”

“Is there also a waveform place to put the visualisation? People are so
used to having that kind of thing.”

Initially this timeline was not something we had intended on offering; after
all isn’t it these paradigms we’re seeking to break away from? After hearing these
comments we realised that it was a useful option for the user and was one of the first
items we implemented subsequently, as can be seen from Figure 6.6.
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Shaping the Sounds Other than generating the sequences and rearranging indi-
vidual units in the sequence, the synthesiser offers no additional ways to modify the
output sound (discounting the ability to mix between the target sequence and the gen-
erated sequence). Many users agreed it would be useful to be able to manipulate
these individual sounds sonically somehow. Most crucially they desired the option to
be able to control the envelopes of the individual units via drawable Attack and Decay
parameters.

“... an attack and decay just to sort of tighten it up a little bit. Get rid of
some of the rough edges of the onsets and offsets.”

“Yeah, the thing is if you listen to it now, there’s kind of a rhythm go-
ing, but it would be great if you could increase the decay of the snare
for example. Which if it’s prototype, you can’t expect to have all those
functions there immediately, but in an end product, I think it would be a
necessity.”

State and Feedback One of the consistent items that concern users of generative
systems is the notion of state. On a superficial level ‘state’ can refer to an effective
preset management system that stores their efforts, for as one participant notes "you’re
always afraid of losing something.". Users are terrified of losing their progress once
they’ve entered a pleasing "state", although this is a much bigger concern in probab-
ilistic systems that produce - but then may never reproduce - "happy accidents".

At present our system has no state, and this was something frequently remarked
upon and something we are actively considering. Users expressed a desire for com-
plex state operations. Comparing two generated sequences visually and sonically for
example, and being able to mix or find an interpolation between the two of them
somehow. One artist wondered whether would it be possible to extend the graph
visualisation technique to a space of "patterns". In this manner a series of stored
patterns would be plotted in 2D space one after each other, and could be explored
and sequenced in a more high-level arrangement or score-type interaction with the
instrument. As he explained:

“Even with this if it wasn’t actually blending or interpolating between
points, but just so you could save the state in a composition screen of
dots and you could just jump between.”

This was actually inspired by the artist’s own experiences with another ex-
perimental but commercial tool for music production: Audiomulch97. It includes a
unique feature known as the MetaSurface, which allows navigation and interpolation
of multiple parameter states by manipulating a colourful visual cluster space.

97http://www.audiomulch.com

http://www.audiomulch.com
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Also related to issue of state was the ability to initiate feedback, i.e. continu-
ously assigning the concatenated output to the input, which once again can be done
manually by recording to the host and re-recording in. This could be facilitated in
the tool itself, but would require having the option of removing the matching sounds
from the corpus itself to encourage diversity of sound.

Parameterisation and Visualisation One of the recurring difficulties that faced
participants was our presentation of the parameters. As we explained briefly in the
implementation section, the user is able to control the influence of the four features in
concatenation algorithm and the PCA visualisation. We relabelled the features from
their objective names to what we considered a subjective equivalent that a lay user
may understand. MFCCs are labelled as ‘Timbre’, spectral centroid as ‘Brightness’,
spectral flatness as ‘harmonicity’ with Loudness unchanged.

Unfortunately, users expressed confusion at their purpose and were unable to
interpret their effect on neither the arrangement of the units of sound in space or their
resulting effect on the patterns generated. For instance:

“The problem is I’m a little bit lost already.”

“you have four parameters, and you don’t know which thing is what”

“I would prefer not to have too much controls.”

Presenting this additional complexity was a perhaps naive inclusion on our part.
Clearly the typical user is content with the overall output from the system and would
rather not delve into these specifics. However, at least in terms of the visualisation
there is a "sweet spot" for feature weightings in the arrangement of the units of sound
in the timbre space and this is why the controls were made available. The weightings
can vary greatly depending on the corpus, though in our experience MFCC alone
often provide the best separation and clustering.

The challenge will be to find the best approach to arranging the units in sound
with the best separation and shielding these parameters from the user. Potentially, a
way forward could be to remove these sliders and replace them with a number of op-
tions including an “advanced” mode with the ability to select specific parameters for
the axes like CataRT, in addition to “automatic” arrangement presets made possible
using dimensionality reduction techniques. An area for study would be to gather many
different sound sets and try various combinations of feature selections and weightings
to find the best visual separation. At present, PCA is used for dimension reduction
but as we reported in Chapter 6 there also exists MDS and t-SNE which we have yet
to offer to the user. In our informal experiments with the latter we have noticed two
immediate drawbacks in its applicability for real-time or at least ‘production ready’
usage. Firstly, a successful projection, encompassing good separation with minimal
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overlapping of clusters, is heavily dependent on tweaking the parameters of the sys-
tem to the data provided. Secondly, the algorithm is complex enough that it needs to
pass through a number of iterations before it finally settles on a projection with min-
imal threshold error, thus there is a delay in the time it takes for it to project (however
we have observed that this makes a rather nice dynamic animation when its processing
routine is placed in the interface update loop!).

7.4 Conclusion

This chapter proposed and related the application of an evaluation methodology
and framework for the appraisal of concatenative synthesis systems. In the Chapter 6
we emphasised the user-focussed nature of the system we built, thus necessitating a
stringent and formal evaluation strategy. Interestingly, in the span of literature dealing
with concatenative systems, we have observed a marked lack of treatment of general
evaluation or user surveys.

We offered a structured evaluation from two standpoints. Firstly, a quantitat-
ive assessment treated the instrument as a retrieval system, and a specially devised
experiment verified its accuracy in returning correctly labelled rhythmic units in the
correct sequence given a specific target. This ‘objective’ impression of the system was
complemented with a listener survey that gave insight into the ‘subjective’ responses
of human listeners. Correlation analysis revealed strong links between the distance
metric used and the similarity and aesthetic judgements of the stimuli.

The second aspect of the evaluation involved qualitative consideration of the
users’ engagement with the software in terms of usability and HCI. Overall response
was positive, with remarks mostly praising the sonic output and appealing visuals.
As we delved further into thematic analysis, interesting suggestions, possibilities and
uses of the tool were discovered, but some misgivings were raised regarding the para-
meterisation and the use of PCA for producing the visualisation, warranting futher
investigation.





Chapter 8
Conclusions and Future Work

In this dissertation we set out to examine computational strategies aimed at a
very well-defined objective: the generation of rhythm-centric loops that are sympto-
matic of modern dance music composition. Dance music is an unfolding musical style
and an emerging sociocultural and technological phenomenon that is still very much
in its infancy. Only recently has it begun to be treated with the legitimate discourse
it deserves in academic narrative and forums. Equally, computational music analysis
and research have been slow to respond to its needs for investigation. We hope that
we have raised the profile of both these aspects in addition to several contributions to
general computation musical analysis and synthesis which we summarise here.

8.1 Contributions

8.1.1 Tools for Symbolic Rhythmic Algorithmic Composition

The literature abounds with esoteric systems for algorithm composition in the
symbolic domain. The unique contribution we offer to this field a highly-specialised
genetic algorithm that addresses perceptual aspects of rhythm in addition to docu-
mented listener evaluation of its applicability.

8.1.2 Evaluation and Expansion of Cepstrum-Based Timbre Analysis

MFCCs are frequently assumed to be the de facto descriptor for analysing
timbre in computer music and MIR literature. In choosing appropriate features for
concatenative synthesis tasks, we challenged this assumption and provided exper-
imental evidence that other methods should be given serious consideration. This
was achieved through an implementation of the Bark-Frequency Cepstral Coefficient
(BFCC) method along with two contrasting datasets to confirm its accuracy. While
our newly implemented BFCC extractor improves over the existing MFCC one, our
experiment also demonstrated that the GFCC is the best performing overall. In the
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spirit of reproducibility we provide all the data used and the associated scripts for
other researchers to verify, validate and recreate our findings confidently.

8.1.3 k-Best Unit Selection

Unit selection is a vital procedure in concatenative synthesis of sounds from a
corpus with a target sound as reference. Viterbi decoding of HMM-style representa-
tions of a concatenative synthesis task provide the means of maximising the similarity
of candidate units from the corpus to each unit in the target sound, while ensuring con-
tinuity and stability of consecutive candidate units placed in sequence. The drawback
of the Viterbi algorithm is that it only outputs one optimised sequence which is not
conducive to creative musical application.

To this end, we proposed the application of two algorithms from speech pro-
cessing and graph theory that have hitherto not been investigated in musical concat-
enative synthesis tasks. These are known as the Parallel LVA and k-Shortest paths
respectively and we provide reference implementations of both as well as demonstra-
tions of their usage in k-Best unit selection of multiple candidates.

8.1.4 A New User-Focussed Tool for Rhythmic Concatenative Synthesis

As well as contributing improvements to the state of the art in the research
of concatenative synthesis we also provided a practical realisation of concatenative
synthesis methods that addresses the unique requirements of the typical dance music
producer. We demonstrated how state of the art methods can be refined and condensed
into a ‘production ready’ system, along with the proposal of a novel graph-based
interaction metaphor that can cope with the specificities of rhythm.

8.1.5 An Evaluation Methodology for Concatenative Synthesis

The final contribution of our thesis concerned the evaluation of concatenative
synthesis systems, which we maintain is still under-examined in its academic dissem-
ination. The evaluation conducted in Chapter 7 sought to address this by providing a
formal methodological framework that appraised two vital perspectives:

1. Quantitative:

a) The objective retrieval of returning labelled units in the correct sequence
according to a reference loop.

b) The corresponding subjective response to the sequences given the refer-
ence loop’s pattern and timbre.

2. Qualitative: Overall impressions and thematic analysis of the users’ experience
with using the instrument and interface.



8.2 FUTURE WORK 175

8.2 Future Work

Throughout the thesis we have alluded to a myriad avenues that constitute valu-
able further work, but here we summarise four of the most outstanding areas as we
see them at the present.

8.2.1 Optimisation and Evaluation of k-Best Unit Selection

We are really excited with the novelty and possibilities presented with k-Best
strategies for unit selection in concatenative synthesis. It is an area of speech and
music processing that is under-explored and seldom reported in the literature. Of
course the major issue we identified is poor performance and scalability for large
corpora. We propose two strategies for resolving this that can qualify future work:

1. Implementation of the serial decoder, which is purported to be more efficient
than the parallel decoder.

2. Pre-pruning of units to eliminate unrelated units to the current context of the
target sequence.

8.2.2 Vertical Concatenative Synthesis

In Chapter 5 we briefly outlined the possibilities of vertical-oriented concaten-
ative synthesis that considers supplanting units of sound on top of each other in addi-
tion to their horizontal concatenation. Of particular interest here is the role that recent
improvements in source separation of signals that can also perform vertical segment-
ation of units into constituent elements in the frequency domain for later combination.

8.2.3 Feature Implementation and Improvement of RhythmCAT

The qualitative evaluation of RhythmCAT provided in the previous chapter
raised a whole range of interesting possibilities regarding improvements to Rhyth-
mCAT. Some of these include:

Live capture of loops from external instruments and sources.

Envelope editing and effects processing to transform selected units sonically.

High-level visualisation and interpolation of patterns rather than the lower-level
visualisation of individual units and onsets.

8.2.4 Enhanced Groove Integration

In Chapter 3 we criticised the deficiency of symbolic methods in capturing the
very subtle human musical facets of groove and swing. By extension, and depending
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on the timescale in operation, the combined use of onset detection and quantised
placement of units in time that occurs in rhythmic concatenative synthesis systems
can also remove these latent characteristics from the final signal.

Early hardware production devices such as the MPC used various ‘groove tem-
plates’ to apply systematic delay to note events in an attempt to emulate the triplet feel
implicit in typical jazz swing (Frane, 2017). Software DAWs such as Ableton and Lo-
gic offer the ability to apply similar preset groove templates or even new templates
extracted from an audio or MIDI loop.

Much research has questioned the importance of microtiming deviations by
human performers in the perception of natural sounding music that illicits the sen-
sation of groove (Prögler, 1995; Davies et al., 2013a; Frühauf et al., 2013). Hennig
(2014) provides experimental data that suggests the microtiming fluctuations of hu-
man percussive performances actually correlates over long-range with that of a 1/ f
noise generator, and electronic musician James Holden has developed a Max for Live
device that can apply this mathematical model of delayed shifting to real-time MIDI
and audio information98. Continuing on this line of work, a Master’s student under
our supervision has devoted effort to capturing the microtiming deviations of real
drummer performances, in order to build a generative model that can apply human-
istic groove and ‘feel’ based on learned data (Troes, 2017). Results are promising,
and we also intend to integrate these models as a post-processing stage in our con-
catenative synthesis workflow, restoring elements of such a crucial quality present in
natural recordings.

8.2.5 A Final Reflection

A doctoral dissertation is often likened to an apprenticeship, and I can safely
conclude that after four-odd years foraging in the depths of academic wilderness I
have come out the other side with an immense appreciation of just how much I have
achieved, yet, also the slow realisation that I have, perhaps, just scratched the surface.

As computer music practitioners we are among the lucky few to be working on
what we truly love, but sometimes we lose sight of the crotchets and quavers as we
sift through the ones and zeros. One of my proudest outcomes with this work is that
I have discovered some new ways of making music and tools that can help achieve
them. This I look forward to most of all.

98https://www.ableton.com/en/blog/james-holden-human-timing/

https://www.ableton.com/en/blog/james-holden-human-timing/
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Appendix B
Resources

Code and Tools

Implementation of Methods

Implementation of the methods presented in this thesis are made publicly avail-
able for research purposes. We also indicate (in squared brackets) the language in
which the implementation is available. Other frameworks and libraries are also listed.

SimpleGA [C++]

RhythmGA [C++]

GenDrum [Max/MSP and Max for Live]

kViterbi [Python]

PyConcat [Python]

RhythmCAT [C++ (JUCE)]

Tools

Essentia audio analysis library (http://essentia.upf.edu/)

Librosa audio analysis library (https://github.com/librosa/librosa)

Madmom audio analysis library (https://github.com/CPJKU/madmom)

Scikit-learn machine learning library (http://scikit-learn.org/stable/)

OpenCV computer vision library (https://opencv.org/)

Boost Graph Library (http://boost.org/)

JUCE cross platform C++ framework (http://juce.com/)
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Corpora and Datasets

Corpora and datasets used throughout the thesis are summarised here and are
categorised by those contributed by the authors as well as those that were made avail-
able by other researchers.

Author Contributed

‘Orchestral Timbre’ collection used in the classification experiment (Section 5.3.4).
Sound files, extracted features, classifier models and IPython notebooks can be
downloaded here:
https://github.com/carthach/timbreClassification/tree/master/orchestra

‘Drum Timbre’ collection used in the classification experiment (Section 5.3.4).
Sound files, extracted features, classifier models and IPython notebooks can be
downloaded here:
https://github.com/carthach/timbreClassification/tree/master/drums

‘Breakbeat’ collection used in the evaluation of RhythmCAT (Section 7.2.1).
Sound files and annotations can be downloaded here:
http://www.github.com/carthach/thesis/experiments/evaluation/data

Public Datasets

ENST-Drums: Provided by Télécom ParisTech (Gillet & Gaël, 2006), contains
an audio-visual annotated dataset of performances by 3 professional drummers
using multi-track studio recording in a variety of configurations (single hits,
phrases and accompaniments) and a variety of styles including jazz and rock.
Summary and ordering details are available here:
http://perso.telecom-paristech.fr/~grichard/ENST-drums/

Modal (Musical Onset Dataset And Library): Hand annotated, contains 501
onsets across 71 files containing a mix of mostly monophonic events (Glover
et al., 2011)
Datset can be downloaded from:
https://github.com/johnglover/modal

JKU: Contains 321 files with 27,774 total onsets. Compiled from a number
of different sources by Sebastian Böck for evaluating his SuperFlux algorithm
(Böck & Widmer, 2013). The algorithm was developed especially to handle
vibrato, and accordingly the dataset contains a large number of samples that
purposely addressing vibrato, such as samples from opera or classical technique
strings.
Annotations and some audio can be downloaded from here:
https://github.com/CPJKU/onset_db

https://github.com/carthach/timbreClassification/tree/master/orchestra
https://github.com/carthach/timbreClassification/tree/master/drums
http://www.github.com/carthach/thesis/experiments/evaluation/data
http://perso.telecom-paristech.fr/~grichard/ENST-drums/
https://github.com/johnglover/modal
https://github.com/CPJKU/onset_db


Appendix C
The PyConcat Library

C.1 Description

The PyConcat99 library is a Python environment for conducting research-oriented
concatenative synthesis of signals. It uses feature extraction routines from Essentia
and Librosa as well as distance measures from scipy and novel unit selection via k-
Best Viterbi.

The basic pipeline for performing concatenative synthesis with this tool is as
follows.

1. Segmentation

Framewise in the time domain or using FFT/IFFT resynthesis

Onsts

Beats

2. Feature Analysis

Temporal: loudness, attack

Spectral: flatness, centroid

Timbral: BFCCs, MFCCs, GFCCs

Musical: f0, HPCPs

3. Unit Selection

Linear Search

k-D Tree

Viterbi

k-Best Viterbi
99Not to be confused with https://github.com/thomasballinger/pyconcat a script for concatenating

Python scripts.
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C.2 API

A concatenative synthesis task is performed in stages in accordance with the
previous pipeline. Separate statements segment the units and compute features before
finally combining a sequence with unit selection. This also allows the flexible sep-
aration of unit scale segmentation and features that allow different specifications for
target and corpus unit.

The code snippet below shows an example of extracting units from the target at
the beat unit scale while concatenating the top 10 sequences at the onset scale using
Viterbi decoding and time-stretching.

e = E x t r a c t o r . E x t r a c t o r ( )

# Find a l l t h e c o r p u s f i l e s i n t h e p a t h
c o r p u s F i l e s = e x t r a c t o r . g e t L i s t O f W a v F i l e s ( c o r p u s P a t h )

# E x t r a c t f e a t u r e s and u n i t s
t F e a t u r e s , t U n i t s , t U n i t T i m e s = e . a n a l y s e F i l e ( t a r g e t F i l e ,

s c a l e =" b e a t " )

c F e a t u r e s , cUn i t s , cUni tT imes = e . a n a l y s e F i l e s ( c o r p u s F i l e s ,
w r i t e O n s e t s =True ,
s c a l e =" o n s e t s " )

# Get l i s t o f c a n d i d a t e s e q u e n c e s wi th k−Bes t V i t e r b i Decoding
s e q u e n c e s = u n i t S e l e c t i o n . u n i t S e l e c t i o n ( t F e a t u r e s ,

c F e a t u r e s ,
method=" k V i t e r b i P a r a l l e l " ,
n o r m a l i s e ="MinMax" ,
topK =10)

# C o n c a t e n a t e t h e s e q u e n c e s wi th t ime s t r e t c h i n g
a u d i o = e . c o n c a t O n s e t s ( sequences ,

c o r p u s U n i t s ,
t a r g e t U n i t s ,
s t r e t c h U n i t s =True )

e . w r i t e A u d i o ( audio , " o u t . wav " )

C.3 Links

Documentation - http://pyconcat.readthedocs.io/en/latest/source/PyConcat.html

Library - https://github.com/carthach/pyconcat

http://pyconcat.readthedocs.io/en/latest/source/PyConcat.html
https://github.com/carthach/pyconcat


Appendix D
Related Applications

D.1 The Eear - Enhanced DJ Assistant

The Eear100 was prototyped by this author, along with members of The Giant-
Steps team, over a 24-hour period at the Sónar Music Hack Day in 2014 and sub-
sequently won the MusicBricks category for best hack. A more refined version of the
system was developed for mobile and desktop and selected for presentation at the Mu-
sic Tech Fest in Slovenia, as well as the late breaking demo session at ISMIR 2015,
in Málaga (Ó Nuanáin et al., 2015). A lot of the feature extraction and segmentation
logic that was described in this thesis was also used to develop this system.

The Eear comprises a mobile application (Figure D.1 - left) that uses the mi-
crophone of the device to capture live input from any source and perform harmonic
analysis (using a rolling average of the HPCP vector) in order to estimate the current
chord or key. This key and scale information is sent via OSC to a VST plugin (Fig-
ure D.1 - right) that allows MPC style sampling of related sounds filtered by that very
same tonal information - thus it selects units that are always ‘in key’ with the live
input captured by the mobile.

D.2 Atomix

For the 2017 edition of the Sónar Innovation Challenge101, members of the
MTG team proposed and mentored a project that challenged selected participants to
prototype a system that somehow combined the spirit of timbre space driven concat-
enative synthesis with state of the art source separation technology.

While the team eventually devised their own tools and did not implement any
source separation, the concept art by Olivia Andrieux (Figure D.2) shows how it could
be realised visually with RhythmCAT-inspired visualisation and interaction for each
track of stream of audio.

100http://carthach.github.io/eear/
101http://sic.upf.edu/challenges/
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Figure D.1: The Snitch, mobile app (left), plugin interface (right)

Figure D.2: Atomix user interface. Image from Centre for Digital Music at Queen Mary.



Appendix E
Listening Survey Web Tool

Over the course of this doctoral thesis a need arose for a flexible system that
could perform comparative listening surveys and evaluation with ease. As a con-
sequence, a web platform was developed that is easy to setup, customise, configure
and deploy etc. The main advantage of this is that surveys can be conducted remotely
by the user without the requirement of supervision and physical presence. The tool
and its source code is freely available online102, and has since been used in other
researchers’ works (Marti, 2015; Jade, 2016).

An initial landing page (Figure E.1) provides instructions for the participants
along with an estimation of the time and the number of questions. The participant
then fills out personal details that are gathered anonymously - no names or contact
details are recorded - followed by some descriptive questions pertinent to the survey
being conducted. For instance, in the case of our rhythm surveys we were interested
to know the musical training of each participant and whether that was concentrated in
more percussive practice.

The questionnaire commences (Figure E.2) with a series of randomised ques-
tions consisting of a target sound to be listened to and several other generated sounds
that necessitate scrutiny. Repeated listening is possible before making a final decision
on the Likert score for each question.

To make the tool as easy as possible to deploy, database dependency is avoided.
Subsequent to each participant’s concluded survey session, a Comma Separated Val-
ues (CSV) file of the completed questionnaire results are simply mailed to the re-
searcher’s email address.

102https://github.com/carthach/listener_survey_tool
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Appendix F
Glossary

F.1 Acronyms

k-NN k-Nearest Neighbours
ACMC Australasian Computer Music Conference
AI Artificial Intelligence
ANN Approximate Nearest Neighbour
ANN Artificial Neural Network
ANOVA Analysis of Variance
BFCC Bark-Frequency Cepstral Coefficient
BPM Beats Per Minute
CNN Convolutional Neural Network
CSV Comma Separated Values
DAG Directed Acyclic Graph
DAW Digital Audio Workstation
dB deciBel
DCT Discrete Cosine Transform
EBU European Broadcasting Union
EDM Electronic Dance Music
EMC Elementary Markov Constraints
EMI Experiments in Musical Intelligence
ENST École Nationale Supérieure des Telecommunications, nowadays

Télécom ParisTech
ERB Equivalent Rectangular Bandwidth
f0 Fundamental Frequency
FFT Fast Fourier Transform
FM Frequency Modulation
GA Genetic Algorithm
GFCC Gamma-Frequency Cepstral Coefficient
GTCC Gammatone Cepstrum Coefficients (alternative acronym to GFCC)
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GTTM General Theory of Tonal Music
GUI Graphical User Interface (UI)
HCI Human Computer Interaction
HFC High Frequency Content
HMM Hidden Markov Model
HPCP Harmonic Pitch-Class Profile
HTK Hidden Markov Model Toolkit
IDM Intelligent Dance Music
IFFT Inverse Fast Fourier Transform
IIR Infinite Impulse Response
IOI Inter-Onset Interval
IRCAM Institute for Research and Coordination in Acoustics/Music
JKU Johannes Kepler University
LISP LISt Processor
LVA List Viterbi decoding Algorithm
MCM Markov Chain Monte Carlo
MDS Multi-Dimensional Scaling
MFCC Mel-Frequency Cepstral Coefficient
MIDI Musical Instrument Digital Interface
MIR music information retrieval
MIREX Music Information Retrieval Evaluation eXchange
MPC Music Production Controller
MTG Music Technology Group (at UPF)
NIME New Interfaces for Musical Expression
OSC Open Sound Control
PCA Principal Component Analysis
PCoA Principal Coordinate Analysis
PCP Pitch-Class Profile
Pd Pure Data
PoS Part of Speech
RBMA Red Bull Music Academy
RMS Root Mean Square
SMC Sound and Music Computing
SNE Stochastic Neighbour Embedding
SOM Self-Organising Map
STEIM Studio for Electro-Instrumental Music
STFT Short-Time Fourier Transform
SVM Support Vector Machine
t-SNE t-Distributed Stochastic Neighbour Embedding
TLU Threshold Logic Unit
TTS Text-to-Speech
TUBS Time Unit Box System
UI User Interface
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UPF Universitat Pompeu Fabra
VST Virtual Studio Technology
WAV Wave Audio Format
WDR West German Radio Studios
WNBD Weighted Note-to-Beat Distance
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