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Abstract

This thesis proposes a coupled continuous and hybridizable discontinuous Galerkin formula-
tion to solve conjugate heat transfer problems. This model is then used to find the thermal
response of Glass Fiber Reinforced Polymer (GFRP) tubular cross-section under fire.

The first step of this thesis is to compare the computational efficiency of high-order Con-
tinuous Galerkin (CG) and Hybridizable Discontinuous Galerkin (HDG) methods for incom-
pressible fluid flow problems in low Reynolds number regimes. Only 2-D examples and direct
solvers are considered in the present work. A thoroughly comparison in terms of CPU time
and accuracy for both discretization methods is made under the same platform. Various re-
sults presented suggests that HDG can be more efficient than CG when the CPU time, for a
given degree, is considered. The stability of HDG and CG is studied using a manufactured
solution that produces a sharp boundary layer, confirming that HDG provides smooth con-
verged solutions in the presence of sharp fronts whereas, CG failed to converge due to the
presence of numerical oscillations.

Following, the solution of the coupled Navier–Stokes/convection-diffusion problem, using
Boussinesq approximation, is formulated within the HDG framework and analysed using nu-
merical experiments and benchmark problems. A coupling strategy between HDG and CG
methods is proposed in the framework of second-order elliptic operators. The coupled for-
mulation is implemented and its convergence properties are established numerically by using
manufactured solutions. Finally, the proposed coupled formulation between HDG and CG for
heat equation is combined with the coupled Navier–Stokes/convection diffusion equations to
formulate a new CG-HDG model for solving conjugate heat transfer problems. Benchmark
examples are solved using the proposed model and validated with literature values.

The final part of the thesis applies the proposed CG-HDG coupled formulation to predict
the thermal response of the GFRP tubular cross-section. The radiosity equation that governs
the internal radiation is added to the CG-HDG coupled model. Estimates of the discretization
errors are computed in order to establish the confidence intervals for quantities of interest.
Results with the geometry having curved corners in the cavity are presented and shown to be
within the estimated uncertainty intervals. CPU times for the linear solver suggests that the
proposed CG-HDG model is more efficient than CG-CG model in all the cases considered.

keywords: hybridizable discontinuous Galerkin, coupling, conjugate heat transfer,
GFRP, computational efficiency.
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Resumo

Neste trabalho é proposta uma formulação para acoplar os modelos continuous e hybridizable
discontinuous Galerkin a fim de analisar problemas conjugados de transferência de calor. Este
modelo é então usado para estudar a resposta térmica de perfis pultrudidos de secção tubular
em polímero reforçado com fibras de vidro (GFRP) sob a acção do fogo.

O primeiro passo desta tese é comparar a eficiência computacional dos métodos Continuous
Galerkin (CG) e Hybridizable Discontinuous Galerkin (HDG) de elevada ordem para prob-
lemas de escoamento de fluidos incompressíveis para valores reduzidos do número Reynolds.
Apenas exemplos bidimensionais e métodos directos são considerados no presente trabalho.
Uma comparação exaustiva em termos de tempo de CPU e precisão para ambos os métodos
de discretização é efectuada sob uma plataforma comum. Os resultados apresentados sugerem
que, em termos do tempo de CPU requerido, o HDG pode ser mais eficiente que o CG, para
um determinado grau. A estabilidade do HDG e CG é estudada usando uma solução fabricada
que produz uma abrupta descontinuidade, confirmando que o HDG fornece soluções conver-
gentes e suaves na presença de descontinuidades, enquanto o CG não conseguiu convergir
devido à presença de oscilações numéricas.

Em seguida, a solução do problema acoplado Navier-Stokes/convecção-difusão, utilizando
a aproximação de Boussinesq, é formulada no contexto HDG e analisada usando soluções
de referência. Uma estratégia de acoplamento entre os métodos HDG e CG é proposta no
âmbito de operadores elípticos de segunda ordem. A formulação acoplada é implementada
e suas propriedades de convergência são estabelecidas numericamente usando soluções fabri-
cadas. Finalmente, a formulação acoplada proposta entre HDG e CG para a equação do calor
é combinada com as equações acopladas de Navier-Stokes/convecção-difusão para formular
um novo modelo de CG-HDG para resolver problemas de transferência de calor conjugado.
Exemplos de referência são resolvidos usando o modelo proposto e validados com valores de
literatura.

A parte final da tese aplica a formulação proposta CG-HDG acoplada para prever a re-
sposta térmica de uma secção transversal tubular de GFRP. A equação de radiosidade que
governa a radiação interna é adicionada ao modelo acoplado CG-HDG. Os erros de discretiza-
ção são calculados para estabelecer os intervalos de confiança para quantidades de interesse.
Resultados considerando a geometria circular dos cantos da cavidade são apresentados. Estes
estão dentro do intervalo de incerteza estimado. Os tempos de CPU requeridos para resolver
os sistemas de equações lineares sugerem que o modelo proposto CG-HDG é mais eficiente do
que o modelo CG-CG em todos os casos considerados.

palavras-chave: Hybridizable Discontinuous Galerkin, acoplamento, problema con-
jugado de transferência de calor, GFRP, eficiência computacional
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Resumen

En esta tesis se propone una formulación acoplada del método de los elementos finitos clásico
(CG) y el método Hybridizable Discontinuous Galerkin (HDG) para la a solución de problemas
térmicos conjugados. El modelo se utiliza para determinar la respuesta al fuego de Polímeros
Reforzados con Fibras de Vidrio (GFRP) con sección tubular.

El primer paso de la tesis es la comparación de la eficiencia computacional de CG y HDG
de alto orden para problemas de flujo incompresible para número de Reynolds (Re) bajo.
Se consideran sólo ejemplos 2D y métodos de resolución de sistemas lineales directos. Se
presenta una comparación en términos de tiempo de CPU y precisión en la solución para ambas
discretizaciones, bajo la misma plataforma de implementación. Los resultados sugieren que
HDG puede ser más eficiente computacionalmente que CG en tiempo de CPU, para un grado
fijado. La estabilidad de HDG y CG para Re alto se estudia con una solución manufacturada
que produce un frente pronunciado, confirmando que HDG proporciona soluciones convergidas
suaves en presencia de frentes verticales, en casos en que las oscilaciones numéricas de CG no
permiten llegar a convergencia.

A continuación, se plantea la solución del problema acoplado Navier-Stokes/convección-
difusión, con la aproximación de Boussinesq, en el contexto del método HDG, y se analiza con
experimentos numéricos. Se propone una formulación acoplada HDG-CG para la ecuación del
calor. Se comprueban numéricamente las propiedades de convergencia del método propuesto.
Finalmente, se combina la formulación acoplada propuesta para la ecuación del calor con el
acoplamiento con la ecuaciones de Navier-Stokes en el dominio del fluido, creando una nueva
formulación CG-HDG para problemas térmicos conjugados. Se consideran ejemplos clásicos
para validar los resultados comparando con la literatura existente.

La parte final de la tesis aplica la formulación acoplada CG-HDG propuesta a la predicción
de la respuesta térmica de secciones tubulares de GFRP, incluyendo radiosidad interna en el
modelo. Se calculan estimas de los errores de discretización para determinar intervalos de
confianza para las cantidades de interés. Se presentan resultados con geometría con esquinas
curvas en la cavidad mostrando resultados dentro de los intervalos de incertidumbre estimados.
El tiempo de CPU para la resolución de sistemas sugiere que el modelo CG-HDG propuesto
es más eficiente que el clásico método CG-CG en todos los casos considerados.

palabras-clave: Hybridizable Discontinuous Galerkin, acoplamiento, trasmisión del
calor conjugada, GFRP, eficiencia computacional
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ū prescribed velocity vector
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Chapter 1

Introduction

1.1 Motivation

Conjugate heat transfer problem describes the variations of temperature in fluid and solid
domains in a coupled system. In solids, conduction is the dominant phenomenon, whereas in
fluids, convection usually prevails. There are plenty of applications of conjugate heat transfer
models (Dorfman, 2009), like designing effective heat exchangers, forced convection regimes,
etc. The temperature variation in solid is described by the heat conduction equation, whereas
the fluid’s is described by Navier–Stokes and energy equations. The solution of these problems,
however, is far from trivial as convection dominated regimes in fluids may develop sharp
fronts and boundary layers. In solids, the solution to the conduction equation is relatively
smooth in the absence of strong non-linearities in the material properties, which can depend
on temperature. The problem considered in the present context is the transient thermal
response of a 2-D Glass Fiber Reinforced Polymer (GFRP) tubular cross-section under fire,
which belongs to the class of conjugate heat transfer problems. GFRP is a composite material

Figure 1.1: GFRP tubular beam profile considered in this work under experimental
setup (Correia et al., 2010).
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2 Introduction

which offer several advantages over traditional materials such as high strength, lightweight,
low maintenance, durability, etc. Owing to their favourable properties, they are used in
plenty of applications that include aeronautic, naval, off-shore structures and civil engineering.
In spite of numerous advantages, the fire performance of GFRP composites is the major
factor that affects their wider usage in engineering structures. Standard Fiber Reinforced
Polymer (FRP) materials are flammable, thus, offering inadequate fire reaction. Mouritz et al.
(2009) summarised the different processes involving the combustion of polymeric composites
namely, thermal, chemical, physical and failure processes. Hence, the fire reaction behaviour
of the composites is a complex multi-physics problem. In addition, since composites are
made of two or more different materials, their thermo-physical properties, like density and
specific heat, are temperature dependent (López, 2017). In addition to conduction in the
GFRP cross-section and conduction and convection of the air in the tubular cavity, internal
radiation should also be taken into account while seeking for the temperature distribution in
the GFRP. The combination of different physical phenomena along with several non-linearities
in the mathematical model makes the problem of accurate computation of the temperature
distribution in the GFRP a challenging one. Once the temperature distribution in the GFRP
is obtained, it can be used to perform the mechanical analysis to understand the failure
characteristics. Hence, in the present work, the problem of predicting the thermal response
of a 2-D GFRP tubular cross-section is considered as it is crucial in analysing its mechanical
behaviour.

This type of conjugate heat transfer flows can form boundary layers that might be difficult
to resolve depending on the temperature difference in the system. As the temperature differ-
ence increases with time, the natural buoyancy of the air develops into a symmetric pattern
of flow inside the cavity. After a certain time instance, the flow becomes unstable losing the
symmetry before settling into a regime with an oscillatory behaviour. This regime is difficult
to predict accurately because of the boundary layers involved in the problem. Therefore,
this problem justifies the use of Discontinuous Galerkin (DG) methods, which are known to
be more robust than classical Continuous Galerkin (CG) schemes in the presence of sharp
fronts. In the present work, a recent class of DG methods, namely Hybridizable Discontin-
uous Galerkin (HDG) method, is considered to solve for the natural convection of air in a
GFRP tubular cross-section. Even though, HDG methods offer various favourable properties
as stated in literature, their applicability to real-world problems is still an open question.
Hence, this work attempts to address this question by applying HDG to the stated applica-
tion of GFRP thermal response and comparing the numerical results of HDG model to the
conventional CG model.

1.2 Objectives and overview

One of the main objectives of this thesis is to explore the applicability of HDG to multi-physics
problems. The main contributions of the thesis are:

1. A comparative study on computational efficiency and accuracy is made between high-
order HDG and CG methods for steady incompressible Navier–Stokes equations. This
type of efficiency study is available for second-order elliptic operators in the literature
and hence, the study is extended to fluid flow problems in the present work. In addi-
tion, a study on the robustness of the methods in presence of sharp fronts is presented
using a manufactured solution. This study on efficiency and robustness helps to choose
the appropriate method depending on the type of practical application. High computa-
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tional efficiency is observed using high-order elements for both HDG and CG methods.
In terms of stability, HDG method is effective in alleviating numerical oscillations near
sharp fronts. The transient term in unsteady Navier–Stokes equations is discretized
using Backward Differentiation Formulae (BDF) schemes for both HDG and CG meth-
ods. An adaptive time stepping scheme is proposed by estimating the local error using
a high-order BDF scheme. This is presented in the Chapter 2 of the thesis. Results on
computational efficiency can also be found at Paipuri et al. (2017a).

2. The second part concerns with solving the conjugate heat transfer problem using a cou-
pled CG-HDG discretization. In absence of singularities, the solution in the solid domain
is often smooth in conjugate heat transfer problems. Hence, in the present work, the
solid domain is discretized using CG method, as it was assumed to be best choice to dis-
cretize the smooth part of the solution. Consequently, the proposed CG-HDG coupled
model uses HDG to discretize the fluid part and CG to solve for the solid domain. Con-
tinuity of temperature and heat flux are the transmission conditions need to be satisfied
at the interface in this problem. First, HDG formulation presented for Navier–Stokes
in Chapter 2 is extended to the coupled Navier–Stokes/convection-diffusion equations.
As a second step, a coupled CG-HDG model formulation is introduced for the heat
conduction equation and the convergence properties are established using numerical ex-
periments. Finally, the ideas from the first two steps are combined to propose a coupled
CG-HDG model for the conjugate heat transfer problem. This coupled CG-HDG model
is compared with CG-CG model, where both fluid and solid domains are discretized
using CG method and HDG-HDG model, where both domains are solved with HDG
discretization. This part is presented in Chapter 3 of the thesis. The proposed HDG-CG
coupled formulation for heat problems, and its application to the solution of coupled
heat-flow problems can also be found at Paipuri et al. (2017b).

3. Finally, the last part of the thesis presents the problem statement and mathematical
model of a GFRP cross-section subjected to fire. The radiosity equation that governs
the internal radiation is presented along with its discretization details and its inclusion
in the governing equations of conjugate heat transfer problem. The problem is solved
using CG-HDG and CG-CG coupled models. In the case of practical problems, the
estimation of discretization errors and uncertainty is crucial to assess the numerical
solution due to unavailability of analytical solutions. The method to estimate the dis-
cretization errors and uncertainty used in present work is discussed in detail. Using
different meshes in space and different time steps, uncertainty in different quantities of
interest are established. These uncertainty estimates are compared for CG-HDG and
CG-CG coupled models. The results from high-order approximations and unstructured
meshes are shown to be within the estimated uncertainty intervals for the corresponding
coupled models. This discussion is provided in Chapter 4.

In order to develop the contributions of this thesis, several tasks are accomplished. They
are summarised as follows:

• A fairer comparison of computational efficiency is made by implementing high-order CG
and HDG methods for incompressible Navier–Stokes equations on the same platform.
Several libraries are shared between the codes, like evaluation of approximation func-
tions, linear solvers, etc. Later, the weak formulations for the conjugate heat transfer
model are derived for CG and HDG methods by coupling Navier–Stokes/convection-
diffusion equations in fluid domain to heat conduction equation in solid part. The weak
formulations of the coupled CG-CG and HDG-HDG models are provided in Appendix A.
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• Two variants of weak formulations for coupled CG-HDG in the framework of second-
order elliptic operators (heat conduction equation, in the present case) are proposed in
this work. Both formulations are implemented on the same platform and it is noticed
that they produce practically identical results. The derived weak formulations are ex-
tended to the governing equations of the conjugate heat transfer model. The results
of CG-HDG, CG-CG and HDG-HDG models are compared with the literature ones for
a benchmark conjugate heat transfer problem. In addition, the theoretical count of
number of non-zero entries in the global tangent matrix is deduced for the considered
coupled models and this can be found in Appendix B.

• The weak formulation of unsteady heat conduction equation is derived considering the
non-linear material properties of GFRP material along with convective and radiative
boundary conditions. Finally, a radiosity model is included in the CG-HDG and CG-CG
models to take into account the internal radiation in GFRP tubular cross-section. The
corresponding weak formulations and linearisation details are presented in Chapter 4.
The derived elemental matrices and the tangent operators of the non-linear contributions
are provided in Appendix C.

In the subsequent section, a brief overview of important DG methods is presented. It is
followed by a literature review on HDG methods, details on existing CG and DG coupled
methods and thermal models of composite materials are provided.

1.3 Discontinuous Galerkin methods

1.3.1 Background

Over the past years, there had been rapid developments in the computing resources which
enabled to solve various complex problems in the real world applications. Still, there are
plenty of challenges in solving problems which are unsteady, multi-physics, multi-scale, etc.
Ever since the introduction of numerical techniques like Finite Difference Methods (FDM),
Finite Volume Methods (FVM) and Finite Element Methods (FEM) (Courant, 1943), their
application to solve engineering problems had a steep growth. There were other well known
schemes proposed like Collocation method, Spectral method, etc. All the methods differ
in two important aspects namely, the way the solution is approximated and the way the
approximated solution satisfies the underlying Partial Differential Equation (PDE). In the
case of FDM, the solution is approximated as local polynomial and the PDE is satisfied
point-wise at mesh points. Even though the method is simple to implement and feasible for
high-order, it becomes ill-suited for complex geometries and discontinuities. FVM uses the
cell average solution as local approximation and the PDE is satisfied in conservative form.
The definition of fluxes at cell interfaces give rise to different variants of FVM and they are
well-suited for linear and non-linear conservation laws. FVM can be applied to complicated
geometries but extending the method to high-order on generalised unstructured meshes is still
an active area of research. Classical FEM which is also known as Continuous Galerkin (CG)
method has properties like geometric flexibility and high-order accuracy. However, the PDE
is only satisfied on a global sense, which can destroy the locality of the problem. This can
pose stability issues in some problems like convection dominated regimes, wave problems, etc.

A combination of FEM and FVM by taking the best properties of two worlds, i.e. uti-
lizing a space basis and test functions as in case of FEM but satisfying the PDE like FVM,
can offer many desirable properties. This lead to the development of Discontinuous Galerkin
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(DG) methods. DG method is a class of finite element methods which uses an element-
by-element discontinuous approximation and the information passes through the numerical
fluxes defined on element boundary. The first DG method was originally proposed to solve
the steady state neutron transport problem by Reed and Hill (1973). The first analysis of
the method was presented in Lesaint and Raviart (1974) which concluded that the method
has optimal convergence rate of O(hk+1) on a Cartesian grid of element size h using a local
polynomial approximation of degree k. The extension of the proposed scheme to non-linear
scalar conservation law was first attempted by Chavent and Salzano (1982), but the scheme
severely limited the time step size to obtain a stable formulation. Since then, DG methods had
been applied to many hyperbolic systems like Maxwell’s equations (Cockburn et al., 2004),
equations of acoustics (Atkins and Shu, 1996), shallow water equations (Engsig-Karup et al.,
2006), etc. The extension of classical DG approach to second order operators was started
by Bassi and Rebay (1997) by rewriting second-order operator as two first-order equations.
This lead to the introduction of Local Discontinuous Galerkin (LDG) method (Cockburn and
Shu, 1998). Another class of DG methods known as Interior Penalty method (IPM) had al-
ready been introduced in Arnold (1982) involving second order operator. These developments
enabled DG methods to be applied to fluid flow problems notably viscous.

Even though the class of DG methods stated have properties like high-order accuracy,
stability and geometric flexibility, they are often criticised for the solution of implicit prob-
lems with second order operators due to their high computational cost compared to other
discretization methods. The main reasons for the increased cost are the duplication of De-
grees of Freedoms (DOFs) at the element interfaces and inability to use static condensation,
a numerical technique that allows to express the interior DOFs in terms of boundary DOFs
of an element thereby reducing the final DOF count of the problem, especially in high-order
computations. In CG method, the DOFs at the element interfaces are shared by both neigh-
bouring elements, whereas in DG methods each element has its own DOFs at interface. Hence,
DOFs are repeated at element edges in 2-D and faces in 3-D in the case of DG methods. As
the computational domain increases, DG calculation costs can quickly become prohibitive.
This effect can be potentially more expensive in the case of unstructured meshes.

HDG methods are designed to address the main drawbacks of most of the DG methods.
In HDG, the DOFs are repeated only at the vertices of the element interfaces in 2-D. Hence,
HDG methods have fewer DOFs compared to other classes of DG methods. In addition to
this, HDG methods are static condensation amenable. In the next section, a brief introduction
to several DG methods used in context of fluid flow problems is presented.

1.3.2 Interior Penalty method

The idea of penalty formulation was proposed in the context of enforcing Dirichlet boundary
conditions (Nitsche, 1971) by introducing penalty terms on the boundary of the domain in
order to penalize the error between true and approximate solutions. Arnold (1982) used this
idea to impose the inter-element continuity by introducing consistent penalty terms. The
salient feature of this formulation is that there is no need of decomposing high-order PDEs
into first-order as in the case of most other DG methods that are used to discretize second-
order operators. The different variants in the method are Symmetric Interior Penalty Galerkin
(SIPG), Nonsymmeteric Interior Penalty Galerkin (NIPG) and Incomplete Interior Penalty
Galerkin (IIPG) methods. In SIPG, two stabilisation terms exist namely, a symmetrizing term
corresponding to fluxes obtained after integration by-parts and a penalty term which imposes
the weak continuity of the numerical solution. The advantage of adding the symmetrizing
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term is the resulting linear systems are symmetric and, thus, more efficient to solve. But
this formulation is stable only when the penalty parameter is above certain threshold value.
On the other hand, in NIPG the symmetrizing term has the opposite sign as the flux term,
thereby losing the symmetry of the formulation. Nevertheless, NIPG is stable for any value
of penalty. The analysis of methods, including error bounds and choice of penalty terms,
can be obtained from Riviére et al. (2001) and Georgoulis and Süli (2005). The SIPG has
k + 1 order of convergence, whereas NIPG method shows k order of convergence in L2 norm
when a polynomial of degree k is used to represent the solution. In spite of IPM having
several positive properties, like optimal convergence and compact support, their applicability
to second order operators is less popular. This is probably due to the requirement of fine
tuning the penalty parameter, which depends on mesh size and degree of approximation.
When a suitable penalty parameter is chosen, this approach can be competitive compared to
other DG methods in terms of accuracy.

1.3.3 Local discontinuous Galerkin method

Local discontinuous Galerkin (LDG) is a mixed method, where second-order operators are split
into two first-order equations by introducing an auxiliary variable. Standard DG method is
applied to each equation by formulating the weak from for each element and then defining
the appropriate numerical fluxes. The choice of the defintion of numerical fluxes give rise to
different formulations, as can be found in Arnold et al. (2000). One of the main drawbacks
of the LDG method is that it introduces even more unknown variables because of the mixed
formulation. Even though, the new additional unknowns can be condensed out of the system
at elemental level, the stencils that arise in LDG method are larger and hence, results in less
sparser matrices. LDG discretization results not only in coupling of DOFs of one element to
couple with DOFs of neighbouring elements, but also to the DOFs of some elements neigh-
bouring the immediate neighbours. The stencil is represented schematically in fig. 1.2. The
LDG weak form of each element can be expressed in primal form by using the so-called lift-
ing operators which express the auxiliary variable in term of numerical solution. The primal
weak form, that is obtained after introducing the lifting operators, is analogous the IPM with
additional terms. Similar to SIPG method, LDG shows optimal convergence with an order
of k + 1 in L2 norm. But, unlike IPM, LDG is less sensitive to the penalty parameter and
hence, it can be more robust.

1.3.4 Compact discontinuous Galerkin method

Compact discontinuous Galerkin (CDG) method (Peraire and Persson, 2008) were first in-
troduced to address the shortcomings of LDG method. CDG method has a more compact
stencil compared to LDG and hence, the name compact discontinuous Galerkin method. The
lifting operators are defined in such a way that the stencil becomes compact in CDG and
at the same time retaining the attractive features of LDG. In addition, CDG scheme proved
to be slightly more stable than LDG (Peraire and Persson, 2008). The compact formulation
produces sparser matrices which in turn have low memory requirements and computational
costs. However, there is a slight computational overhead in computing the lifting operators
compared to LDG scheme. Even though, a priori error estimates require stabilization pa-
rameter of order O(h−1) to get optimal convergence, numerical experiments suggests optimal
convergence is achieved by using the parameter of order O(1) (Peraire and Persson, 2008).
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IPM LDG HDG
Figure 1.2: Stencils of IPM, LDG and HDG methods for matching triangular mesh. Mesh
element under consideration is highlighted in grey and the neighbours that belong to the
stencil are represented with yellow. The elements in green do not belong to the stencil. In
LDG, only edges of the second neighbours, represented in red, belong to the stencil. In case
of HDG, red edges belong to stencil of grey edge and blue edges do not belong to the stencil.

1.4 Hybridizable discontinuous Galerkin method

The DG methods discussed earlier have lot of attractive properties like stability, easy adaptiv-
ity, able to deal with discontinuities in the solution, etc. However, one major drawback that
all the previously mentioned methods suffer is high number of DOFs in the final system to be
solved. Moreover, numerical techniques like static condensation cannot be applied to those
methods as DOFs of one element are dependent on the neighbours. Static condensation can
improve the computational efficiency of the discretization scheme at high-order computations.
Hence, a static condensation amenable DG discretization would address the serious limitation
of other DG schemes and it can be readily parallelized. This resulted in a new class of DG
scheme called Hybridizable Discontinuous Galerkin (HDG) method, which was introduced
by Cockburn et al. (2009b) in the framework of second-order elliptic operator.

Hybridization was introduced in finite element context by Fraejis de Veubeke (1965).
Later, it was shown in Arnold (1985) that the solution of hybridized method can contain
more information than the solution of non-hybridized method. Hybridization techniques were
first applied in the context of DG methods by Cockburn and Gopalakrishnan (2005), which
subsequently lead to development of HDG method. The principle of HDG method is to
introduce a new hybrid variable, the so-called trace, on the mesh skeleton. HDG is also a mixed
method, like LDG or CDG, where an unknown variable and its derivative are approximated
independently. Hence, the final system of unknowns contain a numerical solution of a function,
its derivative and the trace variables on mesh skeleton. However, the numerical flux on each
interface is defined in such a way that it depends only on the elemental variables and the trace
variables shared by the two neighbouring elements in the 2-D case. Therefore, it is possible
to condense out the solution and its derivative unknowns element-by-element and express it
in terms of the trace. This technique is similar to static condensation in CG method, where
interior DOFs are expressed in terms of boundary DOFs inside each element. This is the most
attractive feature of HDG method as the final unknowns in the system are just the trace
variables, which are defined on mesh skeleton. Also, as stated earlier, the hybrid unknowns
have additional information and it is possible to compute a super-convergent solution by a
local element-by-element post-processing. Unlike other DG methods, HDG has the optimal
rate of convergence of k + 1 for solution and its derivatives, whereas the super-convergent
solution is of k+ 2 order, when degree k is used to approximate unknown variables. However,
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CG HDGDG (IPM, LDG)

Figure 1.3: Representation of DOFs for scalar unknown in the final system in CG, DG and
HDG methods.

the super-convergence in the HDG formulations can only be proved in the diffusion dominated
regime. Figure 1.3 shows the fundamental difference between DOFs in CG, DG (IPM, LDG)
and HDG methods for the solution of implicit problems with second order operators. In this
representation, interior DOFs in CG and local DOFs in HDG are condensed out and only
DOFs in the final system of unknowns are represented. The DOFs are repeated at each edge
per node in the case of other DG methods, whereas they are repeated only at the vertices of
the elements in the case of HDG, when compared to CG counterpart.

After their introduction in the context of second-order operator, HDG methods have been
applied to various problems mainly in the case of fluid flow. Cockburn and Gopalakrishnan
(2009) applied the HDG method to Stokes problem using the vorticity formulation. They pro-
posed four different hybridization schemes, which differ in the global unknowns on the mesh
skeleton. This work mainly deals with the mathematical analysis of different hybridization
techniques and did not present any numerical results. Nguyen et al. (2010) considered the
velocity, gradient of velocity and pressure as local unknowns and trace velocity and mean of
pressure as global unknowns for Stokes equations. The numerical tests presented in the paper
shows the optimal convergence for all unknowns and super-convergence for velocity. This pa-
per proposed a novel implementation strategy to eliminate the mean of pressure DOFs using
an augumented Lagrangian multipliers, thereby leaving only trace velocity DOFs as the global
unknowns using an iterative procedure. Cockburn et al. (2010) compared different HDG for-
mulations namely, velocity-pressure-gradient, velocity-pressure-stress and velocity-pressure-
vorticity for Stokes flow. They did the numerical experiments for the different formulations
considered and concluded that velocity-pressure-gradient formulation was the best approxi-
mation for the same computational complexity. Therefore, the same formulation is adopted
in the present work and used throughout the thesis. They also considered an example with a
singularity in the domain and found that all the formulations can only achieve at most order
of convergence of 1. Nonetheless, velocity-pressure-gradient formulation produced the lower
errors in the case of singularity in the problem. Cockburn et al. (2011) considered a new pro-
jection based analysis of HDG for Stokes flow and showed that projection of error in velocity
super-converges. Cockburn and Shi (2014) presented a review of the recent development of
devising HDG methods for Stokes flow. There have been works on variants of Stokes flow
using HDG, such as Wang and Khoo (2013), who proposed HDG method with discontinu-
ous viscosity and Gatica and Sequeira (2016), who analysed a augmented HDG method for
non-linear Stokes flow.

The application of HDG to Navier–Stokes flow was first reported in Peraire et al. (2010).
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The report presented the HDG formulation for Euler and Navier–Stokes equations along with
numerical examples. The steady state HDG formulations are extended to unsteady cases
using backward Euler time integration scheme. Nguyen et al. (2011c) considered HDG for
Navier–Stokes with velocity-pressure-gradient formulation for both steady and unsteady cases.
They used the augmented Lagrangian solution technique developed for Stokes flow in Nguyen
et al. (2010) to reduce the final unknowns to only trace velocity. Backward Differentiation
Formulae (BDF) schemes were used to discretize the time derivative term in this work. Op-
timal convergence rates were reported for a smooth solution at low Reynolds number and
super-convergence was shown for velocity using local post-processing. This paper stated four
distinctive features of HDG method for Stokes/Navier–Stokes flows namely, reduced DOFs,
optimal convergence, super-convergence and unified treatment of boundary conditions. Moro
et al. (2011) extended the HDG scheme for Navier–Stokes to turbulence models. In their work,
Spalart–Allmaras (SA) turbulence model was used to improve the convergence properties of
the method. Giorgiani et al. (2014) proposed a degree adaptive algorithm for Navier–Stokes
using HDG. In their work, the super-convergent solution was used as error estimator to adapt
the degree of approximation in the domain. Several numerical examples in 2-D were analysed
and it was concluded that the proposed algorithm could be computationally more efficient
than non-adaptive solutions. The analysis of HDG for Navier–Stokes was presented in Cesme-
lioglu et al. (2017). It was proven in the work that by super-penalising the jump of the normal
component of the velocity, H(div) conforming methods are recovered. More recent works in-
clude application of HDG to Implicit Large-Eddy Simulation (ILES) flows in Fernandez et al.
(2017). They used HDG for the discretization of Navier–Stokes equations along with parallel
preconditioned Newton-GMRES solver to solve the non-linear system of equations. Numerical
tests with Reynolds number as high as 460, 000 were presented and a rapid convergence and
excellent agreement with experimental data was reported.

HDG were introduced for second-order elliptic operator and they were applied to steady
state convection-diffusion-reaction equation in Cockburn et al. (2009a). In the paper, they
refer the method as Local Discontinuous Galerkin-Hybridizable (LDG-H). In their work, differ-
ent choices of stabilization parameter and the orders of convergence were provided. They had
also compared the proposed HDG method with CG, Brezzi–Douglas–Marini (BDM) (Brezzi
et al., 1985) and Raviart–Thomas (RT) (Raviart and Thomas, 1977) methods in terms of con-
vergence rates. They had concluded that a proper choice of stabilization parameter allows the
HDG scheme to be very close to classical DG scheme for hyperbolic problems, which proved
to be very effective in convective regimes. This work was followed by Nguyen et al. (2009b),
where they approximated the flux in a different way compared to Cockburn et al. (2009a)
so that method can deal with purely convective case. The method was extended to time-
dependent problems using BDF scheme and numerical tests were presented. It was shown
that continuous normal component of flux can be recovered by post-processing the original
flux. The work was extended in Nguyen et al. (2009a), where they applied HDG for non-linear
unsteady convection-diffusion equation. They proposed two different flux formulations in the
paper and did the numerical tests to show the optimal convergence rates. An analysis of HDG
for convection dominated-diffusion equation was presented in Fu et al. (2015b). A priori anal-
ysis showed that HDG has order of convergence of k + 1/2 on general meshes and order of
k + 1 for the meshes that are aligned in the direction of convection velocity. Nonetheless,
numerical experiments confirmed that the optimal convergence of k+ 1 was obtained even on
general meshes in convection-dominated regime. However, the property of super-convergence
was lost. They proposed a novel technique to scale the linear system to obtain the spectral
condition number independent of the diffusion coefficient. They noticed that the condition
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number can be of order O(κ−1), where κ is diffusion coefficient and with the proposed scaling,
they improved the condition number to O(h−1), where h is the size of the element. Qiu and
Shi (2016) proposed a variant of HDG for convection-diffusion equation where polynomials
of degree k + 1 and k were used to approximate scalar variable and its gradient respectively,
where degree k was used to approximate the numerical trace. It was proved that solution
of scalar variable converges with order of k + 2 in L2 norm and this solution was proposed
as super-convergent solution as it was two orders higher than the degree of approximation
of numerical trace. Other recent works include Cockburn and Mustapha (2015), which ap-
plied HDG to fractional diffusion problems and presented the theoretical convergence rates
and Wang et al. (2016), who proposed HDG to fractional convection-diffusion equation.

Soon et al. (2009) applied HDG to linear elasticity problems and an analysis of the method
was provided in Fu et al. (2015a). They concluded that by using too big stabilization param-
eter thus, forcing the jump between displacements to be very small, HDG tends to behave
as CG method. They also studied the HDG formulation for nearly incompressible elastic
materials. They had made the study with a mesh that exhibit locking with CG method and
concluded that HDG does not exhibit locking behaviour. It was also stated that optimal
convergence was attained at nearly incompressible limit. An example with presence of crack
was also provided in their work to demonstrate the HDG ability to handle discontinuities
in the solution and its superior stability properties compared to CG method. Celiker et al.
(2010) proposed HDG for Timoshenko beams and showed the optimal convergence proper-
ties using numerical experiments. Nguyen et al. (2011a) used HDG formulation for acoustics
and Nguyen et al. (2011b) applied it for time harmonic Maxwell’s equations. Cesmelioglu
et al. (2013) presented the analysis of HDG method for Oseen (linearised Navier–Stokes)
equations. Nguyen and Peraire (2012) provided a brief review of application of HDG method
in both fluid and solid mechanics and the related numerical examples. A strategy for solving
free surface flows using HDG was introduced in Gürkan et al. (2016) using the philosophy of
extended finite element methods. Later it was extended to bi-material problems along with
Heaviside enrichment in Gürkan et al. (2017).

Even though HDG has been successfully applied to different kind of problems, their com-
putational efficiency compared to CG and other discretization techniques is only studied in
the context of Laplace equation. There had been a few studies about the efficiency of HDG
methods in the past. Most notably, Kirby et al. (2012) made a comparative study between
HDG and CG for second-order elliptic operator in 2-D. They reported the comparative CPU
times for linear solver in case of HDG and CG for the degree of approximation till 14. They
had concluded that HDG could be as efficient as CG when degree of five or more was used
in the approximation. Later, Yakovlev et al. (2016) extended the study to 3-D case, where
they made the comparative study between HDG and CG for both direct and iterative solvers.
In most of their comparison studies, they considered HDG with degree of approximation
k and CG with degree k + 1. This is because of the fact that HDG can produce super-
convergent solution of order k + 2, which can be compared to the CG solution. They found
out that HDG can outperform CG using direct solver for degree higher than 3 in case of
hexahedral meshes and 5 in case of tetrahedral meshes. In the case of iterative solver, they
concluded that HDG was not as efficient as CG and also HDG takes more iterations than
CG for obtaining a convergent solution. Moreover, HDG showed better scalability in the
case of parallel implementation because of the simplified communication patterns in HDG.
In this work, the authors also pointed out the need to develop better pre-conditioners for
solving linear systems that arise in HDG. Cockburn et al. (2009a) compared HDG and CG
methods for convection-diffusion-reaction problem and concluded that HDG of degree k was
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as efficient as CG of degree k + 1. The work also includes the comparison in terms of L2

norm of error in scalar variable and computational complexity which is measure in terms of
number of non-zeros (nnz) in the stiffness matrix. A comparison of space-time HDG method
with space-time DG method was made in Rhebergen et al. (2013) and concluded that both
approaches perform equally well but reiterated that super-convergent property of HDG can
be further exploited. A scalability study of HDG in compressible flows was made in Roca
et al. (2013) and concluded that GMRES with restart pre-conditioning presents the best weak
scaling. A theoretical floating point operations (FLOPS) count for CG, CDG and HDG for
second order elliptic problem was presented in Huerta et al. (2013). It was concluded that
post-processed solution of HDG was as efficient as CG when the operation count, for a given
level of accuracy, is considered. A comparison between CG, CDG and HDG for wave problems
can be found at Giorgiani et al. (2013), where they presented the results of computational
efficiency for a given level of accuracy. They stated that HDG exhibit similar performance
compared to CG for a given level of accuracy. There have been works on the variants of
HDG namely, Embedded Discontinuous Galerkin (EDG) (Güzey et al., 2007) and Multi-scale
Discontinuous Galerkin (MDG) (Hughes et al., 2006) methods. These methods have the same
number of DOFs as in the case of statically condensed CG system for the same degree of ap-
proximation and hence, can be more efficient than HDG methods. But they do not have the
super-convergence property which has been one of the stand-out features of HDG method.

Owing to the numerous favourable features of the HDG methods, their application to
multi-physics problems is the next logical step after they had been applied to lot of different
benchmark problems in both fluid and solid mechanics. Recently, Sheldon et al. (2016) pro-
posed a HDG method for modeling fluid-structure interaction (FSI) problems. In their work,
HDG formulations for linear and non-linear elastodynamic model and arbitrary Lagrangian-
Eulerian Navier–Stokes were derived. A fully coupled monolithic FSI scheme was established
in the framework of HDG. Several benchmark examples were solved and concluded that their
proposed FSI formulation is well within the results of benchmark results. Prada (2016) applied
HDG in the context of non-linear porous media visco-elastic problems applied to ophthalmol-
ogy. In his work, he solved the equations of viscous fluid coupled with visco-elastic solid and
solved resulting the non-linear equations using the fixed point iteration scheme. The work
highlighted the fact that the dual variables converge at the same rate as primal variables
in HDG which is particularly interesting in their application as dual variables (stresses and
discharge velocity) is of engineering importance. The problem of locking is also suppressed
using HDG which is common in numerical simulations of poro-elasticity using CG methods.
In both the works stated above, HDG was used to discretize all the equations governing the
multi-physics problem. This is due to the limitations of discretization techniques like CG in
presence of strong discontinuities, locking, etc.

1.5 Coupling of DG and CG methods

The coupling of CG and DG methods were first presented by Alotto et al. (2001) in the
simulation of rotating electrical machines. Later, Perugia and Schötzau (2001) developed the
analysis of the coupling for the case of second-order elliptic problems. Both the works were
motivated by the ability of DG methods to handle the hanging nodes on non-matching in-
terfaces. Later, the coupling of LDG and CG methods was proposed by Dawson and Proft
(2002a) for transport problems. Their motivation was to discretize the part of solution with
presence of high gradients with LDG and the smoother part of solution with CG. They demon-
strated the advantages of coupling with numerical examples and reported optimal convergence
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rates for 1-D problems. Devloo et al. (2007) used the formulation presented in Baumann and
Oden (1999) for the DG part of solution. Their work considers Streamline Upwind Petrov
Galerkin (SUPG) stabilization for convective term of DG discretization and concluded that
it enhances the quality of solution.

Coupling of CG and DG methods were also proposed in the context of shallow water
equations (SWE) in different variants by Dawson and Proft (2002b, 2003, 2004), Blain and
Massey (2005). In those works, DG and CG methods were applied on different governing
equations in all the domain. For instance, in the work of Dawson and Proft (2002b), NIPG
method was used to discretize the hyperbolic continuity equations of SWE while CG method
was used for the momentum equation. A coupled LDG and CG model was studied by Zhu
et al. (2011b) for 1-D convection-diffusion equation and later extended the model to pertu-
bated problems of convection-diffusion type in Zhu et al. (2011a) and Zarin (2009). A coupled
formulation of mixed finite element method with DG was proposed by Guo et al. (2014) to
study the miscible displacement problem in porous media. Liu et al. (2009) proposed a cou-
pled continuous-discontinuous Galerkin framework to enhance the applicability and efficiency
of DG method to solve large-scale poroelasticity problems. A study on stability of CG-DG
Galerkin methods for advection-diffusion-reaction problems was presented in Cangiani et al.
(2013). In their work, a different coupling strategy without using transmission conditions on
interface boundary was proposed. Also, in their earlier work, Cangiani et al. (2006) com-
pared the coupled DG-CG model for convection-diffusion equation with DG and stabilised
CG methods. As far as the knowledge of the author is concerned, coupled CG-HDG scheme
has not been proposed yet in any framework and it is developed in this work in Chapter 3.

1.6 Composites thermal models

The thermal models proposed in literature mainly differs in the type of process being mod-
elled. One of the first models was proposed in Henderson et al. (1985), where the thermo-
chemical models developed for wood were applied for composite laminates. Several other
works were presented in Florio et al. (1991), Miller and Weaver (2003), Miano and Gibson
(2009). A finite element model was presented in Sullivan and Salamon (1992a,b) to simu-
late the thermochemical decomposition of polymeric material. The thermochemical response
was used to perform the mechanical analysis and the model was validated with experimen-
tal data. A transient non-linear finite element model was presented in Looyeh and Bettess
(1998) by considering the temperature-dependent thermal properties of GFRP and different
mixed boundary conditions. A similar thermochemical study was made using finite element
simulation by Keller et al. (2006) for liquid-cooled and non-cooled slab components. In their
work, the authors mentioned that it was important to consider the natural convection of air
and internal radiation in enclosed spaces of composite sections. Recently, López (2017) did
a coupled multi-physics finite element simulation of GFRP tubular cross section considering
natural convection of air and internal radiation inside the enclosed cavity. In that thesis, the
author states that natural convection of the air can be a bottleneck in the solution process.

1.7 Notation

Most of the algebra presented in this text is expressed in symbolic (also frequently referred
to as direct, intrinsic or absolute) notation (Holzapfel, 2000). The usual matrix and indicial
notation are sometimes employed in specific cases.
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Throughout the text italic Latin or Greek lowercase letters (a, b, . . . α, β, . . .) denote scalar
quantities, bold italic Latin or Greek lowercase letters (a, b, . . .α,β, . . .) denote vectors and
bold italic Latin or Greek capital letters (A,B, . . .) denote second-order tensors in a d-
dimensional Euclidean space.

Rectangular and single-column matrices built of tensor components on orthogonal frames
are expressed by boldface upright Latin or Greek letters (A,B, . . .a,b . . .ρ,λ . . .). The scalar
products used in the present paper are (·, ·)D and 〈·, ·〉B, which represents the L2 scalar
product in any domain, D, and over any boundary, B, respectively.

Let w and z be generic vector and scalar fields, respectively, defined over Ω. Their error
norms are computed as follows,

||ew||L2(Ω) =

[∫
Ω

(wex −wnum) · (wex −wnum) dΩ

]1/2

,

||ez||L2(Ω) =

[∫
Ω

(zex − znum)2 dΩ

]1/2

,

(1.1)

where suffixes ex and num stand for exact and numerical values. Throughout this thesis,
triangular and quadrilateral elements are designated by Tk and Qk, respectively, where k is
the degree of approximation.

1.8 Finite element spaces

The finite element spaces used in the present work are defined in this section. All the problems
considered are two-dimensional. If Ω and Γ are generic domain and boundary, respectively,
different finite element spaces are defined as follows,

Vhk (Ω) :=
{
v ∈ L2(Ω) : v|Ωe ∈ Pk(Ωe) , ∀Ωe ⊂ Ω

}
,

Λhk(Γ) :=
{
v̂ ∈ L2(Γ) : v̂|Γi ∈ Sk(Γi) , ∀Γi ⊂ Γ

}
,

Wh
k (Ω) :=

{
w ∈ H1(Ω) : w|Ωe ∈ Pk(Ωe) ,∀Ωe ⊂ Ω

}
,

Σh
k(Γ) :=

{
z ∈ L2(Γ) : z|Γi ∈ Sk(Γi) ,∀Γi ⊂ Γ

}
,

(1.2)

where subscript k denotes the degree of polynomial and Pk is the space of polynomials of
degree less than or equal to k. For instance, Wh

k+1(Ω) spans the polynomials of degree less
than or equal to k + 1. The standard segment, Sk, triangular, Tk, and quadrilateral, Qk
regions are defined as,

Sk(Γi) :=
{
sp ; 0 ≤ p ≤ k ; (x1(s), x2(s)) ∈ Γi ; −1 ≤ s ≤ 1

}
,

Tk(Ωe) :=
{
ξp1ξ

q
2 ; 0 ≤ p+ q ≤ k ; (x1(ξ1, ξ2), x2(ξ1, ξ2)) ∈ Ωe ; −1 ≤ ξ1, ξ2, ξ1 + ξ2 ≤ 0

}
,

Qk(Ωe) :=
{
ξp1ξ

q
2 ; 0 ≤ p, q ≤ k ; (x1(ξ1, ξ2), x2(ξ1, ξ2)) ∈ Ωe ; −1 ≤ ξ1, ξ2 ≤ 1

}
.

(1.3)
Depending on the type of elements used, Pk space in (1.2) is computed in one of the standard
elements, i.e., Tk or Qk defined in (1.3).
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Chapter 2

Comparison of hybridizable
discontinuous Galerkin and continuous
Galerkin methods for incompressible
Navier–Stokes equations

2.1 Overview

A comparison of computational efficiency for the velocity-gradient-pressure formulation of
HDG and velocity-pressure CG formulation with Taylor–Hood elements is presented in this
chapter. The results are provided in terms of DOF count, number of non-zeros and CPU times.
Later, time discretization of unsteady Navier–Stokes equations is presented using Backward
Differentiation Formulae (BDF) schemes. An adaptive time stepping scheme is presented and
verified using the example of laminar flow around cylinder.

2.2 The CG and HDG discretization of the incompressible
Navier–Stokes equations

2.2.1 Steady state incompressible Navier–Stokes equations

Let Ω be the domain with boundary ∂Ω divided into Dirichlet, ∂ΩD, and Neumann, ∂ΩN ,
boundaries. The steady state incompressible Navier–Stokes equations can be written as

div (u⊗ u)− div (−pI + ν gradu) = s̄ in Ω, (2.1a)
divu = 0 in Ω, (2.1b)
u = ū on ∂ΩD, (2.1c)

(−pI + ν gradu)n = t̄ on ∂ΩN , (2.1d)

where u is the velocity, p is the kinematic pressure, ν is the kinematic viscosity, s̄ is the body
force, ū is the prescribed velocity on the Dirichlet boundary, ∂ΩD, and t̄ is the prescribed
pseudo traction on the Neumann boundary, ∂ΩN .

The next subsections present the basics on the CG and the HDG discretizations considered
in this work.
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2.2.2 CG formulation

The CG weak form of the equilibrium equations, (2.1a) and (2.1d), and the incompressibility
condition, (2.1b), can be stated as,

(δu, (div (u⊗ u)− div (−pI + ν gradu)− s̄))Ω + 〈δu, ((−pI + ν gradu)n− t̄)〉∂ΩN = 0,

− (δp,divu)Ω = 0.
(2.2)

Using the divergence theorem, integration by-parts, identity div (u⊗u) = u (divu)+(gradu)u
and setting divu = 0, CG weak form is: find u ∈ [H1(Ω)]2 and p ∈ L2(Ω) such that
u = Πh(ū) on ∂ΩD and

(δu, (gradu)u)Ω + (grad δu,−pI + ν gradu)Ω − (δu, s̄)Ω − 〈δu, t̄〉∂ΩN = 0,

− (δp,divu)Ω = 0,
(2.3)

for all δu ∈ [H1(Ω)]2, such that δu = 0 on ∂ΩD, and for all δp ∈ L2(Ω).
If the problem is a pure Dirichlet one, that is ∂Ω = ∂ΩD and ∂ΩN = ∅, the pressure is

determined up to a constant. In this case, the mean of the pressure in Ω is set to a prescribed
value to ensure uniqueness of the solution.

The weak form is discretized with mixed Taylor–Hood approximations (Taylor and Hood,
1973), with degree k for the velocities, u and δu, and degree k−1 for the pressures, p and δp,
satisfying the so-called LBB condition (Brezzi and Fortin, 1991) for stability. The residual of
the Navier–Stokes equations, after spatial discretization, can be expressed as follows,

r (u,p) ≡

[
K + C(u) G

GT 0

]{
u

p

}
−

{
s̄ + t̄

0

}
= 0. (2.4)

In the equation (2.4), K, G and C(u) represent the viscosity, discrete gradient operator
and convective matrices, respectively, while s̄ and t̄ contains the body force and traction
vectors, respectively. The nodal values of velocity and pressure are represented by u and
p, respectively. The elemental matrices used to compute the global system are presented in
Appendix C.

The CG formulation, with Taylor–Hood approximations of degree k for velocity and k− 1
for pressure, leads to errors of order k in H1 norm for velocity and in L2 norm for pressure
and, consequently, errors of order k + 1 in L2 norm are expected for the velocity solution.

This work does not consider stabilized formulations, which would be necessary in highly
convection-dominated problems. Computational efficiency is studied with numerical examples
that do not present sharp fronts, aiming for a fair comparison of the accuracy and CPU time.

2.2.3 HDG formulation

Again, let Ω be the domain with boundary ∂Ω divided into Dirichlet, ∂ΩD, and Neumann,
∂ΩN , boundaries. Assuming Ω is divided into nel number of non-overlapping elements, Ωe,
the union of all interior edges in the finite element mesh is denoted by Γ, i.e., Γ =

⋃nel
e=1 ∂Ωe.

HDG is a mixed formulation method which requires to rewrite the second-order equations
into two first order equations. The Navier–Stokes equation inside each element can be re-
written as follows by taking the account of discontinuities in the approximation spaces between
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elements,

L− gradu = 0 in Ωe,

div (u⊗ u)− div (−pI + νL) = s̄ in Ωe,

divu = 0 in Ωe,

(2.5a)

Ju⊗ nK = 0 on Γ\∂Ω, (2.5b)
J(−pI + νL)nK = 0 on Γ\∂Ω, (2.5c)

u = ū on ∂ΩD,

(−pI + νL)n = t̄ on ∂ΩN ,
(2.5d)

where the new variable L is the gradient of velocity and equations (2.5b) and (2.5c) impose the
continuity of velocity and normal component of pseudo-stress across the element boundaries,
respectively. The jump operator, J·K, is introduced following the definition by Montlaur et al.
(2012). It is defined along the mesh skeleton, Γ, and it involves values from the elements to
the left and the right of the trace, Ωi and Ωj ,

J�K = �i +�j , (2.6)

The definition of the jump operator always involves the normal to the edge of the element.
The salient feature of HDG is the introduction of an independent approximation for the

trace of the velocity, û, on the mesh skeleton, Γ. The introduction of this trace velocity
defines two types of problems, namely local and global. The local problem corresponds to
the solution of Navier–Stokes equations inside each element with û as Dirichlet boundary
condition. However, Navier–Stokes problem with Dirichlet boundary condition on all the
boundary is not solvable unless a condition on pressure is imposed. Hence, a new variable,
ρe ∈ Rnel , is introduced as the mean of the pressure on the boundary of each element. The
strong form of local problem can be written as,

L− gradu = 0 in Ωe,

div (u⊗ u)− div (−pI + νL) = s̄ in Ωe

divu = 0 in Ωe,

(2.7a)

u = û on ∂Ωe, (2.7b)
1

|∂Ωe|
〈p, 1〉∂Ωe = ρe, (2.7c)

for e = 1, . . . , nel. Figure 2.1a shows a representation of local variables and global variables
in blue and red, respectively. The mean of the pressure, ρe, is a scalar value defined for each
element, Ωe and it is denoted by green dot in fig. 2.1a. The weak form of the local problem
using appropriate weighting functions can be written as follows,

(δL, (L− gradu))Ωe + 〈(δLn, (u− û)〉∂Ωe = 0, (2.8a)

(δu,div (u⊗ u))Ωe − (δu, div (−pI + νL))Ωe + 〈δu, τu (u− û)〉∂Ωe

+〈δu, (û⊗ û− u⊗ u)n〉∂Ωe − (δu, s̄)Ωe = 0,
(2.8b)

(δp,divu)Ωe + 〈δp, (u− û) · n〉∂Ωe = 0, (2.8c)

where the Dirichlet boundary condition (2.7b) is applied weakly on all the equations and the
stabilization constant, τu, is introduced in equation (2.8b) to ensure dimensional consistency.
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u, L, p û ρ

(a) Local problem.
û ρ

(b) Global problem.

Figure 2.1: Representation of the nodes in the discretization of the HDG for Navier–Stokes
equations.

After using integration by-parts, the problem becomes: find (u, p,L, û, ρe) ∈ [Vhk (Ω)]2 ×
[Vhk (Ω)]× [Vhk (Ω)]2×2 × [Λhk(Γ)]2 × Rnel satisfying the local problem in every element Ωe,

(δL,L)Ωe + (div δL,u)Ωe − 〈δLn, û〉∂Ωe = 0, (2.9a)

− (grad δu,u⊗ u)Ωe − (δu,div (−pI + νL))Ωe

+ 〈δu, (û⊗ û)n+ τu (u− û)〉∂Ωe − (δu, s̄)Ωe = 0,
(2.9b)

− (grad δp,u)Ωe + 〈δp, û · n〉∂Ωe = 0, (2.9c)
1

|∂Ωe|
〈p, 1〉∂Ωe = ρe, (2.9d)

for all (δu, δp, δL, δû) ∈ [Vhk (Ω)]2 × [Vhk (Ω)]× [Vhk (Ω)]2×2 × [Λhk(Γ)]2 and e = 1, . . . , nel. The
discrete spaces are defined in (1.2). The equation (2.9b) can be rewritten using integration
by-parts as follows,

− (grad δu,u⊗ u)Ωe + (grad δu, (−pI + νL))Ωe + 〈δu, (û⊗ û)n〉∂Ωe

− 〈δu, (−pI + νL)n+ τu (û− u)〉∂Ωe − (δu, s̄)Ωe = 0.
(2.10)

Using equation (2.10), it is possible to define the so-called numerical trace flux of the HDG
on the each element boundary as follows,

( ̂−pI + νL)n = (−pI + νL)n+ τu (û− u) . (2.11)

The local problem (2.9) for each element allows expressing the velocity, u, the gradient of the
velocity, L, and the pressure, p, in terms of the trace of the velocity, û, on the mesh skeleton
and the mean of the pressure at the element, ρe. Therefore, û and ρe can be regarded as
actual unknowns of the problem, that are determined with the global problem.

Equations (2.5b) and (2.5c) define the global problem. The trace of velocity is defined
to be singled-valued for the neighbouring elements and hence, jump is zero which satisfies
equation (2.5b). Equation (2.5c) corresponds to so-called conservativity condition, i.e., the
conservation of the normal fluxes across interior faces of the mesh skeleton. The global
problem is defined using the conservativity condition (2.11) across interior faces, together
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with the Neumann and Dirichlet boundary conditions, and the solvability condition (2.12b)
for the Dirichlet data in the local problems. The global problem is stated as follows,

nel∑
e=1

〈δû, (−pI + νL)n+ τu (û− u)〉∂Ωe = 〈δû, t̄〉∂ΩN
, (2.12a)

〈û · n, 1〉∂Ωe = 0 for e = 1, . . . , nel, (2.12b)
û = P2(ū) on ∂ΩD, (2.12c)

for all (δu, δp, δL, δû) ∈ [Vhk (Ω)]2 × [Vhk (Ω)] × [Vhk (Ω)]2×2 × [Λhk(Γ)]2, such that δû = 0 on
∂ΩD, where the discrete spaces are defined in (1.2) and P2(ū) is the L2 projection of the
Dirichlet data into the approximation space on ∂ΩD. In the case of a pure Dirichlet problem,
that is ∂Ω = ∂ΩD, the mean of the pressure ρe is set to a constant in, for instance, a single
element, closing the problem with an unique solution. Following Nguyen et al. (2011c), τu is
a positive parameter, and it is usually taken as

τu ≈
ν

L
+ |u|, (2.13)

where L is the characteristic length of the problem. Based on dimensional analysis, τu has
same dimensions as the ratio ν/L and the velocity magnitude. The former accounts for the
diffusion effect while the later for the convection effect. Even though the so-called stabilization
parameter has some influence on the accuracy of the HDG solution, the method is very robust
to variations of τu (Cockburn et al., 2011). Nevertheless, as will be seen in the numerical tests
in Section 2.7, this parameter may have an important effect on the stability properties of the
HDG method, to alleviate or remove numerical oscillations in the presence of sharp fronts. In
the present work, for sake of simplicity, τu is either taken as 1 or in the case of high-convective
flows, it is taken as the expected magnitude of maximum velocity in the whole domain.

The discretization of local and global problems (2.9) and (2.12) leads to a discrete residual
of the form

r =



Aûû 0 Aûu AûL Aûp 0

Aρû 0 0 0 0 0

Auû + Cuû(û) 0 Auu + Cuu(u) AuL Aup 0

ALû 0 ALu ALL 0 0

Apû 0 Apu 0 0 AT
ρp

0 −1 0 0 Aρp 0





û

ρ

u

L

p

λ


−



t̄

0

s̄

0

0

0


= 0. (2.14)

The nodal values of û, u, L and p are represented by û, u, L and p, respectively. The
constraints (2.9d) are applied using the Lagrangian multiplier λ. The dashed lines inside the
matrix separates the global and local problems. The elemental matrices used to compute the
system are presented in Appendix C.

The equations below the dashed line in (2.14) correspond to the discretization of the local
problems (2.9). In the linear case, for the Stokes equations, these can be solved element-by-
element to define the so-called local solver, i.e., the expression of the local variables u(e), L(e)

and p(e) (where (e) denotes the nodal values for element Ωe) in terms of global variables û
and ρe. Replacement of the local solver for each element in the global equations (2.12), i.e.,
in the equations above the dashed line in (2.14), leads to a system of equations involving only
the global variables û and ρ. Figure 2.1b represents the nodes corresponding to the actual
unknowns of the global problem of HDG. After the global problem is solved, the solution
inside each element, u(e), L(e) and p(e), can be computed with the local solver.
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Remark 1. Equation (2.9d) must be scaled by the perimeter of the element, |∂Ωe|, to get
a symmetric system, in the case of Stokes problem, after condensation of the local variables.
Another possibility is choosing the average of the pressure inside each element, which must be
scaled by the area of the element.

In the non-linear case, for the Navier-Stokes equations, the solution of the non-linear
system with Newton-Raphson leads to a linear system of equations to be solved in each
iteration. This linear system can be solved analogously to the Stokes solution, i.e., the local
equations are solved element-by-element, to express the local variables in terms of global
variables, leading to a smaller linear system of equations involving only trace variables and
the mean of the pressure in the elements.

The HDG formulation provides a numerical solution with optimal convergence of order
k + 1 in L2 norm for the velocity, u, the pressure, p, and also for the approximation of the
gradient, L. In addition, the mean of the velocity in each element, (u, 1)Ωe , is super-convergent
with errors of order k + 2. Hence, a new super-convergent approximation of velocity, u∗, can
be computed by solving a new problem in each element. The local post-processing proposed
by Nguyen et al. (2010) is used in the present work which requires solving,

−div (gradu∗) = divL in Ωe,

−(gradu∗)n = Ln on ∂Ωe,

(u∗, 1)Ωe = (u, 1)Ωe .

(2.15)

The weak form can be stated in a richer finite dimensional space: find u∗ ∈
[
Vhk+1(Ω)

]2 such
that

(grad δu∗, gradu∗)Ωe = (grad δu∗,L)Ωe ,

(u∗, 1)Ωe = (u, 1)Ωe ,
(2.16)

for all δu∗ ∈
[
Vhk+1(Ω)

]2 and e = 1, . . . , nel, where Vhk+1(Ω) is a richer space with one degree
more than Vhk . The constraint in equation (2.16) is applied using Lagrangian multipliers
for solving the system in the each element. The super-convergent velocity, u∗, converges
asymptotically with a rate of k+2 in the L2 norm for a mesh with uniform degree, k (Cockburn
et al., 2011). Convergence properties for the non-uniform degree are discussed in detail in Chen
and Cockburn (2012, 2014). The computational overhead in computing the super-convergent
solution, u∗, is small as it is done in element-by-element fashion. This solution can be used to
define a reliable and inexpensive error estimator for HDG velocity approximation, u (Giorgiani
et al., 2014).

Remark 2. It is important to apply the Dirichlet boundary conditions using L2 projection
instead of nodal interpolation. It is noticed that nodal interpolation of Dirichlet data results
in the loss of optimal convergence for the gradient of velocity, L, and eventually the super-
convergence of post-processed velocity.

2.3 Static condensation

Static condensation is used in both CG and HDG methods in the present work: the DOFs
that are not shared by neighbouring elements can be expressed in terms of remaining DOFs of
the element, hence reducing the global DOFs of the system. In the case of CG, interior nodes
are not shared by other elements and, therefore, they can be expressed in terms of boundary
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nodes of the element. In the case of HDG, all the local DOFs are approximated independently
inside each element, consequently, they can be expressed in terms of global DOFs.

Let δxm and δxs be the incremental master and slave DOFs in a linearised system. In the
case of CG, master and slave DOFs correspond to boundary and interior DOFs respectively,
while in HDG, they represent local and global DOFs, respectively. A typical linearised system
of equations can be written in the form,

[
Amm Ams

Asm Ass

]{
δxm

δxs

}
= −

{
rm

rs

}
. (2.17)

The matrix Ass is block diagonal and its inverse is well defined. Hence, δxs can be expressed
in terms of δxm in an element-by-element fashion as,

δx(e)
s =

[
−A(e)

ss

]−1
A(e)
smδxm −

[
A(e)
ss

]−1
r(e)
s . (2.18)

Note that (e) represents the elemental matrices. Replacing δxs from equation (2.18) into the
first of the (2.17) equations and assembling into the global system results in the following,

(
Amm −AmsA

−1
ss Asm

)
δxm = −rm + AmsA

−1
ss rs. (2.19)

As the matrices are condensed on elemental basis, the computational overhead is negligi-
ble. In the case of a problem with very high DOF count, this numerical technique can save
significant CPU time in solving the system of equations, especially for high degree approxi-
mations.

2.4 Implementation details

In all the results presented in the current work the shape functions that are used to approx-
imate the variables inside each element are generated using Fekete nodal distributions (Tay-
lor et al., 2000) for triangular elements and Gauss–Lobatto points (Abramowitz, 1974, p.
888) in the case of quadrilateral elements. The shape functions are computed using Jacobi
polynomials (Hesthaven and Warburton, 2002, 2007). All the meshes are generated using
EZ4U (Sarrate and Huerta, 2000, 2002, LaCaN, 2016), which is a high order mesh generator,
and Gmsh (Geuzaine and Remacle, 2009) is used to post process the results.

The non-linear system of equations is solved using full Newton–Raphson method. Relative
incremental and residual norms are used as convergence criteria with a tolerance of 10−12.

An in-house code is implemented in FORTRAN. Only direct solvers are used in the present
work. Harwell Subroutine Library (HSL) (HSL, 2016) routines MA57d and MA41d (Arioli
et al., 1989) are used for solving symmetric and unsymmetric systems, respectively. Both
solvers use Approximate Minimum Degree (AMD) (Amestoy et al., 1996) reordering algorithm
to reorder the linear system of equations. MC75d (William, 1984) is used to estimate the
condition number of the tangent stiffness matrices, κ(A).

All tests were performed on machine equipped with 24 Intel(R) Xeon(R) E5-2620 v2 2.10-
2.60 GHz processors and 64 GB of RAM running OpenSUSE 13.1 (x86_64) using a serial
implementation. The code was compiled using gfortran 4.8.1.
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Table 2.1: Vertices and edges/faces count in terms of number of elements, nel.

Mesh Type Vertices (n0) Edges (n1)/Faces (n2)

Triangular
nel
2

3nel
2

Quadrilateral nel 2nel

Tetrahedral
nel
6

7nel
6

Hexahedral nel 3nel

Table 2.2: Analytical expressions for ndof for HDG and CG.

Method 2D

Triangular Quadrilateral

HDG(Tk/Qk) (3k + 4)nel (4k + 5)nel

CG(TkTk−1/QkQk−1)
(

9k − 9

2

)
nel (6k − 5)nel

3D

Tetrahedral Hexahedral

HDG(Tk/Qk)
(
3k2 + 9k + 7

)
nel

(
9k2 + 18k + 10

)
nel

CG(TkTk−1/QkQk−1)
(

4k2 − 28k

3
+

41

6

)
nel

(
12k2 − 18k + 10

)
nel

2.5 Count of DOFs

A theoretical count of the approximate number of DOFs (ndof), for both HDG (Tk or Qk)
and CG (TkTk−1 or QkQk−1), is presented. The hypothesis for developing the expressions are
provided in the appendix of Huerta et al. (2013). The main assumptions of the analysis are
structured uniform mesh and very large number of elements, i.e., number of boundary faces
are negligible compared to the interior ones. Using the stated hypothesis, the approximate
number of vertices (n0) and edges (n1)/faces (n2) can be expressed in terms of the number
of elements that are provided in table 2.1. The detailed explanation on deducing ndof count
for HDG and CG is presented in Appendix B. The final expressions for ndof are provided in
table 2.2.

Figure 2.2 shows the ratio of ndof of HDG to CG against the degree of approximation,
k, in 2D and 3D spaces. In both cases only, ndof after static condensation are taken into
account.

It is evident from the fig. 2.2a that HDG has less ndof than CG for both triangular and
quadrilateral elements when k > 5 in the case of 2D. This is due to the fact that, even
though HDG has more ndof for velocity, the pressure ndof are condensed to a single scalar



2.5. Count of DOFs 23

2 4 6 8 10 12
0.5

1

1.5

2

2.5

k

nd
of

H
D
G
/n
do

f
C
G

Triangular Quadrilateral

(a) 2D.

2 4 6 8 10 12

1

2

3

4

5

6

k

nd
of

H
D
G
/n
do

f
C
G

Tetrahedral Hexahedral

(b) 3D.

Figure 2.2: Comparison of ndof between HDG (Tk/Qk) and CG (TkTk−1/QkQk−1).

unknown per element, while in CG only interior pressure ndof can be condensed out. Hence,
at high-degree approximations, HDG tends to have lesser ndof than CG. On the other hand,
for 3D, HDG has less ndof than CG only for very high degrees: k = 12 for hexahedral and
k = 19 for tetrahedral meshes of elements. In this case, both types of elements have more
nodes along the edges than vertices in the corresponding 2D case, hence more velocity ndof
are repeated in HDG. However, the post-processed solution of HDG (Tk−1/Qk−1) with degree
k − 1 has the same order of convergence as CG (TkTk−1/QkQk−1) solution of degree k for
velocity. Accordingly, a plot is presented in fig. 2.3, comparing the ratio of number of ndof
of HDG (Tk−1/Qk−1) to CG (TkTk−1/QkQk−1). The ratio favours HDG when k > 4 in the
case of 2D and, in the case of 3D, k > 6 and k > 12 for hexahedral and tetrahedral elements,
respectively.

Table 2.3 shows the various quantities of interest regarding the linear system of equations
for Stokes problem. The number of DOFs of the system is denoted by ndof and number of non-
zeros of the global stiffness matrix matrix and its factor by nnz(A) and nnz(L), respectively.
Since, Stokes problems leads to a symmetric matrix, only lower triangular part of the matrix
is stored. All the numbers are provided only for free DOFs excluding DOFs corresponding to
Dirichlet boundary. From the table, it can be verified that the number of DOFs of HDG is less
than CG for k > 5, as deduced from theoretical count in fig. 2.2a. Nevertheless, the number
of non-zeros in the global matrix and its factor are very similar for k = 4 and perhaps, HDG
system leads to fewer entries from k ≥ 5. At higher degrees the entries in the factors of CG
systems are almost 1.5 times more than HDG systems. This can favour the HDG systems
when using the direct solvers.

It is also worth noting that HDG matrices have a regular block sparsity pattern that is
beneficial for the linear solver (Kirby et al., 2012) for the Laplace equation. Consider a mesh
with triangular elements: each face has contributions from 4 other faces, as shown in fig. 2.1b.
Hence, each row in the final system of HDG has 5 blocks of equal size for velocity DOFs. In
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Figure 2.3: Comparison of ndof between HDG (Tk−1/Qk−1) and CG (TkTk−1/QkQk−1).

Table 2.3: Comparison of DOFs (ndof), number of non-zeros (nnz) in global stiffness matrix
(A) and its factor (L) for Stokes problem with nel = 2048 triangular elements.

k CG(TkTk−1) HDG(Tk) k CG(TkTk−1) HDG(Tk)
ndof

2
9 029 20 095

6
45 634 44 159

nnz(A) 69 641 313 267 2 007 486 1 556 131
nnz(L) 133 866 1 484 136 9 389 209 7 225 163
ndof

3
18 178 26 111

7
54 786 50 175

nnz(A) 400 191 535 279 2 812 691 2 014 687
nnz(L) 1 955 880 2 437 997 12 741 010 9 000 060
ndof

4
27 320 32 127

8
65 938 56 191

nnz(A) 801 236 816 427 3 752 616 2 532 379
nnz(L) 3 755 471 3 751 615 17 006 063 11 344 166
ndof

5
36 482 38 143

9
73 090 62 207

nnz(A) 1 337 001 1 156 711 7 827 261 3 109 207
nnz(L) 6 276 872 5 347 337 21 918 136 13 959 296
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Figure 2.4: Sparsity pattern of HDG (Tk) and CG (TkTk−1) matrices for k = 5 and h = 1/2.
Variable nnz represents number of non-zeros.

fig. 2.4, the sparsity pattern of matrices of HDG and CG are shown for a regular mesh with 32
triangular elements. The blue fill corresponds to velocity-velocity, the black fill corresponds
to pressure-pressure, in the case of CG. The red fill denotes velocity-pressure, in the case of
CG, and velocity-mean pressure, in the case of HDG.

2.6 Comparison of computational efficiency

2.6.1 Kovasznay flow

The benchmark problem Kovasznay flow is considered for the comparison of CG and HDG for
the solution of Stokes and Navier–Stokes problems. Kovasznay flow is an analytical solution
of Navier–Stokes equations in a domain [0, 2]× [−0.5, 1.5] (Kovasznay, 1948).

u =

[
1− exp(λx1) cos(2πx2)
λ
2π exp(λx1) sin(2πx2)

]
,

p = −1

2
exp(2λx1) + C,

(2.20)

where λ = Re
2 −

√
Re2

4 + 4π2 and Re = 1
ν is the Reynolds number. The analytical velocity and

pressure are shown in fig. 2.5. Dirichlet boundary conditions are prescribed for the velocity
on all the boundary. In the case of Stokes problem, a body force equal to the convective term,
div (u⊗ u), is set using the exact solution at Re = 20.

Meshes are obtained by splitting a regular n×n Cartesian grid into either 2n2 triangles or
n2 quadrilaterals, which gives an uniform element size, h = 2/n. All the results are presented
considering the stability parameter τu = 1 on all faces of each element.

In this section, results are presented for the Stokes problem, and just commented for the
Navier–Stokes case.
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Figure 2.5: Kovasznay flow: analytical solution.

Convergence

The L2 norm of the error in the post-processed velocity of HDG is compared to the L2 norm
of error in velocity of CG. Similarly, the L2 norm of the error in pressure is also compared
between HDG and CG.

Figure 2.6 shows the convergence plots, for triangular elements, of velocity for HDG and
CG, while fig. 2.7 has the convergence results of pressure. In HDG, both velocity and pressure
are approximated with the same degree of approximation, k, while in the case of CG, degree
k is used for velocity and k−1 for pressure. The HDG post-processed velocity converges with
order k + 2, compared to k + 1 for CG. Similarly, HDG has k + 1 rate for pressure compared
to the rate of k for pressure of CG.

Although not presented, optimal theoretical convergence with similar accuracy is observed
for Navier–Stokes problem in both HDG and CG.

CPU time for linear solver

CPU times for linear solver (in seconds) are presented, for both HDG and CG, to compare
their computational efficiency. The time taken for pre-processing, computation and assembly
of matrices and post-processing is highly implementation-dependent and hence, not taken into
account. The errors considered for comparison are the L2 norm of error in post-processed
velocity in the case of HDG, with degree k for all variables, and the L2 norm of error in
velocity of CG, with degree k for velocity and k − 1 for pressure.

The results are divided into two groups, namely, low-degree, from 2 to 5, and high-degree,
from 6 to 9. The element sizes, h, used for the low-degree results, are 2/{23, 24, 25, 26}, while
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Figure 2.6: Kovasznay flow: convergence of velocity.
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Figure 2.7: Kovasznay flow: convergence of pressure.
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Figure 2.8: Kovasznay flow: error for HDG vs. CPU time for linear solver with triangular
elements.

coarser meshes, with element sizes 2/{21, 22, 23}, are used in high-degree computations, to
keep error within acceptable bounds.

Figures 2.8 and 2.9 show the CPU time taken by the linear solver for various degrees of
approximation, for both HDG and CG, in the case of Stokes problem with triangular elements.
A common trend can be observed from the plots: to achieve the same level of accuracy, it
is more computationally efficient to use a high-degree coarser mesh than a low-degree finer
mesh. This may be due to the fact that the data dependencies in a high-degree mesh between
elements are lesser than in a low-degree mesh (Yakovlev et al., 2016). A similar trend is
observed in the case of Navier–Stokes results and for quadrilateral elements, hence, the plots
are omitted.

Figure 2.10 presents a similar plot for a given mesh, with element size h = 1/25 for
k = 2 − 5, and with h = 1/22 for k = 6 − 9, comparing the efficiency of HDG and CG in a
single plot. Asterisk (∗) on HDG denotes the post-processed solution for velocity. For a given
level of error, HDG always outperforms CG at all the degrees of approximation presented, and
the performance gap between CG and HDG increases with increasing degree of approximation.
A similar trend in results is obtained for Navier–Stokes problem, but with a greater difference
in the CPU times between HDG and CG at k = 5.

Figures 2.11 and 2.12 show the ratio of CPU times of HDG to CG, for triangular elements
and quadrilateral elements, respectively. As previously, low-degree plots consider h between
0.25 and 0.03125, while high-degree plots have h between 0.5 and 0.25, to keep errors larger
than machine precision. The results of high-degree meshes with h = 1 are omitted because
their CPU times are too small to be reliable. It can be observed from these plots that, for
degree k ≥ 4, most of the points lie below the ratio of 1, indicating that HDG takes lesser
CPU time for linear solver. In the case of high-degree, the CPU times are in the order of 1
second and hence, the ratios are more fluctuating compared to low-degree plots, where CPU
times are bigger and ratios are more reproducible and stable. Nevertheless, the ratios stay
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Figure 2.9: Kovasznay flow: error for CG vs. CPU time for linear solver with triangular
elements.
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Figure 2.10: Kovasznay flow: comparison of error between HDG and CG vs. CPU time for
linear solver.
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Figure 2.11: Kovasznay flow: ratio of CPU times for linear solver vs. element size for triangular
elements.
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Figure 2.12: Kovasznay flow: ratio of CPU times for linear solver vs. element size for quadri-
lateral elements.
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Figure 2.13: Kovasznay flow: ratio of CPU times for linear solver vs. error for triangular
elements.

below 1 in the case of high-degree suggesting HDG is competitive.
Moreover from the convergence plots in fig. 2.6, it is concluded that the HDG produces

lesser error compared to CG for same mesh and same degree of approximation. Hence, a
comparison of CPU time against the error is a fairer comparison.

Figures 2.13 and 2.14 show the ratio of CPU times against error. These plots are produced
using the data of convergence plots in fig. 2.6 and the CPU times for linear solver in figs. 2.8
and 2.9. For a given degree of approximation and mesh, HDG produces lesser error than CG,
thus, for every mesh in the CG plot, the CPU time of HDG is interpolated from figure 2.8 to
determine the CPU time that would provide the same error as CG. HDG is more efficient than
CG for any given accuracy in both triangle and quadrilateral cases. In the case of high-degree
plots, ratios are more fluctuating, again because CPU times are too low.

In the case of Navier–Stokes, a similar trend is observed, with ratios below 1. Hence, the
results are not presented to avoid redundancy.

Finally, fig. 2.15 shows the variation of condition number of global stiffness matrix of the
Stokes problem, κ(A), with degree of approximation, k, for a mesh with triangular elements
and h = 1/25. The condition number increases more rapidly in the case of CG than HDG:
condition number in HDG increases by one order of magnitude when going from degree 2 to
9, whereas in CG it increases by approximately 5 orders.

2.6.2 NACA airfoil

The results presented until this point are for regular uniform meshes with a benchmark prob-
lem. Now, a more practical problem is considered in this section: the computation of the
lift coefficient for the NACA0012 airfoil section at Reynolds number Re = 5000 and angle
of attack αa = 2◦. Steady state Navier–Stokes equations are solved and the error in the lift
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Figure 2.14: Kovasznay flow: ratio of CPU times for linear solver vs. error for quadrilateral
elements.
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Figure 2.16: NACA airfoil: computational mesh (refinement level 4) and zoom.

coefficient is used for presenting the results.
The meshes are generated using an in-house code for a computational domain with a

circular exterior boundary. Four different meshes are used in the computations with nested
refinement. Figure 2.16 shows the most refined mesh used in the computations and the region
around the airfoil.

The mesh is non-uniform with refinement in the vicinity of the airfoil section. Depending
on the angle of attack, αa, the velocity on the inflow half of the boundary is prescribed to
(cosαa e1 + sinαa e2). The rest of the exterior boundary is treated as outflow boundary, as it
is far from the airfoil. No slip boundary condition is applied along the boundary of the airfoil.

The velocity field around the airfoil, obtained using the mesh presented in fig. 2.16 and
degree of approximation k = 5, is shown in fig. 2.17. The singularity at the front tip of the
airfoil can be noticed, and it can be observed that the wake region of the airfoil is steady at
this Reynolds number without any vortices.

The results of computational efficiency with respect to CPU times are presented next
considering the error in lift coefficient. More specifically, CPU times reported are the average
CPU time for each Newton–Raphson iteration and the reference value for the lift coefficient
is obtained with a CG computation with the mesh shown in fig. 2.16 and degree k = 8. In
both HDG and CG, the non–linear solver takes around 5-6 Newton–Raphson iterations for
attaining convergence with tolerance 10−12.

Figure 2.18 shows the ratio of the CPU times for the linear solver vs. element size. The
element size, h, in the case of NACA test is taken as the size of the biggest element in the
mesh. All the ratios lie below 1, leading to the conclusion that HDG is more efficient than
CG. Additionally, in this test, the ratios are nearly constant for each degree of approximation.
The computational domain in this example is relatively big and hence, larger CPU times are
noticed, which are more reliable and reproducible than for the Stokes problem for Kovasznay
flow.

CPU time with error is plotted in fig. 2.19 by interpolating the CPU times of HDG as stated



34 Comparison of HDG and CG methods for incompressible Navier–Stokes equations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
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Figure 2.18: NACA airfoil: ratio of CPU times for linear solver vs. element size for triangular
elements.
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Figure 2.19: NACA airfoil: ratio of CPU times for linear solver vs. error for triangular
elements.

in Kovasznay flow section. Again, all the ratios stay below 1, leading to similar conclusions:
HDG is more computationally efficient than CG when CPU times for the linear solver are
considered.

Finally, fig. 2.20 shows the maximum condition number in Newton–Raphson iterations
in HDG and CG. All the condition numbers presented are for triangular elements and h =
0.78125. On the one hand, in the case of HDG, condition number remains practically constant
with increasing degree of approximation. On the other hand, in the case of CG, there is no
particular trend observed, except that for the cases k = {2, 6}, κ(A) is several orders of
magnitude higher, relatively to HDG.

2.7 Comparison of stability in the presence of sharp fronts

In this section, the robustness of HDG and CG is compared in terms of stability. The problem
chosen to make this study was first reported in Berrone (2001). The analytical solution of
this manufactured problem is given as follows,

u =


(

1− cos

(
2π(exp(R1x1)− 1)

exp(R1)− 1

))
sin

(
2π(exp(R2x2)− 1)

exp(R2)− 1

)
R2

2π

exp(R2x2)

(exp(R2)− 1)

−
(

1− cos

(
2π(exp(R2x2)− 1)

exp(R2)− 1

))
sin

(
2π(exp(R1x1)− 1)

exp(R1)− 1

)
R1

2π

exp(R1x1)

(exp(R1)− 1)

 ,
p = R1R2 sin

(
2π(exp(R2x2)− 1)

exp(R2)− 1

)
sin

(
2π(exp(R1x1)− 1)

exp(R1)− 1

)
exp(R1x1) exp(R2x2)

(exp(R1)− 1)(exp(R2)− 1)
,

(2.21)
where R1 and R2 are two positive parameters. The body force is computed from the Navier–
Stokes equations using the analytical solution (2.21). The problem is solved in the computa-
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Figure 2.20: NACA airfoil: condition numbers with triangular elements and h = 0.78125.

tional domain [0, 1]× [0, 1].
The velocity field of this solution is similar to a counter clockwise vortex. If (x0, y0) are

the coordinates of the center of vortex, then the relation between R1 and R2 with (x0, y0) is

x0 =
log((exp(R1) + 1)/2)

R1
, y0 =

log((exp(R2) + 1)/2)

R2
. (2.22)

By increasing R1, the center goes towards the right side (x1 = 1) of the domain, while by
increasing R2 the center approaches the top edge (x2 = 1) of the domain. In the present
study, R2 is fixed at 0.1 which gives y0 = 0.5125. Hence, the center of vortex is on the line
y0 = 0.5125 and, in this case, its distance to the right side is 1/ 4

√
Re, where Re = 1/ν. R1 is

chosen in such a way that it satisfies the equation 1/R1 log((exp(R1) + 1)/2) = 1− (1/ 4
√
Re).

Thus, a boundary layer is formed near the right handed edge (x1 = 1) of the domain, which
enables to study the relative stability between HDG and CG. Note that this solution is non-
symmetric as the line of symmetry is x2 = 0.5125, which does not coincide with the line of
symmetry of the domain. Hence, the numerical solutions obtained for the present problem
are non-symmetric too.

To make the study, a regular mesh with triangular elements is chosen, with degree of
approximation k = {3, 5}, on a mesh of h = 1/25, which is relatively fine. Navier–Stokes
equations are solved using Dirichlet boundary conditions on all the boundary, computed from
the analytical solution, and also including the corresponding body force. In the case of HDG,
the stabilization parameter, τu, is varied to study its influence on stability. The initial guess
for the non-linear solver is set as the nodal values of the analytical solution, to ensure the
convergence of non-linear solver in the absence of numerical instabilities.

Figure 2.21 shows the solution for Re = 2 000. HDG provides a smooth solution using
τu = 1 with good resolution of boundary layer, whereas no convergence is obtained with CG.
Figure 2.21b shows the CG solution of Oseen equations (linearised Navier–Stokes equations)
with convection velocity equal to the analytical velocity. It is evident between figs. 2.21a and
2.21b that numerical instabilities exist in CG, precluding convergence of the non-linear solver,
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Figure 2.21: Stability study: isolines of the modulus of the velocity field at Re = 2 000 and
k = 3.

while HDG does not present any instabilities. Figure 2.22 shows the isolines of the modulus
of the velocity field for Re = 11 100 and degree k = 3. In the case of HDG, the solution
of the Navier-Stokes equations is presented, for τu = 350, whereas, the solution the Oseen
equations is shown in the case of CG. The CG solution for the Oseen equations draws the
similar conclusion as the previous example: the numerical instabilities pollute the solution
in the whole domain, precluding convergence of the non-linear solver for the Navier–Stokes
equations. In fig. 2.23, the relative residual norm vs. the iteration number is presented for
both cases, showing that non-linear solver does not converge for CG, whereas in HDG case it
exhibits the typical quadratic convergence in the asymptotic limit.

The maximum Reynolds number that can be reached for different degree, k, in the case
of HDG and CG, is presented in table 2.4, showing that HDG is more stable than CG for the
same degree of approximation and mesh. The stabilization parameter, τu, has a considerable
influence on the stability of the method. However, for Re > 11 100, increasing τu further does
not improve the stability properties of the HDG and no convergence is obtained for this mesh
and degree k = 3.
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Figure 2.22: Stability study: isolines of the modulus of the velocity field for Re = 11 100 and
k = 3.
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Figure 2.23: Stability study: relative residual norm vs. iteration number.
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Table 2.4: Maximum Reynolds number for which convergence is achieved, for HDG and CG,
for different degree, k.

Method
Degree

k = 3 k = 5

CG Re = 1 870 Re = 8 300

HDG

τu

1 Re = 2 250 Re = 2 450

100 Re = 8 000 Re = 9 100

350 Re = 11 100 Re = 15 400

2.8 Time discretization using Backward Differentiation
Formulae (BDF)

2.8.1 Unsteady incompressible Navier–Stokes equations

The unsteady incompressible Navier–Stokes equations can be written as follows,

∂u

∂t
+ div (u⊗ u)− div (−pI + ν gradu) = s̄ in Ω× (0, T ],

divu = 0 in Ω× (0, T ],

u = ū on ∂ΩD × (0, T ],

(−pI + ν gradu)n = t̄ on ∂ΩN × (0, T ],

u = u0 in Ω× {t = 0},

(2.23)

where u0 is the initial velocity field in the domain and T is the total time considered. The
transient term is discretized using Backward Differentiation Formulae (BDF) schemes that
belongs to the family of multi-step linear methods. They are discussed briefly in the following
sections.

2.8.2 Backward Differentiation Formulae (BDF) schemes

The time derivative term can be discretized using BDF schemes (Gear, 1971, Brenan et al.,
1995) as follows,

∂u

∂t
≈
αµun+1 − un,BDFµ

∆t
, (2.24)

where ∆t is the time step, un+1 is the velocity at the time instant tn+1. The constant αµ
and the term un,BDFµ depends on the order µ of the BDF scheme. In the present work, BDF
schemes of order 1, 2 and 3 are used. The parameters in equation (2.24) are defined as follows,

un,BDFµ =


un if n ≥ 0 for µ = 1 (BDF1),

2un −
1

2
un−1 if n ≥ 1 for µ = 2 (BDF2),

3un −
3

2
un−1 +

1

3
un−2 if n ≥ 2 for µ = 3 (BDF3),

(2.25)
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Table 2.5: Values of βµ,i, i = 1, . . . , µ and αµ for variable step BDF schemes.

µ = 1 µ = 2 µ = 3

αµ 1
2ωn+1 + 1

ωn+1 + 1

ωn+1ωn
ωn+1ωn + ωn + 1

+
2ωn+1 + 1

ωn+1 + 1

βµ,1 1 (ωn+1 + 1)
(ωn+1 + 1)(ωn+1ωn + ωn + 1)

ωn + 1

βµ,2 — −
ω2
n+1

1 + ωn+1
−ω

2
n(ωn+1ωn + ωn + 1)

ωn+1 + 1

βµ,3 — —
(ωn+1 + 1)ω2

n+1ω
3
n

(ωn + 1)(ωn+1ωn + ωn + 1)

and

αµ =


1 for µ = 1 (BDF1),
3

2
for µ = 2 (BDF2),

11

6
for µ = 3 (BDF3).

(2.26)

The above notation is adopted from the work of Forti and Dedè (2015). This is the standard
BDF schemes for constant time steps. In the case of variable time steps the equation (2.25)
can be rewritten as,

un,BDFµ =


βµ,1un if n ≥ 0 for µ = 1 (BDF1),
βµ,1 un − βµ,2un−1 if n ≥ 1 for µ = 2 (BDF2),
βµ,1 un − βµ,2un−1 + βµ,3un−2 if n ≥ 2 for µ = 3 (BDF3),

(2.27)

where the constants depends on the ratios of successive time steps which are defined as follows,

ωn+1 =
∆tn+1

∆tn
, ωn =

∆tn
∆tn−1

. (2.28)

Using the definitions in equation (2.28), the constants in equations (2.27) are presented in
table 2.5.

The necessary and sufficient condition for a linear multi-step to be convergent is if it is both
consistent and zero-stable (Lambert, 1991). The scheme is consistent if the order conditions
stated in Lambert (1991) are satisfied. The coefficients of the variable step BDF scheme
readily satisfies the order conditions and hence, it is only needed to check for zero-stability.

Zero-stability quantifies the propagation computational errors that come from the pertur-
bations as the time step approaches zero. Thus, a zero-stable multi-step method is insensitive
to perturbations such as round-off errors. Performing this analysis for the variable step BDF
schemes impose a restriction on the ratio of the time steps, ωn+1 and ωn. This analysis is pre-
sented in Grigorieff (1983) and Wang and Ruuth (2008) in the context of variable step BDF
scheme and variable step implicit-explicit linear multi-step methods (VSIMEX), respectively.
In the case of variable step BDF2 scheme, the method is zero-stable if ωn+1 ≤ 1 +

√
2. In

the case of variable step BDF3 scheme, the analysis is complicated because of involvement of
two time step ratios instead of one as in the case of variable step BDF2 scheme. The bounds
reported by several works for variable step BDF3 scheme are presented in table 2.6. As stated



2.8. Time discretization using Backward Differentiation Formulae (BDF) 41

Table 2.6: Upper bounds for variable step BDF3 scheme. The scheme is zero-stable if ωn+1 <
R.

Reference Rb

Wang and Ruuth (2008) 1.1273
Grigorieff (1983) 1.127
Calvo et al. (1990) 1.476

Guglielmi and Zennaro (2001) 1.501

in Grigorieff (1983), these limits can be unrealistic depending on the type of problem be-
ing solved. However, some of the numerical examples presented in Wang and Ruuth (2008),
violates these limits without loss of stability of the method.

Using the definitions in equations (2.24) and (2.27), the weak form of unsteady incom-
pressible Navier–Stokes equations using CG can be stated as: find un+1 ∈ [H1(Ω)]2 and
pn+1 ∈ L2(Ω) such that un+1 = Πh(ūn+1) on ∂ΩD, u = u0 at t = 0 and,(

δu,
αµun+1

∆t

)
Ω

+ (δu, (gradun+1)un+1)Ω + (grad δu, (−pn+1I + ν gradun+1))Ω

− (δu, s̄n+1)Ω − 〈δu, t̄n+1〉∂ΩN −
(
δu,

un,BDFµ

∆t

)
Ω

= 0,

− (δp,divun+1)Ω = 0,

(2.29a)

for all δu ∈ [H1(Ω)]2, δp ∈ L2(Ω) such that δu = 0 on ∂ΩD.
The HDG weak form with the BDF time discretization can be stated as: find (un+1, pn+1,

Ln+1, ûn+1, ρn+1,e) ∈ [Vhk (Ω)]2 × [Vhk (Ω)]× [Vhk (Ω)]2×2 × [Λhk(Γ)]2 ×Rnel in every element Ωe

such that u = u0 at t = 0 and,

(δL,Ln+1)Ωe + (div δL,un+1)Ωe − 〈δLn, ûn+1〉∂Ωe = 0,(
δu,

αµun+1

∆t

)
Ωe
− (grad δu,un+1 ⊗ un+1)Ωe − (δu,div (−pn+1I + νLn+1))Ωe

+ 〈δu, (ûn+1 ⊗ ûn+1)n+ τu (un+1 − ûn+1)〉∂Ωe

− (δu, s̄n+1)Ωe −
(
δu,

un,BDFµ

∆t

)
Ωe

= 0,

− (grad δp,un+1)Ωe + 〈δp, ûn+1 · n〉∂Ωe = 0,

1

|∂Ωe|
〈pn+1, 1〉∂Ωe = ρn+1,e for e = 1, . . . , nel,

(2.30a)

nel∑
e=1

〈δû, (−pn+1I + νLn+1)n+ τu (ûn+1 − un+1)〉∂Ωe = 〈δû, t̄n+1〉∂ΩN
,

〈ûn+1 · n, 1〉∂Ωe = 0 for e = 1, . . . , nel,

ûn+1 = P2(ūn+1) on ∂ΩD,

(2.30b)

for all (δu, δp, δL, δû) ∈ [Vhk (Ω)]2 × [Vhk (Ω)] × [Vhk (Ω)]2×2 × [Λhk(Γ)]2, such that δû = 0 on
∂ΩD. The discrete system is similar to the one obtained in the steady state case except for
the new terms arising from time derivative. The same solution procedure described earlier
can be applied to the unsteady case at each time step. It is also possible to apply the local
post-processing to get the super-convergent solution at any desired time step.
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First order BDF (BDF1) scheme coincides with the backward Euler scheme and it is self-
starting as it needs information only from the immediate prior time step. In the case of other
BDF schemes, if µ is the order of the method, it needs first µ − 1 solution values for the
method to start and it is evident from equation (2.25). In the present work, it is done by
using BDF1 for the first time step and, BDF2 for second and third time steps. This procedure
does not guarantee third order accuracy for BDF3 scheme. But, BDF3 is only used as error
estimator in adaptive time stepping scheme and only convergence results of BDF1 and BDF2
schemes are presented.

2.8.3 Taylor–Votex flow

The benchmark example for unsteady Navier–Stokes equations considered in Maday et al.
(1990) is chosen for convergence analysis. The exact solution for Taylor–Vortex problem is

u =

− cos(πx1) sin(πx2) exp
(
−2π2t
Re

)
sin(πx1) cos(πx2) exp

(
−2π2t
Re

)  ,
p = −1

4
(cos(2πx1) + cos(2πx2)) exp

(
−4π2t

Re

)
+ C,

(2.31)

where Re = 1/ν is the Reynolds number and C is a constant. The problem is considered in
the domain [0, 1] × [0, 1] with Reynolds number Re = 20. Dirichlet boundary conditions are
prescribed on all the exterior boundary to be equal to the analytical solution and final time
T = 1 is considered. The analytical solution at the end of T = 1 is shown in the fig. 2.24. The
initial condition is provided from the analytical solution at t = 0. The solution satisfies the
Navier–Stokes equations without any body force and hence, prescribed body force is zero.

A uniform triangular mesh with k = 4 and h = 1/25 along with the stabilisation parameter,
τu = 1, is used on all faces in the results presented for this example. The mesh considered
here is fine enough to keep the spatial errors very low and hence, the dominant errors are the
temporal ones. Time steps of 1/2, 1/22, 1/23 and 1/24 are used to plot the convergence of
BDF1 and BDF2 schemes.

Figure 2.25 shows the L2 norm of the error in the post processed velocity of HDG and the
error in velocity of CG. Similarly, fig. 2.26a presents the L2 norm of the error in pressure for
HDG and CG. It can be noticed that both time stepping schemes display the theoretical rate
of convergence for both velocity and pressure. Since BDF2 scheme is not self starting, the
first step is computed using BDF1 scheme and the rest of the steps using BDF2. As Dirichlet
boundary conditions are prescribed on all boundary, the pressure is prescribed to zero at
one node in CG where as in case of HDG, the mean of the pressure is prescribed to zero in
one element. The constant of the pressure is computed by taking the difference between the
analytical pressure and the numerical value at a node in the mesh. The errors in pressure are
computed using the obtained constant value in both CG and HDG cases. It can be noticed
that the errors in both velocity and pressure for each corresponding time step of HDG and
CG are almost identical and have similar rates of convergence as spatial discretization errors
in this case are very small and errors from time discretization dominate.

Convergence analysis in space is also presented in the context of time discretization
schemes. A time step of 2 × 10−4 is used to keep the temporal errors small enough that
cannot influence the convergence rates in space. BDF2 scheme is used for time integration
while degrees of approximation k = 2 − 5 are used. The stabilisation parameter, τu = 1, is
used on all faces and error at the final time instance, T = 1 sec is computed.
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Figure 2.24: Taylor–Vortex flow: analytical solution.
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Figure 2.25: Taylor–Vortex flow: convergence of velocity in time.
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Figure 2.26: Taylor–Vortex flow: convergence of pressure in time.

Table 2.7: Partitioning scheme for the time interval [0, 2].

Time interval [0, 0.4] [0.4, 0.8] [0.8, 1.2] [1.2, 1.6] [1.6, 2.0]

Number of time steps 16 14 6 6 8

Figures 2.27 and 2.28 shows the convergence plots for velocity and pressure, respectively.
It can be observed that the optimal convergence rates in space are obtained in both CG and
HDG discretizations. HDG produces smaller error for same degree and mesh for both velocity
and pressure as noticed in earlier example of Kovasznay flow in Section 2.6. This example
concludes a complete convergence analysis in space and time for Taylor–Vortex flow.

Finally, a convergence analysis is presented for the case of variable step BDF schemes.
To perform the analysis, the procedure presented in the work of Wang and Ruuth (2008) is
adopted here. The final time, T , is taken as 2 seconds and the whole time interval, [0, 2],
is divided into 5 sub-intervals of equal length. Inside each sub-interval, a different time step
is taken and hence, a variable time step scheme is obtained. Table 2.7 presents the number
of time steps used in each sub-interval for the present analysis. The scheme presented in
table 2.7 is the coarsest temporal grid with a total number of time steps of 50. Four different
temporal grids are obtained by successively doubling the number of steps in each sub-interval.
Therefore, the total number of time steps presented in the analysis are {50, 100, 200, 400}. The
same spatial mesh of k = 4 and h = 1/25 as the previous example is chosen for the analysis.

The convergence plots are presented for BDF1, BDF2 and BDF3 schemes with post-
processed velocity of HDG and velocity of CG in fig. 2.29. It can be noticed that the optimal
convergence rates are obtained for all the three schemes used in the analysis. Even though,
BDF3 scheme needs the first step to be started with a third-order accurate method to recover
the optimal rate, in the present case, the partitioned scheme is chosen in such a way that the
errors from the first few time steps do not influence the global error. The global errors in
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Figure 2.27: Taylor–Vortex flow: convergence of velocity in space.
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Figure 2.28: Taylor–Vortex flow: convergence of pressure in space.
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Figure 2.29: Taylor–Vortex flow: convergence of velocity for variable time stepping scheme.

both CG and HDG are almost identical confirming that the spatial errors are negligible and
temporal errors are dominant.

2.8.4 Error estimation and time step adaption

In this section, a standard technique for estimating the local error in each time step using
BDF3 scheme is considered. The local truncation errors of BDF schemes can be represented
as follows,

‖un,a − un,1‖ = c1∆t2 +O(∆t3),

‖un,a − un,2‖ = c2∆t3 +O(∆t4),

‖un,a − un,3‖ = c3∆t4 +O(∆t5),

(2.32)

where un,a is the analytical solution and un,µ is the numerical solution of BDF scheme of
order µ at nth time step. Therefore, for sufficiently small time step, ∆t, the estimation of
local discretization errors for BDF1 and BDF2 using the solution of BDF3 scheme can be
shown as,

en,1 = ‖un,3 − un,1‖ ≈ c1∆t2,

en,2 = ‖un,3 − un,2‖ ≈ c2∆t3.
(2.33)

Suppose, the local error in the new time step should be the order of a given tolerance, δtol,
i.e., it is required that en,1 < δtol or en,2 < δtol. Hence, a new time step can be chosen in such
a way that,

en,1 ≈ δtol, en,2 ≈ δtol, (2.34)

and the optimal new time step, ∆t, satisfies,

δtol ≈ c13∆t2, δtol ≈ c23∆t3. (2.35)
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From equations (2.33) and (2.35), it can be shown that,

∆t = ∆t

(
δtol
en,µ

) 1
µ+1

for µ = 1, 2. (2.36)

The equation (2.36) gives the optimal time step step at the nth level to have the local
error within δtol. In practice, it is not efficient to repeat every time step with the new optimal
length, if the difference between ∆t and ∆t is not significantly large. Hence, this new optimal
time step is used for the next time step level in the implementation. Hence, equation (2.36)
can be rewritten as,

∆tn+1 = ∆tn

(
δtol
en,µ

) 1
µ+1

for µ = 1, 2. (2.37)

Owing to the limitations of the ratio of time steps discussed before in the variable step BDF
schemes, the proposed algorithm for adaptive time step is presented in algorithm 1. The

Algorithm 1: Adaptive time step algorithm for BDF1 and BDF2 schemes.
Input : δtol > 0, µ = {1, 2},∆tn > 0,un,BDFµ
Output: ∆tn+1

1 Compute un+1,µ and un+1,3 using BDF scheme of order µ and BDF3 schemes,
respectively ;

2 Compute en,µ ;
3 Compute ∆t using equation (2.36) ;

4 if
∆tn
∆tn

≥ b2 then

5 ∆tn+1 = min(∆tn, b3 ∆tn);
6 Set un+1 = un+1,3 ;
7 Put n = n+ 1 ;
8 Go to next time step;

9 else if
∆tn
∆tn

≤ b1 then

10 ∆tn = ∆tn;
11 Repeat the time step;
12 else
13 ∆tn+1 = ∆tn;
14 Go to next time step;

constants b1, b2 and b3 depend on the limitations of the time step ratios discussed earlier.
In the present work, b1 = 0.8 and b2 = 1.1 and b3 = 1.5 are used. The algorithm does not

change the time step if the ratio
∆tn
∆tn

is in the interval [b1, b2]. This is to avoid small changes

in the time step and hence, less variations. The constant b3 is a direct consequence of the
limitation of maximum ratio from the zero-stability analysis. In the present algorithm, since,
BDF3 solution is computed at each time step, it is taken as the solution at that time step.
Hence, the maximum time step ratio corresponding to BDF3 scheme is chosen to have a stable
adaptive algorithm.
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Figure 2.30: Flow around cylinder: computational mesh and zoom.

2.8.5 Flow around the cylinder

In this section, the results of 2-D flow around the stationary cylinder are presented for HDG
and CG using constant step and variable time step BDF schemes. A circular cylinder of
radius 0.5 is considered in a circular domain of radius 20. The mesh used to perform the
analysis is shown in fig. 2.30. The degree of approximation, k = 4 is used in all the analysis
for the present example. The left half of the exterior boundary of the computational domain
is inflow and a constant velocity of 1e1 is prescribed. On the outflow boundary, homogeneous
Neumann boundary condition is specified. No-slip conditions are applied on the boundary of
the cylinder. The kinematic viscosity, ν, is taken as 0.01 and it corresponds to a Reynolds
number of 100. A total time, T , of 160 seconds is considered in the analysis. A velocity of
1e1 is prescribed everywhere in the domain at time, t = 0. In the case of constant time step,
∆t = 0.05 is used in both CG and HDG analysis. Lift and drag coefficients are used for
presenting the results. They are defined as follows,

Cl =
Fl

0.5ρ ‖u‖2∞ D
, and Cd =

Fd

0.5ρ ‖u‖2∞ D
, (2.38)

where ρ is the density, D is the diameter of the cylinder, which is taken as unity here and
‖u‖∞ is the magnitude of the flow velocity, which is 1 in present example. Fl and Fd are the
lift and drag forces acting on the cylinder per unit area and they are computed using following
expressions,

Fl =

∫
S
ρ (−p n2 − t · (e3 × n)n1) dS, and Fd =

∫
S
ρ (−p n1 + t · (e3 × n)n2) dS

(2.39)
where t ·(e3×n) is the tangential shear component of the viscous stress vector t = ν(gradu+
(gradu)T )n and n is unit normal vector to the surface S, which can be written as (n1e1 +
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Figure 2.31: Flow around cylinder: variation of lift and drag coefficients with time for constant
time step of 0.05 sec using HDG and CG.

n2e2). The quantity is (e3 × n) is a tangent vector to surface S and it can be expressed as
(n2e1 − n1e2).

Figure 2.31 shows the variation of lift and drag coefficients with time with both HDG
and CG discretizations with constant time step of 0.05 sec. It is well documented in the
literature (Rajani et al., 2009) that the flow becomes destabilized around the Re = 40 − 50,
generating the asymmetric eddy patterns which are well-known as von Kármán vortex street.
The present results show that the flow first reaches a steady state. This stabilised flow
is destabilised by the perturbation effects which comes from the numerical approximation
schemes, truncation and round-off errors (Braza et al., 1986). Figure 2.32 shows the velocity
contours at two different time instances, i.e., fig. 2.32a is in steady state and fig. 2.32b is in
vortex shedding regime. In the fig. 2.31, the lift and drag coefficients are out of phase between
CG and HDG owing to different time instances when flow destabilises. Another quantity of
interest in this example is Strouhal number (St). Strouhal number is a non-dimensional
number used as a measure of the oscillating flow phenomenon in the wake of the cylinder. It
is defined as,

St =
fsD

‖u‖∞
, (2.40)

where fs is the shedding frequency, D is the diameter of the cylinder and ‖u‖∞ is the mag-
nitude of the flow velocity. The shedding frequency in the present work is computed using
FFT analysis. Table 2.8 compares the lift, drag coefficients and Strouhal number with present
results and literature ones. It is evident from the table 2.8 that the present results are very
close to literature results and also, HDG and CG give very similar results. Note that the lift
and drag coefficients are computed only for the last 10 seconds of the flow where both HDG
and CG have reached an unsteady oscillatory regime.

Now, the problem is solved with adaptive time stepping scheme with HDG and CG dis-
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Figure 2.32: Flow around cylinder: velocity contours at different time instances.

Table 2.8: Lift, drag coefficients and Strouhal number for Re = 100 with constant time step
of 0.05 sec.

Variable Braza et al. (1986) Liu et al. (1998) Present CG/HDG
Lift (Cl) 0± 0.25 0± 0.339 0± 0.329

Drag (Cd) 1.364± 0.015 1.350± 0.012 1.345± 0.009

Strouhal number (St) 0.160 0.164 0.164
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Figure 2.33: Flow around cylinder: variation of lift and drag coefficients with time for adaptive
time stepping scheme for different levels of local error for CG.

cretizations. Two different levels of local error, δtol, are considered at 10−3 and 10−4. In this
case, the simulations are carried out with a constant time step of 0.05 for the first 20 seconds
and then adaptive scheme is employed. This ensures that all the non-physical oscillations
that can occur due to initial data will die before adaption scheme is used. Figs. 2.33 and 2.34
shows the variation of lift and drag coefficients for different local errors specified using CG
and HDG discretizations, respectively. It can be observed from the figs. 2.33 and 2.34 that
the variation of lift and drag coefficients with adaptive time stepping scheme is very similar to
the ones with constant time step of 0.05 sec. Hence, it can be concluded that the chosen time
step of 0.05 sec for constant time step analysis is already small enough to get a time accurate
solution. The variation of time step with flow time is shown in fig. 2.35 for both CG and HDG
discretizations for two levels of local error tolerances. There are few important conclusions
that can be drawn from these plots. Firstly, when the specified local error tolerance is lower,
the maximum time step that the scheme adapts decreases, which can be inferred from the
adaptive algorithm. It is possible to identify four different phases in time step adaption for
both CG and HDG discretizations. First, a constant time step phase used to kill the initial
oscillations in the solution. The second phase lasts from 20 sec to around 40 sec, where the
steady state solution is obtained with development of recirculation zones behind the wake
of the cylinder. As the numerical round-offs and discretization errors are large enough to
destabilize the flow, vortices are started to shred from the cylinder which characterises the
third phase from 40 - 100 sec. Finally, once the vortex shedding is fully developed, the time
step remains constant throughout the flow time. The value of time step in the last phase
of the flow is provided in table 2.9. It can be noticed from the table 2.9 that the value of
time step in final 40 sec for both HDG and CG are very close for the same level of local
error tolerance. Finally, table 2.10 gives the lift and drag coefficients along with Strouhal
number of the adaptive time stepping scheme analysis for both CG and HDG methods. It is
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Figure 2.34: Flow around cylinder: variation of lift and drag coefficients with time for adaptive
time stepping scheme for different levels of local error for HDG.
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Figure 2.35: Flow around cylinder: variation of time step with flow time for adaptive time
stepping scheme for different levels of local error for CG and HDG discretizations.



2.9. Conclusions 53

Table 2.9: Time step values in shedding regime for CG and HDG with adaptive time scheme.

Method δtol = 10−3 δtol = 10−4

CG 0.0468 0.0209
HDG 0.0389 0.0173

Table 2.10: Lift, drag coefficients and Strouhal number for Re = 100 with adaptive time
stepping scheme.

Variable
CG HDG

δtol = 10−3 δtol = 10−4 δtol = 10−3 δtol = 10−4

Cl 0 ± 0.329 0 ± 0.329 0 ± 0.329 0 ± 0.329
Cd 1.344 ± 0.011 1.343 ± 0.011 1.339 ± 0.014 1.338 ± 0.015
St 0.164 0.164 0.164 0.164

evident from the table 2.10 that the values of lift and drag coefficients are very close to the
ones obtained using constant time step analysis and also, literature data. Hence, it can be
concluded that the proposed adaptive time stepping scheme is verified.

2.9 Conclusions

Theoretical DOF count is compared between HDG, with degree k for all variables, and CG
with degree k for the velocity and k − 1 for the pressure. In the case of 2D, HDG has
fewer DOFs than CG, when degree of approximation is more than 5, for both triangular and
quadrilateral elements. In the case of 3D, they tend to be same only for very high degrees.
However, when HDG with degree k−1 is compared to CG with degree k for velocity and k−1
for pressure, i.e., with the same theoretical rates of convergence, the ratio of number of DOFs
favours HDG when k > 4 for 2D and, in the case of 3D, k > 6 and k > 12 for hexahedral and
tetrahedral elements, respectively. The number of non-zero entries in the global system and
its factor are also provided for HDG and CG Stokes problems. HDG systems leads to fewer
non zero entries when the degree of approximation, k ≥ 5.

Then, Kovasznay flow, a benchmark for Stokes and Navier–Stokes problems, is considered
to assess the computational efficiency between HDG and CG in 2D. It is noticed that, using a
high-degree coarser mesh is computationally more efficient than using a low-degree finer mesh,
with respect to CPU time for linear solver in the presence of smooth solutions. Numerical
tests also show that HDG takes lesser CPU time for linear solver when compared to CG, for
the same level of accuracy and for degree greater than 2.

The same comparison is carried out with NACA0012 airfoil example, with the error mea-
sured in the lift coefficient value. Again, HDG is more computationally efficient than CG for
a given level of accuracy.

The condition numbers for HDG and CG are presented for Kovasznay flow and NACA
airfoil examples. In most of the cases, HDG produces lower condition number values than
CG.

A comparison of stability between HDG and CG is also presented, using a manufactured
solution with a boundary layer. It is concluded that HDG can exhibit superior stability
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properties than CG in the presence of sharp fronts, which occurs at high Reynolds numbers.
It is also noticed that the increase of the parameter, τu, can enhance the stability of the HDG
method, thus providing smooth converged solutions for Reynolds numbers much higher than
CG.

The final part of the chapter deals with time discretization of unsteady Navier–Stokes
equations using BDF schemes until order 3. The convergence rates in space and time are
established for constant time step schemes using numerical experiments. The details of vari-
able time stepping scheme are presented and verified using convergence tests. An adaptive
time stepping scheme which estimates the local error with high-order BDF scheme to adapt
the time step is presented. The example of flow around cylinder is considered to verify the
adaptive time stepping scheme with both HDG and CG discretizations.



Chapter 3

Coupling of continuous and
hybridizable discontinuous Galerkin
methods

3.1 Overview

This chapter presents the coupled CG-HDG formulation for conjugate heat transfer problem.
Firstly, the HDG formulation for Navier–Stokes presented in Chapter 2 is extended to coupled
Navier–Stokes/convection-diffusion equations. Following, a coupled CG-HDG formulation is
developed in the framework of heat conduction equation. The ideas from first two sections are
combined to present the coupled CG-HDG formulation for conjugate heat transfer problem.
Numerical results are presented in each section verifying the proposed formulations.

3.2 HDG formulation for coupled
Navier–Stokes/convection-diffusion equations

3.2.1 Governing equations

In this section, HDG formulation introduced for incompressible Navier–Stokes equations in
Chapter 2 is extended to coupled incompressible Navier–Stokes and convection-diffusion equa-
tions. Let Ω be the fluid domain with boundary ∂Ω divided into Dirichlet, ∂ΩD, and Neumann,
∂ΩN , boundaries. The steady state incompressible Navier–Stokes and convection-diffusion
equations can be expressed as,

div (u⊗ u)− div (−pI + ν gradu) = f (θ) + s̄ in Ω,

divu = 0 in Ω,

div (−α grad θ + u θ) = ḡ in Ω,

u = ū on ∂ΩD,

θ = θ̄ on ∂ΩD,

(−pI + ν gradu)n = t̄ on ∂ΩN ,

(−α grad θ + u θ) · n = q̄n on ∂ΩN ,

(3.1)

where u, θ and p are velocity, temperature and kinematic pressure, respectively. Material
properties ν and α are kinematic viscosity and thermal diffusivity, respectively. f (θ) is

55
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the body force, which is a function of temperature, s̄ is an additional external body force
acting on fluid and ḡ is the volumetric heat generation. ū and θ̄ are the prescribed velocity
and temperature on the Dirichlet boundary, ∂ΩD, and t̄ and q̄n are the prescribed pseudo
tractions and normal flux on the Neumann boundary, ∂ΩN .

As it is clear from the governing equations, this is a coupled system in u, p and θ. The
convective term u · (grad θ) in the convection-diffusion equation influences the temperature
distribution and the body force f(θ) in momentum equations governs the velocity of the fluid.
Hence, a coupled system is established in both directions. In the present work, natural buoy-
ancy flows are considered and Boussinesq approximation is used to compute the approximate
body force, f(θ), of Navier–Stokes equations. The artificial linear variation of density with
temperature is expressed as,

ρ = ρ0 (1− β (θ − θ0)) , (3.2)

where β is the thermal expansion coefficient and θ0 is the reference temperature. The density
is assumed to be constant to that of the reference state, ρ0. The gravitational force due to
the artificial variation of the density can be expressed as the following body force vector per
unit of mass of the reference state

f(θ) =
g(ρ− ρ0)

ρ0
= −gβ(θ − θ0), (3.3)

where g is the gravity acceleration vector. The important non-dimensional numbers that are
used in the context of natural buoyancy flows are Rayleigh number (Ra) and Prandtl number
(Pr), which are defined as,

Ra =
gβL3∆ θ

να
, Pr =

ν

α
, where α =

κ

ρ0cp
. (3.4)

In equation (3.4), κ is heat conductivity, L and ∆ θ are the characteristic length and temper-
ature difference in the domain, respectively.

3.2.2 Weak formulation

Using notation, L ≈ gradu and q ≈ −α grad θ, the HDG formulation of the coupled Navier–
Stokes and convection-diffusion equations is: find (u, p,L, θ, q, û, ρe, θ̂) ∈ [Vhk (Ω)]2×Vhk (Ω)×
[Vhk (Ω)]2×2×Vhk (Ω)× [Vhk (Ω)]2× [Λhk(Γ)]2×Rnel ×Λhk(Γ) satisfying the local problem in every
element Ωe,

(δL,L)Ωe + (div δL,u)Ωe − 〈δLn, û〉∂Ωe = 0,

− (grad δu,u⊗ u)Ωe − (δu,div (−pI + νL))Ωe

+ 〈δu, (û⊗ û)n+ τu (u− û)〉∂Ωe − (δu,f(θ))Ωe − (δu, s̄)Ωe = 0,

− (grad δp,u)Ωe + 〈δp, û · n〉∂Ωe = 0,

(3.5a)

1

|∂Ωe|
〈p, 1〉∂Ωe = ρe, (3.5b)(

δq, α−1q
)

Ωe
− (div δq, θ)Ωe + 〈δq · n, θ̂〉∂Ωe = 0,

(δθ,div q)Ωe − (grad δθ,u θ)Ωe + 〈δθ, (û · n− τθ) θ̂〉∂Ωe

+ 〈δθ, τθ θ〉∂Ωe − (δθ, ḡ)Ωe = 0,

(3.5c)
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for e = 1, . . . , nel, and the global problem

nel∑
e=1

〈δû, (−pI + νL)n+ τu (û− u)〉∂Ωe = 〈δû, t̄〉∂ΩN
,

〈û · n, 1〉∂Ωe = 0 for e = 1, . . . , nel,

û = P2(ū) on ∂ΩD,

(3.6a)

nel∑
e=1

〈δθ̂, (q + û θ̂) · n+ τθ(θ − θ̂)〉∂Ωe = 〈δθ̂, q̄n〉∂ΩN ,

θ̂ = P2(θ̄) on ∂ΩD,

(3.6b)

for all (δu, δp, δL, δθ, δq, δû, δθ̂) ∈ [Vhk (Ω)]2 × Vhk (Ω) × [Vhk (Ω)]2×2 × Vhk (Ω) × [Vhk (Ω)]2 ×
[Λhk(Γ)]2×Λhk(Γ) such that δû = 0 and δθ̂ = 0 on ∂ΩD, where the discrete spaces are defined
in (1.2). P2(ū) and P2(θ̄) are the L2 projections of the Dirichlet data into the approximation
space on ∂ΩD. The parameters τu and τθ are positive and, following Nguyen et al. (2011c,
2009b), they are usually taken as

τu ≈
ν

L
+ |u|, τθ ≈

α

L
+ |u · n|, (3.7)

where L is the characteristic length of the problem. Even though the so-called stabilization
parameter has some influence on the accuracy of the HDG solution, the method is very robust
in front of variations of τu and τθ (Nguyen et al., 2009b,a). As stated in Chapter 2, these
parameters can have an important effect on stability properties of the method. The numerical
results in Section 3.2.4 discusses the influence of these parameters on the convergence of the
solution.

The discretization of local and global problems (3.5)-(3.6) leads to a discrete residual pre-
sented in (3.10). This coupled system is solved in a monolithic sense using Newton–Raphson
method computing the exact Jacobian matrix (3.11). As already explained in previous sec-
tions, static condensation is used to express the local variables in terms of global variables and
solve the final system in only global unknowns. The constraint in (3.5b) is applied using a
Lagrangian multiplier λe on each element. These are gathered in the vector λ. The definition
of elemental matrices and tangent operators are presented in Appendix C.

The HDG formulation provides a numerical solution with optimal convergence of order
k + 1 (k is the degree of approximation) in L2 norm for velocity, u, pressure, p, gradient
of velocity, L, temperature, θ, and flux, q. As the mean of the velocity and mean of the
temperature inside each element converges with order k + 2, new approximate solutions, u∗

and θ∗, can be computed element-by-element which converge with order k+ 2. The details of
the post-processing for Navier–Stokes is presented in Chapter 2. The post-processed solution
of the convection-diffusion equation can be obtained by solving following equations,

−div (α grad θ∗) = div q in Ωe,

− (α grad θ∗) · n = q · n on ∂Ωe,

(θ∗, 1)Ωe = (θ, 1)Ωe .

(3.8)

This induces a weak problem in a richer finite dimensional space, i.e., find θ∗ ∈
[
Vhk+1(Ω)

]
such that

− (grad δθ∗, α grad θ∗)Ωe = (grad δθ∗, q)Ωe ,

(θ∗, 1)Ωe = (θ, 1)Ωe ,
(3.9)
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                                  =
0
,

(3
.1
0)

                    

A
û
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for all δθ∗ ∈
[
Vhk+1(Ω)

]
and i = 1, . . . , nel, where Vhk+1(Ω) must be a bigger space with one

degree more than in Vhk (Ω). θ∗ converges asymptotically with a rate of k + 2 in the L2 norm
for a mesh with uniform degree, k.

Numerical experiments in the following section show that the property of super-convergence
is retained in the case of the Navier–Stokes/convection-diffusion coupled formulation for both
velocity and temperature.

3.2.3 Convergence results

In this section, the convergence results of Navier–Stokes equations coupled with convection-
diffusion equation are presented for HDG. The solution of Navier–Stokes equations is taken
as Kovasznay flow (Kovasznay, 1948) in the domain [0, 2] × [−0.5, 1.5] presented in equa-
tion (2.20). The analytical solution considered for the temperature variation is of sinusoidal
form and it is given as follows,

θ = sin

(
3πx1

4

)
sin

(
3πx2

4
+

3π

8

)
. (3.12)

Dirichlet boundary conditions are prescribed for velocity and temperature on all the exterior
boundary. The solution is computed at Re = 20 and the thermal diffusivity, α, is taken as
unity.

As discussed earlier, the Boussinesq approximation term couples the Navier–Stokes and
convection-diffusion equations. In the Boussinesq term (3.3), β is taken as unity, g = −10e2

and θ0 = 0. An appropriate body force term, s̄ in momentum equation, and heat generation,
ḡ, in the convection-diffusion equation are computed from the analytical solution. The body
force term, s̄, has the non-zero contribution only in the convergence analysis. The stabilization
parameters τu and τθ are both taken as unity on all faces of each element in this example.

Figure 3.1 shows the convergence of post-processed solution of velocity and temperature
for triangular meshes for degree k = 2− 9 and element size, h = 2/{2, 22, 23, 24, 25, 26}. It is
clear that the super-convergence of HDG is retained for both velocity and temperature in the
coupled framework.

As the extension of the work in Chapter 2, the results of computational efficiency of
HDG (Tk) and CG (TkTk−1) are presented for the coupled Navier–Stokes/convection-diffusion
equations. Here, only the plots of the ratio of CPU times of HDG to CG against the error are
presented. Figures 3.2 and 3.3 shows the ratio of CPU times with respect to error in velocity
and ratio of CPU times with respect to error in temperature, respectively. As explained in
the Section 2.6, the errors values from CG are used in plots and CPU times of HDG are
interpolated corresponding to the errors of CG. Note that post-processed solutions are used
to compute errors in HDG for both velocity and temperature. From the results, it can be
concluded that HDG outperforms CG in terms of CPU time for linear solver for a given
level accuracy and k ≥ 3. Hence, the conclusions drawn from the computational efficiency
for Navier–Stokes can be extended to the present coupled Navier–Stokes/convection-diffusion
analysis.

3.2.4 Rayleigh–Bénard convection flow

This section presents the results of Rayleigh–Bénard convection flow at different Rayleigh
numbers. This is a standard benchmark example for natural buoyancy flows.

A square cavity of unit length is considered with a temperature gradient along x1−direction.
The top and bottom walls are prescribed with adiabatic boundary conditions, whereas the
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Figure 3.1: Coupled Navier–Stokes/convection-diffusion problem: convergence plots for post-
processed velocity and post-processed temperature with HDG using triangular elements.
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Figure 3.2: Coupled Navier–Stokes/convection-diffusion problem: ratio of CPU times for
linear solver vs. error in velocity for triangular elements.
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Figure 3.3: Coupled Navier–Stokes/convection-diffusion problem: ratio of CPU times for
linear solver vs. error in temperature for triangular elements.

Table 3.1: Rayleigh–Bénard convection flow: stabilization parameters used in the analysis.

Ra 103, 104 105 106 107, 108

τu, τθ 1 10 100 200

laterals walls are prescribed with Dirichlet boundary conditions for temperature. No-slip con-
ditions are applied on all the boundary for the velocity. Rayleigh numbers ranging from 103

to 108, along with Prandtl number (Pr) of 0.71, are considered in the analysis. The temper-
ature difference is kept at unity with left wall at 0.5 and right wall at −0.5, g = −10e2 and
β is chosen based on the Ra. Nusselt number at the hot wall is used to compare the HDG
(Tk) solution with CG (TkTk−1) and other results from literature. Average Nusselt number is
defined as,

Nu = − 1

θh − θc

∫ L

0

∂θ

∂x1
ds, (3.13)

where θh, θc denotes the temperatures on the hall and cold walls, respectively and L is the
length of the cavity.

A uniform mesh with triangular elements of degree k = 5 and element size h = 1/26 is
chosen. All the results presented corresponds to steady state analysis. Sometimes, at higher
Rayleigh number, convergence to the solution could not be achieved in a single step. In this
case, Ra number is increased in a finite number of steps to obtain a converged solution. No
stabilization techniques for the CG method are used.

The stabilization parameters in the case of HDG discretization are critical in obtaining a
solution at higher Ra. Table 3.1 provides the values of parameters used in the present work
for different Ra. The analytical maximum velocity in the domain increases with increasing
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Table 3.2: Rayleigh–Bénard convection flow: summary of important quantities and com-
parison with literature values for Ra = 103 − 105. The velocities of HDG correspond to
post-processed solutions.

Ra Quantity De Vahl Davis (1983) HDG (T5) / CG (T5T4)

103

Nu 1.117 1.117
Max. u1 along x1 = 0.5 3.649 3.649
Max. u2 along x2 = 0.5 3.697 3.697

104

Nu 2.238 2.244
Max. u1 along x1 = 0.5 16.178 16.183
Max. u2 along x2 = 0.5 19.617 16.626

105

Nu 4.509 4.521
Max. u1 along x1 = 0.5 34.73 34.740
Max. u2 along x2 = 0.5 68.59 68.632

Ra number. In the present work, the stabilization parameters are chosen to be in the order
of magnitude of the maximum velocity in the domain for a given Ra.

Figure 3.4 presents the isolines of velocity and temperature at Ra of 104, 106 and 108. It
can be noticed from the plots that as the Ra number increases, a strong boundary layer is
formed at both lateral edges of the domain. The vertical isotherms denote that the dominant
mechanism of heat transfer is conduction and as the isoterms depart from the vertical position,
convection becomes the dominant form of heat transfer. It is evident from the velocity isolines
that the velocity magnitude varies from 20 at Ra = 104 to around 2200 at Ra = 108.

The variation of dimensionless u1 along x1 = 0.5 and dimensionless u2 along x2 = 0.5
are presented in figs. 3.5a and 3.5b, respectively, to show the evolution of boundary layer as
the Ra increases. Similarly, the variation of temperature along x2 = 0.5 is plotted for all the
Ra numbers considered in fig. 3.5c. The present numerical results are compared with Betts
and Haroutunian (1983) whenever applicable and the values are denoted by circle marks in
the plots. The fact that HDG could resolve the boundary layer without any refinement on
boundary shows the effectiveness of using high-order elements.

To validate the results obtained in the present work, various quantities of interest are
compared with the results from literature. The comparison is presented in the tables 3.2
and 3.3, which shows the results of HDG, CG and the literature ones. The table presents
the results of both HDG and CG with that of literature ones. The results from HDG and
CG are practically similar owing to the high-degree approximations and relatively fine mesh.
Nevertheless, HDG produces slightly more accurate solution than CG when Nusselt number
is compared for Ra = 108. In addition, when CPU times for the linear solver are considered,
HDG outperforms CG in the present example using a uniform triangular mesh with h = 1/26

and k = 5. Table 3.4 gives the details of computations for HDG and CG at Ra = 105. Even
though, HDG has slightly more DOFs than CG, the CPU time for the linear solver per one
non-linear iteration of HDG is less than its CG counterpart. This can be attributed towards
the regular block structure of the HDG stiffness matrix in accordance with the study in Kirby
et al. (2012), Yakovlev et al. (2016). This fact is more pronounced by comparing the condition
numbers of the matrix, which is one order of magnitude larger for CG than for HDG, for same
mesh and degree of approximation.
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Figure 3.4: Rayleigh–Bénard convection flow: isolines of post-processed solutions of temper-
ature and velocity at different Ra numbers using HDG.
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Figure 3.5: Rayleigh–Bénard convection flow: distribution of post-processed temperature and
velocity components at different Ra numbers using HDG. Circles correspond to reference
values in Betts and Haroutunian (1983).
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Table 3.3: Rayleigh–Bénard convection flow: summary of important quantities and com-
parison with literature values for Ra = 106 − 108. The velocities of HDG correspond to
post-processed solutions.

Ra Quantity Le Quéré (1991) HDG (T5) CG (T5T4)

106

Nu 8.825 8.825 8.825
Max. u1 along x1 = 0.5 64.83 64.826 64.826
Max. u2 along x2 = 0.5 220.6 220.390 220.390

107

Nu 16.523 16.523 16.521
Max. u1 along x1 = 0.5 148.580 148.583 148.583
Max. u2 along x2 = 0.5 699.236 695.940 695.940

108

Nu 30.225 30.209 30.145
Max. u1 along x1 = 0.5 321.876 321.567 321.568
Max. u2 along x2 = 0.5 2222.39 2221.647 2221.657

Table 3.4: Rayleigh–Bénard convection flow: computational details for HDG and CG for
Ra = 105 and h = 1/26.

HDG (T5) CG (T5T4)

No. of DOFs, ndof 2 31 680 2 03 140
CPU time for linear solver 67.8 sec 75.0 sec
No. of non-linear iterations 13 13
Condition number, κ(A) O(1011) O(1012)

No. of non-zeros, nnz 20 478 391 19 854 033

Hence, it can be advantageous to use high-order HDG methods to solve the coupled
Navier–Stokes/convection-diffusion equations, especially in the presence of strong boundary
layers.

3.3 CG-HDG coupled formulation for the heat equation

3.3.1 Domain representation

Let the domain, Ω, be split into two sub-domains, Ω1 and Ω2, such that Ω̄ = Ω̄1 ∪ Ω̄2 with
an interface ΓI = Ω̄1 ∩ Ω̄2, as shown in fig. 3.6. In physical terms, Ω1 corresponds to fluid
domain and Ω2 represents the solid part in a conjugate heat transfer problem framework. In
this work, either HDG or CG discretization can be considered in Ω1 and Ω2. When HDG is
considered in Ω1 and CG in Ω2, the coupled model will be referred as CG-HDG model, the
model will be denoted by CG-CG model when CG discretization is considered in Ω1 and Ω2

and HDG-HDG model uses HDG discretization in both Ω1 and Ω2.
The domain Ω is assumed to be divided into nel elements, Ωe, with the boundaries ∂Ωe.

Ω̄ =

nel⋃
e=1

Ω̄e, Ωe ∩ Ωk = ∅ for e 6= k, (3.14)
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Figure 3.6: Domain representation: Domain discretization used to present coupled CG-HDG
formulation.

The elements in Ω1 and Ω2 are represented as Ωe
1 and Ωe

2, respectively, while the exterior
boundaries are denoted by Γ1 = ΓD1 ∪ ΓN1 and Γ2 = ΓD2 ∪ ΓN2 , respectively. The superscripts
D and N in the notation of exterior boundaries stands for Dirichlet and Neumann parts,
respectively. The union of all edges in Ω1 is denoted as

Γ1 =

mel⋃
e=1

∂Ωe
1, (3.15)

where mel is the number of elements in Ω1. Similarly, the union of all edges in Ω2 is denoted
as

Γ2 =

pel⋃
e=1

∂Ωe
2, (3.16)

where pel is the number of elements in Ω2. Hence, total number of elements in Ω is nel = mel

+ pel.

3.3.2 Governing equations

The heat equation in Ω1 and Ω2, along with the transmission conditions on ΓI , are

q1 + (α1 grad θ1) = 0 in Ω1, (3.17a)
div q1 = ḡ1 in Ω1, (3.17b)

−div (α2 grad θ2) = ḡ2 in Ω2, (3.17c)

θ1 = θ̄1 on ΓD1 , (3.17d)

θ2 = θ̄2 on ΓD2 , (3.17e)
θ1 − θ2 = 0 on ΓI , (3.17f)

q1 · n1 − (α2 grad θ2) · n2 = 0 on ΓI , (3.17g)

where θ1 and θ2 are the temperatures in Ω1 and Ω2, respectively and q1 is the independently
approximated flux in Ω1. Thermal diffusivity coefficients are denoted by α1, α2, heat genera-
tions per unit volume are given by ḡ1, ḡ2, where the subscripts 1 and 2 denote that quantities
are defined in Ω1 and Ω2, respectively. Unit normal vectors on ΓI , n1 and n2, are outward
vectors to Ω1 and Ω2, respectively, which satisfy n1 = −n2. Dirichlet boundary conditions
are prescribed for both sub-domains on the exterior boundaries to simplify the presentation,
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i.e, ΓN1 = ∅ and ΓN2 = ∅. The extension of the formulation to problems including Neumann
boundary conditions on the exterior boundary is straightforward following the usual procedure
for HDG or CG formulations. Equation (3.17f) represents the continuity of θ, whereas (3.17g)
states the equilibrium of the normal flux across the interface.

3.3.3 Strong formulation of the CG-HDG coupled problem

The strong form of the governing equations in Ω2 can be written as,

−div (α2 grad θ2) = ḡ2 in Ω2,

θ2 = θ̄2 on ΓD2 .
(3.18)

As discussed in Chapter 2, the strong form for any HDG discretization involves two sub-
problems namely, local and global problems. The local problem can be stated inside each
element using trace variable, θ̂1, as the Dirichlet boundary condition. Hence, strong form of
the local problem in an element, Ωe

1, can be expressed as,

q1 + (α1 grad θ1) = 0 in Ωe
1,

div q1 = ḡ1 in Ωe
1,

θ1 = θ̂1 on ∂Ωe
1.

(3.19)

The global problem in HDG states the so-called conservativity condition, i.e, continuity of
the normal fluxes along the interior edges of the mesh, Γ1. It can be stated as follows,

Jq1 · nK = 0 on Γ1,

θ̂1 = θ̄1 on ΓD1 .
(3.20)

As it can be noticed from (3.20), the Dirichlet boundary conditions are applied on the global
problem in Ω1. The transmission conditions along the interface, ΓI , can be stated as follows,

θ̂1 = θ2,

q1 · n1 = (α2 grad θ2) · n2,
(3.21)

The following section presents the weak formulations of the presented equations.

3.3.4 Weak formulation of the CG-HDG coupled problem

As shown in fig. 3.7, in Ω2 the temperature field, θ2, is approximated with a continuous space
on the mesh represented in blue, while in the HDG domain, Ω1, the elemental variables θ1

and q1 are approximated within each element represented in green and a new independently
approximated trace variable, θ̂1, is defined along the red edges (mesh skeleton).

The CG weak form of the heat equation in Ω2 is,

(grad δθ2, α2 grad θ2)Ω2
− 〈δθ2, α2 (grad θ2 · n2)〉ΓI − (δθ2, ḡ2)Ω2

= 0, (3.22)

where δθ2 = 0 on ΓD2 . Equation (3.22) is obtained after multiplying equation (3.17c) with δθ2

and performing integration by parts.
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Â

Ω1 Ω2ΓI

Figure 3.7: Representation of a computational mesh for coupled discretization. Green tri-
angles represent the HDG local elemental variables while the red edges correspond to HDG
trace variable. CG mesh is represented in blue and ΓI is represented in black.

For the HDG domain, Ω1, the discrete problem is expressed as element-by-element local
problems and the so-called global problem (Cockburn et al., 2009b). The local problem in
each element is,

(δθ1, div q1)Ωe1
+
〈
δθ1, τ(θ1 − θ̂1)

〉
∂Ωe1\ΓI

+ 〈δθ1, τ(θ1 − θ2)〉∂Ωe1∩ΓI
− (δθ1, ḡ1)Ωe1

= 0,(
δq1, α

−1
1 q1

)
Ωe1
− (div δq1, θ1)Ωe1

+
〈
δq1 · n, θ̂1

〉
∂Ωe1\ΓI

+ 〈δq1 · n1, θ2〉∂Ωe1∩ΓI
= 0,

(3.23)

where θ̂1 is an independently approximated trace variable along the mesh skeleton, Γ1, which
is represented in red in fig. 3.7, and τ is a stabilization parameter of order O(α1). Parameter
τ has an important effect on stability, accuracy and convergence properties of the HDG
method (Cockburn et al., 2009a). As usual in HDG, the local problem can be solved element-
by-element to express θ1 and q1 in terms of θ̂1 and, in the present case, θ2 as well. Note
that the only difference of equations (3.23) with the standard HDG local problem is that the
Dirichlet data, that is imposed in weak is

θ1 =

{
θ̂1 on ∂Ωe

1\ΓI ,
θ2 on ∂Ωe

1 ∩ ΓI .
(3.24)

For the elements along the interface, no trace variables are considered, as illustrated in fig.
3.7. For elements in the interior of Ω1, the local problem is the standard one, with a weak
imposition of θ1 = θ̂1 on ∂Ωe

1. The Dirichlet boundary condition (3.24) ensures the weak
continuity of the temperature, i.e., the transmission condition (3.17f) on ΓI .

The global problem in Ω1 is the usual HDG global problem, which can be presented as
mel∑
e=1

〈
δθ̂1, q̂1 · n

〉
∂Ωe1\ΓI

= 0, (3.25a)
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θ̂1 = P2(θ̄1) on ΓD1 , (3.25b)

where δθ̂1 = 0 on ΓD1 , P2(θ̄1) is the L2 projection of the Dirichlet data into the approximation
space on ΓD1 and q̂1 · n is the HDG numerical normal flux, which is defined as,

q̂1 · n = q1 · n+ τ(θ1 − θ̂1) on ∂Ωe
1\ΓI . (3.26)

Essentially, the global problem (3.25a) states the so-called conservativity condition, i.e,
the weak continuity of the normal flux across all the interior faces of the mesh in Ω1. The
continuity of the fluxes on the interface, ΓI , i.e., equation (3.17g), is imposed between the
numerical normal flux of HDG, q̂1 · n1, which is defined as,

q̂1 · n1 = q1 · n1 + τ(θ1 − θ2) on ∂Ωe
1 ∩ ΓI , (3.27)

and the flux on the interface from Ω2, which is −α2 grad θ2 · n2, leading to,

− 〈δθ2, q1 · n1 + τ(θ1 − θ2)〉ΓI + 〈δθ2, α2 grad θ2 · n2〉ΓI = 0. (3.28)

By summing equation (3.28) to the weak form of CG (3.22) in Ω2, and using the weak
formulation of HDG, (3.23) and (3.25), in Ω1, the coupled discrete problem is obtained: find
(q1, θ1, θ̂1, θ2) ∈

[
Vhk (Ω1)

]2 × Vhk (Ω1)× Λhk(Γ1\ΓI)×Wh
k+1(Ω2) such that θ̂1 = P2(θ̄1) on ΓD1 ,

θ2 = Πh(θ̄2) on ΓD2 and

(δθ1,div q1)Ωe1
+
〈
δθ1, τ(θ1 − θ̂1)

〉
∂Ωe1\ΓI

+ 〈δθ1, τ(θ1 − θ2)〉∂Ωe1∩ΓI
− (δθ1, ḡ1)Ωe1

= 0,(
δq1, α

−1
1 q1

)
Ωe1
− (div δq1, θ1)Ωe1

+
〈
δq1 · n, θ̂1

〉
∂Ωe1\ΓI

+ 〈δq1 · n1, θ2〉∂Ωe1∩ΓI
= 0,

(3.29a)

for e = 1, . . . ,mel and,
mel∑
e=1

〈
δθ̂1,

(
q1 · n+ τ(θ1 − θ̂1)

)〉
∂Ωe1\ΓI

= 0, (3.29b)

(grad δθ2, α2 grad θ2)Ω2
− 〈δθ2, q1 · n1 + τ (θ1 − θ2)〉ΓI

− (δθ2, ḡ2)Ω2
= 0,

(3.29c)

for all (δq1, δθ1, δθ̂1, δθ2) ∈
[
Vhk (Ω1)

]2×Vhk (Ω1)×Λhk(Γ1\ΓI)×Wh
k+1(Ω2) such that δθ̂1 = 0 on

ΓD1 and δθ2 = 0 on ΓD2 , where the discrete spaces are defined in (1.2). As usual in HDG, the
spaces for approximation in Ω1, Vhk and Λhk , consider polynomials of the same degree k for all
variables. Numerical tests in Section 3.3.6 show that the HDG super-convergence cannot be
retained by the coupling with the CG approximation of same degree, k. However, as expected,
convergence rates of order k+ 2 for the solution, and of order k+ 1 for the flux, are obtained
when higher degree, k+1, is considered for the CG domain. Hence, CG approximation space,
Wh
k+1, spans polynomials of degree k + 1.
The discretization of the system of equations in (3.29) gives rise to a matrix equation of

the form 
Aθ̂θ̂ 0 Aθ̂θ Aθ̂q

0 Kθθ BT
θθ Bθq

Aθθ̂ Bθθ Aθθ Aθq

Aqθ̂ Bqθ Aqθ Aqq



θ̂1

θ2

θ1

q1

 =


0

ḡ2

ḡ1

0

 . (3.30)
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The column vectors θ1,q1, θ̂1 and θ2 contain the DOFs associated to θ1, q1, θ̂1 and θ2, respec-
tively. Static condensation is assumed for the CG discretization, expressing the nodal values
of interior nodes of the element in terms of the nodal values on the edges. The elemental
matrices in equation (3.30) are defined in the Appendix C.

As discussed in previous chapters, one of the attractive features of HDG is being able
to express the local variables, θ1 and q1, in terms of the trace variable θ̂1. This is done
by using static condensation technique applied in an element-by-element fashion (see, for
instance Sevilla and Huerta (2016)). In the present case, θ̂1 and θ2 are coupled at the
interface and hence, the local variables, θ1 and q1, in the HDG domain Ω1 are expressed in
terms of θ̂1 and θ2. Therefore, system (3.30) can be expressed as follows,{

θ1

q1

}
=

[
Aθθ Aθq

Aqθ Aqq

]−1({
ḡ1

0

}
−

[
Aθθ̂ Bθθ

Aqθ̂ Bqθ

]{
θ̂1

θ2

})
, (3.31a)

[
Aθ̂θ Aθ̂q

BT
θθ Bθq

]{
θ1

q1

}
+

[
Aθ̂θ̂ 0

0 Kθθ

]{
θ̂1

θ2

}
=

{
0

ḡ2

}
. (3.31b)

Equation (3.31a) is the so-called HDG local solver, which can be computed element-wise owing
to the fact that the equations corresponding to the local problem of an element do not involve
elemental variables of other elements i.e., the inverted matrix is block diagonal. By replacing
equation (3.31a) in (3.31b), θ1 and q1 are eliminated resulting in a system with unknowns
only in θ̂1 and θ2: [

K11 K12

K21 K22

]{
θ̂1

θ2

}
=

{
f1

f2

}
, (3.32)

where [
K11 K12

K21 K22

]
=

[
Aθ̂θ̂ 0

0 Kθθ

]
−

[
Aθ̂θ Aθ̂q

BT
θθ Bθq

][
Aθθ Aθq

Aqθ Aqq

]−1 [
Aθθ̂ Bθθ

Aqθ̂ Bqθ

]
, (3.33a)

{
f1

f2

}
=

{
0

ḡ2

}
−

[
Aθ̂θ Aθ̂q

BT
θθ Bθq

][
Aθθ Aθq

Aqθ Aqq

]−1{
ḡ1

0

}
. (3.33b)

After solving the system in (3.32) for θ̂1 and θ2, the HDG elemental local variables, θ1 and
q1, and the CG nodal values of the interior nodes can be computed by using equation (3.31a),
and the CG static condensation.

3.3.5 Alternative CG-HDG coupled formulation with a projection
operator on the interface

The coupled formulation presented earlier considers the standard HDG local problem for
the elements that do not share the interface, ∂Ωe

1 ∩ ΓI = ∅, and a non-standard HDG local
problem imposing (3.24) in weak form for elements along the interface, ∂Ωe

1∩ΓI 6= ∅. In terms
of implementation, additional matrices, Bθθ and Bθq, in the elements along the interface
boundary ΓI are needed for the non-standard HDG local solver. An alternative coupling
formulation is proposed in this section to keep the implementation changes to minimum in
any existing HDG and CG codes. The main idea in this formulation is to use a projection
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to satisfy the transmission conditions. This formulation only requires the standard elemental
matrices from HDG (after static condensation of local variables into trace variable) and CG
domains, and a projection operation is used on the HDG elemental matrices before assembling
into the global system. This requires minimal changes to the existing codes and it is noticed
that, in the numerical results, this implementation gives practically the same results as the
earlier one with same convergence rates.

In this case, the Dirichlet boundary conditions for the local problem are defined as follows,

θ1 =

{
θ̂1 on ∂Ωe

1\ΓI ,
P2(θ2) on ∂Ωe

1 ∩ ΓI ,
(3.34)

where in equation (3.34) the operator P2 stands for the L2 projection from the CG space Wh

to the HDG space Vh. Hence, the trace is set to the projection of the CG solution on the
faces along the interface, i.e., θ̂1 = P2(θ2) on ∂Ωe

1 ∩ ΓI . Consequently, the numerical normal
flux along the interface is defined as,

q̂1 · n1 = q1 · n1 + τ (θ1 − P2 (θ2)) on ∂Ωe
1 ∩ ΓI . (3.35)

The jump of fluxes along the interface is weighted with P2 (δθ2) leading to,

− 〈P2 (δθ2) , q1 · n1 + τ (θ1 − P2 (θ2))〉ΓI + 〈P2 (δθ2) , α2 grad θ2 · n2〉ΓI = 0. (3.36)

Using (3.34) and (3.36), the weak formulation of the coupled discrete problem becomes: find
(q1, θ1, θ̂1, θ2) ∈

[
Vhk (Ω1)

]2 × Vhk (Ω1)× Λhk(Γ1\ΓI)×Wh
k+1(Ω2) such that θ̂1 = P2(θ̄1) on ΓD1 ,

θ2 = Πh(θ̄2) on ΓD2 and

(δθ1, div q1)Ωe1
+
〈
δθ1, τ(θ1 − θ̂1)

〉
∂Ωe1\ΓI

+ 〈δθ1, τ(θ1 − P2 (θ2))〉∂Ωe1∩ΓI
− (δθ1, ḡ1)Ωe1

= 0,(
δq1, α

−1
1 q1

)
Ωe1
− (div δq1, θ1)Ωe1

+
〈
δq1 · n, θ̂1

〉
∂Ωe1\ΓI

+ 〈δq1 · n1,P2 (θ2)〉∂Ωe1∩ΓI
= 0,

(3.37a)

for e = 1, . . . ,mel and,
mel∑
e=1

〈
δθ̂1,

(
q1 · n+ τ(θ1 − θ̂1)

)〉
∂Ωe1\ΓI

= 0, (3.37b)

(grad δθ2, α2 grad θ2)Ω2
− 〈P2 (δθ2) , q1 · n1 + τ (θ1 − P2 (θ2))〉ΓI

+ 〈(P2 (δθ2)− δθ2), α2 grad θ2 · n2〉ΓI − (δθ2, ḡ2)Ω2
= 0,

(3.37c)

for all (δq1, δθ1, δθ̂1, δθ2) ∈
[
Vhk (Ω1)

]2 × Vhk (Ω1) × Λhk(Γ1\ΓI) ×Wh
k+1(Ω2) such that δθ̂1 = 0

on ΓD1 and δθ2 = 0 on ΓD2 .
The weak form in equations (3.37) is similar to one presented earlier in equations (3.29) ex-

cept for two major differences. First, θ2 is now replaced by its projection, P2(θ2), in the HDG
local problems (3.37a), and, second, an additional term 〈(P2 (δθ2)− δθ2), α2 grad θ2 · n2〉ΓI
appears in the last equation (3.37c). The implementation of this new term maybe cumber-
some, because it requires the computation of the gradient of the CG elemental basis functions
on the integration points on the interface. However, P2 (δθ2)− δθ2 = O(hk+1), where h is the
mesh size and k is degree of approximation, and therefore, this term can be safely neglected in
the discrete problem without losing neither the convergence nor the accuracy of the solution.
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This formulation does not require the computation of the new matrices that arise in (3.29),
namely Bθθ and Bθq. The projection operation can be done in an element-by-element basis
on the HDG elemental matrices for the elements along the interface boundary. For the sake
of simplifying the presentation the nodal values of the CG approximation, θ2, are split into
values for nodes on the interface, θI2, and the remaining CG nodal values, θi2. The system of
equations can be then represented as,

Aθ̂θ̂ 0 0 Aθ̂θ Aθ̂q

0 PTAθ̂θ̂P + KII
θθ KIi

θθ PTAθ̂θ PTAθ̂q

0 KiI
θθ Kii

θθ 0 0

Aθθ̂ Aθθ̂P 0 Aθθ Aθq

Aqθ̂ Aqθ̂P 0 Aqθ Aqq





θ̂1

θI2

θi2

θ1

q1


=



0

ḡI2
ḡi2

ḡ1

0


, (3.38)

where in equation (3.38), P is the assembly of projection matrices on all the faces along the
interface. This implementation can be easily plugged into any existing HDG solver for heat
equation.

Both coupled formulations (3.29) and (3.37) have been implemented and the comparison
of the numerical results inferred that both are practically identical. In some tests, the first
proposed formulation (3.29) gave slightly smaller errors. The difference might be due to
neglecting the term P2 (δθ2) − δθ2 in the last formulation (3.37). However, the difference in
the errors — even for the coarsest mesh — is negligible and, hence, in all the results presented
in this work, the formulation with projection (3.37) is used neglecting the term P2 (δθ2)−δθ2.

3.3.6 Convergence results

In this section, the convergence results of the coupled CG-HDG formulation for the heat
equation are presented. A square domain, Ω := [0, 1]2 is considered with the analytical
solution,

θ = 1 + cos(πx1) cos(πx2). (3.39)

Dirichlet boundary conditions are prescribed on all the exterior boundary.
The domain is divided into two halves in vertical direction. The domain corresponding to

HDG is Ω1 := [0, 0.5] × [0, 1], the CG domain is Ω2 := [0.5, 1] × [0, 1], and the interface, ΓI ,
is x1 = 0.5. A suitable body force is computed from the heat equation with the considered
analytical solution for both domains, with the diffusivity constants, α2 = α1 = 1. The results
presented here consider a stability parameter of τ = 1 on all faces of each element in HDG
domain, Ω1.

Figure 3.8 shows the convergence for the coupled formulation with same degree for CG and
HDG, with k = 1− 8 and element size, h = 1/{21, 22, 23, 24, 25}. The error in θ is measured
by using L2 norm of errors of the post-processed solution, θ∗1, in Ω1, and CG solution, θ2, in
Ω2. Similarly, error in grad θ is computed using L2 norm of error in q1 in Ω1 and error in
grad θ2 in Ω2, that is,

‖eθ‖L2(Ω) =
√∥∥eθ∗1∥∥2

L2(Ω1)
+ ‖eθ2‖

2
L2(Ω2),

‖egrad θ‖L2(Ω) =
√
‖eq1‖

2
L2(Ω1) + ‖egrad θ2‖

2
L2(Ω2).

(3.40)

When the degree of approximation k is used for both HDG and CG domains, even though
HDG has superior convergence properties, errors in CG domain dominates for both θ and
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Figure 3.8: Coupled CG(Tk)-HDG(Tk): convergence plots in Ω.
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Figure 3.9: Coupled CG(Tk)-HDG(Tk): convergence plots in Ω1.
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Figure 3.10: Coupled CG(Tk+1)-HDG(Tk): convergence plots in Ω.

grad θ. Hence, as shown in fig. 3.8a, the order of convergence of the coupled solution is k+ 1
for θ. Similarly, for grad θ, the order of convergence is k.

Figure 3.9 shows the convergence of θ∗1 and q1 in Ω1 for the coupled CG(Tk)-HDG(Tk)
model. Sub-optimal convergence rates are observed in both variables: for k > 2, θ∗1 converges
with only k+ 1.5 instead of k+ 2, and q1 converges with order k+ 0.5 instead of k+ 1. HDG
super-convergence requires a solution of order k + 1 for q1, and mean of θ1 that converges
with order k + 2 in each element in Ω1. The elements in Ω1 that share the interface, ΓI , do
not possess the mentioned convergence rates because of the coupling with CG domain, Ω2.

To address this shortcoming, higher degree of approximation is considered for the CG
discretization. Figure 3.10a shows the convergence plots for a coupled approximation with
degree k for HDG and degree k + 1 for CG. Optimal convergence rates of both methods are
retained in this case. The post-processed solution of HDG with degree k has the same order
of convergence, which is k+ 2, as the CG solution with degree k+ 1. Similarly, the flux q1 of
HDG converges with same order as grad θ2 of CG, which is k + 1.

The same conclusions are drawn for quadrilateral elements as well and, hence, the results
are omitted.
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3.4 Coupled CG-HDG formulation for conjugate heat transfer
problem

3.4.1 Governing equations

Following fig. 3.6, the governing equations of the conjugate heat transfer problem in Ω1 and
Ω2 are expressed as follows,

L− gradu = 0 in Ω1,

div (u⊗ u)− div (−pI + ν L)− f (θ1) = s̄ in Ω1,

divu = 0 in Ω1,

(3.41a)

q1 + α1 grad θ1 = 0 in Ω1,

div (q1 + u θ1) = ḡ1 in Ω1,
(3.41b)

−div (α2 grad θ2) = ḡ2 in Ω2, (3.41c)

u = ū on ΓD1 ∪ ΓN1 ∪ ΓI , (3.41d)

θ1 = θ̄1 on ΓD1 ,

(q1 + u θ1) · n = q̄n1 on ΓN1 ,
(3.41e)

θ2 = θ̄2 on ΓD2 ,

(−α2 grad θ2) · n = q̄n2 on ΓN2 ,
(3.41f)

θ1 − θ2 = 0 on ΓI ,

q1 · n1 − (α2 grad θ2) · n2 = 0 on ΓI .
(3.41g)

The body force, s̄, prescribed velocity, ū, and heat generation, ḡ2 and ḡ1, are zero for the
conjugate heat transfer problem, per se. However, they are included in the governing equations
as they have non-zero contribution in the numerical experiments considered in the convergence
results. In the case of conjugate heat transfer problem, no-slip boundary condition is applied
for fluid on all the boundary including the interface. Therefore, convective flux entering
the solid domain is zero and the transmission conditions presented in (3.17f) and (3.17g)
are valid for this example. In the numerical tests of convergence analysis, the convective
flux on the interface is non-zero due to non-zero prescribed boundary velocity. However,
this convective flux is assumed to be zero in order to use the same transmission conditions
in (3.17g). The extension of coupled formulation presented in Section 3.3 to the conjugate
heat transfer problem is straightforward and it is presented in next section.

3.4.2 Weak formulation

The coupled CG-HDG formulation presented in Section 3.3.5 is used. Using (3.37) and (3.5),
the weak formulation for the conjugate heat transfer problem can be stated as: find (u, p,L, θ1,
q1, û, ρe, θ̂1, θ2) ∈ [Vhk (Ω1)]2 × Vhk (Ω1) × [Vhk (Ω1)]2×2 × Vhk (Ω1) × [Vhk (Ω1)]2 × [Λhk(Γ1\ΓI)]2 ×
Rmel × Λhk(Γ1\ΓI) ×Wh

k+1(Ω2) such that u = Πh(ū) on ΓD1 ∪ ΓN1 ∪ ΓI , θ̂1 = P2(θ̄1) on ΓD1 ,
θ2 = Πh(θ̄2) on ΓD2 and

(δL,L)Ωe1
+ (div δL,u)Ωe1

− 〈δLn, û〉∂Ωe1
= 0,

− (grad δu,u⊗ u)Ωe1
− (δu, div (−pI + νL))Ωe1

+ 〈δu, (û⊗ û)n+ τu (u− û)〉∂Ωe1
− (δu,f(θ1))Ωe1

− (δu, s̄)Ωe1
= 0,

− (grad δp,u)Ωe1
+ 〈δp, û · n〉∂Ωe1

= 0,

(3.42a)
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1

|∂Ωe
1|
〈p, 1〉∂Ωe1

= ρe, (3.42b)

(δθ1,div q1)Ωe1
− (grad δθ1,u θ1)Ωe1

+ 〈δθ1, (û · n) θ̂1〉∂Ωe1\ΓI

+ 〈δθ1, τθ(θ1 − θ̂1)〉∂Ωe1\ΓI + 〈δθ1, τθ(θ1 − P2 (θ2))〉∂Ωe1∩ΓI
− (δθ1, ḡ1)Ωe1

= 0,(
δq1, α

−1
1 q1

)
Ωe1
− (div δq1, θ1)Ωe1

+ 〈δq1 · n, θ̂1〉∂Ωe1\ΓI

+ 〈δq1 · n1,P2 (θ2)〉∂Ωe1∩ΓI
= 0,

(3.42c)

for e = 1, . . . ,mel, and,
mel∑
e=1

〈δû, (−pI + νL)n+ τu (û− u)〉∂Ωe1
= 0,

〈û · n, 1〉∂Ωe1
= 0 for e = 1, . . . ,mel,

(3.43a)

mel∑
e=1

〈
δθ̂1,

(
(q1 + û θ̂1) · n+ τθ(θ1 − θ̂1)

)〉
∂Ωe1\ΓI

=
〈
δθ̂1, q̄n1

〉
ΓN1

, (3.43b)

(grad δθ2, α2 grad θ2)Ω2
− 〈P2 (δθ2) , q1 · n1 + τθ (θ1 − P2 (θ2))〉ΓI

+ 〈(P2 (δθ2)− δθ2), α2 grad θ2 · n2〉ΓI − (δθ2, ḡ2)Ω2
− 〈δθ2, q̄n2〉ΓN2 = 0.

(3.43c)

for all (δu, δp, δL, δθ1, δq1, δû, δθ̂1, δθ2) ∈ [Vhk (Ω1)]2 × Vhk (Ω1) × [Vhk (Ω1)]2×2 × Vhk (Ω1) ×
[Vhk (Ω1)]2 × [Λhk(Γ1\ΓI)]2 × Λhk(Γ1\ΓI) × Wh

k+1(Ω2) such that δû = 0 on ΓD1 ∪ ΓN1 ∪ ΓI ,
δθ̂1 = 0 on ΓD1 and δθ2 = 0 on ΓD2 , where the discrete spaces are defined in (1.2).

Here the coupling is made between heat equation in Ω2 and the diffusive flux term
of the convection-diffusion equation in Ω1. As discussed in the Section 3.3.5, the term
〈(P2 (δθ2)− δθ2), α2 grad θ2 · n2〉ΓI can be safely neglected without loss of neither the conver-
gence nor accuracy. Finally, the residual and Jacobian matrices of the weak formulation (3.42)
and (3.43) are presented in (3.44) and (3.45), respectively. In order to express the system
in a compact form, the non-linear terms are absorbed into linear terms in (3.44) and (3.45).
The matrix Auθ couples temperature to the momentum equation and the matrices Aθθ̂(û),
Aθθ(u) couples velocity from Navier–Stokes to convection-diffusion equation. Following the
static condensation technique, only unknowns in û,ρ, θ̂1,θ

I
2 and θi2 are solved in the final

system and local variables are computed an element-by-element fashion. Recall from Sec-
tion 3.3.5, θI2 and θi2 are the DOFs on the interface, Γ, and the interior of domain, Ω2.

3.4.3 Convergence results

The convergence results of coupled CG-HDG formulation for conjugate heat transfer problem
is presented in this section. The fluid domain is, Ω1 := [0, 2] × [−0.5, 1.5], and the solid
domain is, Ω2 := [2, 4] × [−0.5, 1.5]. Hence, the interface, ΓI , lies at x1 = 2. The analytical
solutions considered for velocity, pressure and temperature are same as considered in (3.12).
Dirichlet boundary conditions are prescribed on all the boundary of Ω1 for velocity whereas,
they are prescribed only for exterior boundaries of Ω1 and Ω2 for temperature. The body force
and heat generation are computed from the analytical solutions using governing equations.
All the material parameters used are same as the ones used in Section 3.2.3. The degree of
approximation k = 1− 8 and element size h = 2/{2, 22, 23, 24, 25, 26} in each sub-domain are
used in the analysis.

Figure 3.11 shows the convergence of post-processed solution of velocity in Ω1 and tem-
perature in Ω = Ω1 ∪ Ω2 for triangular elements. It is clear from the plot that the optimal
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Figure 3.11: Coupled CG(Tk+1)-HDG(Tk) for conjugate heat transfer problem: convergence
plots of velocity and temperature.
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Figure 3.12: Coupled CG(Tk+1)-HDG(Tk) for conjugate heat transfer problem: ratio of CPU
times for linear solver vs. error in temperature for triangular elements. Ratio of CPU times
= CG(Tk+1)-HDG(Tk) time/CG(Tk+1)-CG(Tk+1Tk) time.
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1

δθ
I 2

δθ
i 2

δu δL δp δλ δθ
1

δq
1

                                                      =
−

                                                      r û r ρ r θ̂
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Figure 3.13: Coupled CG(Tk+1)-HDG(Tk) for conjugate heat transfer problem: ratio of CPU
times for linear solver vs. error in temperature for triangular elements. Ratio of CPU times
= CG(Tk+1)-HDG(Tk) time/HDG(Tk)-HDG(Tk) time.

rate of k+ 2 for the present coupled CG(Tk+1)-HDG(Tk) model is obtained for both velocity
and temperature. Now, the computational efficiency of the proposed coupled model is con-
sidered. The coupled CG(Tk+1)-HDG(Tk) model is compared with CG(Tk+1)-CG(Tk+1Tk)
model, where all the governing equations are discretized by CG method, to study the relative
performance in CPU times for linear solver. Figure 3.12 presents the results of the ratio of
CPU times for linear solver with error in the temperature in the domain, Ω. As explained
earlier in Section 2.6, the errors from the CG-CG model are used and CPU times of CG-HDG
model are interpolated corresponding to errors from CG-CG model. All the ratios of the CPU
times are less than 1 inferring that coupled CG-HDG model is computationally more efficient
than CG-CG model for a given level of accuracy.

The proposed CG(Tk+1)-HDG(Tk) model is also compared to HDG(Tk)-HDG(Tk) model
to provide a complete discussion on the computational efficiency. In HDG(Tk)-HDG(Tk)
model, both fluid and solid domains are discretized with HDG with a degree of approximation
k. Both coupled CG(Tk+1)-HDG(Tk) and HDG(Tk)-HDG(Tk) models have similar optimal
rates of convergence, i.e., k + 2 for velocity, temperature and k + 1 for pressure, gradient of
velocity and heat flux. Figure 3.13 shows the ratio of CPU times for linear solver between
CG(Tk+1)-HDG(Tk) and HDG(Tk)-HDG(Tk) CPU times along with the error. The CPU times
of CG(Tk+1)-HDG(Tk) model is interpolated based on the errors of HDG(Tk)-HDG(Tk) model.
Hence, the error in the plot corresponds to the error of post-processed solution of temperature
in HDG(Tk)-HDG(Tk) model. It is noticed that the errors in temperature obtained in both
HDG(Tk)-HDG(Tk) and CG(Tk+1)-HDG(Tk) models are very similar so as the CPU times.
It can be noticed from the plot that all the ratios are very close to 1 suggesting that both
models exhibits similar computational efficiency for a given level of accuracy.

A theoretical count on number of non-zeros (nnz) is presented for CG(Tk+1)-CG(Tk+1Tk),



80 Coupling of continuous and hybridizable discontinuous Galerkin methods

Table 3.5: Expressions of nnz in terms of degree of approximation, k, for the considered
coupled models. Symbols nfel and nsel corresponds to number of elements in fluid and solid
domains, respectively.

Tri

CG(Tk+1)-CG(Tk+1Tk) (210k2 + 246k + 41)nfel/2 + (15k2 + 24k + 7)nsel/2

CG(Tk+1)-HDG(Tk) (135k2 + 294k + 159)nfel/2 + (15k2 + 24k + 7)nsel/2

HDG(Tk)-HDG(Tk) (135k2 + 294k + 159)nfel/2 + (15k2 + 30k + 30)nsel/2

Qua

CG(Tk+1)-CG(Tk+1Tk) (196k2 + 252k + 68)nfel + (14k2 + 24k + 9)nsel

CG(Tk+1)-HDG(Tk) (126k2 + 268k + 142)nfel + (14k2 + 24k + 9)nsel

HDG(Tk)-HDG(Tk) (126k2 + 268k + 142)nfel + (14k2 + 28k + 14)nsel

Tetra

CG(Tk+1)-CG(Tk+1Tk)
(483k4 + 1182k3 + 1484k2 + 528k + 408)nfel/6

+(21k4 + 66k3 + 88k2 + 40k + 15)nsel/6

CG(Tk+1)-HDG(Tk)
(56k4 + 336k3 + 740k2 + 696k + 248)nfel

+(21k4 + 66k3 + 88k2 + 40k + 15)nsel/6

HDG(Tk)-HDG(Tk)
(56k4 + 336k3 + 740k2 + 696k + 248)nfel

+(21k4 + 126k3 + 273k3 + 252k + 84)nsel/6

Hexa

CG(Tk+1)-CG(Tk+1Tk)
(759k4 + 2232k3 + 2889k2 + 1704k + 489)nfel

+(33k4 + 120k3 + 171k2 + 108k + 27)nsel

CG(Tk+1)-HDG(Tk)
(528k4 + 2112k3 + 3204k2 + 2184k + 564)nfel

+(33k4 + 120k3 + 171k2 + 108k + 27)nsel

HDG(Tk)-HDG(Tk)
(528k4 + 2112k3 + 3204k2 + 2184k + 564)nfel

+(33k4 + 132k3 + 198k2 + 132k + 33)nsel

CG(Tk+1)-HDG(Tk) and HDG(Tk)-HDG(Tk) coupled models. The number of non-zeros in the
final stiffness matrix is important as the memory required by the code is directly proportional
to it. The problems considered in the present work need relatively smaller computational
resources, however, when big computational domains are considered in 3-D, memory require-
ments can be a bottleneck. The hypothesis presented by Huerta et al. (2013) is used in deriving
the expressions for nnz for the coupled models and it is discussed in detail in Appendix B.
The theoretical expressions for nnz are presented in table 3.5.

Figures 3.14 and 3.15 presents the ratio of nnz between CG-HDG, CG-CG and CG-HDG,
HDG-HDG coupled models, respectively. The plots are made assuming that the number of
elements in fluid and solid domains are equal. The proposed CG-HDG coupled model has
lesser nnz in the final stiffness matrix compared to CG-CG model when k > 1 for both
triangular and quadrilateral elements in 2-D, whereas the ratio goes to below 1 only when
k = 9 for tetrahedra in 3-D. On the other hand, the ratios are almost constant and close to 1
between k = 1 − 10 when CG-HDG and HDG-HDG models are considered in both 2-D and
3-D. Hence, it can be inferred that CG-HDG model has superior computational efficiency and
lower memory requirements compared to CG-CG model. However, CG-HDG and HDG-HDG
models are very close and almost equivalent in terms of accuracy, efficiency and number of
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Figure 3.14: Comparison of nnz between coupled CG(Tk+1)-HDG(Tk) and CG(Tk+1)-
CG(Tk+1Tk) models.

non-zeros. Therefore, in the results presented in the following sections, only CG-CG and
CG-HDG models are considered and compared.

3.4.4 Conjugate heat transfer problem

In this example, the proposed models are combined together to solve a benchmark conjugate
heat transfer problem. The results of proposed coupled CG-HDG model are presented where
the fluid part, which is governed by Navier–Stokes/convection-diffusion, is discretized using
HDG, while the solid part, governed by heat equation, is discretized using CG. In the end,
the results of coupled CG-CG model, where all the equations are discretized by CG, are also
presented for important quantities of interest like Nusselt number.

The geometry of the problem along with the applied boundary conditions are shown in
fig. 3.16. The fluid domain, Ω1, is the square cavity of unit length and the solid wall, Ω2, has
a thickness of 0.2. The ratio of thermal diffusivities of solid to fluid is considered as unity.
Prandtl number (Pr) of 0.71 is used in Ω1 in the computations.

The problem is solved with the proposed CG(Qk+1)-HDG(Qk) model and, also, a CG(Qk+1)-
CG(Qk+1Qk) model. The solution is approximated with one degree higher in the CG domain
than HDG, to keep the optimal convergence in both domains, as discussed in Section 3.3. The
obtained results are compared with the literature data. A degree of approximation k = 5, and
an uniform mesh size, h = 0.025, with quadrilateral elements are used in both models. As
stated in the Section 3.2.4, at higher Ra number, an incremental method is used to obtain the
steady state numerical solution. The stabilization parameters are the same as in table 3.1.

Figure 3.17 presents the isolines for velocity and temperature at different Ra number. The
temperature and velocity distributions inside the fluid cavity are similar to the solutions of
Rayleigh–Bénard convection flow with relatively less sharp boundary layer. At higher Ra, the
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Figure 3.15: Comparison of nnz between coupled CG(Tk+1)-HDG(Tk) and HDG(Tk)-
HDG(Tk) models.
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ū
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0

Figure 3.16: Conjugate heat transfer problem: geometry and prescribed boundary values of
conjugate heat transfer problem domain.



3.4. Coupled CG-HDG formulation for conjugate heat transfer problem 83

0 0.2 0.4 0.6 0.8 1

(a) Temperature, Ra = 104.

0 5 10 15

(b) Velocity, Ra = 104.

0 0.2 0.4 0.6 0.8 1

(c) Temperature, Ra = 106.

0 20 40 60 80 100 120

(d) Velocity, Ra = 106.

Z X

TemperatureSolid - imaginary part
10.50

YTemperatureFluid - imaginary part
10.50

0 0.2 0.4 0.6 0.8 1

(e) Temperature, Ra = 108.

0 200 400 600 800

(f) Velocity, Ra = 108.

Figure 3.17: Conjugate heat transfer problem: isolines of temperature and velocity at different
Ra numbers using CG-HDG model. Post-processed temperature and velocity are presented
in Ω1.
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Table 3.6: Conjugate heat transfer problem: summary of important quantities and comparison
with literature values for Ra = 103 − 108.

Ra Quantity
Misra &
Sarkar

1997
Kaminski &
Prakash

1986
CG(Q6)-HDG(Q5) /
CG(Q6)-CG(Q6Q5)

0.7× 103 Nu — 0.87 0.8678
Mean θ along interface — — 0.8264

103 Nu 0.8958 — 0.8957
Mean θ along interface 0.1791 — 0.1791

104 Nu 1.4528 — 1.4537
Mean θ along interface 0.2906 — 0.2906

0.7× 105 Nu — 2.08 2.0850
Mean θ along interface — — 0.5832

105 Nu 2.1997 — 2.2014
Mean θ along interface 0.4400 — 0.4400

0.7× 106 Nu — 2.87 2.8540
Mean θ along interface — — 0.4294

106 Nu 2.9528 — 2.9605
Mean θ along interface 0.5916 — 0.5919

0.7× 107 Nu — 3.53 3.5077
Mean θ along interface — — 0.2987

107 Nu — — 3.5913
Mean θ along interface — — 0.7181

108 Nu — — 4.061
Mean θ along interface — — 0.8120

loss of symmetry in the solution of velocity can be clearly noticed in the present example.
Average Nusselt number at the fluid-solid interface is computed and compared with the

values present in the literature. Whenever possible, the average temperature on the interface
is also compared with literature data. It is to be noted that the geometry considered in the
work of Kaminski and Prakash (1986) has the solid wall to the right of the fluid domain.
Hence, the results presented for the comparison with the mentioned work correspond to the
solid wall to the right of the fluid domain. All the results obtained by both models are
presented in table 3.6 and, for the number of significant digits presented, they coincide. They
are also very close to the literature values.

The models will be now compared in terms of computational effort to point their rela-
tive merits. The computational details of CG(Qk+1)-HDG(Qk) and CG(Qk+1)-CG(Qk+1Qk)
models are tabulated in table 3.7, similar to one presented for Rayleigh–Bénard convection
flow. It is clear from this table that the proposed CG-HDG model is superior to CG-CG
model in terms of computational efficiency and complexity. It is also worth stressing that
both models have similar orders of convergence for all the variables of interest. Hence, the
proposed CG-HDG model can be beneficial to use for multi-physics flows involving high Ra
number.
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Table 3.7: Conjugate heat transfer problem: computational details for CG-HDG and CG-CG
for Ra = 105 and h = 0.025.

CG(Q6)-HDG(Q5) CG(Q6)-CG(Q6Q5)

No. of DOFs, ndof 64 209 72 612
CPU time for linear solver 13.3 sec 25.5 sec
No. of non-linear iterations 11 11
Condition number, κ(A) O(1010) O(1012)

No. of non-zeros, nnz 7 377 875 11 033 375

3.5 Conclusions

Optimal convergence and super-convergence rates are shown in the numerical tests for the
coupled Navier–Stokes/convection-diffusion equations formulation with HDG. A study on
computational efficiency is also presented for this problem and concluded that for the same
level of accuracy HDG takes lesser CPU time for linear solver than CG when degree of
approximation is greater than 2, which is the same conclusion drawn from study in Chapter 2.

The results of Rayleigh–Bénard convection flow are presented until Ra of 108 and the Nus-
selt numbers are compared between HDG, CG and literature values. Even though, both HDG
and CG can resolve the solution at high Ra and show similar level of accuracy, it is noticed
that HDG has less computational cost. CPU times for linear solver and condition numbers
of HDG are lower than its CG counterpart for the same mesh and degree of approximation
in the example considered.

A coupled HDG and CG formulation for the heat equation is proposed and tested with
numerical examples. As expected, optimal HDG and CG convergence rates are kept with the
proposed CG-HDG coupled formulation for the heat equation when the degree of approxima-
tion for CG is one degree higher than HDG degree.

Finally, the proposed CG-HDG coupling is merged with coupled HDG formulation for
Navier–Stokes/convection-diffusion equations and optimal convergence rates are established.
The relative CPU times for linear solver is compared between CG-HDG and CG-CG models
and concluded CG-HDG model is more efficient. A similar study is performed between CG-
HDG and HDG-HDG models and inferred that both the models are very close in terms of
CPU times for linear solver. The theoretical count on number of non-zero entries in CG-HDG
and HDG-HDG models are also very similar. Hence, both CG-HDG and HDG-HDG models
showed similar performance and memory requirements for considered examples.

The benchmark problem of conjugate heat transfer is solved using CG-HDG and CG-CG
models and compared to literature data. Both models give the identical results in terms of
Nusselt numbers and mean temperature on interface, but, it is shown that CG-HDG model
has higher computational efficiency than CG-CG model.
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Chapter 4

Application to Glass Fiber Reinforced
Polymer tubular cross-section

4.1 Overview

This chapter presents the results of thermal response of a GFRP tubular cross-section sub-
jected to fire. The problem description and corresponding governing equations are provided.
The radiosity equation that governs the internal radiation is discussed in brief along its dis-
cretization details. An overview of the computation of discretization error and numerical
uncertainty is presented in the context of practical application problems where analytical so-
lution is not available. Finally, various numerical results of GFRP cross-section are presented
and validated with the available experimental data.

4.2 Problem description

4.2.1 Geometry of GFRP cross-section

The geometry of the GFRP tubular cross-section considered in the analysis is presented in
fig. 4.1. The length of the cross-section is 0.1 m with a GFRP thickness of 0.008 m. The
specimen used in the experiments has rounded corners in the internal cavity with a fillet
radius of 0.003 m. Most of the analysis is made with the cross-section with straight corners as
shown in the fig. 4.1. This simplification in the model allows to generate structured meshes.
Nevertheless, results are also provided for the geometry with rounded corners.

4.2.2 Governing equations

Let Ωs represent the GFRP material and Ωf represent the air cavity inside GFRP tubular
cross-section. The interface between Ωs and Ωf is designated as ΓR, i.e., ΓR = ∂Ωs ∩ ∂Ωf .
The exterior boundaries of the Ωs are divided into Γt, Γb, Γl and Γr. The governing equations
in both Ωs and Ωf along with the boundary conditions are given as follows,

∂u

∂t
+ div (u⊗ u)− div (−pI + ν gradu)− f (θf ) = 0 in Ωf ,

divu = 0 in Ωf ,

∂θf
∂t

+ div (−αf grad θf + u θf ) = 0 in Ωf ,

(4.1a)

87
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0.1
x1

x2

0.008

Γb

Γl Γr

Γt

ΓR

Ωf

Ωs

Figure 4.1: Geometry and boundary conditions notations used for GFRP tubular cross-section
All dimensions are in meters.

∂θs
∂t

+ div (−αs(θs) grad θs) = 0 in Ωs, (4.1b)

θf − θs = 0 on ΓR, (4.1c)

−(κf grad θf ) · nf − (κs(θs) grad θs) · ns −
ε

1− ε
(
σ θ4

s −R
)

= 0 on ΓR, (4.1d)

u = 0 on ΓR, (4.1e)

−(κs(θs) grad θs) · n+ ha(θs) (θa − θs) + ε σ (θ4
a − θ4

s) = 0 on Γt ∪ Γb, (4.1f)
−(κs(θs) grad θs) · n = 0 on Γl ∪ Γr, (4.1g)

with initial conditions θs = θf = θ0 and u = 0 at t = 0. Equations (4.1a) are the transient
incompressible Navier–Stokes equations coupled with convection-diffusion equation, where u
is velocity of fluid, p is kinematic pressure, θf is the temperature of the air, ν is the viscosity

and αf is the thermal diffusivity of the air

(
κf

ρfcfp

)
. The natural buoyancy of the air is

modelled using the Boussinesq approximation and the term f(θf ) is defined as,

f(θf ) = −βg(θf − θ0), (4.2)

where β is the Boussinesq term, g is the gravity force and θ0 is the reference temperature.
Equation (4.1b) is the heat conduction equation governing the temperature distribution in
solid domain, Ωs, where, θs is the temperature of the GFRP and αs is the thermal diffusivity
of the GFRP, which depends on temperature. The transmission conditions on the interface
of fluid and solid domains are presented in equations (4.1c) and (4.1d) which represents
continuity of temperature and equilibrium of normal component of the fluxes, respectively.
In equation (4.1d), R is the radiosity and it is discussed in the next section.

No-slip boundary condition is prescribed on all the boundary of the fluid. In the case of the
exterior boundary of the solid, a combination of convective and radiative boundary condition
is applied on Γt and Γb in equation (4.1f), while homogeneous Neumann boundary conditions
are applied on Γl and Γr in equation (4.1g). In equation (4.1f), ha stands for convective heat
transfer coefficient, σ is the Stefan–Boltzmann constant, ε is the emissivity and θa is defined
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Figure 4.2: Thermal properties of GFRP material as a function of temperature.

as follows,

θa =

{
θ0 on Γt,

θ0 + 345 log(8 t+ 1) on Γb,
(4.3)

where t is the time (in minutes). Equation (4.3) represents that the top face of GFRP cross-
section is at the reference (ambient) temperature, while the bottom face is heated according
to temperature profile given in ISO 834 (1975).

4.2.3 Material properties

As stated earlier, the thermo-physical properties of GFRP are temperature-dependent. In
the present analysis, the material properties proposed by Tracy (2005) are used, as suggested
in the work of López (2017). Figure 4.2 shows the dependence of thermal conductivity and
specific heat capacity of GFRP material with the temperature. The variation of density of
the GFRP with temperature is shown in fig. 4.3. The emissivity, ε, of the GFRP is assumed
as constant value of 0.75.

The thermal properties of air are assumed to be constant throughout the analysis. The

viscosity, ν, is taken as 1.67 × 10−5 m2/s, thermal conductivity, κf , is 0.0256912

(
W

m ◦C

)
,

specific heat capacity, cfp , is 1004.592

(
J

kg ◦C

)
and density, ρf , is 1.2 kg/m3. The Boussinesq

parameter, β, is taken as 0.003 ◦C−1 and vertical component of the gravity force vector is set to
−9.81 m/s2. The convective heat transfer coefficient of air, ha, is also temperature dependent
and it is computed by linear interpolation between 20◦C and 1000◦C where ha varies between

5 and 50

(
W

m2 ◦C

)
. The Stefan–Boltzmann constant, σ, is set to 5.669× 10−8

(
W

m2 ◦C4

)
.
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Figure 4.3: Density of GFRP material as a function of temperature.
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Figure 4.4: Schematic representation of radiative exchange between surfaces of a cavity.

4.3 Radiosity

4.3.1 Analytical equation

The governing equations presented in (4.1) are not closed until a suitable definition for radios-
ity, R, is established. Figure 4.4 shows the schematic representation of the radiative exchange
in a cavity between two generic surfaces in 3-D space. This radiative flux is computed using
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the following equation,

R = σ ε θ4 + (1− ε)
∫
SR

R
cos γx cos γξ

πr2
dSR, (4.4)

where the angles γx and γξ are the angles made by the vector, r = ξ − x with the respective
normals to the two surfaces and r is the norm of the vector, r. The particularization of
equation (4.4) for a two-dimensional case can be expressed as follows (López et al., 2014),

R = σ ε θ4 + (1− ε)
∫

ΓR

R
cos γx cos γξ

2 r
dΓR, (4.5)

where ΓR is a generic boundary of a surface.

4.3.2 Discretization

Radiosity equation is an algebraic equation that is imposed in weak form. Using δR, which
is arbitrary weighing function, the weak form of the radiosity equation can be expressed as
follows, 〈

δR,
R

1− ε

〉
ΓR

=

〈
δR , σ

ε

1− ε
θ4

〉
ΓR

+

〈
δR,

〈
R ,

cos γx cos γξ
2 r

〉
ΓR

〉
ΓR

. (4.6)

Equation (4.6) is obtained by multiplying (4.5) with δR and dividing by 1−ε throughout. The
internal radiative boundary can be discretized into several line elements along the boundary.
Each line element interacts with all the other elements in absence of obstacles between them,
i.e. the straight line joining two elements should not intersect the boundary. If e and k are
two generic line elements, the weak form for radiosity can be rewritten as〈

δRe,
Re

(1− ε)

〉
ΓeR

=

〈
δRe , σ

ε

(1− ε)
(θe)4

〉
ΓeR

+

nl∑
k=1
k 6=e

〈
δRe ,

〈
Rk ,

cos γe cos γk

2 r

〉
ΓkR

〉
ΓeR

,

(4.7)
where γe and γk are the angles made by the line joining the elements e and k with their
respective internal normals. Here, nl is the number of elements on the interface, ΓR.

4.4 Coupled CG-HDG formulation

4.4.1 Weak formulation

While presenting the weak formulation for the considered problem, the notation introduced
in the previous chapters is re-defined for the mesh skeleton. The mesh skeleton, Γf , is defined
as,

Γf =

mel⋃
e=1

∂Ωe
f , (4.8)

where mel is the number of elements in Ωf . Similarly, pel is the number of elements in Ωs.
The CG-HDG coupled weak formulation with BDF time integration scheme for the gov-

erning equations presented in (4.1) and (4.5) can be stated as: find (un+1, pn+1,Ln+1, θn+1
f ,

qn+1
f , ûn+1, ρn+1

e , θ̂n+1
f , θn+1

s , Rn+1) ∈ [Vhk (Ωf )]2×Vhk (Ωf )×[Vhk (Ωf )]2×2×Vhk (Ωf )×[Vhk (Ωf )]2×
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[Λhk(Γf\ΓR)]2 × Rmel × Λhk(Γf\ΓR)×Wh
k+1(Ωs)× Σh

k+1(ΓR) such that u0 = 0, θ0
s = θ0

f = θ0

and

(
δL,Ln+1

)
Ωef

+
(
div δL,un+1

)
Ωef
− 〈δLn, ûn+1〉∂Ωef

= 0,(
δu,

αµu
n+1

∆tn+1

)
Ωef

−
(
grad δu,un+1 ⊗ un+1

)
Ωef
−
(
δu,div

(
−pn+1I + νLn+1

))
Ωef

+ 〈δu,
(
ûn+1 ⊗ ûn+1

)
n+ τu

(
un+1 − ûn+1

)
〉∂Ωef

−
(
δu,f(θn+1

f )
)

Ωef

−
(
δu,

un,BDFµ

∆tn+1

)
Ωef

= 0,

−
(
grad δp,un+1

)
Ωef

+ 〈δp, ûn+1 · n〉∂Ωef
= 0,

(4.9a)

1

|∂Ωe
f |
〈pn+1, 1〉∂Ωef

= ρn+1
e , (4.9b)(

δθf , ρfcpf
αµθ

n+1
f

∆tn+1

)
Ωef

+
(
δθf , ρfcpf div qn+1

f

)
Ωef

−
(

grad δθf , ρfcpf u
n+1 θn+1

f

)
Ωef

+ 〈δθf , ρfcpf (ûn+1 · n) θ̂n+1
f 〉∂Ωef\ΓR +

〈
δθf , ρfcpf τθ(θ

n+1
f − θ̂n+1

f )
〉
∂Ωef\ΓR

+
〈
δθf , ρfcpf τθ(θ

n+1
f − P2

(
θn+1
s

)
)
〉
∂Ωef∩ΓR

−

(
δθf , ρfcpf

θn,BDFµ
f

∆tn+1

)
Ωef

= 0,

(4.9c)

(
δqf , α

−1
f q

n+1
f

)
Ωef

−
(

div δqf , θ
n+1
f

)
Ωef

+
〈
δqf · n, θ̂n+1

f

〉
∂Ωef\ΓR

+
〈
δqf · nf ,P2

(
θn+1
s

)〉
∂Ωef∩ΓR

= 0,
(4.9d)

for e = 1, . . . ,mel, and,

mel∑
e=1

〈
δû,

(
−pn+1I + νLn+1

)
n+ τu

(
ûn+1 − un+1

)〉
∂Ωef

= 0,〈
ûn+1 · n, 1

〉
∂Ωef

= 0 for e = 1, . . . ,mel,

ûn+1 = 0 on ΓR,

(4.10a)

mel∑
e=1

〈
δθ̂f ,

(
ρfcpf (qn+1

f + ûn+1 θ̂n+1
f ) · n+ ρfcpf τθ(θ

n+1
f − θ̂n+1

f )
)〉

∂Ωef\ΓR
= 0, (4.10b)(

δθs, ρs(θ
n+1
s )cps(θ

n+1
s )

αµθ
n+1
s

∆tn+1

)
Ωs

+
(
grad δθs, κs(θ

n+1
s ) grad θn+1

s

)
Ωs

−
〈
P2 (δθs) , ρfcpf q

n+1
f · nf + τθ(θ

n+1
f − P2(θn+1

s ))− ε

1− ε
(σ (θn+1

s )4 −Rn+1)

〉
ΓR

−

(
δθs, ρs(θ

n+1
s )cps(θ

n+1
s )

θn,BDFµ
s

∆tn+1

)
Ωs

−
〈
δθs, ha(θ

n+1
s )(θn+1

a − θn+1
s )

〉
Γt∪Γb

−
〈
δθs, ε σ((θn+1

a )4 − (θn+1
s )4)

〉
Γt∪Γb

= 0,

(4.10c)
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nl∑
e=1

〈
δR,

Rn+1

(1− ε)

〉
ΓeR

−
nl∑
e=1

〈
δR , σ

ε

(1− ε)
(
θn+1
s

)4〉
ΓeR

−
nl∑
e=1

nl∑
k=1
k 6=e

〈
δR ,

〈
Rn+1,k ,

cos γe cos γk

2 r

〉
ΓkR

〉
ΓeR

= 0,

(4.10d)

for all (δu, δp, δL, δθf , δqf , δû, δθ̂f , δθs, δR) ∈ [Vhk (Ωf )]2 ×Vhk (Ωf )× [Vhk (Ωf )]2×2 ×Vhk (Ωf )×
[Vhk (Ωf )]2×[Λhk(Γf\ΓR)]2×Λhk(Γf\ΓR)×Wh

k+1(Ωs)×Σh
k+1(ΓR) such that δû = 0 on ΓR where

the discrete spaces are defined in (1.2). Note that the term 〈(P2 (δθs)− δθs), αs grad θs · ns〉ΓR
is already neglected while presenting the weak form. Equations (4.9c) and (4.10b) are multi-
plied by ρfcpf to be dimensionally consistent with the transmission conditions in (4.1d). The
continuity in flux condition (4.1d) is stated using thermal conductivity coefficients, κs and
κf , unlike thermal diffusivity coefficients, αs and αf , in the previous examples presented in
this work.

4.4.2 Residual in matrix notation

The matrix form of the residual vector corresponding to weak forms (4.9) and (4.10) at the
time step n+ 1 can be expressed as follows,[

Kgg Kgl

Klg Kll

]{
xg

xl

}
−

{
fg

fl

}
= 0, (4.11)

where the suffixes g and l represent global and local variables, respectively and components
in the residual are given in (4.12). The elemental matrices that arise from radiosity equation
are provided in Appendix C. The tangent operators of the non-linear contributions are already
provided in (3.45) and the only new terms in the present case are the non-linear contributions
from the radiosity equation. They are also presented in Appendix C. The dependence of ρs and
csp on temperature is omitted in equation (4.12) for the ease of representation. Nevertheless,
the tangent operators are computed taking the non-linear dependence of materials properties
into consideration.

4.4.3 Methodology

As presented in the case of conjugate heat transfer example, the present problem is solved using
CG-HDG and CG-CG models. Both quadrilateral and triangular elements are considered
in the analysis of the problem. Radiosity equation is discretized using 1-D high-order line
elements based on Gauss–Lobatto points. The degree of approximation on radiosity elements
is always the same as degree in Ωs, in both CG-HDG and CG-CG models.

The time dependent terms are discretized using the BDF schemes presented earlier for
Navier–Stokes equations. In the present example, results from both constant time step and
adaptive time step are presented. The adaptive time stepping scheme presented in Algorithm 1
in Section 2.8.4 is used. The extension of the algorithm presented for Navier–Stokes to the
present conjugate heat transfer problem is straightforward. Instead of using the estimated
local error from velocity alone, local error from temperature in Ωf and Ωs are also considered
in adapting the time step. The limiting constants used in this problem are the same ones that
are provided in Section 2.8.4.
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û
p

0
0

0

0
0

0
0

0
0

0
0

0
0

ρ
f
cf p
A
θ̂
θ

ρ
f
cf p
A
θ̂
q

0
0

0
0

ρ
f
cf p
P
T
A
θ̂
θ

ρ
f
cf p
P
T
A
θ̂
q

0
0

0
0

0
0

0
0

0
0

0
0

          n
+

1

,

K
lg

=

          A
u
û
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4.5 Discretization error and uncertainty estimation

4.5.1 Numerical errors

The main sources of numerical errors in the scientific computing simulations are round-off
errors, statistical sampling errors, iterative and discretization errors (Roache, 2009, Oberkampf
and Roy, 2010). Round-off errors arise due to the finite precision of the computers and they
can be minimised by increasing the number of significant digits used to represent a number
in the computations. Most of the physical systems are described by mathematical equations
which may contain several non-linearities and iterative error is a consequence of solving the
underlying non-linear equations. Statistical sampling errors exists in the solutions which are
stochastic in nature. In that case, a number of realizations are needed to determine the mean
quantities of interest. In the present work, statistical sampling errors are not considered.
Discretization error is defined as difference between exact solution to the discrete equations
and exact solution to the mathematical model (Oberkampf and Roy, 2010). In the numerical
results presented in previous chapters, it is noticed that the round-off and iterative errors
become dominant only around the range 10−9 − 10−10. Hence, in the present example, the
contribution of round-off and iterative errors to numerical error is assumed to be negligible
compared to discretization error.

4.5.2 Discretization error

Let φ be any scalar quantity of interest, for instance, temperature at a point, average Nusselt
number, etc. If φn and φa are the numerical and analytical values of φ, respectively, the
discretization error, ε, can be expressed in asymptotic regime as,

ε = |φn − φa| ≈ ch hq + ct ∆tµ, (4.13)

where, h is the element size of the domain, q is the order of convergence in space of the
quantity of interest, µ is the order of convergence of time integration scheme, ch and ct are
error constants. In equation (4.13), the terms ch hq, ct ∆tµ quantifies the discretization errors
in space and time, respectively. This relation can be used in a priori error estimation to
establish the formal rates of convergence in space and time, when the analytical solution is
known, as discussed in the previous chapters. The constants ch and ct depends on derivatives
of the solution and their bounds can be proven only in the presence of smooth solutions. In
the convergence results presented in the previous chapters, the considered analytical solutions
are smooth and hence, rates of convergence could be established. However, in the present
problem, the analytical solution is not known a priori. Therefore, to estimate analytical
quantity of interest, a posteriori error estimation methods are employed. There had been
plenty of study in a posteriori error estimation for finite element methods, see Babuška and
Rheinboldt (1978), Whiteman (1994), Estep et al. (2000), Akin (2005).

One of the a posteriori error estimation methods is based on Richardson’s extrapolation
technique (Richardson, 1911). Originally, Richardson formulated a method which takes solu-
tions from the two different nested solutions and compute a new solution that is one order
more accurate than the original solution. Consider a second-order accurate scheme which
has solutions with grid spacing h and 2h. The discretization error equation can be expressed
using Taylor’s series as follows,

φh = φa + a1 h
2 + a2 h

3 +O(h4),

φ2h = φa + a1 (2h)2 + a2 (2h)3 +O(h4),
(4.14)
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where φh, φ2h are the discretized solutions for mesh h and 2h, respectively and φa is the exact
solution. Eliminating φa from equation (4.14) gives,

a1 =
φ2h − φh

3h2
− 7

3
a2 h+O(h2). (4.15)

From equation (4.15), substituting a1 in (4.14) for the finer mesh, h, and solving for the
analytical solution, φa gives,

φa = φh +
φh − φ2h

3
+

4

3
a2 h

3 +O(h4). (4.16)

The standard Richardson extrapolated solution is φh +
φh − φ2h

3
and from equation (4.16),

it is clear that the solution is third-order accurate, which is one order more than the orig-

inal scheme. A more generalised extrapolated solution is φh +
φh − φrh
rqh − 1

, where rh is the

refinement ratio and q is the order of convergence of the original scheme. This extrapolated
solution can be used to estimate the discretization error for a given mesh as this solution has
higher order of convergence than the original one. This method can be extended to space-time
problems and it is discussed in Richards (1997). One of the important assumptions of this
method is that the solutions that are considered to compute the extrapolated estimate should
be in asymptotic range. Uniform meshes, nested mesh refinement and smooth solutions are
amongst the other assumptions. In the case of space-time extrapolation, mesh sizes and time
steps should be chosen in such a way that the errors from time and space should be of same
order of magnitude. In the GFRP problem considered here, some of the mentioned assump-
tions cannot be verified easily. In addition, the geometry with the straight corners introduce
singularities in the solution of heat flux. In the presence of singularities and discontinuities,
the reliability and applicability of Richardson’s extrapolated error estimated is limited as the
order of convergence of the quantity of interest will lose the formal order of convergence.
In general, this loss of convergence can be noticed clearly in the vicinity of the singularity.
Moreover, in the present problem, non-monotonic convergence in space and time is observed
for various quantities of interest.

To address the mentioned drawbacks, the method proposed in Eça and Hoekstra (2014)
is used in the present study. Following their work, the discretization error of any quantity
of interest, for either CG(Qk+1)-HDG(Qk) or CG(Qk+1)-CG(Qk+1Qk) coupled model using
BDFµ time integration scheme, can be stated as follows,

εi(φ) = φi − φa ≈ ch,1 hi + . . .+ ch,k+2 h
k+2
i + ct,1 ∆ti + . . .+ ct,µ ∆tµi , (4.17)

where k+2 and µ are the orders of convergence in space and time, respectively. The unknowns
in equation (4.17) are computed using the non-linear least-squares fit of the solutions with
various mesh sizes and time steps. It is generally recommended to use more grid points than
unknowns in equation (4.17) to obtain more reliable data fits.

If nd is the number of different solutions in space and time, the least-squares functional
can be defined as follows,

QLS(φa, ch,1, . . . , ch,k+2, ct,1, . . . , ct,µ) =√√√√ nd∑
i=1

wi

(
φi − (φa + ch,1 hi + . . .+ ch,k+2 h

k+2
i + ct,1 ∆ti + . . .+ ct,µ ∆tµi )

)2
,

(4.18)
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where wi in the equation (4.18) is the weight of the observation and it can be defined as
follows,

wi =
1
hi

+ 1
∆ti∑nd

i=1( 1
hi

+ 1
∆ti

)
. (4.19)

In equation (4.19), wi depends on the grid spacing, hi, and time step, ∆ti. Observations
with smaller time step and smaller grid spacing will have bigger weight than the rest of
the observations. This weighted approach is advantageous in the case of non-monotonic
convergence behaviour as it enables to compute the discretization error by giving more weight
to finer grid solutions than coarser ones. The definition of weights (4.19) guarantees the sum
of weights to be unity.

Finally, standard deviation of the data points from the regression analysis can be defined
as,

σ̂ε =

√√√√∑nd
i=1 ndwi

(
φi − (φa + ch,1 hi + . . .+ ch,k+2 h

k+2
i + ct,1 ∆ti + . . .+ ct,µ ∆tµi )

)2

nd − (k + 2 + µ+ 1)
.

(4.20)
However, in the present work the least-squares functional without weights is also consid-

ered. In this case, wi = 1 in equation (4.18) and ndwi = 1 in equation (4.20). For each
quantity of interest, least-squares fits with and without weights are computed and the model
that produces smaller standard deviation is chosen to compute the uncertainty.

4.5.3 Uncertainty estimation

The computed discretization error and standard deviation can be used to compute the nu-
merical uncertainty of the computations. If φa is the exact solution and Uφ is the uncertainty,
then the confidence interval of an observation φi is,

φi − Uφ ≤ φa ≤ φi + Uφ. (4.21)

The uncertainty is estimated based on the quality of the data fit. To measure the quality,
a data range parameter is defined as follows,

∆φ =
max(φi)−min(φi)

nd − 1
. (4.22)

The quality of the fit is judged using the standard deviation, σ̂ε, and data range parameter,
∆φ. If σ̂ε ≤ ∆φ, the error estimate is assumed to be good, while σ̂ε > ∆φ results in a bad
error estimate. Based on this, the following expressions are used to compute the uncertainty
interval:

Uφ(φi) =

 1.25 εi(φ) + σ̂ε + |r|i if σ̂ε ≤ ∆φ,

3
σ̂φ
∆φ

(εi(φ) + σ̂ε + |r|i) if σ̂ε > ∆φ,
(4.23)

where the values 1.25 and 3 are the safety factors chosen based on Grid Convergence Index
(GCI) (Roache, 2009). In equation (4.23), εi(φ) is discretization error and |r|i is the absolute
value of the residual of the fit at the solution, i. As it is clear from equation (4.23), the
uncertainty accounts not only discretization error, but also the error of least-square fit of the
solution and the standard deviation, which are the consequence of scatter in the data. Using
the equation (4.23), the uncertainty of any solution can be computed. However, in this work,
only the uncertainty corresponding to the solution of finest grid space and smallest time step
is considered and the same is presented in the results.
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Figure 4.5: Nested structured meshes used in the analysis of the GFRP problem.

4.6 Numerical results

4.6.1 Problem data

As stated earlier, a GFRP cross section with straight and curved corners in the cavity is
considered in the present work. The cross section with the straight corners is discretized using
structured meshes, while curved corners geometry needs unstructured meshes. Figures 4.5
and 4.6 show different structured and unstructured meshes along with their designation,
respectively. Both structured (M1 to M4) and unstructured (UM1 and UM2) meshes are
nested. The largest element size of meshes M1 to M4 are 0.0155/{20, 21, 22, 23}, respectively.
The time steps used in the analysis are 0.0625/{20, 21, 22, 23} and the problem is analysed for
a total time of T = 400 sec.

As evident from the figs. 4.5 and 4.6, quadrilateral elements and triangular elements
are used for structured and unstructured meshes, respectively. In all the numerical results
corresponding to CG-HDG coupled model, the stabilization constants, τu and τθ are taken as
1. At time t = 0, the temperature of GFRP section and the air in the cavity is assumed to
be at reference temperature, θ0 = 24◦C, and fluid starts at rest, i.e., u0 = 0.

4.6.2 Development of flow

In this section, the development of the flow pattern and corresponding temperature distribu-
tion are discussed. Numerical results of the coupled CG(Q2)-HDG(Q1) model are presented
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Figure 4.6: Nested unstructured meshes used in the analysis of the GFRP problem.

using mesh M4 and a time step of 0.0625/23 sec. The isolines of temperature and velocity
are shown for 4 different time instances in fig. 4.7. At t = 50 sec, it can be noticed that
the dominant mechanism of heat transfer is conduction in the GFRP section. This is evident
from the velocity isolines in fig. 4.7b, where the velocity is relatively insignificant. It can also
be observed the initiation of formation of convective cells in the GFRP cavity. At t = 150
sec, the formation of a thermal plume is noticed clearly from fig. 4.7c. A symmetric structure
with two counter rotating vortices is developed in the cavity of the GFRP. Due to the large
difference between the conductivities of GFRP and air, a thermal boundary layer is created
near the lateral walls of the cavity. As the temperature is further increased, the convection
velocity also increases in the cavity as shown in fig. 4.7f. The flow is still symmetric at this
time with convection becoming more significant with the increased buoyancy force. At around
t = 240 sec, the symmetric structure in velocity and temperature are lost due to instabilities
in the vortex structures. From this time instance, the center of the convective vortices move
back and forth vertically with a type of oscillatory behaviour. Figure 4.7g shows the loss of
symmetry in velocity at t = 385 sec. It can also be observed that the vortex centers are lower
compared to ones in fig. 4.7f. This type of oscillatory behaviour can be illustrated by con-
sidering the temperature at the center (0.05, 0.05) of the cavity and average Nusselt number
along the lower edge of the cavity, which is represented in red in fig. 4.9. The average Nusselt
number is computed as follows,

Nu = − 1

θa − θ0

∫ 0.092

0.008

∂θs
∂x2

ds, (4.24)

where θa can be computed from ISO profile in equation (4.3) at 400 sec and θ0 is the initial
reference temperature of 24◦C. Figure 4.8 shows the variation of temperature at (0.05, 0.05)
and average Nusselt number, Nu, along the time. It can be observed that the flow is in a
type of oscillatory state with the average values of the quantities increasing with time. This
type of oscillatory behaviour is reported in the work Stella and Bucchignani (1999), in the
context of Rayleigh–Bénard convection flow. The oscillatory behaviour of the solution makes
it very difficult to access the numerical accuracy of the solution.

From the engineering point-of-view, two main quantities of interest are considered in this
problem namely, temperature in GFRP section and average Nusselt number along the bottom
edge of the cavity. The distribution of thermocouples to monitor the temperature in the GFRP
cross-section in the experimental set up is shown in fig. 4.9 and the corresponding co-ordinate
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Figure 4.7: GFRP problem: Evolution of temperature and velocity in the cavity at t =
50, 150, 230 and 385 sec using coupled CG(Q2)-HDG(Q1) model. Post-processed solutions
are shown in Ωf .
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Figure 4.7: GFRP problem: Evolution of temperature and velocity in the cavity at at t =
50, 150, 230 and 385 sec using coupled CG(Q2)-HDG(Q1) model. Post-processed solutions
are shown in Ωf . Continuation.
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Figure 4.8: GFRP problem: variation of temperature and Nusselt numbers with time.

positions are presented in table 4.1. Thermocouples T1, T2 and T3 are present in the top
flange, T4, T5 and T6 in the web and T7 in the bottom flange (Morgado et al., 2013b).

Air

x1

x2

T4

T5

T6

T7

T1T2T3

Figure 4.9: Locations of thermocouples in
GFRP cross-section.

Thermocouple x1(m) x2(m)
T1 0.040 0.098
T2 0.050 0.096
T3 0.060 0.094
T4 0.004 0.075
T5 0.004 0.050
T6 0.004 0.025
T7 0.050 0.004

Table 4.1: Positions of different thermocou-
ples.

The average Nusselt number quantifies the amount of energy being added to the system
with time. Since, it shows an oscillatory behaviour as shown in fig. 4.8b, the average Nusselt
number is averaged in time in order to be able to compare the numerical results between
different coupled models. This averaging in time is done by using method of moving average,
also known as rolling mean. A simple moving average method is used in the present context
and it is applied to average Nusselt number which can be expressed as follows,

Numa(tj) =
1

2w + 1

j+w∑
k=j−w

Nu(tk), (4.25)
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where Numa(tj) is the moving average value of Nusselt number at time step j and w is the
length of the window on either side of jth time step. Hence, a central mean is obtained by
taking the average of w time steps in forward and backward directions of time step j. In the
present work, the parameter w is chosen to cover 1 second of time and hence, for different time
steps w changes. This method is analogous to using a low-pass filter to remove the higher
frequencies. This procedure is done successively until a smooth averaged variation in time
obtained. It is noticed that in the present case, applying this moving average method for 5
times removes all the high frequency data and a smooth trend in time is obtained.

4.6.3 Estimation of uncertainty

In this section, uncertainties in temperature of thermocouples in GFRP cross-section and
average Nusselt number are computed. This study is performed for CG(Q2)-CG(Q2Q1) and
CG(Q2)-HDG(Q1) coupled models which have optimal order of convergence of 3 for velocity
and temperature and 2 for pressure and heat flux. For each mesh M1, M2, M3 and M4,
computations with four different time steps of 0.0625/{20, 21, 22, 23} are considered. This
gives 16 systematically refined solutions in space and time. However, it is noticed from the
results that the meshes M1 and M2 are clearly not in asymptotic limit for the considered
degree of approximation. Hence, results corresponding to M1 and M2 are discarded from the
analysis, which leaves with 8 different solutions. If θci is the temperature at any thermocouple
c, Numa,i(tj) is the average Nusselt number at any time step j, then discretization errors in
the corresponding quantities for any solution i can be written as,

εi(θ
c) = θci − θc ≈ ch,1 hi + ch,2 h

2
i + ch,3 h

3
i + ct,1 ∆ti + ct,2 ∆t2i ,

εi(Numa(tj)) = Numa,i(tj)−Numa(tj) ≈ ch,1 hi + ch,2 h
2
i + ct,1 ∆ti + ct,2 ∆t2i ,

(4.26)
for i = 1, . . . , 8. Since, flux is only second-order accurate, the term ch,3 h

3
i is eliminated in the

expression for εi(Numa). Therefore, there are 6 unknowns in error equation corresponding
to temperature, while only 5 in the case of Nusselt number. In any case, there are 8 dif-
ferent solutions, which are more than enough to compute the unknown variables from both
quantities. In all the results, it is noticed that the terms corresponding to first-order in space
and second-order in time, i.e., ch,1 hi and ct,2 ∆t2i , are significant compared to other terms.
This suggests that the convergence in space is restricted to order 1 due to the presence of
singularities, whereas optimal convergence order of 2 is recovered in time.

Firstly, the results of evolution of temperature in different thermocouples and moving
average of space averaged Nusselt number, Numa, are presented for CG(Q2)-CG(Q2Q1) and
CG(Q2)-HDG(Q1) coupled models for the mesh M4 and time step of 0.0625/23 sec in fig. 4.10.
These solutions correspond to the finest grid size and smallest time step and hence, are the
most accurate solutions available for both coupled models. From the fig. 4.10, it is evident
that both coupled models produced very similar results. In fig. 4.10a, a slight difference
between temperatures in T1, T2 and T3 can be noticed, while the results are very similar
in figs. 4.10b and 4.10c, i.e., temperatures in web and bottom flange. The temperatures in
top flange i.e., T1, T2 and T3 are observed to be higher than in the web. The temperature
isolines in fig. 4.7 suggest that the heat flux entering the top flange is higher compared to the
web and hence, higher temperatures. It is noticed that the temperature evolution of T7 is
the same for both coupled models, as presented in fig. 4.10c. This is to be expected, as both
coupled models use CG to discretize GFRP part and the effect of fluid convection on this
thermocouple is very small. Finally, the moving average of the average Nusselt number of
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Figure 4.10: GFRP problem: evolution of temperature in thermocouples and average Nusselt
number with time using mesh M4 and time step used is 0.0625/23. CC and CH denotes
CG-HDG and CG-CG models, respectively.
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Table 4.2: RMS values of errors in temperature for different thermocouples and average
Nusselt number for the considered coupled models.

Model
Thermocouples (in ◦C)

Nusselt Number
T1 T2 T3 T4 T5 T6 T7

CG-HDG 0.3011 0.0519 0.1542 0.0171 0.0204 0.0205 0.0510 0.0715
CG-CG 0.0645 0.6023 3.4795 0.0573 0.0124 0.0098 0.0261 0.1221

both CG-HDG and CG-CG coupled models are in very good agreement. The kink observed
in the average Nusselt number plot in fig. 4.10d around t = 225 sec coincides with the time
where the instabilities appear in the convective cells and the flow becomes oscillatory.

Figure 4.11 shows the estimated uncertainty in the temperature of the thermocouples and
the average Nusselt number for both coupled models. The time period of t = 200 − 400
sec is considered to present the uncertainty interval as solutions tend to change more with
refinement after t = 200 sec. One common trend observed in most of the data points is that
uncertainty is very small and most of the times, intervals from coupled CG-HDG and CG-CG
models overlap. This concludes that the considered coupled models give very similar results
in the present context. In fig. 4.11a, it can be noticed that the error in thermocouple T3 of
CG-CG coupled model produces a larger uncertainty compared to all other quantities. This
might be due to the poor non-linear least-squares fit and this error interval can be deemed to
be unreliable.

Figure 4.11d shows the moving average of the average Nusselt number for both coupled
models and they are in good agreement. However, the largest uncertainty interval obtained
in the case of average Nusselt number for both coupled models is around t = 240 sec. As
stated earlier, this time instance is in transition phase, where an oscillatory behaviour starts
to develop in the cavity. Once, the flow develops into oscillatory behaviour, the uncertainty
interval is very small for both coupled models. The time instance at which the oscillations
start depends on the numerical perturbations which depends on mesh, time step, etc. Hence,
the uncertainty is larger in this phase and once the flow settles into oscillatory behaviour,
both models converge to the same solution.

It is very difficult to assess the quality of the solutions based on the uncertainties pre-
sented in fig. 4.11. Hence, a Root Mean Square (RMS) value of error is computed for the
thermocouple temperatures and average Nusselt number to compare the average errors of
both coupled models. Table 4.2 shows the RMS values of errors for different thermocouples
and average Nusselt number for coupled CG-HDG and CG-CG models. It can be observed
from the error values of thermocouple temperatures that CG-HDG is better in some cases,
while CG-CG produces smaller errors in other cases. Nevertheless, the errors are very low,
i.e., within 1% for most of the results for both coupled models. Thermocouple T3 of CG-CG
coupled model has the highest RMS value of error. As stated earlier, this might be due to
unreliable data fitting and hence, should be of least importance. Even in the case of average
Nusselt number, the error is within 1% of maximum Nusselt number in time for CG-HDG
model, while it is within 2% for coupled CG-CG model. Hence, it can concluded that both
models give the results with very close accuracy.

Now, it is interesting to compare the CPU times taken by the linear solvers for both
coupled models. Table 4.3 shows the total time taken by the linear solver and the number
of solves that both coupled models needed for the same mesh and time step. Even though,
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Figure 4.11: GFRP problem: uncertainty in temperature in thermocouples and average Nus-
selt number with time using mesh M4 and time step used is 0.0625/23. CC and CH denotes
CG-HDG and CG-CG models, respectively.
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Table 4.3: Computational details for coupled CG(Q2)-CG(Q2Q1) and CG(Q2)-HDG(Q1)
models for GFRP problem with mesh M4 and time step of 0.0625/23.

Model ndof nnz
Total CPU time
for linear solver

(in hours)

Number
of solves

CPU Time/solve
(in seconds)

CG-HDG 1 28 064 45 93 485 567 hr 1 74 687 11.69 sec
CG-CG 1 09 028 46 03 053 854 hr 1 74 716 17.61 sec

coupled CG-HDG model has more DOFs compared to coupled CG-CG model, the number
of non-zero entries in the global matrix is marginally lower for CG-HDG model. Coupled
CG-HDG is clearly favourable when number of solves and total CPU time for linear solver is
considered. CG-HDG model is at least 1.5 times faster than CG-CG model when CPU time for
solving one system is considered. In the examples presented in the previous chapters, CG-CG
model is very competitive at low-degree approximations when the same mesh is considered.
However, it can be concluded that CG-HDG coupled model can be competitive, even at the
low-degree approximations, when highly refined meshes are used.

4.6.4 High-order results

In this section, results obtained using high-order elements using coupled CG(Qk+1)-HDG(Qk)
and CG(Qk+1)-CG(Qk+1Qk) are presented. The mesh size and degree of approximation are
chosen in such a way that the approximate total number of nodes are constant. Following this
idea, mesh M2 with elements of degree k = 4 has approximately the same number of nodes of
mesh M1 with degree k = 8. Hence, mesh M1 is considered with coupled CG(Q8)-HDG(Q7)
and CG(Q8)-CG(Q8Q7) models. In the same way, mesh M2 is chosen with coupled CG(Q4)-
HDG(Q3) and CG(Q4)-CG(Q4Q3) models. All the results presented use a constant time step
of 0.0625/23, which is the smallest time step in this analysis.

Figure 4.12 presents the results of temperatures in the thermocouples and the average
Nusselt number for coupled CG(Qk+1)-HDG(Qk) model for different degrees of approxima-
tions. The results from both computations are very close to each other in all the quantities. It
can be observed from plots in fig. 4.12 that the computations with CG(Q4)-HDG(Q3) model
slightly under predicts compared to numerical results of CG(Q8)-HDG(Q7) model. Moreover,
the uncertainty estimates computed from the earlier study are used here to verify the results
and it is noticed that the results of the two higher order approximations, k = 3 and k = 7,
are in good agreement with the established confidence intervals. It is worth noting that these
higher order results have a numerical uncertainty of their own. From the plots, it can be
inferred that these uncertainties either match the computed estimates or overlap the part of
the interval. Figure 4.13 presents the results of the coupled CG(Qk+1)-CG(Qk+1Qk) model
with high-degree approximations. In this case, the results from both degrees of approximation
practically coincide. As shown in fig. 4.13, it is very difficult to distinguish the results from
the plots. The uncertainty estimates of CG-CG model from earlier study are shown in the
plots to verify them. It is noticed that all the obtained results are well within the uncertainty
intervals for both set of results.

The notable difference in the results between two degrees of approximations in the cou-
pled CG-HDG models can be observed in thermocouple T3 and the average Nusselt number
as shown in figs. 4.12a and 4.12d. These two quantities have a strong dependence on the
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Figure 4.12: GFRP problem: evolution temperature in thermocouples and average Nusselt
number with time with high-order elements using coupled CG(Qk+1)-HDG(Qk) model. Solid
lines and dashed lines correspond to M1 and M2 meshes, respectively and time step used is
0.0625/23.
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Figure 4.13: GFRP problem: evolution temperature in thermocouples and average Nusselt
number with time with high-order elements using coupled CG(Qk+1)-CG(Qk+1Qk) model.
Solid lines and dashed lines correspond to M1 and M2 meshes, respectively and time step
used is 0.0625/23.
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Table 4.4: Computational details for coupled CG(Qk+1)-HDG(Qk) and CG(Qk+1)-
CG(Qk+1Qk) models for GFRP problem with mesh M1 (k = 7) and mesh M2 (k = 3)
with a time step of 0.0625/23.

Model ndof nnz
Total CPU time
for linear solver

(in hours)

Number
of solves

CPU Time/solve
(in seconds)

CG(Q8)-HDG(Q7) 9 188 10 48 569 62.0 hr 1 74 696 1.277 sec
CG(Q4)-HDG(Q3) 17 200 10 98 805 91.4 hr 1 74 538 1.885 sec
CG(Q8)-CG(Q8Q7) 10 232 14 80 905 84.3 hr 1 74 683 1.731 sec
CG(Q4)-CG(Q4Q3) 17 724 13 90 933 123 hr 1 74 654 2.539 sec

convection of the air inside the cavity and hence, the difference in results can be attributed
to differences in the fluid solutions between both results. This could be due to the existence
of singularities introduced by the geometry at the four corners of the cavity, as stated earlier
in the chapter. The consequences of the singularities on the proposed CG-HDG model is not
clear, as all the examples considered until this point in the work have smooth solutions. This
coupled formulation needs a thorough mathematical analysis to understand the effect of the
singularities in the solution. As this is out of scope of the present thesis, it can be referred as
one of the future developments of the present work.

Finally, CPU times for linear solvers are compared along with other important computa-
tional quantities. Table 4.4 summarises the comparison between the two sets of the results
with coupled CG-HDG and CG-CG models. First, comparing within CG-HDG and CG-CG
models infers that high-order computations take lower CPU time for linear solver than low-
order ones. Even though, there is significant difference in ndof and the number of non-zero
entries, nnz, are approximately the same for each degree of approximation of the corresponding
coupled models. However, the comparison of coupled CG-HDG model with coupled CG-CG
model for corresponding degrees of approximations suggest that CG-HDG is more efficient
for both computations for the meshes M1 (k = 7) and M2 (k = 3) with the ratio of CPU
times around 0.7 favouring CG-HDG model. Hence, the conclusion inferred from study in
Chapter 2 with benchmark example holds in this present practical application problem.

4.6.5 Results with rounded corners in cavity

This section presents the results performed using rounded corners in the cavity of the GFRP
profile cross-section. Meshes UM1 and UM2 are used in the analysis along with the time
step of 0.0625/23. This type of geometry ensures the absence of singularities and it is more
realistic geometric configuration. However, unstructured meshes are considered. Since the
corners are rounded, the average Nusselt number is redefined as follows,

Nu = − 1

θa − θ0

∫ 0.089

0.011

∂θs
∂x2

ds. (4.27)

where the limits 0.011 and 0.089 correspond to straight edge segment of the cavity after
excluding the rounded corners which have a fillet radius of 0.003 m. As done in the previous
example, mesh UM1 is discretized using elements of degree of approximation, k = 7 and mesh
UM2 with k = 3 for the considered coupled CG(Tk+1)-HDG(Tk) and CG(Tk+1)-CG(Tk+1Tk)
models.
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Table 4.5: Computational details for coupled CG(Tk+1)-HDG(Tk) and CG(Tk+1)-CG(Tk+1Tk)
models for GFRP problem with mesh UM1 (k = 7) and mesh UM2 (k = 3) with a time step
of 0.0625/23.

Model ndof nnz
Total CPU time
for linear solver

(in hours)

Number
of solves

CPU Time/solve
(in seconds)

CG(Q8)-HDG(Q7) 11 898 13 03 823 80.3 hr 1 74 449 1.657 sec
CG(Q4)-HDG(Q3) 23 208 13 70 509 114 hr 1 74 533 2.354 sec
CG(Q8)-CG(Q8Q7) 13 519 18 95 408 146 hr 1 74 452 3.027 sec
CG(Q4)-CG(Q4Q3) 22 812 17 08 665 171 hr 1 74 684 3.535 sec

Figures 4.14 and 4.15 present the results of coupled CG-HDG and CG-CG models, respec-
tively. The temperatures in the thermocouples of coupled CG-HDG and CG-CG models from
both computations are very close and they fall within their respective uncertainty intervals
established from the straight corner geometries. However, the average Nusselt number in the
case of both coupled CG-HDG and CG-CG models show ambiguous behaviour. One of the
main reasons is the disappearance of singularities in the geometry with rounded corners. In
the present case, the average Nusselt number is computed excluding the curved part of the
boundary, as presented in equation (4.27). This might be the reason for the under-prediction
of the average Nusselt number as it is computed for a boundary length of only 0.078 m instead
of 0.084 m in the case of the geometry with straight corners. Another reason might be the
lack of boundary refinement to resolve the thermal boundary layer near the internal edges of
the cavity. There is also a possibility that this result has bigger range of uncertainty with
it. Nevertheless, all other results of both coupled models with unstructured meshes are in
agreement with the uncertainty bounds.

Table 4.5 presents the CPU times for linear solvers for the computations considered in this
section. The conclusions drawn from the previous results hold in this section too. Even though
there is significant difference in ndof between different degrees of approximations within each
coupled model, the nnz count is very similar. Computations on high-order coarser meshes
take significantly less time than the low-order finer meshes. The total number of solves of the
system in both coupled models for different approximations is nearly the same.

4.6.6 Adaptive time step results

The results of temperatures in thermocouples and average Nusselt number using the adaptive
time step scheme proposed in Section 2.8 are presented. The tolerance in the local error, δtol,
is chosen to be 10−3. The solution is started with a small time step of 10−2 for the first 60
sec. The adaptive time step scheme starts to adapt only after the first 60 sec. This ensures
the errors due to initial conditions are not propagated in time. The results from the coupled
CG(Q2)-HDG(Q1) and CG(Q2)-CG(Q2Q1) models are presented here using mesh M4. Due
to the limitation of computational resources available, only results till 250 sec are presented
in this section. It is noticed that both coupled models adapt the time step to an order of 10−4

sec during the solution process, which demands a very large number of time steps to compute
the solution for 400 sec.

Figures 4.16 and 4.17 present the variation of temperatures in the thermocouples and
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Figure 4.14: GFRP problem: evolution temperature in thermocouples and average Nusselt
number with time using geometry with rounded corners and coupled CG(Tk+1)-HDG(Tk)
model. Solid lines and dashed lines correspond to UM1 and UM2 meshes, respectively and
time step used is 0.0625/23.
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0 50 100 150 200 250 300 350 400

Time(sec)

0

1

2

3

4

5

6

7

T
e

m
p

e
ra

tu
re

0 100 200 300 400
0

2

4

6

t (sec)

N
u
m
a

k = 7 k = 3

(d) Average Nusselt number.

Figure 4.15: GFRP problem: evolution temperature in thermocouples and average Nusselt
number with time using geometry with rounded corners and coupled CG(Tk+1)-CG(Tk+1Qk)
model. Solid lines and dashed lines correspond to UM1 and UM2 meshes, respectively and
time step used is 0.0625/23.
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Figure 4.16: GFRP problem: evolution temperature in thermocouples and average Nusselt
number with time using mesh M4, variable time step and coupled CG(Q2)-HDG(Q1) model.

average Nusselt number with time for coupled CG-HDG and CG-CG models, respectively.
As it can be noticed from the plots the temperatures in thermocouples and average Nusselt
numbers are in good agreement with the uncertainty estimates. In order to perform a con-
sistent comparison, the moving average of Nusselt number is computed by taking an interval
that spans 1 second on either side of the considered value.

Figure 4.18a shows the comparison of adapted time step with time for both coupled CG-
HDG and CG-CG models. Firstly, both coupled models adapt the time step in a similar
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Figure 4.17: GFRP problem: evolution temperature in thermocouples and average Nusselt
number with time using mesh M4, variable time step and coupled CG(Q2)-CG(Q2Q1) model.
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Figure 4.18: GFRP problem: variation of time step with time for the considered coupled
models.

Table 4.6: Number of time steps needed for reaching different time instances for considered
coupled models.

Coupled
Model

Time instance, t
100 150 200 250

CG-HDG 6 304 6 674 7 124 43 569
CG-CG 6 298 6 683 7 142 44 769

way with the evolution of flow. This suggests that the adaptive scheme is robust and less
dependent on the space discretization. It can be noticed that the time step adapts to a value
of approximately 10−1 sec, after an initial constant time step of 10−2 sec. In this phase,
time step almost remains constant around 10−1 sec until 200 sec. This is the time period
where flows develops into two counter rotating symmetric vortices in the cavity. When the
flow loses symmetry, which happens around 220− 240 sec, time step starts to decrease before
eventually settling into the oscillatory phase. Figure 4.18b presents the variation of time step
from time t = 230 sec. From fig. 4.19, it can be observed that the time step changes in a
periodic behaviour, which infers that the local error changes in a periodic way. The time step
increases moving from a trough of the average Nusselt number to the following crest and starts
decreasing after the crest. Hence, it can be inferred that the local error at the trough of the
solution is more compared to the crest. As it can be noticed from plots, a similar behaviour
is obtained for both coupled models in adapting the time step of the solution.

The number of time steps needed to reach different time instances for the considered
coupled models are presented in table 4.6. It is clear that both models takes relatively bigger
time steps till 200 sec and then, time step reduces considerably due to the instabilities in
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Figure 4.19: GFRP problem: variation of time step and average Nusselt number with time
for the considered coupled models.

the flow. Coupled CG-HDG model takes marginally fewer time steps to reach 250 sec than
coupled CG-CG model. However, both coupled models are very similar in adapting the time
step, as suggested by the various results presented in the section.

4.6.7 Experimental validation

Finally, this chapter is concluded by presenting the experimental results available for this
problem. Figure 4.20 shows the experimental validation of temperatures in thermocouples for
the coupled CG-HDG numerical model with mesh M4 and time step of 0.0625/23 sec. The
experimental data is obtained from the works of Morgado et al. (2013b,a).

It can be noticed from the plots that the experimental results are not in agreement with
the numerical ones. The discrepancy is more pronounced in the case of T5 and T6 as shown in
fig. 4.20b. This might be due to the fact that experimental data has its own uncertainty. It is
observed from the experimental data that the initial temperatures in different thermocouples
have values between 24◦C − 29◦C. Hence, the data has uncertainty in input parameters as
well. Following Vaz et al. (2016), the validation uncertainty, Uval, can be expressed as

U2
val = U2

num + U2
exp + U2

inp, (4.28)

where Unum is the numerical uncertainty, Uexp is the experimental uncertainty and Uinp is
the input parameters uncertainty. The uncertainty in the numerical results is quantified and
it is concluded that it carries a relatively small error. Therefore, the difference between the
experimental and numerical results can be from uncertainties in experiments and input data.

It can also be noticed that the thermocouple T6 is placed closer to the bottom face where
the GFRP is exposed to fire. In the physical experiments, this is carried out in an oven by
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Figure 4.20: GFRP problem: experimental data of temperature in thermocouples and nu-
merical results of coupled CG(Q2)-CG(Q2Q1) model with time using mesh M4 and time step
0.0625/23 sec.
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insulating the lateral faces with wool. By inspecting the experimental results, this insulation
is not well installed and hence, an abnormal rise in the temperature in T5 and T6 is observed
which are closer to exposed fire. This argument is supported by thermocouple T4, which agrees
well with the numerical results. The agreement of temperature in this thermocouple can be
attributed to its location, which is far away from the exposed fire and hence, better insulated.
Similarly, thermocouples in the top flange show an ambiguous variation experimentally. From
the fig. 4.20a, it can be observed that the temperature in thermocouple T2 is higher than in T3,
even though T3 is placed closer to exposed face. This can be due to congested installation of
three thermocouples in a small section of 8 mm thickness of GFRP section. The temperature
in the bottom flange also shows a significant difference from numerical results, however, the
slopes of the two curves are in good agreement suggesting that the numerical model could
capture the solution qualitatively.

4.7 Conclusions

Engineering parameters of importance, like temperature in different sections of thermocouples
and average Nusselt number, are used to present the results of thermal response of GFRP
tubular cross-section. Discretization errors are computed by using the results from different
meshes and time steps. The computed discretization errors are used to estimate the numerical
uncertainty in quantities of interest.

The uncertainty estimates from both coupled CG-HDG and CG-CG models are very
similar when a good fit is obtained. The intervals either match or overlap in most of the
cases for both coupled models. However, it is observed that CG-HDG model takes lesser
CPU time for linear solver to obtain the solution for the total considered time. It is also
noticed that the number of solves between the two coupled models is very similar. The results
of high-order elements are compared with the numerical uncertainty that is computed with
low-order elements. It is noticed that the results are in good agreement for the most part. In
both coupled models, it is observed that using coarser high-order meshes is more efficient than
finer low-order mesh. Also, coupled CG-HDG model takes lesser CPU time than the coupled
CG-CG counterpart when results from same mesh are compared. Results from the geometry
with rounded corners in the cavity are also presented and inferred that the temperatures are
in good agreement while the average Nusselt numbers show significant differences.

Finally, the adaptive time stepping scheme results are provided for both coupled models.
The temperature in the thermocouples and average Nusselt number are within the uncertainty
intervals for both coupled models. The variation of time step is very similar for both coupled
models. When the flow loses symmetry, the time step decreases to resolve the flow more
accurately. It is also noticed that the time step goes into an oscillatory phase in both models.
A comparison of number of time steps needed by both coupled models to reach 250 sec
concludes that coupled CG-HDG model takes slightly lesser time steps than coupled CG-CG
model. The chapter is concluded by comparing the experimental results with coupled CG-
HDG numerical results for the temperatures in thermocouples of GFRP and discrepancies
between numerical and experimental data are attempted to be explained.
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Chapter 5

Summary and future developments

5.1 Summary

The first part of this thesis involved in devising the CG-CG formulation for the problem of a
GFRP tubular cross-section. The weak formulations were derived and a code was successfully
implemented and rigorously tested with various verification examples. Some of the crucial
convergence results are presented in the thesis and the optimal rates are observed in all of the
numerical tests. Previous works (López, 2017) on predicting the thermal behaviour of GFRP
tubular cross-section problem indicated the presence of instabilities in the solution of fluid in
the cavity. Hence, one of the main goals defined for this work was to discretize the cavity
part of the same GFRP cross-section with a state-of-the-art HDG method. In the literature,
HDG methods are claimed to be superior to conventional CG and some DG methods in
terms of stability and convergence properties. Regarding computational efficiency, the work
of Kirby et al. (2012) focused on comparison of CPU times between HDG and CG for the
Laplace equation in 2-D and concluded that HDG can be as efficient as CG for high-degree
approximations. However, there were no studies on the computational efficiency of HDG
compared to CG for Stokes/Navier–Stokes equations were available in the literature. Hence
as a preliminary study, a computational efficiency study was made between HDG and CG for
Stokes/Navier–Stokes problems by implementing a HDG code on the same platform as CG.
The advantage of using high-degree approximations in terms of CPU time for linear solver was
demonstrated for both CG and HDG frameworks. Comparison of CPU times concluded that
HDG presents a superior computational efficiency than CG for high-degree approximations.
This conclusion was in-agreement with the earlier study of Kirby et al. (2012). In the NACA
airfoil example, the ratios of CPU times for k ≥ 5 were observed to be around 0.5 − 0.6
favouring HDG, while in the work of Kirby et al. (2012), the best ratio of CPU time obtained
was only around 0.8 − 0.9, also favouring HDG. It is to be noted that these ratios can be
dependent on the choice of linear solvers. Nonetheless, this study showed that HDG can have
higher gains in computational efficiency for fluid flow problems at low Reynolds numbers when
compared to CG.

Following this work, a comparative study on stability between HDG and CG for Navier–
Stokes problem was made. With the aid of a manufactured solution that produces a sharp
front near the boundary, it was concluded that HDG has superior stability properties than
CG. No stabilization methods like SUPG were considered for CG in this study while, the
stabilization parameter, τu, was tuned to obtain the convergence of non-linear solver in the
case of HDG. It could be argued that the study is biased towards HDG because of the
tuning of τu, which incorporates upwinding-like stabilisation. However, it should be noted
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that the stabilization parameter, τu, is inherent to the HDG formulation, without which
the convergence and uniqueness of the method cannot be proved. Hence, the stabilization
constant, τu, can be regarded as an added parameter in addition to mesh size, h, and degree
of approximation, k, that can be tuned while seeking for a solution. Stabilization techniques
like SUPG requires an additional implementation overhead for CG, while in HDG this is not
the case.

The second part of the thesis was to propose a coupled CG-HDG formulation for the
conjugate heat transfer problem, where fluid and solid domains would be discretized by HDG
and CG, respectively. The coupled variables between fluid and solid domains in this type of
problem are temperature and heat flux. Hence, a coupled CG-HDG formulation was derived
for the heat conduction equation. From the numerical experiments, it was understood that
the CG discretization needed to be one degree higher than HDG to keep the optimal conver-
gence in both methods. Later, an alternative coupled CG-HDG formulation was presented,
which loosely based on similar idea as the first proposed model. The projection technique was
used to impose the continuity of temperature and fluxes at the interface in this alternative
coupled model. From the convergence tests, it was concluded that both coupled models pro-
vided similar results. The previous HDG formulation that was applied to the Navier–Stokes
equations was then extended to the coupled Navier–Stokes/convection-diffusion model and
the formulation was verified using convergence tests. Results of Rayleigh–Bénard convection
flow are presented and results of CG and HDG methods were compared. Finally, the proposed
coupled CG-HDG model was integrated with the coupled Navier–Stokes/convection-diffusion
equations to solve conjugate heat transfer problems. A comparison of CPU times for linear
solver for the coupled CG-HDG and CG-CG models was provided and it was observed that
CG-HDG was more efficient at low and high-degree approximations. Besides, a theoretical
count of number of non-zero entries was derived for both coupled CG-HDG and CG-CG mod-
els. In order to make this study a complete one, a coupled HDG-HDG model was formulated
and implemented for the conjugate heat transfer problem. It was noticed that the accuracy
and efficiency of HDG-HDG model, in the examples considered in this work, was very similar
to proposed CG-HDG coupled model.

The final part of the thesis presents the application of the developed CG-HDG formulation
to the prediction of the thermal behaviour of GFRP tubular cross-section. In this problem, the
internal radiation within the cavity should be taken into account in the conjugate heat transfer
model. Hence, the discretization of radiosity equation, which governs internal radiation,
was detailed using the Galerkin formulation. The internal radiation model was added to
the coupled CG-HDG conjugate heat transfer model. Since, this problem do not have an
analytical solution, a priori error estimation was not possible. Therefore, a posteriori error
estimation methods were considered to present the results. Computations with different
meshes in space and time were considered to estimate the discretization error. This problem
demands a very small time step and finer meshes to be in the asymptotic range of the respective
discretizations. This requires more computational resources and advanced implementations
(like parallelization) which is outside the scope of this thesis. As non-monotonic convergence
was noticed in results, the estimated discretization errors were transformed into uncertainty
to establish confidence intervals. Again, the coupled CG-HDG model outperforms the coupled
CG-CG model in terms of computational efficiency.
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(a) Square domain with 8 elements. (b) Barycentrically refined mesh.

Figure 5.1: Barcentric refinement for Scott–Vogelius elements.

5.2 Future work

5.2.1 Comparison between CG and HDG

There are plenty of other aspects can be considered in the comparison between CG and HDG
for incompressible Navier–Stokes equations. One of the important being the usage of iterative
solvers to solve the linear system of equations. In very large test cases in 2-D and most of the
applications in 3-D limits the usage of direct solvers because of large memory requirements.
Hence, a comparative study between two methods with iterative solvers can be of significant
importance to understand the relative merits of both discretizations. The work of Yakovlev
et al. (2016) concluded that there is need to develop effective preconditioners for HDG to solve
the linear systems arising from Laplace equation in 3-D. Extending this conclusion to linear
systems arising from Stokes/Navier–Stokes equations is not straightforward as they result in
saddle point systems, unlike the positive definite matrices arising in the Laplace equation
problem.

In this work only Taylor–Hood elements were considered for CG discretization of Navier–
Stokes equations. However, there has been recent developments in divergence-free elements
like Scott–Vogelius (Scott and Vogelius, 1985). This type of elements use discontinuous ap-
proximations for pressure on barycentrically-refined meshes as shown in fig. 5.1. Hence, all
the pressure DOFs have local support which can be reduced to a single unknown per each
element in the global system by static condensation. Cousins et al. (2013) did a compara-
tive study between Scott–Vogelius and Taylor–Hood elements. The work demonstrated that
Scott–Vogelius have potential gains in efficiency of iterative solvers in 3-D over Taylor–Hood
elements. Besides, divergence-free velocity field satisfies the mass conservation equation in
Scott–Vogelius elements more accurately. The importance of the mass conservation prop-
erty in the context of buoyancy flows is demonstrated in the work of Keith et al. (2012).
However, the apparent restrictions on the meshes of Scott–Vogelius elements limit their ap-
plication to practical problems, like the one considered in the present work. Nevertheless, it
would be interesting to compare the accuracy and efficiency of Scott–Vogelius elements with
divergence-free HDG formulations for Navier–Stokes equations.

As stated in Chapter 1, Embedded Discontinuous Galerkin (EDG) (Güzey et al., 2007)
and Multi-scale Discontinuous Galerkin (MDG) (Hughes et al., 2006) methods use continuous
trace approximation which results in identical number of DOFs for velocity compared to CG.
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Hence, they result in smaller number of overall DOFs compared to HDG. Even though they
do not possess the super-convergence property, adding the results from EDG and MDG would
improve the quality of the comparison.

5.2.2 Coupled CG-HDG formulation

At the start of this work, it was assumed that using CG in the solid part of conjugate heat
transfer problem is the best choice in terms of computational efficiency. The rationale behind
that choice was that the solution in solid part is smooth, which does not need stabilisation
and also, CG has lower number of DOFs compared to HDG for second-order elliptic operators.
Hence, the present coupled CG-HDG formulation was devised for heat equation. However,
during the course of the work, it was inferred that the coupled HDG-HDG formulation is very
similar in terms of CPU time for linear solver and memory requirements. These conclusions
hold for the examples considered in the present work using direct solvers. The computational
efficiency and complexity of the proposed algorithm can be studied using problems with bigger
computational domains and iterative solvers.

In addition, the proposed coupled CG-HDG formulation can be extended to incompressible
Navier–Stokes equations. HDG can be used in the part of the domain where discontinuities
and/or boundary layers are present and CG in the part where solution is smooth. This coupled
formulation enhances the computational efficiency at low-order approximations of HDG at the
same time retaining the superior stability properties. Finally, the mathematical analysis of
the proposed coupled formulation for second-order elliptic operators needs to be developed.
In the present work, convergence is established using numerical experiments. However, there
is a scope to develop the mathematical analysis of existence and uniqueness of the coupled
formulation.

5.2.3 High-order time integration

The BDF schemes considered in this work are not A-stable for order, µ > 2. Hence, high-
order BDF schemes are not recommended. Several choices for high-order time integration are
available like Runge–Kutta (RK) methods (Hairer et al., 1993), which are unconditionally
stable. Let ẏ = f(t,y) be an initial value problem with initial condition y(t0) = y0, then a
s−stage RK method can be expressed as follows,

yn+1 = yn + ∆tn
∑s

i=1 biki,

ki = f(tn + ci∆tn,un + ∆tn
∑s

i=1 aijkj), i = 1, . . . , s,
(5.1)

where coefficients in equation (5.1) are usually represented by Butcher table,

c1 a11 . . . a1s

c1 a11 . . . a1s

...
...

...
...

cs as1 . . . ass

b1 . . . bs

=
c A

bT
. (5.2)

If ndof is the total number of DOFs of a system, a s−stage fully implicit Runge–Kutta (IRK)
scheme requires to solve a non-linear system of dimension s ndof. Hence, IRK schemes are
rather computationally expensive. On the other hand, s−stage Diagonally Implicit Runge–
Kutta (DIRK) methods are devised by keeping aij = 0 for i < j which require solutions
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to s non-linear system of equations with dimension ndof. However, DIRK methods suffers
from order reduction for Differential Algebraic Equation (DAE) systems (Hairer et al., 1993,
Rang, 2007). The pressure can only be approximated with first or second-order using DIRK
methods (Montlaur et al., 2012, Rang, 2016).

A linearisation of DIRK method leads to so-called Rosenbrock–Wanner (ROW) method
which can be expressed as follows,

ki = f(tn + αi∆tn,un + ∆tn

i−1∑
j=1

αijkj) + ∆tnfy

i∑
j=1

γijkj + ∆tnγift(tn,yn), i = 1, . . . , s,

(5.3)
where fy and ft denotes the Jacobian and time derivative of f in equation (5.3). This scheme
requires only the solution of s linear systems, when s− stage ROW method is employed at
each time step. This is due to the fact that left hand side matrix is independent of the stage
number. This scheme can be computationally efficient as it not necessary to solve a non-
linear system of equations at each time, but only fixed number of systems. Nevertheless, this
scheme has the limitation of order reduction too. There are different ROW methods proposed
in the literature that can attain orders of 3 and 4 (Lubich and Roche, 1990, Steinebach,
1995, Rang and Angermann, 2005). Moreover, in the work of Montlaur et al. (2012), the
author concluded that ROW method can be computationally efficient at low to moderate
levels of accuracy. Hence, ROW method of time integration scheme can be beneficial in the
context of present work as it practically requires only one factorisation of linear system per
each time step. In addition, embedded schemes can be devised for ROW and Runge-Kutta
time integration schemes to compute the local error that can be used to adapt the time step
without additional computational overhead.

5.2.4 Code development

The present code was implemented in FORTRAN using open-source libraries to solve the
linear system of equations. As presented in Chapter 4, the solution of the considered GFRP
tubular cross-section required very fine meshes with small time steps to predict the thermal
behaviour. Even though several optimizations were used in the code, there is still a potential
to further improve the code. In the present work, all the elemental matrices are pre-computed
including the non-linear ones. This ensures that the loop in Gauss points is eliminated at each
non-linear iteration to assemble the local elemental matrices. A big improvement on total CPU
time was noticed, especially at high-order approximations with this implementation. However,
there is still a considerable amount of CPU time spent on condensing the elemental matrices.
This cost is more pronounced in the case of HDG, as the local unknowns are more than CG
ones. One way to optimize this part to the code is to use shared memory computing, i.e.,
OpenMP. This is relatively easy to include in the code and compute the elemental matrices in
parallel on several threads. More complicated parallelization algorithms can also be considered
like domain decomposition methods (Li et al., 2014). However, in the context of the present
work, it is not strictly necessary. Regarding the linear solvers, multi-thread supported like
PARDISO (Petra et al., 2014b,a) linear solvers can also be used to improve the total run time.
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Appendix A

Weak formulations for coupled
CG-CG and HDG-HDG models

The weak formulation of the coupled HDG(Tk/Qk)-HDG(Tk/Qk) model is presented for the
conjugate heat transfer problem. Using the notation, L ≈ gradu, q1 ≈ −α1 grad θ1 and
q2 ≈ −α2 grad θ2, the weak form corresponding to the equations (3.41) can be stated as
follows: find (u, p,L, θ1, q1, θ2, q2, û, ρe, θ̂1, θ̂2) ∈ [Vhk (Ω1)]2×Vhk (Ω1)×[Vhk (Ω1)]2×2×Vhk (Ω1)×
[Vhk (Ω1)]2×Vhk (Ω2)×[Vhk (Ω2)]2×[Λhk(Γ1)]2×Rmel×Λhk(Γ1)×Λhk(Γ2) satisfying the local problem
in every element Ωe

1 and Ωi
2,

(δL,L)Ωe1
+ (div δL,u)Ωe1

− 〈δLn, û〉∂Ωe1
= 0,

− (grad δu,u⊗ u)Ωe1
− (δu,div (−pI + νL))Ωe1

+ 〈δu, (û⊗ û)n+ τu (u− û)〉∂Ωe1
− (δu,f(θ1))Ωe1

− (δu, s̄)Ωe1
= 0,

− (grad δp,u)Ωe1
+ 〈δp, û · n〉∂Ωe1

= 0,

(A.1a)

1

|∂Ωe
1|
〈p, 1〉∂Ωe1

= ρe, (A.1b)(
δq1, α

−1
1 q1

)
Ωe1
− (div δq1, θ1)Ωe1

+ 〈δq1 · n, θ̂1〉∂Ωe1
= 0,

(δθ1, div q1)Ωe1
− (grad δθ1,u θ1)Ωe1

+ 〈δθ1, (û · n− τθ) θ̂1〉∂Ωe1

+ 〈δθ1, τθ θ1〉∂Ωe1
− (δθ1, ḡ1)Ωe1

= 0,

(A.1c)

(
δq2, α

−1
2 q2

)
Ωi2
− (div δq2, θ2)Ωi2

+ 〈δq2 · n, θ̂2〉∂Ωi2
= 0,

(δθ2,div q2)Ωi2
+ 〈δθ2, τθ(θ2 − θ̂2)〉∂Ωi2

− (δθ2, ḡ2)Ωi2
= 0,

(A.1d)

for e = 1, . . . ,mel, and i = 1, . . . , pel, and the global problem

mel∑
e=1

〈δû, (−pI + νL)n+ τu (û− u)〉∂Ωe1
= 0,

〈û · n, 1〉∂Ωe1
= 0 for e = 1, . . . ,mel,

û = P2(ū) on ∂Ω1,

(A.2a)
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mel∑
e=1

〈δθ̂1, (q1 + û θ̂1) · n+ τθ(θ1 − θ̂1)〉∂Ωe1
+

pel∑
i=1

〈δθ̂2, q2 · n+ τθ(θ2 − θ̂2)〉∂Ωi2

= 〈δθ̂1, q̄n1〉ΓN1 + 〈δθ̂2, q̄n2〉ΓN2 ,

θ̂1 = P2(θ̄1) on ΓD1 ,

θ̂2 = P2(θ̄2) on ΓD2 ,

(A.2b)

for all (δu, δp, δL, δθ1, δq1, δθ2, δq2, δû, δθ̂1, δθ̂2) ∈ [Vhk (Ω1)]2×Vhk (Ω1)×[Vhk (Ω1)]2×2×Vhk (Ω1)×
[Vhk (Ω1)]2 ×Vhk (Ω2)× [Vhk (Ω2)]2 × [Λhk(Γ1)]2 ×Λhk(Γ1)×Λhk(Γ2) such that δû = 0, δθ̂1 = 0 on
ΓD1 and δθ̂2 = 0 on ΓD2 . Recall, Γ2 is the union of all edges in the partitioned Ω2 and pel is
the number of elements in Ω2.

The weak formulation for the coupled CG(Tk+1Tk/Qk+1Qk)-CG(Tk+1/Qk+1) model corre-
sponding to the governing equations of the conjugate heat transfer problem presented in (3.41)
can be stated as: find (u, p, θ1, θ2) ∈ [Wh

k+1(Ω1)]2 × Vhk (Ω1) × Wh
k+1(Ω1) × Wh

k+1(Ω2) such
that u = Πh(ū) on ∂Ω1, θ1 = Πh(θ̄1) on ΓD1 , θ2 = Πh(θ̄2) on ΓD2 and

(δu, (gradu)u)Ω1
+ (grad δu, (−pI + ν gradu))Ω1

−
(
δu, f̄(θ1)

)
Ω1

− (δu, s̄)Ω1
= 0,

− (δp,divu)Ω1
= 0,

(A.3a)

(grad δθ1, α1 grad θ1)Ω1
+ (δθ1,u · grad θ1)Ω1

− (δθ1, ḡ1)Ω1
− 〈δθ1, q̄n1〉ΓN1

+ (grad δθ2, α2 grad θ2)Ω2
− (δθ2, ḡ2)Ω2

− 〈δθ2, q̄n2〉ΓN2 = 0,
(A.3b)

for all (δu, δp, δθ1, δθ2) ∈ [Wh
k+1(Ω1)]2 × Vhk (Ω1) ×Wh

k+1(Ω1) ×Wh
k+1(Ω2) such that δu = 0

on ∂Ω1, δθ1 = 0 on ΓD1 and δθ2 = 0 on ΓD2 , where the discrete spaces are defined in (1.2).

The weak formulation for the coupled CG(Tk+1Tk/Qk+1Qk)-CG(Tk+1/Qk+1) model corre-
sponding to the governing equations in (4.1) and (4.5) can be presented as: find (un+1, pn+1, θn+1

f ,

θn+1
s , Rn+1) ∈ [Wh

k+1(Ωf )]2 × Vhk (Ωf )×Wh
k+1(Ωf )×Wh

k+1(Ωs)× Σh
k+1(ΓR) such that u = 0

on ΓR and

(
δu,

αµu
n+1

∆t

)
Ωf

+
(
δu,

(
gradun+1

)
un+1

)
Ωf

+
(
grad δu, (−pn+1I + ν gradun+1)

)
Ωf

− (δu, f̄(θn+1
f ))Ωf −

(
δu,

un,BDFµ

∆t

)
Ωf

= 0,

−
(
δp,divun+1

)
Ωf

= 0,

(A.4a)
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(
δθf , ρfcpf

αµθ
n+1
f

∆tn+1

)
Ωf

+
(

grad δθf , κf grad θn+1
f

)
Ωf

+
(
δθf , ρfcpf (un+1 · grad θn+1

f )
)

+

(
δθs, ρs(θ

n+1
s )cps(θ

n+1
s )

αµθ
n+1
s

∆tn+1

)
Ωs

+
(
grad δθs, κs(θ

n+1
s ) grad θn+1

s

)
Ωs

−

(
δθs, ρs(θ

n+1
s )cps(θ

n+1
s )

θn,BDFµ
s

∆tn+1

)
Ωs

−

(
δθf , ρfcpf

θn,BDFµ
f

∆tn+1

)
Ωf

+

〈
δθs,

ε

1− ε
(σ (θn+1

s )4 −Rn+1)

〉
ΓR

−
〈
δθs, ha(θ

n+1
s )(θn+1

a − θn+1
s )

〉
Γt∪Γb

−
〈
δθs, ε σ((θn+1

a )4 − (θn+1
s )4)

〉
Γt∪Γb

= 0,

(A.4b)
nl∑
e=1

〈
δR,

Rn+1

(1− ε)

〉
ΓeR

−
nl∑
e=1

〈
δR , σ

ε

(1− ε)
(
θn+1
s

)4〉
ΓeR

−
nl∑
e=1

nl∑
k=1
k 6=e

〈
δR ,

〈
Rn+1,k ,

cos γe cos γk

2 r

〉
ΓkR

〉
ΓeR

= 0,

(A.4c)

for all (δu, δp, δθf , δθs, δR) ∈ [Wh
k+1(Ωf )]2 × Vhk (Ωf ) × Wh

k+1(Ωf ) × Wh
k+1(Ωs) × Σh

k+1(ΓR)
such that δu = 0 on ΓR.
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Appendix B

Theoretical count of degrees of
freedoms and number of non-zeros

All the hypothesis and notation presented in this appendix are taken from the work of Huerta
et al. (2013). In their work, second-order elliptic equation is considered to derive the quantities
of interest. As the present work deals with a coupled system of equations, the counting
technique of Huerta et al. (2013) is applied to each block of unknowns in the system. Consider
conjugate heat transfer problem that is governed by equations presented in (3.41). The fill of
the global tangent matrix and its corresponding DOFs have the following pattern,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . u1 u1
. . . . . . u1 u2

. . . u1 p
. . . u1 θf

. . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . u2 u1

. . . . . . u2 u2
. . . u2 p

. . . u2 θf
. . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . u1 p
. . . . . . u2 p

. . . p p
. . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . u1 θf

. . . . . . u2 θf
. . . . . . θf θf

. . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . .

. . . θs θs
. . .

. . . . . . . . .





...
u1

...

...
u2

...
p
...
θf
...
...
θs
...



. (B.1)

In the fill-in representation (B.1), θf and θs corresponds to the DOFs associated to tempera-
ture in fluid and solid domains, respectively. Here, the temperature DOFs on the interface is
not considered as the boundary nodes on interface are negligible compared to interior nodes in
the domains. The global tangent matrix from the CG discretization of Stokes/Navier–Stokes
equations presents a saddle point system with zeros in main diagonal. However, when static
condensation is applied on high degree approximations (k ≥ 3), the block p p represented
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in (B.1) becomes non-zero. This fill-in pattern is valid for HDG discretization as well with
the exception of null p p block.

First, expressions for ndof for incompressible Navier–Stokes for CG and HDG discretiza-
tions are deduced. In the case of CG, total ndof is sum of velocity DOFs, ndof(u), approx-
imated with degree k and pressure DOFs, ndof(p), approximated with degree k − 1. In the
case of HDG, pressure DOFs reduce to single unknown per each element unlike in CG. The
expressions for total ndof in the case of CG (with static condensation) and HDG can be
written as follows,

ndofc = d ndof(u) + ndof(p),

ndofh = d ndof(û) + ndof(ρ),
(B.2)

where ndofc and ndofh are the total number of DOFs in CG (with static condensation)
and HDG discretizations, respectively and d is the spatial dimension of the problem. These
expressions for ndof can be readily extended to conjugate heat transfer problem by considering
the temperature DOFs. For instance, the total number of DOFs in the case of conjugate heat
transfer problem are,

ndofcc = d ndof(u) + ndof(p) + ndof(θf ) + ndof(θs),

ndofch = d ndof(û) + ndof(ρ) + ndof(θ̂f ) + ndof(θs),

ndofhh = d ndof(û) + ndof(ρ) + ndof(θ̂f ) + ndof(θ̂s),

(B.3)

where ndofcc, ndofch and ndofhh are the total DOF count for CG-CG, CG-HDG and HDG-
HDG discretizations, respectively.

Now, the number of non-zero entries is considered for the conjugate heat transfer problem.
Since, Taylor–Hood approximations use the same degree for velocity and temperature, the
blocks involving velocity and temperature are of same size. The nnz count of the blocks
involving velocity and pressure needs to be developed as they are approximated with different
degrees in Taylor–Hood family of elements. Hence, total nnz for conjugate heat transfer
problem can be expressed as follows,

nnzcc = d2 nnz(u1 u1) + 2d (nnz(u1 p) + nnz(u1 θf )) + nnz(p p) + nnz(θf θf ) + nnz(θs θs),

nnzch = d2 nnz(û1 û1) + 2d (nnz(û1 ρ) + nnz(û1 θ̂f )) + nnz(θ̂f θ̂f ) + nnz(θs θs),

nnzhh = d2 nnz(û1 û1) + 2d (nnz(û1 ρ) + nnz(û1 θ̂f )) + nnz(θ̂f θ̂f ) + nnz(θ̂s θ̂s),

(B.4)
where nnzcc, nnzch and nnzhh corresponds to CG-CG, CG-HDG and HDG-HDG discretiza-
tions, respectively.

The expressions developed by Huerta et al. (2013) can be applied to each component in
equations (B.2), (B.3) and (B.4). The expressions for ndof and nnz for a scalar unknown
system (Laplace equation) with CG (with static condensation) and HDG discretizations are
presented as follows,

CG: ndof =
∑d−1

i=0 ni ndof
int
i , nnz =

∑d−1
i=0 ci ni ndof

int
i ,

HDG: ndof = nd−1 ndofd−1, nnz = c nd−1 ndofd−1,
(B.5)

where the parameters are defined as follows,
d: Spatial dimension of the problem.
ci: The number of nodes that are connected to a global node that is on the interior of an

i-dimensional entity for a CG discretization. 0-dimensional entity corresponds to vertex
nodes, 1-dimensional is edge, 2-dimensional and 3-dimensional entities are polygon and
cell, respectively.
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Table B.1: Total number of nodes and interior nodes in a i-dimensional entity for simplices
and parallelotopes.

Dimension
Simplices Parallelotopes

ndofi ndofinti ndofi ndofinti
0 1 1 1 1
1 k + 1 k − 1 k + 1 k − 1

2 (k + 1)(k + 2)/2 (k − 1)(k − 2)/2 (k + 1)2 (k − 1)2

3 (k + 1)(k + 2)(k + 3)/2 (k − 1)(k − 2)(k − 3)/2 (k + 1)3 (k − 1)3

Table B.2: Expressions of the total number of connected nodes to a global node of i-
dimensional entity in CG discretization.

Simplices ci Expression Parallelotopes ci Expression

Triangles
c0 3k2 + 3k + 1

Quads
c0 4k2 + 4k + 1

c1 k2 + 2k + 1 c1 2k2 + 3k + 1

c2 (k2 + 3k + 2)/2 c2 k2 + 2k + 1

Tets

c0 4k3 + 6k2 + 4k + 1

Hexes

c0 8k3 + 12k2 + 6k + 1

c1 (6k3 + 18k2 + 19k + 7)/7 c1 4k3 + 8k2 + 5k + 1

c2 (k3 + 3k2 + 13k + 6)/6 c2 2k3 + 5k2 + 4k + 1

c3 (k3 + 6k2 + 11k + 6)/6 c3 k3 + 3k2 + 3k + 1

ni: The number of i-dimensional entities in the mesh. This is already presented in table 2.1
in terms of number of elements, nel.

ndofinti : The number of interior nodes of the i-dimensional entity. It can be expressed in terms
of degree of approximation, k. Table B.1 gives this information.

c: The number of nodes that are connected to a global node in HDG discretization.
ndofi: The number of nodes of the i-dimensional entity. It can also be expressed in terms of

degree of approximation, k. This is also presented in table B.1.
The formulae are self-explanatory, for instance, there are n0 number of vertices in a mesh

(ndofint0 = 1) and each vertex has connectivities with c0 number of other vertices. Hence,
there will be c0 n0 ndofint0 number of entries in the global stiffness matrix. Similarly, there are
n1 ndofint1 number of interior nodes on all the edges of a mesh and each node is connected to
c1 other nodes. Finally, the summation of c0 n0 + c1 n1 ndofint1 gives nnz count in a statically
condensed CG discretization. By taking the summation till d instead of d − 1, i.e., taking
the contributions from interior nodes of the elements by summing c2 n2 ndofint2 gives the nnz
count in a CG discretization without static condensation. Using the similar arguments, the
summation n0 + n1 ndofint1 corresponds to sum of interior nodes of vertices and edges in a
mesh which gives the number of nodes of the mesh. In a scalar unknown system, total number
of nodes in the mesh is the total number of DOFs. Table B.2 gives the expressions for ndofi,
ndofinti and ci, respectively in terms of degree of approximation, k, for CG discretization.

The connectivities is based on edges/faces in the HDG depending on spatial dimension.
In 2-D, there are n1 number of edges and n1 ndof1 number of nodes in the mesh. Each node
is connected to c other nodes and hence, the number of entries are c1 n1 ndof1. Table B.3
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Table B.3: Expressions of the total number of connected nodes to a global node of i-
dimensional entity in HDG discretization.

Simplices c Parallelotopes c

Triangles 5k + 5 Quads 7k + 7

Tets (7k2 + 21k + 14)/2 Hexes 11k2 + 22k + 11

Table B.4: Expressions to deduce the ndof for coupled models considered in the work.

Coupled model Expression

CG(Tk+1)-CG(Tk+1Tk)

ndof(u)
∑d−1

i=0 ni ndof
int
i (k + 1)

ndof(p)
∑d−1

i=0 ni ndof
int
i (k)

ndof(θf )
∑d−1

i=0 ni ndof
int
i (k + 1)

ndof(θs)
∑d−1

i=0 n
s
i ndof

int
i (k + 1)

CG(Tk+1)-HDG(Tk)

ndof(û) nd−1 ndofd−1(k)

ndof(ρ) nel

ndof(θ̂f ) nd−1 ndofd−1(k)

ndof(θs)
∑d−1

i=0 n
s
i ndof

int
i (k + 1)

HDG(Tk)-HDG(Tk)

ndof(û) nd−1 ndofd−1(k)

ndof(ρ) nel

ndof(θ̂f ) nd−1 ndofd−1(k)

ndof(θ̂s) nd−1 ndofd−1(k)

has the expressions for c in terms of k for HDG discretization. The number of mean pressure
DOFs, ndof(ρ) is equal to number of elements, nel, in the mesh.

If ndofinti (k), ndofi(k) are the number of interior nodes and total number of nodes (in-
terior+boundary) of the i-dimensional entity for degree of approximation k, the components
in equation (B.3) are presented in table B.4. The number of entities of the solid domain are
denoted by nsi in the expressions provided in the table B.4. Hence, the total ndof depends
on the number of elements in fluid (ΩD) and solid (ΩC) domains. Deducing the ndof count
for incompressible Navier–Stokes equations presented in table 2.2 is straightforward using
equation (B.2), table B.4 and the auxiliary data provided.

Turning to number of non-zero entries now, first CG-CG coupled model is considered in
deriving the total nnz count. As stated earlier, nnz count for each block involving velocity and
pressure is approximately the same. If a coupled CG(Tk+1)-CG(Tk+1Tk) model is considered,
nnz(u1 u1)/nnz(u1 θf )/nnz(θf θf )/nnz(θs θs) count can be obtained by using equation (B.5)
and replacing k by k + 1 in the expressions presented in tables B.2 and B.1. Similarly,
nnz(p p) is computed by using the degree of approximation, k. The blocks containing velocity
and pressure needs special attention as they are both approximated with different degree.
Each global pressure node has ci number of connected i-dimensional velocity node entities.
Hence, the connectivities should be computed based on the number of connected velocity
nodes to each global pressure node. The expressions for ci in this case is the same as in the
case of (u1 u1) block.

In the case of CG-HDG and HDG-HDG discretizations, the nnz count for velocity and
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Table B.5: Expressions for nnz(û1 ρ) in terms of k and number of elements, nel.

nnz(û1 ρ) nnz(û1 ρ) in terms of k
Triangular 3 ndof1 nel (3k + 3)nel

Quads 4 ndof1 nel (4k + 4)nel

Tets 4 ndof2 nel (2k2 + 4k + 2)nel

Hexes 6 ndof2 nel (6k2 + 12k + 6)nel

Table B.6: Expressions for nnz for several blocks of unknowns for considered coupled models
in the present work.

Coupled model Expression

CG(Tk+1)-CG(Tk+1Tk)

nnz(u1 u1)
∑d−1

i=0 ci(k + 1)ni ndofinti (k + 1)

nnz(u1 p)
∑d−1

i=0 ci(k + 1)ni ndofinti (k)

nnz(p p)
∑d−1

i=0 ci(k)ni ndofinti (k)

nnz(u1 θf )
∑d−1

i=0 ci(k + 1)ni ndofinti (k + 1)

nnz(θf θf )
∑d−1

i=0 ci(k + 1)ni ndofinti (k + 1)

nnz(θs θs)
∑d−1

i=0 ci(k + 1)nsi ndof
int
i (k + 1)

CG(Tk+1)-HDG(Tk)

nnz(û1 û1) c(k)nd−1 ndofd−1(k)

nnz(û1 ρ) ns ndofd−1(k)nel

nnz(û1 θ̂f ) c(k)nd−1 ndofd−1(k)

nnz(θ̂f θ̂f ) c(k)nd−1 ndofd−1(k)

nnz(θs θs)
∑d−1

i=0 ci(k + 1)nsi ndof
int
i (k + 1)

HDG(Tk)-HDG(Tk)

nnz(û1 û1) c(k)nd−1 ndofd−1(k)

nnz(û1 ρ) ns ndofd−1(k)nel

nnz(û1 θ̂f ) c(k)nd−1 ndofd−1(k)

nnz(θ̂f θ̂f ) c(k)nd−1 ndofd−1(k)

nnz(θ̂s θ̂s) c(k)nd−1 ndofd−1(k)

temperature DOFs can be readily computed using the relations provided in table B.3. The
major difference in counting nnz comes from pressure DOFs compared to CG discretization.
It is explained earlier that in HDG discretization of Stokes/Navier–Stokes equations, the
pressure unknowns reduces to one scalar constant per element. Each pressure unknown,
ρe, is connected to 3(4) edges in triangular(quadrilateral) elements in 2-D and 4(6) faces in
tetrahedral(hexahedral) elements in 3-D. Table B.5 presents the nnz(û1 ρ) for different types
of elements in 2-D and 3-D.

If ci(k) is the number of connected nodes of i-dimensional entity for degree of approxi-
mation k and ndofinti (k) is the number of interior nodes of i-dimensional entity for degree of
approximation k, the nnz count for blocks (u1 u1) and (u1 p) can be expressed as shown in
table B.6. As indicated earlier, nsi in expressions in table B.6 corresponds to the number of
entities in the solid domain. Another new parameter introduced here is ns, which represents
number of edges (faces) in 2-D (3-D) elements. The parameter ns assumes a value of d + 1
for simplices and d+ 2 for parallelotopes as presented in table B.5.
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The theoretical count on nnz for all the considered discretization can now be obtained by
substituting the expressions for each block in (B.4). The final expressions are presented in
table 3.5 and the expressions are verified using the numerical results of conjugate heat transfer
problem. It is observed that the formulae are within 5% of the actual nnz count for all the
discretizations.



Appendix C

Definition of elemental matrices in CG
and HDG discretizations

In this appendix, the elemental matrices that arise from all the CG and HDG discretizations
discussed before are defined. All the variables presented in this section are the elemental
variables. Variable L(e) is a second-order tensor and it is represented as a column vector,
[l11 l12 l21 l22](e)T , in the numerical computations.

The independent variables (L(e),u(e), p(e), θ(e), q(e), û(e), ρ(e), θ̂(e)) over each element, Ωe,
can be approximated as follows,

L(e)(ξ) = ψL(ξ)L(e), u(e)(ξ) = ψu(ξ)u(e), p(e)(ξ) = ψp(ξ)p(e) in Ωe,

θ(e)(ξ) = ψθ(ξ)θ(e), q(e)(ξ) = ψq(ξ)q(e) in Ωe,

û(e)(ξ) = ψû(ξ)û(e), θ̂(e)(ξ) = ψθ̂(ξ)θ̂
(e)

on ∂Ωe,

(C.1)

where ψL(ξ), ψu(ξ), ψp(ξ),ψθ(ξ),ψq(ξ),ψû(ξ) and ψθ̂(ξ) are matrices that gather the ap-

proximation functions of respective unknowns, while L(e), u(e), p(e),θ(e),q(e), û(e) and θ̂
(e)

are the elemental nodal column vectors of gradient of velocity, velocity, pressure, temperature,
flux, velocity trace and temperature trace, respectively. ξ and ξ represent the coordinate in
the area and line reference domains, respectively. û(e) contains the trace of velocity on each
face of the element and it can be represented as

[
ûFe1 . . . ûFen

]T , where Fef is the f th face of
eth element. Here, n = 3 in the case of triangular elements, while n = 4 for quadrilateral ele-
ments. From now on explicit dependence on ξ and ξ will be omitted for the sake of simplicity.
The approximation functions can be represented as follows,

ψL =


ψ

ψ

ψ

ψ

 , ψu = ψq =

[
ψ

ψ

]
, ψp = ψθ = ψ,

ψû =

[
ψFe1 . . . ψFen

ψFe1 . . . ψFen

]
, ψθ̂ =

[
ψFe1 . . . ψFen

]
,

(C.2)

where ψ is the matrix that gathers the shape functions associated to the nodes of the elements
and ψFef is the matrix collecting the shape functions associated to the nodes along the sides
of the element. The shape function matrices corresponding to CG discretization is represented
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using an over-line notation, i.e., matrix containing the shape functions of velocity is denoted
by ψu.

Some notation used to represent the element matrices in case of both HDG and CG is
given as follows,

∇̃ ≡

∂∂x1

∂

∂x2
∂

∂x1

∂

∂x2

 , Ñ ≡

[
n1 n2

n1 n2

]
. (C.3)

The elemental matrices corresponding to the discretization of Navier–Stokes equations for
CG presented in (2.4) are as follows,

K(e) =

((
∇̃Tψu

)T
, ν∇̃Tψu

)
Ωe
, C(e)(u) =

(
ψTuu, ∇̃Tψu

)
Ωe
,

G(e) = −
((

∇ψp
)T
,ψu

)
Ωe
, s̄(e) =

(
ψTu , s̄

)
Ωe
,

t̄(e) = 〈ψTu , t̄〉∂ΩeN
.

(C.4)

Similarly, the elemental matrices from HDG discretization of Navier–Stokes equations (2.14)
are given as follows,

A
(e)
LL =

(
ψTL,ψL

)
Ωe
, A

(e)
Lu =

(
(∇̃ψL)T ,ψu

)
Ωe
,

A
(e)
Lû = −〈(ÑψL)T ,ψû〉∂Ωe .

(C.5)

The non-linear convective matrices in equation (2.9b) can be expressed as follows,

C
(e)
uu(u) = −

(ψTu,1 , u1ψu

)
Ωe

(
ψTu,2 , u1ψu

)
Ωe(

ψTu,1 , u2ψu

)
Ωe

(
ψTu,2 , u2ψu

)
Ωe

 ,
C

(e)
uû(û) =

[
〈ψTu , û1ψûn1〉∂Ωe 〈ψTu , û1ψûn2〉∂Ωe

〈ψTu , û2ψûn1〉∂Ωe 〈ψTu , û2ψûn2〉∂Ωe

]
.

(C.6)

The discretization of rest of the terms in equation (2.9b) results in the following,

A
(e)
uL = −

(
ψTu , ν∇̃ψL

)
Ωe
, A

(e)
up =

(
ψTu ,∇ψp

)
Ωe
,

A
(e)
uu = 〈ψTu , τuψu〉∂Ωe , A

(e)
uû = −〈ψTu , τuψû〉∂Ωe ,

s̄(e) =
(
ψTu , s̄

)
Ωe
.

(C.7)

The matrices of the continuity equation (2.9c) and constraint (3.5b) are presented as follows,

A
(e)
pu = −

(
(∇ψp)T ,ψu

)
Ωe
, A

(e)
pû = 〈(nψp)T ,ψû〉∂Ωe ,

A
(e)
ρp =

1

|∂Ωe|
〈ψp, 1〉∂Ωe .

(C.8)

Finally, the elemental matrices of global problem (2.12a) and (2.12b) can be expressed as,

A
(e)
ûp = −〈ψTû , (nψp)〉∂Ωe , A

(e)
ûL = 〈ψTû , (ÑψL)〉∂Ωe ,

A
(e)
ûû = 〈ψTû , τuψû〉∂Ωe , A

(e)
ûu = −〈ψTû , τuψu〉∂Ωe ,

A
(e)
ρû = 〈nTψû, 1〉∂Ωe , t̄(e) = 〈ψTû , t̄〉∂ΩeN

.

(C.9)
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The tangent operator terms, necessary within the Newton–Raphson iterative method, asso-
ciated with the residual (2.14) are trivial, except for the ones associated with C

(e)
uu(u) and

C
(e)
uû(û) matrices, given by (C.6). These are expressed by

C
(e)
Tuu =

(ψTu,1 , u1ψu

)
Ωe

+
(
ψTu,2 , u2ψu

)
Ωe

0

0
(
ψTu,1 , u1ψu

)
Ωe

+
(
ψTu,2 , u2ψu

)
Ωe

 , (C.10)

C
(e)
Tuû =

[
〈ψTu , (û · n)ψû〉∂Ωe 0

0 〈ψTu , (û · n)ψû〉∂Ωe

]
. (C.11)

The definition of elemental matrices that arise from the coupled Navier–Stokes/convection-
diffusion equations using HDG discretization presented in (3.10) are,

A
(e)
qq =

(
ψTq , α

−1ψq
)

Ωe
, A

(e)
qθ = −

(
(∇̃Tψq)

T ,ψθ

)
Ωe
,

A
(e)

qθ̂
= 〈(nT ψq)T ,ψθ̂〉∂Ωe , A

(e)
θq =

(
ψTθ , (∇̃Tψq)

T
)

Ωe
,

A
(e)
θθ = 〈ψTθ , τθψθ〉∂Ωe , A

(e)

θθ̂
= −〈ψTθ , τθψθ̂〉∂Ωe ,

A
(e)

θ̂θ̂
= −〈ψT

θ̂
, τθψθ̂〉∂Ωe , A

(e)

θ̂θ
= 〈ψT

θ̂
, τθψθ〉∂Ωe

A
(e)

θ̂q
= 〈ψT

θ̂
, (nT ψq)〉∂Ωe , ḡ(e) =

(
ψTθ , ḡ

)
Ωe
,

A
(e)
uθ =

(
ψTu , g βψθ

)
Ωe
, f

(e)
θ0

=
(
ψTu , g β θ0

)
Ωe
.

(C.12)

The non-linear matrices from the system in (3.10) are defined as follows,

C
(e)
θθ (u) = −〈ψTθ,1, u1ψθ〉∂Ωe − 〈ψTθ,2, u2ψθ〉∂Ωe ,

C
(e)

θθ̂
(û) = 〈ψTθ , (û · n)ψθ̂〉∂Ωe ,

C
(e)

θ̂θ̂
(û) = 〈ψT

θ̂
, (û · n)ψθ̂〉∂Ωe .

(C.13)

The tangent operators of the non-linear matrices already presented in (C.13) are given as,

C
(e)
θθT (θ) = −

[
〈ψTθ,1, θψθ〉∂Ωe 〈ψTθ,2, θψθ〉∂Ωe

]
,

C
(e)

θθ̂T
(θ̂) =

[
〈ψTθ , θ̂ n1ψû〉∂Ωe 〈ψTθ , θ̂ n2ψû〉∂Ωe

]
,

C
(e)

θ̂θ̂T
(θ̂) =

[
〈ψT

θ̂
, θ̂ n1ψû〉∂Ωe 〈ψTθ̂ , θ̂ n2ψû〉∂Ωe

]
.

(C.14)

The matrices that arise from the coupling of HDG and CG on the interface, ΓI , in the
equation (3.30) can be expressed as follows,

B
(e)
θθ = −〈ψTθ , τ ψθ〉∂Ωe∩ΓI , B

(e)
qθ = 〈(nT ψq)T ,ψθ〉∂Ωe∩ΓI

B
(e)
θq = −B(e)T

qθ , K
(e)
θθ =

(
(∇ψθ)T , α2∇ψθ

)
Ωe2
.

(C.15)

The mass matrices from the time discretization in (4.12) can be expressed as follows,

M
(e)
uu =

(
ψTu ,ψu

)
Ωef
, M

(e)
θθ =

(
ψTθ ,ψθ

)
Ωef
,

M
(e)
θθ =

(
ψTθ ,ψθ

)
Ωes
.

(C.16)
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Finally, the elemental matrices and body force vectors corresponding to the discretization
in solid part, Ωs, and interface, ΓR, in (4.12) are presented in (C.17).

K
(k)
RR =


〈

1
1−ε ψ

(e)T
R ,ψ

(e)
R

〉
ΓeR

if k = e,

−
〈
ψ

(e)T
R , 〈ψ(k)

R , cos γ(e) cos γ(k)

2 r 〉
Γ
(k)
R

〉
ΓeR

if k 6= e,

f
(e)
θ =

〈
ψTθ , ha(θs)ψθ(θa − θs)

〉
Γet∪Γeb

+
〈
ε σψTθ ,

(
(ψθθa)

4 − (ψθθs)
4
)〉

Γet∪Γeb

−
〈

ε
1−ε ψ

T
θ ,
(
σ (ψθ θs)

4 −ψRR
)〉

ΓeR

,

f
(k)
R =


〈
σ ε

1−ε ψ
T
R, (ψθ θs)

4
〉

ΓeR

if k = e

0 if k 6= e

(C.17)

In (C.17), ψR denote the matrix consisting 1-D nodal shape functions of the radiosity variable.
It is assumed in this work that the degree of approximation of radiosity is the same as that
of temperature in the solid domain. The linearisation and tangent operators of the radiosity
equation are discussed in-detail in López (2017).
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