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SUMMARY 

 

Pollution is the contamination of the environment by introduction of 

contaminants or pollutants in concentrations that may cause damage to 

environment and harm organisms (humans, plants and animals). According 

to European Environment Agency (EEA) air pollution is the single largest 

environmental health risk in Europe, and can cause respiratory problems 

and shorten lifespans. Atmospheric transport is the primary distribution 

pathway of substances, moving these pollutants from atmospheric 

emission sources (natural or anthropogenic) via deposition to terrestrial and 

aquatic ecosystems. Among these substances there are the called semi-

volatile organic compounds (SVOCs), characterized by their high toxicity, 

the recalcitrant to degradation processes character and their potential for 

long-range atmospheric transport (LRAT), reaching to remote and poorly 

accessible areas, far away from the emission sources. Besides, most of 

SVOCs are lipophilic and bioaccumulative, which increase the risk to 

human exposure. According to the United States Environmental Protection 

Agency (US EPA), the category of SVOCs includes a large number of 

compounds such as polycyclic aromatic hydrocarbons (PAHs). PAHs are 

by-products of incomplete combustion or pyrolysis of fossil fuels and other 

organic materials such as wood and biomass and they can be issued by 

natural (e.g., volcanoes, forests fires, and grassland combustion) or 

anthropogenic sources. Although PAHs can be released by both sources, 

the anthropogenic origin have been identified as the main responsible of 

the PAHs presence in the environment, being the petrochemical industries 

an important emission sources of PAHs to air. Among the different PAHs, 

benzo(a)pyrene (BaP) has already been classified as carcinogenic to 

humans (Group 1) by the International Agency for Research on Cancer 

(IARC) and is the only PAH with a legislated average limit in the 

atmosphere: 1 ng m-3 of BaP over 1 year. Furthermore, international studies 

suggest that the toxicity and environmental fate and transport of PAHs can 

be affected by the variations in the temperature and solar radiation 
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associated with climate change, mainly in the most vulnerable regions, 

such as the Mediterranean basin. 

In this thesis, atmospheric pollution due to the presence of PAHs and 

other SVOCs (polychlorinated biphenyls (PCBs), organochlorine pesticides 

(OCPs) as hexachlorobenzene (HCB), brominated flame retardants (BFRs) 

and synthetic musk fragrances (SMs)) has been assessed in Tarragona 

country Spain that is home to the one of the largest chemical/petrochemical 

industrial complex in Southern Europe.  

The chapter 1 of this thesis was focused in to determine the monitoring 

approaches necessary for SVOCs environmental determination by means 

of passive sampling techniques. Among these techniques, passive air 

samplers with polyurethane foam (PUF-PAS) and lichen transplants were 

selected, since they are cheap, easy to deploy or to collect and allows the 

simultaneous sampling in remote and/or poorly accessible areas without 

available electric current and at different locations and/or scales. 

PUF-PAS are worldwide used for air monitoring at global/regional scale, 

since have been the devices preferred by the United Nations Environment 

Program for global air monitoring. However, few international studies have 

been conducted in order to study the suitability of PUF-PAS for SVOCs 

(POPs) monitoring at a local scale. This chapter has confirmed that the use 

of PUF-PAS is fully viable for Tarragona county (local scale) sampling, 

since these devices have been able to capture different groups or families 

of SVOCs, such as PAHs, PCBs, BFRs, SMs and HCB, even at very low 

air concentrations (ng/m3), at different locations and involving low 

maintenance and costs. In addition, good correlations have been found 

between the PUF-PAS and lichens transplants when analyzing the 

environmental burden of PAHs, confirming the suitability of lichens as 

passive samplers. Regarding to SVOCs levels recorded by PUF-PAS and 

lichens transplants, it is observed that the area over the industrial influence 

(chemical and petrochemical areas) has higher concentrations of PAHs, 

PCBs and HCB than in urban areas and these are higher than in the 

background areas. On the other hand, SMs and BFR concentrations were 

lower than those and did not show significant differences between zones. 
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The chapter 2 of this thesis was aimed to improve analytical procedures 

for SVOCs determination using “green” alternatives. In last decades, 

several methods have been developed in order to detect, identify and 

quantify the chemicals released into the environment. Among these 

extraction and clean-up protocols are soxhlet, sonication, pressurized liquid 

extraction (PLE), microwave-assisted extraction (MAE), microextraction 

techniques, solid-phase extraction (SPE), among others. In general, all 

these methods are effective but time and solvent consuming, and requiring 

expensive equipment, for this reason, a multi-residue method involving 

QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) coupled to 

GC-MS (Gas Chromatography–Mass Spectrometry) was validated for the 

simultaneous extraction of PAHs, PCBs, BFRs, SMs and HCB in soils and 

vegetation samples. The results showed that the QuEChERS methodology 

was a valid technique to make a screening of the compounds presents in a 

sample, either soil or vegetation, including those collected in Tarragona 

county. In addition, QuEChERS technique provided a considerable 

reduction in the amount of solvent and operating time, without 

compromising the performance of the method given by the validation 

parameters.  

When the three passive sampling techniques, PUF-PAS, vegetation and 

soils were evaluated together some differences arise. PUF-PAS tend to 

capture the most volatile SVOCs, mainly associated with the gas phase. 

Vegetation traps the PAHs contents in the gas phase, but it also retains 

some of those sorbed to the particulate phase (which has not been washed 

by natural processes), while soils capture the heaviest and more resistant 

to degradation molecules, that could be associated with particulate phase. 

Concerning the monitoring time, the results obtained from PUF-PAS and 

ruderal vegetation (Piptatherum L.) versus soil showed that these matrices 

are able to provide information regarding the levels and sources of SVOCs 

at short- (2-3 months) and long-term, respectively. 

Finally, the chapter 3 of this thesis was aimed to use the modelling 

approaches as a combined tools for monitoring PAHs in the environmental. 

The combination of monitoring and modelling tools is of high importance, 
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being very valuable and complementary techniques. In this sense, 

monitoring is critical for models implementation and modelling helps predict 

the contaminants behavior in the environment, since they transform the 

valuable datasets into a complete understanding of spatial, temporal and 

chemical transport patterns. Likewise, models can identify the priority areas 

for sampling campaigns. In this thesis two different models, MUM-Fate 

(Multimedia Urban Model) and WRF+CHIMERE (Weather Research and 

Forecasting), were used in order to predict PAHs fate, emissions and future 

concentrations considering actual and future climate conditions (RCP8.5 

scenario, 2031-2050).  

MUM-Fate model is a mass balance model based on the Level III steady-

state fugacity of Mackay (1991), characterized by dividing the total study 

area into 7 different boxes or bulk media compartments. In the case of 

Tarragona county, MUM-Fate model provided a preliminary approximation 

of the PAHs distribution in the bulk media compartments defined for this 

area, by using simple approaches and calculations. Among the different 

compartments considered by this model, the organic film as the 

compartment with the highest concentrations of PAHs. However, and due 

the high losses in this compartment, the model positioned the soils and 

sediments as the greatest PAHs sinks in Tarragona County. Also this model 

was used to predict the emissions by backcalculations. 

Regarding to WRF+CHIMERE model, is a kind of chemistry transport 

models (CTMs) that can complement the field data also considering the 

meteorology of the study area, the atmospheric chemistry processes and 

climate change, contributing to diminish the gaps still existing regarding 

SVOCs environmental behaviour. In this case, WRF+CHIMERE predictions 

indicate that in the future (2031-2050) concentrations of BaP will increase 

in air and decrease in soils in Tarragona county, resulting in an increase of 

5x10-8 in the life-time risk of lung cancer, particularly in the most populated 

areas. 
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RESUMEN 

 

La polución es la contaminación del medio ambiente por la introducción 

de contaminantes o compuestos en concentraciones que pueden causar 

daños a la salud humana y a los ecosistemas. Según la Agencia Europea 

del Medio Ambiente (AEMA), uno de los mayores riesgos para la salud 

ambiental en Europa es la contaminación del aire, que puede causar 

problemas respiratorios y acortar la esperanza de vida. El transporte 

atmosférico es la principal vía de distribución de sustancias, moviendo 

estos contaminantes desde las fuentes de emisión atmosférica (naturales 

o antropogénicas) hacia a los ecosistemas terrestres y acuáticos a través 

procesos de deposición. Entre estas sustancias se encuentran los 

llamados compuestos orgánicos semivolátiles (SVOCs), caracterizados 

por su alta toxicidad, carácter recalcitrante a los procesos de degradación 

y su potencial para el transporte atmosférico de largo alcance (LRAT), 

llegando a áreas remotas y poco accesibles, lejos de las fuentes de 

emisión. Además, la mayoría de los SVOCs son compuestos lipófilos y 

bioacumulativos, lo que aumenta el riesgo de exposición humana. De 

acuerdo con la Agencia de Protección Ambiental de los Estados Unidos 

(US EPA), la categoría de SVOCs incluye una gran cantidad de 

compuestos, tales como hidrocarburos aromáticos policíclicos (HAP o sus 

siglas en ingles PAHs). Los PAHs son subproductos de la combustión 

incompleta o pirólisis de combustibles fósiles y otros materiales orgánicos, 

como madera y biomasa, que pueden emitirse por fuentes naturales (por 

ejemplo, volcanes, incendios forestales y pastizales) o antropogénicas. Si 

bien ambas fuentes pueden liberar los PAHs, se ha determinado que el 

origen antropogénico es el principal responsable de su presencia en el 

medio ambiente, siendo las industrias petroquímicas fuentes importantes 

de emisión al aire. Entre los diferentes PAHs, el benzo(a)pireno (BaP) ya 

ha sido clasificado como cancerígeno para los humanos (Grupo 1) por la 

Agencia Internacional para la Investigación del Cáncer (IARC) y es el único 

PAHs con un límite promedio legislado en la atmósfera: 1 ng m-3 de BaP 

durante 1 año. Además, diversos estudios internacionales sugieren que la 
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toxicidad y el transporte y destino ambiental de los PAHs pueden verse 

afectados por las variaciones en la temperatura y la radiación solar 

asociadas al cambio climático, principalmente en las regiones más 

vulnerables, como la cuenca mediterránea. 

En esta tesis, se ha evaluado la contaminación atmosférica debida a la 

presencia de PAHs y otros SVOCs (bifenilos policlorados (PCB), 

plaguicidas organoclorados (OCP) como el hexaclorobenceno (HCB), 

retardantes de llama bromados (BFR) y fragancias sintéticas (SMs)) en 

Tarragona, España, donde se localiza el complejo industrial 

químico/petroquímico más grande del sur de Europa. 

El capítulo 1 de esta tesis se centró, principalmente, en identificar las 

técnicas de monitoreo pasivo necesarias para la determinación ambiental 

de SVOCs. Entre estas técnicas, se seleccionaron muestreadores pasivos 

de aire con espuma de poliuretano (PUF-PAS) y trasplantes de liquen, ya 

que son baratos, fáciles de instalar o recolectar y permiten el muestreo 

simultáneo en áreas remotas y poco accesibles, donde no se dispone de 

corriente eléctrica y en diferentes ubicaciones y/o escalas. 

Los PUF-PAS son dispositivos que se utilizan en todo el mundo para el 

monitoreo del aire a escala global/regional, siendo uno de los dispositivos 

preferidos dentro del Programa de las Naciones Unidas para el Medio 

Ambiente para el monitoreo del aire a escala global. Sin embargo, pocos 

estudios internacionales han estudiado la idoneidad de PUF-PAS para el 

monitoreo de SVOCs (o compuestos orgánicos persistentes, POPs) a 

escala local. Este capítulo ha confirmado que el uso de PUF-PAS es 

totalmente viable para el muestreo en el área de Tarragona (escala local), 

ya que estos dispositivos han podido capturar diferentes grupos o familias 

de SVOCs, como PAHs, PCB, BFR, SMs y HCB, incluso a concentraciones 

en aire muy bajas (ng/m3), en diferentes ubicaciones e implicando poco 

mantenimiento y costes. Además, se han encontrado buenas correlaciones 

entre los trasplantes de líquenes y los PUF-PAS cuando se analiza la carga 

ambiental de los PAHs, confirmando la idoneidad de los líquenes como 

muestreadores pasivos. En cuanto a los niveles de SVOCs registrados por 

PUF-PAS y trasplantes de líquenes, se observa que el área con influencia 
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industrial (áreas químicas y petroquímicas) tiene mayores concentraciones 

de PAHs, PCB y HCB que en áreas urbanas y estos niveles a su vez son 

más altos que en las áreas de fondo. Por otro lado, las SMs y BFR fueron 

los compuestos que presentaron las concentraciones más bajas y no 

mostraron apenas diferencias significativas entre las zonas. 

El objetivo del capítulo 2 de esta tesis fue mejorar los procedimientos 

analíticos para la determinación de SVOCs utilizando alternativas "verdes". 

En las últimas décadas, se han desarrollado varios métodos para detectar, 

identificar y cuantificar los productos químicos liberados en el medio 

ambiente. Entre estos protocolos de extracción y limpieza se encuentran 

soxhlet, sonicación, extracción líquida presurizada (PLE), extracción 

asistida por microondas (MAE), técnicas de microextracción, extracción en 

fase sólida (SPE), entre otros. En general, todos estos métodos son 

efectivos pero consumen tiempo y una alta cantidad de disolventes, 

además de requerir equipos caros. Por este motivo, se validó un método 

de extracción múltiple que incluye QuEChERS (Quick, Easy, Cheap, 

Effective, Rugged and Safe) acoplado a GC-MS (Gas Cromatografía-

Espectrometría de masas) para la extracción simultánea de PAHs, PCB, 

BFR, SM y HCB en suelos y muestras de vegetación. Los resultados 

mostraron que la metodología QuEChERS fue una técnica válida para 

realizar un cribado de los compuestos presentes en las muestras 

ambientales (suelos y vegetación), incluyendo las recogidas en Tarragona. 

Además, la técnica QuEChERS proporcionó una reducción considerable 

en la cantidad de disolvente y el tiempo de operación, sin comprometer el 

rendimiento del método de acuerdo a los parámetros de validación. 

Cuando se evaluaron juntas las tres técnicas de muestreo pasivo, PUF-

PAS, vegetación y suelos, surgieron algunas diferencias. PUF-PAS tienden 

a capturar los SVOCs más volátiles, principalmente asociados con la fase 

gaseosa. En cambio, la vegetación es capaz de atrapar los compuestos 

presentes en la fase gaseosa, además de retener algunos de los sorbidos 

en la fase particulada (que no haya sido lavada por procesos naturales); 

mientras que los suelos capturan las moléculas más pesadas y más 

resistentes a la degradación, que podrían estar asociados a la fase 

UNIVERSITAT ROVIRA I VIRGILI 
ENVIRONMENTAL LEVELS OF PAHs AND OTHER SVOCs IN A PETROCHEMICAL AREA. COMBINING MONITORING 
AND MODELLING TOOLS 
Noelia Domínguez Morueco 
 



SUMMARY/RESUMEN 

 

- 10 - 

 

particulada. Con respecto al tiempo de monitoreo, los resultados obtenidos 

de PUF-PAS y vegetación rastrera (Piptatherum L.) versus suelo mostraron 

que estas matrices son capaces de proporcionar información con respecto 

a los niveles y fuentes de SVOCs a corto (2-3 meses) y largo plazo, 

respectivamente. 

Finalmente, el capítulo 3 de esta tesis tuvo como objetivo utilizar los 

enfoques de modelado como herramientas adicionales en el monitoreo 

ambiental de PAHs. La combinación de herramientas de monitoreo y 

modelado es de gran importancia, siendo técnicas muy valiosas y 

complementarias. En este sentido, el monitoreo es crítico para la 

implementación de los modelos y el modelado ayuda a predecir el 

comportamiento de los contaminantes en el ambiente, ya que son capaces 

de transformar los conjuntos de datos de campo en patrones de transporte 

espacial, temporal y químico. Del mismo modo, los modelos pueden 

identificar las áreas prioritarias para las campañas de muestreo. En esta 

tesis, dos modelos diferentes, MUM-Fate (Multimedia Urban Model) y 

WRF+CHIMERE (Weather Research and Forecasting), fueron utilizados 

con el objetivo de predecir el destino final de los PAHs, así como sus 

emisiones asociadas y concentraciones futuras, teniendo en cuenta las 

condiciones climáticas actuales y de cambio climático (escenario RCP8.5, 

serie temporal 2031-2050). 

El modelo MUM-Fate es un modelo de balance de masas basado en el 

concepto de fugacidad descrito por Mackay en 1991 (en este caso, Nivel 

III de fugacidad), que se caracteriza por dividir el área de estudio total en 7 

compartimentos diferentes. En el caso de Tarragona, el modelo MUM-Fate 

proporcionó una aproximación preliminar de la distribución de los PAHs en 

los compartimentos definidos para esta área, mediante el uso de enfoques 

y cálculos simples. Entre los diferentes compartimentos considerados por 

este modelo, la película orgánica característica de las superficies 

impermeables fue el compartimento con mayores concentraciones de 

PAHs. Sin embargo, y debido a las altas pérdidas en este compartimiento, 

el modelo posicionó a los suelos y sedimentos como los mayores 
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sumideros de PAHs en Tarragona. Así mismo, este modelo permitió 

estimar las emisiones de PAHs en Tarragona mediante retrocalculaciones. 

En cuanto al modelo WRF+CHIMERE, es un tipo de modelo de transporte 

químico que puede complementar los datos de campo considerando 

también la meteorología del área de estudio, los procesos químicos 

atmosféricos y el cambio climático, contribuyendo de esta manera a 

disminuir la incertidumbre en el comportamiento ambiental de los SVOCs. 

En este caso, las predicciones de WRF+CHIMERE indicaron que en 

escenarios futuros de cambio climático (RCP8.5, 2031-2050) las 

concentraciones de BaP aumentarán en el aire y disminuirán en los suelos 

de Tarragona, lo que resulta en un aumento de 5x10-8 en el riesgo de 

padecer cáncer de pulmón en las zonas más pobladas. 
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1. Environmental pollution - Semi-volatile organic compounds 

(SVOCs) 

 

Pollution is the contamination of the environment by introduction of 

contaminants or pollutants in concentrations that may cause damage to 

environment and harm organisms (humans, plants and animals). Since the 

start of the industrial revolution in the 19th century, environmental pollution 

has grown into a global transboundary problem that affects air, water, soils 

and ecosystems and is linked directly to human health and well-being. A 

key issue is the growth of the global population, from an estimated 1 billion 

in at the beginning of the 19th century to more than 7.5 billion today. This, 

combined with rapid economic development, has led to a massive increase 

in global production, consumption and mobility, together with increased 

demand for food and energy.  

Pollution can be produced by natural origin (e.g. volcanic eruptions) or 

by anthropogenic origin and can reach the environment due to diffuse and 

punctual sources (Fig. 1). Diffuse pollution can be caused by a variety of 

activities that have no specific point of discharge. Agriculture is a key source 

of diffuse pollution, but urban land, forestry, atmospheric deposition and 

rural dwellings can also be important sources. Point sources, such as 

discharges from the treatment of industry, urban wastewater and fish farms 

are defined as stationary locations or fixed facilities from which pollutants 

are discharged. The anthropogenic origin is the most frequent and is linked 

to three main human activities: fossil-fuel combustion, primarily by industry 

and transport; the application of synthetic fertilisers and pesticides in 

agriculture; and the growing use and complexity of chemicals. For instance, 

the use of fossil-fuels such as coal and petroleum generated increases in 

the emission of different pollutants into the atmosphere, such as nitrogen 

oxides (NOx), sulphur oxides (SOx), carbon monoxide (CO) or organic 

compounds of different volatilities (VOCs) (CEC, 1997) (Fig. 1). From 1990 

to 2010, annual global emissions from fossil fuels rose by 50 %, from 

around 6 billion tonnes to almost 9 billion tonnes (UNEP, 2012). In terms of 

chemicals, more than 100 million substances have been added in the CAS 
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REGISTRY (www.cas.org). From those, more than 100,000 substances are 

commercially available in Europe alone, and the number of new substances 

coming on to the global market is increasing rapidly.  
 

 

Fig. 1. Common sources of environmental pollutants. Source: modified from 

Commission for Environmental Cooperation (CEC), (1997). 

 
Atmospheric transport is the primary distribution pathway of 

substances, moving these pollutants from atmospheric emission sources 

(natural or anthropogenic) via deposition to terrestrial and aquatic 

ecosystems (He and Balasubramanian, 2010) (Fig. 2). According to EEA 

(2016) air pollution is the single largest environmental health risk in Europe, 

and can cause respiratory problems and shorten lifespans. It also 

contributes vegetation and ecosystems damage, and leads to several 

important environmental impacts, which affect vegetation and fauna directly 

(e.g. causes eutrophication in sensitive habitats), as well as the quality of 

soil and water (e.g. acidification), and the ecosystem services they support. 
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Fig. 2. Pathways of transport and accumulation of environmental pollutants. Source: 

modified from Commission for Environmental Cooperation (CEC), (1997). 

 
Of particular concern are persistent, bio-accumulative and toxic 

substances that remain in the environment for a long time. It is recognized 

that potential harm should not be evaluated only on the basis of the effects 

on living organisms and on the ecosystems but also on the basis of possible 

exposure (Vighi and Calamari, 1993). Among these substances are the 

called semi-volatile organic compounds (SVOCs), defined by the United 

States Environmental Protection Agency (US EPA) Terminology Reference 

System such as those organic compounds that can volatilize relatively 

slowly at standard temperature of 20 ºC and pressure of 1 atm (boiling point 
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range: 240-260 to 380-400 ºC). In recent years, the interest of the scientific 

community by SVOCs has been increasing due their high toxicity, the 

recalcitrant to degradation processes character and their potential for long-

range atmospheric transport (LRAT), reaching to remote and poorly 

accessible areas, far away from the emission sources (Cai et al., 2008). 

Besides, most of SVOCs are lipophilic and bioaccumulative, which increase 

the risk to human exposure (Sun et al., 2014).  

 

According to the US EPA, the category of SVOCs includes a large 

number of compounds such as:  

 Polycyclic aromatic hydrocarbons (PAHs), dibenzodioxins and 

dibenzofurans 

 Pesticides (insecticides, fungicides, herbicides, biocides etc.) 

 Polychlorinated biphenyls (PCBs) 

 Brominated flame retardants (BFRs) 

 Perfluoroalkyl compounds (PFCs) 

 SVOCs degradation products  

 

Since SVOCs are linked to negative human health effects, these 

compounds are subject to national and international control strategies, such 

as the Stockholm Convention, the Convention of Long-Range 

Transboundary Air Pollution (LRTAP) or the REACH legislation (Melymuk 

et al., 2016). The Stockholm Convention (www.pops.int) defined in 2001 a 

total of 12 SVOCs as persistent organic pollutants (POPs). POPs is a group 

of chemical substances with highly persistence and health effects already 

recognized (e. g. dermal toxicity, immunotoxicity, reproductive effects and 

teratogenicity, endocrine disruption effects, and carcinogenicity) whose 

production, use, and emissions should be reduced or banned legally 

(UNEP, 2001). Among them were PCBs; organochlorine pesticides 

(OCPs), such as hexachlorobenzene (HCB) or BFRs (legacy POPs); while 

others SVOCs like PAHs are usually characterized as “potential POPs”.  
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Although the Stockholm Convention has been coming into force in 2004 

and was signed by more than 150 countries worldwide -most of them 

developed countries- the characteristics of these compounds, together with 

their past extensive use around the world, has led their remain in the 

present environment. 

 

2. Polycyclic aromatic hydrocarbons (PAHs) 
 

Polycyclic aromatic hydrocarbons (PAHs) are a large group of organic 

compounds with two or more fused aromatic (benzene) rings made entirely 

from carbon and hydrogen (WHO, 2002; 2010). This kind of structure make 

PAHs a compounds with low solubility in water and therefore, with highly 

lipophilic character and soluble in most organic solvents (WHO, 2010).  

Depending on the aromatic rings number, PAHs can be classified into 

low molecular weight PAHs (LMW PAHs), a group that includes PAHs with 

a number between 2 and 3 rings; intermediate molecular weight PAHs, 

which includes those PAHs with 4 aromatic rings; and high molecular 

weight PAHs (HMW PAHs), which includes those PAHs with a number of 

rings between 5 and 6 (WHO, 2002). Generally, LMW PAHs occur in the 

atmosphere predominantly in the gas phase, whereas HMW PAHs are 

largely bound to particulate phase. In the case of intermediate molecular 

weight PAHs, they are usually partitioned between the gas and particulate 

phases, depending on the atmospheric temperature (WHO, 2002).  

The stability, persistence and hazardous potential of PAHs increase 

with the number of aromatic rings, this fact coupled with their hydrophobic 

(lipophilic) character, makes PAHs ubiquitous environmental contaminants, 

as well as risky compounds to ecosystem and human health (WHO, 2002; 

Ghosal et al., 2016; Liu et al., 2017a). Furthermore, international studies 

suggest that the toxicity and environmental fate and transport of PAHs can 

be affected by the variations in the temperature and solar radiation 

associated with climate change, mainly in the most vulnerable regions, 

such as the Mediterranean basin (Nadal et al., 2015; Marquès et al., 
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2016a). For this reason, PAHs have been classified as priority pollutants by 

US EPA and by the European Environment Agency (EEA). 

The US EPA has developed a list of 16 priority PAHs (naphthalene, 

acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, 

fluoranthene, pyrene, benzo(a)anthracene, chrysene, 

benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, 

indeno(1,2,3-c,d)pyrene, dibenzo(a,h)anthracene, and 

benzo(g,h,i)perylene), 7 of them being classified as probable human 

carcinogens under the 2B classification (Leung et al. 2015) (Fig. 3).  
 

 

 

 
 

Fig. 3. List of 16 priority PAHs developed by US EPA. * 7 PAHs classified as 

probable human carcinogens under the 2B classification. 
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Other agencies, such as the International Agency for Research on 

Cancer (IARC), also suggest that there is an association between risk of 

cancer and exposure to PAHs, classifying the benzo(a)pyrene as 

carcinogenic to humans (group 1); the dibenzo(a,h)anthracene as probably 

carcinogenic (group 2A); and as possibly carcinogenic to humans (group 

2B) in the case of naphthalene, benzo(a)anthracene, chrysene, 

benzo(b)fluoranthene, benzo(k)fluoranthene and indeno(1,2,3-

c,d)perylene. Although the rest of the listed PAHs are not classifiable as to 

its carcinogenicity to humans (group 3), some of them, such as fluoranthene 

have mutagenic characteristics (IARC, 2013; 2017). The most important 

exposure route of PAHs is via inhalation, for this reason, the Air Quality 

Directive (EU, 2004) prescribes that benzo(a)pyrene concentration in air for 

the protection of human health is set at 1 ng/m3 as an annual mean.  

Due their potential carcinogenic and mutagenic properties, PAHs 

environmental exposure is being widely studied. One of the methodologies 

worldwide used to evaluate the PAHs exposure is the toxic equivalents 

(TEQs). This methodology allows to estimate the relative toxicity of certain 

groups of compounds in relation to the most toxic compound present in the 

mixture by using the toxic equivalency factors (TEFs) (Van den Berg et al., 

1998; Hong et al., 2009):  

 

TEQ =∑ (C x TEF) 

(1) 

 

where C is the compound concentration in the mixture and TEF is the 

toxic equivalent factor for each compound. 

As noted above, among the different PAHs, benzo(a)pyrene (BaP) is 

one of the most potent carcinogens, for this reason it is often used as a 

marker for total exposure to carcinogenic PAHs (WHO, 2010). In this sense, 

the carcinogenic risk associated of a PAH mixture is expressed through its 

benzo(a)pyrene equivalent concentration (BaPeq); and it is calculated by 

multiplying the concentration of each individual PAH present in the sample 

(PAHi) by its respective toxic equivalent factor (TEFi): 
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BaPeq= ∑ 𝑃𝐴𝐻𝑖 × 𝑇𝐸𝐹𝑖𝑛
𝑖=1  

(2) 

 

In this thesis the TEFi for each PAHs were according to Nadal et al. 

(2004a) (adapted from Nisbet and LaGoy, 1992 and Larsen and Larsen, 

1998) (Table 1). 
 

Table 1. TEFs values for each PAHs according to Nadal et al., 2004a. 

PAHs TEFs 

Naphthalene (Naph) 0.001 

Acenaphthylene (Acy) 0.001 

Acenaphthene (Ace) 0.001 

Fluorene (Fluo) 0.001 

Phenanthrene (Phen) 0.0005 

Anthracene (Ant) 0.0005 

Fluoranthene (Flt) 0.05 

Pyrene (Pyr) 0.001 

Benzo(a)anthracene (BaA) 0.005 

Chrysene (Chry) 0.03 

Benzo(b+k)fluoranthene B(b+k)F 0.1 

Benzo(a)pyrene (BaP) 1 

Indeno(1,2,3-c,d)pyrene (Icdp) 0.1 

Dibenzo(a,h)anthracene (DahA) 1.1 

Benzo(g,h,i)perylene (BghiP) 0.02 
aBenzo(b)fluoranthene and benzo(k)fluoranthene are quantified together. 

 

PAHs are by-products of incomplete combustion or pyrolysis of fossil 

fuels and other organic materials such as wood and biomass (Chen et al., 

2011; Wang et al., 2012); and they can be issued by natural (e.g., 

volcanoes, forests fires, and grassland combustion) or anthropogenic 

sources. Although PAHs can be released by both sources, the 

anthropogenic origin have been identified as the main responsible of the 

PAHs presence in the environment (Jaward et al., 2004; Wang et al., 2010; 

Estellano et al., 2012). Major anthropogenic sources are located in urban 

areas and they include incineration activities, power generation, domestic 
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heating, vehicles emissions, and industrial activities (Chen et al., 2011. 

Among these, petrochemical industries are particularly important emission 

sources of PAHs to air (Nadal et al., 2009, 2011). 

Once released to the atmosphere, and as SVOCs, PAHs are 

compounds susceptible to suffering LRAT, reaching at other environmental 

matrices such as water and aquatic systems, soils and sediments (Nadal 

et al., 2004). For this reason, the source appointment is a crucial step in 

their global control. Numerous studies have developed different strategies 

in order to identify the PAHs sources. The molecular diagnostic ratios 

(MDR) for PAHs, is one of the method most applied for the different 

environmental matrices (Tobiszewski and Namieśnik, 2012). MDR are 

based on the theory that some PAHs are emitted in constant proportions 

from the sources and their concentrations remain constant between the 

source and the receptor (Katsoyiannis et al., 2011; Tobiszewski and 

Namieśnik, 2012). Different sources can be identified by using the MDR, 

for instance, ratios such as Ant/(Ant+Phe), BaA/(BaA+Chry), Flt/(Flt+Pyr) 

or IcdP/(IcdP+BghiP) can provide information about the pyrogenic or 

petrogenic origin of the emission source (Katsoyiannis et al., 2011). 

Likewise, Flt/(Flt+Pyr) and IcdP/(IcdP+BghiP) can also identify if the source 

is related with fuel combustion or grass/coal/wood combustion. In turn, the 

ratio BaP/BghiP can provide information about the presence of traffic or 

nontraffic in the matrix studied (Katsoyiannis et al., 2011). 

In general, the total emissions of PAHs have been declining in 

developed countries since the 1970s or 1980s, and according to EEA, 

European PAH emissions have decreased around 89 % in the period 

between 1990 and 2015. However, nowadays in some European countries 

(Denmark, Lichtenstein and Malta) and in developing countries, such as 

China and India, PAH emissions have been continuously increasing (Liu et 

al., 2017a; EEA, 2017). 
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3. Other SVOCs 
  

3.1. Polychlorinated biphenyls (PCBs) 
 

Polychlorinated biphenyls (PCBs) are a kind of organohalogenated 

contaminants (OCs) consisting of a total of 209 congeners composed by 

molecules with 1–10 chlorine atoms attached to the two rings of biphenyl 

(Erickson and Kaley, 2011; IARC, 2017) (Fig. 4). Depending on the chlorine 

number, PCBs can be classified as tri-, tetra-, penta-, hexa-, hepta- or octa-

CBs and their stability, persistence and toxicity will associated with its 

number and position (Devi et al., 2014; IARC, 2016).  

 

 

 

Fig. 4. General chemical structure of PCBs. Source: modified from IARC, 2016. 

 
PCBs are compounds with high toxicity associated, and in some cases, 

the toxic effects are comparable to chlorinated dibenzo-p-dioxins, more 

specifically with the congener 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). 

For this reason, a total of 12 PCBs congeners have already defined as 

dioxin-like PCBs by the World Health Organization (WHO) in 2005 (Fig. 5). 
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Fig. 5. Dioxin-like PCBs congeners identified by the World Health Organization. 

 
As in the case of PAHs, the health risk associated to PCBs 

environmental exposure can be evaluated through the TEQs. In this sense, 

the risk associated at these 12 dioxin-like PCB congeners can be estimated 

through their 2,3,7,8-TCDD equivalent concentration (2.3.7.8-TCDDeq). 

Thus, 2.3.7.8-TCDDeq in environmental samples is calculated by 

multiplying the concentration of each individual dioxin-like PCB present in 

the sample (PCBj) by the respective TEFj (Drimal et al., 2016): 

 

2.3.7.8-TCDDeq= ∑ 𝑃𝐶𝐵𝑗 × 𝑇𝐸𝐹𝑗𝑛
𝑗=1  

(3) 

 

The TEFj for each dioxin-like PCB were those defined by the World 

Health Organisation (WHO) in 2005 (Table 2).  
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Table 2. TEFs values for each dioxin-like PCB according to WHO, 2005. 

Dioxin-like PCB TEFs 

PCB 77 0.0001 

PCB 81 0.0003 

PCB 105 0.00003 

PCB 114 0.00003 

PCB 118 0.00003 

PCB 123 0.00003 

PCB 126 0.1 

PCB 156 0.00003 

PCB 157 0.00003 

PCB 167 0.00003 

PCB 169 0.03 

PCB 189 0.00003 

 

Regarding PCBs carcinogenic potential, it is well known that these 

compounds had carcinogenic, mutagenic and teratogenic effects in 

experimental animals. But, recently the IARC has evidenced positive 

associations between PCBs exposure and non-Hodgkin lymphoma and 

cancer of the breast in humans (IARC, 2016). For this reason, the PCBs 

IARC classification has gone from group 2A or “probably carcinogenic in 

humans” to group 1 or “carcinogenic to humans”. In addition, and because 

their hydrophobic (lipophilic) character, bioaccumulative potential, 

environmental persistence and long range transport capability, coupled with 

the effects above described, PCBs were one of the firsts compounds listed 

as POPs in the Stockholm Convention on May 22, 2001.  

Unlike PAHs, PCBs are compounds only issued by anthropogenic 

sources and were manufactured for the first time at the beginning of 1929 

by Monsanto/USA. PCBs were commercialized as complex mixtures 

synthesized by direct chlorination of biphenyl with chlorine gas in the 

presence of AlCl3 (Alawi et al., 2017). Due to their non-flammability 

chemical stability, high boiling point and resistance to both acids and alkalis, 

PCBs had been used in a wide variety of applications, including dielectric 

fluids in capacitors and transformers, heat transfer fluids, hydraulic fluids, 

lubricating oils, and as additives in paints, carbonless copy (“NCR”) paper, 

adhesives, sealants, and plastics (Erickson and Kaley, 2011; IARC, 2016; 
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Nguyen et al., 2016; Sun et al., 2016). PCBs production was ceased in most 

countries by the end of the 1970s or early 1980s, and aaccording to the 

EEA, their emissions decreased by 77 % between 1990 and 2015, mainly 

because of reductions in 'Industrial processes and product use' emissions 

(EEA, 2017). Even though PCBs are compounds worldwide banned by the 

Stockholm Convention, they are still present in the environment due their 

extensively use, LRAT potential and persistence. For instance, the primitive 

dismantling of electronic and electrical waste (e-waste) has been 

demonstrated to be a substantial emission source of PCBs (Zhu et al., 

2014). Once PCBs are emitted at the atmosphere, they can reach into 

different media (water and sediments, vegetation, etc) being the soils an 

important reservoir (Ren et al., 2007). 

 

3.2. Hexachlorobenzene (HCB) 
 

Hexachlorobenzene (HCB) is a kind of OCs, more specifically is 

considered as an organochlorine pesticide (OCP), which consists of a 

single benzene ring with 6 chlorines attached (Fig. 6). This structure confers 

HCB a chemical stability, hydrophobic nature and high persistence, which 

allows the LRAT and its bioaccumulation, being the soils the main sinks in 

the environment (IARC, 2001; Wang et al., 2017). 
 

 
Fig. 6. Chemical structure of HCB. Source: from IARC, 2001. 

 
HCB is an anthropogenic compound issued by the chlorination of 

benzene at 150–200 °C with a ferric chloride catalyst or distillation of 

residues from the production of tetrachloroethylene (IARC, 2001). Although 

HCB was commercialized and used extensively as a fungicide from the 

UNIVERSITAT ROVIRA I VIRGILI 
ENVIRONMENTAL LEVELS OF PAHs AND OTHER SVOCs IN A PETROCHEMICAL AREA. COMBINING MONITORING 
AND MODELLING TOOLS 
Noelia Domínguez Morueco 
 



INTRODUCTION 

 

- 28 - 

 

1950s, this compound has also been used in the past for a variety of 

applications such as, military pyrotechnic smokes, carbon anode 

treatments, aluminium fluxing and degassing, synthetic rubber peptizing 

agent, wood preservation material or as intermediate in organic synthesis 

(Bailey, 2001; IACR, 2001; Breivik et al., 2004). In the 1970s, the use of 

HCB in these applications was discontinued in many countries owing to 

concerns about adverse effects on the environment and human health. 

Consequently, the Stockholm Convention listed the HCB as one of the 12 

initial POPs, and the IARC has classified this compound in group 2B or “as 

possibly carcinogenic to humans”. Nevertheless, some developing 

countries may continue using this compound and it still occurs as a by-

product of the production of a number of chlorinated solvents and other 

industrial chemicals (IARC, 2001). 

 

3.3. Brominated flame retardants (BFRs) 
 

Brominated flame retardants (BFRs) are anthropogenic compounds 

included into the group of halogenated organic flame retardants. BFRs 

comprise a variety of chemicals as polybrominated diphenyl ethers 

(PBDEs), hexabromocyclododecane (HBCD) stereoisomers and 

tetrabromobisphenol-A (TBBP-A). Among those, PBDEs were one of the 

BFR most commonly used in the past (Covaci et al., 2007; Segev et al., 

2009; Gorga et al., 2013; Katima et al., 2017) PBDEs are produced by 

bromination of diphenyl ether in the presence of a Friedel–Craft catalyst 

(e.g. AlCl3) in a solvent such as dibromomethane. Diphenyl ether molecules 

contain 10 hydrogen atoms, which can be exchanged with bromine, 

resulting in 209 possible congeners with similar structure to that of PCBs 

(Alaee et al., 2003) (Fig. 7).  
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Fig. 7. Chemical structure of PBDEs. Source: modified from Gorga et al., 2013. 

 
PBDEs have been manufactured since the 1970's in three major forms: 

penta-BDE, octa-BDE, and deca-BDE; and were mainly used in order to 

retard the spread of fire/flame in household products (carpets, upholstered 

furniture, curtains, fabrics, etc.) electronical appliances, car interiors or 

building materials (Gorga et al., 2013; Ding et al., 2016; Katima et al., 2017; 

Liu et al., 2017b; McGrath et al., 2017b). Although, PBDEs are compounds 

strongly associated with indoor environments, some international studies 

have already demonstrated their presence in outdoor matrices (Zheng et 

al., 2015; Ding et al., 2016; McGrath et al., 2016). In this sense, the 

industries involved in the manufacture or disposal of flame retarded goods 

are expected to be one of the key outdoor emission sources (McGrath et 

al., 2017a).  

Recently, toxicological reports have demonstrated a range of adverse 

effects in humans and animals derived from PBDEs exposure, including 

endocrine disruption and neurodevelopmental toxicity (McGrath et al., 

2016). In addition, its lipophilic character, bioacumulative potential, as well 

as, their high manufacture volume and widespread consumption makes 

them persistent in the environment and suitable for the LRAT (Covaci et al., 

2007; Zheng et al., 2015; Yu et al., 2016; Katima et al., 2017). For this 

reason, the forms penta-BDE and octa-BDE are currently included in the 

list of banned POPs under the Stockholm Convention, while deca-BDE has 

been officially proposed (McGrath et al., 2017a).  

In order to replace the legacy PBDEs, “novel” BFRs (NBFRs) such as 

pentabromotoluene (PBT), pentabromoethylbenzene (PBEB) or 

hexabromobenzene (HBB) have been commercialized (Zheng et al., 2015; 

Li et al., 2016; McGrath et al., 2017) (Fig. 8). The NBFRs can be released 

to the environment by the same mechanisms as PBDEs and have 
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comparable physicochemical properties to PBDEs. Consequently, they 

have similar fate as persistent pollutants in air, soil and sediments, and also 

exhibit analogous bioaccumulation and toxic potential (McGrath et al., 

2017a). 

 
Fig. 8. Chemical structure of PBT, HBB and PBEB. Source: modified from Ezechiáš 

et al., 2014. 

 

3.4. Synthetic musks (SMs) 
 

Synthetic musks (SMs) are fragrances used as additives and fixative 

elements in a range of personal care and other consumer products, 

including perfumes, cosmetics, shampoos, lotions (sunscreen lotions), 

washing and cleaning agents, and fabric softeners (Lu et al., 2011; Homem 

et al., 2015b). Although SMs are not recognized as SVOCs, they have 

similar physical-chemical properties, which gives them a semivolatile 

character, lipophilic nature, bioacumulative potential and also appropriate 

for LRAT (Peck and Hornbuckle, 2004; Nakata et al., 2012; Homem et al., 

2013; Villa et al., 2014). In addition, SMs have been produced in large 

quantities and have an intensive and widespread use, for this reason, they 
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are considered as emerging contaminants (Lu et al., 2011; Lange et al., 

2015; Homem et al., 2016).  

According to their chemical structure, SMs can be divided in four 

groups: nitro, polycyclic, macrocyclic, and alicyclic musks (Homem et al., 

2013, 2015c). Among the different SMs, nitro musk fragrances were first 

produced commercially in 1900s as substitutes for the natural musks 

fragrances. These compounds consists in two-fold or three-fold 

nitratebenzene derivatives with additional alkyl, keto or methoxy groups 

(Vallecillos et al., 2015) (Fig. 9). 

 

 

Fig. 9. Chemical structure of nitro musks. Source: modified from Homem et al., 

2015b. 

 
Nitro musks were worldwide used until 1990s, but their potential toxicity, 

namely phototoxic, neurotoxic, carcinogenic and oestrogenic activity made 

that most of them (musk ambrette, musk moskene and musk tibetene) were 

banned from cosmetic products in Europe, while others (musk xylene and 

musk ketone) were innitially restricted, due to suspected carcinogenic 

effects at high concentration levels (Homem et al., 2015-a,c). Nowadays, 

the musk xylene has been also banned by the REACH legislation, due its 

high persistence and bioacummulative potential.  
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In the last decades, and as a result of legislation, a decreasing use of 

nitro musks has been observed. Consequently, a second group of synthetic 

musks has emerged, the polycyclic musks. They are chemically acetylated 

and highly methylated pyran, tetralin, and indane compounds and the most 

representatives are cashmeran, celestolide, galaxolide, phantolide, 

tonalide and traseolide (Homem et al., 2016) (Fig. 10).  

 

 
Fig. 10. Chemical structure of polycyclic musks. Source: modified from Homem et 

al., 2015b. 

 
Among the different polycyclic musks, galaxolide and tonalide are the 

two predominant congeners, which account for 95 % of commercially used 

polycyclic musks (Vallecillos et al., 2015). For this reason, both have being 

identified in the high production list of some environmental protection 

agencies, such as US EPA (EPA’s high production list) (Villa et al., 2014; 

Trabalón et al., 2015; Vallecillos et al., 2015).  

Dermal absorption from personal care products applications is reported 

as one of the major sources of exposure of SMs (Homem et al., 2015c; 

Trabalón et al., 2015). Nevertheless, the volatilization process during its 

production and use, as well as the volatilization from landfills or sewage 

treatment plants, has been recognized as an important source of polycyclic 
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musks to the environment (Villa et al., 2014). In fact, and due its high 

production and bioacumulative and LRAT potential, galaxolide and tonalide 

have aready presents in different environmental compartments such as air, 

fresh water, sea water, sediments, marine biota and even in human 

samples (Nakata et al., 2012; Lange et al., 2015; Homem et al., 2015c; 

2016). As for the adverse health effects, a potential oestrogenic and anti-

oestrogenic effects associated to both compounds have been observed 

(Homem et al., 2015a). 

 

4. Environmental monitoring 
 

The occurrence and behaviour of SVOCs in the environment have 

become a growing concern since most of them have adverse effects to 

humans and the ecosystem. Due to atmospheric transport is the primary 

distribution pathway of contaminants, air monitoring programs such as the 

European Monitoring and Evaluation Program (EMEP), the Arctic 

Monitoring and Assessment Program (AMAP) or the Integrated 

Atmospheric Deposition Network (IADN) have been established with the 

aim of provide long-term atmospheric measurements of SVOCs (POPs) 

Camenzuli et al., 2016.  

Numerous devices and techniques have been developed to enable 

environmental sampling. In the case of air, two main configurations are 

currently in use: active or passive sampling.  

Active air sampling is based in a pulling air through a trap with an 

electric pump. The active air samplers (AAS) are classified as either high 

volume or low volume samplers. High volume samplers, are devices with 

sampling rates between 15−80 m3/hour yielding total sample volumes of 

>400 m3, while low volume air samplers have sampling rates of <3 m3/hour, 

resulting small sample volumes (e.g., <200 m3) (Melymuk et al., 2014). 

Because its sampling rates are knowing, AAS can provide quantitative 

concentrations of SVOCs in both gas phase and particle phase (size of 

particles PM10, PM2.5 and PM1), over short time intervals (several hours to 

1 week) (Hung et al., 2013). However, its characteristics made AAS a power 
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consumer, expensive to operate and more labour intensive devices, 

therefore it is unavailable for high latitude or altitude regions (Hung et al., 

2013; Zhu et al., 2015). In this sense, passive sampling have become a 

viable alternative, since is cheaper, easy to deploy or collet and allows the 

simultaneous sampling in remote and/or poorly accessible areas and at 

different locations and/or scales (Harner et al., 2006; Pozo et al., 2009; 

Melymuk et al., 2014).  

Passive sampling has diffusion-advection based to capture compounds 

on sorbents through a passive air flow, without the use of electricity (Bogdal 

et al., 2013; Hung et al., 2013). Passive air samplers (PAS) are the main 

devices, and different designs have been developed based on the 

adsorbent material, being polyurethane foam (PUF) one of the most widely 

used for air monitoring (including in the Global Atmospheric Passive 

Sampling (GAPS) Network) (Bohlin et al., 2008; Chaemfa et al., 2008; Pozo 

et al., 2009). The standard design of PAS is based on a double-dome 

chamber in which a PUF-disk is deployed in order to protect the adsorbent 

material from rainfall and direct light (Fig. 11. A) (Chaemfa et al., 2008; 

Seethapathy et al., 2008; Choi et al., 2012). 

Unlike AAS, PAS do not provide the sampling rates, for this reason they 

only estimate semi-quantitative concentrations of SVOCs over longer 

periods (typically 1-3 months up to 1 year). In this case, the compounds 

uptake is described as equivalent to the rate of uptake minus the rate of 

loss (He and Balasubramanian, 2010; Melymuk et al., 2014). The uptake 

profiles of SVOCs in passive samplers generally go through the linear 

phase, curvilinear phase and equilibrium phase with the exposure time (He 

and Balasubramanian, 2010) (Fig. 11. B). 
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Fig. 11. A) PAS design. Source: modified from Klánová and Harner 2013; B) 

Idealised uptake regime of SVOCs (POPs), showing each phase of uptake. Source: 

from Farrar et al., 2006. 

 
Nevertheless, it is also considered as passive sampling the collection 

of samples belonging to environmental matrices, such as soils or 

vegetation. Traditionally both matrices have been used to monitor 

atmospheric deposition from different sources (Augusto et al., 2009). In the 

case of soils, it is well recognized that they are one of the main sinks of 

SVOCs (POPs), due their high affinity for hydrophobic organic pollutants, 

reflecting therefore the long-term atmospheric pollution (Diamond et al., 

2001; Kawamena et al., 2007; Cai et al., 2008; Augusto et al., 2009; Bao et 

al., 2015; 2016). In contrast, vegetation is mainly used to provide 
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information on the short-term exposure due its rapid kinetic of exchange 

with the air (Barber et al., 2003; 2004; Augusto et al., 2007). In this case, 

various types of vegetation have been used as natural sampling media to 

evaluate atmospheric pollution of SVOCs since the 1980s, such as lichens, 

mosses, pine needles, tree bark, leaves, grass, vegetables, etc.,(Augusto 

et al., 2007; Zhu et al., 2015). 

 

5. Environmental modelling 
 

In the last decades, different types of models have been developed in 

order to predict the chemical fate and transport of contaminants, as well as 

estimate its future concentrations in the environmental matrices. In this 

sense, to combine the monitoring and modelling approaches plays 

complementary roles, since monitoring is critical for the continuing 

evaluation and improvement of the models, and modelling can help to 

design the sampling campaigns (Webster et al., 2005) (Fig. 12). 

 

 
 

Fig. 12. Independent pieces of information needed for an environmental fate 

assessment of a chemical. All four components are uncertain, and the influence of 

the different uncertainties on the overall assessment needs to be evaluated. Source: 

Scheringer, 2009. 

UNIVERSITAT ROVIRA I VIRGILI 
ENVIRONMENTAL LEVELS OF PAHs AND OTHER SVOCs IN A PETROCHEMICAL AREA. COMBINING MONITORING 
AND MODELLING TOOLS 
Noelia Domínguez Morueco 
 



       INTRODUCTION 

 

- 37 - 

 

When a chemical substance is introduced into the environment 

(atmosphere, waters or soils) will move from their point of entry/emission to 

their final destination depending on the intrinsic physical-chemical 

properties of the contaminant (e.g. water solubility (S); octanol-water 

partition coefficient (Kow); vapour pressure (Vp); octanol-air partition 

coefficient (KOA); half-life time (T1/2); etc.) and the characteristics of the 

environment where the contaminant has been spilled. The combination of 

these factors will determine the persistence, the mobility or transference 

and the transformation of the contaminants (Vighi and Calamari, 1993). 

Currently, the multimedia environmental models are one of the most used 

techniques for the modelling of pollutants such as SVOCs (He and 

Balasubramanian, 2010). This kind of models divides the environment in 

different boxes or bulk media compartments (e.g. air, soil, water and 

sediments or vegetation compartments) connected between them; and use 

these physical-chemical properties, reactivity data (reaction processes), 

and key intermedia transfer processes, to render a comprehensive 

treatment of contaminant dynamics (Fig. 13) (Mackay and Paterson 1991; 

Premier et al., 2000). Most of the multimedia environmental models are 

composed of mass balance equations, each one defined for each bulk 

media compartment. The mass balance equations are based on the 

fugacity concept under the different levels described by Mackay in 1991 

(Fig. 14). The use of fugacity approach simplifies the model development 

and calculations, retaining a rigorous formulation, and allowing an 

extensive use of models among the scientific community (Mackay and 

Paterson, 1991; Csiszar et al., 2012, 2013; Domínguez-Morueco et al., 

2016). In this sense, the multimedia environmental models can provide a 

first approximation of the SVOCs distribution in the bulk media 

compartments.  
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Fig. 13. Scheme of the different bulk media compartments, as well as the main 

transport, transformation processes and bioaccumulation for chemical compounds 

in the environmental matrices, and process recorded in each one. Source: Vighi and 

Calamari, 1993. 

 

 
Fig. 14. Summary of fugacity levels in multimedia models described by Mackay, 

1991. 
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There are also other kinds of models with a higher complexity level, so 

called chemistry transport models (CTMs). CTMs are models capable of 

combine chemical processes (such as deposition, and transformations) 

with meteorological factors (as wind speed and direction, turbulence, 

radiation, clouds, and precipitation) as key elements when the 

environmental fate of pollutants is evaluated. CTMs assumed that the 

meteorology, as clouds and precipitation strongly influence chemical 

transformation and removal processes, and localized changes in the wind 

or turbulence fields continuously affect the chemical transport. Likewise, 

CTMs consider that chemistry can also affect the meteorology, for instance, 

through its effect on the radiation budget, as well as the interaction of 

aerosols with cloud condensation nuclei (CCN) (Grell et al., 2005). In this 

sense, CTMs provides a more reliable estimates of contaminants 

concentrations in the different environmental matrices (SVOCs 

concentration in air, deposition in soils or vegetation, etc.), as well as a 

more comprehensive insight on their behaviour, geographical and temporal 

distribution (simulations both short- long- temporal series) (Ratola and 

Jiménez-Guerrero, 2017). Furthermore, due the high computational level 

associated at this models, CTMs are capable to simulate the meteorological 

conditions associated at climate change scenarios, so they could estimate 

the future concentrations and distribution of SVOCs over these new 

conditions.  

Among the diferent CTMs, the Weather Research and Forecasting 

(WRF) + coupled with CHIMERE (the setup used in this thesis) model is  

one of the most used (Fig. 15). WRF is a numerical weather prediction 

(NWP) and atmospheric simulation system designed as a regional model 

for the understanding and prediction of mesoscale weather, capable of 

operating at high resolutions (e.g. 50 km for Europe) (Salzmann et al., 2007; 

Skamarock et al., 2008). In case of CHIMERE, is an Eulerian off-line CTM 

that includes parameterisations to simulate reasonable pollutant 

concentrations over local to continental domains (from 1 km to 1 degree 

resolution), remaining the computationally efficient for forecast applications 

(Menut et al., 2013); where the key processes affecting the chemical 
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concentrations are emissions, transport (advection and mixing), chemistry 

and deposition. 

 

Fig. 15. General principle of a chemistry transport model such as WFR+CHIMERE. 

In the box “Meteorology”, u* stands for the friction velocity, Q0 the surface sensible 

heat flux, L the Monin–Obukhov length and BLH the boundary layer height. cmod and 

cobs are the modelled and the observed chemical concentrations fields, respectively. 

Source: modified from Menut et al., 2013. 
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HYPOTHESIS AND OBJECTIVES 

 

Located in NE of Spain, Tarragona County is home of one of the largest 

chemical and petrochemical complexes in Southern Europe. The industrial 

activities began during the 1960s and the complex is composed by a total 

of 33 companies, including a big oil refinery, as well as a number of 

chemical and petrochemical industries are currently operating. In addition, 

the zone is crossed by an important highway and several roads, which 

support an intense traffic. Furthermore, an important seasonal activity is 

generated, increasing their population during the summer (Nadal et al., 

2004, 2007, 2011). For this reason, since 2002, a large multi-

compartmental environmental monitoring program has been carried out. 

Although the multi-compartmental environmental monitoring program 

include a wide variety of compounds (toxic metals, dibenzo-p-dioxins 

(PCDD/Fs), polychlorinated naphthalenes (PCNs), PCBs, PAHs), it is 

necessary to continue this program expanding the range of compounds 

under study, e.g including emerging contaminants; considering other kind 

of matrices; as well as improving environmental sampling and analytical 

techniques. On the other hand, is also necessary to predict the future 

concentrations of these compounds, since the changing environmental 

conditions (variations in temperature, rainfall and solar radiation) can 

generate compounds more toxic than the parental ones or affect at their 

transport and final fate.  

 

The main objective of this thesis is to determine the environmental 

levels of PAHs and other SVOCs in Tarragona County, combining 

monitoring and modelling tools as a crucial step in their control in this 

potentially high impacted area. 

 

As specific objectives are: 
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 To determine the monitoring approaches necessary for SVOCs 

environmental determination by means of passive sampling 

techniques, such as passive air samplers with polyurethane foam 

(PUF-PAS) or lichen transplants. 

 

 To improve analytical procedures for SVOCs determination using 

“green” alternatives such as QuEChERS (Quick, Easy, Cheap, 

Effective, Rugged and Safe) methodology. 

 

 To use the modelling approaches (MUM-Fate model and 

WRF+CHIMERE model) as a combined tools of PAHs 

environmental monitoring.

UNIVERSITAT ROVIRA I VIRGILI 
ENVIRONMENTAL LEVELS OF PAHs AND OTHER SVOCs IN A PETROCHEMICAL AREA. COMBINING MONITORING 
AND MODELLING TOOLS 
Noelia Domínguez Morueco 
 



 

- 45 - 

 

CHAPTER 1: Environmental levels of PAHs 

and others SVOCs in Tarragona County, 

Spain: monitoring approaches. 

 

In this chapter: 

 

SHORT COMMUNICATION 1:  

 

Domínguez-Morueco, N., Vilavert, L., Schuhmacher, M., Domingo, J.L., 

Nadal, M., 2014. Passive air sampling of PAHs at a local scale: 

Preliminary results in Tarragona county, Spain. Organohalogen 

Compounds. Vol. 76, 384-387. 

 

SHORT COMMUNICATION 2: 

 

Domínguez-Morueco, N., Ratola, N., Ramos, S., Sierra, J., Schuhmacher, 

M., Domingo, J.L., Nadal, M., 2016a. Multi-component determination 

of semi-volatile organic compounds in Tarragona County, Spain. 

Organohalogen Compounds Vol. 78, 228-232.  

 

ARTICLE 1: 

 

Domínguez-Morueco, N., Augusto, S., Trabalón, L., Pocurull, E., Borrull, F., 

Schuhmacher, M., Domingo, J.L., Nadal, M., 2017. Monitoring PAHs 

in the petrochemical area of Tarragona County, Spain: comparing 

passive air samplers with lichen transplants. Environ. Sci. Pollut. 

Res. 24(13), 11890–11900.  
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SHORT COMMUNICATION 1: PASSIVE AIR SAMPLING OF 

PAHs AT LOCAL SCALE: PRELIMINARY RESULTS IN 

TARRAGONA COUNTY, SPAIN. 

 

Organohalogen Compounds (2014) 76: 384-387. 

 

1. INTRODUCTION 

 
The need to monitor the occurrence of contaminants in the environment 

has led to the development of a large range of methods and devices for 

sampling (Zabiegała et al., 2010). Passive air samplers (PAS) have 

become a viable alternative to commonly used active air sampling 

equipment, since those devices are cheaper, smaller, simpler to handle, 

and they do not require electricity and maintenance. These characteristics 

assist the deployment in remote areas and the simultaneous collection of 

samples at different locations and/or scales (Pozo et al., 2004, 2006; Bohlin 

et al., 2008; Zabiegala et al., 2010; Estellano et al., 2012; Vilavert et al., 

2013, 2014). PAS are based on the theory of physical advection and 

diffusion to capture the compounds (Wang et al., 2012). Although different 

designs have been developed according to the adsorbent material8, 

polyurethane foam (PUF) is the mostly used design for air monitoring 

worldwide (Bohlin et al., 2008; Chaemfa et al., 2014). PAS were the 

preferred samplers by the United Nations Environment Program for global 

air monitoring (Li et al., 2011), while other initiatives such as the Global 

Atmospheric Passive Sampling (GAPS) (Pozo et al., 2006) are also based 

on the same approach. The GAPS is a worldwide ambitious monitoring 

program for investigating the spatial and temporal trends of persistent 

organic pollutants (POPs) on a global-scale (Pozo et al., 2006, 2009; Lee 

et al., 2007; Genualdi et a., 2010; Koblizkova et al., 2012a, b). However, 

few international efforts have been conducted in order to study the 

suitability of PUF-PAS for monitoring POPs at a local scale (Vilabert et al., 

2012,2013).  
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POPs are transboundary chemicals with long-range atmospheric 

transport (LRAT), therefore capable to reach remote and sensitive regions 

of the planet, away from the origin source(Pozo et al., 2006; Genualdi et 

al., 2010; Estellano et al., 2012). According to the UNECE Protocol, POPs 

include a wide variety of compounds, including some polycyclic aromatic 

hydrocarbons (PAHs) such as benzo(a)pyrene, benzo(b)fluoranthene, 

benzo(k)fluoranthene, and indeno(1,2,3-c,d)pyrene. In recent years, the 

toxic character of these compounds has been recognized (Estellano et al., 

2012), and the United States Environment Protection Agency (USEPA) has 

developed a list of 16 priority PAHs (Bohlin et al., 2010; Wang et al., 

2010;Choi et al., 2012). Furthermore, some PAHs have been classified as 

carcinogens or possible carcinogens to humans by the International 

Agency for Research on Cancer (IARC), being benzo(a)pyrene and 

dibenzo(a,h)anthracene two of the most relevant (Bohlin et al., 2010; Khairy 

et al., 2012).  

PAHs can be released by natural (e.g., volcanoes, forests fires and 

grassland combustion) or anthropogenic sources (e.g., oil refineries, power 

generation, domestic heating and traffic) (Jaward et al., 2004; Wang et al., 

2010; Khairy et al., 2012). Therefore, the environmental PAH burdens are 

expected to be different depending on the proximity of emission sources. 

This preliminary investigation was aimed at studying the viability of PAS-

PUF for sampling PAHs at local scale, prior to the creation of a PAH 

monitoring network. Air concentrations of 16 priority PAHs were determined 

in different areas of Tarragona County, Spain, using PAS-PUF, and 

resulting data were compared with international studies. 

 

2. MATERIAL AND METHODS 
 

PUFs (diameter: 14 cm; thickness: 1.2 cm; surface area: 360 cm2; 

density: 0.035g cm-3) were purchased to Newterra (Beamsville, ON, 

Canada). Prior to deployment, PUFs were pre-cleaned by Soxhlet 

extraction for 24 hours by using dichloromethane (DCM) (99.9% purity, 

Merck, Darmstadt, Germany) (Bohlin et al., 2008). Subsequently, they were 
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dried in a vacuum desiccator, and stored in brown glass jars which were 

pre-cleaned with DCM and sealed with high density polyethylene caps 

(Bohlin et al., 2008). Once in the field, PUFs were inserted between two 

aluminum chambers to protect them from the external air, precipitation and 

light (Bartkow et al., 2006; Chaemfa et al., 2008; Choi et al., 2012).  

PUF-PAS were deployed at three sampling points in Tarragona County 

for 2 months (October - December of 2013). Sampling sites were Roda de 

Berà, an urban/residential area, Vilallonga del Camp, a village under the 

potential influence of the emissions of a petrochemical complex (industrial 

area), and ETSQ University Campus, a presumably unpolluted or slightly 

polluted site (rural area). The geographical distribution of sampling sites is 

depicted in Figure 1. 

 

 
 

Fig. 1. Location of sampling points in Tarragona County (Spain) where PUF-PAS 

were deployed. 

 

The determination of PAHs was based on the CARB Method 429. 

Appropriate isotope-labeled extraction standards (e.g., deuterated PAHs) 

were added to each sample in order to control the whole sample 
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preparation process. The sample was extracted using dichloromethane as 

solvent. The extract was concentrated and analyzed by HRGC/HRMS 

using Agilent GCs (5890 and 6890) coupled to Waters Autospec Ultima 

HRMS systems with selected ion recording at resolution 8000. Samples 

were injected onto non-polar DB5MS-type GC columns.  

The quantification was carried out by using the corresponding isotope-

labeled compounds as internal standards. Additional QA/QC measures 

consisted on analyzing blanks and recovery standards inserted in every 

batch of samples. Recovery percentages differed according to individual 

PAHs, ranging 89-123 %, 99-134 % and 108-141 % in the urban, industrial 

and rural areas, respectively. For those hydrocarbons presenting levels 

below the limit of detection (LOD), a concentration equal to one-half of that 

limit was assumed. 

 

3. RESULTS AND DISCUSSION 

 
Airborne concentrations of PAHs as well as the sum of 16 US EPA 

priority PAHs (Σ16PAHs) in different areas of Tarragona County (Catalonia, 

Spain), are summarized in Table 1. Σ16PAHs concentrations ranged from 

17.30 to 66.62 ng m-3 (or from 670 to 7530 ng/PUF, rural and industrial 

areas, respectively). Acenaphthylene and benzo(a)anthracene were not 

detected in any sample, while acenaphthene and anthracene only showed 

levels above the LOD in the industrial area. None of the 16 PAHs were 

detected in the rural zone, excepting naphthalene and fluorene, showing 

concentrations very close to their respective detection limit (4.47 and 1.08 

ng m-3, respectively). Therefore, if calculated in a lower-bound scenario 

(this is, assuming a level of zero for undetected compounds), the Σ16PAHs 

concentration in the rural site would be only 5.55 ng m-3. Anyhow, these 

levels are very similar to the Σ14PAHs concentrations in air samples 

collected in winter of 2010 in different regions of Australia (Kennedy et al., 

2010), where values ranged from 1.99 to 60.06 ng m-3. Furthermore, they 

are very similar to those previously reported in a number of countries 

(Motelay-Massei et al., 2005; Choi et al., 2012; Estellano et al., 2014) , such 
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as Canada (range: 8.33-18.46 ng m-3), South Korea (mean: 42.6 ng m-3) 

and Bolivia (range: 15.67- 36.03 ng m-3).  

The highest Σ16PAHs concentrations were detected in Vilallonga del 

Camp sampling point, located relatively nearly a big oil refinery and well 

under the potential influence of petrochemical emissions. This fact is in 

agreement with the results showed in other monitoring studies, where the 

highest values were also associated to the presence of chemical industries 

(Pozo et al., 2012).  

 

Table 1. PUF-derived air concentrations (in ng m-3) for PAHs in 3 areas of 

Tarragona County in 2013. 

 Area Sampled 

volumea 

Sampling 

rateb  Urban Industrial Rural 

Naphthalene 5.93 10.69 4.47 102.92 1.66 

Acenaphthylene <1.25 <1.25 <1.25 159.96 2.58 

Acenaphthene <2.43 3.64 <2.43 82.46 1.33 

Fluorene 2.00 3.44 1.08 194.68 3.14 

Phenanthrene 16.40 28.25 <9.11 109.74 1.77 

Anthracene <2.21 2.87 <2.21 90.52 1.46 

Fluoranthene 3.98 9.72 <3.89 102.92 1.66 

Pyrene 2.70 5.14 <2.57 155.62 2.51 

Benzo[a]anthracene <0.81 <0.81 <0.81 123.38 1.99 

Chrysene 0.60 0.84 <0.60 166.16 2.68 

Benzo[b]fluoranthene 0.59 0.44 <0.14 141.36 2.28 

Benzo[k]fluoranthene 0.09 <0.07 <0.07 279.00 4.50 

Benzo[a]pyrene 0.33 <0.13 <0.13 150.66 2.43 

Indeno[123-cd]pyrene 0.28 0.14 <0.11 190.34 3.07 

Dibenzo[ah]Anthracene 0.24 0.11 <0.10 203.98 3.29 

Bengo[ghi]perylene 0.41 0.22 <0.09 229.40 3.70 

Σ16PAHs 36.91 66.62 17.30 - - 

aIn m3; bSampling rates, according to He and Balasubramanian, are given in m3 day-

1. 

 
Air Σ16PAHs concentrations showed a strong industrial>urban>rural 

gradient, showing the industrial area 2- and 4-times higher PAH levels than 

urban and rural zones, respectively. This pattern has been also found in 

other international studies (Motelay-Massei et al., 2005; Pozo et al., 2012).  
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The PAH profile was dominated by 2-4 ringed PAHs, which accounted 

for more than 90% of the Σ16PAH concentrations (Fig. 2). Phenanthrene 

was the predominant hydrocarbon, with a mean percentage of 35 % of the 

total (range: 26-44 %), while high contributions were also noted for 

naphthalene and fluoranthene (21 % and 13 %, respectively). The profile 

observed in this study was consistent with the results reported by other 

authors (Bohlin et al., 2008; Choi et al., 2012; Pozo et al., 2012), who 

showed a predominance of 3-4 ringed PAHs. This group may reach 

contributions of up to 90 %, being phenanthrene the most contributive 

compound to the total PAH concentration. PAHs with 2-4 benzene rings are 

compounds with low/intermediate molecular weight and high volatility. They 

are predominantly present in gas phase, and maybe therefore more easily 

captured by the PUF-PAS (Choi et al., 2012; Estellano et al., 2012; Pozo et 

al., 2012). In contrast, PAHs with 5-6 benzene rings have a higher 

molecular weight and lower volatility, tending to remain in particulate phase 

(Choi et al., 2012; Estellano et al., 2012; Pozo et al., 2012). In this study, a 

higher concentration of higher molecular weight PAHs was observed in 

urban and industrial areas, more potentially affected by traffic and 

petrochemical emissions, respectively. 

 
 

 

 
Fig. 2. PAH profile in air samples collected in Tarragona County using PUF-PAS. 
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Despite being this is the first approach to analyze airborne PAHs in 

Tarragona County by using PUF-PAS, previous research based on active 

air samplers has been already conducted in the same area of study. Data 

on PAHs in air coming from passive and active air sampling methods are 

very comparable, when monitoring campaigns are conducted in the same 

season. Nadal et al. (2011) reported that the mean Σ16PAH concentration 

in 4 different areas of Tarragona County ranged 18.08 to 27.45 ng m-3, while 

Ramírez et al. (2011) found Σ16PAH levels ranging from 10.4 to 59.5 ng m-

3 respectively, in the same 3 kinds of area here considered (industrial, 

urban, and rural). In summary, these results confirm that PUF-PAS may be 

a good option for PAH monitoring at local scale. The next step will be to 

design and deploy a PUF-PAS based monitoring network for the periodical 

assessment of PAHs in air of Tarragona County as a complement to 

existing data on PAHs in soil and vegetation (Nadal et al., 2009, 2011). 
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SHORT COMMUNICATION 2: MULTI-COMPONENT 

DETERMINATION OF ATMOSPHERIC SEMI-VOLATILE 

ORGANIC COMPOUNDS IN TARRAGONA COUNTY, 

CATALONIA, SPAIN.  

 

Organohalogen Compounds (2016) 78: 228–232. 

 

1. INTRODUCTION 

 
Semi-volatile organic compounds (SVOCs) are chemicals characterized 

by their bio-accumulative potential, environmental persistence and toxic 

effects in humans and wildlife. These properties make SVOCs 

transboundary chemicals via long-range atmospheric transport (LRAT), 

capable to reach remote and sensitive regions, away from the emission 

sources (Pozo et al., 2006; Genualdi et al., 2010; Zabiegala et al., 2010; 

Estellano et al., 2012; Vilavert et al., 2013, 2014). SVOCs include a wide 

variety of compounds, such as polycyclic aromatic hydrocarbons (PAHs), 

polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and 

brominated flame retardants (BFRs), whose environmental analysis is a 

crucial step in their global control (Silva et al., 2015).  

The need for SVOCs monitoring has led to the development of a wide 

range of sampling devices and analytical methods. However, some of these 

are time-consuming and/or use large amounts of organic solvents, with 

potential environmental problems and high economic costs (Homem et al., 

2013; Silva et al., 2015). For this reason, the implementation of alternative 

sampling and analytical methodologies is an essential step in atmospheric 

monitoring. Passive sampling can provide a first approximation of SVOCs 

concentrations in the environment, involving low maintenance and allowing 

sampling in remote or poorly accessible areas (Vilavert et al., 2013, 2014 

Domínguez-Morueco et al., 2017). Passive air samplers (PAS), which are 

based on the theory of physical advection and diffusion (Wang et al., 2012), 

are commonly used (Nadal et al., 2009, 2011; Ratola et al., 2006, 2016). 
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Moreover, it is also important to develop analytical methods covering the 

detection of a large number of environmental pollutants. Very recently, Silva 

et al.8 developed a multi-component  method to simultaneously extract 5 

classes of SVOCs (PAHs, PCBs, OCPs, BFRs and synthetic musk 

fragrances (SMs)) from one sample, being validated for the analysis of pine 

needles.  

This study was aimed at estimating the levels SVOCs concentrations in 

Tarragona County (Catalonia, Spain), where one of the most important 

chemical/petrochemical complex in Southern Europe is located. Passive 

samplers, including polyurethane foam disks (PUFs) were employed. 

Subsequently, the multi-component protocol developed by Silva et al. 

(2015) was used to quantify the content of SVOCs in each sample. In this 

abstract, preliminary results on the analysis of PUFs are detailed. 

 

2. MATERIAL AND METHODS 
 

PAS with PUFs (Newterra, Beamsville, ON, Canada) were used for air 

monitoring. Prior to their deployment, PUF-disks were pre-cleaned by 

Soxhlet extraction for 24 hours with dichloromethane (DCM) (bohlin et al., 

2008). Then, they were dried in a vacuum desiccator, and stored in DCM-

cleaned brown glass jars(Bohlin et al., 2008).  

Eight PAS containing PUF-disks were deployed for a period of 2 months 

(November 2014- January 2015) at several areas of Tarragona County 

(Fig. 1), each one characterized by the presence of different potential 

emission sources. The distribution of the sampling sites was as follows: two 

samples under the potential influence of petrochemical emissions, including 

a big oil refinery (Puigdelfí=P1 and Constantí=P2); two samples close to 

chemical industries (La Laboral=C3 and La Canonja=C4); two samples in 

urban areas (Tarragona=U5 and Vila-seca=U6); and two samples in 

background sites, at least 30 km away from the area of influence of all the 

suspected sources of contamination (Cambrils=B7 and Torredembarra= 

B8).  
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Fig. 1. Location of PUF-disks sampling points in Tarragona County (Catalonia, 

Spain). 

 

Air levels of five classes of SVOCs (PAHs, PCBs, hexachlorobenzene 

(HCB), BFRs and SMs) were simultaneously quantified in each one of the 

PAS. For that purpose, the innovative multi-component protocol developed 

by Silva et al. (2015) was used. Air extracts were obtained by soxhlet 

method using 250 mL of hexane:dichloromethane (1:1) as solvent, followed 

by a clean-up consisted in a solid phase extraction (SPE) and gel 

permeation chromatography (GPC) using gravity-fed glass columns. 

The analisys was carried out by gas chromatography-mass 

spectrometry (GC-MS), with an ion trap mass spectrometer operated in 

electron ionization mode (70 eV). Two Varian (Palo Alto, CA, USA) ion trap 

GC-MS equipments, versions 4000 and 240, were used for PAHs and SMs, 

and for PCBs, BFRs and HCB, respectively. Identification of target 

compounds was done by comparing retention times and mass spectra to 

those of standards and system control, data acquisition and processing was 

done by Varian MS workstation v. 6.9.3 software. Retention times and used 

target ions for both employed GC-MS equipments were similar to Silva et 

al. (2015). 
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3. RESULTS AND DISCUSSION 

 

The total amounts of SVOCs accumulated in air samples from different 

areas of Tarragona County (Catalonia, Spain) are depicted in Figure 2, and 

in Table S1 and S2 Annex 2 . PAHs levels ranged from 2098 to 4333 

ng/PUF (Fig. 2A), being in agreement with other surveys previously 

conducted in this area (Domínguez-Morueco et al., 2014, 2017). In 2013, 

PAHs amounts in PAS deployed for 2 months ranged from 670 to 7530 

ng/PUF, while in 2014, minimum and maximum levels were 1363 and 7866 

ng/PUF, respectively. The highest concentrations of PAHs were found in 

the petrochemical area (max: 4333 ng/PUF), more specifically in the point 

P1, corresponding to the neighborhood of Puigdelfí (village of Perafort). 

This finding agrees with the results of the 2014 campaign (Domínguez-

Morueco et al., 2017), when Puigdelfí also showed the highest incidence of 

PAHs (7866 ng/PUF). In addition, the present value is relatively close to 

that reported in the 2013 campaign for the village of Vilallonga del Camp 

(7530 ng/PUF) (Domínguez-Morueco et al., 2014), a nearby town. This 

sampling point is located in the vicinity of a big oil refinery, thus under the 

potential influence of petrochemical emissions. This is confirmed by a 

general increase of PAHs associated to the presence of chemical industries 

reported by other international studies (Pozo et al., 2012).  

Regarding PCBs, the values detected in Tarragona County ranged from 

2.88 to 120 ng/PUF (Fig. 2B). In contrast to PAHs, the highest 

concentrations of PCBs were found in the chemical zone (max: 121 

ng/PUF), more specifically in point C3 (La Laboral). These chemicals were 

extensively used worldwide in electric industries for their chemical stability 

(Breivik et al., 2007). Although their production was banned in most 

countries, the current value could be due to the presence of a chlor-alkali 

plant and various electrical substations in the vicinity, as well as the legacy 

of their use in the past.  

Finally, similar concentrations of SMs (0.38 to 13.4 ng/PUF), BFRs (1.30 

to 2.80 ng/PUF) and HCB (4.65 to 16.4 ng/PUF) were observed irrespective 
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of the sampling area (Fig. 2C, D and E). This would be probably due to the 

fact that these compounds are mainly associated to a wide variety of 

products worldwide used. 

 

 

 

Fig. 2. SVOCs levels in air samples according to the sampling area. 

 
In summary, the present results provide a comprehensive approach to 

the air levels of SVOCs in Tarragona County, by using PUF-PAS and taking 

advantage of multi-component protocols.  
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ARTICLE 1: MONITORING PAHs IN THE PETROCHEMICAL 

AREA OF TARRAGONA COUNTY, SPAIN: COMPARING 

PASSIVE AIR SAMPLERS WITH LICHEN TRANSPLANTS.  

 

Environmental Science and Pollution Research (2017) 24:11890–11900. 

 

ABSTRACT 

 

The levels of 16 polycyclic aromatic hydrocarbons (PAHs) were determined 

in 8 passive air samples (PAS) and 6 lichen transplants (Ramalina fastigiata) 

deployed for a period of 2 months in different zones of Tarragona County 

(Catalonia, Spain), an area with an important number of chemical and 

petrochemical industries. The accumulated amount of the sum of the 16 PAHs 

ranged between 1363 to 7866 ng/sample in air samples. The highest 

concentration was found in the neighborhood of Puigdelfí (village of Perafort), 

in the vicinity of a big oil refinery and well under the potential influence of the 

petrochemical emissions. In lichen samples, the sum of the 16 PAHs ranged 

between 247 and 841 ng/g (dry/weight), being the greatest value also observed 

in Puigdelfí. Data on the levels and profiles of PAHs in both passive monitoring 

methods were compared. A significant positive linear correlation was found 

between the concentrations of low molecular weight PAHs in lichens and the 

amounts accumulated in passive air samples (R=0.827, P<0.05), being 

especially significant the correlation of 4-ring PAHs (R=0.941, P<0.05). These 

results strongly suggest that lichens can be used to monitor gas-phase PAHs, 

providing data that can be quantitatively translated into equivalents for air. 

 

Keywords: Polycyclic aromatic hydrocarbons (PAHs) · Passive air sampling 

(PAS) · Polyurethane foams (PUF) · Lichens samples · Biomonitoring · 

Tarragona, Spain. 
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1. INTRODUCTION 
 

Polycyclic aromatic hydrocarbons (PAHs) are a large group of organic 

compounds with two or more fused aromatic rings (Jaward et al., 2004; 

Nadal et al., 2004a; Wang et al., 2010; Xia et al., 2013). PAHs are products 

of incomplete combustion processes of natural (e.g., volcanoes, forests 

fires, and grassland combustion) or anthropogenic origin (e.g., incineration, 

power generation, domestic heating, vehicles emissions, and industrial 

activities) (Jaward et al., 2004; Wang et al., 2010; Estellano et al., 2012). 

Therefore, the environmental PAH burdens are expected to be different 

depending on the proximity of emission sources. In recent years, the toxic 

character of PAHs has been recognized (Estellano et al., 2012). Hence, the 

United States Environmental Protection Agency (USEPA) developed a list 

of 16 priority PAHs (Bohlin et al., 2010; Wang et al., 2010; Choi et al., 2012; 

Harner et al., 2013), 7 of them being classified as probable human 

carcinogens under the B2 group (Leung et al. 2015). Other agencies, such 

as the International Agency for Research on Cancer (IARC), have also 

classified some PAHs as carcinogens or possible carcinogens to humans. 

Among them, benzo(a)pyrene (BaP) has been identified as one of the most 

toxic (Bohlin et al., 2010; Xia et al., 2013). 

Petrochemical industries have been pointed out as one of the most 

important anthropogenic sources of PAHs (Nadal et al., 2011). One of the 

largest chemical and petrochemical industrial complexes in Southern 

Europe is located in Tarragona County (Catalonia, Spain) (Nadal et al., 

2004a, 2009). This area is composed of a total of 33 companies, including 

a big oil refinery, as well as a number of chemical and petrochemical 

industries. In addition, the presence of a highway and several roads with 

heavy traffic has a notable impact on the local environment (Nadal et al. 

2004a, b). Since 2002, a large multicompartmental environmental 

monitoring program has been carried out by analyzing PAHs as well as 

other chemical pollutants in soil and vegetation samples from different 

areas of Tarragona County (Nadal et al., 2004a, b, 2007, 2009, 2011; 

Schuhmacher et al., 2004). 
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The need to monitor the occurrence of PAHs in air has led to the 

development of a large range of methods and devices for sampling 

(Zabiegała et al., 2010). Passive air samplers (PAS) with polyurethane 

foam (PUF) have become a viable alternative to commonly used active air 

sampling equipment since those devices are cheaper, smaller, simpler to 

handle, and they do not require electricity and maintenance (Mari et al., 

2008). These characteristics assist the deployment in remote areas and the 

simultaneous collection of samples at different locations and/or scales 

(Pozo et al., 2004; Bohlin et al., 2008; Zabiegała et al., 2010; Estellano et 

al., 2012; Vilavert et al., 2013, 2014). 

At the same time, the use of lichens (symbioses of fungi and algae) as 

bioindicators has proved to be very useful for the evaluation of 

environmental levels of PAHs (Augusto et al., 2013a; Loppi et al., 2015). 

Lichens are one of the most used organisms to monitor atmospheric 

deposition of several pollutants (Augusto et al., 2013a). They are easy to 

sample, while they allow monitoring of a large number of sampling sites and 

several pollutants within the same matrix (Augusto et al., 2010). In the past, 

PAHs accumulated in lichens have been compared with those measured in 

the particulate-phase of air by using filters from active air samplers 

(Augusto et al., 2013b). However, a valid comparison between PAHs in 

lichens and those in the air gas-phase is still missing. Very recently, Loppi 

et al. (2015) tried to overcome this gap, establishing a correlation between 

the levels of six PAHs measured in passive air samplers and those 

analyzed in lichen transplants of Evernia prunastri. The correlation between 

PAHs in lichens and in the gas-phase of air is crucial to optimize the use of 

lichens to monitor these compounds. Therefore, it is fundamental to 

understand whether other species of lichens are also related to airborne 

PAHs and lichens can be broadly applied for environmental monitoring. 

The aim of this study was to determine the air levels of 16 PAHs from 

different areas of Tarragona County, Spain by means of passive sampling 

devices. Furthermore, the PAH levels and profiles in lichen transplants 

(Ramalina fastigiata) were correlated with those measured in air. Finally, 

the temporal trends of PAHs in air samples were determined by comparing 
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current data with previously reported results.  

 

2. MATERIAL AND METHODS 

 

2.1. Sampling 

 

A total of eight passive air samplers and eight lichen transplants were 

deployed for a period of 2 months (November 26, 2014–January 26, 2015) 

in different areas of Tarragona County, Spain. The distribution of the 

sampling sites was as follows: two samples were deployed under the 

potential influence of the petrochemical complex, which includes a big oil 

refinery (Puigdelfí=P1 and Constantí=P2); two samples close to a zone of 

chemical industries (La Laboral=C3 and La Canonja=C4); two samples in 

urban areas (Tarragona=U5 and Vila-Seca=U6); and two samples in 

background sites, 30 km away from the area of influence of all the 

suspected sources of contamination (Cambrils=B7 and Torredembarra= 

B8) (Fig. 1). Sampling sites were located at less than 2 km from the 

considered pollution sources. 

 

Passive air samplers 

 

PAS containing polyurethane foam (PUF) disks were purchased from 

Newterra (Beamsville, ON, Canada) (diameter 14 cm; thickness 1.2 cm; 

surface area 360 cm2; density 0.035 g cm−3). Prior to use, PUFs were 

precleaned by Soxhlet extraction for 24 h by using dichloromethane (DCM) 

(purity 99.5 %, Scharlab, S.L., Sentmenat, Spain). Subsequently, they were 

dried in a vacuum desiccator, stored in precleaned brown glass jars, and 

sealed with high density polyethylene caps (Bohlin et al., 2008; Pozo et al. 

2009). Once in the field, PUF disks were inserted in the PAS, and those 

were deployed in each sampling point. 
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Fig. 1. Sampling area. 
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Lichen transplants 

 

Lichens of the fruticose species Ramalina fastigiata (Pers. Ach.) were 

collected in November 2014 in mountains of L’Albiol (ca. 30 km to the north 

of the sampling area). 

Healthy R. fastigiata thalli of about 2–4 cm long were collected from the 

available phorophytes, notably from pine and oak trees, and transplanted 

within 48 h to the same eight sampling sites as PAS. Transplants consisted 

of nylon bags of 15×15 cm filled with approximately 5 g of lichens, which 

were hung in handrails of monitoring stations or home balconies. After 2 

months of exposure, transplants were collected, stored in brown glass 

bottles, protected from sunlight, and immediately stored at 4 °C. All samples 

(transplants after exposure and background samples) were analyzed for 

PAHs. 

 

2.2. Chemical analysis  

 

PAHs in PUFs were extracted using an accelerated solvent extraction 

(ASE) 200 (DIONEX, Sunnyvale, USA) through loading the sampled filters 

into 33 mL extraction cells. The solvent used for foams was DCM (99.9 % 

pure, supplied by Prolabo, VWR Spain). ASE was conducted with a 6-min 

preheat time, a static time of 6 min, an extraction temperature of 120 °C, an 

extraction pressure of 1500 psi, two subsequent cycles, a purge time of 120 

s, and a flushing volume of 100 %. The extracts obtained were evaporated 

to about 1 mL using an R-114 rotary evaporator (Büchi, Flawil, Swiss). 

Before the evaporation step, 400 μL of dimethylformamide was added to 

prevent loss of analytes. Prior to the chromatographic analysis, internal 

standards (IS) (d8-naphtalene, d10-acenaphthene, d10-phenanthrene, d12-

chrysene, and d12-perylene) were added, and analytes were again 

dissolved in 1 mL of DCM. 

The 16 USEPA priority PAHs, namely naphthalene, acenaphthylene, 

acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, 

benzo(a)anthracene, chrysene, benzo(b)fluoranthene, 
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benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-c,d)pyrene, 

dibenzo(a,h)anthracene, and benzo(g,h,i)perylene, were determined and 

quantified in the extracts by gas chromatography/mass spectrometry 

(GC/MS) by means of a QP2010 Ultra System (Shimadzu Corporation, 

Tokyo, Japan). The chromatographic separation was carried out on a ZB-

50 analytical column (50 % phenyldimethylpolysiloxane, 30m × 0.25mm id; 

0.25 μm filmthickness) from Micron Phenomenex (Torrance, California, 

USA). For the analysis, a volume of 1 μL of the sample extract was injected 

in splitless mode, with a column rate of 1 mL/min. The compounds were 

quantified by a target ion using internal standard calibration and identified 

by retention times and qualifier ions. To calculate extraction recoveries, two 

PUFs were spiked with 20 μL of a 0.1 mg/L standard solution, one before 

and one after the extraction, being afterward analyzed. In addition, a blank 

PUF was also analyzed, and the peak signals were subtracted from the 

above. The extraction recoveries were calculated by comparing the peak 

area ration (analyte versus IS) of the two analysis, being ranged between 

66 and 116 %, for benzo(k)fluoranthene and acenaphthylene, respectively 

(Table S1 Annex 3). The instrumental linear range was between 1, 5, 10, 

or 20 μg L−1 and 1000 or 5000 μg/L, depending on the analyte. In all cases, 

determination coefficients (r2) were higher than 0.99 except for 

indeno(1,2,3-c,d) pyrene that was 0.98. The limits of detection (LODs) and 

the limits of quantitation (LOQs) were estimated from the instrumental 

signal and taking into account extraction recoveries. For LODs, a 

signal/noise ratio of three was considered, while LOQs were fixed to the 

lowest instrumental calibration point. Thus, LODs ranged from 0.3 to 5 

ng/PUF, while LOQs ranged from 1 to 20 ng/PUF (Table S1 Annex 3). 

PAHs in lichen samples were extracted using the Soxhlet method, as 

described by Augusto et al. (2010). Approximately 2 g of lichen sample was 

extracted in a Soxhlet for 24 h with 300 mL of acetonitrile (99.8 % pure, 

Optigrade supplied by Promochem, Germany). After extraction, the extracts 

were concentrated by rotary vacuum evaporation and cleaned up in a 

Florisil column (aolid phase extraction cartridges, Extrabond Florisil 2 g, 12 

mL, supplied by Scharlab S.L.) with 30 mL of acetonitrile as eluting solvent. 
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Then, the extracts were evaporated and concentrated with a gentle stream 

of purified N2 to 1 mL. The 16 USEPA priority PAHs in the lichen extracts 

were also quantified by GC-MS using a gas chromatograph (Hewlett-

Packard G1099A) coupled with a mass spectrometer (Agilent MSD5973). 

An HP-5MS 5 % phenyl methyl siloxane capillary column (30 m, 0.25 mm 

id, 0.25 μm film thickness) (Agilent 19091S-433) was used for separating 

the PAHs. For the analysis, a volume of 1 μL of the sample extract was 

injected in splitless mode, with a column rate of 1.4 mL/min. The masses 

monitored by the detector were set as follows: from 40 to 600 m/z. 

PAHs in lichen samples were quantified by a target ion using internal 

standard calibration and identified by retention times and qualifier ions. 

Recoveries were achieved by spiking a portion of lichen with a solution of 

the 16 USEPA PAHs and with d10-fluorene prior to extraction. Recovery 

percentages differed according to individual PAHs, ranging between 56 and 

151 %. The instrumental linear range was between 0.6, 1 or 5 and 500 μg/L, 

depending on the analyte. Determination coefficients (r2) were higher than 

0.98, except for naphthalene (r2=0.82) and acenaphthylene (r2=0.96). LODs 

ranged from 0.5 to 5 ng/g, while LOQs ranged from 1 to 20 ng/g (Table S1, 

Annex 3). 

 

2.3. Data analysis  

 

For the calculations, those PAHs presenting levels below the LOD or 

LOQ were assumed to have a concentration equal to one half of the LOD 

or LOQ. Pearson linear correlation coefficients between lichens and air 

passive samplers were calculated for each PAH ring group, low molecular 

weight (LMW), and high molecular weight (HMW) PAHs, as well as for the 

total of the 16 PAHs. Significant correlations were displayed in scatterplots. 
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3. RESULTS AND DISCUSSION 

 

3.1. Levels of polycyclic aromatic hydrocarbons in air samples 

 

The total amount of the 16 USEPA priority PAHs (Σ16PAHs), as well as 

that of each individual congener, in different areas of Tarragona County 

(Catalonia, Spain) measured between November 2014 and January 2015 

are summarized in Table 1. Most international studies using passive air 

samplers translate concentrations measured in PUF into equivalents for air. 

For that purpose, published calibrations between PAH concentrations 

measured by active samplers and PAS are generally used (Shoeib and 

Harner, 2002; Harner et al., 2013). Because calibrations tend to vary to 

some extent depending on the number of factors, such as wind intensity, 

rainfall, or temperature, this procedure may envisage results. For this 

reason, as well as because this study was aimed at establishing the validity 

of lichen transplants, amounts of PAHs accumulated in the PUFs instead 

of air equivalent concentrations were used. 

Air PAH levels ranged from 1363 to 7866 ng/sample, with a mean value 

of 3414 ng/sample. These values are consistent with a preliminary survey 

conducted in this area in winter of 2013 (Domínguez-Morueco et al., 2014), 

in which PAH levels found in PAS deployed for 2 months ranged from 670 

to 7530 ng/sample (Table 2). In addition, these levels are in agreement with 

other international studies (Table 2). Estellano et al., (2014) found an 

accumulation of PAHs of 2724–6222 ng/sample at four locations in urban 

and suburban sites of Puglia region (Italy), while Harner et al., (2013) found 

a range of 525–6300 ng/sample in the atmosphere of the Alberta oil sands 

(Canada). Similar levels were also reported by Kennedy et al. (2010) in 

South Australia (2169–7033 ng/sample). Contrastingly, other authors have 

found relatively higher amounts of PAHs in a number of countries (e.g., 

India, Korea, Mexico, and Sweden) (Bohlin et al., 2008; Choi et al., 2012; 

Cheng et al., 2013). In turn, the studies conducted by Estellano et al., 

(2012) in the Tuscany region, Italy, or the ones by Bohlin et al., (2008) in 

Lancaster, UK, reported lower values of PAH by using PAS (Table 2). 
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A seasonal pattern of PAHs in air was found. Airborne concentrations 

found in this study, performed in winter (mean temperature 9 °C; range 3–

15 °C), were notably higher than PAH amounts observed in summer of 

2014 (mean temperature 24 °C) in the same area under study (unpublished 

data) when levels ranged 2396–4743 ng/sample (Table 2). Seasonal 

differences have been largely reported in the scientific literature, with higher 

concentrations of PAHs typically found in cold seasons (Delhomme and 

Millet, 2012; Jyethi et al., 2014). Furthermore, this pattern also agree with 

data on PAH concentrations in air obtained by means of active sampling 

devices in Tarragona County (Ramirez et al., 2011), as well as with other 

international studies (Kennedy et al., 2010; Wang et al., 2010; Chen et al., 

2011; Estellano et al., 2014). 

The highest Σ16PAH amount (7866 ng/sample) was observed in the 

sampling point P1, corresponding to the neighborhood of Puigdelfí (village 

of Perafort). This value is very similar to that found in the village of 

Vilallonga del Camp, a very close town, in the 2013 campaign, when a PAH 

amount of 7530 ng/sample was found (Domínguez-Morueco et al., 2014). 

Both sampling points are situated in the vicinity of a big oil refinery and well 

under the potential influence of petrochemical emissions. This fact agrees 

with the results from other international monitoring studies, in which a 

certain increase of PAHs have been associated to the presence of chemical 

industries (Pozo et al., 2012). 

Phenanthrene was the predominant hydrocarbon in air, with a mean 

contribution of 49 % of the total (range 43–54 %). Moreover, relatively high 

contributions were also noted for acenaphthylene and fluoranthene (mean 

contribution of 16 and 10 %, respectively). The profile observed in this study 

was consistent with the results reported by other authors who showed a 

predominance of 3- and 4-ring PAHs (Bohlin et al., 2008; Choi et al., 2012; 

Pozo et al., 2012; Estellano et al., 2012, 2014). Since they are 

predominantly present in the gas-phase, LMW PAHs may be more easily 

captured by the PAS. In contrast, PAHs with 5–6 benzene rings have a 

higher molecular weight and lower volatility, tending to remain in the 

particulate-phase (Choi et al., 2012; Estellano et al., 2012).
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Table 1. Individual and total PAH values in samples of passive air (ng/sample) and transplanted lichens (ng/g dw) in different areas of Tarragona 

County, Spain. 

a Because of chromatographic analysis, benzo(b)fluoranthene and benzo(k)fluorantehene were reported together. LOD: Limit of detection. LOQ: Limit of quantification. 

 Petrochemical area  Chemical area  Urban area  Background area 

 P1  P2  C3  C4  U5  U6  B7  B8 

 Air Lichen  Air Lichen  Air Lichen  Air Lichen  Air Lichen  Air Lichen  Air Lichen  Air Lichen 

Naphthalene 117 2  77 -  102 23  205 3  231 7  62 -  63 2  67 40 

Acenaphthylene 1411 <LOD  162 -  239 <LOD  1257 <LOD  276 <LOD  599 -  316 <LOD  387 <LOD 

Acenaphthene 44 <LOD  28 -  26 <LOD  39 <LOD  31 <LOD  30 -  164 <LOD  30 <LOD 

Fluorene 381 25  111 -  151 15  314 26  153 16  249 -  258 30  148 38 

Phenanthrene 3864 114  704 -  1006 57  2485 123  900 67  2361 -  866 80  1195 113 

Anthracene 117 16  22 -  38 4  98 <LOD  41 <LOD  65 -  39 <LOD  46 5 

Fluoranthene 938 120  128 -  201 59  473 115  150 47  517 -  132 57  236 82 

Pyrene 647 88  79 -  141 48  372 78  119 38  345 -  89 48  148 67 

Benzo(a)anthracene 32 61  <LOQ -  9 10  17 14  <LOQ 9  17 -  5 23  7 30 

Chrysene 105 82  14 -  33 21  64 25  13 9  64 -  28 13  27 35 

Benzo(b+k)fluoranthenea 55 79  14 -  26 22  24 28  13 19  23 -  <LOQ 49  14 73 

Benzo(a)pyrene 15 64  <LOD -  10 12  <LOD 16  <LOD 11  <LOD -  <LOQ 38  <LOD 47 

Indeno(1,2,3-c,d)pyrene 43 58  <LOQ -  <LOQ 9  25 13  <LOD 9  <LOQ -  11 26  <LOQ 25 

Dibenzo(a,h)anthracene 57 64  <LOQ -  13 9  18 13  <LOQ 9  <LOD -  14 27  <LOQ 39 

Benzo(g,h,i)perylene 40 67  <LOQ -  15 9  28 8  <LOQ 6  <LOQ -  24 7  <LOQ 42 

∑16 PAHs 7866 841  1363 -  2015 297  5420 461  1947 247  4350 -  2026 402  2326 634 
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Table 2. Summary of PAH levels in PAS (in ng/sample) found in the scientific literature. 

   SUM of PAHs (ng/sample) Number of 
PAHs 

Number of 
samples 

Exposure period 
(months) 

Date of exposure* Site 
 Min Max 

Current study 1363 7866 16 8 2 Nov 2014-Jan 2015 (winter season) Tarragona, Spain 

Unpublished data 2396 4743 16 8 2 Jun-July 2014 (summer season) Tarragona, Spain 

Domínguez-Morueco et 
al., 2014 

670 7530 16 3 2 Oct- Dec 2013 (winter season) Tarragona, Spain 

Estellano et al., 2014 

2724 6222 

10 4 2-5 

Jan-Apr 2009 (winter season) 

Puglia region, Italy 
919 5460 Apr-Jun 2009 (spring season) 

1524 4042 Jun-Sep 2009 (summer season) 

4273 14903 Sep 2009-Feb 2010 (autumn season) 

Harner et al., 2013 
652 3784 

16 18 
1 Nov-Dec 2010 (winter season) 

Alberta, Canada 
525 6300 2 Dec 2010-Feb 2011 (winter season) 

Cheng et al., 2013 6480 54800 15 50 1 Dec 2006-Jan 2007(winter season) 
Kolkata, Mumbai and 

Chennai, India 

Choi et al., 2012 3396 13120 13 20 ≈2 Jan-Feb 20011 (winter season) Ulsan, Korean Peninsula 

Estellano et al., 2012 99 965 10 19 2-5 Apr-July 2008 (spring season) Tuscany region, Italy 

Kennedy et al., 2010 

1030 2612 

16 

8 

2 

July-Aug 2007 (winter season) 
Western Australia, Australia 

177 734 Jan-Feb 2007 (summer season) 

338 4565 
12 

July-Aug 2007 (winter season) 
Queensland, Australia 

71 2118 Jan-Feb 2007 (summer season) 

2169 7033 
12 

July-Aug 2007 (winter season) 
South Australia, Australia 

257 1592 Jan-Feb 2007 (summer season) 

Bohlin et al., 2008 

5060 14720 

13 46 2 Mar-Apr 2006 (winter season) 

Mexico City, Mexico 

1242 11040 Gothenburg, Sweden 

- 1104 Lancaster, United Kingdom  

*Winter and summer seasons according to the country. 
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3.2. Levels of polycyclic aromatic hydrocarbons in lichens 

transplants 

 

Lichens were transplanted from a background site to eight different 

locations of Tarragona County, grouped into four areas: chemical, 

petrochemical, urban, and background. Unfortunately, from the eight 

transplants deployed in the field, two (P2 and U6) were missing at the end 

of the sampling period. The concentrations of individual PAHs and Σ16PAHs 

measured in lichen transplants after 2 months of exposure are displayed in 

Table 1. The analysis allowed the quantitation of 14 out of the 16 USEPA 

PAHs. 

Σ14PAH concentrations in lichens after exposure varied between 247 

ng/g (for the urban site U5) and 841 ng/g (for the petrochemical site P1), 

with an average of 480 ng/g. Preexposed lichens revealed a concentration 

of 307 ng/g. After being transplanted from a presumably background area 

to an exposed area, the lichens are expected to become enriched or 

depleted according to pollutant loads existent in the exposed area. In our 

case, four transplants became enriched for Σ16PAHs, while the remaining 

two were depleted. 

Although the first studies using lichens to measure PAHs were published 

some time ago (Carlberg et al., 1983), only until recently lichens have 

started to be used as routine monitors of PAHs. In the past, most studies 

were based on the use of native lichens to estimate the environmental 

concentrations of PAHs (Studabaker et al., 2012). In contrast, only few 

studies report the use of lichen transplants in areas where native lichens 

could not be found (Table 3). 

PAH concentration ranges obtained in lichens transplanted to the area 

of Tarragona County are in accordance with other studies (Table 3). In 

order to establish a valid comparison, the obtained values were divided by 

the exposure period (number of months). Therefore, the cumulative effect 

over time is neglected, and comparisons between studies can be 

conducted with a high degree of reliability. The range of PAH levels in 

lichens sampled in Tarragona is in the high part of the range in comparison 
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to data from Italy, the country where lichens have been more extensively 

used for the monitoring of PAHs. In Tarragona County, the maximum PAH 

concentration was 420 ng/g per month, while the greatest level in Italy was 

found in an Italian industrial area, reaching 344 ng/g per month (Table 3). 

Notwithstanding, it must be highlighted that different lichen species were 

used in each study, the number of quantified PAHs was different, and 

sampling was performed in different years and seasons. For example, 

concentrations of Σ16PAHs measured in native lichens (Parmotrema 

hypoleucinum) collected in the southwest of Portugal in a petrochemical 

industrial area similar to Tarragona were found to decrease by a factor of 

ten during the summer season (from a maximum of 556 ng/g in winter to a 

minimum of 58 ng/g during summer) (Augusto et al., 2013b). This strong 

variation was significantly correlated with climate factors, such as 

temperature, relative humidity, and wind speed. These parameters, 

together with the use of different lichen species and the existence of 

different pollution sources in each study, may contribute to differences in 

PAH concentrations observed in lichens. 

 

Table 3. Summary of studies using lichen transplants to monitor PAHs. 

Concentrations of PAHs are reported in ng/g dw per month of exposure.  

 

 

 ∑PAHs 

(ng/g per 

month) 

Nº 

PAHs 

Nº 

samples 

Lichen 

Species 

Exposure 

period 

(months) 

Date of 

exposure 

Site 

 Min Max  

Current 

study 
124 420 14 6 

Ramalina 

fastigiata 
2 

Nov 2014- 

Jan 2015 

Tarragona, 

Spain 

Loppi et 

al., 2015 
6.3 227 6 7 

Evernia 

prunastri 
3 

Apr-July 

2011 

Molise, 

Italy 

Protano et 

al., 2014 
159 344 12 11 

Pseudoevernia 

furfuracea 
4 

Aug-Dec 

2008 

Latium, 

Italy 

Guidotti et 

al., 2009 
11 132 13 6 

Pseudoevernia 

furfuracea 
3 

Feb-May 

2005 

Viterbo, 

Italy 

Guidotti et 

al., 2003 
5 26 5 4 

Pseudoevernia 

furfuracea 
5 to 20 

Nov 1999- 

July 2001 
Rieti, Italy 
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3.3. Comparison between passive air sampling and lichen 

transplants 

 

In order to compare the accumulation of PAHs between PAS and 

lichens, data for the six sites, where both monitors were existent at the end 

of the sampling, were used. This means that P2 and U6 samples were 

excluded from the statistical treatment. ΣPAH values ranged between 247 

and 840 ng/g in lichen transplants and between 1947 and 7866 ng/sample 

in PAS, both deployed at the same sampling sites during the same period 

(2 months). In both monitors, PAS and lichens, the highest concentration 

was found at site P1, located near the petrochemical complex, whereas the 

lowest level was found at U5 (urban area), where the traffic intensity was 

rather low. 

The PAH ring profile found in PAS and lichens at each sampling site is 

displayed in Fig. 2. Air samples revealed a PAH profile dominated by LMW 

PAHs, especially 3-ring (accounting for more than 70% of the total 

concentration) and 4- ring PAHs (contributing for approximately 20 %). In 

lichen samples, PAH profiles seem to be also dominated by 3- and 4- ring 

PAHs, together accounting for 60–70 % of the profile. High molecular 

weight PAHs exist mainly in the particulate phase of air. Thus, they are not 

likely to be adsorbed by PAS. The high percentage of 3-ring PAHs (>70 %) 

measured in air samples from Tarragona County is in agreement with other 

studies performed across Europe (Jaward et al., 2004; Estellano et al., 

2012, 2014; Loppi et al., 2015). 

Besides intercepting PAHs existent in the gas-phase of air (mainly 

LMW PAHs), lichens also accumulate PAHs sorbed to the particulate 

matter (Fig. 2). In previous studies, PAH profiles in lichens (P. 

hypoleucinum and Xanthoria parietina) were compared with those found in 

the particulate phase of air by active air samplers (Augusto et al., 2010, 

2013b). Lichens showed higher contributions of LMW PAHs when 

compared to air, whereas particulate phase of air presented higher 

contributions of 5- and 6-ring PAHs in comparison to lichens (Augusto et 

al., 2013b). Regardless of the difference of profiles, a significant correlation 

UNIVERSITAT ROVIRA I VIRGILI 
ENVIRONMENTAL LEVELS OF PAHs AND OTHER SVOCs IN A PETROCHEMICAL AREA. COMBINING MONITORING 
AND MODELLING TOOLS 
Noelia Domínguez Morueco 
 



CHAPTER 1 

 

- 82 - 

 

was found for PAH concentrations in lichens and in particulate-phase of air 

(Augusto et al., 2013b). 

 

 

Fig. 2. PAH profiles (in percentage) according to the number of rings in a air and b 

lichens. 

 
The correlations of PAH concentrations in lichens and the amount 

accumulated in PAS exposed at the same sampling sites for the same time 

span are summarized in Table 4. 
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Table 4. Pearson’s coefficients for correlations between PAH concentrations in 

lichens and in passive air samples (N=6). Results are displayed for group rings (2- 

to 6-ring PAHs), for low molecular weight (LMW) PAHs, consisting of 2-, 3- and 4-

ring PAHs; high molecular weight (HMW) PAHs, consisting of 5- and 6-ring PAHs; 

and for the sum of the 16 USEPA priority PAHs; Bold: significant  P < 0.05. 

 
 Air-Lichens p-value 

2-Rings -0.454 0.366 

3-Rings 0.687 0.131 

4-Rings 0.941 0.005 

5-Rings 0.622 0.187 

6-Rings 0.658 0.155 

Σ16PAHs 0.761 0.079 

LMW-PAHs 0.827 0.042 

HMW-PAHs 0.676 0.140 

 

A significant positive linear correlation for LMW PAHs was found 

between PAS and lichens (R=0.827, P<0.05). This correlation was mainly 

supported by the significant correlation of the 4-ring PAHs (R=0.941, 

P<0.05). Because correlations were performed with a limited amount of 

data (six pairs), the respective scatterplots were also graphically 

represented (Fig. 3). A linear relationship of LMW PAHs, and very 

especially of 4-ring PAHs, between lichens and PAS, was observed. 

These results are in agreement with those recently found by Loppi et 

al., (2015) when comparing PAHs in PAS and lichen transplants exposed 

for 3 months at the same sampling sites in Italy, despite the differences of 

the lichen species (Evernia prunastri vs. R. fastigiata) and the sampling 

season (spring vs. winter). The accumulation of PAHs by lichens can be 

influenced by the lichen species, the surface/volume ratio and algae 

content being important aspects (Augusto et al., 2013a). The increase of 

surface/volume ratio leads to a higher accumulation of PAHs as more lichen 

area is exposed to atmospheric pollution.  
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Fig. 3. Correlation between lichens and passive air samples for LMW-PAHs (A) and 

4-ring PAHs (B). 

 

The lichen R. fastigiata is a fruticose lichen with a branched bushy-type 

structure with a high surface/volume ratio. In turn, the lichen E. prunastri 

used by Loppi et al. (2015) is a foliose lichen but attached at one point and 

appearing fruticose. E. prunastri has a lower surface/volume ratio than R. 

fastigiata. Very recently, and after tracking gas-phase PAHs inside lichens, 

Augusto et al. (2015) observed that these compounds easily enter the 

lichen thallus and accumulate in the algal. Therefore, the amount of algae 

is likely to influence the amount of gas-phase PAHs accumulated by 

lichens. 

Even though different lichen species were used, our results are in 

accordance with those reported by Loppi et al. (2015). In both 
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investigations, a linear relationship between PAHs in lichens and PAS was 

established. However, the linearity of this relationship was smaller than that 

found by Loppi et al. (2015). It could be due to the fact that the sampling in 

Spain was performed during winter, where the contribution of particle-

associated PAHs is bigger than in summer and spring. As lichens 

accumulate PAHs as both gas- and particulate phases, during winter, 

lichens more easily reflect the particulate-phase of PAHs. As the 

temperature increases, the contribution of gas-phase PAHs in air, as well 

as in lichens, also increases. Thus, the correlation of PAHs between PAS 

and lichens is expected to become stronger in summer. 

Because levels of each PAH in air and lichens can be strongly 

influenced by climate factors, similar experimental calibrations of PAHs in 

PAS and in lichens, covering different seasons and lichen species, must be 

repeated. During summer, with high temperatures, LMW PAHs tend to exist 

mainly in the gas-phase of air, whereas in winter, concentrations of HMW 

PAHs tend to increase due to an intensification of emissions from seasonal 

sources. As PAS preferentially adsorb compounds in the gas-phase and 

lichens capture compounds existent in gas- and particulate-phase, 

differences should be expected when comparing both monitors over 

different seasons. 

 

4. CONCLUSIONS 

 

The levels of 16 PAHs were determined in PAS and lichen transplants 

(Ramalina fastigiata) deployed for a period of 2 months in different zones 

of Tarragona County (Catalonia, Spain), an area with an important number 

of chemical and petrochemical industries. Σ16PAH concentrations in air 

samples ranged from 1363 to 7866 ng/sample, phenanthrene being the 

predominant hydrocarbon. The highest concentration was found in the 

neighborhood of Puigdelfí (village of Perafort) in the vicinity of a big oil 

refinery and well under the potential influence of petrochemical emissions. 

The PAH concentrations in lichen transplants varied between 247 and 841 

ng/g, with the highest value also reported in the same sampling point as for 
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the PAS. When both monitoring methods were compared, a significant 

positive linear correlation was found for LMW PAHs. These results strongly 

suggest that lichens can be used to monitor gas phase PAHs, providing 

data that can be quantitatively translated into equivalents for air. However, 

since PAHs in air may be strongly influenced by climate/meteorological 

factors, it is essential to perform similar experiment covering different 

seasons and lichen species. 
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DISCUSSION CHAPTER 1 

 

It is well known that PAS are worldwide used for air monitoring at 

global/regional scale, since have been the devices preferred by the United 

Nations Environment Program for global air monitoring (Bohlin et al., 2008; 

Chaemfa et al., 2008; Pozo et al., 2009). However, few international studies 

have been conducted in order to study the suitability of PUF-PAS for 

SVOCs (POPs) monitoring at a local scale. In chapter 1 of this thesis, the 

suitability of the use of PAS for the air pollution at a local scale was 

evaluated prior to the creation of a monitoring network.   

The preliminary results of the first “short communication” showed that, 

in general terms, the devices allow the air sampling in three different areas 

of Tarragona County, Spain, where one of the most important 

chemical/petrochemical complex in Southern Europe is located. Due to this 

industrialized influence, the first compounds analyzed were the PAHs. A 

decreasing pattern of PAHs concentration was observed among the three 

sampling points, where the highest concentration of PAHs in air was 

recorded at the Vilallonga sampling point (66 ng/m3), with great industrial 

influence; followed by the sampling point with the greatest urban influence 

(36 ng/m3) and by the point classified as rural (17 ng/m3). These results 

showed that PAS devices allow to discriminate between sampling areas 

with different contamination levels. Since PAHs are a large family of 

compounds with different characteristics, the pattern of PAHs sampled can 

provide insights into how these devices work. For instance, the results 

indicate that LMW PAHs (2-3 aromatic rings) represent more than 80% of 

the total PAHs sampled by the PAS, being phenanthrene (3 aromatic rings) 

the predominant hydrocarbon, with a mean range between 26-44 % of the 

total. In addition, if the 4 rings PAHs are added, they represent more than 

90 % of the total contribution. This fact shows that PAS with PUF disks are 

particularly effective for the sampling of those contaminants presents in the 

gas phase air. Nevertheless, it should be noted that PUF-PAS were also 

capable of detecting high molecular weight PAHs. 
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Since PUF-PAS are devices composed by double-dome metallic 

chamber, the influence of environmental variables, such as temperature, 

over PUF-PAS ability to SVOCs capture was also investigated (short 

communication Annex 1). The results indicate that the environmental 

temperature does not affect the stability of PAHs in PUF-PAS. Once PAHs 

have been uptaken by the PUF-PAS, they are not easily volatilized from 

these devices. Consequently, PAS are good environmental monitors 

independently on the ambient conditions of temperature, being suitable for 

the comparability of data, either temporally or spatially, on the airborne 

concentrations of PAHs. 

Given the high industrialization degree of Tarragona County, a second 

“short communication” was carried out in order to assess the PUF-PAS 

capability of capture other kind of SVOCs different of PAHs, such as PCBs, 

HCB, BFRs and emerging contaminants as SMs. In the same way, a 

greater number of sampling points were considered this time, a total of 8, 

divided into 4 well differentiated zones, including a two points over the 

influence of a big oil refinery; two samples close to chemical industries; two 

points in urban areas; and two samples in background sites, at least 30 km 

away from the area of influence of all the suspected sources of 

contamination.  

The results showed that the major predominant compounds in the study 

area are the PAHs (2098-4333 ng/PUF) followed by the PCBs (2.8-120 

ng/PUF). Likewise, HCB (4.65 to 16.4 ng/PUF) and SMs (0.38 to 13.4 

ng/PUF) are found in similar concentrations, and BFR (1.30 to 2.80 ng/PUF) 

are the scarcest compounds in this area. This would be associated with the 

fact that many of these compounds such as nitro SMs, HCB and penta-

BDE and octa-BDE are already banned and others are classified as 

restricted use. In addition, the lower BFRs concentrations recorded by PUF-

PAS may be associated with the fact that these compounds are mostly 

predominant in indoor environments and their new homologs probably are 

more degradable than the legacy. 

Regarding PAHs, the concentrations found in the study conducted in 

winter of 2014-2015 (PAHs levels ranged from 2098 to 4333 ng/PUF) were 
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into the range reported in the preliminary study (winter 2013, PAHs levels 

ranged from 670 to 7530 ng/PUF), and a similar decreasing 

petrochemical>chemical>urban>background pattern was observed in this 

area. In addition, the highest concentrations of PAHs were also registered 

in the point P1, corresponding to the neighborhood of Puigdelfí (a very close 

town to Vilallonga), situated in the vicinity of a big oil refinery and well under 

the potential influence of petrochemical emissions. Concerning individual 

PAHs, also phenanthrene (LMW PAH) was the predominant hydrocarbon, 

ranging between 30 -39 % of the total contribution. Regarding, more heavier 

molecular weight PAHs, a greater number of them were recorded in this 

second study in compare with the preliminary one, and benzo(a)pyrene (5 

aromatic rings), was also detected in all sampling points. Nevertheless, its 

concentration never exceeded the maximum of 1 ng/m3 admissible for air 

samples.  

Regarding PCBs, higher concentrations were found in the chemical 

zone, more specifically in point C3 (La Laboral), and although these 

compounds are nowadays banned, the current value could be due to the 

presence of a chlor-alkali plant and various electrical substations in the 

vicinity, as well as the legacy of their use in the past.   

In general terms, it is observed that the area over the industrial 

influence (chemical and petrochemical areas) has higher concentrations of 

PAHs, PCBs and HCB than in urban areas and these are higher than in the 

background areas. On the other hand, SMs and BFR concentrations were 

lower and did not show differences between zones. For this reason, this 

second short communication corroborated that the PUF-PAS are devices 

capable of capture different kinds of SVOCs, some of them present in the 

environment at lower concentrations, either because their use has been 

prohibited or restricted or because they are characteristic of indoor 

environments. 

Finally, and in order to compare the effectiveness of PUF-PAS devices 

with other environmental biomonitors, a comparison between PAHs levels 

recorded by them and lichens transplant was conducted in Tarragona 

County (article 1 of this chapter). Numerous studies show that lichens can 
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serve as passive samplers (Augusto et al., 2013a; Loppi et al., 2015). 

These biomonitors are characterized by being sensitive to factors such as 

rainfall, high levels of pollution and/or urbanization, so their presence in 

these areas is highly reduced. That was the case of Tarragona County, for 

this reason, lichen transplants from presumable unpolluted areas were 

used in this thesis. Lichen transplants were distributed at the same time as 

PUF-PAS during the same sampling period (2 months of sampling). The 

results indicate that the areas affected by petrochemical activity and to a 

lesser extent chemical have higher values of PAHs than in urban areas and 

background, whether considering the PAS or the transplanted lichens. It is 

important to note that PUFs are capable of retaining approximately 2-4 

times more PAHs (expressed as ng/g) mainly contents in the gas phase 

than lichens transplanted from clean areas. In addition, the PAHs profile 

retained by each device is clearly different. The PUF-PAS retain, as we saw 

previously, LMW of 2, 3 and 4 rings (90 % of the total contribution), being 3 

rings PAHs the most abundant. While the transplanted lichens tend to 

accumulate to a greater extent the HMW PAHs (4, 5 and 6 rings PAHs with 

a total contribution between 60-80 %). Therefore, it is clear that the profile 

of sampled compounds is different, being the PUF-PAS good samplers of 

the contaminants in the gas phase, while the transplanted lichens sample 

to a greater extent those compounds that are in the particulate phase. 

Despite that, the good correlation between the concentration of LWM 

PAHs between PUFs and lichens suggests that lichens are able to sample 

part of the gas phase as well. However, to be able to use transplanted 

lichens it would be necessary to make new studies to gauge their suitability. 

It should also be noted that 2 of the 6 lichens have given PAHs 

concentration values below the initial level (of the presumable unpolluted 

area). The ease of use of PUF-PAS, its benefits and its price make it very 

suitable for the environmental sampling of numerous and different SVOCs. 
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CHAPTER 2: Improving analytical 

procedures for SVOCs determination using 

“green” alternatives.  
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ARTICLE 1: IMPROVING MULTI-COMPONENT ANALYSIS 

OF SVOCs IN ENVIRONMENTAL SAMPLES USING 

QUECHERS. 

 
Submitted to Analytical and Bioanalytical Chemistry. 

ABSTRACT 

 

The aim of this study was to improve classic extraction and cleanup 

protocols to analyze the levels of several classes of semi-volatile organic 

compounds (SVOCs) in environmental matrices, observing the basic rules of 

green analytical chemistry. In this case, a multi-residue method involving 

QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) coupled to GC-

MS was validated for the simultaneous extraction of PAHs, PCBs, BFRs, SMs 

and HCB in soils and vegetation samples. To achieve the goal, several tests 

were conducted throughout the procedure to optimize the main parameters to 

consider in the analysis: type of extraction solvent; composition of QuEChERS 

1 and 2, and extract filtration and dryness. The best results overall were 

obtained using acetone/dichloromethane (1:1) for soils samples (mean total 

recovery of 101% for PAHs; 95 % for SMs; 98% for PCBs; 109% for BFRs and 

94 % for HCB) and hexane/dichloromethane (2:1) for pine needles (mean 

recoveries of 101% for PAHs; 102 % for SMs; 87% for PCBs; 67 % for BFRs 

and 113 % for HCB). QuEChERS 1 composition for both matrices was better 

with NaCH3COO and anhydrous MgSO4 (mean total recoveries of 151 % for 

PAHs; 98 % for SMs; 93% for PCBs; 102 % BFRs and 78 % for HCB in soil 

samples; and 81 % for PAHs; 105 % for SMs; 74% for PCBs; 99 % for BFRs 

and 77 % for HCB in pine needles) and for QuEChERS 2, the best combination 

of sorbents for soils was obtained with 0.9 g of MgSO4, 150 mg of PSA and 

150 mg of C18 (mean total recoveries of 93 % for PAHs; 103 % for SMs; 119 

% for PCBs; 110 % BFRs and 101 % for HCB) while for pine needles the most 

reliable solution was given by 0.9 g of MgSO4, 0.15 g of alumina, 0.15 g of 

Florisil and 0.15 g of C18 (mean total recoveries of 110 % for PAHs; 101 % for 

SMs; 80 % for PCBs; 56 % for BFRs and 14 % for HCB). Regarding extract 

filtration and dryness, the sample filtration with PTFE filters of 0.2 µm and the 
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total dryness of the sample followed by reconstitution with the injection solvent 

were chosen for both matrices. The optimised protocols were validated for both 

matrices through linearity, precision and accuracy assays. Finally, naturally 

contaminated samples of soils and pine needles from Porto and Aveiro 

(Portugal) were tested to complete the validation in field samples. The limits of 

detection ranged between 0.7 and 225 pg/g, which are similar to the classic 

approaches, as were the repeatability and mean recoveries found.  

 

Keywords: Semi-volatile organic compounds (SVOCs) · Soil · Vegetation · 

QuEChERS · GC-MS 

 

1. INTRODUCTION 

 

Large amounts of semi volatile organic compounds (SVOCs) are 

continuously emitted into the atmosphere from different sources each year. 

Many of these SVOCs are hazardous to human health and the 

environment. Due to their physicochemical properties in combination with 

slow degradability in air, top soil, surface waters, and on vegetation 

surfaces, these compounds may undergo a series of volatilizations and 

subsequent depositions, which enhances their long-range transport 

potential (Trellu et al., 2016). As a consequence, more stringent regulations 

about environmental pollution are introduced every year (Trellu et al., 

2016). Polycyclic aromatic compounds (PAHs), polychlorinated biphenyls 

(PCBs), brominated flame retardants (BFRs), organochlorine pesticides 

(OCPs) and synthetic musks (SMs) are examples of this type of chemicals 

and are the focus of this work. PAHs may enter the environment from both 

natural (e.g. vegetation synthesis, volcanic activity and forest fires) and 

anthropogenic (e.g., industrial activities, power generation, incineration and 

traffic) sources (Lamichhane et al., 2016; Domínguez-Morueco et al., 2017; 

Silva et al., 2015), whereas PCBs are a large group of compounds that 

have been used in a wide variety of application such as microelectronic 

circuits, plastics, resins (Antonetti et al., 2016, Manzetti et al., 2014) and 

BFRs are chemicals commonly added to a wide variety of industrial and 
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household products to improve their fire resistance (Cruz et al., 2015; 

Fromme et al., 2016; Manzetti et al., 2014). OCPs have also been widely 

employed in insect and pest control (among other uses), being 

hexachlorobenzene (HCB) one the most used, in fungicides, military 

pyrotechnic smokes, and synthetic rubber peptizing agents (Chen et al., 

2016; Tong and Yuan, 2012; Wu et al., 2016). SMs are man-made 

chemicals of recent concern, produced in large quantities and extensively 

used in the fragrance industry for the production of a vast array of scented 

consumer products including shampoos and detergents (Homem et al., 

2015).  

In order to monitor these pollutants, several passive sampling 

methodologies and matrices have been employed to reduce the operative 

costs of such processes. Among others, soils or vegetation have been used 

to assess the levels and behaviour of several families of SVOCs 

(Ballesteros-Gómez and Rubio, 2011). Soil is a complex and 

heterogeneous matrix that plays a central role in the environment 

preventing the contamination of adjacent ecosystems (Correia-Sá et al., 

2012; Ratola et al., 2016) and is constantly subject to an intensive exposure 

from a myriad of chemical compounds (Correia-Sá et al., 2012; García 

Pinto et al., 2011). Vegetation represents a natural fixed, relatively 

inexpensive mean to monitor airborne pollutants and can be therefore 

considered bio-samplers of atmospheric contamination (Holt et al., 2016). 

Pine needles, in particular, have been used as bio-monitors of atmospheric 

pollution because they are evergreen, and can thus be used to assess 

longer temporal series of pollutant exposure than deciduous species (Holt 

et al., 2016; Ratola et al., 2016).  

In order to detect, identify and quantify chemicals released into the 

environment, the target analytes need to be isolated from the sample 

matrix. Several methods have been developed to this end and regarding 

SVOCs the following extraction and clean-up protocols are reported in 

literature: Soxhlet, sonication, pressurized liquid extraction (PLE), 

microwave-assisted extraction (MAE), microextraction techniques, solid-

phase extraction (SPE), among others (Ribeiro et al., 2014; Zuloaga et al., 
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2012). In general, all these methods are effective but time and solvent 

consuming, and requiring expensive equipment (Silva et al., 2015). 

Cheaper and more environmental-friendly alternatives must be sought 

(Gałuszka et al., 2012), such as QuEChERS methodology. 

QuEChERS is an acronym of quick, easy, cheap, effective, rugged and 

safe, a “green” user-friendly extraction and clean-up technique developed 

by Anastassiades and co-workers in 2003 (Anastassiades et al., 2003). 

QuEChERS are characterized by a high flexibility which allows the 

adaptation a wide number of applications, including the analysis of complex 

environmental matrices such as soil and vegetation (Bruzzoniti et al., 2014; 

Ribeiro et al., 2014; Socas-Rodríguez et al., 2017). The major advantages 

of QuEChERS are the good recoveries and reproducibility with a 

considerable less expensive operation than other sample preparation 

techniques (Rouvière et al., 2012). Moreover, this method is less time-

consuming and uses very low volumes of organic solvents when compared 

with other extraction procedures (Ben Salem et al., 2016; Bruzzoniti et al., 

2014). 

Thus, the objective of this study is to improve the analytical protocols 

for the multi-component extraction of SVOCs from soil and pine needle and 

developing alternatives in line with the “green analytical chemistry” (GAC) 

guidelines whenever possible. 

 

2. MATERIAL AND METHODS 

 

2.1. Reagents and materials 

 

Acetone (ACE), acetonitrile (ACN), dichloromethane (DCM) and n-

hexane (HEX), the solvents used for extraction and clean-up tests were 

supplied by VWR BDH Prolabo (Leuven, Belgium).  The QuEChERS were 

prepared in the lab using Falcon tubes from VWR and several sorbents: 

anhydrous magnesium sulphate (MgSO4), sodium acetate (NaCH3COO) 

and acetic acid (CH3COOH) were from Sigma-Aldrich and PSA-bonded 
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silica and C18 by Supelco (Bellefonte, PA, USA). Florisil (0.150 – 0.250 

mm) and alumina (neutral aluminium oxide 90, 0.063 – 0.200  mm) were 

acquired from Merck (Darmstadt, Germany). Florisil and alumina were used 

after baking overnight at 450 ºC in a Nabertherm N 120/65 HA furnace 

(Lilienthal, Germany).   

A PAHs mix solution (containing naphthalene (Naph), acenaphthylene 

(Acy), acenaphthene (Ace), fluorene (Fluo), phenanthrene (Phen), 

anthracene (Ant), fluoranthene (Flt), pyrene (Pyr), benzo(a)anthracene 

(BaA), chrysene (Chry), benzo(b)fluoranthene and benzo(k)fluoranthene 

(B(b+k)F), benzo(a)pyrene (BaP), indeno(1,2,3-c,d)pyrene (IcdP), 

dibenzo(a,h)anthracene (DahA), and benzo(g,h,i)perylene (BghiP) at 2000 

µg/mL in DCM/benzene 1:1), a PCB mix solution (congener numbers 28, 

138, 153, 209 as 10 µg/mL in isooctane), HCB  and individuals PBDE 

(congener numbers 28, 47, 85, 99, 100, 153, 154, 183) (as 50 µg/mL 

solution in isooctane), as well as musk xylene (100 µg/mL in acetonitrile) 

were obtained from Sigma-Aldrich (St. Louis, MI, USA). Dr. Ehrenstorfer 

(Augsburg, Germany) supplied another mix of PCBs (congener numbers 

77, 81, 105, 114, 156, 157, 167, 189 as 10 µg/mL in isooctane), musk 

ketone and musk ambrette, and a mix of deuterium labelled PAHs (d-PAHs) 

(naphthalene-d8, acenaphthene-d10, phenanthrene-d10, chrysene-d12 and 

perylene-d12, 10 µg/mL in hexane). Individual hexabromobenzene (HBB), 

pentabromotoluene (PBT) and pentabromoethylbenzene (PBEB) 

standards (50 µg/mL each in toluene) and a mix of 13C12 mass labelled PCB 

congeners (13C12-PCBs) (28L, 52L, 101L, 118L, 138L, 153L and 180L; 5 

µg/mL in nonane) were supplied by Wellington laboratories (Guelph, ON, 

Canada). LGC Standards provided neat standards of cashmeran, 

celestolide, traseolide, phantolide, tonalide, galaxolide as well as standard 

solutions (10 µg/mL in cyclohexane) of musk moskene. 

Helium with a purity of 99.9999 % (GC-MS carrier gas) and nitrogen 

with a purity of 99.995 % (for solvent reduction) were supplied by Liquide 

Air (Maia, Portugal). 

Given that one of the analysed compound classes (synthetic musks) 

are present in most of the personal care products, some restriction in the 
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use of this products had to be made for the laboratory personnel. Scented 

cosmetics such as perfume, lotions and hand creams were avoided. 

Additionally, procedural blanks were extracted and analysed in order to 

identify and correct eventual contamination. Apart from some PAHs, some 

PCBs and synthetic musks, namely galaxolide and cashmeran were 

detected. Consequently, the results were blank-corrected when necessary. 

Also, all non-calibrated glass material was baked at 400 ºC for at least 1 

hour before use in the analysis. 

 

2.2. Sample collection 

 

During all the method development, soil samples were collected from 

the Faculty of Engineering premises at the University of Porto, Porto 

(Portugal). After collection, the samples were transported in sealed plastic 

bags and sieved with a 1 mm sieve, removing small rocks and root traces. 

Pine needles were sampled in the same area, from Pinus pinea species. 

Needles were collected as a whole, cut directly from the branches of the 

trees, wrapped in aluminium foil, transported to the lab in sealed plastic 

bags. Both soils and pine needles were stored in the freezer at -20 ºC until 

analysis.  

The naturally contaminated samples (soils and pine needles) used for 

the validation of the method were collected from a residential site in Porto 

(the second largest city in Portugal with up to 1 million people in the 

metropolitan area and a background urban site near Aveiro, a 50,000 

inhabitants town. 

 

2.3. Sample extraction and clean-up 

 

The extraction and clean-up procedures were inspired by a multi-

compound method previously validated for the analysis of SVOCs (PAHs, 

PCBs, BFRs, HCB and SMs) in pine needles (Silva et al., 2015). The 

respective protocol involved ultrasound extraction (USE) followed by a 
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classic solid-phase extraction (SPE) coupled to gel permeation 

chromatography (GPC). However, both these extraction and clean-up 

methods are time and solvent-consuming. In order to comply with the 

principles of green analytical chemistry (GAC) (Gałuszka et al., 2012), the 

QuEChERS methodology was employed and an optimisation and validation 

of the multi-compound protocol performed for soil and pine needles. This 

technique comprises three basic steps (Ribeiro et al., 2014): a microscale 

extraction (in this case, ultrasound) using an organic solvent; addition of 

anhydrous salts or buffers to promote the separation of phases and allow 

the extraction of the analytes into the organic phase (QuEChERS 1); and 

finally a dispersive SPE using appropriate sorbents as a clean-up step to 

remove undesired components (QuEChERS 2). To achieve the goal, 

several tests were conducted throughout the procedure: extraction solvent, 

the composition of QuEChERS 1 and 2, and extract filtration and dryness. 

Taking into consideration the differences between the two matrices studied 

(soil and vegetation), these tests were not always the same for both of 

them. Table 1 sums up all the main tests performed in this work. 

First, 2.5 g of soil and pine needles were used, in order to reduce also 

the amount of sample with no loss of representativeness (Silva et al., 2015 

used 5 g whereas the commercial QuEChERS developed by 

Anastassiades et al., 2003 contemplated 10 g). The samples were 

transferred into 50mL Falcon tubes and spiked with the surrogate standards 

(d-PAHs at 30 ng/g and 13PCB12 at 12 ng/g) and, for the validation tests, 

with 150 μL of mix standards with the target PAHs and SMs at two different 

concentrations (15 and 45 ng/g) and 150 μL of mix standards with PCBs, 

BFRs and HCB at 6 and 18 ng/g. In the case of soils, after spiking, the 

Falcon tubes were shaken in a vortex for 3 min, to impregnate the soils with 

the standards.  

The first test involved the choice of the extraction solvent. As can be 

seen in Table 1, in  the case of soil samples, acetonitrile, acetone, and the 

mixtures hexane:dicloromethane (1:1), (1:2), hexane:acetone (1:1), (1:2) 

and acetone:dicloromethane (1:1) were selected, whereas for pine needles 

the choice was between acetonitrile, hexane, and the mixtures 

UNIVERSITAT ROVIRA I VIRGILI 
ENVIRONMENTAL LEVELS OF PAHs AND OTHER SVOCs IN A PETROCHEMICAL AREA. COMBINING MONITORING 
AND MODELLING TOOLS 
Noelia Domínguez Morueco 
 



CHAPTER 2 

 

- 106 - 

 

hexane:dicloromethane (1:1), (2:1) and hexane:acetone (1:2) and (2:1). To 

each Falcon tube 10 mL of solvent or mixtures of solvent was added 

(instead of the 100 mL of DCM:Hex (1:1) considered in multi-compound 

method by Silva et al., 2015) and the samples extracted in an ultrasound 

bath (J.P. Selecta, Barcelona, Spain) 10 min.   

After ultrasound extraction, the QuEChERS 1 was added to the Falcon 

tube. In this case, three different options were considered for both matrices 

(see Table 1): only 6 g of MgSO4, a drying agent; 6 g of MgSO4 and 1.5 g 

of NaCH3COO, salt to enhance ionic strength; and the latter with 100 µL of 

CH3COOH, for buffer purposes. The tubes were then shaken in a vortex for 

3 min in order to help the partitioning of the target compounds to the organic 

phase. Subsequently, the tubes were centrifuged in a Rotofix 32 A 

centrifuge from Hettich (Kirchlengern, Germany) for 10 min and the 

supernatant was transferred to the QuEChERS 2. In this one, several 

sorbents (PSA, C18, alumina and Florisil) were tested in different amounts, 

together with 0.9 g of MgSO4 (see Table 1 for details). The tubes were then 

shaken for 3 min in order to conduct the dispersive SPE step. Finally, the 

tubes were centrifuged (10 min) and the extract was transferred to in 15 mL 

amber tubes and blown down to dryness under a gentle stream of nitrogen. 

The extract was finally reconstituted in 150 µL of hexane in 1.5 mL amber 

vials with insert and analysed in the GC-MS. In the meantime, two more 

tests were performed for both soil and vegetation: filtration and dryness. In 

the first, extracts with no filtration, filtered with 0.2 µm and 0.45 µm filters 

were tried, to assess the cleanliness of the extracts and subsequent 

chromatographic resolution. In the second, complete dryness of the extract 

before reconstitution in hexane and GC-MS analysis was compared with 

non-dried extracts, to evaluate the possible loss of target analytes in the 

process.  
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Table 1. Scheme of the tests performed during the optimization of the analytical 

protocol. 

MATRIX TEST EXP VARIABLES 

Soils Solvent 

  
ACE 
(mL) 

ACN (mL) HEX (mL) 
DCM 
(mL) 

   

1 10 - - -   

2 - 10 - -   

3 5 - 5 -   

4 6.66 - 3.33 -   

5 - - 5 5   

6 - - 3.33 6.66   

7 5 - - 5   

Vegetation Solvent 

  
ACE 
(mL) 

ACN (mL) HEX (mL) 
DCM 
(mL) 

   

1 - - 10 - 

2 - 10 - - 

3 5 - 5 - 

4 3.33 - 6.66 - 

5 - - 5 5 

6 - - 6.66 3.33 

Soils and 
vegetation 

QuEChERS 
1  

  
MgSO4 

(g) 
NaCH3COO 

(g) 
CH3COOH 

(µL) 
    

1 6 1.5 -     

2 6 - -     

3 6 1.5 100     

QuEChERS 
2 

  
MgSO4 
(mg) 

PSA (mg) ALU (mg) 
FLO 
(mg) 

C18 
(mg) 

1 900 300 - - 150 

2 900 - 300 - 150 

3 900 - - 300 150 

4 900 - 150 150 - 

5 900 300 - - - 

6 900 150 - 150 300 

Filter 

1 No filter         

2  0.2 µm       

3  0.45 µm       

Dryness 
1 Dry       

2 Not dry         
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Procedural lab and sample blanks were performed each day of 

analysis. Overall, the amount of target compounds found were minimal, but 

whenever needed the results were blank-corrected. An internal standard 

correction was used for the quantification of the analytes, using the 

deuterated and carbon-marked compounds. 

 

2.4. GC-MS analysis 

 

The chromatographic analysis is similar to that described by Silva et al. 

(2015), using one equipment for PAHs and SMs and another for HCB, 

PCBs and BFRs. Two Varian (Palo Alto, CA, USA) ion trap GC-MS 

equipments, versions 4000 and 240, were used for PAHs and SMs, and for 

PCBs, BFRs and HCB, respectively. In both cases, a CP-1177 split/splitless 

injector and CP 8410 auto-sampler were used and the ionization mode was 

by electron impact (EI) with ionization energy of 70 eV and filament 

emission current of 50 mA. Two different capillary columns were used. For 

PAHs and SMs a Br5-MS (30 m x 0.25 mm, 0.25 µm film thickness) was 

used, whereas for PCBs, BFRs and HCB the separation was carried out 

with an Agilent J & W (Santa Clara, CA, USA) CP-Sil 8CB capillary column 

(50 m x 0.25 mm I.D., 0.2 µm film thickness). Helium at 1 mL/min was the 

carrier gas and the injection volume was 2 µL in splitless mode for both 

apparatus, as well as the temperatures for the manifold, transfer line and 

ion trap (50 °C, 250 °C and 250 °C, respectively). In the case of injector 

temperatures, these were different to potentiate the proper vaporisation of 

the target compounds in each case: 280 °C for PAHs and SMs and 300 °C 

for PCBs, BFRs and HCB. Also two distinct GC oven temperature programs 

were employed. For PAHs and SMs, temperature ramping started at 60 °C 

(held for 1 min), raised to 175 °C at 6 °C/min (held for 11.11 min) and then 

to 300 °C at 5.5 °C/min (held for 10 min) with a total runtime of 64 min. For 

PCBs, BFRs and HCB, temperature was programmed from 110 °C (held 

for 1.5 min) to 150 °C at 20 °C/min, to 220 °C at 5 °C/min (held for 17.5 

min) and finally to 300 °C at 5 °C/min (held for 9 min), with a total analysis 

time of 60 min. For both GC-MSs, the detection was made employing the 
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time-scheduled selected ion storage (SIS) mode.  Identification of target 

compounds was done by comparing retention times and mass spectra to 

those of standards and system control, data acquisition and processing was 

done by Varian MS workstation v. 6.9.3 software. Retention times and used 

target ions for both employed GC-MS methods were similar to Silva et al. 

(2015) and example chromatograms of standard solutions are presented in 

supporting information (Fig. S1 and S2, Annex 4). 

 

3. RESULTS AND DISCUSSION 

 

3.1. QuEChERS optimization  

 

Since its first introduction by Anastassiades et al. (2003), the 

QuEChERS method has undergone various modifications and 

enhancements to improve the recovery of target compounds from different 

matrices beyond its original scope of application (Rejczak and Tuzimski, 

2015). As mentioned previously, in this work, the effect of extraction 

solvents, drying and filtration of extracts and the composition of QuEChERS 

1 and 2 were evaluated for the extraction of SVOCs from soils and 

vegetation (pine needles). The “one-factor-at-a-time” approach where each 

experimental parameter is optimized separately and independently of 

others factors was followed. To reach the best options in each case, 

recovery assays were performed, using spikes of 15 ng/g for PAHs and 

SMs and of 6 ng/g for PCBs, BFRs and HCB. Each assay comprised a lab 

blank, a sample blank and two replicates of the spiked samples. 

 

Solvent tests 

 

The extraction solvent is one of the most important parameters to 

optimize in multiresidue analysis since it can ensure minimal co-extraction 

of matrix interferents (Bragança et al. 2012). Commercial QuEChERS 

commonly employ acetonitrile as extraction solvent (Sadowska-Rociek et 

al., 2013; Bruzzoniti et al., 2014). Consequently, this and other solvents and 
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mixtures of solvents referred by several international studies (Bragança et 

al., 2012; Rouvière et al., 2012; Sadowska-Rociek et al., 2013; Ben Salem 

et al., 2016; Berton et al., 2016) were also tested for soils and pine needles. 

Given the different nature of these matrices, the options suggested in 

literature and the expertise gathered by the authors led to some different 

choices of solvents to test for each one of them.   

Thus, and as seen in Table 1, for soils two pure solvents, acetone 

(ACE) and acetonitrile (ACN), and five mixtures, HEX/ACE (1:1), HEX/ACE 

(1:2), HEX/DCM (1:1), HEX/DCM (1.2) and ACE/DCM (1:1) were tested. 

As can be seen from the results, presented in Figure 1 (a), there are not so 

significant differences in the mean recoveries between the different 

solvents for the 5 families of compounds. However, the mixture ACE/DCM 

(1:1) showed the best mean recoveries (mean total recovery of 101% for 

PAHs; 95 % for SMs; 98% for PCBs; 109% for BFRs and 94 % for HCB) 

overall with lowest standard deviations. This was also the option that 

produced cleaner final extracts and clearer chromatograms. Regarding 

vegetation, two pure solvents, n-hexane (HEX) and acetonitrile, and four 

mixtures, HEX/ACE (1:1), HEX/ACE (1:2), HEX/DCM (1:1) and HEX/DCM 

(2:1) were tested. The results presented in Figure 1 (b) show that ACN 

yielded the best overall mean recoveries and lowest standard deviations. 

However, a slightly lower resolution of the chromatograms was seen. 

Acetonitrile is a kind of solvent with low volatility, large volume expansion 

during vaporization into the gas chromatograph, interference in specific 

thermoionic flame detectors and electrolytic conductivity, and present 

considerable toxicity (Prestes et al., 2009). Although proven to deliver high 

recoveries for a wide range of pesticides in fruits and vegetables 

(Anastassiades et al., 2003),  ACN may not be the most suitable solvent 

under the economic point of view or when other environmental pollutants 

or matrices are analyzed. Also, ACN is less volatile than other solvents, 

making the blow down steps more time and nitrogen consuming (Rejczak 

and Tuzimski, 2015). For these reasons, the mixture HEX/DCM (2:1) was 

selected as the most suitable for the extraction of SVOCs from vegetation 

(mean recoveries of 101% for PAHs; 102 % for SMs; 87% for PCBs; 67 % 
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for BFRs and 113 % for HCB). For the analysis of vegetation is needed a 

more apolar mixture of solvents (HEX/DCM (2:1)) than for the extraction of 

soils (ACE/DCM (1:1)), this is expectable taking into account that 

vegetation tissues are more lipophilic than soil components. 

 

 

Fig. 1. Comparison of the mean recoveries for different extraction solvents of spiked 

soils (a) and vegetation (b) using QuEChERS method (error bars only show the 

below levels for simplicity). 

 
QuEChERS 1 composition 

 

After the solvent extraction, anhydrous salts and/or buffers (e.g. 

anhydrous magnesium sulphate, sodium chloride, sodium acetate, acetic 
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acid) are added to the extract to ensure and enhance the separation 

between the aqueous and organic phases, with the target compounds 

nestling into the latter (Homem et al., 2013). In this work, magnesium 

sulphate (MgSO4) was always used, as drying agent to help the salting-out 

process, and the effect of sodium acetate (NaCH3COO) and acetic acid 

(CH3COOH) was evaluated. Sodium acetate is a salt used to increase the 

ionic strength and the aqueous phase polarity and to maintain sample pH 

(pH 5.0–5.5) (Ribeiro et al., 2014). Acetic acid allowed a greater stability 

and higher recoveries of alkaline-sensitive compounds (Lehotay et al., 

2005) and can also help to buffer the work extract. 

As seen in Table 1, for both soils and vegetation, three different 

compositions were tested: only 6 g of MgSO4; 6 g of MgSO4 with 1.5 g of 

NaCH3COO; and 6 g of MgSO4, 1.5 g of NaCH3COO with 100 µL of 

CH3COOH. For soils, the results presented in Figure 2 (a) show that the 

best performance overall was obtained in the presence of NaCH3COO and 

anhydrous MgSO4 (mean total recoveries of 151 % for PAHs; 98 % for SMs; 

93% for PCBs; 102 % BFRs and 78 % for HCB). In the presence of 

CH3COOH a sensible decrease in the percentage of recovery of BFRs is 

observed. When only anhydrous MgSO4 is present a higher standard 

deviation is perceived, together with dirtier extracts. The same trend in 

observed in Figure 2 (b) for vegetation, were the best performance was 

obtained with NaCH3COO and anhydrous MgSO4 (81 % for PAHs; 105 % 

for SMs; 74% for PCBs; 99 % for BFRs and 77 % for HCB). Lower 

recoveries of PCB’s are also found in the presence of CH3COOH is also 

observed. Buffer methods were firstly introduced to provide pH that would 

help on the extraction of pesticides, which are sensitive in both acidic and 

basic conditions and regardless of matrix. But for some matrices and other 

analytes this procedure may not be recommended due to the potential 

negative effect on the PSA sorption ability, particularly those with a high 

lipidic content (Socas-Rodríguez et al., 2017). This can be the case of soils 

and pine needles. For all these reasons, NaCH3COO and anhydrous 

MgSO4 were chosen as the most appropriate contents of QuEChERS 1. 
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Fig. 2. Comparison of the mean recoveries of different QuEChERS 1 contents for 

spiked soils (a) and vegetation (b) (error bars only show the below levels for 

simplicity). 

 

QuEChERS 2 composition 

 

With the target compounds concentrated in the organic phase, an 

effective clean-up is required to obtain the desired chromatographic 

resolution. This is obtained with QuEChERS 2, through a dispersive solid 

phase extraction (d-SPE) step, the selectivity of which is crucial to obtain 

satisfactory and accurate results. Different sorbents can be used to remove 

co-extractives, depending on the polarity of the chemicals in study and on 

UNIVERSITAT ROVIRA I VIRGILI 
ENVIRONMENTAL LEVELS OF PAHs AND OTHER SVOCs IN A PETROCHEMICAL AREA. COMBINING MONITORING 
AND MODELLING TOOLS 
Noelia Domínguez Morueco 
 



CHAPTER 2 

 

- 114 - 

 

the type of sample analysed (Rejczak and Tuzimski, 2015). In this work, the 

performance of primary secondary amine (PSA), Florisil (FLO), alumina 

(ALU) – these three allow the removal of various polar organic acids, polar 

pigments, some sugars and fatty acids from the preliminary extracts (Masiá 

et al., 2015; Rejczak and Tuzimski, 2015), avoiding the retention of the 

target apolar chmicals - and octadecyl-silica (C18), a more polar material, 

very suitable in the removal of fats and waxes from lipidic matrices 

(Bruzzoniti et al., 2014; Masiá et al., 2015) were evaluated. In total, six 

different combinations (see Table 1) were tested, all of them having 0.9 g 

of MgSO4 to remove any remaining water: 0.3 g of PSA and 0.15 g of C18; 

0.3 g of PSA; 0.3 g of Florisil and 0.15 g of C18; 0.3 g of alumina and 0.15 

g of C18; 0.15 g of alumina, 0.15 g of Florisil and 0.15 g of C18; and 0.15 g 

of alumina and 0.15 g of Florisil. 

Figure 3 presents the comparison of the recoveries of different 

QuEChERS 2 content for soils and vegetation. Although again the 

differences between all options were sometimes negligible, for soils, the 

best performance was obtained with 0.9 g of MgSO4, 0.15 g of PSA and 

0.15 g of C18 (mean total recoveries of 93 % for PAHs; 103 % for SMs; 119 

% for PCBs; 110 % BFRs and 101 % for HCB), which is the amounts and 

sorbents used in the commercial QuEChERS. In the clean-up step for 

vegetation, the best results were found for 0.9 g of MgSO4, 0.15 g of 

alumina, 0.15 g of Florisil and 0.15 g of C18 (mean total recoveries of 110 

% for PAHs; 101 % for SMs; 80 % for PCBs; 56 % for BFRs and 14 % for 

HCB). That is, PSA being replaced by a mix of alumina and Florisil. 

According to Lehotay et al. (2005) PSA, as anion exchanger, does not allow 

the removal of chlorophyll (non-ionic molecule) and although this substance 

does not interfere in the chromatographic analysis, it can build up in the 

injection port liner and increase the frequency of liner changes and column 

maintenance. PSA was also found to reduce the recoveries of compounds 

like pesticides in some cases (Socas-Rodríguez et al., 2017). Alumina and 

Florisil are sorbent known for their good performance with vegetation 

matrices, including pine needles (Ratola et al., 2006; Lavin and Hageman, 

2012), so the combination of both is likely to be more effective that PSA for 
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this matrix in particular. Also, with this scheme, the cleanness of extracts 

and the resolution of the chromatographic peaks were the best of all 

options. Thus, the mixture 0.9 g of MgSO4, 0.15 g of alumina, 0.15 g of 

Florisil and 0.15 g of C18 was chosen as the most suitable for vegetation. 

 

 

Fig. 3. Comparison of the mean recoveries of different QuEChERS 2 contents for 

spiked soils (a) and vegetation (b) (error bars only show the below levels for 

simplicity). 
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Filter and dryness tests 

 

It is well known that within the wide variety of environmental matrices, 

some of them are easier to handle than others, which could cause 

interferences in the extraction process and in the subsequent 

chromatographic analysis. Soils and vegetation are complex and 

heterogeneous matrices, and as result of that they can produce 

complicated extracts (Bragança et al., 2012; Sadowska-Rociek et al., 

2013). For example, in the case of vegetation, fats, waxes and resins can 

be dissolved in samples extracts, whereas in soils, numerous organic and 

inorganic compounds can cause problems. Therefore, the sample filtration 

before the GC analysis is an option that can be used to improve selectivity 

and extract cleanness, to protect the chromatographic system, and extend 

the GC column lifetime, but only if it does not compromise the overall 

recoveries of the target analytes. In this work, the recoveries using 

unfiltered extracts were compared with those after filtration with PTFE filters 

(0.2 and 0.45 µm). The results showed no appreciable retention of the 

target compounds and the internal standards in the filters, allied to an 

improvement of the chromatographic resolution for both filters in soils and 

vegetation extracts. In fact, after filtration the extracts obtained were 

considerably more transparent. PTFE 0.45 µm filters were chosen due to 

their generally better performance and easier operation. 

To improve the sensitivity of the method, the samples are commonly 

concentrated under a nitrogen stream. In our case, two possible scenarios 

were tested: sample dryness and subsequent reconstitution with 150 µL of 

HEX and the reduction of sample volume until 150 µL without dryness. The 

best recoveries were obtained in the latter case. When the samples were 

completely dried, an important loss of the most volatile compounds was 

observed. 
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3.2. Method validation 

 

After reaching the optimal solution, the method developed was 

validated for soils and pine needles, namely defining linearity ranges, 

coefficients of determination (R2), limits of detection (LODs), and precision 

and accuracies via repeatability and recovery assays. Tables 2 and 3 

present the complete results. In order to represent a broad scope of SVOCs 

occurrence in the environment, two spiking levels (corresponding to the low 

and high ranges of the calibration curve) were chosen. Since the presence 

of the five families of target chemicals in the environment is diverse and 

given that two GC-MS devices are used in the quantification, the linearity 

ranges were adapted to that fact.  For PAHs and SMs it was from 10 to 

1000 µg/L, with coefficients of determination ranging from 0.9967 to 0.9996, 

whereas for BFRs, PCBs and HCB linear behaviour was set from 4 to 400 

µg/L, with a R2 between 0.9912 and 0.9995. When dealing with pollutants 

at residual levels, low LODs are essential to take valid conclusion about 

their occurrence. This parameter was estimated based on the rule of signal-

to-noise (S/N) ratio of 3. LODs for 2–4 ring PAHs (Naph–Chry) ranged from 

4.4 to 62.1 pg/g and from 20.5 to 225 pg/g for the 5–6 ring PAHs (B(b+k)F, 

BaP, DahA BghiP and IcdP). In the case of SMs, LODs ranged from 10.5 

to 128.6 pg/g. Regarding PCBs and BFRs, LODs ranged from 1.1 to 9.5 

pg/g, and from 3.6 to 75.8 pg/g, respectively, and for HCB, LOD was 0.7 

pg/g.  

Regarding the precision and accuracy of the method, the repeatability 

and recovery assays were done in four replicates of soil and vegetation 

samples, spiked at two levels, as mentioned above. For the lower level, 15 

ng/g of PAHs and SMs and 6 ng/g of PCBs, BFRs and HCB were 

considered, whereas for the higher levels, 45 ng/g of PAHs and SMs and 

18 ng/g of PCBs, BFRs and HCB were assumed. As can be seen in Tables 

2 and 3, for all SVOCs, the overall recoveries were rarely below 50 % for 

both spiking levels and both matrices. In fact, for PAHs the mean recoveries 

were 106 ± 12 % for soils and 86 ± 17 % for vegetation samples. In the 

case of SMs, 96 ± 7 % for soils and 99 ± 17 % in vegetation. The mean 
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recoveries for PCBs ranged from 92 ± 15 % in soils and 85 ± 18 % in 

vegetation. Only PCB 209 shows low recoveries in the pine needles at both 

spiking levels, probably due to matrix effects or to a lower chromatographic 

response. BRFs mean recoveries were of 89 ± 15 % for soils and 87 ± 17 

% for vegetation; finally, for HCB 70 ± 8 % for soils and 62 ± 11 % for 

vegetation were obtained in the optimized protocols. In this sense, the good 

recoveries confirmed that the proposed method is also a perfectly fit multi-

residue approach to handle such a complicated matrix as vegetation and 

soils, and at several levels of occurrence of SVOCs. Regarding the 

repeatability (expressed as the RSD of four extractions), SVOCs showed 

values mostly below 20 % in all cases. The mean repeatability for PAHs 

was of 12 ± 7 % for soils and of 8 ± 5 % for vegetation, similar to those of 

SMs (4 ± 3 % for soils and 10 ± 9 % for vegetation. The mean repeatability 

for PCBs and BFRs were only slightly higher (8 ± 8 % in soils and 14 ± 9 % 

for vegetation versus 12 ± 9% for soils and 14 ± 9 % for vegetation, 

respectively; finally for HCB, values of 3 ± 0.3 % for soils and 8 ± 6 % for 

vegetation samples were obtained, confirming the very good results in 

general.  
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Table 2. Method validation parameters: linearity range, coefficient of determination (R2), limit of detection (LOD), recovery and repeatability for 

PAHs and SMs. 

  

Linearity 
(µg/L) 

R2 
LOD 

pg/g (fw) 

 Soils (n=4) Soils (n=4)  Vegetation (n=4) Vegetation (n=4) 

   Recovery (%) 
Repeatability 

(RSD %) 
 Recovery (%) 

Repeatability 
(RSD %) 

PAHs   15 ng/g 45 ng/g 15 ng/g 45 ng/g  15 ng/g 45 ng/g 15 ng/g 45 ng/g 

Naphthalene  10-1000 0.9991 62.1  109 93 8 3  89 62 4 3 

Acenaphthylene  10-1000 0.998 34.6  109 108 6 2  103 68 6 6 

Acenaphthene  10-1000 0.9986 36.0  109 110 5 2  100 86 5 24 

Fluorene  10-1000 0.9986 51.4  116 120 4 2  104 64 5 2 

Phenanthrene  10-1000 0.9992 4.4  95 101 20 9  92 113 5 6 

Anthracene  10-1000 0.9992 6.7  101 80 18 18  97 86 12 16 

Fluoranthene  10-1000 0.9988 26.9  110 107 19 25  92 109 5 4 

Pyrene  10-1000 0.9986 24.7  108 87 20 20  86 94 3 8 

Benz(a)anthracene  10-1000 0.9994 21.4  99 100 13 7  91 68 13 5 

Chrysene  10-1000 0.9993 25.0  108 107 18 11  114 97 7 5 

Benzo(b+k)fluoranthene  10-1000 0.9996 20.5  136 126 19 12  84 59 5 12 

Benzo(a)pyrene  10-1000 0.9996 66.7  96 93 20 10  80 55 9 9 

Indeno(1,2,3-c,d)pyrene  10-1000 0.9994 225.0  112 111 20 9  96 94 7 3 

Dibenzo(a,h)anthracene  10-1000 0.9994 138.5  124 120 11 3  91 66 8 6 

Benzo(g,h,i)perylene  10-1000 0.9987 128.6  93 103 22 10  92 59 15 11 
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Linearity 
(µg/L) 

R2 
LOD 

pg/g (fw) 

 Soils (n=4) Soils (n=4)  Vegetation (n=4) Vegetation (n=4) 

   Recovery (%) 
Repeatability 

(RSD %) 
 Recovery (%) 

Repeatability 
(RSD %) 

Musks   15 ng/g 45 ng/g 15 ng/g 45 ng/g  15 ng/g 45 ng/g 15 ng/g 45 ng/g 

Cashmeran  10-1000 0.9979 128.6  109 93 4 15  97 80 27 32 

Celestolide  10-1000 0.999 40.0  93 100 2 1  91 115 3 6 

Phantolide  10-1000 0.9991 10.5  92 96 2 1  76 103 10 6 

Musk ambrette  10-1000 0.9989 40.9  95 103 4 2  96 95 2 22 

Traseolide  10-1000 0.9988 69.2  84 92 2 1  81 151 4 5 

Musk xylene  10-1000 0.9967 120.0  85 90 6 5  86 94 19 6 

Galaxolide  10-1000 0.999 13.3  92 90 8 4  98 133 5 9 

Tonalide  10-1000 0.9992 40.0  103 111 5 2  110 106 4 5 

Musk moskene  10-1000 0.998 112.5  104 93 3 6  91 88 3 18 

Musk tibetene  10-1000 0.9989 45.0  99 89 6 4  94 102 20 4 

Musk ketone  10-1000 0.9991 78.3  91 95 6 5  93 97 5 4 
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Table 3. Method validation parameters: linearity range, coefficient of determination (R2), limit of detection (LOD), repeatability and recovery for 

PCBs, BFRs and HCB. 

  

Linearity 
(µg/L) 

R2 
LOD 

pg/g (fw) 

 Soils (n=4) Soils (n=4)  Vegetation (n=4) Vegetation (n=4) 

   Recovery (%) 
Repeatability 

 (RSD %) 
 Recovery (%) 

Repeatability  
(RSD %) 

PCBs   6 ng/g 18 ng/g 6 ng/g 18 ng/g  6 ng/g 18 ng/g 6 ng/g 18 ng/g 

PCB 28  4-400 0.9987 2.4  92 101 4 2  86 89 2 7 

PCB 52  4-400 0.9991 1.1  100 98 2 2  96 105 3 3 

PCB 77  4-400 0.9991 3.8  101 96 2 5  117 84 4 27 

PCB 81  4-400 0.998 4.3  92 83 3 4  102 97 15 27 

PCB 101  4-400 0.9985 7.5  105 96 3 4  97 90 5 17 

PCB 105  4-400 0.9986 7.9  68 95 10 12  87 84 19 7 

PCB 114  4-400 0.9993 7.3  97 70 15 1  79 88 17 14 

PCB 118  4-400 0.998 9.5  86 108 7 6  95 93 9 11 

PCB 123  4-400 0.9973 9.5  98 94 5 6  87 106 24 27 

PCB 126  4-400 0.9978 7.0  100 73 32 21  104 65 23 12 

PCB 138  4-400 0.9976 1.9  107 92 6 2  99 83 4 4 

PCB 153  4-400 0.9993 2.1  97 104 2 4  90 83 3 7 

PCB 156  4-400 0.9987 3.1  108 123 3 1  82 64 8 1 

PCB 157  4-400 0.9953 3.0  93 113 10 3  83 79 17 25 

PCB 167  4-400 0.9984 4.0  72 54 2 6  93 74 7 33 

PCB 169  4-400 0.9988 2.6  80 87 19 28  96 76 33 18 
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Linearity 
(µg/L) 

R2 
LOD 

pg/g (fw) 

 Soils (n=4) Soils (n=4)  Vegetation (n=4) Vegetation (n=4) 

   Recovery (%) 
Repeatability 

 (RSD %) 
 Recovery (%) 

Repeatability  
(RSD %) 

PCBs   6 ng/g 18 ng/g 6 ng/g 18 ng/g  6 ng/g 18 ng/g 6 ng/g 18 ng/g 

PCB 180  4-400 0.9977 2.4  111 83 15 8  81 101 17 26 

PCB 189  4-400 0.9991 2.7  66 69 8 23  96 46 16 12 

PCB 209  4-400 0.9982 2.5  114 83 14 13  37 26 18 16 

               

BFRs               

BDE 28  4-400 0.9986 3.6  85 96 5 4  80 83 5 7 

BDE 47  4-400 0.9986 6.2  96 99 15 1  97 80 12 22 

BDE 85  4-400 0.9995 75.8  86 90 29 25  87 134 27 8 

BDE 99  4-400 0.9978 24.0  82 75 8 8  77 102 14 18 

BDE 100  4-400 0.9986 22.2  68 93 21 9  78 52 5 9 

BDE 153  4-400 0.9988 12.1  72 86 14 17  100 91 8 7 

BDE 154  4-400 0.9993 7.3  88 88 14 33  113 88 12 15 

BDE 183  4-400 0.996 27.2  66 74 17 13  81 79 17 35 

HBB  4-400 0.9912 6.6  92 74 8 4  74 71 27 6 

PBEB  4-400 0.9991 9.9  114 117 8 6  97 68 5 28 

PBT  4-400 0.9953 8.1  119 99 12 2  103 81 7 13 

               

HCB  4-400 0.9985 0.7  64 76 3 3  70 55 3 12 
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As mentioned above, in the last years, some classic methods 

developed to extract and determine the concentrations of SVOCs, although 

very reliable, were sometimes time- and solvent-consuming. The 

QuEChERS protocol developed in this study aims to imitate those 

performances, with a much faster and clean procedure. Comparing the 

present results with those reported by Silva et al. (2015) for a multi-

component protocol consisting of USE followed by a classic SPE coupled 

to GPC, there is an agreement between the current indicators (PAHs in pine 

needles with recoveries of 55–114 % and LODs of 4.4–225 pg/g) and those 

of Silva et al. (2015) (40–121 % recoveries; LODs: 3.4–332.6 pg/g). 

Regarding SMs, slightly higher values of recoveries and LODs were 

obtained with the QuEChERS methodology for pine needles (recoveries: 

76–151 %; LODs: 10.5–128.6 pg/g) in comparison with the multi-

component protocol (recoveries: 48–111 %; LODs: 3.8–114.3 pg/g, 

respectively), but these differences are not enough to infer a generally 

distinct performance of the QuEChERS methodology. For PCBs again the 

range of recoveries achieved by QuEChERS for pine needles is was quite 

similar to the Silva et al. (2015) protocol (26–117 % versus 35–113 %, 

respectively). However, LODs were one order of magnitude higher (1.1 – 

9.5 pg/g versus 0.1 – 0.5 pg/g, respectively). Regarding BFRs, better 

recoveries were found by using QuEChERS methodology (71–113 %) 

comparing with the classic multi-component protocol (8–112 %). However, 

as in the case of PCBs, LODs values were one order of magnitude higher 

(3.6–75.8 pg/g versus 0.4 – 3.3 pg/g). This suggests that the clean-up in 

QuEChERS is not as effective as in a classic SPE column for PCBs and 

BFRs, which is possible, particularly in complicated matrices as in this case 

pine needles. For HCB, the recoveries were lower for QuEChERS and 

LODs were similar in both methods (QuEChERS: 55–70 %; LODs: 0.7 pg/g 

vs Silva et al. (2015): 79–85 %; LODs: 0.4 pg/g). Again, the clean-up of the 

SPE columns is likely to produce better results for a pesticide like HCB. 

When comparing the current LODs with other international studies, it 

can be seen that they are generally in line with the existing literature. Al-

Alam et al. (2017) obtained LODs for PAHs in Pinus nigra between 10–480 
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pg/g, using a combined method based on accelerated solvent extraction 

(ASE), followed by purification by solid-phase extraction (SPE) and with the 

analysis performed by GC-MS/MS and LC-MS/MS. Similar LODs were also 

reported by Gorshkov (2008) for PAHs in Pinus sylvestris by using USE 

followed by SPE silica gel cartridges and with the analysis performed by 

GC-MS. In addition, the present LODs for PAHs obtained with the 

QuEChERS methodology were lower than those found by Navarro-Ortega 

et al. (2012) (300–3500 pg/g) for in three species of pines (Pinus 

halepensis, Pinus pinea and Pinus nigra) by using pressurized liquid 

extraction system (ASE) followed by SPE alumina cartridges and with the 

analysis performed by GC-MS. In the case of SMs, there are still few 

international studies that analyse these compounds in environmental 

samples. Among these studies, Ribeiro et al. (2017) found comparable 

LODs for SMs in different coastline plant species using QuEChERS 

followed by GC-MS (LODs ranged from 20 to 370 pg/g, with the exception 

of musk ambrette which recorded a LOD value of 1320 pg/g). Regarding 

PCBs, similar LODs values for pine needles were recently found by Li et al. 

(2016) (1.9–8.6 pg/g) using ASE coupled with SPE clean-up and GC–

MS/MS; or by Al Dine et al. (2015) for PCBs and OCPs (3.5–21 pg /g) 

employed ASE cells followed by GC using electron capture detectors 

(ECD). In the case of BFRs, similar values that those present in this study 

were reported by Ratola et al. (2011b) in three species of pines (Pinus 

halepensis, Pinus pinea and Pinus nigra) (11–70 pg/g) using a SPE clean-

up with alumina and Florisil before GC-MS in negative chemical ionization. 

In the case of soils, only a few international studies have used the 

QuEChERS methodology in multi-component SVOCs analysis, but to our 

knowledge, only devoted to a single family of compounds. This is the case 

of Rouvière et al. (2012), to extract simultaneously 34 organochlorine 

pesticides in soils samples (analysis performed by GC-MS). Among these 

compounds, HCB was considered, obtaining a higher recovery (93.9%) 

than those reported in this study (64-76%; mean 70 %). Nevertheless, the 

LODs obtained at the present study are lower than those reported by these 

authors (0.7 pg/g versus 5.1 x 104 pg/g, respectively). Similar trends were 
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found by Correia-Sá et al. (2012), where the recoveries for HCB ranged 

from 68 to 82 % and the LOD was 2.4 x 104 pg/g; or by Fernandes et al. 

(2013), where the recoveries ranged from 70 to 80%, and with a LOD of 6.8 

x 103 pg/g. Recently, Cvetkovic et al. (2016) have improved the QuEChERS 

methodology coupled with GC-MS but only for the extraction of PAHs in soil 

samples. In this case, similar recoveries than those reported in the current 

study were registered (ranged between 81 and 110%), but, as for the HCB, 

Cvetkovic et al. (2016) obtained higher values for the LODs (ranged 

between 0.36 x 103 and 1.53 x 103 pg/g). Likewise, Homem et al. (2017) 

have improved the QuEChERS methodology coupled with GC-MS but only 

for the extraction of SMs in beach sands. In this case, similar recoveries 

were obtained (97% by Homem et al., 2017 and 96% at the present study). 

Nevertheless, the LODs obtained by Homem et al. (2017) were lower than 

those recorded at the present study (0.79-38 pg/g versus 10.5-128.6 pg/g, 

respectively). 

When comparing the current LODs for soils with other international 

studies using other extraction strategies, it can be seen that they are 

generally in line with the existing literature. For instance, Guo and Lee 

(2013) obtained LODs for PAHs between 30–250 pg/g, using a combined 

method based on microwave assisted extraction and solvent bar 

microextraction (MAE–SBME) before GC-MS analysis. As in the case of 

vegetation, there are still international limited number of studies that 

analyse the presence of SMs in soils. Despite this, the LODs actually 

obtained are into the range determined by Aguirre et al. (2014) for amended 

soils (10–1100 pg/g) using stir-bar sorptive extraction (SBSE) followed by 

thermal desorption–gas chromatography–mass spectrometry (TD–GC–

MS). Regarding PCBs and BFRs, similar LODs values were obtained by 

Zhu et al. (2014) (10–30 pg/g and 2–200 pg/g, respectively) using Soxhlet 

extraction followed by a classic SPE clean-up coupled to GC–MS. 
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3.3. Naturally contaminated samples 

 

The validation of an analytical methodology is not complete before 

testing it with field samples. In this case, soils and pine needles from Porto 

and Aveiro (Portugal) were collected and the concentrations of SVOCs 

found in each case are summarized in Table 4.  

∑PAHs levels in soils samples were of 498.3 ng/g for Porto and 171.8 

ng/g for Aveiro. The samples collected in Porto showed the highest values, 

probably due to the fact that this city is the second most densely populated 

in Portugal, with a strong commercial and industrial presence, including a 

petroleum refinery, thermo-electrical plants and a considerable number of 

important factories (Ratola et al., 2015). Aveiro, in turn, is a smaller city of 

about 50,000 inhabitants and less urban pressure. These results are in 

agreement with other international studies such as the one by Nadal et al. 

(2009) in Tarragona County, Spain, where urban areas similar to Porto 

recorded the highest value for PAHs in soils (446.2 ng/g) and coastal areas 

showed concentrations quite similar to Aveiro (160.1 ng/g). When PAHs 

were individually assessed, fluoranthene was the predominant hydrocarbon 

in both areas, with a contribution of 17 % and 27 % of the total 16 PAHs, 

respectively. Likewise, pyrene was the second most predominant 

hydrocarbon in the soils of these areas, with a contribution of 17 % and 21 

% of the total 16 PAHs, respectively. This pattern is also consistent with 

other studies in literature (Nadal et al., 2009; Nam et al., 2009). Regarding 

∑PAHs in pine needles, 124.8 ng/g and 121.8 ng/g were detected in Porto 

and Aveiro, respectively. In this case, the concentrations were quite similar 

between sampling areas and were significantly lower than those reported 

by Silva et al. (2015) (ranged from 245.8 to 967.8 ng/g). However, in our 

case Pinus pinea needles were analysed whereas Silva et al. (2015) 

sampled Pinus pinaster needles, It is known that the latter species has 

typically a higher uptake ability towards SVOCs in comparison with Pinus 

pinea, particularly for PAHs (Ratola et al., 2011a). Consequently, the 

differences between site types are also not so evident for Pinus pinea 

needles. When PAHs were individually assessed, pyrene was the 
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predominant hydrocarbon in Porto, followed by phenanthrene, with a 

contribution of 29 % and 25 % of the total, respectively. In turn, phenantrene 

was the predominant hydrocarbon in Aveiro with a total contribution of 46 

%, followed by fluoranthene with a total contribution of 15 %. In this case, 

the patterns observed in this study are quite similar to those described by 

Silva et al. (2015). 

Regarding ∑SMs, levels in soils were 20.1 ng/g for Porto and 5.8 ng/g 

for Aveiro. SMs are anthropogenic compounds mainly associated with 

cosmetics, personal care and household products, such as makeup, 

perfumes, deodorants, soaps, shampoos, etc., so it is not surprising that 

they can easily reach to the environment, particularly in areas of stronger 

human presence. This, it is not surprising that Porto registered again the 

highest value. Unlike other SVOCs, SMs have hardly been studied in 

environmental matrices. In some of those few studies, Aguirre et al. (2014) 

found similar values of SMs in amended soils (between 0.03 and 7.8 ng/g); 

as did Homem et al. (2017) in beach sand (range from 0.01 to 27 ng/g). 

Galaxolide was the predominant fragrance in Porto soils, followed by 

cashmeran, with a total contribution of 56 % and 32%, respectively. In the 

case of Aveiro soils, cashmeran was the predominant SM, followed by 

galaxolide, with a total contribution of 72 % and 18 %, respectively, but 

there is no apparent explanation for this shift in trend. International studies 

have also pointed out that galaxolide is one of the most commonly detected 

compounds, since it is one of the most used in these products (Ramírez et 

al., 2011; Homem et al., 2017; Ribeiro et al., 2017). Musks ambrette, 

moskene and tibetene were not detected in this study, nor were musks 

xylene and ketone. This could be associated to the fact that musks 

ambrette, moskene and tibetene are currently banned and musks xylene 

and ketone have a restricted use under the EU Directive 2012/21/ EU. 

Concerning ∑SM levels in pine needles, again similar values were recorded 

in Porto and Aveiro (16.8 and 16.4 ng/g, respectively). These levels were 

in agreement with the values reported by Silva et al. (2015) in Pinus 

pinaster needles (value for Porto: 20.7 ng/g). When the individual SM were 

assessed, it can be seen that galaxolide and cashmeran were again 
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predominant in both sampling points and musks ambrette, moskene, 

tibetene, xylene and ketone were also not detected.  

∑PCBs levels in soils confirmed the pattern: 22.6 ng/g for Porto and 8.3 

ng/g for Aveiro. In this case, the concentrations are in the same order of 

magnitude as those found by Schuster et al. (2011) in Norwegian soils 

(0.21–27.1 ng/g) or by Schuhmacher et al. (2004) in Spain (0.66–12.04 

ng/g). When the individual PCBs were analysed, it can be seen that PCB 

180 was one of the predominant PCBs in soils samples, with a contribution 

of 31 % and 55 % of the total PCBs in Porto and Aveiro, respectively. PCB 

180 was one of the congeners that were more extensively used in the 

commercial formulations and is one of the six indicators (PCBs 28, 52, 101, 

138, 153, 180) proposed as markers of PCB contamination by EU 

legislation (EU Commission Regulation, 1259/2011). And it is the least 

volatile of them, hence prone to be associated with particulate matter in the 

atmosphere and more rapidly deposit in soils. PCBs 105, 114, 126, 156, 

167 and 169 were not detected in soils samples, probability due to the fact 

that PCBs are banned in Europe since 1985 (Silva et al., 2015) and these 

congeners were not the most present in the technical mixtures. Concerning 

PCBs in pine needles, 9.5 ng/g were recorded in Porto and 2.0 ng/g in 

Aveiro, higher than those reported by Silva et al. (2015): from 0.35 to 1.01 

ng/g). Regarding individual PCBs, the congener number 101 was the 

predominant PCB in both areas, with a total contribution of 82 % and 61 % 

in Porto and Aveiro, respectively. This value is unexpected, as typically the 

most volatile congeners of the six PCB markers (PCBs 28 and 52) are those 

that prevail in vegetation (Barber et al., 2003; Nadal et al., 2009), a matrix 

more prone to trap airborne pollutants in the gas phase.   

In the case of BFRs in soils, levels were 3.0 ng/g in Porto and 1.0 ng/g 

in Aveiro soils, consistent with those reported recently by Liu et al. (2017) 

in China (0.01–3.33 ng/g). PBDE congeners 47, 99 and 100 were the 

predominant BFRs in soils from both sampling areas (ranging from 17 % to 

45 % of the total BFRs), and the observed pattern was consistent with the 

predominance of these congeners in the technical mixtures of PBDEs used 

before the international ban of these chemicals and other international 
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studies (Orta-García et al., 2016). Regarding BFRs in pine needles, the 

levels recorded for Porto (1.1 ng/g) and Aveiro (0.3 ng/g) were consistent 

with those reported by Silva et al. (2015) (0.45 – 0.87 ng/g). Concerning 

individual BFRs, PBDEs 47 and 99 were again predominant in both 

sampling areas, in line with the findings of Silva et al. (2015), which also 

reported that. On the other hand, PBDEs 85, 154, 183 and the new flame 

retardants HBB, PBEB and PBT were not detected in both soils and pine 

needles, also similarly to Silva et al. (2015), that only analysed the latter 

matrix.  

Finally, levels between 0.011 ng/g and 0.004 ng/g were detected for 

HCB in soils from Porto and Aveiro, respectively. When comparing with 

literature, Wang et al. (2007) found higher levels (0.02–1.25 ng/g). In pine 

needles, the levels recorded for Porto (0.173 ng/g) and Aveiro (0.078 ng/g) 

were also lower than those reported by Silva et al. (2015). This could be 

associated with the lower recoveries found for HCB in the QuEChERS 

protocol. 
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Table 4. Levels of PAHs, SMs, PCBs, BFRs, and HCB in naturally contaminated 

soil and pine needle samples collected from two sites (Porto and Aveiro). Results 

in ng/g dry weight (mean of duplicate analysis); nd: not detected. 

 Soils  Vegetation   Soils  Vegetation 
 Porto Aveiro  Porto Aveiro   Porto Aveiro  Porto Aveiro 

 
PAHs 

(ng/g) (ng/g)  (ng/g) (ng/g)   
PCBs 

(ng/g) (ng/g)  (ng/g) (ng/g) 

Naph 3.306 2.426  13.556 2.860  PCB 28 0.238 0.035  0.322 0.371 

Acy 2.871 1.088  3.264 2.108  PCB 52 0.018 0.002  0.084 0.042 

Ace 1.024 0.197  3.410 1.108  PCB 77 nd 0.021  nd nd 

Fluo 1.643 0.757  6.391 1.532  PCB 81 0.001 0.018  nd nd 

Phe 47.040 18.114  31.775 56.392  PCB 101 1.708 0.306  7.788 1.250 

Ant 3.090 1.573  6.062 3.391  PCB 105 nd nd  nd nd 

Flt 87.176 46.788  11.493 18.323  PCB 114 nd nd  nd nd 

Pyr 85.960 35.228  35.821 16.444  PCB 118 7.628 0.188  nd nd 

BaA 23.764 4.473  1.095 1.767  PCB 123 2.298 1.178  0.722 0.533 

Chry 54.560 17.788  7.208 15.380  PCB 126 nd nd  nd nd 

B(b+k)F 34.692 12.213  1.038 1.763  PCB 138 0.540 0.057  0.203 0.144 

BaP 45.840 9.333  1.700 0.258  PCB 153 0.599 0.330  0.302 0.046 

IcdP 6.336 13.384  0.924 nd  PCB 156 nd nd  nd nd 

DahA 64.480 1.601  0.814 0.159  PCB 157 1.459 1.058  nd nd 

BghiP 36.548 6.848  0.214 0.388  PCB 167 nd nd  nd nd 

∑ PAHs 498.3 171.8  124.8 121.9  PCB 169 nd nd  nd nd 

Musks       PCB 180 7.088 4.532  0.468 0.061 

Cashmeran 6.356 4.200  7.732 6.882  PCB 189 0.271 0.135  nd nd 

Celestolide 0.028 0.022  0.283 0.254  PCB 209 0.760 0.396  nd nd 

Phantolide 0.120 0.182  0.391 nd  ∑PCBs 22.6 8.3  9.5 2.0 

M. ambrette nd nd  nd nd  BFRs      

Traseolide nd 0.202  nd nd  BDE 28 0.152 0.135  0.073 nd 

M. xylene 2.426 nd  3.315 nd  BDE 47 0.989 0.174  0.333 0.117 

Galaxolide 11.168 1.048  3.568 9.304  BDE 85 nd nd  nd nd 

Tonalide nd 0.143  1.519 nd  BDE 99 0.851 0.457  0.653 0.099 

M. moskene nd nd  nd nd  BDE 100 0.574 0.259  0.005 0.033 

M. tibetene nd nd  nd nd  BDE 153 0.395 nd  nd nd 

M. ketone nd nd  nd nd  BDE 154 nd nd  nd nd 

∑Musks 20.1 5.8  16.8 16.4  BDE 183 nd nd  nd nd 

     
 

  HBB nd nd  nd nd 

HCB 0.011 0.004  0.173 0.078  PBEB nd nd  nd nd 

       PBT nd nd  nd nd 

       ∑BFRs 3.0 1.0  1.1 0.3 
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4. CONCLUSIONS 

 

A multi-compound protocol using QuEChERS and coupled with GC-MS 

quantification was optimized and validated for the simultaneously extraction 

of five different classes of SVOCs (PAHs, PCBs, BFRs, SMs and HCB) in 

soils and vegetation (pine needles) samples. After several tests involving 

the key parameters in QuEChERS-based protocols, two final configurations 

were obtained, depending on the matrix: 

 Soils: extraction solvent: ACE/DCM (1:1); composition of 

QuEChERS 1: NaCH3COO and anhydrous MgSO4; composition of 

QuEChERS 2: 0.9 g of MgSO4, 150 mg of PSA and 150 mg of C18; 

and filtration with PTFE filters of 0.2 µm and sample dryness before 

reconstitution in the GC-MS injection solvent. 

 Pine needles: extraction solvent: HEX/DCM (2:1); composition of 

QuEChERS 1: NaCH3COO and anhydrous MgSO4; composition of 

QuEChERS 2: 0.9 g of MgSO4, 0.15 g of alumina, 0.15 g of Florisil 

and 0.15 g of C18; and filtration with PTFE filters of 0.2 µm and 

sample dryness before reconstitution in the GC-MS injection 

solvent. 

  Successful linearity, selectivity, precision, accuracy, repeatability, and 

good recovery values (with RSDs below 20% in all cases) were obtained. 

The method LODs obtained were similar to those obtained by other 

worldwide standardized methods. Over all, the present results showed that 

the proposed method, can reduce costs (much less solvents and sorbents) 

and operation time, without compromising the performance of the method 

given by the validation parameters. It was also clear that throughout the 

optimization process, some of the options that were discarded in the end 

also produced very good results. This suggests that they could also be used 

after proper validation for other matrices or other operative conditions. 

Being able to reproduce multi-residue protocols based in classic extraction 

and clean-up strategies using alternatives that abode by the principles of 

green analytical chemistry should be an objective of analytical chemists, 
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also to allow many more scientists to perform these kind of studies where 

logistic and financial frameworks are not so favorable. 

Regarding real samples, pine needles tend to accumulate preferentially 

PAHs and PCBs of lower molecular weight that predominate in gas-phase. 

In turn, soils tend to accumulate pollutants present in the particulate-phase, 

with higher molecular weight and with greater stability or recalcitrance. 
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ABSTRACT 

 

Tarragona County, Spain, is home to the most important 

chemical/petrochemical industrial complex in Southern Europe, raising 

concerns about the presence and effects of the numerous environmental 

contaminants. In order to assess the levels and patterns of five classes of semi-

volatile organic compounds (SVOCs) (polycyclic aromatic hydrocarbons 

(PAHs), synthetic musks (SMs), polychlorinated biphenyls (PCBs), brominated 

flame retardants (BFRs) and one organochlorine pesticide, hexachlorobenzene 

(HCB)), 27 samples of soil and vegetation from different areas (petrochemical, 

chemical, urban/residential, and background) of Tarragona County were 

analysed. To achieve this goal, an innovative multi-component analytical 

procedure based on the “green” extraction technique QuEChERS (Quick, Easy, 

Cheap, Effective, Rugged and Safe) and GC-MS were used. The results show 

that PAHs levels in soils ranged from 45.12 to 158.00 ng/g and from 42.13 to 

80.08 ng/g in vegetation samples; and in general, the urban areas presented 

the higher levels, mainly associated with the presence of a nearby highway and 

several roads with heavy traffic. In the case of SMs, levels in soils and 

vegetation ranged from 5.42 to 10.04 ng/g and from 4.08 to 17.94 ng/g, 

respectively, and in both cases, background areas showed the highest levels, 

suggesting an influence of the personal care products derived from beach-

related tourism in the coast. Regarding PCBs, the chemical area, showed the 

highest values of PCBs in both matrices (from 6.62 to 14.07 ng/g in soils; from 

0.52 to 4.41 ng/g in vegetation) at the same sampling point, probably 

associated with the presence of two sub-electrical stations located in the 
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vicinities. In general terms, BFRs values recorded in soil and vegetation were 

quite similar between matrices and sampling areas, which may reflect their 

predominant association with indoor environments and also their banning for 

several years. Concerning HCB, similar values were found in both matrices and 

in all areas, reflecting its high volatility and strong proneness to long-range 

atmospheric transport (LRAT) that tends to even the levels close and more 

distant to the emission points. 

 

Keywords: Semi-volatile organic compounds (SVOCs) · Passive sampling · 

Soil · Vegetation · Tarragona, (Spain). 

 

1. INTRODUCTION 

 

It is well known that chemical and petrochemical industries can 

potentially release a considerable number of pollutants to the environment, 

such as semi-volatile organic compounds (SVOCs) (Nadal et al., 2011; 

Alghamdi et al., 2015). SVOCs include a wide variety of chemicals, 

characterized by their volatility, toxic effects in humans and wildlife, bio-

accumulative potential and environmental persistence (UNEP, 2008 a, b, 

c). These characteristics make SVOCs transboundary chemicals via long-

range atmospheric transport (LRAT), capable to reach remote and sensitive 

regions, far away from the emission sources (UNEP, 2008 a, b, c). In this 

study, five families of compounds are targeted: polycyclic aromatic 

hydrocarbons (PAHs), mainly associated with combustion processes 

(Domínguez-Morueco et al., 2017); polychlorinated biphenyls (PCBs), used 

in transformers, capacitors, paints (Erickson and Kaley, 2011); brominated 

flame retardants (BFRs), present in electrical appliances and furniture 

(McGrath et al., 2016); organochlorine pesticides (in this case 

hexachlorobenzene, HCB) applied predominantly in agriculture (Zhu et al., 

2014); and synthetic musks (SMs), contaminants of emerging concern 

widely incorporated in personal care and household products (Silva et al., 

2015). Some SVOCs such as PCBs, BFRs, and OCPs were already 

classified as “persistent organic pollutants (POPs)” by the Stockholm 
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Convention (www.pops.int), while others like PAHs are usually 

characterized as “potential POPs” (Cai et al., 2008; Silva et al., 2015). All 

these compounds are emitted by anthropogenic sources only (industrial 

activities, agriculture, vehicle transit, etc.), except for PAHs, which can also 

have natural origins (forest fires, volcanic eruptions, etc.). Although the use 

of some of them like PCBs and OCPs has been restricted or banned in 

most developed countries (UNEP, 2008a), they remain in the environment 

due to their persistence and past extensive use.  

The atmosphere is the main SVOCs recipient in the environment 

through direct emissions, although other pathways have been identified, for 

example, by spraying onto soils and vegetation (He and Balasubramanian, 

2010). Once applied or released into the atmosphere, SVOCs are 

transported and deposited (through dry or wet deposition) over different 

environmental matrices such as water, soil, biota, or even in ice-cores of 

remote areas (Herbert et al., 2004; Schuhmacher et al., 2004; Nam et al., 

2008; He and Balasubramanian, 2010; Nadal et al., 2011; Yogui et al., 

2011; Ratola et al., 2014; Liu et al., 2016). Experimental observations and 

modeling results (Diamond et al., 2001; Kawamena et al., 2007; Cai et al., 

2008; Bao et al., 2015; 2016; Domínguez-Morueco et al., 2016) 

demonstrate that, among all environmental matrices, soils are one of the 

main reservoirs of SVOCs, given their high affinity for hydrophobic organic 

pollutants. In this sense, soil sampling can provide current SVOCs levels, 

as well as long-term information on the so-called “legacy SVOCs”, already 

banned. This fact coupled with the natural re-volatilization processes 

associated with changes in seasons and climate conditions, make soils a 

secondary source of SVOCs (Ma et al., 2011; Komprda et al., 2013; Bao et 

al., 2016), reaching other environmental matrices such as water bodies and 

vegetation. However, plants can absorb SVOCs not only from soil via the 

roots, but mainly via deposition from the surrounding atmosphere (via aerial 

parts, especially leaves) (Barber et al., 2004; Yogui et al., 2011). Once 

captured, the rapid kinetic of exchange between vegetation and air causes 

that some SVOCs return to the atmosphere (Barber et al., 2003; 2004). This 

re-volatilization process is higher than in the case of soils, so vegetation 
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plays an important role as short-term source and sink of SVOCs (Bao et al., 

2016). 

The need to monitor SVOCs led to the development of a wide range of 

sampling devices. However, some of these have a high initial cost and also 

require electricity and maintenance, which is a disadvantage in many 

sampling areas, in particular more remote ones (Mari et al., 2008; Zhu et 

al., 2015; Domínguez-Morueco et al., 2017). Thus, passive sampling based 

on soils and vegetation can provide a first approximation of SVOCs 

concentrations in the environment, without maintenance and reaching 

remote or poorly accessible areas. Furthermore, the use of soil and 

vegetation could be an appropriate tool to assess short and long-term 

SVOCs levels. Likewise, it is also important to develop expedite analytical 

methods that allow the quantification of a large number of environmental 

pollutants in these complex matrices, while reducing the use of potentially 

harmful inputs like organic solvents (Domínguez-Morueco et al., 2016b). In 

order to comply with these guidelines, and following an initial methodology 

developed by Silva et al. (2015), a new protocol based in the “green” 

alternative QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) 

-a user-friendly extraction and clean-up technique developed by 

Anastassiades et al. (2003)-, and GC-MS quantification was validated for 

the simultaneous analysis of the 5 target classes of SVOCs (Carvalho et 

al., submitted to Anal. Bioanal. Chem.).   

The objective of this study is then to determine the SVOCs levels and 

patterns of PAHs, SMs, PCBs, BFRs, and HCB in soil and vegetation 

samples from different areas of Tarragona County, Spain, where the most 

important chemical/petrochemical industrial complex in Southern Europe is 

hosted. Moreover, source apportionment and human health risks derived 

from the exposure to those contaminants were also evaluated and here 

presented, in order to determine the effects of such a potential pollution “hot 

spot” area. 
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2. MATERIAL AND METHODS 

 

2.1. Sampling 

 

By the end of January 2016, a total of 27 soil samples and 27 vegetation 

samples were collected in different zones of Tarragona County, with the 

following distribution: 7 in a zone under the potential influence of 

petrochemical complex, which includes a big oil refinery; 9 in the vicinity of 

the chemical area and 6 in residential and urban zones of Tarragona 

County. These sampling sites were located less than 2 km from the 

considered pollution sources. In addition, 5 sampling points were selected 

in background areas, about 30 km away from the potentially primary 

sources of contamination. The geographic location of each sampling point 

is shown in Fig. 1. 

A total of 100 g approximately of soil were collected from the soil horizon 

A (0-5 cm depth) in each sampling point and kept in polyethylene bags. 

Subsequently, the soils were dried at room temperature and sieved through 

a 2-mm mesh screen (Nadal et al., 2004a, 2009, 2011). Likewise, a total of 

50 g of vegetation samples (Piptatherum L.) were obtained by cutting the 

plants 5 cm above ground, and dried at room temperature (Nadal et al., 

2009, 2011). All samples were properly stored until the analysis.  

 

2.2. Reagents and materials 

 

The reagents and materials used were similar to those described 

previously in article 1 chapter 2 (Carvalho et al., submitted to Anal. Bioanal. 

Chem.).   
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Fig. 1. Detailed map of the sampling points. 
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2.3. Sample extraction 

 

As mentioned previously, a multi-component extraction protocol using 

the “green” technology QuEChERS was optimized to extract the target 

SVOCs extraction from soil and vegetation samples (Carvalho et al., 

submitted to Anal. Bioanal. Chem.). This methodology was similar for both 

matrices, except for some details explained henceforth.  

A total of 2.5 g of soil and vegetation were transferred into 50mL Falcon 

tubes and spiked with the pertinent surrogate standards (100 μL composed 

by 5 μL of d-PAHs and 4 μL of mass-labelled PCBs). After spiking, the 

samples were shaken in a vortex for 3 min, to better impregnate the 

standards.  

For soils, 10 mL of acetone:DCM (1:1) were then added, whereas for 

vegetation 20 mL of the extraction solvent (Hex:DCM 2:1) were required in 

order to have all the sample submerged. Subsequently, all the samples 

were first extracted in a sonication bath (J.P. Selecta, Barcelona, Spain) for 

10 min.  

After ultrasound extraction, for both matrices, the content of the 

QuEChERS 1 (6 g of MgSO4 and 1.5 g of CH3COONa) was added to each 

Falcon tube and the content vortexed for 3 min. Then, the tubes were 

centrifuged in a Rotofix 32A centrifuge from Hettich (Kirchlengern, 

Germany) for 10 min and the supernatant collected and transferred to 

QuEChERS 2. The QuEChERS 2 composition for soil samples was 0.9 g 

of MgSO4, 0.3 g of primary secondary amine (PSA) and 0.15 g of C18 

sorbent for polar molecules. For vegetation samples the composition of 

QuEChERS 2 considered was 0.9 g of MgSO4, 0.15 g of alumina, 0.15 g 

Florisil and 0.15 g of C18. The tubes were shaken again during 3 min in 

order to conduct the dispersive solid-phase extraction (d-SPE). After that, 

the tubes were centrifuged (10 min) and the extract was collected and 

filtered with a conventional 0.2 µm size filter from Terumo Europe NV 

(Leuven, Belgium) in order to remove more unwanted compounds. The final 

sample extract was concentrated until dryness with nitrogen and 

subsequently re-dissolved with 100 µL of Hex before chromatographic 

UNIVERSITAT ROVIRA I VIRGILI 
ENVIRONMENTAL LEVELS OF PAHs AND OTHER SVOCs IN A PETROCHEMICAL AREA. COMBINING MONITORING 
AND MODELLING TOOLS 
Noelia Domínguez Morueco 
 



CHAPTER 2  

- 148 - 

 

analysis. 

 

2.4. GC-MS analysis 

 

The chromatographic analysis was similar to that described by Silva et 

al. (2015) and also described previously in Carvalho et al. (submitted to 

Anal. Bioanal. Chem.).  

 

2.5. Quality control and quality assurance (QA/QC) 

 

Given that SMs are present in most personal care products, some 

restrictions in the use of this products had to be enforced for the laboratory 

personnel. Scented cosmetics such as perfume, lotions and hand soap and 

creams were avoided. Additionally, procedural blanks were frequently done 

in order to identify and correct possible external contaminations. The blanks 

were extracted following the same protocol as the samples. In general, only 

some PAHs, some PCBs and SMs, namely galaxolide and cashmeran, 

were detected. Consequently, the results were blank-corrected when 

necessary. Also, all non-calibrated glass material was baked overnight at 

400 ºC before use in the analysis to eliminate possible remaining 

compounds. The recoveries for PAHs ranged in mean from 106 % ± 12 for 

soils and from 86 % ± 17 vegetation samples. In the case of SMs ranged in 

mean from 96% ± 7 for soils and 99 % ± 17 vegetation. The recoveries for 

PCBs ranged in mean from 92 % ± 15 in soils samples and from 85 % ± 18 

for vegetation. BRFs recoveries ranged in mean from 89 % ± 15 for soils 

and from 87 % ± 17 for vegetation samples; and in the case of HCB from 

70 % ± 8 for soils and from 62 % ± 11 for vegetation samples. Regarding 

LODs, a range from 4.4 to 62.1 pg/g was obtained for 2–4 ring PAHs 

(Naph–Chry) and between 20.5 and 225 pg/g for the 5–6 ring PAHs (BbF 

+ BkF, BaP, DahA BghiP and IcdP). LODs for SMs ranged from 10.5 to 

128.6 pg/g, for PCBs from 1.1 to 9.5 pg/g and for BFRs from 3.6 to 75.8 

pg/g. Finally, for HCB the LOD was 0.7 pg/g. 
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2.6. Data analysis 

 

Data analysis was carried out using the statistical software package 

XLSTAT version 18.02 from Addinsoft (New York, USA). Chemicals 

showing concentrations under the limit of detection (LOD) were assumed 

to have a concentration equal to one-half of that value (ND = ½ LOD). The 

level of significance was set at a probability lower than 0.05 (p < 0.05). To 

evaluate significant differences between groups, the Levene test was 

applied to verify the equality of variances. Subsequently, ANOVA or Mann 

Whitney tests were applied depending on the distribution of the data 

(normal or not, respectively). A principal component analysis (PCA) was 

performed for PAH profiles (contribution of each compound, or each group 

of rings, for the sum of the total), for SMs profile, BFRs profile and PCBs 

profile in soil and vegetation samples according to the different sampling 

areas. The sampling sites considered were petrochemical area (n=7), 

chemical area (n=9), urban area (n=6) and background area (n=5). 

 

3. RESULTS AND DISCUSSION 

 

3.1. Soil samples 

 

The mean total SVOCs levels from soils samples collected in different 

areas of Tarragona County are summarized in Table 1 and the individual 

values for each sampling point in Table S1 (Annex 5). With the exception 

of nitro musks (ambrette, xylene, moskene, tibetene and ketone), PCB 169 

and some brominated flame retardants (BDE 183 and HBB), all the target 

SVOCs were detected.  

The mean total of the 16 priority PAHs listed by the United States 

Environmental Protection Agency (US EPA, 1993) ranged from 45.12 to 

158.00 ng/g. Regarding the ∑7 PAHs classified at least as probable human 

carcinogens under the B2 group (benzo(a)anthracene, chrysene, 

benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, 
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indeno(1,2,3-c,d)pyrene, dibenzo(a,h)anthracene) (US EPA, 1993), levels 

ranged from 15.75 to 82.77 ng/g. The samples collected at the urban areas 

showed the highest mean values (157.00 and 82.77 ng/g for ∑16 PAHs and 

∑7 carcinogenic PAHs, respectively), followed by the chemical industry area 

(97.52 ng/g for ∑16 PAHs and 47.07 ng/g for ∑7 carcinogenic PAHs). In turn, 

the background areas as expected presented the lowest values of the total 

PAHs (45.12 ng/g), as well as of the 7 carcinogenic PAHs (16.62 ng/g). The 

levels in the urban area were between 3- and 4-folder higher than those 

found in the petrochemical and background areas, respectively. Although 

no statistically significant differences were found in the levels of the total 16 

PAHs, significant differences (p<0.05) were found in the total 7 probable 

carcinogenic PAHs between urban and petrochemical and background 

areas (82.77 ng/g vs 15.75 ng/g and 16.62 ng/g, respectively). This fact 

denotes a notable influence of urban sources on the surrounding 

environment. When PAHs were individually assessed, fluoranthene was 

the predominant compound in urban and chemical areas, with a 

contribution, in both zones, of 13% of the total 16 PAHs (Table 1). In 

addition, statistically significant differences between both areas and 

background areas were found for this compound (21.14 ng/g and 12.34 

ng/g, respectively, vs 3.61 ng/g: p<0.05) (Table 1). In the petrochemical 

area, pyrene was the main PAH, with a contribution of 28 % of the total 16 

PAHs. No statistically significant differences were found between areas. On 

the other hand, naphthalene prevailed in background areas, with a 

contribution of 34 % of the total 16 PAHs; and statistically significant 

differences between these areas and petrochemical and chemical areas 

were found for this compound (15.42 ng/g vs 2.14 ng/g and 2.94 ng/g, 

respectively: p<0.05). The higher volatility of this compound compared to 

other PAHs could favour its accumulation far from the emission points.  

Concerning the ring patterns, a clear difference between 

petrochemical/chemical/urban and background areas was observed, since 

PAHs with 4, 5 and 6 rings were the predominant in the former areas while 

2 and 4 rings PAHs prevailed in background areas (Fig. 2 A). Both facts are 

in agreement with the theory that the low molecular weight PAHs are 

UNIVERSITAT ROVIRA I VIRGILI 
ENVIRONMENTAL LEVELS OF PAHs AND OTHER SVOCs IN A PETROCHEMICAL AREA. COMBINING MONITORING 
AND MODELLING TOOLS 
Noelia Domínguez Morueco 
 



                                                                                                               CHAPTER 2 

 

- 151 - 

 

ubiquitous pollutants with a high long-range transport capacity, being the 

naphthalene identified as one of the typical PAH markers of background 

pattern (Nadal et al., 2009). Among the 16 priority PAHs, benzo(a)pyrene 

was identified by the International Agency for Research on Cancer (IARC) 

as one of the most dangerous. In this study, a significant increase of 

benzo(a)pyrene was found in the urban area comparing to the 

petrochemical and background areas (20.32 ng/g vs 3.65 ng/g and 4.10 

ng/g), and with the same contribution to the total 16 PAHs than fluoranthene 

(13%). However, the values recorded in the different sampling points did 

not exceed the maximum levels allowed for PAHs in soils by the Spanish 

legislation (Royal Decree 9/2005, setting a limit for industrial soils of 2000 

ng/g, for urban soils of 200 ng/g, and for soils with other uses of 20 ng/g) 

(BOE, 2005).   

As mentioned above, Tarragona County is potentially a high-impact 

region. For this reason, since 2002, a large multi-compartmental 

environmental monitoring program has been carried out, comprising the 

analysis of some organic pollutants in soil and vegetation samples (Nadal 

et al., 2004a, b, 2007, 2009, 2011; Schuhmacher et al., 2004). Among these 

pollutants, the 16 priority PAHs and, among them, the 7 carcinogenic PAHs 

were monitored. When comparing the mean total concentrations found in 

this study with those found in the previous surveys conducted in this area 

(112 – 1002 ng/g ∑16 priority PAHs and 37 – 397 ng/g ∑7 carcinogenic PAHs 

from Nadal et al., 2004a; 97.2 – 446.2 ng/g ∑16 priority PAHs and 28.2 – 

189.0 ng/g ∑7 carcinogenic PAHs from Nadal et al., 2009; 133.2 – 684.7 

ng/g ∑16 priority PAHs and 34.0 – 351.6 ng/g ∑7 carcinogenic PAHs from 

Nadal et al., 2011), it can be seen that the current values would be in the 

lowest part of the range. In general, a decreasing tendency in the PAHs 

concentrations is observed in Tarragona County since the beginning of the 

multi-compartmental environmental monitoring program in 2002. This fact 

could be explained by the reduction in the PAHs emissions observed 

between 1990 and 2010 in the majority of the European countries (Garrido 

et al., 2014), probably associated with changes in the legislation, enforcing 

the modernisation of industrials processes, fuels, etc.  Likewise, the present 

UNIVERSITAT ROVIRA I VIRGILI 
ENVIRONMENTAL LEVELS OF PAHs AND OTHER SVOCs IN A PETROCHEMICAL AREA. COMBINING MONITORING 
AND MODELLING TOOLS 
Noelia Domínguez Morueco 
 



CHAPTER 2  

- 152 - 

 

values are lower than the values of the total PAHs found by Zhu et al. (2007) 

in Zhejiang Province, China (85.2 – 676.2 ng/g), by Wang et al. (2012b) in 

south China (127 – 10,6000 ng/g) and well below the average defined by 

Nam et al. (2009) for the European soils (714 ng/g). In addition, ∑16 priority 

PAHs in Tarragona soils are within the range recorded in other international 

studies as conducted by Nam et al. (2008) in the UK and Norwegian soils 

(42 –11200 ng/g and 8.6 – 1050 ng/g, respectively); by Liu et al. (2016) in 

Eastern China (15.9 – 1,675.5 ng/g); or within the global range defined by 

Nam et al. (2009) (<1 - 7,840 ng/g in soils from Antarctic/Australia and 

mainland Europe, respectively). In turn, Chrysikou et al. (2008) recorded in 

soils from Northern Greece lower values than those presented in this study 

(11.2 – 28.1 ng/g). Regarding the spatial distribution, the present work is in 

agreement with the previous studies conducted in Tarragona County, since 

all have also identified the highest concentrations of PAHs in urban areas 

and fluoranthene as one of the predominant PAHs (Nadal et al., 2004a; 

2007; 2009; 2011). This could be associated with the presence of highway 

and several roads with heavy traffic in this area, since traffic has been 

demonstrated to be one of the most important emission sources of PAHs 

(Nadal et al., 2009). As in previous studies in Tarragona County, the fact 

that PAHs levels recorded in petrochemical soils were not, contrary to what 

was expected, the highest in the study was associated to the considerable 

height of the stacks and torches of the oil refinery. This coupled with its 

Northern location and the prevailing North-Northwest annual wind direction 

would facilitate the deposition of PAHs far from these sources (Nadal et al., 

2009). This is the case of naphthalene, which as in these studies, was also 

one of the predominant PAHs in Tarragona background areas (Nadal et al., 

2009).  

Regarding to the mean total PCBs, the levels found in soils from different 

Tarragona areas ranged from 6.62 to 14.07 ng/g (Table 1). The samples 

collected in the chemical area showed the highest mean values (14.07 

ng/g), followed by urban area (10.81 ng/g). As in the case of PAHs, the 

background sites presented the lowest values of the total PCBs (6.62 ng/g). 

The levels in the chemical area were 2 times higher than those found in the 
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petrochemical and background areas (14.07 ng/g vs 6.79 ng/g and 6.62 

ng/g, respectively), being these differences statistically significant (p<0.05). 

Individually, PCB 153 was the predominant congener in chemical and 

petrochemical areas, with a contribution of 46 % and 24 % of the total 

PCBs, respectively (Table 1). PCB 153 is a non-dioxin-like congener found 

in high concentrations in the environment (especially in soils), in human 

tissue and in other biological samples (Wania, 1999; Abass et al., 2013). 

On the other hand, PCB 138 was the predominant PCB in urban areas, with 

a contribution of 40% of the total PCBs. This congener (as well as PCB 153 

among others) is present in the common Aroclor formulations used 

frequently in the past and in the proposed lists of indicator PCB congeners 

(Ishikawa et al., 2007). For this compound, statistically significant 

differences between urban areas and petrochemical areas (4.28 ng/g vs 

0.83 ng/g); and between background areas and chemical areas were found 

(1.09 ng/g vs 3.86 ng/g) (Table 1). Relating to background areas, the 

contribution was very similar between congeners (PCB 138 contributed with 

16 % of the total PCBs; and PCB 101, 123, 126 and 180 with 15 %, of the 

total PCBs each one). In this case, statistically significant differences 

between urban/background areas and petrochemical/chemical areas were 

found only for PCB 123, whereas for PCB 138 the significant differences 

were mainly found between chemical and petrochemical areas and for PCB 

180 between chemical and petrochemical/urban areas (Table 1). As in the 

case of PAHs, a molecular weight pattern was observed for tri, tetra, penta, 

hexa, hepta and octa CBs between sampling areas, since octa and hepta 

CBs were the predominant congeners in petrochemical, chemical and 

urban areas while penta and hexa CBs prevalence was seen in background 

areas (Fig. 2 B).  

In the multi-compartmental environmental monitoring program 

conducted since 2002 in Tarragona County, some PCB congeners were 

also included, namely 28, 52, 101, 118, 138, 153 and 180. When comparing 

the current concentrations of these specific congeners (mean total of 5.27 

ng/g, 12.21 ng/g, 7.64 ng/g and 3.50 ng/g in petrochemical, chemical urban 

and background areas, respectively) with those found in the Tarragona 
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monitoring program (0.77 – 4.67 ng/g from Nadal et al., 2007; 0.58 – 5.09 

ng/g from Nadal et al., 2009; 0.46 – 5.92 ng/g from Nadal et al., 2011; and 

0.66 – 12.04 ng/g from Schuhmacher et al., 2004), it can be seen that the 

present values are moderately higher. In addition, the values of PCBs found 

in Tarragona soils were higher than the values recorded by Grimalt et al. 

(2004) (0.41 – 1.5 ng/g); by Wang et al. (2012) (0.6 – 1.44 ng/g) or by 

Cabrerizo et al. (2012) (0.005−0.14 ng/g) in soils from remote areas 

(European high altitude mountain and Antarctica region). Similar levels 

were reported by other international studies, such as the study conducted 

by Bogdal et al. (2017) in Swiss soils (0.5 – 10 ng/g); by Chrysikou et al. 

(2008) in Northern Greece (4.02 – 11.2 ng/g); by Roots et al. (2010) in 

Estonian soils (<LOD – 12 ng/g) or by Zhu et al. (2014) (1.46 – 19.2 ng/g) 

in soils from the industrialized area of Shouguang, China. Furthermore, 

PCBs in Tarragona soils were within the range recorded by Schuster et al. 

(2011) in Norwegian soils (0.21 – 27.1 ng/g); by Pérez-Vazquez et al. 

(2015) (0.30 ng/g – 80.5 ng/g) and Orta-García et al. (2016) (4.0 – 65.5 

ng/g) in Mexico, or by Sun et al. (2016) in soils from Kenya (nd – 55.49 

ng/g). Contrastingly, other authors such as Zhang et al. (2007) (70 ng/g – 

990 ng/g) (Hong Kong, China), Ren et al. (2007) (140 ng/g – 184 ng/g) 

(across China) or Alawi and Azeez (2017) (38 – 980 ng/g) (Waset region, 

Iraq) have found relatively higher amounts of PCBs in soil samples than 

those presented in this study. On the other hand, the highest values of 

PCBs recorded in the chemical area and the great contribution of PCB 153 

were also consistent with previous studies conducted in Tarragona County 

(Nadal et al., 2007; 2009; 2011; Schumacher et al., 2004). The chemical 

area was mainly influenced by the sampling point 11 (La Laboral), which 

recorded the maximum values of the total PCBs in soils (35.34 ng/g) and 

the maximum for the PCB 153 (22.90 ng/g) of this study (Table SI 1). PCBs 

were compounds widely used in the electrical industry between the 1950s-

1980s in capacitors and transformers, besides being used in other 

industries as plasticizers in paints and joint sealants (Loizeau et al., 2014; 

Silva et al., 2015; Bogdal et al., 2017). Although banned in Europe in 1985, 

PCBs can still be found in the environment due to its presence in old 
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equipment and facilities. Thus, the presence of high concentrations of 

PCBs in sampling point 11 could be associated with the presence of two 

sub-electrical stations located in the vicinity. Moreover, other studies state 

that, among all PCBs, congeners 153, 138 and 180 are the most resistant 

to degradation in soils (Wong et al., 2009), which would be associated with 

its dominant presence in other areas such as urban or background as well.  

The levels of synthetic musks (SMs), brominated flame retardants 

(BFRs) and HCB were analyzed for the first time in soils samples from 

Tarragona County (Table 1).  

SMs are mainly used as fragrance additives and fixative elements in 

personal care and household products (Ramírez et al., 2011; Silva et al., 

2015; Ribeiro et al., 2017) and are chemicals of emerging concern due to 

their lipophilic character, and bioaccumulative and partially biodegradable 

potential (Ramírez et al., 2011; Silva et al., 2015; Homem et al., 2015, 2016; 

Ribeiro et al., 2017), associated with their extensive use worldwide. BFRs 

are also employed worldwide to avoid and/or delay combustion processes 

in electrical appliances and furniture (Silva et al., 2015), and as in the case 

of SMs, are lipophilic and have bioaccumulation potential in wildlife and 

humans (Covaci et al., 2007). Some of them (PBDEs, for instance) are 

already banned in Europe and other parts of the world, following the 

Stockholm Convention regulation on POPs. Due to their range of 

applications, SMs and BFRs are compounds strongly associated with 

indoor environments, and although BFRs have already been monitored in 

outdoor environments (Zheng et al., 2015; McGrath et al., 2016) only a few 

international studies (Ribeiro et al., 2017) measured SMs environmental 

presence. However, the present study show that some of these compounds 

were detected in Tarragona soil samples. SMs levels in soils ranged from 

5.42 to 10.04 ng/g, and without statistically significant differences between 

sampling areas. In this case, the concentrations found in background areas 

were 2 times higher than those found in the petrochemical and urban areas. 

Recently, Ribeiro et al. (2017) confirmed the presence of SMs and UV-

filters associated with personal care products near coastal areas. These 

compounds could be introduced into the environment through 
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anthropogenic activities such as swimming in the sea or sunbathing, 

leading to a massive transfer of pollutants from human skin to sea water, 

sand or air. In this case, the background areas selected in this study are in 

coastal zones with a significant influence of tourism, so the observed levels 

of SMs could be related to the use of personal care products such as 

sunscreen in the area. When comparing the current concentrations of SMs 

with those found in other international studies, it can be seen that the 

present values are quite similar at those reported by Aguirre et al (2014) in 

amended soils (0.03 – 7.8 ng/g); by Homen et al. (2017) in beach sands 

(0.01 – 27 ng/g) or in the chapter 3 of this thesis for real samples of soils 

(5.8 – 20.1 ng/g). Regarding individual SMs, galaxolide was one of the 

predominant musks in all sampling areas (with a contribution between 43 

% and 67 % of the total) followed by cashmeran (between 23 % and 44 %, 

Fig. 2 C). In both cases, no statistically significant differences were found 

between sampling areas. This pattern is in agreement with other 

international studies, which corroborate that both galaxolide and 

cashmeran are the most used musks in personal care and household 

products (Ramírez et al., 2011; Carvalho et al., submitted to Anal. Bioanal. 

Chem.). Nitro musks ambrette, xylene, moskene, tibetene and ketones, 

were not detected in this study, probably reflecting the fact that some of 

them were already banned or restricted in some countries and replaced by 

polycyclic musks (Homem et al., 2015, 2016). 

Among the different BFRs, polybrominated diphenylethers (PBDEs) 

were the most commonly used in the past in commercial mixtures. Due to 

their toxicity and persistence, nowadays, the use of some of these PBDEs 

(penta-BDE and octa-BDE) are banned and replaced by “novel” BFRs 

(NBFRs) (Zheng et al., 2015; Li et al., 2016; McGrath et al., 2017), such as 

pentabromotoluene (PBT), pentabromoethylbenzene (PBEB) or 

hexabromobenzene (HBB). With the exception of BDE 183 and HBB, all 

the BFRs were detected in Tarragona soils. BFRs levels in soils ranged 

from 0.25 to 1.43 ng/g, and levels in the chemical and urban areas were 

between 4- and 6-folder higher than those found in the petrochemical and 

background areas, respectively. Consequently, statistically significant 
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differences were found between chemical/urban area and 

petrochemical/background areas (1.36 and 1.28 ng/g vs 0.26 and 0.16 

ng/g, respectively). Concerning individual BFRs, BDE 47 was overall the 

predominant congener in all the sampling areas, with a contribution 

between 10 % and 54 % of the total BFRs (Fig. 2 D). In this case, 

statistically significant differences were found between the different 

sampling areas (Table 1). BDE 99 and BDE 153 were the second and third 

most prevailing compounds in all the sampling areas (ranged 13 – 49 % 

and 12 – 26 %, respectively), and statistically significant differences were 

also found between urban and petrochemical/background areas, and 

between urban and background areas, respectively. Likewise, the overall 

contribution of the NBFRs to the total levels was minimal (less than 6%). 

This fact could be associated with the fact that only three of the novel BFRs 

are analysed and that other types of flame retardants are being used to 

replace PBDEs. The PBDEs ranges are in line with similar international 

studies like those of Zheng et al. (2015) (0.003 – 6.3 ng/g) and Liu et al. 

(2017) (0.007 – 3.33 ng/g) in China. Likewise, Tarragona soils were within 

the PBDEs range recorded by Hassanin et al. (2004) in UK and Norwegian 

soils (0.65 – 12.0 ng/g); by Pérez-Vázquez et al. (2015), in San Luis Potosi, 

Mexico (0.7 – 11.6 ng/g); or by Sun et al. (2016) in Kenya (0.19 – 35.65 

ng/g). In turn, other studies reported higher values of PBDEs than the 

values presented in this study (Zhu et al., 2014, 18.8 – 5179 ng/g in China; 

Li et al., 2016, 18 – 26,000 ng/g and 4.6 – 34,000 ng/g in manufacturing 

area in China; McGrath et al., 2016, nd – 70.5 ng/g in Melbourne soils, 

Australia; Orta-García et al., 2016, 1.8 – 127 ng/g in a metropolitan area of 

Monterey, Mexico). Regarding to individual PBDEs contribution, the 

present pattern is in agreement with other authors (McGrath et al., 2016; 

Orta-García et al., 2016), who state that congeners 47> 99> 153 have the 

most incidence in soil samples. 

With respect to HCB, the values in Tarragona soils ranged from 0.02 

ng/g to 0.04 ng/g, being similar between sampling areas and without 

statistically significant differences. Although, HCB is a pesticide whose 

production has already been banned for decades in most countries, it is 
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frequently remain in detectable amounts in the environment due its 

historical use (Zhu et al., 2014). Also HCB is formed as a by-product during 

the manufacturing of other chemicals (manly solvents and pesticides) 

(Bailey, 2001). In this case, the concentrations recorded in Tarragona 

County were considerably below those found in numerous international 

studies (Grimalt et al., 2004, 0.15 – 0.91 ng/g in soils from European high 

altitude mountain; Roots et al., 2010, nd – 0.5 ng/g in Estonian soils; and 

Wang et al., 2007, 0.0156 – 1.25 ng/g; Fang et al., 2017, 20 – 4850 ng/g 

and Wang et al., 2017, nd – 4.5 ng/g all of them in soils from China region), 

which confirms that it is not currently used. Also, being more volatile than 

most of the other target SVOCs, it is less likely that they deposit in soils in 

high amounts. 
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Table 1. Concentrations of SVOCs in soils samples from four areas of Tarragona County (Catalonia, Spain) (ng/g). 

 

 Petrochemical area (n = 7) Chemical area (n = 9) Urban area (n = 6) Background area (n = 5) 

 Mean± SD CV (%) Mean± SD CV (%) Mean± SD CV (%) Mean± SD CV (%) 

Naphthalene 2.14b ± 1.29 60.16 2.94b ± 3.46 117.87 7.15ab ± 8.62 120.52 15.42a ± 13.29 86.18 

Acenaphthylene 0.83 ± 0.62 74.95 3.32 ± 8.60 259.01 1.04 ± 0.96 92.35 0.23 ± 0.16 71.84 

Acenaphthene 2.19ab ± 4.25 193.49 0.78a ± 0.57 73.37 0.56ab ± 0.39 69.92 0.24b ± 0.26 111.56 

Fluorene 3.53 ab ± 8.42 238.63 1.22 a ± 1.60 130.67 0.82 ab ± 0.62 75.35 0.22 b ± 0.25 114.48 

Phenanthrene 2.71 ± 1.90 70.41 7.16 ± 7.99 111.51 7.03 ± 8.10 115.15 1.99 ± 0.61 30.85 

Anthracene 0.20ab ± 0.07 35.84 0.73a ± 0.82 112.36 0.41ab ± 0.85 205.27 0.12b ± 0.26 217.29 

Fluoranthene 3.07bc ± 1.08 35.13 12.34ab ± 11.65 94.40 21.14a ± 18.50 87.50 3.61c ± 5.12 141.66 

Pyrene 13.77 ± 28.31 205.55 12.20 ± 10.47 85.82 19.15 ± 14.69 76.71 3.45 ± 4.24 122.82 

Benzo(a)anthracene 1.89b ± 1.15 60.75 7.50ab ± 7.35 97.95 10.83a ± 11.99 110.70 1.87b ± 2.65 141.28 

Chrysene 3.74b ± 1.82 48.63 10.46ab ± 9.50 90.82 16.18a ± 12.34 76.21 4.29b ± 4.75 110.77 

Benzo(b+k)fluoranthene 4.62b ± 2.41 52.11 10.16ab ± 9.00 88.58 20.16a ± 9.66 47.91 4.58b ± 5.00 109.12 

Benzo(a)pyrene 3.65b ± 1.44 39.60 10.71ab ± 10.23 95.57 20.32a ± 12.41 61.07 4.10b ± 5.76 140.61 

Indeno(1,2,3-c,d)pyrene 1.49bc ± 0.75 50.82 6.35ab ± 6.70 105.54 12.36a ± 7.33 59.35 1.22c ± 2.09 171.42 

Dibenzo(a,h)anthracene 0.36b ± 0.27 73.75 1.89ac ± 1.86 98.09 2.92a ± 1.78 60.95 0.56bc ± 0.71 125.75 

Benzo(g,h,i)perylene 5.46b ± 5.05 92.49 9.76ab ± 8.37 85.77 17.92a ± 8.97 50.07 3.23b ± 3.41 105.70 

Ʃ16PAHs 49.64 ± 50.38 101.49 97.52 ± 87.91 90.14 158.00 ± 100.29 63.47 45.12 ± 45.72 101.35 

Ʃ 7 prob. carcinogenic 
PAHs* 15.75b ± 6.52 41.41 47.07ab ± 44.31 94.13 82.77a ± 53.83 65.04 16.62b ± 20.54 123.57 
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 Petrochemical area (n = 7) Chemical area (n = 9) Urban area (n = 6) Background area (n = 5) 

 Mean± SD CV (%) Mean± SD CV (%) Mean± SD CV (%) Mean± SD CV (%) 

Cashmeran 1.99 ± 2.17 109.07 1.79 ± 2.52 140.77 2.09 ± 1.47 70.45 4.39 ± 2.35 53.56 

Celestolide 0.18 ± 0.38 205.29 0.03 ± 0.02 58.39 0.02 ± 0.01 31.82 <LOD  - 

Phantolide 0.22 ± 0.46 206.19 0.10 ± 0.11 105.37 0.05 ± 0.11 207.60 0.01 ± 0.02 120.32 

Galaxolide 2.53 ± 1.82 71.94 5.24 ± 3.95 75.47 2.87 ± 1.87 65.02 5.26 ± 4.45 84.69 

Traseolide 0.07 ± 0.08 125.27 0.05 ± 0.06 106.64 <LOD  - <LOD  - 

Tonalide 0.77 ± 1.23 159.42 0.33 ± 0.16 48.37 0.21 ± 0.20 98.69 0.18 ± 0.08 45.43 

Musk ambrette <LOD  - <LOD  - <LOD  - <LOD  - 

Musk xylene <LOD  - <LOD  - <LOD  - <LOD  - 

Musk moskene <LOD  - <LOD  - <LOD  - <LOD  - 

Musk tibetene <LOD  - <LOD  - <LOD  - <LOD  - 

Musk ketone <LOD  - 0.18 ± 0.42 234.63 <LOD  - <LOD  - 

Ʃmusks 5.91 ± 3.49 59.15 7.83 ± 4.88 62.38 5.42 ± 2.62 48.28 10.04 ± 5.61 55.95 

             

PCB 28 0.10 ± 0.12 119.81 0.04 ± 0.02 60.90 0.11 ± 0.07 65.37 0.03 ± 0.01 26.77 

PCB 52 0.06 ± 0.07 119.62 0.05 ± 0.04 78.32 0.10 ± 0.13 133.58 0.02 ± 0.01 24.12 

PCB 77 0.17 ± 0.32 192.83 0.18 ± 0.33 187.85 0.35 ± 0.44 125.45 <LOD  - 

PCB 81 0.10 ± 0.17 173.66 0.03 ± 0.04 135.69 0.17 ± 0.26 153.25 0.02 ± 0.05 202.46 

PCB 101 1.21 ± 1.20 98.98 0.24 ± 0.50 213.03 0.97 ± 1.05 107.69 1.02 ± 1.0 97.60 

PCB 105 0.02 ± 0.03 201.74 <LOD  - <LOD  - <LOD  - 

PCB 114 0.01c ± 0.005 88.34 0.01c ± 0.01 101.59 0.04b ± 0.02 54.08 0.17a ± 0.07 42.52 
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 Petrochemical area (n = 7) Chemical area (n = 9) Urban area (n = 6) Background area (n = 5) 

 Mean± SD CV (%) Mean± SD CV (%) Mean± SD CV (%) Mean± SD CV (%) 

PCB 118 1.17a ± 1.01 87.03 0.02b ± 0.05 236.65 <LODb  - <LODb  - 

PCB 123 <LODb  - 0.19b ± 0.37 191.89 1.07a ± 0.19 17.36 0.96a ± 0.41 42.40 

PCB 126 <LOD  - 0.33 ± 0.65 197.67 0.71 ± 0.72 101.86 1.01 ± 0.68 67.46 

PCB 138 0.83b ± 0.84 101.11 3.86a ± 3.55 91.79 4.28ac ± 4.05 94.65 1.09bc ± 1.00 92.52 

PCB 153 1.61 ± 1.78 110.50 6.53 ± 7.65 117.27 0.76 ± 0.70 93.04 0.34 ± 0.11 32.36 

PCB 156 <LOD  - 0.17 ± 0.34 196.68 0.40 ± 0.27 65.75 0.35 ± 0.25 72.30 

PCB 157 0.01 ± 0.003 84.69 0.02 ± 0.03 185.93 0.04 ± 0.08 184.57 0.11 ± 0.16 137.15 

PCB 167 0.01 ± 0.01 168.68 0.05 ± 0.10 192.20 0.05 ± 0.08 158.08 <LOD  - 

PCB 169 <LOD  - <LOD  - <LOD  - <LOD  - 

PCB 180 0.29b ± 0.15 50.93 1.47a ± 0.65 43.94 1.42b ± 0.34 24.18 1.00ab ± 0.60 60.66 

PCB 189 0.22 ± 0.23 107.13 0.11 ± 0.16 141.61 0.29 ± 0.13 47.19 0.38 ± 0.24 63.74 

PCB 209 1.00ab ± 1.06 106.03 0.77a ± 1.42 184.00 0.05b ± 0.03 51.36 0.12ab ± 0.08 64.91 

ƩPCBs 6.79b ± 2.26 33.23 14.07a ± 9.54 67.79 10.81ab ± 4.63 42.78 6.62b ± 0.30 4.54 

             

BDE 28 0.004 ± 0.003 78.75 0.02 ± 0.01 77.27 0.01 ± 0.01 143.16 0.004 ± 0.004 117.81 

BDE 47 0.07bc ± 0.07 102.19 0.78a ± 0.70 90.52 0.13b ± 0.06 49.14 0.04c ± 0.03 91.10 

BDE 85 <LOD  - <LOD  - <LOD  - <LOD  - 

BDE 99 0.13b ± 0.14 102.68 0.29ab ± 0.31 105.67 0.67a ± 0.51 77.02 0.03b ± 0.02 53.61 

BDE 100 0.04 ± 0.05 121.76 0.06 ± 0.04 68.99 0.10 ± 0.08 80.97 0.03 ± 0.02 62.15 

BDE 153 0.07ab ± 0.00 135.85 0.17ab ± 0.16 92.12 0.35a ± 0.50 143.02 0.06b ± 0.03 50.12 
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 Petrochemical area (n = 7) Chemical area (n = 9) Urban area (n = 6) Background area (n = 5) 

 Mean± SD CV (%) Mean± SD CV (%) Mean± SD CV (%) Mean± SD CV (%) 

BDE 154 <LOD  - 0.04 ± 0.04 111.27 0.02 ± 0.01 66.70 0.01 ± 0.01 75.28 

BDE 183 <LOD  - <LOD  - <LOD  - <LOD  - 

PBT <LOD  - <LOD  - 0.01 ± 0.004 68.05 0.01 ± 0.02 129.69 

PBEB <LOD  - 0.02 ± 0.02 113.05 0.01 ± 0.01 107.98 <LOD  - 

HBB <LOD  - <LOD  - <LOD  - <LOD  - 

ƩBFRs 0.38b ± 0.17 45.79 1.43a ± 0.78 54.67 1.35a ± 0.51 37.79 0.25b ± 0.04 15.64 

         

HCB 0.02 ± 0.01 55.04 0.04 ± 0.02 56.05 0.03 ± 0.04 162.35 0.02 ± 0.01 36.74 

LOD = limit of detection. CV = coefficient variation. 

*Benzo(a)anthracene, chrysene, benzo(b+k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-c,d)pyrene, dibenzo(a,h)anthracene. 

Different superscripts indicate significant differences between groups (p<0.05). 
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Fig.  2. Contribution (%) of each range (PAHs and PCBs) or individual compound (SMs and BFRs) to the total in soil samples from Tarragona 

County (Catalonia, Spain).
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3.2. Vegetation samples 

 

The mean total SVOCs levels in vegetation samples collected in 

different areas of Tarragona County are summarized in Table 2 and the 

individual compound values for each sampling point are recorded in Table 

S2 (Annex 5). Unlike soils, a larger number of compounds were not 

detected in the analysis in this matrix. Among these compounds were: 

traseolide and nitro musks (ambrette, xylene, moskene, tibetene and 

ketone); PCB 105, 114, 123, 126, 156, 157, 157, 169, 189; 209; and some 

brominated flame retardants such as BDE 85, 154, 183 and PBT, PBEB 

and HBB. Contrary to soils, vegetation is more prone to trap gas-phase 

atmospheric compounds (Yogui et al., 2011), although in this case, being a 

species of ground vegetation, also the deposition of heavier compounds is 

admissible. 

PAHs levels in vegetation samples ranged from 42.13 to 80.08 ng/g for 

the ∑16 priority PAHs and from 3.37 to 8.48 ng/g for the ∑7 carcinogenic 

PAHs. The samples collected at the petrochemical and urban areas were 

quite similar, showed the highest values for both ∑16 priority PAHs (80.08 

ng/g petrochemical areas and 79.43 ng/g urban areas) and ∑7 carcinogenic 

PAHs (7.74 ng/g petrochemical areas and 8.48 ng/g urban areas). In turn, 

the background areas presented the lowest values of the 7 carcinogenic 

PAHs (3.37 ng/g). Although no statistically significant differences were 

found in the levels of the total 16 PAHs, a significant difference (p<0.05) 

were found in the total 7 carcinogenic PAHs between petrochemical and 

background areas (7.74 ng/g vs 3.37 ng/g), which denotes a significant 

influence of petrochemical industries in the surrounding environment. 

Individually, naphthalene was the predominant hydrocarbon in all the areas 

a contribution, between 26 % and 57 % of the total 16 PAHs. Although for 

a different kind of vegetation, this patterns is consistent with that observed 

by Ratola et al., (2010) in pine needles, in which the younger leaves 

recorded naphthalene as the predominant compound. Being the most 

volatile, naphthalene can not only be trapped easier by the vegetation, but 

also be transported to more distant areas, including the background sites. 

UNIVERSITAT ROVIRA I VIRGILI 
ENVIRONMENTAL LEVELS OF PAHs AND OTHER SVOCs IN A PETROCHEMICAL AREA. COMBINING MONITORING 
AND MODELLING TOOLS 
Noelia Domínguez Morueco 
 



                                                                                                               CHAPTER 2 

 

- 165 - 

 

In addition, statistically significant differences between petrochemical and 

urban and background areas were found for this compound (38.83 ng/g vs 

20.49 ng/g and 23.37 ng/g, respectively: p < 0.05). Phenanthrene and 

pyrene were the second and third prevailing PAHs in all the sampling areas, 

with a contribution between 8–20 % and 7–16 % of the total 16 PAHs (Table 

2). In both cases, statistically significant differences between chemical 

areas and petrochemical, urban and background areas were found (Table 

2). Regarding benzo(a)pyrene, no statistically significant differences were 

found between sampling areas. However, as in the case of soils, the urban 

areas recorded the highest concentration of this compound (0.75 ng/g), 

probably associated with heavy traffic. Regarding PAHs ring patterns (Fig. 

3 A), it can be seen that, in comparison with soils, vegetation showed more 

affinity towards the low molecular PAHs, probably associated with rapid 

exchange kinetics between vegetation and the surrounding air (Yogui et al., 

2011). Notwithstanding, comparing the results of Domínguez-Morueco et al 

(2015) in a study at the same area with lichen transplants it can bee seen 

that PAHs ring profile is more similar to the soil profile of the present study. 

When comparing the total concentrations of 16 priority PAHs and ∑7 

carcinogenic PAHs found in this study, with those detected in the multi-

compartmental environmental monitoring program conducted in Tarragona 

County (28 – 179 ng/g ∑16 priority PAHs and <2.0 ng/g ∑7 carcinogenic 

PAHs Nadal et al., 2004a; 94.2 – 128.8 ng/g ∑16 priority PAHs and 11 – 

14.8 ng/g ∑7 carcinogenic PAHs from Nadal et al., 2009; and 40.1- 211.7 

ng/g ∑16 priority PAHs and 5.6 – 13.3 ng/g ∑7 carcinogenic PAHs from 

Nadal et al., 2011) it can be seen that, as in the soils samples, the values 

are in the lowest part of the range, and for hence, there would be a reduction 

of general levels of PAHs in Tarragona County. Comparing with other 

literature, such as the study conducted by Wang et al. (2012b) in ground 

vegetation from South China (199 – 2,420 ng/g), the present values were 

considerably lower. In turn, the concentrations from Tarragona County were 

higher than the values recorded by Chrysikou et al. (2008) in ground 

vegetation or Cabrerizo et al. (2012) (14.1–34.7 ng/g and 6–10 ng/g, 

respectively) in grass. Comparing to soils, the petrochemical area was the 
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zone that recorded the highest values of total PAHs (80.08 ng/g), and this 

pattern is consistent with the last study conducted by Nadal et al., in 2011 

in Tarragona, as are the similarly high detected in urban areas (79.43 ng/g), 

in agreement with the multi-compartmental environmental monitoring 

program conducted previously in Tarragona County (Nadal et al., 2004a; 

2009). These results confirm traffic and industries as the main 

anthropogenic sources of PAHs in the area. 

In Table 2, it can be seen that the mean total PCBs levels by site type 

ranged from 0.52 to 4.41 ng/g. Petrochemical, chemical and urban area 

showed similar values of PCBs (4.08 ng/g, 3.33 ng/g and 4.41 ng/g, 

respectively). As in soils, the background sites presented the lowest values 

of total PCBs, with statistically significant differences (p<0.05) found with 

the rest of zones (Table 2). Concerning individual PCBs, PCB 52 (a tetra-

CB) was the predominant PCB in all sampling areas, with a contribution 

between 63 % and 89 % of the total PCBs (Table 2) and no statistically 

significant differences were found between areas. As in the case of PAHs, 

there is a general affinity of vegetation towards the low molecular PCBs in 

all sampling areas (Fig. 3 B). When comparing the current combined 

concentrations of PCBs 28, 52, 101, 118, 138, 153 and 180 (mean total of 

4.05 ng/g, 3.28 ng/g, 4.35 ng/g and 0.49 ng/g in petrochemical, chemical 

urban and background areas, respectively) with those found in the 

Tarragona monitoring program (2.50–2.94 ng/g from Schuhmacher et al., 

2004 and 1.55–3.88 ng/g) it can be seen that the present values are quite 

similar and also in agreement with those detected in other international 

studies (Tato et al. (2011), 0.32–2.05 ng/g; Cabrerizo et al. (2012), 0.39–

2.40 ng/g, both in grass, and Chrysikou et al. (2008), 3.64–25.9 ng/g in 

ground vegetation). On the other hand, Wang et al. (2011) found PCB 

concentrations in grass higher than those presented in this study, in an area 

close to an electronic waste recycling site of South China (6.7–1500 ng/g). 

In terms of spatial distribution, although there was not a clear “hot spot”, 

site 11 (La Laboral) was again one of the points with the highest 

concentration of PCBs (8.84 ng/g). 

In the case of SMs, levels in vegetation samples ranged from 4.08 to 
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17.94 ng/g and, unlike soils samples, statistically significant differences 

were found between background areas and petrochemical area (17.95 ng/g 

vs 4.08 ng/g). In this case, a decreasing pattern was observed among 

sampling areas (background area>urban area>chemical 

area>petrochemical area). This pattern would confirm the theory described 

above, which shows an influence of the personal care products derived 

from coastal tourism in these areas. As in the case of soils samples, the 

literature is very scarce regarding the presence of fragrances in vegetation 

samples. The values recorded in the present study would be within the 

range recently defined by Ribeiro et al. (2017), in five Portuguese coastline 

ground vegetation plant species (4.70 – 350 ng/g). When SMs were 

individually assessed, galaxolide and cashmeran were again the 

predominant musks in all the sampling areas, with a contribution between 

29 % and 91 % and from 2 % to 57 % of the total SMs, respectively (Fig. 3 

C). In the case of cashmeran, statistically significant differences were found 

between urban and petrochemical/chemical areas (Table 2).  

Regarding BFRs, BDEs 85, 154, 183 and the currently-used PBT, PBEB 

and HBB were not detected in the vegetation samples. PBDEs levels 

ranged from 0.47 to 1.12 ng/g, and levels in the chemical areas were 2 

times higher (and statistically significant) than those found in the 

background areas (Table 2). As in soils, BDE 47 was the prevailing BFRs 

in vegetation samples from all areas, with a contribution between 16% and 

66 % of the total BFRs (Fig. 3 D), and with statistically significant differences 

between chemical and background areas. BDEs 28 and 99 followed (4 – 

64 % and 3 – 31 %, respectively). In the case of BDE 99, statistically 

significant differences were found between petrochemical, urban and 

background areas (Table 2). When comparing with levels found in other 

studies, it can be seen that the present values are lower than those found 

by Wang et al. (2011a) or Yu et al., (2016) in China (1.5 – 89.4 ng/g and 

2.74 – 138 ng/g, respectively) in grass samples. Regarding the individual 

BFRs, the current values are in agreement with these studies, which state 

that congeners 47 and 99 are the most abundant BFRs in vegetation. 

Congeners 47 and 99 were the most used PBDEs worldwide until their 
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general ban. This coupled with their persistence may be a reason for them 

to remain strongly present in the environment (Zheng et al., 2015; Li et al., 

2016; McGrath et al., 2017) 

Finally, HCB values in vegetation varied from 0.13 ng/g to 0.17 ng/g, 

being again similar between sampling areas and without statistically 

significant differences. In this case, the concentrations recorded in 

Tarragona County were within the range observed in literature, such as the 

studies conducted in grass samples by Wang et al. (2007) in Mt. 

Qomolangma, China (0.0156 – 1.25 ng/g) or by Cabrerizo et al. (2012) in 

Antarctica (0.080 – 0.20 ng/g). 
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Table 2. Concentrations of SVOCs in vegetation samples from four areas of Tarragona County (Catalonia, Spain) (ng/g). 

 
 Petrochemical area (n = 7) Chemical area (n = 9) Urban area (n = 6) Background area (n = 5) 

 Mean± SD CV (%) Mean± SD CV (%) Mean± SD CV (%) Mean± SD CV (%) 

Naphthalene 38.83a ± 14.64 37.71 23.86ab ± 10.01 41.93 20.49b ± 10.30 50.24 23.37b ± 6.70 28.66 

Acenaphthylene 0.32ab ± 0.32 97.67 0.17b ± 0.12 72.15 0.49a ± 0.29 59.69 0.47a ± 0.28 58.89 

Acenaphthene 0.85 ± 0.37 43.63 0.43 ± 0.64 149.35 0.43 ± 0.22 50.36 0.47 ± 0.42 89.78 

Fluorene 5.32ab ± 5.58 104.96 1.06b ± 0.72 68.24 1.96ab ± 1.56 79.68 2.76a ± 1.59 57.65 

Phenanthrene 10.11a ± 3.76 37.24 3.56b ± 1.35 37.92 16.06a ± 15.81 98.46 12.47a ± 5.07 40.66 

Anthracene 0.58b ± 0.27 47.05 0.32b ± 0.24 74.23 3.48a ± 2.76 79.33 1.87a ± 1.67 88.84 

Fluoranthene 4.11ab ± 1.90 46.15 2.87b ± 1.07 37.28 12.12ab ± 12.23 100.86 9.97a ± 7.59 76.10 

Pyrene 11.40a ± 5.06 44.36 2.76b ± 1.24 45.04 12.97a ± 13.15 101.40 9.07a ± 8.57 94.52 

Benzo(a)anthracene 1.14a ± 0.51 44.36 0.31b ± 0.30 97.67 1.14ac ± 1.47 128.61 0.49bc ± 0.21 42.20 

Chrysene 2.39 ± 1.07 44.68 1.56 ± 1.37 88.01 3.36 ± 3.32 98.86 1.75 ± 1.27 72.43 

Benzo(b+k)fluoranthene 3.26 ± 2.60 79.76 2.33 ± 1.22 52.42 2.33 ± 3.09 132.54 0.47 ± 0.35 74.65 

Benzo(a)pyrene 0.54 ± 0.19 34.26 0.44 ± 0.42 95.93 0.75 ± 0.77 102.80 0.24 ± 0.25 104.06 

Indeno(1,2,3-c,d)pyrene <LOD  - 0.71 ± 1.39 197.04 0.63 ± 1.26 200.97 <LOD - 

Dibenzo(a,h)anthracene 0.29 ± 0.31 106.73 0.39 ± 0.48 124.99 0.28 ± 0.37 133.33 0.31 ± 0.20 63.18 

Benzo(g,h,i)perylene 0.82b ± 0.78 95.27 1.36ab ± 0.71 52.49 2.95ab ± 2.01 67.92 2.43a ± 1.81 74.50 

Ʃ16PAHs 80.08 ± 29.58 36.94 42.13 ± 11.19 26.57 79.43 ± 58.89 74.14 66.27 ± 21.46 32.39 

Ʃ 7 prob. carcinogenic 
PAHs* 7.74a ± 3.46 44.71 5.74ab ± 2.31 40.26 8.48ab ± 8.11 95.61 3.37b ± 1.36 40.42 
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 Petrochemical area (n = 7) Chemical area (n = 9) Urban area (n = 6) Background area (n = 5) 

 Mean± SD CV (%) Mean± SD CV (%) Mean± SD CV (%) Mean± SD CV (%) 

Cashmeran <LODb  - 1.63bc ± 2.71 166.12 6.81a ± 5.41 79.52 3.48ac ± 4.06 116.79 

Celestolide 0.03c ± 0.01 48.06 0.18c ± 0.28 152.43 0.48b ± 0.17 36.49 1.43a ± 1.21 84.48 

Phantolide <LOD  - 0.21 ± 0.29 139.42 <LOD  - <LOD  - 

Galaxolide 3.70 ± 5.51 149.17 5.19 ± 4.61 88.83 3.49 ± 7.03 201.52 12.06 ± 15.93 132.04 

Traseolide <LOD  - <LOD  - <LOD  - <LOD  - 

Tonalide 0.10ab ± 0.08 73.64 0.23a ± 0.50 220.36 0.94b ± 0.97 102.59 0.79ab ± 1.00 126.87 

Musk ambrette <LOD  - <LOD  - <LOD  - <LOD  - 

Musk xylene <LOD  - <LOD  - <LOD  - <LOD  - 

Musk moskene <LOD  - <LOD  - <LOD  - <LOD  - 

Musk tibetene <LOD  - <LOD  - <LOD  - <LOD  - 

Musk ketone <LOD  - <LOD  - <LOD  - <LOD  - 

Ʃmusks 4.08b ± 5.56 136.41 7.62ab ± 5.02 65.83 11.90ab ± 9.93 83.50 17.94a ± 13.68 76.26 

             

PCB 28 0.25 ± 0.12 48.95 0.14 ± 0.14 97.72 0.19 ± 0.38 204.72 <LOD  - 

PCB 52 3.02 ± 2.28 75.46 2.78 ± 2.53 91.13 3.91 ± 2.48 63.45 0.33 ± 0.37 112.66 

PCB 77 <LOD - 0.01 ± 0.01 182.66 0.01 ± 0.01 125.29 <LOD - 

PCB 81 <LOD  - 0.01 ± 0.02 234.92 0.02 ± 0.05 206.13 <LOD  - 

PCB 101 0.10 ± 0.05 47.53 0.10 ± 0.07 62.73 0.08 ± 0.03 31.77 0.11 ± 0.03 28.12 

PCB 105 <LOD  - <LOD  - <LOD  - <LOD  - 

PCB 114 <LOD  - <LOD  - <LOD  - <LOD  - 
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 Petrochemical area (n = 7) Chemical area (n = 9) Urban area (n = 6) Background area (n = 5) 

 Mean± SD CV (%) Mean± SD CV (%) Mean± SD CV (%) Mean± SD CV (%) 

PCB 118 0.57a ± 0.05 8.72 0.03b ± 0.02 77.12 0.02bc ± 0.02 129.18 0.01c ± 0.003 52.88 

PCB 123 <LOD  - <LOD  - <LOD  - <LOD  - 

PCB 126 <LOD  - <LOD  - <LOD  - <LOD  - 

PCB 138 0.02 ± 0.03 141.69 0.13 ± 0.21 162.07 0.08 ± 0.07 104.38 0.01 ± 0.02 201.34 

PCB 153 0.08 ± 0.09 114.80 0.02 ± 0.03 114.74 0.04 ± 0.02 65.48 0.02 ± 0.01 54.35 

PCB 156 <LOD  - <LOD  - <LOD  - <LOD  - 

PCB 157 <LOD  - <LOD  - <LOD  - <LOD  - 

PCB 167 <LOD  - <LOD  - <LOD  - <LOD  - 

PCB 169 <LOD  - <LOD  - <LOD  - <LOD  - 

PCB 180 0.02c ± 0.02 154.93 0.06a ± 0.02 37.05 0.05ab ± 0.03 56.26 0.02bc ± 0.01 26.45 

PCB 189 <LOD  - <LOD  - <LOD  - <LOD  - 

PCB 209 <LOD  - <LOD  - <LOD  - <LOD  - 

ƩPCBs 4.08a ± 2.22 54.49 3.33a ± 2.63 79.12 4.41a ± 2.83 64.29 0.52b ± 0.38 73.39 

             

BDE 28 0.04 ± 0.04 90.58 0.05 ± 0.05 107.11 0.09 ± 0.20 221.23 0.30 ± 0.62 209.54 

BDE 47 0.32ab ± 0.25 78.91 0.70a ± 0.35 50.69 0.50ab ± 0.34 68.04 0.07b ± 0.05 65.30 

BDE 85 <LOD - <LOD  - <LOD  - <LOD  - 

BDE 99 0.25a ± 0.09 33.67 0.18ab ± 0.12 70.36 0.06b ± 0.05 96.41 <LODc  - 

BDE 100 <LOD  - 0.02 ± 0.02 76.19 0.03 ± 0.03 83.45 <LOD  - 

BDE 153 0.13a ± 0.07 55.98 0.11ab ± 0.12 115.26 0.02b ± 0.02 99.46 <LODc  - 
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 Petrochemical area (n = 7) Chemical area (n = 9) Urban area (n = 6) Background area (n = 5) 

 Mean± SD CV (%) Mean± SD CV (%) Mean± SD CV (%) Mean± SD  CV (%) 

BDE 154 <LOD  - <LOD  - <LOD  - <LOD  - 

BDE 183 <LOD - <LOD  - <LOD  - <LOD  - 

PBT <LOD - <LOD  - <LOD  - <LOD  - 

PBEB <LOD  - <LOD  - <LOD  - <LOD - 

HBB <LOD  - <LOD  - <LOD  - <LOD  - 

ƩBFRs 0.83ab ± 0.28 34.26 1.12a ± 0.48 42.93 0.76ab ± 0.40 52.48 0.47b ± 0.66 141.11 

             

HCB 0.13 ± 0.08 62.14 0.15 ± 0.16 104.70 0.17 ± 0.10 57.58 0.14 ± 0.09 61.25 

LOD = limit of detection. CV = coefficient variation. 

*Benzo(a)anthracene, chrysene, benzo(b+k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-c,d)pyrene, dibenzo(a,h)anthracene. 

Different superscripts indicate significant differences between groups (p<0.05). 
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Fig. 3. Contribution (%) of each range (PAHs and PCBs) or individual compound (SMs and BFRs) in vegetation samples from Tarragona County 

(Catalonia, Spain). 
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3.3. SVOCs profiles in soil samples vs in vegetation samples 

 

Principal component analysis (PCA) was applied to the SVOCs 

normalized concentrations in the 27 soil and 27 vegetation samples at each 

sampling area. Figure 4 represents the PCA separates by sampling matrix 

(soils in brown and vegetation in green) and sampling area for PAHs (A), 

PCBs (B), SMs (C) and BFRs (D). Regarding PAHs (Fig. 4 A), PC1 is 

positively weighted by PAHs ring profiles from soils samples, while is 

negatively weighted by PAHs ring profiles from vegetation samples. In turn, 

PC2 is positively weighted by 4, 5 and 6-rings PAHs and soils samples and 

negatively weighted by 2 and 3-rings PAHs and vegetation samples. These 

results show a clear difference between soil and vegetation samples, 

confirming that soil samples tend to accumulate the heavier PAHs (4, 5 and 

6 rings PAHs), and vegetation has more affinity for the more volatile PAHs 

(2 and 3-rings PAHs). This pattern is consistent with the percentage of 

contribution of the total 16 PAHs described above where, for example, 

fluoranthene and benzo(a)pyrene were predominant in soils and 

naphthalene in vegetation. These results could indicate that vegetation 

tends to capture contaminants present predominantly in the gas-phase 

(Low molecular weight). Also, once captured, the rapid kinetic of exchange 

between vegetation and air causes that some SVOCs return to the 

atmosphere, while the soils and their high affinity for hydrophobic organic 

pollutants make it possible to retain the heavier (including the particulate 

phase pollutants) and less biodegradable compounds (Diamond et al., 

2001; Bao et al., 2015; 2016). When representing the PCA for PAHs ring 

profiles in soil and vegetation separated by sampling areas (Fig. S1, Annex 

5), it can be seen that for soils (Fig. S1 A, Annex 5), background areas 

present a different profile than petrochemical, chemical and urban sites. 

Also, 5 and 6-ring PAHs are mainly associated with urban and some 

chemical areas, while 2, 3 and 4-ring PAHs are predominant in 

petrochemical, chemical and background areas. 

Regarding vegetation (Fig. S1 B, Annex 5), PAHs ring profiles from 

urban and background areas are opposite to those from petrochemical and 
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chemical areas, being 3, 5 and 6-ring PAHs the most incident in the former 

and 2 and 4-ring PAHs in the latter areas.  These results suggest different 

sources affecting the presence of PAHs in the Tarragona area. In the case 

of PCBs (Fig. 4 B) the PC1 is positively weighted by PCBs profiles from 

soils samples, while is negatively weighted by PCBs profiles from 

vegetation samples. Regarding, PC2 is positively weighted by the heavier 

PCBs (congener number 101, 138, 158 and 180) and soils samples, while 

is negatively weighted by the more volatile PCBs (congener number 28 and 

52) and vegetation samples. This pattern is also consistent with the 

individual congener contribution, since in the case of soils samples the 

predominant PCBs were PCB 138 and 158 against PCB 52 in vegetation 

samples. Contrastingly, PCA for SMs and BFRs shows a great mix between 

the levels contents in soils and vegetation samples, not being able to 

differentiate between both matrices. This could be associated with the fact 

that both group of compounds are mainly associated with indoor 

environments, and for this reason their presence in outdoor environments 

is more diffuse. 
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Fig. 4. Principal component analysis (PCA) for: A) PAHs ring profiles in soil (in brown) vs vegetation (in green); B) PCBs profile in soils 

vs vegetation; C) SMs profile in soils vs vegetation; and D) BFRs profile in soil vs vegetation from the different areas of study. 
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3.4. Source apportionment  

 

In recent years, the need to identify the origin of pollutants triggered the 

development of a wide range of techniques that provide a first 

approximation of the emission sources. Among these techniques, the 

molecular diagnostic ratios (MDR) for PAHs, is one of the method most 

applied for the different environmental matrices (Tobiszewski and 

Namieśnik, 2012). MDR are based on the theory that some PAHs are 

emitted in constant proportions from the sources and their concentrations 

remain constant between the source and the receptor (Katsoyiannis et al., 

2011; Tobiszewski and Namieśnik, 2012), although not always those 

remain constant, e.g. if the degradation of an individual compound is 

potentiated by adequate environmental conditions. Currently, there are 

different MDR defined for these compounds. In the present work the ratios 

Ant/(Ant+Phe), BaA/(BaA+Chry), Flt/(Flt+Pyr), IcdP/(IcdP+BghiP) and 

BaP/BghiP were used according to Katsoyiannis et al. (2011) for soil and 

vegetation samples from Tarragona County (Table 3). In soils, the ratios 

Flt/(Flt+Pyr) and IcdP/(IcdP+BghiP) showed a clear pyrogenic origin, 

probably associated with incomplete combustion processes. In addition, the 

ratio BaP/BghiP showed a predominant traffic origin for all the sampling 

areas. These results are in agreement with the pattern described above, 

where it was pointed out that the highest values were found in the urban 

area, probably due to the presence of heavy traffic. Contrastingly, the ratio 

BaA/(BaA+Chry) presented a mixed source profile (petrogenic and 

pyrogenic) and the ratio Ant/(Ant+Phen) showed a clear petrogenic origin, 

which indicates that there is also a strong influence of the 

petrochemical/chemical industries in Tarragona County. Concerning MDR 

in vegetation samples, the ratios Ant/(Ant+Phen), BaA/(BaA+Chry), 

Flt/(Flt+Pyr) and IcdP/(IcdP+BghiP) showed a clear mix profile between 

petrogenic and pyrogenic sources. In addition, the ratio BaP/BghiP only 

showed a traffic origin for a petrochemical sampling area. These results 

confirm the pattern previously described for PAHs in vegetation samples, 

where high concentrations were recorded in both petrochemical and urban 
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areas. Depending on the type of matrix selected, different information about 

sources of contamination can be obtained. As mentioned above, and 

because of their high affinity for hydrophobic organic pollutants, soils can 

provide information on both current and long-term SVOCs concentrations. 

On the oder hand, also due to its limited life span, vegetation plays an 

important role as short-term information source. SVOC contamination in 

Tarragona County would be mainly associated with a mix between 

petrogenic and pyrogenic sources (see Table 3 for vegetation), probably 

due to an influence from urban and industrial areas as showed by the total 

concentrations in these points mentioned above. In turn, the long-term 

information indicates that the SVOCs contamination would have a markedly 

pyrogenic origin (see Table 3 for soils) mainly associated to an urban 

influence. This suggests that historically, the presence and influence of the 

pyrogenic sources is higher than the petrogenic ones in Tarragona County. 

This can also be seen by the BaP/BghiP ratio that reveals a evidence of 

strong presence of traffic (one of the most common pyrogenic sources). 
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Table 3. Molecular diagnostic ratios (MDR) for PAHs in soil and vegetation samples from Tarragona County (Catalonia, Spain). 

 Soil samples  Vegetation samples    

 
Petrochemical 

area 
(n = 7) 

Chemical 
area 

(n = 9) 

Urban 
area 

(n = 6) 

Background 
area 

(n = 5) 

 
Petrochemical 

area 
(n = 7) 

Chemical 
area 

(n = 9) 

Urban 
area 

(n = 6) 

Background 
area 

(n = 5) 

 Petrogenica Pyrogenica 

Ant / 
(Ant+Phen) 

0.08 0.09 0.03 0.04  0.06 0.10 0.23 0.14  <0.1 >0.1 

BaA / 
(BaA+Chry) 

0.34 0.38 0.36 0.27  0.33 0.16 0.25 0.29  <0.2 >0.35 

Flt / (Flt+Pyr) 0.43 0.47 0.51 0.49  0.26 0.52 0.47 0.55  <0.4 >0.4 

IcdP / 
(IcdP+BghiP) 

0.25 0.34 0.40 0.21  0.26 0.22 0.15 0.06  <0.2 >0.2 

           Non-
Traffica Traffica 

BaP/BghiP 0.89 1.08 1.09 1.09  2.63 0.37 0.32 0.09  <0.6 >0.6 

a Molecular diagnostic ratios according to Katsoyiannis et al. (2011). 
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3.5. Toxic equivalents 

 

In order to assess the risk associated to PAHs and PCBs present in soils 

from Tarragona County, the concept of "toxic equivalents (TEQ)" was 

applied. TEQs measure the combined toxicity of certain groups of 

compounds in relation to the most toxic compound in the mixture through 

the toxic equivalency factors (TEFs) methodology (Van den Berg et al., 

1998; Hong et al., 2009). In this sense, the carcinogenic risk associated of 

a PAH mixture is often expressed by its benzo(a)pyrene equivalent (BaPeq) 

concentration, since BaP has been identified as one of the most 

carcinogenic hydrocarbons by the IARC. The BaPeq for a soil sample is 

calculated by multiplying the concentration of each individual PAH in the 

sample by the respective toxicity equivalency factor (TEF): 

 

BaPeq = ∑ 𝑃𝐴𝐻𝑖 × 𝑇𝐸𝐹𝑖𝑛
𝑖=1  

        (1) 

 

where TEFi is the toxic equivalence factor for each PAHi according to Nadal 

et al. (2004a) (adapted from Nisbet and LaGoy 1992 and Larsen and 

Larsen 1998). In the case of PCBs, the TEQ are based on the toxicity 

equivalence of each congener relative to 2,3,7,8-tetrachlorodibenzo-p-

dioxin (TCDD), since World Health Organization (WHO) have identified 12 

PCBs with toxicological properties comparable to chlorinated dibenzo-p-

dioxins (dioxin-like PCB congeners: PCB 77, 81, 105, 114, 118, 123, 126, 

156, 157, 167, 169 and 189) (Van den Berg et al., 1998; WHO, 2005; Hong 

et al., 2009; Drimal et al., 2016). Hence, the health risk of these 12 dioxin-

like PCB congeners or 2.3.7.8-TCDDeq in Tarragona soils is calculated by 

multiplying the concentration of each individual PCB by the respective TEF 

(Drimal et al., 2016): 

 

2.3.7.8-TCDDeq =  ∑ 𝑃𝐶𝐵𝑗 × 𝑇𝐸𝐹𝑗𝑛
𝑗=1  

(2) 
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where TEFj is the toxic equivalence factor for each PCBj defined by the 

World Health Organisation (WHO) in 2005. 

TEQs for the PAHs and PCBs, adjusted to the mean soil concentrations 

per Tarragona sampling area are summarized in Table 4. According to 

∑BaPeq the urban and chemical areas recorded the highest values (29 ng 

BaPeq/g and 16 ng BaPeq/g, respectively). In contrast, petrochemical areas 

were the less contaminated zones (5 ng BaPeq/g), even lower than 

background areas. The abovementioned aspect of the considerable height 

of the stacks from the refineries can be a possible explanation for this 

apparently unexpected result. This decreasing pattern is also in agreement 

with Nadal et al. (2004a) for Tarragona County soils. However, the values 

of BaPeq calculated for the each PAH and for the total PAHs were lower 

than those reported by Nadal et al. (2004) (range for ∑BaPeq: 24–124 ng/g), 

which would confirm the decreasing trend in the PAHs concentrations 

described in this study. On the other hand, although fluoranthene was the 

most abundant PAHs in urban and chemical areas, its contribution to the 

∑BaPeq was extremely low (less than 1%). In contrast, benzo(a)pyrene, 

whose contribution of the total 16 PAHs in the different sampling areas was 

low, had the greatest impact to ∑BaPeq (contribution between 69% and 

80%). This pattern is also consistent with Nadal et al. (2004a), and with 

other international studies such as the study conducted by Marquès et al. 

(2017) in Arctic soils.  

Regarding 2.3.7.8-TCDDeq, the highest values were calculated for 

background and urban areas (101.3 and 71.2 ng 2.3.7.8-TCDDeq/kg, 

respectively), while petrochemical area was the area less contaminated by 

dioxin-like PCBs (0.5 ng 2.3.7.8-TCDDeq/kg). This could be associated with 

the fact that most of dioxin-like PCBs were not detected in greatest of the 

Tarragona samples. Despite the PCB congeners number 153 and 138 were 

the most abundant PCBs in chemical/petrochemical (46 % and 24 %) and 

urban/background areas (40% and 16%), respectively, none of them are 

considered dioxin-like PCBs. For those, PCB 126 provided the greatest 

contribution to Σ2.3.7.8-TCDDeq (between 60 % and 99.9 %). 
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Table 4. Toxic equivalents (TEQ) for PAHs and PCBs, adjusted to the mean soil 

concentrations per Tarragona sampling area. (TEQ for PAHs: BaPeq in ng/g; TEQ 

for PCBs: 2.3.7.8-TCDDeq in ng/kg). 

 
 
 

Petrochemical 
area 

 (n = 7) 

Chemical 
area  

(n = 9) 

Urban area 
 (n = 6) 

Background 
area  

(n = 5) 
 TEFsa Mean Mean Mean Mean 

Naph 0.001 0.0021 0.0029 0.0072 0.0154 

Acy 0.001 0.0008 0.0033 0.0010 0.0002 

Ace 0.001 0.0022 0.0008 0.0006 0.0002 

Fluo 0.001 0.0035 0.0012 0.0008 0.0002 

Phen 0.0005 0.0014 0.0036 0.0035 0.0010 

Ant 0.0005 0.0001 0.0004 0.0002 0.0001 

Flt 0.05 0.15 0.62 1.06 0.18 

Pyr 0.001 0.014 0.012 0.019 0.003 

BaA 0.005 0.009 0.038 0.054 0.009 

Chry 0.03 0.11 0.31 0.49 0.13 

B(b+k)F 0.1 0.5 1.0 2.0 0.5 

BaP 1 4 11 20 4 

Icdp 0.1 0.1 0.6 1.2 0.1 

DahA 1.1 0.4 2.1 3.2 0.6 

BghiP 0.02 0.1 0.2 0.4 0.1 

ƩBaPeq  5 16 29 6 

 TEFsb     

PCB 77 0.0001 0.0166 0.0176 0.0355 0.0002 

PCB 81 0.0003 0.0286 0.0089 0.0517 0.0069 

PCB 105 0.00003 0.00050 0.00012 0.00012 0.00012 

PCB 114 0.00003 0.00016 0.00022 0.00110 0.00506 

PCB 118 0.00003 0.03496 0.00067 0.00014 0.00014 

PCB 123 0.00003 0.00014 0.00576 0.03215 0.02890 

PCB 126 0.1 0.3 32.7 71.0 101.2 

PCB 156 0.00003 0.00005 0.00523 0.01213 0.01038 

PCB 157 0.00003 0.00009 0.00054 0.00133 0.00341 

PCB 167 0.00003 0.00016 0.00159 0.00147 0.00006 

PCB 169 0.03 0.04 0.04 0.04 0.04 

PCB 189 0.00003 0.00656 0.00333 0.00855 0.01128 

Ʃ2.3.7.8-
TCDDeq 

 0.5 32.8 71.2 101.3 
    

*Benzo(a)anthracene, chrysene, benzo(b+k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-

c,d)pyrene, dibenzo(a,h)anthracene.  

a TEFs according to Nadal et al., 2004a. 

b TEFs according to WHO 2005. 

 

UNIVERSITAT ROVIRA I VIRGILI 
ENVIRONMENTAL LEVELS OF PAHs AND OTHER SVOCs IN A PETROCHEMICAL AREA. COMBINING MONITORING 
AND MODELLING TOOLS 
Noelia Domínguez Morueco 
 



                                                                                                               CHAPTER 2 

 

- 183 - 

 

4. CONCLUSIONS 

 

Levels of PAHs, PCBs, and for the first time in Tarragona County, 

synthetic musks (SMs), brominated flame retardants (BFRs) and HCB were 

analyzed in soils and vegetation samples, by using a multi-component 

analytical protocol based on the “green” extraction technique QuEChERS. 

Levels of PAHs and PCBs were consistent with those recorded in the multi-

compartmental environment monitoring program conducted in Tarragona 

County since 2002. In the case of PAHs, a decreasing pattern in the 

concentrations were observed since 2002, probability associated with the 

reduction in the PAHs emission observed between 1990 and 2010 in most 

European countries. For PAHs, in general terms, urban areas showed the 

highest values for ∑16 priority PAHs in both matrices, which according to 

the diagnostic ratios, could be associated with pyrogenic origin due to 

several roads with heavy traffic in this area. Regarding PCBs, the chemical 

area, showed the highest values of PCBs in both matrices in the same 

sampling point (point 11), probably associated with the presence of two 

sub-electrical stations located in the vicinities. Concerning SMs and BFRs, 

compounds mainly related with indoor environments, were detected in both 

environmental matrices considered in this study. Background areas 

showed the highest levels of SMs, suggesting an influence of the personal 

care products derived from coastal tourism in these areas. With respect to 

HCB, the values recorded were lower than others found in literature and 

similar in the patterns between sampling areas, probably due to its 

production being already banned for decades in most countries. 

In general terms, both the SVOCs levels as well as the diagnostic ratios 

for PAHs showed clear differences between the two analysed matrices. 

Vegetation, as a short-term information source, tends to accumulate PAHs 

and PCBs of low molecular weight that predominate in gas-phase. In turn, 

due their high affinity for hydrophobic organic pollutants, soils tend to 

accumulate pollutants more present in the particulate-phase, with higher 

molecular weight and with greater stability or recalcitrance, providing 
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information on current and long-term SVOCs concentrations. In this sense, 

in the short term, SVOCs contamination in Tarragona County would be 

mainly associated with a mix between petrogenic and pyrogenic sources, 

probably due to an influence from urban and industrial areas as showed by 

the total concentrations in these points. In turn, in the long-term, the SVOCs 

contamination would have a markedly pyrogenic origin mainly associated 

to an urban influence.  

Finally, it was shown that regarding risk associated to some of the 

SVOCs in the Tarragona County soils, not always the compounds with the 

highest concentrations are those that present the most potential danger for 

human health. This is a reason to keep performing thorough sampling 

actions of these compounds as often and covering as many contaminants 

as possible. 
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DISCUSSION CHAPTER 2 

 

The first part of this thesis confirmed that PAS are devices capable of 

collecting the SVOCs present, predominantly, in the gas phase at local 

scale. However, it is also important to measure those heavier congeners 

that are associated with the particulate phase. For this reason, the second 

part of this thesis was aimed to select another kind of environmental 

matrices, also including under the passive sampling category, capable of 

covering the gaps left by PAS devices, such as soils and vegetation. For 

this reason, a more extensive sampling of soils and vegetation was 

designed throughout Tarragona County, which covered a total of 27 

sampling points, 8 of which coincided with the passive air sampling. 

When SVOCs are extracted from the PUF disks, the method worldwide 

used and also used in this thesis is the Soxhlet. Sometimes, other 

techniques such as accelerated solvent extraction (ASE) can also be used 

(article 1 chapter 1). However, this kind of extraction and analysis methods 

involve the use of large amounts of solvent (e.g. Soxhlet extraction require 

250 mL of solvent for extraction plus at least 100 mL in the clean-up phase), 

and having associated high operating times (e.g. Soxhlet method needs 12 

hours for extraction per sample). Given the large number of soil and 

vegetation samples (27 samples per matrix more duplicates), in this thesis 

it was important to adapt and validate other methods that would reduce the 

economic costs and the operating time. To achieve this goal, a multi-

compound protocol developed by Silva et al. (2015) coupled to QuEChERS 

methodology initially developed by Anasstassiades et al. (2003) was 

optimized and validated for the simultaneously extraction of five different 

classes of SVOCs (PAHs, PCBs, BFRs, SMs and HCB) in soils and 

vegetation (pine needles) samples.  

Since the QuEChERS methodology was a technique developed for the 

detection of pesticides in fruit and vegetable samples, it was necessary to 

carry out different tests in order to adapt it to soil and vegetation samples. 

To achieve the goal, it was necessary to optimize the main parameters to 

consider in the analysis: type of extraction solvent; composition of 
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QuEChERS 1 and 2, and extract filtration and dryness. Because both the 

soils and the vegetation are two matrices with different characteristics, 

different extraction solvents and two QuEChERS configurations were 

developed. Regarding the solvents, for vegetation was more suitable the 

utilization of a more apolar mixture (Hexane: Dichloromethane, (1:2)) than 

for soils (Acetone:Dichloromethane, (1:1)), this was expectable since 

vegetation tissues are more lipophilic than soil components. For 

QuEChERS 1, in both cases, the utilization of NaCH3COO, to enhance 

ionic strength, and anhydrous MgSO4, as drying agent, were chosen as the 

most appropriate reactants. Finally, with the target compounds 

concentrated in the organic phase, an effective clean-up was required to 

obtain the desired chromatographic resolution. This is obtained with 

QuEChERS 2, through a dispersive solid phase extraction (d-SPE). For 

soils the best configuration of QuEChERS 2 was: 0.9g MgSO4, 0.15g PSA 

and 0.15g C18 in contrast to the suitable composition for vegetation: 0.9g 

MgSO4, 0.15g Alumina, 0.15g Florisil and 0.15g C18. The differences 

between both configurations fall on that for soils it is needed and anion 

exchanger (PSA) to eliminate fulvic and humic acids and for vegetation 

Alumina and Florisil were required to eliminate polar and apolar compounds 

present in vegetal tissues (as sugars, chlorophylls, etc).  

 For both methods a successful linearity, selectivity, precision, 

accuracy, repeatability, and good recovery values (with RSDs below 20% 

in all cases) were obtained. In addition it was found that, method LODs 

obtained and levels found in real samples were similar to those obtained by 

other worldwide standardized methods. 

In this sense, the QuEChERS technique provided a considerable 

reduction in the amount of solvent (only 10 mL per sample) as well as a 

reduction in the operating time (2 hours per sample), without compromising 

the performance of the method given by the validation parameters. 

Likewise, it was observed that QuEChERS methodology was a valid 

technique to make a screening of the compounds presents in a sample, 

since it allowed the simultaneous extraction of the 5 groups of compounds 

in both environmental matrices. However, if a higher specificity or lower 
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detection limits are required, other kind of analysis methods should be 

considered. 

Once the analytical method was adapted and validated, the SVOCs 

presents in the real samples of soil and vegetation from Tarragona were 

determined (article 2 of this chapter). In the case of soils samples, all the 

target SVOCs were detected with the exception of nitro musks, PCB 169 

and some brominated flame retardants. This would be associated with the 

fact that many of these compounds have already been banned or have 

restricted use. In the case of vegetation, and in compared with soils 

samples, a larger number of compounds were not detected in the analysis 

in this matrix. This would reflect the differences between these two selected 

environmental matrices. In this sense, and contrary to soils, vegetation is 

more prone to trap gas-phase atmospheric compounds (Yogui et al., 2011), 

although in this case, being a species of ground vegetation, also the 

deposition of heavier compounds was observed.  

The results show that PAHs levels in soils ranged from 45.12 to 158.00 

ng/g and from 42.13 to 80.08 ng/g in vegetation samples; and in general, 

the urban areas presented the higher levels, mainly associated with the 

presence of a nearby highway and several roads with heavy traffic. 

Regarding PCBs, the chemical area, showed the highest values of PCBs in 

both matrices (from 6.62 to 14.07 ng/g in soils; from 0.52 to 4.41 ng/g in 

vegetation) at the same sampling point (point 11), and also is in agreement 

with the results provided by PUF-PAS (point 11 is C3 for PAS) (short 

communication 2, chapter 1 of this thesis), probably associated with the 

presence of two sub-electrical stations located in the vicinities. Levels of 

PAHs and PCBs were consistent with those recorded in previous studies 

since 2002. In the case of PAHs, a decreasing pattern in the total 

concentrations were observed since 2002, probability associated with the 

reduction in the PAHs emission observed between 1990 and 2010 in most 

European countries.  

SMs levels in soils and vegetation ranged from 5.42 to 10.04 ng/g and 

from 4.08 to 17.94 ng/g, respectively, and in both cases, background areas 

showed the highest levels, suggesting an influence of the personal care 
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products derived from beach-related tourism in the coast. In general terms, 

BFRs values recorded in soil and vegetation were quite similar between 

matrices and sampling areas, which may reflect their predominant 

association with indoor environments and also their banning for several 

years. Concerning HCB, similar values were found in both matrices and in 

all areas.  

In general terms, both the SVOCs levels as well as the diagnostic ratios 

for PAHs showed that, in the short term (vegetation samples), SVOCs 

contamination in Tarragona County would be mainly associated with a mix 

between petrogenic and pyrogenic sources, probably due to an influence 

from urban and industrial areas. In turn, in the long-term (soil samples), the 

SVOCs contamination would have a markedly pyrogenic origin mainly 

associated to an urban influence. On the other hand, and regarding to the 

risk associated to some of the SVOCs in the Tarragona County soils, it was 

shown that not always the compounds with the highest concentrations are 

those that present the most potential danger for human health. This is a 

reason to keep performing thorough sampling actions of these compounds 

as often and covering as many contaminants as possible. 

One of the main objectives of this thesis was to determine the main 

differences between the passive sampling techniques available for 

Tarragona County monitoring. As mentioned above, PUF-PAS, soils and 

vegetation were selected. Since PAHs are a family of compounds with well-

differentiated physical-chemical characteristics, their analysis can provide 

information on the action mechanism of each passive sampling techniques 

with respect to other SVOCs analyzed in this thesis. 

In the case of the PUF-PAS, it is observed that these devices mainly 

capture the low LMW PAHs, that is, the congeners with 2, 3 rings and, 

although to a lesser extent, some 4 rings PAHs, with a more than 90 % of 

the total contribution (Fig. 2 from short communication 1 and article 1, of 

chapter 1 of this thesis). This is so because the principle of advection-

diffusion on which PUF-PAS are based, makes that congeners of 2, 3 and 

4 rings, mostly associated with the gas phase, are quickly captured by the 

foam. Also PUF-PAS could sample the very low concentrations of 5 and 6 
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rings PAHs that are present in the gas phase. On the other hand, PUF-PAS 

are devices that allow to define the sampling period, from 1 month to 1 year, 

being usual 2 and 3 months sampling, which allows to establish a 

relationship between total concentration of PAHs captured and time. 

In the case of vegetation, as in the case of PUF-PAS, it is observed that 

tends to accumulate PAHs with 2, 3 and 4 rings (more than 90 % of the total 

contribution; Fig. 3, article 2 of this chapter). However, it is detected that the 

percentage of total contribution associated with the 4 rings PAHs is slightly 

higher in comparison with PUF-PAS (more than 10 %). Likewise, in this 

matrix a greater percentage of contribution from 5 and 6 PAHs rings is 

observed, which taking into account the characteristics of this passive 

sampling technique, could have reached the plant through deposition 

process. This shows that the vegetation traps the PAHs contents in the gas 

phase, but also retains some of them associated to the particulate phase 

(which has not been washed by natural processes). Likewise, it is estimated 

that percentages of total contribution could vary depending on the 

lipophilicity associated with the selected plant. In this thesis, it was decided 

to use the spice of ground plant Piptatherum L. This is because Piptatherum 

L is a fast-growing plant (between 2 to 4 months), which allowed to make 

equations to the sampling period defined for the PUF-PAS (2 months 

sampling). However, it should be noted that, as it is a fast growing plant, 

there could be a possible dilution of PAHs. The pattern observed in this 

thesis for vegetation samples is in agreement with those found by Navarro-

Ortega et al. (2012) in pine needles, where, a predominance of 3- and 4-

ring PAHs, ranging from 65% to 95% of the total concentration of PAHs. 

In the case of soils, a different profile of the PUF-PAS and vegetation 

is observed, with a clear predominance of the PAHs of 4, 5 and 6 rings (40-

90 % of the total contribution), compared to the more volatile PAHs. In this 

sense, the soils are capturing mainly the particulate phase and to a lesser 

extent the gas phase. On the other hand, it must be mentioned that in the 

case of soils the sampling period may be longer than in the case of PUF-

PAS and vegetation, since they are capable of storing compounds for a 

longer time. However, the soil has a high degradation capacity for this type 
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of compounds, especially LMW PAHs, so it is important to evaluate the sink 

character of this matrix that is, the balance between inputs and loses. This 

fact has been subsequently evaluated in chapter 3 of the thesis. 

In the case of PCBs, a pattern similar to PAHs has been found. PUF-

PAS and vegetation trends to capture the tris- tetra- and penta-,PCBs (the 

most volatile), while the soils capture penta-, hexa-, hepta- PCBs, which 

are the heaviest and the most resistant to degradation and could be 

associated with particulate phase. 

In this sense, this thesis confirms the importance of sampling in a 

complementary way with different passive sampling techniques, since 

depending on the characteristics of these, different information will be 

obtained.  
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CHAPTER 3: Modelling approaches as a 

combined tools of PAHs environmental 

monitoring. 
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ARTICLE 1: APPLICATION OF THE MULTIMEDIA URBAN 

MODEL TO ESTIMATE THE EMISSIONS AND 

ENVIRONMENTAL FATE OF PAHS IN TARRAGONA 

COUNTY, CATALONIA, SPAIN. 

 

Science of the Total Environment 573 (2016): 1622–1629. 

 

ABSTRACT 

 

The Multimedia Urban Model (MUM-Fate) was used to estimate the 

emissions, fate and transport of polycyclic aromatic hydrocarbons (PAHs) in 

Tarragona County, Catalonia, Spain, where the largest chemical/petrochemical 

industrial complex of Southern Europe is located. MUM-Fate is a Level III 

steady-state fugacity model consisting of seven bulk media compartments 

(lower and upper air, surface water, sediment, soil, vegetation, and an organic 

film that coats impervious surfaces). The model was parameterized according 

to environmental conditions in Tarragona County, and used to back-calculate 

emissions from measured air concentrations of naphthalene, anthracene, 

phenanthrene, fluoranthene, pyrene, and benzo(a)pyrene. Modelled results in 

soils were within the range reported form measured concentrations. Estimated 

emissions of Σ6PAH were 42 t/y, with phenanthrene having the greatest value 

(16 t/y). The fate and transport of Σ6PAH were subsequently estimated by 

running the model an illustrative emission rate of 1mol h−1. Organic film on 

impervious surfaces was the compartment that achieved the highest 

concentrations of PAHs, being up to 2 x 108 ng/m3. However, as the film 

conveys chemicals to surface waters, the persistence in this compartment was 

<1 day. Soils and sediments were the greatest sinks for PAHs, with a 

persistence of 100–1000 days. The greatest loss of PAHs was due to advection 

from air, followed by photodegradation from air. These results provide a first 

approximation of the current emissions and fate of PAHs in Tarragona County. 

 

Keywords: MUM-Fate · Polycyclic aromatic hydrocarbons (PAHs) · Urban 

pollution · Petrochemical area · Model evaluation 
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1. INTRODUCTION 

 

Urban areas, just by virtue of dense human populations with their 

activities, are major sources of chemical emissions and contamination (Van 

Metre et al., 2000; Diamond and Hodge, 2007; Melymuk et al., 2014). Urban 

areas are also frequently close to industrial complexes which can contribute 

additional emissions and contamination. According to the United Nations, 

54 % of the world's population live in urban areas, a proportion that is 

expected to increase to 66% by 2050 (UN, 2015). 

Urban areas are dominated by impervious surfaces such as roadways 

and buildings (Lawand Diamond, 1998; Diamond et al., 2001). Impervious 

surfaces alter urban hydrographic regimes by increasing rates of surface 

water flow and decreasing soil infiltration (Diamond et al., 2001). Most 

impervious surfaces, notably surfaces of buildings, are coated with a 

surface film, which is the result of condensation and deposition of organic 

compounds, and their subsequent transformation products (Law and 

Diamond, 1998; Diamond et al., 2000; Gingrich et al., 2001). Organic film 

thickness grows with time, depending on rain events, resulting in a 

thickness from 2.5 to 1000 nm in temperature zones (Gill et al., 1983; 

Diamond et al., 2000; Gingrich et al., 2001; Wu et al., 2008; Csiszar et al., 

2012). The organic film increases the capture efficiency of impervious 

surfaces for fine particles and facilitates the movement of compounds from 

impervious surfaces to receiving waters due to the wash-off process 

(Diamond et al., 2000, 2001; Csiszar et al., 2012). 

Numerous chemicals have been identified in surface films, including a 

wide range of semi-volatile organic compounds (SVOCs) such as polycyclic 

aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) 

(Diamond et al., 2000; Gingrich et al., 2001; Lam et al., 2005; Wu et al., 

2008). The film also contains biogenic organic compounds such as alkanes 

and alkanoic acids, metals and inorganic compounds such as sulphates 

and nitrates (Lam et al., 2005). PAHs are of concern not only because of 

their relatively high concentrations but also their potential toxicity. There is 
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a large body of information concerning their toxicity, and particularly the 

carcinogenicity of some PAHs. The International Agency for Research on 

Cancer (IARC) has classified benzo(a)pyrene as carcinogenic to humans 

(Group 1), and dibenzo(a,h)anthracene, as probably carcinogenic (group 

2A) (IARC, 2010). PAHs, which can be found in coal, petroleum and in tar 

deposits, are released by forest fires and other natural processes 

(Galarneau et al., 2007). However, their abundance in urban areas can be 

traced back to incomplete combustion of organic materials, notably vehicle 

emissions, domestic heating and industrial activities (Jaward et al., 2004; 

Wang et al., 2010; Estellano et al., 2012). Among these, petrochemical 

industries are particularly important emission sources of PAHs to air (Nadal 

et al., 2009, 2011). 

Due to the notable toxicity of PAHs, it is crucial to understand how these 

compounds are transported throughout the environment, including their 

rates of removal and degradation, as well as to identify the environmental 

compartments where they mainly accumulate. Multimedia models are 

useful tools to estimate the chemical fate of organic chemicals in 

environmental systems. Mackay (1991) was the first to develop multimedia 

environmental models using fugacity as a basis. The use of fugacity 

simplifies model development and calculations while retaining a rigorous 

formulation. While the models are difficult to evaluate (e.g., Oreskes et al., 

1994), they are based on fundamental principles, making possible an 

extensive use among the scientific community (Mackay and Paterson, 

1991; Kwamena et al., 2007; Csiszar et al., 2012, 2013). An example of a 

fugacity model is the Multimedia Urban Model (MUM-Fate) developed by 

Diamond et al. (2001). This is a Level III fugacity model that assumes 

steady-state conditions, being specific for urban areas. This model has 

been applied to estimate the fate of PCBs, PAH and polybrominated 

diphenyl ethers (PBDEs) (Priemer and Diamond, 2002; Jones-Otazo et al., 

2005; Kwamena et al., 2007; Diamond et al., 2010). As with other fugacity 

models, MUM-Fate considers both gas- and particle-phase chemicals. 

The aim of this study was to estimate the emissions, fate and transport 

of PAHs in Tarragona County, Catalonia, Spain, that is home to the largest 
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chemical/petrochemical industrial complex in Southern Europe. We 

achieved this aim by applying the MUM-Fate developed by Diamond et al. 

(2001). As noted above, the model was previously been applied in a case-

study to calculate the fate of a wide range of PAHs in Toronto, Canada 

(Kwamena et al., 2007). The model was evaluated by comparing the model 

results with field data on PAH levels in soil. 

 

2. MATERIAL AND METHODS 

 

2.1. Description of study area 

 

Tarragona County, located in NE of Spain and with a total population 

of 190,000 inhabitants (INE, 2014), is home of the largest 

chemical/petrochemical industrial complexes in Southern Europe. The 

complex includes a large oil refinery as well as large number of chemical 

companies. For this reason, the occurrence of PAHs in air and other 

environmental matrices was measured in previous monitoring studies 

conducted in this area (Nadal et al., 2004a, 2004b, 2007, 2009, 2011; 

Schuhmacher et al., 2004; Domínguez-Morueco et al., 2015). 

 

2.2. Multimedia Urban Model 

 

The MUM-Fate was used to investigate the dynamics of PAHs in 

Tarragona County, Spain. Full details of the model have been previously 

provided (Diamond et al., 2001; Priemer and Diamond, 2002; Jones-Otazo 

et al., 2005). Briefly, the model is based on the Level III steady-state 

fugacity model of Mackay (1991), and it consists of seven bulk media 

compartments: lower air (LA), upper air (UL), surface water (W), soil (S), 

sediment underlying the water (D), vegetation covering the soil (V), and an 

organic film that coats impervious surfaces (F). 

In the MUM-Fate model, each bulk compartment has a specified 

volume where “dissolved” (e.g., gas) and particulate phases of chemicals 
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are assumed to be in equilibrium. The entry of chemical compounds in the 

urban system can be through direct emission, E (mol/h), and/or by 

advective flow, G (m3/h), in the air or water compartments. The model 

quantifies chemical transfer among compartments, chemical 

transformations, and advective losses from air and water using D values 

(mol/Pa·h). Chemical loss can also occur through burial in deep sediments 

and leaching from soil. The capacity of a phase for a chemical is defined by 

fugacity capacity (Z) values (mol/Pa·m3). For the aerosols, soil, vegetation 

and film, Z values are governed by the octanol-air partition coefficient, KOA 

and by the organic carbon fraction, fOC. MUM-Fate consists of seven mass 

balance equations (Table. S1, Annex 6), one for each compartment, for 

which a steady state solution is obtained. The model is programmed in MS 

Visual Basic version 6.0 and runs on the PC platform in a Windows 

environment. 

 

Fig. 1. Location map and land uses in Tarragona County (Catalonia, Spain). 
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2.3. Model parameterization to Tarragona County  

 

The model was parameterized to simulate the environmental conditions 

of Tarragona County, Catalonia, Spain. A total surface area of 1000 km2 

was selected, covering the entire area sampled in previous field studies of 

our group (Domínguez-Morueco et al., 2015; Nadal et al., 2004a, 2004b, 

2009). The land uses for the Tarragona area were provided by the Spanish 

Occupation Information System Land (integrated within the National Plan 

for Territory Observation, www.siose.es) and were extracted using the 

software ArcGIS version 10 (Fig. 1). Regarding the sediment compartment, 

the same area as that of water surface area was chosen. The film surface 

area was determined based on an Impervious Surface Index (ISI) of 2.8 for 

Tarragona City. ISI accounts for the three-dimensional nature of the urban 

landscape of Tarragona City. It assumes that 50% of the impervious area 

is two-dimensional, with an index of 1. The remaining 50% consists of three-

dimensional buildings, whose average height, width and length were 

assumed to be 17, 20 and 18 m, respectively. A summary of surfaces that 

were employed in the model is presented in Table 1. 

The air compartments were defined in the ranges 0–200 m and 200–

2000 m for LA and UL, respectively, according to previous atmospheric 

boundary layer structure studies conducted in Tarragona County (Soler et 

al., 2011) (Table 1). The water compartment was assumed to simulate the 

Francolí River, which crosses the area from north to south flows into the 

Mediterranean Sea (Roig et al., 2013) (Table 1). The river has an average 

water depth of 0.5 m (Bangash et al., 2012), while a depth of 0.02 m for the 

sediment underlying to water was assumed (Table 1). Because of the 

relatively low percentage of agricultural soil, and consequently limited soil 

mixing, the soil thickness was assumed to be 0.05 m. Vegetation was 

estimated to have an overall thickness of 2 × 10−4 m, with a leaf area index 

(LAI) of 0.65. The LAI value was calculated averaging 46 LAI (1 × 1 km) 

images from Moderate Resolution Imaging Spectroradiometer (MODIS, 

NASA http://modis.gsfc. nasa.gov/) collected each 8 days for 2014. Due to 

the arid climate in the zone, wash-off is minimal (Fig. S1 Annex 6). Thus, 
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the thickness of the film was assumed to be 0.1 μm. The film phase was 

assumed to consist entirely of organic matter, with an organic carbon 

fraction, fOC, of 0.74 (Diamond et al., 2000). A value of 0.1 of organic carbon 

fraction was considered for air particles (Sánchez-Soberón et al., 2015). 

The fractions of organic carbon for the remaining compartments are shown 

in Table 1. The particle volume fraction in air was calculated using the 

annual average PM2.5 measured in the vicinities of the oil refinery (18.4 

μg/m3). Other input variables are also summarized in Table 1. 

Six different PAHs were considered in this study. They were selected 

as representatives of compounds with different number of aromatic rings 

and with physicochemical properties. In addition, the target pollutants are 

frequently associated with urban areas and released by petrochemical 

industries (Domínguez-Morueco et al., 2015; Nadal et al., 2004a, 2004b, 

2009, 2011). Physicochemical properties of the selected PAHs were 

obtained from EpiSuite (version 4.11, US EPA, 2012) (Table 2 and Tables 

S2 and S3 Annex 6). Henry's law constants, octanol-water partition 

coefficients (KOW) and octanolair partition coefficients (KOA) were taken from 

HenryWin, KowWin and KoaWin, respectively. In addition, air-water 

partition coefficients (KAW) were obtained from the Henry's law constant. 

Chemical transformation rates in all media were expressed as half-lives in 

that medium. For air, water, soil and sediment compartments, half-life 

values were obtained from AOPWin and BioWin, respectively (EpiSuite 

version 4.11, US EPA, 2012). Media half-life values for vegetation and 

organic film compartments were assumed to be 25 % and 30 %, 

respectively, less than that for the air compartment (Priemer and Diamond, 

2002; Kwamena et al., 2007) (Table 2). The photochemical oxidation by 

reaction with hydroxyl radicals was assumed to be the dominant chemical 

transformation process for PAHs in the atmosphere (Kwamena et al., 

2007). In turn, photodegradation was considered as the main degradative 

process in vegetation and organic film (Diamond et al., 2001). A diurnally 

averaged hydroxyl radical concentration of 1.5 × 106 mol/cm3 for urban 

environments was adopted from AOPW in Episuite version 4.11 (US EPA, 

2012). 
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Unless specified, default input parameters and coefficients used in 

MUM-Fate were taken from Diamond et al. (2001). An average steady-state 

scenario that spanned one year was assumed to represent the four 

seasons. In 2014, mean temperature (T) rain rate (UR) and wind speed (v) 

were 16 °C, 638.5 mm/year and 2.4 m/s, respectively. The advective air 

flow (GA) was calculated as the product of the cross-sectional area of air 

compartment and the annual mean wind speed for Tarragona County 

(Table 1). A water advection rate (GW) was calculated using an average 

annual flow of 2 m3/s for the Francolí River (Table 1). The wet deposition 

interception fraction (IfW) of 0.217 was calculated according to the equation 

described by Müller and Pröhl (1993), considering the LAI value above 

described, and an interception coefficient α of 1. A general value of 0.13, 

representing a variety of Mediterranean forest located in NE of Spain (Piqué 

et al., 2011), was used for the interception loss fraction (IlW) of wet 

deposition. The soil solids runoff rate to water (USW: 9.13 × 10−10 m/h) was 

calculated according to Allen and Shonnard (2002), while the soil water 

runoff to sediments (UWW) in the Francolí River was 4.6 × 10−6 m/h (Liquete 

et al., 2009; Bangash et al., 2012). 
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Table 1. Model parameter values for Tarragona County (Catalonia, Spain). 

 
 

Compartment Lower air Upper air Water Soil Sediment Vegetation Film 

 

Surface area (m2) 1.04 × 109 1.04 × 109 1.72 × 106 8.51 × 106 1.72 × 106 9.03 × 108 1.45 × 109 

Depth (m) 200 2000 0.5 0.05 0.02 2.00 × 10-4 1.00 × 10-7 

Volume (m3) 2.08 × 1011 1.87 ×1012 8.58 × 105 4.26 × 105 3.43 × 104 1.81 × 105 1.45 × 102 

Fraction of organic carbon 0.1a 0.1a 0.02b 0.02b 0.04b 0.02b 0.74c 

Density (kg/m3) 1.175 1.175 1000 1300 b 1500 b 1000d 820d 

Va ~1.00 ~1.00 - 0.20e - 0.18b - 

Vw - - ~1.00 0.30e 0.63e 0.80b - 

Vpart 1.57 × 10-8 1.57 × 10-8 3.00 × 10-5f - - - 0.7b 

Advective flow (m3/h) 5.57 × 1010 5.01 × 1011 7.20 × 103 - - - - 

Va = volume fraction of air inside the compartments; Vw  = volume fraction of water inside the compartments; Vpart = volume fraction of particles inside the 

compartments; aSánchez-Soberón et al., 2015 ; bDiamond et al., 2001 ; cDiamond et al., 2000 ; dKwamena et al., 2007 ; eMackay, 1991; fJones-Otazo et al., 

2005. 
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Table 2. Physical-chemical properties and transformation rates of chemicals modelled at 298ºK. 

 

 
Naphthalene Anthracene Phenanthrene Pyrene Fluoranthene Benzo(a)pyrene 

MW (g/mol) 128.12 178.24 178.24 202.26 202.26 252.32 

M.P. (ºC) 80.2 215 99.2 151.2 107.8 176.5 

Wsol (g/m3) 31.7 0.041 1.29 0.135 1.29 × 10-3 0.0038 

Henry's Law constant (Pa m-3 mol-1)a 44.6 5.63 4.29 1.21 0.89 0.046 

Log (Kow)b 3.3 4.46 4.46 4.88 5.16 6.13 

Log (Koa)c 5.19 7.55 7.57 8.80 8.88 10.86 

V.P. (Pa)d 11.3 3.50 × 10-4 0.016 6.00 × 10-4 1.20 × 10-3 7.30 × 10-7 

τ1/2 (air) (h)e 11.60 6.33 18.90 5.08 21.30 5.08 

τ1/2 (water) (h)f 318 430 430 833 833 940 

τ1/2 (soil) (h)f 1905 2150 2150 4164 4164 4700 

τ1/2 (sed.) (h)f 1910 2150 2150 4160 4160 4700 

τ1/2 (veg.) (h)g 8.7 4.7 14.2 3.8 16.0 3.8 

τ1/2 (film) (h)h  8.1 4.4 13.2 3.6 14.9 3.6 

aFrom HenryWin (EPA EpiSuite Software); bFrom KowWin (EPA EpiSuite Software); cFrom KoaWin (EPA EpiSuite Software); dFrom Kwamena et al., 2007; eFrom 

AOPWin (EPA EpiSuite Software); fFrom BioWin (EPA EpiSuite Software); gSeventy five percent of the half-lives of PAHs in the air compartment; hSeventy percent 

of the half-lives of PAHs in the air compartment. 
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2.4. Estimating emissions and model runs  

 

Emissions into LA were only considered as total emissions from all 

sources including the chemical and petrochemical industries, vehicle traffic 

and other stationary sources located across Tarragona County. Emissions 

into the water compartment were assumed to be minimal. Emissions to LA 

were back-calculated by running the model iteratively with trial emissions 

of PAHs until modelled and measured air concentrations were equal. Gas- 

and particle-phase air concentrations of PAHs measured by the regional 

government in 2014 (ASP, 2015) were used for this purpose. Because of 

its proximity to the oil refinery and the relatively high PAH levels found in 

previous monitoring studies, air concentrations measured at the village of 

Puigdelfí adjacent to the petrochemical industry was used to back-calculate 

the emissions (Domínguez-Morueco et al., 2015). Air concentrations of 

PAHs were measured using an active air sampler deployed in Puigdelfí 

weekly during a 9-month period in 2014. 

The model was run with an illustrative emission of 1 mol/h of PAHs into 

the air compartment in order to estimate the fate and transport of PAHs in 

Tarragona County. Finally, MUM-Fate was evaluated by comparing 

modelled levels using estimated air emissions with measured soil 

concentrations reported in that area (Nadal et al., 2004a, 2004b; Nadal et 

al., 2009; Nadal et al., 2011). 
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3. RESULTS AND DISCUSSION 

 

3.1. MUM-Fate evaluation 

 

One of the most important steps in modeling process is the model 

evaluation. Since models reproduce conditions in an open system (all 

natural systems are “open”) and results are non-unique, models of natural 

systems cannot be verified or validated (Oreskes et al., 1994). Therefore, 

the results of MUM-Fate were evaluated, which simply involves comparing 

modelled and measured concentrations. Tarragona County, as an area 

highly impacted by industrial activities, has sustained a large multi-

component environmental monitoring program since 2002. As part of this 

program, PAHs have been analyzed in soil and vegetation samples from 

different zones of Tarragona County (Nadal et al., 2004a, 2004b, 2007, 

2009, 2011; Schuhmacher et al., 2004). 

MUM-Fate was run with theΣ6PAH emissions estimated for 2014. 

Modelled soils concentrations are summarized in Table 3.With the 

exception of naphthalene, PAH concentrations in soil estimated by the 

MUM-Fate model, were within the range reported in previous monitoring 

surveys (Nadal et al., 2004a, 2009, 2011). Based on the correspondence 

between measured and modelled soil concentrations (R2 ranging from 0.56 

to 0.92; Fig. S2 Annex 6), the current model was deemed to provide a 

reasonable representation of PAH dynamics in Tarragona County. 

UNIVERSITAT ROVIRA I VIRGILI 
ENVIRONMENTAL LEVELS OF PAHs AND OTHER SVOCs IN A PETROCHEMICAL AREA. COMBINING MONITORING 
AND MODELLING TOOLS 
Noelia Domínguez Morueco 
 



 

- 217 - 

Table 3. Modelled soil concentrations by MUM-Fate model for Tarragona area in 2014 and soil concentrations (range and sampling points) 

reported in previous Tarragona field studies.  

Compound 

 
MUM-Fate 

 

 

Nadal et al., 2004 

 

Nadal et al., 2009 

 

Nadal et al., 2011 

 Soil estimated concentrations 
(ng/g) (min-max) 

 

Sampling 
points (ng/g) 

Range 
(ng/g) 

 

Sampling  
points (ng/g) 

Range 
(ng/g) 

 

Sampling 
points (ng/g) 

Range 
(ng/g) 

Naphthalene 7.4 × 10 -3 (2.2 × 10 -4-3 × 10 -2) 

 

- <2-8.3 

 

- 9.9-71.6 

 

- 2-55.7 

Anthracene 2.6 (0.1-7.6)  

 

3.1 (P) <2-51 

 

2.1 (P, C) <2-4.7 

 

1 (P) 1-19.9 

Phenanthrene 9.1 (0.6-52.5)  

 

16 (P); 7.9 (B) 7.9-131 

 

7.5 (P); 9.1 (C) 7.5-34.4 

 

7 (B) 3.6-49.8 

Pyrene 20.6 (5.2-100.2)  

 

20 (P) 2.5-180 

 

12.8 (C); 44.4(U) 6.2-44.4 

 

26 (B) 11-111 

Fluoranthene 37.9 (1.7-192)  

 

23 (C) 5.6-180 

 

43 (U) 6.8-43.0 

 

23.6 (B) 7.8-106.3 

Benzo(a)pyrene 4.6 (4.3-9.8)  

 

18 (P) 18-100 

 

6.6 (C); 8.1 (P) 4.9-41.8 

 

4.9 (P) 4.9-60.9 

P= petrochemical sampling point; C= Chemical sampling point; U= Urban sampling point; and B= Background sampling point. 
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3.2. Estimated emissions 

 

According to the model results, the emissions ofΣ6PAH in Tarragona 

County were estimated to be 42 tonnes year−1 (t y−1) in 2014, with a 

minimum value of 5.2 x 10−2 t day−1 (t d−1), and a maximum of 0.5 t d−1. The 

emissions of each PAH were estimated as 5.7 t y−1 (range: 4.6 x 10−4–6.3 

x 10−2 t d−1) for naphthalene, 7.1 t y−1 (8.1 x 10−4–5.6 x 10−2 t d−1) for 

anthracene, 16.4 t y−1 (2.8 x 10−3–0.26 t d−1) for phenanthrene, 5.8 t y−1 (4 

x 10−3–7.7 x 10−2 t d−1) for pyrene, 6.5 t y−1 (7.8 x 10−4–9 x 10−2 t d−1) for 

fluoranthene, and 0.9 t y−1 (2.3 x 10−3–5.3 x 10−3 t d−1) for benzo(a)pyrene. 

These results were compared with those reported by the Spanish Register 

of Emissions and Pollutant Sources (PRTR-Spain). PRTR-Spain is a 

register that provides publicly available information on pollutant emissions 

to air, water and soil of major industries in Spain. In 2014, the value of total 

PAH emissions into air reported by PRTR-Spain for all Catalonia was 0.704 

t y−1, a substantially lower value than that estimated by MUM-Fate for 

Tarragona County. This discrepancy could be due to the fact that industries 

registered in the PRTR-Spain are only required to declare emissions 

exceeding 50 kg y−1. In addition, only industrial emissions are considered 

by the PRTR-Spain, while those associated with urban activities, such as 

heating or traffic, are not included. However, emissions from these sources 

were included in our emission estimates. 

Emissions estimated by the MUM-Fate model were also compared with 

those reported for the European Union (EEA, 2013), corresponding to total 

PAH emissions to air for the 27 EU Member Countries. The mean value 

estimated for Tarragona County (42 t y−1) is 5-times lower than the total 

national reported for the year 2011 (210 t y−1) in Spain, the Member State 

with the highest contribution to the total PAH emissions in the EU. However, 

considering emissions per capita, values for total emissions of PAHs were 

estimated in 9.9·10−2 kg person−1 y−1 in the modelled area, being around 20 

times greater than those calculated for Spanish citizens (4.3 x 10−3 kg 

person−1 y−1). The higher emission rate calculated here is consistent with 

the considerable industrial activity in Tarragona County. 
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Finally, air emissions of PAHs estimated by the MUM-Fate model for 

Tarragona County, are comparable with values reported by Jiang et al. 

(2013) in different districts of Taiyuan, China (Qingxu: 87 t y−1, Gujiao: 54 t 

y−1, Jinyuan: 44 t y−1, and Jiancaoping: 40 t y−1). Other authors reported 

PAH emissions at country level and thus are not readily compared with 

estimates presented here. Singh et al. (2013) reported that PAH emissions 

in India were 23.81 Gg y−1, while in China, Zhang et al. (2007) estimated a 

total emission of 28.25 Gg y−1. The total annual emission of six PAHs for 

US and Canada was estimated to be 18.27 Gg y−1, arising mostly from US 

sources (Galarneau et al., 2007). 

 

3.3. Fate and transport of PAHs in Tarragona County 

 

The relative fate and transport of six PAH were compared using MUM-

Fate with an illustrative emission of 1 mol/h into air. The same PAH 

concentration pattern (benzo(a)pyrene > fluoranthene > pyrene > 

phenanthrene > anthracene > naphthalene) was found in all the 

compartments, with concentrations increasing according to molecular 

weight. Lower molecular weight PAHs are predominantly present in the 

gas-phase, so they remain in air, where they are subject to loss by 

advection and photodegradation. Heavier molecular weight PAHs tend to 

be in the particulate-phase (Choi et al., 2012; Estellano et al., 2012; Pozo 

et al., 2012). In the particulate phase, they can be deposited from air to 

other compartments. In addition, particulate-phase PAHs are more 

resistant to photolytic reaction than PAHs in the gas phase. In the air 

compartment, PAH concentrations were quite similar, irrespective of the 

molecular weight, reflecting the assumption of continuous emission of 1 

mol/h into air. 

The results of the MUM-Fate model showed that the film compartment 

achieves the highest concentrations of the 6 studied PAHs, being followed 

by sediments and soils (Fig. 2). This pattern is consistent with results found 

in downtown Toronto, Ontario, Canada, after applying the same model and 

considering the same illustrative emission of 1 mol/h into air (Diamond et 
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al., 2001; Priemer and Diamond, 2002). 

 

 
Fig. 2. MUM-Fate estimated concentrations of PAHs selected in the bulk phase (ng 

m-3) based on an emission of 1 mol h-1 into air. 

 

In contrast, soil and sediment were the greatest sinks of PAHs in 

Tarragona County (Fig. 3), as chemical persistence were higher in both 

compartments. These results also agree with those found in Toronto, 

Ontario, Canada (Diamond et al., 2001; Priemer and Diamond, 2002). In 

this case, the compartments receive PAH inputs from air, water and 

vegetation, while losses are relatively low (Fig. 4). As such, the persistence 

in soil and sediment, calculated as the ratio of chemical mass to losses from 

a compartment, was estimated to range from 100 to 900 days (3 years) for 

naphthalene and benzo(a)pyrene, respectively (Fig. 3). Biodegradation was 

the greatest loss mechanism in both soil and sediment. 
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Fig. 3. MUM-Fate estimated persistence of PAHs selected in each compartment 

(days) based on an emission of 1 mol h-1 into air. Persistence is calculated as the 

ratio of chemical mass to inputs to that compartment. 

 

Film on impervious surfaces receives chemical inputs from atmospheric 

deposition, which are balanced by high losses due to wash-off from film to 

water, and by photodegradation. For instance, approximately 42 % of the 

losses of benzo(a)pyrene occur by wash-off, and the remaining 58 % by 

photodegradation (Fig. 4). Although the film achieves the highest PAH 

concentrations, the rapid loss leads to a chemical persistence in film of < 1 

day (Fig. 3). In this sense, the film compartment increases the mobility of 

PAHs (Csiszar et al., 2012). 

The burdens of PAHs in vegetation were also estimated by the MUM-

Fate according with the illustrative emission of 1 mol/h into air. The 

concentrations of PAHs were much lower than those found in downtown 

Toronto, Ontario, Canada (Diamond et al., 2001). It could be due to the 

differences in climate condition and type of vegetation for each region, 

which ultimately affects the deposition of these compounds. Moreover, high 

photodegradative reactive losses should be also playing a key role (Fig. 4). 

Water concentrations ranged between 100 and 1,000,000 ng/m3 for 

naphthalene and benzo(a)pyrene, respectively, according with the 
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illustrative emission of 1mol/h into air. The greatest input of chemical to 

water was from film (0.01 to 20 mmol/h for naphthalene and 

benzo(a)pyrene, respectively) rather than from direct atmospheric 

deposition (< 0.1 mmol/h). Although annual precipitation is low in Tarragona 

County due its semi-arid climate, rainfall facilitates the transfer of PAHs 

accumulated on impervious surfaces to the river (Fig. 4). Chemical 

persistence in water is only 1–5 days due to advective loss from the 

Francolí River (Fig. 3), while this only exports to downstream locations < 2 

% of PAHs emitted to air. 

The greatest loss of PAHs from Tarragona County was due to 

advection from air, followed by photodegradative losses from air (Fig. 4). 

Due the high advective losses from air, persistence in LA and UL was < 1 

day for the six PAHs. These results suggest that areas downwind of 

Tarragona County receive from 50 % to 70 % of emissions generated within 

the County (benzo(a)pyrene and naphthalene, respectively). 

 

 

 

Fig. 4. MUM-Fate estimated rates of chemical movement and transformation for 

benzo(a)pyrene based on an emission of 1 mol h-1 into air. Transport rates are 

expressed in mmol h-1. MUM-Fate estimated rates of chemical movement and 

transformation for the rest of PAHs studied are in Annex 6 (Fig. S3-S7). 

UNIVERSITAT ROVIRA I VIRGILI 
ENVIRONMENTAL LEVELS OF PAHs AND OTHER SVOCs IN A PETROCHEMICAL AREA. COMBINING MONITORING 
AND MODELLING TOOLS 
Noelia Domínguez Morueco 
 



                                                                                                               CHAPTER 3 

 

- 223 - 

 

4. CONCLUSIONS 

 

The MUM-Fate was successfully applied to estimate the emissions, fate 

and transport of PAHs in Tarragona County, Catalonia, Spain, an area with 

the largest chemical and petrochemical industrial complex in Southern 

Europe. Total emissions of 6 PAHs of 42 t y−1 were estimated by back-

calculation from measured air concentrations. Using the compound- 

specific estimated emissions, modelled soil concentrations were within the 

range of measured values reported for Tarragona County. The model, 

which was run for illustrative purposes with an emission of 1 mol/h to air for 

each PAH, estimated that 50–70 % of the PAHs emitted to air were lost by 

downwind advection. Organic film achieved the highest concentrations of 

PAHs. However, the high losses by wash off and photodegradation resulted 

in a persistence of in the film of < 1 day. Wash-off from the film delivered 

particle-sorbed PAHs to the river running through Tarragona County. This 

process, along with degradation losses, resulted in < 2 % of total air inputs 

being exported downriver. Soils and sediments were the greatest sinks for 

PAHs, as consequence of their high inputs from air, water and vegetation, 

relative to low losses. Persistence in soils and sediments was estimated to 

range 100–1000 days. The model illustrates that surface films on 

impervious surfaces are important in conveying PAH emitted to air to 

surface water, sediments and soils. 
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ARTICLE 2: COMBINING MONITORING AND MODELLINGS 

APPROACHES FOR BaP CHARACTERIZATION OVER A 

PETROCHEMICAL AREA. 

 

For submission to Science of the Total Environment. 

 

ABSTRACT 

 

In this study, air concentrations of BaP in two different seasons (winter 2015 

and summer 2016) and ground vegetation BaP levels from Tarragona County 

were used as control simulations run with the chemistry transport model (CTM) 

WRF (Weather Research and Forecasting) + CHIMERE, in order to reproduce 

the incidence of that hazardous chemical in air and soils. Once the CTM was 

validated for the present climatology showing a good ability to represent air and 

soil concentrations of BaP over the target domain (petrochemical, chemical, 

urban and background sites), particularly in the winter, the variation of the BaP 

concentration in air and soils were simulated for the time series 1996-2015 and 

for the climate change scenario RCP8.5 (2031-2050). While for the levels in air 

an increase is projected, particularly in chemical and remote sites where the 

variation can go up to 10 %, in terms of soil deposition the findings are the 

opposite, with an evident decrease in soil BaP concentrations, particularly in 

background sites. Finally, a potential health effect of BaP for the local 

population (the life-time risk of lung cancer) was assessed. Although according 

to the projections the EU threshold for BaP atmospheric incidence (1 ng m-3) 

will not be reached by 2050, there will be an increase in the life-time risk of lung 

cancer, particularly in the most populated areas. 

 
Keywords: Benzo (a) pyrene · Passive sampling · WRF+CHIMERE · Human 

health · Tarragona (Spain). 
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1. INTRODUCTION 

 

Field sampling is a crucial tool to determine the occurrence of 

hazardous compounds into the environment. Among the different 

monitoring strategies, the passive sampling of air (with appropriate uptake 

materials), soils or vegetation can provide information on the levels of many 

pollutants at different locations including remote areas, and involving low or 

no maintenance and reduced costs (Zabiegała et al., 2010; Cabrerizo et al., 

2012; Estellano et al., 2014; Domínguez-Morueco et al., 2017). 

Nevertheless, to help transforming these valuable datasets into a complete 

understanding of spatial, temporal and chemical transport patterns it is 

essential to combine the field observations with modelling (Ratola and 

Jiménez-Guerrero, 2016).  

Currently, the mass balance models or deterministic approaches are 

one of the most used techniques for the modelling of environmental 

pollutants such as semi-volatile organic compounds (SVOCs), a large 

group of compounds found worldwide in numerous environmental matrices 

(He and Balasubramanian, 2010). Mass balance techniques can provide a 

first approximation of the chemical fate and transport of SVOCs in 

environmental systems by using the fugacity concept, which simplifies the 

model development and calculations, allowing an extensive use among the 

scientific community (Mackay and Paterson, 1991; Csiszar et al., 2012, 

2013; Domínguez-Morueco et al., 2016). Nevertheless, these techniques 

do not reflect the complexity to characterise adequately all processes 

involving these chemicals. In this sense, chemistry transport models 

(CTMs) such as the Weather Research and Forecasting (WRF) coupled 

with CHIMERE (the setup used in this work), can complement the field data 

also considering the meteorology of the study area, the atmospheric 

chemistry and climate change, contributing to diminish the gaps still existing 

regarding SVOCs environmental behaviour (Ratola and Jiménez-Guerrero, 

2015, 2017). WRF is a numerical weather prediction (NWP) and 

atmospheric simulation system designed for the understanding and 
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prediction of mesoscale weather (Skamarock et al., 2008), whereas 

CHIMERE is an Eulerian off-line CTM that includes parameterisations to 

simulate reasonable pollutant concentrations, but still being 

computationally efficient for forecast applications (Menut et al., 2013). 

Among the different SVOCs, the polycyclic aromatic hydrocarbons 

(PAHs) have attracted the attention of the scientific community for 

environmental modelling due to their ubiquity in the environment, constant 

production/emission, long-range atmospheric transport (LRAT) capacity 

and relatively high toxicity (Estellano et al., 2012; Domínguez-Morueco et 

al., 2017). For instance, benzo(a)pyrene (BaP), has already been classified 

as carcinogenic to humans (Group 1) by the International Agency for 

Research on Cancer (IARC), and is the only PAH with a legislated average 

limit in the atmosphere: 1 ng m-3 of BaP over 1 year (European 

Commission, 2009). International studies suggest that the toxicity and 

environmental fate and transport of PAHs can be affected by the variations 

in the temperature and solar radiation associated with climate change, 

mainly in the most vulnerable regions, such as the Mediterranean basin 

(Nadal et al., 2015; Marquès et al., 2016a).   

PAHs are mostly emitted by anthropogenic sources, being the oil 

refineries a considerable emission point (Nadal et al., 2009). Located in the 

Mediterranean basin, Tarragona County (Catalonia, NE of Spain) is home 

of one of the largest chemical/petrochemical complexes in Southern 

Europe. For this reason, combining monitoring and modelling approaches 

for PAHs is very important to evaluate the impact of these contaminants in 

the surrounding environment, as well as to assess the risks for the local 

population. In this sense, associating the results provided by CTMs with the 

quantitative risk assessment (QRA) methods developed by the European 

Union, can help to unravel potentially hazardous effects to human health. 

The main aim of this study was to combine monitoring data on air and 

ground vegetation from Tarragona County with the CTM WRF+CHIMERE 

in order to estimate the geographical distribution and air and soils 

concentrations of BaP in the time series between 1996 and 2015 and under 

the more extreme climate change scenario RCP 8.5 (2031-2050). To 
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achieve this goal the modelling methodology developed by Ratola and 

Jiménez-Guerrero (2016) was used. Furthermore, in order to assess the 

potential risk of atmospheric BaP for the local population, a QRA method 

was conducted, concerning the risk of lung cancer associated to the 

presence of BaP in the atmosphere of Tarragona County. 

 

2. MATERIAL AND METHODS 

 

2.1. Field sampling 

 

In this study, air and vegetation concentrations of BaP from Tarragona 

County were used in order to evaluate the WRF+CHIMERE modelling 

system.  

Passive air samplers (PAS) with pre-clean polyurethane foams (PUF 

disks; diameter: 14 cm; thickness: 1.2 cm; surface area: 360 cm2; density: 

0.035 g cm-3 from Newterra, Beamsville, ON, Canada) were used to 

measure the atmospheric BaP levels in Tarragona County. A total of eight 

PAS were deployed in different areas of Tarragona County, for a period of 

2 months in two different sampling campaigns: from 26/11/2014 to 

26/01/2015 (winter season); and from 01/05/2016 to 01/07/2016. The 

distribution of the sampling sites was reported previously by Domínguez-

Morueco et al., 2017 (two samples in a petrochemical area, P1 and P2; two 

samples close to a zone of chemical industries, C3 and C4; two samples in 

urban areas, U5 and U6; and two samples in background sites, B7 and B8, 

30 km away from the area of influence of all the suspected sources of 

contamination). 

Regarding vegetation samples, by end of January 2016 (25/01/2016) a 

total of 27 vegetation samples were collected in different zones of 

Tarragona County, following the distribution described by Domínguez-

Morueco et al. (submitted to Sci. Total. Environ.; chapter 2) (7 in a zone in 

a petrochemical area; 9 in the vicinity of the chemical area; 6 in residential 

and urban zones of Tarragona County and 5 were selected in background 
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areas). A total of 50 g of vegetation samples (Piptatherum L.) were obtained 

by cutting the plants 5 cm above ground, and dried at room temperature. 

 

2.2. Field samples analysis and quantification 

 

The analysis and quantification of BaP in environmental samples was 

done together with other PAHs. 

In the case of air BaP was extracted from PUF samples using Soxhlet 

and a clean-up strategy similar to that described by Silva et al. (2015). In 

brief, the Soxhlet method consisted in extracting with 250 mL Hex:DCM 

(1:1) overnight and reduce the extracts to 1 mL in a rotary evaporator before 

clean-up, which consisted of two steps. First, solid phase extraction (SPE) 

glass columns packed with 5 g of alumina, conditionined with 50 mL of 

Hex:DCM (1:1) and eluted after sample loading with 50 mL of the same 

solvent. The extract was then reduced to 1 mL on a rotary evaporator and 

loaded onto gel permeation chromatography (GPC) glass columns 

containing 6 g of S-X3 Biobeads for the second step. Elution was done with 

40 mL of Hex:DCM (1:1), from which the first 15 mL were rejected and the 

remaining eluate collected. The extract volume was again reduced to about 

1 mL in rotavapor, followed by evaporation to dryness under a gentle 

stream of nitrogen. Sample reconstitution was done with 100 µL of hexane 

before analysis by GC-MS. 

For vegetation samples, BaP was extracted by ultrasound extraction 

method followed by QuEChERS clean-up step according to Carvalho et al., 

(submitted to Anal. Bioanal. Chem.; chapter 2) and Domínguez-Morueco et 

al., (submitted to Sci. Total Environ.; chapter 2). A total of 2.5 g of 

vegetation were transferred into 50 mL Falcon tubes and extracted with 20 

mL Hex:DCM (2:1) in a sonication bath for 10 min. Then, the content of the 

QuEChERS 1 (6 g of MgSO4 and 1.5 g of CH3COONa) was added to each 

Falcon tube and vortexed for 3 min. Subsequently, the tubes were 

centrifuged for 10 min and the supernatant collected and transferred to 

QuEChERS 2. The QuEChERS 2 was 0.9 g of MgSO4, 0.15 g of alumina, 

0.15 g Florisil and 0.15 g of C18. The tubes were shaken again during 3 

UNIVERSITAT ROVIRA I VIRGILI 
ENVIRONMENTAL LEVELS OF PAHs AND OTHER SVOCs IN A PETROCHEMICAL AREA. COMBINING MONITORING 
AND MODELLING TOOLS 
Noelia Domínguez Morueco 
 



CHAPTER 3 

 

- 236 - 

 

min in order to conduct the dispersive solid-phase extraction (d-SPE). After 

that, the tubes were centrifuged (10 min) and the extract was collected and 

filtered with a conventional 0.2 µm size filter in order to remove more 

unwanted compounds. The final sample extract was concentrated until 

dryness with nitrogen and subsequently re-dissolved with 100 µL of hexane 

before the GC-MS analysis. 

The details of the chromatographic analysis for both matrices can be 

found in Silva et al. (2015) and in chapter 2 of this thesis. 

 

2.3. Set-up and validation of the modelling approach 

 

The modelling methodology used follows the work developed by Ratola 

and Jiménez-Guerrero (2016).  In this case, the WRF+CHIMERE modelling 

system with a resolution of 2 km for the Catalonia (Spain) domain was used, 

coupled to BaP emissions given by the European Monitoring and 

Evaluation Programme (EMEP; Vestreng et al., 2009). The main 

parameterisations are presented in Table 1. 

 

Table 1. Parameterisations used in the WRF+CHIMERE modelling system. 

WRF  CHIMERE  

Microphysics → WSM3 Chemical mechanisms → MELCHIOR2 

PBL → Yonsei University 
Aerosol chemistry → Inorganic (thermodynamic 
equilibrium 

Radiation → CAM      with ISORROPIA) and organic (MEGAN SOA scheme) 

Soil → Noah LSM      aerosol chemistry 

Cumulus → Kain-Fritsch 
Natural aerosols → dust, re-suspension and inert sea-
salt 

 Boundary conditions → LMDz-INCA+GOCART 

 

The CHIMERE version was modified to include BaP in gaseous and 

particulate phase. The lighter PAHs (2 or 3 aromatic rings) exist mainly in 

the gas phase, whereas the heavier (5 to 6 rings) consist almost entirely of 

the particulate phase (Srogi, 2007), and this is the case of 5-ringed BaP 

modelled in this work. Thus, BaP is introduced in the model as three 

different types at the same time: primary, semivolatile and reactive. First-
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order gas-phase degradation by OH radicals, which represents over 99 % 

of the degradation path for gas-phase BaP, was accounted for, with a kOH 

= 5.68 x 10-11 cm3 molecule−1 s−1 (Schwarzenbach et al., 2003). The 

oxidation of particulate BaP with O3 was also included, since the respective 

reaction rate is one order of magnitude higher than other degradation 

processes, and can be considered the only effective degradation path for 

particulate BaP in the atmosphere (Bieser et al., 2012).  In this case, the 

reaction constant follows the approach of Pöschl et al. (2001): 

 

k = kmax [O3] (1 + KO3 [O3])  

(1) 

 

being kmax = 0.015 s-1 and KO3 = 2.8 x 10-13 cm3. 

 

The model system was run and evaluated for a simulation covering a 

period coincident with the passive air samples; that is, for a winter 

(26/11/2014 to 26/01/2015) and a summer (01/05/2016 to 01/07/2016) 

period  and in order to check the ability of the model to reproduce BaP 

climatologies over the target area. Moreover, the deposition in soils is 

assessed against the concentrations of BaP found on Piptatherum L. 

samples collected on 25/01/2016. Piptatherum L. is a fast-growing grass, 

between 2 to 4 months, beginning its growth with the first rains and when 

temperatures began to drop, and drying up during the warm seasons (Sulas 

et al., 2015). Moreover, being a ground plant with low height, the 

concentration accumulated during this time can be a good representation 

of the deposition onto the soil. Therefore, the deposition period extracted 

from the model was assuming to be three months until the collected 

samples, in line with this biomonitor. 

To assess the ability of the model to reproduce current BaP air 

concentrations, a number of statistical parameters were tested for 

atmospheric levels and soil deposition. For instance, spatial correlation 

coefficient (R), mean absolute error (MAE) and mean bias (Bias) are 

commonly used by modellers. In addition, according to Boylan and Russell 
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(2006), the mean fractional bias (MFB) and the mean fractional error (MFE) 

were also used. These authors indicate that the model performance 

criterion is met when MFE ≤75 % and MFB ≤ ±60 %. As such, these criteria 

were chosen to supply the metrics for the evaluation of BaP by the 

WRF+CHIMERE system. 

After the ability of the model is analysed, its accuracy for correctly 

reproducing the BaP climatologies was assessed, with present and future 

simulations run with WRF+CHIMERE. The air quality associated to the 

present BaP levels in this work uses simulations spanning the reference 

period 1996-2015 for the present, and 2031-2050 under the RCP8.5 

scenario (Moss et al., 2010), as a future-enhanced forcing scenario. To 

date, the future-minus-present method has been the most frequent 

approach adopted for the evaluation of climate change impacts on 

projected regional air quality. This is based on the assumption that biases 

in simulated present-day and future climate simulations should tend to 

cancel each other, and thus their difference captures the signal of the 

concentration anomalies. This method is widely supported in most future 

climate-air quality interactions studies (e.g. Liao et al., 2009; Jiménez-

Guerrero et al., 2013a, b, c), and therefore followed in this work. 

Simulations for present-day climatologies (1996-2015) were compared to a 

time slice covering 2031-2050. In order to isolate the possible effects of 

climate change on the ground concentrations of air pollution, unchanged 

anthropogenic emissions are assumed. Natural emissions depend on 

climate conditions and, consequently, are the only ones to vary between 

reference and future climate simulations. Therefore, the effects of climate 

change on air pollutants are estimated without considering possible 

changes on vegetation, land use, anthropogenic pollutant emission 

changes or any feedbacks from the chemical compounds to the 

meteorological fields, but allowing changes in natural emissions (e.g. 

Meleux et al., 2007; Jiménez-Guerrero et al., 2012). Biogenic emissions 

were generated dynamically using MEGAN (Model of Emissions of Gases 

and Aerosols from Nature) with the parameterised form of the canopy 

environment model. The model estimates these emissions as a function of 
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hourly temperature and ground level shortwave radiation from WRF. 

The differences between these two time slices will provide the changes 

in future BaP levels referring both to atmospheric concentrations and soil 

levels. The WRF+CHIMERE model ability to reproduce present and future 

climatologies over the Iberian Peninsula has been assessed in a number of 

previous works (e.g. Jiménez-Guerrero et al., 2012, 2013a, b, c; Jérez et 

al., 2013a, b). The projections over the Tarragona area (Fig. 1) indicate an 

increase in projected temperature around 1.0K (practically constant 

spatially), while precipitation decreases (increases) 5 x 10-7 kg m-2 s-1 (0.04 

mm/day) in the southern (northern) part of the domain. 
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Fig. 1. Mean near-surface air temperature (top), in K, and precipitation rate (bottom), in kg m-2 s-1, for 1996-2015 (left), 2031-2050 (center) and 

differences between present and future climate conditions under the RCP8.5 scenario (right) in Tarragona County, (Catalonia, Spain). 
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3. RESULTS AND DISCUSSION 

 

This section presents the results of the evaluation of the model against 

observed BaP concentrations: atmospheric levels (section 3.1) and soil 

deposition (section 3.2). Section 3.3 presents the present (1996-2015) and 

future (2031-2050, RCP8.5 scenario) climatologies of BaP, while section 

3.4 indicates possible impacts on human health for current and future BaP 

atmospheric levels. 

 

3.1. Evaluation of atmospheric BaP levels. 

 

The simulated BaP concentrations are here assessed for a winter and 

a summer period (26/11/2014 to 26/01/2015 and 01/05/2016 to 01/07/2016, 

respectively). When model simulations are evaluated against the passive 

air samplers (PUFs) observations, all the statistical figures estimated (see 

Table 2) indicate that the model tends to perform better for winter than for 

summer, (e.g., the mean fractional bias, MFB, is 1.2 % and 42.1 %, 

respectively). In general, the spatial correlation coefficient (R) indicate an 

accurate representation of BaP spatial patterns over the target area (R from 

0.71 in summer to 0.76 in the winter, respectively). Still, the representation 

of the variability of the atmospheric concentrations is underestimated by the 

CTM in both seasons, with underpredictions around 5 pg m-3 of the spatial 

standard deviation). These are general findings applied to the whole 

domain, but the analysis can be done considering relevant aspect within 

the area of study.  
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Table 2. Summary for all stations of the results from the comparison of air BaP 

concentrations in air obtained by the chemistry transport model simulations and 

those estimated from stations. 

ALL STATIONS WINTER SUMMER 

SPATIAL CORR. COEF. 0.76 0.71 

MFB (%) 1.2 % 42.1 % 

MAE (pg m-3) 6.4   7.2   

BIAS (pg m-3) -1.9   2.3   

MEAN OBSERVATIONS  (pg m-3) 19.8   14.1   

MEAN CTM (pg m-3) 18.0   16.4   

STD OBSERVATIONS (pg m-3) 12.2   11.7   

STD CTM (pg m-3) 7.9   6.7 

CTM – chemistry transport model concentrations; CORR. COEF. – correlation coefficient; STD 

– standard deviation; MFB - mean fractional bias; MAE – mean absolute error. WINTER 

(26/11/2014 – 26/01/2015). SUMMER (01/05/2016 – 01/07/2016). 

 

In fact, regarding the different site types considered (petrochemical, 

chemical, urban and background), the CTM can generally describe the 

differences seen in the BaP loads (Table 3). The distribution of the 

observed concentrations follow a general decreasing trend from 

petrochemical/chemical areas to urban and to remote sites (min 0.9 pg m-3 

for the remote site of Cambrils, B7, in summer –with a corresponding 

modelled value of 5.4 pg m-3– and max of 40.6 pg m-3 for the Puigdelfí 

petrochemical site, P1, in winter, with modelled concentrations of 32.5 pg 

m-3) (Fig. 2). In this case, the typical seasonal trend observed for PAHs in 

the atmosphere is verified, with higher atmospheric loads of BaP in winter 

and lowest in summer (Srogi, 2007). This is observed in all stations except 

in La Laboral (C3; 23.8 vs. 30.3 pg m-3 in winter and summer, respectively). 

The modelling results observed for the mean CTM concentrations indicate 

a different pattern in winter and summer, with lower biases and mean 

fractional biases (more accurate results) in winter than in summer. Summer 

levels are, in general, overpredicted by the model, while winter 

concentrations are in general slightly underestimated. The highest errors 

are found in the background station of Cambrils (B7), where both wintertime 

and summertime BaP concentrations are overpredicted (MFB of 63.4 % 
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and 143.1 %, respectively). However, the low levels at this station tend to 

increase the percentual bias, while the absolute bias is just under 5 pg m-3 

in both seasons. On the other hand, the lowest biases are found at La 

Canonja (C4) chemical site (MFB of 3.3 % and -16.5 % in summer and 

winter, in that order). In general, the model presents the most accurate 

results over the chemical/petrochemical sites. The MFEs for each individual 

site are below 75 % for the majority of the site types and corresponding 

seasons (except for U6 and B7 in summertime), complying with the model 

performance criterion of MFE ≤ +75 % (Boylan and Russell, 2006). These 

results help building confidence for the use of the CTM as a good 

representation for atmospheric levels of BaP, and therefore as a useful tool 

to assess the variations of BaP in present climate scenarios. 

 

Table 3. Results from the comparison of air BaP concentrations in air obtained by 

the chemistry transport model simulations and those estimated from each individual 

station. 

CODE/NAME/TYPE OF STATION MEAN OBS 

(pg m-3) 

MEAN CTM 

(pg m-3) 

BIAS  

(pg m-3) 

MFE  

(%) 

WINTER (26/11/2014 – 26/01/2015) 

P1 / Puigdelfí / Petrochemical 40.6 32.5 -8.1 22.2 

P2 / Constantí / Petrochemical 11.9 20.2 8.3 51.9 

C3 / La Laboral / Chemical 23.8   18.4   -5.4 25.4 

C4 / La Canonja / Chemical 21.7   18.4   -3.3 16.5 

U5 / Tarragona / Urban  16.4   22.5   6.1 31.2 

U6 / Vila-Seca / Urban 31.6  15.7   -15.8 67.1 

B7 / Cambrils / Background 4.1  7.9  3.8 63.4 

B8 / Torredembarra / Background 8.6   8.1   -0.5 5.7 

SUMMER (01/05/2016 – 01/07/2016) 

P1 / Puigdelfí / Petrochemical 32.0 23.2 -8.7 31.6 

P2 / Constantí / Petrochemical 8.8 18.9 10.1 73.0 

C3 / La Laboral / Chemical 30.3   19.7   -10.6 42.5 

C4 / La Canonja / Chemical 17.5   18.1   0.6 3.3 

U5 / Tarragona / Urban  12.9   23.3   10.4 57.5 

U6 / Vila-Seca / Urban 4.2   15.0   10.8 113.1 

B7 / Cambrils / Background 0.9   5.4   4.5 143.1 

B8 / Torredembarra / Background 6.1   7.5   1.4 21.0 

CTM – chemistry transport model concentrations; OBS – observations; MFE - mean fractional error.  
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A  

 

B 

 

 

Fig. 2. A) Model evaluation for winter BaP atmospheric concentrations (pg m-3) 

(26/11/2014 to 26/01/2015) in Tarragona County, (Catalonia, Spain). Violet: 

observations; Red: CTM concentrations; Green: absolute error. B) Id. for summer 

season (01/05/2016 to 01/07/2016). 
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3.2. BaP levels of soil deposition 

 

The modelled soil deposition was compared to data from BaP levels 

obtained in the ground plant Piptatherum L. collected in field sampling 

campaigns in the Tarragona domain (Domínguez-Morueco et al., submitted 

to Sci. Total Environ.). A 3-month deposition period was selected, since it 

is considered to be coincident with the lifetime of this biomonitor. Table 4 

summarises the main statistical validation parameters considered for all 27 

sampling sites (8 of them coinciding with those of the passive air samples). 

Results show a good agreement between the field monitoring and the 

modelling approach, which has in general an overall good capacity to 

describe the deposition of BaP (Table 4). The spatial coefficient of 

correlation (R) is even higher than for atmospheric concentrations (0.83), 

indicating a good performance of the model to reproduce the spatial 

variability of the sampling sites. Simulations tend to slightly underestimate 

the sampled concentrations (MFB -7.9 %, BIAS -0.03 ng g-1) and the 

standard variation (0.47 ng g-1 in observations and 0.43 ng g-1 in the model). 

 

Table 4. Summary of the results from the comparison of air BaP deposition in soil 

by the chemistry transport model simulations and those estimated from the 

concentrations in Piptatherum L. collected on 25/01/2016, for all sampling points 

(n=27). 

 

ALL SAMPLING POINTS 
 

SPATIAL CORR. COEF. (R) 0.83 

MFB (%) -7.9% 

MAE (ng g-1) 0.12   

BIAS (ng g-1) -0.03   

MEAN OBSERVATIONS  (ng g-1) 0.50   

MEAN CTM (ng g-1) 0.47   

STD OBSERVATIONS (ng g-1) 0.47   

STD CTM (ng g-1) 0.43  

CTM – chemistry transport model; CORR. COEF. – correlation coefficient; STD – standard 

deviation; MFB - mean fractional bias; MAE – mean absolute error. 
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There are, however, some facts worth to mention regarding the 

behaviour for each site (Fig. 3 and Table 5). In petrochemical areas, the 

model is likely to produce very accurate results, with errors generally under 

10 % (average MFE of 12.05 %, and ranging from 6.21 % (El Morell) to 

36.61 % (Puigdelfí, P1 site). On the other hand, background and urban 

areas are generally underestimated by the model, exhibiting the largest 

errors (MFEs of 43.45 % and 45.55 %, respectively). The maximum MFE 

is 74.64 % in the urban sampling site of Tarragona-Vía Augusta. The mean 

MFE in chemical sites is 35.46 % (ranging from 15.68 % in Bonavista, C4, 

to 65.55 % in Les Gavarres). Petrochemical chemical and urban and rural 

areas have a strong influence from local emissions, which may point 

towards a worse representation in BaP emissions from traffic than for 

industrial activities in the emission inventory.  

In light of these findings, the evaluation indicates that the model 

presents a good ability to represent BaP atmospheric levels and soil 

deposition in Tarragona, especially for areas related to petrochemical and 

chemical industries, which are often hot spots of contamination. 
 

 

Fig. 3. Model evaluation for 3-month soil deposition of BaP (ng g-1) against 

Piptatherum L. concentrations (collected on 25/01/2016). Violet: observations; Red: 

CTM concentrations; green: absolute error. 
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Table 5. Comparison of BaP deposition in soil by the CTM simulations and those 

estimated from the concentrations in Piptatherum L., collected on 25/01/2016, for 

each individual station. 

CODE NAME 
TYPE OF 

STATION 

MEAN 

OBS 

(ng g-1) 

MEAN 

CTM 

(ng g-1) 

BIAS 

(ng g-1) 

MFE 

(%) 

1 El Morell Petrochemical 0.74 0.79 0.05 6.21 

2 La Pobla de Mafumet Petrochemical 0.61 0.57 -0.04 7.41 

3 Vilallonga del Camp Petrochemical 0.71 0.75 0.03 4.68 

4 Sant Salvador Petrochemical 0.68 0.63 -0.05 7.99 

5 (P2) Constantí Petrochemical 0.42 0.51 0.09 19.24 

6 (P1) Puigdelfí Petrochemical 0.35 0.50 0.16 36.61 

7 Pol. Ind. Constantí Petrochemical 0.29 0.30 0.01 2.21 

8 La Pineda Chemical 0.24 0.34 0.10 35.23 

9 (C4) Bonavista Chemical 0.09 0.11 0.02 15.68 

10 Aiscondel Chemical 0.19 0.13 -0.07 40.55 

11 (C3) La Laboral Chemical 0.92 1.09 0.18 17.50 

12 Centre Pol Sud Chemical 0.41 0.28 -0.13 38.76 

13 Pol Ind. Riu Clar Chemical 1.37 0.80 -0.56 51.86 

14 Port Aventura Chemical 0.33 0.24 -0.09 32.80 

15 Aeroport Chemical 0.33 0.27 -0.06 21.25 

16 Les Gavarres Chemical 0.11 0.22 0.11 65.55 

17 Serrallo Urban 0.17 0.31 0.14 57.70 

18 (U5) Tarragona Urban 2.23 2.14 -0.09 4.12 

19 
Tarragona (Via 

Augusta) 
Urban 0.23 0.50 0.27 74.64 

20 Reus Urban 0.39 0.22 -0.17 55.71 

21 (U6) Vila-seca Urban 0.88 0.41 -0.48 74.12 

22 Torreforta Urban 0.60 0.56 -0.04 7.04 

23 (B7) Cambrils Background 0.18 0.09 -0.09 69.07 

24 (B8) Altafulla Background 0.67 0.57 -0.10 16.07 

25 Picamoixons Background 0.23 0.24 0.01 5.29 

26 L'Aleixar Background 0.09 0.04 -0.05 72.47 

27 Arbolí Background 0.03 0.02 -0.01 54.78 

CTM – chemistry transport model concentrations; OBS – observations; MFE - mean fractional error. 
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3.3.  BaP climatologies and future climate scenario 

 

3.3.1. Climatologies of atmospheric BaP concentrations 

 

Since most of the BaP concentrations reported by the model are in the 

particulate phase, the response of this component to changes in future 

climate conditions varies as previously reported for aerosols in the Iberian 

Peninsula (Jiménez-Guerrero et al., 2012). As a first guess, the higher 

temperatures modelled by WRF+CHIMERE in the target domain (Fig. 1) 

favour SVOCs to remain in the gas phase. Moreover, low molecular weight 

PAHs are more rapidly volatilized from soils with increased temperatures, 

as will be discussed in section 3.3.2. On the other hand, the modelled 

increases in temperatures and specific humidity may also result in a faster 

oxidation of SVOCs, increasing the formation of condensable compounds 

(Liao et al., 2009). The slight increase in BaP concentrations (in the order 

of 0.5 pg m-3, Fig. 4) may suggest that chemical production effects are 

outweighing volatility effects, as also stated by Dawson et al. (2009). 

Moreover, precipitation drives the change in the concentration of aerosols. 

The slight decrease in precipitation projected for the southern part of the 

target domain in the RCP8.5 scenario with respect to present levels (around 

3%) leads to a regional increase in the levels of BaP in 2031-2050. The rise 

in condensable compounds is also facilitated by the decrease of 

precipitation, the main sink for these chemicals (Jiménez-Guerrero et al., 

2012).  
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Fig. 4. BaP atmospheric concentration (pg m-3) for the time periods 1996-2015 (left) and 2031-2050 (center), and differences between present 

and future climate conditions under the RCP8.5 scenario (right) in Tarragona County, (Catalonia, Spain). 
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Table 6 compares the modelled present and future BaP concentrations 

for each of the passive air sampling stations. It can be seen that in all cases 

an increase in those levels is projected, but interestingly with less extent in 

the urban areas. In fact, the variation is almost none, which may be an 

indication that the emissions of particulate matter could cancel the effect of 

the temperature rise and the consequent volatilisation affect. On the other 

hand, chemical and remote sites will suffer the strongest variations, up to 

10 % in Cambrils (B7). The aforementioned decrease in precipitation could 

be responsible for a lower wet deposition of the particulate material, hence 

increasing the atmospheric loads, but also it is expected that with the rise 

in population, the background sites will have more urban pressure and thus 

more emission sources. 

 

Table 6. Comparison of present (1996-2015) and future (2031-2050) atmospheric 

BaP concentrations given by the CTM simulations. 

CODE/NAME/TYPE OF STATION PRESENT 

(pg m-3) 

FUTURE 

(pg m-3) 

∆BaP 

(pg m-3) 

∆BaP 

(%) 

P1 / Puigdelfí / Petrochemical 26.0 27.0 0.9 3.6 

P2 / Constantí / Petrochemical 19.5 20.4 0.9 4.8 

C3 / La Laboral / Chemical 18.7 19.8 1.1 6.0 

C4 / La Canonja / Chemical 18.2 19.9 1.7 9.1 

U5 / Tarragona / Urban  22.8 22.8 0.0 0.1 

U6 / Vila-Seca / Urban 15.4 15.5 0.1 0.5 

B7 / Cambrils / Background 5.2 5.7 0.5 10.0 

B8 / Torredembarra / Background 7.7 8.2 0.5 6.4 

 

3.3.2. Climatologies of BaP concentrations for soil deposition 

 

Climate change induces variations in some environmental factors, such 

as temperature, precipitation (Fig. 1) or UV-B radiation. These factors alter 

the fate and behaviour of a wide range of chemicals, due their influence 

over natural processes such as the environmental partitioning or chemical 

transformation (Noyes et al., 2009; EL-Saeid et al., 2015; Jia et al., 2015). 

In our case, future soil concentration (estimated as the average of the 

accumulated 3-month deposition over ground vegetation; Fig. 5) decreases 
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up to 1.0 ng g-1 in the RCP8.5 scenario when 1996-2015 vs. 2031-2050 

concentrations are compared. A number of studies focusing on PAHs have 

identified photodegradation as an important transformation pathway (Zhang 

et al., 2006). Our results point out that increasing the temperature and the 

solar radiation (as derived from the climate change projections shown in 

Figure 1) leads to an increase in BaP photodegradation. This agrees with 

a number of laboratory studies and others performed under field conditions 

(Marquès et al., 2016 b; 2017), indicating that low molecular weight PAHs 

are more rapidly volatilized from soils while medium and high molecular 

weight PAHs showed higher photodegradation rates.  

Some PAH metabolites can be generated as photodegradation by-

products, such as a variety of aldehydes, oxy-, hydroxy- and nitro-PAHs 

(Marquès et al., 2017) that could be even more toxic than their parental 

compounds (Huang et al., 1995; Mallakin et al., 1999; Ras et al., 2009). 

Recently, international studies have evaluated the influence of climate 

change over PAH photodegradation in Mediterranean soils (Marquès et al. 

2016a, b; 2017) and showed that, apart from the molecular weight of each 

hydrocarbon, the photodegradation of PAHs in soils is highly dependent on 

the exposure time; the soil texture, especially in soils with a finer fraction; 

as well as by the presence of semiconductor minerals, such as metal oxides 

(Marquès et al., 2016a). This means that a reduction in the BaP soil 

deposition is not necessarily a reduction in the overall hazardous effects, if 

attributed to its metabolites. 

Table 7 compares the present and future BaP levels for each sampling 

site. The projected decrease is clear and follows an inverse pattern as the 

levels in air. In fact, the decreases of BaP in the soils are higher (lower) for 

those sites where in the atmosphere the increase was lower (higher), 

namely the urban (background) sites, in this case. This trend is not 

surprising, since a rise in the levels in atmospheric BaP can also indicate 

that the deposition processes are not so effective. Emissions obviously play 

a very important part in this equation and it is clear that in this domain there 

are numerous local sources that are contributing to the BaP distribution and 
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behaviour and that need to be continuously monitored combining field 

sampling strategies and modelling approaches. 

 

Table 7. Comparison of present (1996-2015) and future (2031-2050) BaP 

concentration in soil given by the CTM simulations. 

CODE NAME 
TYPE OF 

STATION 

PRESENT 

(ng g-1) 

FUTURE 

(ng g-1) 

∆BaP 

(ng g-1) 

∆BaP 

 (%) 

1 El Morell Petrochemical 0.89 0.59 -0.30 -33.88 

2 La Pobla de Mafumet Petrochemical 0.75 0.53 -0.22 -29.43 

3 Vilallonga del Camp Petrochemical 0.89 0.59 -0.30 -33.88 

4 Sant Salvador Petrochemical 0.50 0.37 -0.13 -25.57 

5 (P2) Constantí Petrochemical 1.02 0.78 -0.24 -23.53 

6 (P1) Puigdelfí Petrochemical 1.39 1.17 -0.22 -15.51 

7 Pol. Ind. Constantí Petrochemical 0.59 0.35 -0.24 -40.30 

8 La Pineda Chemical 1.09 0.68 -0.41 -37.33 

9 (C4) Bonavista Chemical 1.29 1.12 -0.18 -13.61 

10 Aiscondel Chemical 0.43 0.22 -0.22 -49.99 

11 (C3) La Laboral Chemical 1.91 1.42 -0.49 -25.68 

12 Centre Pol Sud Chemical 0.77 0.50 -0.27 -34.63 

13 Pol Ind. Riu Clar Chemical 1.02 0.78 -0.24 -23.53 

14 Port Aventura Chemical 0.54 0.26 -0.28 -51.29 

15 Aeroport Chemical 0.58 0.32 -0.25 -43.88 

16 Les Gavarres Chemical 1.29 1.12 -0.18 -13.61 

17 Serrallo Urban 2.06 1.89 -0.17 -8.19 

18 (U5) Tarragona Urban 2.06 1.91 -0.15 -7.10 

19 
Tarragona (Via 

Augusta) 
Urban 0.97 0.68 -0.29 -30.27 

20 Reus Urban 0.39 0.17 -0.22 -55.52 

21 (U6) Vila-seca Urban 0.43 0.22 -0.22 -49.99 

22 Torreforta Urban 1.29 1.12 -0.18 -13.61 

23 (B7) Cambrils Background 0.19 0.04 -0.15 -80.70 

24 (B8) Altafulla Background 0.32 0.08 -0.23 -74.21 

25 Picamoixons Background 0.39 0.10 -0.29 -74.66 

26 L'Aleixar Background 0.08 0.01 -0.08 -93.12 

27 Arbolí Background 0.04 0.00 -0.04 -97.88 

UNIVERSITAT ROVIRA I VIRGILI 
ENVIRONMENTAL LEVELS OF PAHs AND OTHER SVOCs IN A PETROCHEMICAL AREA. COMBINING MONITORING 
AND MODELLING TOOLS 
Noelia Domínguez Morueco 
 



 

- 253 - 

 
Fig.  5. BaP mean concentration in soils (ng/g) for 1996-2015 (left), 2031-2050 (center) and differences between present and future climate 

conditions under the RCP8.5 scenario (right) in Tarragona County, (Catalonia, Spain).
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3.4. Assessment of increased health risks associated to 

atmospheric BaP 

 

The benefits of the use of CTMs to describe the presence and 

behaviour of priority pollutants can be remarkable, even at the level of 

human health issues. Thus, it is also the intention of this study to provide 

an example of how these tools can help in the assessment (and correction) 

of potentially hazardous effects on humans related to atmospheric 

presence of BaP.  

When the European Union was trying to set the target values for 

arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in 

ambient air in the Directive 2004/107/EC, a Quantitative Risk Assessment 

(QRA) method was based on different studies, such as Andersen et al. 

(1982), Lindstedt et al. (1982) or RIVM (1989) and laid out in the “Ambient 

air pollution by Polycyclic Aromatic Hydrocarbons (PAH)” Position Paper 

(European Union, 2001). These studies focused on the increased risk of 

lung cancer due to the industrial exposure to PAHs. Using this method and 

the World Health Organisation unit risk of lung cancer estimate (87 x 10-6 

BaP m-3 for lifetime exposure) for PAH compounds (World Health 

Organisation, 2000), the European Union calculated the increased risk for 

three possible target values: (1) target value of 0.01 ng m-3 with an 

associated increased risk of 1 x 10-6; (2) target value of 0.1 ng m-3 

(increased life-time risk of 1 x 10-5); and (3) target value of 1 ng m-3 with an 

associated increased risk of 1 x 10-4.  

Based on the health evidence and acceptance that the upper limit of 

the additional life-time risk should be less than 1 x 10-4, the European Union 

decided on a target value for the annual mean concentration of BaP to be 

1 ng m-3 (Butterfield and Brown, 2012), which is the one set in the Directive 

2004/107/EC (European Commission, 2009). 

As seen in Figure 6, and despite being a potential hot spot for 

atmospheric contamination, our domain stays far from the target values of 

1 ng m-3 and even of 0.1 ng m-3 in both present and future simulations. In 

fact, while some areas downwind from the petrochemical complex of 
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Tarragona exceed the target value of 0.01 ng m-3 (10 pg m-3, with an 

associated increased life-time risk of 1 x 10-6 for lung cancer), the rest of 

the Tarragona domain stays below it. Furthermore, the changes under 

RCP8.5 are not noticeable, with only an extension of the area exceeding 

the 0.01 ng m-3 target value, and an increase in the most populated areas 

of 5 x 10-8 in the life-time risk of lung cancer. This is a direct consequence 

of the aforementioned low changes modelled for the BaP air levels in the 

Tarragona domain.  
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Fig.  6. Associated increased risk of lung cancer for (left) life-time exposure to the target value (contours) for the time frame 1996-2015, and 

(center) for the 2031-2050 climate change projection in Tarragona County, (Catalonia, Spain), as defined by the Quantitative Risk Assessment 

included in Butterfield and Brown (2012). (Right) Differences in the increased risk of lung cancer between present and future climate change 

RCP8.5 scenario.
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4. CONCLUSIONS 

 

This work intended to highlight the current presence of BaP in such a 

complex terrain as the Tarragona petrochemical area and how future 

climate change can influence its atmospheric levels for the middle 21st 

century. For that, a regional climate modelling system (coupling WRF and 

CHIMERE chemistry transport model) was validated using field-based data 

from passive air sampling and ground vegetation to represent soil 

deposition and after that, apply it to two time slices covering a present-

climate condition (1995-2016) and the future RCP8.5 scenario (2031-2050) 

in order to obtain regional distributions of atmospheric and soil BaP levels.  

Results show a good performance of the CTM to represent air and soil 

concentrations of BaP over the target domain (considering petrochemical, 

chemical, urban and background sites) with better results in the winter. It is 

also acceptable the plausible influence of climate change alone on the 

levels of gas-phase pollutants and aerosols. The findings of this study 

indicate that the enhanced oxidative capacity of the atmosphere together 

with the decrease in precipitation projected for the RCP8.5 scenario causes 

gas-phase emissions to turn into the particulate phase, thus slightly 

increasing atmospheric BaP in future climate change scenarios. On the 

other hand, photodegradation has a role in the variation (decrease) of future 

soil deposition and concentration. This photodegradation process can be 

very important in a region with high sunlight presence during the whole 

year, such as the Mediterranean basin, also pointed out as a vulnerable 

zone for the climate change (Marquès et al., 2016b). Nevertheless, the EU 

limit for BaP presence in the atmosphere of 1 ng m-3 will not be reached 

according to the projections, there will be an increase in the life-time risk of 

lung cancer, particularly in the most populated areas.  

An important remark has to be done regarding the inherent 

uncertainties in the climate projections which may affect the results 

depicted here. Not all climatic variables are affected by the same degree of 

uncertainty. Future climate simulations tend to agree in a warm trend due 

to the increase of greenhouse gases concentrations, only differing in the 
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intensity and spatial distribution details. However, there is not such a good 

agreement in the projections of precipitation changes, which strongly affect 

the results for BaP. This larger uncertainty is partly due to the complex 

mechanism that governs precipitation, which involves a wide variety of 

spatial scales and it is approximated by different approaches among the 

state-of-the-art models. 
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DISCUSSION CHAPTER 3 

 

Throughout this thesis has been corroborated the importance of field 

sampling as key tool to determine the environmental occurrence of 

pollutants. However, these kinds of tools can not provide relative 

information about their spatial, temporal and chemical transport patterns or 

final fate in the environment. For this reason, to combine the monitoring and 

modelling approaches plays complementary roles, since monitoring is 

critical for models implementation, and modelling can help to predict the 

contaminants behavior in the environment, as well as identify the priority 

areas for the sampling campaigns. 

PAHs were the most predominant compounds found in all the sampling 

campaigns conducted through Tarragona County, for this reason, those 

were the compounds prioritized in the final part of this thesis. 

In order to predict the emissions, fate and transport of PAHs in the study 

area, a multimedia environmental model was selected, since this kinds of 

models are one of the most used for SVOCs modelling. The multimedia 

environmental models are characterized by the division of the environment 

in different boxes or bulk media compartments (e.g. air, soil, water and 

sediments or vegetation) connected between them. These compartments 

are governed by mass balance equations based in different levels of 

fugacity, and the pollutants dynamics depends on its physical-chemical 

properties and reactivity data (reaction processes). Due to the sampling 

campaigns show a clear industrial and urban contamination in the study 

area, the Multimedia Urban Model (MUM-Fate) developed by Diamond et 

al. (2001) was used for Tarragona County, where the largest 

chemical/petrochemical industrial complex of Southern Europe is located. 

MUM-Fate is a Level III steady-state fugacity model of Mackay (1991), 

characterized by dividing the total study area into 7 different boxes or bulk 

media compartments (lower and upper air, surface water, sediment, soil, 

vegetation, and organic film), including the organic film that coats 

impervious surfaces, a key feature present in urban and industrialized 

environments. Due to MUM-Fate is a level III fugacity model the conditions 
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are constant with time but compartments are not at equilibrium, and 

different fugacities apply to each medium. The model was parameterized 

according to actual environmental conditions in Tarragona County, and six 

PAHs were selected in order to represent the different rings number and 

molecular weight congeners (naphthalene, anthracene, phenanthrene, 

fluoranthene, pyrene, and benzo(a)pyrene). 

Nowadays, one of the main problems related with the environmental 

pollution is quantify the emissions, since most of the main sources are 

diffuse. Nevertheless, mass balance models as MUM-Fate allowed 

estimate the total emissions in the study area through back-calculations 

based in measured real air concentrations of PAHs. Thus, PAHs total air 

emissions for Tarragona County were 42 t/y, comparable with values 

reported by Jiang et al. (2013) in different districts of Taiyuan, China. 

Regarding individual compounds, phenanthrene presented the greatest 

emissions value (16 t/y). This was expected pattern since phenanthrene 

was the predominant compound in all air sampling campaigns. Once the 

emissions were estimated, soils concentrations were simulated, and those 

compared with the real PAHs concentrations detected in this matrix in the 

previous multi-compartmental environment monitoring program conducted 

in Tarragona County since 2002. With the exception of naphthalene, PAH 

concentrations in soil estimated by the MUM-Fate model, were within the 

range reported in previous works (Nadal et al., 2004a, 2009, 2011). Based 

on the correspondence between measured and modelled soil 

concentrations (R2 ranging from 0.56 to 0.92), the current model was 

deemed to provide a reasonable representation of PAH dynamics in 

Tarragona County. 

On the other hand, MUM-Fate was run for illustrative purposes with an 

emission of 1 mol/h to air for each PAH; that is in order to predict the fate 

and transport of PAHs in the environment. The model estimated that 50–70 

% of the PAHs emitted to air were lost in the boxes system by downwind 

advection. The same PAH concentration pattern (benzo(a)pyrene > 

fluoranthene > pyrene > phenanthrene > anthracene > naphthalene) was 

found in all the compartments, with concentrations increasing according to 
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molecular weight. Among the different compartments, organic film achieved 

the highest concentrations of PAHs, being followed by sediments and soils. 

This could by associated with the hydrophobic character of PAHs, who, as 

SVOCs, tend to prefer organic matrices. However, the high losses by wash 

off and degradation in the film compartment, resulted in a persistence in 

these compartment of < 1 day. In this sense, the wash-off from the film 

delivered particle-sorbed PAHs to the river running through Tarragona 

County. This process, along with degradation losses, resulted in < 2 % of 

total air inputs being exported downriver. On the other hand, soils and 

sediments were the greatest sinks for PAHs, as consequence of their high 

inputs from air, water and vegetation, relative to low losses. Persistence in 

soils and sediments was estimated to range 100–1000 days, being the 

biodegradation the greatest loss mechanism in both matrices. In this sense 

MUM-Fate model provided a preliminary approximation of the PAHs 

distribution in the bulk media compartments defined for Tarragona County, 

by using simple approaches and calculations. 

Although the simplicity of mass balance models allows an extensive 

use of models among the scientific community, they do not reflect the 

complexity to characterize adequately all processes involving these 

chemicals in the environment.  The science community has pointed out that 

meteorological factors such as radiation, turbulence mixing, clouds 

presence, etc., coupled to chemical process are key elements when the 

spatial, temporal and chemical transport patterns of pollutants are 

evaluated. For this reason, in this thesis it was decided to use a higher 

complexity level model as chemistry transport models (CTMs). CTMs can 

complement the field data also considering the meteorology of the study 

area, the atmospheric chemistry processes and climate change, 

contributing to diminish the gaps still existing regarding SVOCs 

environmental behaviour. 

The setup used in this study was the Weather Research and 

Forecasting (WRF) coupled with CHIMERE model. WRF is a numerical 

weather prediction (NWP) and atmospheric simulation system designed for 

the understanding and prediction of mesoscale weather (Skamarock et al., 
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2008), whereas CHIMERE is an Eulerian off-line CTM that includes 

parameterisations to simulate the pollutant concentrations in the 

environment (Menut et al., 2013). Due the high complexity level of this 

model, and for hence, high computational time, only one SVOC was 

modelled for Tarragona County. Among these, benzo(a)pyrene (BaP) was 

the compound selected, since its belongs to majority group of compounds 

presents in Tarragona County; is already classified as carcinogenic to 

humans (Group 1) by the International Agency for Research on Cancer 

(IARC); and is the only PAH with a legislated average limit in the 

atmosphere: 1 ng m-3 of BaP over 1 year (European Commission, 2009). 

WRF+CHIMERE is a model characterized by simulating the BaP 

concentrations in air; its deposition over other matrices such as soils, as 

well as estimate its geographical distribution over long-time temporal 

series. In this thesis, it was decided to use the methodology developed by 

Ratola and Jiménez-Guerrero (2016) for WRF+CHIMERE, since it reflects 

well the BaP dynamics taking into account environmental field samplings. 

Regarding to study domain, WRF+CHIMERE usually works with large 

domains (50 km), however, in this thesis a higher resolution was it was 

selected with the aim to equate the modeled area to field sampling 

campaigns.  For this reason a domain for Catalonia (Spain) with a 2 km of 

resolution was defined and coupled to BaP emissions given by the 

European Monitoring and Evaluation Programme. 

Once the methodology and the study domain were defined, it was 

decided to use the real concentrations of BaP in air in order to check the 

ability of the model to reproduce BaP climatologies over Tarragona County. 

In this case, the control simulations run covering a period coincident with 

the passive air sampling campaigns (PUF-PAS and 2 months sampling); 

that is, BaP concentrations in air recorded in winter season (26/11/2014 to 

26/01/2015) (data provided in short communication 2 of chapter 1 of this 

thesis) and a the most recently BaP air concentrations from summer season 

(01/05/2016 to 01/07/2016) (data provided in the article 2, chapter 3 of this 

thesis). After run the control simulations, it can be seen that the model tends 

to perform an accurate representation of BaP spatial patterns over the 
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target area, working a high resolution (2 km) and presenting the most 

accurate results over the chemical/petrochemical sites (table 2 and 3, 

article 2 chapter 3 of this thesis). In addition, WRF+CHIMERE showed a 

general decreasing trend from petrochemical/chemical areas to urban and 

to background areas, a pattern also observed in the field campaigns (Fig. 

2 article 2 chapter 3 of this thesis). Likewise, CTM model verified the typical 

seasonal trend observed for PAHs in the atmosphere (article 1, chapter 1 

of this thesis), where higher atmospheric loads of BaP were found in winter 

instead summer season. 

As mentioned above, WRF+CHIMERE is a model that can also 

estimate the BaP deposition from air to soil. Nevertheless, the BaP soil 

deposition modelled by WRF+CHIMERE corresponds to the time period 

consider in the control simulations run for air (2 months). This fact, coupled 

with the long-term sink character of this matrix, made that BaP soil 

deposition was better assessed against the BaP concentrations found in 

vegetation samples (presented in chapter 2 article 2 of this thesis). This is 

because Piptatherum L. is a fast-growing grass, between 2 to 4 months, 

beginning its growth with the first rains and when temperatures began to 

drop, and drying up during the warm seasons (Sulas et al., 2015). 

Moreover, being a ground plant with low height, the concentration 

accumulated during this time can be a good representation of the deposition 

onto the soil. Modelled BaP deposition results show a good agreement 

between the field monitoring and the modelling approach, with very 

accurate results also in petrochemical areas. 

This first evaluation of BaP dynamics modelled by WRF+CHIMERE 

indicates that the model presents a good ability to represent BaP 

atmospheric levels and soil deposition in Tarragona, especially for areas 

related to petrochemical and chemical industries, which are often hot spots 

of contamination. 

International studies suggest that the toxicity and environmental 

response of PAHs can be affected by the variations in the temperature and 

solar radiation associated with the climatic change (Marquès et al., 2016). 

For this reason, and once the CTM was validated for the present 
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climatology, two time slices covering a present-climate condition (1995-

2016) and the future RCP8.5 scenario (2031-2050) were selected in order 

to obtain regional variation of the BaP concentration in air and soils. 

Regarding the variations of BaP in air, an increase of concentration is 

projected for the future scenarios (in the order of 0.5 pg m-3, Fig. 4. Article 

2 chapter 3 of this thesis), particularly in chemical and remote sites where 

the variation can go up to 10%. This fact would be associated with the 

higher temperatures modelled by WRF+CHIMERE in the target domain 

(Fig. 1, article 2 chapter 3 of this thesis) that favour SVOCs to remain in the 

gas phase; promotes its soil volatilization and also result in a faster SVOCs 

oxidation, increasing the formation of condensable compounds. In addition, 

the decrease in precipitation (Fig. 1 article 2 chapter 3 of this thesis) could 

be responsible for a lower wet deposition of the particulate material, hence 

increasing the atmospheric loads, but also it is expected that with the rise 

in population, the background sites will have more urban pressure and thus 

more emission sources. 

In terms of soil deposition the findings were the opposite, with an 

evident decrease in future soil BaP concentrations (particularly in 

background sites) when 1996-2015 vs. 2031-2050 concentrations are 

compared (a decreases up to 1.0 ng g-1 in the RCP8.5 scenario). 

A number of studies focusing on PAHs have identified 

photodegradation as an important transformation pathway (Zhang et al., 

2006). Our results point out that increasing the temperature and the solar 

radiation (as derived from the climate change projections shown in Fig. 1 

article 2, chapter 3 of this thesis) leads to an increase in BaP 

photodegradation, among other processes. This agrees with a number of 

laboratory studies and others performed under field conditions (Marquès et 

al., 2016 b; 2017), indicating that low molecular weight PAHs are more 

rapidly volatilized from soils while medium and high molecular weight PAHs 

showed higher photodegradation rates. 

Some PAH metabolites can be generated as photodegradation by-

products, such as a variety of aldehydes, oxy-, hydroxy- and nitro-PAHs 

(Marquès et al., 2017) that could be even more toxic than their parental 
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compounds (Huang et al., 1995; Mallakin et al., 1999; Ras et al., 2009). 

This means that a reduction in the BaP soil deposition is not necessarily a 

reduction in the overall hazardous effects, if attributed to its metabolites. 

For this reason, when a quantitative risk assessment (QRA) method was 

conducted as a final part of this thesis, it was observed that the EU limit for 

BaP presence in the atmosphere of 1 ng m-3 will not be reached according 

to the projections, but there will be an increase of 5 x 10-8 in the life-time 

risk of lung cancer, particularly in the most populated area. 

An important remark has to be done regarding the inherent 

uncertainties in the climate projections which may affect the results 

depicted here. Not all climatic variables are affected by the same degree of 

uncertainty. Future climate simulations tend to agree in a warm trend due 

to the increase of greenhouse gases concentrations. However, there is not 

such a good agreement in the projections of precipitation changes, which 

strongly affect the results for BaP.  
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In the present thesis, the levels of PAHs and other SVOCs in 

environmental samples of Tarragona County (Spain), a high industrialized 

area, have been determined. Different passive sampling techniques and 

environmental prediction models, have been complementarily used. 

According to the results, it has been concluded that: 

 

1. The use of PUF-PAS is fully viable at local level. In addition, these 

devices are capable of capturing, through advection and diffusion 

mechanisms, different groups or families of SVOCs, such as PAHs, 

PCBs, BFRs, SMs and HCB, even at very low air concentrations 

(ng/m3). 

 

2. Regarding methods optimization, QuEChERS methodology was a 

valid technique to make a screening of the compounds presents in 

a sample, either soil or vegetation, since it allowed the 

simultaneous extraction of different compounds in both 

environmental matrices (LODs range 0.7-225 pg/g). The 

QuEChERS technique also provided a considerable reduction in 

the amount of solvent and operating time, without compromising 

the performance of the method given by the validation parameters.  

 

3. Good correlations have been found between the PUF-PAS and 

lichens transplants when analyzing the environmental burden of 

PAHs, confirming the suitability of lichens as passive samplers 

 

4. When the three passive sampling techniques, PUF-PAS, 

vegetation and soils are evaluated together some differences arise. 

PUF-PAS tend to capture the most volatile SVOCs, mainly 

associated with the gas phase. Vegetation traps the PAHs contents 

in the gas phase, but it also retains some of those sorbed to the 

particulate phase. Finally, soils capture the heaviest and more 

degradation resistant molecules that could be associated with 

particulate phase. Concerning the monitoring time, the results 
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obtained from PUF-PAS and ruderal vegetation (Piptatherum L.) 

versus soil showed that these matrices are able to provide 

information regarding the levels and sources of SVOCs at short- 

(2-3 months) and long-term, respectively.  

 

5. The environmental levels of SVOCs at Tarragona County are in 

agreement with other international studies. The values of PAHs 

and PCBs found in soil and vegetation samples are consistent with 

those reported a previous multi-compartmental environment 

monitoring program conducted in the same area of study since 

2002. 

 

6. PAHs and PCBs showed a similar concentration pattern, being 

higher in industrialized and urban zones with respect to those found 

in background areas. In turn, background areas showed the 

highest levels of SMs, suggesting an influence of the personal care 

products derived from beach-related tourism in the coast. In the 

case of BFRs and HCB, similar values were found in both matrices 

and in all areas. 

 

7. A decreasing temporal profile of PAHs concentrations was 

observed, in agreement with the reduction of PAHs emissions 

observed between 1990 and 2010 in most European countries. In 

addition, PUF-PAS showed a strong seasonal variation, with higher 

values in winter than in summer. 

 

8. The mass balance MUM-Fate model provided a preliminary 

approximation of the PAHs distribution in the bulk media 

compartments defined for Tarragona County, by using simple 

approaches and calculations. In addition, MUM-Fate model 

estimated the emissions of PAHs in the studied area by 

backcalculations. 
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9. MUM-Fate pointed out the organic film as the compartment with the 

highest concentrations of PAHs. However, and due the high losses 

in this compartment, the model positioned the soils and sediments 

as the greatest PAHs sinks in Tarragona County. 

 

10. The WRF+CHIMERE model characterized the BaP concentrations 

in air and its deposition over soils for the present climatology, 

performing an accurate representation of BaP spatial patterns over 

the target area working a high resolution (2 km) and presenting the 

most accurate results over the chemical/petrochemical sites, which 

are often hot spots of contamination.  

 

11. An increase of BaP air concentration was estimated in future 

climate change scenarios, particularly in chemical and remote 

sites, with variations of up to 10%. This fact would be associated 

with the high temperatures modelled by WRF+CHIMERE in the 

target domain. According to the model, SVOCs remain in the gas 

phase, soil volatilization is promoted, and SVOCs are quickly 

oxidized, increasing the formation of condensable compounds. In 

addition, the rainfall decrease could be responsible of the lower wet 

deposition of particulate matter, which increases the atmospheric 

loads. 

 

12. Contrasting to air, an evident decrease of BaP concentrations in 

soils was estimated in the future. The increasing of temperature 

and solar radiation enhance a number of degradation processes, 

such as photodegradation.  

 

13. When the quantitative risk assessment (QRA) was conducted, it 

was observed that the EU limit for BaP presence in the atmosphere 

of 1 ng m-3 will not be reached according to the projections, there 

will be a little increase of 5x10-8 in the life-time risk of lung cancer, 

particularly in the most populated area. 
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ABSTRACT 

 

Passive air samplers (PAS) have become recurrent methods for 

environmental monitoring. However, the influence of environmental 

variables, such as temperature, over these devices has not been fully 

investigated. Since climate change is likely to induce major environmental 

changes, the role of the temperature needs to be studied to assure the 

suitability of PAS for the long-term monitoring of semivolatile organic 

compounds (SVOCs) and their utility to compare data from different 

locations. This study aimed at evaluating the potential loss of polycyclic 

aromatic hydrocarbons (PAHs) in PAS containing disks of polyurethane 

foam (PUF) at different temperatures. The gradient of temperature inside 

and outside the PAS was firstly determined, being noted an 

internal/external difference of up to 5 ºC. Secondly, a lab-controlled 

experiment was performed by daily analyzing PAHs in PUF-based PAS 

exposed to 25 ºC and 38 ºC, for a period of 7 days. A significant loss of 

PAHs in PUFs was not observed for any of both scenarios, remaining 

constant through time. Moreover, PAH levels were not significantly different 

according to the temperature. These findings indicate that the 

environmental temperature does not affect the stability of PAHs in PAS. 

Once PAHs have been uptaken, they are not easily volatilized from these 

devices. Consequently, PAS are good environmental monitors 

independently on the ambient conditions of temperature, being suitable for 

the comparability of data, either temporally or spatially, on the airborne 

concentrations of PAHs. 

 

Keywords: Polycyclic aromatic hydrocarbons (PAHs) · Passive air 

sampling · Polyurethane foam (PUF) · Environmental temperature 
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1. INTRODUCTION 

 

Passive air samplers (PAS) have become a viable alternative to 

traditional active air samplers (AAS) for the monitoring of semivolatile 

organic compounds (SVOCs). PAS are cheaper, smaller, and simpler-to-

handle devices than AAS, while they do not require electricity and 

maintenance (Mari et al., 2008; Vilavert et al., 2013). These characteristics 

make them very suitable for the surveillance in remote areas of the planet, 

as well as for the simultaneous collection of samples at different locations 

and/or scales (Bohlin et al., 2008; Zabiegala et al., 2010; Estellano et al., 

2012; Pozo et al., 2012; Vilavert et al., 2014). 

PAS are based on the theory of physical advection and diffusion to 

capture organic compounds through a passive air flow (Wang et al., 2012; 

Bogdal et al., 2013). Different PAS designs have been developed based on 

the adsorbent material, being polyurethane foam (PUF) one of the most 

widely used for air monitoring (Bohlin et al., 2008; Chaemfa et al., 2008). 

The standard design of PAS is based on a double-dome chamber in which 

a PUF-disk is deployed in order to protect the adsorbent material from 

rainfall and direct light (Chaemfa et al., 2008; Seethapathy et al., 2008; Choi 

et al., 2012). However, the influence of environmental variables, such as 

wind speed and temperature, may significantly affect the accumulation 

capacity of these devices (Klánová et al., 2008; Seethapathy et al., 2008; 

Kennedy, 2010).  

Temperature plays an important role on the sampling rate of SOVCs by 

PAS (Kennedy, 2010; Armstrong et al., 2014; Melymuk et al., 2014). High 

temperatures may cause an increase of molecular diffusivity, resulting in an 

increased sampling rate of the compounds. Furthermore, high 

temperatures can affect the PAS sorption capacity, shortening the linear 

uptake phase (Klánová et al., 2008; Seethapathy et al., 2008; Melymuk et 

al., 2014). These processes lead to a higher variability of PAS sampling 

rates when comparing different areas or seasons. Although not statistically 

significant, slight trends of increased sampling rates with increased 

temperature and relative humidity were reported when measuring airborne 
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organophosphorus pesticides by means of PAS in the US (Armstrong et al., 

2014). Temperature also controls the gas-particle partitioning of SVOCs 

(Klánová et al., 2008; Kennedy, 2010; Chen et al., 2011; Melymuk et al., 

2014). Since the environmental temperature is also closely linked to the 

volatilization of organic compounds and their affinity for the gas phase 

(Melymuk et al., 2014), potential temperature variations may also critically 

affect pollutant concentrations in air. The design of the PAS is also a 

fundamental aspect. The double-dome recovering the PUF is generally 

made of stainless steel. It may generate a potentially important gradient of 

the temperature inside/outside the device, caused by the effect of the solar 

radiation over the metallic housing (Kennedy, 2010). Finally, the internal 

recirculation of organic compounds close to the PUF may also have a role 

on the uptake of chemical pollutants (Thomas et al., 2006).  

Although temperature may have a critical effect on the sampling rate 

and the accumulation capacity of SVOCs, their potential loss by 

volatilization in PUF-based PAS has not been studied yet. The current 

short-term investigation aimed at evaluating the role of temperature over 

the loss of polycyclic aromatic hydrocarbons (PAHs), chosen as SVOC 

representatives, after they were adsorbed in PAS. A field study was firstly 

conducted to establish temperature differences between inside and outside 

the device. Subsequently, a lab controlled study in a climate chamber was 

carried out to analyze the progressive loss of PAHs from PAS exposed to 

different temperatures. 

 

2. EXPERIMENTAL PROCEDURE 

 

2.1. Materials and reagents 

 

PAS containing PUF disks (diameter: 14 cm; thickness: 1.2 cm; surface 

area: 360 cm2; density: 0.035 g cm-3) were purchased from Newterra 

(Beamsville, ON, Canada). Prior to use, PUFs were precleaned with 

dichloromethane (DCM). Certified PAH standard mixtures, supplied by 
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Supelco (Bellefonte, PA, USA), were used to evaluate the loss of PAHs. 

The mixture contained 13 PAHs (fluorene, phenanthrene, anthracene, 

fluoranthene, pyrene, benzo(a)anthracene, chrysene, 

benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, 

dibenzo(a,h)anthracene, benzo(g,h,i)perylene and indeno(1,2,3-

c,d)pyrene) at a concentration of 2000 mg/mL in benzene:DCM (1:1 (v:v)). 

Individual standards of d8-naphthalene, d10-fluorene, and d12-

benzo(a)pyrene were purchased from Supelco (Bellefonte, PA, USA). DCM 

(purity 99.5%, Scharlab, S.L., Sentmenat, Barcelona, Spain) and hexane 

(purity 99.5%, Scharlab, S.L.) were used as solvents. Nitrogen for drying, 

with 99.995% of purity, was obtained from Air Liquid Group (Barcelona, 

Spain). 

 

2.2. External/internal PAS temperature 

 

The potential temperature gradient inside and outside of PAS was 

measured in the field. A passive sampler was deployed on the roof of the 

Campus Sescelades at the “Rovira i Virgili” University (Tarragona, 

Catalonia, Spain), from June to August 2014. The temperature inside and 

outside the sampler was monitored by means of a thermometer model Ebro 

EBI300 (Ebro Electronics, Ingolstadt, Germany). During the sampling 

period, temperature measurements were recorded every 5 min. 

 

2.3. PAS exposure in a climate chamber 

 

A climate chamber was used to evaluate the influence of the 

temperature over the PAH loss in the PAS. Two exposure scenarios (base, 

at 25 ºC; and extreme, at 38 ºC) were considered, according to the 

respective mean and maximum temperatures recorded inside the PAS. All 

the experiments were performed in darkness and at 65% relative humidity. 

PAHs were determined after 1 h, as well as daily for one week (1, 2, 3, 4, 

5, 6 and 7 days after starting). For each exposure time, four PAS with pre-

cleaned PUFs were spiked with 50 mL of a TCL PAHs mixture (100 mg/mL 
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in DCM:hexane (1:1)). Subsequently, the four PUF-PAS were deployed 

inside the climate chamber, and used as replicates. Once they were 

retrieved from the chamber, PUFs were stored in DCM-cleaned brown 

glass jars and frozen at -20 ºC for subsequent analysis. 

 

2.4. PAHs determination 

 

Microwave-assisted extractions were performed with a microwave 

laboratory system for organic extraction (starT-Basic SK-12, 1200W) 

(Milestone S.r.l. Sorisole, BG, Italy). A microwave oven was used following 

an optimized 40 min program that elevates the temperature to 115 ºC at a 

power of 700 W (Method 3546, EPA). Before the extraction, 50 mL of d10-

fluorene (100 mg/mL in DCM:hexane (1:1)) were spiked to estimate the 

process recoveries. Afterwards, PUFs were cut into small pieces and 

placed in each microwave vessel along with 30 mL of DCM:hexane (1:1). 

Once the extraction was complete, foams were removed and samples were 

concentrated in a rotary evaporator to a volume of 1 mL. Subsequently, 

they were dried under a gentle flow of nitrogen in 1.5-mL amber glass vials. 

Once the solvent was evaporated, extracts were resuspended in 100 mL of 

a solution containing d8-naphthalene and d12-benzo(a)pyrene (50 mg/mL 

in DCM:hexane (1:1 (v:v))).  

The analysis was performed using a gas chromatograph (Hewlette 

Packard G1099A) coupled with a mass spectrometer (Agilent MSD5973). 

A HP-5MS 5% phenyl methyl siloxane capillary column (30 m, 0.25 mm i.d., 

0.25 mm film thickness) (Agilent 19091S-433) was used for separating the 

PAHs. Samples (1 mL) were injected in splitless mode. For recovery 

percentages, four pre-cleaned PUFs were spiked with 50 mL of a PAH 

standard mixture (100 mg/mL in DCM:hexane (1:1)). Subsequently, these 

unexposed samples were extracted following the aforementioned 

procedure. Recovery percentages differed according to individual PAHs, 

ranging from 65% to 95%. Because of peak overlapping, 

benzo(b)fluoranthene and benzo(k)fluoranthene were quantified together.  
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2.5. Data treatment 

 

Data analyses were performed by using the SPSS 19.0 statistical 

software package. The Levene test was applied to analyze the equality of 

variances. ANOVA was executed and a probability lower than 0.05 (p < 

0.05) was considered as statistically significant. The comparison of means 

was performed using the Tukey's test. 

 

3. RESULTS AND DISCUSSION 

 

3.1. External/internal PAS temperature 

 

The results from the monitoring of the potential differences of 

temperature inside and outside PUF-PAS, conducted for a period of 2 

months (Summer 2014), are depicted in Fig. 1. Outside the PAS, minimum 

and maximum temperatures were 12.4 ºC and 33.2 ºC, respectively. In turn, 

the temperatures inside the device ranged from 13.1 ºC to 38.2 ºC (mean: 

25 ºC). A temperature gradient ranging from 3 ºC to 5 ºC (when comparing 

internal and external data) was found for the first month of sampling, while 

in the second month, temperature was approximately 3–3.5 ºC inside the 

PAS. Globally, the temperature inside and outside the device was 3–4 ºC, 

supporting the hypothesis that the design and material of the PAS may lead 

to a substantial difference in the temperature inside and outside the device, 

as a consequence of the direct solar radiation over the metallic housing 

(Kennedy, 2010). 
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Fig. 1. Range of temperatures inside and outside the PAS for 2 months. 

 

3.2. External/internal PAS temperature 

 

The loss of PAHs inside the PUF-based PAS was evaluated for a period 

of 7 days, at 2 temperatures: 25 ºC and 38 ºC as base and extreme 

scenarios, respectively. The concentration loss in the base scenario (25 

ºC), given in percentage, of the 13 individual PAHs in PUFs, between 1 h 

and 7 days after starting, is shown in Fig. 2A. Under the base scenario, 

PAH concentrations did not significantly change throughout the experiment 

(p > 0.05), remaining nearly constant with time. PAH levels are detailed in 

Table 1. Fluorene and anthracene were the only compounds showing 

significant differences for some of the exposure times (between 4th and 7th 

day for fluorene, and between 1st hour and 4th day for anthracene). It is 

well established that the environmental behavior of SVOCs is controlled by 

their psychochemical properties, playing n-octanol/air partition coefficient 

(Koa) a key role as a key descriptor of chemical partitioning between the 

atmosphere and other environmental organic phases (Odabasi et al., 
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2006). Among the PAHs under study, fluorene and anthracene own 

relatively low Koa values. This fact, together with their high vapor pressure, 

could be the reason of the higher variability in the concentrations of these 

2 particular hydrocarbons. 

The PAH concentrations in PUFs exposed for 1 week to an extreme 

temperature of 38 ºC are depicted in Fig. 2B. Similarly to the base scenario, 

no significant changes of the PAH levels were noted through time (p > 0.05). 

Fluorene levels were significantly lower at day-5, while those of 

phenanthrene were significantly reduced at day-6. Despite the similarities 

with the base scenario, a higher variability of the PAH concentrations was 

detected at 38 ºC (Table 1). It means that an increase of the temperature 

might lead to a greater fluctuation of PAHs in the PUF-PAS. This is related 

to the fact that higher temperatures make easier the volatilization of 

compounds, thus showing a higher affinity for the gas phase (Melymuk et 

al., 2014). Notwithstanding, the finding that PAH concentrations did not vary 

significantly proves that these devices are stable enough for air sampling 

irrespectively of the environmental temperature. Unlike the base scenario, 

some of the heaviest hydrocarbons, which are also the most hazardous 

(Sarigiannis et al., 2015), such as benzo(g,h,i)perylene, 

dibenzo(a,h)anthracene and indeno(1,2,3-c,d)pyrene, also showed 

significant differences of their concentrations 6 days after initiating the 

experiment. 

The differences of the PAH concentrations between the two working 

scenarios were also evaluated. For any of the 13 PAHs, no significant 

differences (p < 0.05) were found between the extreme (38 ºC) and the 

base (25 ºC) scenarios, differing from the expected results. Because 

volatilization is directly proportional to temperature (Melymuk et al., 2014), 

higher temperature should lead to lower adsorption of PAHs in the foam. 

However, the fact that PAHs were spiked in a stock solution might have an 

essential influence on the final results, as the affinity of the individual 

compounds for the solvent would be greater, leading to a higher retention 

of PAHs in the PUF. 
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Fig. 2. Loss of PAHs (in percentage) for different molecular weight PAHs and exposure scenarios: A) 25 ºC, and B) 38ºC. 
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Table 1. Individual PAH concentrations (in mg/sample) in PAS exposed to 2 temperatures (25 ºC and 38 ºC) for 7 days. 
 

  1 hour 1 day 2 day 3 day 4 day 5 day 6 day 7 day 

25 ºC 

Fluorene 30.8ab 32.7ab 33.4ab 37.4ab 36.0a 36.0ab 30.6ab 37.4b 

Phenanthrene 60.6 61.4 63.7 64.3 64.1 64.0 60.6 61.6 

Anthracene 66.9a 67.3ab 72.0ab 73.1ab 71.2b 72.4ab 70.7ab 69.3ab 

Fluoranthene 60.1 59.6 62.2 61.9 62.4 62.5 59.4 59.3 

Pyrene 58.2 57.3 61.0 61.1 61.5 61.9 58.4 58.1 

Benzo(a)anthracene 72.2 71.4 73.0 72.8 73.0 75.1 72.4 72.7 

Chrysene 69.1 68.4 71.9 72.1 74.2 74.0 70.9 67.9 

Benzo(b,k)fluoranthene 61.6 59.9 61.9 61.5 61.5 63.2 60.3 59.9 

Benzo(a)pyrene 71.5 70.1 72.8 73.1 71.6 74.5 72.9 71.5 

Benzo(g,h,i)perylene 76.7 74.4 76.2 77.0 76.0 79.0 78.6 79.7 

Dibenz(a,h)anthracene 89.1 87.1 89.0 89.4 89.0 90.5 90.3 88.2 

Indeno(1,2,3-c,d)pyrene 75.9 73.5 75.0 75.6 76.2 77.8 77.2 78.7 

38 ºC 

Fluorene 32.7bc 36.3c 38.9c 36.3c 36.5c 25.6a 28.2ab 35.0c 

Phenanthrene 61.2abc 61.4abc 66.1c 63.2bc 59.3abc 55.4a 54.6a 58.9ab 

Anthracene 71.0 74.0 69.2 72.9 73.3 70.9 70.2 71.8 

Fluoranthene 61.7 62.1 63.3 64.5 61.3 58.7 58.2 60.8 

Pyrene 60.3 60.6 62.2 63.0 61.2 58.3 57.9 61.3 

Benzo(a)anthracene 73.5 75.3 72.6 77.9 71.7 71.6 69.7 71.7 

Chrysene 70.2 71.1 73.2 73.1 73.5 70.3 69.8 73.8 

Benzo(b+k)fluoranthene 59.8 62.8 59.0 66.3 61.2 60.7 59.1 61.8 

Benzo(a)pyrene 73.3 73.78 71.8 76.1 71.1 71.6 70.9 72.0 

Benzo(g,h,i)perylene 79.3ab 78.4 ab 82.8ab 79.5b 75.8 ab 74.9ab 73.4a 78.7ab 

Dibenz(a,h)anthracene 90.0ab 91.8ab 90.6ab 91.7ab 88.4ab 85.8ab 84.4a 93.8b 

Indeno(1,2,3-c,d)pyrene 79.4ab 78.3 ab 77.0ab 78.6ab 76.1ab 72.8ab 70.3a 82.3b 

Different superscripts (a,b,c) indicate significant differences at p < 0.05.
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4. CONCLUSIONS 

 

In the current study, the effect of the environmental temperature on the 

loss of PAHs in PUF-PAS was evaluated. A slight temperature gradient 

inside and outside the PAS chamber was detected, varying from 3 to 5 ºC. 

However, once PAHs are adsorbed to PUFs, it seems that they are not 

removed irrespective of the environmental temperature. No significant 

changes in PAH levels were noted through time at both working scenarios 

(25 ºC and 38 ºC). Moreover, the loss of PAHs was not significantly different 

according to the temperature. In summary, we conclude that environmental 

temperature does not affect the stability of PAHs in PAS. Once PAHs are 

uptaken, they are not easily volatilized from these devices. Consequently, 

PAS are good environmental monitors, regardless the ambient conditions 

of temperature. Our findings may have an important repercussion for the 

comparability of data obtained at different locations worldwide, as PAH 

levels measured by means of passive sampling devices will not vary 

according to the environmental temperature. On the other hand, from a 

climate change perspective of increasing temperature (Teran et al., 2012), 

PAS are proven to be useful to investigate any potential change in the 

airborne concentration of PAHs, as well as other SVOCs. A correction of 

the baseline levels based on the temperature is not necessary. However, 

confirmation studies considering longer sampling periods and/or 

environmental temperatures are necessary to ascertain the results from this 

study. Moreover, complementary investigations could cover 

ecotoxicological analysis of the PUF and evaluation of the PAH mixtures. 
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ANNEX 2 – Supporting information chapter 1. Short 

communication 2. 

 

Table S1. Concentrations of PAHs and SMs in air samples from Tarragona, County 

(winter season, 26/11/2014-26/01/2015). 

 P1 P2 C3 C4 U5 U6 B7 B8   
LOD 

(ng/PUF) 

PAHs            

Naph 324.2 153.5 508.9 659.7 488.7 66.5 57.7 226.8   0.053 

Acy 9.9 4.7 23.8 11.5 4.5 0.3 0 0.3   0.047 

Ace 164.9 164.2 112.6 114.1 165.6 149.1 199.5 97.2   0.032 

Fluo 980.2 961.9 407.4 609.8 393.7 440.3 712.0 380.2   0.060 

Phen 1292.1 877.3 903.0 1099.1 680.4 831.4 640.3 892.7   0.077 

Ant 130.0 36.6 30.7 97.9 34.8 30.8 26.1 41.5   0.037 

Flt 700.7 309.6 379.9 505.7 196.2 324.6 258.1 370.1   0.031 

Pyr 542.3 205.4 284.4 375.6 161.0 223.6 171.9 248.2   0.026 

BaA 92.9 39.5 60.2 73.1 15.8 37.5 15.2 34.2   0.032 

Chry 47.7 14.4 18.9 32.5 5.0 14.9 4.9 13.4   0.029 

B(b+k)F 16.5 8.7 13.7 15.5 1.1 4.1 0.8 2.3   0.016 

BaP 9.9 2.9 5.8 5.3 4.0 7.7 1.0 2.1   0.103 

Icdp 3.1 2.8 4.5 6.8 1.2 2.5 1.2 1.1   0.375 

DahA 2.1 1.5 2.0 3.2 3.5 2.6 2.4 2.8   0.125 

BghiP 16.3 9.8 19.0 11.0 7.5 14.9 6.6 5.1   0.231 

Ʃ16PAHs 4332.7 2792.8 2774.7 3620.7 2162.9 2150.9 2097.7 2317.9    

            

SMs           
LOD 

(ng/PUF) 

Cashmeran 0.26 0.29 <LOD <LOD <LOD <LOD 4.16 <LOD   0.214 

Celestolide 0.22 0.11 0.23 0.31 0.33 0.17 0.42 0.21   0.033 

Phantolide <LOD <LOD <LOD <LOD 0.26 <LOD 0.13 <LOD   0.027 

Musk 
ambrette 

<LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD   0.001 

Traseolide <LOD <LOD 0.22 <LOD <LOD 0.21 0.42 <LOD   0.158 

Galaxolide 8.48 3.06 0.62 2.84 1.35 <LOD 4.77 1.04   0.125 

Musk 
xylene 

<LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD   0.500 

Tonalide 4.28 4.93 2.67 6.57 0.93 0 0.27 <LOD   0.088 

Musk 
moskene 

<LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD   0.600 

Musk 
tibetene 

<LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD   0.600 

Musk 
ketone 

<LOD <LOD <LOD 2.95 <LOD <LOD <LOD <LOD   0.750 

Ʃmusks 13.4 8.5 3.7 12.7 2.9 0.4 10.2 1.3    

P = Petrochemical area; C = Chemical area; U = Urban area; B = Background area. 

LOD = limit of detection. Benzo(b)fluoranthene and benzo(k)fluoranthene were quantified together. 
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Table S2. Concentrations of PCBs, BFRs and HCB in air samples from Tarragona, 

County (winter season, 26/11/2014-26/01/2015). 

 P1 P2 C3 C4 U5 U6 B7 B8  LOD (ng/PUF) 

PCBs           

PCB 28 54.0 7.2 9.9 5.4 3.9 5.3 1.8 1.8  0.044 

PCB 52 4.8 1.6 9.3 2.8 1.6 2.2 0.5 0.9  0.001 

PCB 77 0.1 0.1 1.6 0.3 0.1 0.3 <LOD <LOD  0.013 

PCB 81 0.2 <LOD 1.0 0.1 0.1 <LOD <LOD <LOD  0.009 

PCB 101 0.4 0.9 18.8 1.5 0.8 0.1 <LOD <LOD  0.016 

PCB 105 0.3 0.4 2.6 0.6 0.3 <LOD <LOD <LOD  0.100 

PCB 114 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD  0.109 

PCB 118 0.7 1.0 6.7 0.8 0.5 0.6 0.1 0.5  0.075 

PCB 123 0.6 0.7 9.5 0.7 0.2 0.6 0.2 0.3  0.086 

PCB 126 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD  0.092 

PCB 138 2.0 2.7 23.0 1.9 0.9 1.5 0.1 0.3  0.039 

PCB 153 1.7 2.3 30.1 1.8 0.9 1.4 0.0 0.3  0.019 

PCB 156 <LOD 0.1 1.2 <LOD <LOD <LOD <LOD <LOD  0.008 

PCB 157 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD  0.008 

PCB 167 <LOD <LOD 0.4 <LOD <LOD <LOD <LOD <LOD  0.008 

PCB 169 0.6 0.2 0.1 0.8 <LOD <LOD <LOD <LOD  0.005 

PCB 180 1.3 1.5 6.2 1.1 0.4 0.0 0.1 0.1  0.057 

PCB 189 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD  0.018 

PCB 209 <LOD <LOD 0.1 <LOD <LOD 0.1 <LOD <LOD  0.003 

ƩPCBs 66.6 18.7 120.5 17.8 9.7 12.4 2.9 4.3   

           
BFRs          LOD (ng/PUF) 

BDE 28 0.36 0.28 0.28 0.25 0.22 0.33 0.20 0.24  0.001 

BDE 47 0.55 0.77 0.58 0.21 0.44 0.29 0.19 0.33  0.022 

BDE 85 <LOD <LOD <LOD <LOD <LOD <LOD 0.29 <LOD  0.133 

BDE 99 0.33 0.17 0.31 0.18 <LOD 0.43 0.14 0.11  0.048 

BDE 100 0.000 <LOD 0.13 0.06 0.20 0.16 0.60 0.06  0.036 

BDE 153 1.16 0.32 0.31 0.90 0.21 0.70 0.03 0.05  0.020 

BDE 154 <LOD <LOD <LOD <LOD <LOD 0.10 0.06 0.15  0.013 

BDE 183 0.26 0.08 0.08 0.03 0.08 0.27 0.10 0.21  0.092 

PBT 0.09 <LOD 0.08 0.09 0.03 0.17 0.12 0.02  0.080 

PBEB <LOD <LOD 0.17 <LOD <LOD <LOD <LOD <LOD  0.002 

HBB 0.04 0.05 <LOD <LOD 0.17 0 0.04 0.12  0.040 

ƩBFRs 2.8 1.7 1.9 1.7 1.3 2.5 1.8 1.3   

HCB 10.1 9.6 16.4 11.1 7.5 9.3 4.6 8.2  0.052 

P = Petrochemical area; C = Chemical area; U = Urban area; B = Background area. 

LOD = limit of detection. 
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ANNEX 3 – Supporting information chapter 1. Article 1. 

 

Table S1. Results for recoveries, limit of detection (LOD) and limit of quantification 

(LOQ) for PAHs in air samples (ng/sample) and lichen samples (ng/g dw). 

 PUF-

foams 

Recovery 

 % 

PUF-foams   
Lichens 

Recovery  

% 

Lichens  

 LOD  LOQ   LOD  LOQ  

Naphthalene 110 0.3  1   124 1  5  

Acenaphthylene 116 0.3  1   - 1  5  

Acenaphthene 99 0.3  1   126 1  5  

Fluorene 91 1.5  5   128 1  5  

Phenanthrene 106 1.5  5   131 1  5  

Anthracene 111 1.5  5   118 0.6  1  

Fluoranthene 99 1.5  5   142 1  5  

Pyrene 99 1.5  5   134 1  5  

Benzo(a)anthracene 85 1.5  5   151 0.6  1  

Chrysene 105 1.5  5   113 0.6  1  

Benzo(b)fluoranthene 89 3  10   - -  -  

Benzo(k)fluoranthene 66 5  20   - -  -  

Benzo(b+k)fluoranthene* - -  -   56 0.6  1  

Benzo(a)pyrene 93 3  10   66 0.6  1  

Indeno(1,2,3-c,d)pyrene 85 3  10   101 1  5  

Dibenzo(a,h)anthracene 86 3  10   100 1  5  

Benzo(g,h,i)perylene 75 5  20   93 1  5  

*Benzo(b)fluoranthene and benzo(k)fluoranthene were quantified together in lichens. 
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ANNEX 4 – Supporting information chapter 2. Article 1. 

 

 
Fig. S1. Example chromatogram of standard solutions for PAHs and SMs. 
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Fig. S2. Example chromatogram of standard solutions for PCBs, BFRs and HCB. 
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ANNEX 5 – Supporting information chapter 2. Article 2. 

 

Table S1. Concentrations of SVOCs in soils samples of each sampling point in Tarragona County, (Catalonia, Spain) (ng/g). 

 
Sampling 
Point 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

Area P P P P P P P C C C C C C C C C U U U U U U B B B B B 

Naph 0.34 1.42 3.05 4.24 2.10 2.58 1.26 1.78 0.15 <LOD 9.42 3.92 7.11 3.96 <LOD <LOD <LOD <LOD <LOD 10.12 20.90 11.80 12.06 16.74 5.02 5.70 37.57 

Acy 0.86 0.66 2.16 0.79 0.56 0.47 0.29 0.51 0.32 0.46 0.57 26.25 0.51 0.32 0.71 0.23 2.20 0.45 0.36 2.36 0.52 0.36 0.17 0.51 0.13 0.11 0.21 

Ace 0.21 0.37 1.83 0.25 0.33 0.64 11.74 1.19 0.37 0.17 1.04 2.04 0.51 0.51 0.63 0.51 1.17 0.76 0.57 <LOD 0.56 0.30 0.39 0.14 <LOD <LOD 0.63 

Fluo 0.15 0.24 0.39 0.32 0.32 0.66 22.63 1.12 0.41 0.12 2.51 5.03 0.52 0.44 0.55 0.30 1.35 0.99 0.50 0.03 1.67 0.40 0.26 0.10 0.06 <LOD 0.63 

Phen 2.09 1.52 1.59 2.41 2.23 2.14 6.96 2.48 3.56 0.91 21.58 19.33 2.68 1.78 9.90 2.26 22.98 2.23 7.32 1.61 5.21 2.84 2.41 2.37 1.03 1.70 2.43 

Ant 0.24 0.12 0.18 0.27 0.25 0.24 0.08 0.27 0.38 0.12 2.22 1.99 0.19 0.20 0.95 0.24 2.14 0.25 0.03 <LOD 0.06 <LOD <LOD <LOD <LOD <LOD 0.58 

Flt 4.56 1.22 3.75 3.26 2.46 3.57 2.63 4.51 17.87 3.42 30.25 18.18 3.07 1.54 28.90 3.29 55.85 6.96 26.52 10.04 9.13 18.32 1.72 0.96 1.51 1.11 12.75 

Pyr 4.03 1.35 3.91 3.28 2.33 3.58 77.94 5.11 14.51 3.07 27.00 23.56 2.89 3.39 25.37 4.93 46.86 8.59 22.51 10.01 9.02 17.89 3.09 1.03 1.30 0.96 10.86 

BaA 2.50 0.67 3.83 2.23 1.16 2.20 0.66 2.69 9.99 2.09 15.28 15.52 1.47 0.31 18.68 1.52 34.52 4.19 8.40 5.23 2.10 10.55 1.74 0.16 0.69 0.30 6.47 

Chry 3.56 1.04 4.73 3.36 2.44 4.23 6.82 4.08 11.25 2.12 22.53 21.08 2.57 3.41 24.05 3.01 39.77 5.55 14.50 8.69 10.73 17.87 7.57 0.70 1.37 0.77 11.06 

B(b+k)F 3.48 1.42 5.81 5.63 2.52 4.84 8.68 4.15 12.40 2.82 22.19 16.76 1.85 2.06 24.37 4.84 38.16 9.61 14.95 18.37 19.34 20.53 3.88 2.08 2.06 1.50 13.37 

BaP 3.95 1.25 5.53 4.90 2.41 3.73 3.76 4.17 11.35 2.86 25.03 20.00 2.29 0.73 25.81 4.13 41.32 5.12 12.17 19.03 18.72 25.57 4.74 0.53 0.65 0.68 13.90 

Icdp 1.86 0.35 2.58 2.10 0.98 1.43 1.09 1.72 6.43 0.87 13.25 13.57 0.75 0.89 17.65 1.99 25.61 4.45 8.30 14.59 9.33 11.88 0.63 0.30 <LOD <LOD 4.94 

DahA 0.26 <LOD 0.59 0.80 <LOD 0.34 0.40 0.96 1.03 0.25 4.84 4.08 <LOD 1.03 4.02 0.78 5.87 0.74 1.73 2.97 2.43 3.75 1.01 <LOD <LOD <LOD 1.60 

BghiP 2.55 2.22 5.37 5.08 2.81 3.59 16.56 4.33 7.98 2.16 21.71 17.34 1.67 6.46 22.35 3.84 32.64 6.18 12.06 18.07 21.51 17.06 7.57 0.77 0.97 0.54 6.29 

Ʃ16PAHs 30.65 13.93 45.32 38.90 22.97 34.23 161.49 39.08 98.01 21.49 219.41 208.64 28.16 27.02 203.99 31.91 350.47 56.09 129.96 121.14 131.24 159.13 47.25 26.46 14.99 13.60 123.28 

Ʃ 7 prob. 
carcinogenic 
PAHs* 

15.60 4.80 23.08 19.01 9.58 16.77 21.40 17.77 52.45 11.03 103.10 91.01 9.00 8.43 114.57 16.26 185.25 29.65 60.06 68.88 62.66 90.15 19.57 3.84 4.94 3.43 51.34 
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Sampling 
Point 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

Area P P P P P P P C C C C C C C C C U U U U U U B B B B B 

Cashmeran <LOD <LOD 5.93 <LOD 2.09 3.13 2.60 6.89 2.21 <LOD <LOD 1.78 4.87 <LOD <LOD <LOD <LOD 2.34 1.63 1.06 3.47 3.95 5.19 4.68 0.65 4.31 7.11 

Celestolide <LOD 0.07 <LOD 0.10 <LOD <LOD 1.03 <LOD 0.04 <LOD <LOD 0.08 0.04 0.04 <LOD <LOD <LOD 0.04 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

Phantolide <LOD <LOD <LOD 0.15 0.14 <LOD 1.26 <LOD <LOD 0.09 0.10 0.28 0.26 <LOD 0.05 0.10 <LOD 0.27 0.02 <LOD <LOD <LOD <LOD 0.04 <LOD <LOD 0.01 

Galaxolide 1.79 2.37 1.61 6.11 1.36 0.81 3.64 0.97 11.49 2.18 1.52 6.78 7.88 10.20 3.66 2.43 2.37 5.91 0.64 3.45 3.50 1.37 8.25 7.26 <LOD 9.79 0.97 

Traseolide <LOD <LOD <LOD 0.25 <LOD <LOD <LOD <LOD <LOD <LOD <LOD 0.21 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

Tonalide 0.24 0.34 0.21 0.50 0.45 0.12 3.55 0.25 0.48 <LOD 0.23 0.28 0.55 0.39 0.25 0.52 0.24 0.58 <LOD <LOD 0.24 <LOD 0.27 0.20 <LOD 0.23 0.14 

Musk 
ambrette 

<LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

Musk xylene <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

Musk 
moskene 

<LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

Musk 
tibetene 

<LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

Musk ketone <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 1.30 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

Ʃmusks 2.30 3.03 7.95 7.32 4.24 4.26 12.26 8.31 14.42 2.60 2.11 10.82 13.79 10.88 4.22 3.32 2.88 9.31 2.55 4.78 7.42 5.58 13.90 12.38 0.94 14.53 8.42 

                            

PCB 52 0.01 0.04 0.05 0.06 0.04 0.01 0.23 0.08 0.04 0.01 0.13 0.04 0.04 0.03 0.02 0.03 0.07 0.06 0.04 0.03 0.03 0.36 0.03 0.02 0.02 0.02 0.02 

PCB 77 0.04 0.08 0.02 0.06 0.07 0.01 0.89 0.07 <LOD <LOD <LOD <LOD <LOD <LOD 0.64 0.86 1.15 0.59 <LOD 0.24 <LOD 0.15 <LOD <LOD <LOD <LOD <LOD 

PCB 81 0.04 0.06 0.03 0.02 0.03 0.01 0.47 0.02 <LOD <LOD 0.03 0.04 0.05 0.13 <LOD <LOD 0.54 <LOD <LOD <LOD <LOD 0.49 <LOD <LOD <LOD <LOD 0.11 

PCB 101 2.44 0.56 1.21 3.16 <LOD <LOD 1.13 <LOD <LOD <LOD <LOD <LOD <LOD 1.50 0.53 0.08 <LOD <LOD 2.21 2.33 0.68 0.60 <LOD 1.42 0.82 2.52 0.33 

PCB 105 <LOD <LOD <LOD <LOD <LOD <LOD 0.09 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

PCB 114 0.02 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 0.02 0.02 0.04 0.03 <LOD 0.03 0.06 0.06 0.10 0.17 0.14 0.29 0.14 

PCB 118 2.40 1.00 1.55 2.48 <LOD 0.11 0.62 <LOD 0.16 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

PCB 123 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 0.05 <LOD <LOD 0.99 0.66 1.07 0.79 1.06 1.22 0.96 1.32 1.51 0.79 0.47 0.81 1.23 

PCB 126 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 1.61 1.31 1.94 0.25 1.08 <LOD 0.21 0.78 1.86 0.84 <LOD 1.03 1.33 

PCB 138 0.32 0.63 0.24 0.36 0.71 0.89 2.65 2.29 2.27 0.60 10.42 5.18 2.91 1.14 8.81 1.15 3.70 1.68 0.99 0.69 9.81 8.83 0.42 0.76 2.84 0.47 0.94 
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Sampling 
Point 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

Area P P P P P P P C C C C C C C C C U U U U U U B B B B B 

PCB 153 4.67 3.60 0.95 0.01 0.73 0.51 0.80 0.63 0.13 7.05 22.90 13.96 7.43 4.97 1.56 0.10 0.56 0.35 0.11 0.30 1.92 1.30 0.40 0.33 0.45 0.16 0.34 

PCB 156 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 0.77 0.79 0.65 0.11 0.69 0.58 0.17 0.21 0.38 0.02 0.17 0.53 0.63 

PCB 157 <LOD 0.01 <LOD <LOD <LOD <LOD 0.01 <LOD 0.01 <LOD <LOD 0.00 <LOD <LOD 0.05 0.10 <LOD <LOD 0.03 0.21 0.03 <LOD 0.32 <LOD <LOD <LOD 0.24 

PCB 167 <LOD <LOD <LOD <LOD <LOD <LOD 0.03 <LOD <LOD <LOD <LOD <LOD <LOD <LOD 0.21 0.25 0.06 <LOD 0.20 0.03 <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

PCB 169 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

PCB 180 0.14 0.24 0.05 0.37 0.41 0.41 0.39 0.31 0.74 1.56 1.62 2.26 2.01 1.54 2.11 1.12 1.17 1.31 1.23 1.26 2.09 1.46 0.78 1.88 1.09 0.21 1.02 

PCB 189 0.17 0.01 0.12 0.27 0.69 0.27 <LOD 0.36 0.05 <LOD <LOD <LOD <LOD <LOD 0.23 0.35 0.29 0.33 0.35 0.14 0.13 0.48 0.40 0.08 0.27 0.74 0.39 

PCB 209 <LOD 0.21 0.44 1.91 2.32 2.14 <LOD 2.19 4.06 0.10 0.17 0.07 0.06 0.10 0.10 0.07 0.02 0.04 0.10 0.05 0.05 0.07 0.05 0.22 0.04 0.17 0.10 

ƩPCBs 10.35 6.53 4.71 8.80 5.05 4.42 7.69 6.02 7.47 9.37 35.34 21.67 12.58 9.48 17.74 6.96 11.36 5.64 8.17 7.20 16.23 16.36 6.31 6.57 6.37 6.99 6.88 

                            

BDE 28 0.01 <LOD 0.00 0.00 <LOD <LOD 0.01 <LOD 0.01 0.03 0.02 0.04 0.03 0.02 <LOD <LOD <LOD <LOD 0.01 0.03 <LOD <LOD <LOD <LOD <LOD <LOD 0.01 

BDE 47 0.16 <LOD 0.04 0.06 0.00 0.16 0.03 0.32 0.23 0.86 2.28 0.90 1.00 1.20 0.13 0.06 0.10 0.11 0.12 0.04 0.20 0.21 0.01 0.02 0.01 0.07 0.07 

BDE 85 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

BDE 99 0.36 <LOD <LOD 0.29 0.13 0.09 <LOD <LOD <LOD 0.31 0.12 0.57 0.32 0.23 0.06 0.95 0.72 1.58 0.65 0.41 <LOD 0.62 <LOD <LOD 0.06 <LOD <LOD 

BDE 100 <LOD 0.06 0.04 0.15 <LOD <LOD <LOD 0.15 <LOD 0.08 0.08 0.05 0.03 0.04 0.03 0.12 0.23 0.16 0.03 0.05 0.03 0.10 <LOD 0.03 0.04 0.05 <LOD 

BDE 153 0.02 0.22 <LOD <LOD 0.18 <LOD 0.03 <LOD 0.47 0.32 0.26 0.17 0.11 0.11 0.06 0.01 0.08 0.24 0.11 0.19 1.37 0.13 0.11 0.05 0.03 0.05 0.06 

BDE 154 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 0.03 0.12 0.09 0.02 0.04 0.01 <LOD <LOD 0.03 0.00 0.04 0.02 0.04 0.01 0.02 <LOD <LOD <LOD 

BDE 183 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

PBT <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 0.01 0.01 <LOD <LOD <LOD 0.02 <LOD 0.05 <LOD 

PBEB <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 0.05 <LOD <LOD 0.05 <LOD 0.05 <LOD <LOD <LOD 0.03 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

HBB <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

ƩBFRs 0.63 0.37 0.19 0.58 0.39 0.33 0.18 0.57 0.82 1.73 2.94 1.89 1.61 1.70 0.41 1.21 1.20 2.19 1.02 0.81 1.72 1.16 0.24 0.21 0.22 0.31 0.25 
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Sampling 
Point 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

Area P P P P P P P C C C C C C C C C U U U U U U B B B B B 

HCB 0.01 0.02 0.03 0.01 0.01 0.01 0.03 0.02 0.01 0.06 0.04 0.07 0.05 0.05 0.01 <LOD 0.00 0.01 0.00 0.01 0.11 0.02 <LOD 0.02 0.02 0.01 0.01 

P = Petrochemical area; C = Chemical area; U = Urban area; B = Background area. 

LOD = limit of detection. Benzo(b)fluoranthene and benzo(k)fluoranthene were quantified together. 

*Benzo(a)anthracene, chrysene, benzo(b+k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-c,d)pyrene, dibenzo(a,h)anthracene. 
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Table S2. Concentrations of SVOCs in vegetation samples of each sampling point in Tarragona County, (Catalonia, Spain) (ng/g). 

Sampling Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

Area P P P P P P P C C C C C C C C C U U U U U U B B B B B 

Naph 50.81 58.46 47.35 38.26 31.62 30.00 15.28 31.45 16.96 27.67 29.61 33.57 32.51 25.79 6.43 10.77 16.75 37.28 11.24 14.90 29.00 13.79 26.85 26.42 30.99 16.21 16.39 

Acy 0.85 0.48 0.22 0.55 0.12 <LOD <LOD 0.10 <LOD 0.05 0.10 0.14 0.34 0.37 0.20 0.21 0.21 0.91 0.41 0.37 0.78 0.24 0.71 0.26 0.82 0.17 0.41 

Ace 0.96 1.10 0.34 0.36 1.22 0.81 1.20 0.11 2.06 0.50 <LOD <LOD 0.50 0.06 0.24 0.36 0.20 0.65 0.45 0.26 0.73 0.30 1.19 0.25 0.49 0.21 0.20 

Fluo 7.26 8.69 3.79 15.51 1.13 0.47 0.38 <LOD 1.54 2.41 0.24 1.00 1.01 1.33 1.35 0.62 0.66 4.58 3.00 1.54 1.45 0.52 4.86 1.68 3.65 2.81 0.81 

Phen 12.05 17.41 6.85 10.16 9.63 6.44 8.20 2.75 1.12 4.12 2.54 2.81 4.97 5.36 4.32 4.09 7.03 44.70 4.46 24.60 6.57 8.98 13.80 10.69 12.02 19.89 5.94 

Ant 0.95 0.35 0.84 0.58 0.72 0.25 0.34 0.19 0.76 0.24 0.03 0.07 0.49 0.27 0.56 0.28 1.53 2.01 1.58 8.20 5.52 2.03 0.77 4.82 1.42 1.29 1.08 

Flt 6.66 7.02 3.19 3.65 2.89 2.86 2.52 2.19 2.16 3.86 2.43 2.46 2.70 4.42 1.30 4.26 4.07 34.10 1.58 17.74 10.48 4.76 5.95 9.91 8.25 22.74 3.02 

Pyr 18.17 19.01 9.61 10.42 7.90 7.81 6.88 2.33 1.89 3.46 2.22 1.82 3.81 3.58 0.88 4.87 4.33 36.28 3.71 20.84 8.64 4.01 5.04 7.41 6.84 23.96 2.11 

BaA 1.82 1.90 0.96 1.04 0.79 0.78 0.69 0.15 0.29 0.11 0.06 <LOD 0.49 0.39 0.29 1.00 0.49 4.12 0.35 0.57 0.82 0.50 0.80 0.58 0.36 0.43 0.27 

Chry 1.63 4.03 2.97 3.28 1.61 2.15 1.06 1.10 4.93 0.77 0.59 0.51 1.60 1.66 0.82 2.08 1.37 9.41 0.93 2.17 4.99 1.25 1.55 1.00 3.58 2.33 0.29 

B(b+k)F 1.66 1.70 4.13 8.70 1.58 1.73 3.31 2.39 2.47 2.36 3.13 1.37 4.72 1.39 2.72 0.43 2.12 8.52 0.74 0.41 1.35 0.84 0.38 1.09 0.27 0.35 0.27 

BaP 0.74 0.61 0.71 0.68 0.42 0.35 0.29 0.24 0.09 0.19 0.92 0.41 1.37 0.33 0.33 0.11 0.17 2.23 0.23 0.39 0.88 0.60 0.18 0.67 0.23 0.09 0.22 

Icdp <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 4.26 <LOD <LOD <LOD <LOD <LOD 1.30 <LOD <LOD 3.20 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

DahA 0.52 <LOD <LOD 0.87 <LOD <LOD 0.40 <LOD 0.15 0.19 <LOD 0.15 1.49 0.46 0.85 <LOD <LOD <LOD 0.41 <LOD 0.98 <LOD 0.52 <LOD 0.50 0.20 0.26 

BghiP 0.61 2.37 0.79 <LOD 1.03 0.80 <LOD 1.04 0.83 2.58 0.76 2.25 1.81 1.29 1.21 0.46 2.37 4.69 2.44 0.49 5.95 1.77 1.96 5.59 2.07 1.14 1.39 

Ʃ16PAHs 104.79 123.33 81.95 94.24 60.84 54.64 40.74 44.25 35.40 52.78 42.83 46.70 57.91 46.81 21.60 30.93 41.48 189.67 34.75 92.66 78.26 39.76 64.68 70.56 71.57 91.94 32.58 

Ʃ 7 prob. 
carcinogenic PAHs* 

6.47 8.43 8.96 14.68 4.58 5.18 5.86 4.06 8.05 7.87 4.89 2.56 9.78 4.34 5.12 5.00 4.33 24.47 5.87 3.72 9.15 3.36 3.55 3.53 5.04 3.51 1.23 

                            

Cashmeran <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 6.63 <LOD <LOD <LOD <LOD 1.67 <LOD 6.01 4.24 15.38 3.33 9.07 8.75 <LOD 1.72 <LOD 8.94 <LOD 6.59 

Celestolide <LOD 0.04 0.05 <LOD <LOD <LOD <LOD <LOD 0.90 <LOD <LOD <LOD 0.10 0.16 0.20 0.22 0.65 0.32 0.40 0.48 0.30 0.72 0.58 1.01 1.07 3.56 0.93 

Phantolide <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 0.82 0.36 0.46 <LOD 0.20 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
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Sampling Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

Area P P P P P P P C C C C C C C C C U U U U U U B B B B B 

Galaxolide <LOD 6.94 <LOD <LOD 4.32 <LOD 14.53 9.82 5.58 <LOD 1.83 4.94 4.80 14.34 5.39 <LOD <LOD <LOD <LOD 17.59 <LOD 3.26 <LOD 38.45 <LOD 14.49 7.33 

Traseolide <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

Tonalide <LOD <LOD 0.18 <LOD <LOD <LOD 0.24 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 1.55 1.60 0.88 <LOD 2.52 <LOD 0.52 <LOD <LOD 1.78 <LOD 1.99 

Musk ambrette <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

Musk xylene <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

Musk moskene <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

Musk tibetene <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

Musk ketone <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

Ʃmusks 0.35 7.29 0.50 0.35 4.65 0.35 15.04 10.15 13.35 0.35 2.97 5.62 5.66 16.42 6.09 7.99 6.70 16.78 4.00 29.85 9.32 4.74 2.56 39.76 12.01 18.36 17.03 

                            

PCB 52 0.28 0.17 0.17 0.39 0.10 0.43 0.20 0.16 0.23 0.18 0.31 0.37 <LOD <LOD <LOD 0.04 0.16 0.95 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

PCB 77 5.27 5.86 0.23 <LOD 3.57 2.48 3.70 3.33 <LOD 0.65 8.26 4.63 2.71 1.26 1.07 3.12 2.17 7.81 0.54 4.87 3.70 4.38 0.91 <LOD 0.37 0.38 <LOD 

PCB 81 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 0.01 0.04 <LOD <LOD 0.03 0.01 <LOD <LOD 0.01 <LOD <LOD <LOD <LOD <LOD 

PCB 101 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 0.07 <LOD <LOD <LOD <LOD <LOD <LOD <LOD 0.12 <LOD <LOD <LOD 0.01 <LOD <LOD <LOD <LOD <LOD 

PCB 105 0.14 0.07 0.05 0.12 0.05 0.08 0.16 0.04 0.09 0.04 0.12 0.13 0.07 0.14 0.06 0.25 0.06 0.09 0.10 0.07 0.11 0.04 0.11 0.13 0.07 0.09 0.15 

PCB 114 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

PCB 118 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

PCB 123 0.56 0.61 0.62 0.55 0.62 0.54 0.49 0.03 0.08 0.02 0.05 0.03 <LOD 0.06 <LOD 0.02 0.01 0.06 0.01 <LOD <LOD <LOD <LOD 0.01 <LOD <LOD <LOD 

PCB 126 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

PCB 138 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

PCB 153 0.06 0.02 <LOD 0.08 <LOD <LOD <LOD 0.67 0.06 <LOD <LOD 0.16 0.05 0.04 0.06 0.14 0.18 0.11 0.04 0.03 0.03 <LOD 0.04 <LOD <LOD <LOD <LOD 

PCB 156 0.22 0.02 0.13 0.16 0.01 <LOD <LOD 0.06 <LOD <LOD <LOD <LOD 0.05 0.07 0.02 0.02 0.02 0.04 0.03 0.07 0.05 0.01 0.03 0.01 0.02 0.01 0.01 

PCB 157 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

PCB 167 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
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Sampling Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

Area P P P P P P P C C C C C C C C C U U U U U U B B B B B 

PCB 169 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 0.03 0.01 0.03 <LOD 0.02 <LOD <LOD <LOD <LOD <LOD <LOD <LOD 0.02 <LOD <LOD <LOD <LOD <LOD <LOD 

PCB 180 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

PCB 189 <LOD <LOD <LOD <LOD 0.03 0.06 0.01 0.01 0.05 0.07 0.05 0.07 0.09 0.06 0.09 0.06 0.06 0.02 0.06 0.10 0.06 0.02 0.02 0.03 0.02 0.02 0.01 

PCB 209 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

ƩPCBs 6.56 6.78 1.24 1.34 4.43 3.62 4.59 4.34 0.55 1.08 8.84 5.42 3.01 1.67 1.35 3.67 2.70 9.26 0.81 5.18 3.99 4.49 1.15 0.21 0.50 0.54 0.21 

                            

BDE 28 0.12 0.04 0.02 0.01 0.04 0.01 0.07 0.14 0.09 <LOD 0.07 0.09 <LOD 0.02 0.01 0.01 <LOD 0.49 0.04 <LOD <LOD <LOD 1.40 0.05 0.02 <LOD <LOD 

BDE 47 0.68 0.14 0.02 0.42 0.30 0.09 0.56 0.51 1.21 1.31 0.29 0.65 0.43 0.46 0.82 0.60 0.45 0.32 0.73 1.04 0.43 0.05 0.14 0.04 0.10 0.06 0.02 

BDE 85 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

BDE 99 0.18 0.21 0.43 0.23 0.30 0.22 0.20 0.25 0.27 0.33 0.26 0.27 0.06 0.12 <LOD <LOD 0.07 <LOD <LOD 0.14 0.09 <LOD <LOD <LOD <LOD <LOD <LOD 

BDE 100 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 0.04 <LOD 0.05 0.05 0.04 <LOD <LOD 0.08 0.04 <LOD <LOD <LOD <LOD <LOD <LOD 

BDE 153 0.18 0.02 0.08 0.07 0.23 0.16 0.18 0.06 0.35 0.02 0.22 0.21 0.02 <LOD 0.07 <LOD 0.03 <LOD <LOD 0.04 <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

BDE 154 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

BDE 183 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

PBT <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

PBEB <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

HBB <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

ƩBFRs 1.25 0.49 0.63 0.82 0.95 0.56 1.08 1.04 2.01 1.74 0.92 1.30 0.62 0.69 1.02 0.74 0.66 0.90 0.86 1.37 0.63 0.15 1.64 0.19 0.22 0.16 0.12 

                            

HCB 0.07 0.08 0.09 0.18 0.09 0.09 0.29 0.43 0.08 0.07 0.05 0.12 <LOD <LOD <LOD <LOD 0.14 0.11 <LOD <LOD 0.10 0.31 0.23 0.24 0.11 0.11 0.03 

P = Petrochemical area; C = Chemical area; U = Urban area; B = Background area. 

LOD = limit of detection. Benzo(b)fluoranthene and benzo(k)fluoranthene were quantified together. 

*Benzo(a)anthracene, chrysene, benzo(b+k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-c,d)pyrene, dibenzo(a,h)anthracene. 
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Fig. S1.  Principal component analysis (PCA) for PAHs ring profiles in soil (A) and 

vegetation (B) collected in the different zones of study. 
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ANNEX 6 – Supporting information chapter 3. Article 1. 

 

Table S1. Mass balance equation for each medium according to Diamond et al., 

2001. 

Medium Mass balance equation 

Air IA + ƒWDWA + ƒSDSA + ƒVDVA + ƒFDFA = ƒADTA 

Water IW + ƒADAW + ƒSDSW + ƒDDDW + ƒFDFW = ƒWDTW 

Soil IS + ƒADAS + ƒVDVS  = ƒSDTS 

Sediment ID + ƒWDWD  = ƒDDTD 

Vegetation IV + ƒADAV + ƒSDSV  = ƒVDTV 

Organic film IF + ƒADAF  = ƒFDTF 

A, W, S, D, V and F represent air, water, soil, sediment, vegetation and organic film, 
respectively. ƒ is fugacity. I is the contaminant input into each medium, and the subscript “T” 
is the total D values. 

 

 

Fig. S1. Averaging 46 LAI (1x1 km) products from Moderate Resolution Imaging 

Spectroradiometer (MODIS. NASA http://modis.gsfc.nasa.gov/) collected each 8 

days during the year 2014 in the Tarragona County, Spain. 
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Table S2. PAHs energies of phase transition (dUow, dUaw, dUoa). 

Energies of phase 

transition Naphthalene Anthracene Phenanthrene Pyrene Fluoranthene Benzo (a) pyrene Reference 

dUaw (J mol-1) 44650 48800 53420 47630 57860 36890 Beyer et al., 2002 

dUow (J mol-1) -15700 -19700 -20520 -23930 -23750 -25400 Beyer et al., 2002 

dUoa (J mol-1) -60350 -68500 -73950 -71560 -81610 -62290 Beyer et al., 2002 

 

 

Table S3. PAHs’ diffusivity in air and water (Da and Dw) at 298 K. 

Chemical' diffusivity 

in water and air 

(298K) Naphthalene Anthracene Phenanthrene Pyrene Fluoranthene Benzo (a) pyrene Reference 

Da (J mol-1) 2.38 x 10-2 1.92 x 10-2 1.92 x 10-2 1.77 x 10-2 1.77 x 10-2 1.53 x 10-2 Ha and Kwon, 2010  

Dw (J mol-1) 2.96 x 10-6 2.09 x 10-6 1.85 x 10-6 1.96 x 10-6 1.85 x 10-6 2.05 x 10-6 Shor et al., 2003 
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Fig. S2. Correspondence between modelled soil concentrations by MUM-Fate in 2014 and measured soil concentrations in 2004, 2009 and 

2011 in Tarragona County, Spain. Red line represents the correlation between the measures and the dashed black line represents the 1:1 

relationship. 
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Fig. S3. MUM-Fate estimated rates of chemical movement and transformation for 

Naphthalene based on an emission of 1 mol h-1 into air. Transport rates are 

expressed in mmol h-1. 

 

 

Fig. S4. MUM-Fate estimated rates of chemical movement and transformation for 

Anthracene based on an emission of 1 mol h-1 into air. Transport rates are 

expressed in mmol h-1. 
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Fig. S5. MUM-Fate estimated rates of chemical movement and transformation for 

Phenanthrene based on an emission of 1 mol h-1 into air. Transport rates are 

expressed in mmol h-1. 

 

 

Fig. S6. MUM-Fate estimated rates of chemical movement and transformation for 

Pyrene based on an emission of 1 mol h-1 into air. Transport rates are expressed in 

mmol h-1. 

UNIVERSITAT ROVIRA I VIRGILI 
ENVIRONMENTAL LEVELS OF PAHs AND OTHER SVOCs IN A PETROCHEMICAL AREA. COMBINING MONITORING 
AND MODELLING TOOLS 
Noelia Domínguez Morueco 
 



ANNEX 

 

- 328 - 

 

 

Fig. S7. MUM-Fate estimated rates of chemical movement and transformation for 

Fluoranthene based on an emission of 1 mol h-1 into air. Transport rates are 

expressed in mmol h-1. 
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