
Adaptive Mesh Simulations of
Compressible Flows using Stabilized

Formulations

Camilo Andrés Bayona Roa

Supervisors:

Ramon Codina
Joan Baiges

Escola Tècnica Superior d’Enginyers
de Camins, Canals i Ports de Barcelona

Universitat Politècnica de Catalunya

December 2017

Acknowledgements

Let me first thanks my supervisors, professors Ramon Codina and Joan Baiges, for
all the clarifying and fruitful lessons that they have given to me. It is remarkable
the number of upgrades that, undoubtedly, they have given to each topic of this
thesis. Thank you for teaching me how to overcome the inherent difficulties of
research.

Thanks to my family for being my constant support. To Lorena, my darling love,
and to Emilia for both being part of me. Also to our extended family, for being a
great support in the distance, and for all their patience and hope.

Let me also mention my friends and colleagues, which have been through each
step of this work, thanks for contributing me so much in this process. In the same
line, this work has also been the joint effort of so many other people that I may
not mention explicitly; many thanks for all your commitment.

Finally, I would like to acknowledge the doctoral scholarship that I had received
from the Colombian government – Colciencias, and the big support that the Inter-
national Center for Numerical Methods in Engineering gave to this research.

My gratitude to you all.

Abstract

This thesis investigates numerical methods that approximate the solution of com-
pressible flow equations.

The first part of the thesis is committed to studying the Variational Multi-Scale
(VMS) finite element approximation of several compressible flow equations. In
particular, the one-dimensional Burgers equation in the Fourier space, and the
compressible Navier-Stokes equations written in both conservative and primitive
variables are considered. The approximations made for the VMS formulation are
extensively researched; the design of the matrix of stabilization parameters, the
definition of the space where the subscales live, the inclusion of the temporal
derivatives of the subscales, and the non-linear tracking of the subscales are for-
mulated. Also, the addition of local artificial diffusion in the form of shock captur-
ing techniques is included. The accuracy of the formulations is studied for several
regimes of the compressible flow, from aeroacoustic flows at low Mach numbers
to supersonic shocks.

The second part of the thesis is devoted to make the solution of the smallest fluc-
tuating scales of the compressible flow affordable. To this end, a novel algorithm
for h−refinement of computational physics meshes in a distributed parallel set-
ting, together with the solution of some refinement test cases in supercomputers
are presented. The definition of an explicit a-posteriori error estimator that can be
used in the adaptive mesh refinement simulations of compressible flows is also
developed; the proposed methodology employs the variational subscales as a local
error estimate that drives the mesh refinement.

The numerical methods proposed in this thesis are capable to describe the high-
frequency fluctuations of compressible flows, especially, the ones corresponding
to complex aeroacoustic applications. Precisely, the direct simulation of the frica-
tive [s] sound inside a realistic geometry of the human vocal tract is achieved at
the end of the thesis.

Resumen

Esta tesis investiga métodos numéricos que aproximan la solución de las ecua-
ciones de flujo compresible.

La primera parte de la tesis está dedicada al estudio de la aproximación numérica
del flujo compresible por medio del método multiescala variacional (VMS) en
elementos finitos. En particular, se consideran la ecuación de Burgers unidimen-
sional descrita en el espacio de Fourier y las ecuaciones de Navier-Stokes de flujo
compresible escritas en variables conservativas y primitivas. Las aproximaciones
hechas para plantear la formulación VMS son ampliamente investigadas; el diseño
de la matriz de parámetros de estabilización, la definición del espacio donde viven
las subescalas, la inclusión de las derivadas temporales de las subescalas y el
seguimiento no lineal de las subescalas son particularidades de la formulación
que se analizan para cada una de las ecuaciones consideradas. Además, se incluye
la adición de difusión artificial local en forma de técnicas de captura de choque.
La precisión de las formulaciones se estudia para varios regı́menes del flujo com-
presible, desde flujos aeroacústicos a bajos números de Mach hasta choques su-
persónicos.

La segunda parte de la tesis está dedicada a hacer asequible la solución de las
escalas fluctuantes más pequeñas del flujo compresible. Con este fin, se presenta
un algoritmo novedoso para el refinamiento h de las mallas de fı́sica computa-
cional usadas en computación distribuida en paralelo. Además, se demuestra la
solución en superordenadores de algunos casos de prueba del refinamiento de mal-
las. También se desarrolla la definición de un estimador de error explı́cito a poste-
riori que se puede usar en las simulaciones adaptativas de refinamiento de malla de
flujos compresibles; la metodologı́a propuesta emplea las subescalas variacionales
como una estimación de error local que induce el refinamiento de la malla.

Los métodos numéricos propuestos en esta tesis son capaces de describir las fluc-
tuaciones de alta frecuencia de los flujos compresibles, especialmente los corre-
spondientes a aplicaciones aeroacústicas complejas. Precisamente, la simulación
directa del sonido consonántico fricativo [s] dentro de una geometrı́a realista del
tracto vocal humano se demuestra al final de la tesis.

Contents

I 1

1 Introduction 3
1.1 Prologue . 3
1.2 Numerical methods . 4
1.3 Aeroacoustics applications . 7
1.4 Objectives and outline . 7
1.5 Research dissemination . 8
1.6 Applicability . 9

2 Variational multi-scale approximation of the one-dimensional Burgers equation 11
2.1 Introduction . 11
2.2 Problem definition . 13

2.2.1 Burgers equation . 13
2.2.2 Variational multi-scale method . 14

2.3 Solution method . 16
2.3.1 Discrete Burgers equation . 16
2.3.2 Discrete energy equation . 18
2.3.3 Time integration method . 21

2.4 Numerical example . 21
2.5 Conclusions . 27

3 Variational multi-scale approximation of the compressible Navier-Stokes equa-
tions 31
3.1 Introduction . 31
3.2 The compressible Navier-Stokes problem 34

3.2.1 Initial and boundary value problem 34
3.2.2 The variational problem . 36

3.3 Numerical approximation . 36
3.3.1 The Galerkin finite element discretization 36
3.3.2 The space discrete variational multi-scale stabilized finite element for-

mulation . 37
3.3.3 The matrix τ of stabilization parameters 39

3.3.3.1 Convective term . 41
3.3.3.2 Diffusive term . 42
3.3.3.3 Reactive term . 43

i

ii CONTENTS

3.3.3.4 Extension to multiple dimensions 44
3.3.4 Shock capturing technique . 45
3.3.5 Explicit time integration . 48

3.4 Numerical examples . 49
3.4.1 Three-dimensional lid-driven cavity 49
3.4.2 Subsonic flow past a cylinder . 50
3.4.3 Supersonic inviscid shock reflection 55
3.4.4 Supersonic flow past a cylinder . 57

3.5 Conclusions . 59

4 Approximation of the compressible Navier-Stokes equations in primitive variables 61
4.1 Introduction . 61
4.2 Governing equations . 65

4.2.1 Compressible Navier-Stokes equations written in primitive variables . 65
4.2.1.1 Relative variable formulation 66

4.2.2 Weak form of the problem . 67
4.2.3 Non-reflecting boundary conditions 68

4.2.3.1 Local one-dimensional characteristic wave equation 68
4.2.3.2 Non-reflecting subsonic outflow 70
4.2.3.3 Non-reflecting subsonic inflow 71

4.3 Numerical methods . 71
4.3.1 The space discrete variational multi-scale stabilized finite element for-

mulation . 72
4.3.1.1 Finite element equation 73
4.3.1.2 Subscale equation . 73

4.3.2 The matrix τ of stabilization parameters 74
4.3.3 Time integration method . 75
4.3.4 Weak imposition of the non-reflecting boundary conditions 77
4.3.5 Linearization strategy . 78

4.4 Numerical examples . 78
4.4.1 Manufactured solutions . 79

4.4.1.1 Two dimensions . 79
4.4.1.2 Three dimensions . 82

4.4.2 Differentially heated cavity . 84
4.4.3 Flow past a cylinder . 88

4.4.3.1 Tracking the dynamic subscales 88
4.4.3.2 Low Mach number limit 90
4.4.3.3 Aeolian tones . 91

4.4.4 Flow past an open cavity . 93
4.5 Conclusions . 97

5 Global conservation restrictions of the compressible Navier-Stokes equations 99
5.1 Introduction . 99
5.2 Global conservation restrictions formulation 101

5.2.1 Conservation of quantities . 101

CONTENTS iii

5.2.2 Restrictions . 102
5.2.3 Conservation restrictions . 104

5.3 Numerical examples . 106
5.3.1 One-dimensional shock tube . 106
5.3.2 Supersonic inviscid shock reflection 107
5.3.3 Supersonic flow over a compression corner 109

5.4 Conclusions . 110

II 113

6 RefficientLib: An efficient load-rebalanced adaptive mesh refinement algo-
rithm 115
6.1 Introduction . 115
6.2 Distributed refinement structure . 118

6.2.1 Mesh partition . 119
6.2.2 Distributed data structures . 120
6.2.3 The GlobalElementIdentifier data structure 122
6.2.4 The InverseGlobalPointNumberingList 123
6.2.5 Initialization . 123

6.3 Refinement step . 124
6.3.1 Amending the element refinement classification 124
6.3.2 Local Refinement . 125
6.3.3 Parallel numbering . 127
6.3.4 Hanging nodes . 128
6.3.5 Exporting the external mesh . 130

6.4 Load Rebalancing . 130
6.4.1 Rebalance Renumbering . 130
6.4.2 Rebuilding the refinement structure 132

6.5 External calls to the RefficientLib library 132
6.6 Numerical examples . 134

6.6.1 Bidimensional elements . 134
6.6.2 Multiple types of elements in a single bidimensional simulation . . . 135
6.6.3 Tetrahedral and Hexahedral elements 136
6.6.4 An application to the incompressible Navier-Stokes equations 137
6.6.5 An application to a non-smooth solution 139
6.6.6 Scalability tests . 141

6.7 Conclusions . 147

7 VMS error estimators for the AMR of compressible flow simulations 149
7.1 Introduction . 149
7.2 Problem definition . 151

7.2.1 Compressible Navier-Stokes equations in strong form 151
7.2.2 Quasi-linear form of the problem 152
7.2.3 Weak form of the problem . 153

iv CONTENTS

7.3 Finite element formulation . 153
7.3.1 Variational multi-scale framework 154

7.3.1.1 Finite element equation 154
7.3.1.2 Subscales in the interior of the element 155
7.3.1.3 Subscales at the element boundaries 156

7.3.2 Time integration method . 158
7.4 Variational subscales as error estimator . 158

7.4.1 Approximation for the subscales at the element boundaries 158
7.4.2 Error estimator measures . 159

7.4.2.1 Scaled L2-Norm . 160
7.4.2.2 Entropy measure . 160

7.5 Numerical Examples . 161
7.5.1 Smooth exact solution . 162
7.5.2 Singular exact solution . 163
7.5.3 Three-dimensional lid-driven cavity 165
7.5.4 Differentially heated cavity . 169
7.5.5 Supersonic flow over a flat plate . 172
7.5.6 Supersonic flow past a cylinder . 175

7.6 Conclusions . 176

8 Direct numerical simulation of the fricative [s] sound production 179
8.1 Introduction . 179
8.2 Methodology . 181

8.2.1 Vocal tract model . 181
8.2.2 Fluid flow model . 182
8.2.3 Non-reflecting conditions . 182
8.2.4 Numerical strategy . 183

8.2.4.1 Finite element approximation 184
8.2.4.2 Aeroacoustic inefficiency 184

8.2.5 Numerical simulation . 186
8.2.5.1 Initial and boundary conditions 186
8.2.5.2 Spatial discretization . 186
8.2.5.3 Temporal description . 186

8.3 Results . 187
8.4 Conclusions . 191

9 Conclusions 193
9.1 Achievements . 193
9.2 Further research . 195

Bibliography 197

List of Figures

2.1 Triadic interactions among the resolved scales 20
2.2 Triadic interactions among the resolved and subgrid scales 20
2.3 Triadic interactions among the resolved and subgrid scales for the Leonard stress. 21
2.4 OSGS-VMS results: energy spectrum. 23
2.5 OSGS-VMS results: physical space solution. 23
2.6 OSGS-VMS results: Eddy viscosity. 24
2.7 LES results: physical space solution. 28
2.8 LES results: energy spectrum. 28
2.9 Energy spectrum results for Galerkin, OSGS-VMS, and LES simulations. . . 29
2.10 Eddy viscosity results for OSGS-VMS and LES simulations. 29

3.1 Shock capturing methods diffusion ellipses 46
3.2 Three-dimensional lid-driven cavity with null sources results 51
3.3 Three-dimensional lid-driven cavity with sources results 51
3.4 Meshes used in the flow past a cylinder example 52
3.5 Flow past a cylinder results . 53
3.6 Time history of drag and lift coefficients for the subsonic flow past a cylinder 54
3.7 Structured mesh used in the inviscid shock reflection example 56
3.8 Inviscid shock reflection results . 56
3.9 Inviscid shock reflection results for the different shock capturing methods . . 58
3.10 Supersonic flow past a cylinder results . 59

4.1 Gauss error function against the Mach number 75
4.2 Manufactured two-dimensional solutions for the compressible Navier-Stokes

equations. 80
4.3 Characteristic velocity for the two-dimensional manufactured solutions. . . . 81
4.4 Manufactured two-dimensional solutions error convergence for the ASGS

method . 81
4.5 Manufactured two-dimensional solutions error convergence for the OSGS

method . 82
4.6 Manufactured three-dimensional solutions for the compressible Navier-Stokes

equations. 83
4.7 Manufactured three-dimensional solutions error convergence for the ASGS

method . 83

v

vi LIST OF FIGURES

4.8 Manufactured three-dimensional solutions error convergence for the OSGS
method . 84

4.9 Differential heated cavity results . 85
4.10 Convergence of the differential heated cavity results 87
4.11 Nusselt number for the dynamic definition of the subscales 88
4.12 Instantaneous contour fields of the flow past a cylinder 89
4.13 Time history of drag and lift coefficients for the flow past a cylinder 90
4.14 Flow past a cylinder results compared to the incompressible solution. 91
4.15 Aeolian tones: instantaneous pressure contours in the far field 92
4.16 Aeolian tones: instantaneous pressure along the positive x2 direction from the

center of the cylinder . 93
4.17 Unstructured mesh used in the flow past an open cavity example 94
4.18 Flow past an open cavity: normalized spectrum of the scaled velocity 95
4.19 Flow past an open cavity comparison with Schlieren photographs 96

5.1 One-dimensional shock tube results . 107
5.2 One-dimensional shock tube correction . 107
5.3 Inviscid shock reflection results . 108
5.4 Inviscid shock reflection correction . 109
5.5 Viscid compression corner results . 110
5.6 Viscid compression corner correction . 111

6.1 Initial mesh information . 119
6.2 Internal hierarchical mesh as seen from one of the processors 120
6.3 Refined mesh as seen from the external driver 120
6.4 Subdivision of a tetrahedron into 4 tetrahedrons and 1 octahedron 125
6.5 Face matching in the refinement process . 126
6.6 Edge, face, and interior new nodes in a refined element 127
6.7 Hanging nodes . 129
6.8 Examples of the exported mesh . 131
6.9 Poisson problem example on a triangular mesh 135
6.10 Adaptive simulation in a finite element mesh with several types of elements . 136
6.11 Mesh refinement for tetrahedral elements 137
6.12 Mesh refinement for hexahedral elements 138
6.13 Adaptive refinement finite element solution of the flow past a cylinder problem 140
6.14 Adaptive refinement finite element solution of the singular exact solution prob-

lem . 142
6.15 Uniform refinement weak scalability results 143
6.16 Runtime fraction for the uniform refinement scalability tests 144
6.17 Load balancing refinement weak scalability results 145
6.18 Runtime fraction for the load rebalancing refinement scalability tests 146

7.1 Smooth exact solution convergence results 163
7.2 Smooth exact solution error . 164
7.3 Singular exact solution results . 166
7.4 Singular exact solution results for the separated subscales refinement 167

LIST OF FIGURES vii

7.5 Singular exact solution convergence . 167
7.6 Singular exact solution convergence for the separated subscales refinement . . 168
7.7 Three-dimensional lid-driven cavity results 169
7.8 Three-dimensional lid-driven cavity subscales-based error measured with the

scaled L2−norm . 169
7.9 Three-dimensional lid-driven cavity subscales-based error measured with the

entropy measure . 170
7.10 Diferentially heated cavity results . 172
7.11 Flow over a flat plate results . 174
7.12 Flow over a flat plate subscales-based error measured with the scaled L2-norm 174
7.13 Flow over a flat plate subscales-based error measured with the entropy measure 175
7.14 Supersonic flow past a cylinder results . 176
7.15 Supersonic flow past a cylinder subscales-based error measured with the scaled

L2-norm . 177
7.16 Supersonic flow past a cylinder subscales-based error measured with the en-

tropy measure . 177

8.1 Vocal tract model. 182
8.2 Fricative model refined mesh and error estimation 188
8.3 Fricative model velocity results . 189
8.4 Fricative model results at a cutting middle plane 190
8.5 Fricative model sound wave results . 191
8.6 Fricative model velocity spectrum . 192

viii LIST OF FIGURES

Part I

1

Chapter 1

Introduction

1.1 Prologue
The increasing amount of computing resources available in scientific and industrial research
has motivated the solution of realistic computational fluid dynamics applications. This is the
case of aeroacoustics, described by the solution of the compressible Navier-Stokes equations,
which spans a wide range of flow scales. But the main problem for achieving an accurate
description of practical engineering applications is the complexity of the fluid mechanics in-
volved: many authors working on compressible fluid mechanics avoid the major difficulty of
the full compressible Navier-Stokes equations and work on lower complexity equations.

That is the case of analyzing the Burgers equation (described in [1], and references therein).
This equation is a simplified model of flow, and in spite of its simplicity, it shares some features
of the fluid dynamics governed by the Navier-Stokes equations: the one-dimensional Burgers
equation retains a transient term, a diffusive term (containing second order derivatives), and a
non-linear (convective) term. The proof of the existence of analytic solutions for this equation
was analyzed since the end of the ’50s and was achieved by Hopf [2] and Cole [3]: when the
non-linear term is dominant it leads to the formation of shocks, and the solution exhibits an
energy spectrum that is similar to that encountered in fluid flow turbulence (governed by the
Navier-Stokes equations), containing also an inertial and a dissipation range.

On the other hand, the full compressible Navier-Stokes equations, namely the conservation
of mass, momentum, and energy, together with constitutive and thermodynamical relations,
constitute the physical model that completely describes the compressible fluid flow phenom-
ena. When these equations are written in conservative variables (also known as the conserva-
tive formulation of the compressible Navier-Stokes equations), those are able to represent the
widest range of flow regimes (characterized by the free stream Mach number). This ability
arises from the conservative property of the convective and viscous fluxes that is defined for
this system of equations (as reviewed in [4]). The conservation of fluxes allows, among other
properties, the description of discontinuous solutions, being this one a crucial attribute in the
physics of supersonic shocks. This property is also retained in the case of the hyperbolic Euler
equations, so that, one particular question related to the Navier-Stokes equations is that of its
dependence on some physical parameters like viscosity. In this sense, it has been demonstrated
in [5, 6] that the solution of the Euler equations is indeed, the same solution as for the inviscid
limit of the Navier-Stokes equations (only subject to the absence of boundaries).

3

4 Chapter 1. Introduction

Another particular question that arises is that of the incompressible limit. A substantial
contribution to the fundamentals of this problem goes back to the second half of the twentieth
century with the work of Klainerman and Majda [7, 8], and Da Veiga [9]. Other works like [10]
followed that early achievement and ended up with the demonstration of the correspondence
with the incompressible Navier-Stokes equations in the low Mach number limit of the com-
pressible model. However, this result is subject to small entropy variations. But, the use of the
compressible flow equations for certain real fluids that are slightly compressible, as vice versa
(incompressible flow equations for slightly compressible fluids), is justified: a formulation of
the compressible Navier-Stokes equations that can be suitable for the low Mach number limit
(or both for compressible and incompressible flows) is also important for numerical reasons,
as commented in [11].

Still, the main challenge among the scientific community has been to prove the existence of
solutions of the full Navier-Stokes equations. Although some advances have been made, such
as those presented in [12, 13], global weak solutions to the compressible Navier-Stokes equa-
tions remains open for most types of initial conditions (as reviewed in [14]). The alternative
left is to numerically approximate the solution by means of numerical methods; the possi-
bility to apply the numerical approximation of compressible flows onto practical engineering
applications is an active research topic in the computational mechanics field.

1.2 Numerical methods
Nowadays, the numerical approximation of the fluid flow equations is the subject of the com-
putational fluid dynamics field. Yet, the complexity of the enterprise involved in the numerical
approximation of the fluid flow is increased when it is aimed to represent the flow up to the
smallest scales. In that case, the effort has to be focused either on applying higher precision
numerical schemes or in refining the mesh and time step sizes. The first approach is cheaper
in contrast to the refinement approach, but for the majority of the numerical methods high
order spatial schemes can only be applied to very simple domain configurations; in the case
of complex geometries, higher order approximations restrain to Finite Volume methods and
Finite Element Methods (FEM).

Among the advantages of the FEM are the capability of using unstructured meshes to dis-
cretize complex geometries, and the possibility of developing efficient high order methods
in the complete domain. Nonetheless, when the Galerkin method is used to approximate the
fluid equations, which possesses non-symmetric operators, an unstable behavior of the solution
might appear, generated for instance, by unresolved boundary layers. These local instabilities
may arise when convection is dominant, and also due to the restriction of the interpolation
compatibility between the different variables of the problem (as reviewed in [15]). Stabilized
numerical methods like the Petrov Galerkin Streamline Upwind (SUPG) in [16], and the meth-
ods that can be framed in the Variational Multi-Scale (VMS) concept, first introduced in [17],
add a stabilization term to the Galerkin formulation and eliminate the restrictions for stability.

A different approach than FEM can be done for the integration of the transient term in the
fluid flow equations. Explicit higher order schemes go in line with the accurate description of
the propagation of the smallest scales in the flow, but those are closely restricted to the time
step size: they are limited by a temporal stability condition. In particular, high propagation

4

1.2. Numerical methods 5

speeds restrain the explicit time step size, and intermediate stages are needed by higher order
schemes, which results in several computational efforts that can be wasted in cumbersome
calculations. On the contrary, the time step size can be prescribed for implicit (higher order)
schemes, but some particular method for dealing with the nonlinear character of the fluid flow
equations needs to be included.

Refining the mesh and time step sizes may be another option when one aims to describe
small spatial and temporal scales, yet the solution of problems in which those small scales
coexist with a big computational domain leads to a discretized system of equations that con-
tains a large number of unknowns, and therefore, attempting to resolve this linear system is
computationally very expensive. Adaptive Mesh Refinement (AMR) methods deal with this
issue by dynamically re-configuring an initial mesh (that may be conducted to optimize the
computational effort), and consequently, this technique can be implemented to make afford-
able the simulation of large applications. The AMR involves two main steps: first, the decision
of which elements to modify (mainly the ones contributing the most to the global solution
error), and then, the adaptation of those selected elements. Among the wide variety of AMR
methods those that adapt the mesh size are the so-called h−adaptive methods, the ones that
modify the order of the interpolation given by the polynomial shape function are known as the
p−adaptive methods, the so-called hp−methods in [18] combine both the aforementioned h
and p methods, and the moving-grid methods are designed to distort the points of the mesh (as
done in [19]).

The development of the h−adaptive methods may involve some difficulties, which are
mainly associated with the applicability of the algorithm in high-performance computations.
First, the algorithm may allow successively refinements and unrefinements for any type of ele-
ment (typically used in the computational meshes for fluid dynamics applications), such as tri-
angles, quadrilateral, hexahedra, and tetrahedra, including a combination of those (of the same
dimension) in the same mesh. But more importantly: it may be applied in partitioned meshes,
so that, the calculations can be achieved in distributed memory machines. It is also significant
that the method admits the presence of different levels of refinement across adjacent elements.
Most of the refinement algorithms, like the ones in [20–22], are subject to a restriction in the
number of refinement levels across adjacent elements, to what is referred as the balancing re-
striction. One way to overcome the enforcement of a balancing restriction is the introduction
of hanging nodes: nodes that do not share the same refinement level with the adjacent element.
The hanging nodes can be used together with an algebraic constriction over its degrees of
freedom so that, this allows for an arbitrarily large jump of the refinement between neighbor
elements. But the hanging nodes represents a difficulty for Continuous Galerkin (CG) schemes
since the discrete solution is required to be continuous across the domain, and thus, support
nodes are required for the solution of hanging nodes. In the case of multiple levels of hanging
nodes, this process has to be repeated enriching, even more, the algebraic constriction over the
hanging nodes. Another relevant aspect of the refinement algorithms is related to the ordering
of the topological information of the mesh. Hierarchical data structures containing the refine-
ment levels (which are added or subtracted), have been the most reliable method to arrange the
topological information so that, the search of neighboring elements at the inter-domain level
is simplified (as in references [23–25]). The parallel algorithm of the mesh adaptivity method
(working over the hierarchical data structures) is a challenging topic because refining neigh-
boring elements of the partitioned domains must be done consistently, and the most important

5

6 Chapter 1. Introduction

criteria: work balance between subdomains must be preserved. The refinement data structures
have to be designed to efficiently perform communications since it has to be possible to move
the hierarchical information between the partitioned domains.

With respect to the decision of which elements to modify by the AMR, typically, this is
accomplished by using a local estimate of the solution error. This estimate can be defined;
a priori, using an interpolation error of the discrete approximation, or, a posteriori, using
the obtained discrete solution of the problem. Even though a priori estimations exhibit some
noteworthy features (like the easiness of implementation and the cheap numerical cost), these
approaches can lead to rough indications of the solution error (as explained in [26]). Instead,
the a posteriori error estimates have demonstrated high accuracy that, however, comes with
the consequent increment of the implementation effort to make the estimate practical. A poste-
riori estimates comprise several methods: feature-based methods, output-based methods, and
residual-based methods. Among the most used, the output-based methods have been the pre-
ferred ones, especially the adjoint-based indicators where the estimation of the discretization
error is related to the calculation of two sets of problems, namely, the (primal) flow prob-
lem, and the duality of the typical discrete formulation of the flow equations. Although in
references [18, 27, 28], this approach has been widely applied to hyperbolic problems in the
framework of Discontinuous Galerkin (DG) methods, adjoint-based indicators have recently
been applied in the context of the CG compressible flow formulations, such as in [29, 30]. The
latter approach can be explained as CG methods require fewer degrees of freedom than DG
for a comparable accuracy: especially in the case of three-dimensional problems, in which the
amount of resources needed by the DG can be cumbersome (as demonstrated in [31] and refer-
ences therein). However, since the local error indicator is constructed from the adjoint solution
and the residual of the finite problem, and the exact solution of the compressible problem is
unavailable, such methods try to estimate the value of the finite residual by approximating
the exact solution. Even for coarse approximations of the element residual in larger subdo-
mains, this approach results inconvenient in the case of time-dependent simulations because
the numerical cost is high at each time step.

Explicit estimates overcome the difficulties associated with the previous approaches by
estimating the error field without the need to solve a global problem. Some early explicit esti-
mates relate the error to the recovery of derivatives inside each element, principally the second
order derivatives of the solution, arguing that this term leads the error of the discrete solu-
tion. Likewise feature-based methods, these are able to estimate compressible flow features
(like boundary layers and shocks), but it has been demonstrated in [32] that those may lead to
an inaccurate description of the global error. More recently, explicit residual methods aim to
measure the element-wise difference between the exact solution and the one obtained by the
numerical approximation. The key point of such methods is that since the exact solution of the
problem is not known, the local error is related to the internal residual of the finite solution,
as demonstrated in [33] for compressible flow problems. In any case, the methods that try to
estimate the error of the unknowns of the problem (like the explicit residual methods) may
have different objectives than the feature-based and output-based methods.

6

1.3. Aeroacoustics applications 7

1.3 Aeroacoustics applications
The solution of the compressible Navier-Stokes equations up to the scales of sound is re-
ferred as the Direct Numerical Simulation (DNS) of sound. In this sense, the full compressible
Navier-Stokes equations have the advantage describing the propagation of waves (without the
need for acoustic analogies), but, computations might be limited by computing resources. An
important application of the compressible Navier-Stokes formulation is in the aeroacoustics
field; this is, the sound generated by turbulent flows, and more importantly, the sound produced
by turbulent flows within the human speech. How the sound is generated in the particular con-
figuration of the human vocal tract is a question that still needs to be studied. Speech therapies,
for example, require the detailed illustration of the voice production mechanisms.

Among the human speech sounds that are primarily related to the compressible flow of air
passing through the vocal tract, the fricative sounds are those generated by turbulent jets that
occur inside the mouth. The most important difficulty for the DNS of fricative sounds is the
description of both the small fluctuating pressure scales that appear near the mouth, and the
large propagation distances of the radiated sound: the acoustic sources of noise are located
inside the vocal tract, whereas, the radiated sound is present up to a considerable distance.
Another major difficulty for the aeroacoustic problem of human voice production is the low
compressibility condition of the air flow inside the mouth. At low Mach numbers the acoustic
speed is very high, and consequently, the number of operations required by the compressible
solver to completely describe the sound propagation is very demanding. The stability restric-
tion placed for explicit time marching solvers limits the maximum time step size of the method.
In the case of implicit solvers, the number of operations that the linear solver has to complete
is large: the discrete linear system is very ill-conditioned, and therefore, the solution conver-
gence rate is low. And for some numerical solvers of the compressible Navier-Stokes equations
(e.g. using conservative variables), there is even a total lack of accuracy of the method near
the incompressible limit. Indeed, numerical solvers that actually manage to directly simulate
the voice need to be accurate in the zero Mach limit. Several aeroacoustic applications have
been traditionally solved by using the finite difference method (see for example [34, 35]) but
precisely, the main difficulty for simulating the human voice production has been the complex
three-dimensional geometry of the human morphology, which cannot be represented by those
methods and which is, in part, responsible for the main characteristics of the generated sound.

1.4 Objectives and outline
The work developed in the framework of this thesis can be enclosed in the main objective of
investigating a stabilized finite element formulation of the compressible Navier-Stokes equa-
tions able to represent high-frequency fluctuations of the fluid flow. In particular, it has to be
capable of reproducing complex aeroacoustics applications, namely, the ones corresponding
to fricative sounds of speech. In order to avoid the instabilities that may appear when using the
standard Galerkin method, a two-scale approximation based on the VMS concept is employed.

The specific content of this work is divided into several topics, which are developed pro-
gressively, and that will be presented in the document as follows.

Chapter 2 opens the first part of this thesis with the VMS approximation of the one-

7

8 Chapter 1. Introduction

dimensional Burgers equation. The study of this simple problem is done in the Fourier space,
so that, special attention is drawn to the description of the VMS problem in that space.

Chapter 3 is devoted to the VMS formulation of the full compressible Navier-Stokes equa-
tions written in conservative variables. The design of the VMS stabilized formulation is the
main objective of the first part of this thesis and specifically, it is extensively covered in that
chapter. The solution of supersonic shocks with shock capturing methods is also investigated.

Chapter 4 extends the work of the previous chapters and focuses on the solution of aeroa-
coustic flows at the incompressible limit. This is achieved with a VMS approximation of the
compressible Navier-Stokes equations written in primitive variables.

Chapter 5 closes the first part devoted to the stabilized formulations, and describes some
ideas about the conservation of physical quantities in relation to the compressible Navier-
Stokes equations written in primitive variables.

The second part of this thesis is dedicated to making affordable the solution to the smallest
fluctuating scales of flow. To this end, the development of an h−refinement algorithm and the
solution of some AMR examples in supercomputers are presented in Chapter 6.

Chapter 7 involves the definition of an explicit a-posteriori error estimator that can be used
in AMR simulations of the compressible Navier-Stokes equations. The proposed methodol-
ogy employs the VMS framework, and specifically, the idea is to use variational subscales to
estimate the error.

Chapter 8 presents the application of the numerical developments that were introduced in
the previous chapters to the direct solution of the fricative [s] sound.

Finally, Chapter 9 closes the thesis with some conclusions and the summary of further
possible research lines.

1.5 Research dissemination
The research work contained in each chapter is quite self-contained even if this implies the
need of repeating some information. The notation is gradually introduced as it is required and
may vary (slightly) from one chapter to another. This is due to the fact that each chapter of
this thesis has been disseminated in the form of oral presentations in scientific conferences and
congresses, and in the format of articles in peer-reviewed scientific journals, as follows:

1. Chapter 2:
C. Bayona, J. Baiges, and R. Codina, ”Variational multi-scale approximation of
the one-dimensional forced Burgers equation: the role of orthogonal sub-grid scales
in turbulence modeling”, International Journal for Numerical Methods in Fluids,
DOI:10.1002/fld.4420.

2. Chapter 3:
C. Bayona, J. Baiges, and R. Codina, ”Variational multi-scale finite element approxima-
tion of the compressible Navier-Stokes equations”, International Journal of Numerical
Methods for Heat & Fluid Flow, vol. 26, no. 3/4, pp. 1240–1271, 2016.

3. Chapter 4:
C. Bayona, J. Baiges, and R. Codina, ”Solution of low Mach number aeroacoustic flows

8

1.6. Applicability 9

using a Variational Multi-Scale Finite Element formulation of the compressible Navier-
Stokes equations written in primitive variables”, Computer Methods in Applied Mechan-
ics and Engineering, Submitted.

4. Chapter 6:
J. Baiges and C. Bayona, ”Refficientlib: An Efficient Load-Rebalanced Adaptive Mesh
Refinement Algorithm for High-Performance Computational Physics Meshes”, SIAM
Journal on Scientific Computing, vol. 39, no. 2, pp. C65–C95, 2017.

5. Chapter 7:
C. Bayona, R. Codina, and J. Baiges, ”Variational Multiscale error estimators for the
adaptive mesh refinement of compressible flow simulations”, Computer Methods in Ap-
plied Mechanics and Engineering, Submitted.

6. Chapter 8:
C. Bayona, A. Pont, J. Baiges, and R. Codina, ”Direct numerical simulation of the frica-
tive [s] sound production”, In preparation.

1.6 Applicability
A significant part of the present work has been developed within the framework of the Exten-
sive UNIfied-domain SimulatiON of the human voice (EUNISON) research project supported
by the International Center for Numerical Methods in Engineering (CIMNE).

9

10 Chapter 1. Introduction

10

Chapter 2

Variational multi-scale approximation of
the one-dimensional forced Burgers
equation: the role of orthogonal sub-grid
scales in turbulence modeling

In this chapter, a numerical approximation for the one-dimensional Burgers equation is pro-
posed by means of the Orthogonal Sub-Grid Scales - Variational Multi-Scale (OSGS-VMS)
method. We evaluate the role of the variational subscales in describing the Burgers “turbu-
lence” phenomena. Particularly, we seek to clarify the interaction between the subscales and
the resolved scales when the former are defined to be orthogonal to the finite dimensional
space. Direct Numerical Simulation (DNS) is used to evaluate the resulting OSGS-VMS en-
ergy spectra. The comparison against a Large Eddy Simulation (LES) model is presented for
numerical discretizations in which the grid is not capable of solving the small scales.

2.1 Introduction
The Burgers equation is a simplified model of the equations that govern fluid flow, and in spite
of its simplicity, it shares some features of the nonlinear dynamics present in the Navier-Stokes
equations. Burgers [36] attempted unsuccessfully to arrive at a statistical theory of turbulent
fluid motion, but he was able to clarify the interaction between transient, dissipative, and non-
linear terms in an extremely simplified equation of motion. His contribution still represents
a significant achievement when one aims to describe turbulence: Burgers turbulence exhibits
an energy cascade that is similar to that encountered in fluid flow turbulence governed by the
Navier-Stokes equations, containing also an inertial and a dissipation range.

Analytic solutions are known for the forced Burgers equation: when the nonlinear term
is dominant it leads to the formation of shocks, and the solution exhibits an energy spectrum
that behaves as k−2 in the inertial range, k being the wavenumber. A complete review of
the analytical solutions by Hopf [2] and Cole [3], including some of the mathematical and
computational framework for the viscous form of the time-dependent Burgers equation, has
been reported in [37]. Nevertheless, the important difference between the Navier-Stokes and

11

12 Chapter 2. Variational multi-scale approximation of the one-dimensional Burgers equation

the Burgers dynamics is that the smallest scales that dissipate the energy of the flow in the
Burgers equation do not refer to the smallest eddies, but to the shock thickness instead.

Numerically resolving every scale of the solution is what is referred as the Direct Nu-
merical Simulation (DNS). Most of the numerical approaches that aim to correctly describe
turbulent flows can be prohibitively expensive for nearly all systems with complex geome-
tries since the discrete meshes of the approximation (or the number of basis functions in the
approximation space) need to be refined up to a power of the Reynolds number. Hence, it is
presently impossible to simulate flows at high Reynolds numbers using DNS, and in most of
the practical fluid dynamics applications, turbulence phenomena are modeled somehow.

Several alternatives have raised in the turbulence modeling community, being Large Eddy
Simulation (LES) one of the most robust and prevailing approaches. The basic idea of this
method is to filter the fluid equations in space and time, simulating only the filtered large
scales, while the smallest (and most expensive to compute) scales are incorporated into the
overall solution by including a modeling term in the filtered equations. The filtered scales are
called the resolved scales of the flow, the scales below the resolved scales are called the sub-
scales. However, filtering the equations results in an unclosed term involving the subscales
that cannot be determined from the resolved quantities, so that it needs to be calculated by
assuming some a priori properties of the flow. In particular, eddy viscosity type models, such
as the Smagorinsky model [38] and the Germano model [39], apply proportionality constants
that must be set empirically a priori, and this makes them incomplete models. Some other au-
thors, such as [40, 41], approximated the problem by decomposing the resolved and unresolved
scales into deterministic and stochastic components, in which the subscales are calculated by
using a stochastic estimation. And yet, as reviewed by [42], all these models fail to accurately
represent inhomogeneous flows.

Another method that separates the solution into resolved and unresolved scales is the Vari-
ational Multi-Scale (VMS) method [17]. Alternatively to the LES approach, this method splits
the solution in order to stabilize the numerical approximation of the problem. Fluid flow equa-
tions have been traditionally stabilized by using the family of VMS methods, including the
Algebraic Sub-Grid Scales (ASGS) and the Orthogonal Sub-Grid Scales (OSGS) methods
(like in [43]). The original idea of using the multiscale formulation with a local approxima-
tion to the fine scales to compute turbulent flows was introduced in [44], and later discussed
in [45]. The illustration that the VMS formulation works as a turbulent model, that depends
on the validity of the approximation made to derive the evolution equation for the unresolved
scales, was elaborated in [46, 47]. Some other authors proposed to further split the resolved
scales into coarse and fine scales, and to adopt the hypothesis that the subscales do not affect
the coarse resolved scales. Among these methods, we can distinguish [48, 49], in which the
effect of the unresolved scales is introduced only into the fine resolved scales. More recently,
[50–54] have directly applied the VMS method in order to solve the Navier-Stokes turbulence,
in what is called Implicit LES (ILES) techniques. This approach accurately solves turbulence
relying on the addition of dissipative numerical terms solely, and without any modification of
the continuous problem.

In this chapter, we aim to apply the OSGS-VMS method to the numerical approximation
of the one-dimensional forced Burgers equation. In the spirit of ILES methods, we aim to
clarify the mechanisms through which the resolved and unresolved scales interact with each
other, and remark about the role of the orthogonal sub-grid scales in modeling Burgers turbu-

12

2.2. Problem definition 13

lence. The proposed numerical approximation exploits the Fourier transform of the Burgers
equation, following the work in [55], in which the scale dependence on the numerical dissi-
pation introduced by the subscales is clarified. Complementary to that approach, we include
the orthogonal sub-grid scales into the resolved scales equation by means of the adjoint of the
nonlinear operator applied to the test function, so that both terms associated with the Cross and
Reynolds stresses are accounted for. Solving the subscales in a separated equation (subscales
equation) leads to the inclusion of a Leonard stress term. In addition, we propose to calculate
subscales in terms of the resolved scales by defining a priori the space where the subscales
exist (as the orthogonal space to the finite-dimensional resolved space), and approximating
the nonlinear operator associated to the Burgers problem. The scale dependence of the intro-
duced numerical dissipation terms is studied by considering the triadic interactions among the
resolved scales and the subscales. More precisely, terms associated with the Leonard, Cross,
and Reynolds stresses (involving resolved and unresolved scales) allow forward and backward
scattering. Contrary to [56], we are not interested in transient turbulent solutions. Instead, we
test the OSGS-VMS method in contrast to the static Smagorinksy LES model and present some
conclusions about the behavior of the orthogonal subscales in the numerical approximation of
the Burgers turbulence phenomena.

The outline of this chapter is organized as follows. In Section 2.2 we define the Burgers
equation and the VMS form of the problem. The numerical approximation used to solve the
problem is presented in Section 2.3. Section 2.4 shows the numerical results for a test example.
OSGS-VMS results are compared both to DNS and LES simulations at the end of that section.
Finally, conclusions are stated in Section 2.5.

2.2 Problem definition
In this section, we define the VMS approximation of the Burgers problem. First, we recall the
one-dimensional forced Burgers equation in the physical space, and derive the Galerkin form
of the problem. Then, we apply the VMS framework and present the equations for both the
resolved scales and the subscales.

2.2.1 Burgers equation
The one-dimensional forced Burgers equation [1] consists of finding a scalar function u(x, t)
of position x ∈ Ω = (0, 2π) and of time t ≥ 0 such that, given a forcing term f(x, t),

∂tu+ u∂xu− ν∂xxu = f, x ∈ (0, 2π), t > 0, (2.1)

with an initial condition u(x, 0) = u0(x) in Ω and periodic boundary conditions at x = 0 and
x = 2π, t ≥ 0. The diffusivity coefficient ν is considered as homogeneous and constant.

The Burgers equation shares some of the properties of the Navier-Stokes equations. Apart
from the temporal derivative, the left-hand-side (LHS) contains both a nonlinear and a linear
term, associated with convection and diffusion, respectively. The interaction between the dis-
sipation given by the diffusive term (containing second order derivatives) and the convection
given by the nonlinear inertial term also appears in the incompressible Navier-Stokes equa-
tions.

13

14 Chapter 2. Variational multi-scale approximation of the one-dimensional Burgers equation

For convenience Eq. (2.1) can be written in the form

∂tu+ L(u;u) = f, x ∈ (0, 2π), t > 0, (2.2)

by introducing the bilinear operator L(u; v) = u∂xv−ν∂xxv. For smooth solutions, L(u;u) =
u∂xu − ν∂xxu = ∂x

(
1
2
u2 − ν∂xu

)
. The latter is the form that admits physically meaningful

solutions when they develop discontinuities; it is known as the conservation form.
LetW = H1

per(Ω) be the subspace of periodic functions inH1(Ω), and let us write (f, g) =∫
Ω
fg for any two functions f and g. Introducing the form

A(u;w, v) := −1

2
(u∂xw, v) + ν(∂xw, ∂xv), (2.3)

the variational form of the problem can be written as: find u : R+ −→W such that

(w, ∂tu) + A(u;w, u) = (w, f), t > 0, (2.4)
(w, u) = (w, u0), t = 0, (2.5)

for all w ∈ W .

2.2.2 Variational multi-scale method
Let us consider a finite-dimensional subspaceWN ⊂ W , of dimensionN , which approximates
W as N → ∞. The Galerkin approximation to problem (2.4)-(2.5) can be stated as follows:
find uN : R+ −→WN such that

(wN , ∂tuN) + A(uN ;wN , uN) = (wN , f), t > 0, (2.6)
(wN , uN) = (wN , u

0), t = 0, (2.7)

for all wN ∈ WN . This approximation suffers from instability problems, which vary according
to the way to construct WN , but which are in any case due to the convective property of the
nonlinear term.

The idea of the VMS method is to decompose the space of the unknown into a finite-
dimensional space WN , and an infinite-dimensional one, W̃ , so that W = WN ⊕ W̃ . The
unknown and the test functions are accordingly split as u = uN + ũ and w = wN + w̃,
respectively. We shall refer to functions inWN as the large or resolved scales and to functions
in W̃ as the subscales or unresolved scales.

Equation (2.4) can be equivalently written as the system of equations

(wN , ∂tu) + A(u;wN , u) = (wN , f), for all wN ∈ WN , t > 0, (2.8)

(w̃, ∂tu) + A(u; w̃, u) = (w̃, f), for all w̃ ∈ W̃ , t > 0, (2.9)

and likewise for the initial condition, Eq. (2.5). The second term in the LHS of Eq. (2.8) can
be split as

A(u;wN , u) = A(uN ;wN , uN) + A(uN ;wN , ũ) + A(ũ;wN , uN) + A(ũ;wN , ũ). (2.10)

14

2.2. Problem definition 15

We may define:

A(uN ;wN , uN) Galerkin terms (2.11)
A(uN ;wN , ũ) + A(ũ;wN , uN) Nonlinear Cross terms (2.12)
A(ũ;wN , ũ) Nonlinear contribution of the unresolved scales (2.13)

If WN is made of smooth functions, as it is the case considered below, it is readily seen
that the equation for the unresolved scales (2.9) can be written as

(w̃, ∂tũ) + (w̃,L(u; ũ)) = (w̃, f − ∂tuN − L(u;uN)) , for all w̃ ∈ W̃ , t > 0. (2.14)

The objective of the VMS method is to approximate the subscales in terms of the resolved
scales, in order to end up with a problem for the resolved scales alone. The key point is the
approximation of L(u; ũ) in order to make Eq. (2.14) easily solvable. We will not describe the
motivation, which can be based on a Fourier analysis of the problem, but the approximation
that we consider is (see [57])

L(u; ũ) ≈ τ−1(u)ũ, (2.15)

where τ(u) > 0 is a numerical parameter of the formulation, the expression of which is given
later for a particular approximation. The objective of (2.15) is not to provide an accurate point-
wise approximation to ũ, but to capture its effect on the resolved scales.

The residual of the resolved scales is defined as RN(u;uN) = f − ∂tuN − L(u;uN). If
approximation (2.15) is inserted in (2.14), one obtains a nonlinear problem for ũ. Even though
it is possible to deal with this nonlinearity (see [57]), we will consider that the unresolved
scales are smaller than the resolved ones, so that

τ(u) ≈ τ(uN), RN(u;uN) ≈ RN(uN ;uN). (2.16)

These approximations and (2.15) allow us to write the approximate equation for the subscales
as (

w̃, ∂tũ+ τ−1(uN)ũ
)

= (w̃, RN(uN ;uN)) , for all w̃ ∈ W̃ , t > 0. (2.17)

Even though we have not distinguished them, the subscales solution of (2.17) are approximate,
whereas those solution of (2.14) are exact.

The subscales space is generally defined in two different ways. The first, and the most
common approach, is to define it as the space of residuals of the resolved scales, and therefore
to consider that

∂tũ+ τ−1(uN)ũ = RN(uN ;uN), t > 0.

This is what we call Algebraic Sub-Grid Scales (ASGS) method in finite elements. The second
approach is the Orthogonal Sub-Grid Scales (OSGS) method, which defines the subscales
space as the space orthogonal to the resolved scales space. If PN is the L2-projection ontoWN

and P⊥N = I −PN , I being the identity, then the equation for the unresolved scales in this case
is

∂tũ+ τ−1(uN)ũ = P⊥N [RN(uN ;uN)], t > 0.

In the spectral approximation described next, we shall see that the OSGS method is in fact
the natural approach, since the basis functions are mutually L2-orthogonal (and also H1-
orthogonal). In this case, we thus have thatW =WN ⊕W⊥N , withW⊥N = W̃ .

15

16 Chapter 2. Variational multi-scale approximation of the one-dimensional Burgers equation

2.3 Solution method
In the previous section, we have defined the variational formulation for each scale of the Burg-
ers problem. The two sub-problems (2.8) and (2.17) are now numerically approximated by
transforming them into the Fourier space or, equivalently, by using a spectral Fourier method.
Considering ũ = 0 would reduce the problem to be solved to (2.6)-(2.7), i.e., the Galerkin-
Fourier method. It is well known that this approximation of the Burgers equation suffers from
numerical instabilities. In this section we recall the importance of the numerical diffusion in-
troduced by the VMS formulation, not only to prevent spurious oscillations in the numerical
solution, but also to model the “turbulence” phenomena. Next, we derive the energy equation
in Fourier space. Finally, the time integration scheme is described.

2.3.1 Discrete Burgers equation
Let us consider N even and define the discrete space where the solution is sought as

WN := span{eikx : k ∈ [−N/2, N/2− 1] ⊂ N},

i.e., the space spanned by N Fourier modes, k being the wavenumber. Let us write (f, g) =∫
Ω
fg for the L2 inner product over complex-valued functions f and g, by denoting the com-

plex conjugate with an overline. The approximate unknown can thus be expressed as

uN(x, t) =

N/2−1∑
k=−N/2

ûk(t)e
ikx,

where ûk(t) :=
(
uN(x, t), eikx

)
. We recall the orthogonality relation

(
eikx, eilx

)
= 2πδkl,

where δkl is the Kronecker delta. The notation
∑N/2−1

k=−N/2 ûk(t)e
ikx :=

∑
k ûke

ikx will be used
in the following.

To obtain the discrete weak form of the problem, let us test the differential equation (2.8)
with the basis functions ofWN . If f̂l, l ∈ N, are the Fourier coefficients of the forcing term f ,
we have that

(
eikx,

∑
l f̂le

ilx
)

= 2πf̂k. For the transient and diffusive terms we have(
eikx, ∂t

∑
l

ûle
ilx
)

= 2π∂tûk,
(
ν∂xe

ikx, ∂x
∑
l

ûle
ilx
)

= −2πνk2ûk,

for all k, l ∈ [−N/2, N/2− 1] and t > 0. Moreover, the nonlinear Galerkin term results in(
1

2

∑
q

ûqe
iqx∂xe

ikx,
∑
l

ûle
ilx

)
= −πik

∑
q+l=k

ûqûl, (2.18)

for all k, q, l ∈ [−N/2, N/2− 1] and t > 0. The remaining terms of Eq. (2.10), which depend
on the subscales, are developed next. Note first that the transient and diffusive terms belong
to WN , and we may assume that f also belongs to this space without losing accuracy, since
the order of the error made will be the same as that of approximatingW byWN . Therefore, if

16

2.3. Solution method 17

the subscales are defined to belong to the space orthogonal to the finite-dimensional resolved
space, then the subscales equation can be expressed as(

w̃, ∂tũ+ τ−1(uN)ũ
)

= (w̃,−uN∂xuN + PN(uN∂xuN)) , for all w̃ ∈ W̃ . (2.19)

Now, the term uN∂xuN can be developed as

uN∂xuN =
∑
q

eiqxûq
∑
l

ileilxûl =
∑
q,l

ilei(q+l)xûqûl,

for all q, l ∈ [−N/2, N/2− 1]. This term belongs to the space span{eirx : r ∈ [−N,N − 2]}.
The projection onto the space of resolvable scales, PN , can be obtained by considering in the
sum above only the wavenumbers q, l, that satisfy q + l ∈ [−N/2, N/2 − 1]. Consequently,
the orthogonal subscales belong to the Fourier space W̃ , given by

W̃ := span{eirx : r ∈ [−N,N − 2] \ [−N/2, N/2− 1]}.

With this definition, taking w̃ = eirx in (2.19), we obtain the equation for the subscales

∂t ˆ̃ur + τ−1(uN)ˆ̃ur =
∑
q+l=r

ilûqûl, (2.20)

for all q, l ∈ [−N/2, N/2− 1], r ∈ [−N,N − 2] \ [−N/2, N/2− 1], and t > 0.
In order to close the subscales calculation, the approximation of the Burgers nonlinear op-

erator (2.15) is needed. The key point in the design of the VMS formulation is the construction
of τ . In this work we use the approximation of the nonlinear Burgers operator proposed in
[55], which is defined as

τ(uN) =

[
3πν2

(
4

h2

)2

+
4

h2
‖uN‖2

]− 1
2

, (2.21)

where h = π/N can be considered as an effective grid size and ‖uN‖ is the L2-norm of uN .
This approximation basically aims to bound the effect of the nonlinear operator in Fourier
space. Now we can compute the subscales in terms of the resolvable scales from (2.20) and
use the resulting expression in the equation for the latter.

Remark 1. The space of subscales is in principle of infinite dimension, and defined as the
complimentary of the Fourier space of resolved scales. It can also be defined as the difference
between the DNS solution and the resolved space, such as the one derived in [55]. However,
with the approximations we have assumed, the space of subscales turns out to be of finite
dimension, and defined in terms of the finite-dimensional resolved space. In particular, the
Fourier space where the orthogonal subscales live has the same dimension as the resolved
space, and a finer discretization generates a richer definition of the subscales.

Remark 2. We could actually solve the subscales taking into account the nonlinearity of the
problem, that is to say, we could proceed without approximation (2.16). This simply amounts
to replace u by uN + ũ and deal with the additional nonlinearity by using an appropriate
linearization scheme.

17

18 Chapter 2. Variational multi-scale approximation of the one-dimensional Burgers equation

Remark 3. Neglecting the time derivative in (2.20) leads to the so-called quasi-static sub-
scales, which could be understood as the subscales given automatically by the residual. On
the contrary, by defining the subscales equation as in (2.20), it must be solved as a separated
differential equation of the problem. This corresponds to what was termed as dynamic sub-
scales in [57]. Note that Eq. (2.20) is, in fact, an ordinary differential equation that needs to
be integrated in time for each Fourier mode.

Let us look now at the contribution of the subscales into the finite-dimensional equation
(2.10). For conciseness, let us imply q, k ∈ [−N/2, N/2− 1], r ∈ [−N,N−2]\[−N/2, N/2−
1], and t > 0. Since the subscales are orthogonal to the finite-dimensional space, and the
diffusive term in (2.13) belongs to the resolved space, it reduces to

(
ν∂xxe

ikx,
∑

r
ˆ̃ure

irx
)

= 0.

The same occurs with the transient term for the subscales (2.13),
(

eikx, ∂t
∑

r
ˆ̃ure

irx
)

= 0,

which is orthogonal to the resolved scales by definition. Regarding the nonlinear terms that
involve the subscales in (2.10), each one is developed as follows:(

1

2

∑
q

ûqe
iqx∂xe

ikx,
∑
r

ˆ̃ure
irx

)
=− πik

∑
q+r=k

ûq ˆ̃ur, (2.22)(
1

2

∑
r

ˆ̃ure
irx∂xe

ikx,
∑
q

ûqe
iqx

)
=− πik

∑
r+q=k

ˆ̃urûq, (2.23)(
1

2

∑
r

ˆ̃ure
irx∂xe

ikx,
∑
p

ˆ̃upe
ipx

)
=− πik

∑
r+p=k

ˆ̃ur ˆ̃up. (2.24)

As we can solve each Fourier wavenumber k separately, the final expression for the resolvable
scales of the Burgers equation is

∂tûk +
ik

2

∑
q+l=k

ûqûl + ik
∑
q+r=k

ûq ˆ̃ur +
ik

2

∑
r+p=k

ˆ̃ur ˆ̃up + νk2ûk = f̂k, (2.25)

for all k, q, l ∈ [−N/2, N/2− 1], r, p ∈ [−N,N − 2] \ [−N/2, N/2− 1], and t > 0.
The formulation is now complete. It consists of solving (2.25) together with (2.20), for uN

and ũ.

Remark 4. The problem has to be completed with initial conditions for (2.20). We assume that
ˆ̃u0
r = 0, for all r ∈ [−N,N−2]\ [−N/2, N/2−1], which means that we assume for simplicity

that the initial condition belongs to the space of resolvable scales.

2.3.2 Discrete energy equation
We now develop the numerical approximation to the energy equation in Fourier space. The
energy ek of the k-th wavenumber is obtained by taking the product of ûk with its complex
conjugate ûk (and dividing by 2, if wished). Its time derivative is given by:

∂tek = ∂t(ûkûk) = ûk∂tûk + ûk∂tûk. (2.26)

18

2.3. Solution method 19

After the right-hand-side terms of the previous equation are developed, the discrete energy
equation can be written as:

∂tek = −ν2k2ek − T (k)− C(k)−R(k) + ûkf̂k + f̂kûk, (2.27)

for all k ∈ [−N/2, N/2− 1], and t > 0, where

T (k) =ûk

(
ik

2

∑
q+l=k

ûqûl

)
+ ûk

(
ik

2

∑
q+l=k

ûqûl

)
(2.28)

stands for the nonlinear transfer term due to the resolved scales,

C(k) =ûkik
∑
q+r=k

ûq ˆ̃ur + ûkik
∑
q+r=k

ûq ˆ̃ur (2.29)

is the transfer due to the Cross nonlinear term involving resolved scales and subscales, and

R(k) =ûk

(
ik

2

∑
r+p=k

ˆ̃ur ˆ̃up

)
+ ûk

(
ik

2

∑
r+p=k

ˆ̃ur ˆ̃up

)
(2.30)

is the transfer term due to the nonlinear relation among subscales. All previous relations are
defined for k, q, l ∈ [−N/2, N/2− 1], r, p ∈ [−N,N − 2] \ [−N/2, N/2− 1], and t > 0.

Remark 5. The Galerkin nonlinear term (2.18) is responsible for the interaction among the
resolved scales. The triadic interaction of this term expresses all the possible combinations of
the pairs of resolved wavenumbers q and l such that q + l = k. In Fig. 2.1 a brief schematic
depicts the triadic interactions between the resolved wavenumbers; the two groups of possible
combinations q + l = k include: both q and l smaller than k (at the LHS of the figure), and
either one of q or l greater than k, added with the remainder conjugate less than k (at the
RHS of the figure). The possible combination depicted at the LHS of the figure relates two big
resolved scales with one smaller resolved scale. Instead, the combination at the RHS indicates
the relation between a resolved scale with a bigger and a smaller resolved scale. It can be
proved (like in [58]), that for a given time, T (k) ∈ R, and that the total energy transfer due to
the Galerkin nonlinear term is conserved, i.e.,

∑
k T (k) = 0. Therefore, the nonlinear transfer

term due to the resolved scales (2.28), and its respective sign, determines the way the energy
is transferred between the resolved scales, in which not only large resolved wavenumbers can
transfer energy forward to small resolved wavenumbers, but also the possibility of transferring
backwards the energy from small to large resolved wavenumbers exists, as commented before.

Having remarked the importance of the Galerkin nonlinear term, which rules the devel-
opment of an energy cascade as it transfers energy between the resolved wavenumbers in the
inertial range [58], we focus our attention on the terms arising from relations (2.20), (2.22),
(2.23) and (2.24). Such terms represent the interaction between the resolved scales and the
subscales, and correspond to the so-called Leonard, Cross, and Reynolds stresses in the stan-
dard large eddy simulation (LES) approach to solve turbulent flows. It is worthy to note that
the presence of these terms is related only to the introduction of the VMS method, without the
modification of the continuous problem that occurs with the LES method.

19

20 Chapter 2. Variational multi-scale approximation of the one-dimensional Burgers equation

q l

k
N/2

q

lk
N/2

Figure 2.1: Triadic interactions among the resolved scales

r
qk
N/2

r
pk

N/2

Figure 2.2: Triadic interactions among the resolved and subgrid scales: Cross stress (left), and
Reynolds stress (right).

We can detail the effect of the Cross nonlinear term (2.22) and (2.23) by looking to Fig. 2.2.
This figure shows how the subscales play a fundamental role in the resolved scales equation
by means of this term. More precisely, the LHS of the figure depicts the possible combinations
q + r = k between the resolved and subgrid scales. These type of combinations increase
with the resolved wavenumber k, and therefore, the term (2.29) can be seen as increasingly
responsible for dissipating energy at high wavenumber resolved scales. This will be verified
later in the numerical example. On the contrary, for the Reynolds stress term (2.24) possible
combinations p + r = k decrease with the resolved wavenumber. A depiction of that type
of combinations involving the subscales is shown on the right side of Fig 2.2. Therefore, the
transfer term due to the nonlinear relation among subscales (2.30) is essentially related to the
dissipation of energy at small resolved wavenumbers.

As in (2.27), the discrete energy equation for the subscales can be obtained by taking the

product of Eq. (2.20) with the complex conjugate of the subscale
(

ˆ̃ur

)
. If er is the energy of

the subscales, its time derivative is:

∂ter = −2τ−1(uN)er + L(r), (2.31)

for all r ∈ [−N,N − 2] \ [−N/2, N/2 − 1], and t > 0. Here we have arranged the nonlinear
transfer term due to the residual as:

L(r) =ˆ̃ur

(∑
q+l=r

ilûqûl

)
+ ˆ̃ur

(∑
q+l=r

ilûqûl

)
, (2.32)

for all q, l ∈ [−N/2, N/2− 1], r ∈ [−N,N − 2] \ [−N/2, N/2− 1], and t > 0. This transfer
term is related to the Leonard stress term and provides the energy that is dissipated by the
subscales. An example of the possible combinations between the resolved wavenumbers in
the Leonard stress term is presented in Fig. 2.3, where it can be observed that the possible
combinations of the pairs of resolved wavenumbers q and l, such that q+ l, decreases with the
subscale wavenumber. As a consequence of this, the rate of energy transfer (and dissipation)
of the subscales is in principle smaller for unresolved high wavenumbers.

20

2.4. Numerical example 21

q l

r

N/2

Figure 2.3: Triadic interactions among the resolved and subgrid scales for the Leonard stress.

Remark 6. The energy transfer terms (2.29), (2.30), and (2.32) allow for the backward trans-
fer of energy from the subscales to the resolved scales, provided the sign of those terms is
negative for certain resolved and subscale wavenumbers.

2.3.3 Time integration method
Let 0 = t0 < t1 < ... < tN be a partition of the time interval of analysis, with 0 < δt =
tn+1− tn for n = 0, 1, 2, Here and below the superscript denotes the time step counter. The
transient term integration of the evolution equation for the resolvable scales and the subscales,
as well as the energy equations, can be described as follows. Let us write these equations in
the form:

∂tvk = F (vk) , (2.33)

for each k wavenumber. We use a fully explicit Runge-Kutta time-integration scheme of S
stages. If vnk is known, the solution at tn+1 is given by

vn+1
k = vnk + δt

S∑
i=1

biK
n
i , (2.34)

for each k wavenumber, where Kn
i (defined for 1 ≤ i ≤ S) are the stage increments, obtained

as

Kn
i = F

(
vnk + δt

i−1∑
j=1

aijK
n
j

)
. (2.35)

Expresions (2.34) and (2.35) depend on the definition of the coefficients aij (for 1 ≤ j ≤ i ≤
S) and bi (for 1 ≤ i ≤ S) for a specific explicit method. In particular, the explicit Euler scheme
corresponds to S = 1 and b1 = 1. A stability condition of Courant-Friedrichs-Lewy type must
be imposed in order to guarantee stability of the time integration method. The previous time
marching technique applied to Eqs. (2.25), (2.20), and (2.27), defines the spatial and temporal
OSGS-VMS discretization of the Burgers problem. In the following section, we apply this
discretized formulation in order to simulate a numerical example.

2.4 Numerical example
In this section, we solve a numerical example that is selected to test the OSGS-VMS formu-
lation. We first define the continuous problem, which is a steady one-dimensional viscid case.

21

22 Chapter 2. Variational multi-scale approximation of the one-dimensional Burgers equation

The fact that the ”turbulent” energy spectrum of the one-dimensional Burgers problem is only
due to the resolution of strong gradients in the solution (shocks), and not to the unsteady solu-
tion of the problem (as in the case of the dissipative eddies in the Navier-Stokes turbulence),
has prompted us to select the problem as a steady case. Then we present the DNS of the prob-
lem, which accounts for all the wavenumbers in the solution. The DNS solution is used to
evaluate the accuracy of the OSGS-VMS method. Specifically, we discuss the resulting energy
spectra for discretizations in which the number of modes N is not enough to resolve all of
the wavenumbers present in the solution. As in (2.21), we can consider an effective grid size
h = π/N and refer to coarse and fine grids. In the spirit of ILES methods, coarse grid solutions
are also compared against LES results in the last part of this section.

Under certain conditions (detailed in [59]), the periodic solution of the one-dimensional
forced Burgers problem tends toward a stationary state. This is achieved in particular by se-
lecting û0

0 = 0 and û0
k = k−1 as initial conditions, and by fixing ∂tû1 = 0 for t > 0. Given

these conditions, the diffusivity coefficient of the example is fixed to ν = 0.025, so that the
nonlinear term is dominant in the Burgers equation. The periodic solution describes a single
shock that arises from the large-scale restriction over û1 and the predominance of the nonlinear
term. This restriction also provides the amount of energy that is propagated through the simu-
lation and dissipated by the center of the shock. In this sense, the smallest scales corresponding
to the “Kolmogorov” scale belong to the viscous shock thickness l ≈ ν/|u|, and the maximum
resolved wavenumber of the DNS solution is calculated such that the associated grid spacing
is below this size. The DNS solution of the numerical example is carried out by completely
solving all the scales, which is achieved with N = 400 (so that h = 7.85 × 10−3 is below
l ≈ 10−2). We also perform simulations in which the grid is not fine enough to resolve all
the wavenumbers of the solution. The comparison of the coarse grid simulations (solved with
a maximum resolved wavenumber N) and the DNS solution is explained below. In order to
guarantee numerical stability, the time integration stability criterion is set for all the resolved
cases to a CFL number smaller than 0.01 for the linearized problem, converging to the steady
state at approximately t = 2.

Figure 2.4 shows the energy spectrum at the stationary converged state for the DNS and
coarse grid simulations. The energy spectrum at the initial simulation time has a regular dis-
tribution and behaves as k−2, with the large scales containing the majority of the energy in the
system. As it evolves in time, the energy spectrum develops the cascade shape with the typical
slope −2 (in a log scale) behavior in the inertial range (that differs from the well-known k−5/3

behavior of the Navier-Stokes turbulence), and a drop-off corresponding to the dissipation pro-
vided by the shock. The decay in time of the energy spectra solved by the OSGS-VMS method
is accurate for all the coarse grids, giving the k−2 behavior at the inertial range, with only
small deviations occurring near the maximum resolved wavenumber. In this sense, an energy
pile up is observed for a few wavenumbers below the maximum resolved wavenumber. It is
also observed that refining the grid, and consequently enriching the space of the subscales,
improves the accuracy of the energy spectrum near the maximum resolved wavenumber as the
dissipation of energy increases and the pileup vanishes. These results indicate that the turbu-
lent energy spectrum is correctly approximated by the OSGS-VMS numerical method. Even
for coarse discretizations that are not sufficient to solve the smallest scales of the solution, the
inertial range of the energy spectrum is accurately captured.

Let us discuss now the solution to the Burgers problem in the physical space. Figure 2.5

22

2.4. Numerical example 23

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100

E
n

e
rg

y

Modes

k
-2

N=40
N=80

N=200
DNS

Figure 2.4: OSGS-VMS results: energy spectrum.

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

0 π 2π

S
o

lu
ti
o
n

Position

N=40

N=80

N=200

DNS

Figure 2.5: OSGS-VMS results: physical space solution.

23

24 Chapter 2. Variational multi-scale approximation of the one-dimensional Burgers equation

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10

E
d
d

y
 V

is
c
o
s
it
y

Modes

Cross-Stress N=80
Reynolds-Stress N=80

Total N=80

Figure 2.6: OSGS-VMS results: Eddy viscosity.

presents the physical space solution, including the coarse grid solutions and the DNS solution.
The physical space solution uN ∈ R is plotted in the range [0, 2π] since the solution is pe-
riodic. In general, the OSGS-VMS method gives an accurate physical solution, including the
periodic wave behavior and the formation of the one-dimensional shock as a step in the solu-
tion. For the coarse grid solutions, the Gibbs phenomenon is present. This can be observed in
the figure as local oscillations near the shock, which are commonly eliminated through shock
capturing techniques. A slight inaccuracy different from the Gibbs phenomenon is observed
for the coarsest grid solutions, which corresponds to the previously described energy pile up
at the highest resolved wavenumbers.

Now we center the discussion about the implicit modeling of turbulence done by the
OSGS-VMS method. As in the case of the Navier-Stokes turbulence, the forced Burgers prob-
lem exhibits the energy dissipation cascade, in which the energy of the large scales is trans-
ferred to the small scales where the energy is dissipated. The triadic interaction mechanism
commented in Section 2.3, corresponding to the nonlinear term involving the resolved scales,
is responsible for the energy transfer from the preponderant resolved large scales to the much
smaller resolved scales. The mechanisms through which the energy contained in the resolved
and unresolved scales interact with each other can be clarified by analyzing the scale depen-
dence and the dissipation driven by the nonlinear terms. For doing so, we plot the spectral eddy
viscosity arising from the Cross and Reynolds stress terms, which is a scaled version of the
energy dissipated by each nonlinear term, and it is calculated as νC(k) = C(k)/k2e(k), and
νR(k) = R(k)/k2e(k), where e(k) is the energy of the wavenumber. We plot the scale depen-
dence of the nonlinear terms for aN = 80 case in Fig 2.6. It has been previously explained that
the Cross stress contribution (involving the resolved and unresolved scales) dissipates energy

24

2.4. Numerical example 25

increasingly with the resolved wavenumber. On the contrary, the energy dissipation related to
the Reynolds stress is greater for the largest scales of the solution. In fact, the largest scales
of turbulence are only correctly solved if the nonlinear term accounting for the unresolved
scales is included. Contrary to [55], where the stabilizing term was defined by a linearized
asymptotic expansion over the residual, and hence only Cross stress terms appeared in the dis-
cretized equation, we find that including the Reynolds stress tensor (resulting from nonlinear
terms involving the subscales) is a requirement for the proper stabilization of the problem,
but also for the correct approximation of the turbulence phenomena. In this sense, we also
find that including the transient term in the subscales equation (2.14), and therefore solving
the subscales equation as a separate equation, makes the Leonard stress term to be explicitly
defined and improves the numerical convergence to the steady state of the solution. Adding
the dissipation provided by the Cross and Reynolds terms results in a plateau distribution of
the spectral eddy viscosity regardless of the resolved wavenumber. The dissipation increases
only at higher resolved wavenumbers by the effect of the Cross stress term. It is remarkable
that the numerical dissipation given by the OSGS-VMS method removes energy at a correct
rate, mainly due to the relation between the variational subscales and the finite resolved scales
through the nonlinear terms, which improves by enriching the discretization.

We aim to compare now the previous results with some Burgers turbulence results ob-
tained with a LES model. First, let us briefly comment about the modifications in the contin-
uous Burgers equation when the LES method is applied. The LES method filters the Burgers
equation in space and time, leading to the problem

∂tu+ ∂x(
1

2
uu) = ν∂xxu+ f, x ∈ (0, 2π), t > 0. (2.36)

We have denoted the filtered quantities by using an underline. The filtered nonlinear term uu is
the main difficulty in LES: it requires knowledge of the unfiltered velocity field a priori, which
is unknown, so it must be modeled somehow. In this sense, the filtered nonlinear term can be
split up in the form uu = T +u u, where the quantity u u is resolved. The introduced residual
subfilter-scale stress tensor T must be taken into account in the solution of Eq. (2.36). This
tensor has to be modeled in terms of the filtered unknown in order to close the filtered equation.
The static Smagorinsky model T ≈ −2νtS introduced in [38] is a common closure model
for this problem, where S = 1

2
∂xu is the one-dimensional strain tensor and νt an additional

eddy viscosity. Other closures, such as the Dynamic Smagorinsky, Scale-similarity, Mixed, and
Linear unified RANS-LES models, are discussed in [56]. The closure model can be replaced
directly in the filtered equation, so that the modified Burgers equation is obtained:

∂tu+ u∂xu = νeff∂xxu+ f, x ∈ (0, 2π), t > 0. (2.37)

In practice, the main change with respect to the original equation is to modify ν by νeff = ν+νt.
In order to numerically approximate the previous equation, the Fourier-Galerkin method can
applied to the previous equation. Using the same notation as before, the discretized problem is
then:

∂tûk +
ik

2

∑
k=q+l

ûqûl + νeffk
2ûk = f̂k, (2.38)

25

26 Chapter 2. Variational multi-scale approximation of the one-dimensional Burgers equation

for all k, q, l ∈ [−N/2, N/2− 1], and t > 0. We apply also the time marching scheme de-
scribed in Section 2.3. The eddy viscosity defined in the Fourier space is modeled using a
spectral eddy viscosity proposed in [60], in our case taking the cutoff wavenumber as the
number of modes, N . It is given for each wavenumber k by

νt(k) = ν+∞
t

(EN
N

)1/2

ν∗t

(k
N

)
,

with

ν+∞
t = 0.31

5−m
m+ 1

√
3−mC

−3/2
k ,

where m is the negative slope of the energy spectrum, EN is the total energy spectrum at
the cutoff wavenumber, Ck is the Kolmogorov constant, and ν∗t is a non-dimensional eddy-
viscosity, given by

ν∗t (k) = 1 + 34.5 e−3.03(N/k).

Since we may consider that the density is ρ = 1, the total energy spectrum is such that
E =

∫
Ω
|û|2dk, and therefore, its value at the cutoff wavenumber is EN = eN/N . Numerical

coefficients must be set in order to close the viscosity model, which must be known a priori.
In particular, we need to set the Burgers energy spectrum negative slope, which has been pre-
viously shown to be m = 2, and the Kolmogorov constant Ck, which we set experimentally to
0.1 in order to obtain the most accurate results.

As the filtering procedure selects only a certain number of wavenumbers to be solved
by the spectral method, the resolved scales are the filtered scales below the selected cutoff
wavenumber N . Figure 2.7 shows several solutions in the physical space when applying the
static Smagorinsky model with different grid resolutions. The figure shows a correct descrip-
tion of the physical solution for all simulations. Gibbs phenomenon close to the shock is also
observed. In general, the method is accurate and correctly portrays the physical solution of the
Burgers problem with the given numerical coefficients. Figure 2.8 presents the energy spec-
trum for the simulations using the static Smagorinsky model. Even though the LES model is
accurate for most of the resolved scales of turbulence, the energy spectra of the DNS and the
LES solutions differ substantially for some resolved wavenumbers belonging to the inertial
range. In this sense, the LES spectrum presents some energy pile up near the cutoff wavenum-
ber, which is stronger for finer grids. This is an important difference between the LES and
the OSGS-VMS turbulence modeling; while applications with the former have to care for the
range of scales that are correctly solved by the grid, applying the OSGS-VMS method correctly
describes the turbulence phenomena no matter the grid resolution. Remarkably, refining the
grid improves the accuracy of the OSGS-VMS energy spectrum near the maximum resolved
wavenumber, contrary to the decrease in the energy dissipation observed in LES. Numerical
experiments indicate that increasing the Kolmogorov constant value improves the accuracy
of the energy spectrum in the inertial range, but produces a more pronounced energy pile up
at the cutoff wavenumber. These under dissipative solutions behave similarly to the Fourier-
Galerkin method presented in Fig. 2.9 for a N = 40 simulation, which gives globally unstable
solutions. In that figure, we show the energy spectrum results for Galerkin, OSGS-VMS and
LES methods. On the contrary, the LES energy spectrum results are not accurate when the Kol-
mogorov constant is decreased. In this sense, the LES spectrum falls faster than the DNS one,

26

2.5. Conclusions 27

and even some energy pile up near the cutoff wavenumber occurs. The possibility of obtaining
an over-dissipative character is well known for the LES models: even though the large scales
of turbulence may be correctly solved, the energy spectra of the LES solution can differ sub-
stantially from DNS due to the enforcement of the energy dissipation for the smaller resolved
scales belonging to the inertial range. Another substantial difference between the OSGS-VMS
and LES methods is that, while for the OSGS-VMS the calculation of the energy in (2.27)
and (2.31) is performed only as a post-process (for illustrating purposes), the discrete energy
equation for the resolved scales needs to be solved at each time step for the calculation of the
LES spectral eddy viscosity, with the consequent increment in the computational cost.

Finally, we address the scale dependence of the LES and the OSGS-VMS nonlinear terms
spectral eddy viscosity by using a grid resolution and cutoff wavenumber of N = 80. The plot
of the eddy viscosity with respect to the resolved wavenumbers is presented in Fig 2.10. It
can be seen that the eddy viscosity given by the static Smagorinsky model is almost flat, only
increasing at high resolved wavenumbers. The amount of dissipation given by the LES model
is tightly related to the parameters of the spectral model. Decreasing the Kolmogorov constant
intensifies viscosity, but also makes the solution over-dissipative (as demonstrated in Fig. 2.9).
In the case of the OSGS-VMS method, even if the obtained eddy viscosity is higher than the
one obtained with the LES results, the energy spectrum is more accurate than the one obtained
with the Ck = 0.05 LES model. The OSGS-VMS viscosity exhibits a sharp eddy increment
near the cutoff wavenumber that is not observed for the LES results. Numerical experiments
with finer grids confirm this sharp behavior, which is defined solely by the numerical terms
involving the variational subscales, and without the need of tuning numerical parameters.

We can effectively conclude that the contribution from the Galerkin form of the problem
is not sufficient to correctly reproduce the turbulent energy spectrum. Moreover, it is clear that
for coarse discretizations the present OSGS-VMS formulation works as a turbulence model,
only depending on the approximations made to derive the subscales (OSGS method and τ
definition). The numerical terms involving the dynamic evolution of the subscales seem to
accurately dissipate the energy of the system and to account for the subscale “turbulent effects”
onto the resolved scales even better than former LES methods. In the spirit of the discussion
in [56], the results of the present work encourage the application of ILES numerical methods
with built-in numerical dissipation instead of LES methods. Nevertheless, this conclusion is
drawn from the particular case of the steady turbulent solution obtained with the OSGS-VMS
method, and the static Smagorinsky model with spectral eddy viscosity.

2.5 Conclusions
In this chapter, an Orthogonal Sub-Grid Scales - Variational Multiscale (OSGS-VMS) method
for numerically approximating the Burgers problem has been presented. The analysis of the
Burgers equation has been done in the Fourier space, which allows us to clarify the scale
dependence of the numerical diffusion introduced by the variational multiscale method. In
particular, the numerical dissipation introduced with the orthogonal sub-grid scales has been
explained in detail. For this, the space for the orthogonal subscales has been defined in terms of
the finite-dimensional resolved space, so that the numerical approximation of the unresolved
scales improves as the grid is refined. Results have been contrasted with DNS simulations,

27

28 Chapter 2. Variational multi-scale approximation of the one-dimensional Burgers equation

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

0 π 2π

S
o
lu

ti
o
n

Position

LES N=40

LES N=80

LES N=200

DNS

Figure 2.7: LES results: physical space solution.

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100

E
n
e
rg

y

Modes

k
-2

LES N=40
LES N=80

LES N=200
DNS

Figure 2.8: LES results: energy spectrum.

28

2.5. Conclusions 29

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10
 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

E
n

e
rg

y

Modes

Galerkin N=40
VMS N=40

LES N=40 CK = 0.1
LES N=40 CK = 0.05

DNS

 0.0001

 0.001

 0.01

20

Figure 2.9: Energy spectrum results for Galerkin, OSGS-VMS, and LES simulations.

 0.001

 0.01

 0.1

 1

 1 10

E
d
d
y
 V

is
c
o
s
it
y

Modes

VMS N=80
LES N=80 CK = 0.1

LES N=80 CK = 0.05

Figure 2.10: Eddy viscosity results for OSGS-VMS and LES simulations.

29

30 Chapter 2. Variational multi-scale approximation of the one-dimensional Burgers equation

validating the ability of the OSGS-VMS model to describe the turbulent behavior of the Burg-
ers equation. The scale dependence of the introduced numerical dissipation terms has been
also compared with a spectral LES method. An accurate dissipative structure for the OSGS-
VMS method has been found, which arises from the numerical approximation exclusively, and
without the need of modifying the continuous equation.

30

Chapter 3

Variational multi-scale finite element
approximation of the compressible
Navier-Stokes equations written in
conservative variables

In this chapter, the variational multi-scale framework is applied to the finite element approxi-
mation of the compressible Navier-Stokes equations written in conservation form. Even though
this formulation is relatively well known, some particular features that have been applied with
great success in other flow problems are incorporated. The orthogonal subgrid scales, the non-
linear tracking of these subscales, and their time evolution are applied. Moreover, a systematic
way to design the matrix of algorithmic parameters from the perspective of a Fourier analysis is
given, and the adjoint of the non-linear operator including the volumetric part of the convective
term is defined. Because the subgrid stabilization method works in the streamline direction, an
anisotropic shock capturing method that keeps the diffusion unaltered in the direction of the
streamlines, but modifies the crosswind diffusion is implemented. The artificial shock captur-
ing diffusivity is calculated by using the orthogonal projection onto the finite element space of
the gradient of the solution, instead of the common residual definition.

3.1 Introduction
The compressible Navier-Stokes equations are commonly used to model flow problems when
compressibility effects become relevant. Some areas that require a compressible flow descrip-
tion are the aerodynamics and aeroacoustics fields, in which applications range from turbo-
machinery design to speech therapy. The compressible Navier-Stokes equations consist of the
conservation of mass, momentum and energy equations. Thermodynamical properties and con-
stitutive relations of the fluid close the mathematical description. We restrict our problem to
perfect fluids in the gas state, which we model using Newton’s law for fluids together with the
caloric equation, the ideal gas law, and Fourier’s heat law. However, other compressible fluids
can be modeled by the compressible Navier-Stokes equations using the appropriate constitu-
tive definitions.

31

32 Chapter 3. Variational multi-scale approximation of the compressible Navier-Stokes equations

In this work, we are interested in the finite element method approximation of compressible
flow problems. In particular, we solve this set of equations using the conservative variables
formulation, that is, defining density, momentum, and total energy as the problem unknowns.
When these equations are approximated by the classical Galerkin approach, numerical insta-
bilities may appear due to the hyperbolic nature of the equations. The first attempt to deal
with this instability was the introduction of a stabilizing term into the Galerkin finite element
formulation. Within this concept, the Streamline Upwind Petrov Galerkin (SUPG) method in
[61] was the first method adopted for solving the compressible Navier-Stokes equations. In
that formulation, the authors applied the stabilization methods previously developed for the
convection-diffusion equation. The main idea was to optimally introduce numerical diffusion
along the streamlines using a stabilization term that contained a matrix of algorithmic parame-
ters, a certain operator applied to the test function, and the residual of the differential equation
(e.g. the one in [62]). An important contribution of this pioneering work was the inclusion
of the largest eigenvalue of the hyperbolic system into the matrix of algorithmic parameters.
More recently, in references [63–65], the SUPG stabilization has been applied into compress-
ible flow formulations. Some later stabilizations were formulated based on the Galerkin Least
Squares (GLS) method. For example, in the articles [66–68], the authors transformed the con-
servative variables into entropy variables using Jacobian transformation matrices.

The multi-scale concept was first included in the compressible Navier-Stokes formulations
to account for the effect of the unresolved scales as a turbulence model instead of as a stabiliza-
tion method. Within this branch, a mixed formulation was proposed in [69] that approximated
the solution separating a priori the resolved and unresolved turbulent scales. They included
the effect of unresolved scales into the solution using a Reynolds stress tensor. The unresolved
scales were calculated with a finite volume cell-agglomeration projector. That initial work was
contrasted in [70], specifically in the definition of the unresolved scales by means of the cell-
agglomeration projector; they proposed instead a Fourier-Spectral projector, which could be
implemented with a discontinuous Galerkin method. Moreover, in references [71, 72] turbu-
lence modeling concept was implemented and presented turbulence energy spectra results for
turbulent compressible flows.

The stabilization methods proposed in this work are based on the Variational Multi-Scale
(VMS) framework introduced in [17] for the scalar convection-diffusion-reaction problem.
The method splits the unknowns of the problem into a coarse-scale that belongs to the finite
element space and a subgrid scale or subscale, which is the remainder. The original problem
is subdivided into two separated problems, one for the finite element scale, and another for
the subscales. To avoid increasing the number of degrees of freedom of the problem, an ap-
proximation over the subscales is done in terms of the resolved scales. In order to properly do
this approximation, we propose to study the behavior of the compressible problem from the
perspective of a Fourier analysis, instead of the previous approximations in [73, 74]. Hence,
we aim to give a systematic way to design the approximation over the subscales, that is, to
define the matrix of algorithmic parameters for the compressible case.

The main idea of the VMS formulation is to include the effect of the unresolved scales in
order to stabilize the finite element equations. The VMS stabilized finite element formulation
was introduced to solve the compressible Navier-Stokes equations in [73]. They extended sat-
isfactorily the formulation previously done for the incompressible Navier-Stokes equations in
[75]. In that work, they demonstrated the matrix of algorithmic parameters definition for a one-

32

3.1. Introduction 33

dimensional advective-diffusive-reactive problem on quadratic elements. The contribution of
the subscales into the resolved scales was done by integrating by parts the finite element scale
equation. More recently, in [74] the VMS method was applied in order to stabilize the Euler
equations, and the authors demonstrated the convergence of the numerical method in a wide
range of stratified flows. They restricted the explicit formulation to a linear Euler time integra-
tion scheme. Even though the VMS formulation of the compressible problem has already been
worked by the last mentioned authors, we incorporate some particular features that we have
applied in other flow problems (see [15] and references therein). Since there are different ways
to define the subscales, three different approaches are solved in this work. The first possibility
is the definition of the space of the subscales, which can be either the space of finite element
residuals or the space orthogonal to the finite element space [43, 76]. The second possibility
is the inclusion of the transient term of the subscales equation [46]. The third possibility is the
inclusion of the subscales in all the non-linear terms of the problem [57]. In addition to these
definitions, we take into account the volumetric part of the convective term in the compressible
nonlinear operator adjoint, which has not been proposed before in the stabilized formulations.

Furthermore, at the supersonic regime, some localized instabilities may arise from sharp
gradients in the solution, which are inherent to the physics of the problem. Hence, the stabi-
lized formulation requires being complemented with a local shock capturing term, in order to
yield stability and convergence in the entire domain. The first approach was the residual-based
shock capturing techniques that control oscillations in a non-linear fashion depending on the
solution. This type of shock capturing operator was introduced in [77] and later in [78] for a
SUPG compressible flow formulation. Some other formulations, like the ones in [79–82] eval-
uated several types of shock capturing techniques. In contrast with the previous formulations in
[18, 65, 83], we aim to introduce the numerical diffusion in a “physical manner” for the com-
pressible problem. That is, we modify the diffusion of the momentum and energy equations,
but avoid introducing artificial diffusion into the mass equation. In this topic, we also propose
to use the orthogonal projection onto the finite element space of the gradient of the unknown,
instead of the common residual definition. Because the sub-grid stabilization method works
in the streamline direction, we implement an anisotropic shock capturing method that keeps
the diffusion unaltered in the direction of the streamlines, but modifies the crosswind diffu-
sion. The scope of this proposed shock-capturing technique is evaluated with some numerical
examples.

In this chapter we use an explicit time integration scheme in order to integrate the tem-
poral derivatives, more precisely, we implement the family of explicit Runge-Kutta methods.
Moreover, we calculate the time integration method for the temporal derivative of the dynamic
subscales exploiting the explicit scheme adopted.

We perform numerical tests of the formulations presented. The first section of tests corre-
sponds to the study of the formulations in the subsonic range, where there is no need for local
stabilization and it is possible to compare the global stabilized formulations. We implement the
three-dimensional lid-driven cavity and the flow past a cylinder problems, both in the subsonic
range, and benchmark our solutions to those published by other authors. We use the cylinder
results obtained with linear triangular elements to compare the convergence of the proposed
methods. As another type of test, we make a comparison between the shock capturing methods
(proposed in this thesis) using the supersonic reflected shock problem. Finally, we present the
solution for the compressible viscid supersonic flow past a cylinder including the global and

33

34 Chapter 3. Variational multi-scale approximation of the compressible Navier-Stokes equations

local stabilization methods. This example closes the evaluation of the formulation.
This chapter is organized as follows. In Section 3.2 we present the compressible Navier-

Stokes problem. Section 3.3 contains the numerical approximation using the VMS finite ele-
ment formulation of the compressible Navier-Stokes equations. We also present the demon-
stration of the matrix of stabilization parameters, and the distinct approaches to solving the
subscales equation. The shock capturing methods and the explicit time integration scheme are
also discussed in Section 3.3. In Section 3.4 the numerical examples are presented, and the
proposed stabilization is discussed. Finally, in Section 3.5 conclusions are stated.

3.2 The compressible Navier-Stokes problem

3.2.1 Initial and boundary value problem
The problem we consider consists in the Navier-Stokes equations posed in a time interval
(0, tf) and in a domain Ω ⊂ Rd, being d the number of space dimensions (d = 2 or 3). Let
t ∈ (0, tf) be a given time instant in the temporal domain, and x ∈ Ω a given point in the
spatial domain. Let Γ be the boundary of the domain Ω, and n the geometric unit outward
normal vector on Γ. We split Γ into two sets: the Dirichlet boundary denoted as ΓG, and
the Neumman boundary denoted as ΓN . Considering a compressible, Newtonian and viscous
fluid, the governing equations are the conservation of mass, momentum, and energy written in
conservation form:

∂ρ

∂t
+

∂

∂xi
(ρui) = 0, (3.1)

∂

∂t
(ρui) +

∂

∂xj
(ρujui + pδij − τji) = ρfi, (3.2)

∂

∂t

(
ρ

(
e+

1

2
uiui

))
+

∂

∂xj

(
ρuj

(
h +

1

2
uiui)

)
− uiτij + qj

)
= ρfiui + ρr, (3.3)

together with appropriate boundary and initial conditions. The usual summation convention is
implied in the equations presented before, with indices running from 1 to d. In these equations
ρ is the density, p is the pressure, u is the velocity, τ is the viscous stress tensor, f is a body
force vector, e is the internal energy, h is the enthalpy, q is the heat flux vector, r is a heat
source/sink term and I = [δij] is the identity or Kronecker tensor. Supplementary constitutive
relations are considered in order to close the problem. For the viscous part of the stress tensor
we use the relation

τij (u) = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2µ

3

(
∂ul
∂xl

)
δij, (3.4)

where µ is the viscosity. For the heat flux vector we use Fourier’s law,

qi (θ) = −λ ∂θ
∂xi

, (3.5)

where λ is the thermal conductivity and θ is the temperature of the fluid. The caloric equation
e = cv (θ) θ and the perfect gas state equation p = ρRθ are used to calculate the pressure

34

3.2. The compressible Navier-Stokes problem 35

and the acoustic speed c. In these relations the specific heat at constant volume cv (θ) and the
specific heat at constant pressure cp (θ) are thermodynamic properties of the fluid. We also
define γ = cp/cv for the ratio between the specific heats, and R = cp − cv for the specific gas
constant.

Hereafter, let us denote the transpose operation by the superscript >. We write the con-
servation equations (3.1)-(3.3) in system form introducing the vector of conservative vari-
ables U =

(
ρ, m, etot

)>, with density, momentum m = ρu and total energy etot =
ρ (e+ u · u/2) as its components. The system form of the compressible Navier-Stokes equa-
tions written in conservation variables is

∂tU + ∂jEj (U) + ∂jGj (U)− S (U) = 0 in Ω ⊂ Rd, t ∈ (0, tf) , (3.6)

together with appropriate boundary and initial conditions. Here ∂t and ∂j are short notations
that indicate the Eulerian time derivative and ∂/∂xj , respectively. The convective flux in the
jth-direction Ej and the diffusive flux in the jth-directionGj are defined as:

Ej (U) =

ρuj

ρuju1 + pδ1j

ρuju2 + pδ2j

ρuju3 + pδ3j

uj (etot + p)

 , Gj (U) =

0
−τj1
−τj2
−τj3

−uiτij + qj

 . (3.7)

The divergence of these fluxes is written in a more convenient manner as ∂jEj (U) =
Aj (U) ∂jU and ∂jGj (U) = −∂k (Kkj (U) ∂jU), with the definition of the Euler Jaco-
bian matrix Aj (U) = ∂Ej (U) /∂U , and the diffusivity matrix K (U) = [Kkj (U)]. As
a remark, both the Euler Jacobian and the diffusivity matrices depend on the variables of
unknowns through the constitutive relations of the fluid. The last term, the vector of sources
S (U) =

[
0, ρf , ρf · u+ ρr

]>, contains the right hand side terms of equations (3.1)-(3.3).
We can linearize this term by introducing a reactive matrix

S =

0 0 0
f 0 0

r f> 0

 , (3.8)

that multiplies the vector of unknowns S (U) = SU . The nonlinear operator

L
(
Ŭ ;U

)
= Aj

(
Ŭ
)
∂jU − ∂k

(
Kkj

(
Ŭ
)
∂jU

)
− SU , (3.9)

includes the previous definitions for the convective, diffusive, and reactive terms. The nonlin-
earity in the first argument of the operator arises from the dependency of the Euler Jacobian and
diffusivity matrices on the unknowns. However, the operator is linear in the second argument.

Equation (3.6) may be now written using the nonlinear operator as

∂tU + L (U ;U) = 0 in Ω ⊂ Rd, t ∈ (0, tf) . (3.10)

The compressible Navier-Stokes problem is a nonlinear initial and boundary value problem
of hyperbolic type, subject to appropriate definitions for the boundary and initial conditions,

35

36 Chapter 3. Variational multi-scale approximation of the compressible Navier-Stokes equations

which can be written in vector form as

B (U) = H on ΓN , t ∈ (0, tf) , (3.11)
D (U) = D (U g) on ΓG, t ∈ (0, tf) , (3.12)

U = U 0 (x) in Ω, t = 0. (3.13)

The Dirichlet boundary operator D (·) is used to impose the components of U on different
parts of Γ. The Neumann boundary conditions H are given by the operator B (·). Due to the
hyperbolic and compressible nature of the problem, Dirichlet boundary conditions must be
imposed in the inlet part of the boundary Γin = {x ∈ Γ| (u · n) (x) < 0} . For the sake of
simplicity we have grouped Neumann conditions on ΓN and Dirichlet conditions on ΓG, but
mixed types of conditions could be applied to different variables (momentum and total energy)
on the same part of the boundary.

The nondimensional Mach number M = |u| /c is used to calculate the compressibil-
ity regime. It can range from subsonic (M < 0.8), transonic (0.8 < M < 1.2), supersonic
(M > 1.2), and hypersonic flow (M >> 1). Here we focus our attention to the subsonic, tran-
sonic, and supersonic regimes. All conservative variables are imposed at the inflow part of the
Dirichlet boundary, regardless the compressibility regime. For the supersonic case, no Dirich-
let conditions need to be imposed at the outflow Γout = {x ∈ Γ| (u · n) (x) > 0} . In the case
of subsonic flow, only density is imposed at the outflow boundary Γout. Solid boundaries can
be represented as a slip condition u · n = 0, as a no slip condition u = 0, or as an isothermal
wall etot = ρcvθ. In addition, initial conditions for the conservative variables must be defined
at t = 0, which are of the form U = U 0 (x) , with U 0 (x) functions defined on the whole
domain Ω. We will explicitly indicate in our examples how the initial and boundary conditions
are prescribed.

3.2.2 The variational problem
Let us introduce some notation in order to write the variational form of the problem. Let L2 (Ω)
be the space of square integrable functions in the domain Ω. We use the symbol 〈., .〉 to denote
the integral of the product of two functions, including the dual pairing, assuming it is well
defined. The L2 inner product in Ω is denoted by (·, ·).

Let W be an appropriate test functions space. The weak form of the problem is obtained
by testing (3.10) against an arbitrary test function V . The weak form can be written as: findU
belonging to the space of unknowns, such that

(V , ∂tU) + 〈V ,L (U ;U)〉 = 0 ∀V ∈W , (3.14)

together with appropriate sets of boundary and initial conditions.

3.3 Numerical approximation

3.3.1 The Galerkin finite element discretization
The Finite Element Method (FEM) approximation of the continuous variational problem (3.14)
can be done with the standard Galerkin method. Let us consider the finite element partition

36

3.3. Numerical approximation 37

Th = {K} of the domain Ω. The diameter of the element partition is denoted by h. We define
the test functions space Wh ⊂W as continuous picewise polynomial in space. The Galerkin
FEM problem consists of finding a finite element solution Uh belonging to the trial space,
such that

(V h, ∂tUh) + 〈V h,L (Uh;Uh)〉 = 0 ∀V h ∈Wh, (3.15)

together with the appropriate initial and boundary conditions of the problem. When the
Galerkin method is used to solve this hyperbolic problem, which possesses non-symmetric
operators, an unstable behaviour of the solution might appear when the convection is domi-
nant, and due to the incompatibility of the interpolation of the different variables.

3.3.2 The space discrete variational multi-scale stabilized finite element
formulation

We present a stabilized formulation for the compressible Navier-Stokes equations based on
the VMS approach introduced in [17]. The basic idea is to approximate the effect of the com-
ponents of the solution of the continuous problem that cannot be solved by the finite element
mesh. It consists on the decomposition of the unknown U = Uh + Ũ , into a coarse-scale
Uh ∈ Wh that belongs to the finite element space and a subgrid scale or subscale Ũ ∈ W̃ ,
which is the remainder. The spaces Wh and W̃ are such that W = Wh⊕W̃ . Hence, consis-
tently V = V h + Ṽ , where V h ∈Wh and Ṽ ∈ W̃ . The variational formulation (3.14) can
now be split into two equivalent subproblems:

(V h, ∂tU) + 〈V h,L (U ;U)〉 = 0 ∀V h ∈Wh, (3.16)(
Ṽ , ∂tU

)
+ 〈Ṽ ,L (U ;U)〉 = 0 ∀Ṽ ∈ W̃ . (3.17)

The objective is to approximate the subscales in order to end up with a problem for the finite
element scale alone. On the one hand, we integrate by parts Eq. (3.16) and obtain

(V h, ∂tU) + 〈V h,L (U ;Uh)〉+ 〈L∗ (U ;V h) , Ũ〉 = 0 ∀V h ∈Wh. (3.18)

Here we have introduced the formal adjoint L∗ (U , ·) of the operator L (U , ·). The adjoint
operator is defined as 〈V ,L (U ;W)〉 = 〈L∗ (U ;V) ,W 〉, for all U ,V ,W ∈ W . The
duality might involve inter-element jump terms when finite element functions are considered.
However, these inter-element terms are neglected by supposing that the subscales vanish at
the element boundaries. With the above approximation, the outcome for the adjoint of the
nonlinear operator (3.9) applied to the test functions vector is

L∗ (U ;V h) = −∂j
(
A>j (U)V h

)
− ∂j

(
K>kj (U) ∂kV h

)
− S>V h. (3.19)

It is important to remark the contribution of the derivative of the Euler Jacobian matrix in the
first term on the right hand side. In this work we linearize the derivatives of the first and second
terms on the right hand side of the previous expression, respectively as

∂

∂xj

(
A>j (U)V h

)
≈A>j (U)

∂V h

∂xj
+
∂A>j (U)

∂U

∂Uh

∂xj
V h, (3.20)

∂

∂xj

(
K>kj (U)

∂V h

∂xk

)
≈K>kj (U)

∂2V h

∂xj∂xk
+
∂K>kj (U)

∂U

∂Uh

∂xj

∂V h

∂xk
. (3.21)

37

38 Chapter 3. Variational multi-scale approximation of the compressible Navier-Stokes equations

We complete the formulation for the finite element scale equation by integrating by parts
the diffusive term of the nonlinear operator applied to the finite element unknowns. Since the
normal component of the diffusive flux must be continuous across inter-element boundaries,∑

K

(V h, nkKkj (U) ∂jU)∂K =0 ∀V h ∈ Wh, (3.22)

the equation for the finite element scale results in:

(V h, ∂tUh) +
(
V h, ∂tŨ

)
+ (V h,Aj (U) ∂jUh) + (∂kV h,Kkj (U) ∂jUh)

− (V h,SUh) +
∑
K

〈L∗ (U ;V h) , Ũ〉K = 0 ∀V h ∈Wh. (3.23)

In the previous equation, 〈·, ·〉K denotes the L2 inner product over the element K.
On the other hand, if P̃ denotes the L2 projection onto the space of subscales, the equation

for the subgrid scale can be formally written as

P̃
[
∂tŨ + L

(
U ; Ũ

)]
= P̃ [R (U ;Uh)] , (3.24)

whereR (·, ·) =
(
Rρ (·, ·) ,Rm (·, ·) , Retot (·, ·)

)> stands for the residual vector, which is com-
posed by the equations residuals, and is formally defined as

R
(
Ŭ ;U

)
= −∂tU −L

(
Ŭ ;U

)
. (3.25)

Since the subscales cannot be represented by the finite element mesh, the effect of the nonlinear
operator applied to the subscales needs to be approximated. For this, we adopt a matrix of
stabilization parameters that depends on the unknowns τ (U), such that an approximation of
the nonlinear operator applied to the subscales is made in each element:

L
(
U ; Ũ

)
≈ τ−1 (U) Ũ . (3.26)

The way to construct this approximation is explained further below. Hence, for an adequate
definition of the projection onto the subscales space, the subscales equation is

P̃
[
∂tŨ + τ−1 (U) Ũ

]
= P̃ [R (U ;Uh)] . (3.27)

The previous equation is a nonlinear ordinary differential equation, which must be solved at
the integration points. There are different approximations in order to calculate Ũ from this
equation.

Here we use two possibilities to construct the space where the subscales belong. The first
and the most common choice is to take it equal to the space of the finite element residuals.
That is, to define the projection onto the subscales space as the identity P̃ = I onto the
space of finite element residuals. The second possibility is the so-called orthogonal subscales
method, which defines the subscales orthogonal to the finite element space W̃ = W⊥

h . In this
case, the projection is defined to be the orthogonal projection onto the finite element space
P̃ = P⊥h = I − P h, being P h the L2-projection onto the finite element space.

38

3.3. Numerical approximation 39

Apart from the construction of the spaces where the subscales belong, we call the subscales
dynamic if the temporal derivative of subscales is taken into account. Instead, if the temporal
derivative of the subscales is neglected we call them quasi-static subscales. Another possibility
is to neglect the subscales effect in all the non-linear terms, whereas, if we take it into account
we call them non-linear subscales.

3.3.3 The matrix τ of stabilization parameters
The key point in the design of the stabilized formulation is the construction of the matrix τ .
In order to do this, we study the behavior of the problem from the perspective of a Fourier
analysis. This strategy was introduced in some other formulations, like in [84, 85], and we
apply it now to the compressible Navier-Stokes problem. We basically want to bound the
effect of the nonlinear operator and approximate it with matrix τ−1. First, let us consider the
following Fourier transform denoted by ·̂, and defined on each element K,

ĝ (k) :=

∫
K

e−ik·x
h g (x) dΩx, (3.28)

where i =
√
−1. The wave number k is defined as k = (k1, ..., kd), and h as the diameter of

K. If nj is the j-th component of the normal exterior to K, it can be checked that

∂̂g

∂xj
(k) =

∫
∂K

nje
−ik·x

h g (x) dΓx + i
kj
h
ĝ (k) . (3.29)

The basic heuristic assumption is that Ũ is highly fluctuating, and therefore only contains high
wave numbers

∂̂Ũ

∂xj
(k) ≈ i

kj
h
̂̃
U (k) . (3.30)

As a consequence, we may assume that values of Ũ on ∂K can be neglected to approximate
Ũ in the interior of K. In addition, we can linearize L

(
U , Ũ

)
≈ LŨ by considering U

as given and constant in the non-linear convective and diffusive matrices of (3.9). Taking into
account the above considerations, we calculate the Fourier transform of LŨ as

L̂ (k)
̂̃
U (k) = i

kj
h
Aj
̂̃
U (k) +

kkkj
h2
Kkj

̂̃
U (k)− S ̂̃U (k) . (3.31)

The proper scaling of the problem is crucial to discuss the approximation of matrix τ−1. Let
U ,V be elements in the domain of LU and F ,G elements in its range. Suppose that LU =
F is written in such a way thatF>U is dimensionally well defined. Let also theM -norm of F
be defined as |F |2M := F>MF , the M−1-norm of U as |U |2M−1 := U>M−1U , and
‖F ‖2

L2
M (K) :=

∫
K
|F |2M . In order to compare in a consistent manner the previously defined

norms, we introduce the scaling matrixM that makes dimensionally correct the products

F>MG and U>M−1V . (3.32)

39

40 Chapter 3. Variational multi-scale approximation of the compressible Navier-Stokes equations

We propose that the stabilization matrix τ−1 must be such that ‖L‖L2
M (K) ≤ ‖τ−1‖L2

M (K).
In order to devise a way to satisfy it, let us note that∥∥∥LŨ∥∥∥

L2
M (K)

=

∫
K

∣∣∣LŨ ∣∣∣2
M
dx ≈

∫
Rd

∣∣∣∣L̂ (k)
̂̃
U (k)

∣∣∣∣2
M

dk

≤
∫
Rd

∣∣∣L̂ (k)
∣∣∣2
M

∣∣∣∣ ̂̃U (k)

∣∣∣∣2
M−1

dk

=
∣∣∣L̂ (k0

)∣∣∣2
M

∫
Rd

∣∣∣∣ ̂̃U (k)

∣∣∣∣2
M−1

dk ≈
∣∣∣L̂ (k0

)∣∣∣2
M

∥∥∥Ũ∥∥∥2

L2
M−1 (K)

, (3.33)

where the first approximation comes from the fact that boundary values of Ũ have been dis-
carded, and k0 is a wave number whose existence follows from the mean value theorem. From
the previous development, we have that

‖L‖L2
M (K) ≤

∣∣∣L̂ (k0
)∣∣∣2
M
. (3.34)

Our proposal is to choose τ diagonal and such that
∣∣∣L̂ (k0

)∣∣∣2
M

= |τ−1|2M , with the compo-

nents of k0 understood as algorithmic constants. From (3.33) we can figure out the following
way to achieve this approximation

∣∣∣L̂ (k0
)∣∣∣2
M

= sup̂̃
U

(̂̃
U , L̂

(
k0
)∗
ML̂

(
k0
) ̂̃
U

)
(̂̃
U ,M−1 ̂̃U) , (3.35)

with ̂̃U ∗L̂ (k0
)∗
ML̂

(
k0
) ̂̃
U ∈ R+ but ̂̃U ∗, L̂ (k0

)∗
, L̂
(
k0
)
, and ̂̃U , being complex.

Let us denote by specM−1 (B) the spectrum of the generalized eigenvalue problemBx =
λM−1x, being λ an eigenvalue, and its spectral radius by ρ̆ (B). Equation (3.35) is equivalent

to the following eigenvalue problem: if there exists ̂̃U such that
(
L̂
(
k0
)∗
ML̂

(
k0
)) ̂̃
U =

λM−1 ̂̃U , then ∣∣∣L̂ (k0
)∣∣∣2
M

= max specM−1

(
L̂
(
k0
)∗
ML̂

(
k0
))
. (3.36)

Furthermore, in this work we propose to estimate separately each contribution of the convec-
tive, diffusive and reactive terms of (3.31), since∣∣∣L̂ (k0

)∣∣∣2
M
≤
∣∣∣L̂C

(
k0
)∣∣∣2
M

+
∣∣∣L̂D

(
k0
)∣∣∣2
M

+
∣∣∣L̂R

(
k0
)∣∣∣2
M
, (3.37)

where subindicesC,D andR denote the convective, diffusive, and reactive terms, respectively.
We aim to analyze the one-dimensional case in the x1 direction, and thereafter generalize to
multiple d dimensions.

40

3.3. Numerical approximation 41

3.3.3.1 Convective term

The solution of the one-dimensional hyperbolic problem

LC (U) = A
∂U

∂x1

, (3.38)

is bounded by the eigenvalues of the Jacobian matrix. The one-dimensional linearized Euler
Jacobian matrix

A =

 0 1 0

(γ − 3)
u21
2

(3− γ)u1 (γ − 1)

(γ − 1)u3
1 − γ u1etot

ρ
γ etot

ρ
− (γ − 1)

3u21
2

γu1

 , (3.39)

can be decomposed asA = TDT−1, with the right and left eigenvectors matrices defined as

T =

 1 1 1
u1 − c u1 + c u1

− bu21+2cbu1−2

2b
bu2+2cbu1+2

2b

u21
2

 , T−1 =

u1(cbu1+2)

4c
− cbu1+1

2c
b
2

u1(cbu1−2)
4c

− cbu1−1
2c

b
2

− bu21−2

2
bu1 −b

 , (3.40)

and b = γ−1
c2

. For convenience, let us denote as diag(e) the diagonal matrix with vector e on
the diagonal. The diagonal matrix of eigenvalues results from the previous decomposition as

D = diag (u1 − c, u1 + c, u1) . (3.41)

The spectrum of
(
L̂C

(
k0
)∗
ML̂C

(
k0
))

can be evaluated without difficulty by transforming
(3.38) into a problem which posses D as convective matrix. This can be achieved with a
projector defined as the matrix of left-eigenvectors T−1. Thus, the unknowns and force vectors
can be transformed into:

W = T−1U =
(
ρ

2γ
, ρ

2γ
, (γ−1)ρ

γ

)>
, (3.42)

H = T−1F =
(
ρu1
2γh

, ρu1
2γh

, (γ−1)ρu1
γh

)>
. (3.43)

Because the derivatives of T−1 are null as a result of the linearized Euler Jacobian matrix, we
can transform the convective problem

L′C (U) = T−1LC (U) , (3.44)

into the following problem

L′C (W) = D
∂W

∂x
. (3.45)

Problem (3.45) is the so-called Riemman problem, used for physical considerations. At this
point L′C (W) = H is such that H>W =

∑3
i=1HiWi is dimensionally well defined. Let

W ,Y be elements in the domain of L′C and H ,J elements in its range. The scaling ma-
trix defined as the identity matrix M = I makes the product H>MJ correct, because

41

42 Chapter 3. Variational multi-scale approximation of the compressible Navier-Stokes equations

[ρ2u2
1h
−2] = [ρ2u2

1h
−2] = [ρ2u2

1h
−2] = M2L−6T−2, where [·] stands for dimensional group,

M is mass, L is length, and T is time. The product W>M−1Y is also consistent, indeed
[ρ2] = [ρ2] = [ρ2] = M2L−6.

The previous development makes it possible to analytically calculate the spectrum of(
L̂
′
C (k)∗ML̂

′
C (k)

)
with respect toM−1, which is given by

specM−1

((
k0

1

h

)2

D>MD

)
=
{(

k01(u1+c)

h

)2

,
(
k01u1
h

)2

,
(
k01(u1−c)

h

)2}
. (3.46)

Therefore, the spectral radius is given by

ρ̆

((
k0

1

h

)2

D>MD

)
=

(
k0

1 (u1 + c)

h

)2

. (3.47)

If we take the simple diagonal expression for the transformed matrix of stabilization parame-
ters (τ ′)−1 = diag

((
τ ′ρ
)−1

, (τ ′m)−1 ,
(
τ ′etot

)−1
)

, the spectrum is

specM−1

(
(τ ′)

−1
M (τ ′)

−1
)

=
{(

1
τ ′ρ

)2

,
(

1
τ ′m

)2

,
(

1
τ ′etot

)2}
. (3.48)

Our proposal is to equate the spectral radius of both problems

ρ̆
(

(τ ′)
−1
M (τ ′)

−1
)

= ρ̆

((
k0

1

h

)2

D>MD

)
. (3.49)

We can fulfill condition (3.49) by making each eigenvalue of (3.48) be equal to (3.47). As
a result, the stabilization matrix after retrieving the transformation τ−1 = T (τ ′)−1 T−1 is
defined for the one-dimensional convective case as

τ−1 =

τ−1
ρ 0 0
0 τ−1

m 0
0 0 τ−1

etot

 , with, τ−1
ρ = τ−1

m = τ−1
etot

=
k0

1 (u1 + c)

h
. (3.50)

3.3.3.2 Diffusive term

Furthermore, we also account for the contribution of the one-dimensional diffusive term

LD (U) =
∂

∂x1

(
K
∂U

∂x1

)
, (3.51)

by decomposing the one-dimensional linearized diffusivity matrix

K =

 0 0 0
−4νu1

3
4ν
3

0

−4νu21
3
− αetot

ρ
+ αu2

1
4νu1

3
− αu1 α

 , (3.52)

42

3.3. Numerical approximation 43

intoK = TDT−1, with

T =

 0 0 1
1 0 u1

u1 1 etot
ρ

 , D =

4ν
3

0 0
0 α 0
0 0 0

 and T−1 =

 −u1 1 0
u2

1 − etot
ρ
−u1 1

1 0 0

 . (3.53)

Here ν is the kinematic viscosity and α is the thermal diffusivity. We also transform the one-
dimensional diffusion problem (3.51) using the matrix of left-eigenvectors T−1. The deriva-
tives of T and T−1 are neglected. Hence, the transformed problem possess a diagonal diffusive
matrix of real eigenvaluesD, which multiplies the derivative of the transformed unknowns. It
can be checked that the transformed problem is dimensionally well defined and that the scaling
matrix can be defined as the identity matrixM = I because products (3.32) are dimensionally
correct.

Consequently, the spectrum of the transformed diffusion problem is

specM−1

((
k0

1k
0
1

h2

)2

D>MD

)
=
{(

k01k
0
14ν

h23

)2

,
(
k01k

0
1α

h2

)2

, 0
}
. (3.54)

Note that each one of these eigenvalues may be an upper bound for the spectrum depending
on the kinematic viscosity and thermal diffusion values. Therefore, we assure that the spectral
radius of the transformed stabilization matrix problem

specM−1

(
(τ ′)

−1
M (τ ′)

−1
)

=
{(

1
τ ′ρ

)2

,
(

1
τ ′m

)2

,
(

1
τ ′etot

)2}
, (3.55)

be greater than the spectral radius of (3.54) by forcing each one of the components to be

1

τ ′ρ
=

1

τ ′m
=

1

τ ′etot

= am
k0

1k
0
14ν

h23
+ ae

k0
1k

0
1α

h2
. (3.56)

Here we have introduced am and ae as parameters of the problem. After retrieving the trans-
formation, we get the same values for all terms of the matrix of stabilization as the right-hand
side of (3.56). In practice, we make am and ae zero for all terms, except for τ−1

m , for which we
choose am = 1 and for τ−1

e , for which we also guarantee ae = 1. That is, we define the matrix
of stabilization for the one-dimensional diffusive term as

τ−1 =

0 0 0
0 τ−1

m 0
0 0 τ−1

etot

 , with τ−1
m =

k0
1k

0
14ν

h23
and τ−1

etot
=
k0

1k
0
1α

h2
. (3.57)

This approximation has been tested and shown to give good results, even though it is not the
complete bound definition for the diffusive term.

3.3.3.3 Reactive term

In the case of the reactive term contribution SU , the one-dimensional reactive matrix is given
by

S =

 0 0 0
f1 0 0
r f1 0

 , (3.58)

43

44 Chapter 3. Variational multi-scale approximation of the compressible Navier-Stokes equations

where f1 is the one-dimensional body source, and r is the heat source. This matrix must be
scaled with a diagonal scaling matrix Q, which can be designed for convenience using refer-
ence scaling values. At this point we can note that the scaling matrixQ = diag (c4, c2, 1), with
the acoustic speed c, gives a dimensionally well defined product

[
U>QSU

]
= M2L−2T−5.

From now on, let U ,V be elements in the domain of the scaled matrix QS and G,H ele-
ments in its range. The scaling matrix M = diag (c−6, c−4, c−2) makes products (3.32) cor-
rect. If we make the productG>MH , it gives the correct dimensional terms [ρ2u10

1 h
−2c−6] =

[ρ2u8
1h
−2c−4] = [ρ2u6

1h
−2c−2] = M2L2T−4. The product U>M−1V is also correct since

[ρ2c6] = [ρ2u2
1c

4] = [ρ2u4
1c

2] = M2L6T−6.
Hence, we can calculate the spectrum of the scaled reactive term as

specM−1

(
(QS)>MQS

)
=
{
r2+2c2f21 +

√
r4+4c2f21 r

2

2c8
,

r2+2c2f21−
√
r4+4c2f21 r

2

2c8
, 0

}
. (3.59)

Likewise, the spectrum of the scaled matrix of stabilization parameters problem is

specM−1

(
Qτ−1MQτ−1

)
=
{(

τ−1
ρ

c2

)2

,
(
τ−1
m

c2

)2

,
(
τ−1
etot
c2

)2}
. (3.60)

We can fulfill the condition of equating the spectral radius of both problems by making each
eigenvalue of (3.60) be equal to the first eigenvalue of (3.59). As a result, the matrix of stabi-
lization is defined for the one-dimensional reactive term as

τ−1 =

τ−1
ρ 0 0
0 τ−1

m 0
0 0 τ−1

etot

 , with,

τ−1
ρ = τ−1

m = τ−1
etot

=

(
r2 + 2c2f 2

1 +
√
r4 + 4c2f 2

1 r
2

2c4

)1/2

. (3.61)

3.3.3.4 Extension to multiple dimensions

Finally, we can extend the one-dimensional analysis in order to approximate the multidimen-
sional stabilization matrix. Let us denote by k0 the multidimensional vector of algorithmic
parameters [k0] = k0

i , 1 ≤ i ≤ d, where k0
i is the algorithmic parameter in the i-th di-

rection. We propose to apply the one-dimensional momentum stabilization parameter equally
into all dimensions of the momentum equation. Therefore, the stabilization matrix for multiple
dimensions can be computed as

τ−1 =

τ−1
ρ 0> 0
0 τ−1

m I 0
0 0> τ−1

etot

 , (3.62)

44

3.3. Numerical approximation 45

with 0 being the vector of Rd with zero in all its components and

τ−1
ρ =

C2 (|u|+ c)

h
+ C3

r2 + 2c2 |f |2 +
√
r4 + 4c2 |f |2 r2

2c4

1/2

, (3.63)

τ−1
m =

C1

h2

4ν

3
+
C2 (|u|+ c)

h
+ C3

r2 + 2c2 |f |2 +
√
r4 + 4c2 |f |2 r2

2c4

1/2

, (3.64)

τ−1
etot

=
C1α

h2
+
C2 (|u|+ c)

h
+ C3

r2 + 2c2 |f |2 +
√
r4 + 4c2 |f |2 r2

2c4

1/2

. (3.65)

In these expressions C1, C2 and C3 are algorithmic parameters. The algorithmic parameter
C1 approximates

∣∣k0
∣∣2. On the other hand, the algorithmic constant C2 approximates the

∣∣k0
∣∣

multiplied by the cosine of the angle formed by k0 and u. The reactive contribution is multi-
plied by the algorithmic constant C3. In this work we take C1 = 12p2, C2 = 2p and C3 = 1,
where p is the order of the finite element interpolation. The matrix of stabilization parameters
depends on velocity and the acoustic speed. This non-linearity τ (U) is also considered for
non-linear subscales.

3.3.4 Shock capturing technique
The previous stabilized finite element formulation yields a globally stable solution but does
not guarantee stability in the presence of sharp gradients of the solution.

Indeed, gradients of the solution may appear in the supersonic compressible flow in the
form of transonic shocks. Consequently, the globally stabilized formulation requires being
complemented with a shock-capturing technique in order to yield stability and convergence
in the entire domain. The main idea of such a shock-capturing technique is to increase the
amount of numerical dissipation in the proximity of sharp gradients. The method adds some
artificial kinematic viscosity νSC and thermal diffusivity αSC into the diffusive Galerkin term
of the finite element equation (3.23). We aim to introduce the numerical diffusion in such way
that we modify diffusion in the momentum and energy equations but avoiding the modification
of the mass equation.

We consider two non-linear methods in order to calculate the added diffusion values. The
first non-linear method that we implement is a residual based technique, which is consistent,
in the sense that if it is applied to the exact solution U , the added diffusion is zero. For this
technique we calculate the artificial kinematic viscosity using

νSC =

(
1

2
Cah

)
|Rm (U ,Uh)|
|∇mh|

if |∇mh| 6= 0, νSC = 0 otherwise, (3.66)

where Ca is an algorithmic constant, h is the characteristic length that gives dimensional con-
sistency to the expression, and |∇mh| is the Frobenius norm of the gradient of the finite

45

46 Chapter 3. Variational multi-scale approximation of the compressible Navier-Stokes equations

SC

SG
SC

u

(a)

SC

ST
SG

u

(b)

Figure 3.1: Shock capturing methods: (a) Isotropic diffusion ellipse, (b) Anisotropic diffusion
ellipse.

element solution for momentum. Similarly, for the artificial thermal diffusivity we use

αSC =

(
1

2
Cah

)
|Retot (U ,Uh)|
|∇etot,h|

if |∇etot,h| 6= 0, αSC = 0 otherwise. (3.67)

In the previous equation, |∇etot,h| is the norm of the gradient of the finite element solution for
the total energy.

The second non-linear method is the weakly consistent orthogonal projection technique
[76], which adds artificial diffusion only in the regions where sharp gradients are present. The
orthogonal projection technique makes the added diffusion proportional to the projection of
the gradient of the solution onto the space defined to be orthogonal to the finite element space,
that is to say, we take the artificial viscosity as

νSC =

(
1

2
Ca |u|h

) ∣∣P⊥h (∇mh)
∣∣

|∇mh|
if |∇mh| 6= 0, νSC = 0 otherwise. (3.68)

The norm of the velocity |u| gives dimensional consistency to the orthogonal projection based
calculation. In this method, we calculate the artificial thermal diffusivity as

αSC =

(
1

2
Ca |u|h

) ∣∣P⊥h (∇etot,h)
∣∣

|∇etot,h|
if |∇etot,h| 6= 0, αSC = 0 otherwise. (3.69)

The value used in this work for the algorithmic constant is Ca = 0.8 for both residual and
orthogonal projection methods (see Section 5 for the discussion about this value).

In practice, the way to introduce the added numerical diffusion into the diffusive Galerkin
term is to compute a modified viscous stress tensor τ̌ = [τij] and heat flux vector q̌ = [qi].
Within the modification of those tensors, we propose two distinct ways which are explained be-
low. Figure 3.1 presents the main idea of how the artificial diffusion is added by each method.

The first method is the so-called isotropic method, which is based on the addition of the
artificial diffusion into all the components of the viscous stress tensor and heat flux vector, that
is,

τ̌ij =

(
1 +

ρνSC

µ

)
τij and q̌i =

(
1 +

ρcvαSC

λ

)
qi. (3.70)

46

3.3. Numerical approximation 47

The second method that we propose is to add the numerical diffusion in an anisotropic
fashion. The anisotropic diffusion method consists in the addition of the artificial diffusion
into the streamline direction νST and αST, excluding the already incorporated VMS stabilization
diffusion quantity, which we roughly estimate as

νSG = τm |u|2 and αSG = τetot |u|
2 , (3.71)

but, not decreasing the stabilization,

νST = max (0, νSC − νSG) and αST = max (0, αSC − αSG) . (3.72)

Moreover, as explained in [86], the shock capturing artificial diffusion should be introduced in
the crosswind direction. This is done by adding the artificial diffusion with anisotropic tensors.

In order to introduce the artificial thermal diffusion into the heat flux vector, we use an
anisotropic second order tensor of the form

q̌i =
(
δij +

ρcvαSC

λ
Oij +

ρcvαST

λ
Sij

)
qj, (3.73)

where the anisotropic tensor is defined in terms of the second order projector into the stream-
line direction Sij =

mimj

|m|2 , and in terms of the orthogonal projector Oij = δij − Sij . We also
include the artificial viscosity into the viscous stress tensor using a fourth order anisotropic
tensor,

τ̌ij =

(
δijδkl +

ρνSC

µ
Oijkl +

ρνST

µ
Sijkl

)
τkl. (3.74)

Here I = [δijδkl] stands for the fourth order identity tensor. We exploit the symmetric property
of the viscous stress tensor in order to construct the fourth order orthogonal O = [Oijkl] and
streamline S = [Sijkl] tensors. First, we write the viscous stress tensor using Voigt’s notation
for the most general three-dimensional case,

τ =

τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33

 ≡
τ1 τ6 τ5

τ6 τ2 τ4

τ5 τ4 τ3

→ τ = (τ1, τ2, τ3, τ4, τ5, τ6)> . (3.75)

Then, after some algebraic operations the 9 independent elements of the fourth order or-
thotropic streamline tensor can be written using Voigt’s notation as follows:

S =

m1m1

|m|2
m1m2

|m|2
m1m3

|m|2 0 0 0
m1m2

|m|2
m2m2

|m|2
m2m3

|m|2 0 0 0
m1m3

|m|2
m2m3

|m|2
m3m3

|m|2 0 0 0

0 0 0 m2m3

|m|2 0 0

0 0 0 0 m1m3

|m|2 0

0 0 0 0 0 m1m2

|m|2

. (3.76)

47

48 Chapter 3. Variational multi-scale approximation of the compressible Navier-Stokes equations

The orthogonal projection is calculated according to the fourth order definitionOijkl = δijδkl−
Sijkl and is presented below using Voigt’s notation:

O =

1− m1m1

|m|2 −m1m2

|m|2 −m1m3

|m|2 0 0 0

−m1m2

|m|2 1− m2m2

|m|2 −m2m3

|m|2 0 0 0

−m1m3

|m|2 −m2m3

|m|2 1− m3m3

|m|2 0 0 0

0 0 0 1− m2m3

|m|2 0 0

0 0 0 0 1− m1m3

|m|2 0

0 0 0 0 0 1− m1m2

|m|2

. (3.77)

3.3.5 Explicit time integration
At this point, we have described the space discrete stabilized finite element formulation. Let
us now comment how we discretize in time.

We partition the time interval (0, tf) in a sequence of discrete time steps 0 = t0 < t1 <
... < tN = tf , with δt > 0 the time step-size defining tn+1 = tn + δt for n = 0, 1, 2, ..., N . We
also partition each time step into intermediate stages tn < t1 < t2 < ... < tn+1, S being the
number of stages, which are considered to have a constant size for simplicity. Let us use the
superscript to denote the time step counter and the subscript to denote the intermediate stage
counter.

Let us describe the transient term integration of the finite element problem (3.23). After
assembling the elemental contributions of the space discrete stabilized finite element problem,
the discrete matrix form of the transient problem can be written as

MU̇ = R (U) , (3.78)

where U is the array that contains the nodal unknowns, M is the mass matrix, and R (U) is the
residual of the discrete stabilized finite element problem. We use an explicit time integration
scheme in order to integrate the temporal derivatives, more precisely, we implement the family
of explicit Runge-Kutta (RK) methods. For any number of stages, the finite element solution
at tn+1 is given by the quadrature:

Un+1 = Un + M−1δt

S∑
i=1

biKi, (3.79)

where M−1 is the inverted mass matrix and Ki (for 1 ≤ i ≤ S) are stage increments based on
the evaluation of the space discrete stabilized finite element residual,

Ki = R

(
Un + M−1δt

i−1∑
j=1

aijKj

)
. (3.80)

Moreover, we calculate the time integration method for the temporal derivative of the dynamic
subscales exploiting the explicit RK scheme adopted for the finite element equation, that is,
we solve the subscales at time tn+1 with

Ũ
n+1

= Ũ
n

+ δt
S∑
i=1

biK̃i. (3.81)

48

3.4. Numerical examples 49

The subscales at the intermediate stage ti, which are also incorporated in the time integration
stage of the finite element equation, are calculated as follows,

Ũ
ti

= Ũ
n

+ δt
i−1∑
j=1

aijK̃j, (3.82)

where 1 ≤ j < i ≤ S. The intermediate increments of the subscales transient equation are
evaluated explicitly at tj with the subscales residual

K̃j = P̃
[
R
(
U tj ;U

tj
h

)]
− τ−1

(
U tj
)
Ũ
tj
. (3.83)

In the previous expressions, the non-linear subscales at the intermediate stage j are considered
as U tj = U

tj
h + Ũ

tj
. As a final remark, we approximate the calculation of the non-linear

subscales at intermediate stage j using the resulting values at the previous stage when the
subscales are considered quasi-static, that is, U tj = U

tj
h + Ũ

tj−1
. Expresions (3.79) - (3.82)

depend on the definition of the coefficients aij (for 1 ≤ j < i ≤ S) and bi (for 1 ≤ i ≤ S) for
a specific RK method. In particular, we have implemented a four-stages explicit RK method
with coefficients:

a31 = a41 = a42 = 0, a21 = 1
2
, a32 = 1

2
, a43 = 1,

b1 = 1
6
, b2 = 1

3
, b3 = 1

3
, b4 = 1

6
,

which is fourth order in accuracy. This explicit method is subject to the Courant-Friedrich-Levi
(CFL) stability criterion for hyperbolic systems, which implies

δt (|u|+ c)

h
≤ 1, (3.84)

as a necessary condition for numerical stability.

3.4 Numerical examples
In this section some numerical examples are presented. First, the three-dimensional lid-driven
cavity problem is solved in order to demonstrate the multidimensional features of the proposed
formulation. We also test including the body force and heat source into this problem. Then,
we solve a periodic subsonic flow past a cylinder in order to test the VMS particular features.
A convergence analysis is proposed for linear triangular elements. Finally, some compressible
flow examples that exhibit supersonic shocks are solved in order to compare the proposed
shock-capturing methods. The flow is considered as an ideal gas in all cases, with ratio of
specific heats γ = 1.4 and physical properties cp = 1.010 kJ/(kg K) and cv = 0.718 kJ/(kg K).

3.4.1 Three-dimensional lid-driven cavity
The three-dimensional lid-driven cavity problem is a widely used benchmark in computational
fluid dynamics. The problem domain is a prismatic cavity [0, L] × [0, L] × [0, L], with L =
1 m. The upper wall (x1, x2, L) m is constantly moving at a fixed velocity of (1, 0, 0) m/s,

49

50 Chapter 3. Variational multi-scale approximation of the compressible Navier-Stokes equations

and the density is 1 kg/m3. The temperature is also set over this boundary depending on the
compressibility regime. A no-slip condition for velocity, an adiabatic condition for energy, and
an impermeable condition for mass are set over the other walls.

In this problem, we aim to test the multidimensional formulation including the convective,
diffusive and source contributions into the compressible equations. For convenience, we in-
clude the orthogonal projection to the finite element residual, the time dependence, and the
non-linearity of subscales. Comparissons are made by evaluating three Reynolds numbers,
specifically Re = 100, Re = 400 and Re = 1000. The Prandtl number is fixed to Pr = 0.71
for all cases. Flow conditions are laminar in all cases, and simulations are run until the sta-
tionary state is reached. The mesh is constituted by 64000 hexahedral elements in a structured
40× 40× 40 homogeneous distribution.

We first solve this problem without body force and heat source. This case is intended to
compare our results with previous bench-marked solutions. To our knowledge, only incom-
pressible results have been published in the case of a three dimensional cubed driven cavity
(for example in [87]). Hence, in order to approximate the incompressibility condition the Mach
number is fixed to a subsonic regime M = 0.1, and the temperature to θw = 0.2446 K. Figure
3.2 shows the velocity profiles along the center-lines of the cavity.

The compressible results are qualitatively not in good agreement with previous numerical
and experimental investigations, mainly because the comparison is made with the incompress-
ible results obtained in [87]. Compressible results are accurate in the location of the maximum
and minimum velocities. However, the magnitude of the extreme values of the velocity differ
substantially. This difference is explained by the lack of accuracy of the compressible Navier-
Stokes equations written in conservation variables at the incompressible limit.

Nevertheless, we aim to test the stabilized variational formulation, especially when body
forces and heat sources are included. For academic purposes, we solve this numerical exam-
ple by setting the body force to f = (0, 0,−0.1) m/s2. The heat source is also maintained
homogeneous and constant r = 1 m2/s3. For this case, compressibility is fixed by setting M
= 1 and therefore, the temperature at the wall is 0.0024 K. Figure 3.3 shows the velocity and
temperature profiles along the centerlines of the cavity. We conclude that the numerical behav-
ior of the proposed stabilized formulation including source terms appropriately approximates
the physics: smooth solutions are obtained for all Reynolds numbers. Some dissipation can
be observed for the location and magnitude of the extreme velocities when compared to the
solution without including sources. Moreover, temperature results prove the correct solution
for the heat and momentum equations.

The previous results assure a correct approximation given by the variational multiscale
finite element formulation. That is, we guarantee a correct definition for the matrix τ of sta-
bilization parameters, but also demonstrate the multi-dimensional capability of the variational
formulation. Because there is not a dynamical behavior in this laminar problem, we solve some
other unsteady numerical examples in order to test the time integration of the finite element
scales and the subscales.

3.4.2 Subsonic flow past a cylinder
The problem is defined by a cylinder infinitely long in the axial direction, which is immersed
in the compressible fluid and is subject to a uniform incident flow. The flow is solved as a

50

3.4. Numerical examples 51

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

m
/
s

m

(a)

-0.4

-0.2

 0

 0.2

 0.4

 0 0.2 0.4 0.6 0.8 1

m
/
s

m

(b)

Figure 3.2: Three-dimensional lid-driven cavity results. Compressible problem without source
terms: (a) velocity profile along the centerline (0.5, 0.5, x3); and (b) velocity profile along the
centerline (x1, 0.5, 0.5). The Reynolds numbers are Re = 100 (solid line), Re = 400 (dotted
line), and Re = 1000 (dashed line). The symbols� (Re = 100),© (Re = 400),4 (Re = 1000)
represent the extracted results from [87].

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

m
/
s

m

(a)

-0.4

-0.2

 0

 0.2

 0.4

 0 0.2 0.4 0.6 0.8 1

m
/
s

m

(b)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 0.2 0.4 0.6 0.8 1

K

m

(c)

Figure 3.3: Three-dimensional lid-driven cavity results. Compressible problem including
source terms: (a) velocity profile along the centerline (0.5, 0.5, x3); (b) velocity profile along
the centerline (x1, 0.5, 0.5); and (c) temperature profile along the centerline (0.5, 0.5, x3). The
Reynolds numbers are Re = 100 (solid line), Re = 400 (dotted line), and Re = 1000 (dashed
line).

51

52 Chapter 3. Variational multi-scale approximation of the compressible Navier-Stokes equations

(a) (b) (c)

Figure 3.4: Detail of three unstructured P1 meshes used for the analysis of flow past a cylinder:
(a) mesh h = 0.05 m; (b) mesh h = 0.025 m; (c) mesh h = 0.0125 m.

two-dimensional flow, and it is intended to test the proposed variational multiscale stabilized
formulations in an unsteady problem. We restrict the flow to the subsonic range in order to
avoid the need of the shock capturing techniques.

The problem domain is [0, L] × [−H/2, H/2] with L = 7 m and H = 2.4 m, with the
cylinder diameter D = 0.2 m centered at point (0.8, 0) m. Boundary conditions are set as
follows. The flow is injected from the left wall with uniform constant velocity uin = (1, 0)
m/s, temperature θin = 9.73 × 10−3 K, and density ρin = 1 kg/m3. Over the adiabatic upper
and lower walls symmetric boundary conditions are imposed, with the vertical component of
velocity and the horizontal component of the stress imposed to zero. On the cylinder surface
Γw, a no-slip condition for velocity is imposed. Over the outflow wall, density is set to ρout = 1
kg/m3; zero stress and adiabatic conditions are considered for the subsonic flow. The Mach
number in this case is M=0.5. The viscosity and heat conductivity are µ = 0.002 kg/(m s) and
λ = 2.8676 kJ/(m K s), respectively, giving a Reynolds number of Re = 100

Three different unstructured meshes composed of P1 elements are used to solve this prob-
lem. These meshes, shown in Fig. 3.4, are generated defining the mesh size hk = h0/2

k in
terms of successive divisions k. The mesh of Fig. 3.4 (a) is defined with h0 = 0.05 m and
14008 elements; the mesh of Fig. 3.4 (b) is defined as half the size of the mesh of Fig. 3.4 (a),
that is, h1 = 0.025 m with 54884 elements; furthermore, the mesh of Fig. 3.4 (c) is defined as
half the size of the mesh of Fig. 3.4 (b) as h2 = 0.0125 m, with 217162 elements. The time
step size of the explicit fourth order Runge-Kutta time integration scheme is set to a constant
t = 0.001 s value for all simulations. This time step size is for all simulations lower than the
explicit restriction given by the problem.

We use this numerical example to compare the proposed VMS stabilized finite element
formulation. That is, we evaluate the numerical behavior of subscales, which can be defined
orthogonal to the finite element residual space, dynamic, or can be incorporated in all the
nonlinear terms. The following notation is used in order to clarify the different subscales defi-
nition in the numerical example. Defining the space where the subscales live as orthogonal to
the finite element residual space is denoted by the ”O” letter, otherwise defining it as the finite
element residual space is denoted as ”R”. The letter ”D” is used for dynamic subscales, and for
the quasi-static definition of the subscales, the letter ”Q” is employed. Finally, if the subscales
are included in the non-linear terms the letter ”N” is used, and if they are not considered, the
letter ”L” is used.

52

3.4. Numerical examples 53

(a) (b)

(c)

Figure 3.5: Instantaneous contour fields of the flow past a cylinder: (a) Pressure, (b) tempera-
ture and (c) velocity magnitude calculated with the mesh of Fig. 3.4 (c). Results are obtained
with the subscales defined as ODN.

Smooth result fields are obtained for the VMS formulation using the meshes presented
above. The periodic transient solution for the Re = 100 case, which has been reported pre-
viously in [67, 79], is obtained in correspondence with the wake oscillations. All the simula-
tions are run until the mean values of the forces exerted by the fluid over the cylinder reach
a statistically stationary state. Due to the temporal dependence of the solution, we restrict the
presentation of contour results to a given time step. Pressure, temperature, and velocity mag-
nitude contours at a given instant of the flow are shown in Fig. 3.5. These results are obtained
with the ODN method using the mesh of Fig. 3.4 (c). Solutions obtained with other subscales
definitions, that we do not present for conciseness, give qualitatively similar contour results.
Instead, some calculations are performed in order to quantify the numerical results obtained
with the proposed formulations. We calculate the non-dimensional Strouhal number,

St =
ffD

|uin|
, (3.85)

based on the cylinder diameter D and the frequency of the wake oscillations ff . In addition,
the non-dimensional drag and lift coefficients,

Cd = − FΓw,1

1
2
ρin |uin|2D

, Cl =
FΓw,2

1
2
ρin |uin|2D

, (3.86)

are calculated using the exerted force of the fluid over the cylinder,

F Γw =

∫
Γw

−
(
−pI + 2µ∇Su− 2

3
µ (∇ · u) I

)
· n dΓ. (3.87)

The time history of the non-dimensional drag an lift coefficients are shown in Fig. 3.6 for the
solution obtained with the ODN method, and the mesh of Fig. 3.4 (c). We propose to calculate
the convergence of the proposed formulations by using the discrete Lp-norm. Since the flow
over a cylinder problem does not possess an analytical solution, the following convergence

53

54 Chapter 3. Variational multi-scale approximation of the compressible Navier-Stokes equations

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 2 4 6 8 10 12 14 16 18 20

C
d
,
C
l

t

Figure 3.6: Time history of drag and lift coefficients for the subsonic flow past a cylinder. Lift
(solid line) and drag (dashed line) results are calculated using the mesh of Fig. 3.4 (c), and
defining the subscales as ODN.

analysis is proposed. For a fixed time t, the Lp-norm of a discrete solution uh (x, h, δt) can be
written as the composition of the Lp-norm of the analytical solution u (x) plus some time and
spatial integration dependent terms. If we set a constant time step size and the mesh size is
defined in terms of consecutive divisions, we can write those discrete Lp-norms of the discrete
solution as,

‖uh (x, hk, δt)‖p ≈‖u (x)‖p + c1 (δt)r + c2 (hk)
q , k = 0, 1, 2. (3.88)

Consequently, the calculation of the quotient between consecutive differences of the Lp-norm,

Q =
|‖uh (x, h0, δt)‖p − ‖uh (x, h1, δt)‖p|
|‖uh (x, h1, δt)‖p − ‖uh (x, h2, δt)‖p|

, (3.89)

and the substitution of mesh size definitions into the previous quotient,

Q =
c2h

q
0

(
1− 1

2q

)
c2h

q
0

(
1
2q
− 1

22q

) =
22q − 2q

2q − 1
= 2q, (3.90)

makes possible to get an expression for the convergence order q of the spatial integration term,

log2Q = q. (3.91)

Time L∞-norm of Strouhal numbers and time average of drag coefficients are presented in
Tables (3.1) - (3.2), respectively. The convergence order q is also presented in these tables for
the calculated values. It can be observed that both the time L∞-norm of Strouhal numbers, and
time average of drag coefficients converge to a greater value as the mesh size is refined. Our
results agree with the Strouhal number values [0.167, 0.17] of the vortex shedding, previously
reported in [79]. This characteristic can be used together with the convergence order in order
to compare the stabilization methods.

Defining the subscales as orthogonal to the finite element space gives the most well-
approximated solutions. The results given by the calculated norms, both for the Strouhal num-
ber and for the drag coefficient indicate a less dissipative behavior of this method, compared

54

3.4. Numerical examples 55

Table 3.1: Subsonic flow past a cylinder results. Time L∞-norm of Strouhal number.

Mesh SUPG RQL RQN RDL RDN OQL OQN ODL ODN
h = 0.05 0.1518 0.1527 0.1515 0.1539 0.1523 0.1523 0.1516 0.1523 0.1515
h = 0.025 0.1646 0.1647 0.1642 0.1654 0.1644 0.1652 0.1650 0.1652 0.1650
h = 0.0125 0.1673 0.1675 0.1670 0.1680 0.1675 0.1684 0.1683 0.1684 0.1683
q 2.2193 2.1142 2.1384 2.1192 2.0035 2.0190 2.0075 2.0190 2.0193

Table 3.2: Subsonic flow past a cylinder results. Time average of non-dimensional drag coeffi-
cient.

Mesh SUPG RQL RQN RDL RDN OQL OQN ODL ODN
h = 0.05 1.3615 1.3853 1.3377 1.4008 1.3536 1.4108 1.3938 1.4106 1.3935
h = 0.025 1.5160 1.5317 1.5044 1.5407 1.5112 1.5321 1.5270 1.5321 1.5267
h = 0.0125 1.6053 1.6140 1.6013 1.6191 1.6052 1.6277 1.6257 1.6277 1.6257
q 0.7908 0.8309 0.7826 0.8354 0.7455 0.3434 0.4324 0.3458 0.4280

to the finite element residual definition for the space of subscales. However, the convergence
order is lower for the orthogonal subscales. Moreover, including the time-dependency of the
subscales improves the accuracy of the subscales defined in the finite element residual space.
The solution obtained by RDL method gives accurate results together with a high convergence
order. This method is more accurate in the drag results than the former stabilization SUPG
method, and its convergence order is higher.

On the contrary, the non-linear contribution of subscales reduces a little the accuracy for
both the subscales defined in the finite element residual space and for the orthogonal sub-
scales. The combination between orthogonal, non-linear and dynamic subscales gives a highly
accurate method. Nonetheless, the convergence order for this method is not the highest for the
element sizes considered.

3.4.3 Supersonic inviscid shock reflection
We evaluate next the shock capturing methods by solving the inviscid shock reflection prob-
lem at M = 2.9. The supersonic reflected shock problem is widely used in order to test the
compressible flow solvers. We also exploit this numerical example so that high order approxi-
mations are tested. For solving this problem we use the VMS formulation defining the space of
subscales orthogonal to the finite element residual space, and considering the time dependence
and non-linear contribution of subscales.

The problem domain is [0, L] × [−H/2, H/2], with L = 4.1 m and H = 0.5 m. The flow
is injected from the left and upper walls. Over the inlet left wall the Mach number is set to
M = 3, hence, fixed values of velocity (2.9, 0) m/s, density 1 kg/m3, and temperature 0.00247
K are set. Over the upper inlet wall the Mach number is M = 2.378, thus, fixed values of
velocity (2.6193,−0.5063) m/s, density 1.7 kg/m3, and temperature 0.00311 K are also set. A

55

56 Chapter 3. Variational multi-scale approximation of the compressible Navier-Stokes equations

Figure 3.7: Detail of the structured mesh configuration used for the inviscid shock reflection.

(a)

(b)

Figure 3.8: Inviscid shock reflection results: (a) density contour and (b) velocity magnitude
contour. Solution is obtained using the anisotropic orthogonal projection-based shock captur-
ing method.

slip condition for the velocity and an adiabatic condition for energy are set to the lower wall.
Over the outflow wall, no conditions need to be imposed because the flow is supersonic. The
values of viscosity and conductivity are zero.

We use P2 elements in order to solve a high order approximation. Nonetheless, P1 elements
are used to compare the shock capturing techniques. In both cases, the finite element mesh is
composed by 13120 triangular elements distributed in a structured non-symmetric fashion.
This structured configuration is presented in Fig. 3.7. All simulations are run until the steady
state is reached considering the time-step size given by the stability condition (3.3.5). Adequate
physical solutions are found using both the residual based and the orthogonal projection based
shock capturing methods. Overshoots are smoothed according to the benchmarked solutions in
[73, 79, 82, 83]. Figure 3.8 shows the steady state contours for density and velocity magnitude
solved with the anisotropic orthogonal projection-based shock capturing method and the mesh
composed by P2 elements.

The analysis of the solutions obtained by the isotropic and anisotropic, as well as the
residual-based and the orthogonal projection-based shock capturing methods, is made by com-
paring the horizontal component of the velocity solution at (x1, 0.25) m. Figure 3.9 plots the

56

3.4. Numerical examples 57

solution obtained by the shock capturing methods for two distinct definitions of the algorith-
mic constant Ca = 0.8 and Ca = 0.2. These results are obtained with the mesh composed by
P1 elements. In Fig. 3.9 the analytical solution presented in [79], together with the solution
found without including the shock capturing method, are also plotted.

A correct solution to the problem is found with the anisotropic method and the Ca =
0.8 value. The anisotropic residual-based shock capturing method gives an accurate and less
diffusive solution than previous solutions obtained using the same mesh size, like the ones in
[82, 83]. Because the anisotropic method adds the artificial diffusivity only in the crosswind
direction, this method is less non-linear. In contrast, due to the high non-linearities in the
problem introduced by the artificial diffusion of the isotropic method, this method only gives
a stable solution with a lower Ca = 0.2 coefficient. With the lower Ca = 0.2 value, some
overshoots in the solution obtained by both isotropic and anisotropic methods can be observed.

The orthogonal projection-based shock capturing method gives more diffusive results near
the solution gradients when compared to the residual-based method. However, the overall so-
lution obtained by this technique is adequate and gives accurate results, when compared to the
solution without a shock capturing method.

3.4.4 Supersonic flow past a cylinder
The supersonic flow past a cylinder problem at Re = 2000 and M = 2 is presented as a
benchmark problem in order to test the shock capturing techniques in a viscid supersonic
case. The description of the problem is similar to the subsonic flow past a cylinder presented
in Subsection 3.4.2. In this supersonic case, an adiabatic condition is fixed over the cylinder
surface and the physical conditions are set to µ = 0.0001 kg/(m s) and λ = 0.14338 kJ/(m K
s).

For this problem, we aim to test the ODN-VMS formulation together with the anisotropic
residual-based shock capturing technique, that gives the best approximation for the inviscid
reflected shock example. The finite element mesh consists of an unstructured mesh composed
by 31288 linear triangular elements. Smaller elements are used near the wall cylinder, whereas
the mesh is coarser in the rest of the domain. The mesh size was fixed to h = 0.005 m in the
finer region near the cylinder boundary. Due to the viscid condition of the problem, the solu-
tion is reached by setting the time-step size lower than the explicit scheme stability condition
(3.3.5). Figure 3.10 shows the solution for the supersonic flow over a cylinder solved using
the ODN stabilization formulation, together with anisotropic residual based shock capturing
method.

Comparing this solution to the ones obtained in previous formulations, the fields are almost
identical. The solution differs from the steady state solution obtained in [73] in the sense that
no Sutherland law is used for viscosity in this example. Moreover, the shock upstream of
the cylinder is formed as extensively described in the literature, as in [79]. The anisotropic
shock capturing method gives an accurate solution for the thin shock layer of the supersonic
expansion within two or three elements. The detached shock wave presents the oblique solution
for the compressible problem. It also gives correct results where gradients of the solution are
not too sharp, such as for the weak tail shock that is formed in the wake structure.

57

58 Chapter 3. Variational multi-scale approximation of the compressible Navier-Stokes equations

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 0 0.5 1 1.5 2 2.5 3 3.5 4

m
/
s

m

Ca = 0.8

(a)

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 0 0.5 1 1.5 2 2.5 3 3.5 4

m
/
s

m

Ca = 0.8

(b)

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 0 0.5 1 1.5 2 2.5 3 3.5 4

m
/
s

m

Ca = 0.2

(c)

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 0 0.5 1 1.5 2 2.5 3 3.5 4

m
/
s

m

Ca = 0.2

(d)

Figure 3.9: Inviscid shock reflection solution. Horizontal velocity component at (x1, 0.25) m:
Residual-based method used in (a) and (c); Orthogonal projection-based method used in (b)
and (d); The solid line represents the analytical solution presented in [79]. The solution ob-
tained without shock capturing method is plotted using a solid marked line. Solid lines with
symbols© (isotropic), and 4 (anisotropic) represent the solution obtained using shock cap-
turing methods.

58

3.5. Conclusions 59

(a) (b) (c)

Figure 3.10: Supersonic flow past a cylinder results: (a) pressure contour; (b) velocity mag-
nitude contour; (c) temperature contour. The solution is obtained using the ODN stabilization
formulation together with the anisotropic residual based shock capturing method.

3.5 Conclusions
In this chapter, we have applied the VMS concept for stabilizing the compressible Navier-
Stokes equations. We have presented a systematic way to design the matrix of algorithmic
parameters using a Fourier analysis. We have implemented the orthogonal to the finite element
space subscales, the dynamic subscales, and the non-linear tracking of subscales. The formu-
lation has been implemented in an explicit fashion using a fourth order Runge-Kutta scheme.
The subsonic three-dimensional lid-driven cavity and the flow past a cylinder problems have
been used to test the numerical behavior of the VMS formulation. Adequate physical solu-
tions have been obtained, and convergence has been demonstrated for linear elements. It has
been found that including the orthogonal, dynamic, and the non-linear subscales improve the
accuracy of the compressible formulation. The results indicate a less dissipative behavior of
the orthogonal subscales compared to the finite element residual definition for the space of
subscales.

Local instabilities have been aborded with shock capturing methods. The anisotropic shock
capturing method has been formulated in contrast to the isotropic method, giving better solu-
tions for the supersonic examples. Because the anisotropic method adds the artificial diffusivity
only in the crosswind direction, the non-linearity introduced by the shock capturing method
has less effect on the convergence behavior to the steady state. In order to calculate the artifi-
cial diffusion, we also proposed to use an orthogonal projection-based method, instead of the
residual-based definition, with similar results.

59

60 Chapter 3. Variational multi-scale approximation of the compressible Navier-Stokes equations

60

Chapter 4

Solution of low Mach number
aeroacoustic flows using a variational
multi-scale finite element formulation of
the compressible Navier-Stokes equations
written in primitive variables

In this chapter, we solve the compressible Navier-Stokes equations written in primitive vari-
ables in order to simulate low Mach number aeroacoustic flows. We develop a variational
multi-scale formulation to stabilize the finite element discretization by including the orthogo-
nal, dynamic and non-linear subscales, together with an implicit scheme for advancing in time.
Three additional features define the proposed numerical scheme: the splitting of the pressure
and temperature variables into a relative and a reference part, the definition of the matrix of sta-
bilization parameters in terms of a modified velocity that accounts for the local compressibility,
and the approximation of the dynamic stabilization matrix for the time-dependent subscales.
We also include a weak imposition of implicit non-reflecting boundary conditions in order
to overcome the challenges that arise in the aeroacoustic simulations at low compressibility
regimes.

4.1 Introduction
The increasing amount of computing resources available in scientific and industrial research
has motivated the solution of realistic computational fluid dynamics applications. This is the
case of aerodynamics and aeroacoustics; both described by a solution of the compressible
Navier-Stokes equations that spans a wide range of scales. An illustrative application of this
problem is the simulation of the human voice production inside the mouth, in which the so-
lution of the relevant (small) scales of turbulence and sound waves must be achieved at low
compressibility conditions. Indeed, compressible turbulent flows and sound waves propaga-
tion require an accurate computational method: the small fluctuating scales of sound need to
be described, either by higher precision numerical schemes or by small mesh and time step

61

62 Chapter 4. Approximation of the compressible Navier-Stokes equations in primitive variables

sizes. In any case, the number of operations required by the computational simulation is very
demanding.

Another important requirement for such aeroacoustic problem is that the numerical ap-
proximation of the compressible Navier-Stokes equations at low compressibility conditions
must be accurate, but many times those methods are not designed to work in these conditions.
Most of the compressible flow solvers found in the literature exhibit a degradation in the so-
lution accuracy when the free stream Mach number is progressively reduced. As explained
in [88], most of the compressible flow solvers suffer a mismatch between the numerical and
the continuous fluxes, and this is principally attributed to the broad difference in length and
time scales of the solution. A possible approach for simulating aeroacoustic problems is to
solve an aeroacoustic model together with the incompressible Navier-Stokes equations (e.g.
reference [89]), but this leads directly to discarding the important physics related to the sound
wave production, and consequently, this possibility is discarded in the present work. The type
of methods that are intended to be suitable for either compressible or incompressible flows
are the so-called unified methods. Among the most remarkable physical models, some modify
the incompressible Navier-Stokes equations including extra term (like in the Boussinesq or
Low Mach formulations described in [11], and references therein). There are also numerical
approximations like [90–94], that aim to be valid at any compressibility regime. These unified
approaches lead to more or less accurate descriptions of the fluid flow, but again, they cannot
be used in wave propagation problems.

A formulation of the compressible Navier-Stokes equations that can be suitable for the low
Mach number limit (or both for compressible and incompressible flows) is important for many
reasons. One is that very low Mach numbers can coexist with regions where the flow com-
pressibility becomes considerable. But also, several applications that are traditionally solved
with incompressible formulations can be successfully handled by suitable compressible for-
mulations. In this sense, it is important to remark that conservative variables (namely density,
momentum, and total energy) are typically used in the compressible formulation, while prim-
itive variables (pressure, velocity, and temperature) are used in the incompressible equations.
Including density as a variable in the compressible problem (like in the conservative formula-
tion presented in Chapter 3), results in singularities for the convective terms in the low Mach
number limit. Possibilities restrain to primitive and entropic unknowns, which for certain regu-
larity conditions can be shown to satisfy the incompressible equations in the zero Mach number
limit. The entropy variable formulation assures a global entropy stability condition, but it is
subject to the definition of the entropy function. For more details on entropy variable formu-
lations we refer to [67, 95]. In the case of the compressible Navier-Stokes equations written
in primitive variables, the formulation simplifies to the incompressible equations when the in-
compressible constraint is included (as explained in [96]), and consequently, it is well defined
in the low Mach number limit.

Another particular aspect of the nearly incompressible aeroacoustic flows is that computa-
tional boundaries may cause artificial wave reflections related to the ingoing part of the sound
waves. Ingoing waves may not only interfere with the acoustic signal relevant to the problem,
but they can also produce numerical instabilities if the numerical method is not able to provide
enough dissipation [97]. Several approaches to counteract spurious reflections have emerged
in the computational aeroacoustics field, among the most popular are: the explicit damping
of the compressible equations, the addition of an artificial counter signal, and the solution of

62

4.1. Introduction 63

non-reflecting boundaries. Damping some terms of the compressible Navier-Stokes equations
may be a robust approach that filters the solution in some local regions (called buffer zones),
but the computational effort that is required to solve those extra terms is large, and it has led
to other approaches, one of which has been to remove the computational domain that is not
of prior interest and to solve a non-reflecting boundary condition. The recent literature on
non-reflecting boundary conditions is too vast to survey here, but we mention the early work
in [98] using asymptotic sets of non-reflecting conditions with pseudo-differential operators,
the heuristic radiation arguments in [99], or the asymptotic expansion matching the linearized
Euler solution in [100], and refer to the review article [101] for a deeper understanding. Most
of the non-reflecting boundary methods attempt to damp the incident wave coming from the
interior part of the domain.

As commented before, the small fluctuating scales of compressible turbulent flows and
sound waves propagation require higher precision numerical schemes in both the temporal
and the spatial discretization. This work is focused on the Finite Element Method (FEM)
discretization. Among its advantages are the capability of using unstructured meshes to dis-
cretize complex geometries, and the possibility of developing efficient high order methods,
which are two features highly desired in the Computational Fluid Dynamics (CFD) commu-
nity. Nonetheless, when the Galerkin method is used to approximate this problem, which pos-
sesses non-symmetric operators, an unstable behavior of the solution might appear generated,
for instance, by unresolved boundary layers. These local instabilities may arise when convec-
tion is dominant, and also due to the inf-sup stability condition that restrains the interpolation
compatibility of the different variables. Stabilized numerical methods like the Petrov Galerkin
Streamline Upwind (SUPG), and the methods that can be framed in the Variational Multi-
Scale (VMS) concept, add a stabilization term to the Galerkin formulation and eliminate both
the inf-sup and the convection restrictions. Stabilized finite element methods have been widely
applied to both compressible and incompressible formulations, as shown in [17, 102], and ref-
erences therein. See also [15] for a review of VMS methods in CFD. Because only subsonic
flows are considered in this study, and more specifically, we restrict the attention to low Mach
number flows, the extra control over the gradients of the solution given by discontinuity cap-
turing operators is not required, and consequently, shock capturing techniques are not surveyed
here.

In this context, we center the review to the well established VMS stabilization method.
This approach splits the unknowns of the problem into a coarse-scale that belongs to the finite
element space and a subgrid scale or subscale, which is the remainder. The main idea of the
VMS formulation is to include the effect of the unresolved scales in order to stabilize the fi-
nite element equations. As a consequence, the correct design of the stabilization operator used
to represent the subscales in terms of the resolved scales is crucial for the accuracy and sta-
bility of the discretization. Classical stabilized compressible flow formulations, including the
compressible Euler equations, give inaccurate results near the low Mach number limit mainly
because the standard definitions of the stabilization operator fail to provide adequate numerical
diffusion, as demonstrated in the numerical examples of Chapter 3. In order to overcome this
difficulty, nondiagonal definitions have been proposed (e.g. by [67]). Nonetheless, the diag-
onal definition can be used with few modifications: this has been the approach taken by [88,
103], in which dimensional analysis is used to design a compressible stabilization matrix that
is suitable for both compressible and incompressible flows.

63

64 Chapter 4. Approximation of the compressible Navier-Stokes equations in primitive variables

In the present chapter, the primitive variables compressible formulation is used because
of its correspondence with the incompressible Navier-Stokes equations in the incompressible
limit. Some other improvements are included in the formulation. One important aspect is the
use of an implicit time integration scheme in order to avoid the inefficiency that arises from
the aeroacoustic propagation in the low Mach number limit. In this sense, and depending on
the system of units used for the solution of the problem, the transient problem can include
very large quantities in the right-hand-side (RHS) of the continuity and energy equations,
which degrade the iterative solution of the discrete linear system. From our perspective, this
lack of scaling of the discrete linear system can be healed by splitting the primitive pressure
and temperature unknowns into a relative and a reference part. The idea presented here is to
change the primitive unknowns to the relative ones, but taking care for including the original
unknowns in the non-linear terms of the problem. From the numerical point of view, this
transformation not only scales the problem but also allows to implement iterative linear system
solvers in the case of transient problems. We also incorporate some particular features of the
VMS framework that we have applied in other flow problems (like in [76], for example).
Since there are different ways to define the subscales, three different attributes are studied
in this work. The first attribute is the definition of the space of the subscales, which can be
either the space of finite element residuals or the space orthogonal to the finite element space
[43]. The second attribute is the inclusion of the transient term of the subscale equation [46].
The third attribute is the inclusion of the subscales in all the non-linear terms of the problem
[57]. In addition to these definitions, we design the stabilization operator in terms of the local
compressibility of the flow, which, in the low Mach number limit, converges to the usual
incompressible stabilization operator definition for the continuity and momentum equations.
The proposed stabilization operator includes a physical parameter that defines the transition
between the compressible and incompressible flow, hence, it combines the features of both
stabilized formulations and is capable of describing the range of subsonic Mach numbers.

The focus of the present chapter is also to investigate the nearly incompressible applica-
tions of the compressible flow solver, which involve aeroacoustic applications. For doing so,
we implement the characteristic decomposition of waves as a non-reflecting method over the
boundaries and prescribe an implicit solution of this method in a weak sense by means of
introducing some penalization terms to the compressible formulation. This decomposition of
waves, introduced by Thompson in [104], together with the non-reflecting boundary conditions
for the Navier–Stokes equations given by Poinsot and Lele [105], is able to obtain a damped
solution at the boundary using a simplification of the conservation equations that are solved in
the computational domain. Instead of solving the compressible Navier-Stokes equation over
the boundary, the method annihilates the in-going sound wave by exploiting the characteristics
of the Euler equations, where viscous and reaction terms are neglected. Research on anni-
hilating methods for spurious sound wave reflections of the computational boundaries is not
the original motivation for the present study. More details about the non-reflecting boundary
conditions applied to aeroacoustic flow solvers may be found in articles such as [106, 107].

The chapter is organized as follows. We recall the primitive variable formulation of the
compressible Navier-Stokes equations in the first part of Section 4.2. Then we describe the
transformation of the primitive variables into a relative and a reference part. Later in that sec-
tion we present the governing equations for the non-reflecting boundary conditions. In Section
4.3, we apply the VMS framework in order to discretize in space; we focus our attention on

64

4.2. Governing equations 65

the construction of the stabilization operator in order to properly reach the low Mach number
limit. The implicit scheme for advancing in time and the weak imposition of the non-reflecting
conditions are also included in that section. In Section 4.4, we validate the numerical method
for two- and three-dimensional applications by using steady manufactured solutions. We also
simulate the differential heated cavity and the flow past a cylinder unsteady problems. Two
numerical examples are solved as aeroacoustic applications: the Aeolian tones generated by
the flow past a cylinder, and the flow past an open cavity. Finally, we address some conclusions
in Section 4.5.

4.2 Governing equations
In this section we present the compressible Navier-Stokes equations written in primitive vari-
ables. For doing this we depart from the conservative formulation, and express the system in
terms of the primitive vector of unknowns. The Jacobian and diffusive matrices are therefore
written, and the specific formulation for the ideal gas law is included. Then we implement a
change of variables, which allows us to scale the discrete linear system. In the last part we
describe the governing equations for the non-reflecting boundary conditions.

4.2.1 Compressible Navier-Stokes equations written in primitive vari-
ables

In order to formulate the compressible Navier-Stokes equations (3.1) - (3.3) using primitive
variables, we express the conservative unknowns U as a function of the primitive variables
Y = (p,u, T)>, where p is the pressure, u is the velocity, and T is the temperature of the
fluid. Hence, the compressible Navier-Stokes equations written in system form (3.6) can now
be written as

∂tU (Y) + ∂jEj (U (Y)) + ∂jGj (U (Y)) = F , (4.1)

together with initial and boundary conditions (3.11) - (3.13). In the previous equation, Ej and
Gj are the convective and diffusive flux in the j-th-direction, respectively, which are defined
in (3.7). The vector of forces F = (0, ρf , ρf · u+ ρr)>, contains the right hand side terms
of equations (3.1) - (3.3). Here ∂t and ∂j are short notations that indicate the Eulerian time
derivative and ∂/∂xj , respectively. The usual summation convention is implied in the equation
presented before, with indices running from 1 to d.

If Y is sufficiently smooth, it also satisfies the quasi-linear form

A0 (Y) ∂tY +Aj (Y) ∂jY − ∂k (Kkj (Y) ∂jY) = F . (4.2)

Here we have written the divergence of the fluxes in Eq. (4.1) in a more convenient manner
by defining the Jacobian matricesA0 (Y) = ∂U/∂Y ,Aj (Y) = ∂Ej (U (Y)) /∂Y , and the
diffusivity matrixK (Y) = [Kkj (Y)], such that ∂jGj (U (Y)) = −∂k (Kkj (Y) ∂jY).

In order to express all the previous relations in terms of the primitive variables alone, we
make the supposition that the fluid is divariant and account for the ideal gas law. This makes it
possible to formulate density as a function of the pressure and the temperature, and to rearrange

65

66 Chapter 4. Approximation of the compressible Navier-Stokes equations in primitive variables

the Navier-Stokes equations (see [68, 96]). Hence, the Jacobian matricesAj (Y) , j = 0, ..., d,
can be formulated as functions of primitive variables and thermodynamic coefficients:

A0 (Y) =

 ρβt 0> −ραp
ρβtu ρI −ραpu

ρβta1 − αpT ρu> −ραpa1 + ρcp

 ,
Aj (Y) =

 ρβtuj ρe>j −ραpuj
ρβtuuj + ej ρIuj + ρu⊗ ej −ραpuuj

(ρβta1 − αpT + 1)uj ρu>uj + ρa1e
>
j (−ραpa1 + ρcp)uj

 ,
for j = 1, .., d,. Hereafter 0 is the vector of Rd with zero in all its components. The thermody-
namic relation a1 stands for a1 = cvT + p/ρ+ |u|2/2, αp is the volume expansivity, and βt is
the isothermal compressibility, given by

αp = −1

ρ

(
∂ρ

∂T

)
p

and βt =
1

ρ

(
∂ρ

∂p

)
T

, (4.3)

with (·)p and (·)T defining a constant pressure and temperature constrain, respectively. Addi-
tionally, the diffusive matrixKkj (Y) is constructed as

Kjj (Y) =

0 0> 0
0 µI + 1

3
µej ⊗ ej 0

0 µu> + 1
3
µuje

>
j λ

 for j = 1, .., d, and

Kkj (Y) =

0 0> 0
0 µej ⊗ ek − 2

3
µek ⊗ ej 0

0 µuje
>
k − 2

3
µuke

>
j 0

 for k, j = 1, .., d, with k 6= j.

In all these expressions, we have denote by ei the unit vector in the i-th direction.
In this work the ideal law for gases is used, so that expressions (4.3) result in αp = 1/T , and

βt = 1/p. For ideal gases at the low Mach number limit, the fluid exhibits very large values
of pressure and temperature. As a consequence, the volume expansivity and the isothermal
compressibility tend to zero, and the Jacobian matrices recover the usual incompressible form.
The divergence free terms present in both the convective and diffusive matrices constrain the
incompressibility of the fluid in this regime. All the matrices stay bounded when the Mach
number tends to zero because the density remains almost constant.

4.2.1.1 Relative variable formulation

As stated before, using the primitive formulation for ideal gases in the low Mach number limit
results in having to operate with very large quantities in the continuity and energy equations
(e.g. if the international system of units is used for typical gases). When an implicit numerical
scheme is used, the linear system that needs to be solved at each time step contains very large
values for these two equations, making it very inefficient to solve the discrete linear system
by using iterative methods. In order to overcome this difficulty, we perform a decomposition
of the primitive (absolute) variables Y , into a relative (or gauge) part Y ∗, and a reference (or

66

4.2. Governing equations 67

atmospheric) part Y atm: pu
T

︸︷︷︸
Y

=

p∗u∗
T ∗

︸ ︷︷ ︸
Y ∗

+

patm

0
Tatm

︸ ︷︷ ︸
Y atm

,

supposing that the reference part is constant. Then, we write Eq. (4.2) by using the relative
variables as the unknowns, but caring to take into account the complete contribution for calcu-
lating non-linear terms; we have

A0 (Y) ∂tY
∗ +Aj (Y) ∂jY

∗ − ∂k (Kkj (Y) ∂jY
∗) = F , (4.4)

supposing that the reference part related to F is negligible. Moreover, the previous equation
can be written for convenience as

A0 (Y) ∂tY
∗ + L (Y ;Y ∗) = F , (4.5)

by introducing the nonlinear operator

L (Y ;Y ∗) = Aj (Y) ∂jY
∗ − ∂k (Kkj (Y) ∂jY

∗) , (4.6)

which includes the definitions for the convective and diffusive terms. Initial and boundary
conditions must be set for the primitive problem written using relative unknowns. We explicitly
indicate in our examples how these are prescribed.

4.2.2 Weak form of the problem
Let W be the space of functions where, for each t ∈ (0, tf), the unknowns are well defined,
with appropriate regularity that we will not analyze here. Let us also denote by (·, ·)ω the
integral of the product of two functions (scalar or vector valued) in a domain ω, ommiting the
subscript when ω = Ω. Introducing the form

A(U ;V ,W) := (V ,Aj (U) ∂jW) + (∂kV ,Kkj (U) ∂jW) , (4.7)

the variational form of the problem can be written as: find Y ∗ : (0, tf)→W such that

(V ,A0 (Y) ∂tY
∗) + A(Y ;V ,Y ∗) = (V ,F) + (V ,H)ΓN

, t ∈ (0, tf) , (4.8)

(V ,Y) =
(
V ,Y 0

)
, t = 0, (4.9)

for all V in the adequate test functions space. In the case of the compressible Navier-Stokes
equations, the Neumann boundary operator is given by the diffusive fluxes

B (Y) = −njKkj (Y) ∂jY
∗,

although part of the convective term could also be integrated by parts and contribute to the
Neumann boundary conditions, in particular, the pressure term.

67

68 Chapter 4. Approximation of the compressible Navier-Stokes equations in primitive variables

4.2.3 Non-reflecting boundary conditions
Another particular aspect of the nearly incompressible limit is that the computational bound-
aries, essentially the subsonic outlets, may cause artificial wave reflections related to the in-
going part of the propagated sound wave. In order to overcome this difficulty we incorporate
non-reflecting boundary conditions to the compressible formulation.

4.2.3.1 Local one-dimensional characteristic wave equation

Specifically, the characteristic boundary conditions for the Navier–Stokes equations by Poinsot
and Lele [105] are implemented to counteract spurious reflections. The characteristic bound-
ary conditions aim to compute the flow at the boundary using an approximation of the gov-
erning equations that are solved inside the computational domain. This method employs the
hypothesis that, as waves are associated with the hyperbolic part of the Navier-Stokes equa-
tions, not with the diffusive part, the flow at the boundary can be approximated as inviscid and
one-dimensional. Hence, the Euler equations can be represented as a local one-dimensional
characteristic wave equation.

The characteristics analysis is related to the flow description at the boundary in local coor-
dinates instead of using the interior domain coordinates. Considering d = 3, a transformation
from the computational domain with Cartesian coordinates (x1, x2, x3), to a local reference
frame with coordinates (ξ, η, ζ), is performed to determine the physical waves and their orien-
tation at the boundary. In the new local reference system of coordinates, ξ defines the normal
direction to the boundary Γ, and η and ζ define tangential directions.

According to the characteristic analysis performed by Thompson [104] over the Euler
equations, these can be decomposed using the primitive variables (including the definition
of the ui flow velocity in the local reference frame u = (uξ, uη, uζ)

>), with the axial deriva-
tives grouped into a constant source term, so that, the convective term can be diagonalized
using a similarity transformation. The resulting nonlinear convective problem is then written
as follows:

∂p∗

∂t
+

1

2
(χ5 + χ1) =0, (4.10)

∂uξ
∂t

+
1

2ρc
(χ5 − χ1) =0, (4.11)

∂uη
∂t

+ χ3 =0, (4.12)

∂uζ
∂t

+ χ4 =0, (4.13)

∂T ∗

∂t
+

T

ρc2

[
−χ2 +

(γ − 1)

2
(χ5 + χ1)

]
=0. (4.14)

Here χi, stands for the amplitude variations of the characteristic i-th wave, i = 1, 2, 3, 4, 5.

68

4.2. Governing equations 69

Those variations are calculated in terms of normal derivatives to the boundary as follows:

χ =

λ1

(
∂p∗

∂ξ
− ρc∂uξ

∂ξ

)
λ2

(
c2 ∂ρ

∂ξ
− ∂p∗

∂ξ

)
λ3

∂uη
∂ξ

λ4
∂uζ
∂ξ

λ5

(
∂p∗

∂ξ
+ ρc

∂uξ
∂ξ

)

, (4.15)

where λi are the characteristic velocities:

λ1 =uξ − c, (4.16)
λ2 =λ3 = λ4 = uξ, (4.17)
λ5 =uξ + c. (4.18)

Therefore, the characteristics determine at each boundary which waves associated to those val-
ues are incoming or outgoing. The validity of this method, which has been pointed out in [108],
is subject to the consideration that the characteristic waves represent a one-dimensional prop-
agation in the stream-wise direction. As no genuine characteristics exist for multi-dimensional
problems, these equations make a raw approximation of the wave propagation phenomena at
the boundary. Because obliquely incident waves are neglected, the accuracy of the method
must be kept with the appropriate design of the boundary (as done in the numerical examples
to be presented next in the chapter), so that perpendicular waves impinging the non-reflecting
boundaries are privileged.

Again, we propose to use a vector of primitive variables at the boundary J =
(p, uξ, uη, uζ , T)>, which is written conveniently by using the local reference system, but also
including the decomposition of the unknowns into a relative and an absolute part. For con-
venience we introduce a general form, in which equations (4.10) - (4.14) can be written, that
contains additional terms as explained next. We write the boundary problem in vector form as
follows:

∂tJ
∗ +AB(J)

∂J∗

∂ξ
+ SB(J)(J∗ − Ĵ

∗
) = FB in Γ ⊂ Rd, t ∈ (0, tf) . (4.19)

This arrangement makes it possible to deal with the non-linearities of the problem, and to
separate the equation to be solved into a transient, a convective-like, a reactive, and a forcing
term. The convective term is written as a non-linear (d+2)×(d+2) convective matrixAB(J)
multiplied by the normal derivative of the unknowns at the boundary. The introduction of the
reactive and forcing terms allows to deal with the non-reflecting outflow condition (that is
explained in detail in the next part). In this sense, we construct the reactive term as a non-
linear reactive matrix SB(J) that multiplies the perturbed solution at the boundary (J∗− Ĵ

∗
),

being Ĵ
∗

= (p∗∞, uξ∞, uη∞, uζ∞, T
∗
∞)> the unperturbed solution at the far-field. Moreover, the

convective, and reactive terms are also grouped into the non-linear boundary operator

LB (J ;J∗) = AB(J)
∂J∗

∂ξ
+ SB(J)J∗. (4.20)

69

70 Chapter 4. Approximation of the compressible Navier-Stokes equations in primitive variables

The boundary problem can be solved without difficulty by transforming back (4.19) into a
problem which posseses Y as unknowns. This is achieved using the transformation matrix T
written in system form between the original reference system and the local boundary system:

T =

1 0 0 0 0
0 Tξx1 Tξx2 Tξx3 0
0 Tηx1 Tηx2 Tηx3 0
0 Tζx1 Tζx2 Tζx3 0
0 0 0 0 1

 .
At this point, let us note that, if Y ∗ is an element in the domain of L(Y ;Y ∗) and H is an
element in its range, and, if J∗ is an element in the domain of LB(J ,J∗) and FB an element
in its range, the unknowns and force vectors can be transformed respectively as

Y ∗ = T−1J∗ and H = T−1FB.

Here we employ the fact that the derivatives of T and T−1 are null, and that the solution
is sufficiently smooth. Consequently, the local boundary problem can be transformed onto the
original reference system. For convenience we multiply both sides of the transformed boundary
problem with the transient Jacobian matrixA0 (Y), and thus the problem is now written as

A0 (Y) ∂tY
∗ +A0 (Y)T−1LB (J ,TY ∗) =

A0 (Y)T−1FB +A0 (Y)T−1SB(J)Ĵ
∗

in Γ ⊂ Rd. (4.21)

4.2.3.2 Non-reflecting subsonic outflow

Non-reflecting boundaries are constructed by taking control over the amplitude variations of
the characteristic waves. In particular, for subsonic outlets, the velocity of sound propagation
waves along the negative and positive stream-wise directions λ1 and λ5 are crucial. An appro-
priate non-reflecting boundary condition for this case must set the value of the wave amplitude
variation χ1 associated to the characteristic velocity λ1 = uξ − c, which is the ingoing part of
the wave. In this work we implement the Rudy and Strikwerda relation [99]:

χ1 = σc
(1−M2)

l
(p∗ − p∗∞), (4.22)

in order to calculate the incoming wave amplitude variation at the subsonic outflow. In the
previous relation σ stands for a pressure relaxation parameter, l is the characteristic length-
scale of the propagation domain, and p∗∞ is the unperturbed value for pressure. At low Mach
numbers, the previous relation simplifies to a scaled pressure relaxation parameter multiplying
the pressure perturbation.

For the three-dimensional non-reflecting subsonic outflow, matrices AB(J), and SB(J)
are defined respectively as

AB(J) =

1
2
(uξ + c) ρc

2
(uξ + c) 0 0 0

1
2ρc

(uξ + c) 1
2
(uξ + c) 0 0 0

0 0 uξ 0 0
0 0 0 uξ 0

T
ρc2

[
1
2
(γ − 1)(uξ + c) + uξ

]
− uξ

ρR
T
2c

(γ − 1)(uξ + c) 0 0 uξ

 ,

70

4.3. Numerical methods 71

and

SB(J) =

σc (1−M2)

2l
0 0 0 0

−σ (1−M2)
2ρl

0 0 0 0

0 0 0 0 0
0 0 0 0 0

Tσ(γ−1)(1−M2)
2ρcl

0 0 0 0

 .

The forcing term contains zero in all its (d+ 2) components.
Note that for this non-reflecting condition, χ1 is the only amplitude variation that is mod-

eled (using (4.22) instead of calculating it with (4.15)). The remaining components of χ are
calculated from relation (4.15).

4.2.3.3 Non-reflecting subsonic inflow

In the case of a non-reflecting subsonic inflow, four characteristic waves are entering the do-
main (χ1, χ2, χ3, and χ4), and only one (χ5) is leaving. This type of boundary condition relies
on the imposition of (the given) Dirichlet conditions for velocity and temperature, but calcu-
lates the pressure depending on the outgoing wave crossing the boundary. Since χ1 and χ5 are
the characteristic waves involved in the pressure equation, the method calculates the outgoing
amplitude χ5 from the interior domain, and controls χ1 (related to the reflection) by using the
following equation obtained from (4.11):

χ1 = χ5 + 2ρc
∂uξ
∂t

. (4.23)

Hence, using Eq (4.10) the resulting equation for pressure is such that

∂p∗

∂t
+ (uξ + c)

(
∂p∗

∂ξ
+ ρc

∂uξ
∂ξ

)
= −ρc∂uξ

∂t
. (4.24)

In this work we only consider constant and homogeneous inlet velocities. Therefore, the RHS
of the previous equation vanishes, and the components of FB are identically zero. In the case
of the AB(J) matrix, it is composed by (uξ + c) in the first position of the first row, and by
ρc(uξ+c) in the second position of the first row. The rest of terms are zero. Finally, the SB(J)
matrix contains zero in all its components.

4.3 Numerical methods
In the previous section, we have developed a compressible Navier-Stokes formulation con-
ceived for ideal gases, which cares for splitting the primitive unknowns into a relative and an
absolute part. The resulting model is designed to be suitable at the low Mach number limit.
Non-reflecting boundary conditions have been also described for solving aeroacoustic applica-
tions. As explained before, we discretize Eqs. (4.5) and (4.21) in space using the finite element
method. However, when the Galerkin method is used to approximate the Navier-Stokes equa-
tions (which possess non-symmetric operators), an unstable behavior of the solution might

71

72 Chapter 4. Approximation of the compressible Navier-Stokes equations in primitive variables

appear when convection is dominant, and due to the incompatibility between the interpolation
spaces of the different variables.

In this section, we recall the VMS framework and apply it to the compressible flow equa-
tions in order to stabilize the finite element formulation. We then explain the particular features
of the VMS method that we include in the numerical formulation. Later, we construct the ap-
proximation of the stabilization matrix that is suitable for the low Mach number limit. In the
present chapter, the extra diffusion that is given by shock capturing methods (see [102]) is not
needed because our interest is restricted to low Mach regimes. At the end of this section, we
present the implicit scheme for advancing in time the compressible equations, the approxima-
tion for the time tracking of the subscales, and the numerical scheme that we apply to obtain
the solution at the non-reflecting boundaries.

4.3.1 The space discrete variational multi-scale stabilized finite element
formulation

Let us first consider a finite-element partition Th = {K} of the domain Ω. The diameter of the
element partition is denoted by h. We define the finite element space Wh ⊂ W as made of
continuous piecewise polynomial functions in space. The Galerkin approximation to problem
(4.8)-(4.9) can be stated as follows: find Y ∗h : (0, tf)→Wh such that

(V h,A0 (Y h) ∂tY
∗
h) + A(Y h;V h,Y h) = (V h,F) + (V h,H)ΓN

, t ∈ (0, tf) , (4.25)

(V h,Y h) =
(
V h,Y

0
)
, t = 0, (4.26)

for all V h ∈W0
h, the discrete space of test functions (i.e., with components vanishing where

Dirichlet conditions are prescribed on the boundary).
This approximation suffers from instability problems, which vary according to the way

to construct Wh (e.g. in the case of equally interpolating spaces), and to the weight of the
non-linear convective term.

We stabilize the compressible Navier-Stokes equations based on the VMS approach in-
troduced in [17]. The basic idea is to approximate the effect of the components of the solu-
tion of the continuous problem that cannot be solved by the finite element mesh. The method
decomposes the space of the unknowns into a finite-dimensional space Wh, and an infinite-
dimensional one, W̃ , so that W = Wh ⊕ W̃ . The unknown and the test functions are ac-
cordingly split as Y ∗ = Y ∗h + Ỹ

∗
and V = V h + Ṽ , respectively. Equation (4.8) can be

equivalently written as the system of equations

(V h,A0 (Y) ∂tY
∗) + A(Y ;V h,Y

∗) = (V h,F) + (V h,H)ΓN
, (4.27)

for all V h ∈W0
h, t ∈ (0, tf), and(
Ṽ ,A0 (Y) ∂tY

∗
)

+ A(U ; Ṽ ,U) = (Ṽ ,F) +
(
Ṽ ,H

)
ΓN
, (4.28)

for all Ṽ ∈ W̃
0
, t ∈ (0, tf), and likewise for the initial condition, Eq. (4.9). In Eq. (4.28),

W̃
0

is the space of subscale test functions.

72

4.3. Numerical methods 73

4.3.1.1 Finite element equation

We first analyze the equation for the finite element scale. The second term in the left-hand-side
(LHS) of Eq. (4.27) can be split as

A(Y ;V h,Y
∗) = A (Y ;V h,Y

∗
h) + A

(
Y ;V h, Ỹ

∗)
, (4.29)

defining the Galerkin terms related to the application of the non-linear operator to the finite
element unknown as

A (Y ;V h,Y
∗
h) = (V h,Aj (Y) ∂jY

∗
h) + (∂kV h,Kkj (Y) ∂jY

∗
h) , (4.30)

and the terms related to the subscales as

A
(
Y ;V h, Ỹ

∗)
=
(
Y h,Aj (Y) ∂jỸ

∗)
+
(
∂kV h,Kkj (Y) ∂jỸ

∗)
. (4.31)

The objective is to approximate the subscales in order to end up with a problem for the
finite element scale alone. For this, we start by integrating by parts the two terms in the RHS
of (4.31), so that we obtain

A
(
Y ;V h, Ỹ

∗)
=
∑
K

(
L∗ (Y ;V h) , Ỹ

∗)
K

+
∑
K

(
njK

>
kj (Y) ∂kV h, Ỹ

∗)
∂K
. (4.32)

Here we have introduced the formal adjoint L∗ (U ; ·) of the operator L (U ; ·), which is

L∗ (Y ;V h) = −∂j
(
A>j (Y)V h

)
− ∂k

(
K>kj (Y) ∂jV h

)
. (4.33)

Note that (4.29) involves inter-element jumps. For continuous solution finite element
spaces, the convective term jump at the element boundaries is continuous because it is a func-
tion of the variables and, therefore, its sum across adjacent element boundaries is zero. Instead,
the diffusive term at the element boundaries in (4.32) contains derivatives of the variables and
it is discontinuous even for continuous finite element spaces. However, this inter-element terms
can be neglected by supposing that the subscales vanish at the element boundaries. A further
explanation on inter-element subscales can be found in [109]. In this work, we approximate the
derivatives of the first and second terms on the RHS of the previous expression, respectively
as

∂j
(
A>j (Y)V h

)
≈ A>j (Y) ∂jV h +

∂A>j (Y)

∂Y
∂jY hV h,

∂j
(
K>kj (Y) ∂kV h

)
≈K>kj (Y) ∂j∂kV h +

∂K>kj (Y)

∂Y
∂jY h∂kV h.

This approximation considers ∂jY ≈ ∂jY h for the derivatives of the continuous unknowns.

4.3.1.2 Subscale equation

If P̃ denotes the L2 projection onto the space of subscales, it is readily seen that, after inte-
grating by parts the second term of the LHS of (4.28), the equation for the subscales can be
written as

P̃
[
A0 (Y) ∂tỸ

∗
+ L

(
Y ; Ỹ

∗)]
= P̃ [R (Y ;Y ∗h)] , (4.34)

73

74 Chapter 4. Approximation of the compressible Navier-Stokes equations in primitive variables

where R (·, ·) stands for the finite residual, and is formally defined as R (Y ;Y ∗) = F −
A0 (Y) ∂tY

∗ − L (Y ;Y ∗) . Since the subscales cannot be represented by the finite element
mesh, the effect of the nonlinear operator applied to the subscales needs to be approximated.
For this, we adopt a diagonal matrix of stabilization parameters that depends on the unknowns
τ (Y), such that an approximation of the nonlinear operator applied to the subscales in each
element of the form L

(
Y ; Ỹ

∗)
≈ τ−1 (Y) Ỹ

∗
is made. Hence, for an adequate definition of

the projection onto the subscale space, the subscale equation becomes

P̃
[
A0 (Y) ∂tỸ

∗
+ τ−1 (Y) Ỹ

∗]
= P̃ [R (Y ;Y ∗h)] . (4.35)

The previous equation is a nonlinear ordinary differential equation, which must be solved at
the integration points. Here we use two possibilities to construct the space where the sub-
scales belong. The first and the most common choice is to take it equal to the space of the
finite element residuals. That is, to define the projection onto the subscale space as the identity
P̃ = I onto the space of finite element residuals. We call this type of subscales as alge-
braic subscales (ASGS). The second possibility is the so called orthogonal subscales method
(OSGS), which defines the subscales orthogonal to the finite element space, W̃ = W⊥

h . In
this case, the projection is defined to be the orthogonal projection onto the finite element space
P̃ = P⊥h = I − P h, being P h the L2-projection onto the finite element space.

Apart from the construction of the spaces where the subscales belong, we call the sub-
scales dynamic if the temporal derivative of the subscales is taken into account. Instead, if this
temporal derivative is neglected we call the subscales quasi-static. Besides that, another possi-
bility is to neglect the subscale effect in all the non-linear terms, for example, in the Jacobian
and diffusivity matrices, whereas, if we take it into account we call the subscales non-linear.
Further results and discussion about these definitions of the subscales may be found in articles
such as [53, 110–112] applied to other flow problems.

4.3.2 The matrix τ of stabilization parameters
The usual compressible definition for the τ matrix (presented in Chapter 3), includes the lo-
cal sound velocity that arises from the linearized characteristic compressible flow problem. At
the low Mach number limit the sound speed tends to infinity (c → ∞), and therefore, that
stabilization matrix definition is not suitable. Some authors (e. g. [67, 96]) tried to design τ
matrices that were suitable for both the low Mach number limit and high Mach number flows.
A necessary requirement for those matrices is the a priori knowledge of numerical param-
eters depending on the compressibility of the flow. In this sense, we propose the following
stabilization matrix for multiple dimensions:

τ−1 (Y) =

τ−1
c (Y) 0> 0

0 τ−1
m (Y) I 0

0 0> τ−1
e (Y)

 , (4.36)

74

4.3. Numerical methods 75

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

er
f(

φ
)

M

ε=0.1

ε=0.2

ε=0.3

Figure 4.1: Gauss error function against the Mach number. The error function is calculated for
different values of parameter ε.

where each component is defined as

τ−1
c (Y) =

ρτm
h2

, (4.37)

τ−1
m (Y) =

C1µ

h2
+
C2ρu

?

h
, (4.38)

τ−1
e (Y) =

C1λ

h2
+
C2ρcvu

?

h
. (4.39)

In these expressions C1 and C2 are algorithmic parameters that we take as C1 = 12p4 and
C2 = 2p, where p is here the order of the finite element interpolation (not the pressure). In the
case of the largest characteristic velocity in the convective contribution (|u|+ c), instead of
using the common definition, we introduce a modified velocity u?, that is calculated with the
Gauss error function (commonly denoted as erf),

u? = |u|+ erf(φ)c, (4.40)

where φ is defined as φ = 2− 2(ε−M)/ε. Here ε is an algorithmic parameter that determines
a certain transition from the compressible to the incompressible regime, which we take as ε =
0.1 in the numerical examples presented in this chapter. This definition for the characteristic
velocity includes the sound speed, and it converges rapidly to the incompressible definition
at the zero Mach limit as shown in Fig. 4.1. The non-linearity of τ (Y), depending on the
velocity and the acoustic speed, is also considered for the subscale equation.

4.3.3 Time integration method
At this point, we have described the space discrete stabilized finite element formulation. Let
us now comment how we discretize in time.

We partition the time interval (0, tf) in a sequence of discrete time steps 0 = t0 < t1 <
... < tN = tf , with δt > 0 the time step size, being tn+1 = tn + δt for n = 0, 1, 2, ..., N .

In this particular application of compressible flows, more precisely, at low Mach number
flows, the acoustic speed tends to infinity. This restricts explicit time stepping schemes to
very small time step sizes. Therefore, we avoid this restriction by using an implicit monolithic

75

76 Chapter 4. Approximation of the compressible Navier-Stokes equations in primitive variables

time integration scheme in order to integrate the time derivatives of Eqs. (4.27) and (4.28).
More specifically, we use the Backward Differentiation Formula (BDF) scheme. For the time
dependent function y(t), the BDF approximation of order k = 1, 2, .., is given by δkyn+1/δt,
with

δky
n+1 =

1

γk

(
yn+1 −

k−1∑
i=0

φiky
n−i

)
,

where γk and φik are numerical parameters. In particular, for the first and second order BDF
schemes, we have

δ1y
n+1 = yn+1 − yn,

δ2y
n+1 =

3

2

(
yn+1 − 4

3
yn +

1

3
yn−1

)
.

As mentioned before, we use the implicit BDF scheme of the first order for discretizing
the transient term of the subscales in Eq. (4.35). This is, we obtain a solution of the subscales
at the n+ 1 time step after solving

Ỹ
∗n+1

= τ t
(
Y n+1

)(
P̃
[
R
(
Y n+1;Y ∗n+1

h

)]
+A0

(
Y n+1

) Ỹ ∗n
δt

)
, (4.41)

where the dynamic operator τ t
(
Y n+1

)
is defined as

τ t
(
Y n+1

)
=

(
1

δt
A0

(
Y n+1

)
+ τ−1

(
Y n+1

))−1

.

Because the Jacobian matrix of the transient term is a full matrix, the result of the previous
expression would lead to a non-diagonal dynamic operator. Our proposal to avoid off-diagonal
terms in the stabilization matrix is to choose a diagonal approximation to τ t

(
Y n+1

)
as fol-

lows:

τ t
(
Y n+1

)
≈

(1
pn+1

ρn+1

δt
+ τ−1

c)−1 0> 0

0 (ρ
n+1

δt
+ τ−1

m)−1I 0

0 0> (ρ
n+1cp
δt

+ τ−1
e)−1

 . (4.42)

From [46], we realize that the previous expression is similar to the dynamic operator used in
the VMS formulation of the incompressible Navier-Stokes equations and the energy equation.

In the case of the finite element equation (4.27), we discretize it in time as follows: given the
initial conditions Y ∗0, and supposing that the subscales at the initial time step are identically

76

4.3. Numerical methods 77

zero, for n = 1, 2, .., find Y ∗n+1
h ∈Wh, such that:(

V h,A0

(
Y n+1

) δkY ∗n+1
h

δt

)
+
(
V h,Aj

(
Y n+1

)
∂jY

∗n+1
h

)
+
∑
K

(
V h,

(
I − τ−1

(
Y n+1

)
τ t
(
Y n+1

))
P̃
[
R
(
Y n+1;Y ∗n+1

h

)])
K

−
∑
K

(
V h, τ

−1
(
Y n+1

)
τ t
(
Y n+1

)
A0

(
Y n+1

) Ỹ ∗n
δt

)
K

+
∑
K

(
L∗
(
Y n+1;V h

)
, τ t
(
Y n+1

)(
P̃
[
R
(
Y n+1;Y ∗n+1

h

)]
+A0

(
Y n+1

) Ỹ ∗n
δt

))
K

+
(
∂kV h,Kkj

(
Y n+1

)
∂jY

∗n+1
h

)
= (V h,F) ∀V h ∈W0

h. (4.43)

The previous equation, together with Eq. (4.41), defines the spatial and temporal VMS dis-
cretization of the compressible Navier-Stokes equations.

4.3.4 Weak imposition of the non-reflecting boundary conditions
Including the non-reflecting boundary equations (4.21) into the discrete VMS formulation of
the compressible problem (4.43) is a challenging topic: an explicit solution of the boundary
problem requires to fulfill a time step size restriction for stability that is excessive in the case of
low Mach number flows. In contrast, it becomes necessary to write the non-reflecting boundary
equations in terms of the compressible Navier-Stokes problem and to incorporate them in
the boundary terms of the variational formulation (via the diffusive fluxes across the domain
boundaries) if one aims to solve them fully implicitly.

In order to overcome this difficulty, we prescribe an implicit solution of the non-reflecting
boundary conditions in a weak sense by means of introducing some penalization terms to
(4.43). The implicit solution of the non-reflecting boundary conditions can even exploit the
time advancing scheme that is already implemented in the stabilized compressible formula-
tion. This is, given the finite element discretization of the boundary problem, we discretize in
time the transient term of the characteristic wave equation by using the implicit BDF method
described before in this section for the compressible flow problem. In this sense, the same
accuracy of the interior domain equations is used to annihilate the propagation signal.

For some positive parameter η > 0, the penalty term containing the non-reflecting equa-
tions over the boundary that we add to the LHS of the stabilized implicit formulation is

η

(
V h,A0

(
Y n+1

)(δk
δt
Y ∗,n+1

h + T−1LB

(
TY n+1

h ;TY ∗,n+1
h

)))
Γ

. (4.44)

In the same way, the RHS of the stabilized formulation must include the penalty term

η
(
V h,A0

(
Y n+1

) (
T−1FB + T−1SB(TY n+1

h)Ĵ
∗))

Γ
. (4.45)

The parameter η is defined numerically as η = hη0; in this way, the boundary integral is dimen-
sionally consistent with the variational problem (4.43), and we have observed from numerical
experimentation that η needs to scale as the element size h. The value of η0 is specifically
defined for each numerical example.

77

78 Chapter 4. Approximation of the compressible Navier-Stokes equations in primitive variables

4.3.5 Linearization strategy
The implicit scheme brings the difficulty of solving the non-linearities of the discrete spatial
problem. To treat this issue we implement a linearization strategy that is based on Picard’s
method. At each step n + 1, we introduce as a superscript an iteration counter i, and given
Y n+1,i

h and Ỹ
n+1,i

, we compute the finite element unknowns by considering either Y n+1,i ≈
Y n+1,i

h for the linear subscales, or Y n+1,i ≈ Y n+1,i
h + Ỹ

n+1,i
for the non-linear tracking of

the subscales. We use this value in all non-linear terms of Eq. (4.43). The loop is iterated until
the L2 norm of the difference between consecutive finite element solutions is below a given
convergence criteria, |φn+1,i+1

h − φn+1,i
h | < ε|φn+1,i+1

h |, where φh stands for any finite element
unknown and ε is the tolerance.

Introducing a separated iterative nested loop of index j for the non-linear equation of the
subscales at each iteration i + 1 of the finite element loop is another possibility. In this case,
the subscale unknowns Ỹ

n+1,j+1
in Eq. (4.41) are solved using the finite element unknowns

Y ∗n+1,i+1
h , and the subscales resulting from the previous iteration Ỹ

n+1,j
. In some previous ar-

ticles (e.g. in [112]) this possibility has improved the convergence of the linearization scheme.
Nevertheless, we have evaluated it in the problem that we consider now, yielding no substan-
tial difference in the convergence rate for the finite element solution; therefore, it has been
discarded in the numerical examples to be presented later in the chapter.

When orthogonal subscales are accounted for, the orthogonal projection of the residual is
approximated as

P⊥
[
R
(
Y n+1,i;Y ∗n+1,i+1

h

)]
≈ R

(
Y n+1,i;Y ∗n+1,i+1

h

)
− P h

[
R
(
Y n+1,i;Y ∗n+1,i

h

)]
that is to say, the L2-projection onto the finite element space P h is evaluated with the un-
knowns at the end of the previous iteration. Recall that for algebraic subscales P̃ = I , and
projectionP h is not required. In our implementation, the finite element projection is computed
using a lumped mass matrix.

4.4 Numerical examples
In the first part of this section, we evaluate the spatial order of accuracy of the numerical for-
mulation in several low Mach number flow cases at steady-state. The method of manufactured
solutions is used for two- and three-dimensional domains. Both linear and quadratic approxi-
mations are evaluated for the two-dimensional domain. The differential heated cavity and the
flow past a cylinder problems are solved next. In both transient problems, we illustrate the per-
formance of the proposed VMS method applied to an unsteady low Mach flow. More precisely,
we investigate the temporal behavior of the subscales and address the mesh convergence results
for the error against a reference solution. The flow around a cylinder is also used to compare
the compressible solution at several low Mach numbers with the established incompressible
one, and to simulate the acoustic propagation of waves, in what is commonly referred as the
Aeolian tones aeroacoustic problem. Special emphasis is given to the non-reflecting conditions
ability to minimize the wave reflection from the computational boundaries. In the last part of
this section, the sound generated by the flow past an open cavity is used to test non-linear
interactions between the main structures of the flow and the acoustic part of it. The cavity

78

4.4. Numerical examples 79

problem at subsonic condition is an aeroacoustic problem that includes very nonlinear flow
characteristics and singular pressure points near the corners of the walls.

In all numerical examples the flow is considered as an ideal gas, with ratio of specific
heats γ = 1.4 and physical properties cp = 1.010 kJ/(kg K) and cv = 0.718 kJ/(kg K). At
each time step we solve the non-linearities of Eqs. (4.41) and (4.43) by using Picard’s scheme.
This leads to a monotonically decreasing relative error between consecutive iterations, with
the subsequent convergence of the numerical method. At most fifteen iterations are performed,
fulfilling the maximum relative numerical tolerance for the L2 norm iteration residual of 10−10.
As discussed before, iterative solvers can be used for the solution of the linear system of equa-
tions as a result of the change of variables in the formulation. Otherwise, the only plausible
way to solve transient problems at low Mach numbers is to implement costly direct solvers. In
this chapter, we use the enhanced BiCGstab algorithm [113], which is already implemented in
the PETSc parallel solver library [114]. We find that using this method, together with an addi-
tive Schwarz method and a block ILU preconditioning [115], greatly improves the convergence
and the numerical accuracy of the linear solver.

4.4.1 Manufactured solutions
The first numerical example involves steady state compressible flows at low Mach numbers,
which are used to quantify the accuracy of the numerical schemes. The method of manufac-
tured solutions has been traditionally used to quantify the numerical error of partial differential
equations solvers. The idea is to generate an exact analytical solution a priori, that is substi-
tuted into the continuum equations to obtain a forcing term. This forcing term, which satisfies
the compressible Navier-Stokes equations exactly, is applied to the discrete solver. In this ex-
ample, an exact solution of pressure, velocity, and temperature is specified in the computational
domain. The manufactured solutions are composed of smooth polynomial analytic functions,
which are defined to have non-trivial derivatives and no physical meaning. Reference values
of pressure and temperature are fixed as patm = 105, and Tatm = 300. Dirichlet boundary con-
ditions are fixed over the boundaries of the computational domain using the relative part of
the manufactured solutions. In the following, we demonstrate the spatial order of accuracy of
several two- and three-dimensional elements.

4.4.1.1 Two dimensions

The polynomial functions for the two-dimensional manufactured solutions are given as fol-
lows:

p∗ = x2
1x

2
2(x1 − 1)(x2 − 1),

u1 = 2x2
1x2(x1 − 1)2(x2 − 1)(2x2 − 1),

u2 = −2x1x
2
2(x1 − 1)(x2 − 1)2(2x1 − 1),

T ∗ = 2x2
1x2(x2

1 − 1)(x2 − 1),

and the contour plots of these fields are presented in Fig 4.2. In this two-dimensional problem,
the viscosity is fixed to µ = 10−4 kg/(m s), and the thermal conductivity to λ = 1.0 W/(m K).
Therefore, the compressibility regime ranges in the M = (0.0, 3.5 × 10−5) interval, and the
local Reynolds number is below Re = 150, measured with respect to the domain length.

79

80 Chapter 4. Approximation of the compressible Navier-Stokes equations in primitive variables

(a) Pressure, p (b) Temperature, T

(c) x1-velocity (d) x2-velocity

Figure 4.2: Manufactured two-dimensional solutions for the compressible Navier-Stokes equa-
tions.

To illustrate one of the key ingredients of the proposed VMS discretization, which is the
stabilization matrix design, Fig. 4.3 shows the local compressibility measured with the Mach
number and the corresponding modified velocity that is used in the stabilization parameter’s
calculation. It can be noticed that this velocity tends to zero in the zero Mach limit, but at
the same time it converges to the acoustic speed at higher compressibility regions. The Gaus-
sian error function used in the calculation of the modified velocity depends on the normalized
compressibility, and allows to include the acoustic speed in the stabilization matrix for the
compressible regions of the flow and to equate the compressible and the incompressible sta-
bilization parameters for the momentum and continuity equations at the zero Mach number
limit.

To evaluate the accuracy of the numerical method, a series of refined coarse, medium and
fine meshes are used in the calculations. The meshes are composed of Q1 and Q2 elements
distributed in a structured fashion. The characteristic element sizes for the Q1 meshes are
0.071 m, 0.041 m, and 0.022 m, and for the Q2 meshes they are 0.1 m, 0.05 m, and 0.025 m.
The L2 norm of the numerical solution error with respect to the exact manufactured solution
is used to quantify the accuracy of the computed results.

We first study the results obtained by the VMS discretization comparing the algebraic def-
inition of the subscales, in contrast to the orthogonal subscales. We also include the subscales
in the non-linear terms of the variational problem (NL). Figures 4.4 and 4.5 depict how the
linear and quadratic approximations converge as the mesh is refined. The L2 norm of the ex-

80

4.4. Numerical examples 81

(a) Local Mach number, M (b) Local sound speed contribution to u?,
erf(φ)c

Figure 4.3: Characteristic velocity for the two-dimensional manufactured solutions.

(a) ||p− pexact||2 (b) ||T − Texact||2 (c) ||u− uexact||2

Figure 4.4: Manufactured solutions for the two-dimensional compressible Navier-Stokes equa-
tions: L2 norm of the exact error defining the space where the subscales live as the finite ele-
ment residual space (ASGS).

act error for pressure, temperature and velocity over the computational domain is presented
as a function of the characteristic element sizes. The order of accuracy for the ASGS method,
with linear and quadratic approximations, is demonstrated in Fig. 4.4, whereas, for the OSGS
method is presented in Fig. 4.5. These figures also show the comparison between including
the subscales in the non-linear terms and not including them. Results indicate that the order
of accuracy is above two for linear elements and above three for quadratic elements. The or-
der of accuracy for temperature and velocity is better than predicted for linear and quadratic
approximations, but as predicted for the quadratic approximation of pressure. For the linear
approximation, the accuracy given by the finest mesh is comparable to the coarsest mesh us-
ing the quadratic approximation. In this numerical example, it can be observed that the space
where the subscales live does not influence the accuracy of the solution. However, including
the subscales in the non-linear terms lowers slightly the accuracy and the order of convergence
for the Q1 approximation. On the contrary, for the quadratic approximation, this effect is not
representative.

81

82 Chapter 4. Approximation of the compressible Navier-Stokes equations in primitive variables

(a) ||p− pexact||2 (b) ||T − Texact||2 (c) ||u− uexact||2

Figure 4.5: Manufactured solutions for the two-dimensional compressible Navier-Stokes equa-
tions: L2 norm of the exact error defining the space where the subscales live as the orthogonal
projection to the finite element space (OSGS).

4.4.1.2 Three dimensions

Let us consider now the case of three-dimensional computational domains. Similar functions
as those used in the previous two-dimensional problem are used. For the pressure, velocity and
temperature fields we use, respectively,

p∗ = x2
1x

2
2x

2
3(x1 − 1)(x2 − 1)(1− x3),

u1 = 2x2
1x2x

2
3(x1 − 1)2(x2 − 1)(2x2 − 1)(1− x3),

u2 = −2x1x
2
2x

2
3(x1 − 1)(x2 − 1)2(2x1 − 1)(1− x3),

u3 = −2x1x
2
2x

2
3(x1 − 1)(2x1 − 1)(x2 − 1)(1− x3)2,

T ∗ = 2x2
1x2x

2
3(x2

1 − 1)(x2 − 1)(1− x3).

These three-dimensional fields are presented in Fig. 4.6 as two-dimensional contours at inter-
secting planes. In order to preserve the low Mach number condition that has been studied in the
two-dimensional problem, the physical properties are fixed to µ = 10−3 kg/(m s), and λ = 1.0
W/(m K). In this case, the order of accuracy of the method is calculated over a sequence
of tetrahedral and hexahedral meshes, with 0.052 m, 0.034 m, and 0.025 m of characteris-
tic element sizes. Linear approximations are considered for both types of three-dimensional
elements.

Figures 4.7 and 4.8 depict the L2 norm of the exact error for pressure, temperature and ve-
locity as a function of the characteristic element sizes. As expected, the observed accuracy is
higher for hexahedral than for tetrahedral element meshes. The order of accuracy for both ele-
ment types is better than predicted for linear approximations. In particular, for the temperature
field, the order of accuracy is almost five. As in the results of the two-dimensional problem,
neither the space where the subscales live nor the non-linear definition of the subscales affects
the accuracy of the method.

82

4.4. Numerical examples 83

(a) Pressure, p (b) Temperature, T

(c) x1-velocity (d) x2-velocity (e) x3-velocity

Figure 4.6: Manufactured three-dimensional solutions for the compressible Navier-Stokes
equations.

(a) ||p− pexact||2 (b) ||T − Texact||2 (c) ||u− uexact||2

Figure 4.7: Manufactured solutions for the three-dimensional compressible Navier-Stokes
equations: L2 norm of the exact error defining the space where the subscales live as the fi-
nite element residual space.

83

84 Chapter 4. Approximation of the compressible Navier-Stokes equations in primitive variables

(a) ||p− pexact||2 (b) ||T − Texact||2 (c) ||u− uexact||2

Figure 4.8: Manufactured solutions for the three-dimensional compressible Navier-Stokes
equations: L2 norm of the exact error defining the space where the subscales live as the or-
thogonal projection to the finite element space.

4.4.2 Differentially heated cavity
The second numerical example is the differentially heated cavity. This is a natural convection
flow problem in which the fluid is driven both, by a large temperature gradient between the
walls, and by a gravity force. In this numerical example, the flow is considered as a two-
dimensional problem with the forcing term of the momentum equation playing a significant
role in the development of the buoyancy flow patterns. The computational domain is given by a
rectangular cavity [0, L]×[0, H] of aspect ratioH/L = 8, withL = 1 m. The temperature at the
left (hot) wall is fixed to TH = 600 K, and the temperature at the right (cold) wall to TC = 300
K. No slip and impermeable conditions are set over the cavity walls, together with adiabatic
boundary conditions for the upper and lower walls. Gravity is specified to be acting in the
negative x2 direction as g = (0,−9.8) m/s2. The initial atmospheric pressure p0

atm = 152525
Pa, and the initial temperature of the fluid T 0 = 450 K, give an initial uniform density of
ρ0 = 1.16 kg/m3. The viscosity and thermal conductivity are set to µ = 2.5 × 10−3 kg/(m
s), and λ = 3.55 W/(m K), respectively. The non-dimensional Rayleigh number is defined
as the product of the Grashof number and the Prandtl number. In this example, we calculate
the Rayleigh number as Ra = |g|θρ2cp/(µλ) = 106, where θ stands for the dimensionless
temperature ratio θ = 2(TH − TC)/(TH + TC) = 0.66.

In order to overcome the mechanical restriction of the pressure imposition for transient and
variable flows at closed computational domains, an iterative penalization to the mass conser-
vation equation, of the form (qh, ψ(p∗i+1

h − p∗ih)) at iteration i+ 1, is included in the stabilized
formulation. This penalization guarantees that p∗h is solved correctly, up to a constant, when
the relative value of pressure is not set at the computational boundary. The factor ψ is selected
numerically as ψ = 10−3ρ/µ, in a way that it does not detriment neither the nonlinear scheme
convergence (when ψ is large) nor the algebraic solver convergence (when ψ → 0).

In this numerical example, we use uniform structured meshes composed of Q2 elements.
This type of elements helps to provide sensitivity to high order terms of the discrete equations.
Specifically, higher order interpolations make possible to include the second order derivatives
present in the residual diffusive term and in the adjoint operator, and therefore, to evaluate all
terms of the discrete stabilized formulation. We solve three different grid sizes, corresponding

84

4.4. Numerical examples 85

(a) p∗h (b) Th (c) Th,rms (d) |uh| (e) |uh,rms|

Figure 4.9: Contour results of the differential heated cavity calculated with an ASGS stabiliza-
tion method and a structured homogeneous mesh containing Q2 elements of h = 0.0125 m
size.

to h0 = 0.2 m, h1 = h0/2 m, and h2 = h1/2 m. The size of these meshes is defined in
terms of two successive divisions hk = h0/2

k, where k = 0, 1, 2. An additional simulation
is performed by solving the problem with the ASGS method and a fine grid of mesh size
h = 0.0125 m. This additional solution is used as a reference solution, which allows us to
test the accuracy of the VMS stabilization method presented in Section 4.3. We choose to use
the ASGS method as a reference solution because this method is similar to the SUPG method
when linear elements are used, and the later has been widely tested in the literature in several
compressible flow problems [79]. In all cases, we use the second order accurate BDF as the
time integration scheme, with a constant time step size of δt = 0.01 s. The simulations are
run until the statistically stationary state (measured as the relative error between consecutive
transient results of time-averaged variables) is reached.

The reference flow is essentially characterized by an unsteady behavior that is related
to the buoyancy produced near the lateral hot and cold walls. The buoyancy is formed as a
horizontal shear layer of the velocity component in the direction of gravity, which is in the
positive x2 direction for the hot wall, and in the negative x2 direction for the cold wall. The
superposition of the hot and cold wall shear layers generates a broad flow stream cycling
around the cavity. The numerical results obtained in the present simulations correspond to
the previously referenced solutions in literature, specifically, we obtain similar results to the
instant contours of fields presented in [116] for the same cavity ratio and Grashof number.
Both the time average and the root mean square values of the reference solution are depicted
in Fig. 4.9. In order to quantify the VMS stabilization attributes, we calculate some statistic
measures over the discrete time-dependent variables. With regard to the time-dependent
discrete solution φh(x

a, t) of a certain variable φ at node xa, the time-averaged discrete
solution is denoted as φh(x

a), and the root mean square as φh,rms(x
a). We include the

calculation of the root mean square since the time-dependency of the flow is particularly
important in this numerical example, and with this calculation, we retrieve a measure of the

85

86 Chapter 4. Approximation of the compressible Navier-Stokes equations in primitive variables

fluctuations strength. In particular, we observe important temperature fluctuations at the top
of the hot wall and in the bottom of the cold wall, where the buoyancy reaches its maximum.
Root mean square results for temperature also indicate that the hot wall produces most of
the fluctuations. The time-averaged temperature results, on the other hand, yield a smooth
distribution from the hot to the cold wall. We also observe that temperature fluctuations
are closely related to fluctuations in the velocity field (expressed by the root mean square
values of the velocity magnitude) and that the time-averaged velocity magnitude field exhibits
high-velocity values near the mid-length of the walls, where the action of the buoyancy is
important. On the contrary, the velocity field is almost steady at the center of the cavity,
expressed by a small value of both the time-averaged and root mean square velocity results.
On the other hand, the time-averaged pressure field gives an almost-linear distribution along
the x2 axis, mainly described by the gravity action in that direction. The compressibility
range of the simulation is between [0, 0.005], measured in terms of the time-averaged
non-dimensional Mach number. This compressibility indicates that at any instant of the simu-
lation the flow is subsonic, and even nearly incompressible for certain local regions of the flow.

Table 4.1: Differential heated cavity error results.
ASGS OSGS

quasi-static quasi-static Dynamic

Error(T)

h = 0.2 9.26× 10−3 9.21× 10−3 1.19× 10−2

h = 0.1 2.05× 10−3 2.05× 10−3 7.81× 10−4

h = 0.05 1.05× 10−4 1.11× 10−4 3.41× 10−5

Error(|u|)

h = 0.2 11.2991 11.3208 8.8726
h = 0.1 5.127 5.1267 1.1703
h = 0.05 2.6753 3.7687 0.37605

Error(|urms|)

h = 0.2 7.1079 7.237 3.3427
h = 0.1 4.5886 4.5858 0.31857
h = 0.05 0.13295 0.18367 0.084087

In order to perform a quantitative comparison between the VMS stabilization methods, we
calculate the discrete L2 norm of the error by taking

Error(φ) =

∑
a

(
φh(x

a)− φ(xa)
)2∑

a

(
φ(xa)

)2 ,

where φ(xa) refers to the time average of the reference solution at node xa. As described be-
fore, we consider as the reference solution the one obtained using the ASGS solution and the
h = 0.0125 m mesh. In this numerical example, we aim to compare the quasi-static definition
for the subscales in contrast to the dynamic subscales. For simplicity, we consider the space
where the subscales live as the orthogonal to the finite element space, and the linear definition
of the subscales. We also compare with the ASGS quasi-static solution, that can be considered
as the traditional VMS method in the literature. The error between coarse grid results and the
reference solution is presented in Table 4.1 for the different mesh sizes. Error calculations are

86

4.4. Numerical examples 87

(a) T (b) |u|

Figure 4.10: Convergence of the differential heated cavity results calculated with a structured
mesh containing Q2 elements of h = 0.0125 m size: (a) Time-average of temperature, and (b)
Time-averaged velocity magnitude.

performed for the time-averaged temperature and velocity fields, and for the root mean square
of the velocity magnitude. Considering the time-averaged temperature error, this is almost the
same for quasi-static subscales in the ASGS and OSGS methods. Instead, the dynamic sub-
scales improve the accuracy for the OSGS method, being considerably more precise by almost
an order of magnitude for the smaller mesh sizes. The error of the time-averaged velocity mag-
nitude and the error for the root mean square of the velocity magnitude field are also in line
with the error results for temperature.

The mesh convergence results for the error are presented in Fig. 4.10. Convergence plots
are displayed for the error of the time-averaged temperature and velocity magnitude fields.
Convergence results for the error of the time-averaged temperature field give a slope greater
than three. Oppositely, the convergence order is smaller for the error of the velocity field, both
for the time-averaged value and for the root mean square value of the magnitude of velocity;
possibly, these results are not inside the asymptotic range. Nevertheless, the most accurate
method is the OSGS with the inclusion of the dynamic subscales.

Finally, we present the calculations of the non-dimensional Nusselt number to investigate
the transient behavior of the flow field. The Nusselt number relates the heat transferred from
the hot to the cold wall, and it is calculated as

Nusselt(x, t) =
L

TH − TC
nj∂jT (x, t), x ∈ Γ, t > 0.

In particular, the transient behavior of the Nusselt number is evaluated by integrating the previ-
ous equation over the hot wall. We observe in the transient plots that are displayed in Fig. 4.11
for the different mesh sizes and stabilizing methods, that the unsteady character of the Nusselt
number is subject to the inclusion of the dynamic subscales. This unsteady behavior, which
is related to the buoyancy production near the wall, is observed in the reference solution, as
well in the h = 0.05 m mesh size simulations. If we compare the unsteady behavior for the
h = 0.2 m and h = 0.1 m grids, we observe that the solution given by the dynamic subscales is
fluctuating, in contrast to the steady result of the quasi-static subscales. This is, the buoyancy

87

88 Chapter 4. Approximation of the compressible Navier-Stokes equations in primitive variables

(a) Quasi-static subscales (b) Dynamic subscales

Figure 4.11: Nusselt results of the differential heated cavity calculated with the orthogonal
definition of the subscales for three different mesh sizes.

production, and the consequent unsteady behavior of the flow is sensible to the inclusion of
the dynamic subscales. This result is related to the lower error given by the dynamic subscales
when compared to the reference solution.

4.4.3 Flow past a cylinder
The third numerical example is the laminar viscous flow past a cylinder. The cylinder is de-
fined to be infinitely long in the axial direction and immersed in a compressible viscous flow
that impinges it uniformly. For a Re = 100 number (based on the cylinder diameter), the flow
is unsteady and laminar, developing an oscillating wake behind the cylinder. This example is
solved as a two-dimensional problem, and it is a classical unsteady test for viscous incompress-
ible flow solvers which has been used by several authors to quantify the amount of dissipation
introduced by a numerical scheme. We use this example to evaluate the performance of the
VMS formulation in the low Mach number limit and to investigate its behavior in unsteady
flows. The flow around a cylinder is also commonly used to simulate the acoustic propagation
of waves. Strong vortices are generated in the wake of the cylinder flow, which are transported
downstream and cross the outflow, and cause sound waves due to the perturbation of the pres-
sure field. The waves generated by the vortices behind the cylinder are commonly referred as
the Aeolian tones, with a sound wave frequency stable at the fixed value of the wake fluc-
tuation. In the case of the aeroacoustic propagation, special emphasis is given to evaluate the
non-reflecting conditions ability to minimize the wave reflection from the computational outlet
boundaries.

4.4.3.1 Tracking the dynamic subscales

This first part is intended to further investigate the dynamic subscales behavior in the varia-
tional formulation. For doing this, we fix the flow conditions to the free-stream Mach number
of M = 0.001, the Reynolds number to Re = 100, and the Prandtl number to Pr = 0.71. Inlet
flow conditions are set by fixing the relative pressure and temperature variables, together with

88

4.4. Numerical examples 89

(a) (b)

(c)

Figure 4.12: Instantaneous contour fields of the flow past a cylinder at M = 0.001: (a) Pressure,
(b) temperature and (c) velocity magnitude calculated with an unstructured mesh containing
P1 elements of h = 0.001 m size.

the velocity components. Only the relative pressure needs to be fixed over the outflow bound-
aries due to the low Mach number condition of the problem. A depiction of the developed flow
is presented in Fig. 4.12. This figure shows the instantaneous pressure, temperature and veloc-
ity magnitude contours computed using the present VMS formulation over a fine unstructured
mesh of h = 0.001 m element size and linear triangular elements. The time integration scheme
used in the calculation of these results is second order, and the time step size has been kept
constant at δt = 0.001 s. It can be observed in the figure that, in fact, for this flow condi-
tions, an oscillating wake is developed after the cylinder. Because no qualitative differences
can be observed among the results given by the different stabilization methods, we compare
them quantitatively by calculating some integral values of the flow, more precisely, we calcu-
late time-integrated values of the lift and drag non-dimensional coefficients. To illustrate this,
Fig. 4.13 shows the time history of the non-dimensional drag and lift coefficients obtained for
the previously described flow simulation. Hence, we calculate the time average of drag Cd, the
time L∞ norm of the lift coefficient, and the time L∞ norm of the Strouhal coefficient, over
a time-window of 20 s, once the computations have converged to the statistically steady state.
For the flow simulation presented in Fig. 4.12, we obtain the following results:CdRef = 1.3993,
|ClRef|∞ = 0.323, and |StRef|∞ = 0.17498. These results agree with the experimental values
from the literature, such as those published in [79] for the same free stream conditions, and
serve as a reference solution henceforth.

The order of accuracy and the mesh convergence of the stabilization methods is demon-
strated by comparing the obtained numerical results and the reference values described before.
The meshes that are used to calculate the order of accuracy are also generated in terms of two
successive divisions, so that, computations are performed over three different P1 unstructured
meshes composed of h0 = 0.1 m and 3874 elements, h1 = 0.05 m and 14008 elements, and
h2 = 0.025 m and 54884 elements, respectively. The time integration order is k = 2 for all
cases with a constant time step size of δt = 0.1 s.

89

90 Chapter 4. Approximation of the compressible Navier-Stokes equations in primitive variables

Figure 4.13: Time history of drag and lift coefficients for the flow past a cylinder at M = 0.001.
Lift and drag results are calculated with an unstructured mesh containing P1 elements of h =
0.001 m size.

The calculated non-dimensional coefficients are presented in Table 4.2 for the different
VMS definitions. We compare the results obtained including the dynamic definition of sub-
scales, against the quasi-static subscales, by fixing the space where the subscales live as the
orthogonal projection to the finite element space (OSGS). As explained in Section 4.3, the
dynamic subscales take into account the temporal derivative of the subscales. It can be ob-
served that the dynamic subscales are the most accurate, which exhibit a higher order of accu-
racy than the quasi-static subscales. In this sense, it is demonstrated that the approximation of
the dynamic stabilization operator defined in Eq. (4.42) is adequate in the low Mach number
condition, stabilizing the numerical approximation and improving the accuracy of the varia-
tional method. We also test the difference between the accuracy of the method using algebraic
(ASGS) and orthogonal subscales, by intentionally defining the subscales as dynamic. In this
case, defining the space where the subscales live as the orthogonal to the finite space yields
better results for the drag coefficient, but very similar results for the lift and the Strouhal num-
ber. No substantial difference in the results has been obtained when the subscales are taken
into account in the nonlinear terms of the equations (values not reported).

4.4.3.2 Low Mach number limit

In this second part of the flow past a cylinder example, we compare the results obtained by
the compressible stabilized formulation with those obtained by the incompressible one. We
address the differences in the solution given by both formulations by decreasing the compress-
ibility of the flow from the subsonic to the nearly incompressible regime. For this, we calculate
the difference between the integral non-dimensional coefficients obtained by the compressible
flow solver at free-stream Mach numbers of 0.001, 0.01, 0.1, 0.2, and 0.5, and those obtained
by the incompressible solver (introduced in [46]). The same VMS method is used for both
solvers. More specifically, we define the subscales as algebraic, quasi-static and linear, and use
the h = 0.025 m mesh defined in the previous convergence analysis.

Figure 4.14 shows the difference between the non-dimensional coefficients obtained by

90

4.4. Numerical examples 91

Table 4.2: Flow past a cylinder at M = 0.001 results.
OSGS ASGS

Quasi-static Dynamic Dynamic

Time average of Cd
CdRef = 1.3993

h = 0.1 1.2185 1.2401 1.1716
h = 0.05 1.2488 1.2746 1.2393
h = 0.025 1.2933 1.2924 1.2722

Time L∞ norm of Cl
|ClRef|∞ = 0.323

h = 0.1 0.0006 0.0170 0.0260
h = 0.05 0.1154 0.1258 0.1189
h = 0.025 0.1294 0.1344 0.1346

Time L∞ norm of St
|StRef|∞ = 0.17498

h = 0.1 0.1250 0.1250 0.1250
h = 0.05 0.1333 0.1333 0.1333
h = 0.025 0.1538 0.1538 0.1538

Figure 4.14: Flow past a cylinder results compared to the incompressible solution.

the incompressible solver and the ones obtained by the compressible formulation as a function
of the free-stream Mach number. The difference between the compressible and incompress-
ible solutions with respect to the time-averaged drag coefficient scales as the square of the
Mach number. It also can be observed that the calculation of the time L∞ norm of the non-
dimensional lift coefficient is sensible to the mesh definition, and the difference with respect
to the incompressible solution decreases with the Mach number. The difference in the Strouhal
number is maintained constant for the range of the evaluated Mach numbers.

4.4.3.3 Aeolian tones

The last part of this numerical example demonstrates the ability of the compressible solver
to deal with aeroacoustic problems at low Mach number conditions. We exploit the fact that
the strong vortices at the wake of the cylinder cause a perturbation of the pressure field which

91

92 Chapter 4. Approximation of the compressible Navier-Stokes equations in primitive variables

(a) (b)

Figure 4.15: Aeolian tones: instantaneous pressure contour in the far field. Two different, (a)
and (b), times of the vortex shedding cycle. Relative values of pressure are depicted within a
limited range of values.

is propagated in the form of sound waves to the far field. We adjust the problem conditions
to Re = 1000 and M = 0.0583 in order to be able to benchmark the obtained aeroacoustic
solution with referenced acoustic simulations. A big portion of the radiated acoustic field is
solved with a computational domain that extends 750 times the diameter of the cylinder in
each Cartesian direction. The domain is discretized using an unstructured mesh composed of
9293 Q2 elements, with an element size of ∼ 0.03D at the cylinder surface and ∼ 150D at the
external boundaries.

The minimization of the incident wave reflection at the boundaries is mandatory to avoid
spurious waves that affect the wake structure. In this case, a square computational domain is
used with the incident waves impinging the boundaries at different oblique angles, so that the
non-reflecting boundary conditions are tested. We set the boundary conditions as follows: we
fix velocity and temperature for the inlet left-most boundary, while the non-reflecting subsonic
boundary condition is solved for the pressure. The non-reflecting subsonic outlet is set for the
rest of the external boundaries. For modeling the non-reflecting subsonic outlet with Eq. (4.22)
we fix the pressure relaxation parameter to σ = 20, the wave characteristic length-scale to l =
0.3D, and the unperturbed value for pressure as p∗∞ = 0. The weak condition (4.44) - (4.45) is
enforced in every non-reflecting boundary by setting the numerical parameter η0 = 10−3, for
which we have found good convergence of the numerical method.

The implicit solution of the non-reflecting boundaries allows to set a time step size
δt = 0.01 s, that is only restricted to completely describe the aeroacoustic signal. The simu-
lation is computed using the orthogonal, dynamic and non-linear subscales until the statistical
stationary state is reached at about t = 200 s. A depiction of the developed flow is presented
in Fig. 4.15 for two different times of the vortex shedding cycle. In this sense, we accomplish
the direct simulation of the acoustic pressure propagation in the Aeolian tones problem us-
ing the stabilized compressible formulation. Typically, for far-field fluctuations, three orders
of magnitude smaller than near-field fluctuations, the accurate resolution of acoustic fields
requires grids containing up to hundred thousands elements. In this case, we can accurately
approximate the scattered pressure wave using only 9293 elements in the mesh. Moreover,
in our (direct numerical) solution we can observe that the wake structure of the flow is not

92

4.4. Numerical examples 93

-0.008

-0.006

-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0.008

 0 20 40 60 80 100

p

x2

Figure 4.16: Aeolian tones: instantaneous pressure along the positive x2 direction from the
center of the cylinder. Present results are indicated using a solid line. Reference results [89]
are denoted with a dashed line.

affected by reflections coming from the artificial computational boundaries, and therefore the
non-reflecting boundary conditions exhibit the ability to damp the propagated sound waves
and the wake vortices that cross the outflow. In the case of low Mach number flows the char-
acteristic wave approach leads to indistinguishable pressure reflections and distortions at the
computational boundaries. At the domain corners, where the waves impinge transversely, the
wave is annihilated and no spurious instabilities occur. Although the inlet boundary does not
completely damp the pressure wave, and some pile-up is present near the boundary, we have
observed that this effect is negligible and does not affect the upstream propagation of sound
waves. The inclusion of non-reflecting boundary conditions is crucial in this problem, in which
reflections at the boundaries develop oscillations and instabilities at the computational bound-
aries that end affecting the simulation.

The plot of the pressure wave along the positive x2 direction is depicted in Fig. 4.16 for
the same instant of the vortex shedding cycle. A reference solution that was reported in [89]
is also included in the plot. In order to test the method, we use the same type of elements and
element size, ranging from∼ 3×10−3D near the cylinder surface to∼ 30D at the far field, that
was reported in the reference solution. Even though the reference sound wave was obtained
in that previous work by applying Lighthill’s acoustic analogy over the incompressible flow
solution, we observe that the acoustic wave propagation corresponds well in both simulations:
the frequency and the amplitude of the radiated sound match the vortex shedding, and the
dissipation of the wave is in agreement with the reference solution.

4.4.4 Flow past an open cavity
As a final numerical example, the flow past an open cavity problem at high Reynolds number
is simulated. This is a challenging aeroacoustic problem that has been solved in [117–119].
The problem definition is an infinitely long rectangular cavity, of aspect ratio two, with length
L = 0.0518 m and depth D = 0.0254 m, that is commonly placed in a Cartesian domain that

93

94 Chapter 4. Approximation of the compressible Navier-Stokes equations in primitive variables

Figure 4.17: Unstructured mesh used in the flow past an open cavity example containing 9520
total Q2 elements.

extends vertically upward from the cavity, and horizontally at each side of the cavity, so that
a portion of the radiated acoustic field is solved. The Cartesian distribution of the domain is
typically used for finite-difference solvers. Instead, our compressible flow solver is capable
of using unstructured meshes corresponding to complex geometries, and also to include high
order interpolations. In this sense, we solve this problem using a curved far-field boundary,
which is sufficiently apart from the cavity, so that a portion of the radiated acoustic field can be
resolved. The curvature of the far-field boundary is designed to allow for normal impinging of
the scattered sound waves. Setting the origin at the top-center of the cavity, the outer boundary
is defined by the circumference that passes through the points (7D, 0), (−7D, 0), and (0, 8D).
For this problem, we consider the M = 0.6 Mach number condition of the free stream flow, and
a Re = 41000 Reynolds number condition (based on the cavity depth) that has been studied
by several authors. We set the sound speed to 408 m/s, the free stream air temperature to 408
K, and the pressure to 1.38 atm in order to accomplish the compressible condition with a free
stream velocity of (245, 0) m/s. The Reynolds and Prandtl numbers, on the other hand, impose
a free stream density of 1.16 kg/m3, a dynamic viscosity of 1.76×10−4 kg/(m s), and a thermal
conductivity of 0.25 kW/(m K).

The accurate simulation of the acoustic radiation of the cavity is tightly connected with
the definition of the boundaries: because the cavity walls are treated as non slip, impermeable,
and isothermal (given by the free stream flow temperature), and as the flow is injected at
the left-most side of the curved boundary, a thick boundary layer is generated when the flow
passes through the lower non-slip wall. The interaction of the flow disturbances inside the
cavity and the upstream boundary layer is the main hydrodynamic feedback mechanism in
charge of producing the flow-acoustic interaction. Setting accurately the non-reflecting far
field boundaries is crucial to assure that wave reflections do not produce further disturbances
to the upstream boundary layer, neither to the flow inside the cavity. The non-reflecting outlet
coefficients are set to σ = 1, and l = 2D, with the numerical parameter for the weak implicit
solution set to η0 = 10−2. Simulations are performed on the structured mesh depicted in
Fig. 4.17 composed of 9520 bilinear quadrilateral elements using the orthogonal, dynamic and

94

4.4. Numerical examples 95

0 0.5 1 1.5 2 2.5 3
-20

-18

-16

-14

-12

-10

-8

-6

Frequency, fL/U

lo
g
(v

/U
)

Present Slope = - 4.21

Reference Slope = - 4.43

Figure 4.18: Flow past an open cavity: normalized spectrum of the scaled x2−component of
velocity at (1.57D, 0).

non-linear subscales definition for the compressible solver.
The fluctuating character of the flow can be seen in Fig. 4.18, in which the normalized

spectrum of the scaled x2−component of velocity at the point (1.57D, 0) is presented. The
frequency in this plot is normalized with respect to the cavity length and the free stream flow
velocity. As reported in previous Direct Numerical Simulations (DNS) [117, 118], the present
simulation of the flow field is characterized by the circular rolling of vorticity inside the cavity
and its unstable impingement over the downstream edge of the cavity. This can be observed as
the low-frequency modes in the spectrum correspond to the large-scale vortex frequencies. The
development of the vorticity is produced by singular pressure points located at the top corners
of the cavity walls (generated by the boundary layer and the steady flow inside the cavity).
For the fully developed flow, the flow-acoustic interaction triggers a highly chaotic behavior
inside the cavity. Although turbulence is inherently a three-dimensional phenomena, here we
refer to the chaotic character of the flow meaning that the flow is unstable and that the flow is
composed of very different and active frequencies, as depicted in the spectrum.

The spectrum of Fig. 4.18 is also characterized by a cascade that is similar to that en-
countered in fluid flow turbulence, containing a range that behaves as (fL/U)−4.2. This decay
corresponds with the one obtained by the DNS solution in [117] using a sixth-order accurate
finite difference solver with half a million grid points. The two lower peaks are also reported in
[117]: one at around fL/U = 0.4, and another at fL/U = 0.7. In this sense, we observe that
low-frequency modes correspond well in both simulations to the vortex shedding frequencies
and that the present simulation is able to represent the scales of sound using a grid that is two
orders of magnitude smaller than the benchmark simulation. The frequency peak reported by
[120] for the acoustic radiation measurement using an experimental setting for the same prob-
lem definition is fL/U = 0.8, which is higher than the present simulation results mainly due
to three-dimensional effects.

95

96 Chapter 4. Approximation of the compressible Navier-Stokes equations in primitive variables

(a) (b)

Figure 4.19: Flow past an open cavity comparison: (a) Schlieren photographs [120] at M =
0.64, (b) instantaneous contour of the pressure field at M = 0.6.

Scattering of acoustic waves can be visualized and compared in Fig. 4.19. In this figure
we depict the instantaneous pressure contour obtained in the present simulation, in contrast
to the photograph from [120] (depicted at the left side of the figure) showing the structure
of the radiated field. There is a qualitative agreement between the present simulation and the
experimental setting: visual comparisons of the scattered pressure waves coincide. The sound
generated in those pressure waves is involved with the mixing and the non-linear interaction
between the very different scales, and consequently, for mesh sizes that cannot resolve all the
flow scales (such as the mesh of Fig. 4.17), the production of sound demonstrates a strong
sensitivity to the amount of diffusion given by the numerical method [121]. In this sense,
the accurate definition of the sound waves given in the present simulation relies only on the
numerical diffusion given the VMS stabilization method, without any modification of the con-
tinuous problem or the inclusion of any turbulence model for the subgrid scales. This kind
of approximation has been recently related to the Implicit LES (ILES) methods [47], which
accurately represent the underlying turbulent behavior by the addition of dissipative numerical
terms solely, even if the mesh is not too fine to resolve the majority of the flow scales.

It is also important to note that the curved far field boundary does not affect the solution
as it damps completely the reflection of the sound wave. The pressure scattering shown in
Fig. 4.19 is mainly a combination of direct and reflected acoustic waves, and this agreement
cannot be achieved without the use of non-reflecting boundary conditions (or with the inclusion
of some damping technique). Spurious oscillations, that lead to instabilities in the flow, also
appear in this highly non-linear aeroacoustic problem if some reflection of waves occur. In this
sense, we obtain accurate results for a grid size which is composed only by 9520 elements,
by applying an accurate approximation of the compressible Navier-Stokes equations and the
numerical strategy for damping wave reflections at the computational boundaries.

96

4.5. Conclusions 97

4.5 Conclusions
In this chapter, a finite element approximation of the compressible Navier-Stokes equations
written in primitive variables has been developed. From the numerical point of view, the com-
pressible model has been approximated by a stabilized VMS method, and an implicit scheme
has been used to advance in time. Some other ingredients, such as the orthogonal, dynamic
and non-linear definition of the subscales, and the weak imposition of non-reflecting boundary
conditions for simulating aeroacoustic flows, have been investigated. In particular, the design
of the static and transient stabilization matrix, and the decomposition of the pressure and tem-
perature unknowns into a relative and a reference part allow solving nearly incompressible
cases.

The accuracy of the method with the mesh size has been verified for two- and three-
dimensional linear elements, as well as for two-dimensional quadratic elements, using steady
and low Mach manufactured solutions. The differential heated cavity problem and the flow
past a cylinder problem have been used to test the accuracy of the method for dynamic cases.
It has been observed that including the temporal derivatives of the subscales, and defining the
space where the subscales live as the orthogonal to the finite element space, improve the ac-
curacy of the variational method. Finally, the possibility of directly computing the acoustic
pressure waves with the compressible Navier-Stokes equations has been validated with the
Aeolian tones problem and with the flow past an open cavity problem. Accurate simulations
of acoustic radiation have been obtained by solving directly the compressible Navier-Stokes
equations and damping wave reflections at the computational boundaries. The weak imposi-
tion of non-reflecting boundary conditions allows for the free propagation of acoustic waves
within the implicit time stepping scheme.

97

98 Chapter 4. Approximation of the compressible Navier-Stokes equations in primitive variables

98

Chapter 5

Global conservation restrictions of the
compressible Navier-Stokes equations
written in primitive variables

In this chapter, we apply the interpolation with restrictions concept to compensate the lack of
conservativity of the compressible Navier-Stokes equations written in primitive variables. The
main idea is to ensure the global conservation of mass, momentum, and total energy through
the solution of a small optimization problem on the primitive spatial solution. The optimization
problem arises from the enforcement of the conservative fluxes over the boundaries and of the
forces inside the domain, on a new globally conserved solution using Lagrange multipliers.

5.1 Introduction
The conservative form of hyperbolic equations is the form that admits physically meaningful
solutions when they develop discontinuities. This is due to the fact that the divergence of the
fluxes is balanced over any control volume, so that, the conservative property of quantities
holds even for local discontinuities of the solution. The compressible Navier-Stokes equa-
tions written in conservative form in the inviscid limit is a hyperbolic system that fulfills the
conservative character described before. Hyperbolic conservation laws often describe other en-
gineering problems; concretely: combustion, shallow waters, or magneto-hydrodynamics, are
described by hyperbolic systems in several space variables.

A rigorous analysis of the conservative character of numerical methods applied to the hy-
perbolic conservation laws began with the early work by Lax and Wendroff [122], where they
proved that every piece-wise continuous weak solution of the variational form of the hyper-
bolic conservation problem must satisfy the Rankine-Hugoniot relation across a line of discon-
tinuity, and therefore that, if a conservative numerical method converges, it does so to a weak
solution of the hyperbolic system. Another substantial contribution about hyperbolic conserva-
tion laws in several space variables, specifically in the case of the compressible Navier-Stokes
equations, was achieved in [4, 123], where it was demonstrated that jump discontinuities in so-
lutions follow characteristic hyper-surfaces up to an instant when the existence and structural
stability of discontinuous solutions transported through the characteristics deteriorate.

99

100 Chapter 5. Global conservation restrictions of the compressible Navier-Stokes equations

However, even for the conservative form of the compressible Navier-Stokes equations,
some numerical methods fail to guarantee the conservation of mass, momentum and total
energy: that is, for example, the case of discontinuous Galerkin approximations. Due to the
discontinuous function approximation of this method, flux terms are not uniquely defined at
the finite element interfaces, and the numerical conservation may degrade leading to wrong
shock strength and propagation speeds. To overcome this issue, several types of reconstruc-
tion schemes have raised. The literature of reconstruction schemes for the fluxes is too vast to
be surveyed here, but we refer to the local decomposition of the physical variables onto the
respective characteristic space in [124–126], where the characteristics are reconstructed and
projected back to the physical space, and the high-order accurate approximations to the Rie-
mann problem in [127], being the most used schemes in finite differences, finite volumes, and
discontinuous Galerkin methods.

A particular problem with the performance of the compressible flow solvers based on the
Navier-Stokes equations written in conservative form arises at low Mach flow regimes: at
these regimes, the numerical approximation can be inaccurate. But that is not the case for the
compressible flow solver based on the primitive variables formulation, which is accurate in the
zero Mach limit as it corresponds to the incompressible Navier-Stokes equations. Nevertheless,
when the divergence of the (convective and viscous) fluxes is written as a term involving the
spatial derivatives over the unknowns, the formulation may not admit physically meaningful
solutions in the case of discontinuities; this is due to the fact that the derivative of discon-
tinuous solutions is not defined. In other words, the conservative character of the system of
equations is modified and so, the solution of supersonic flow problems is degraded (in the case
of the primitive variables formulation of the compressible Navier-Stokes equations). There-
fore, for the compressible flow equations written in primitive variables, we want to enforce the
conservation of mass, conservation of momentum, and conservation of total energy.

The re-meshing strategy for flow problems in an Arbitrary Lagrangian Eulerian (ALE)
setting presented in [128], which enforces that the interpolated fields on a new mesh con-
serve relevant physical properties (like mass and kinetic energy), is the starting point towards
a concept that may allow correcting non-conservative flow solutions. The conservative cor-
rection was used in that original work to compensate a diffusive character of the standard
Lagrangian interpolations and was applied a posteriori by solving a small optimization prob-
lem with restrictions using Lagrange multipliers (based on [129]). The computational cost of
this methodology was negligible in contrast to the flow problem solution.

In this work, we extend the interpolation with restrictions idea to compensate the non-
conservative character of the compressible flow formulations based on primitive variables and
so, to guarantee the global conservation of physical quantities like mass, momentum, and total
energy. The objective of this correction is to allow the primitive variables formulation to ac-
curately solve jump discontinuities in the solution arising from supersonic regimes. As com-
mented before, this idea follows from the fact that solving the (cheap) global optimization
problem of conservative restrictions, may lead to the extension of the flow regimes in which
the primitive variables formulation is accurate, incurring in a negligible increment in the com-
putational cost.

One problem that arises is that the restriction must be satisfied over the variables of the
conservative formulation: the strong coupling between the compressible problem variables re-
quires the correction of the mass, momentum, and total energy. For the incompressible Navier-

100

5.2. Global conservation restrictions formulation 101

Stokes equations in [128] the conservation of relevant magnitudes only affected the velocity,
and therefore, restrictions were applied only to the interpolation of that physical quantity. In-
stead, the optimization problem with restrictions of the present formulation is applied sep-
arately to each component of the vector of conservative variables. The ideal approach would
consist in coupling the restrictions over all the variables of the compressible problem, so that, a
minimization of the overall distance between the calculated and the corrected conservative so-
lutions can be included. However, the construction of such a norm, with an appropriate scaling
between the different variables, is not straightforward.

The chapter is organized as follows. In Section 5.2, we present the concept of interpolation
with restrictions applied to the global conservative correction for the Navier-Stokes equations
written in primitive variables. First, we describe the conservation of mass, momentum, and
total energy provided by the compressible Navier-Stokes equations written in conservative
form. Then, we introduce the concept of interpolation with restrictions and apply the global
conservative restriction to the primitive variables solution. So that, in Section 5.3 we test the
numerical method for one- and two- dimensional applications, including inviscid and viscous
supersonic flows. Finally, we address some conclusions in Section 5.4.

5.2 Global conservation restrictions formulation
As commented before, it is readily known that the discrete compressible flow formulation writ-
ten in primitive variables, namely Y = (p,u, T)>, being the pressure p, the velocity u, and
the temperature T , is not conservative. The fact that some terms of the primitive formulation
(i.e., the convective fluxes), are not equal to the ones of the conservative variables formula-
tion, arises from the existence of spatial derivatives applied to the primitive variables solution.
In the case of supersonic shocks, chemical reactions, or sharp interfaces between different
flows, a discontinuity in the solution appears, and those derivatives become undefined with the
consequent deterioration of the physical quantities.

5.2.1 Conservation of quantities
Let us first recall the conservative variables formulation of the compressible Navier-Stokes
equations (presented in Chapter 3). We define the time interval (0, tf) and the domain Ω ⊂
Rd, being d the number of space dimensions (d = 2 or 3). Let t ∈ (0, tf) be a given time
instant in the temporal domain, and x ∈ Ω a given point in the spatial domain. Let Γ be the
boundary of the domain Ω, and n the geometric unit outward normal vector on Γ. Using the
usual summation convention of the indices running from 1 to d, the conservation of mass,
momentum, and total energy given by the conservative form of the compressible equations in
(3.6) can be written in system form as

d

dt

∫
Ω

U (Y) dΩ =−
∫

Γ

njQj (U (Y)) dΓ +

∫
Ω

F dΩ. (5.1)

For conciseness, here we have defined the conserved quantities, which are the so-called con-
servative variables U = (ρ,m, etot)

>, that can be calculated from the primitive variables (if
wished); indeed, ρ is the density,m = ρu is the momentum, and etot is the total energy which

101

102 Chapter 5. Global conservation restrictions of the compressible Navier-Stokes equations

is defined as etot = ρ (e+ u · u/2), where u is the velocity and e is the internal energy. In the
previous equation, the total fluxes across the boundary are defined as

Qj (U (Y)) = Ej (U (Y)) +Gj (U (Y)) ,

with Ej denoting the convective fluxes in the j−th direction, and Gj as the diffusive fluxes,
also in the j−th direction. The forces are defined in vector form using the notation F .

Let us now introduce the discretization of time. We partition the time interval (0, tf) in a
sequence of discrete time steps 0 = t0 < t1 < ... < tN = tf , with δt > 0 the time step size,
being tn+1 = tn + δt for n = 0, 1, 2, ..., N . Following the Fundamental Theorem of Calculus,
the integration of (5.1) in the time interval (tn, tn+1) implies that the conservative variables at
tn+1 satisfy ∫ tn+1

tn

d

dt

∫
Ω

U (Y) dΩ dt =

∫
Ω

U
(
Y tn+1

)
dΩ−

∫
Ω

U
(
Y tn

)
dΩ. (5.2)

Therefore, equation (5.1) can be written as∫
Ω

U
(
Y tn+1

)
dΩ−

∫
Ω

U
(
Y tn

)
dΩ =−

∫ tn+1

tn

∫
Γ

njQj (U (Y)) dΓ dt

+

∫ tn+1

tn

∫
Ω

F dΩ dt. (5.3)

The previous equation is only subject to the temporal integration scheme. In this work we
integrate in the discrete time step the right-hand-side of the previous equation by using the
family of Adams-Bashforth methods of order k = 1, 2, .., given by∫

Ω

U
(
Y n+1

)
dΩ =

∫
Ω

U (Y n) dΩ− δt
k−1∑
s=0

ξks

∫
Γ

njQj

(
U
(
Y n−s)) dΓ

+ δt

k−1∑
s=0

ξks

∫
Ω

F n−s dΩ +O
(
δtk+1

)
(5.4)

where ξks are numerical parameters depending on the scheme. Specifically, the first order
approximation k = 1 leads to the scheme with ξ10 = 1. The second order k = 2 method is
obtained with ξ20 = 3/2, and ξ21 = −1/2 coefficients.

5.2.2 Restrictions
Now, we describe the restrictions concept at an abstract level. Suppose a solution ûh of a finite
element problem that is defined in the functional space Vh over the finite element partition
Th = {K}. This solution is intended to satisfy two important features:

• It must remain the nearest solution in the L2−norm to a solution uh, being uh, for ex-
ample, the calculated non-conservative solution.

• It must fulfill the conservation of a set of quantities. For example, it must globally con-
serve the physical quantities involved in the solution uh of a previous time step.

102

5.2. Global conservation restrictions formulation 103

For imposing the second feature, let us define the restriction operators (or forms). When
applied to the finite element functions, these operators give a scalar result corresponding to a
relevant magnitude of the physical problem being calculated. We write them as

Rk : Vh −→ R, (5.5)

where the subindex k = 1, ...,m refers to a restriction counter. The linear type of operators Rk

can be written in terms of their nodal values, so that

Rk(uh) =
∑
a

Ra
kU

a,

where Ua denotes the nodal values associated to uh, and Ra
k = Rk(N

a) are the nodal values of
the restrictions, being Na the shape functions of Th. In the previous relation, the superscript a
refers to the nodes and runs from 1 to the number of nodes of the mesh.

Since it has been stated that the restriction consists in conserving values of these selected
magnitudes, the following equalities must hold:∑

a

Ra
kÛ

a =
∑
b

Rb
kU

b, k = 1, . . . ,m, (5.6)

where Ûa denotes the nodal values associated to ûh. Then, the restrictions can be enforced
through Lagrange multipliers λ = (λ1, . . . , λm) ∈ Rm and the following functional L : Vh ×
Rm −→ R can be defined:

L(vh,µ) =
1

2

∥∥∥∥∥∑
a

Na
2 (Va − Ua)

∥∥∥∥∥
2

L2(Ω)

−
m∑
k=1

µk

(∑
a

Ra
kV

a −
∑
b

Rb
kU

b

)
, (5.7)

where Va are the nodal values of vh, µ ∈ Rm is an admissible set of Lagrange multipliers, and
the subscript in the norm indicates that it is the L2(Ω)−norm. The solution that minimizes the
distance to uh, and imposes the restrictions, will be:

[ûh,λ] = arg inf
vh∈Vh

sup
µ∈Rm

[L (vh,µ)] . (5.8)

The previous problem is a saddle point problem. A necessary and sufficient condition for
it to be well posed is that the finite element space Vh and Rm satisfy the appropriate inf-sup
condition. This, in particular, restricts the number of Lagrange multipliers. However, since the
number of restrictions m is usually very small, no stability problems are expected.

The equations to be solved are obtained by differentiation of the functional L with respect
to the unknowns:

∂L

∂Vb
= 0 =⇒

∑
a

∫
Ω

N bNaÛa −
m∑
i=1

λkR
b
k =

∑
a

∫
Ω

N bNaUa, for all b, (5.9)

∂L

∂µk
= 0 =⇒

∑
a

Ra
kÛ

a =
∑
b

Rb
kU

b, for all k. (5.10)

103

104 Chapter 5. Global conservation restrictions of the compressible Navier-Stokes equations

5.2.3 Conservation restrictions
The formulation presented in the previous paragraphs is now extended to the conservation
problem of the compressible Navier-Stokes equations written in primitive variables.

As the main hypothesis of the method, we suppose that a conservative solution U is given
for the compressible flow problem. Most of the cases this solution is given in the form of an
initial condition.

Say that we obtain a primitive solution Y n+1
h at time step n+ 1, which has been computed

with the compressible Navier-Stokes equations written in primitive variables.
We can calculate a discrete version of Un+1

h from the primitive solution Un+1
h =

Un+1
h (Y n+1

h), but it is clear that this solution does not hold the conservative properties in-
herent to the conservative variables formulation.

Following the same notation as before, and denoting Û
n+1

h as the corrected solution of
Un+1
h on Th, a correction of the i−th component of the calculated solution might consist in the

minimization of the functional (5.7) subject to the conservation restrictions. In other words, the
objective is to construct a Ûn+1

h,i , an approximation to Un+1
h,i , satisfying the minimization of the

distance in theL2−norm, and subject to the conservation properties of the (actual) conservative
solution Un

h,i at the previous time step n. The conservation restriction that is applied to Un+1
h,i

can be written as,∫
Ω

Ûn+1
h,i dΩ =

∫
Ω

Un
h,i dΩ− δt

k−1∑
s=0

ξks

∫
Γ

[
njQj

(
Un−s
h

)]
i
dΓ

+ δt
k−1∑
s=0

ξks

∫
Ω

F n−s
i dΩ, (5.11)

for all i = 1, ..., d+ 2.
Denoting by Uai the corresponding nodal values of the i−th variable, and assuming a stan-

dard Lagrangian interpolation, we write the calculated solution as Un+1
h,i =

∑
aN

aUa,n+1
i , and

the corrected solution as Ûn+1
h,i =

∑
aN

aÛa,n+1
i , for all i = 1, ..., d+ 2.

Let λi, i = 1, ..., d + 2, be the Lagrange multipliers vector to enforce the conservative
variables in (5.11). In this case, the Lagrangian functional to be minimized is given by

Li

(
Ûn+1
h,i , λi

)
=

1

2

∫
Ω

(∑
a

Na
(
Ûa,n+1
i − Ua,n+1

i

))2

dΩ

− λi
∫

Ω

(∑
a

Na
(
Ûa,n+1
i − Ua,ni

))
dΩ

+ λiδt

k−1∑
s=0

ξks

∫
Γ

[
d∑
j=1

njQj

(
Un−s
h

)]
i

dΓ

− λiδt
k−1∑
s=0

ξks

∫
Ω

F n−s
i dΩ, (5.12)

for all i = 1, ..., d+ 2.

104

5.2. Global conservation restrictions formulation 105

The derivatives of Lwith respect to the nodal unknowns and the Lagrange multipliers must
be now calculated to obtain the optimality conditions. The optimality conditions for this case
are

∂Li

∂Ûb,n+1
i

= 0, and
∂Li
∂λi

= 0. (5.13)

In the following development, we seek for the solution for each optimality condition. The
first optimality condition gives for each i−th component, ranging from 1 to d+ 2, as∫

Ω

∑
a

N bNaÛa,n+1
i dΩ− λi

∫
Ω

N b dΩ =

∫
Ω

∑
a

N bNaUa,n+1
i dΩ, (5.14)

for all nodes b. Whereas, the second optimality condition reads for each one of those i−th
components:∫

Ω

∑
a

NaÛa,n+1
i dΩ =

∫
Ω

∑
a

NaUa,ni dΩ

+ δt
k−1∑
s=0

ξks

∫
Γ

[
d∑
j=1

njQj

(
Un−s
h

)]
i

dΓ− δt
k−1∑
s=0

ξks

∫
Ω

F n−s
i dΩ. (5.15)

Using the bold notation as a short hand notation for the nodal arrays, these two equations can
be arranged into the following algebraic system for each i−th component:[

M −R>i
Ri 0

][
Û
n+1

i

λi

]
=

[
MUn+1

i

RiU
n
i + δt

∑k−1
s=0 ξksT

n−s
i

]
(5.16)

where M is the mass matrix, Ri stands for the restriction in the left-hand-side of (5.15), and
Tn−s
i comes from the integration of the fluxes and forces in (5.15). We can avoid solving the

full linear system by writing the Schur complement problem for the Lagrange multiplier, and
later computing the nodal values Û

n+1

i :

RiM
−1R>i λi =RiU

n
i + δt

k−1∑
s=0

ξksT
n−s
i −RiU

n+1
i (5.17)

Û
n+1

i =Un+1
i + M−1R>i λi (5.18)

Equation (5.17) is a scalar equation, with the only difficulty of calculating M−1.
Finally, we can recover a conserved primitive solution Ŷ

n+1

h computed from the restricted
solution Û

n+1

h in (5.18), which can be used to advance in time with the primitive variables
compressible Navier-Stokes formulation. The restricted solution, satisfying the global conser-
vation of physical quantities, is supposed as the conservative solution at the next time step (in
this numerical technique).

105

106 Chapter 5. Global conservation restrictions of the compressible Navier-Stokes equations

5.3 Numerical examples
The previously exposed numerical methodology is tested in this section. We first solve a one-
dimensional inviscid shock tube that makes it possible to compare the obtained results against
exact solutions. Then, we solve the two-dimensional inviscid shock reflection problem. Finally,
we investigate the effect of the conservation restriction solving the viscous supersonic flow past
a compression corner.

In the following numerical examples the flow is considered as an ideal gas, with a com-
pressibility condition of γ = 1.4, and physical properties cp = 1.010 kJ/(kg K) and cv = 0.718
kJ/(kg K).

5.3.1 One-dimensional shock tube
The spatial domain for the transient one-dimensional problem is x ∈ [0, 1] m. The initial con-
dition is set as follows: two different uniform states for the fluid are separated by a diaphragm
at 0.5 m. The flow is initially at rest u(x, t = 0) = 0 m/s. At the left part of the diaphragm
the fluid has an uniform density ρL = 1 kg/m3, a temperature of TL = 3.481× 10−3 K, and a
pressure of PL = 1 Pa. At the right part of the diaphragm, the fluid initiates with an uniform
density ρR = 0.125 kg/m3, a temperature TR = 2.785× 10−3 K, and a pressure PR = 0.1 Pa.
The time interval to be analyzed finishes when the fluid expansion affects the boundary condi-
tions at x = 0 m and x = 1 m. Specifically, the results are reported at t = 0.2 s of simulation.
The mesh used in the simulations has a fixed size of h = 0.01 m.

Figure 5.1 shows the results for the conservative variables, primitive variables, and prim-
itive variables with conservation restrictions formulations at t = 0.2 s. It can be observed
that the solution obtained with the conservative variables formulation matches accurately the
exact solution. As expected, the propagation of the initial shock cannot be described by the
compressible Navier-Stokes formulation in primitive variables. We observe that the corrected
solution is wrong, matching the primitive variables solution in almost the entire domain, except
for the boundaries. The global conservation given by the proposed method is not able to correct
the wrong solution given by the primitive variables formulation. We can conclude that neither
the primitive variables formulation nor the primitive solution coupled with the conservation
restrictions is accurate.

We further investigate the amount of correction given by the conservation restrictions
methodology for each primitive variable at the final time step. This is displayed in Fig. 5.2,
where we observe that, although the correction is following the propagation of the flow, it is
adding a very small quantity to the primitive variables solution. We see that most of the correc-
tion is taking place near the boundaries, where the conserved solution seems to give a slightly
better approximation than the primitive variables solution alone.

We also present the global amount of correction in Table 5.1, where the global quantities
are written for the reference conservative solutionUn

h, the solution obtained with the primitive
variables formulation Un+1

h , and the conserved solution after the conservation restriction is
applied Û

n+1

h . We can conclude that the restriction actually corrects in a global sense the
physical quantities, but it is clear that this global correction is not enough to improve the
primitive formulation accuracy in the case of inviscid flows with supersonic shocks.

106

5.3. Numerical examples 107

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.2 0.4 0.6 0.8 1

Analytical
Conservatives

Primitives
Restriction

(a)

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 0.2 0.4 0.6 0.8 1

Analytical
Conservatives

Primitives
Restriction

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

Analytical
Conservatives

Primitives
Restriction

(c)

Figure 5.1: One-dimensional shock tube results: (a) density, (b) momentum, and (c) total en-
ergy at 0.2 s.

-0.0002

-0.00018

-0.00016

-0.00014

-0.00012

-0.0001

-8e-05

-6e-05

-4e-05

-2e-05

 0

 2e-05

 0 0.2 0.4 0.6 0.8 1

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

 0 0.2 0.4 0.6 0.8 1

-6e-06

-5e-06

-4e-06

-3e-06

-2e-06

-1e-06

 0

 0 0.2 0.4 0.6 0.8 1

Figure 5.2: One-dimensional shock tube results. Correction of pressure (left), velocity (mid-
dle), and temperature (right) at 0, 2 s.

Table 5.1: One-dimensional shock tube results.
Component

∫
Ω
Un
h dΩ

∫
Ω
Un+1
h dΩ

∫
Ω
Û
n+1

h dΩ
ρ 5.590647× 10−2 5.590786× 10−2 5.590647× 10−2

m 1.802556× 10−2 1.802478× 10−2 1.802556× 10−2

etot 0.141177 0.141245 0.141177

5.3.2 Supersonic inviscid shock reflection
The supersonic reflected shock problem is another inviscid supersonic problem in which
the conservation restrictions formulation can be tested. The problem domain is [0, L] ×

107

108 Chapter 5. Global conservation restrictions of the compressible Navier-Stokes equations

(a)

(b)

(c)

Figure 5.3: Inviscid shock reflection results. Velocity magnitude contour solved with the (a)
conservative variables formulation, (b) primitive variables formulation, and (d) conservation
restrictions of the primitive variables formulation.

[−H/2, H/2], with L = 4.1 m and H = 0.5 m. The flow is injected from the left and up-
per walls. Over the inlet left wall the Mach number is set to M = 3, hence, fixed values of
velocity (2.9, 0) m/s, pressure 0.7212 Pa and temperature 0.00247 K are set. Over the upper
inlet wall the Mach number is M = 2.378, thus, fixed values of velocity (2.6193,−0.5063)
m/s, pressure 1.543 Pa and temperature 0.00311 K are also set. A slip condition for the veloc-
ity and an adiabatic condition for energy are set to the lower wall. Over the outflow wall, no
conditions need to be imposed because the flow is supersonic. The values of viscosity and con-
ductivity are zero. All simulations are run in a structured mesh composed of 3280 P1 elements
until the steady state is reached.

Figure 5.3 displays the steady velocity magnitude solution obtained with the conservative
variables formulation, which has been also benchmarked against the reference solutions in [73,
79, 82, 83]. In that figure, we also present the velocity magnitude solution obtained with the
primitive variables formulation, and with the conservation restrictions method. We can observe
a correct description of the main shock given by the primitive variables formulation, with a
slight deterioration in the solution produced by an unrealistic transverse shock. In this sense,
we ratify for this two-dimensional inviscid case, that the conservation restrictions method is
not enough to improve the ability of the primitive variables formulation to solve supersonic
shocks.

The conservation enforcement for each primitive variable can be appreciated in Fig. 5.4,
in which the contours of each correction are plotted. Since no diffusive fluxes occur for this
inviscid case, the correction is only related to the convective fluxes. We can appreciate in
this numerical example that, although the correction is acting mostly at the inlet and outlet
boundaries and not over the solid bottom boundary (corresponding to the convective fluxes), a
very small quantity of correction is attained in general.

108

5.3. Numerical examples 109

(a)

(b)

(c)

Figure 5.4: Inviscid shock reflection results. Correction for (a) pressure, (b) velocity magni-
tude, and (c) temperature.

5.3.3 Supersonic flow over a compression corner
As a final numerical example, we solve the 10◦ compression corner at M = 3 and Re = 16800,
being a supersonic viscous flow problem that also involves the formation of a boundary layer.
The compression corner problem is described as follows. The leading edge of the corner is
placed at the origin and the vertex is located at (1, 0) m. The left inflow boundary is located
at (−0.2, x2) m, of the leading edge of the plate. Symmetry conditions are imposed for all
variables over the lower upstream wall (x1 < 0, x2 = 0) m. The upper boundary is located at
(x1, 0.575) m, and the exit boundary at (1.8, x2) m. All the flow variables are prescribed at the
inlet and upper boundaries. Those are: velocity (3, 0) m/s, density 1 kg/m3 and temperature
0.0024 K. On the corner edges, no-slip condition for velocity, a stagnation temperature for
energy and a zero flux condition for density are set. The stagnation temperature θ0/θ∞ =
1 + (γ − 1)M2/2, is calculated to be 0.007 K. At the outflow boundaries, free conditions are
set. Viscosity and conductivity are 1.7 × 10−4 kg/(m s) and 0.254 kJ/(m s K), respectively.
The finite element mesh consists of a structured non-symmetric mesh composed by 22914 P1

elements. All simulations are run until the steady state is reached.
Figure 5.5 shows the steady state results; we present the pressure, velocity magnitude, and

temperature contours obtained with the primitive variables formulation and with the conserva-
tion restrictions formulation. We identify the viscous boundary layer near the solid walls, the
supersonic shock forming at the upstream, and the compression shock, all of these described
by both formulations. In this case, we contrast the resulting contours against the conservative
solution by suggesting the conservative position for the supersonic shock. We observe that
the conservation restrictions method is able to slightly improve the solution, especially for the
temperature variable.

The amount of correction in this viscous case can be appreciated in Fig. 5.6, where it
is more evident that the correction is located near the non-slip walls. The correction for the

109

110 Chapter 5. Global conservation restrictions of the compressible Navier-Stokes equations

Figure 5.5: Viscid compression corner results. Top: pressure contour. Middle: velocity magni-
tude contour. Bottom: temperature contour. Solution is obtained using the primitives variables
formulation at the left, and the conservation restrictions for the primitive variables formulation
at the right.

pressure is carried out mainly near the flow boundaries. Instead, for velocity and temperature
variables the correction is mostly acting at the boundary layer, and near the supersonic outflow.
This is also the reason for which the temperature solution is slightly more accurate with the
conservation restrictions method.

Finally, for this numerical example, we also quantify the global correction and present it in
Table 5.2. Again, we observe that, even though the method is not able to improve the accuracy
of the primitive variables formulation, the conservation restrictions are indeed able to globally
impose the conservation of physical quantities; globally, the corrected solution Û

n+1

h satisfies
exactly the amount of physical quantities in the conservation solution Û

n

h.

Table 5.2: Viscid compression corner results.
Component

∫
Ω
Un
h dΩ

∫
Ω
Un+1
h dΩ

∫
Ω
Û
n+1

h dΩ
ρ 1.253810 1.253811 1.2538101
m1 3.619579 3.619564 3.619579
m2 0.14571269 0.14571267 0.14571269
etot 7.814908 7.814960 7.814908

5.4 Conclusions
In this chapter, we have applied global conservation restrictions to the compressible flow for-
mulation based on primitive variables. We have imposed the global conservation of mass,
momentum, and total energy, so that, a small optimization problem involving the primitive
solution and a conserved given solution must be solved. The main objective of this correction

110

5.4. Conclusions 111

Figure 5.6: Viscid compression corner results. Correction for pressure (top), velocity magni-
tude (middle), and temperature (bottom). The position of the conservative shock is depicted
with a solid line.

has been to allow the primitive variables formulation to accurately solve jump discontinuities
in the solution arising from supersonic regimes, but also to avoid a significant increment in the
computational cost accomplishing this objective.

Several numerical tests lead us to the conclusion that the present methodology actually
makes the global correction of the physical quantities, but that this global correction is not
enough to improve the primitive variables formulation accuracy in the case of supersonic
shocks.

Consequently, as a future work, we plan to extend this formulation in order to be able to
overcome the problems that we have encountered in the numerical tests. For this goal, we first
plan to test the introduction of a scaling matrix S, that may lead to dimensionally consistent
measurements, so that the functional can be written in terms of a scaled L2-norm of the type
‖U‖2

S =
∫

Ω
(U>SU) dΩ. This leads to the possibility of coupling the conservative variables

inside the minimization functional, so that, the Lagrangian functional may be given by

L
(
Û
n+1

h , λi

)
=

1

2

∥∥∥∥∥∑
a

Na
(
Û
a,n+1

−Ua,n+1
)∥∥∥∥∥

2

S

−
d+2∑
i=1

λi

∫
Ω

(∑
a

Na
(
Ûa,n+1
i − Ua,ni

))
dΩ

+
d+2∑
i=1

k−1∑
s=0

λiδtξks

∫
∂Ω

[
d∑
j=1

njQj

(
Un−s
h

)]
i

dΓ

−
d+2∑
i=1

k−1∑
s=0

λiδtξks

∫
Ω

F n−s
i dΩ, (5.19)

111

112 Chapter 5. Global conservation restrictions of the compressible Navier-Stokes equations

for all λi = 1, ..., d+ 2.
Another possibility is to solve the coupled optimization problem (5.19) by directly using

the primitive variables. This can be calculated with the inclusion of the transient matrix A0,
which may lead to the Lagrangian functional of the form:

L
(
Ŷ

n+1

h , λi

)
=

1

2

∥∥∥∥∥∑
a

NaA0

(
Ŷ
a,n+1

− Ya,n+1
)∥∥∥∥∥

2

S

−
d+2∑
i=1

λi

∫
Ω

(∑
a

Na [A0]ij

(
Ŷa,n+1
j − Ya,nj

))
dΩ

+
d+2∑
i=1

k−1∑
s=0

λiδtξks

∫
∂Ω

[
d∑
j=1

njQj

(
Y n−s

h

)]
i

dΓ

−
d+2∑
i=1

k−1∑
s=0

λiδtξks

∫
Ω

F n−s
i dΩ, (5.20)

for all λi = 1, ..., d + 2, and denoting by Yai the corresponding nodal values of the i−th
primitive variable in the standard Lagrangian interpolation.

We hope that the coupled functional formulation may lead to an increased correction in the
conservative properties of the method, and thus, to the solution of the problems that we have
encountered in the present work.

112

Part II

113

Chapter 6

RefficientLib: An efficient
load-rebalanced adaptive mesh refinement
algorithm for high performance
computational physics meshes

In this chapter, a novel algorithm for adaptive mesh refinement in computational physics
meshes in a distributed memory parallel setting is presented. The proposed method is de-
veloped for nodally based parallel domain partitions where the nodes of the mesh belong to a
single processor, whereas the elements can belong to multiple processors.

Some of the main features of the algorithm are the capability to handle multiple types of el-
ements in two and three dimensions (triangular, quadrilateral, tetrahedral and hexahedral), the
small amount of required memory per processor and the parallel scalability up to thousands of
processors. The presented algorithm is also capable of dealing with non-balanced hierarchical
refinement, where multi refinement level jumps are possible between neighbor elements.

An algorithm for dealing with load-rebalancing is also presented, which allows moving the
hierarchical data structure between processors so that load unbalancing is kept below an ac-
ceptable level at all times during the simulation. A particular feature of the proposed algorithm
is that arbitrary renumbering algorithms can be used in the load rebalancing step, including
both graph partitioning and space filling renumbering algorithms.

The presented algorithm is packed in the Fortran 2003 object-oriented library
RefficientLib, whose interface calls which allow it to be used from any computational
physics code are summarized.

6.1 Introduction
Discretized partial differential equations are used to solve many types of practical problems
in engineering and physics. In some of these problems, the solution leads to a wide range
of spatial scales which spread over the computational domain. In these cases, the numerical
solution obtained with coarse meshes is often too inaccurate, but performing computations
using fine meshes is impractical considering the required computational effort. Adaptive Mesh

115

116 Chapter 6. RefficientLib: An efficient load-rebalanced adaptive mesh refinement algorithm

Refinement (AMR) methods deal with this issue by producing efficient meshes that are capable
of resolving a wide range of scales. These methods locally adjust the mesh to both improve
the solution and minimize the computational effort.

Development of parallel AMR methods is justified in order to solve problems that contain
a large number of unknowns, and which typically require the use of a huge amount of com-
putational resources. Parallelizing the refinement methods allows exploiting the calculation
capabilities provided by rapidly-evolving parallel computer clusters. However, parallelized re-
finement methods lead to a distributed mesh structure, which is complex because frequent data
access is necessary, and memory consumption is high. In addition, the dynamical evolution
of information during the adaptive mesh refinement constitutes another major challenge: it re-
quires a growing number of collective communication operations, and therefore it is not easily
scalable in massively parallel computers. Including the possibility to redistribute the workload
between processors in order to maximize the utilization of computational resources increases
even more the communications demand. Hence, efficient algorithms and data structures have
become the backbone of parallel AMR methods, and distributed collection of structures that
can be dynamically modified without requiring several global communications have been the
preferred designs.

The first approach to parallel AMR methods was block-structured methods. These methods
refine parallel meshes by using a single sequential mapping and therefore are not suitable for
complex geometries and non-structured meshes. Tree-based methods were an alternative to the
regularity imposed by the block-structured methods. Tree data structures, namely quadtrees
and octrees, are hierarchical data structures constructed with axis-aligned lines and planes.
These data structures are used for searching procedures because their hierarchical structure
reduces the complexity of the search. The first application of tree data structures algorithms
was in parallel domain decomposition and efficient partitioning of meshes (see for example
Campbell et. at.[130]). Later, data structures, balancing algorithms, and adaptive refinement
algorithms over distributed octree meshes were developed in [20, 21]. The etree library
[131] collected algorithms that addressed operations over an octree-based mesh in a database-
oriented framework. The code demonstrated good scalability and parallel efficiency. Further-
more, octree developments were implemented into Octor parallel meshing tool [132], which
could generate statical unstructured meshes on the processors, but also performed dynamically
refining during execution time. Scalability tests were addressed up to 62000 processors using
hexahedra and giving an overall good performance. Some multigrid solvers exploited the bal-
ancing and meshing algorithms for octree-based meshes, and were implemented in Dendro
software [133]. The code was scaled up to thousands of processors. Other applications and
multiple implementations based on octree data structures were developed by [134, 135], and
possessed good adaptivity and performance.

Instead of the quadrilateral and cubed shaped domains that were described by tree data
structures, a wider variety of geometries were described by forest-of-octrees based meshes.
This approach was first introduced into AMR methods with the deal.II software[24], but
the code replicated the global mesh into all processors, hence it limited the scalability to a few
processors. Fully distributed algorithms handling forest-of-octrees meshes were the following
step. Burstedde et. al. [136] worked in a dynamically AMR based on distributed forest-of-
octrees geometries. This was the first work that supported high-order discretizations and non-
Cartesian geometries, and lead to the encapsulation of algorithms into p4est library [25].

116

6.1. Introduction 117

Good strong and weak scaling results over 224000 cores were obtained for p4est working
as a parallel adaptive refinement library on meshes composed by quadrilateral and hexahedral
elements [137]. Later, Burstedde et. al. [22] focused on the balance structure, and proposed
a subtree balancing algorithm. Weak scaling times improved and required less memory than
previous balance algorithms in p4est.

In this chapter, we describe a general adaptive finite element framework for unstructured
meshes that has demonstrated suitable performance for large-scale parallel computations. The
algorithm currently focuses on h−refinement, the extension of the algorithm to h − p refine-
ment will be a matter of future work. Contrary to other parallel refinement algorithms, the
method we present here is developed for nodally based parallel domain partitions, that is, the
nodes of the mesh belong to a single processor, whereas elements can belong to multiple pro-
cessors if they own nodes belonging to different subdomains. These remote nodes over the set
of overlapping elements are called “ghost” points. This poses some challenges in the parallel
communications since neighboring parallel domains need to be kept updated. Hence, local el-
ements, points, edges, faces, and connectivities are stored in data structures that can be easily
accessed and modified. Refinement operations and load balancing procedures are handled over
these structures.

To our knowledge, LibMesh [23] was a similar approximation. However, because com-
pletely unstructured methods work at the cost of having to store explicitly the connectivities
of the mesh, the parallel partitioning scheme of LibMesh stored the whole mesh information
in each processor, and the associated overhead limited the scalability to a hundred processors.
Janson et. al. [138] also implemented a general adaptive finite element framework for un-
structured tetrahedral meshes without hanging nodes, which has been suitable for large-scale
parallel computations. These last-mentioned authors presented strong scaling results linear up
to a thousand processors for an incompressible flow solver. In contrast, the main contributions
of the proposed refinement framework are:

1. A hierarchical adaptive refinement algorithm for nodally-based partitions in distributed
memory machines is presented. The algorithm allows to successively refine and unrefine
computational meshes in order to adapt to the requirements of the simulation.

2. Our distributed structure handles two and three-dimensional unstructured meshes com-
posed of triangular, quadrilateral, tetrahedral and hexahedral elements. This approach is
capable of describing complex geometries and doing non-uniform refinements.

3. We propose a distributed scheme in which each processor stores only the local infor-
mation of the partitioned distributed mesh. This reduces the memory consumption and
allows scaling up to thousands of processors.

4. Our parallel refinement procedure is based on a hierarchical data structure for the refined
elements of the mesh, that we use to efficiently search neighboring elements at the inter-
processor level. A data structure containing parent and children pointers is used, where
new refinement levels are successively added to or subtracted from the computational
mesh.

5. Resulting meshes are non conforming with hanging nodes on sides where two levels of
refinement meet. Contrary to other adaptive refinement methods, the algorithm proposed

117

118 Chapter 6. RefficientLib: An efficient load-rebalanced adaptive mesh refinement algorithm

here does not enforce a balancing restriction in the refinement level of adjacent elements:
the jump in the refinement level between neighbor elements can be arbitrarily large.

6. For the parallel refinement process, the proposed algorithm deals with element and node
identification across processors by using a global element and global point identifier
structure. This ensures that the global numbering structure and general nodal and ele-
mental information can be transferred to all the neighboring processors in an efficient
manner.

7. To balance the processors’ load a dynamical parallel repartitioning framework that
changes the ownership of the mesh nodes when load unbalances reach a certain thresh-
old is used, and then it transfers the associated elements to the corresponding processors.
Contrary to other algorithms for load rebalancing in hierarchical adaptive mesh refine-
ment, the algorithm we propose is independent from the renumbering strategy of the load
rebalancing process. In particular, graph partitioning schemes and space-filling methods
for load rebalancing can both be used with the proposed algorithm.

The proposed algorithms are packed in an adaptive refinement library, which we call
RefficientLib. The calls to the library have been made as simple as possible so that it
can be easily coupled with existing finite element, volumes or differences codes.

Several numerical tests are carried out in order to assess the performance of the proposed
methods. The first group of tests corresponds to simulation driven experiments which illustrate
the capability of the method to generate computational meshes for different physical problems.
A Poisson heat transfer problem is solved, both for bidimensional and three-dimensional el-
ements. The incompressible flow past a cylinder is also tested in order to apply the AMR to
the incompressible Navier-Stokes equations. In the second group of experiments, weak scala-
bility tests for uniform refinement and load balancing cases in a high-performance computing
environment are presented.

The chapter is organized as follows. In Section 6.2 the distributed refinement structure with
the mesh partition strategy, the distributed data structures, and the initialization of the refine-
ment procedure are described. In Section 6.3 the refinement step is described. Classification,
local refinement, hanging nodes, and exportation to the external flat mesh algorithms are pre-
sented. Load rebalancing and global renumbering procedures are included in Section 6.4. The
external calls and the user interface to the RefficientLib library from an external com-
putational physics solver are presented in Section 6.5. Numerical experiments are presented
in Section 6.6, together with the scalability tests. Finally, in Section 6.7 some conclusions are
stated.

6.2 Distributed refinement structure
In this section, we describe the distributed structure of the adaptive mesh refinement method.
The domain partition strategy is explained first, over which the parallelization is developed.
Then, we introduce the main data structures and the initialization steps of the parallelized
AMR method.

118

6.2. Distributed refinement structure 119

Figure 6.1: Initial mesh information. In the left, the global mesh. Points and elements (circled)
are numbered globally. In the right, the mesh, partitioned into two subdomains. Colors denote
the processor to which the information belongs. Points and elements (circled) are numbered
locally for each domain. Note that the elements numbered as (2), (3), (6), and (10) in the global
mesh, are shared by the two subdomains. This distributed structure will be used to calculate
remote neighboring contributions for the shared elements.

6.2.1 Mesh partition
The algorithm described in this chapter is designed to work in distributed memory parallel
machines. The idea is to have a library which takes care of all the steps necessary for the re-
finement, while the external driver (for instance a finite element solver) sees the resulting mesh
as a non-hierarchical or flat grid. The domain partition strategy for the mesh is nodal based,
which means that each node is assigned to an unique processor, but elements can belong to
multiple processors if they own nodes from more than one subdomain. The concepts point
and node both refer to nodes of the mesh, although node will generally be used when dealing
with points in an element, and point will be used when treating them as independent entities.
Points belonging to a given subdomain are denoted as local points. Before refinement, nodes
are assigned to a single processor, but the first layer of nodes belonging to a neighbor proces-
sor is also stored in the current processor. These neighboring points are called ghost points.
Elements can belong to multiple processors if they have nodes from multiple subdomains. We
define the processor responsible for an element as the processor which owns the node of the
element with the lowest global node number.

Fig. 6.1 shows an initial domain partitioned mesh as seen from different processors. The
advantage of this strategy is that each processor stores only the local information of its sub-
domain. The processor stores the local numeration of the subdomain points, but the global
numbering of these points must also be saved in order to locate and communicate points for
other processors.

The parallel refinement method is constructed over the partitioned mesh. Since the mesh
needs to be seen as a flat mesh by the external driver, a node and element renumbering strategy
is needed in order to be able to move from the external, flat mesh, to the internal (refiner)
hierarchical mesh and vice versa. Fig. 6.2 presents an example of a hierarchically refined
mesh. Two levels of refinement are displayed as seen internally in the refiner from one of the

119

120 Chapter 6. RefficientLib: An efficient load-rebalanced adaptive mesh refinement algorithm

Figure 6.2: Internal hierarchical mesh as seen from one of the processors. In order to illustrate
this refinement example, a shared element of the mesh of Fig 6.1 is refined. Left: initial level
0 mesh. Right: refined level 1 mesh.

Figure 6.3: Refined mesh as seen from the external driver. Left: External flat mesh. Right:
External flat mesh as seen from the processor denoted by the blue color.

processors. The same mesh is depicted in Fig. 6.3 as seen from the external driver. Note that
the element marked with an (∗) in Fig. 6.2 does not appear in the flat mesh for the considered
processor: in the external flat mesh, only the first layer of flat node neighbors is considered,
while in the internal hierarchical mesh also the element hierarchical neighbors are considered.
Element hierarchical neighbors are elements which share a parent with an element that belongs
to a processor. The element marked with an (∗) in Fig. 6.2 is a hierarchical neighbor because
although none of its nodes is assigned to the processor, the element shares its parent with the
rest of level 1 elements in the processor. We call the elements which share a parent sibling
elements.

6.2.2 Distributed data structures
The algorithms to be described in the next section are implemented on top of a collection of
data structures which allow to efficiently access and modify the information that defines the

120

6.2. Distributed refinement structure 121

mesh. The implementation is generally done in an object-oriented manner, but for efficiency
reasons, the actual storage in memory sometimes uses a flattened storage where parts of the
objects are stored in an array list. We will denote this storage structure as CSR, in reference
to the Compact Sparse Row storage used in many computational physics applications. All the
data structures are encapsulated in a class, which we call the Refiner. Refinement procedures
and communications are performed by this class. The data structures which are part of the
Refiner class are briefly explained below:

• gnpoin is the total number of points of the internal mesh

• gnelem is the total number of elements of the internal mesh

• npoin is the number of points of the internal mesh in the local processor. This includes
both the local (belonging to the current processor) points (npoinLocal) and the first layer
and hierarchical neighbors of the local points (npoinGhost).

• npoinLocal is the number of points of the internal global mesh belonging to the current
processor.

• npoinGhost is the number of points of the internal global mesh which are the first layer
of hierarchical neighbors of the local nodes. Their data is required in the current proces-
sor.

• nelem is the number of elements of the internal mesh which are required in the current
processor. This includes all elements having local nodes, but also elements which do not
have a local node but are relevant in the hierarchical refinement process.

• ElementList is the list of elements in local numbering, of size nelem. For each local
element we need to store it contains:

– ElementType: this item identifies the element type (triangles, quadrilaterals, tetra-
hedra, hexahedra), and subtype or variation according to the subdivision process.
The subtype is relevant for instance in the case of tetrahedral elements, where there
are multiple possibilities for hierarchically subdividing an element. An array of 1-
byte integers of dimension 2.

– Data structure of type GlobalElementIdentifier: Similarly to the strategy followed
in [137], the global element identifier allows to uniquely identify an element from
the mesh (described in the following subsection 6.2.3).

– ParentIdentifier: the local element numbering of the parent element.

– ChildrenIdentifierList: the list of local element numbering of the children ele-
ments. (Stored in CSR format).

– NodeList: contains the nodes which constitute the element in local numbering. An
array of 4-byte integers. (Stored in CSR format).

– FaceList: for each face in the element, it stores the neighbor (opposite) element
and the corresponding face (or edge in two dimensions) of the neighbor. If this is a
hanging face, it contains the neighbor of the parent element and the corresponding
face. (Stored in CSR format).

121

122 Chapter 6. RefficientLib: An efficient load-rebalanced adaptive mesh refinement algorithm

• PointList is the list of nodes in local numbering, of size npoin. The first npoinLocal
components of the list correspond to local points, the last npoinGhost components of
the list correspond to ghost points. For each point, we store:

– GlobalPointNumbering: this data structure stores the global (parallel) point num-
bering of the point. An InverseGlobalPointNumberingList is also created which
allows getting the local point number of global points for a given processor. In or-
der to implement the inverse global point numbering list, a hash table type structure
is used (this is described in subsection 6.2.4).

– ProcessorNumber: for ghost points, it stores the processor number to which the
point belongs.

– Level: the level (in the refinement structure) of the point. Initial points are classified
as level 0.

– EdgeRefinementList: for each point i, it stores a list of neighbor points j to which
point i is connected only if a refinement node k between i and j exists, it also stores
the local numbering of j and k. (Stored in CSR format).

– HangingNodeList: for hanging nodes, it contains the list of recursive parent nodes
and their linear combination coefficients. (Stored in CSR format).

Most of the lists involving multiple types of data (i.e. ElementList or PointList) are imple-
mented as separated list arrays for convenience and memory performance, although they could
also be stored as objects containing data structures. When the size of each component of the
list is not constant for all elements, these separated list arrays are generally stored in a Compact
Sparse Row storage format (CSR).

6.2.3 The GlobalElementIdentifier data structure
The hierarchical refinement element information is encapsulated into a tree data structure com-
posed of GlobalElementIdentifier objects. This data structure allows to uniquely identify an
element in any processor, at any level of refinement. When used together with the ParentI-
dentifier and ChildrenIdentifierList, it allows to communicate element information between
processors. This information can be used to identify the local numbering of an element when
interprocessor information communication is required. The GlobalElementIdentifier struc-
ture is composed of the following information:

• GlobalTopLevelElement. This is the original element number of the top level element
prior to any refinement or load rebalancing process. This is stored as a 4-byte integer.

• Level: The level of the element in the refinement structure. Initial elements are classified
as level 0. This is stored as a 1 byte integer.

• PositionInParentElement. For each level, 3 bits are dedicated to storing the refinement
branch (or child) of the element. This allows identifying a maximum of 8 children per
level. A maximum of 21 refinement levels is allowed in the current implementation,
totaling 63 bits. This is stored as an 8-byte integer.

122

6.2. Distributed refinement structure 123

The total amount of memory required to store the GlobalElementIdentifier for an element is
13 bytes, which round up to 16 bytes in memory.

6.2.4 The InverseGlobalPointNumberingList
In order to perform parallel communications, we need to be able to recover the local point
number from a global point identifier at any time in the refinement process. This could be
done in a straightforward manner by allocating an array of dimension gnpoin and then stor-
ing for each local point, in the global position of the array, the local number associated with
the corresponding global point. However, gnpoin depends on the size of the global problem
and can in general be very large. This would result in the allocation of this array becoming
very time consuming and when using thousands of processors, affecting the performance and
scalability of the parallel refinement algorithm.

Thus, an alternative implementation of the global to local mapping is required. In our
implementation, we have opted by a hash filtering and storage in a table, followed by a binary
search if collisions are found:

• Firstly, the hash function is defined as the modulus of the division by a primer number
primeNumber, which is close to and larger than the local number of points npoinLocal.
A hash table data structure of dimension primeNumber is allocated.

• Secondly, for each local point - global point pair, the hash function of the global point
identifier is computed and the point is stored in the corresponding hash table data struc-
ture slot. If there are collisions, the points are stored in ascending order according to its
global point identifier.

• Finally, in order to recover the local numbering of a global point, the hash function of
the global point number is computed. If a single point is stored in the corresponding
hash table slot, the local numbering is recovered directly. In case there are collisions, a
binary search is performed on the sorted global point numbering array of the hash table
slot in order to find the corresponding local point number.

This process allows reducing the average computational cost of finding the local point
number associated with a global point to O(1) while keeping the storage requirements to
O(npoinLocal). Although a possibly more efficient implementation could be found by dif-
ferentiating on the behavior of the algorithm for local and ghost points, we have chosen the
described implementation for its compromise between efficiency and reusability.

6.2.5 Initialization
Our parallel refinement method establishes the input initial mesh as a zero level mesh that
cannot be coarsened. In the initialization step, the flat, top-level mesh is passed to the Refiner.
From this mesh ElementList and PointList are built. All elements and points are assigned the
zero level. The processor number for each point and a global element number for each element
and point needs to be passed to the Refiner, from which the GlobalElementIdentifier for
each element and the GlobalPointNumbering (and its inverse) for each point can be built. The

123

124 Chapter 6. RefficientLib: An efficient load-rebalanced adaptive mesh refinement algorithm

initial FaceList for each element is built by looping through neighbor elements and checking
for faces with coincident nodes. Neighbor elements are identified in a two-step process as
elements with which at least one point is shared. The remaining arrays, which refer to the
refinement structure, are started as empty or null since no refinement step has been performed
yet.

6.3 Refinement step

6.3.1 Amending the element refinement classification
The first stage of the refinement step consists in passing to the library an array of size nelem
which contains the information about the element refinement. In our implementation, this is
achieved by passing a 1 valued integer for elements which need to be refined, a −1 valued
integer for elements which need to be unrefined and a 0 valued integer for elements which
need to be neither refined nor unrefined. Elements can only be unrefined if all of their sibling
elements are also unrefined. If an element is marked as to be unrefined but one of its siblings
is not, then the element is reclassified as not to be unrefined.

An important point is that the refinement criteria must be the same on all processors, that
is, if an element belongs to both processors i and j, then the decision on whether to refine
the element must coincide in processor i and processor j. Even taking this into account, there
are unrefinement cases in which the information available in a certain processor is not enough
to decide if an element will effectively be unrefined. This is, for instance, the situation for a
unrefinement step of the level one elements in Fig. 6.2 and Fig. 6.3. Suppose that the external
driver has marked the four-level one elements which are exported to the external mesh (Fig.
6.3) as to be unrefined. However, the blue processor (Fig. 6.3, right) has no information on the
classification of the hierarchical neighbor (marked with an ∗ in Fig. 6.2). As a consequence,
and only in the case when all the local element siblings are marked as to be unrefined, a
communication step with the neighbor processor is required in order to classify hierarchical
neighbor elements.

This communication step consists in asking the processor responsible for the element
to communicate its refinement classification. Elements in different processors are identified
through their GlobalElementIdentifier. This step is not required when refining because sib-
ling elements can be refined independently.

As explained previously, the proposed algorithm can deal with unbalanced meshes in the
sense that the refinement level jump between neighbor elements can be arbitrarily large. How-
ever, this might not be convenient for some applications. For this, an optional flag which limits
the level jump between neighbor elements has been added to the algorithm. If this flag is
enabled, the algorithm adds the following to the previous reclassification of elements to be
refined: for each node, it notes down the maximum and minimum level of the elements to
which it belongs. Then, if the difference between the maximum and minimum level is 1 (the
algorithm should not allow this difference to be larger than 1), it does not allow the maximum
level elements to further refine, and it does not allow the minimum level elements to unrefine.
This ensures that a balanced mesh is obtained in the case this flag is enabled.

124

6.3. Refinement step 125

Figure 6.4: Subdivision of a tetrahedron into 4 tetrahedrons and 1 octahedron. The octahedron
is then further subdivided into 4 tetrahedrons.

6.3.2 Local Refinement
Once all elements are properly classified following the refinement criteria, a local refinement
step starts in each processor. The implemented subdivision process for triangles, quadrilaterals,
tetrahedrons and hexahedrons refines a given element into 2d subelements of the same type,
where d is the number of dimensions, although the implementation is left open to refining into
other element types in the future. A first loop through the elements allows computing the di-
mensions of the arrays after the refinement stage, which are then allocated. Elements which are
unrefined are removed from the lists, new elements are added at the end of the ElementList.
At the same time, the ParentIdentifier and the ChildrenIdentifierList for each element are
filled. Also the GlobalElementIdentifier for each new element is computed from the Glob-
alElementIdentifier of its parent element (adding one level to the parent level, assigning a
child number for the new level), as well as the element type (for h-refinement the element
type of children elements is the parent element type). In the case of tetrahedrons, what we call
an element subtype also needs to be stored: each refined tetrahedron is subdivided into eight
subelements. However, there are three different ways of subdividing a tetrahedron into eight
subelements, each one corresponding to the main plain of subdivision of the internal octaedron
obtained by joining the midpoints of tetrahedron edges. The election of the subelement type is
done so that the distortion of the resulting child elements is minimized. This is illustrated in
Fig. 6.4.

For updating the FaceList of each element, the neighbors of each element are checked. If
in the previous refinement step the face was connected to an element which has been unrefined
in the current refinement step, then the element is connected to the parent element. On the
contrary, if the element is connected to a higher level element which has now been refined,
then the element becomes connected with the corresponding children. These face connections
can be done in an efficient manner thanks to the ParentIdentifier and ChildrenIdentifierList
structures, which allow moving through the different refinement levels. Some examples of face
matching for elements in different levels are shown in Fig. 6.5. Faces which connect to faces
in elements of a higher level are denoted as hanging faces.

At this point, the element refinement structure has been updated to the new refinement

125

126 Chapter 6. RefficientLib: An efficient load-rebalanced adaptive mesh refinement algorithm

Figure 6.5: Face matching in the refinement process. In the mesh at the start of the refinement
process (top), element b has a face connected to element a, which is one level higher. Similarly,
element d has a face connected to one of the faces of the element c. After a refinement step, both
elements c and b are refined (bottom). Some of the children of b have a face which is connected
to a face in element a, while the faces in element d which were connected to element c are now
connected to faces in the children of the element c.

126

6.3. Refinement step 127

Figure 6.6: Edge (red), face (blue) and interior (green) new nodes in a refined element.

stage. However, the new nodes still need to be added to the new elements. There are three
types of nodes in the new elements: nodes which are added to the edges of the parent element,
nodes which are added to the faces of the parent element, and nodes which are added to the
interior of the parent element. This is best illustrated in three-dimensional hexahedral elements,
as shown in Fig. 6.6.

For nodes added in the interior of the parent element, we are sure that the node is new and
a new point number can be assigned to the node. However, for nodes added in the faces or in
the edges of a parent element, we need to check that the node does not already exist in another
element.

In the case of nodes added in the face of elements, the node will only preexist if the face of
the new child element is connected to an element of the same level. In this case, the new node
in the new children element is assigned the point number of the node in the neighbor face.

For nodes added in the edges of elements, we make use of the EdgeRefinementList struc-
ture, in which for each edge connection between two points of the mesh we store the point
numbering of the refined point added in-between them. This keeps track of the already ex-
isting refined points in the edges, allowing to add new points when an element is refined or,
on the contrary, to match existing points with the refined point in the edge. The addition of
new nodes to the EdgeRefinementList needs to be done in a two-step process (first loop for
counting sizes and allocating, the second loop for filling the data structures) and making use
of linked lists in order to obtain a proper performance of the algorithm.

6.3.3 Parallel numbering
The algorithmic steps in the previous section allow us to advance to the new refined mesh.
However, no communications have been done between processors, so at this stage, new points
have been assigned a local numbering, but the parallel numbering of points is still pending.
Elements, on the other hand, are already identified by their GlobalElementIdentifier. In or-
der to construct the new global point numbering, we start by classifying points as local or
ghost in each processor. Points which already existed in the previous refinement stage keep the

127

128 Chapter 6. RefficientLib: An efficient load-rebalanced adaptive mesh refinement algorithm

same local/ghost status. New points are classified as local or ghost following different criteria
depending on whether they are new interior points, new face points or new edge points.

The new interior points are classified as local for a given processor if, in the previous
refinement step, the processor was the owner of the node in the parent element with the lowest
global numbering (the processor was the responsible processor for the element).

The new face points are classified as local for a given processor if, in the previous refine-
ment step, the processor was the owner of the node in the parent face with the lowest global
numbering (the processor was the responsible processor for the face).

The new edge points are classified as local for a given processor if, in the previous refine-
ment step, the processor was the owner of the node in the parent edge with the lowest global
numbering (the processor was the responsible processor for the edge).

Once all the points of each processor have been classified as local or ghost, a gather op-
eration of the number of local points of each processor, followed by a scatter operation with
the first global point number of each processor allows to set the parallel global numbering for
all the local points in each processor (since the global numbering of the local points of each
processor will be consecutive). However, the parallel numbering of the ghost points of each
processor is still unknown to the processor. For points which were already ghosts in the pre-
vious refinement step, each processor simply asks the owner of the point to communicate its
new global number. When asking for the point, this point is identified by its global number in
the previous refinement step.

For new ghost points, their global numbering is obtained as follows:

• For new interior and face points, the GlobalElementIdentifier of the parent element is
sent to the responsible processor together with the interior/face node number, which in
turn returns the global point number for the interior point.

• For new edge points, the old (previous refinement step) global numbering of the edge
parent points is sent to the processor responsible for the edge, which in turn seeks for
the refined edge point through its EdgeRefinementList and returns the new point global
number for the new edge point.

At this point, all the internal refinement structures are already defined and updated to the new
refinement stage. The steps for exporting this information to the external mesh are detailed in
the next sections.

6.3.4 Hanging nodes
Although in most refinement algorithms using tree data structures a conforming restriction
over adjacent elements must be satisfied, this is not the case in our algorithm. This so-called
balance condition, which enforces that there is only one hanging node on sides where two
levels of refinement meet, does not need to be satisfied by the algorithm presented in this work,
and an arbitrary jump in the refinement level of adjacent elements is possible. We believe that
this is one of the main features of the present algorithm.

Hanging nodes are classified as nodes which belong to a face or edge that is connected to an
element in a higher level (hanging face or edge) and which do not belong to the higher level el-
ement. There are several possibilities for treating hanging nodes in computational physics: one

128

6.3. Refinement step 129

Figure 6.7: Hanging nodes. Node 4 is a hanging node, its hanging parents being nodes 2 and 3.
Node 3 is in turn a hanging node, its hanging parents being nodes 1 and 2. The hanging node
value for the unknown at node 4, u4 is: u4 = 1

2
u3 + 1

2
u2 = 1

4
u1 + 3

4
u2.

of the possible approximation for hanging nodes consists in fixing the value for the unknowns
in the hanging node as the mean of the value of the unknowns of its hanging parents (this
is the approach we have followed in the numerical examples). Other possibilities include the
use of Discontinuous Galerkin methods [139], or hybrid Continuous-Discontinuous Galerkin
methods [140].

In any case, it is necessary to know which are the hanging parents of a certain hanging
node. Hanging parents are defined as nodes in the parent element in the case of interior refined
nodes, nodes in the parent face in the case of face refined nodes, and nodes in the parent
edge in the case of edge refined nodes. If the hanging parents are in turn hanging nodes, this
establishes a recursive dependency of the unknown values in the hanging nodes with the values
of the unknown in higher level nodes.

In our implementation, the list of hanging nodes and their relation with respect to their
hanging parents is obtained by looping through the elements and checking the node matching
of faces and edges which connect to higher level elements. The nodes which are not present
in both sides of the face, or in all the elements which concur at the edge, are considered as
hanging nodes.

Once the hanging node list is built, the recursive dependency structure with respect to their
hanging parents is obtained by traversing the hanging node list from the top level to the low
level hanging nodes and annotating the contribution of hanging parents to the averaged value of
each hanging node. As the number of parents contributing to the averaged value of a hanging
node can be arbitrarily large if no balance condition is applied, this recursive dependency
structure is stored in CSR format. If a parent node of a hanging node is also a hanging node,
then its contribution to the value of the hanging node is transferred recursively to the hanging
parents. This is illustrated in Fig. 6.7.

Note also that in successive refinement steps, normal nodes can become hanging nodes
depending on the refinement behavior of neighbor elements and vice-versa.

129

130 Chapter 6. RefficientLib: An efficient load-rebalanced adaptive mesh refinement algorithm

6.3.5 Exporting the external mesh
As explained in previous sections, the hierarchical mesh with which the algorithm works in-
ternally does not coincide with the flat mesh which is exported and used by the external driver.
The main criteria for choosing elements and nodes which are passed to the external mesh is
the following:

• Elements are only exported if they are last level elements which own at least a local
node.

• Nodes are only exported if they belong to an exported element.

These two criteria are in general sufficient to decide which elements need to be exported. How-
ever, there are some specific cases (after load rebalancing has occurred and children elements
are not necessarily in the same processor as their parent elements) where additional elements
need to be exported. The first case is the case of hanging nodes whose hanging parent nodes
are assigned to a different processor, which is illustrated in Fig. 6.8. In this case, the elements
owning the recursive hanging parents need also to be exported in order to ensure that the as-
sembly to the parent nodes can be performed and that if the high-level element is refined all
the involved processors will be aware of the refinement step.

The second case is the case of elements which are hanging opposites of elements with
nodes assigned to the current processor. Even if none of the nodes of the element belongs to
the current processor, these elements need to be exported so that their refinement criteria can
be known by the current processor and the new elements and face matching can be created.
Again, an example of this particular case can be seen in Fig. 6.8.

In both cases, information on elements belonging to neighbor processors but not present
in the current processor will have to be communicated between processors. This is the case of
element b in Fig. 6.8.

6.4 Load Rebalancing
After several refinement steps, computational load in the processors may become unbalanced,
causing the most loaded processor to damage the global efficiency. In order to avoid this is-
sue, load rebalancing is required. Load rebalancing consists in changing the processor owning
each group of nodes in such a way that the computational load is approximately equal in all
processors. At the same time, it has to be ensured that the communications required in the
load rebalancing process and in the external computations to be performed by the driver are
minimized.

6.4.1 Rebalance Renumbering
The first step of the load rebalancing process consists in computing the new processor and new
global number for each node in the mesh. Contrary to other adaptive refinement schemes in
which the new node numbering is linked to the adaptive refinement algorithm, in the algorithm
presented in this chapter any node renumbering strategy is possible. In fact, the new node
numbering is computed externally by the driver and then passed to the refinement library. In

130

6.4. Load Rebalancing 131

Figure 6.8: Left: Global exported mesh. Center: Local exported mesh for processor 0 (blue
nodes). Right: Local exported mesh for processor 1 (red nodes). Element a would in principle
not be exported in processor 0 since it has no local node for this processor, but it is exported
because it is the hanging opposite of elements belonging to processor 0. Element b would in
principle not be exported in processor 1, since it has no local node for this processor, but it is
exported because it is the hanging opposite of element a, belonging to processor 1.

the numerical examples presented in Section 6.6, node renumbering is computed externally
by using the ParMetis [141] and Zoltan [142] specialized software, which are based on nested
bisection, graph partitioning, and space-filling methods. Both of these packages are accessed
through an interface provided by the PETSc library [114], which we also use as a linear system
solver for the numerical examples in Section 6.6. All of these remapping methods produce new
partitions from an already partitioned mesh.

With all the nodes in the mesh already assigned a processor number to which they belong, it
remains to decide which elements and nodes need to be sent to each processor. The algorithmic
rules of this step are similar to the rules for exporting elements and nodes in Section 6.3.5,
although taking into account the hierarchical nature of the internal mesh:

• An element needs to be sent to a processor if it owns a node which belongs to the
processor.

• An element needs to be sent to a processor if one of its children or sibling elements is
sent to the processor.

• A node needs to be sent to a processor if it belongs to at least one element which is sent
to the processor.

Again, an additional rule applies in the case of elements with hanging nodes: any element
which is the high-level hanging (edge or face) opposite of an element which needs to be sent
to a given processor, will also be sent to the processor. The situation is similar to the one
depicted in Fig. 6.8.

131

132 Chapter 6. RefficientLib: An efficient load-rebalanced adaptive mesh refinement algorithm

6.4.2 Rebuilding the refinement structure
The final step before the refiner is ready to continue with the following step of the adaptive
mesh refinement strategy consists in rebuilding all the required data structures. The FaceList
structure and the ParentIdentifier and ChildrenIdentifierList arrays can be rebuilt in a two-
step process from the information in the NodeList and by traversing the element levels using
the GlobalElementIdentifier of each element. Once this is done, rebuilding the HangingN-
odeList and the EdgeRefinementList is also straightforward, although some care needs to be
taken so that the resulting implementation is efficient.

6.5 External calls to the RefficientLib library
In this section, we present the interface and calls to the RefficientLib object-oriented
library. The implementation allows the refinement algorithm to be used from distributed mem-
ory computational physics codes. The library has been developed following the object-oriented
Fortran 2003 standard. In the following, we illustrate a typical call to the adaptive refinement
library.

The first step consists in the initialization of Refiner object. This is done by passing it an
IniData object from which the initial mesh information can be retrieved (elements, nodes,
and connectivities). The IniData object is defined as abstract in the library and needs to be
implemented and extended by the user. This object is an object from which the initial mesh
information can be extracted:

c a l l R e f i n e r%I n i t i a l i z e (I n i D a t a)

The required calls for this object are the following:

! Number o f p o i n t s i n t h e p r o c e s s o r
c a l l I n i D a t a%GetNpoin (npo in)
! Number o f l o c a l p o i n t s i n t h e p r o c e s s o r
c a l l I n i D a t a%GetNpoinLoca l (n p o i n L o c a l)
! Number o f e l e m e n t s i n t h e p r o c e s s o r
c a l l I n i D a t a%GetNelem (nelem)
! Gl ob a l Number o f P o i n t s
c a l l I n i D a t a%GetGloba lNpoin (gnpo in)

! Element c o n n e c t i v i t y l i s t
c a l l I n i D a t a%G e t C o n n e c t i v i t y (ie lem , nnode , c o n n e c t i v i t y)

! Get t h e l o c a l t o g l o b a l mapping f o r a s e t o f nnode nodes
! Outpu t i s GlobalNumber ing
c a l l I n i D a t a%G e t L o c a l 2 G l o b a l (nnode , LocalNumbering , GlobalNumber ing)

! Get t h e p r o c e s s o r t o which a s e t o f nnode nodes a r e a s s i g n e d
! Outpu t i s P r o c e s s o r L i s t
c a l l I n i D a t a%GetProcessorNumber (nnode , LocalNumbering , P r o c e s s o r L i s t)

132

6.5. External calls to the RefficientLib library 133

Also, the coordinates of the nodal points of the mesh are passed to the refiner. These are
only used in the tetrahedral elements case in order to choose the subelement type which causes
the lesser distortion, as explained previously. Coord contains the array of coordinates, neces-
sary for the subelement type choice in tetrahedral elements:

c a l l R e f i n e r%Se tCoordAr ray (coord)

An optional call for setting the balancing flag (and forcing the resulting mesh to be bal-
anced) can be done in the following manner:

c a l l R e f i n e r%S e t 2 1 B a l a n c i n g (. f a l s e .)

Once the refiner is initialized, the array RefinerMarkel containing the refinement criteria
is passed to the refiner, which performs all the required refinement steps:

i f (r e f i n i n g) t h e n
c a l l R e f i n e r%R e f i n e (R e f i n e r M a r k e l)

e n d i f

If instead of a refinement step, we are carrying out a load rebalancing step, an external call
to the renumbering library needs to be done, which needs to retrieve the PointGlobNumber
and the PointProcNumber arrays. Once these are available, the refiner communicates and
rebuilds the refinement structure: form:

i f (r e b a l a n c i n g) t h e n
c a l l E x t e r n a l L i b r a r y R e n u m b e r i n g (PointGlobNumber ,

Poin tProcNumber)
c a l l R e f i n e r%Se tReba l anc ingNumber ing (PointGlobNumber ,

Poin tProcNumber)
c a l l R e f i n e r%LoadRebalance

e n d i f

Once the refinement or load rebalancing step is done by the refiner, information can be
retrieved using several calls, and from it the new external flat mesh can be built:

!New Dimens ions
! number o f l o c a l p o i n t s , l o c a l + g h o s t p o i n t s , g l o b a l p o i n t s
c a l l R e f i n e r%G e t P o i n t D i m e n s i o n s (newnpoinLocal , newnpoin , newgnpoin)
! number o f e l emen t s , s i z e o f t h e c o n n e c t i v i t y a r r a y
c a l l R e f i n e r%GetElementDimens ions (newnelem , newLnodsSize)

! A f t e r a l l o c a t i o n o f e x t e r n a l a r r a y s , t h e i n f o r m a t i o n can
! be r e t r i e v e d from t h e R e f i n e r
! Element C o n n e c t i v i t y l i s t i n CSR f o r m a t
c a l l R e f i n e r%GetLnods (pnods , l n o d s)
! Loca l t o Gl ob a l and p r o c e s s o r l i s t f o r t h e new l o c a l nodes
c a l l R e f i n e r%G e t L o c a l O r d e r i n g (Loca lToGloba l , P r o c e s s o r L i s t)
!A l i s t o f hang ing nodes (pHang ingLi s t , l H a n g i n g L i s t)
! w i th t h e a v e r a g i n g c o e f f i c i e n t s (r H a n g i n g L i s t)
! i n CSR f o r m a t can be r e t r i e v e d from t h e R e f i n e r
c a l l R e f i n e r%G e t H a n g i n g L i s t D i m e n s i o n s (H a n g i n g L i s t S i z e)

133

134 Chapter 6. RefficientLib: An efficient load-rebalanced adaptive mesh refinement algorithm

c a l l R e f i n e r%G e t H a n g i n g L i s t (pHang ingLi s t , l H a n g i n g L i s t ,
r H a n g i n g L i s t)

!A l i s t o f hang ing f a c e s (pHang ingLi s t , l H a n g i n g L i s t)
! i n CSR f o r m a t can be r e t r i e v e d from t h e R e f i n e r
c a l l R e f i n e r%G e t H a n g i n g F a c e s L i s t (p H a n g i n g F a c e s L i s t ,

l H a n g i n g F a c e s L i s t)

The hanging nodes list contains, for each node, the list of their hanging parents (lHang-
ingList) and the corresponding averaging coefficients (rHangingList), stored in CSR format.

For all nodal arrays defined in the old mesh, a call to the refiner allows to transform them
(by interpolation and restriction) to arrays in the new mesh:

c a l l R e f i n e r%U p d a t e V a r i a b l e (ndime , coord , newcoord)

This summarizes the interaction with the adaptive refinement library from a user point of
view. Some additional optional calls that allow passing values in the boundaries of the old mesh
to the boundaries of the new mesh exist. These can be convenient for instance for enforcing
Neumann boundary conditions in finite element analysis, but we have not included them here
for legibility and conciseness.

6.6 Numerical examples
In this section, we illustrate the behavior of the proposed algorithm through several numerical
examples. In these examples, the algorithm is tested for various types of linear, bilinear and
trilinear elements, both in two and three dimensions.

6.6.1 Bidimensional elements
The first numerical example consists of a square bi-dimensional domain [0, 1]× [0, 1] meshed
using triangular linear elements. The refinement process is arbitrary in order to show the ca-
pability of the algorithm to deal with multilevel jumps across hanging faces, and in this case,
it concentrates most of the elements in the right-top corner.

The number of processors in this simulation is 25, and the load rebalancing criteria is the
following:

max (npoinLocal) · nproc

gnpoin
≥ tolrebalance

Over this mesh, a Poisson heat transfer problem is solved using finite elements. The heat
transfer problem consists of finding consist of finding u : Ω −→ Rd such that:

−k∆u = f in Ω,

u = 0 in ΓD,

kn · ∇u = h in ΓN .

where k > 0, f is a given forcing function, h is the normal heat flux, Ω denotes the compu-
tational domain and ∂Ω = Γ = ΓD ∩ ΓN its boundary, with ΓD ∩ ΓN = ∅. In this example

134

6.6. Numerical examples 135

Figure 6.9: Poisson problem example on a triangular mesh. Top-left: original mesh. Top-right:
mesh after some refinement steps. Bottom-left: node distribution across processors. Bottom-
right: temperature field at the end of the simulation. Note that the jump of refinement level
across hanging faces can be arbitrarily large.

the forcing term is uniform with value f = 1, ΓD is composed by the upper, lower and left
boundaries, while ΓN is composed of the right boundary, with h = −20.

Fig. 6.9 shows the behavior of the method for this case. After several refinement/unrefine-
ment steps, the mesh is much more heavily refined in the right-top corner than in the rest of the
computational domain. Note that in this process, in some of the steps normal nodes become
hanging nodes and vice-versa, The load rebalancing acts by rearranging the ownership of the
nodes in such a way that the computational load in all the processors is approximately the
same. This results in most of the processors dealing with nodes in the top-right corner. The
algorithm is capable of dealing with the multilevel jump in hanging faces and providing an
accurate result for the temperature field.

6.6.2 Multiple types of elements in a single bidimensional simulation
In this numerical example, we solve again the example presented in Section 6.6.1, but this
time we use two types of elements: in the left half of the domain we use triangular finite
elements, while in the right half quadrilateral finite elements are used. This example illustrates

135

136 Chapter 6. RefficientLib: An efficient load-rebalanced adaptive mesh refinement algorithm

Figure 6.10: Adaptive simulation in a finite element mesh with several types of elements. Top-
left: original mesh. Top-right: mesh after some refinement steps. Bottom-left: node distribution
across processors. Bottom-right: temperature field at the end of the simulation.

the capability of the algorithm to deal simultaneously with several types of finite elements.
Fig. 6.10 shows the numerical results. Note that some of the hanging faces of the mesh belong
to the interface between triangular and quadrilateral elements.

6.6.3 Tetrahedral and Hexahedral elements
In this numerical example, a heat transfer problem is solved in a unit cube domain. The bound-
ary conditions are adiabatic in all walls except in the lower one, where the temperature is fixed
to zero. The source term is f = 1. The selection of the elements to refine is again arbitrary, and
several refinement/unrefinement steps are performed before arriving at the final configuration.
The number of processors in this numerical example is 6.

Fig. 6.11 shows the behavior of the method for this case. After several refinement/unrefine-
ment steps, the mesh is much more heavily refined in the right-top quarter than in the rest of
the computational domain and the load rebalancing algorithm acts by rearranging the nodes in
each processor so that the computational load is similar in all processors. The algorithm is ca-
pable of dealing with the multilevel jump in hanging faces and providing an accurate, smooth
result for the temperature field.

136

6.6. Numerical examples 137

Figure 6.11: Mesh refinement for tetrahedral elements. Top-left: original mesh. Top-right:
mesh after some refinement steps. Bottom-left: node distribution across processors. Bottom-
right: temperature field at the end of the simulation.

Fig. 6.12 shows the same example using hexahedral elements and 25 processors, the load
rebalancing criteria being the same as in the previous cases. In the three-dimensional case no
simulation is done using multiple types of elements since the faces of the elements and the
finite element shape functions for tetrahedral and hexahedral elements do not match at the
interface.

6.6.4 An application to the incompressible Navier-Stokes equations
In this numerical example we solve the incompressible Navier-Stokes equations, which consist
of finding u : Ω× (0, tf) −→ Rd and p : Ω× (0, tf) −→ R such that:

∂tu− ν∆u+ u · ∇u+∇p = f in Ω,

∇ · u = 0 in Ω,

u = ū on Γ.

for t > 0, where ∂tu is the local time derivative of the velocity field. Ω ⊂ Rd is a bounded
domain, with d = 2, 3, ν is the viscosity, and f the given source term. Appropriate initial
conditions have to be appended to this problem. The numerical solution of these equations
through finite elements is done using a stabilized formulation [57] which allows to deal with
the convective term and use equal interpolation spaces for the velocity and the pressure.

137

138 Chapter 6. RefficientLib: An efficient load-rebalanced adaptive mesh refinement algorithm

Figure 6.12: Mesh refinement for hexahedral elements. Top-left: original mesh. Top-right:
mesh after some refinement steps. Bottom-left: node distribution across processors. Bottom-
right: temperature field at the end of the simulation.

138

6.6. Numerical examples 139

This numerical example deals with the flow around a cylinder at Re = 100. The computa-
tional domain consists of a 16×8 rectangle with a unit-diameter cylinder centered at (4, 4). The
horizontal inflow velocity is set to 1 at x = 0. Slip boundary conditions are set at y = 0 and
y = 8, and velocity is set to 0 at the cylinder surface. The viscosity has been set to ν = 0.01,
and the Reynolds number is Re = 100 based on the diameter of the cylinder and the inflow
velocity. A third-order backward differences scheme has been used for the time integration
with a time step size δt = 1 · 10−3. As an error estimator, the Zienkiewicz-Zhu error estimator
[143] for the velocity gradient has been used, which results in a refinement strategy near the
boundary layer and in the regions surrounding the vortexes behind the cylinder:

eK =

∫
K

Π⊥h (∇uh) =

∫
K

(∇uh − Πh (∇uh)) ,

where K denotes each element of the mesh, and Πh denotes the projection onto the finite
element space and Π⊥h denotes the projection onto the space orthogonal to the finite element
space. Fig. 6.13 shows the results and mesh evolution obtained for this example. Note that in
the refinement process, some of the normal nodes become hanging nodes and vice-versa at
each step.

6.6.5 An application to a non-smooth solution
Here we present a non-smooth solution example for the steady Stokes problem, which consist
of finding u : Ω× (0, tf) −→ Rd and p : Ω× (0, tf) −→ R such that:

−ν∆u+∇p = f in Ω,

∇ · u = 0 in Ω,

u = ū on Γ,

where Ω ⊂ R2 is a two-dimensional bounded domain, ν is the viscosity, and f a given source
term. A divergence free non-smooth manufactured solution is considered:

u (r, φ) = rα
[

cos (φ)ψ′ (φ) + (1 + α) sin (φ)ψ (φ)
sin (φ)ψ′ (φ)− (1 + α) cos (φ)ψ (φ)

]
,

p (r, φ) = −r(α−1) (1 + α)2 ψ′ (φ) + ψ′′′ (φ)

1− α
,

with

ψ (r, φ) =
sin ((1 + α)φ) cos (αω)

1 + α
− cos ((1 + α)φ)

+
sin ((α− 1)φ) cos (αω)

1− α
+ cos ((α− 1)φ) .

Here ω and α are taken as ω = 3π/2 and α ≈ 0.5444837, which is an approximation to
the root of the nonlinear equation

139

140 Chapter 6. RefficientLib: An efficient load-rebalanced adaptive mesh refinement algorithm

Figure 6.13: Adaptive refinement finite element solution of the flow past a cylinder. Contour
results for the velocity and pressure fields and the refined mesh details are presented for two
separated configurations of the wake oscillation.

140

6.6. Numerical examples 141

sin2 (αω)− α2 sin2 (ω)

α2
= 0.

We depart from a six linear element triangular mesh and refine it by using the Zienkiewicz-
Zhu error estimator and refinement criteria explained in the previous example. Fig. 6.14 shows
the obtained velocity and pressure solutions. The original and the refined mesh after several
refinement steps are also displayed. Several refinement levels are developed for the refined
mesh. The mesh refinement deals with the singularity appearing in the corner, and provides an
accurate solution capable of better representing the pressure field close to the singularity.

6.6.6 Scalability tests
In this section, we test the scalability of the proposed refinement method when a large number
of processors is used. We consider two cases: in the first case we solve an adaptive refinement
case where the problem is balanced, and no load rebalancing is required. In the second case, we
test the algorithm for a case where load rebalancing is required at almost every step of the re-
finement process. For each step, we refine the elements contained inside the domain, following
either a uniform refinement criteria or a refinement criteria which aggressively forces load re-
balancing. The weak scalability tests are run up to 1849 processors for bidimensional elements,
and 1728 processors for three-dimensional elements. Both scalability cases are limited to 2000
million total elements for the largest mesh created at the last refinement level since our current
implementation uses 4 byte integers for the nodal and elemental counters. The tests presented
in this section were run at the Marenostrum supercomputer at the Barcelona Supercomputing
Center, and at the Beskow supercomputer at KTH Sweden. The Marenostrum supercomputer
is equipped with Intel SandyBridge-EP E5–2670 cores at 2.6 GHz (3,056 compute nodes), and
103.5 TB of main memory. The Beskow supercomputer is a Cray XC40 system based on Intel
Xeon E5-2698v3 cores at 2.3 GHz (1676 compute nodes), and 104.7 TB of main memory.

The first weak scalability test corresponds to a uniform refinement problem. We depart
from a structured uniform mesh with an initial number of elements and points per processor,
and successively refine it. For each time step, we refine the elements in the entire spatial do-
main. The CPU runtime invested in the refinement procedures is presented in Fig 6.15. The
objective of this weak scalability test is to measure the communications between processors.
Because no communications are needed for load balancing, the measured time is only due to
the refinement procedure. The results show an increase in runtime between 1 and 100 pro-
cessors. After 100 processors a flat tendency is observed. The scaling results are good both
for bidimensional and three-dimensional cases, assuring the correct behavior of the adaptive
refinement algorithm. The runtime fraction of the refinement procedure with respect to the
linear system solution is presented in Fig 6.16 for a single time step. Results show that the run-
time is dominated by the linear system solution and that the runtime fraction of the refinement
procedure decreases with the number of processors, ensuring a good behavior in large-scale
computing.

The second weak scalability test intends to evaluate the overall performance when load
rebalancing is necessary. For this case we depart from a structured uniform mesh and refine
it successively using the following refinement criteria: for each step we refine only the ele-
ments contained inside the domain Ωr =

[
1− 1

2i
, 1
]
×
[
1− 1

2i
, 1
]
× [0, 1], where i denotes

141

142 Chapter 6. RefficientLib: An efficient load-rebalanced adaptive mesh refinement algorithm

Figure 6.14: Adaptive refinement finite element solution of the Stokes problem, non-smooth
solution. Contour results for the velocity (top left) and pressure (top right) fields, and the
original (bottom left) and refined (bottom right) meshes.

142

6.6. Numerical examples 143

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000

S
e
c
o
n
d
s

Number of Processors

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 500 1000 1500 2000

S
e
c
o
n
d
s

Number of Processors

Figure 6.15: Uniform refinement weak scalability results from up to 1849 processors. The
notation for the element type is used as follows: Triangles(4), squares (�), tetrahedra(N),
hexahedra(�). Left: in this case, we depart from an initial number of points per processor
(100 for bi-dimensional elements and 8 for three-dimensional elements), and perform 6 levels
of uniform refinement. Thereafter, we include several uniform unrefinement/refinement steps
after the last refinement level. This type of run is performed in order to be able to measure the
overall refinement performance of several time steps and is calculated using the Marenostrum
supercomputer. Right: in this case, we depart from an initial number of points per processor
(90000 for bi-dimensional elements and 270000 for three-dimensional elements), and perform
a single level of uniform refinement. We calculate this case using the Beskow supercomputer.

143

144 Chapter 6. RefficientLib: An efficient load-rebalanced adaptive mesh refinement algorithm

 0

 20

 40

 60

 80

 100

64 256 1024 1849

p
e
r
c
e
n
t
a
g
e

o
f

r
u
n
t
i
m
e

Number of Processors

 0

 20

 40

 60

 80

 100

64 256 1024 1849

p
e
r
c
e
n
t
a
g
e

o
f

r
u
n
t
i
m
e

Number of Processors

 0

 20

 40

 60

 80

 100

27 216 1000 1728

p
e
r
c
e
n
t
a
g
e

o
f

r
u
n
t
i
m
e

Number of Processors

 0

 20

 40

 60

 80

 100

27 216 1000 1728

p
e
r
c
e
n
t
a
g
e

o
f

r
u
n
t
i
m
e

Number of Processors

Figure 6.16: Runtime fraction results for the uniform refinement weak scaling tests up to
1849 processors on Beskow supercomputer. Triangles(top left), squares (top right), tetrahe-
dra(bottom left), hexahedra(bottom right). The description of this case is given in Fig. 6.15.
We perform a single level of uniform refinement and solve the stationary heat transfer problem
with the resulting refined mesh. The refinement procedure runtime fraction is plotted with a
solid fill, and the linear system runtime fraction is plotted using the pattern fill. We addressed
the fraction of the time required by a single refinement procedure in comparison with the time
spent by the linear solver in order to solve the refined mesh linear system. We compare with
the best runtime among several linear solvers, which was given by the biconjugate gradient
method implemented in the PETSc parallel solver library [114], together with the ML precon-
ditioning package implemented in the TRILINOS library.

144

6.6. Numerical examples 145

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000

S
e
c
o
n
d
s

Number of Processors

 1

 2

 3

 4

 5

 6

 7

 8

 0 500 1000 1500 2000

S
e
c
o
n
d
s

Number of Processors

Figure 6.17: Load balancing refinement weak scalability results from up to 1849 processors.
The notation for the element type is used as follows: Triangles(4), squares (�), tetrahedra(N),
hexahedra(�). Left: in this case, we depart from an initial number of points per processor (4900
for bi-dimensional elements and 8 for three-dimensional elements), and perform 15 levels of
load rebalancing refinement. This run is calculated using the Marenostrum supercomputer.
Right: in this case, we depart from an initial number of points per processor (90000 for bi-
dimensional elements and 270000 for three-dimensional elements), and perform a single level
of forced load rebalancing refinement. We calculate this case using the Beskow supercomputer.

the step number in this case. This criterion defines a spatial distribution which partially re-
fines elements of the domain. Figure 6.17 shows the runtime required for the refinement and
load-balancing procedures. The interprocessor communications, in this case, are due to the re-
finement step, but also to the load rebalancing procedure. An asymptotic tendency is reached
for both bidimensional and three-dimensional elements as the number of processors increases.
The three-dimensional elements weak scaling results are good up to the range of thousand
processors. The runtime fraction spent by the refinement and load balancing procedures with
respect to the linear system solution is presented in Fig 6.18. In all the cases the refinement
and load-balancing computational cost was small to moderate with respect to the linear system
solve. The linear system solve was tested for one degree of freedom heat-transfer problem. In
the case of an incompressible Navier-Stokes problem, non-linearities and and a larger num-
ber of degrees of freedom per node would increase considerably the cost of solving the linear
system, but the refinement procedure cost would remain the same, leading to an even smaller
runtime fraction of the refinement step. Therefore, we conclude that the implementation of the
proposed algorithm is efficient with respect to the cost of solving linear systems on adaptively
refined meshes, and the algorithm is suitable for large-scale problems in high performance
computing environments.

145

146 Chapter 6. RefficientLib: An efficient load-rebalanced adaptive mesh refinement algorithm

 0

 20

 40

 60

 80

 100

64 256 1024 1849

p
e
r
c
e
n
t
a
g
e

o
f

r
u
n
t
i
m
e

Number of Processors

 0

 20

 40

 60

 80

 100

64 256 1024 1849

p
e
r
c
e
n
t
a
g
e

o
f

r
u
n
t
i
m
e

Number of Processors

 0

 20

 40

 60

 80

 100

27 216 1000 1728

p
e
r
c
e
n
t
a
g
e

o
f

r
u
n
t
i
m
e

Number of Processors

 0

 20

 40

 60

 80

 100

27 216 1000 1728

p
e
r
c
e
n
t
a
g
e

o
f

r
u
n
t
i
m
e

Number of Processors

Figure 6.18: Runtime fraction results for the load rebalancing refinement weak scaling tests
up to 1849 processors on Beskow supercomputer. Triangles(top left), squares (top right), tetra-
hedra(bottom left), hexahedra(bottom right). The full description of this case is given in Fig.
6.17. It performs a single level of forced load rebalancing refinement, and solves the station-
ary heat transfer problem with the resulting refined mesh. The linear solver is set to be the
bi-conjugate gradient with the ML preconditioner. The refinement runtime fraction is plotted
with a solid fill, load balancing runtime fraction is plotted with a gross pattern fill, and the
linear system runtime fraction is plotted using the fine pattern fill.

146

6.7. Conclusions 147

6.7 Conclusions
In this chapter a novel parallel, hierarchical and load re-balanced algorithm for adaptive mesh
refinement and coarsening of unstructured bidimensional and three-dimensional meshes has
been presented.

The main features of the proposed algorithm are its suitability for nodally based partitions
in distributed memory frameworks, together with the capability to successively refine and un-
refine the mesh in an efficient manner in clusters of up to thousands of processors. Several
different types of meshes can be dealt with by the algorithm, including triangular, quadrilat-
eral, tetrahedral and hexahedral elements, and also meshes with several types of elements.

The memory requirements of the algorithm are reduced at the local level, because only the
information corresponding to the part of the mesh in the current processor subdomain needs
to be stored locally. The resulting refined meshes are non conforming with hanging nodes, but
no balancing restriction needs to be enforced between adjacent elements, which allows having
jumps of multiple refinement levels in neighbor elements.

A load rebalancing scheme has been presented which is independent of the rebalancing
renumbering strategy, which can be chosen by the user. Both graph partitioning schemes and
space-filling methods (or any other renumbering strategy for load rebalancing) can be used
with the proposed algorithm.

Several numerical tests have been presented to illustrate the performance of the proposed
algorithm. The first set of tests deals with simulation driven problems like the Poisson heat
transfer problem and the incompressible Navier-Stokes equations in adaptive meshes, for
which the expected behavior of the refinement algorithm is obtained. The second set of tests
study the scalability of the algorithm in up to 2000 CPUs clusters where good weak scalabil-
ity results are obtained for meshes of up to two thousand million elements. Also, the runtime
fraction for the refinement process is reduced when compared to the runtime for solving linear
systems of equations on the generated meshes, which ensures the suitability of the proposed
algorithm for large computational physics problems in high-performance computing environ-
ments.

The proposed algorithm is packed in the RefficientLib Fortran 2003 library for which
the user interface has been presented. This allows the easy integration (with no more than 10
calls to the adaptive refinement library) of the proposed algorithm with existing computational
physics codes.

147

148 Chapter 6. RefficientLib: An efficient load-rebalanced adaptive mesh refinement algorithm

148

Chapter 7

Variational multi-scale error estimators
for the adaptive mesh refinement of
compressible flow simulations

This chapter describes an explicit a-posteriori error estimator for the finite element approx-
imation of the compressible Navier-Stokes equations. The proposed methodology employes
the variational multi-scale framework, and specifically, the idea is to use the variational sub-
scales to estimate the error. These subscales are defined to be orthogonal to the finite element
space, dynamic and non-linear, and both the subscales in the interior of the element and on the
element boundaries are considered. Another particularity of the model is that we define some
norms that lead to a dimensionally consistent measure of the compressible flow solution error
inside each element; a scaled L2−norm, and the calculation of a physical entropy measure,
are both studied in this work. The estimation of the error is used to drive the adaptive mesh
refinement of several compressible flow simulations.

7.1 Introduction
The compressible Navier-Stokes equations, namely the conservation of mass, momentum, and
energy, together with constitutive and thermodynamical relations, constitute a physical model
that describes the compressible fluid flow phenomena. This model is able to represent the wide
range of spatial and temporal flow scales typically encountered in engineering cases of inter-
est. When numerically approximating these equations, the smallest flow scales (in turbulence
or aeroacoustics, for example) must be modeled with a high level of accuracy by numeri-
cal means, but one major source of error is the discretization error: the solution obtained with
coarse meshes is often too inaccurate, and calculating over fine meshes is impractical consider-
ing the amount of computational effort. Adaptive Mesh Refinement (AMR) methods deal with
this issue by dynamically re-configuring the initial mesh and changing its structure employing
some type of criteria. The AMR involves two main steps: first, the decision of which elements
to modify (mainly the ones contributing the most to the global solution error), and then, the
adaptation of those selected elements. The focus of the present work is to investigate a local
estimate of the approximation error that can be suitable for driving the AMR of compressible

149

150 Chapter 7. VMS error estimators for the AMR of compressible flow simulations

flow simulations. To this end, we exploit the Variational Multi-Scale (VMS) framework intro-
duced in [17], that is typically used to stabilize the fluid flow equations (see for instance the
review of the VMS applied to fluid problems in [15]).

The VMS method decomposes the solution space into a resolved component, that is cap-
tured by the finite discretization, and a sub-grid part, which is the remainder that cannot be
represented by the finite grid. The original discrete problem is therefore equivalent to two sub-
problems: one for each scale. Although the variational sub-grid scales (or subscales) have been
also adopted for turbulence modeling (for example in Chapter 2 and references therein), es-
sentially, the role of the subscales is related to the error of the finite approximation. Indeed, the
variational subscales vanish consistently as the discrete solution tends to the exact solution, so
that, they have been identified with residual-based error estimators (e.g in [144]). The recent
literature on variational subscales error estimators is too vast to survey here, but we mention
the early works of variational subscales as a-posteriori error estimates in [145, 146], where a
patch of the elements in the mesh was used to calculate the subscales by decoupling a global
residual equation with a localization function, and the element-residual methods in [147, 148],
which were able to provide implicit estimations with the subscales inside each element of the
mesh (and in some cases on the element boundaries). The application of the subscales as ex-
plicit a-posteriori estimators has been developed in [144, 149, 150] from the subscales at the
interior and at the boundaries of the element using element Green’s functions. In the case of
incompressible flow simulations, the subscales have been used as error estimators for AMR in
[151] by using a non-dimensional norm of the velocity subscales inside the element. However,
the explicit a-posteriori error estimation given by the variational subscales has been less ac-
curate than implicit goal-oriented methods for compressible flow problems in [18, 27–30], or
than energy norm estimates using implicit residual methods in [152, 153], but cheaper, since
the solution of additional differential equations is not required. We refer to the review article
by [154] for a deeper understanding of the variational subscales as explicit a-posteriori error
estimators.

The present approach is similar to the one in [150], where an explicit a-posteriori estimation
of the error for the Euler and Compressible Navier-Stokes equations was constructed. We also
derive an explicit a-posteriori error estimator from the VMS framework, but our approach
offers three different and novel ingredients. First, we define the space where the variational
subscales live as the space orthogonal to the finite element space, contrary to the most common
choice to define it equal to the space of the finite element residuals. This is the so-called
Orthogonal Sub-Grid Scales (OSGS) method, first introduced in [44], and which has been
recently applied as an explicit a-posteriori error estimator for the elastic problem of solids in
[155]. We also include the temporal tracking of the subscales, to what is referred in [46] as the
dynamic subscales, and account for including the subscales into all of the non-linear terms of
the problem. In consequence, we refer to the subscales as to be orthogonal, dynamic and non-
linear. Second, we model the effect of the subscales inside each element from the perspective
of a Fourier analysis, as developed in [85] or in Chapter 3, instead of using Green’s functions
in [17, 144, 149, 150]. Third, we model the subscales at the boundaries of the elements, as first
presented in [109], and calculate them as part of the error estimator.

In this chapter, the error estimation given by the variational multiscale is intended to drive
the adaptive mesh refinement process of compressible flow simulations. The error estimate
must be well constructed in a dimensional sense, so that, the contribution of the subscales of

150

7.2. Problem definition 151

the different equations (i.e. the subscales of the mass, momentum and energy equations) into
the estimation must be consistent. Several norms can be used in this regard. The L1 and L2

norms of the variational subscales of velocity in [151] and of the subscales of the separated
compressible equations in [150], and the energy norm of the variational compressible problem
in [153], have been previously applied to estimate the error inside each element. Since the error
estimation given by each separated variational subscales (of the compressible equations) can
vary greatly, and therefore, each refined mesh driven by the estimation of a single subscale may
lead to unbalanced errors between the multiple variables of the problem, we propose to calcu-
late the error estimation accounting for all the variational subscales. To this end, we propose
two different approaches that provide dimensionally consistent measures of the solution error
inside each element. The first approach is to calculate a scaled L2−norm of the variational sub-
scales inside the element, and on the element boundaries, as well. This approach goes in line to
the one presented in [155]. The second approach is to compute the relative L2 error norm of the
physical entropy (for ideal gases) calculated using the variational subscales inside the element.
The error estimation given by these two norms is used by the adaptive algorithm to drive the
addition or removal of elements where the error is outside a given threshold. The h-adaptive
method adopted here, including the refinement strategy and the data structures needed, has
been presented in Chapter 6 and implemented in the RefficientLib software. Neverthe-
less, the proposed strategy is applicable to p, r, and hp adaptive mesh refinement techniques,
although these are not explored in the present thesis. The AMR simulations demonstrate the
ability of the variational subscales to lead an accurate approximation, provided the error esti-
mation is kept always below the threshold inside the computational domain.

The chapter is divided into the following parts. In Section 7.2, the compressible flow prob-
lem is presented. Next, the VMS finite element formulation of the problem is described in
Section 7.3. The design of the variational subscales error estimator is presented in Section 7.4.
Some numerical examples, including subsonic and supersonic problems in two and three di-
mensions, are demonstrated in Section 7.5. Finally, in Section 7.6 some conclusions close the
chapter.

7.2 Problem definition
In this section, we present the governing equations for the compressible fluid flow problem,
i.e., the compressible Navier-Stokes equations. For doing so, the strong form of the problem
is described in the first part of the section. Then, we transform the strong form of the problem
into a quasi-linear form that allows us to deal with the non-linearities of the problem. The weak
form of the compressible problem is introduced at the last part of the section.

7.2.1 Compressible Navier-Stokes equations in strong form
Consider a spatial domain Ω ⊂ Rd, being d the number of space dimensions (d = 2 or 3), and
the time interval (0, tf). Let t ∈ (0, tf) be a given time instant in the temporal domain, and
x ∈ Ω a given point in the spatial domain. Let Γ be the boundary of the domain Ω, and n the
geometric unit outward normal vector on Γ. We split Γ into two sets: the Dirichlet boundary
denoted as ΓG, and the Neumann boundary denoted as ΓN . The strong form of the initial and

151

152 Chapter 7. VMS error estimators for the AMR of compressible flow simulations

boundary-value problem consists of finding the solution vector U : Ω × (0, tf) → Rd+2,
where d+2 is the number of unknowns (the same as equations of the system), such that for the
given Dirichlet boundary conditions UG : ΓG × (0, tf) → Rd+2 and the Neumann boundary
conditionsH : ΓN × (0, tf)→ Rd+2, the following compressible Navier-Stokes equations are
satisfied:

∂tU + ∂jEj (U) + ∂jGj (U) = F in Ω ⊂ Rd, t ∈ (0, tf) , (7.1)
D (U) = D (UG) on ΓG, t ∈ (0, tf) , (7.2)
B (U) = H on ΓN , t ∈ (0, tf) , (7.3)

U = U 0 (x) in Ω ⊂ Rd, t = 0. (7.4)

The Eulerian time derivative and ∂/∂xj are indicated in short notations ∂t and ∂j , respectively,
and the usual summation convention is used over repeated indices. The Dirichlet boundary
operator D (·) is used to impose the components of U on different parts of Γ. The Neumann
boundary conditions are given by the operator B (·). Note that with our notation ΓG and ΓN
may overlap.

The vector U = (ρ,m, etot)
> denotes a vector of conservative variables, density ρ, mo-

mentum m = ρu, and total energy etot = ρ (e+ u · u/2), where u stands for the velocity
vector, and e is the internal energy. The convective flux in the jth-direction, j = 1, ..., d, is
defined as

Ej (U) = (ρuj, ρuju1 + pδ1j, ρuju2 + pδ2j, ρuju3 + pδ3j, uj (etot + p))> , (7.5)

where p is the pressure and I = [δij] is the identity or Kronecker tensor. The diffusive flux in
the jth-direction, j = 1, ..., d, is

Gj (U) = (0,−σj1,−σj2,−σj3,−uiσij + qj)
> , (7.6)

where σ is the viscous stress tensor, σij = µ (∂jui + ∂iuj) − 2
3
µ (∂lul) δij, and q is the heat

flux vector, qi = −λ∂iT. Here µ is the viscosity, λ is the thermal conductivity and T is the
temperature of the fluid. The vector of source terms is defined as

F (U) = (0, ρf , ρf · u+ ρr)> , (7.7)

where f is a body force vector, and r is a heat source/sink term.
In the previous relations the caloric equation e = cv (T)T and the ideal law for gases

p = ρRT are used to calculate the pressure and the acoustic speed c =
√
γp/ρ, where the

specific heat at constant volume cv (T) and the specific heat at constant pressure cp (T) are
thermodynamic properties of the fluid, γ = cp/cv is the ratio between the specific heats, and
R = cp − cv is the specific gas constant. The non-dimensional Mach number M = |u| /c is
used to calculate the compressibility regime.

7.2.2 Quasi-linear form of the problem
Different formulations of the Navier-Stokes equations can be used, e.g. one can take U as the
conservation variables, as done before, or one can also take U = (p,u, T)>, leading to the

152

7.3. Finite element formulation 153

primitive variables formulation. Any of such formulations can be written in quasi-linear form
as

A0 (U) ∂tU + L (U ;U) = F in Ω ⊂ Rd, t ∈ (0, tf) , (7.8)

together with appropriate boundary and initial conditions. Here we have introduced the non-
linear operator L, which is defined as

L
(
Û ;U

)
= Aj

(
Û
)
∂jU − ∂k

(
Kkj

(
Û
)
∂jU

)
. (7.9)

MatricesA0 (U),Aj (U), andKkj (U), for k, j = 1, .., d, are (d+ 2)× (d+ 2) matrices that
depend upon U , and that are appropriately defined for each type of formulation, as described
in Chapters 3 and 4. Both the conservative and the primitive formulations will be applied in
the next sections of this chapter.

7.2.3 Weak form of the problem
Let W be the space of functions where, for each t ∈ (0, tf), the unknowns are well defined,
with the appropriate regularity that we will not analyze here. Let us also denote by (·, ·)ω the
integral of the product of two functions (scalar or vector-valued) in a domain ω, omitting the
subscript when ω = Ω. Introducing the form

A(U ;V ,W) := (V ,Aj (U) ∂jW) + (∂kV ,Kkj (U) ∂jW) , (7.10)

the variational form of the problem can be written as: find U : (0, tf)→W such that

(V ,A0 (U) ∂tU) + A(U ;V ,U) = (V ,F) + (V ,H)ΓN
, t ∈ (0, tf) , (7.11)

(V ,U) =
(
V ,U 0

)
, t = 0, (7.12)

for all V in the adequate test functions space. The Neumann boundary operator is given by the
diffusive fluxes

B (U) = −nkKkj (U) ∂jU , (7.13)

although part of the convective term could also be integrated by parts and contribute to the
Neumann boundary conditions, in particular, the pressure term.

7.3 Finite element formulation
In this section, the finite element formulation of the compressible problem is described. The
VMS formulation of the compressible problem is described in the beginning of the section.
As it will be explained, the VMS framework is used for stabilizing the finite element approx-
imation and allows us to use arbitrary interpolation spaces for the different variables of the
problem. The finite element equation is described first. Then, we focus the attention on the
solution of the subscales; we address the equation for the subscales at the interior of the el-
ement, and later, the approximation for the subscales at the element boundaries is addressed.
In contrast to the previous chapters of the thesis, we now include the subscales at the element
boundaries as a key ingredient in the estimation of the error. Finally, we describe the time
integration scheme that is used for advancing in time at the end of the section.

153

154 Chapter 7. VMS error estimators for the AMR of compressible flow simulations

7.3.1 Variational multi-scale framework
Let us first consider a finite-element partition Th = {K} of the domain Ω. The diameter of the
element partition is denoted by h. We define the test functions space Wh ⊂ W as made of
continuous piecewise polynomial functions in space. The Galerkin approximation to problem
(7.11)-(7.12) can be stated as follows: find Uh : (0, tf)→Wh such that

(V h,A0 (Uh) ∂tUh) + A(Uh;V h,Uh) = (V h,F) + (V h,H)ΓN
, t ∈ (0, tf) , (7.14)

(V h,Uh) =
(
V h,U

0
)
, t = 0, (7.15)

for all V h ∈W0
h, the discrete space of test functions (i.e., with components vanishing where

Dirichlet conditions are prescribed on the boundary).
This approximation suffers from instability problems, which vary according to the way to

construct Wh (e.g. in the case of equally interpolating spaces).
The VMS framework introduced in [17], has been established for overcoming this issue.

The idea of the VMS framework is to decompose the space of the unknowns into a finite-
dimensional space Wh, and an infinite-dimensional one, W̃ , so that W = Wh ⊕ W̃ . The
unknown and the test functions are accordingly split as U = Uh + Ũ and V = V h + Ṽ ,
respectively. We shall refer to functions in Wh as the resolved scales and to functions in W̃
as the error or subscales.

Equation (7.11) can be equivalently written as the system of equations

(V h,A0 (U) ∂tU) + A(U ;V h,U) = (V h,F) + (V h,H)ΓN
, (7.16)

for all V h ∈W0
h, t ∈ (0, tf), and(
Ṽ ,A0 (U) ∂tU

)
+ A(U ; Ṽ ,U) = (Ṽ ,F) +

(
Ṽ ,H

)
ΓN
, (7.17)

for all Ṽ ∈ W̃
0
, t ∈ (0, tf), and likewise for the initial condition, Eq. (7.12). In Eq. (7.17),

W̃
0

is the space of subscale test functions.

7.3.1.1 Finite element equation

We first analyze the equation for the finite element scale (7.16). The time-dependent terms
involving the temporal derivatives in the Left-Hand-Side (LHS) of Eq. (7.16) can be split as

(V h,A0 (U) ∂tU) = (V h,A0 (U) ∂tUh) +
(
V h,A0 (U) ∂tŨ

)
. (7.18)

Similarly, the second term in the LHS of Eq. (7.16) can be split as

A(U ;V h,U) = A (U ;V h,Uh) + A
(
U ;V h, Ũ

)
. (7.19)

154

7.3. Finite element formulation 155

For convenience, the first terms in A
(
U ;V h, Ũ

)
can be integrated by parts, that is,(

V h,Aj (U) ∂jŨ
)

=−
∑
K

(
∂j
(
A>j (U)V h

)
, Ũ
)
K

+
∑
K

(
njA

>
j (U)V h, Ũ

)
∂K
, (7.20)(

∂kV h,Kkj (U) ∂jŨ
)

=−
∑
K

(
∂j
(
K>kj (U) ∂kV h

)
, Ũ
)
K

+
∑
K

(
njKkj (U)> ∂kV h, Ũ

)
∂K
. (7.21)

Note that these terms in (7.19) involve inter-element jumps. For continuous solution finite
element spaces, the convective term jump at the element boundaries in the Right-Hand-Side
(RHS) of (7.20) is continuous because it is a function of the variables and, therefore, its sum
across adjacent element boundaries is zero. On the contrary, the diffusive term at the element
boundaries in the RHS of (7.21) contains derivatives of the variables and it is discontinuous
even for continuous finite element spaces.

If we introduce the formal adjoint L∗ (U ; ·) of the operator L (U ; ·), which is

L∗ (U ;V h) = −∂j
(
A>j (U)V h

)
− ∂j

(
K>kj (U) ∂kV h

)
, (7.22)

the term related to the subscales in the finite-element equation (7.19) can be written as

A
(
U ;V h, Ũ

)
=
∑
K

(
L∗ (U ;V h) , Ũ

)
K

+
∑
K

(
njK

>
kj (U) ∂kV h, Ũ

)
∂K
. (7.23)

We divide the approximation of the variational subscales: either we define the subscales in
the interior of the element, or we define them at the element boundaries. The first term at the
RHS of (7.23) is the stabilization term that includes the subscales in the interior of the element
Ũ , whereas, the second term is the element boundary term that relates the subscales at the
internal and boundary edges, that we call ŨE . We introduce some approximations to calculate
the variational subscales; the way we deal with those approximations will be explained in the
following paragraphs. In this work we also make the following simplification: we only account
for the interior subscales in the solution of the finite element problem, whereas, the subscales
at the boundary are calculated as part of the error estimator.

7.3.1.2 Subscales in the interior of the element

It is readily seen that, after integrating by parts the diffusive term of the LHS of (7.17), the
equation for the subscales can be written as(

Ṽ ,A0 (U) ∂tŨ + L
(
U ; Ũ

))
=
(
Ṽ ,F −A0 (U) ∂tUh −L (U ;Uh)

)
. (7.24)

At this point we introduce the main approximation

L
(
U ; Ũ

)
≈ τ−1 (U) Ũ , (7.25)

155

156 Chapter 7. VMS error estimators for the AMR of compressible flow simulations

so that the application of the non-linear operator to the subscales is modeled by a matrix of
stabilization parameters τ−1 that depends over the unknowns. If P̃ denotes the L2 projection
onto the space of subscales, the equation for the subscales in the interior of the element (7.24)
can be formally written as

A0 (U) ∂tŨ + τ−1 (U) Ũ = P̃ [R (U ;Uh)] , (7.26)

whereR (U ;Uh) stands for the finite residual,

R (U ;Uh) = F −A0 (U) ∂tUh −L (U ;Uh) . (7.27)

In this work we define the space where the subscales belong as the orthogonal space to the
finite element space, W̃ = W⊥

h . This is the so called Orthogonal Sub-Grid Scales (OSGS)
method, which defines the projection as the orthogonal projection onto the finite element space
P̃ = P⊥h = I−P h, beingP h the L2−projection onto the finite element space. Apart from the
construction of the spaces where the subscales belong, we call the subscales dynamic because
the temporal derivative of subscales in (7.18) and (7.26) is taken into account, and non-linear,
as the subscales are accounted for in all the non-linear terms of both the finite scale and sub-
scale equations. This means that at all instances where U appears, it is replaced by Uh + Ũ .

We also adopt in the present formulation a diagonal matrix of stabilization parameters
τ−1 (U) = diag (τ−1

c (U) , τ−1
m (U) I, τ−1

e (U)), such that an approximation of the nonlin-
ear operator applied to the subscales is made in each element. The definition for the diagonal
matrix of stabilization parameters arises from the perspective of a Fourier analysis, as demon-
strated in Chapter 3. These components are defined for each formulation as

Conservative variables Primitive variables
τ−1
c (U) = C2(|u|+ c)/h , τ−1

c (U) = ρτm/h
2,

τ−1
m (U) = C1ν

h2
+ C2(|u|+c)

h
, τ−1

m (U) = C1µ
h2

+ C2ρu?

h
,

τ−1
e (U) = C1α

h2
+ C2(|u|+c)

h
, τ−1

e (U) = C1λ
h2

+ C2ρcvu?

h
.

In these expressions C1 and C2 are algorithmic parameters that we take as C1 = 12p2

and C2 = 2p, where p is the order of the finite element interpolation. We also define the
kinematic viscosity as ν = µ/ρ, and the thermal diffusivity as α = λ/ρcp. For the primi-
tive variables formulation, we follow the definition in Chapter 4 for the matrix of stabiliza-
tion parameters, in which u? is a modified velocity that is calculated with the Gauss error
function, u? = |u| + erf(φ)c, where φ is a normalized compressibility that is defined as
φ = 2 − 2(ε −M)/ε. In the previous expression ε is a parameter that determines a certain
transition from the compressible to the incompressible regime, which we assume as ε = 0.1
in the numerical examples presented in this chapter. Note that for the primitive variables for-
mulation, the stabilization parameter for the momentum equation is dimensionally as the one
for the conservative variables multiplied by the density. This is also the case of the stabiliza-
tion parameter for the energy equation, which is dimensionally as the one for the conservative
variables multiplied by ρcp.

7.3.1.3 Subscales at the element boundaries

On the element boundaries, the subscales are calculated as follows. The main idea, proposed
originally in [109], is to use the fact that the traction is continuous across element interfaces.

156

7.3. Finite element formulation 157

The weak continuity of the total fluxes implies that∑
K

(V h, nkKkj (U) ∂jU)∂K = 0. (7.28)

Suppose two elements K1, K2 that share an edge (face, in d = 3) E. The jump operator of a
scalar function g across E is defined as

JngKE = n(1)g|∂K1∩E + n(2)g|∂K2∩E, (7.29)

where n(1) is the unit external normal to element K1, and n(2) is the unit external normal to
element K2. Therefore, the continuity of the fluxes can be imposed with the jump operator on
each edge as

0 =JnkKkj (U) ∂jUhKE + JnkKkj (U) ∂jŨKE.

We can write the second term on the RHS of the previous expression in the following manner:

JnkKkj (U) ∂jŨKE =F (1)
∂K1∩E + F (2)

∂K2∩E (7.30)

The approximation of the method is given by the supposition that the fluxes related to the
subscales at the boundary ŨE are calculated respectively as

F (1)
∂K1∩E ≈ KŨE − Ũ

(1)

δ
, and F (2)

∂K2∩E ≈ KŨE − Ũ
(2)

δ
. (7.31)

Here we approximate the subscales Ũ
(i)

at the interior of element i, up to a distance δ = δ0h
to the element boundary, 0 ≤ δ0 ≤ 1/2. We may introduce K as an approximation for the
diffusion matrix Kij (U) , for 1 ≤ i, j ≤ d, which we define in this work for the conservative
and primitive formulations, respectively as

K =

0 0> 0
0 νI 0
0 0> α

 and K =

0 0> 0
0 µI 0
0 0> λ

 . (7.32)

Nevertheless, other types of definitions for the subscale fluxes could be implemented, as finite-
difference-like methods.

With the previous considerations, we obtain a definition for the subscales at the internal
edges of the finite element mesh

ŨE ={Ũ}E −K−1 δ

2
JnkKkj (U) ∂jUhKE, (7.33)

where {Ũ}E stands for {Ũ}E = (Ũ
(1)

+ Ũ
(2)

)/2. As explained in [109], we can neglect the
contribution of this term, so that the calculation of the subscales at the edges is given by

ŨE =− τEJnkKkj (U) ∂jUhKE. (7.34)

The previous equation can be seen as the usual definition for the subscales calculation, this is,
to use a boundary matrix of stabilization parameters which accounts for τE = K−1δ0h/2. In
this work, the algorithmic constant δ0 = 1/2 is used.

157

158 Chapter 7. VMS error estimators for the AMR of compressible flow simulations

7.3.2 Time integration method
We partition the time interval (0, tf) in a sequence of discrete time steps 0 = t0 < t1 <
... < tN = tf , with δt > 0 the time step-size defining tn+1 = tn + δt for n = 0, 1, 2, ..., N .
We implement an implicit monolithic time integration scheme in order to integrate the time
derivatives of Eqs. (7.16) and (2.14). More specifically, we use the Backward Differentiation
Formula (BDF) scheme. For the time dependent function y(t), the BDF approximation of order
k = 1, 2, .., is given by δkyn+1/δt, with

δky
n+1 =

1

γk

(
yn+1 −

k−1∑
i=0

φiky
n−1

)
,

where γk and φik are numerical parameters. In particular, we use the first order scheme for
discretizing the transient term of the subscales in Eq. (2.14). The solution of the subscales in
the interior of the element at the time step n+ 1 is computed from

Ũ
n+1

= τ t
(
Un+1

)(
P̃
[
R
(
Un+1;Un+1

h

)]
+A0

(
Un+1

) Ũn

δt

)
, (7.35)

where the dynamic operator τ t
(
Un+1

)
is defined as

τ t
(
Un+1

)
=

(
1

δt
A0

(
Un+1

)
+ τ−1

(
Un+1

))−1

. (7.36)

In the case of the primitive variables formulation, we avoid the off-diagonal terms that appear
in matrixA0

(
Un+1

)
by approximating (7.36) as described in Chapter 4. Hence, for the prim-

itive variables formulation we take the following diagonal definition of the dynamic operator:

τ t
(
Un+1

)
=diag

((
ρn+1

pn+1δt
+ τ−1

c

)−1

,

(
ρn+1

δt
+ τ−1

m

)−1

I,

(
ρn+1cp
δt

+ τ−1
e

)−1
)
.

(7.37)

7.4 Variational subscales as error estimator
The stabilized variational formulation for the compressible problem has been presented in the
previous section. Regarding the discrete finite element approximation, it is identified with the
coarse scales, while the variational subscales are related to the solution error. In this section,
the error estimation (computed from the variational subscales) is presented. First, we introduce
some additional approximations for calculating the subscales at the boundaries of the element.
At the end of the section, we present the norms in which the error is measured.

7.4.1 Approximation for the subscales at the element boundaries
The equation for the subscales at the element interior (2.14) is a non-linear ordinary differential
equation that is typically solved at each integration point inside the element. This follows from

158

7.4. Variational subscales as error estimator 159

the fact that subscales need to be included in the finite element scales (7.23) at the integration
points. Nevertheless, the subscales (as error estimation) can be calculated at any location in
the interior of the element (e.g. at the center of the element and/or at the nodes). Instead, the
subscales at the element boundaries (7.34) are defined by the inter-element jump operator, and
therefore, the contribution of neighbor elements must be accounted for. This type of calcula-
tion is inconvenient for parallel implementations of the AMR strategy, in which neighboring
elements may be located on a different partition of the computational domain. To overcome
this difficulty, we follow the approach in [155] for approximating the calculation of the sub-
scales at the element boundaries: the inter-element jump can be bounded by an orthogonal
projection in the interior of the element.

Let us first explain how the boundary subscales are developed. Expanding (7.34) and writ-
ing it for each equation of the compressible problem, results in

m̃E =− δ0h

2

(
ν−1I

)
Jσ (Uh) · nKE, ũE = −δ0h

2

(
µ−1I

)
Jσ (Uh) · nKE,

ẽtot,E =
δ0h

2

(
α−1
)
Jq (Uh) · nKE, T̃E =

δ0h

2

(
λ−1
)
Jq (Uh) · nKE,

for the conservative and primitive variables, respectively. Note that no subscales over the
boundaries result in the case of the continuity equation.

As described before, we approximate the jump of the fluxes. It has been shown in [156]
that any jump at the boundaries of the elements posses a lower, and an upper bound, in the
sense that

γ1

∑
K

hK

∫
∂K

|Jσ (Uh) · nKE|2 ≤ ‖σ (Uh)− Ph (σ (Uh))‖2

≤ γ2

∑
K

hK

∫
∂K

|Jσ (Uh) · nKE|2, (7.38)

for certain γ1 and γ2. This introduces the possibility of approximating the L2−norm of the
jumps at the boundaries with∫

∂K

|Jσ (Uh) · nKE|2 ≈ γh−1
K ‖σ (Uh)− Ph (σ (Uh))‖2

K . (7.39)

A similar result is obtained for the jump over the heat flux:∫
∂K

|Jq (Uh) · nKE|2 ≈ γh−1
K ‖q (Uh)− Ph (q (Uh))‖2

K . (7.40)

In these approximations, γ is a constant that can be calibrated (not to be confused with the ratio
of specific heats). Another way to see this approximation is that we are replacing the boundary
integral terms by a Zienkiewicz-Zhu estimator [143] over stresses and heat fluxes.

7.4.2 Error estimator measures
Providing a measure of the error for the finite element solution of all variables of the compress-
ible problem is not trivial. Because the equations are non-symmetric and positive definite, there

159

160 Chapter 7. VMS error estimators for the AMR of compressible flow simulations

is not a single energy norm (which exists in other fluid flow problems) that could give an es-
timate of the solution error. Moreover, as we have subscales for each of the equations of the
problem, we must define an appropriate norm for estimating the error that includes the contri-
bution of every subscale. In the following, we mention two different norms that we develop to
compute an error estimator that can be used in AMR. It is obvious that many other alternatives
would be possible.

7.4.2.1 Scaled L2-Norm

One possibility is to define a scaledL2−norm of the subscales of the type |Ũ |2S = Ũ
>
SŨ . The

scaling matrix S is intended to guarantee the dimensional consistency between the different
subscales. This scaled norm can be applied considering the interior subscales and the subscales
at the element boundaries, such that the error estimator at each element is computed as

η2
K :=|Ũ |2S + |ŨE|2S, (7.41)

where it is understood that Ũ is restricted to K (and E ∈ ∂K). We adopt the diagonal matrix
of stabilization parameters τ as part of the scaling matrix.

Introducing a reference velocity of the fluid flow problem u0 = |uh| + c, we can take for
the conservative variables formulation a scaling matrix S = diag

(
τ−1
c u2

0, τ
−1
m I, τ

−1
e u−2

0

)
, that

gives the following dimensionally-consistent estimation of the error at each element:

η2
K :=

∫
K

τ−1
c (|uh|+ c)2|ρ̃|2 +

∫
K

τ−1
m |m̃|2 +

∫
K

τ−1
e (|uh|+ c)−2|ẽtot|2

+

∫
∂K

τ−1
m,E|m̃E|2 +

∫
∂K

τ−1
e,E(|uh|+ c)−2|ẽtot,E|2. (7.42)

In the case of the primitive variables formulation, the scaling matrix S can be written as
S = diag

(
τ−1
c ρ−1

h , τ−1
m I, τ

−1
e T−1

h

)
, being ρh and Th the finite element approximation of the

density and temperature, respectively. Therefore, in the case of the primitive formulation the
error estimation at each element is given by the following dimensionally-consistent norm:

η2
K :=

∫
K

τ−1
c ρ−1

h |p̃|
2 +

∫
K

τ−1
m |ũ|2 +

∫
K

τ−1
e T−1

h |T̃ |
2

+

∫
∂K

τ−1
m,E|ũE|

2 +

∫
∂K

τ−1
e,ET

−1
h |T̃E|

2. (7.43)

7.4.2.2 Entropy measure

Another possibility is to construct the error measure based on the calculation of an entropy
functional. Assuming that the fluid possesses a constant specific heat at constant volume, the
fundamental equation for the perfect gas is

s = s0 + cv ln

(
e

e0

)
−R ln

(
ρ

ρ0

)
, (7.44)

160

7.5. Numerical Examples 161

where s0, e0, and ρ0 are reference values of entropy, internal energy, and density, respectively.
Since the perfect gas relation can be written as p = ρ (γ − 1) e, and the caloric equation relates
the internal energy with temperature, the previous relation can be developed as

s = s0 + cv ln

(
p

ργ

)
+ cv ln

(
ργ−1

0

(γ − 1)

)
− cv ln e0. (7.45)

Therefore, an entropy function can be defined for the compressible problem as

s = cv ln

(
p

ργ

)
+ ŝ0, (7.46)

with ŝ0 denoting the coefficients of (7.45) which are reference quantities. Since calculating
an entropy with the subscales alone may lead to unphysical results, the entropy is used as
an estimator by calculating the elemental relative L2−error between the entropy of the finite
solution including the subscales s̃, and the entropy of the finite solution alone sh. This is,

η2
K :=

∫
K

(
s(Uh)− s(Uh + Ũ)

)2

s(Uh)2
(7.47)

For the conservative variables formulation, we calculate the entropy as

s(U) =cv ln

(γ − 1)
(
etot − |m|

2

2ρ

)
ργ

 . (7.48)

Similarly, for the primitive variables formulation, the entropy is calculated as

s(U) =cv ln

(
p(
p
RT

)γ
)
. (7.49)

7.5 Numerical Examples
The error estimator presented before is now tested in AMR simulations of compressible flow
problems. Two steady exact solution examples are solved in the first part of this section. The
simulation of exact solution problems is mainly devoted to highlighting the behavior of the
subscales as explicit error estimators. Then, the three-dimensional lid-driven cavity and the
unsteady differentially heated cavity examples are intended to study the error estimation in
subsonic flow problems. The primitive variables formulation is used in these cases, since this
formulation simplifies to the incompressible equations when the incompressible constraint is
included, and consequently, it is well defined in the low Mach number limit. On the contrary,
the conservative variables formulation admits physically meaningful solutions when the solu-
tion develops discontinuities, as in the case of supersonic shocks, and consequently, we use
that formulation to solve the last two numerical examples: the flow over a flat plate and the
flow past a cylinder supersonic flow problems. In the case of those supersonic flow exam-
ples, the conservative variables formulation is enhanced with the orthogonal projection based

161

162 Chapter 7. VMS error estimators for the AMR of compressible flow simulations

shock capturing and the anisotropic imposition of the added numerical diffusivity introduced
in Chapter 3.

As described in Section 7.3, we implement an implicit monolithic time integration scheme
in order to integrate the time derivatives of Eqs. (7.16) and (2.14). More specifically, we use
the second order accurate Backward Differentiation Formula (BDF) scheme, so that, at each
time step we solve the non-linearities of both the finite element and sub-grid scales by using
Picard’s scheme. This leads to a monotonically decreasing relative error between consecutive
iterations, with the subsequent convergence of the numerical method. At most ten iterations
are performed, fulfilling the maximum relative numerical tolerance for the L2 norm iteration
residual of 10−10.

As commented before, the refinement process is held locally to counterbalance the error
through the computational domain. The basic idea is, to begin with a given (0−level) coarse
grid, and then to subsequently perform refinement (or coarsening). After each time step of
the transient problem is solved we estimate the local error using (7.41) or (7.47). The error
estimation is used to refine or coarsen the elements of the mesh depending on a given tolerance
criteria (or threshold). The algorithm for refining the mesh is based on the h-adaptivity method
of Chapter 6 that splits the element into sub-elements, or removes sub-elements to coarsen the
mesh (being the 0-level mesh the coarsest possible mesh). We advance in time and adapt the
mesh until a temporal convergence criterion is satisfied. In the case of non-transient examples,
we perform the refinement step after each Picard’s iteration. From now onwards the flow is
considered as an ideal gas, with ratio of specific heats γ = 1.4 and physical properties cp =
1.010 kJ/(kg K) and cv = 0.718 kJ/(kg K).

7.5.1 Smooth exact solution
The first numerical example is intended to study the ability of the subscales to act as an explicit
error estimation. In this case, we evaluate the estimation of the error given by the subscales,
specifically, we consider the error measured with the scaled L2−norm of an exact solution
problem. The exact solution problem is solved by calculating an exact force, computed with
the residual of the continuous problem, that is used in the discrete problem (also known as the
method of manufactured solutions).

We use the primitive variables formulation to solve this numerical example. The problem
is defined inside a rectangular domain [0, L] × [0, L], with L = 1 m, with the viscosity fixed
to µ = 0.1 kg/(m s), and the thermal conductivity to λ = 1000 W/(m K). The polynomial
functions that we use as a steady two-dimensional manufactured solution for the compressible
Navier-Stokes equations are given as follows:

p = x2
1x

2
2(x1 − 1)(x2 − 1) + 0.01,

u1 = 2x2
1x2(x1 − 1)2(x2 − 1)(2x2 − 1),

u2 = −2x1x
2
2(x1 − 1)(x2 − 1)2(2x1 − 1),

T = 2x2
1x2(x2

1 − 1)(x2 − 1) + 0.01.

This type of problem is favorable to analyze the error estimation. Indeed, the difference
between the discrete solution and the exact solution can be calculated, and it can be compared
to the error given by the subscales. In this numerical example, we restrain the analysis to the

162

7.5. Numerical Examples 163

 0.1

 1

 10

 100

 1 10 100

E
rr

o
r

1/h

Exact
γ=0

γ=0.1
γ=1

 0.1

 1

 10

 1 10 100

E
ff

ic
ie

n
cy

 i
n
d
ex

1/h

γ=0
γ=0.1

γ=1

Figure 7.1: Smooth exact solution results: convergence of the exact error and the subscales
error estimator at the left, and efficiency index as a function of the mesh size at the right.

scaled L2−norm (presented in Section 7.4), as a measure of the subscales-based error, and
we also use this norm to calculate the error against the exact solution. We prescribe the toler-
ance below the subscales-based error estimation through the simulation, so that, the algorithm
refines uniformly the mesh.

This example is used to adjust the γ parameter of approximation (7.38), which is made
to compute the integral of the subscales at the element boundaries. To this end, we perform
different homogeneous refinement simulations varying the γ parameter and evaluate the effi-
ciency of each subscales-based error estimation. Figure 7.1 displays the error convergence of
the exact error compared with the subscales-based error estimator for the different values of γ.
The efficiency index of the subscales-based estimator is also presented on the right side of this
figure. In the convergence plot, we see that neglecting the subscales at the boundary (γ = 0)
underestimates the error. Fixing γ = 0.1 gives the most adjusted error estimation in contrast
to the exact error. It can be observed that the efficiency index of the estimator for this value is
very good. The case of having γ > 0.1 overestimates the error, which is also observed in the
detached result for the efficiency index. Hence, we fix γ = 0.1 to approximate the integral of
the subscales over the boundary of the element in the following numerical examples.

We also show the spatial distribution of the exact error and the subscales-based error esti-
mator in Fig. 7.2, after some refinement steps have been done. We see how it properly matches
the spatial distribution of the exact error, and thus we validate the ability of the subscales-based
error estimator to capture the error associated with the discretization error.

7.5.2 Singular exact solution
The second numerical example is a two-dimensional exact solution comprising a singularity
in the solution. This allows us to evaluate the performance of the subscales as an error esti-
mator when large localized gradients appear. We also use the primitive variables formulation
to investigate the separated contribution of the subscales associated to each equation of the
compressible problem into the estimation of the error. The exact solution is evaluated in the

163

164 Chapter 7. VMS error estimators for the AMR of compressible flow simulations

Figure 7.2: Smooth exact solution results: scaled L2−norm of the exact error at the left, and
scaled L2−norm of the subscales at the right. Top: after three refinements. Bottom: after five
refinements.

L−shaped domain ([−1, 1]× [−1, 1]) \ ([0, 1]× [−1, 0]), with the following functions:

p(r, φ) =− rα−1 (1 + α)2ϕ′(φ) + ϕ′′′(φ)

1− α
,

u(r, φ) =rα
[
cos(φ)ϕ′(φ) + (1 + α) sin(φ)ϕ(φ)
sin(φ)ϕ′(φ)− (1 + α) sin(φ)ϕ(φ)

]
,

T (r, φ) =rα (cos(φ)ϕ′(φ) + (1 + α) sin(φ)ϕ(φ)) ,

with r and φ being the polar coordinates, and the function ϕ defined as

ϕ(φ) =
sin((1 + α)φ) cos(αω)

1 + α
− cos((1 + α)φ) +

sin((1 + α)φ) cos(αω)

1− α
+ cos((α− 1)φ).

(7.50)

Here we take ω = 3π/2 and α as the (approximate) root of the following non-linear equation:

sin2(αω)− α2 sin2(ω)

α2
=0. (7.51)

In this case the viscosity fixed to µ = 0.1 kg/(m s), and the thermal conductivity to λ = 25700
W/(m K).

We first study the comparison between the error estimator and the exact solution error af-
ter several refinements steps. We use the scaled L2−norm as the measure of the error, and let
the mesh adaptation algorithm advance with the tolerance prescribed to 10−2 < η < 10−1.
Figure 7.3 shows the resulting fields, including the subscales-based error distribution over the
refined mesh. The singularity in the pressure field near the corner of the domain can be appre-
ciated at the top of this figure. It can also be seen that the refined mesh especially describes the
singular point of the solution.

164

7.5. Numerical Examples 165

We also use this numerical example to analyze the error estimation given by the separated
subscales (and the consequent type of refinement). Again, we use the scaled L2−norm, but
we account for the separated contribution of the subscales associated to each equation of the
problem. The refined meshes and the subscales-based error measured with the scaledL2−norm
are displayed in Fig. 7.4. In this figure, we can see how accounting for the subscales of the
mass equation refines the singular point, but the estimated error is high elsewhere. For the
momentum subscales, this is not the case, it describes the singular point, but the estimated
error is also low in the complete domain. In the case of the subscales of energy, there is not a
description of the singularity, yet the estimated error is low.

Another analysis that we make is the comparison between a homogeneous refinement of
the mesh and the one driven by the subscales-based error estimator. Figure 7.5 shows the
convergence of the exact error (in the scaled L2−norm) against the number of elements. At the
left side of this figure, we plot the exact error convergence in the case of the AMR driven by
subscales comparison against the homogeneously refined solution. The plot demonstrates the
improved convergence of the exact error with the use of the subscales-based error (labeled as
puT) in contrast to the homogeneous refinement, which is not able to accurately represent the
singularity. Indeed, the exact error for the AMR converges below the homogeneous refinement
at a smaller number of elements in the mesh, from which we conclude that the subscales-
based error estimator is suitable for problems in which the solution presents singularities. We
also present the computational cost of the subscales-based AMR and of the homogeneous
refinement at the right side of Fig. 7.5. We observe that for the refinement with the subscales-
based error estimator the computational effort flattens when the error converges. This is not
achievable with the homogeneous refinement, as the computational effort grows with respect
to the refinement.

Finally, we test the error estimation given by the separated contribution of the subscales
and analyze the error convergence against the number of elements. We perform the refinement
of the mesh with the error estimation given by the separated contribution of the subscales
(associated with each equation of the problem). The exact error convergence of the different
subscale estimations are presented in Fig. 7.6. We observe that the error diverges when the
mass equation subscales (labeled p) leads the refinement. For overcoming this problem, we see
that the subscales of momentum and energy equations are crucial, and therefore, the complete
contribution of all subscales in the scaled L2−norm improves the convergence of the error.
In other words, the subscales of momentum (labeled u in the plot) and energy (labeled T)
contribute the most to the error convergence; as long as these terms are considered both in the
interior and on the boundaries of the elements.

7.5.3 Three-dimensional lid-driven cavity
The third case that we solve is the three-dimensional lid-driven cavity. We use this example
to compare the scaled L2−norm estimation of the subscales-based error with the one given by
the entropy measure. The three-dimensional lid-driven cavity problem is defined as a prismatic
cavity [0, L]× [0, L]× [0, L], with L = 1 m. The flow is initially at rest, with a homogeneous
pressure of 0.7124 Pa and a homogeneous temperature of 0.0024 K. The upper wall (x1, x2, L)
is constantly moving at a fixed velocity of (1, 0, 0) m/s. For the upper boundary, the tempera-
ture is also set to 0.0024 K. A no-slip condition for velocity, an adiabatic condition for energy,

165

166 Chapter 7. VMS error estimators for the AMR of compressible flow simulations

(a) (b)

(c) (d)

Figure 7.3: Singular exact solution results: (a) pressure contour, (b) velocity magnitude con-
tour, (c) temperature contour, and (d) refined mesh with the subscales-based error distribution.

166

7.5. Numerical Examples 167

(a) (b)

(c)

Figure 7.4: Singular exact solution results. Refined mesh and subscales-based error measured
with the scaled L2−norm considering only the subscales of (a) mass, (b) momentum, and (c)
energy.

 100

 1000

 10 100 1000 10000

E
rr

o
r

Number of elements

Homogeneous
puT

 0.001

 0.01

 0.1

 1

 10

 10 100 1000 10000

C
P

U
 t

im
e

[s
]

Number of elements

Homogeneous
puT

Figure 7.5: Singular exact solution results: exact error convergence measured with the scaled
L2−norm against the number of elements at the left, and computational time versus number
of elements at the right.

167

168 Chapter 7. VMS error estimators for the AMR of compressible flow simulations

 200

 1 10 100 1000

E
rr

o
r

Number of elements

puT
p

u

T

200

200 300 400

Figure 7.6: Singular exact solution results. Exact error convergence measured with the scaled
L2−norm against the number of elements for the separated subscales refinement.

and an impermeable condition for mass are set over the other walls. We set the Prandtl number
to Pr = 0.71 and the Reynolds number to Re = 1000. At this conditions, the compressibility
regime of the flow is M = 1.

The primitive variables formulation is used to solve this numerical example: the resulting
flow is laminar and steady; it is obtained by running the simulation until the L2−error norm
between consecutive temporal results is below the transient converge criterion for all variables
of the flow problem. The steady flow results are presented in Fig. 7.7, where the contours for
pressure, velocity magnitude, and temperature, at four different cutting planes of the cavity, are
presented. We observe that the laminar flow is comprised of a major vortical structure, with
singular points of pressure near the top corners of the cavity.

We execute AMR simulations by fixing the error tolerance below 10−6 for the scaled
L2−norm, and 10−8 for the entropy measure; then we perform several consecutive refinements
from an initial structured mesh composed of 35937 hexahedral elements. The final adapted
meshes and the error estimation over these meshes are presented in Figures 7.8 and 7.9, for
the scaled L2− and entropy measures, respectively. The error estimation, which is below the
prescribed tolerance in both cases, is plotted as contours at four different cutting planes of
the cavity. We observe that the measured subscales-based error is smaller in the case of the
entropy measure than the one with the scaled L2−norm. Hence, the prescribed tolerance can
be reduced when the error estimation is measured with the entropy measure; this may lead to
a similar number of total elements, as in the case of the scaled L2−norm measurement. Either
description of the three-dimensional flow pattern given by the subscales-based error estimation
is accurate: the resolution of three-dimensional flow singularities, including the description of
the boundary layer near the top wall, and the singular points of pressure near the corners, are
well identified. This is more evident in the case of the localized refinement that appears at the
singular points near the edges and corners, and in the absence of refinement in the regions of
the flow where stagnation occurs.

168

7.5. Numerical Examples 169

(a) (b)

(c)

Figure 7.7: Three-dimensional lid-driven cavity results: (a) pressure, (b) velocity magnitude,
and (c) temperature contours obtained using the refined mesh driven by the subscales-based
error measured with the scaled L2−norm.

Figure 7.8: Three-dimensional lid-driven cavity results. Subscales-based error measured with
the scaled L2−norm: refined mesh composed by 86961 hexahedral elements on the left, and
estimated error over four different cutting planes of the refined mesh on the right.

7.5.4 Differentially heated cavity
The fourth case that we study is the differentially heated cavity. In this problem we study
the error estimation given by the particular design of the variational subscales, that is, we
test the orthogonal, dynamic, and non-linear characteristics of the subscales in an unsteady

169

170 Chapter 7. VMS error estimators for the AMR of compressible flow simulations

Figure 7.9: Three-dimensional lid-driven cavity results. Subscales-based error measured with
the entropy measure: refined mesh composed by 83634 hexahedral elements on the left, and
estimated error over four different cutting planes of the refined mesh on the right.

problem. The flow is considered as a two-dimensional flow confined inside a rectangular cavity
[0, L] × [0, H] of aspect ratio H/L = 8, with L = 1 m. The temperature at the left (hot) wall
is fixed to TH = 600 K, and the temperature at the right (cold) wall to TC = 300 K. No slip
and impermeable conditions are set over the cavity walls, together with adiabatic boundary
conditions for the upper and lower walls. Gravity is specified to be acting in the negative x2

direction as g = (0,−9.8) m/s2. The initial pressure, temperature, and density conditions
for the fluid are 152525 Pa, 450 K, and 1.16 kg/m3, respectively. The viscosity and thermal
conductivity are set to µ = 2.5 × 10−3 kg/(m s), and λ = 3.55 W/(m K), correspondingly.
The non-dimensional Rayleigh number is Ra = |g|θρ2cp/(µλ) = 106, where θ stands for the
dimensionless temperature ratio θ = 2(TH − TC)/(TH + TC) = 0.66. The simulation is run
with a constant time step size of δt = 10−2 s until the statistically stationary state (measured as
the relative error between consecutive transient results of time-averaged variables) is reached.

In order to overcome the mechanical restriction of the pressure imposition for transient and
variable flows at closed computational domains, an iterative penalization to the mass conser-
vation equation, of the form (qh, ψ(p∗i+1

h − p∗ih)) at iteration i+ 1, is included in the stabilized
formulation. This penalization guarantees that ph is solved correctly, up to a constant, when
the relative value of pressure is not set at the computational boundary. The factor ψ is selected
numerically as ψ = 10−3ρ/µ, in a way that it does not detriment neither the nonlinear scheme
convergence (when ψ is large) nor the algebraic solver convergence (when ψ → 0).

Moreover, we have observed that including the penalization to the mass conservation
equation increases the non-linearity of the stabilized problem: it affects the dynamic sub-
scales approximation since the transient term related to the pressure subscale in (7.37) is
in fact divided by the pressure. Consequently, in this numerical example we modify this
dependence by scaling the mass term of the dynamic operator in a different way, we use
(ρn+1h) / (µ(|u|n+1 + cn+1)δt) instead of ρn+1/ (pn+1δt).

The transient character of the flow is firstly used for tracking the AMR simulations driven
by the subscales-based error. We run the transient simulation using the primitive variables
formulation and perform refinements both using the scaled L2−norm and the entropy measure
at the same two instants of time. The refinement tolerance is fixed to 0.1 < η2

K < 1, in the case
of the scaled L2−norm, and to 10−14 < η2

K < 10−10, in the case of the entropy measure. The

170

7.5. Numerical Examples 171

refined meshes and the error distributions are presented in Fig. 7.10 corresponding to the same
instants of time. The temperature contours, including some velocity streamlines, are shown at
the left side of the figure. At the center, we display the refined meshes driven by the subscales-
based error estimator measured with the scaled L2−norm. The refined meshes driven by the
subscales-based error and calculated with the entropy measure are plotted at the right side of
the figure. It has been reported in Chapter 4 that the resolution of flow boundary layers and
small perturbations of temperature (producing buoyancy) is enhanced with the inclusion of the
dynamic subscales. We also observe that the error distribution, which is below the prescribed
tolerance, and the mesh refinement are enhanced mostly at the lateral walls: the subscales-
based error estimator is able to describe the boundary layer generated by the buoyancy of the
flow. Moreover, the subscales-based error is able to track the relevant variations of the flow, so
that, the mesh refinement is attached to the main flow structures through the simulation. It can
also be seen that the coarsening of the mesh is carried out when laminar regions of the flow
are found.

We can go deeper in the analysis of the transient behavior of the subscales as error esti-
mator by performing calculations of the non-dimensional Nusselt number associated with this
problem. Specifically, we investigate, in a qualitative manner, the influence of the subscales
design in the estimation of the subscales-based error. For this, we calculate the Nusselt num-
ber, which relates the heat transferred from the hot to the cold wall, and which is calculated
as

Nusselt(x, t) =
L

TH − TC
nj∂jT (x, t),

over the hot wall of the cavity, and over a time window of 50 s after the statistically steady
state is reached. In particular, the transient behavior of the Nusselt number can be evaluated by
integrating the previous equation along the wall and averaging this result in time. We denote
the integral result as Nusselt, where (·) stands for the discrete time average.

A reference value of Nusseltref = 52473.40 is obtained by simulating the problem with an
homogeneously refined mesh containing 2323 bi-quadratic elements and the subscales defined
as quasi-static and residual-based because this method is similar to the Stream-line Upwind
Petrov Galerkin (SUPG) method when linear elements are used, and the later has been widely
tested in the literature in several compressible flow problems (as in [79]). In the reference sim-
ulation, we use the second order accurate BDF as the time integration scheme, and a constant
time step size of δt = 0.01 s. The obtained reference Nusselt is used for qualitative com-
parisons: we calculate a (reference) L2−error between the Nusselt obtained with the AMR
simulations (driven by the subscales-based error) and the reference Nusselt. This reference er-
ror is calculated only for comparison reasons, and should not be confused as to be a goal-based
error estimator.

We run AMR simulations using the subscales-based error estimator accounting for the
different possibilities in the subscales design, and using both the scaled L2− and entropy mea-
sures. We evaluate the inclusion of the dynamic subscales against the quasi-static subscales
(the ones that neglect the temporal tracking of the subscales), and the orthogonal subscales
against the residual subscales (which neglect the projection of the residual into the finite ele-
ment space).

The time-averaged results of the calculated Nusselt number are presented in tables 7.1

171

172 Chapter 7. VMS error estimators for the AMR of compressible flow simulations

(a) (b) (c)

Figure 7.10: Diferentially heated cavity results: (a) temperature contours with velocity stream-
lines, (b) scaled L2−norm of the variational subscales: refinement tolerance is fixed 0.1 <
η2
K < 1, which led to meshes of 6795, and 6852 elements, and (c) entropy measure of the

variational subscales: refinement tolerance is fixed to 10−14 < η2
K < 10−10, which led to

meshes of 6853, and 7035 elements. Solution is obtained using the primitive formulation and
it is presented for the same instants of time.

and 7.2. In those tables, we also present the error against the reference Nusselt, and the time-
averaged subscales-based error estimation for the different subscales methods. In the case of
the scaled L2−norm, we find that the subscales-based error estimation matches correctly the
reference error; the use of the scaled L2−norm as a measure of the subscales-based error
results in the accurate definition of the chaotic behavior, and the estimation of the error made
by the subscales provides accurate approximations in comparison with the Nusselt reference
error. We also observe that defining the subscales as orthogonal to the finite element space do
not improves the approximation, and that, the dynamic definition of the subscales results in the
most accurate description of the unsteady character of the flow made by the AMR simulations.

In the case of the subscales-based error measured with the entropy measure, the accuracy
of the numerical approximation of the unsteady compressible flow problem matches the es-
timation of the Nusselt reference error, except when the orthogonal subscales are included.
We also observe that the orthogonal subscales do not improve the numerical approximation
of the AMR in contrast to the residual subscales, and that, the accuracy of the approxima-
tion is improved with the inclusion of the dynamic subscales and the residual definition of the
subscales.

7.5.5 Supersonic flow over a flat plate
In this fifth case, we test a viscid supersonic example: the M = 3 flow over a flat plate prob-
lem. The problem domain is [−0.1L,L]× [−H/2, H/2], with L = 1 m, and H = 0.25 m. The
inlet flow conditions are fixed over the left-most boundary (−0.1, x2) m as follows: a constant
velocity prescription of (3, 0) m/s, a constant density of 1 kg/m3, and a constant temperature of

172

7.5. Numerical Examples 173

Table 7.1: Differentially heated cavity AMR simulations driven by the subscales-based error
and measured with the scaled L2−norm.

Residual Orthogonal
Quasi-static Dynamic Quasi-static Dynamic

Nusselt 52252.82 52391.22 52197.96 52249.35

L2−error(Nusselt) 4.20× 10−3 1.56×10−3 5.24× 10−3 4.26× 10−3

η 105.17 104.87 104.54 103.43

Table 7.2: Differentially heated cavity AMR simulations driven by the subscales-based error
and measured with the entropy measure.

Residual Orthogonal
Quasi-static Dynamic Quasi-static Dynamic

Nusselt 51432.90 51501.42 51425.60 50497.68

L2−error(Nuselt) 1.98× 10−2 1.85× 10−2 1.99× 10−2 3.76× 10−2

η 9.46× 10−4 9.31× 10−4 1.047× 10−3 9.58× 10−4

0.00248 K. Zero flux conditions are imposed over the bottom boundary (x1 < 0,−H/2) m at
the upstream. A no-slip condition for velocity, together with impermeable and adiabatic condi-
tions, are specified for the plate surface (x1 > 0,−H/2) m. Over the top boundary (x1, H/2)
m the following conditions are prescribed: zero normal stress, a fixed value of 3 m/s for the
x1-component of velocity, and a fixed density value of 1 kg/m3. Lastly, free conditions are
considered over the outflow wall, as the flow is supersonic. Viscosity and thermal conductivity
are µ = 3 × 10−6 kg/(m s) and λ = 4.23 × 10−3 W/(m K), respectively, defining a Reynolds
number of Re = 106.

We run AMR simulations using the conservative variables formulation over a structured
non-symmetric mesh composed of 11000 triangular P1 elements, and achieve the mesh refine-
ment with the subscales-based error until the transient convergence criterion is fulfilled. Figure
7.11 shows the density, momentum magnitude, and total energy results at the steady state. The
flow is characterized by a thin boundary layer that separates from the plate, and by an oblique
supersonic shock that is formed from the beginning of the plate to the outlet boundary. Results
are presented for the refined mesh driven by the subscales-based error estimation measured
with the scaled L2−norm. This flow corresponds accurately to the referenced result in [82],
so that, the approximation achieved by the subscales-driven AMR of the compressible flow
solver is satisfactory.

In this example, we prescribe the error tolerance to ηK < 10−8 for the scaled L2−norm
estimation, and to ηK < 10−10 for the entropy measure estimation. The refined meshes driven
by subscales-based error measured with the scaled L2−norm and with the entropy measure,
are presented in Figures 7.12 and 7.13, respectively. The estimated error, which is below the
prescribed tolerance for both simulations, is also presented on the right side of these figures.
We observe that the refined meshes are able to represent the characteristic flow pattern of the
viscous compressible supersonic flow; the boundary layer near the plate surface, and the super-
sonic shock are both correctly determined by the subscales-based error estimator. Moreover,

173

174 Chapter 7. VMS error estimators for the AMR of compressible flow simulations

the mesh is especially refined near the flow singularity of the initial viscous point. This ability
to reproduce the local phenomena related to the supersonic flow is expressed with both types
of measures of the subscales-based error estimator.

(a) (b)

(c)

Figure 7.11: Flow over a flat plate results. Density, momentum magnitude, and total energy
contours obtained using the refined mesh driven by the subscales-based error measured with
the scaled L2−norm.

Figure 7.12: Flow over a flat plate results. Subscales-based error estimator measured with the
scaled L2-norm: refined mesh composed of 1558980 elements on the left, and estimated error
over the refined mesh on the right.

174

7.5. Numerical Examples 175

Figure 7.13: Flow over a flat plate results. Subscales-based error estimator measured with the
entropy measure: refined mesh composed of 202806 elements on the left, and estimated error
over the refined mesh on the right.

7.5.6 Supersonic flow past a cylinder
The last numerical example that we solve is the supersonic flow past a cylinder problem at
Re = 2000 and M = 2. The cylinder is defined to be infinitely long in the axial direction
and immersed in a compressible viscous flow that impinges it uniformly. The domain for
this problem is typically defined as a rectangular domain. Instead, we define a curve-shaped
domain with the cylinder located in the center, in which the inlet and outlet curved boundaries
intersect. Boundary conditions are set as follows. The flow is injected from the left wall with
a uniform and constant velocity of (1, 0) m/s, a temperature of 6.14 × 10−4 K, and a density
of 1 kg/m3. On the cylinder surface, a no-slip condition for velocity and an adiabatic condition
for energy is imposed. Free conditions are considered over the outflow wall (as for supersonic
flows). The physical properties are set to µ = 0.0001 kg/(m s) and λ = 0.14338 kJ/(m K s).

We depart from an initial unstructured mesh composed by 8141 P1 elements and run AMR
simulations using the conservative variables formulation together with the subscales-based
error estimation, measured both with the L2−norm and the entropy measure, until the con-
vergence criteria for advancing in time is satisfied. Figure 7.14 shows the steady state results
for the supersonic flow past a cylinder. The solution in this figure is the one obtained with
the refined mesh driven by the subscales-based error estimator and measured with the scaled
L2−norm. We observe that the supersonic flow is composed by a strong shock at the upstream
part of the cylinder, and by some oblique detached shock waves at the downstream part of the
cylinder, as referenced in [73, 79]. The refinement gives an accurate resolution of the mesh at
the thin shock layer of the supersonic expansion. It also gives correct results where gradients
of the solution are not too sharp, such as for the weak tail shock that is formed in the wake
structure.

Figures 7.15 and 7.16 display the comparison between the original unstructured mesh and
the refined meshes driven by the error estimators measured with the scaled L2−norm and with
the entropy measure, respectively. In both AMR simulations the tolerance is fixed depending
on the selected norm; in the case of the scaled L2−norm we set the tolerance to ηK < 10−5,
and in the case of the entropy measure we fix it to ηK < 10−8. The estimated error distribution,
which is below the tolerance in both simulations, is also presented on the right side of those
figures.

175

176 Chapter 7. VMS error estimators for the AMR of compressible flow simulations

We observe that resolution of flow singularities and shocks, including the upstream su-
personic shock, the description of boundary layers near the cylinder surface, and the wake
structure of the flow, are described correctly by the refined mesh. In the case of the L2−norm
results, the subscales-based error estimation is taking effect mostly at the supersonic shock,
and at the boundary layer near the cylinder surface. It can also be seen that the upstream super-
sonic shock structures (but also downstream) are greatly characterized by the use of this norm.
It is worth to comment that the reference velocity of the scaled L2−norm (7.42) designed to
be of the order of u0 ≈ |u| + c gives accurate definitions of the error estimation. In the case
of the subscales-based error estimator measured with the entropy measure, the refinement is
acting homogeneously through the downstream part of the flow, so that, the resulting mesh is
strongly refined at the wake structure behind the cylinder (even as much as for the supersonic
shock).

Figure 7.14: Supersonic flow past a cylinder results. Density, momentum magnitude, and total
energy steady solution using the refined mesh driven by the subscales-based error estimator
measured with the scaled L2-norm.

7.6 Conclusions
In this chapter, we have used the variational subscales as an error estimator for the adaptive
mesh refinement of compressible flow simulations. The estimator includes both the subscales
at the element boundaries and in the interior of the elements. These subscales are defined as
orthogonal, dynamic and non-linear.

Appropriate measures, namely, a scaled L2−norm, and an entropy measure, have been
used for composing the contribution of the subscales into a single error estimate.

The method has been tested in subsonic and supersonic compressible flow examples, both
with the conservative variables formulation and with the primitive variables formulation. In all
numerical examples, the local error has been measured using the subscales-based estimator,
and the AMR has been performed leading to an equally distributed estimated error (below
some prescribed tolerance). The error estimation given by the subscales has demonstrated
to provide accurate information about the discretization error in an explicit fashion, this is,

176

7.6. Conclusions 177

Figure 7.15: Supersonic flow past a cylinder results. Subscales-based error estimator measured
with the scaled L2-norm: initial unstructured mesh composed by 8141 P1 elements on the left,
refined mesh composed of 15613 P1 elements on the center, and estimated error over the
refined mesh on the right.

Figure 7.16: Supersonic flow past a cylinder results. Subscales-based error estimator measured
with the entropy measure: initial unstructured mesh composed by 8141 P1 elements on the
left, refined mesh composed of 61020 P1 elements on the center, and estimated error over the
refined mesh on the right.

without having to estimate an overall error in the solution. This methodology has proven to
give an efficient refined mesh with regard to the estimated error and the computational effort.

177

178 Chapter 7. VMS error estimators for the AMR of compressible flow simulations

178

Chapter 8

Direct numerical simulation of the
fricative [s] sound production

In this chapter, we simulate the flow and the acoustic waves generated inside the human vocal
tract. In particular, we simulate the fricative [s] sound production. In order to directly solve
the fluctuating scales of the compressible flow up to the sound frequencies, we approximate
the full compressible Navier-Stokes equations (without the need of acoustic analogies) using
a finite element stabilized formulation. In the first part of this chapter, we detail the numerical
methods that we have implemented to deal with the challenges that arise in the aeroacoustic
simulations. Among the most important challenges that we have encountered there are the nu-
merical and physical instabilities that may occur due to wave reflections at the boundaries, and
the need of fine meshes in order to represent the small fluctuating scales of the flow (sources
of the acoustic propagation). Both are explained in detail. A realistic three-dimensional bio-
mechanical replica of a vocal tract corresponding to the fricative sound [s] is used to simulate
the sound generation. Clarifying information for such phenomena is developed based on the
simulation.

8.1 Introduction
The sound production of the human voice is related to the flow of air passing through the
vocal tract. The way the sound is generated in this particular configuration remains as an
open question that still needs to be studied. One important argument for investigating this
problem, for example, is the detailed illustration of the voice production mechanisms, which
is required by speech therapies. The main issue on achieving an accurate description of sound
is the complexity of the fluid mechanics involved: the compressible Navier-Stokes equations
(together with the constitutive gas law) portray as the mathematical model that completely
describes the fluid flow.

The description made by these equations possesses the advantage of representing the sound
waves in the continuum limit, which is the propagation of very low amplitude displacements
(in comparison to the main scales of the flow), but the main disadvantage is that the analytical
solution of those equations is almost impossible for sound production applications. The only
alternative is to numerically approximate the solution by means of numerical methods. Indeed,

179

180 Chapter 8. Direct numerical simulation of the fricative [s] sound production

the numerical approximation of the compressible Navier-Stokes equations represents an active
research topic in computational mechanics, and the possibility to apply the numerical approx-
imation of compressible flows onto a predictive model (that brings clues to the description of
the human voice production) is emerging nowadays.

Ongoing numerical simulations intending to describe the sound production inside the vocal
tract have been mainly dedicated to vowels and diphthongs, and mostly by using wave propa-
gation equations (see for example the references [157–159]). In those simulations, the source
of sound arising from the vocal chord vibration is propagated through the vocal tract, and then
to the radiated field; sound mechanisms related to the fluid flow of air passing through the vo-
cal tract are, therefore, not relevant. Instead, fricative sounds are another type of sounds which
are driven in principle by the air flow impinging an obstacle (e.g. the teeth and the tongue), so
that, the generation of the sound waves is tightly related to the description of the fluid flow.
Actually, the production of fricative sounds arises distinctly from the pressure fluctuations of
the turbulent airflow, as explained in [160].

The first descriptions of the turbulent flow related to the fricative sound production were
analytic: several works have been devoted to predicting the flow vorticity, and hence, to study
the propagation of the noise sources that arise from the vortical structures of the flow by ap-
plying the acoustic analogies concept introduced in [161]. The extensive literature on acoustic
analogies applied to the analytical description of fricative sounds is not surveyed here, but we
refer to the studies in [162, 163] for a comprehensive review of the numerical methodology
involved. These works were able to match the experimental measurements of fricative sounds,
and they indicated that the sound tends to be sensitive to the three-dimensional details of the
vocal tract.

A more complex approach is the numerical solution of the compressible fluid equations up
to the sound waves, named as the direct numerical simulation of sound. Direct numerical sim-
ulations (of the aerodynamic generation) of sound during phonation have been only attempted
in [35, 164]. A two-dimensional higher order finite-difference method was used in those works
to approximate the compressible flow inside a simplified human glottis and vocal tract. But the
major drawback of finite-differences is the limitation to Cartesian meshes, and therefore, to
simple geometries that differ from the actual mechanisms of the fricative sound production.

The preferred approach to simulate fricative sounds has been to solve the bulk scales of
the flow with an incompressible flow solver and to model the acoustic propagation of sound
waves through acoustic analogies. In this line, the numerical production of the fricative [s]
sound has been recently studied by Ramsay and Shadle [165], Van Hirtum et. al. [166] and
Cisonni et. al. [167], who tried to isolate the sound phenomena. Those authors investigated the
influence of the aperture of a constriction formed by a teeth-shaped obstacle inside a channel
by performing a Large Eddy Simulation (LES) of the incompressible flow field in a simplified
domain. Nozaki et. al. [168] also achieved the LES simulation of the incompressible flow
inside a realistic vocal tract geometry and studied the acoustic wave production. It was found
that the turbulent jet description (made by the LES model) modifies the spectral characteristics
of the generated sound. Recently, Pont et. al. [169] carried out a large-scale LES simulation of
the incompressible flow in a realistic vocal tract geometry of fricative [s], and computed the
generated sound by applying acoustic analogies. An accurate spectrum was found for locations
near the mouth, and the separated contribution from the turbulent flow and the walls diffraction
(e.g. the teeth) was also studied, as initially achieved in [170].

180

8.2. Methodology 181

In the present work, we simulate the fricative [s] sound production by numerically approx-
imating the compressible flow up to the sound frequencies at the morphological conditions
of the air inside the human vocal tract. In this regard, we employ the term ”direct” simula-
tion in this chapter to imply that the solution of the compressible Navier-Stokes equations
describes the propagation of sound waves and does not need an acoustic analogy model. This
work may serve in understanding the relevant physics of sound production: due to the im-
possibility of in situ measurements of the airflow passing through the vocal tract, the direct
numerical simulation of the fricative [s] voice production becomes an alternative option. As
mentioned before, a direct numerical simulation of the human voice production inside the
complex three-dimensional geometry of the human morphology has not previously been done:
audible frequencies (related to the turbulent scales) have been difficult to reach using numerical
simulation, and the process on how to design feasible sound generation simulations constitutes
a necessary phase in the development of accurate models of voice production description.

This chapter is organized as follows. In Section 8.2, we describe the methodology that we
use to numerically simulate the fricative sound [s]. Then, in Section 8.3 we present the nu-
merical results. We develop a complete numerical study of the mechanisms that generate the
sound inside the realistic geometry. Finally, some concluding aspects about the direct numeri-
cal simulation of fricative sound production problems are stated in Section 8.4.

8.2 Methodology
In this section, we present the process on how to achieve a feasible simulation of the fricative
[s] sound generation. First, the realistic three-dimensional geometry that characterizes the vo-
cal tract is presented. Then, the compressible flow equations and the detailed description of
the strategies that we implement (to overcome the difficulties typically encountered for nu-
merically simulating sound production) are presented. Finally, we describe how the numerical
simulation is carried out.

8.2.1 Vocal tract model
An important issue of the simulation is the complex three-dimensional geometry of the human
morphology. The main difficulty is to represent in a computational environment the complex-
ity of the vocal tract shapes and tissues. The vocal tract shape that we implement in this work
(and display partially in Fig. 8.1) is taken from [171]. This geometry was constructed in that
previous work from medical imaging, specifically from a cone-beam CT scan (CB MercuRay,
512 slices of 512 × 512 pixels grid with accuracy 60.1mm), and has been previously used in
[169] for the numerical simulation of fricative [s] sound using acoustic analogies. Moreover,
the experiments using medical imaging that have ended in this geometry have also been de-
signed setting the flow rates and the flow properties inside the mouth when the fricative [s]
is articulated: the geometry corresponds to an adult male Japanese native speaker (in normal
sitting position) uttering the phoneme [s] with a flow rate of 21 l/min.

In Fig. 8.1 we display the vocal tract from glottis to mouth, including the constricted pas-
sage between the tongue blade and the hard palate, the lower and upper incisors, and the lips.
The face, and the propagation field are also displayed in the figure.

181

182 Chapter 8. Direct numerical simulation of the fricative [s] sound production

Figure 8.1: Vocal tract model.

8.2.2 Fluid flow model
The complex fluid mechanics related to sound production are completely described by the
compressible Navier-Stokes equations. Considering a compressible, Newtonian, and viscous
fluid, these equations are written in conservation form as:

∂tρ+ ∂i (ρui) = 0, (8.1)
∂t (ρui) + ∂j (ρujui + pδij − τji) = ρfi, (8.2)

∂t

(
ρ

(
e+

1

2
uiui

))
+ ∂j

(
ρuj

(
h+

1

2
uiui)

)
− uiτij + qj

)
= ρfiui + ρr, (8.3)

together with appropriate boundary and initial conditions. Here ∂t and ∂j are short nota-
tions that indicate the Eulerian time derivative and ∂/∂xj , respectively. The usual summa-
tion convention is implied, with indices running from 1 to the number of dimensions d. In
these equations ρ is the density, p is the pressure, u is the velocity, τ is the viscous stress
tensor, f is a body force vector, e is the internal energy, h is the enthalpy, q is the heat
flux vector, r is a heat source/sink term and I = [δij] is the identity or Kronecker ten-
sor. Supplementary constitutive relations are considered in order to close the mathematical
model. For the viscous part of the stress tensor we use the relation for the Newtonian fluid
τij (u) = µ (∂jui + ∂iuj)− 2µ

3
(∂lul) δij, where µ is the viscosity. For the heat flux vector, we

use Fourier’s law, qi (θ) = −λ∂iT, where λ is the thermal conductivity and T is the tempera-
ture of the fluid. The caloric equation e = cv (T)T and the perfect gas state equation p = ρRT
are used to calculate the pressure and the acoustic speed c. In these relations the specific heat
at constant volume cv (T) and the specific heat at constant pressure cp (T) are thermodynamic
properties of the fluid. We also define R = cp − cv for the specific gas constant.

8.2.3 Non-reflecting conditions
Since the flow compressibility inside the vocal tract is typically near the incompressible range
for the human voice production, classical boundary conditions for the equations (8.1) - (8.3)

182

8.2. Methodology 183

cause artificial reflections. In particular, inlet and outlet boundaries cause an ingoing wave trav-
eling through the domain. Artificial wave reflections not only interfere with the acoustic signal,
but those can also produce numerical instabilities if the numerical method is not able to control
the ingoing waves: the influence of spurious wave reflections over the sound source (namely,
turbulent fluctuations of the flow) at nearly incompressible conditions is instantaneous.

Some methods that counteract wave reflections from the computational boundaries have
emerged in the literature: the explicit damping of the equation, the addition of artificial con-
vection velocities, and the solution of non-reflecting boundary conditions, are some of the
most popular in the aeroacoustics field. Non-reflecting boundary conditions are our preferred
approach to directly simulate sound at subsonic regimes. We implement the Poinsot and
Lele non-reflecting conditions [105] by formulating the characteristic waves analysis trav-
eling along the subsonic outlet boundaries introduced by Thompson in [104], and solving the
local one-dimensional inviscid problem, where transverse, viscous and reaction terms of the
compressible equations are neglected. A perfect an-echoic condition of the problem consists of
modeling the in-going characteristic wave by using the linear relaxation method in [99]. Con-
trary to other approaches, we implement this condition because it guarantees that the problem
is well-posed, and in particular, it implies the conservation of physical quantities (exhibited
by the hyperbolic nature of the system) when the in-going wave is modeled. Particularly, we
enforce the implicit solution of the non-reflecting boundary conditions by introducing some
penalization terms to the compressible formulation (as done in Chapter 4).

We also enforce the total annihilation of wave reflections by damping the compressible
Navier-Stokes equations at the external-most part of the computational domain. This is a robust
approach that filters the solution only in the local region called buffer zone, where the extra-
term σ(U − U∞) is added to the right-hand-side of the compressible flow equations. Here
U is the vector of the problem variables, and U∞ is the vector of unperturbed values at the
far field. For convenience, let us denote as diag(e) the diagonal (d + 2) × (d + 2) matrix
with vector e on the diagonal. The damping matrix σ is defined as a diagonal matrix of the
form σ = (σ0/δt) diag (ρ/p, ρI, ρcp), where σ0 is a damping coefficient, and δt is the discrete
time step size. The computational effort that is required to solve the buffer zones is large, and
consequently, we restrict the damping zone using the damping coefficient σ that is calculated
to vary smoothly from a constant value at the boundaries to zero at the inner-most part of the
buffer zone.

8.2.4 Numerical strategy
The compressible Navier-Stokes equations together with the non-reflecting conditions pre-
sented before, portray as the mathematical model that is used to describe the propagation of
acoustic waves traveling through the air flow. These equations are so complex that it is im-
possible to obtain an analytical solution for the transient character of the flow involved in
aeroacoustics. Numerical methods remain to be the practical approach when one aims to ap-
proximate the solution of these equations.

183

184 Chapter 8. Direct numerical simulation of the fricative [s] sound production

8.2.4.1 Finite element approximation

In this work, we adopt the Variational Multi-Scale (VMS) finite element formulation of the
compressible equations that has been presented in Chapter 3 and extended to the solution of
aeracoustic simulations at low compressibility regimes in Chapter 4. This stabilized finite ele-
ment method combines the possibility of describing complex geometries with high order inter-
polations, and it is accurate in low Mach number flows. The design of the stabilization method
leads to an accurate description of transient compressible flows. In particular, including the or-
thogonal, time-dependent, and non-linear definition of the variational sub-grid scales improves
the accuracy of the finite element approximation in contrast to other stabilized formulations.

Because the acoustic scales are much smaller than the bulk scales, the simulation of the
sound generated by the vocal tract is involved with the correct description of the non-linear
interaction between the very different flow scales. The numerical approximation of all the
relevant scales of the bulk flow is typically referred as Direct Numerical Simulation. Resolv-
ing only the largest bulk scales of the flow, and modeling the smallest scales is the object
of Reynolds Average Navier Stokes (RANS) and Large Eddy Simulation (LES), which are
some of the most prevailing turbulence models in the computational fluid mechanics com-
munity. Applying RANS models in the case of aeroacoustic flows may filter the aeroacoustic
frequencies of the flow (as discussed in [121, 172] for aeroacoustic simulations using acoustic
analogies), especially those related to the high range frequencies.

In this sense, no turbulence model is applied in the present simulation. Instead, the accurate
definition of the sound waves relies only on the numerical diffusion given the VMS method,
without any modification of the continuous problem, nor the inclusion of any turbulence model
for the sub-grid scales. This kind of approximation has been recently related to the Implicit
LES (ILES) methods (for the Burgers equation in Chapter 2, or in [46, 53] for incompressible
turbulent flows), which accurately represent the underlying turbulent behavior by the addition
of purely dissipative numerical terms given by the VMS method without any modification of
the continuous problem, even if the mesh is not too fine to resolve the majority of the flow
scales.

8.2.4.2 Aeroacoustic inefficiency

Performing the direct numerical simulation of sound by numerically approximating the com-
pressible Navier-Stokes equations arises several challenges. One prevailing challenge is that
the small spatial and temporal scales (that act as the main acoustic sources of noise) coexist
with the large propagation distances of the radiated sound. Attempting to resolve the full aeroa-
coustic problem of sound production (with the adequate description of the radiated sound) de-
mands a high amount of computational resources: the solution of small spatial scales inside
a large computational domain leads to a discretized system of equations that contains a large
number of unknowns. Solving this large linear system is computationally very expensive.

The main computational strategy that we adopt (to overcome this situation) is a nodally-
based parallelization strategy that decomposes the computational domain so that, the required
computational effort can be distributed into several processors working simultaneously.

Moreover, the propagation of the smallest spatial scales leads to long simulation run-times
to describe the complete frequency spectrum of sound. In particular, at low Mach numbers
the acoustic speed is very high, and consequently, the number of operations required by the

184

8.2. Methodology 185

compressible solver to describe the propagation of sound is very demanding. The stability re-
striction placed by the Courant number for explicit time marching solvers limits the maximum
time step size of the method. In the case of implicit solvers, the number of operations that the
linear solver has to complete is large: the discrete linear system is very ill-conditioned, and
therefore, the solution convergence for iterative solvers is low.

To overcome the inefficiency that arises from the aeroacoustic propagation in the low Mach
number limit we include some other developments in the formulation; the use of an implicit
time integration scheme and the convenient scaling of the compressible problem that allows the
use of iterative linear system solvers, are two of the most crucial requirements. Concretely, we
implement an implicit second order Backward Differentiation Formula (BDF) for integrating
the fluid flow equations in time that allows us to define the time step size of the simulation,
and a Picard’s scheme for dealing with the nonlinear character of the compressible equations.
Also, a scaling of the compressible problem is performed by splitting the primitive unknowns
into a relative and a reference part (that is fixed).

However, the main numerical ingredient to deal with a large number of unknowns arising
from the description of small scales is the adoption of an Adaptive Mesh Refinement (AMR)
method. The AMR method has the objective of optimizing the computational effort by dynam-
ically re-configuring an initial mesh during the simulation execution. The AMR involves two
main steps: first, the decision of which elements to modify (mainly the ones contributing the
most to the global solution error), and then, the adaptation of those selected elements.

In the case of the first issue, we adopt an explicit a-posteriori error estimator in order to
choose the elements that are modified. The methodology that we implement has been presented
in Chapter 7 and uses the variational sub-grid scales to estimate the error in each element; the
estimator includes both the subscales at the element boundaries and in the interior of the ele-
ments, which are defined as orthogonal, time-dependent and non-linear. An scaled L2−norm
is used for composing the contribution of the subscales associated to the pressure, velocity,
and temperature variables into a single estimate in each element.

With respect to the adaptation of the selected elements, the refinement process is held
locally in each distributed processor. The method for refining the mesh is based on the
h−refinement algorithm for computational physics meshes within a distributed memory par-
allel setting that has been described in Chapter 6 and implemented in the RefficientLib
software. We use the AMR method as follows. The simulation begins with a given (0−level)
coarse grid, and then it subsequently performs refinement (or coarsening). The local error is
estimated with the subscales-based estimator after some time steps of the simulation, and this
estimation is used to refine or coarsen the elements of the mesh depending on a given tolerance
criteria. The simulation advances in time and adapts the mesh until a temporal convergence cri-
terion is satisfied.

The suitability of the developed numerical techniques for large computational problems
have been addressed in previous chapters of the thesis, including its execution in high-
performance computing environments. This AMR strategy for compressible flows leads to an
equally distributed estimated error in the computational domain (below some prescribed toler-
ance), incurring in a low runtime fraction for the refinement process compared to the solution
time of each time step.

185

186 Chapter 8. Direct numerical simulation of the fricative [s] sound production

8.2.5 Numerical simulation
In the following paragraphs, we describe the application of those methods in the direct numer-
ical simulation of the fricative [s] sound production.

8.2.5.1 Initial and boundary conditions

Let us first comment how the initial and boundary conditions are applied to the computational
model. Provided the flow rates that were used to construct the fricative geometry model, we
implement these as initial and boundary conditions.

The initial conditions are considered as follows: the air flow is supposed to be homoge-
neously at rest, with density, pressure, and temperature values of ρ = 1.2 kg/m3, p = 101300
Pa, and T = 283.88 K, respectively. Moreover, the air is considered as an ideal gas, with ra-
tio of specific heats γ = 1.4 and physical properties cp = 1.010 kJ/(kg K) and cv = 0.718
kJ/(kg K). The viscosity is fixed to µ = 1.81× 10−5 kg/(m s), and the thermal conductivity to
λ = 2.57 × 10−2 W/(m K), mimicking the air physical properties at atmospheric conditions.
These values give a sound speed of c = 343 m/s and a Prandtl number of Pr = 0.71.

A no-slip wall condition for the momentum equation, together with an impermeable con-
dition for mass, and an adiabatic condition for total energy are specified for all the boundaries
except for the inlet and outlet boundaries. The inlet flow conditions are set to mimic the in vivo
conditions by imposing an uniform velocity profile (2.4, 0, 0) m/s, together with a temperature
value of 283.88 K. Since a uniform velocity profile is set at the channel entrance, the entrance
channel ensures that a parabolic velocity profile is fully developed at the constriction. This
inlet flow condition gives a Mach number of M ∼ 0.007, which is nearly the incompressible
regime. The Reynolds number measured with respect to the inlet diameter of the channel gives
Re = 8850.

The pressure at the inlet and outlet boundaries, together with the flow variables at the outlet
boundary, are calculated using the non-reflecting boundary conditions described in the first part
of this section. In this sense, the weak penalty, the pressure relaxation, and the characteristic
length coefficients for the non-reflecting boundary conditions (see Chapter 4 and references
therein for a complete description about these parameters) are set to η0 = 0.01, σ = 100, and
l = 0.1 m, respectively.

8.2.5.2 Spatial discretization

The initial spatial discretization is carried out using tetrahedral four-node finite elements. We
depart from an initial unstructured mesh composed by 9532418 tetrahedral elements (as the
0−level coarsest grid) and run AMR simulations using the subscales-based error estimation
until the convergence criteria for advancing in time is satisfied. The refinement tolerance is
fixed to 10−4 < η2

K < 10−3, so that, the adaptive meshes vary from the initial number of
elements to ∼ 19× 106 total elements at most.

8.2.5.3 Temporal description

As we implement the second order implicit BDF scheme for advancing in time, the time step
size can be set to the constant value of 10−6 seconds through the simulation. This time step

186

8.3. Results 187

size is higher than the one of the Courant-Friederich-Lewi condition, which is less than 10−8

s. At least three non-linear iterations are performed by the solution method at each time step.
The solution of the linear system is carried out by the iterative stabilized bi-conjugate gradient
method implemented in the PETSC library [114].

Nevertheless, the very different propagation scales of the flow arise a bad condition of the
linear system of equations that is very difficult to solve: the speed of sound propagation (in
this almost incompressible regime) differs from the velocity scales of the flow. Due to this bad
condition of the linear system of equations, most of the calculation time per step of time is
consumed by the linear solver: for a 1 millisecond of simulation time (with a total number of
1000 time steps) the overall computational time gives more than 24576 computational hours.

Different types of preconditioners have been evaluated, such as the additive Schwartz
method and the Point block Jacobi preconditioner, but they have not been able to improve
the rate of convergence of the linear solver. We find that using an additive Schwarz method
and a block ILU preconditioning [115], slightly improves the convergence and the numeri-
cal accuracy of the linear solver. The computational cost of this 1 ms simulation is therefore
very large, and it becomes a must to perform the calculations in a supercomputer. But the cost
of the simulation remains restrictive in order to complete a realistic description of the sound
generation process in the human voice (close to 1 s of simulation time).

The numerical computation of this problem is performed at the Marconi supercomputer 1.
For this case, the resulting computing time per time step is less than 75 seconds using 1024
CPUs, and the simulation is completed in less than 24 wall clock hours.

This time integration setting has been proved to give the best performance regarding the
available computational hours in the supercomputer infrastructure. As commented before, the
most expensive part of the solution is related to the solution of the linear system of equations,
being more than the 95% of the cost per time step. In the case of the adaptive refinement
strategy, this has demonstrated to be negligible as it represents less than the 2% of the compu-
tational cost per time step.

8.3 Results
The simulation results are presented in this section. We first investigate the performance of the
adaptive mesh refinement simulation. Then, we study the acoustic sources around the constric-
tion and the sound wave propagation to the far field, including the frequency analysis of the
sound.

In order to demonstrate the ability of the aeroacoustic flow solver to simulate the sources of
sound, we first track the mesh adaptation, and particularly, we plot the estimated error over the
refined meshes. This is presented in Fig. 8.2, where the original mesh, the refined mesh, and
the estimated error over the refined mesh are presented. The refined mesh and the estimated
error, which is below the prescribed tolerance, are displayed over one half of the computational
domain at a certain instant of the simulation. As described in the previous section, the refine-
ment of the mesh is enforced in the turbulent regions of the flow since the acoustic sources
have to be well resolved: smaller element sizes are necessary near the channel constriction and

1Lenovo NeXtScale 1.512 nodes (each node has 2× 18-cores Intel Xeon E5-2697 v4 Broadwell at 2.30 GHz,
and 128 GB of main memory connected via Infiniband)

187

188 Chapter 8. Direct numerical simulation of the fricative [s] sound production

Figure 8.2: Fricative model results: original mesh at the top, refined mesh at the middle, and
error estimation at the bottom.

inside the channel in order to properly describe the turbulence phenomena of the air jet. In this
sense, we observe that the refinement is indeed able to localize the compressible effects inside
the mouth, as well as boundary layers near the walls, and the turbulent jet downstream the
constriction. As commented before, the adaptive meshes vary from the initial number of ele-
ments to ∼ 19× 106 total elements at most. This is remarkable, since the previous description
of the turbulent flow in [169] was achieved using a homogeneously refined mesh composed of
∼ 45× 106 elements.

We evaluate the velocity field by plotting some contours in the middle-plane cut: Fig. 8.3
displays the time-averaged velocity magnitude and the root mean square velocity distribution
at the (x1, x2, 0) plane. Both the time-averaged and the root mean square distributions of veloc-
ity give insights about laminar and turbulent regions in the flow. These results demonstrate the
formation of some back-flow turbulent structures within the constriction (between the tongue
and the upper incisors), as well as the turbulent jet that separates from the constricted region to
the lips. Apart from the jet formation, we observe that the turbulent core of the jet diminishes
as it propagates downstream: the jet collides with the lower lip, and then it forms some charac-
teristic back-flow structures which are specific to the vocal tract configuration of the teeth and

188

8.3. Results 189

Figure 8.3: Fricative model results: time-averaged velocity magnitude (at the top), and root
mean square velocity magnitude at a cutting middle plane of the constriction.

lips. This characteristic flow pattern has been also obtained by Pont et. al. [169] in the case of
the incompressible flow simulation, and has been identified as the prevalent turbulent structure
in this flow setting.

Another look at the constriction region that is shown in Fig. 8.4, where instantaneous re-
sults for velocity magnitude, relative pressure, and relative temperature are displayed at the
middle-plane cut, demonstrates that the turbulent jet formation and its collision with the lower
incisor is the main cause for the pressure fluctuations, hence, for the sound wave generation. In
contrast, it can be observed that the fluctuations produced by the turbulent flow inside constric-
tion only cause a pressure drop due to the flow acceleration at the corners of the incisors (both
the upper and lower incisors), but weakly affects the propagation of waves in the downstream
region. The temperature, on the other hand, slightly increases at the constriction channel and
at the jet collision, but it is not relevant in the wave generation process.

The instantaneous field of pressure at the middle-plane cut, presented in Fig. 8.4, exposes
the regions of the turbulent jet which are representative in the production of high fluctuations
of pressure. We distinguish some particular regions of the flow related to the fluctuating pres-
sure: upstream and constricted region, incisors to lips, and lips out to the free field. As com-
mented before, the pressure differences along the jet and the evolution of those fluctuations
downstream at the collision can be observed as a high contribution in the noise generation.
Great differences in pressure are observed between the incisors and the lips, which generate a
considerable scattering interaction inside the vocal tract.

Figure 8.5 plots the pressure contours for the middle-plane cut at two different instants of
the developed flow. We observe that the three-dimensional features of the sound wave propa-
gation in the far-field is correctly described in the simulation. The scattered waves inside the
vocal tract are propagated apart from the teeth and lips to the surrounding downstream flow.

189

190 Chapter 8. Direct numerical simulation of the fricative [s] sound production

Figure 8.4: Fricative model results: velocity magnitude, relative pressure, and relative temper-
ature closeup at a cutting middle plane of the constriction.

190

8.4. Conclusions 191

Figure 8.5: Fricative model results: relative pressure contour magnitude at the cutting middle
plane for two different instants of the simulation.

No reflections that may produce both physical and numerical instabilities occur at the outlet
boundaries. In this sense, the accuracy of the non reflecting schemes has been crucial to assure
that waves reflections do not produce further disturbances to the sound wave.

Finally, in order to characterize the production of sound, we plot the spectrum of the time
history of the velocity magnitude at (0, 0.0025, 0) in Fig. 8.6. The transformation from the
time domain to the frequency domain at the given point is calculated by using a Fast Fourier
Transform (FFT). Spectrum results show the description of the audible frequencies that belong
to the range [20, 20000] Hz, but also the reproduction of higher frequencies of the flow.

8.4 Conclusions
In this work we have simulated the fricative [s] sound production. We have presented the
numerical model that allows solving the propagation of sound waves through a realistic replica
of the human vocal tract. Some particular features of the proposed numerical model are the
finite element formulation that is able to represent the complex realistic geometry, the non-
reflecting conditions that mitigate the scattering of radiated waves, and the adaptive mesh
refinement during the simulation execution.

A realistic three-dimensional bio-mechanical replica of a vocal tract corresponding to the
fricative sound [s] has been used to simulate the sound generation. The level of refinement
near the channel constriction given by the adaptive method has demonstrated to capture the
acoustic frequencies of sound, and therefore to produce computational savings in comparison
with homogeneous element size meshes. The numerical model has been able to represent the
mechanisms that produce the sound inside the vocal tract, specifically, the mesh refinement of
the constricted region has allowed to capture the turbulent flow scales that cannot be described
with coarser homogeneous meshes.

Fluctuations in pressure near the channel constriction lead to the formation of acoustic

191

192 Chapter 8. Direct numerical simulation of the fricative [s] sound production

0 20000 40000 60000 80000 100000
1e-4

1e-3

1e-2

1e-1

1e+0

1e+1

Frequency [Hz]

A
m

p
lit

u
d
e

Figure 8.6: Fricative model results: single-sided amplitude spectrum of the velocity magnitude
at point (0, 0.0025, 0).

pressure waves which propagate to the far field. Spectrum results demonstrate the description
of audible frequencies using the proposed implicit method.

Nevertheless, the cost of the simulation is high and remains restrictive in order to complete
a realistic description of the sound generation process in the human voice. The present work is
an initial possibility that we hope clarifies the search for affordable numerical approximations
to this type of complex aeroacoustic applications. A future work can be related to the imple-
mentation of a fractional step method for compressible formulations (e.g. the one in [91]) as
the temporal integration scheme of the VMS stabilized compressible formulation, which is
expected to relieve the computational effort of the flow solver related to monolithic time inte-
gration schemes, especially in the case of low Mach number aeroacoustics simulations. In that
case, further investigations have to be completed to evince the accurate reproduction of the [s]
sound spectrum given by the simulated pressure fluctuations, specifically, additional simula-
tions that may verify the published spectrum in [169], which has been obtained using a broader
11 ms signal, have to be completed. Another possibility can be to use in vitro experiments (e.g.
the constructed with synthetic geometries that represent part of the vocal tract) to validate the
proposed numerical model.

192

Chapter 9

Conclusions

9.1 Achievements
The main objective of this thesis has been to investigate a stabilized finite element formulation
of the compressible Navier-Stokes equations able to represent high-frequency fluctuations of
the fluid flow, and it has been addressed in several progressive parts.

The first part of the thesis has been devoted to the study of the Variational Multi-Scale
(VMS) stabilized formulations for the compressible fluid flow equations, and has been opened
in Chapter 2 with the numerical approximation of the one-dimensional Burgers equation. The
stabilized formulation has been proposed by means of the Orthogonal Sub-Grid Scales - Varia-
tional Multi-Scale (OSGS-VMS) method in the Fourier space, which has allowed to clarify the
scale dependence of the numerical diffusion introduced by the VMS method. The interaction
between the subscales and the resolved scales when the former are defined to be orthogonal
to the finite dimensional space has been clarified: an accurate approximation to the turbulence
energy spectra has been obtained with the addition of the purely dissipative numerical terms
given by the OSGS-VMS method without any modification of the continuous problem (e.g. as
in the case of Large Eddy Simulation models).

The design of the VMS stabilized formulation has been the main objective of the first
part of the thesis, specifically, the approximations made for the VMS formulation like the
OSGS method, the non-linear tracking of the subscales, and their time evolution, have been
extensively studied for the compressible Navier-Stokes stabilized formulations.

Firstly, the VMS formulation of the compressible Navier-Stokes equations written in con-
servative variables has been presented in Chapter 3. A systematic way to design the matrix of
algorithmic parameters from the perspective of a Fourier analysis has been demonstrated, so
that, the correct description of compressible flows given by the stabilized method has been ad-
dressed. Also, the solution of supersonic shocks with the inclusion of shock capturing methods
has been exposed. In this sense, it has been demonstrated the improved solvability of the non-
linearity introduced by the anisotropic shock capturing method. The artificial shock capturing
method has been completed with the calculation of the added numerical diffusivity using the
orthogonal projection onto the finite element space of the gradient of the solution, instead of
the common residual definition.

Secondly, Chapter 4 has been focused on the development of the finite element solver
for complex aeroacoustic flows; this chapter has presented the selected approaches for over-

193

194 Chapter 9. Conclusions

coming most of the numerical challenges that arise in the aeroacoustic simulations at low
compressibility regimes. The VMS approximation of the compressible Navier-Stokes equa-
tions written in primitive variables has been used in this regard. The definition of the static
matrix of stabilization parameters in terms of a modified velocity that accounts for the local
compressibility, together with the dynamic stabilization matrix design for the time-dependent
subscales have been developed for this formulation. The possibility of directly computing the
acoustic pressure waves at low Mach numbers with this formulation has been validated: accu-
rate simulations of acoustic radiation have been obtained by solving directly the compressible
Navier-Stokes equations and damping wave reflections at the computational boundaries with
the inclusion of the weak imposition of implicit non-reflecting boundary conditions in the
stabilized formulation.

Remarkably, numerical experiments with subsonic flows have demonstrated that including
the temporal derivatives of the subscales, and defining the space where the subscales live as
the orthogonal to the finite element space, improve the accuracy of the variational method both
in the conservative variables and in the primitive variables formulations.

As a culmination of the first part of the thesis, Chapter 5 has been devoted to the formu-
lation of a numerical approach that ensures the global conservation of mass, momentum, and
total energy over the primitive variables solution of the compressible Navier-Stokes equations
through the solution of a small optimization problem that uses Lagrange multipliers. Several
numerical tests have led to the conclusion that the present methodology actually makes the
global correction of the physical quantities, but that this global correction is not enough to
improve the primitive variables formulation accuracy in the case of supersonic shocks.

The second part of this thesis has been dedicated to making affordable the solution of
the smallest fluctuating scales of flow. To this end, the development of a novel algorithm for
h−refinement in computational physics meshes in a distributed memory parallel setting, its
implementation and the solution of some AMR examples in supercomputers, have been pre-
sented in Chapter 6. The algorithm has been capable of dealing with non-balanced hierarchical
refinement, where multi refinement level jumps are possible between neighbor elements, giv-
ing good weak scalability results for meshes of up to two thousand million elements over 2000
CPUs clusters.

A further step has been to apply the developed refinement algorithm in the compressible
flow problems with the development of a local error estimate of the compressible flow solver.
Chapter 7 has been devoted to the definition of an explicit a-posteriori error estimator that
can be used in AMR simulations of the compressible Navier-Stokes equations. The proposed
methodology has employed the VMS framework, and specifically, the idea has been to use the
variational subscales to estimate the error. The estimator has included both the subscales at the
element boundaries and in the interior of the elements, which are defined as orthogonal, time-
dependent and non-linear. Appropriate norms, namely, an scaled L2−norm and an entropy
norm, have been used for composing the contribution of the subscales into a single explicit
error estimate, which has demonstrated to give an efficient refined mesh (with regard to the
estimated error and the computational effort), and more importantly, without having to solve
additional differential equations to compute the estimate.

At that point, the possibility to directly compute the turbulent compressible airflow and the
generated acoustic waves (without the need of an analogy model) in a complex aeroacoustic
flow has been granted: the AMR driven by the subscales-based error estimation has led to an

194

9.2. Further research 195

equally distributed estimated error (below some prescribed tolerance), and the runtime fraction
for the refinement process has been seen to be reduced when compared to the runtime for
solving linear systems of equations on the generated meshes. Therefore, Chapter 8 covered
the application of the previously described developments in the direct numerical solution of
the fricative [s] sound production inside a realistic bio-mechanical geometry replica of the
human vocal tract. The suitability of the developed numerical techniques, together with the
proposed refinement algorithm for this large computational problem has been tested in a high-
performance computing environment. Numerical results have demonstrated the ability of the
numerical methods in reproducing the smallest scales of the flow (related to the audible sound).
Refined meshes have been able to represent the small fluctuating scales of the turbulent flow
near the constriction, thus, the generated acoustic frequencies have been accurately described
and propagated to the far field. Nevertheless, the computational cost of the simulation is high
and remains restrictive in order to complete a realistic description of the sound generation
process in the human voice at low Mach numbers.

9.2 Further research
The development of the thesis has brought several ideas that can be addressed in the future.

• One first idea is the extension of the OSGS-VMS formulation of Chapter 2 in order to
solve more general problems, especially the Burgers equation in three-dimensional peri-
odic cubes, which is expected to be straightforward. In addition, the work in that chapter
serves as a first approach to the definition of the subscales as both L2−orthogonal and
H1− orthogonal to the finite element space. Therefore, an expected future work will be
to include theH1− orthogonal subscales to the finite element space in several flow prob-
lems. For this goal, the application of this concept to the incompressible Navier-Stokes
equations may be the first step, with the consequent hope that the implicit turbulence
modeling will be more accurate. Likewise, the energy budget between finite element
scales and sub-grid scales involves the same transfer of energy from the resolved scales
to the sub-grid scales as vice versa, so that, the numerical methodology agrees excep-
tionally. Then, this idea can be extended to the VMS approximation of the compressible
Navier-Stokes equations.

• Another task will be the culmination of the global conservation restrictions idea to the
compressible flow formulation based on primitive variables. The main objective, in this
case, will be to overcome the problems encountered in the numerical tests by modi-
fying the present formulation. For this goal, the introduction of a scaling matrix S is
one idea to follow. The scaling matrix may lead to dimensionally-consistent measure-
ments, so that, the functional can be written in terms of a scaled L2-norm of the type
‖U‖2

S =
∫

Ω
(U>SU) dΩ. This leads to the possibility of coupling the conservative

variables inside the minimization functional, so that, the Lagrangian functional may
account simultaneously for the complete physical quantities. Completing this work will
also lead to the submission in a peer-reviewed scientific journal of the article: C. Bayona,
A. Pont, J. Baiges, and R. Codina, ”Global conservation restrictions of the compressible
Navier-Stokes equations written in primitive variables”, arising from Chapter 5.

195

196 Chapter 9. Conclusions

• An important work will be the implementation of the fractional step method for com-
pressible formulations (e.g. the one in [91]) as the temporal integration scheme of the
VMS stabilized compressible formulation, which is expected to relieve the computa-
tional effort of the flow solver, especially in the case of low Mach number aeroacoustics
simulations.

• Also, the formulation of the anisotropic shock capturing method in system form may
be another research to be done: the calculation of the VMS stabilization diffusion along
the streamline can be achieved in tensor form as A>j τAk and then considered in the
streamline tensor with (3.72).

• Non-reflecting boundary conditions for the compressible Navier-Stokes equations have
to be deeply investigated, so that, a more direct approach (than the weak imposition) for
dealing with spurious wave reflections in the case of implicit finite element compressible
flow solvers may emerge.

• In the case of the h−refinement algorithm RefficientLib: it currently deals with
h−refinement, but the extension of the algorithm to h− p−refinement will definitely be
a matter of future work. Several approaches can be evaluated to locally increase the de-
gree of the polynomial that is used to construct the elemental shape functions. One of the
preferred approaches is to restrict the p−refinement to the use hierarchical shape func-
tions, in which refining p to p+ 1 consists of adding extra terms to the actual functions.
Nonetheless, other options may be evaluated for consistency with the current refinement
algorithm, and since we will favor the integration of the proposed refinement library
with existing computational physics codes.

• Several ideas follow the application of the variational subscales as error estimators. In-
cluding them as estimators for the coarsement of meshes in the hyper-reduction ap-
proach for Reduced Order Models (ROM) developed in our research group is one of
the straightforward duties: in that framework, the discrete problem is solved in a coarser
mesh than the one used in the Full-Order/ROM approach. The idea is to construct this
coarse mesh by coarsening the original mesh with the use of the AMR method driven by
the subscales-based estimator, which can be defined in terms of the variational subscales
of the physical problem, but also by including the calculation of certain ROM subscales.

• Finally, the exploitation of the aeroacoustics solver that has been developed in this thesis
into several other complex aeroacoustics problems emerges as an opportunity, specially
if those are in the subsonic range. The objective at this point is to extend the achieve-
ments made in the fricative [s] sound production. First, to perform a broader simulation
(at least 10 ms) at a feasible computational cost, so that wider comparisons against pub-
lished spectra can be completed. Then, the simulation of other sounds at the actual in-
vivo conditions of the vocal tract can be pursued. For example, the more challenging [z]
fricative that exhibits important acoustic feedback inside the mouth, or the possibility of
simulating syllables within an Arbitrary Lagrangian Eulerian framework, both may lead
to a better study of the aeroacoustic problem of the human voice production.

196

Bibliography

[1] J. M. Burgers, The nonlinear diffusion equation: asymptotic solutions and statistical
problems. Springer Science & Business Media, 2013.

[2] E. Hopf, “The partial differential equation ut + (uu)x = µuxx,” Communications on
Pure and Applied Mathematics, vol. 3, no. 3, pp. 201–230, 1950.

[3] J. D. Cole, “On a quasi-linear parabolic equation occurring in aerodynamics,” Quar-
terly of applied mathematics, vol. 9, no. 3, pp. 225–236, 1951.

[4] A. Majda, Compressible fluid flow and systems of conservation laws in several space
variables. Springer Science & Business Media, 2012, vol. 53.

[5] J. T. Beale, T. Kato, and A. Majda, “Remarks on the breakdown of smooth solutions
for the 3-D Euler equations,” Communications in Mathematical Physics, vol. 94, no. 1,
pp. 61–66, 1984.

[6] P. Constantin and C. Foias, Navier-Stokes equations. University of Chicago Press,
1988.

[7] S. Klainerman and A. Majda, “Singular limits of quasilinear hyperbolic systems with
large parameters and the incompressible limit of compressible fluids,” Communica-
tions on pure and applied Mathematics, vol. 34, no. 4, pp. 481–524, 1981.

[8] ——, “Compressible and incompressible fluids,” Communications on Pure and Ap-
plied Mathematics, vol. 35, no. 5, pp. 629–651, 1982.

[9] H. B. Da Veiga, “An lp−theory for the n−dimensional, stationary, compressible
Navier-Stokes equations, and the incompressible limit for compressible fluids. The
equilibrium solutions,” Communications in Mathematical Physics, vol. 109, no. 2,
pp. 229–248, 1987.

[10] P.-L. Lions and N. Masmoudi, “Incompressible limit for a viscous compressible fluid,”
Journal de mathématiques pures et appliquées, vol. 77, no. 6, pp. 585–627, 1998.

[11] J. Principe and R. Codina, “Mathematical models for thermally coupled low speed
flows,” in Advances in Theoretical and Applied Mechanics 2009, Citeseer.

[12] A. Matsumura and T. Nishida, “Initial boundary value problems for the equations of
motion of compressible viscous and heat-conductive fluids,” Communications in Math-
ematical Physics, vol. 89, no. 4, pp. 445–464, 1983.

[13] D. Hoff, “Discontinuous solutions of the Navier-Stokes equations for multidimen-
sional flows of heat-conducting fluids,” Archive for Rational Mechanics and Analysis,
vol. 139, no. 4, pp. 303–354, 1997.

197

198 Bibliography

[14] B. Desjardins and C. Lin, “A survey of the compressible Navier-Stokes equations,”
Taiwanese Journal of Mathematics, vol. 3, no. 2, pp. 123–137, 1999.

[15] R. Codina, S. Badia, J. Baiges, and J. Principe, “Variational multiscale methods in
computational fluid dynamics,” in Encyclopedia of computational mechanics, E. Stein,
R. de Borst, and T. J. R. Hughes, Eds., Wiley Online Library.

[16] T. J. R. Hughes and M. Mallet, “A new finite element formulation for computa-
tional fluid dynamics: III. The generalized streamline operator for multidimensional
advective-diffusive systems,” Comput. Methods. Appl. Mech. & Eng., vol. 58, no. 3,
pp. 305–328, 1986.

[17] T. J. R. Hughes, “Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann
formulation, subgrid scale models, bubbles and the origins of stabilized methods,”
Comput. Methods. Appl. Mech. & Eng., vol. 127, no. 1, pp. 387–401, 1995.

[18] M. Woopen, A. Balan, G. May, and J. Schütz, “A comparison of hybridized and stan-
dard DG methods for target-based hp-adaptive simulation of compressible flow,” Com-
puters & Fluids, vol. 98, pp. 3–16, 2014.

[19] J. T. Erwin, W. K. Anderson, S. Kapadia, and L. Wang, “Three-dimensional stabi-
lized finite elements for compressible Navier-Stokes,” AIAA journal, vol. 51, no. 6,
pp. 1404–1419, 2013.

[20] T. Tu and D. O’Hallaron, “Balance refinement of massive linear octrees,” Technical
Report CMU-CS-04-129, Carnegie Mellon School of Computer Science, Tech. Rep.,
2004.

[21] H. Sundar, R. S. Sampath, and G. Biros, “Bottom-up construction and 2:1 balance re-
finement of linear octrees in parallel,” SIAM Journal on Scientific Computing, vol. 30,
no. 5, pp. 2675–2708, 2008.

[22] T. Isaac, C. Burstedde, and O. Ghattas, “Low-cost parallel algorithms for 2:1 octree
balance,” in Proceedings of the 26th IEEE International Parallel & Distributed Pro-
cessing Symposium, 2012.

[23] B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey, “LibMesh: A C++ library
for parallel adaptive mesh refinement/coarsening simulations,” Engineering with Com-
puters, vol. 22, no. 3-4, pp. 237–254, 2006.

[24] W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler, “Algorithms and data
structures for massively parallel generic adaptive finite element codes,” ACM Transac-
tions on Mathematical Software (TOMS), vol. 38, no. 2, p. 14, 2011.

[25] C. Burstedde, L. C. Wilcox, and O. Ghattas, “P4EST: Scalable algorithms for parallel
adaptive mesh refinement on forests of octrees,” SIAM Journal on Scientific Comput-
ing, vol. 33, no. 3, pp. 1103–1133, 2011. DOI: 10.1137/100791634.

[26] P. Devloo, J. T. Oden, and P. Pattani, “An hp adaptive finite element method for the
numerical simulation of compressible flow,” Comput. Methods. Appl. Mech. & Eng.,
vol. 70, no. 2, pp. 203–235, 1988.

198

Bibliography 199

[27] R. Hartmann, “Adaptive discontinuous Galerkin methods with shock-capturing for the
compressible Navier-Stokes equations,” International Journal for Numerical Methods
in Fluids, vol. 51, no. 9-10, pp. 1131–1156, 2006.

[28] K. J. Fidkowski and D. L. Darmofal, “A triangular cut-cell adaptive method for high-
order discretizations of the compressible Navier-Stokes equations,” Journal of Com-
putational Physics, vol. 225, no. 2, pp. 1653–1672, 2007.

[29] M. Kouhi, E. Oñate, and D. Mavriplis, “Adjoint-based adaptive finite element method
for the compressible Euler equations using finite calculus,” Aerospace Science and
Technology, vol. 46, pp. 422–435, 2015.

[30] B. R. Ahrabi, W. K. Anderson, and J. C. Newman, “An adjoint-based hp-adaptive
stabilized finite-element method with shock capturing for turbulent flows,” Comput.
Methods. Appl. Mech. & Eng., vol. 318, pp. 1030–1065, 2017.

[31] R. Glasby, N. Burgess, K. Anderson, L. Wang, S. Allmaras, and D. Mavriplis, “Com-
parison of SU/PG and DG finite-element techniques for the compressible Navier-
Stokes equations on anisotropic unstructured meshes,” in 51st AIAA Aerospace Sci-
ences Meeting including the New Horizons Forum and Aerospace Exposition, 2013,
p. 691.

[32] B. Reza Ahrabi, W. K. Anderson, and J. C. Newman, “High-order finite-element
method and dynamic adaptation for two-dimensional laminar and turbulent Navier-
Stokes,” in 32nd AIAA Applied Aerodynamics Conference, 2014, p. 2983.

[33] P. Capon and P. Jimack, “An adaptive finite element method for the compressible
Navier-Stokes equations,” Numerical methods for fluid dynamics, vol. 5, pp. 327–334,
1995.

[34] S. Lele, “Compact finite difference schemes with spectral-like resolution,” Journal of
Computational Physics, vol. 103, no. 1, pp. 16–42, 1992.

[35] W. Zhao, C. Zhang, S. Frankel, and L. Mongeau, “Computational aeroacoustics of
phonation, Part I: Computational methods and sound generation mechanisms,” The
Journal of the Acoustical Society of America, vol. 112, no. 5, pp. 2134–2146, 2002.

[36] J. M. Burgers, The nonlinear diffusion equation. D.Reydel publishing company,
Boston, 1974.

[37] K. S. Surana, S. Allu, J. Reddy, and P. Tenpas, “Least-squares finite element processes
in h, p, k mathematical and computational framework for a non-linear conservation
law,” International Journal for Numerical Methods in Fluids, vol. 57, no. 10, pp. 1545–
1568, 2008.

[38] J. Smagorinsky, “General circulation experiments with the primitive equations: I. The
basic experiment,” Monthly weather review, vol. 91, no. 3, pp. 99–164, 1963.

[39] M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, “A dynamic subgrid-scale eddy
viscosity model,” Physics of Fluids A: Fluid Dynamics (1989-1993), vol. 3, no. 7,
pp. 1760–1765, 1991.

[40] P. J. Mason and D. Thomson, “Stochastic backscatter in large-eddy simulations of
boundary layers,” Journal of Fluid Mechanics, vol. 242, pp. 51–78, 1992.

199

200 Bibliography

[41] B. J. Geurts and D. D. Holm, “Regularization modeling for large-eddy simulation,”
Physics of Fluids (1994-present), vol. 15, no. 1, pp. L13–L16, 2003.

[42] A. Das and R. D. Moser, “Optimal large-eddy simulation of forced Burgers equation,”
Physics of Fluids, vol. 14, no. 12, pp. 4344–4351, 2002.

[43] R. Codina, “Stabilization of incompressibility and convection through orthogonal sub-
scales in finite element methods,” Comput. Methods. Appl. Mech. & Eng., vol. 190,
no. 13, pp. 1579–1599, 2000.

[44] R. Codina, “Stabilized finite element approximation of transient incompressible flows
using orthogonal subscales,” Comput. Methods. Appl. Mech. & Eng., vol. 191, no. 39,
pp. 4295–4321, 2002.

[45] T. J. R. Hughes, V. Calo, and G. Scovazzi, “Variational and multiscale methods in
turbulence,” in Mechanics of the 21st Century, Springer, 2005, pp. 153–163.

[46] R. Codina, J. Principe, O. Guasch, and S. Badia, “Time dependent subscales in the
stabilized finite element approximation of incompressible flow problems,” Comput.
Methods. Appl. Mech. & Eng., vol. 196, no. 21, pp. 2413–2430, 2007.

[47] O. Guasch and R. Codina, “Statistical behavior of the orthogonal subgrid scale stabi-
lization terms in the finite element large eddy simulation of turbulent flows,” Comput.
Methods. Appl. Mech. & Eng., vol. 261, pp. 154–166, 2013.

[48] C. E. Wasberg, T. Gjesdal, B. A. P. Reif, and Ø. Andreassen, “Variational multiscale
turbulence modelling in a high order spectral element method,” Journal of Computa-
tional Physics, vol. 228, no. 19, pp. 7333–7356, 2009.

[49] V. Gravemeier and W. A. Wall, “An algebraic variational multiscale–multigrid method
for large-eddy simulation of turbulent variable-density flow at low Mach number,”
Journal of Computational Physics, vol. 229, no. 17, pp. 6047–6070, 2010.

[50] J. Hoffman and C. Johnson, “A new approach to computational turbulence modeling,”
Comput. Methods. Appl. Mech. & Eng., vol. 195, no. 23, pp. 2865–2880, 2006.

[51] Y Bazilevs, V. Calo, J. Cottrell, T. J. R. Hughes, A Reali, and G Scovazzi, “Variational
multiscale residual-based turbulence modeling for large eddy simulation of incom-
pressible flows,” Comput. Methods. Appl. Mech. & Eng., vol. 197, no. 1, pp. 173–201,
2007.

[52] J. Liu and A. Oberai, “The residual-based variational multiscale formulation for the
large eddy simulation of compressible flows,” Comput. Methods. Appl. Mech. & Eng.,
vol. 245, pp. 176–193, 2012.

[53] O. Colomés, S. Badia, R. Codina, and J. Principe, “Assessment of variational multi-
scale models for the large eddy simulation of turbulent incompressible flows,” Comput.
Methods. Appl. Mech. & Eng., vol. 285, pp. 32–63, 2015.

[54] D. Forti and L. Dedè, “Semi-implicit BDF time discretization of the Navier–Stokes
equations with VMS-LES modeling in a high performance computing framework,”
Computers & Fluids, vol. 117, pp. 168–182, 2015.

200

Bibliography 201

[55] Z. Wang and A. Oberai, “Spectral analysis of the dissipation of the residual-based vari-
ational multiscale method,” Comput. Methods. Appl. Mech. & Eng., vol. 199, no. 13,
pp. 810–818, 2010.

[56] Y. Li and Z. Wang, “A priori and a posteriori evaluations of sub-grid scale models for
the Burgers’ equation,” Computers & Fluids, vol. 139, pp. 92–104, 2016.

[57] R. Codina, “A stabilized finite element method for generalized stationary incompress-
ible flows,” Comput. Methods. Appl. Mech. & Eng., vol. 190, no. 20, pp. 2681–2706,
2001.

[58] A. K. Kuczaj, B. J. Geurts, and W. D. McComb, “Nonlocal modulation of the energy
cascade in broadband-forced turbulence,” Physical Review E, vol. 74, no. 1, p. 016 306,
2006.

[59] G. Wei and Y. Gu, “Conjugate filter approach for solving Burgers equation,” Journal
of Computational and Applied Mathematics, vol. 149, no. 2, pp. 439–456, 2002.

[60] O. Métais and M. Lesieur, “Spectral large-eddy simulation of isotropic and stably strat-
ified turbulence,” Journal of Fluid Mechanics, vol. 239, pp. 157–194, 1992.

[61] T. Tezduyar and T. J. R. Hughes, “Finite element formulations for convection domi-
nated flows with particular emphasis on the compressible Euler equations,” in Proceed-
ings of AIAA 21st aerospace sciences meeting, AIAA Paper, vol. 83, 1983, p. 0125.

[62] A. Brooks and T. J. R. Hughes, “Streamline Upwind/Petrov-Galerkin formulations for
convection dominated flows with particular emphasis on the incompressible Navier-
Stokes equations,” in Proceedings of FENOMEC ’81, 1981.

[63] M. Polner, Galerkin least-squares stabilization operators for the Navier-Stokes equa-
tions: a unified approach. Enschede, Netherlands: University of Twente, 2005.

[64] M. Billaud, G. Gallice, and B. Nkonga, “Stabilized finite element method for
compressible–incompressible diphasic flows,” in Numerical Mathematics and Ad-
vanced Applications 2009, Springer, 2010, pp. 171–179.

[65] R. Sevilla, O. Hassan, and K. Morgan, “An analysis of the performance of a high-order
stabilised finite element method for simulating compressible flows,” Comput. Methods.
Appl. Mech. & Eng., vol. 253, pp. 15–27, 2013.

[66] F. Shakib, “Finite element analysis of the compressible Euler and Navier-Stokes equa-
tions,” PhD thesis, 1989.

[67] G. Hauke and T. J. R. Hughes, “A comparative study of different sets of variables for
solving compressible and incompressible flows,” Comput. Methods. Appl. Mech. &
Eng., vol. 153, no. 1, pp. 1–44, 1998.

[68] G. Hauke, A. Landaberea, I. Garmendia, and J. Canales, “A segregated method for
compressible flow computation. Part II: General divariant compressible flows,” Inter-
national Journal for Numerical Methods in Fluids, vol. 49, no. 2, pp. 183–209, 2005.

[69] B. Koobus and C. Farhat, “A variational multiscale method for the large eddy simu-
lation of compressible turbulent flows on unstructured meshes—-application to vortex
shedding,” Comput. Methods. Appl. Mech. & Eng., vol. 193, no. 15, pp. 1367–1383,
2004.

201

202 Bibliography

[70] F. Van Der Bos, J. Van Der Vegt, and B. Geurts, “A multi-scale formulation for com-
pressible turbulent flows suitable for general variational discretization techniques,”
Comput. Methods. Appl. Mech. & Eng., vol. 196, no. 29, pp. 2863–2875, 2007.

[71] V. Levasseur, P. Sagaut, F. Chalot, and A. Davroux, “An entropy-variable-based VM-
S/GLS method for the simulation of compressible flows on unstructured grids,” Com-
put. Methods. Appl. Mech. & Eng., vol. 195, no. 9, pp. 1154–1179, 2006.

[72] W. Dahmen, T. Gotzen, S. Müller, and R. Schäfer, Adaptive multiresolution Finite
Volume Discretization of the Variational Multiscale Method: General Framework. Inst.
für Geometrie und Praktische Mathematik, 2011.

[73] F. Rispoli and R. Saavedra, “A stabilized finite element method based on SGS mod-
els for compressible flows,” Comput. Methods. Appl. Mech. & Eng., vol. 196, no. 1,
pp. 652–664, 2006.

[74] S. Marras, M. Moragues, M. Vázquez, O. Jorba, and G. Houzeaux, “Simulations of
moist convection by a variational multiscale stabilized finite element method,” Journal
of Computational Physics, vol. 252, pp. 195–218, 2013.

[75] F. Rispoli, A. Corsini, and T. Tezduyar, “Finite element computation of turbulent flows
with the discontinuity-capturing directional dissipation (DCDD),” Computers & fluids,
vol. 36, no. 1, pp. 121–126, 2007.

[76] R. Codina, “Finite element approximation of the convection-diffusion equation:
Subgrid-scale spaces, local instabilities and anisotropic space-time discretizations,” in
BAIL 2010-Boundary and Interior Layers, Computational and Asymptotic Methods,
Springer, 2011, pp. 85–97.

[77] T. J. R. Hughes and M. Mallet, “A new finite element formulation for computa-
tional fluid dynamics: III. The generalized streamline operator for multidimensional
advective-diffusive systems,” Comput. Methods. Appl. Mech. & Eng., vol. 58, no. 3,
pp. 305–328, 1986.

[78] G. Le Beau and T. Tezduyar, Finite element computation of compressible flows with
the SUPG formulation. Army High Performance Computing Research Center, 1991.

[79] S. Mittal and T. Tezduyar, “A unified finite element formulation for compressible
and incompressible flows using augmented conservation variables,” Comput. Methods.
Appl. Mech. & Eng., vol. 161, no. 3-4, pp. 229–243, 1998.

[80] S. Mittal, “Finite element computation of unsteady viscous compressible flows,” Com-
put. Methods. Appl. Mech. & Eng., vol. 157, no. 1, pp. 151–175, 1998.

[81] T. J. R. Hughes, G. Scovazzi, and T. Tezduyar, “Stabilized methods for compressible
flows,” Journal of Scientific Computing, vol. 43, no. 3, pp. 343–368, 2010.

[82] V. Kotteda and S. Mittal, “Stabilized finite element computation of compressible flow
with linear and quadratic interpolation functions,” International Journal for Numerical
Methods in Fluids, vol. 75, no. 4, pp. 273–294, 2014.

[83] T. Tezduyar and M. Senga, “Stabilization and shock-capturing parameters in SUPG
formulation of compressible flows,” Comput. Methods. Appl. Mech. & Eng., vol. 195,
no. 13, pp. 1621–1632, 2006.

202

Bibliography 203

[84] R. Codina, J. M. González-Ondina, G. Dı́az-Hernández, and J. Principe, “Finite ele-
ment approximation of the modified Boussinesq equations using a stabilized formula-
tion,” International Journal for Numerical Methods in Fluids, vol. 57, no. 9, pp. 1249–
1268, 2008.

[85] R. Codina, “Finite element approximation of the three-field formulation of the Stokes
problem using arbitrary interpolations,” SIAM Journal on Numerical Analysis, vol. 47,
no. 1, pp. 699–718, 2009.

[86] ——, “A discontinuity-capturing crosswind-dissipation for the finite element solution
of the convection-diffusion equation,” Comput. Methods. Appl. Mech. & Eng., vol. 110,
no. 3, pp. 325–342, 1993.

[87] S. Albensoeder and H. C. Kuhlmann, “Accurate three-dimensional lid-driven cavity
flow,” Journal of Computational Physics, vol. 206, no. 2, pp. 536–558, 2005.

[88] J. Wong, D. Darmofal, and J. Peraire, “The solution of the compressible Euler equa-
tions at low Mach numbers using a stabilized finite element algorithm,” Comput. Meth-
ods. Appl. Mech. & Eng., vol. 190, no. 43, pp. 5719–5737, 2001.

[89] O. Guasch and R. Codina, “Computational aeroacoustics of viscous low speed flows
using subgrid scale finite element methods,” Journal of Computational Acoustics,
vol. 17, no. 03, pp. 309–330, 2009.

[90] T. Yabe and P.-Y. Wang, “Unified numerical procedure for compressible and incom-
pressible fluid,” Journal of the Physical Society of Japan, vol. 60, no. 7, pp. 2105–
2108, 1991.

[91] O. C. Zienkiewicz and R. Codina, “A general algorithm for compressible and incom-
pressible flow—Part I. the split, characteristic-based scheme,” International Journal
for Numerical Methods in Fluids, vol. 20, no. 8-9, pp. 869–885, 1995.

[92] R. Codina, M. Vázquez, and O. C. Zienkiewicz, “A general algorithm for compressible
and incompressible flows. Part III: The semi-implicit form,” International Journal for
Numerical Methods in Fluids, vol. 27, no. 1-4, pp. 13–32, 1998.

[93] F. Xiao, R. Akoh, and S. Ii, “Unified formulation for compressible and incompressible
flows by using multi-integrated moments II: Multi-dimensional version for compress-
ible and incompressible flows,” Journal of Computational Physics, vol. 213, no. 1,
pp. 31–56, 2006.

[94] L. Pesch and J. J. van der Vegt, “A discontinuous Galerkin finite element discretiza-
tion of the Euler equations for compressible and incompressible fluids,” Journal of
Computational Physics, vol. 227, no. 11, pp. 5426–5446, 2008.

[95] T. J. R. Hughes, L. Franca, and M. Mallet, “A new finite element formulation for com-
putational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier-
Stokes equations and the second law of thermodynamics,” Comput. Methods. Appl.
Mech. & Eng., vol. 54, no. 2, pp. 223–234, 1986.

[96] M. Billaud, G. Gallice, and B. Nkonga, “A simple stabilized finite element method for
solving two phase compressible–incompressible interface flows,” Comput. Methods.
Appl. Mech. & Eng., vol. 200, no. 9, pp. 1272–1290, 2011.

203

204 Bibliography

[97] T. Colonius, S. K. Lele, and P. Moin, “Boundary conditions for direct computation of
aerodynamic sound generation,” AIAA journal, vol. 31, no. 9, pp. 1574–1582, 1993.

[98] B. Engquist and A. Majda, “Absorbing boundary conditions for numerical simulation
of waves,” Proceedings of the National Academy of Sciences, vol. 74, no. 5, pp. 1765–
1766, 1977.

[99] D. H. Rudy and J. C. Strikwerda, “A nonreflecting outflow boundary condition for sub-
sonic Navier-Stokes calculations,” Journal of Computational Physics, vol. 36, no. 1,
pp. 55–70, 1980.

[100] A. Bayliss and E. Turkel, “Radiation boundary conditions for wave-like equations,”
Communications on Pure and applied Mathematics, vol. 33, no. 6, pp. 707–725, 1980.

[101] T. Colonius, “Modeling artificial boundary conditions for compressible flow,” Annu.
Rev. Fluid Mech., vol. 36, pp. 315–345, 2004.

[102] T. J. R. Hughes, G. Scovazzi, and T. Tezduyar, “Stabilized methods for compressible
flows,” Journal of Scientific Computing, vol. 43, no. 3, pp. 343–368, 2010.

[103] M. Polner, L. Pesch, and J. Van Der Vegt, “Construction of stabilization operators
for Galerkin least-squares discretizations of compressible and incompressible flows,”
Comput. Methods. Appl. Mech. & Eng., vol. 196, no. 21, pp. 2431–2448, 2007.

[104] K. W. Thompson, “Time dependent boundary conditions for hyperbolic systems,”
Journal of Computational Physics, vol. 68, no. 1, pp. 1–24, 1987.

[105] T. J. Poinsot and S. Lelef, “Boundary conditions for direct simulations of compressible
viscous flows,” Journal of Computational Physics, vol. 101, no. 1, pp. 104–129, 1992.

[106] G. Lodato, P. Domingo, and L. Vervisch, “Three-dimensional boundary conditions for
direct and large-eddy simulation of compressible viscous flows,” Journal of Computa-
tional Physics, vol. 227, no. 10, pp. 5105–5143, 2008.

[107] P. Fosso, H. Deniau, N. Lamarque, T. Poinsot, et al., “Comparison of outflow boundary
conditions for subsonic aeroacoustic simulations,” International Journal for Numeri-
cal Methods in Fluids, vol. 68, no. 10, pp. 1207–1233, 2012.

[108] C. K. Tam, “Computational aeroacoustics-Issues and methods,” AIAA journal, vol. 33,
no. 10, pp. 1788–1796, 1995.

[109] R. Codina, J. Principe, and J. Baiges, “Subscales on the element boundaries in the
variational two-scale finite element method,” Comput. Methods. Appl. Mech. & Eng.,
vol. 198, no. 5, pp. 838–852, 2009.

[110] R. Codina and J. Principe, “Dynamic subscales in the finite element approximation of
thermally coupled incompressible flows,” International Journal for Numerical Meth-
ods in Fluids, vol. 54, no. 6-8, pp. 707–730, 2007.

[111] M. Avila, J. Principe, and R. Codina, “A finite element dynamical nonlinear subscale
approximation for the low Mach number flow equations,” Journal of Computational
Physics, vol. 230, no. 22, pp. 7988–8009, 2011.

[112] M. Avila, R. Codina, and J. Principe, “Large eddy simulation of low mach number
flows using dynamic and orthogonal subgrid scales,” Computers & Fluids, vol. 99,
pp. 44–66, 2014.

204

Bibliography 205

[113] H. A. Van der Vorst, “Bi-CGSTAB: A fast and smoothly converging variant of Bi-
CG for the solution of nonsymmetric linear systems,” SIAM Journal on scientific and
Statistical Computing, vol. 13, no. 2, pp. 631–644, 1992.

[114] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,
V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F.
Smith, S. Zampini, and H. Zhang, PETSc Web page, http://www.mcs.anl.
gov/petsc, 2015. [Online]. Available: http://www.mcs.anl.gov/petsc.

[115] T. F. Chan and H. A. Van der Vorst, “Approximate and incomplete factorizations,” in
Parallel Numerical Algorithms, Springer, 1997, pp. 167–202.

[116] R. Codina, J. Principe, and M. Ávila, “Finite element approximation of turbulent ther-
mally coupled incompressible flows with numerical sub-grid scale modelling,” Inter-
national Journal of Numerical Methods for Heat & Fluid Flow, vol. 20, no. 5, pp. 492–
516, 2010.

[117] C. W. Rowley, T. Colonius, and A. J. Basu, “On self-sustained oscillations in two-
dimensional compressible flow over rectangular cavities,” Journal of Fluid Mechanics,
vol. 455, pp. 315–346, 2002.

[118] X. Gloerfelt, C. Bailly, and D. Juvé, “Direct computation of the noise radiated by
a subsonic cavity flow and application of integral methods,” Journal of Sound and
Vibration, vol. 266, no. 1, pp. 119–146, 2003.

[119] G. A. Bres and T. Colonius, “Three-dimensional instabilities in compressible flow over
open cavities,” Journal of Fluid Mechanics, vol. 599, pp. 309–339, 2008.

[120] K. Krishnamurty, “Sound radiation from surface cutouts in high speed flow,” PhD
thesis, California Institute of Technology, 1956.

[121] L. Larchevêque, P. Sagaut, I. Mary, O. Labbé, and P. Comte, “Large-eddy simulation
of a compressible flow past a deep cavity,” Physics of fluids, vol. 15, no. 1, pp. 193–
210, 2003.

[122] P. Lax and B. Wendroff, “Systems of conservation laws,” Communications on Pure
and Applied mathematics, vol. 13, no. 2, pp. 217–237, 1960.

[123] V. Maslov, “Propagation of shock waves in an isentropic, nonviscous gas,” Journal of
Mathematical Sciences, vol. 13, no. 1, pp. 119–163, 1980.

[124] B. Cockburn and C.-W. Shu, “TVB Runge-Kutta local projection discontinuous
Galerkin finite element method for conservation laws. II. General framework,” Math-
ematics of computation, vol. 52, no. 186, pp. 411–435, 1989.

[125] F. Bassi and S. Rebay, “A high-order accurate discontinuous finite element method
for the numerical solution of the compressible Navier–Stokes equations,” Journal of
computational physics, vol. 131, no. 2, pp. 267–279, 1997.

[126] H. Luo, L. Luo, R. Nourgaliev, V. A. Mousseau, and N. Dinh, “A reconstructed dis-
continuous Galerkin method for the compressible Navier-Stokes equations on arbitrary
grids,” Journal of Computational Physics, vol. 229, no. 19, pp. 6961–6978, 2010.

205

206 Bibliography

[127] J. Van der Vegt and H Van der Ven, “Space–time discontinuous Galerkin finite ele-
ment method with dynamic grid motion for inviscid compressible flows: I. General
formulation,” Journal of Computational Physics, vol. 182, no. 2, pp. 546–585, 2002.

[128] A. Pont, R. Codina, and J. Baiges, “Interpolation with restrictions between finite ele-
ment meshes for flow problems in an ALE setting,” International Journal for Numeri-
cal Methods in Engineering, 2016.

[129] G. Houzeaux and R. Codina, “Transmission conditions with constraints in finite el-
ement domain decomposition methods for flow problems,” International Journal for
Numerical Methods in Biomedical Engineering, vol. 17, no. 3, pp. 179–190, 2001.

[130] P. M. Campbell, K. D. Devine, J. E. Flaherty, L. G. Gervasio, and J. D. Teresco, “Dy-
namic octree load balancing using space-filling curves,” Williams College Department
of Computer Science, Technical Report CS-03, vol. 1, p. 68, 2003.

[131] T. Tu, D. R. O’Hallaron, and J. C. López, “Etree: A database-oriented method for
generating large octree meshes,” Engineering with Computers, vol. 20, no. 2, pp. 117–
128, 2004.

[132] T. Tu, D. R. O’Hallaron, and O. Ghattas, “Scalable parallel octree meshing for teras-
cale applications,” in Supercomputing, 2005. Proceedings of the ACM/IEEE SC 2005
Conference, IEEE, 2005, pp. 4–4.

[133] R. S. Sampath and G. Biros, “A parallel geometric multigrid method for finite elements
on octree meshes,” SIAM Journal on Scientific Computing, vol. 32, no. 3, pp. 1361–
1392, 2010.

[134] S. Popinet, “Gerris: A tree-based adaptive solver for the incompressible Euler equa-
tions in complex geometries,” Journal of Computational Physics, vol. 190, no. 2,
pp. 572–600, 2003.

[135] A. Langer, J. Lifflander, P. Miller, K.-C. Pan, L. V. Kale, and P. Ricker, “Scalable
algorithms for distributed-memory adaptive mesh refinement,” in Computer Architec-
ture and High Performance Computing (SBAC-PAD), 2012 IEEE 24th International
Symposium on, IEEE, 2012, pp. 100–107.

[136] C. Burstedde, O. Ghattas, M. Gurnis, T. Isaac, G. Stadler, T. Warburton, and L. Wilcox,
“Extreme-scale AMR,” in Proceedings of the 2010 ACM/IEEE International Confer-
ence for High Performance Computing, Networking, Storage and Analysis, IEEE Com-
puter Society, 2010, pp. 1–12.

[137] W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler, “Algorithms and data
structures for massively parallel generic adaptive finite element codes,” ACM Transac-
tions on Mathematical Software, vol. 38, no. 2, 14:1–14:28, 2011.

[138] N. Jansson, J. Hoffman, and J. Jansson, “Framework for massively parallel adaptive
finite element computational fluid dynamics on tetrahedral meshes,” SIAM Journal on
Scientific Computing, vol. 34, no. 1, pp. C24–C41, 2012.

[139] B. Cockburn and C.-W. Shu, “The Runge–Kutta discontinuous Galerkin method for
conservation laws V: Multidimensional systems,” Journal of Computational Physics,
vol. 141, no. 2, pp. 199–224, 1998.

206

Bibliography 207

[140] S. Badia and J. Baiges, “Adaptive finite element simulation of incompressible flows by
hybrid continuous-discontinuous Galerkin formulations,” SIAM Journal on Scientific
Computing, vol. 35, no. 1, A491–A516, 2013.

[141] G. Karypis and V. Kumar, MeTis: Unstructured Graph Partitioning and Sparse Matrix
Ordering System, Version 4.0, http://www.cs.umn.edu/˜metis, University
of Minnesota, Minneapolis, MN, 2009.

[142] E. G. Boman, U. V. Catalyurek, C. Chevalier, and K. D. Devine, “The Zoltan and Isor-
ropia parallel toolkits for combinatorial scientific computing: Partitioning, ordering,
and coloring,” Scientific Programming, vol. 20, no. 2, pp. 129–150, 2012.

[143] O. C. Zienkiewicz and J. Z. Zhu, “A simple error estimator and adaptive procedure
for practical engineerng analysis,” International Journal for Numerical Methods in
Engineering, vol. 24, no. 2, pp. 337–357, 1987.

[144] D. Irisarri and G. Hauke, “A posteriori pointwise error computation for 2-D transport
equations based on the variational multiscale method,” Comput. Methods. Appl. Mech.
& Eng., vol. 311, pp. 648–670, 2016.

[145] M. G. Larson and A. Målqvist, “Adaptive variational multiscale methods based on
a posteriori error estimation: Energy norm estimates for elliptic problems,” Comput.
Methods. Appl. Mech. & Eng., vol. 196, no. 21, pp. 2313–2324, 2007.

[146] A. ElSheikh, S. Chidiac, and W. Smith, “A posteriori error estimation based on numer-
ical realization of the variational multiscale method,” Comput. Methods. Appl. Mech.
& Eng., vol. 197, no. 45, pp. 3637–3656, 2008.

[147] P. Ladeveze and D. Leguillon, “Error estimate procedure in the finite element method
and applications,” SIAM Journal on Numerical Analysis, vol. 20, no. 3, pp. 485–509,
1983.

[148] S. Berrone, “Robustness in a posteriori error analysis for FEM flow models,” Nu-
merische Mathematik, vol. 91, no. 3, pp. 389–422, 2002.

[149] G. Hauke, M. H. Doweidar, and S. Fuentes, “Mesh adaptivity for the transport equation
led by variational multiscale error estimators,” International Journal for Numerical
Methods in Fluids, vol. 69, no. 12, pp. 1835–1850, 2012.

[150] G. Hauke, D. Fuster, and F. Lizarraga, “Variational multiscale a posteriori error esti-
mation for systems: The Euler and Navier-Stokes equations,” Comput. Methods. Appl.
Mech. & Eng., vol. 283, pp. 1493–1524, 2015.

[151] R. Rossi, J. Cotela, N. M. Lafontaine, P. Dadvand, and S. R. Idelsohn, “Parallel adap-
tive mesh refinement for incompressible flow problems,” Computers & Fluids, vol. 80,
pp. 342–355, 2013.

[152] J. Oden, L. Demkowicz, W. Rachowicz, and T. Westermann, “A posteriori error anal-
ysis in finite elements: The element residual method for symmetrizable problems with
applications to compressible Euler and Navier-Stokes equations,” Comput. Methods.
Appl. Mech. & Eng., vol. 82, no. 1-3, pp. 183–203, 1990.

207

208 Bibliography

[153] W. Rachowicz, “An anisotropic h-adaptive finite element method for compressible
Navier-Stokes equations,” Comput. Methods. Appl. Mech. & Eng., vol. 146, no. 3-4,
pp. 231–252, 1997.

[154] G. Hauke, M. H. Doweidar, and M. Miana, “The multiscale approach to error estima-
tion and adaptivity,” Comput. Methods. Appl. Mech. & Eng., vol. 195, no. 13, pp. 1573–
1593, 2006.

[155] J. Baiges and R. Codina, “Variational Multiscale error estimators for solid mechan-
ics adaptive simulations: An Orthogonal Subgrid Scale approach,” Comput. Methods.
Appl. Mech. & Eng., vol. 325, pp. 37–55, 2017.

[156] L. El Alaoui and A. Ern, “Residual and hierarchical a posteriori error estimates for
nonconforming mixed finite element methods,” ESAIM: Mathematical Modelling and
Numerical Analysis, vol. 38, no. 6, 903–929, 2004.

[157] M. Arnela, O. Guasch, R. Codina, and H. Espinoza, “Finite element computation of
diphthong sounds using tuned two-dimensional vocal tracts,” in Proc. of 7th Forum
Acousticum, Kraków, Poland, 2014.

[158] M. Arnela and O. Guasch, “Two-dimensional vocal tracts with three-dimensional be-
havior in the numerical generation of vowels,” The Journal of the Acoustical Society
of America, vol. 135, no. 1, pp. 369–379, 2014.

[159] R. Blandin, M. Arnela, R. Laboissière, X. Pelorson, O. Guasch, A. V. Hirtum, and X.
Laval, “Effects of higher order propagation modes in vocal tract like geometries,” The
Journal of the Acoustical Society of America, vol. 137, no. 2, pp. 832–843, 2015.

[160] M. H. Krane, “Aeroacoustic production of low-frequency unvoiced speech sounds,”
The Journal of the Acoustical Society of America, vol. 118, no. 1, pp. 410–427, 2005.

[161] J. Lighthill, Waves in fluids. 1978, 1978.

[162] C. H. Shadle, “The effect of geometry on source mechanisms of fricative consonants,”
J. Phonetics, vol. 19, pp. 409–424, 1991.

[163] M. Howe and R. McGowan, “Aeroacoustics of [s],” Proceedings of the Royal Society
A: Mathematical, Physical and Engineering Science, vol. 461, no. 2056, pp. 1005–
1028, 2005.

[164] C. Zhang, W. Zhao, S. Frankel, and L. Mongeau, “Computational aeroacoustics of
phonation, Part II: Effects of flow parameters and ventricular folds,” The Journal of
the Acoustical Society of America, vol. 112, no. 5, pp. 2147–2154, 2002.

[165] G. Ramsay and C. Shadle, “The influence of geometry on the initiation of turbulence
in the vocal tract during the production of fricatives,” in 7th International Seminar on
Speech Production (ISSP), 2006, pp. 581–588.

[166] A. Van Hirtum, X. Grandchamp, X. Pelorson, K. Nozaki, and S. Shimojo, “Large
eddy simulation and ‘in vitro‘ experimental validation of flow around a teeth-shaped
obstacle,” International Journal of Applied Mechanics, vol. 2, pp. 265–279, 2010.

[167] J. Cisonni, K Nozaki, A. Van Hirtum, X. Grandchamp, and S Wada, “Numerical sim-
ulation of the influence of the orifice aperture on the flow around a teeth-shaped obsta-
cle,” Fluid Dynamics Research, vol. 45, no. 2, p. 025 505, 2013.

208

Bibliography 209

[168] K. Nozaki, “Numerical simulation of sibilant [s] using the real geometry of a hu-
man vocal tract,” High Performance Computing on Vector Systems 2010, pp. 137–
148, 2010.

[169] A. Pont, O. Guasch, J. Baiges, R. Codina, and A. van Hirtum, “Large eddy simulation
of sibilant [s] aeroacoustics,” Submitted.

[170] O. Guasch, A. Pont, J. Baiges, and R. Codina, “Concurrent finite element simulation
of quadrupolar and dipolar flow noise in low Mach number aeroacoustics,” Computers
& Fluids, vol. 133, pp. 129–139, 2016.

[171] A. Van Hirtum, Y. Fujiso, and K. Nozaki, “The role of initial flow conditions for sibi-
lant fricative production,” The Journal of the Acoustical Society of America, vol. 136,
no. 6, pp. 2922–2925, 2014.

[172] C. W. Rowley and D. R. Williams, “Dynamics and control of high-Reynolds-number
flow over open cavities,” Annu. Rev. Fluid Mech., vol. 38, pp. 251–276, 2006.

209

