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Abstract

This thesis presents a hybrid vertex/cell-centred approach to mechanically sim-
ulate planar cellular monolayers undergoing cell reorganisation. Cell centres are
represented by a triangular nodal network, while the cell boundaries are formed by
an associated vertex network. The two networks are coupled through a kinematic
constraint which we allow to relax progressively. Cell-cell connectivity changes due
to cell reorganisation or remodelling events, are accentuated. These situations are
handled by using a variable resting length and applying an Equilibrium-Preserving
Mapping (EPM) on the new connectivity, which computes a new set of resting
lengths that preserve nodal and vertex equilibrium. As a by-product, the proposed
technique enables to recover fully vertex or fully cell-centred models in a seamless
manner by modifying a numerical parameter of the model. The properties of the
model are illustrated by simulating monolayers subjected to imposed extension and
during a wound healing process. The evolution of forces and the EPM are analysed
during the remodelling events.
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Resumen

Esta tesis presenta un modelo h́ıbrido para la simulación mecánica de monocapas
celulares. Este modelo combina métodos de vértices y centrados en la célula, y
está orientado al análisis de deformaciones con reorganización celular. Los núcleos
vienen representados por nodos que forman una malla triangular, mientras que las
contornos (membranas y córtex) forman una malla poligonal de vértices. Las dos
mallas se acoplan a través de una restricción cinemática que puede ser relajada de
forma controlada. El estudio hace especial hincapié en los cambios de conectividad,
tanto debidos a la reorganización celular como el remodelado del citoesqueleto. Estas
situaciones se abordan a través de una longitud de referencia variable y aplicando un
Mapeo con Conservación de Equilibrio (EPM) que minimiza el error en el equilibrio
nodal y en los vértices. La técnica resultante puede ser adaptada progresivamente a
través de un parámetro, dando lugar a un modelo exclusivamente de vértices o a uno
de centros. Sus propiedades se ilustran en simulaciones de monocapas sujetas a una
extensión impuesta y durante el proceso de cicatrizado de heridas. La evolución
de las fuerzas y los efectos del EPM durante el remodelado se analizan en estos
ejemplos.
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total Voronoi tessellation (V̌ n+1 = V or(X̌n+1)). (e) Remove off-set
nodes and elements and obtain close regions for all original nodes. . 25

2.11 Discretisation of tissue into cell centres (nodes, xi) and cells bound-
aries (vertices, yi). Nodal network and vertex network are outlined
with continuous and dashed lines, respectively. . . . . . . . . . . . . 26



LIST OF FIGURES xvii

2.12 Differences between Voronoi (top) and barycentric vertex positions
(bottom) for undeformed (left) and deformed networks (right).(a)
Nodal network (in black) with Delaunay triangulation and vertex
network (in red) with Voronoi tessellation. (b) Deformed nodal net-
work: non-Delaunay triangulation; vertices defined by interpolation
of nodes in each triangle, located at the intersection of perpendicular
bisectors of each triangle, forming a non-Voronoi vertex network. (c)
Nodal network with Delaunay triangulation and vertex network with
Barycentric tessellation. (d) Deformed nodal network: non-Delaunay
triangulation; vertices defined by interpolation of nodes in each trian-
gle, located at the Barycentres of each triangle, forming a barycentric
vertex network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.13 Cell boundary (highlighted polygon) corresponding to node i. Barycen-
tric tessellation of 4ijk results to triple-junction yI . Vector tIJV rep-
resents the traction between vertices yI and yJ along the shared
boundary of cells xi and xk. . . . . . . . . . . . . . . . . . . . . . . . 29

2.14 Deformation and remodelling process, including the computation of
the resting lengths L∗n+1 through the Equilibrium-Preserving Map,
which maintains the network connectivity and nodal and vertex po-
sitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Representation of (a) Kelvin-Voigt model and (b) Maxwell model. . 40

3.2 Generalised Maxwell model . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Left: Schematic of network of actin filaments connected by flexible
cross-links. Right: Schematic of strain induced changes in the resting
length L of a reduced system with two filaments and a cross-link
(white circle), (a) initial configuration with resting length equal to
L0, (b) configuration under an applied load, and (c) new unstrained
configuration with modified resting length L > L0. . . . . . . . . . . 43

4.1 Graphical representation of (a) initial configuration of sample model
in 2-D, (b) final configuration (equilibrated) of two-dimensional sam-
ple under longitudinal traction, (c) initial configuration of sample
model in 3-D, and (d) final configuration (equilibrated) of three-
dimensional sample model under longitudinal traction– Thin flashes
represent uniform load on all nodes at the corresponding face of the
networks, while thick flashes represent the reaction force on the nodes
on the opposite end. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Representation of average displacement of nodes under a linearly in-
creasing external load over 80 time-steps, under two conditions: dy-
namic topology and frozen topology for (a) a two-dimensional network
of 45 nodes, and (b) a three-dimensional network of 225 nodes. . . . 49



xviii LIST OF FIGURES

4.3 Example of flat monolayer. Top: initial geometry; Bottom: deformed
geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Total reaction RTOT at the boundary with increasing imposed dis-
placements for the flat monolayer. (a) Purely elastic model, (b) rhe-
ological model with active lengthening. The symbols (×) and (+)
indicate the number of connectivity changes per time-step for the
two simulations with remodelling. . . . . . . . . . . . . . . . . . . . . 51

4.5 (a) Time history of the applied strain. (b) Evolution of the total
reaction as a function of time for the flat tissue and active rheological
law. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6 Comparison between the averaged stress value in the experimental
results (Harris et al., 2012) . . . . . . . . . . . . . . . . . . . . . . . 53

4.7 Example of curved monolayer. Top: initial geometry. Bottom: de-
formed geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.8 Total reaction at the boundary with increasing imposed displacements
for the curved monolayer, (a) purely elastic model, (b) rheological
model with active lengthening. . . . . . . . . . . . . . . . . . . . . . 55

4.9 Tissue extension. (a) Initial configuration, (b) tissue configuration at
30% extension without remodelling, and (c) tissue configuration at
30% extension with remodelling. Replaced elements are marked in
black in (b). Remodelled elements are marked in green. . . . . . . . 56

4.10 Tissue formed by linear elastic elements, under 30% uniform stretch
applied within 60 time-steps while held at constant topology (no re-
modelling). Elements resting lengths, at each time-step, obtained
by three approaches: fixed resting lengths (no network mapping),
full-network mapping and split-network mapping. (a) Total tissue
reaction while kD = 10 kV , (b) potential energy of nodal and ver-
tex networks while kD = 10 kV , (c) total tissue reaction while kD =
0.1 kV , and (d) potential energy of nodal and vertex networks while
kD = 0.1 kV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.11 Tissue formed by linear elastic elements, under 30% uniform stretch
applied within 60 time-steps which is allowed to remodel. Elements
resting lengths, at each time step, obtained by three approaches: fixed
resting lengths (no network mapping/remodelling), full-network map-
ping and split-network mapping with floating topology. (a) Total
tissue reaction while kD = 10 kV , (b) elastic energy of nodal and
vertex networks while kD = 0.1 kV , (c) total tissue reaction while
kD = 0.1 kV and (d) elastic energy of nodal and vertex networks
while kD = 0.1 kV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.12 Deformed tissue at 30% extension. Red network represents vertices
with fixed ξ. Green network represents vertices when ξ-relaxation is
allowed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



LIST OF FIGURES xix

4.13 Analysis of response of tissue composed of elastic elements, under
30% uniform stretch applied within a single time-step for different
combinations of {kD kV } while kD + kV = 1, with and without ξ-
relaxation. (a) Tissue reaction, (b) nodal, vertex and total strain
energy of the tissue, (c) mean of the difference between pure nodal and
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Chapter 1

State of the art

1.1 Biological background

In the last two decades, there has been a shift in the understanding of cell
function and disease within the other contexts than biochemistry and genetics. In
particular, it has become well established that critical insights into diverse cellular
processes and pathologies can be gained by understanding the role of mechanical
force (Munjal et al., 2015; Fernández-Sánchez et al., 2015). A rapidly growing body
of science indicates that mechanical phenomena are critical to the proper functioning
of several basic cell processes and that mechanical loads can serve as extracellular
signals that regulate cell function (Jacobs et al., 2012).

In many aspects of biological development, what matters is how mechanical as-
pects of cells behaviours, entailed by sub-cellular phenomena such as genetic regula-
tion and protein activity, act a significant role in many morphogenic and physiologic
phenomena at tissue level. This point of view considers the cell as the fundamental
module of development (Roland & Glazier, 2005). Holding this attitude, questions
like Where and when do cells move?, Which cells generate force and which cells are
passively moulded by forces generated elsewhere? or What are the mechanical prop-
erties of cells and tissues that determine the effect of these forces?, can shape a new
point of view towards many unsolved problems in tissue biology.

Some phenomena during embryonic development such as gastrulation, in which
single-layered blastula reorganised into a trilaminar, has been well explained in terms
of mechanical perspective (Keller et al., 2003)(see Figure 1.1). The biomechanics
of the relation of the cell shape change to the tissue bending has been established
by physical (Lewis, 1947) and mathematical modelling. For instance, a mechanical
model for the morphogenetic folding of embryonic epithelia based on hypothesised
mechanical properties of the cellular cytoskeleton has been described in Odell et
al. (1981). Also, animal-vegetal apical contraction of bottle cells forming in vivo,

1
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during Xenopus laevis gastrulation was studied by a mechanical approach (Hardin
& Keller, 1988). Moreover, there have been also reports on other mechanical cellular
behaviours such as cell intercalations during convergent extension, within which a
number of theoretical models have been proposed to describe such morphogenic
phenomena (Davidson et al., 2010) (see Figure 1.1).

ARTICLE IN PRESS

exhibit this movement. Convergent extension can occur within
epithelial or mesenchymal cell types and is one of the best
characterized morphogenetic movements on both the cellular and
molecular level. Thus, convergent extension provides a useful
example for engineers to consider as they seek to control cell
behaviors and shape novel tissues. Theoretical models of morpho-
genesis strive to explain how molecular pathways control cellular
mechanics (the featured topic in this issue). For many years,
discussions on the mechanics of morphogenesis were purely
theoretical; qualitative or ‘‘word models’’ prevailed to explain many
phenomena. However, as the interconnected molecular pathways
operating during morphogenesis have been mapped, and high-
powered computing devices have become more accessible, discus-
sions turned to more quantitative models. Theoretical models,
computer simulations, and in silico biology are all used to interpret
experiments, explore the robustness of molecular and mechanical
processes, and make predictions.

This review will focus on mediolateral cell intercalation during
convergent extension, what is known about the cell behaviors
driving this event, how theoretical models have shaped our
understanding of the mechanics of morphogenesis, and what gaps
remain.

Observations on convergent extension

The process of gastrulation in the vertebrate embryo patterns
cell identities and moves three primary germ-layers (endoderm,
mesoderm, and ectoderm) into their definitive locations (inner-
most, middle, and outer-most, respectively). As part of gastrula-
tion the embryo lengthens by a process known as convergent
extension (CE; or alternatively ‘‘convergence and extension’’;
Fig. 1). The term CE refers to the bulk movement of prospective
dorsal tissues of the embryo as they narrow along the embryo’s
mediolateral axis (i.e. the left-right axis; Fig. 1B) and lengthen
along the embryo’s anterior–posterior axis (sometimes referred to

as the rostral-caudal axis). CE brings prospective dorsal tissues
from a broad area of the early embryo and organizes them into a
compact column that runs from the later stage embryo’s head to
its tail (Fig. 1C; see (Keller, 2002)). A variety of cell behaviors such
as directed cell migration, mediolateral cell intercalation, radial
cell intercalation, asymmetric cell division, cell ingression, and
asymmetric multicellular rosette resolution have been proposed
to drive bulk CE tissue movements during vertebrate gastrulation
(Gong et al., 2004; Stern, 2004; Solnica-Krezel, 2005; Keller, 2006;
Wagstaff et al., 2008). Not all of these cell behaviors occur
simultaneously but instead sub-sets of behaviors may be used
together as adaptations to the physical organization of the
pre-gastrula embryo. For instance, early stage amniote embryos,
like the chick embryo, take the form of a single epithelial sheet
spread over a large yolk mass. In order to move into the embryo
individual mesoderm cells constrict apically and leave the
epithelium in a process known as ingression (Shook and Keller,
2003). In the case of chicken gastrulation, mesoderm cells appear
to intercalate mediolaterally both before and after ingression
(Voiculescu et al., 2007). For the remainder of the review we will
focus on mediolateral cell intercalation behaviors driving CE in the
frog Xenopus laevis and direct readers to papers listed above for
details of alternative cellular strategies for driving CE.

Four observed rules that guide cell rearrangement during CE

A minimal description of mediolateral cell intercalation involves
oriented cell rearrangement between just three mesenchymal cells
in the embryo. One of the cells in the cluster moves between two
neighboring cells (intercalating cell marked by asterisk; Fig. 1C). The
moving or intercalating cell separates its two neighbors to form a
linear array of three cells. There are at least four key ‘‘rules’’ observed
during mediolateral intercalation that may allow intercalation to
efficiently drive CE: (1) the intercalating cell moves in a mediolateral
direction and separates neighboring cells along the anterior–poster-
ior direction (planar polarity; Fig. 2A), (2) the intercalating cell stays
in the same plane as the two neighbors (remain in-the-plane; Fig. 2B),
(3) the intercalating cell does not reverse direction and
de-intercalate (irreversibility; Fig. 2C), and (4) the intercalating cell
and neighboring cells maintain their shapes and do not re-organize
within the same volume (cell shape constraint; Fig. 2D). This minimal
description of mediolateral intercalation and rules observed by
intercalating cells is thought to assure efficient CE (Wilson et al.,
1989; Wilson and Keller, 1991; Shih and Keller, 1992a, b; Domingo
and Keller, 1995; Elul et al., 1997; Davidson and Keller, 1999; Elul and
Keller, 2000; Ezin et al., 2003, 2006). This basic description and
observed rules guiding mediolateral cell intercalation have formed
the basis of an ongoing molecular dissection of CE (Keller, 2002).

The molecular basis of two observed rules of cell behaviors,
planar polarity (#1) and remain in-the-plane (#2) have been
active topics in cell and developmental biology. Proteins in the
non-canonical Wnt or planar cell polarity (PCP) pathways appear
to control the mediolateral (ML) and anterior–posterior (AP)
orientation of cells during CE in most vertebrates, either directing
those cells to intercalate mediolaterally or allowing them to sense
other orienting signals (Wallingford et al., 2002; Voiculescu et al.,
2007; Yin et al., 2008). During CE, intercalating cells also remain
positioned ‘‘in-the-plane’’ (Keller and Danilchik, 1988; Myers
et al., 2002a; Davidson et al., 2006; Keller et al., 2008; Ninomiya
and Winklbauer, 2008) possibly preventing intercalation from
driving tissue thickening. Signals from fibronectin (FN) assembled
into fibrils or non-fibrillar FN localized at tissue interfaces can
provide cues that prevent cells from crawling over or under their
neighbors and thus act to keep all three intercalating cells
in-the-plane (Davidson et al., 2006; Rozario et al., 2008).

Fig. 1. Gastrulation, elongation, convergent extension, and mediolateral cell intercala-

tion. (A) Gastrulation is shown as a topological process that converts a ball into a

toroid and then elongates the toroid into a tube. (B) Gastrulation and elongation

produce a tadpole, analogous to a tube, from a ball of cells. (C) Convergent

extension (CE) of dorsal tissues (red) in the embryo is the result of cell

rearrangement in the tissue. Cells (drawn as ellipses) intercalate between their

mediolaterally (ml) adjacent neighbors driving them apart along the anterior-(a)–

posterior-(p) axis. Several rounds of mediolateral cell intercalation drive

convergent extension and elongate the embryo.

L.A. Davidson et al. / Journal of Biomechanics 43 (2010) 63–7064

Figure 1.1: Gastrulation, elongation, convergent extension, and mediolateral cell intercalation. (A)
Gastrulation is shown as a topological process that converts a ball into a toroid and then elongates
the toroid into a tube. (B) Gastrulation and elongation produce a tadpole, analogous to a tube, from
a ball of cells.(C) Convergent extension (CE) of dorsal tissues (red) in the embryo is the result of cell
rearrangement in the tissue. Cells (drawn as ellipses) intercalate between their mediolaterally (ml)
adjacent neighbours driving them apart along the anterior-(a)-posterior-(p) axis. Several rounds
of mediolateral cell intercalation drive convergent extension and elongate the embryo (Davidson et
al., 2010).
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1.2 Modelling in tissue biology

1.2.1 Modelling scale and predictability

Although a simulation can never prove sufficiency, and the mechanism may not
be completely correct due to missing components, they can prove their utility by
predicting, rather than ”post-dicting” experimental observations, and testing hy-
pothesis that may be notable to biologists (Roland & Glazier, 2005). A compu-
tational treatment of a particular problem must begin by choosing an appropriate
scale or level of detail, which the inclusion of additional scales can later refine.

Most of computational-biology studies of development focus on tissue level phe-
nomena, modelling tissues as continuous elastic solids or viscous fluids. Others aim
to generalise from an understanding of single-cell behaviours and dynamics, building
microscopic models of intracellular dynamics (e.g. electro-physiological models or
single-cell models of filopodial extension) (Roland & Glazier, 2005). Indeed, some
authors aim to couple many detailed single-cell models in order to model multi-
cellular phenomena (Krul et al., 2003).

Instead, molecular and sub-cellular models like Virtual Cell (Slepchenko et al.,
2003), Silicon Cell or E-cell (Tomita et al., 1999) provide great detail on aspects
of sub-cellular processes. However, working at the scale of the cell provides a nat-
ural level of abstraction for mathematical and computational modelling of embryo
development. The study of cells from the mathematical standpoint, immediately re-
duces the interactions of roughly ∼ 100 gene products to 10 or so behaviours: cells
can move, divide, die, differentiate, change shape, exert forces, secrete and absorb
chemicals and electrical charges, and change their distribution of surface properties
(Roland & Glazier, 2005). Some cell-based models, that make use of the genes prod-
ucts, are Compucell3D (Roland & Glazier, 2005) and Chaste (Cancer, Heart and
Soft-Tissue Environment) (Pitt-Francis et al., 2009).

1.2.2 Major modelling approaches

Mechanical analysis of embryonic tissues has gained attention in recent years.
Biologists and experimentalists have been able to accurately track the kinematic
information of tissues and organs, but the mechanical forces that drive these shape
changes have resulted far more elusive, despite evidence that genetic expression and
mechanics are tightly coupled in phenomena such as cell migration (Sunyer et al.,
2016), wound healing (Brugués et al., 2014) or embryo development (Fernández-
Sánchez et al., 2015).

The quantification of the mechanical forces in morphogenesis has given rise to
numerous and diverse numerical approaches. In the context of tissue modelling at
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the cell scale, there are two major frameworks implemented so far: continuum and
cell-based (or discrete) approaches. Here we provide a brief description of either of
these procedures.

Continuum models

In this approach the tissue is assumed to be uniform in terms of cell density, and
without gaps. In fact the effect of individual cells are averaged out (Osborne et al.,
2010) and there is a tendency to lump multiple physical properties into one or two
phenomenological parameters (Macklin et al., 2010). For example the models by
Frieboes et al. (2007); Macklin & Lowengrub (2007) lump cell–cell, cell-BM (bone
marrow), and cell-ECM (extracellular matrix) adhesion, motility, and ECM rigidity
into a single mobility parameter, as well as forces on the tumour boundary. One of
the main advantages of these models is that they allow to use well-known discreti-
sation methods such as the Finite Element Method or derived approaches (Arroyo
& DeSimone, 2014; Muñoz et al., 2007; Lin & Taber, 1994). However, one reason
why continuum models that are able to recover detailed morphological features are
scarce, is that some cellular interactions are difficult to simulate at the macroscopic
scale. One basic problem is the representation of cell–cell adhesion. In cell-based
models, cell–cell adhesion can conveniently be expressed in the shape of an inter-cell
attraction. In meso-scale continuum models, the notion of a single cell does not
exist, and we have to model the macroscopic effect of cell–cell adhesion (Bergdorf
et al., 2010).

Cell-based (discrete) models

Under the title of cell-based modelling, the behaviour of one or more individual
cells is addressed as they interact with one another and the micro-environment.

These models treat material as discontinuous matter ab initio. This approach
has enjoyed a long history in applied mathematics and biology, dating as far back
as the 1940s when John von Neumann applied lattice crystal models to study the
necessary rulesets for self-replicating robots (Neumann & Burks, 1966). Today, dis-
crete cell modelling has advances to study a broad swath of cancer biology, spanning
carcinogenesis, tumour growth, invasion, and angiogenesis (Macklin et al., 2010).

Discrete, or individual-based models are generally divided into two categories:
lattice-based (inluding cellular automata) and lattice-free (agent-based) models.

(I) Lattice-based models: In lattice-based modelling, the cells are confined
to a regular two- or three-dimensional lattice. Each computational mesh point is
updated in time according to deterministic or stocastic rules derived from physi-
cal conservation laws and biological constraints. Some models use a high resolution
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mesh to discretise the cells and the surrounding micro-environment with sub-cellular
resolution, allowing a description of the cells finite sizes, morphologies, and biome-
chanical interactions. Cellular automata (CA) models, which describe each cell with
a single computational mesh point, can be viewed as a specific case of this approach
(Macklin et al., 2010).

(II) Lattice-free models: Lattice-free models, frequently referred to as agent-
based models, do not restrict the cells positions and orientations in space. This
allows a more complex and accurate coupling between the cells and their micro-
environment, and imposes fewer artificial constraints on the behaviour of multi-
cellular systems. The cells are treated as distinct objects or agents and are allowed
to move, divide, and die individually according to biophysically-based rules. This
framework is usually defined under two approaches: cell-vertex and cell-centred
models (Macklin et al., 2010).
(i) Vertex models: Cells are treated as polygons in 2-D (Spahn & Reuter, 2013)
or polyhedra in 3-D (Okuda et al., 2013; Honda et al., 2004) and a multicellular ag-
gregate is represented by a single network comprising vertices and edges (Okuda et
al., 2013). In vertex models, size, shape, and the dynamics of each cell is governed
by the movement of its vertices, these being determined by explicitly calculating
the resultant forces or minimising a global energy function (Osborne et al., 2010).
Vertex models are particularly suitable for modelling differential cell–cell adhesion,
an important feature of cell dynamics in the crypt, as common mutation in colorec-
tal epithelial cells are thought to affect cell–cell adhesion. However, the inclusion
of differential cell-substrate adhesion is not so straightforward, as the drag terms
include contributions from cells surrounding a given vertex (Fletcher et al., 2010;
Osborne et al., 2010).
(ii) Cell-centred models: In this approach, each cell is treated as a discrete
entity and adjacent cells are connected by bar elements between their geometrical
centres, while evolving through a specific rheological law. Neighbouring cells are
determined by a Delaunay triangulation while cell shapes are generally determined
by a Voronoi tessellation. The equations of motion are developed by neglecting iner-
tial effects and balancing elastic force and viscous drag on cell centres with cell–cell
interaction forces associated with the compression and extension of the connecting
bar elements (Mosaffa et al., 2015; Osborne et al., 2010).

Cell-centred models can efficiently simulate cell proliferation, growth, and mi-
gration in the crypt (Fletcher et al., 2010). Moreover, it is straight forward to incor-
porate differential cell–cell adhesion (Galle et al., 2005; Walker et al., 2004; Ramis-
Conde et al., 2008; Schaller & Meyer-Hermann, 2005) and to vary cell-substrate
adhesion by varying the cellular drag coefficients. However, a disadvantage of such
cell-centred models is their reliance on the Delaunay triangulation, meaning that the
number of vertices and the shapes of the cells do nat change smoothly (Broadland,
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2004).

1.3 Objectives and proposed model

The aim of this thesis is to present an approach to model multicellular systems,
with hundreds of cells. Therefore, it is appropriate to focus the procedure at the
cell rather than the sub-cellular scale. Other methods for modelling cell mechanics
such as the Sub-cellular Element Model (Sandersius & Newman, 2008; Sandersius
et al., 2011) or the Immersed Boundary method (Rejniak, 2007) are more suitable
at smaller scales and therefore can simulate cell–cell interaction more accurately.

In the previous section, we addressed a set of characteristics provided by vertex
and cell-centred models. The model proposed in this thesis aims to gather the
advantages of the two approaches: define cell–cell interactions between centres and
at the cell–cell junctions, but include the cell as an essential unit in order to ease the
transitions in the cell–cell contacts. We resort to Delaunay triangulation of the cell-
centres, and a barycentric interpolation of the vertices on the cell boundaries. Both
nodes (cell centres) and vertices are kinematically coupled by this interpolation,
which has effects on the resulting equilibrium equations.

The proposed model is an extension of an initially developed cell-centred model
(Mosaffa et al., 2015) with a hybrid approach that incorporates mechanics at the
cell boundaries in order to model morphogenetic events driven by contractile forces
(Salbreux et al., 2012), like for instance germ band extension (Munjal et al., 2015) or
wound healing (Antunes et al., 2013). Hybrid approaches are scarce and have been
so far employed to model glass and jamming transitions in tissues (Bi et al., 2016)
as well as in topological characterisation of developing epithelial tissues (González-
Valverde & Garćıa-Aznar, 2017).

Since topological changes are commonly observed during embryo development,
and may determine the global tissue deformation (Lecuit & Lenne, 2007), the model
aims to handle these changes in a robust manner, by introducing a method to
compute resting length of remodelled elements based on the element direction in
space. Remodelling of cell–cell connectivities is controlled by resorting to Delaunay
triangulation of the set of cell centres.

The use of Voronoi tessellation has been well studied for domain decomposi-
tion (Fu et al., 2017) or for discretising partial differential equations in elasticity,
diffusion, fluid dynamics or electrostatics. Some examples are the Natural Element
Method (Cueto et al., 2002; González et al., 2007; Sibson, 1980; Sukumar, 2003), the
Voronoi Cell Finite Element Method (Ghosh & Moorthy, 2004; Moorthy & Ghosh,
1996), the Voronoi Interface Element (Guittet et al., 2015) or the particle-in-cell
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methodology (Gatsonis & Spirkin, 2009). In these methods, the tessellation is used
for either constructing the interpolation functions, or describing the heterogeneities
of interfaces.

At a first stage, we resort to Voronoi tessellation of the cell centres in order
to obtain the cells boundary. Constructing cells boundary is included as a post-
processing event in the model, since cells vertices are assigned with no mechanical
role.

At a later stage, we introduce a hybrid approach where we include a second type
of bar elements connecting cell vertices to involve interactions at the cells boundary.
This approach allows considering different mechanical interactions, governed by dif-
ferent rheological laws, at the cells boundary rather than at the cells cytoskeleton.
Furthermore, we will limit our focus on two-dimensional flat monolayers thereupon.

To define the cells boundary we resort to a related barycentric tessellation, where
the vertices of the network are built from the barycentres of each triangle instead
of the bisectors, as it is the case in the Voronoi diagram. We choose this alternative
tessellation to guarantee that the vertices are inside each triangle, even when the
Delaunay triangulation is deformed, and thus may potentially violate the Delaunay
condition. The use of automatic tessellation is also motivated in our case by the
need to handle cell–cell connectivity changes in a robust and accurate manner,
and thus avoid the design of specific algorithms during remodelling events, as it
is customary in vertex models in two (Fletcher et al., 2013; Honda et al., 1983) and
three dimensions (Honda et al., 2008; Okuda et al., 2015).

The position of cells in the hybrid approach is obtained by acquiring mechanical
equilibrium at the cell centres. The forces at the boundary of each cell take part in
the equilibrium equation of the cell centre by translation of the residual forces at
the vertices, into the cell centres, through the barycentric interpolation mentioned
before. This clearly does not guarantee mechanical equilibrium at the vertices.
However, we introduce a method in which the vertices are allowed to relax by slightly
taking some distance from the triangles barycentres.

Handling cells equilibrium after reorganisation is performed by introducing an
Equilibrium Preserving Mapping (EPM), by which resting lengths of the elements
are defined in such way that preserves mechanical equilibrium at the cell centres for
the current topology.
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1.4 Outline

Chapter 2 begins by providing a description of a purely cell-centred approach,
where each cell is represented by a particle, and each cell–cell interaction is modelled
through a bar element connecting two particles. This element carries all the inter-
actions at the junctions between the cells, and also the internal active and passive
forces produced by the cytoskeleton. The position of cell centres then, is defined by
resorting to mechanical equilibrium of the network of the bar elements. Delaunay
triangulation of the set of cell centres is presented as a robust algorithm to define
the network of cell–cell connections, later called nodal network. We also present a
L-tensor method to preserve mechanical equilibrium at cell centres for networks of
cell centres with variable topology.

Cells boundary is defined by a modified Voronoi tessellation of the cell centres,
providing a vertex network with closed regions at the bounds of the tissue. Later,
we introduce a hybrid approach where mechanical interaction featured also along
the cells boundary, is coupled with that of along the bar elements between the cell
centres. At this stage, barycentric tessellation of the Delaunay network substitutes
Voronoi tessellation to define cells boundary. To preserve mechanical equilibrium in
tissues with variable topology we present EPM as a method to recompute appro-
priate resting lengths for nodal and vertex elements in such a way that mechanical
equilibrium is preserved at cell centres.

Chapter 3 is dedicated to implementation of some appropriate constitutive laws
applied on the bar elements, that mimic the non-linear mechanical response of mul-
ticellular systems. This is the result of multiple local phenomena acting at different
scales. At the micro-scale the cytoskeleton can undergo (de)polymerisation process
(Ma et al., 2009), cross-link reorganisation (Chaudhuri et al., 2007), or affect the
cytoplasm flow (Moeendarbary et al., 2013). At the macro-scale, cell motility is
driven by cell–cell and cell–extracellular matrix adhesive forces, lamellipodia activ-
ity or other intercalation forces. The combination of these multi-scale forces into
global changes during embryogenesis such as convergent extension (Beret et al.,
2004; Pare et al., 2014), or anisotropic tissue growth (Bittig et al., 2008).

We do not intend to include all this range of multi-scale forces in the bar elements
of our model, but just a subject of the observed mechanisms that may be sufficient to
reproduce some of the observed morphogenetic movements. In our model we imple-
ment a strain-dependent evolution of the resting length, at cell–cell connections as
well as cells boundary, in a similar manner to a time-varying reference configuration
in continuum models (Muñoz et al., 2007; Rodriguez et al., 1994).

In Chapter 4 we provide a set of numerical results obtained by the application
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of the model, including tissue extension and wound healing incorporating different
features in the model such as reorganisation of the cells and contractility at the cells
junctions.





Chapter 2

Tissue discretisation

2.1 Cell-centred model

We will henceforth focus our study to cellular systems forming either a monolayer
(planar or curved) and a three-dimensional aggregate. We will consider the following
assumptions:

(a) Cells are packed with no extracellular space in between.

(b) Cell centres are considered as dimensionless points (later mentioned as nodes)
by which the location of each cell is defined in space.

(c) Contact between two cells i and j is defined by the presence of a one-dimensional
bar element connecting the two cell centres, providing a connected graph as a
whole. This graph consists in triangulation of the domain into Ntri triangles
T I , I = 1, . . . , Ntri and ND edges.

(d) Inertial forces can be neglected.

In most of our examples, we will simulate cell monolayers. Indeed, during the
early stages of embryogenesis, prior to any mesenchymal transformations, cells tend
to form a monolayer (Costa et al., 1993). This may be eventually internalised and
cells may turn into a cell aggregate. We will discuss tissues with either architecture
separately, but will ignore transitional states. Assumption (a-c) are considered to
simplify the computations. In most cases, we will also assume that the number of
cells (nodes), Nnodes is constant. This is consistent with the fact that when cells un-
dergo drastic deformations, no proliferation takes place, that is, the number of cells
remains approximately constant (Leptin & Grunewald, 1990). In the simulations
that involve wounding, this assumption will be relaxed, and the number of nodes
may diminish. Assumption (d) is based on the fact that in cellular systems, inertial
forces are negligible compared to elastic and viscous forces.

11
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The configuration of the model at each time-step tn, denoted byCn, is defined by
the nodal position of theNnodes nodes,Xn =

{
x1
n,x

2
n, . . . ,x

Nnodes
n

}
, the connectivity

between nodes, indicated by a connectivity matrix, T n. The two sets of variables
Xn and T n may vary between time-steps, and are computed from the previous
variables Cn according to the following scheme:

1. Compute nodal coordinates Xn+1 by finding mechanical equilibrium between
the particles, while keeping the connectivity T n constant.

2. Update connectivities T n+1 resorting to a Delaunay triangulation of the new
positions Xn+1

Figure 2.1 shows the two-step update process. Note that according to the scheme
above, equilibrium at time tn+1 is computed for the connectivity at time tn. The
connectivity T n may not be suitable for the new positions Xn+1, and for this reason
the cell-cell contacts are updated, yielding a new connectivity T n+1. Steps 1-2,
mechanical equilibrium and connectivity definition, will be discussed in the next
paragraphs.

Delaunayequilibrium

(c)(b)(a)

Figure 2.1: Two-step update process of nodal configuration. (a) Configuration Cn = {Xn,T n} at
time tn, (b) Nodal configuration C∗

n+1 = {Xn+1,T n} after obtaining mechanical equilibrium, and
(c) configuration Cn+1 = {Xn+1,T n+1} at time tn+1.

2.1.1 Cell-centred mechanical equilibrium

The cell-cell connectivity defined by T includes information on the set of ND

pairs ij of bar elements between the Nnodes nodes. Each pair of connected nodes
are joined with a bar element that represents the forces between the two cells. This
force is derived here from an elastic strain function,

W ij
D (x) =

1

2
kD(εij)2,

WD(x) =

ND∑

ij

W ij
D (x),

(2.1)

where kD is the material inter-cellular stiffness, εij = lij−Lij
Lij

is the scalar elastic
strain, and lij =

∥∥xi − xj
∥∥ and Lij are the current and reference lengths, respec-

tively. In Section 3.3 we will introduce a rheological law where the reference length
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Lij (stress-free length of the element) is allowed to vary along time, and thus we may

have that Lij 6= Lij0 :=
∥∥∥xi0 − xj0

∥∥∥. WD is the total strain function of the network

of nodes.

We remark that the elastic strain function in equation (2.1) is quadratic with
respect to the strain, but that our strain measure depends non-linearly on the po-
sition xi. This makes the forces to vary non-linearly when the bars turn and the
displacements are large, which is the general case considered here. This geometrical
non-linearity may be complemented with other material non-linearities, and in fact,
viscous effects will be considered when the resting length L is allowed to change
in Section 3.3. Other alternative non-linear strain functions have been considered
in similar bar systems when simulating tissue fluidisation (Asadipour et al., 2016),
relaxation (Khalilgharibi et al., 2017) or embryogenesis (Doubrovinski et al., 2017).

In the absence of any other strain function, the minimisation of WD leads to the
equations

giD :=
∑

j∈Si
tijD = 0, i = 1, . . . , Nnodes, (2.2)

where Si denotes the set of nodes connected to node i and tijD is the nodal traction

at node i due to bar ij, which is derived from the elastic strain function W ij
D as (no

summation on i)

tijD =
∂W ij

D

∂xi
= kDε

ij 1

Lijlij
(xi − xj),

tjiD =
∂W ij

D

∂xj
= kDε

ij 1

Lijlij
(xj − xi).

(2.3)

Therefore,

tijD =
∂W ij

D

∂xi
= −tjiD = −∂W

ij
D

∂xj
. (2.4)

Figure 2.2 shows the traction vectors between two nodes xi and xj . Since the
system of equations (2.2) is non-linear with respect to the nodal positions xi, we
resort to a full Newton-Raphson method, which requires linearisation of the set of
equations. The expression of the resulting Jacobian can be obtained by using the
expression in Appendix E.2 and using L = const., that is ∂L

∂l = 0.
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Figure 2.2: Schematic view of node i connectivity (continuous lines), within the rest of the network
(dashed lines) and traction vector tijD.

2.1.2 Cell-cell connectivity: modified Delaunay triangulation

Triangulation of planar monolayers

Definition For a set P of points in the plane, Delaunay triangulation is a triangu-
lation DT (P ) such that no point in P is inside the circumcircle of any triangle in
DT (P ) (Barber et al., 1996; Okabe et al., 1992).

Delaunay triangulation of a set of points P in three-dimensional domain, leads
to a network with tetrahedrons as building blocks of the network. In such a network,
Delaunay triangulation also guarantees no point in P is inside the circumsphere of
any tetrahedron in DT (P ).

According to the definition above, following properties of DT can be deduced:

• Delaunay triangulation maximise the mean in-radius of the set of triangles
in the domain (Lambert, 1994). This property ensures triangles–and tetrahe-
drons in 3-D–with optimal aspect ratio which can improve numerical precision
in finite element problems (Babuska & Aziz, 1976).

• Delaunay triangulation guarantees first-neighbour connection, i.e. any point
at each triangle is as close as possible to a node. When defining cell bound-
aries, this property will help obtaining cell shapes with maximum aspect ratio.
The idea of plump cells is supported by the fact that epithelial cells tend to
minimise their contact length with the surrounding cells (Honda et al., 1982).

• Delaunay triangulation of a set of points results in the convex hull of that set of
points. This property does not preserve concave boundaries of the triangulated
domain.

Figure 2.3 shows three different types of triangulation of set of points P while
the condition of Delaunay triangulation being evaluated.
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Non-Delaunay Triangulation Non-Delaunay Triangulation Delaunay Triangulation

(b)(a) (c)

Figure 2.3: Triangulation of set of points P = {A,B,C,D,E}. (a) non-Delaunay triangulation as
points B and C are inside the circumcircle of 4ADE. (b) non-Delaunay triangulation as point
C is inside the circumcircle of 4ABE. (c) Delaunay triangulation as there is no point inside the
circumcircle of either of triangles.

Modification of Delaunay triangulation

P DT (P) F (DT (P))

(c)(b)(a)

Figure 2.4: Modified Delaunay triangulation of set of points P . (a) Distribution of set of points
P in the plane. (b) Standard Delaunay triangulation of set of points P ; skinny triangles covering
the concave edge of the network are marked in green. (c) Modified Delaunay triangulation of set
of points P by the application of the filtering process on DT (P ).

Since Delaunay’s algorithm yields the convex hull of all the points, a basic De-
launay triangulation DT (P ) may invariably lead to distant boundary nodes being
unrealistically connected, i.e. covering non-convex boundaries. In order to overcome
this problem, those elements with very high aspect ratio were eliminated by defining
a filtering process (see Figure 2.4). The ratio r

R where r is the inradius and R is
the circumradius of each triangle (tetrahedron in 3-D), has been considered as an
appropriate criterion to filter undesirable simplexes,

r

R
< tolR. (2.5)
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Equation (2.5) shows the condition under which an external element is removed.
tolR is the tolerance defined with respect to the range of aspect ratio in external tri-
angles and tetrahedrons in two- and three-dimensional domains, respectively, which
we take equal to 0.54. We note that other more sophisticated approaches such as al-
pha shapes (Edelsbrunner & Mücke, 1994) could have been considered. Howsoever,
the simpler equation (2.5) has been shown to be sufficient in our examples.

In Appendix B, the ratio r
R is calculated in terms of the position of the vertices

for an arbitrary triangle in 2-D as well as an arbitrary tetrahedron in 3-D. Figure
2.5 shows inradius and circumradius of 4ABC.

r

R

C

B

A

I
O

Figure 2.5: Incircle I and circumcircle O of 4ABC. r and R are inradius and circumradius of
4ABC respectively.

Application of Delaunay triangulation on the model

To obtain cell-cell connectivity, we resort to Delaunay Triangulation (DT) (Bar-
ber et al., 1996) of the set of nodes Xn+1, yielding T̃ n+1 = DT (Xn+1), which may
contain skinny triangles covering non-convex boundary of the tissue. By applying
filtering process, denoted by F , a new connectivity T n+1 = F (DT (Xn+1)) is ob-
tained, which does not include the unrealistic elements on the boundary. Figure 2.6
shows schematically the sequence of the whole process in Section 2.1.1 and the pla-
nar triangulation described here for a set of nine nodes. Configuration in Figure 2.6b
is computed after imposing mechanical equilibrium on the triangulation in Figure
2.6a. The connectivity in Figure 2.6c is obtained by basic Delaunay triangulation,
while the one in Figure 2.6d is the result of applying the filtering process.

Between consecutive time-steps or loading steps, the changes in the connectivity
may induce drastic changes in the nodal forces if the resting length L is set to the new
current length of newly created elements. In order to alleviate these discontinuities,
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Figure 2.6: Schematic of computational process for retrieving nodal positions an connectivity
{Xn+1,T n+1} from the same quantities at time tn. (a)→(b): computation of new positions Xn+1

from mechanical equilibrium. (b)→(c): computation of new connectivity T̃ n+1 from Delaunay
triangulation. (c)→(d): trimming of Delaunay connectivity T̃ n+1, resulting in a not necessarily
convex boundary of the cell-centred network T n+1.

a specific remodelling algorithm that defines a nodal based resting length tensor is
presented next.

2.1.3 Remodelling of cell-centred model: L-tensor method

The nodal forces are based on the elastic strain function defined in Section
2.1.1, which depends on the current l and reference length L, which so far has been
considered constant. However, due to the redefinition of the cell-cell connectivity,
detailed in Section 2.1.2, it may well be that the element ij exists at time tn+1 but
not at time tn. For this reason, we compute a nodal active length tensor, Li, which
will allow us to compute the resting length along an arbitrary direction nj as

Lij = nj · Linj . (2.6)

This relation reveals that Li may be interpreted as a strain tensor, where the
quantity nj · Linj corresponds to the stretching along nj . Since the skew part of
Li does not affect the value of Lij in equation (2.6), and in order to keep similarity
between Li and a deformation tensor, we will assume that Li is symmetric.

It is clear that for a given node i, the existance of an active length tensor Li

satisfying exactly relationship in equation (2.6) for all current cell–cell connections
ij may not be possible. Therefore, the tensor Li is computed by minimising the
following quadratic error function:

EiL =
1

2

Si∑

j=1

∥∥Linj − Lijnj
∥∥2
. (2.7)

We note that, in view of equation (2.6), we could alternatively aim to minimise

the error function ẼiL = 1
2

∑Si

j=1

∥∥∥njTLinj − Lij
∥∥∥

2
. We have not done so for reasons

that will be explained below, when commenting the uniqueness of the minimiser.
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Due to the symmetry of tensor Li, we will right this tensor in the forms

L̄i2D = {Lxx, Lyy, Lzz}T ,
L̄i3D = {Lxx, Lyy, Lzz, Lxy, Lxz, Lyz}T ,

so that Linj = NjL̄i, with Nj a matrix that contains the components of the unit
vector nj . Then, the error EiL reads

EiL =
1

2

Si∑

j=1

∥∥NjL̄i − Lijnj
∥∥2
,

and its derivative with respect to each one of the components of Li gives rise to the
system of equations

AL̄i = b (2.8)

with

A =
Si∑

j=1

NjTNj , b =
Si∑

j=1

LijNjTnj .

The error measure EiL in equation (2.7) is a quadratic function that has a unique
minimiser as far as the vectors nj span Rnsd , with nsd the number of space dimen-
sions. Appendix C gives a proof of this fact. The symmetry of Li is not required in
the proof of uniqueness, which opens the possibility for considering a non-symmetric
tensor Li. However, in this case, the system of equations in (2.8) contains more un-
knowns, wihtout any qualitative improvement in the retrieved active lengthening
Lij = nj · Linj . Furthermore, and although we do not prove it here, we point out
that other alternative error measures as the function ẼiL mentioned above would
not guarantee a unique minimiser, even if the vectors nj span Rnsd .

The computation of the nodal strain tensor through equation (2.8) allows us to
compute the resting lengths along the directions of the new elements when connec-
tivity changes occur. We emphasise that this system of equations is solved during
the remodelling process after each time-step, while keeping the nodal positions fixed.

2.1.4 Cell-centred model for curved monolayers

Triangulation of curved manifolds

To obtain the new triangulation at step (c) in Figure 2.6 for a curved tissue,
including the filtering process of Delaunay triangulation, we resort to a non-linear
dimensionality reduction method (NLDR) to embed the three-dimensional scattered
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set of points describing the cell centres in a two-dimensional embedding. In general,
NLDR techniques suppose that the input high-dimensional point-set either lies on
or is close enough to a low dimensional manifold (in our case a two-dimensional
manifold) that also is an open set (see for instance Carreira-Perpiñán (1997), Lee &
Verleysen (2007), and Maaten et al. (2009)).

Here we use a robust and efficient variation of the well known local linear embed-
ding (LLE) technique (Roweis & Saul, 2000), that is the modified local linear embed-
ding (MLLE) (Zhang & Wang, 2007)). LLE-based methods assume that each point
of the manifold can be locally approximated by a linear combination of its k-nearest
neighbours (k−nn). LLE ignores metric information producing low-dimensional em-
bedding of unit covariance through a minimisation process that involves eigenvalue
decomposition of sparse matrices. The reader is referred to Roweis & Saul (2003),
Roweis & Saul (2000) and Zhang & Wang (2007) for full details, and to Millán et
al. (2013) for a concise description and performance comparison with other NLDR
methods in the manipulation of point-set surfaces.

As we have mentioned, a remarkable feature of LLE-based methods is the lack of
a clear metric relationship between the low-dimensional embedding and the original
data (see Figure 2.7b). In the problems tackled in this work this is not problematic as
can be noticed in Figure 2.7c, even when the input point-set describes an elongated
surface as that shown in Figure 2.7a. Finally, the resulting Delaunay triangulation
from the filtering process is attached to the input point-set surface as depicted in
Figure 2.7d.

Mechanical equilibrium in curved manifolds

Mechanical equilibrium in a monolayer of cell centres, on a curved manifold
and connected by bar elements is obtained by minimisation of the elastic strain
function in equation (2.1), which is written in terms of its spatial coordinates (not
the two-dimensional embedding).

Depending on the boundary condition applied on a curved network, and due to
the absence of bending elasticity in the network, minimisation of the global elastic
strain in equation (2.1) may lead to multiple solutions, i.e. the equilibrium equations
in (2.2) yield multiple solutions for Xn+1 = {x1

n+1,x
2
n+1, . . . ,x

Nnodes
n+1 }.

From mechanical point of view, this situation corresponds to the existence of
rigid-body modes in the network, when multiple positions of nodes correspond to
the same set of strain values along the bar elements. Figure 2.8 shows multiple rigid
modes of a curved monolayer with the indicated boundary conditions.
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Figure 2.7: (a) Arbitrary point set configuration from a proof of concept example in 3-D. (b)
Two-dimensional embedding obtained by using MLLE (Zhang & Wang, 2007)(k-nn=8). The lack
of metric related to the input data, that is, different distances between points in the real and
mapped domain, and its unit covariance (mapped points are distributed on a squared region) are
apparent from the picture. (c) Two-dimensional embedding nodes and connectivity after applying
the filtering described in Section 2.1.2. (d) Three-dimensional initial point set configuration with
resulting connectivity. The colour-map, which indicates the identifier of each sample of the point
set, is provided for visual inspection.

In mathematical terms, this situation occurs when the determinant of the Jaco-
bian of the system (see Appendix E) is close to zero

|K| ' 0. (2.9)

Therefore, K has at least one eigenvector κ with eigenvalue close to 0 (which we
call 0-eigenmodes) and is thus semi-positive-definite.

In order to obtain a positive-definite Jacobian matrix, and thus a system of
equations with a unique solution, we here propose a method to penalise solutions
u which include eigenvectors κ, so that the elastic strain function in equation (2.1)
will be minimised by a unique u. In order to penalise 0-eigenmodes of K, we resort
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Figure 2.8: Top: monolayer with half-cylinder geometry. The nodes at the plane z = 0 are
constrained to remain in the plane, while the nodes at the other base of the half-cylinder are
constrained to remain in plane z = 5. Bottom: multiple rigid modes of the monolayer with half-
cylinder geometry.

to minimise the function Wc(x) where

Wc(x) = WD(x) +
pr
2

neig∑

l=1

(
κl
T
u(x)

)2
, (2.10)

where neig is the number of eigenvectors κ whose eigenvalue is smaller than numer-
ical precision δ which can be chosen sufficiently close to 0, and pr is a penalisation
factor.

Minimisation of the strain energy in equation (2.10) will lead to

Kcu = gc,

where

Kc = K + pr

neig∑

l=1

κl ⊗ κlT ,

gc = g + pr

neig∑

l=1

(
κl
T
u
)
κl.

(2.11)

Clearly, Kc is positive-definite, and thus the use of the residual in equation (2.11)
will have unique solution for gc = 0. Eigenvectors κ are obtained by MATLAB
function eig, which is able to compute the eigenvectors as well as the corresponding
eigenvalues of arbitrary square matrices (in our case stiffness matrix K).
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2.1.5 Cells boundary

Voronoi diagram

By definition, a Voronoi diagram is a partitioning of the domain into regions
based on distance to a predefined set of nodes, and for each node there is a cor-
responding region consisting of all points closer to that node than to any other.
The Voronoi diagram of a set of points is dual to its Delaunay triangulation: each
Voronoi face is perpendicular to the connecting line of the Delaunay triangulation,
and splits it in half (Barber et al., 1996). In Appendix D the tessellation of the
Voronoi diagram from the Delaunay triangulation of the set of points is calculated.

In two-dimensional Euclidean space each Voronoi region forms a convex polygon
and in three-dimensional Euclidean space each Vornoi region forms a convex polytop
resulting from intersection of planes of perpendicular bisectors.

Application of Voronoi diagram to construct cells boundary

In this section, we resort to standard Voronoi tessellation algorithm of nodes
Xn+1 to represent the cells boundaries. However, the use of standard Voronoi
algorithm yields regions with unbounded subdomains closing at infinity. To resolve
this issue, a set of off-set nodes were added to the original set of nodes at the
boundary of the filtered Delaunay triangulation. In the next points (a), (b) and
(c) we will explain how off-set nodes are defined for the two- and three-dimensional
nodal configurations.

(a) In two-dimensional nodal configurations, each boundary node xi is connected
to two boundary elements, let us say ij and ik. We define the position of two
off-set nodes xi,ijoff−set and xi,ikoff−set at a constant distance ε from node xi and

along the external normal to each element, represented by nij and nik (see
Figure 2.10c).

xi,ijoff−set = xi + εnij ,

xi,ikoff−set = xi + εnik.
(2.12)

(b) In three-dimensional nodal configurations representing cellular aggregates, each
node xi at the boundary belongs to nT i boundary triangles representing nT i

planes in space. We add nT i off-set nodes at distance ε to node xi and along the
external normal to each of the nT i planes. The set T i contains all the triangles
T i,m including node xi and m = 1, 2, . . . , nT i .

xi,T
i,m

off−set = xi + εnT
i,m
. (2.13)
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(c) In three-dimensional nodal configurations representing cellular monolayers, off-
set nodes are performed at two stages:

(c1) In-plane off-set nodes are added for each node at the boundary of the
monolayer (see Figure 2.9). Having elements ij and ik as boundary ele-
ments being connected to node xi and corresponding to triangles T i,p and
T i,q, off-set nodes xi,ij and xi,ik are defined at the constant distance ε to
node xi and along external normals nij,‖T

i,p
and nik,‖T

i,q
to the elements

ij and ik, respectively. Vectors nij,‖T
i,p

and nik,‖T
i,q

represent normal to
element ij in the plane of T i,p, and normal to element ik in the plane of
T i,q, respectively.

xi,ijoff−set = xi + εnij,‖T
i,p
,

xi,ikoff−set = xi + εnik,‖T
i,q
.

(2.14)

(c2) A set of out-of-plane off-set nodes are constructed for the whole set of
the nodes in the domain and at both sides of the monolayer (see Figure
2.9). So for each node xi, we define nT i off-set nodes, at each side of the
monolayer, in a distance ε from node xi, along the normal nT

i,m
where

m = 1, 2, . . . , nT i .

xi,T
i,m,+

off−set = xi + εnT
i,m
,

xi,T
i,m,−

off−set = xi − εnT i,m .
(2.15)

The Voronoi tessellation was performed taking into account Delaunay triangu-
lation of the original nodes Xn+1 and the additional off-set nodes Xoff−set,n+1.
The triangulation on the whole three-dimensional domain formed by Xn+1 and the
off-set nodes, DT ({Xn+1,Xoff−set,n+1}), ensures the formation of bounded regions
for the original nodes in the domain. Figure 2.10a illustrates a schematic view of a
set of nodes preliminary connected by Delaunay triangulation. Figure 2.10b shows
the unbounded regions created by directly applying Voronoi tessellation on a two-
dimensional nodal configuration, case (a) above. Figure 2.10c indicates the off-set
nodes by yellow circles, while 2.10d shows Delaunay triangulation of combination
of original and off-set nodes, as well as Voronoi tessellation of total nodal network,
which after removing the unbounded regions and the off-set nodes, results in the
final Voronoi regions of the original set of nodes (see Figure 2.10e). The off-set nodes
and elements are finally removed.

In summary, the steps followed to form the Voronoi tessellation are:

1. Form off-set layer of nodes. Based on the type of the domain geometry ex-
plained previously in items (a), (b) and (c), the position of off-set nodes are
computed by either equations (2.12) and (2.13), or equations (2.14) and (2.15).
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Figure 2.9: Schematic view of a monolayer in 3-D and construction of off-set nodes for the nodes
on the middle and the edge of the monolayer. n and −n represent upward and downward normals
to the surface of each triangle, following the same colour as the corresponding triangle. nij and
nik are the normals to the edge elements ij and ik, and in the plane of triangles T i,p and T i,q,
respectively. ε represents the distance between each off-set node with its corresponding original
node.

The new set of nodes is denoted by X̌n+1, which includes original nodes Xn+1

and off-set nodes Xoff−set,n+1 (see Figure 2.10c). In our numerical results we
have used ε = 1 (the averaged distance between cells), which gives a reason-
able cell shape for the cells at the boundary of our examples. We note that, in
general, the choice of this parameter should be made dependent on the actual
size of the cell, and other values such as the cell-to-cell distance. At this stage,
where the cells boundary are not included in the mechanical equilibrium, the
value of ε does not affect the deformed configurations, but just the aspect ratio
of the cell region.

2. Build a new Delaunay triangulation from X̌n+1, i.e. Ť n+1 = DT (X̌n+1), and
build Voronoi tessellation of X̌n+1, that is V̌ n+1 = V or(X̌n+1) (see Figure
2.10d).
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Figure 2.10: Voronoi tessellation. (a) Delaunay triangulation of original set of nodes (T n+1 =
DT (Xn+1)). (b) Voronoi tessellation of original set of nodes resulting in open regions for the

nodes the boundary (Ṽ n+1 = V or(Xn+1)). (c) construct off-set nodes at the boundary of the
domain (X̌n+1 = {Xn+1,Xoff−set,n+1}). (d) Delaunay triangulation of total nodal configuration
(Ť n+1 = DT (X̌n+1)), and obtain total Voronoi tessellation (V̌ n+1 = V or(X̌n+1)). (e) Remove
off-set nodes and elements and obtain close regions for all original nodes.

3. Remove Voronoi elements coinciding at infinity (see Figure 2.10e) and remove
nodes and elements at the off-set layer.

2.2 Hybrid model

So far, in the proposed model, mechanics of the tissue has been described solely
by interaction between cell centres defined by the evolution of connecting bar ele-
ments. Therefore, mechanical equilibrium was obtained by minimising the elastic
potential equation (2.1), while the boundary of the cells was obtained using Voronoi
tessellation of the cell centres network, having no role in the mechanics of the system.

In this section, we also assign mechanics on the cells boundary, so that mechanics
of the tissue will be described by resorting to a quadratic potential along cell-cell
boundaries as well as bar elements between cell centres or nodes. We will also
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focus on flat monolayers where the cell deformations along the thickness direction
is assumed constant, and thus our description is restricted to the two-dimensional
tissue architectures.

While accounting for mechanics on the cells boundary, we keep the cell centres
as our primary variables for establishing the equilibrium of the cell system. This
will require to compute the contribution of each cell boundary at the cell centres.
The boundaries of the cells are defined by a set of vertices which are described in
terms of the position of cell centres through an interpolation procedure.

2.2.1 Vertex geometry and barycentric tessellation

We assume a tissue with flat monolayer geometry and Nnodes nodes, as de-
scribed in Section 2.1, and a triangulation of the domain in Ntri triangles T I ,
I = 1, 2, . . . , Ntri and ND edges. The boundary of the cells are defined by a set
of connected vertices {y1,y2, . . . ,yNtri}, which define a tessellation of the tissue do-
main into Ncells cell domains Ωi, i = 1, 2, . . . , Ncells. Note that now Ncells < Nnodes

because Ncells does not include the external nodes. We exclude boundary of the cells
at the edge of the monolayer, since the mechanical contribution of the boundary of
these cells will be negligible in a tissue with high number of cells.

Each triangle T I is associated to vertex yI , and each interior node i is surrounded
by a number of vertices which is not necessarily constant between time-steps and
may vary from cell to cell (see Figure 2.11).

yI

yJ

x i
x j

⌧ I

nodes

vertices

cells

triangles

cell-centre connections

cell boundaries

Figure 2.11: Discretisation of tissue into cell centres (nodes, xi) and cells boundaries (vertices, yi).
Nodal network and vertex network are outlined with continuous and dashed lines, respectively.

The position of vertex yI is given by a local parametric coordinate ξI in triangle
T I . The kinematic relation between the nodal positions xi and the vetices is given
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by the interpolation

yI =
∑

i∈T I
pi(ξI)xi. (2.16)

Summation in equation (2.16) extends to the three nodes of triangle T I where
vertex I is located. Function pi(ξI) is the standard finite element interpolation
function of node i in triangle T I evaluated at coordinate ξI = {ξI1 ξI2}:

p1(ξI) = ξI1

p2(ξI) = ξI2

p3(ξI) = 1− ξI1 − ξI2 .

Choice of tessellation

We recall that Voronoi tessellation guarantees that the cells are convex and can
be obtained by interpolation of nodes in a triangle following a Delaunay triangu-
lation. However, when the nodal network is mechanically deformed, convexity of
the cells can be violated due to length changes of the Delaunay triangulation (see
Figure 2.12), and we will avoid using Voronoi tessellation to define cells. For com-
pleteness reasons though, appendices D.3 and D.4 show how the values of ξI may
be computed when the positions of the vertices correspond to Voronoi locations.

Instead, we introduce barycentric tessellation of the nodal network to define
the position of vertices, which is tantamount to considering that all parameters ξI

have a constant value ξI = 1
3{1 1}. The value guarantees that the vertices are

always located at the interior of the triangles, and thus ensures that the tessellation
has no cross-overs even if the Delaunay triangulation is deformed (see Figure 2.12).
We will eventually allow varying values of ξI in Section 2.2.4, where ξ-relaxation is
introduced.

2.2.2 Vertex mechanical equilibrium

To provide mechanics on cells boundary, we define an elastic strain function from
which the force between any two vertices is derived,

W IJ
V (y) =

1

2
kV (εIJ)2

WV (y) =

NV∑

IJ=1

W IJ
V (y),

(2.17)

with kV the cell boundary stretching stiffness and εIJ = lIJ−LIJ
LIJ

is a scalar elastic

strain where lIJ =
∥∥yI − yJ

∥∥ and LIJ are the current and reference lengths of
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Figure 2.12: Differences between Voronoi (top) and barycentric vertex positions (bottom) for un-
deformed (left) and deformed networks (right).(a) Nodal network (in black) with Delaunay tri-
angulation and vertex network (in red) with Voronoi tessellation. (b) Deformed nodal network:
non-Delaunay triangulation; vertices defined by interpolation of nodes in each triangle, located at
the intersection of perpendicular bisectors of each triangle, forming a non-Voronoi vertex network.
(c) Nodal network with Delaunay triangulation and vertex network with Barycentric tessellation.
(d) Deformed nodal network: non-Delaunay triangulation; vertices defined by interpolation of nodes
in each triangle, located at the Barycentres of each triangle, forming a barycentric vertex network.

boundary element IJ . The mechanical strain energy of the system is the sum of the
contributions of the nodal and vertex networks,

WD(x) +WV (y(x)).

The new nodal positions are found by solving the minimisation problem

x∗ = argmin
x

(
WD(x) +WV (y(x))

)
, (2.18)

which may be solved in two manners:

1. as a constrained minimisation problem, where nodes xi and vertices yI are
independent but coupled through the constraint in equation (2.16), that is
imposed with Lagrange multipliers.
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2. by using the constraint in equation (2.16) in the expression of the objective
function (total strain energy) and keeping this relation in the minimisation
process.

We choose approach (2) in order to reduce the number of unknowns, and thus
the size of the resulting system of equations. In order to deduce the expression of
∂WV

∂xi
, by using equation (2.17), we define first the vertex tractions as

tIJV =
∂W IJ

V

∂yI
= kV ε

IJ 1

LIJ lIJ
(yI − yJ),

tJIV =
∂W IJ

V

∂yJ
= kV ε

IJ 1

LIJ lIJ
(yJ − yI).

(2.19)

Therefore,

tIJV =
∂W IJ

V

∂yI
= −tJIV = −∂W

JI
V

∂yJ
. (2.20)

x i

x j

yI

yJ
tIJ
V

tJI
V

⌧ I

xk

Figure 2.13: Cell boundary (highlighted polygon) corresponding to node i. Barycentric tessellation
of 4ijk results to triple-junction yI . Vector tIJV represents the traction between vertices yI and
yJ along the shared boundary of cells xi and xk.

The nodal residual due to contributions of the vertex network, denoted by giV ,
may be then computed by using the chain rule and the kinematic relation in equation
(2.16),

giV : =
∂WV

∂xi
=
∑

IJ

(
∂W IJ

V

∂yI
∂yI

∂xi
+
∂W IJ

V

∂yJ
∂yJ

∂xi

)
=
∑

IJ

(
tIJV p

i(ξI) + tJIV p
i(ξJ)

)

=
∑

I∈Bi
pi(ξI)

∑

J∈SI
tIJV .

(2.21)
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In the last expression Bi denotes the set of vertices that form the boundary of
cell i, centred on xi, and SI is the set of vertices connected to vertex I. Note also
that the last equality follows from the fact that pj(ξK) vanishes if K /∈ Bj .

Total mechanical equilibrium is then found by solving the minimisation in equa-
tion (2.18), which yields,

∑

j∈Si
tijD +

∑

I∈Bi
pi(ξI)

∑

J∈SI
tIJV = 0, i = 1, 2, . . . , Nnodes, (2.22)

which in terms of the force contributions giD and giV reads

giD + giV = 0, i = 1, 2, . . . , Nnodes. (2.23)

The summation in the second term of equation (2.22) involves the vertex bars
that have at least one vertex on the triangles that surround node xi. Figure 2.13
shows schematic view of how the boundary of each cell is defined within the tissue,
and the traction vectors tIJV and tJIV .

Mechanical equilibrium of the system is obtained at cell centres (nodes) by solv-
ing the set of equations in equation (2.22). As mentioned before, since this equation
is non-linear with respect to the positions of the nodes, we resort to Newton-Raphson
method for its solution. The required linearisation of the terms in equation (2.22)
is given in Appendix E.

Note that the second term in equation (2.22) arises due to the kinematic in-
terpolation in equation (2.16). This term represents the nodal contribution of the
vertex forces (reactions of the constraints in equation (2.16)), which is proportional
to the values of the shape functions pi(ξI). This equation shows the coupling be-
tween nodal and vertex equilibrium. When vertex forces exist (kV 6= 0), nodal forces
and vertex forces are not necessarily equilibrated at nodes and vertices, respectively,
that is, we may have that giD 6= 0 and

∑
J∈SI t

IJ
V 6= 0. The latter condition is the

equilibrium equation usually imposed in purely vertex models (Alt et al., 2017). We
will analyse the evolution of these resultants in Chapter 4.

2.2.3 Area constraint

Cell volume invariance under tissue extension is relevant when the size and the
number of cells within the tissue is considered as constant. A two-dimensional area
constraint will be imposed here by adding the energy term

WA =
λA
2

Ncells∑

m=1

(Am −Am0 )2, (2.24)
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where λA is a penalisation coefficient and Am0 and Am are the initial and the current
areas of cell m, respectively. Very high values of λA may yield an ill-conditioned sys-
tem of equations, while very low values may exceedingly relax the area constraint. In
our numerical examples, we used λA ≈ 5max(kD, kV ), which yielded area variation
below 5% in all cases.

The area of cell m can be expressed in terms of its vertices by using Gauss
theorem

Am =

∫

Ωm
dA =

1

2

∫

∂Ωm
y · n ds, (2.25)

where y is an arbitrary point on the boundary of cell m, ds is the differential
segment of the cell boundary and n is the outward normal. Since each cell boundary
forms a polygon, we will break the integral over the whole cell boundary into Nm

line integrals. Points between vertices I and J can be obtained by using a linear
interpolation

y = qI(α)yI + qJ(α)yJ , (2.26)

with α ∈ [−1, 1] a local coordinate along the cell boundary segment IJ , and qI(α) =
1
2(1 − α) and qJ(α) = 1

2(1 + α) the interpolation functions. By inserting equation
(2.26) into equation (2.25) and noting that ds = lIJdα/2, with lIJ =

∥∥yI − yJ
∥∥, we

have

Am =
1

2

Nm∑

IJ∈Pm

∫ 1

−1

∑

I

qI(α)yI · nIJ l
IJ

2
dα =

1

2

Nm∑

IJ∈Pm

lIJ

2
(yI + yJ) · nIJ , (2.27)

where Pm denotes the segments of the polygon that surround node xm (see Figure
2.13). The expression above can be simplified as

Am =
1

2

Nm∑

IJ∈Pm
(yI × yJ).ez =

1

2

Nm∑

IJ∈Pm
yI · JyJ , (2.28)

where matrix J =

[
0 −1
1 0

]
= −JT is such that (yI × yJ) · ez = yI · JyJ . Finally

the total area of the whole set of Ncells cells in the tissue, AT , can be expressed as

AT =
1

2

Ncells∑

m=1

∑

IJ∈Pm
yI · JyJ . (2.29)

The expression of the contribution in equation (2.28) is inserted in the energy
term in equation (2.24), and appended to the total elastic energy,

W = WD(x) +WV (y(x)) +WA(y(x)),
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which is minimised with respect to the nodal positions xi. This gives rise to an
additional nodal contribution,

giA :=
∂WA

∂xi
=
λA
2

∑

m∈S̄i
(Am −Am0 )

∑

IJ∈Pm

(
pi(ξI)yI − pi(ξJ)yJ

)
. (2.30)

The set S̄i in the first summation includes the nodes that surround node xi and
also node xi itself. Since the force vector above is non-linear, the Jacobian must
be complemented with additional terms arising from the linearisation of giA. These
terms are given in Appendix E.

2.2.4 ξ-Relaxation

When the values of ξI are kept constant, vertices and cell-centred positions are
coupled through the constraint in equation (2.16). As pointed in Section 2.2.2, this
constraint has the effect of altering the usual equilibrium conditions in cell-centred
and vertex networks (vanishing of the sum of forces at nodes and at vertices, respec-
tively). In fact, in our equilibrium equations in (2.22) and (2.23), the additional force
due to giV (which contains the tractions tIJV ) may be regarded as a reaction force
stemming from the constraints in equation (2.16). This modified equilibrium may
furnish non-smooth and unrealistic deformations at the tissue boundaries, which
can then exhibit a zig-zag shape.

In order to avoid these effects, we will disregard the constraint in equation (2.16)
for those vertices at the boundary, and relax the value of ξI , which can attain values
different from 1

3{1 1}. Those vertices are then allowed to change their relative
positions within the corresponding triangle T I , and may be not necessarily located
at the barycentre. In this case, mechanical equilibrium is expressed as a vanishing
sum of tractions at the vertex location, as it is customary in vertex models (Okuda
et al., 2015; Perrone et al., 2016). In our hybrid model, we interpret the parametric
coordinates ξ of those vertices as additional unknowns. The energy terms including
the vertices are now made dependent on these extra parametric coordinates, i.e. we
write WV (y(x, ξ)) and WA(y(x, ξ)).

When relaxing the constraint, we will further limit the increment of ξ between
time-steps, so that their positions are kept not too far from their otherwise interpo-
lated value in order to minimise large discontinuities between discrete time-points
on the resulting force contributions. This is achieved by adding to the total energy
of the system W and at each time tn+1 a term that penalises the variations of ξ,

Wξ(ξ) =
λξ
2

∑

I relaxed

∥∥ξIn+1 − ξIn
∥∥2
. (2.31)
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By interpreting the factor λξ as a viscous coefficient ≈ η
∆t , this additional term

is equivalent to a viscous-like effect, since it generates forces proportional to the
incremental vertex positions (or vertex velocities).

The extension of the system with additional variables ξ also modifies the min-
imisation problem in equation (2.18), which now takes the form

{x∗, ξ∗} = argmin
x,ξ

W (x, ξ), (2.32)

with

W (x, ξ) = WD(x) +WV (y(x, ξ)) +WA(y(x, ξ)) +Wξ(ξ). (2.33)

Equilibrium is now represented by two systems of equations,

g :=

{
gx
gy

}
= 0, (2.34)

with gx = ∇xW (x, ξ) and gy = ∇ξW (x, ξ). Each residual contribution in the
total residual g is the sum of different energy contributions in (2.33), so that g =
gD + gV + gA + gξ, where each term contains in turn nodal (x) and vertex (ξ)
contributions,

gix : =
∂W (x, ξ)

∂xi
= giD + giV + giA + giξ,

gIy : =
∂W (x, ξ)

∂ξi
= gID + gIV + gIA + gIξ.

(2.35)

Since the nodal strain energy WD does not depend on ξI , and the penalty term
Wξ does not depend on nodal positions xi (see equations (2.1) and (2.31)), we have
that gID = 0 and giξ = 0. The nodal contributions giD, giV and giA have been given
respectively in equations (2.2), (2.21) and (2.30). The vertex contributions require
the computations of

∇ξW = ∇ξWV +∇ξWA + λξ(ξn+1 − ξn)

∂yI

∂ξI
=
∑

xi∈T I
xi ⊗∇pi(ξI), (2.36)

so that we have, also from equations (2.24) and (2.28),

gIV : =
∂WV

∂ξI
=
∑

JK

∂W JK
V

∂yJ
∂yJ

∂ξI
+
∂W JK

V

∂yK
∂yK

∂ξI
=
∑

K∈SI

∑

xi∈T I
(tIKV · xi)∇pi(ξI)

gIA : = λA

N̄nodes∑

m=1

(Am −Am0 )
∂Am

∂ξI

gIξ : = ∇ξWξ = λξ(ξ
I
n+1 − ξIn)

(2.37)
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with ∂yI

∂ξI
given in equation (2.36), and

∂Am

∂ξI
=

1

2

∑

KL∈Pm

(
δKI

(
∂yK

∂ξI

)T
JyL − δLI

(
∂yL

∂ξI

)T
JyK

)
. (2.38)

The symbol δKI above is the Kronecker delta, which is equal to 1 if K = I
and 0 otherwise. We note that if we extended ξ-relaxation to the whole tissue, we
could recover standard vertex models, that is, a model where the vertices positions
are solely determined by their mechanical equilibrium: sum of forces at each vertex
equal to zero. In our numerical simulations we have though just applied ξ-relaxation
to specific boundaries of the domain.

2.2.5 Remodelling: Equilibrium Preserving Mapping

One of the key features of soft biological tissues is their ability to remodel, that
is, to change their neighbouring cells during growth, mobility and morphogenesis.
We aim to include this feature in our hybrid model by computing a new connectivity
T n+1 after each time point tn and choose a convenient value of the resting length for
the new bar elements (Mosaffa et al., 2017). Like in the purely cell-centred model,
we resort to the Delaunay triangulation of the nodal network, which guarantees a
minimum aspect-ratio of the resulting triangles. We also assume that these optimal
aspect ratios will not be exceedingly spoiled during tissue deformation.

The redefinition of the network topology from T n to T n+1 may involve drastic
changes in the nodal and vertex equilibrium equations. Furthermore, the resting
lengths Lij and LIJ are undefined for the newly created bar elements, and the com-
putation of nodal resting length tensor described in Section 2.2.4 is not suitable
in the present case since the number of vertices, in contrast to nodes, is not con-
stant. In order to smooth mechanical transition between time-steps, we will here
present an Equilibrium-Preserving Map that computes Lij and LIJ by minimising
the error of the mechanical equilibrium for the new connectivity. We will consider
two approaches: a map that preserves the nodal and vertex equilibrium in a cou-
pled manner (full-network mapping), and a map that preserves nodal equilibrium
and vertex equilibrium independently (split-network mapping). The computational
process depicted in Figure 2.6 is now completed with the Equilibrium Preserving
Mapping (EPM) as shown in Figure 2.14.
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Figure 2.14: Deformation and remodelling process, including the computation of the resting lengths
L∗
n+1 through the Equilibrium-Preserving Map, which maintains the network connectivity and nodal

and vertex positions.

Full-network mapping

In this approach, we aim to compute a new set of resting lengths Lij and LIJ

that minimise the functional

π̂F (Lij , LIJ) =
nodes∑

i

∥∥g̃iD + g̃iV + giA − ri
∥∥2
. (2.39)

This functional measures the error in the mechanical equilibrium considering all
the residual contributions at node i due to the cell centres (g̃iD), the vertex network
(g̃iV ) and area constraints (giA). The latter is the value obtained from the expression
in equation (2.30), while ri is the total reaction for those nodes that have prescribed
displacements. The residual contributions are computed as a function of nodal and
vertex tractions as

g̃iD =
∑

j∈Si
t̃
ij
D =

∑

j∈Si
kD

(
lij

Lij
− 1

)
eij

g̃iV =
∑

I∈Bi
pi(ξI)

∑

J∈SI
t̃
IJ
V =

∑

I∈Bi
pi(ξI)

∑

J∈SI
kV

(
lIJ

LIJ
− 1

)
eIJ .

(2.40)

Note that t̃
ij
D and t̃

IJ
V are not defined as

∂W ij
D

∂xi
or

∂W IJ
V

∂yI
, but with a simpler purely

elastic law given by t̃ = k( lL−1)e, which disregards any rheological law with evolving
resting length. These latter laws will be described in Chapter 3.

We emphasise that while computing the new resting lengths and thus the vari-
ables Lij and LIJ , the nodal and vertex positions xi and yI , and also the current
lengths lij and lIJ , are all constant.

The minimisation of π̂F in equation (2.39) gives rise to a non-linear system of
equations in terms of the unknowns Lij and LIJ , but that is linear with respect to
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the inverse of these quantities. We will denote these inverses by θij = 1/Lij and
θIJ = 1/LIJ . The new functional, denoted by πF (θij , θIJ), is obtained by inserting
this change of variables

(θij , θIJ)∗ = argminπF (θij , θIJ).

The optimal variables θij∗ and θIJ∗ are found by solving the associated normal
equations of this least-squares problem, which after making use of equation (2.40)
reads

[
ADD ADV

AT
DV AV V

]{
θD
θV

}
=

{
bD
bV

}
, (2.41)

with θD and θV vectors containing all the inverses of the resting lengths for the
nodal and vertex networks, 1/Lij and 1/LIJ respectively, and

Amn,pq
DD =k2

Dl
mnemnT


∑

j∈Sm
lmjemjδpqmj −

∑

j∈Sn
lnjenjδpqnj




Amn,PQ
DV =kDkV l

mnemnT


 ∑

I∈Bm
pm(ξI)

∑

J∈SI
lIJeIJδPQIJ

−
∑

I∈Bn
pn(ξI)

∑

J∈SI
lIJeIJδPQIJ




AMN,PQ
V V =k2

V

Nnodes∑

i


∑

I∈Bi
pi(ξI)

∑

J∈SI
lIJeIJδPQIJ





∑

I∈Bi
pi(ξI)

∑

J∈SI
lIJeIJδMN

IJ




bmnD =kDl
mn (ĝm − ĝn)T emn

bMN
V =

Nnodes∑

i

kV ĝ
iT


∑

I∈Bi
pi(ξI)

∑

J∈SI
lIJeIJδMN

IJ


 .

(2.42)

In the equations above, we have defined

ĝi = kD
∑

j∈Si
lijeij + kV

∑

I∈Bi
pi(ξI)

∑

J∈SI
eIJ − giA + ri

δpqmj =

{
1, if mj = pq, or mj = qp,
0, otherwise.

δPQIJ =

{
1, if IJ = PQ, or IJ = QP,
0, otherwise.

(2.43)
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The uniqueness of the solution of system of equations in equation (2.41), and
thus the regularity of the system matrix, is in general not guaranteed, since more
than one combination of tractions in equilibrium with the reaction field may be
found in some cases. This is algebraically reflected by a large condition number of
the system matrix. For this reason, the functional is regularised by adding an extra
term,

πFλ(θij , θIJ) = πF (θij , θIJ) + λL


∑

ij

||θij − 1

lij
||2+

∑

IJ

||θIJ − 1

lIJ
||2

 , (2.44)

with lij and lIJ the current distances between connected nodes and vertices, respec-
tively. This regularisation adds a factor λL on the diagonal components and factors
λL/l

mn and λL/l
MN on bmnD and bMN

V , which ensure that the system will have a
unique solution for a sufficiently large value of the regularisation parameter λL. In
our numerical examples we have used λL = 10−12.

Split-network mapping

The previous approach allows us to find equilibrated tractions with a possible re-
distribution of forces between the vertex and nodal networks. In some cases though,
it is desirable to keep the traction contributions of the two networks split. For this
reason, we present an alternative Equilibrium-Preserving Map that aims to compute
the resting lengths by considering equilibrium conditions for the nodal and vertex
networks independently. This is achieved by minimising the functional

πS(θij , θIJ) = πD(θij) + πV (θIJ) (2.45)

with

πD(θij) =

Nnodes∑

i

||g̃iD − riD||2

πV (θIJ) =

Nnodes∑

i

||g̃iV − riV ||2

where riD is the contribution from the nodal network on node i before remodelling,
and riV is the contribution from the vertex network to node i before remodelling.
This contributions are obtained from the residual contributions before remodelling
takes place as

riD = giD,

riV = giV + giA.
(2.46)



38 CHAPTER 2. TISSUE DISCRETISATION

Applying the same approach as in Section 2.2.5 to πF , the minimisation of πS
yields two uncoupled systems of equations,

ADDθD = b′D

AV V θV = b′V .
(2.47)

Matrices ADD and AV V are those written in equation (2.42), while the right-
hand sides are now given by

b′D
mn =kDl

mn (ĝmD − ĝnD)T emn

b′V
MN =

Nnodes∑

i

kV ĝ
i
V
T


∑

I∈Bi
pi(ξI)

∑

J∈SI
lIJeIJδMN

IJ




with

ĝiD = kD
∑

j∈Si
lijeij + riD,

ĝiV = kV
∑

I∈Bi
pi(ξI)

∑

J∈SI
eIJ + riV .

Like in the previous section, a regularisation term, equal to the one used in
equation (2.44) is added to the functional πS in order to ensure the regularity and
uniqueness of the solution, with the same value of the regularisation parameter
λL = 10−12.

The split-network approach is in fact relevant when the stresses in the nodal
and vertex networks follow different patterns, and it is necessary to maintain this
difference between the networks, such as wound healing, where the stresses around
the wound ring are significantly higher. Preserving stress residuals independently
at each network guarantees the stress contrast. The full-network approach on the
other hand, spoils this contrast and may transfer some of the stresses on the wound
ring to the nodal network. The numerical example in Chapter 4 illustrates this fact.



Chapter 3

Rheological model

Many phenomena at cellular level deal with variations in the elastic and viscous
properties of biological matter. A model should consider these features within the
inhomogeneous structure of biological tissue. As a result, a cell can be deduced as
a combination of viscous and elastic elements.

Within the next sections we provide description of some classical rheological
models traditionally applied to describe live soft matter, as well as some recently
developed models. Since rheological properties of tissues are modelled through a
system of truss elements, we restrict our description to one-dimensional rheology.
For instance, a spring and a dash-pot element will display the elastic and viscous
components along the truss elements, respectively, which is implemented as assigning
the resulting stresses along the direction of the bar element.

3.1 Elastic model

When a material behaves elastically, the stress can be calculated directly from
the strain, due to non-existence of path or/and time dependency. When the stress
is released, the strain will become zero, so there is no permanent deformation at
zero stress. All stored strain energy is released and there is no energy dissipation.

As mentioned above, the discrete material behaviour along a one-dimensional
truss element is modelled as a spring. The behaviour here is modelled with a linear
relation between the stress σ and the elongation factor or strain ε,

σ = k ε, (3.1)

where k is the stiffness coefficient. The strain in (3.1) is defined by ε = l−L0
L0

, where
L0 is the element reference length.
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3.2 Kelvin-Voigt and Maxwell models

Appropriate choice and combination of a spring stiffness (elastic component) and
a dash-pot viscosity, can describe the mechanical characteristics of many materials.
There are two major rheological viewpoints towards modelling of visco-elasticity of
materials: Kelvin-Voigt and Maxwell models. In the Kelvin-Voigt model (see Figure
3.1a), the two features contribute in parallel, i.e. the stress is additive and the strain
is equal,

σ = σe + σv,

ε = εe = εv.
(3.2)

Therefore, by having σe = kεe and σv = ηεv the total stress reads,

σ = k ε+ η ε̇ , (3.3)

where k and η are the material stiffness and viscosity, respectively. However, in
Maxwell model (see Figure 3.1b), the contribution of the two features is in series
which implies additive strains and equal stresses for each element,

σ = σe = σv,

ε = εe + εv,
(3.4)

and the total stress reads as,

σ = k ε = η ε̇ . (3.5)
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Figure 3.1: Representation of (a) Kelvin-Voigt model and (b) Maxwell model.

Kelvin-Voigt model is best suited for modelling creep (strain relaxation) in a
stress controlled test, while Maxwell model is suitable to reproduce stress relaxation
in a strain controlled test. The generalised Maxwell model (see Figure 3.2) is a
combination of the two models which can be applied to both cases above and is
able to fit general visco-elastic materials (Findely et al., 1989). These models can
be generalised to non-linear regimes and to continua (Holpzafel, 2007).
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Figure 3.2: Generalised Maxwell model

3.2.1 Implementation of Kelvin-Voigt model

Kelvin-Voigt model is implemented by using double-branched bar elements,
where a fully elastic element functions in parallel with a fully viscous one.

3.2.2 Implementation of Maxwell model

By taking the first derivative of ε in equation (3.4), with respect to time t we
have,

ε̇ = ε̇e + ε̇v. (3.6)

By combining equations (3.4), (3.5) and (3.12), we obtain the evolution law
below,

σ̇ = k

(
ε̇− σ

η

)
. (3.7)

Here, to obtain the current stress σn+1 we resort to a time-discretisation method
based on θ scheme where σ(tn) ≈ σn+θ = (1−θ)σn+(θ)σn+1 (Wilson, 1968). Then,
by assuming σ̇ ≈ ∆σ

∆t where ∆(•) = (•)n+1 − (•)n we have,

σn+1 =

(
1 +

kθ∆t

η

)−1(
k∆ε+

(
1 +

k∆t(θ − 1)

η

)
σn

)
. (3.8)

3.3 Active model

Cell viscosity is not solely due to the fluid part of the cytoplasm (water) but also
due to cell activity (Besser et al., 2011; Fung, 1993; MacKintosh & Levine, 2008;
Mizuno et al., 2007). However, when retrieving characteristic viscous coefficients of
cells, there is a wide spectrum of values that have been employed, which range from
η =4.2× 10−3Pa s, according to the Brownian motion of molecules in embryonic
cells of Drosophila melanogaster (Gregor et al., 2005), to η =105Pa s for cells at
its wing imaginal disc, a value deduced from relaxation experiments (Bittig et al.,
2008; Forgacs et al., 1998). While the former values are close to water viscosity
(η =8.9× 10−4Pa s), the later coefficient is in fact similar to the viscosity of olive oil
or ketchup-like materials. Hence, in order to shed light into the mechanisms that
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cause the cellular response of the cell, it seems necessary to bridge the measured
viscosity and the cellular biomolecular processes. For this end, we describe next a
simple phenomenologically based model that considers the observed cell viscosity
as a combination of the passive cell network (Gittes & MacKintosh, 1998; Janmey
et al., 1994; MacKintosh et al., 1995) and also a consequence of active response of
the motor proteins (MacKintosh & Levine, 2008; Mizuno et al., 2007; Morozof &
Pisman, 2010).

3.3.1 Linear active model

When a set of cross-linked actin filaments in the cytoskeleton is subjected to a
macroscopic strain, it stretches as a result of two combined phenomena: (i) a re-
versible (elastic) deformation, and (ii) a non-reversible remodelling and lengthening.
The latter is phenomenologically explained as the remodelling of the cross-links and
a (de-)polymerisation process of the filaments. Figure 3.3 illustrates schematically
these two combined effects for a pair of cross-linked polymers under a stretch pro-
cess. We model these effects by allowing the resting length to vary, and becoming an
additional variable. We hypothesise that the current relative rate of resting length
L of the combined filaments, is proportional to the elastic strain (Muñoz & Albo,
2013), that is

L̇

L
= γεe, (3.9)

where εe is the elastic strain and γ is a material parameter so-called remodelling rate.
It has been shown that this law can mimic the apparent visco-elastic behaviour of
cells (Muñoz & Albo, 2013), and that can be used to simulate tissue fluidisation
(Asadipour et al., 2016) or cell cortex response (Clément et al., 2017; Doubrovinski
et al., 2017). Note that due to the non-linear dependence of the used strain measure
on the nodal or vertex positions, the viscous law includes geometrical non-linearities.
Material non-linear viscous effects have been considered for instance in the context
of tissue fluidisation (Asadipour et al., 2016), or in stress relaxation (Khalilgharibi
et al., 2017). By hypothesising more sophisticated laws than the one in equation
(3.9), the other non-linear effects can be simulated, as it will be developed in the
next section.

The evolution law in equation (3.9) is combined with a purely linear elastic con-
stitutive law in equation (2.1). This is implemented by discretising the differential
equation in (3.9) using the θ-weighted scheme presented in Section 3.2,

Ln+1 − Ln = ∆tγ(ln+θ − Ln+θ). (3.10)

In our numerical tests we have used the value θ = 0.5, which guarantees stability
and second-order accuracy in the linear regime. The discretisation in equation
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F F

(a) (b) (c)(c)(b)(a)

L0 L > L0l = L + le

Figure 3.3: Left: Schematic of network of actin filaments connected by flexible cross-links. Right:
Schematic of strain induced changes in the resting length L of a reduced system with two filaments
and a cross-link (white circle), (a) initial configuration with resting length equal to L0, (b) config-
uration under an applied load, and (c) new unstrained configuration with modified resting length
L > L0.

(3.10) allows us to write the dependence of the resting length on the current length
variations as

∂L

∂l
=

θ∆tγ

1 + θ∆tγ
. (3.11)

Due to the varying resting length, the nodal and vertex tractions along ele-
ments ij and IJ , denoted by tijD and tIJV , respectively, and given in equations (2.3)
and (2.19), need to be rewritten taking into account the term in equation (3.11).
Therefore, with the help of the following derivation,

∂εij

∂xi
=

1

L

(
1− 1

L

∂L

∂l

)
eij ,

∂εIJ

∂yI
=

1

L

(
1− 1

L

∂L

∂l

)
eIJ , (3.12)

with

eij = −eji =
xi − xj
‖xi − xj‖ , eIJ = −eJI =

yI − yJ
‖yI − yJ‖ , (3.13)

the traction forces in equations (2.3) and (2.19), then read respectively as,

tijD =
∂W ij

D

∂xi
= kD

εij

Lijlij

(
1− ∂Lij

∂lij
lij

Lij

)
eij ,

tIJV =
∂W IJ

V

∂yI
= kV

εIJ

LIJ lIJ

(
1− ∂LIJ

∂lIJ
lIJ

LIJ

)
eIJ ,

(3.14)

where the term ∂L/∂l is given in equation (3.11). The elemental active length Lij

can be statically condensed (Muñoz et al., 2013), so that only displacement degrees
of freedom are globally solved.



44 CHAPTER 3. RHEOLOGICAL MODEL

Contractility

In order to include the inherent contractility that cells exert (Salbreux et al.,
2012), the evolution law in (3.9) is modified as

L̇

L
= γ(εe − εc), (3.15)

with εc a contractility parameter. This modification aims to attain a homoeostatic
strain equal to εc, at which no further modifications of the resting length take place.

The ordinary differential equation (ODE) in (3.15) is employed for the bar ele-
ments of the nodal and vertex networks, and is solved together with the non-linear
equations in (2.32). In fact, the evolution law is taken into account by first discreti-
sation in time of the ODE in (3.15) with the θ-weighted scheme, presented in Section
3.2. By using the strain definition εe = (l−L)/L, the discretisation of (3.15) yields,

Ln+1 − Ln = ∆tγ(ln+θ − Ln+θ − εcLn+θ). (3.16)

By inserting the θ-wighted scheme, the discretisation in (3.16) yields

∂L

∂l
=

θ∆tγ

1 + θ∆tγ(1 + εc)
, (3.17)

which replaces the expression in equation (3.14).

3.3.2 Non-linear active model (power law)

Experimental tests on stress relaxation in monolayers show a trend of the stresses
according to Khalilgharibi et al. (2017)

σ = At−α +B. (3.18)

This contradicts the standard Maxwell model using linear stress and viscous
constitutive laws introduced in (3.5), which as deduced next, exhibit a purely expo-
nential evolution. The kinematic condition, where the total applied strain remains
constant, ε̇ = 0, allows us to write equation (3.12) as

ε̇e + ε̇v = 0. (3.19)

In this condition, the solution of σ in equation (3.7) has the form

σ = σ0e
−tk/η. (3.20)
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To conciliate the experimental evolution of the stress σ, introduced above, with
a linear elastic law where

σ = k

(
l

L
− 1

)
, (3.21)

we account for a variable resting length L, and a constant current length l as it
is implied by kinematic condition (3.19). Combining the experimental trend intro-
duced in equation (3.18) with linear elastic law in (3.21), the evolution of resting
length L reads as

L =
kl

At−t +B + k
. (3.22)

The time derivative L̇ may be expressed in terms of L, yielding

L̇ =
αL2

kl
At−α−1 =

αL2

kl
A

[
1

A

(
kl

L
−B − k

)]1+1/α

= α
L2

l

(
k

A

)1/α(
ε− B

k

)1+1/α

.

(3.23)

This evolution law may be written as

L̇

L
=

γ

ε+ 1
(ε− εc)n, (3.24)

where εc = B/k is the cell contractility (we have that L̇ = 0 when ε = εc),
γ = α(k/A)1/α is a remodelling rate, and n = 1 + 1

α . This law is a non-linear
extension of the previous evolution law in (3.15), which is developed here in order
to simulate more sophisticated relaxation evolution of monolayers. In Chapter 4 we
will numerically verify that the resulting evolution law matches the observed power
law.





Chapter 4

Numerical Results

The methodology introduced in Chapters 2 and 3 has been implemented in MAT-
LAB R2013a and MATLAB R2015b. For illustrative two- and three-dimensional
problems, the post-processing has been completed using ParaView 4.1.0.

4.1 Extension of cell-centred networks

In this section we focus on simulation of extension of two- and three-dimensional
cellular aggregates. Since non-linear mechanical response is relevant in soft tissues,
we will provide a comparison of mechanical response, between tissues with and
without dynamic topology. We will then show how topological changes can trigger
non-linear response in tissues modelled as a cell-centre nodal network with solely
elastic elements.

Two-dimensional network

A network of 45 nodes configured in two-dimensional space and forming an
initially uniform rectangle (see Figure 4.1a), is subjected to a longitudinal traction
by exerting prescribed forces along the long axis of the rectangle, following a step
function spanned 80 time-steps.

The coordinates of the nodes at one end of the rectangle have been fixed, expe-
riencing a reaction force against the prescribed force exerted uniformly to the nodes
on the other parallel end.

Three-dimensional network

A network of 225 nodes configured in three-dimensional space and initially form-
ing a uniform cube (see Figure 4.1c), undergoes a purely elastic longitudinal traction
by exerting a prescribed force along the long axis of the cube, following a step func-
tion spanned 80 time-steps.
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Like in the two-dimensional case, the coordinates of the nodes at one end of
the cube have been fixed, experiencing a reaction force against the prescribed force
exerted uniformly to the nodes on the other parallel end.

At each time-step, Newton-Raphson method has been employed to find the new
equilibrated coordinates of the nodes. Then, the connectivity of the nodes has been
updated by a Delaunay triangulation function. Finally, for visualisation purposes
only, the Voronoi tessellation function has been employed to update the Voronoi
vertices, at each time-step. The software package Qhull (Barber et al., 1996) has
been used to generate the connectivity of Voronoi cells in the three-dimensional net-
work. The correction methods explained in Sections 2.1.2 and 2.1.5, for eliminating
unrealistic Delaunay vertices on concave edges and building closed Voronoi cells,
have been also exploited at each time-step.

                                                                                          

 

           

 

             

 

 

 

  

(d)

(c)

(b)

(a)

Figure 4.1: Graphical representation of (a) initial configuration of sample model in 2-D, (b) final
configuration (equilibrated) of two-dimensional sample under longitudinal traction, (c) initial con-
figuration of sample model in 3-D, and (d) final configuration (equilibrated) of three-dimensional
sample model under longitudinal traction– Thin flashes represent uniform load on all nodes at the
corresponding face of the networks, while thick flashes represent the reaction force on the nodes on
the opposite end.

Figure 4.2a and 4.2b show plots of average displacement of those nodes experi-
encing a linearly increasing external force for two networks of 45 nodes in 2-D and
225 nodes in 3-D, and over a number of time-steps n = 80, under two conditions: 1)
dynamic topology (connectivities updated by Delaunay triangulation at each time-
step) and 2) frozen topology where initial connectivity is preserved throughout the
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analysis.
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Figure 4.2: Representation of average displacement of nodes under a linearly increasing external
load over 80 time-steps, under two conditions: dynamic topology and frozen topology for (a) a
two-dimensional network of 45 nodes, and (b) a three-dimensional network of 225 nodes.

As it can be observed, constant topology exhibits a linear elastic behaviour to
material with elastic connecting elements. Even if the model can handle geometrical
non-linearities, such as stiffening due to alignment of the bars, these are absent due
to the reduced amount of strain.

Although the bar elements are assigned a purely elastic behaviour, the update in
the Delaunay triangulation causes the whole material to behave non-linearly. This
non-linear response here is obtained through a ”refreshing” strategy, which implies
the strain along new elements, defined by Delaunay triangulation at each time-step,
is refreshed to 0. Such behaviour can be compared to other formulations in continua
that use a constant mesh with a non-linear constitutive law.

In the plots above, it is also worth noticing the different responses of two- and
three-dimensional simulated networks throughout the dynamic topology. While the
former shows a flipping trend, the later grows smoothly. This behaviour is due to
different number of degrees of freedom in either of systems, provided by different
number of nodes as well as different number of degrees of freedom per node in 2-D
compared to in 3-D. The discontinuous effect vanishes for aggregates with much
higher number of nodes, where the connectivity changes vary more progressively,
and each modification of the topology has a minor effect on the global network.
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4.2 Active rheology in flat monolayers

In order to test the effects of the connectivity changes and also the active rhe-
ological law, respectively described in Sections 2.1.2 and 3.3.1, we have simulated
the stretching of a flat square monolayer with dimensions (Lx, Ly) = (11, 10), and
subjected to an increasing displacement ux, 0 ≤ ux ≤ 20 at the boundary X = 11,
with the boundary X = 0 fixed (see Figure 4.3).

u = 0

z

y

x

ux 6= 0

uy = uz = 0

Figure 4.3: Example of flat monolayer. Top: initial geometry; Bottom: deformed geometry.

We have analysed the following two material models:

M1: γ = 0; Pure elastic material with k = 0.8.
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M2: γ = 0.01; Elastic material with k = 0.8 and evolving resting length L.

We have measured the sum of all the reactions along direction x for the nodes
that are initially at the boundary X = 11. The evolution of this sum, denoted by
RTOT , is plotted in Figures 4.4a-b for the two material choices M1 and M2. We
have also tested the effect of allowing cell-cell remodelling. When remodelling is
allowed, we have in turn implemented two possible regimes: with stress relaxation
and with no stress relaxation, which corresponds to update the resting length of the
new elements according to the expressions in Table 4.1.
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Figure 4.4: Total reaction RTOT at the boundary with increasing imposed displacements for the flat
monolayer. (a) Purely elastic model, (b) rheological model with active lengthening. The symbols
(×) and (+) indicate the number of connectivity changes per time-step for the two simulations with
remodelling.

It can be drawn from the trends of the curves in Figure 4.4 that the stress
relaxation does not have a strong effect on the total reaction, while the remodelling
rate γ does have an impact in the non-linear response, introducing by itself an
apparent stress relaxation. Figures 4.4a-b also indicate, with the symbols × (no
relaxation) and + (with relaxation), the number of connectivity changes that take
place during the simulation for the cases when remodelling is activated. The height
of the symbol corresponds to the number of connectivity changes divided by 10 for
each time-step. It is clear that the jumps of the response are directly correlated with
the changes of neighbours between cells. Since these are in general independent of
the relaxation regime of the remodelling, it can be inferred that the relaxation of
RTOT is mostly due to these new connections, which have a stronger contribution
on the minimisation of the stored elastic energy than the reduction of the stretching
onto the new directions when relaxation is allowed.

In order to demonstrate the equivalence between the active rheological model
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γ = 0 γ = 0.8

Stress relaxation: Lijn = lijn Lijn = lij0

No stress relaxation: Lijn = Lij0 Lijn = 0.5(ni ·Linni+nj ·Ljnnj)

The case with γ = 0.8 and with no stress relaxation, the active length
tensor Lin and Ljn (time tn and at nodes i and j) are computed according
to the description in Section 2.1.3

Table 4.1: Computation of elements resting lengths with and without stress relaxation, with linear
and active elasticity.

and the Maxwell model, we have applied the displacement history shown in Figure
4.5a, and plotted the corresponding total reaction in Figure 4.5b, which indeed
relaxes to zero. It has been observed in laboratory experiments that monolayers do
relax, but to a non-zero stress level (Harris et al., 2013). This is associated to the
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Figure 4.5: (a) Time history of the applied strain. (b) Evolution of the total reaction as a function
of time for the flat tissue and active rheological law.

elastic component of the polymeric structure of the cytoskeleton, and its inherent
contractility. In the active model used here, which mimics the Maxwell model, the
reaction tends to a zero value. Numerical examples with a non-zero asymptotic
reaction are presented in Section 4.6.

We have compared in Figure 4.6 our numerical results with the experimental
measurements in Harris et al. (2012). This figure shows the non-linear response
of the tissue during an increasing applied displacement, which induced a loss of
cell–cell integrity. In our case, this tissue rupture is presented by a decrease in the
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number of cell–cell connectivities. The trends of the two curves agree qualitatively
up to the measured experimental extension. Due to the adopted linear elastic model,
our simulations do not capture the initial stiffening of the material. This may be
recovered by modifying the quadratic potential in (2.1).
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Figure 4.6: Comparison between the averaged stress value in the experimental results (Harris et
al., 2012)

4.3 Active rheology in curved monolayers

We have tested a curved monolayer that has the shape of half a cylinder, with the
axis on the x direction, and with the same number of nodes and similar dimensions:
the projected area occupies the same domain D = {(X,Y )‖0 ≤ X ≤ 11, 0 ≤
Y ≤ 10} (see Figure 4.7). The monolayer is stretched along direction x, up to the
displacement ux = 20.

The same material models and the mapping of the surface described in Section
2.1.4 has been employed in order to apply the Delaunay triangulation. Figure 4.8
shows the evolution of the total reaction RTOT and the number of connectivity
changes. Similarly to the previous case, the trend of the curves is hardly affected by
the update of the active length. However, in the three-dimensional case, the effect
of remodelling has a more acute effect on the reduction of the total reaction than
in the two-dimensional case, although this effect is only observed for larger imposed
displacements.

The reduction of RTOT may be attributed to two contributions. First, the sides
X = 0 and X = 11 are fixed on the y − z plane, and since Delaunay triangulation
minimises the aspect ratio of the resulting triangles, no elongated triangles can be



54 CHAPTER 4. NUMERICAL RESULTS

u = 0

ux 6= 0

uy = uz = 0

z
y

x

Figure 4.7: Example of curved monolayer. Top: initial geometry. Bottom: deformed geometry

created. As a result, larger cells are built at the middle of the monolayer. Second,
and although the number of cells is constant, these are intercalated as the stretching
process takes place: new connections are being created transversally to the stretching
direction (y axis), which replace bars aligned on the x direction. We recognise
that the first contribution is unrealistic. To resolve this issue, certain kinematic
constraints should be added to the model in order to preserve the total volume of
each cell. Such a constraint has been introduced in Section 2.2.3 for two-dimensional
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Figure 4.8: Total reaction at the boundary with increasing imposed displacements for the curved
monolayer, (a) purely elastic model, (b) rheological model with active lengthening.

hybrid model. The second contribution, the intercalation process, has been observed
in real embryogenetic movements of curved monolayer such as the endoderm of
Drosophila melanogaster during germ band extension (Lecuit & Lenne, 2007). We
notice that this effect is more pronounced in the three-dimensional case than in the
flat monolayer, which restrained to remodel on a flat surface.

We also point out that the stress relaxation, due to either the active rheological
model or the intercalation process, solely takes place along the direction of stretch-
ing. The material thus remodels anisotropically, as it has been observed on tissues
during cell motility (Trepat et al., 2009).

4.4 Extension of square tissue employing hybrid model

We test our methodology by extending a square domain obtained from a random
perturbation of a 10×10 grid of nodes (see Figure 4.9). The domain is formed by 81
cells, and subjected to a uniform 30% extension applied within 60 time-steps. This
is the amount of stretch used in recent experimental tests on monolayers (Harris
et al., 2012), and also the approximated stretch that some in vivo tissues in lungs
or mitral valves can be subjected to. We will test two situations: extension with
constant topology (evolution from (a) to (b)), and with remodelling (evolution from
(a) to (c)). In the two situations we will apply the full and split approaches of the
Equilibrium-Preserving Map (EPM). Since we aim to test here the effectiveness of
the EPM, we prevent stress relaxation by using a small value of the remodelling rate
γ = 10−6, which makes the analysis quasi-static. The resting lengths remain thus
constant, except when remodelling takes place.
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(a)

(b)

(c)

Figure 4.9: Tissue extension. (a) Initial configuration, (b) tissue configuration at 30% extension
without remodelling, and (c) tissue configuration at 30% extension with remodelling. Replaced
elements are marked in black in (b). Remodelled elements are marked in green.

4.4.1 Verification of EPM: fixed topology

To inquire the accuracy and effects of the EPM, we measure the horizental total
reaction at the right side as

Rx =

∫

∂Ωright

(giD + giV ) ·
{

1
0

}
ds, (4.1)

and the elastic energy of all the bar elements in the tissue during extension while
keeping the topology constant. Figure 4.10 shows the evolution of the two quantities
when kD = 10 kV (Figures 4.10a-b) and when kD = 0.1 kV (Figures 4.10c-d). It can
be observed that in all cases the full-network and the split-network mappings give
the same values as the tests with no mapping. This fact shows that the EPM is able
to recover the same traction values as the ones when no computation of the resting
lengths is applied, and that the system regularisation is not altering these lengths
or the elastic response of the tissue.
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Figure 4.10: Tissue formed by linear elastic elements, under 30% uniform stretch applied within
60 time-steps while held at constant topology (no remodelling). Elements resting lengths, at each
time-step, obtained by three approaches: fixed resting lengths (no network mapping), full-network
mapping and split-network mapping. (a) Total tissue reaction while kD = 10 kV , (b) potential
energy of nodal and vertex networks while kD = 10 kV , (c) total tissue reaction while kD = 0.1 kV ,
and (d) potential energy of nodal and vertex networks while kD = 0.1 kV .

4.4.2 Verification of EPM: variable topology

We now apply the same boundary conditions as in the previous tests, but al-
lowing the tissue to remodel according to the Delaunay triangulation of the nodal
positions. Figure 4.11 shows the total reaction at the right end of the tissue and
the total elastic energy. We have monitored these three quantities under three
conditions: no remodelling/mapping, remodelling with full-network mapping and
remodelling with split-network mapping. We have tested also two sets of material
properties: kD = 10 kV (Figures 4.11a-b), and kD = 0.1 kV (Figures 4.11c-d). The
total number of remodelling events (elements that change their connectivity) is also
plotted at each time-step, whenever this number is non-zero.
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Figure 4.11: Tissue formed by linear elastic elements, under 30% uniform stretch applied within 60
time-steps which is allowed to remodel. Elements resting lengths, at each time step, obtained by
three approaches: fixed resting lengths (no network mapping/remodelling), full-network mapping
and split-network mapping with floating topology. (a) Total tissue reaction while kD = 10 kV ,
(b) elastic energy of nodal and vertex networks while kD = 0.1 kV , (c) total tissue reaction while
kD = 0.1 kV and (d) elastic energy of nodal and vertex networks while kD = 0.1 kV .

From the plots in Figure 4.11 it can be observed that the evolution of the total
reaction is not substantially affected by the remodelling process. The elastic energy,
however, suffers from deviations with respect to the case with no remodelling when
the split-network EPM is used and the vertex network is stiffer than the nodal
network. This drift is more severe when more remodelling events are encountered.
Indeed, the split-network approach prevents the transfer of energy between the
vertex and nodal networks, preventing in some cases the full preservation of the
equilibrium conditions before the remodelling events. The total reaction of the
tissue is in all cases not much affected by the mapping, which is in agreement with
the fact that EPM aims to compute resting lengths distributions that match the
nodal resultants before remodelling.
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For the two sets of material parameters, the total reaction, and thus the tissue
response, is very much unaffected by the remodelling for the two EPM approaches.
The tissue keeps the correct aspect ratio of the cells while keeping the elastic re-
sponse. Although cells may use remodelling events to relax their stress state, we
here aim to independently control the stress relaxation and the remodelling events.

The computational cost of the simulations with and without remodelling, with
and without area constraint, and for different combinations of the Delaunay and
vertex networks is given in Table 4.2, when using the patch with 81 cells. The
remodelling affects the first iteration of each increment, but may increase the com-
putational cost by 15%-45% for cases without or with area constraint. Including
this constraint is the factor that has a major effect, which may double the com-
putational time. This may be attributed, besides the computation of additional
terms in the Jacobian and residual, to the decrease of sparsity of the system matrix
at each iteration due to the additional coupling that vertices include. The use of
vertex network may also noticeably increase the computational time, while due to
the methodology, assigning stiffness or not to the Delaunay has very small effects
on the overall computational time.

We also note that the use of the vertex network may increase the memory re-
quirement by about 60%. The present example required the use of 34.6 RAM MB,
while the Delaunay only used 21.5 MB. These numbers reveal that cell-centred anal-
yses are less expensive, but of course they provide no direct way to preserve cell area.

Remodelling No Remodelling

λA = 0 λA > 0 λA = 0 λA > 0

Delaunay 59 321 44 257
Vertex 153 376 108 376
Delaunay + Vertex 183 397 125 343

Table 4.2: Comparison of run time in seconds for different networks and remodelling combinations
when using the stretching test with 81 cells. In the cases with remodelling, full-network mapping
was used. Split-network mapping gave very similar computational times.

4.4.3 Analysis of ξ-relaxation

Tissue stiffness against tissue total reaction and strain energy is investigated by
assigning a range of values to {kD kV } at a constant total stiffness, kD + kV = 1,
under two conditions: 1) when vertices are rigidly anchored at barycentres (ξ =
1
3{1 1}), and 2) when vertices are allowed to change their relative positions with
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respect to the barycentres (ξ-relaxation). Figure 4.12 compares the vertex network
shown in Figure 4.9b for the two situations. The red network displays vertices
anchored at barycentres, while in the green network vertices are relaxed under a
penalisation factor λξ = 10−4.

In order to inspect the effect of ξ-relaxation we have analysed the reaction and
energy of mainly nodal-driven or mainly vertex-driven tissues for different values of
λξ. Figure 4.13 shows the tissue response for different values of kV ∈ [0, 1] while
keeping kD + kV = 1, and when the tissue is subjected to an 30% extension. Figure
4.13a shows that the total reaction decreases as tractions concentrate on the vertex
network. This reduction is steeper when vertices are relaxed (lower values of λξ).
Figure 4.13b shows a faster drop in tissue total energy and a lower growth in vertex
network energy when ξ-relaxation is allowed, while no significant effect on the energy
of the nodal network is observed.

We have also analysed the difference of our equilibrated tractions with respect to
the purely nodal and vertex equilibrium conditions: null sum of tractions at nodes
and at vertices. This difference is computed as the mean value of the following nodal
and vertex measures,

Ei =

∥∥∥
∑

j∈Si t
ij
D

∥∥∥
∑

j∈Si
∥∥∥tijD

∥∥∥
, i = 1, 2, . . . , Nnodes

EI =

∥∥∑
J∈SI t

IJ
D

∥∥
∑

J∈SI
∥∥tIJD

∥∥ , I = 1, 2, . . . , Ntri.

(4.2)

Figures 4.13c and 4.13d plot the means,

ĒD =
∑

i

Ei
Nnodes

ĒV =
∑

I

EI
Ntri

,

(4.3)

for the whole tissue. As expected, the nodal difference is zero when no stiffness is
assigned to the vertex network (kV = 0). As kV increased, pure nodal equilibrium
is increasingly violated, due to the coupling between the two networks. In most
cases, this difference is below 10%, except when vertices are fixed. Pure vertex
equilibrium is more severely affected by the kinematic constraint, but the difference
also decreases rapidly as λξ decreases. It can be observed that while the positions of
the vertices in the two networks is very similar, purely vertex equilibrium drastically
improves for approximately λξ < 10−2.
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fixed ⇠

relaxed ⇠

Figure 4.12: Deformed tissue at 30% extension. Red network represents vertices with fixed ξ. Green
network represents vertices when ξ-relaxation is allowed.

4.5 Wound healing

The hybrid model is tested to simulate a wound healing process in monolayers
(Antunes et al., 2013). The evolution law in equation (3.15) is applied to the nodal
and vertex networks with the values given in Table 4.3, which also indicates that
the area constraint is imposed in order to mimic mechanical properties of the tissue.
Topological changes in the tissue are allowed to examine the role of cell motility and
cell intercalation during wound healing.

kD kV γD γV εcD εcV λA
0.1 2.0 0.5 0.5 1.0 0.7 10.0

Table 4.3: Material parameters employed in the wound healing example.

Wounding and wound healing processes are simulated during the consecutive
steps below:

1. To resemble the initial condition of in vivo tissue before wounding, the mod-
elled tissue is let to reach a contractile state given by the values εcD and εcV in
Table 4.3 for the nodal and vertex networks respectively, and the evolution law
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Figure 4.13: Analysis of response of tissue composed of elastic elements, under 30% uniform stretch
applied within a single time-step for different combinations of {kD kV } while kD+kV = 1, with and
without ξ-relaxation. (a) Tissue reaction, (b) nodal, vertex and total strain energy of the tissue,
(c) mean of the difference between pure nodal and coupled equilibrium ĒD for different values of λξ
(note the difference on the scaling of the left and right vertical axes), and (d) mean of the difference
between pure nodal and coupled equilibrium ĒV for different values of λξ. See equations (4.2) and
(4.3) for the definitions ĒD and ĒV .

affecting elements resting lengths, during 50 time-steps. This time is found to
be sufficient to reach a steady asymptotic state.

2. Wounding by laser ablation of cells is analogised by a significant reduction of
stiffness in nodal and vertex elements encircled by the wound edge, as well
as removing the area constraint on wounded cells. In wounded areas we set
kwoundedD = 0.1 kD and kwoundedV = 0.1 kV . Also, vertices at the wound edge
are allowed to relax by resorting to the ξ-relaxation. This is done to avoid
unrealistic zig-zag effects on the profile of the wound edge. Figures 4.14a,
4.14d and 4.14g show the tissue initially after wounding., without remodelling,
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and with full- and split-network remodelling, respectively.

3. To simulate tissue eventual response to wounding, after 12 time-steps, contrac-
tility on the elements of the vertex network surrounding the wound (wound
ring) is multiplied by 5 in order to pattern actomyosin concentration, as it has
been experimentally observed (Brugués et al., 2014). Figures 4.14b and 4.14e
show how the extra contractility on the wound edge results in higher tractions
on the wound ring, at both non-remodelling and remodelling tissues.

4. Additional tractions on the wound ring cause the wounded area being squeezed
by the cells on the wound boundary. Figures 4.14c and 4.14f show the wound
closure with and without remodelling. Including remodelling during the tissue
evolution results in less cell elongation at the wound edge and allows cells to
relocate during wound closure.

In the full-network strategy (Figures 4.14d-f), since the total residual of nodal
and vertex networks were preserved at the nodes, the interplay of stresses in nodal
and vertex networks could not preserve the higher stress in the vertex elements
at the wound ring. Instead, the split-network strategy could provide the expected
higher stress in the elements at the wound ring. This is due to preserving nodal
residual independently in each of the networks.

We have compared the time evolution of the relative wounded area rA(t) com-
puted as

rA(t) =
Awounded(t)

Awounded(tablation)
. (4.4)

In Figure 4.15a we show this ratio for the numerical simulations and also for
experimental measurements (Brugués et al., 2014) of the same phenomenon on an
ablated tissue of Madin Darby kidney (MDCK) cells. It can be observed that
the evolution of the area matches approximately the experimental values during the
early stages of the closure, but that at longer time scales, the area of the experimental
images closes at a slower rate. This fact may reveal that the contractility of the
ring is not maintained constant, but that it may reduce progressively. Further
analysis is though required to quantify the evolution of the contraction of the tissue.
Also, although intercalations away from the wound edge have been observed in
some systems (Razzell et al., 2014), the impact of remodelling on wound closure in
biological systems needs to be further investigated.

In order to also evaluate the effects of using solely a nodal or a vertex network,
we show in Figure 4.15b the same ratio rA for tissues where nodal or vertex stiffness
has been reduced by 10−6. The resulting evolutions of rA reveal that the inhibition
of the Delaunay has very minor effects, while removing vertex stiffness does slow
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(i)(h)(g)

(f)(e)(d)

(c)(b)(a)

Figure 4.14: Wound healing model visualised at different stages. The deviation from cells initial
area, as well as traction values along nodal and vertex elements, are shown in the corresponding
colour-bars at each stage. (a-c) Wound healing in non-remodelling tissue. (d-f) Wound healing
with full-network EPM. (g-i) Wound healing with split-network EPM. Figures (a), (d) and (g)
correspond to time-steps just after wounding. Figures (b), (e) and (h) correspond to when extra
contractility was applied on the elements at the wound ring. Figures (c), (f) and (i) correspond to
when extra contractility at the wound edge caused wound closure.

down dramatically the area evolution. This can be explained by the fact that the
vertex network is responsible of the increased contractility at the wound ring.
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Figure 4.15: Time evolution of the wounded area. (a) Comparison for the three models shown
in Figure 4.14 and an experimental measurement (Brugués et al., 2014), and (b) comparison for
the case with split-network mapping, inhibiting Delaunay network, inhibiting vertex network, and
using a larger mesh with 20× 20 initial nodes (361 cells).

Figure 4.15b also includes the corresponding time variation for a larger patch
with 361 cells, and a larger ablated area of 7 cells (see Figure 4.16). In this case,
the peak of the area recoil is, as expected, also larger. In all cases, the slope of
the ratio is initially similar to the experimental one, but it diverges for longer time
scales. Further calibration of the contractility and its regulation is intended as a
future work.

4.6 Short timescale stress relaxation in monolayers

Stress relaxation in monolayers has been shown to be biphasic, commencing with
a large amplitude fast relaxation occurring within the first approximate 5 s, followed
by a small amplitude slow relaxation and reaching a plateau after almost 60 s. It
has been shown that the first and second phases of the relaxation are dominated by
a power law and an exponential response, respectively (Khalilgharibi et al., 2017).
Figure 4.17a shows an experimental plot of a monolayer stress relaxation during
100 s.

Based on the evolution law represented by equation (3.24), we have fitted stress
relaxation of a monolayer with a hybrid network with fixed topology, and non-
linear active nodal and vertex elements for the whole 100 s, onto the experimental
curve (see Figure 4.17b). In order to mimic the monotonous stress trend at the
second phase, we have combined a linear elastic element in parallel with every vertex
element. The model aims to fit the power law, and as it can be observed in the
figure, this evolution is captured during the first 20 s. In the second phase, where
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Figure 4.16: Wound healing simulation for a patch with 361 cells. The same parameters as those
used in Figure 4.14 are employed here, but with 7 ablated cells, instead of 5, and for the same stage
shown in Figures 4.14c, 4.14f and 4.14i. Cell colours indicate area relative variations.

cytoskeleton mechanics seems to play a major role, the numerical results are less
satisfactory, although the trend does not depart substantially from the experimental
curve. The value of the mechanical parameters used to fit the simulation results are
given in Table 4.4.

We also have fitted a non-linear active single element, onto the relaxation curve
during the first phase. Figure 4.18a shows the single element evolution, fitted onto
the experimental plot during the first 20 s of the monolayer stress relaxation. Figure
4.18b shows the evolution of the resting length L for the single element stress re-
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Figure 4.17: Biphasic stress relaxation of monolayer based on experimental results (Khalilgharibi
et al., 2017). (a) The left side represents the first approximate 20 s where a power law dominates
the relaxation, whereas the right side pertains to the rest of relaxation period, dominated by an
exponential trend.(b) Stress relaxation of hybrid network with non-linear active nodal elements
and a double-branched vertex network of non-linear active and linear elastic elements combined in
parallel, fitted onto the experimental trend.
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Figure 4.18: (a) Stress relaxation of simulated a non-linear active single element, against the ex-
perimental plot during the first 20 s from the beginning of the relaxation period. (b) Evolution of
the single element resting length L during the first 20 s from the beginning of the relaxation.

laxation with respect to the evolution law presented in equation (3.24) . The initial
resting length has been normalised to a value of 1 unit of length.
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kD γD εcD kV 1 γV 1 εcV 1 kV 2 n

1 element 0.011 1000 0.005 - - - - 6.4
Hybrid 0.0049 450 0.004 0.0008 0.15 0.03 0.004 4

Table 4.4: Mechanical parameters used to fit the simulation results onto the experimental results.



Chapter 5

Conclusions

We have presented a cell-centred approach by which the non-linear response of
soft cellular tissues, formed as either monolayer or three-dimensional aggregate, can
be simulated by modelling the relative position of cell centres and their topological
changes. At this stage, we have presented a method to handle mechanical response
in curved monolayers by removing the rigid-body modes of the system, as well as
introducing L-tensor method to handle the tissue topological changes by computing
an appropriate resting length for the remodelled elements.

At a later stage, we have presented a hybrid approach which includes the me-
chanical effect of cell boundaries in the tissues total response. This approach allows
to independently control the material properties of the cell boundaries and the cy-
toplasm (cell interior). The methodology solves the mechanical equilibrium of the
two networks in a coupled manner. The numerical results show that the approach
can reproduce relevant phenomena such as tissue extension or wound healing.

The method resorts to a rheological law that is based on an evolution law of the
resting length (Doubrovinski et al., 2017; Muñoz & Albo, 2013). This evolution is
controlled through the remodelling rate γ. For high values of γ, the tissue relaxes
and adapts its reference free configuration rapidly, while for very low values of γ, a
purely elastic response is recovered. Parameter γ plays a similar role than the inverse
of the viscosity η in Maxwell models, with slight differences in the time evolution
of the responses (see Muñoz & Albo (2013) for a more detailed analysis). As such,
the proposed evolution law yields an exponential relaxation with a characteristic
time that is proportional to γ−1. Other non-linear evolution laws giving rise to
power-like relaxations may be included by resorting to more sophisticated evolution
laws of the resting length L like the one introduced in Section 3.3.2. Further use of
these rheological laws can be found in Asadipour et al. (2016) and Khalilgharibi et
al. (2017) in the context of developmental biology.

69



70 CHAPTER 5. CONCLUSIONS

The variations of the resting lengths allow also to design an Equilibrium-Preserving
Map (EPM) that computes a set of resting lengths and traction field that mimics
the force distribution on the nodal and vertex network before remodelling. The
numerical examples presented show that this recovery of tractions alters minimally
the stress state.

The EPM can be regarded as a mapping that preserves the stress state while
transferring the stress state onto a different network. The map aims to smooth the
force jumps between connectivity changes, and although it minimises the effects of
the cell forces during cell reorganisation, it eases numerically these changes which do
have an effect in the macroscopic shape of the tissue, as it occurs in morphogenetic
events (Hardin & Walston, 2004). Furthurmore, the EPM also opens the possibility
of designing mappings that regulate the force jumps in a controlled manner or along
certain directions only. We have not investigated this possibility yet, but we plan
to do so in the future.
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Chapter 6

Future work

This work has paved the path towards the blending of cell-based and vertex
models. Although the resulting simulations have been able to reproduce the main
trends of observed experiments in monolayers, further work is needed for improving
the modelling capabilities and widening the applicability of the model. For instance,
Delaunay triangulation could be modified in order to allow the presence of elongated
cells, which do not necessarily have an optimal aspect ratio. Other issues that are
foreseen for further development are listed next:

6.1 Mapping of new vertices

ξ-relaxation has been so far applied to relax vertices at the wound edge, pro-
viding a more realistic wound shape by indirectly minimising the wound perimeter.
However, when topological changes occur at the wound edge, previous vertices may
be replaced by new ones. A robust method should be employed to calculate appro-
priate parametric value for ξ in order to preserve the smoothness of the wound edge.
Figure 6.1 shows vertices at the wound edge at time tn+1 projected onto the wound
edge at time tn. Currently, the topological changes at the wound edge are handled
by the method presented in Figure 6.1. Nevertheless, this method occasionally may
not preserve the smoothness. We plan to investigate a more robust technique to
handle locating fresh vertices at the wound edge in the near future.

6.2 Three-dimensional extension of cellular monolayers
and aggregates

The thickness in cellular monolayers has been so far ignored by the presented
model. We have only applied the cell-centred approach on three-dimensional flat
and curved monolayers (see Sections 2.1.4 and 2.1.5), where cells boundary has no
mechanical role in the system. Extending the model to three-dimensional geome-
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Figure 6.1: Projection of vertices onto the previous wound edges. (a) system at time tn, topology
T n and parametric coordinate ξn, (b) system at time tn+1, topology T n+1and reset parametric
coordinate ξ∗n+1 = {1/3 1/3} for vertices at the wound edge, and (c) system at time tn+1, config-
uration T n+1 and parametric coordinate ξn+1 obtained by projection of the wound edge vertices
onto the wound edge at time tn.

tries, make the model capable of comprising a wider range of phenomena such as
apical-basal constriction in monolayers, as well as including cells volume penalisation
by regulating the interplay between cells height and cells apical-basal area.

Voronoi tessellation has been applied as a standard method to provide a packed
conjunction of convex subspaces (cells). However, the validity of this method is lim-
ited to Delaunay configurations (see Section 2.2.1). Previously, we have employed
barycentric tessellation as a solution to this issue in two-dimensional systems. How-
ever, since handling cell faces in 3-D, formed by barycentric vertices, is a compli-
cated task, application of barycentric tessellation to three-dimensional geometries
will need further investigation.

6.3 Calibration of parameters

Mechanical parameters presented in the model, need to be quantified for different
cases by fitting the simulations onto experimental results. Single cell and single
vertex ablation experiments dedicated to study recoil dynamics of tissue, are helpful
to quantify parameters such as kD, kV , εc, γ and λA.
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6.4 Strain dependent contractility

So far, contractility εc has been applied as an external parameter to the model.
Further study of tissue recoil dynamics against monitored actomyosin concentration
during wound closure shows a variable concentration of contractile agents within the
wound closure. Developing a regulatory approach by which contractility is defined
as correlating with strain level is in our future scope.

6.5 Definition of stress and transport in Delaunay

As yet, the stress distribution by cells bulk matter within the tissue, has been
governed by line forces along the nodal elements between cell centres. Replacing
line forces by body stress within the cells surface/volume will result in more realistic
behaviour by the tissue.

Additionally, the triangulation provided by the Delaunay algorithm may be also
employed to discretise and solve transport of agents and its concentration varia-
tions. This approach may open the possibility to model coupled chemo-mechanical
processes.

6.6 Oscillations

Further studies on tissue recoil dynamics juxtaposed with monitored actomyosin
level during wound closure, suggest a time lag δt between the mechanical and chem-
ical signalling which may be also responsible of the observed oscillation and fluid
like response. To simulate the observed delay, the time variable of resting length
L̇n+1 needs to be implemented as a function of previous strain

˙L(t)

L(t)
= γ(ε(t− δt)).





Appendix A

Notation

The notation used in this thesis is summarised in Tables A.1-A.3.

Am, Am0 Current and initial area of cell m. Equation (2.24).
AT Total area of cells on the tissue. Equation (2.29).
Bi Vertices that surround node i. Equation (2.21).
Cn Nodal configuration at time tn. Section 2.1.
eij Unit vector from node xj to node xi. Equation (2.40)
eIJ Unit vector from vertex yJ to vertex yI . Equation (2.40)
ez Unit vector in z direction. Equation (2.28).

Ei, EI Error measures of vertex and nodal equilibrium, resp. Equation (4.2).
EiL Error measure of nodal equilibrium obtained by L-tensor method.

Equation (2.7).
ĒD, ĒV Mean error measures per node of nodal and per vertex

of vertex equilibrium, resp. Equation (4.3).
giA Area constraint force contribution at node i. Equation (2.30).
gc Augmented residual of nodal network by zero-eigenmode penalisation.

Equation (2.11).
giD Nodal force contribution at node i. Equation (2.2).
giV Vertex force contribution at node i. Equation (2.21).

gx Residual vector stemming from ∂W
∂x . Equation (2.34).

gy Residual vector stemming from ∂W
∂ξ . Equation (2.34).

gIξ Force contribution of ξ-relaxation penalisation at vertex I.

Equation (2.35).
J Matrix such that (yI × yJ) · ez = yI · JyJ . Equation (2.28).

kD, kV Stiffness of nodal and vertex network, resp. Equations (2.1)
and (2.17).

Table A.1: Notation. The explicit definition of the symbols can be found in the indicated section
or equation.
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K Stiffness matrix. Section 2.1.4.
Kc Augmented stiffness matrix by zero-eigenmode penalisation.

Equation (2.11).
Li Active length tensor of node i. Equation (2.6).

lij , Lij Current and resting lengths of bar element between nodes i and j.
Equation (2.3).

lIJ , LIJ Current and resting lengths of bar element between vertices I and J .
Equation (2.19).

neig Number of zero-eigenmodes. Equation (2.10).
nsd Number of space dimensions. Section 2.1.3.
nij Outward normal at nodal bar element between nodes i and j.

Equation (2.12).
nIJ Outward normal at vertex bar between vertices I and J .

Equation (2.27).
nj Unit vector pointing towards node j along nodal element ij.

Equation (2.6).
ND Number of bars in nodal network. Equation (2.1).
Nm Number of segments that surround cell centred at xm.

Equation (2.27).
Ncells Number of cells and internal nodes. Section 2.2.1.
Nnodes Total number of nodes. Section 2.1.
Ntri Total number of triangles in nodal network. Section 2.1.
Nj Matrix containing components of unit vector nj . Section 2.1.3.
NV Total number of vertex bars. Section 2.2.2.
P Set of points defining cell centres. Section 2.1.2.

pi(ξI) Shape function defining vertex positions. Equation (2.16).
Pm Set of segments that form boundary of cell m. Equation (2.27).
pr Penalisation factor of zero-eigenmodes of stiffness matirx.

Equation (2.10).
q(α) Interpolation function of cell boundary. Equation (2.16).
r,R Inradius and circumradius of atriangle, reps. Equation (2.5).
ri Nodal reaction due to boundary condition on node i.

Equation (2.39).
riD, r

i
V Nodal and vertex contribution to reaction ri. Equation (2.45)

Si Set of nodes connected to node i. Equation (2.2).
SI Set of vertices connected to vertex I. Equation (2.21).
S̄i Set of nodes surrounding node i, including node i itself.

Equation (2.30).

tijD Traction vector at node i exerted by nodal element ij.
Equation (2.2).

Table A.2: Notation (continuation).
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tIJV Traction vector at vertex I exerted by vertex element IJ .
Equation (2.19).

tn nth time-step. Section 2.1.
T I Triangle where vertex I is located. Section 2.1.
T n Connectivity of nodal network at time tn. Section 2.1.
tolR Aspect ratio tolerance. Equation (2.5).
u Displacement vector. Equation (2.10).
WA Energy term associated to area penalisation. Equation (2.24).
Wc Augmented energy of nodal network by penalisation of

zero-eigenmodes. Equation (2.10).

WD,W
ij
D Total nodal strain energy and strain energy of nodal element ij.

Equation (2.1).
WV ,W

IJ
V Total vertex strain energy and strain energy of

vertex element IJ . Equation (2.17).
xi Position of node i. Section 2.1.
Xn List of nodal positions at time tn. Section 2.1.
yI Position of vertex I. Section 2.2.1.
α Local coordinate of points in vertex bars. Equation (2.16).
γ Remodelling rate in rheological model. Equation (3.9).
δ Numerical precision. Section 2.1.4.
δIJ Kronecker delta. Equation (2.38).

δpqmj , δ
PQ
IJ See definitions in equation (2.43).

∆t Time increment. Equation (3.8).
ε Distance of each off-set node from the corresponding boundary node.

Equation (2.12).
εc Contractility of bar elements. Equation (3.15).

εcD, ε
c
V Contractility employed in nodal and vertex network. Section 4.5.

εij , εIJ Strain at nodal and vertex bar elements, resp.
Equations (2.1) and (2.17).

η Viscousity. Equation (3.3).
θij , θIJ Inverse of resting lengths Lij and LIJ , resp. Section 2.2.5.
κ Eigen value of system stiffness matrix K. Section 2.1.4.
λA Penalty terms for area constraint. See equation (2.24).
λL Penalisation factor of regularisation term. Equation (2.44).
λξ Penalty terms for ξ-relaxation. See equation (2.31).

ξI Local coordinate of vertex I in triangle T I . Section 2.2.1.
πD, πV Nodal and vertex contributions in EPM, resp. Equation (2.45).
πF , πS Functionals of full- and split-network EPM.

Equations (2.39) and (2.45).
σ Stress. Equation (3.1).
Ωi Domain of cell i. Section 2.2.1.

Table A.3: Notation (continuation).





Appendix B

Inradius and circumradius

B.1 Inradius

In 2-D Euclidean geometry, inradius, r, of a triangle is the radius of the circle
tangetial to the sides of the triangle. Incentre is the centre of this circle.

I
r

C

B

A

rr

c

b
a

Figure B.1: 4ABC and its incircle

Let I be the incentre of 4ABC.

Let r be the inradius of 4ABC.

The total area of 4ABC, A, is equal to the sum of the areas of the triangles
formed by the vertices of 4ABC and its incentre:

A = A4AIB +A4BIC +A4CIA. (B.1)

Let AB, BC and CA be the bases of 4AIB, 4BIC and 4CIA respectively.
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The length of AB, BC and CA respectively are c, a and b.

The altitude of each of these triangles is r. Thus from are of triangle in terms
of side and altitude:

A4AIB =
cr

2

A4BIC =
ar

2

A4CIA =
br

2
.

(B.2)

Thus, from (B.1) and (B.2) we have,

r =
2A

a+ b+ c
. (B.3)

B.2 Circumradius

The circumradius, R, of a triangle is the radius of the circle in which the triangle
can be inscribed. Circumcentre is the centre of this circle.

h

O

c

b a

E

D

C

BA

R

Figure B.2: 4ABC and its circumcircle

Let O be the circumcentre of 4ABC.

Let A be the area of 4ABC.

Let a perpendicular be dropped from C to AB at E.
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Let h := CE

Then by area of triangle in terms of side and altitude we have,

A =
ch

2

⇒ h =
2A
c
.

(B.4)

Let a diameter of the circumcircle CD be passed through O.

By definition of circumradius, CD = 2R.

By Thales’ theorem, 6 CAD is a right angle.

Then, as angles on equal arcs are equal, 6 ADC = 6 ABC. As 4ACD and
4ECB are right angle triangles with one similar angle, then 6 ACD = 6 ECB.
Then as equiangular triangles are similar, we have,

CA

CD
=
CE

CB

⇒ b

2R
=
h

a
.

(B.5)

Then from (B.4) and (B.5) we have,

A =
abc

4R

⇒ R =
abc

4A
.

(B.6)

B.3 Aspect ratio of triangles

We define the aspect ratio as r
R . From (B.3) and (B.6) we have,

r

R
=

8A2

(abc)(a+ b+ c)
. (B.7)

Then by replacing a = ‖B − C‖, b = ‖C −A‖, c = ‖A−B‖, andA = ‖(B−A)×(C−A)‖
2

in (B.7) we have,

r

R
=

2 ‖(B −A)× (C −A)‖2
(‖A−B‖ ‖B − C‖ ‖C −A‖)(‖A−B‖+ ‖B − C‖+ ‖C −A‖) . (B.8)
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B.4 Aspect ratio of tetrahedrons

In three-dimensional Euclidean Geometry, a tetrahedron inradius, r, is the radius
of the sphere tangetial to the faces of the tetrahedron, whereas circumradius of a
tetrahedron is defined as the radius of the sphere circumscribed to it. Given A, B,
C, and D the coordinates of the tetrahedron vertices are

A = (Ax, Ay, Az),

B = (Bx, By, Bz),

C = (Cx, Cy, Cz),

D = (Dx, Dy, Dz).

Then by resorting to the following parentheses (Casey, 1988)

α =

∣∣∣∣∣∣∣∣

Ax Ay Az 1
Bx By Bz 1
Cx Cy Cz 1
Dx Dy Dz 1

∣∣∣∣∣∣∣∣
,

NABC = (B −A)× (C −A),

γ =

∣∣∣∣∣∣∣∣

A2
x +A2

y +A2
z Ax Ay Az

B2
x +B2

y +B2
z Bx By Bz

C2
x + C2

y + C2
z Cx Cy Cz

D2
x +D2

y +D2
z Dx Dy Dz

∣∣∣∣∣∣∣∣
,

Fx =

∣∣∣∣∣∣∣∣

A2
x +A2

y +A2
z Ay Az 1

B2
x +B2

y +B2
z By Bz 1

C2
x + C2

y + C2
z Cy Cz 1

D2
x +D2

y +D2
z Dy Dz 1

∣∣∣∣∣∣∣∣
, Fy =

∣∣∣∣∣∣∣∣

A2
x +A2

y +A2
z Ax Az 1

B2
x +B2

y +B2
z Bx Bz 1

C2
x + C2

y + C2
z Cx Cz 1

D2
x +D2

y +D2
z Dx Dz 1

∣∣∣∣∣∣∣∣
,

Fz =

∣∣∣∣∣∣∣∣

A2
x +A2

y +A2
z Ax Ay 1

B2
x +B2

y +B2
z Bx By 1

C2
x + C2

y + C2
z Cx Cy 1

D2
x +D2

y +D2
z Dx Dy 1

∣∣∣∣∣∣∣∣
,

the inraduis, r, of the tetrahedron can be computed as

r =
|α|

‖NABC‖+ ‖NABD‖+ ‖NACD‖+ ‖NBCD‖
, (B.9)
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while the circumradius, R, reads

R =

√
F 2
x + F 2

y + F 2
z + 4αγ

2 |α| . (B.10)

Therefore, by replacing from (B.9) and (B.10) the ratio r
R which measures the

flatness of the tetrahedron is given by

r

R
=

2 |α|2

(‖NABC‖+ ‖NABD‖+ ‖NACD‖+ ‖NBCD‖)
√
F 2
x + F 2

y + F 2
z + 4αγ

.

(B.11)





Appendix C

Proof of uniqueness of active
length tensor Li

We will here prove that the solution of the system of equations in (2.8) at a given
node i is unique if the vectors nj that define the cell–cell connectivities at node i
and that form matrix A span Rnsd .

By definition, matrix A is semi-positive definite (SPD) and symmetric. We will
here prove that matrix A is in fact positive definite (PD) when the vectors nj span
Rnsd , and hence gives a unique solution. Matrix A is PD if the following implication
holds:

L̄iTAL̄i = 0⇒ L̄i = 0. (C.1)

But, by setting lij = Linj , we have that,

L̄iTAL̄i =
Si∑

j=1

Linj · Linj =
Si∑

j=1

∥∥lij
∥∥2
.

So,

Si∑

j=1

Linj · Linj = 0⇒ lij = 0, ∀j, (C.2)

i.e., implication in (C.1) may be also expressed as,

Si∑

j=1

Linj · Linj = 0⇒ Linj · ek = 0, ∀j, k.
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Setting nj = αjl e
l we have that,

Linj · ek = αjlL
iel · ek =

∑

l

αjlL
i
kl,

with Likl = Liel · ek the component kl of tensor Li. Therefore, (C.2) is equivalent
to,

∑

l

αjlL
i
kl = 0, ∀k, j.

By denoting by Lik the k-th row of the tensor Li, this condition may be also
expressed as,

nj · Lik = 0, ∀k, j,

that is, the vector nj are orthogonal to each one of the rows of Li. If the vectors
nj span the whole space Rnsd , this is only possible when Lik = 0, as we wanted to
prove. If the tensor L̄i is not assumed symmetric, the uniqueness of the solution can
be also proved by considering an alternative matrix Nj in the definition of matrix
A, but following very similar steps.



Appendix D

Voronoi diagram

Consider 4ABC with vertices at XA, XB, XC and the intersection of the
perpendicular bisectors P at XP . Bisectors of 4ABC intersect with the sides of
the triangle at L, M and N . XP can be interpolated in terms of XA, XB and XC

A

B
C

N
M

L

P

Figure D.1: 4ABC and its perpendicular bisectors

so that,

XP = αXA + βXB + γXC ,

where based on barycentric coordinates,

α =
S4PBC
S4ABC

, β =
S4APC
S4ABC

, γ =
S4ABP
S4ABC

. (D.1)
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For the surface of4PBC with respect to the definition of cross product we have,

S4PBC =
1

2
‖(XC −XP )× (XB −XP )‖ . (D.2)

By the definition of perpendicular bisector, PC and PB are radii of circumcircle

of 4ABC, thus PC = PB and PC = BC
2 cos( 6 PCL)

. Also by the definition of central

and inscribed angles 6 BPC = 26 BAC and with respect to the total internal angles
of a triangle, it can be shown that cos( 6 PCL) = sin( 6 BAC). Therefore, with
respect to the definition of inner product (D.2) can be written as

S4PBC =
‖XC −XB‖2 (XB −XA) · (XC −XA)

4 ‖(XC −XA)× (XB −XA)‖ ,

and by replacing S4ABC = 1
2 ‖(XB −XA)× (XC −XA)‖ to (D.1) for α we have,

α =
‖XC −XB‖2 (XB −XA) · (XC −XA)

2 ‖(XB −XA)× (XC −XA)‖2
. (D.3)

By the same approach for S4APC and S4ABP , we obtain β and γ in (D.1) as,

β =
‖XC −XA‖2 (XA −XB) · (XC −XB)

2 ‖(XA −XB)× (XC −XB)‖2

γ =
‖XB −XA‖2 (XB −XC) · (XA −XC)

2 ‖(XB −XC)× (XA −XC)‖2
.

(D.4)



Appendix E

Linearisation

E.1 General linearisation steps with ξ-relaxation

When ξ-relaxation is included, the total residual vector g = {gTx gTy }T is split
in a nodal gx and ξ contributions gy (see equation (2.34)). Each nodoal and vertex
constribution is given by,

gix = giD + giV + giA,

gIy = gIV + giA + gIξ .

Vectors giD, giV and giA are written in equations (2.2), (2.21) and (2.30), and
the vertex contributions gIV , gIA and gIξ given in equations (2.37). The non-linear
equations g = 0 are solved with a Newton-Raphson process that at each iteration
k reads:

{
δx
δξ

}
= −

[
Kxx Kxy

Kyx Kyy

]−1

k

{
gx
gy

}

k

, (E.1)

and is updated as

{
x
ξ

}

k+1

=

{
x
ξ

}

k

+

{
δx
δξ

}
,

as long as the two following conditions are met,

{ √
‖δx‖2 + ‖δξ‖2 > tol

‖g‖ > tol
,

with tol a sufficiently small tolerance. In our numerical examples we used tol =
10−10.
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The block matrices in (E.1) correspond to the following linearisation terms,

Kij
xx =

∂giD
∂xj

+
∂giV
∂xj

+
∂giA
∂xj

(E.2)

KiJ
xy =

∂giV
∂ξJ

+
∂giA
∂ξJ

(E.3)

KIj
yx =

∂gIV
∂xj

+
∂gIA
∂xj

KIJ
yy =

∂gIV
∂ξJ

+
∂gIA
∂ξJ

+
∂gIξ

∂ξJ
, (E.4)

where due to the expressions of giD and gIξ , we have used the fact that
∂giD
∂yJ

and
∂gIξ
∂xj

vanish. Also note that since our equlibrium equations stem from the linearisation
of an energy function W (x, ξ), we have that,

KiJ
xy =

∂2(WV +WA)

∂xi∂ξJ
=

[
∂2(WV +WA)

∂ξI∂xj

]T
= KIj

yx
T
.

In the next sections we will give the linearisation of the terms in (E.2)-(E.4).

E.2 Linearisation of nodal and vertex tractions tijD and
tIJV

Many of the derivations detailed below will involve the linearisation of the trac-
tion vectors given in equations (3.14),

tijD =
∂W ij

D

∂xi
=
εij

Lij

(
1− lij

Lij
∂Lij

∂lij

)
eij

tIJV =
∂W IJ

V

∂yI
=
εIJ

LIJ

(
1− lIJ

LIJ
∂LIJ

∂lIJ

)
eIJ .

The factor ∂L
∂l is zero when the resting length is constant, but for the rheological

law presented in Chapter 3 , this factor is given in equations (3.11) and (3.17). In
the subsequent expressions we will need the derivatives of the traction vectors above.
We define matrix

Kii
t :=

∂tijD
∂xi

= −∂t
ji
D

∂xi
= −Kji

t = −Kij
t = Kjj

t , (E.5a)
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which after making use of equation (3.12), it can be deduced that,

Kij
t = (−1)δij+1

((
aijaij − εij

lij
aij + εijbij

)
eij ⊗ eij +

εijaij

lij
I

)

aij =
1

Lij

(
1− lij

Lij
∂L

∂l

)

bij =
1

Lij
∂L

∂l

(
−aij +

1

Lij

(
lij

Lij2 − 1

))
.

(E.5b)

A similar derivation is obtained for
∂tIJV
∂yI

, but replacing ij by IJ . In this case,

we also note that from the interpolation in (2.16) we have,

∂tIJV
∂xj

= KIJ
t

(
∂yJ

∂xj
− ∂yI

∂xj

)
= KIJ

t

(
pj(ξJ)− pj(ξI)

)

∂tIJV
∂ξJ

=
∂tIJV
∂yI

∂yI

∂ξJ
+
∂tIJV
∂yJ

∂yJ

∂ξJ
= KIJ

t

∑

xj∈T J
xj ⊗∇pj(ξJ),

where pi(ξI) = 0 if i /∈ T I .

E.3 Linearisation terms in Kij
xx

By using the expressions of giD, giV and giA in (2.2), (2.21) and (2.30), and the

definition of Kij
t in (E.5), it can be deduced that

∂giD
∂xj

=
∑

j∈Si
Kij
t

∂giV
∂xj

=
∑

I∈Bi

∑

J∈SI
KIJ
t

(
pj(ξJ)− pj(ξI)

)

∂giA
∂xj

=
λA
2

J
∑

m∈S̄i
(Am −Am0 )

∑

IJ∈Pm

(
pi(ξI)pj(ξJ)− pi(ξJ)pj(ξI)

)

+
λA
4

∑

m∈S̄i

∑

IJ∈Pm
J
(
pi(ξI)yJ − pi(ξJ)yI

)
⊗
∑

KL∈Pm
J
(
pj(ξK)yL − pj(ξL)yK

)
.
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E.4 Linearisation terms in KiJ
xy

From the expressions of giV and giA in (2.21) and (2.30), and from equation
(2.36), it can be also deduced that,

∂giV
∂ξJ

=


 ∑

K∈SJ
tJKV


⊗∇pi(ξJ) +

∑

I∈Bi
pi(ξI)

∑

J∈SI
KIJ
t

∂yJ

∂ξJ

∂giA
∂ξJ

=
λA
2

J
∑

m∈S̄i
(Am −Am0 )

Nm∑

IJ∈Pm

(
pi(ξI)

∂yJ

∂ξJ
− yI ⊗∇pi(ξJ)

)

+
λA
2

J
∑

m∈S̄i

Nm∑

IJ∈Pm

(
pi(ξI)yJ − pi(ξJ)yI

)
⊗ ∂Am

∂ξJ
,

with ∂Am

∂ξJ
given in (2.38).

E.5 Linearisation terms in KIJ
yy

The linearisation of gIV , gIA and gIξ in (2.37) yields,

∂gIV
∂ξJ

=
∑

K∈SI

∑

i∈T I

(
∇pi(ξI)⊗ xi

)(
KII
t δIJ

∂yI

∂ξJ
+ KIK

t δKJ
∂yK

∂ξJ

)

∂gIA
∂ξJ

= λA

N̄nodes∑

m=1

∂Am

∂ξI
⊗ ∂Am

∂ξJ
+ λA

N̄nodes∑

m=1

(Am −Am0 )
∂2Am

∂ξI∂ξJ

∂gIξ

∂ξJ
= λξδIJI,

where the expressions of ∂y
I

∂ξI
and ∂Am

∂ξI
are given in (2.36) and in (2.38), respectively,

and

∂2Am

∂ξI∂ξJ
=

∑

KL∈Pm

(
δKIδLJ

(
∂yK

∂ξI

)T
J
∂yL

∂ξJ
− δLIδKJ

(
∂yL

∂ξI

)T
J
∂yK

∂ξJ

)
.
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González D, Cueto E, Chinesta F, and Doblaré M. A natural element updated
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