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Abstract

On-line video streaming is an ever evolving ecosystem of services and technologies, where

content providers are on a constant race to satisfy the users’ demand for richer content

and higher bitrate streams, updated set of features and cross-platform compatibility. At the

same time, network operators are required to ensure that the requested video streams are

delivered through the network with a satisfactory quality in accordance with the existing

Service Level Agreements (SLA).

However, tracking andmaintaining satisfactory videoQuality of Experience (QoE) has

become a greater challenge for operators than ever before. With the growing popularity

of content engagement on handheld devices and over wireless connections, new points-

of-failure have added to the list of failures that can affect the video quality. Moreover, the

adoption of end-to-end encryption by major streaming services has rendered previously

used QoE diagnosis methods obsolete.

In this thesis, we identify the current challenges in identifying and diagnosing video

streaming issues and we propose novel approaches in order to address them. More specif-

ically, the thesis initially presents methods and tools to identify a wide array of QoE prob-

lems and the severity with which they affect the users’ experience. The next part of the

thesis deals with the investigation of methods to locate under-performing parts of the net-

work that lead to drop of the delivered quality of a service.

In this context, we propose a data-drivenmethodology for detecting the under perform-

ing areas of cellular network with sub-optimal Quality of Service (QoS) and video QoE.
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Moreover, we develop and evaluate a multi-vantage point framework that is capable of di-

agnosing the underlying faults that cause the disruption of the user’s experience. The last

part of this work, further explores the detection of network performance anomalies and

introduces a novel method for detecting such issues using contextual information. This

approach provides higher accuracy when detecting network faults in the presence of high

variation and can benefit providers to perform early detection of anomalies before they

result in QoE issues.
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RESUM

La distribució de vídeo online és un ecosistema de serveis i tecnologies, on els proveï-

dors de continguts es troben en una cursa continua per satisfer les demandes creixents del

usuaris de més riquesa de contingut, velocitat de transmissió, funcionalitat i compatibil-

itat entre diferents plataformes. A la vegada, els operadors de xarxa han d’assegurar que

els continguts demandats són entregats a través de la xarxa amb una qualitat satisfactòria

segons els acords existents de nivell de servei (en anglès Service Level Agreement o SLA).

Tanmateix, elmonitoratge i elmantenimentd’unnivell satisfactori de laqualitat d’experiència

(en anglèsQuality of Experience oQoE) del vídeo online ha esdevingut un reptemés gran

que mai per als operadors. Donada la creixent popularitat del consum de contingut amb

dispositius mòbils i a través de xarxes sense fils, han aparegut nous punts de fallada que

s’han afegit a la llista de problemes que poden afectar a la qualitat del vídeo transmès. Ad-

dicionalment, l’adopció de sistemes d’encriptació extrem a extrem, per part dels serveis

més importants de distribució de vídeo online, ha deixat obsolets els mètodes existents de

diagnòstic de la QoE.

En aquesta tesi s’identifiquen els reptes actuals en la identificació i diagnòstic dels prob-

lemes de transmissió de vídeo online, i es proposen noves solucions per abordar aquests

problemes. Més concretament, inicialment la tesi presenta mètodes i eines per identificar

un conjunt ampli de problemes de QoE i la severitat amb la que aquests afecten a la exper-

iència dels usuaris. La següent part de la tesi investiga mètodes per localitzar parts de la

xarxa amb un rendiment baix que resulten en una disminució de la qualitat del servei ofert.

En aquest context es proposa una metodologia basada en l’anàlisi de dades per detec-

tar àrees de la xarxa mòbil que ofereixen un nivell subòptim de qualitat de servei (en an-
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glès Quality of Service o QoS) i QoE. A més, es desenvolupa i s’avalua una solució basada

en múltiples punts de mesura que és capaç de diagnosticar els problemes subjacents que

causen l’alteracióde l’experiènciad’usuari. L’últimapart d’aquest treball explora addicional-

ment la detecció d’anomalies de rendiment de la xarxa i presenta un nou mètode per de-

tectar aquestes situacions utilitzant informació contextual. Aquest enfoc proporciona una

major precisió en la detecció de fallades de la xarxa en presencia d’alta variabilitat i pot aju-

dar als proveïdors a la detecció precoç d’anomalies abans de que es converteixin en prob-

lemes de QoE.
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RESUMEN

La distribución de vídeo online es un ecosistema de servicios y tecnologías, donde los

proveedores de contenidos se encuentran en una carrera continua para satisfacer las de-

mandas crecientes de los usuarios de más riqueza de contenido, velocidad de transmisión,

funcionalidad y compatibilidad entre diferentes plataformas. Asimismo, los operadores

de red deben asegurar que los contenidos demandados son entregados a través de la red

con una calidad satisfactoria según los acuerdos existentes de nivel de servicio (en inglés

Service Level Agreement o SLA).

Sin embargo, la monitorización y el mantenimiento de un nivel satisfactorio de la cal-

idad de experiencia (en inglés Quality of Experience o QoE) del vídeo online se ha con-

vertido en un reto mayor que nunca para los operadores. Dada la creciente popularidad

del consumo de contenido con dispositivos móviles y a través de redes inalámbricas, han

aparecido nuevos puntos de fallo que se han añadido a la lista de problemas que pueden

afectar a la calidad del vídeo transmitido. Adicionalmente, la adopción de sistemas de en-

criptación extremo a extremo, por parte de los servicios más importantes de distribución

de vídeo online, ha dejado obsoletos los métodos existentes de diagnóstico de la QoE.

En esta tesis se identifican los retos actuales en la identificación y diagnóstico de los

problemas de transmisión de vídeo online, y se proponen nuevas soluciones para abordar

estos problemas. Más concretamente, inicialmente la tesis presenta métodos y herramien-

tas para identificar un conjunto amplio de problemas de QoE y la severidad con los que

estos afectan a la experiencia de los usuarios. La siguiente parte de la tesis investiga méto-

dos para localizar partes de la red conun rendimientobajoque resultan enunadisminución

de la calidad del servicio ofrecido.



Thesis advisors: Pere Barlet-Ros, Ilias Leontiadis Georgios Dimopoulos

En este contexto, se propone unametodología basada en el análisis de datos para detec-

tar áreas de la red móvil que ofrecen un nivel subóptimo de calidad de servicio (en inglés

Quality of Service oQoS) yQoE. Además, se desarrolla y se evalúa una solución basada en

múltiples puntos de medida que es capaz de diagnosticar los problemas subyacentes que

causan la alteración de la experiencia de usuario. La última parte de este trabajo explora

adicionalmente la detección de anomalías de rendimiento de la red y presenta un nuevo

método para detectar estas situaciones utilizando información contextual. Este enfoque

proporciona una mayor precisión en la detección de fallos de la red en presencia de alta

variabilidad y puede ayudar a los proveedores a la detección precoz de anomalías antes de

que se conviertan en problemas de QoE.
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1
introduction

On-line video streaming has becomemore popular and ubiquitous than ever before. There
is a constantly growing number of users who are engaging video content from mobile de-
vices and Cisco predicts that mobile video will increase 11-fold by 2020, accounting for
75% of total mobile data traffic [1]. At the same time, video streaming services are con-
stantly enriching their libraries with new and higher bitrate content.

The increasing popularity of video streaming among users has led to demands for higher
bandwidth availability, while maintaining a satisfactory Quality of Experience (QoE). To
meet these requirements, operators are forced to constantly provision [2] their fixed and
mobile access infrastructure in order to accommodate the high traffic volumes that are gen-
erated from video streaming.

At the same time, continuous monitoring of the different network segments for perfor-
mance issues is necessary to ensure that faults and problematic links are identified as soon
as possible. In this way, any problems that affect the users can be properly addressed before
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they start to impact their received QoE.
In this chapter we discuss in detail the reasons that motivated the different stages of this

work and the challenges that had tobeovercome. Next, we analyze themajor contributions
that this thesismakes andfinallywepresent thedetails of theorganization and the structure
of this manuscript.

1.1 Motivations andChallenges

Trackingandmaintaining satisfactoryQoE for video streaming services is becomingagreater
challenge for network operators than ever before. On one hand, many streaming services
have introduced over the recent years modern video optimization technologies such as bi-
trate adaptation and video pacing as well as high resolution encoding allowing up to 4k
vertical resolutions. At the same time, operators are required to deal with the currently
growing trend among users to stream video content on mobile devices, that is causing a
demand for higher bandwidth availability and better provisioning throughout the network
infrastructure.

Although in the current state-of-the-art, there aremultipleworkswhichhave introduced
methodologies to measure the video streaming QoE based on the player [3], browser [4,
5] or the device [6] instrumentation, they rely onmodifying the user’s device in the form
of either custom video players, browser plug-ins or a pre-installed tool-set for monitoring
the video stream for performance issues. Such solutions are in general not preferable given
that the device instrumentation requires the user’s consent and action and interferes with
the video delivery mechanisms which clearly hinder the scalability and accuracy of such
systems. As a result, there has been an increased interest by the research community as
well as the industry for novel methods and tools that can identify video QoE issues from
passive network measurements.

These limitations have given rise to videoQoEmeasurement approaches that use Deep
Packet Inspection (DPI) [7, 8] to extract video metadata and QoE information from net-
work packets. However, thesemethods are quickly becoming obsolete as popular demand
for privacy has led many content providers to adopt end-to-end encryption, leaving net-
work operators with only a handful of indicators for identifying QoE issues. For this rea-
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son, video QoE models must now be developed with performance metrics that are ex-
tracted from lower layers of the network.

Nevertheless, the detection of QoE issues is only the first step towards improving the
quality of the service that is delivered to the users in a network. By itself, it does not provide
any information regarding the underlying cause and what actions are needed to properly
address these issues and prevent future ones from occurring. To achieve this it is necessary
to understand fromwhich vantage points (VP) along the data path it is necessary to install
measurementprobes andwhichperformancemetrics are correlatedwith videoQoE issues.

In the current literature, many works have investigated the correlations between differ-
ent QoE issues and user engagement [9, 10], while in [11] user behaviour is correlated
with startup delay, redirections and server response time. Moreover, Schatz et al. [12]
used passive network measurements at ISP-based VPs to infer the rebuffering frequency
and duration. However, to the extent of our knowledge, none of the related works investi-
gate the impact that different performance faults have on the user’s experience and which
are the importantmetrics that can be used to detect them. Furthermore, the literature does
not study which VPs can be utilized to better identify where in the network and what type
of fault has affected the video QoE.

One of the main challenges involved in this area of research, is that due to the hetero-
geneity of the devices and networks between the content server and the client, it is often
difficult to pin-point the offending part of the network where the video QoE issues oc-
cur and to identify the root cause that is behind them. Apart from typical network-related
problems such as delay, congestion or limited bandwidth, video streaming on mobile de-
vices may also suffer from the device’s hardware limitations, high load on the endpoints
and problems in the wireless medium.

To properly troubleshoot the underlying faults that cause the degradation of the users’
experience, providers are required to deploy measurement probes in multiple VP along
the data path to collect and analyze all the necessary performancemetrics. One important
challenge to overcome however with this approach, is to determine theminimum number
of VPs and KPIs that are required to get an accurate QoE estimation. In this way, it will
be possible to monitor and troubleshoot issues using a minimal set of features and instru-
mented devices.
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The growing popularity of video engagement over cellular connections in conjunction
with the availability of higher bit-rate streams, has led to a constantly increasing demand
for bandwidth. To copewith the demand and ensure that the requested service is delivered
with satisfactory quality, mobile operators are forced to constantly optimize and upgrade
their infrastructure. However, resourcesneed tobe allocated in theunder-performingparts
of the network after careful planning and analyzing in detail the performance down to the
customer and the cellular sector level.

Currently, operatorsmonitor theperformanceof their networks by complementingpas-
sivemeasurementswithdrive tests andcontrolledfield experiments forfine-grainedbench-
marking and root cause analysis [13–17]. However, these approaches are costly, require a
lot of resources and cannot be relied upon for a complete and uninterrupted view of the
entire network’s performance. At the same time, they do not provide a clear and straight-
forward correlation between performance metrics and the user’s QoE.

As a result, there is a need for way to combine multiple performance metrics from the
different network elements into a single metric that can be easily mapped to a QoE index.
Such a method will significantly simplify the process of identifying the per-customer and
per-sector QoE in large-scale networks with millions of users.

Such a task can often be daunting since it involves dealing with large volumes of traf-
fic and numerous KPIs that are periodically collected from network radio access elements
(i.e., sectors, towers, and controllers) tomonitor both wireless channels and backhaul per-
formance. There is a set of newly introduced factors that affect the user’s experience, such
as hardware and software changes (i.e. new mobile devices, new multi-media codecs) and
new network technologies (i.e. LTE), while network operators are forced to redefine older
thresholds for well known performance indicators when monitoring the performance of
video streaming services.

The aforementioned approaches in this part can serve very well when dealing with is-
sues that are already affecting the users, but they are not adequate for preventing future
problems from occurring when the capacity of a network segment is exceeded again. For
this reason, providers need to adopt reliable methods for detecting anomalies in the per-
formance of a network as they occur and troubleshoot them before they escalate intoQoE
impairments.
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However, the accurate detection without raising false alarms can become a challenging
task when there is high variance in the traffic. The performance of an entity or a segment
in a network can be identified as anomalous, if its behavior deviates significantly from a
predefined normal profile.

Popularmethods in the state of the art, define the normal profile based either on the pre-
vious behavior of a target sequence e.g. CUSUM[18], or the variance of the entire dataset
e.g. PCA [19]. These methods may fall short when individual paths are characterized by
natural high variance or when different normal profiles can be found when examining dif-
ferent regions of the network. Behaviors like these can be observed real-life scenarios such
as the increased latency in a path of an ISP’s core network during peak hours or the high
packet loss due to an outage over a wide area caused by a natural disaster.

To minimize the probability of undetected anomalies or false alarms in these cases, it
is necessary to perform anomaly detection while taking into consideration the behavior
of the context that a measured entity or path belongs to. A context corresponds to a peer
group where the members have similar behavior with the target in the same time window.

1.2 Thesis Overview andContributions

The work that is presented thesis makes several important contributions. In more detail,
the first two chapters present two novel methodologies for monitoring the QoE of video
streaming sessions fromclear-text andencrypted traffic respectively. Next, we introduce a a
multi-vantage point system for detecting videoQoE issues and identifying their root cause.
In the following part of the thesis we introduce a data-driven methodology that allows to
combinemultiple performancemetrics fromacellular network into a singlemetric that can
be used tomeasure theQoE of a service. Finally, we present a novel approach for detecting
network performance anomalies using contextual information.

1.2.1 Measuring Video QoE from Clear-text Traffic

There is currently a high demand for non-intrusive and scalable videoQoEmonitoring so-
lutions that canbe seamlessly deployedon large-scale networks to accurately report quality
impairments without the requirement for software or hardware modifications. Towards
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this end, the first part of the thesis investigates the extraction of QoE information from
clear-text network traffic using strictly passive measurements.

Specifically, Chapter 3 presents a novel approach that allows the extraction of video
streaming performance and user experience related metrics by means of passive network
measurements. Unlike activemethods presented in previous works [3–6] that require the
modification of the player and/or additional client-side software, our solution only relies
on the analysis of the video traffic between the clients and the content server. As a result,
the proposed approach is much more scalable and more reliable as it does not interfere
with the video delivery mechanisms.

One of themost notable contributions that thework inChapter 3makes, is themethod-
ology for identifying, reverse-engineering and extracting YouTubeQoE performancemet-
rics directly from themetadata of theHTTP traffic that is generated during a video session.
This makes the passive measurement of video QoE simpler and more detailed than pre-
viously done. To our knowledge, this is the first work to reverse engineer these requests,
which provide a simple mechanism to track YouTube sessions passively and accurately

1.2.2 Measuring Video QoE from Encrypted Traffic

However, recent developments in video streaming technologies and services such as the
adoption of adaptive streaming and end-to-end traffic encryption threatens to render pre-
viously available QoE models and detection tools obsolete. Therefore, in Chapter 4 we
explore new methodologies that enable the video QoE monitoring in the presense of en-
crypted traffic and the latest streaming technologies.

The work presented in Chapter 4 is the first one, to the extent of our knowledge, to pro-
vide a solution that can identify from encrypted data multiple types of QoE issues that
occur in traditional but also modern streaming technologies, as well as the severity with
witch these issues affect the user’s experience. Moreover, it is the first approach of its kind
that was fully developed and tested with more than 390,000 video sessions from the mo-
bile network of a large provider with more than 10M customers. We demonstrate that
the models we developed can identify quality issues from unencrypted data with accura-
cies between 78% and 93.5% and from encrypted traffic with accuracies between 76% and
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91.8%.
Moreover, this work provides important insights about the information that can be ex-

tracted from encrypted traffic. Our results indicate that i) passive measurements from a
single vantage point are enough to accurately detect the key factors that affect the users’
experience ii) we discuss on the features that are the most significant for detecting each
particular problem iii) we demonstrate that client instrumentation is not required.

The contributions of Chapter 4 extend and complement the contributions made by
Chapter 3. The work in Chapter 3 deals with the detection of the QoE from clear-text
video streams which is developed using fixed-access traffic, whereas Chapter 4 presents a
novel methodology for video QoE detection from encrypted traffic that was generated by
mobile devices over a large-scale cellular network.

When compared to previous related works [20–22], aside from being compatible with
encrypted traffic, our approach can detect all issues that affect the video streaming quality
with significantly higher accuracy but also report with finer detail the severity with which
the user was affected.

1.2.3 Identifying the Root Cause of Video Streaming Issues

Video streaming on mobile devices is prone to a multitude of faults and although well es-
tablished video QoE metrics such as stall frequency are a good indicators of the problems
perceived by the user, they do not provide any insights about the nature of the problem
nor where it has occurred. Quantifying the correlation between the aforementioned faults
and the users’ experience is a challenging task due the large number of variables and the
numerous points-of-failure.

To address this problem, Chapter 5 presents a distributed diagnostic framework for
video streaming issues. The framework can use a wide variety of network and hardware
measurements collected at one or more vantage points along the video data path to iden-
tify and pinpoint the root cause of detected QoE problems.

Although there is substantial number of works in the related literature on path diagnosis
[23, 24] and on correlating network QoS metrics with the video streaming performance
[6, 9–12, 25], the current state-of-the-art does not offer providers and users with a proper
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tool-set that is capable of identifying, locating and troubleshooting network faults that re-
sult in video streaming issues. Therefore, the proposed framework that can perform each
of the aforementioned tasks with high accuracy, is the main contribution of this work.

1.2.4 CombiningPerformanceMetricstoBetterCapturePer-SectorQoE in
Mobile Networks

Mobile network operators are required to constantlymonitor the performance of different
segments of their network down to the cellular tower level in order to better provision the
infrastructure and deploy upgrades according to the requirements of an area. To address
the aforementioned problems, the next part of the thesis contributes a data-driven frame-
work that improves the QoE monitoring flexibility with respect to the current state of the
art solutions.

In theworkpresented inChapter 6, we leverage data providedby a largemobile operator
serving more than 10 million subscribers, and we extensively study how to combine KPIs
to create rankings that better capture under-performing cellular sectors. Furthermore, we
target to capture individual QoE components that affect users’ experience such as web
throughput, latency and video stalls. Our results indicate that the resulting ranking cor-
relates three times more than the currently used method, hence offering a better vision on
under-performing sectors and their relation to user experience.

The methodology to combine performance indicators into a single metric has been es-
tablished by equipment vendors and operators based on logical decisions, Service Level
Agreements (SLAs), and controlled experiments such as drive tests and field tests [14, 26–
29]. However, it remains an empirical approach, funded on deep domain knowledge fine-
tuned over the years. In contrast, our novel data-drivenmethodology that builds upon the
already collected sector performance metrics and bridges them with different QoE met-
rics. By doing so, the system empowers operators with an automated methodology that
provides better visibility on underperforming sectors. Moreover, our results indicate that
the currently used solution that is based on thresholding is sub-optimal to identify critical
sectors
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1.2.5 DetectingNetworkPerformance IssueswithContextualAnomalyDe-
tection

Instead of retroactively attending to already existing QoE issues, it is often more valuable
for operators to be able to prevent such issues from occurring altogether by early detecting
performance anomalies in their network.

To address this problem, Chapter 7 proposes the use of theContextual AnomalyDetec-
tion (CAD) methodology which allows a more accurate detection of anomalies based on
contextual information, while at the same time minimizing the false alarm rate. This so-
lution can directly benefit operators by reducing the number of generated support tickets
and calls since individual performance issues can be identified and addressed as soon as
they occur and before they affect a larger part of the network.

Specifically, this chapter makes the following important contributions. First, we intro-
duce anovelmethodology fordetecting contextual networkperformance anomalies. Next,
we present the benefits of detecting anomalies in network measurements using CAD and
proposesmethods to improve the state-of-the art algorithm in terms of accuracy and scala-
bility. Finally, we evaluate the algorithm’s accuracy when identifying the contextual infor-
mation of a sequence and when detecting the anomalous sequences with both synthetic
and real data.

1.3 Thesis Organization

This section describes the organization of this thesis dissertation. Chapter 2 provides im-
portant background related to the video streaming technologies and theQoE issues that af-
fect them. It also discusses themethods for extracting relatedQoEmetrics fromencrypted
and non-encrypted traffic and describes in detail the datasets that are used throughout this
manuscript. Chapter 3, describes a novel method for tracking the quality of video stream-
ing sessions without a requirement for client-side instrumentation. All the important sta-
tistical information about the status of the playback are obtained by reverse engineering
the metrics in the related network traffic that is captured from the network of a large uni-
versity campus. This work is is based on the conference paper published in [7]. Chapter 4
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presents a methodology for detecting video streaming QoE issues from encrypted traffic.
The methodology includes the development of predictive models for detecting different
levels of QoE degradation that is caused by three key influence factors, i.e. stalling, the av-
erage video quality and the quality variations. The models are then evaluated on the pro-
duction network of a large scale mobile operator, where we show that despite encryption
ourmethodology is able to accurately detectQoEproblemswith 72%-92% accuracy, while
even higher performance is achieved when dealing with clear-text traffic. The method and
the related results have been published in a conference paper in [30]. Chapter 5 intro-
duces a multi-VP framework for diagnosing and performing root-cause analysis on video
streaming issues. The framework is capable of identifying, localizing and troubleshooting
the faults that affect the received video quality. The framework is initially evaluated in a
controlled lab testbed where a variety of faults are induced manually. Next, it is deployed
and tested in a semi-controlled environment and then in the wild where faults occur nat-
urally. The related conference publication can be found in [31]. The following chapter
studies how to bridge sector KPIs to reflect Quality of Experience (QoE) ground truth
measurements, namely throughput, latency and video streaming stall events. We lever-
age one month of data collected in the operational network of mobile network operator
serving more than 10 million subscribers. We extensively investigate up to which extent
adopted methodologies efficiently capture QoE. This work was published in a conference
paper in [32]. Chapter 6 presents a novel methodology for detecting performance anoma-
lies based on contextual information. The proposed method is compared with the state of
the art and is evaluated with high accuracy on both synthetic and real network traffic. The
related journal paper under submission can be found in [33]. Finally, Chapter 8 presents
in detail the related work, while Chapter 9 concludes the thesis and introduces some ideas
for future work.
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2
Background

2.1 HowVideo StreamingWorks?

For many content providers HTTP has become the preferred protocol for video delivery
over the last fewyears. HTTPstreaming combines advantages such as firewall pass-through
and easy network address translation, but also the benefits of TCP, i.e. congestion control
mechanisms and reliable packet delivery.

2.1.1 Traditional HTTP Video Streaming

In traditional HTTP video streaming, the video is downloaded as a single continuous file
which represents a single quality setting. Moreover, video buffering is employed as an ad-
ditional measure to compensate for jitter and short-term bandwidth variations.

Typically, each video session can be divided into two buffering phases, i.e. the start-up
phase and the steady state [34]. During the start-up phase the player will download the
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first part of the video as fast as possible to quickly fill the buffer and minimize the initial
delay before the playback begins.

Once the buffer has been filled up to a specific threshold and the playback has started,
the video session goes into the steady state. This phase is characterized byON-OFF cycles,
also referred to as pacing, where the download is paused as soon as the buffer has been
filled and resumes when it is reaching depletion.

2.1.2 HTTP Adaptive Streaming (HAS)

In contrast to traditional streaming, HAS videos are split on the server in multiple seg-
ments, each one corresponding to a few seconds of playback time. Each segment is en-
coded in a range of different quality profiles which are defined by the content provider.

Instead of requesting the entire video, the player performs HTTP requests to fetch con-
secutive segments. The quality profile of the next segment is determined as a function of
the throughput with which the previous segment was downloaded and the available sec-
onds of playback in the buffer. In this way, the representation of the video can change
dynamically to adapt to changes in the network and minimize stalls.

2.2 What Factors Affect the VideoQoE?

2.2.1 Initial Delay

The initial delay refers to the time spent from themoment the user requests the video until
the playback begins. This delay has two components, the network delay and the initial
buffering delay. The former consists of the resolution delay, the redirection delay and the
initiation delay. The aforementioned delays are shown in Figure 2.2.1, that illustrates a
timeline of the events that take place during a YouTube video session.

The resolutiondelay is causedby the time required toperform theDNS resolutionof the
video server’s address. The redirection delay is a result of the content provider’s CDN load
balancing mechanism, that will redirect the video request to the preferred server which is
selected based on criteria such as proximity and load. The buffering delay is a result of the
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Figure 2.2.1: Initial delays during the pre-loading phase.

time required to preload the buffer with sufficient video data to allow a smooth playback.
This latency depends on factors such as the size of the buffer on the user’s device and the
preload threshold set by the streaming service, but also on the speed with which the data
arrives at the client.

It is interesting tomention at this point, that two independent studies byMok et al. [35]
and Etoh et al. [36], both found that the initial delays have the lowest impact on the QoE
as users tend to be more tolerant to longer initial delays than other impairments such as
stalls or quality switches. For this reason these delays are not taken into account when de-
veloping the methodology for Chapter 4, in order to focus on the other impairment types
that have greater impact on the user’s experience.

2.2.2 Stalls

Whenever the network throughput is not sufficient for the content to bedownloaded faster
than the rate that it is consumed, the buffer is depleted and the playback is forced to pause
until more data are downloaded and the buffer is filled again. Hoßfeld et al. [37] showed
that not only the frequency but also the duration of the playback stalls which occur due to
buffer outages, have a high correlation with poor QoE. Specifically, the authors conclude
that a video with 2 stalls of 3 seconds duration each, will lead to significantly lower Mean
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Opinion Score (MOS).Moreover, Mok et al. [3] found that the rebuffering frequency has
the highest impact on QoE and that a medium rebuffering frequency can result in a MOS
lower by 2 points. In the work presented in this thesis, we measure the stalls using the
Rebuffering Ratiowhich is expressed as the time spent stalling over the total duration of the
video session.

2.2.3 Average Representation Quality

The average quality can be applied only to HAS video sessions, since only in these cases
quality representation changesmayoccur. It is calculated as the average of all the individual
qualities of the segments which belong to a video session. Multiple related works have
shown a high correlation between the video representation quality and the user’s QoE. In
one of these studies [38], the subjective experiments performed in mobile networks have
shown that video streams with higher quality representations are linked to better overall
QoE.

2.2.4 Representation Quality Variation

Another factor that affects the QoE of adaptive video streaming, is the changes in quality
variation. The variation in this case has two dimensions, the frequency of the changes and
their amplitude. The frequency is the absolute number of changes that occurred in a video
session, while the amplitude corresponds to the difference inmagnitude between two con-
secutive qualities. In [39], the authors investigate how the representation switching am-
plitude and the switching frequency affect the QoE. Their results show that the switching
amplitude has a very high impact on the user experience.

2.3 What Factors Affect the Video Streaming Performance?

In a typical video streaming session on a mobile device from a popular service such as
YouTube, the video data is downloaded from a content server in a Content Distribution
Network (CDN). As shown in Figure 2.3.1, the video stream is first transferred through
Internet Backbone links to the client’s ISP. Next, the data is downloaded to the mobile
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device over a broadband link connected to a home gateway/Access Point or a cell tower
depending on the client’s connection type.

Figure 2.3.1: Video data path in a real world scenario.

In each hop along the data path, different types of failures may take place that can affect
the performance of video streaming services and lead to QoE degradation. Such failures
can occur in one or more layers of the devices that are responsible for propagating the
data between the server and the client. Below are listed in more detail, the most promi-
nent faults that can impact the video data delivery can originate from the hardware, the
link/physical and/or the transport layer.

2.3.1 Hardware Faults

Hardware faults related to limited system resources such as high CPU utilization and low
memoryavailability canaffectnetworkdevices suchaccesspoints, routers, switches, servers
but also the end user’s device. Such issues can cause increased processing times that lead
to high latency when they occur on network devices and to video stalling when the user’s
device is affected.
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2.3.2 Transport Layer Faults

HTTP video streams are typically delivered over the Internet using a transport protocol
such as TCP or UDP. However, transport protocols can suffer from performance issues,
e.g. latency, jitter and packet loss. These have a direct impact on the available throughput
that the problematic link can deliver and in turn impact the initial delay of a video session
and the rate at which the video data fills the playout buffer on the client, increasing in this
way the chance of stalling.

2.3.3 Link/Physical Layer Faults

Portable devices are becoming more and more popular among users for streaming video
content. These devices rely on wireless connectivity over WLANs or cellular connections
to access and download the remote content. However, the wireless medium can suffer
from an array of faults such as congestion, low signal reception and frequency interference.
These issues contribute to the increase of loss and the reductionof the available bandwidth,
wich in turn can result in delay and stalling.

2.4 Network Performance AnomalyDetection

The performance of an entity or a segment in a network can be identified as anomalous,
if its behavior deviates significantly from a predefined normal profile. Popular methods in
the state of the art, define the normal profile based either on the previous behavior of a
target sequence e.g. CUSUM [18], or the variance of the entire dataset e.g. PCA [19].

However, these approaches may fall short when individual paths are characterized by
natural high variance or when different normal profiles can be found when examining dif-
ferent regions of the network. Behaviors like these can be observed real-life scenarios such
as the increased latency in a path of an ISP’s core network during peak hours or the high
packet loss due to an outage over a wide area caused by a natural disaster.

To minimize the probability of undetected anomalies or false alarms in these cases, it
is necessary to perform anomaly detection while taking into consideration the behavior
of the context that a measured entity or path belongs to. A context corresponds to a peer
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group where the members have similar behavior with the target in the same time window.
Thegraphs in Figure 2.4.1 show real examples of a performancemetric of a target in time

series format (red), while the grey area shows the sequences that form the context.
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target
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Figure 2.4.1: Examples where the target sequence follows its context (b) and devi-
ates from it (a), (c).

In Figures 2.4.1(a) and 2.4.1(c) the target sequences deviate from their context while in
2.4.1(b) the target follows the context’s behavior. Previous detection methods may iden-
tify the red sequences in 2.4.1(a) and 2.4.1(b) as anomalous but not 2.4.1(c). However, if
we take the context’s behavior into consideration, 2.4.1(a) and 2.4.1(c) should be detected
as anomalous but 1b should not.

To address this problem, we propose the use of the Contextual timeseries Anomaly De-
tection (CAD)methodologywhich allows the detection of anomalies based on contextual
information with higher accuracy, while at the same time minimizing the false alarm rate.
This solution can directly benefit operators by reducing the number of generated support
tickets and calls since individual performance issues can be identified and addressed as
soon as they occur and before they affect a larger part of the network.
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3
Measuring Video StreamingQoE from

Clear-text Traffic

3.1 Introduction

In this chapter, we analyze the YouTube video streaming service and the traffic generated
from its usage. The purpose of this study is to identify by strictly using passive measure-
ments the information that canbeused asmetrics or indicators of theprogress of individual
video sessions and to estimate the impact of these metrics in the user experience.

The proposed approach includes a novel method to track the progress of the video play-
back that in contrast to previous works, does not require instrumentation of the video
player neither browser-based plug-ins. Instead, we extract important statistical informa-
tion about the status of the playback by reverse engineering the metrics in related HTTP
requests that are generated during playback. For the purpose of collecting these metrics, a
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toolwas developed to performYouTube trafficmeasurements bymeans of passive network
monitoring in a large university campus network.

The analysis of the obtained data revealed that the most important source of initial de-
lay in the video sessions is the redirection delay. The download rate analysis showed that
YouTube initially uses a fast-startmechanismtoquicklyfill the videobuffer and then switches
to limited download rate in order to minimize unecessary data transfers. Further analysis
revealed that the video advertisements and re-buffering events have the highest impact on
the user experience, resulting in earlier video abandonment.

An important contribution of our approach is the discovery of the possibility to extract
detailed information about user sessions from the statistical “s” requests, that will be pre-
sented in detail in Section 3.2.2. This allowed easier passive measurement of sessions and
in more detail than previously done.

3.2 Methodology

In this section we distinguish two categories of measured variables. In the first category
we measure the different processes in the video server selection mechanism which are re-
sponsible for inserting delay in the video session. Each delay is measured by comparing
the time-stamps of the related HTTP events as shown in Figure 3.2.1. In the second cat-
egory we present the set of parameters that we extract directly from the HTTP requests
containing statistical information and those that are inferred from the later with simple
calculations.

Both sets of parameters are of high importance with regards to the QoE a user experi-
ences. On one hand, the initial delays provide an insight into the time the user has to wait
until the video session is initialized and the playback begins. Long delays are indicators of
poor performance of the YouTube video delivery mechanism due to factors such as multi-
ple re-directions and congestion of the servers, and strongly affect the perceived quality of
experience for the user.

On the other hand, parameters from the HTTP traffic are extracted throughout the en-
tire duration of the video session and therefore can be used tomonitor each part of a video
session. Apart from returning important metadata about the video, they help us identify
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events such as stalls in the playback due to buffer depletion, the download rate at which
the video was delivered to the client as well as the percentage of the total video that was
watched. Another significant parameter derived from the HTTP parameters is the Viewed
Ratio. Thismetric is used to indicate the number of abandoned video sessions and atwhich
point of the playback they were abandoned. It is strongly related to the viewer’s QoE given
that users frustrated from poor performance tend to abandon their video sessions.

3.2.1 Measuring the Initial Delays

The first set of parameters that we measure, are those related to the delay introduced from
the beginning of the video session, until the first video packet arrives at the client side.
During this period, all the required elements of the web page are delivered to the user’s
browser and at the same time the preferred video server is located. In order to identify
the preferred video server, the load-balancing mechanisms of the YouTube CDN attempt
to make the best selection among those servers that are closer to the viewer and are not
suffering from high load. This process consists of three sub-processes, each responsible for
introducing delay in the video session as shown in Figure 3.2.1.

Figure 3.2.1: Important events in a YouTube video session

The first part of the video server selection is the “Resolution” phase that begins along
with the video session by opening aYouTube video link and endswhen the “generate_204”

21



request is made. The “generate_204” is anHTTPGET request whoseURI begins with the
string “/generate_204?” and it is responsible for the DNS resolution of the video server.
It is identical to the request that will be made in the next phase to get the video from the
video server, with the difference that it returns a “204 No Content” from the server. This
response indicates that the address of the video server was successfully resolved, however
no video data will be delivered yet [40].

The following section of the video selection process corresponds to the “Redirection”
phase. In this part, a “videoplayback” request is generated by the browser to start down-
loading the video. If the server responds with a code “302 Found”, the requested video is
located in this server but the client needs to be redirected to a more preferable server. At
this point, multiple re-directions may occur until the best video server is located. If the
server is the preferred, it responds with “200 OK” and the video will shortly start down-
loading.

The final phase that is responsible for generating delay in this process is the “Initiation”
phase. This periodmarks the time required from the generationof “videoplayback” request
to the preferred video server, until the arrival of the first video packet at the client side.
The Initiation Delay that derives from this part, indicates the time that the server needs to
process the request and start delivering the video.

Another important metric concerning the progress of a video session is the buffering
time that corresponds to the time needed to deliver the entire video to the user. Until
recently, it was possible to compare the buffering time with the duration of the video and
infer buffer outage events that force the playback to halt in a re-buffering state until enough
video data has been delivered in order to resume playback as done in [6]. However, lately
YouTubemodified themechanismof delivering video data. Currently, the video download
is pausedwhen the buffer holds enough data to continue playback and it resumeswhen the
buffer is close to depletion. As a consequence, if a user pauses the video playback, then the
video downloadwill also pause as soon as the buffer is filled andwill not resume unless the
playback resumes. Hence, the duration of the video download does not correspond to the
buffering time and therefore it cannot be used an indicator of re-buffering events.
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3.2.2 Measuring the QoE during playback

Moreover, after the beginning of a video playback a plethora ofHTTPevents are generated
to maintain and update the video session (or occasionally deliver advertisement content).
The most intriguing of these events are the “s” GET HTTP requests that can be identified
from the “/s?” marking the beginning of the request URI, followed by a long line of pa-
rameters and their corresponding values. They are generated on short intervals of a few
seconds as soon as the playback begins, while the generation stops if the video is paused
by the user. The “s” requests are made to servers under the “s.youtube.com” domain. This
particular domain’s CNAME record points to the domain “video-stats.l.google.com” that
is used Google (owner of YouTube), to collect statistical information from its services.

At this point due to the fact that neither YouTubenor previous studies have documented
the meaning and usage of the parameters involved in the “s” requests, we proceeded to
reverse engineer theFlash player objectwhich automatically generates the aforementioned
requests.

After reverse engineering and analyzing the player, we verified the statistical role of the
parameters involved. Among those, the ones with the greatest significance for our study
are the “bd” and “bt” that stand for bytes downloaded and bytes time. The bytes down-
loaded is the count of video data bytes the client received since the previous “s” request
and the bytes time returns the time the later amount of bytes was required to be delivered.
Therefore, from the ratio of these twoparameterswe canderive the download rate between
the current “s” request and the previous one.

At this point it isworth tomention that to thebest of our knowledge, the results obtained
from reverse engineering the YouTube Flash player have not been published before.

Another two parameters that hold useful information are the “rt” that represents the
time the “s” request was generated relative to the beginning of playback and “len” that in-
dicates the duration of the video in seconds. By comparing the values of these variables we
can infer whether the full length of a video was watched by the user or if it was abandoned
earlier. We accomplish this by comparing the value of the last “rt” generated plus a time-
out, against the length of the video. If the calculated value is smaller than the video length
we conclude that the video was not watched to its entirety. In the other case, the complete
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video was watched.
Moreover “fmt” is an in-URL parameter of the “s” requests, used to specify the quality

of the watched video in the form of a numerical identifier. The value of “fmt” can either be
constant within a video session or vary if the user selects a different video quality during
playback. In Table 3.2.1 themost popular video formats in our data-set are displayed along
with their characteristics. The “B/s” column indicates the bit-rate requirements of each
format.

fmt Characteristics B/s fmt Characteristics B/s
5 240p FLV 40960 37 1080p MP4 792576
18 360p MP4 94208 43 360p WebM 118784
22 720p MP4 408576 44 480p WebM 163840
34 360p FLV 118784 46 1080p WebM n/a
35 480p FLV 163840

Table 3.2.1: fmt identifier with corresponding video characteristics

The last of the statistical parameters examined in this work is the “pd” which stands for
player delay. The player delay is one of the most important variables identified during our
analysis of YouTube traffic because it illustrates the time the playback was stalled due to re-
buffering events throughout the video playback. In this chapter we will continue the “pd”
abbreviation for the player delay but for clarity it will be referred to as re-buffering delay.
Unlike the other aforementioned parameters that are returned every time an “s” request is
generated, the re-buffering delay is only present if holds a non-zero value.

The importance of the re-buffering delay is clear since it provides us not only with infor-
mation about the progress and performance of different parts of the video session but also
withdetails about re-buffering eventswhich are known toheavily influenceuser experience
[41].

Finally, in this section we also define the Viewed Ratio parameter, as the ratio of the
watched part of the video over the total duration of the video. To calculate the duration of
the watched part of the video, wemeasure the time the last “s” request of the video session
was generated through the value of “rt” and allow an additional time-out period of 10 sec-
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onds. If the calculated time is smaller than the video duration, then we conclude that the
video was abandoned.

As the reader will observe, “s” requests can be used to extract very important parameters
of YouTube video sessions. To our knowledge, this is the first work to reverse engineer
these requests, which provide a simplemechanism to track YouTube sessions passively and
accurately.

3.3 TheDataset

Our measurement scenario included seven continuous days of data collection from the
campus network of UPC. The period of one week was selected in order to measure traffic
under various time and day-of-the-week conditions such as network peak load periods. To
perform the data collection, we developed a module able to identify and extract parame-
ters related to YouTube traffic. The module was used as an extension of the CoMo passive
network measurement platform [42], which was in turn installed on a dedicated machine,
capable of capturing all incoming and outgoing traffic from the campus network over a
full-duplex Gigabit Ethernet link. In Table 3.3.1 we provide important metrics from the
obtained data set, while more information on the network and the related traffic can be
found in the work of Sanjuas-Cuxart et al. [43].

# of video sessions 62778
Measurement period 26 Nov - 3 Dec 2012
Unique Video IDs 54847

# of sessions containing adv. 7423 (11.82%)
# of ads skipped 3719 (50.1%)

adv. time watched (mean) 21.31 sec
adv. full duration (mean) 35.29 sec
video duration (mean) 490.6 sec
session duration (mean) 172 sec

Table 3.3.1: Data set metrics
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3.4 Results

In this section we initially measure the different parameters that can have an impact on
QoE and later we proceed to estimate their impact on the QoE perceived by the end user.

3.4.1 Initial Delays

Figure 3.4.1: ECDF plots of the Initiation, Redirection and Resolution Delays

In Figure 3.4.1 the empirical CDF plots of the three initial delays are depicted. In more
detail, we can see that the Resolution Delay contributes the least in the total delay before
the video playback start, as it is the smallest inmagnitude. Although there are some irregu-
larities in the distribution of the Resolution Delay, the vast majority of its values are below
400 ms and approximately the 63% of all the values are lower than 90 ms. The variance
that are observed around the 100ms and 30ms values can be associated with the different
response and processing times presented by different video servers.

The distribution of the Initiation Delay shown on Figure 3.4.1, shows that 95% of the
values are between 350 and 1100 ms. This distribution is more uniform than the previous
and the overall variation of the values is the smallest among the three delays. Given that
the Initiation Delay measures the time required to deliver the HTML code and different
scripts fromone server over a singleTCPconnection, the tight and uniformdistribution of
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the InitiationDelay agrees with the fact that YouTube video pages share the same structure
and are delivered from the same servers in a given geographical area.

On the other hand, the greatest contribution to the start-up delay comes from the Redi-
rection Delay. This is attributed to some sessions suffering from many re-directions until
the preferred video server is located. Each redirection that takes placemay add a significant
amount of delay to the particular part of the video session.

However this part of the session may also be further delayed from in-line video adver-
tisements that are presented to the viewer before the beginning of the playback of the de-
sired video. These advertisements are either non-skippable short clips with duration in the
range of 10 seconds, or longer clips that can be skipped by the user after 4 seconds.

It is important to notice that the presented results concerning the Initiation delay are
coherent with the corresponding Processing Time that can be found in [40]. Additionally,
the Redirection Delay is not equivalent but can be considered analogous to the Startup
Latency in the same paper. The ECDF plots of the two parameters are similar with the
difference that Redirection Delay is overall larger. This can be attributed to the introduc-
tion of the advertisements in the video sessions in our data set, which heavily affect the
Redirection Delay.

3.4.2 Download Rate

Figures 3.4.2 and 3.4.3 plot the empirical CDF of the Download Rate for four different
video formats. In all the cases the 1st “s” request reports that the download rate has a high
value, while in the following requests the download rate is reducing and after the 4th “s”
request is converging to a certain value. These results indicate that YouTube is making use
of a fast-start mechanism to fill as quickly as possible an initial buffer of large size. As soon
as it is full, then the rate at which video data is sent to the browser gradually reduces, to
reach to theminimum required download rate that will allow a smooth playback of a video
with the given format. As mentioned earlier, the required data-rate for each format can be
seen in Table 3.2.1.

The fast fill of a larger initial buffer serves the purpose of initiating the playback as soon
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Figure 3.4.2: ECDF plots of the Download Rate per “s” request for fmt=5, 18

as possible, in order to reduce the initial delay andmaintain playback in case of insufficient
bandwidth at the client side. The second part of this mechanism limits the download rate
to a minimum in order to minimize the unnecessary download video data in case the user
skips a part of a video or aborts the video session.

3.4.3 Advertisements

Another important aspect of the YouTube video sessions are the video advertisements that
are occasionally presented to the viewer before the playback of the requested video. Small
advertisementswith duration around 10 seconds cannot be skipped, while larger video ads
allow the user to skip them after watching 4 seconds of content. Since the delivery of the
advertisements occurs before the delivery of the requested video, they heavily affect the
Redirection Delay when they are present. In our measurements with the parameter “Ad
Duration” we calculate the time the advertisement was watched regardless to its duration
so that we can accurately monitor how it affects the video session.

In Figure 3.4.4 we show the distribution of the ratio between the AdDuration time and
the Watched Video time. This ratio indicates the magnitude of the advertisement time
compared to the video time. In the figure we observe that only approximately 12% of the
video sessions included advertisement videos and there is a 2% where the advertisement
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Figure 3.4.3: ECDF plots of the Download Rate per “s” request for fmt=34, 35

lasted longer than the video playback.

3.4.4 re-buffering delay

In Figure 3.4.5 we present the distribution of the re-buffering delay Sumover the complete
data-set and the distribution of the parameter per “s” request. The re-buffering delay Sum is
calculated from the addition of the individual re-buffering delay values introduced at each
video session. The interesting observations in this figure, is the lack of re-buffering delay for
the 73% of all the video sessions, while for the rest the values remain under 1 second with
the exception of approximately 5% of the sessions. In the 5% of the video sessions with
re-buffering delay over 1 second, the total delay can climb up to 60 seconds. To get a better
insight of how the re-buffering delay evolves during the video playback, we investigated
the values it takes per “s” request across all sessions. This information for the first 5 “s”
requests of every video is shown in the ECDF plot in 3.4.5. The selection of the first 5
requests gives us a view of the first one minute of video playback. In the plot we can see
that the re-buffering delay takes larger values in the first few seconds of the playback and
in the 2nd “s” request it reduces by a small amount. However, in the following 3 requests
the sessions there is an increase in the sessions where re-buffering delay is zero and for
the complementary sessions, the value of re-buffering delay is decreased significantly. The
above findings illustrate that users are more likely to experience large delay due to buffer
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Figure 3.4.4: ECDF of the ratio between advertisement duration and video playback
duration

depletion within the first thirty seconds of playback.

Figure 3.4.5: ECDF of re-buffering delay Sum for the complete data-set and per “s”
request

3.4.5 QoE estimation

In this part we estimate the impact of the different metrics presented so far on the QoE of
the user by measuring the abandoned video sessions. As mentioned in the Methodology
section, the parameter that we have at our disposal for that purpose is the Viewed Ratio
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parameter which is calculated from the “rt” parameters of the “s” requests and the video
duration. The plot in Figure 3.4.6 shows the ECDF plot of the Viewed Ratio Parameter.
In this figure we can observe that only 40% of the video sessions in the data-set were com-
pleted and 40% where not watched over half of their duration. These results are similar to
those presented in the corresponding section of [40].

Figure 3.4.6: ECDF plot of Viewed Ratio

It is necessary to point out that a user may not watch a video to its full length due to lack
of interest for the content. However, we illustrate in this section that the Viewed Ratio is
strongly affected by parameters that indicate delay, stalling of the playback and the exis-
tence of advertisements. Therefore, we show through our findings that the Viewed Ratio
can be effectively used as a metric of users’ QoE.

The three ECDF plots in Figure 3.4.7 show the relation of each of the initial delays with
the Viewed Ratio. In each plot the corresponding delay is split into three classes in order
to demonstrate how the Viewed Ratio is affected by the delay values in each class. In all
three cases the diagrams indicate that when the respective delay is increasing the Viewed
Ratio is decreasing. This means that users abandon sooner a video when they experience
higher values of delay due to poorer QoE. Although in this figure we illustrate results for
videos withmedium length, the same observations can bemade for larger or smaller video
duration.
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Figure 3.4.7: ECDF plots of Viewed Ratio for the Initial Delays.

In Figure 3.4.8 we show three ECDF plots, one for small videos with duration smaller
than 1minute, one formedium duration between 1 and 5minutes and one for large videos
lasting more than 5 minutes. In all the plots we examine how the Viewed Ratio is affected
with different values of the re-buffering delay. In particular we examine in all three plots
the following four cases: a) the total re-buffering delay per session is smaller than 0.5 sec-
onds, b) between 0.5 and 1 second, c) between 1 and 2 seconds and finally d) the total
re-buffering delay is larger than 2 seconds.

Figure 3.4.8: ECDF plots of Viewed Ratio for i) small, ii) medium and iii) large
videos with 4 classes of re-buffering delay in each case.

Similar observations canbemade for all thegraphs inFigure3.4.8. When the re-buffering
delay increases then the number of abandoned video sessions is also increasing and when
the re-buffering delay is larger than 2 seconds the vast majority of the video sessions are
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not completed. Therefore, we can see a strong correlation between the delay during a
video playback and the amount of video the viewers watch. When a video session suf-
fers from larger re-buffering delay, more and longer stalls in the playback are taking place
due to re-buffering events and therefore the user’s perceived QoE is degrading to a larger
scale, causing the user to abandon the session earlier.

In order to investigate how the user’sQoE is affected by the existence of video advertise-
ments in the beginning of a session, we plot Figure 3.4.9. Here, we only take into account
video sessions with advertisements. From these videos we distinguish those where the ad-
vertisement was skipped and those that was not skipped. This information is derived from
the comparison of the full duration of the ad video against the time the user watched the
ad. We assume that shorter watched times than the actual duration of the ad correspond
to skipped advertisements. Hence, from the ECDF plots of Figure 3.4.9 we conclude that
users who did not or could not skip the advertisement video, abandoned the video session
earlier while less users watched the entire video. The implication of the later observation
is that sessions where the ads were not skipped, resulted in poorer QoE for the users and
led them to eventually abandon the entire video session sooner.

When making an overall comparison of the figures presented in this subsection, we ob-
serve that fromall the studiedparameters the onewith the greatest impact onViewedRatio
is the re-buffering delay as can be seen in Figure 3.4.8. The increase of re-buffering delay is
causing a much greater increase in video abandonment than the increase of initial delay or
the introduction of non skipped ads. As a result, larger re-buffering delay during a video
session can cause greater degradation of QoE than the other two cases. This is observation
is logical due to the fact that re-buffering delay is linked to buffer depletion that in turn
causes stalls during the playback and strongly affects the user’s experience.

3.5 Chapter Summary

In this chapter we studied the sub-processes of YouTube’s video delivery mechanism and
identified the Redirection Delay as the greatest contributor in initial delay. Moreover, our
main finding in this work are the “s” requests which are used by YouTube to transfer sta-
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Figure 3.4.9: ECDF of Viewed Ratio for sessions with skipped Ads and Not skipped
Ads.

tistical information. The analysis of these requests, helped us conclude that there are pa-
rameters involved which can be used to extract important information about anomalies
throughout the video playback, such as re-buffering events and abandonment rate that are
strongly correlated with the quality of experience of the user. In addition, we measured
the impact that advertisement videos have on the initial delay and the video abandonment
rate and showed that users aremore likely to abort a videowhen the advertisements are not
skipped. Finally, from our study we concluded that the re-buffering delay is the parame-
ter with the highest impact on the user’s perceived QoE that eventually causes viewers to
abandon the watched videos.
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4
Measuring Video StreamingQoE from

Encrypted Traffic

4.1 Introduction

This chapter complements and extends the work that was presented in the previous chap-
ter. However, in contrast to the previous methodology for monitoring the video stream-
ing QoE from clear-text traffic, this part of the thesis presents a novel methodology for
detecting video streaming QoE issues from both clear-text and encrypted traffic. In more
detail, we develop predictive models for detecting different levels of QoE degradation that
is caused by three key influence factors, i.e. stalling, the average video quality and the qual-
ity variations. The models are then evaluated on the production network of a large scale
mobile operator, where we show that despite encryption our methodology can accurately
detect different types of QoE problems with 72%-92% accuracy, while even higher perfor-
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mance is achieved when dealing with clear-text traffic.

4.1.1 Problem Statement

Adaptive streaming and encryption are nowadays the default technologies used by thema-
jority of the popular content providers. The widespread adoption of these new technolo-
gies has given rise to a new set of challenges for identifying video QoE issues and has ren-
dered previous solutions obsolete.

DeepPacket Inspection (DPI) solutions for extracting qualitymetrics, such as the video
resolution and stall characteristics [12], [7], do not work anymore with encrypted traffic.
Moreover, adaptive quality switching has introduced new factors that affect the user’s ex-
perience, i.e. quality switching amplitude and frequency. However, these factors were not
included in previous models for video QoE.

These changes in video streaming technologies, have caused a high demand, not only by
network operators but also the by research community, for updated tools andmethods for
detecting and quantifying quality issues. Towards this end, this work aims to provide new
methods for assessing the different types of impairments that affect the users’ QoE from
encrypted traffic.

Although many services have already made the migration towards adaptive streaming,
their platforms continue tomaintain backward compatibilitywith traditional static stream-
ing. Therefore, one of the main challenges in this work, is to provide a solution which will
be compatible with current but also previous video streaming technologies.

Moreover, with end-to-end encryption enabled, a great part of the metrics that were
previously available in the network traffic for detecting QoE issues is now becoming in-
accessible. For this reason, one of our challenges is to identify the right metrics from the
limited amount of information that is provided by encrypted traffic and build the models
to detect quality impairments. In order to accomplish that, we need to reverse engineer
the video services and rely on machine learning and time series analysis.

Finally, in order to preserve the user’s privacy but at the same to make our solution as
generalizable as possible, we focus on developing a methodology that will be capable of
detecting problems fromnetwork traffic alone andwill not depend on the instrumentation
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of devices or video players and therefore it can be easily deployed by operators.

4.2 Dataset

The set which is presented in this section is constructed from unencrypted data that con-
tains the ground truth for the QoE impairments of each video session. This information is
then used to create the predictive models for identifying each impairment type. We then
move to a set of encrypted data to validate the previously constructed models using con-
trolled experiments.

4.2.1 Weblogs

Thedata is collected fromawebproxy that is deployedon the cellular networkof a largeEu-
ropean provider. The proxy is capable of registering all unencrypted HTTP traffic includ-
ing IP-port tuples, URI’s, object sizes, transaction times, request time-stamps and more.
Moreover, each log is annotated with a set of transport layer performance metrics, i.e.
bandwidth-delayproduct (BDP), bytes-in-flight (BIF), packet loss, packet retransmissions
and RTT. The BDP is equal to the link’s capacity divided by its round-trip delay and repre-
sents the maximum amount of bytes that can be transferred by the link at any given time.

The dataset is created from YouTube traffic weblogs which are collected over a period
of 45 days spanning from February to April 2016. From all the HTTP traffic that is gen-
erated by the service, we keep the weblogs that correspond to video and audio segment
downloads and the signalling exchanged between the video player and the service during
playback.

All the data is anonymized before the extraction by removing all private information
such as user agents, subscriber and handset identifiers, MAC and IP addresses and so on.
The only identifier which is preserved is the unique 16-character video session IDwhich is
generated by YouTube. This parameter is described in more detail in Section 4.2.2.

We find that YouTube is themost suitable candidate among the currently popular video
streaming services for developing and evaluating our methodology. The main reasons for
this are i) the service’s huge popularity which allows the generation of a very rich dataset
in a short time window, ii) the diversity of the provided content in terms of video formats,
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qualities anddurations, iii) its popularity amongmobile users and iv) the adoptionofmod-
ern technologies i.e. HTTPAdaptive Streaming (HAS),HTML-based video playback and
pacing.

Moreover, most of the popular video sharing services are currently following YouTube’s
streamingparadigm, adopting adaptive streaming, a varietyof supportedcodecs andHTML-
based players.

Note that althoughGoogle has in the recent years deployedHTTPS for all of its services
including YouTube, we can still observe significant amount of video sessions in clear-text
HTTP in our dataset. This is attributed to the fact that many users use legacy devices or
players that either do not support TLS encryption or do not have it enabled by default.

Nevertheless, we verified through experiments in the lab that apart from the encryption
which is enabled by default, the delivery mechanism and overall behaviour of the app re-
mains the same with newer devices with modern browsers and the latest version of the
app.

In the weblogs, each segment download is generated from the client with a separate
HTTP request and therefore we obtain a new entry for each new video chunk. From the
list of metrics mentioned above, we also compute the chunk size and the chunk time that
indicates the time when a video chunk arrives at the client, since in our experiments we
found they bring relevant information to model the QoE impairments. The complete list
of the metrics extracted from the traffic can be found in Table 4.2.1.

The final set consists of approximately 390,000 unique video sessions. However, only
3% of these are adaptive streaming sessions. This imbalance is expected since we are able
to observe traffic from mainly legacy devices and video players which do not support the
more recently adopted adaptive technology.

For the methodology of the stall detection we take the entire dataset, while for the de-
velopment of the average representation and the representation quality switch detection
we only keep the videos that made use of adaptive streaming.
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Network Features Ground Truth (URI)
minimum RTT chunk resolution
average RTT stall count

maximum RTT stall duration
Bandwidth-delay product video session ID
average bytes-in-flight

maximum bytes-in-flight
% packet loss

% packet retransmissions
chunk size
chunk time

Table 4.2.1: Metrics that we extract from the operator’s web logs (left column) and
the ones that are reverse engineered from the request URIs (right column). The fea-
tures (left) are available for encrypted and non-encrypted flows whereas the ground
truth is only available for non-encrypted sessions.

4.2.2 Ground Truth

From themeta-data that are passed as parameters in theURIs of theHTTP requests we are
able to collect the ground truth that will be used in the evaluation phase. In more detail,
these parameters carry three main types of statistics, i.e. generic device and player stats,
content stats and playback stats [7].

The generic stats include information about the user’s device such as OS, locale, screen
resolution, player type and soon. Oneof themost importantparameters here, is theunique
video session ID.This ID is a 16-character hash that is randomly generated and it is unique
to each session. We use it to identify and group together all the weblogs that belong to the
same video session.

The content stats are extracted from theHTTP requests for downloading the individual
video segments. One of the the parameters in this group is the ‘content type’, which in-
dicates if the segment contains video or audio content and the multimedia container that
was used to encode it, e.g. MP4, FLV or WebM. ‘Itag’ is another parameter which is used
to specify the bit-rate, frame-rate and resolution of the segment, which we use to obtain
the ground truth for the changes in representation quality throughout the session.
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Finally, the playback statistics are included in the statistical reports that are periodically
sent from the player to Google servers during the playback. Each report contains informa-
tion that summarizes the progress of the playback since the previous report was generated.
Different flags are used in the reports to specify if the video has successfully loaded, if the
playbackhas started, pausedor stopped and if therewas a stall andhow long it lasted. These
indicators allow us to discover if a video was played throughout or abandoned and more
important, identify the frequency and duration of stalls.

Out of the information that is available in the unencrypted data, we only use the chunk
resolution, the stall count and duration and the video session ID (Table 4.2.1).

These features will be used as the ground truth for training the detectionmodels in Sec-
tion 4.3. After the completion of training phase, the access to the ground truth from unen-
crypted traffic will no longer be required and even if YouTube removes this information or
deploys encryption for all sessions, the methodology will still be applicable.

4.2.3 Data Preparation

Before starting the analysis, we ensure that any logs that correspond to cached and/or com-
pressed content by the proxy are removed from the dataset.

Next, after the ground truth for the stalls and representation switches is extracted, all the
logs that belong to the same video session are identified by the common session ID and are
then grouped together.

Thus, each entry in the dataset corresponds to a unique video session which includes
information about the total numberof stalls and their duration, aswell as the characteristics
of each chunk such as the quality representation, size, download time-stamp, but also the
transport layer statistics like RTT, loss, re-transmissions, BDP and bytes-in-flight for each
chunk download.

4.3 Building theDetection Framework

Our approach involves first the development and testing of the detection framework with
unencrypted data. As soon as we verify that the constructedmodels can leverage the clear-
text dataset, we can proceed to test the frameworkwith data fromencrypted video streams.
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Asmentioned in Section 2, there are three main types of impairments whichmay cause
the degradation of poor video QoE, the frequency and duration of stalls, the session’s Av-
erage Representation Quality and the Representation Quality Variation [38].

The initial delay is not considered as part of our video QoE model given its small con-
tribution on the overall user experience as explained in 2.

In this sectionwedescribe the process of identifying from the limitednumber ofmetrics
that are offered by the encrypted traffic, those that are the most significant for creating
predictive models to detect each of the three types of impairments. An important part of
this process is the feature construction that allows the generation of new more powerful
features from the already existing ones.

Next, we show that there is a different set of metrics that better describes each type of
impairment and contributes more information to the detection model.

In order to generate predictive models for detecting the level of stalling and the aver-
age representation, we use Machine Learning (ML) and in particular the Random Forest
algorithm and 10-fold cross-validation.

Classification is preferredover regression given thatwedivide the data in discrete classes
in both scenarios and themodels are required to identify in which class each video session
belongs based on the amount of stalling or the level of the average representation.

4.3.1 Stall Detection

Feature Construction

Fromthe traffic featuresdescribed inSection4.2 (Table4.2.1),wegenerate summary statis-
tics, i.e. max, min, mean, standard deviation, 25th, 50th and 75th percentiles for each of
the metrics, resulting in 70 new metrics.

Among all the performance metrics that we take into consideration, the chunk size is
one of the most important for detecting stalls. If we take an example of a video session
were stalling has occurred (Figure 4.3.1), we can see the significant changes in the chunk
size when the two events take place at the third and the seventeenth second of the video
session.

More specifically, whenever there is an outage on the player’s buffer that results in a
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stall, the player will request small chunks which can be downloaded much faster so that
the buffer will be filled as soon as possible and the video playback can resume. Then the
size of the chunkswill gradually increase and remain at amaximumvalue during the steady
state as long as no further issues occur.

Therefore, we understand that we can significantly improve the accuracy of the stall de-
tection model by including the sizes of the chunks in our feature set.
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Figure 4.3.1: Changes in chunk sizes in a video session with stalls.

After all the required features have been generated, the dataset is then split into sessions
without stalls and sessionswhere at least one stall has occurred. The information regarding
the number of stalls observed during a video session and their duration, is the ground truth
which is extracted from the meta-data of URIs as mentioned in Section 4.2.

Figure 4.3.2 (left) illustrates the distribution of the number of stalls that occurred per
video session. Weobserve that 12%of all the sessionshave suffered fromrebufferingevents,
while about 8% was affected by more than 1 event.
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Figure 4.3.2: ECDF of number of stalls (left) and rebuffering ratio (right) per session

Labelling

Next, we use the information from the ground truth to label the data and create a predictive
model. To do this, first we calculate the re-buffering ratio (RR) for each video session as
the ratio of the sum of the duration tstall_k of each of the total K stalls over the duration of
the entire session ttotal (eq. 4.1)

RR =

∑K
k=1 tstall_k
ttotal

(4.1)

The sessions are then labelled according to the rule below. The definition of three levels
of stalling, i.e. no stalling, mild and severe, allows a more detailed view of the degree to
which the stalls affect the user.

Stall labels :


“no stalling : RR = 0
“mild stalling : 0 > RR ≥ 0.1
“severe stalling : RR > 0.1

The RR threshold for distinguishing mild and severe stalling is set to 0.1, since in their
work [44] Krishnan et al. have shown that when the RR is over 0.1, the severity of the
stalling causes such a quality degradation that leads the users to abandon the video.

Figure 4.3.2 (right) shows the distribution of the RR per video session. We can observe
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that the sessions with RR equal or greater thatn 0.1 correspond to approximately 10% of
the distribution.

Feature Selection

We then proceed to apply Feature Selection (FS) using theCorrelation-basedFeature Sub-
set Selection (CfsSubsetEval) with the Best First search algorithm to reduce the number
of features from 70 to the following four, BDP mean, packet re-transmissions max, chunk
size min and the chunk size standard deviation.

The output of the feature selection algorithm reveals that there are three important fac-
tors that are correlated with stalling, BDP which is equivalent to throughput, number of
retransmissions and chunk size. The limited throughput and increased number of retrans-
mitted packets are QoS metrics which are performance indicators of congested networks
and/or networks with limited bandwidth where stalling is more likely to occur.

Table 4.3.1 shows the gain of each of the features that were obtained after FSwas applied
and their respective informationgains. The informationgain represents the contributionof
each feature in the construction of the predictivemodel. Features with higher information
gain have a higher correlation with the problems that we want the model to detect and are
used more frequently by the classifier.

The higher gains for the minimum and standard deviation of the chunk size indicate
that both these features carry important information for detecting if a video suffered from
stalls or not. Smaller chunk sizes correspond to lower quality streams that are frequently
selected by the user or the adaptive algorithm in the presence of poor network conditions
and limited bandwidth.

On the other hand, larger deviation of the size of chunks is related to sudden changes in
the network’s performance that in turn lead to quality switches during playback. In both
cases the videos which are streamed under these conditions aremore prone to stalling due
to buffer outages.

TheBDP and number of packet retransmissions have amore clear and direct correlation
to low bandwidth and congestion scenarios where the speed at which the video buffer is
filled is limitted and therefore there is a much higher probability of stalling. These metrics
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can be beneficial specially for cases of traditional streamingwhere the video is downloaded
over a single connection.

info. gain feature
0.45 chunk size minimum
0.25 chunk size std. deviation
0.18 BDP mean
0.12 packet retransmissions max

Table 4.3.1: Features and respective gains for the stall detection model.

Training and Testing the Predictive Model

In order to avoid biasing the results during the test phase, we balance the number of in-
stances among the three classes before training the classifier. The instances in the classes
are then restored to their original numbers for testing.

Overall, the classifier is able to make predictions with 93.5% accuracy. The proposed
stall detection model is a significant improvement over previous approaches [20] where
the achieved accuracy was approximately 84% for a binary classification. In contrast, our
model not only achieves much higher accuracy but it also can predict the severity of the
stalling that affected the user.

Theoutput of the test phase of themodel in terms ofTruePositives (TP), False Positives
(FP), Precision and Recall can be found in Table 4.3.2, while the corresponding confusion
matrix is shown in Table 4.3.3.

Precision is calculated as the ratioofTPoverTPandFPandcorresponds to the accuracy
with which a certain problem is predicted. Recall is equal to the ratio of TP divided by the
total instances in this class andmeasures the models’s ability to correctly identify the QoE
issue of a video session from the data set.

From the confusion matrix we can see that the classification errors occur between in-
stances without stalls and those with mild stalls but also between mild and severe. How-
ever, significantly fewermisclassifications happen between the severe and “no stall” classes.
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Therefore, it is straightforward that the errors occur due to the classifier’s inability to
correctly identify marginal cases where the RR is close to the RR thresholds we defined
for labelling the instances. Hence, instances with RR slightly over zero can be falsely pre-
dicted as healthy sessions without stalls and thus increasing the number of FP. The same
applies for cases where the RR is marginally over 10%, which can be identified as mildly
problematic and vice versa.

In more detail, although some marginal instances belong to different classes, they often
have similar characteristics, such as throughput delay and loss. The similarity between in-
stances of different classes can cause confusion to the classifier resulting to the generation
of FP.

From Table 4.3.2, we can see that the healthy sessions are predicted with higher Preci-
sion and Recall when compared to the other two classes. Moreover, the confusion matrix
in Table 4.3.3 indicates that very few sessions have been misclassified as mildly or severely
problematic.

These indicators show that healthy video sessions are streamed in significantly better
network conditions as opposed to the problematic ones. This is translated to higher BDP
and close to zero packet retransmissions for the vast majority of the instances. Addition-
ally, healthy conditions allow higher quality streams with fewer or no quality switches.
The combination of these characteristics allow the algorithm to easily distinguish healthy
videos from problematic ones.

The separation of problematic sessions can be more challenging however, which can be
verified from respective values in the confusion matrix. Here, in contrast to the healthy
cases, there is a much higher number of misclassifications between the videos with mild
stalls and those with severe stalls. In these cases, the chunk size often is not sufficient to
indicate the amount of stalling. The reason for this is that frequently the minimum video
quality is already selected due to limited bandwidth and therefore the minimum chunk
size or its standard deviation will not contribute significant information for detecting the
amount of stalling that took place during a video session.
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Class TPRate FPRate Precision Recall
no stalls 0.977 0.111 0.965 0.977

mild stalls 0.809 0.035 0.816 0.809
severe stalls 0.793 0.009 0.887 0.793
weighted avg. 0.935 0.09 0.934 0.935

Table 4.3.2: Classifier’s output for the stall detection model

original label predicted label
no stalls mild stalls severe stalls

no stalls 97.76% 2.06% 0.18%
mild stalls 14.7% 80.9% 4.4%
severe stalls 4.2% 16.5% 79.3%

Table 4.3.3: Stall detection confusion matrix

4.3.2 Average Representation Detection

Feature Construction

In order to detect the average representation of videos with higher accuracy, in addition to
the 10 features that are already available in the dataset, we construct five new ones, i.e. the
chunk average size, the chunk size delta, the chunk time delta, the average throughput and
the throughput cumulative sum. The chunk resolution is only used for the ground truth
and labelling of the instances and not for the construction of the predictivemodel. Hence,
we have a total of 14 features from which we extract the following statistics, minimum,
mean, maximum, std. deviation and 5th, 10th, 15th, 20th, 25th, 50th, 75th, 80th, 85th,
90th and 95th percentiles. As a result, the total number of features we end up with is equal
to 210.

The chunk average size is calculated from the sizes of all the individual chunks in a video.
Thesizeof a chunkhas a strongcorrelationwith the respectivequality of the video segment.
The chunk size delta represents the difference in the size of consecutive chunks while the
chunk time delta corresponds to the inter-arrival time of video chunks. These parameters
are indicators of representation switches which in turn affect the average representation of
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the session and will be discussed in more detail in Section 4.3.3.
Figure 4.3.3 presents a video session with a representation switch from 144p to 480p.

Each point in the plot represents a video chunk, while the labels above the points indicate
the segments’ resolutions. The x axis corresponds to the video session relative time and
the y axis to the size of the video segments. In this example there is a representation switch
from 144p to 480p at t = 22 of the time line. This is translated to a significant increase
for both chunk Δt and chunk Δsize, which indicates that they can be relevant indicators of
quality switches.
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Figure 4.3.3: Δt and Δsize in a video session with a representation switch

The average throughput is calculated from the individual throughputs of all the chunks,
while the cusum is their cumulative sum. The later is used as an indicator of variations in
throughput.

Labelling

For the detection of the average representation of a video session, it is necessary to cat-
egorize the videos in three main categories based on their average resolution, low (LD),
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standard (SD) and high definition (HD). Given that in our dataset all the observed reso-
lutions take only a few standard values, i.e. 144p, 240p, 360p, 480p, 720p and 1080p, we
label all videos with resolutions 144p and 240p as LD, 360p and 480p as SD and all videos
with higher resolution as HD.

In the dataset 57% of the videos have LD average quality, 38% have SD quality and only
5% have HD. This is an expected finding in our case where videos are streamed using lim-
ited mobile data plans and on handheld devices that often come whith smaller screens
which leads users to opt for LD and SD video qualities.

However, we need to also account for cases where there are representation changes dur-
ing the playback. For these videos, we calculate the average representation μ from the res-
olutions of all the segments. We proceed to label the instances in the dataset following the
rule below for calculating the Representation Quality RQ.

RQ =


HD : μ > 480
SD : 480 ≥ μ ≥ 360
LD : μ < 360

Feature Selection

TheFS is again performedwith the aid of CfsSubsetEval and Best First. After the selection
there are 15 features remaining out of the initial 210. These features are listed inTable 4.3.4,
ranked by their respective information gain.

We observe that statistics derived from the chunk size are the ones with the highest rank
and represent the vast majority of the 15 features. This is a meaningful and expected result
since the chunk sizes are highly correlated with the different representation qualities.

Moreover, the list of features also contains the BDP and the BIF which are proportional
to the amount of bytes that can be delivered by the network but also the throughput cusum
which is related to the throughput variations throughout the video session.
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info. gain feature
0.41 chunk size 75%
0.39 chunk size 85%
0.38 chunk size 90%
0.37 chunk size 50%
0.33 chunk size max
0.32 chunk avg size mean
0.22 BIF avg max
0.21 cumsum throughput min
0.2 chunk Δsize max
0.19 chunk size std
0.16 chunk Δsize std
0.15 chunk Δt 25%
0.06 BDP 90%
0.05 BIF maximum min
0.03 RTT minimum min

Table 4.3.4: Features used for the Average Representation detection.

Training and Testing the Predictive Model

The model to predict the average representation quality is again built using ML and Ran-
domForest. The training is donewith balanced classes and then the trainedmodel is tested
on the entire set. The obtained overall accuracy in this case is 84.5%. The accuracy for each
class is provided in Table 4.3.5 and the corresponding confusion matrix in Table 4.3.6.

Class TPRate FPRate Precision Recall
LD 0.9 0.206 0.845 0.9
SD 0.768 0.106 0.82 0.768
HD 0.756 0.003 0.945 0.756

weighted avg. 0.841 0.156 0.841 0.841

Table 4.3.5: Classifier’s output for the average representation model

Theaccuracies in the later table reveal that ourmodel is able to predict the average qual-
ity of LD videos with very high accuracy but with slightly reduced accuracy in the case of
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original label predicted label
LD SD HD

LD 90% 9.9% 0.1%
SD 22.7% 76.8% 0.5%
HD 6.8% 18.2% 75%

Table 4.3.6: Average representation confusion matrix

SD and HD videos. Nevertheless, the overall but also the individual accuracies remain in
high levels, which verify the model’s good performance.

When further investigating the accuracy loss however, we identify that its caused by
the increased number of misclassifications that occur in the SD and HD classes. More
specifically, a considerable amount of SD video sessions is falsely detected as LD, while
18% of HD videos are identified as SD.

This behavior is attributed to the quality downscales that happen during a video ses-
sion. As a result one part of the video is streamed in higher quality and the part after the
downscale is streamed with lower quality. The differences in chunk sizes between the two
qualities of a session lead to the incorrect classification of the video. Of course the effects
of this phenomenon cannot be observed for LD videos since there is no lower quality to
downgrade to and chunk sizes remain consistent throughout the session.

4.3.3 Representation Quality Switch Detection

Adaptive streaming can adjust the representation of the video during playback in order to
compensate for changes in the network conditions and reduce the likelihood of playback
buffer outages that lead to stalls. Theduration and frequencyof the representation changes,
also known as Presentation Quality Switch Rate (PQSR), as well as the amplitude of the
switch can have a negative impact on the perceived QoE.

Filtering

During the start-up phase, many content providers employ a fast start mechanism that al-
lows them to fill the playout buffer and start the playback as fast as possible, effectively
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reducing the start-up delay. This short initial part of a video session may have very differ-
ent characteristics in terms of segment sizes, inter-segment arrival times and throughput
when compared to the much longer steady phase.

To reduce the noise introduced by the start-up phase in the detection of resolution vari-
ations, we remove the first ten seconds of all video sessions in our dataset. Given that this
initial section represents a very small fraction of the entire video session (the average ses-
sion duration is approximately 180 seconds), we can safely remove it to reduce the noise
introduced by the start-up phase while maintaining more than 95% of the session.

Labelling

In order to build amodel for quality switching detection, it is necessary to first quantify the
switches in terms of frequency and amplitude. To this end, we define twometrics, the time
spent in each representation tr, the frequency of representation switches F and the switch
amplitude A.

The switching frequency F is simply calculated as the total number of switches that were
observed in a video. The lower the value this metric has, the better the quality of the cor-
responding video is.

Finally, equation 4.2 which is based on the work of Yin et al.[45], expresses the switch
amplitude A as the normalized sum of all the amplitudes of representation switches be-
tween consecutive segments rk and rk+1. Again, A is analogous to the degradation of QoE
since large representation changes which lead to poor QoE will return higher values of A.

A =
1

K − 1

K−1∑
k=1

|rk+1 − rk| (4.2)

The two metrics are then combined to a single indicator of the representation variation
Var using linear combination. Next, each instance in the dataset is classified in one of three
main categories, no variation, mild variation and high variation, based on the value of Var.
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Change Detection

During the study of the sessions withmany representation changes, we observe that when-
ever the adaptive algorithm enforces a change in the representation of the video, a new
start-up phase is initiated for the new representation. During this phase, the size and inter-
arrival times of the segments are reduced significantly until a certain threshold in the play-
out buffer has been reached and the video download returns to the steady phase.

In the video session in Figure 4.3.3, we can see there is a steady state in terms of size and
inter-arrival times for the first quality. When the representation switch occurs however,
the chunk time delta and size delta are gradually increasing until a steady state is reached
again.

Therefore, for the purpose of more accurately capturing the representation changes we
use the two features that were used in section 4.3.2, the segment size delta Δsize and seg-
ment time delta Δt.

Themost suitable approach to detect representation changes, is to perform a time-series
analysis. This method allows the identification of abrupt changes in the values of different
metrics in the dimension of time that are correlated with the switches of representations.

In more detail, our analysis of video sessions with quality switches showed that when-
ever a change in resolution takes place, a new start-up phase is initiated in order to fill the
buffer with data from the new representation as fast as possible. This phase is character-
ized by video segments with small sizes and small inter-arrival times which will increase
gradually until the steady state is reached once again.

We find that themetric which better captures the changes in both the size and the inter-
arrival of the video segments, is the product Δsize× Δt. Specifically, the multiplication of
the two parameters will combine but at the same time emphasize the effects of each one.
Therefore, for each video session in the dataset, we calculate a new time series where each
point corresponds to the aforementioned product.

While there aremany tools and algorithms for detecting abrupt changes in a time series,
we find that themost suitable for the purposes of this work is theCumulative SumControl
Chart (CUSUM) which was developed by E.S. Page [46].

CUSUMis a changedetectionmonitoring techniquewhichallows thedetectionof shifts
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from themean of a given sample of points in a time series. When a point exceeds an upper
or lower threshold then a change is found. In our case, instead of thresholds we use the
standard deviation of the output of the change detection algorithm. The standard devia-
tion is capable of capturing themagnitude of the changes that occurred and is an indicator
of high variance.

Figure 4.3.4, shows the distributions of the standard deviation of the change detection
output for sessions with and without variance. We observe that there is significant sepa-
ration between the two distributions and by defining a threshold at value 500 on the hor-
izontal axis, we are capable of correctly identifying 78% of the sessions without variance
and 76% of those that have representation variations.

Figure 4.3.4: CDF of change detection output for videos with and without resolution
changes.

Apart from the time-series analysis, ML was also considered to develop a model for the
detection of representation switches. However, it did not perform as well as the proposed
methodology did and for this reason that approach was not considered.
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4.4 Evaluationwith Encrypted Traffic

In this section we present and discuss the findings from the evaluation of the models that
were developed in Section 4.3 with encrypted data. This step is important for verifying
that the proposed methodology can perform with similar accuracy when dealing with en-
crypted traffic.

4.4.1 Ground Truth

For the collection of the encrypted traffic, we developed an Android application which is
responsible for automatically launchingYouTube videoswhich are randomly selected from
the list of the 100 most popular videos on the website [47]. All videos are played using
the latest version of the stock YouTube app for Android, where encryption is enabled by
default.

Apart from handling the playback of videos, the app has also the capability to extract
performance measurements related to the video that is being played. In more detail, by
accessing the device’s log, it can identify and log the playback status of a video, i.e. if the
playback has started, paused, stopped or if a stall has occurred. Therefore, we do not only
detect if the video was watched throughout its full length or abandoned earlier, but also
identify any stalling events and their duration. This information is used as the ground truth
for labeling the data and evaluating the accuracy of the stall detection model.

In order to capture the ground truth related to the representation quality switches we
need access to the metadata in the HTTP requests that are responsible for the download
of the individual video chunks. However, these requests are encrypted by default by the
YouTube application and the required information cannot be captured by means of traffic
monitoring.

Although solutions such as Man-in-the-middle (MITM) proxies are common in such
use cases for decrypting the traffic generated by the device, we believe that they are not
practical since they alter the path between the client and the server, but also change the
encryption scheme by establishing two separate TLS connections instead of one.

Tomake sure that the ground truth for the quality switches is obtainedwithout tamper-
ing with the encryption scheme or the traffic between the player and the content server,
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we reverse engineer the YouTube application and pinpoint the method which is respon-
sible for constructing and performing HTTP requests. Our application then ‘hooks’ each
invocation of this method and extracts its result, which in this case is the full URL of the
HTTP request. The URL is then parsed to extract the required ground truth.

Finally, our app will periodically aggregate and send the collected information from the
videos to a remote server. The local copyof this information is thendeleted from thedevice
to free up space.

4.4.2 Dataset

Next, the app was installed on a Samsung Galaxy S2 device with a SIM card with an un-
limited 3G data plan. The instrumented phone was given to a user who was instructed to
carry it at all times for a period of 25 days. Theuserwasmotivated to launch the application
when moving to increase the probability of QoE issues.

As a result, we generated a dataset for the ground truth and a dataset from the encrypted
traffic corresponding to 722 video sessions. Each entry in the ground truth dataset corre-
sponds to a unique segment and the video session ID which the segment belongs to, the
timestamp thatmarks the beginning of the chunk download, a field to indicate if it is an au-
dio or video segment, the total number and duration of the stalls observed in the session
and finally its quality representation.

Theencrypted trafficdata is collected again from theproxy in the formofweblogs. How-
ever, since the flows are encrypted, information such as the session ID, the stall character-
istics and the quality level of each chunk are not available. Therefore, we only extract the
timestamp of the HTTP request, the server IP address and port, the size of the requested
object and the TCP statistics which were described in detail in Section 4.2.1.

Although the session ID is available in theground truthdataset and it is used togroup the
video segment statistics in unique sessions, this parameter is missing from the encrypted
data. Even so, we find that it is possible to identify the encrypted segments that belong to
the same session and group them together.

To achieve this we go through the following steps:

• Identify the traffic that corresponds to a single subscriber and remove all requests
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that do not belong to YouTube by filtering out those that have domain names not
related to the service.

• Next, we look for the unique HTTP traffic patterns that take place at the beginning
of a new video session but also after the completion of the playback. These include
requests tom.youtube.com and i.ytimg.comwhich are responsible for downloading
multiplewebobjects such asHTML, scripts and images to construct the video’sweb
page.

• Longer periodswithout traffic that correspond to the time between consecutive ses-
sions are identified in order to clearly define the beginning and ending of each ses-
sion.

Thismethodology has high accuracy as it successfully identified the vast majority of the
sessions that were launched during the entire period of themeasurements. However, it can
be limited in scenarios were the same subscriber launches multiple videos in parallel and
not sequentially. Although such cases are quite rare, it can be challenging to identify the
segments that belong to the same video session.

Then the two datasets can be easily joined by matching the respective timestamps and
the chunk count per session. As a result, the final dataset contains the same metrics that
were described in the left column of Table 4.2.1. Having the exact same set of features in
both datasets is necessary to allow the evaluation of the trained models that were created
in the previous section with the new data from the encrypted traffic.

4.4.3 Dataset Comparison

In this section we characterize the two datasets and make a comparison of the key fea-
tures. This will help verify that the encrypted YouTube service behaves similarly to the
unecrypted and the model built for plain traffic works for encrypted traffic as well.

More specifically, in Figure 4.4.1 we present the distributions of the segment size (left)
for encrypted and clear-text. The right figure shows the comparison between the two dis-
tributions for the segment inter-arrival times.
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In the case of the segment size, there is a significant overlap between the two distribu-
tions. This indicates that there is a common pattern with respect to the downloaded chunk
sizes of the videos in both datasets which can be translated to videos streamed with simi-
lar qualities. Only 10% of the segments were larger than 1MB which can be found in HD
videos, while the majority of the segment sizes are concentrated at or below 500KBwhich
corresponds to SD video quality.

The distributions for the segment inter-arrival times also have very common character-
istics. However, 60% of the encrypted chunks have slightly lower values in comparison
with the respective unencrypted data. The shorter times between chunks are indicative
of lower bandwidth availability that results in faster depletion of the playout buffer and a
more frequent request of new segments. This observation is expected since a large part
of the encrypted videos was downloaded while the user was commuting where network
conditions can significantly deteriorate.

Figure 4.4.1: CDF of the segment size (left) and segment inter-arrival time (right)
for encrypted and unencrypted traffic.
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4.4.4 Stall Detection

Before evaluating themodel for detecting stalls, we repeat the feature construction process
described in Section 4.3.1. However, an automated feature selection like the one employed
in the previous section is no longer necessary sincewe already know the important features
that are required to make predictions and the rest are safely removed. Next, the trained
model from Section 4.3.1 is directly tested with encrypted traffic.

The resulting accuracy is 91.8%which corresponds toonly 1.7% lowerperformance than
the evaluation with unencrypted data. Nevertheless, this is still an excellent result which
demonstrates that the training set that we used created a very accurate model that can be
applied to encrypted traffic with equal success.

Table 4.4.1 shows the evaluation results in terms of Precision and Recall andTable 4.4.2
the corresponding confusion matrix. Here we can see that the performance has improved
for the videos without stalls, it remained roughly the same for sessions affected by mild
stalling but has decreased for the case of videos with severe stalls.

Class TPRate FPRate Precision Recall
no stalls 0.97 0.19 0.96 0.97

mild stalls 0.75 0.04 0.79 0.75
severe stalls 0.64 0.02 0.6 0.54
weighted avg. 0.92 0.16 0.92 0.92

Table 4.4.1: Classifier’s output for the stall detection evaluation

original label predicted label
no stalls mild stalls severe stalls

no stalls 97.2% 2.5% 0.3%
mild stalls 18.6% 75.2% 6.2%
severe stalls 2% 32.4% 65.6%

Table 4.4.2: Stall detection confusion matrix
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Thedetection of non-problematic videos is done with higher accuracy than the one ob-
served in Section 4.3 because there is smaller diversity in the network conditions where
the healthy sessions occur. This is attributed to the fact that the majority of these sessions
are generatedwhen the user is static either at the office or at home, where the network con-
ditions have a constant performance and as a result, the classifier can more easily identify
that these sessions did not have any issues.

The main source of the overall accuracy loss in this evaluation however, is the class of
videos with sever stalls. From the confusion matrix it is apparent that this is a result of the
increased number of videos with severe stalls that were falsely detected as mild stalls. This
is a problem that was also observed to a lesser extent in the training and evaluation with
the unencrypted dataset (Section 4.3.1).

Although the low performance for the severe stalls class is attributed to the same rea-
sons thatweredescribed in theprevious section, the further decrease in accuracyoriginates
from the fact that in the new datasetmost of the sessions with severe stalls have a Rebuffer-
ing Ratio slightly higher than 0.1. Remember that 0.1 is the borderline that was defined to
separate sessions with mild and severe stalls. Therefore, it becomes more difficult for the
classifier to distinguish to which class these videos belong to.

4.4.5 Average Representation Detection

The evaluation of the secondmodel for the detection of the average representation is done
following the same process as previously. The extended set of features is generated by
means of feature construction, followed by the manual removal of the features which do
not contribute to themodel. This results in the same 15 parameters that were presented in
Table 4.3.4.

The evaluation is performedwith the same approach as previously, where the encrypted
dataset is used as a test set for the trained model. The process returns an overall accuracy
equal to 81.9% which is approximately 2.5% less than the respective result we got when
using the unencrypted dataset in Section 4.3.2. Again, this is an overall good indicator that
themodel can perform the detectionwith almost equally good accuracywhendealingwith
encrypted traffic.
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In Tables 4.4.3 and 4.4.4, we can seemore details regarding the performance of the eval-
uation per label. Specifically, although the detection of LD and SD videos is done with
slightly reduced accuracy, we still get satisfactory performance as we can see from the Pre-
cision and Recall values. If we look at the confusion matrix below however, we observe
that there is an increase in the LD videos which weremisclassified as SD.This is attributed
to the fact that in the current dataset the number of 240p videos in the LD category is sig-
nificantly higher than the 144p. This causes a shift in the distribution of the average quality
for this category toward the higher end, which in turn causes the incorrect classification of
a percentage of these videos as SD.

Another reason behind the reduction of the accuracy is the reduced detection capabili-
ties for theHDvideos. In this case, thePrecision andRecall for this class haveboth reduced
significantly. At the same time, from the confusionmatrix we see that a significant amount
of videos have been incorrectly identified as SD quality. This poor performance is a result
of the very small number of videos that are available in the HD class. When combined
with the also relatively small number of HD videos that were used to train the model, this
results in a class where the training and testingwas donewith small number of samples and
therefore reduced detection capabilities for this class.

This problem can be easily alleviated by introducing a training set that is much richer
in HD videos. This will allow the creation of a predictive model which will be based on a
more diverse dataset thatwill be capable of amore accurate detection of the average quality
of HD videos with different characteristics.

Class TPRate FPRate Precision Recall
LD 0.845 0.203 0.853 0.845
SD 0.789 0.157 0.775 0.789
HD 0.513 0.003 0.641 0.513

weighted avg. 0.819 0.183 0.819 0.819

Table 4.4.3: Accuracies from the evaluation for the average representation detection
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original label predicted label
LD SD HD

LD 84.5% 15.4% 0.1%
SD 20.4% 78.9% 0.7%
HD 15% 33.75% 51.25%

Table 4.4.4: The confusion matrix from the average representation evaluation

4.4.6 Representation Quality Switch Detection

The last phase of the evaluation is done for detecting quality switches. In this case, there
is no trained model that can be directly applied to the encrypted data. In contrast, the
methodology relies on the detection of changes that happen in the time intervals between
segment downloads and the difference in size between consecutive segments.

In this evaluation there is no requirement for feature construction or feature selection.
We only need to calculate the time series of the products Δsize × Δt for each video in the
dataset which is going to be used as input for the change detection algorithm. Next, we
apply the change detection on each session and from that we take the standard deviation.

In order to validate themethodology from Section 4.3.3, we use the same value that was
proposed in that section as a threshold for the standard deviation of the change detection
output.

STD(CUSUM(Δsize × Δt)) = 500 (4.3)

According to the proposed methodology, all sessions below the threshold should rep-
resent approximately 78% of the sessions without quality switches and the sessions above
the threshold should represent 76% of the sessions with quality switches (Figure 4.3.4).

Next, the dataset is split into two parts, i.e. the sessions with score below the threshold
and those with a score above it. From the ground truth from the encrypted data, we are
able to evaluate if the predefined threshold allows the detection of variance with accuracy
equal to the one demonstrated in Section 4.3.3.

Our analysis reveals that the first part of the dataset consists of 76.9% of videos without
any quality change, while in the second part we find 71.7% of the sessions with quality
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switches. These accuracies are lower by 1.1% and 4.3% respectively as compared to the
results from the evaluation with unencrypted data.

The decrease in accuracy for detecting videos with quality switches indicates that the
encrypted data consists of videos where the average quality variance is smaller than the
one that was observed in the previous section. As a result, the distribution of (4.3) shifted
towards the smaller values and after the threshold was applied, lower percentage of prob-
lematic sessions was correctly identified.

4.5 Limitations

Themethodologypresented in this chapterwasdevelopedusing information fromYouTube
video sessions that were streamed with the service’s current configuration. However, the
predictive power of the models responsible for detecting QoE impairments can be limited
in the case YouTube changes its video delivery scheme. In such a scenario, the models
that were affected by the changes need to be trained and evaluated again with an updated
dataset.

Moreover, we do not study the evaluation of themethodology with other video stream-
ing services in order to verify to what extent this approach can be generalized. However,
our analysis of other popular video streaming services such as Vevo, Vimeo, Dailymotion
and so on, has revealed that they have adopted the same technologies that YouTube is us-
ing for content delivery such as adaptive streaming, rate limiting, wide range of codecs and
qualities and HTML5-based playback. This common set of characteristics is a strong in-
dicator that our methodology can be generalized to a number of other streaming services
and motivates us to include it in the future steps of this work.

4.6 Chapter Summary

In this chapter we presented a novel framework for detecting from encrypted traffic the 3
key factors that impact both adaptive and classical video streamingQoE, i.e. stalls, average
quality and quality switching.

Next, we demonstrated through evaluations on encrypted and unencrypted traffic, that
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the proposed models can detect different levels of impairments with accuracies as high as
93.5%.

One of the main findings of the work is that the changes in size and inter-arrival times
of video segments are among the most important indicators of quality impairments. The
incorporation of these features in our detection framework resulted in significant improve-
ments in accuracy.

We showed that the framework can perform very well on a real production network us-
ing a few key performance metrics from a single vantage point and without the require-
ment of instrumented clients or additional vantage points, so it can easily be deployed by
network operators. The trainedmodels can be then directly applied on the passively mon-
itored traffic and report issues in real time.
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5
Identifying the Root Cause of Video

Streaming Issues

After having established working methodologies for monitoring the video quality from
clear-text and encrypted traffic in Chapters 3 and 4, in this Chapter we investigate how
to identify the underlying faults that lead to video QoE issues and how to locate the of-
fending part of the network. Towards this end, we develop a framework for diagnosing
the root cause of mobile video QoE issues with the aid of machine learning. Our solution
can take advantage of information collected at multiple vantage points between the video
server and the mobile device to pinpoint the source of the problem. Moreover, our design
works for different video types (e.g., bitrate, duration, ...) and contexts (e.g., wireless tech-
nology, encryption, ...) After training the system with a series of simulated faults in the
lab, we analyzed the performance of each vantage point separately and when combined,
in controlled and real world deployments. In both cases we find that the involved entities
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can independently detect QoE issues and that only a few vantage points are required to
identify a problem’s location and nature.

5.1 Approach andChallenges

Approach - Machine learning has been widely used to help solve complex problems, in-
cluding fault diagnosis and analyzing the QoE of video, so it is a natural starting point for
our work. However, ML alone is not sufficient. For example, based on data collected on
themobile phone, it may be possible to learn that poorQoE is caused by “low bandwidth”,
but it will not be possible to identify what network is at fault, e.g., the wireless link versus
the Internet backbone.

To help both identify and pinpoint failures that may cause QoE issues during playback,
we propose to place measurement probes at multiple vantage points (VPs) along the path.
Collecting data at multiple points will provide a system-wide view that can help us isolate
performance metrics for different segments and devices. In an ideal world, we would be
able to collect measurements on every device, but this is not practical so we focus on a
scenario with three VPs, the two endpoints and the wireless AP.
Challenges -While there has been some research on diagnosing video QoE, as discussed
in Section 8, we are not aware of any work that uses a combination of network and hard-
ware metrics collected across multiple VPs. This novel approach introduces a number of
challenges.

First, the amountofdata that canbecollectedacross the vantagepoints is overwhelming.
We use feature construction and selection to identify the most useful features (Section
5.2.2).

Second, providers offer video with different quality, encoding, and duration, and also
use a variety of video deliverymechanisms such as static or adaptive streaming, pacing and
so on. Hence, the system needs to be agnostic to the details of both the video itself but
also how it is delivered. Our solution to this problem is to normalize themetrics we collect
(Section 5.3).

Third, while we found that a multiple vantage point solution is very effective, it may
not always be possible to obtain data from all vantage points of interest for reasons such
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as security or privacy concerns. To address this challenge, we designed our system so it
can also diagnose problems, albeit with lower accuracy, if it lacks data from some vantage
points. We also identify for each vantage point how much its measurements contribute to
the diagnosis (Section 5.4).

Finally, there is a growing demand for encrypted content delivery, even for video. This
poses a challenge for systems that rely on packet inspection or HTTP traffic analysis. Our
design avoids such analysis so it can be compatible with encrypted traffic. We similarly
avoid dependencies on any particular wireless technology to ensure wide applicability.

5.2 SystemDesign

The proposed framework consists of one or more probes along the data delivery path that
provide a number of performance metrics, and a QoE detection system that constructs the
necessary features from these metrics and applies machine learning algorithms in order to
extract the root cause.

5.2.1 Probes and Metrics

Ideally, eachnetworkdevice along thedatapathmayprovideperformance indicators. How-
ever in practice this is not feasible as it involves the cooperation of too many parties and
hardware vendors. Therefore, in our approach we focus on three key vantage points: i) the
mobile device, ii) the connection gateway (e.g., wireless router) and iii) the content server. These
three points can capture issues at the boundaries of each of the three segments in the video
delivery path: the user, the ISP and the content provider.

The probes collect performance metrics from all relevant layers, i.e. application, hard-
ware, transport and link layers, in order to capture the related faults which are described in
detail in Section 2.3.

Application layer: At the mobile probe, we capture statistics concerning the QoE of
video playback from themobileOS irrespectively of the video application (our implemen-
tation is done on Android). These metrics include the video startup delay, video stalls,
frame skips, the status of the buffer, video bit-rates, etc. These are used to construct an
estimated Mean Opinion Score ([6]) that represents the QoE ground-truth. Notice that
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while these metrics can indicate the existence of poor QoE, we are not including them as
features in the classifier, i.e., they are only used to provide the labeled QoE ground-truth.

OS/Hardware Layer: The hardware metrics provide information about the available
resources and the connectivity state at each of the three VPs. For that purpose, wemonitor
the percentage of load, CPU utilization, the amount of free system memory and so on. At
the endof a videoflow, aggregated information about each feature is returned (e.g., average,
minimum, maximum, standard deviation of CPU usage).

Transport layer: A set of 113 network metrics are collected per flow, including RTT,
number of packets, flow duration, window size, out-of-order and re-transmitted packets,
etc. These metrics are collected on all probes for each of network interface using tstat
[48]. Extensive documentation of these metrics can be found in [49].

Link/Physical layer: For each of the available network interfaces (NICs) the probes
extract information about the utilization, bandwidth, and dropped or retransmitted pack-
ets. In addition, forwireless links (WiFi/3G), the radio technology, the advertised rate and
signal strength information (RSSI) for each of the connected devices is monitored.

Similarly to theOS/hardwaremetrics, an aggregated set is calculated for the conditions
of eachNIC during a video flow. For instance, the average/minimumRSSI or the number
of disconnections/handovers during the flow is returned.

Our proposedmulti-VP approach enables each entitywith a deployedprobe todiagnose
problems within its own proximity, separately without requiring information from other
contributors. This way, providers or users are not limited by common privacy concerns
or collaboration restrictions. However, combining information from all three entities can
improve root cause analysis accuracy.

5.2.2 Detection System

Our systemusesmachine learning to learn the correlations betweenperformance andQoE
metrics and to create a model for detecting and characterizing the root cause of playback
problems. Before applying theML tools, we employ two techniques, FeatureConstruction
(FC) and Feature Selection (FS) that help improve the classifier’s performance.

FeatureConstruction aims inmaking the systemmore agnostic to the specifics of each
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scenario, i.e., video type, streaming techniques and network technology in our case. With
this method, our objective is to make the prediction model as generalizable as possible so
that it can be successfully applied for different devices, video players and video services but
also for different network conditions.

To achieve this task, we normalize the features that depend on any of the aforemen-
tioned variables. Specifically, we normalize all the parameters which are expressed in bytes
or packets with the respective total number of bytes or packets of the entire session. The
list of normalized features includes among others, the number of data packets, data bytes,
re-transmitted packets, re-transmitted bytes and out of order packets [49]. The same ap-
proach is applied for the video duration which is normalized with the total duration of the
video session.

Furthermore, we calculate the uplink and downlink utilization of each device’s NIC by
dividing the average transfer rate of a video session by themaximum transfer rate observed
for this NIC in the entire dataset. In this way, the utilization takes values between zero and
one.

TheRSSI is collected in one second intervals and then the average, maximum andmini-
mumvalues are calculated for the entire session. For our analysis we keep the average value
only as we observed that it has better predictive capabilities as compared to the maximum
and minimum.

FeatureSelection: To increase the performance of the algorithm in terms of both accu-
racy and execution time, it is important to significantly reduce the feature space size. The
reduction of the number of features used to train the algorithm, minimizes the over-fitting
problem that is either caused by multiple features with little or no predictive power, or by
features that contribute the same information to the prediction. After experimenting with
differentFS algorithms, wefind that theFastCorrelation-BasedFilter algorithm is themost
efficient in identifying a minimal set of features with high predictive power.

After applyingFS, thenumberof features is reduced from354 to22(Table5.2.1). Among
the remaining features, those with higher weights were the utilization of the interfaces, the
3 hardwaremetrics from themobile device: the free memory, the CPU utilization and the
RSSI. In section 5.4.4 we discuss how much each of these features contributes to identify-
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mobile CPU utilization mobile bytes retransmitted
mobile free memory router out-of-order pkts

mobile RSSI server avg RTT
mobile downlink utilization mobile first packet arrival
router downlink utilization router first packet arrival
server uplink utilization server max window size

mobile pkts retransmitted mobile min MSS
server min MSS mobile max RTT

server video data pkts router video data pkts
mobile max window size router reordered pkts

router avg RTT router max RTT

Table 5.2.1: Features after Feature Selection.

ing individual problems and the improvements resulting from both FS and FC.
MachineLearning: For the data processing and analysisweuse version 3.6.10 ofWeka.

Our classifier of choice for the data analysis is J48 which is an implementation of the popu-
larC4.5 algorithm. The training and testing of the algorithm is performedusing the 10-fold
cross-validation method.

C4.5 and Decision Trees in general, are known to perform well with noisy data. There-
fore, they are a suitable solution for building our predictive model since we intent to train
and test it on network data where noise is induced by background variations. We further
discuss background variations in Section 5.3.2.

Decision Trees outperformed other algorithms like Naive Bayes and Support Vector
Machines which we also evaluated with our datasets. Given that the datasets from our
experiments consist of a large number of features that often have a non-linear relation be-
tween them, decision trees arewell suited for our predictivemodel since their performance
is not affected by such non-linear relations, while their hierarchical structure fits well with
our troubleshooting approach.

Moreover, data collected from real networks can be noisy due to background variations
generated by multiple sources. For that reason, Decision Trees are a good solution since
they cope well with noisy data.

Finally, another advantage of using C4.5 is that contrary to algorithms such as SVMs,
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the model is not a black box. The constructed tree can be visualized and interpreted. This
can greatly simplify and improve the feature selection process and help optimize the per-
formance of the model.

5.3 Collecting theGroundTruth

In order to build and train our ML model, we need to collect the ground-truth: a set of
labeled good and problematic video instances with a known root-cause. This data set will
be used to train our model and also for controlled experiments. Finally, we will use our
model in real-world experiments to evaluate how well it can cope with the added noise
and complexity of the Internet. To achieve this, we implemented a testbed infrastructure
with four components i) a realistic hardware setupwithmultiple simulatedmobile devices
and backbone connections, ii) background workloads for generating constant variations,
iii) induced impairments that will simulate a specific scenario/label and iv) associatemean
opinion score to the collected measurements. To make the generated model as realistic as
possible, the settings of each component (e.g., loss rate, link speeds, load, etc) is based on
distributions that were derived from traces that were acquired from a network within a
large European ISP.

5.3.1 Setup

Simulated Problem Tools/Method Settings/Comments
LAN Shaping tc, netem LAN: BW cap=1-70Mb/s, 1ms delay, 0% loss
WAN Sahping tc, netem DSL: BW cap=7.8Mb/s, 50ms delay, 0.75% loss

Mobile: BW cap=5.22Mb/s, 100ms delay, 1.4% loss
LAN Congestion iperf UDP traffic from wired client to the router
WAN Congestion iperf UDP traffic from wired client to the server

Mobile Load stress CPU, memory, IO, disk workloads
Poor Signal Reception distance, attenuation Reduced SNR and data rate

WiFi Interference external interference source Transmission on the same frequency

Table 5.3.1: List of simulated problems, used tools and configurations
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Figure 5.3.1: Device setup in the testbed.

We set-up a simple testbed with a video server, a router/AP (Access Point) and three
different Android devices. The phones are connected to the Wireless LAN of the AP and
the server is connected via an Ethernet cable to the router. In addition to the devices that
are necessary to deliver the video, other wired andwireless devices are available in order to
generate background traffic on the network segments and interference on the wireless link
(Figure 5.3.1).

We use an Apache server to deliver the video. We downloaded the videos from the top
100most viewed list [50] fromYouTube to the server in either StandardorHighDefinition
to ensure the diversity of the video collection. ANetgearWNDR3800 runningOpenWRT
was used as a router/AP. It was configured to operate at 5GHz after verifying that there are
no surrounding sources of interference. Three types of Android devices were used as mo-
bile clients: SamsungGalaxyS II,Nexus S, andNexus 5. Thedevices are instrumentedwith
our developed application, which is responsible for performing HTTP video requests to
the server and opening the returned video stream using the default Android media player.

BW delay loss
DSL 7.8Mbit/s 50±20ms 0.75±0.5%

Mobile 5.22Mbit/s 100±30ms 1.4±1%

Table 5.3.2: Configuration of simulated links

In order to make the generated model as realistic as possible, tc and netem are used
to simulate a DSL and a mobile link with the settings shown in Table 5.3.2. The delay and
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loss for both configurations follow a normal distribution within the indicated ranges. As
mentioned in the previous part, these settings were obtained by analyzing traces from a
real deployment in a large ISP.

5.3.2 Background Variations

To recreate realistic network conditions, we introduce synthetic competing traffic work-
loads of different patterns. These background variations are based on real world network
traces and will aid in training the algorithm for successful deployment in the real world.
This is done using the D-ITG generator [51], which supports traffic generation based on
different applications suchasTelnet, FTP, gaming,VoIPandmore. WealsouseApacheBench
to create a realistic load on the server.

5.3.3 Simulated Problems

In order to generate the dataset that contains various levels of QoE, we iterate through
a set of scenarios in which we stream a randomly picked video and artificially induce a
problemwith varied intensity. Apart frombackground variations, we use problems in three
categories: networking, device hardware andwirelessmedium issues. The list of simulated
problems, the used methodology, and the specific configurations can be found in Table
5.3.1.

Shaping and Congestion. To simulate LAN congestion, we use multiple iperf in-
stances to transmit UDP traffic between the wired LAN client and the router; for WAN
congestionwegenerate trafficwith the samemethodbut between the server and the router.

For traffic shaping, different bandwidth, delay and loss restrictions are applied to the
corresponding link. TheLAN is shaped based on the data rates offered by common 802.11
standards such as a, b, g and n that are capable of providing rates per stream ranging from
1 up to 70Mbit/s. For the WAN shaping we set different restrictions for mobile and DSL
connections (Table 5.3.1).

Mobile Load. This category examines cases where the high load on the device hard-
ware does not allow the proper decoding and playback of the video. The load simulation is
performed with the workload generator tool stress that allows CPU, I/O, memory and
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disk workload generation.
Poor Wireless Signal Reception. We simulate poor signal reception by placing the

phone far from theAP and by attenuating the transmitted signal at theAP. As a result, there
is degradation in the wireless link’s SNR and the available data rate.

WiFi Interference. This scenario, involves creating interference on the wireless chan-
nel from external sources. In real use cases, interference can be caused by near-by devices
transmitting or receiving on the same frequency range. In our experiments interference is
created by generating large traffic workloads on an adjacent second WLAN operating on
the same channel as the AP we use for measurements.

5.3.4 MOS-based Labeling

Before performing the analysis, the instances in the dataset need to be labeled with the
QoE ground truth so they can be used for training and evaluation of the classifier. QoE
labeling has to express the quality of the video session in terms of user satisfaction so that
we can correlate problematic videos with the QoE.

For that purpose, we convert application performancemetrics such as startup delay and
the frequency and duration of stalls to Mean Opinion Score (MOS) ratings based on the
work ofMok et al. [3]whoderived an equation for calculating theMOS fromperformance
metrics by means of regression analysis. Based on the obtained scores, we label instances
with MOS greater than 3 as ‘good’, instances with scores between 2 and 3 as ‘mild’ and
those with MOS lower than 2 are labeled as ‘severe’.

For the detection of the location of the problem, we create six new labels based on the
combination of the segment that the issue occurs and its severity. For the evaluation of the
algorithm when detecting the exact problem, we label problematic instances according to
the type of the fault.

5.4 Evaluation

In this section, we evaluate the system’s performance in the controlled environment de-
scribed in Section 5.3 for detecting the existence of problems, detecting the problem’s lo-
cation and for identifying the exact problem. Later we will examine if the resulting model
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is robust enough to detect problems in the real deployment.
The training and testing of the algorithm in all the evaluation scenarios is performed

using 10-fold cross-validation. We present the system’s performance in terms of overall
accuracy, defined as the percentage of correctly predicted instances, i.e., the number of
True Positives (TP) and TrueNegatives (TN) over the total number of instances. In addi-
tion, we also use the Precision and Recall metrics. Precision is expressed by the ratio of TP
over TP and False Positives (FP) and represents the accuracy a certain class is predicted.
Recall is the ratio of TP divided by the total instances in this class and it measures the clas-
sifier’s ability to correctly identify the desired classes from the data set. In simple terms,
for a root-cause c (e.g., low RSSI), high precision means that the framework did not miss-
classify other problems as c, while high recallmeans that it foundmost of the instances that
exhibited c and, therefore, has a high probability of detecting this issue.

The collected dataset consists of 354 metrics including network metrics, the total num-
ber of rebuffering events, device CPU andmemory utilization and the RSSI. Note that the
rebuffering events are only used for labeling the instances and not as a feature. Overall,
there are 3919 instances in total out of which 3125 are labeled as good, 450 as mild and
344 as severe.

5.4.1 Who Can Detect the Existence of a Problem?

First, we examine which of the VPs (or which combination of them) is performing better
when identifying the existence of a problematic video flow. For that reason, we aggregate
all labels into three categories: ‘good’, ‘mild’ or ‘severe’, as discussed in section 5.3.

As observed in Fig 5.4.1, each one of the vantage points can independently discover
problematic sessions with similar accuracy: for themobile it is 88.1%, for the router 86.4%
and for the server 85.6%. Finally, when combining the measurements from all the vantage
points, the performance slightly improves to 88.8%. We observe that the mobile phone
achieves performance that is as good as the combination of all three vantage points as it
is in the position to measure both local (e.g., CPU/RSSI) and remote (e.g., server load,
network) issues.

Moreover, although the other two VPs achieve more than 85% accuracy in detecting
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good instances, they have significant problems to discern between mild and severe prob-
lems. In more detail, the system’s poor performance for mild problem detection is corre-
lated to the high number of false negatives where the problems are identified as severe and
the false negatives where they are labeled as healthy.
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Figure 5.4.1: Precision (left) and Recall (right) for problem detection in controlled
experiments.

Takeaway: The existence of healthy sessions can be identified with high accuracy from
each entity independently. ISPs and content providers can identify that there was a prob-
lem but they cannot be certain about its severity in terms of impact on the users’ QoE.
Moreover, we find that instrumentation closer to the mobile terminals where the majority
of the problems occur yields higher performance.

5.4.2 Who Can Detect a Problem’s Location?

Apart from the existence of a problem, it is important for each entity to understand if the
fault is within their network or who is to blame when there is an issue. For that reason, we
aggregate labels into three categories based on the location of the problem: mobile device,
LAN and WAN.

What is interesting however, is the ability of the server VP to localize problems in the
LAN segment. Specifically, the server shows almost equal performance to the router VP
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for detecting LAN problems. To better understand why this is the case, we inspect the
features that contribute most to detecting LAN problems. We find that for both VPs the
same features, RTT, first packet arrival delay and the number of retransmissions, are ranked
highest for LAN problem detection.

We also evaluated the benefits of usingVP pairs for location detection. However, we did
not observe any significant improvement in accuracy nor any intriguing result.

Takeaway: Content providers who deploy such a system have the ability to identify
if a problem has occurred on the ISP’s network. This information is useful to content
providers for spotting congested or under-provisioned ISP networks and pursue better
peering agreements with ISPs in order to minimize bottlenecks. ISPs can also identify
whether the issue has originated within their own network or the user’s LAN if the home
router is instrumented.

Finally, an instrumented application or an instrumented phone can provide valuable
information to the users to identify whether their home network, their ISP or the content
provider is to blame for poorQoE and it can significantly improve the accuracy of the other
entities if the measurements are shared.

5.4.3 Who Can Detect the Exact Problem?

Next, we trained and evaluated the algorithm using all the labels of problematic scenarios
that are available in our dataset, allowing us to assess the accuracy with which the classifier
can detect the exact root cause behind the problem experienced by the user. The overall ac-
curacy for detecting the exact problem, is 88.18% for themobile VP, 85.74% for the router,
84.2% for the server and 88.95% for all three VPs. These numbers demonstrate the sys-
tem’s high performance when carrying out the task of identifying the root cause behind
video QoE issues.

However, while the overall accuracy is good, we observe that certain vantage points ex-
hibit difficulties in discerning certain problems. Figure 5.4.2 shows the different accuracy
with which each issue is predicted, while Table 5.4.1 provides insights about the 3 metrics
with the highest prediction power for each label (notice that there are cases where only
two or even only one metric make significant contribution).
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WAN WAN LAN LAN MOBILE LOW WIFI
CONGESTED SHAPED CONGESTED SHAPED LOAD RSSI IN/FERENCE
1st pkt arrival 1st pkt arrival M RTT 1st pkt arrival CPU RSSI RSSI

M M RTT M out-of-ord. pkts M Util. M Util. MEM M RTT M pkts re-TX
M out-of-ord. pkts M Bytes re-TX M RTT M RTT MEM M Util.

R RTT R out-of-ord. pkts R RTT R RTT R 1st pkt arrival R RTT
R R 1st pkt arrival R RTT R 1st pkt arrival R 1st pkt arrival R RTT R out-of-ord. pkts R 1st pkt arrival

R Util. R 1st pkt arrival R Util. R pkts reordered R RTT
S Util. S Util. S data pkts S data pkts S data pkts S RTT

S S data pkts S data pkts S Util. S Util. S RTT S RTT S Util.
S RTT S win size S RTT S win size
R Util. S pkts re-TX R Util. M RTT CPU RSSI RSSI

C S Util. S Util. R 1st pkt arrival R Util. MEM CPU M pkts re-TX
M RTT R RTT M RTT M 1st pkt arrival M RTT MEM

Table 5.4.1: Feature ranking for exact problem detection (M=mobile, R=router,
S=server, C=combined)

Furthermore, we observe the high accuracy with whichWiFi interference and lowRSSI
related problems are predicted. From the figure it is clear that all the VPs in the system per-
form very well when detecting sessions which suffer from severe problems in the wireless
medium.

However, the detection of mild interference from the router and the server is done with
much lower accuracy. Given that these two VPs don’t have RSSI information, they are un-
able to distinguish the small variations caused bymild interference. As a result, we observe
from the classifier’s output that a large number ofmild interference instances are predicted
as healthy witch causes the particular label to be predicted with lower accuracy.

More information that help understand this behavior can be found inTable 5.4.1, where
for the router and the server, the highest ranked features are RTTand the first packet arrival
delaywhichdonot offermuch information about the performanceof thewirelessmedium.

Table 5.4.1 also offers interesting insights in the features with the highest prediction
power for mobile load cases. Specifically, when the mobile VP is used, CPU, memory
and RTT are the most important for detecting the problem. However, for the router and
server the highest ranked feature is the RTTwhich has an obviously very little information
regarding the load of the device. This can be reflected in the low performance of these two
VPs for identifying mobile load problems.

Specifically, for network related issues the important metrics are the interface utiliza-
tion, the RTT and the number of video packets. In wireless medium problem detection
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the greatest contribution is made from the RSSI when the mobile VP is used and from
RTT for the other two VPs.

The router and server VPs have very poor detection capabilities for mobile load issues
since the significant features in this case are the device CPU and memory load. The very
low accuracy for these problems by the router and serverVPs, is a result of the high number
of instances that are detected as healthywhich in turn has an impact on the number of false
positives.

Apart from themobile load, there are also other cases in Figure 5.4.2 such asmildWAN
congestion and shaping where both the server and the router VPs show lower detection
capabilities. This poor performance is attributed to the large number ofmiss-classifications
of these faults as either LAN congestion and shaping or healthy and thus increasing the
number of FP and FN.

However, for the case of the mobile load and WAN congestion, we find that the com-
bined use of the three VPs significantly improves the detection performance. These find-
ings canmotivate ISPs and content providers to pursue collaborations in order to improve
the performance.
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Figure 5.4.2: Precision and Recall for exact problem detection per VP.
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Takeaway: Each of the entities can independently perform well when detecting a large
variety of problems such as the ones related to wireless conditions, severe LAN andWAN
congestion and shaping. However, mobile devices are much more accurate in identifying
local problems related to high load or wireless interference. Furthermore, there cases such
asWANcongestion andmobile loadwhere the combination of all theVPs can significantly
improve the performance. Finally, while we observe that all three parties are capable of
identifying healthy video sessions with very high accuracy, these results indicate that in
order to perform a full-scale accurate root cause analysis, some collaboration between the
entities is desirable.

5.4.4 Which Features Help?

The objective of this section is to illustrate the improvements that can be achieved when
using different features to train the model. We evaluate the system with the combination
of the three VPs using seven different feature sets, RSSI, hardware metrics, interface uti-
lization, network delay parameters, TCP metrics, all the available features and finally with
the set of features after performing Feature Selection (FS) andFeatureConstruction (FC).
For the network delay parameters, we consider all the RTT metrics we have available from
the TCP flows.

Figure 5.4.3 shows the precision and recall for each of the inputs. When using only the
RSSI or onlymobile hardwaremetrics, the accuracy is lower than 35%. Using the interface
utilization alone, yields precision and recall values near 55%, while the use of delay alone
results in improved accuracies around 70%. The evaluation with the entire feature set fur-
ther increases the obtained accuracy by 5% but even more improvement is reached when
applying FS and FC, with precision and recall values above 80%.

From the information provided in Table 5.4.1, we observe that the utilization of the in-
terfaces contributes significantly in the detection of the majority of problems. This result
highlights the important role that feature construction plays in the problem detection ca-
pabilities of the system.

Moreover, oneof the features that is usedby almost allVPs for predicting congestion and
shaping issues, is the first packet arrival time. This metric is an indicator of video sessions
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Figure 5.4.3: Problem detection accuracy for different feature sets.

with longer startup delays but it is also correlated with network issues such as delay and
loss.

The metrics with higher predictive power for mobile load are the CPU and memory
utilization. For the server and the router VPs where these metrics are not available, RTT is
used insteadbutwith very poor results as shown inFigure 4, as it does not hold information
regarding the device’s hardware state.

Takeaway: The results indicate that the RTT and link utilization, as measured by each
vantage point are key metrics in performing RCA. Hardware andNICmetrics can further
help us to separate individual local issues. Moreover, it is evident that feature construction
and reduction plays a significant role in improving the system’s accuracy as constructed
features are highly ranked by the classifier.

5.5 RealWorld Experiments

In this section we describe and discuss the results of the system’s evaluation in two real
world settings. In the first environment, clients are in a corporate WiFi network where we
can artificially introduce faults. In the second case, clients access videos over a wide range
ofwireless networks includingboth3GandWiFi, where faults are not controlled andoccur
naturally. In both cases, clients retrieve videos from both a private server and YouTube.
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5.5.1 Experiments With Induced Faults

The purpose of the the real world experiments with induced faults, is to get labeled data
that will enable us to evaluate the robustness of the trained model on a real wireless net-
workwhich is characterized by unpredictable topology, constant variations in traffic, signal
strength and number of connected devices.

Setup

For the measurements, we distribute five Galaxy S II to equal number of users for a pe-
riod of one week. The phones are again equipped with an application that automatically
launches random videos from the top 100 list, while coordinating the network and hard-
ware probes. The users were instructed to carry the phones with them while inside the
wireless range in order to capture variations due to movement and received signal quality.

In these experiments, the videos are streamed from both our private video server and
fromYouTubewithprobabilities 0.25 and0.75 respectively. Weselect theseprobabilities so
thatwe endupwith adatasetwhere themajority ofmeasurements corresponds toYouTube
sessions and a smaller part to streams from our server. Finally, the phones, the wireless AP
and our server were instrumented with probes as described in 5.2.1.

Using the samemethodology as the one in the controlled experiments described in Sec-
tion 5.3, we introduce five different types of faults, lan congestion, wan congestion, mobile
load, low rssi and wifi interference. Furthermore, we ensure that the conditions of the net-
work allow to successfully load a video just before and after the induced fault. However,
since this a semi-controlled environment, we cannot fully guarantee that during each video
flow there are not additional (spontaneous) problems over the unmanaged Internet links
or video services.

The collected dataset consists of 2619 instances from which 1962 are good, while 463
have mild and 194 have severe QoE issues.

Real-World Evaluation

Our goal is to evaluate the ability of the classifier to predict labels in the real world scenario
based on the training that was performed using the controlled dataset.
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In this part, we demonstrate the system’s capability of detecting the existence of problem-
atic instances using either one of the probes or the combination of all three. The detection
is done with 88% accuracy when using the mobile probe, 84% when using the router and
81% when measurements from the server probe are only used. The combination of the
three probes yields accuracy of 88.1%.

Figure 5.5.1 illustrates the Precision and Recall values for this phase of the evaluation.
Overall, the results match the controlled experiments. In this case too, the mobile VP out-
performs the other two VPs. However, one notable difference is the increase in both Pre-
cision andRecall for themild problem detection. This can be attributed to the fact that the
variations and background noise in the current environment is less than the variations we
simulated in the controlled experiments.
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Figure 5.5.1: Precision and Recall for problem detection in the real world experi-
ments per vantage point.

Furthermore, we also observe equally good robustness of the trainedmodel in terms of
detecting the exact root cause of a playback problem. In this case, the combined use of the
three vantage points allows correct detection with accuracy of 82.9%. When using sepa-
rately themobile, the router and server VPwe obtain accuracies equal to 81.1%, 80.5% and
79.3% respectively.

FromFigure 5.5.2we see better performance for device load andwirelessmedium issues
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which is to be expected given the strong correlation of these faults with specific hardware
metrics. In the LAN congestion scenario we observe better results from the mobile and
the router VP while for the case ofWAN congestion the server is detecting problems with
higher accuracy.

For each of the entities that participate in the video delivery this means that the VP on
the client’s device is necessary for detecting the root causeof themajority of problems. ISPs
on the other hand, can effectively discover LAN faults but also wireless errors such as low
RSSI and interference. Finally, content providers can perform WAN fault identification
with good accuracy but fall short when it comes to finding faults that occur on the device
or in the wireless medium.

Takeaway: Our findings here are in agreement with those in the previous experiments
for problem detection and root cause identification. This is a strong indicator that our sys-
tem that was initially trained in a fully controlled environment can be successfully applied in the
wild. At the same time, smaller differences in the detection of some problems emphasize
the importance of continuous training. While collecting large-scale ground-truth in the
wildmight not feasible, it is still possible to acquire some labels as specific problems can be
recognized by experts within each entity (e.g., network engineers). Furthermore, ground-
truth about the quality of experience can be given bymeans of crowd-sourcing (i.e., people
complaining at call centers, or feedback provided by the users within the application).

5.5.2 Deployment Without Induced Faults

The final step in the evaluation is detecting faults that were not induced by us and, therefore,
might bemore complex. Furthermore, a particularly important aspect of this evaluation is
to test the system in mobile networks, given that there is a constantly growing number of
users who watch video over cellular broadband connections.

In this scenario too, we distribute five Samsung Galaxy S II devices to equal number of
users for one month with the instruction to carry the phones with them at all times. The
phones contain SIM cards with unlimited 3G data-plans, while the users were allowed to
connect them to any WiFi access point. This approach allowed us to test the system on a
multitude of networks that use either cellular or 802.11 technology.
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Figure 5.5.2: Precision and Recall for problem detection in the real world experi-
ments

The videos are again streamed from both our private video server and YouTube with
1:3 ratio so that the final dataset is richer in measurements from the YouTube service. A
probe collects network statistics on our video server for the sessions streamed from it.
With this methodology we can have three different VP combinations, i) (mobile, router,
server) when the user is streaming video fromour server while using ourWiFi, ii) (mobile,
router) when YouTube videos are streamed on ourWiFi, iii) (mobile, server) when videos
are delivered from our server over other networks and iv) (mobile) when streaming from
YouTube on other networks. Given that the majority of the videos were delivered over
3G and in order to make the results comparable between 3G and WiFi, we removed any
features from the router (therefore only the mobile and server vantage points are used).

Similar to the previous scenario we use the trained model from the controlled exper-
iments. For the real-world experiments, although all mobile-based measurements (e.g.,
hardware as well as the number of re-buffering events) are always available, the number
of other metrics varies depending on the number of VPs that were used. The real-world
dataset contains 3495 instances from which 2940 are good and 555 problematic.
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Does it Work in the wild with real faults?

Since the experiments are done in the wild, we cannot obtain the ground truth for the root
cause behind the stalls, only the ground truth for stalls and loading time. Therefore, we can
only mark instances as good or problematic.

In terms of identifying the existence of a problem, the mobile probe, server and their
combination still achieve a high accuracy and recall, as shown in Figure 5.5.3.

Similar to the controlled experiments, we find that themobile VP is a better choice than
the server for identifying both good and problematic instances, while the combined use
improves the system’s accuracy.

Takeaway: The results from the real world evaluation verify that the system is equally
effective when detecting problems in the wild evenwhen fewer VPs are available. This also
reveals that the system can capture successfully cases of mobility although they were not
covered in the training phase and it can cope with the diversity of mobile networks.

A closer look at the results shows that the detection of healthy video sessions is achieved
with high accuracy, there is some loss regarding the identification of problematic videos.
This loss occurs due to differences in the characteristics of the faults that we encounter
in the real world as compared to the ones we induced manually in the previous sections.
This effect can be minimized by introducing more VPs (e.g., on 3G RNCs) in order to
get more fine grain information about how smaller variations affect the video QoE and by
furthermore training the classifier with a wider range of problems. Finally, as discussed in
the previous section, these figures are likely to be improved once more labeled faults are
fed into the training set.

Identifying the Root-cause

We can use the trainedmodel from the controlled experiments to predict the root cause of
faults that occurred in the problematic sessions. The results of the predictor’s output can
be found in Table 5.5.1. As we observe, the most common type of problems occur within
the users’ local network (13% of all instances). Surprisingly only few (2%) of the instances
are estimated to be caused by low RSSI or WiFi interference as typically the videos fail to
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Figure 5.5.3: Precision and Recall for problem detection per VP pair in the real
world.

even start a TCP flow when there is very low signal. Furthermore, a number of instances
(4%) were problematic due to an estimated high mobile load.

As discussed in the previous section, we can directly calculate that the algorithm cor-
rectly identifies good instances with 85% accuracy. Furthermore, although it is not possi-
ble to verify all of these estimated root causes, we still have the ground truth for some of
them: mobile load and low RSSI.

Figure 5.5.4(left) shows the distribution of CPU load on the mobile device for prob-
lematic videos sessions as predicted by the video server Vantage Point. Two different dis-
tributions of theCPUground truth are given: video sessions that server VP labeled as high
“mobile load” and the remaining video sessions. The results show that, although the server
vantage point only has access to transport layer metrics (TCP statistics), the video flows
that were estimated as high mobile load have indeed much higher CPU utilization.

Similarly, Figure 5.5.4(right) shows the distribution of RSSI for the instances that were
considered as low RSSI from the point of view of the server’s vantage point. As before, we
observe that the server vantage point can successfully identify these instances despite the
fact that the phones were connected to various WiFi and 3G networks.

Takeaway: These results further reinforce our hypothesis that a model that was trained
in a controlled environment, is robust enough to be applied as a starting point on a real
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Figure 5.5.4: Comparing the server estimations about CPU (left) load and RSSI
(right) to the ground truth

world environmentwhere thenetwork conditions and the faults canbehighlydynamic and
unpredictable. Furthermore, we observed that even the service provider VPs can identify
problems that occurred within the users network or device (e.g., low RSSI or high CPU
usage) without any external information. However, we also need tomention that the root-
cause detection model is limited to detecting only the issues it was initially trained with.
As a result, it will not be able to detect new types of anomalies that were not introduced in
the training phase.

GOOD WAN LAN MOBILE LOW WIFI
CONG. CONG. LOAD RSSI INTER.
M S M S M S M S M S

2499 163 166 18 446 2 132 26 0 43 0

Table 5.5.1: Real-world root cause predictions (M=mild, S=severe)
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5.6 Practical Implications

For the enduser, our results indicate that even an isolatedmobile application that collects
measurements from multiple layers can successfully identify a large number of problems
without further instrumentation. Such a system can be a powerful tool towards diagnosing
videoplaybackQoE issues andwhere theyhaveoccurred. Therefore,when theuser ismade
aware of the location of the problem and if it is originating from the local network or the
device itself then troubleshoot it. Otherwise, the issue can be reported to the responsible
entity to take the necessary action.

For the ISPs, the results demonstrate that they can also independently identify prob-
lematic sessions, evenwhen traffic is encrypted. Furthermore, they can identify if the prob-
lems originate within their own network, in order to fix problematic segments and bottle-
necks, but also guide users to solve problems in their home and/or their devices.

For content providers, there are deployment benefits such as detecting loaded servers
and network segments in their CDN if the problem occurs on their side, or adapting the
content for problematic connectionswithout instrumenting the clientwhen theproblem is
originating from either the user’s or the ISP’s side. This is a valuable tool when identifying
SLAs and net neutrality violations.

Collaboration: As we showed in the majority of the controlled and real world eval-
uation scenarios, there are significant improvements (in terms of identifying all possible
problems) when two or more entities collaborate to troubleshoot QoE issues. The greater
benefits however, are obtained for the entities which collaborate with the end users, since
the mobile device has access to valuable information of the local hardware and network
performance. This calls for instrumented players or mobile devices.

At the same time, as collaborationsmight not be possible, an iterative root cause analysis
might be employedwhere each of the entities independently perform analysis within their
own infrastructure. Then they report to the other entities along the pathwhether or not the
problem has occurred in their segment. In this way, no sensitive information is exchanged
among users or providers, collaborations can be easier established and the deployment of
the system can span over a wider range of networks and devices.

Continuous Training: Once the system is deployed in one or more entities, its fault
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detection and root cause analysis capabilities can be further improved by means of con-
tinuous training. With this approach, a feedback loop can constantly update the training
dataset with new instances of already known issues and at the same time, introduce man-
ually labeled instances corresponding to new anomaly types. Hence, the model can be
re-trained with a more rich and diverse dataset and result in a higher accuracy system.

The continuous training methodology will help address one of the limitations of our
system, which is the inability to detect faults that it has not been trained for yet in the lab.
These would not only include new problems such as middleboxes and DNS or routing
miss-configurations but also the co-occurrence of problems that jointly affect video QoE.

5.7 Chapter Summary

In this chapter we presented a multi-vantage point system for detecting video QoE issues
and identifying their root cause. Our approach utilizes performancemetrics frommultiple
layers whichmakes it agnostic to video characteristics and streamingmechanisms but also
to encrypted traffic. With the aid of feature reduction and construction techniques, the
detection and RCA of problems is done with a minimal set of performance metrics while
we ensure that the methodology is generalizable and can be applied to different video ser-
vices and clients. We further showed that each of the entities which contribute to the video
delivery is capable of detecting poor QoE and identify underlying faults without having to
share information with other parties.

The next step in this work, is to extend the list of problems that can be identified and
train the system for multi-problem detection. To further improve the system’s accuracy,
we will examine dividing problematic sessions into more labels in order to obtain a more
fine grain classification of the severity of the problem.
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6
Combining PerformanceMetrics to Better

Capture Per-SectorQoE inMobile Networks

6.1 Introduction

In this chapter, we study how to bridge sector KPIs to reflect Quality of Experience (QoE)
ground truthmeasurements, namely throughput, latency and video streaming stall events.
We leverage one month of data collected in the operational network of mobile network
operator servingmore than 10million subscribers. We extensively investigate up to which
extent adopted methodologies efficiently capture QoE. Moreover, we challenge the cur-
rent state of the art by presenting data-driven approaches based on Particle Swarm Opti-
mization (PSO) metaheuristics and random forest regression algorithms, to better assess
sector performance. Results show that the proposed methodologies outperforms state of
the art solution improving the correlation with respect to the baseline by a factor of 3, and

94



Figure 6.2.1: Sketch of a mobile network. Notice that each tower might house multi-
ple sectors.

improving visibility on under-performing sectors. Our work opens new areas for research
inmonitoring solutions for enriching the quality and accuracy of the network performance
indicators collected at the network edge.

It is important to note that the thesis author has made contributions in the video QoE
parts of the work that is described in this chapter. More specifically, these contributions
include the collection of video streaming traffic, the extraction of performancemetrics and
QoE indicators and the labeling of video instances in order to provide the ground truth for
the training of the algorithm.

6.2 Monitoring network KPIs

Fig. 6.2.1 sketches the architecture of a 4G mobile network. The radio access consists of
hundreds of thousands of components (e.g., sectors, towers, and controllers). Those com-
pose the mobile network “last mile”, and bridge the users’ devices with the core network,
which enables access to voice calls and the Internet. To support troubleshooting and opti-
mization, the vendors providemonitoring platforms to (passively) collect KPIs from radio
access network elements andbackbone links. To simplify themonitoring complexity, KPIs
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normally are aggregated over time (with periodicity varying from minutes to hours) and
users.

There is no definitive list of KPIs. However, through the joint effort of vendors and
operators, it is easy to identify a set ofKPIswhose importance is acknowledgedbymultiple
parties [15–17, 27, 28]. Table 6.2.1 lists some examples. We can categorize KPIs into five
different groups:

• Signaling: These KPIs aremostly related to faults such as failure to establish a Radio
Access Bearer (RAB), or Radio Resource Control (RRC), or the fact that the sector
cannot efficiently reach the radio controllers.

• Voice: These KPIs capture failure to establish or maintain a voice call.

• Data availability: These metrics reflect the availability of high-speed data channels
(such as HSDPA/HSUPA) at any given time or the number of data-active con-
nected devices.

• Data Congestion: These metrics capture the fact that the capacity was reached. For
instance, the average number of users queuing to get an HSDPA/HSUPA channel,
or the number of times a data connection had to be dropped to make room for a
voice call. Furthermore, they indicate the percentage of time that the radio was ac-
tive transmitting data (radio utilization).

• Radio: Radio KPIs have to dowith interference, power statistics, measuredwireless
noise, signal conditions, etc.

6.2.1 Thresholding individual KPIs

The primary use of KPIs is to enable operators to monitor the health of the network and
to quickly identify bottlenecks. Therefore, it is natural to use KPIs as a way to flag network
conditions that deteriorate belowanestablishedperformance limit [17, 26, 52]. As a result,
for eachKPI, a thresholdhasbeen set. Such thresholdingmechanisms arewidely used in the
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KPI Thres. Category
Failed RRC/RAB requests ratio > 5% SignalingSignaling failure > 1%
Call setup failure rate > 2% VoiceCall drop rate > 5%
HSDPA/HSUPA session setup success % < 90%

DataAverage Users Queuing > 2
Time Slots Transmitting > 80%
Noise Rise > 10db Radio

Table 6.2.1: Example of some KPIs and thresholds that indicate poor QoE. Notice
that these are vendor-recommended values and, thus, they might differ from the ones
used by the operators.

industry, and allow network planners and radio resource operators to focus their attention
where it is required. Table 6.2.1 shows examples of such thresholds.

Default threshold values are proposed by the equipment vendors, while operators fur-
ther fine-tune them based on their experience, objectives, and domain knowledge. There-
fore, significant investment is made through drive tests, controlled experiments, and A-B
testing in order to identify performance bottlenecks, and how these relate to the KPIs and
thresholds [14, 26–29].

6.2.2 Combining different KPIs

While establishing thresholds for each KPI enables a fine-grained vision of specific prob-
lems, each network element is associated with hundreds of metrics. It is then desirable to
consolidatemeasurements into a single performance index so to i) quantify the “health” of
each network element, ii) easily assess the whole network status and trends and iii) narrow
down on sites that need attention.

An example of such indices is the hotspot score [17, 52, 53], which represents how “hot”
or problematic a given sector is. It is a weighted combination of thresholded KPIs related
to signaling, voice, data availability and data congestion:

sb = S (kb,w, t) =
n∑

i=1

wi · H (kb,i − ti) , (6.1)
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where b is the sector under study generating nKPIs collected in the vector kb. TheKPIs
are associated to weight w and threshold t vectors, while H(·) is the Heaviside step func-
tion which outputs 1 when the KPI value kb,i reaches the corresponding threshold ti and 0
otherwise. The higher the score sb, the more “hot” the sector b is. In a nutshell, a hotspot
score is a linear combination of the weights associated to KPIs that trigger.

Notice also that, sinceKPIs are gathered periodically, sb is time dependent, but we avoid
to express it in Eq. 6.1 for readability. This means that individual sb values can be further
combined (e.g., simply accumulated) to reflect performance over a longer time span. Sec-
tors that exhibit high scores for a long period of time (e.g., a few days or even weeks) can
then be flagged for intervention (such as changing the configuration, fixing possible faults,
adding capacity, or even upgrading the whole site to a newer technology like 4G). How-
ever, when referring to a hotspot score in the following, we will consider the values com-
puted using KPIs gathered at the baseline periodicity of the monitoring system, i.e., one
hour for the network under study.
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Figure 6.2.2: Ratio of sectors that achieve a certain hotspot score given the default
formula. The majority of sectors have a score of zero.

6.2.3 Challenging the state of the art

To better understand the hotspot score dynamics, let us consider a few examples related
to the whole set of 3G sectors of a real mobile network operator serving a country with
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over 10 million subscribers (see Sec. 6.4 for more details). Fig. 6.2.2a reports the fraction
of sectors having a certain hotspot score for an off peak hour. We consider only the KPI
valueswithin this hour to create per-sector scores. As expected, when the network is lightly
used, only a very small fraction of KPIs trigger with a maximum score of 2 (i.e., not critical
for performance). Instead, the scenario significantly changes when considering the peak
hour as reported in Fig. 6.2.2b. The distribution is bimodal, with a cluster of sectors having
a score higher than 8.

0 20 40 60 80 100 120 140
Worst performing sectors (0=Worst)

Radio

Data congestion

Data Availability

Voice

Signaling

Figure 6.2.3: The 150 sectors with the worse hotspot score and the type of KPIs
that triggered it.

Fig 6.2.3 shows 13 of the important KPIs (grouped in sub-classes) for the worse per-
forming 150 sectors out of tens of thousands in the network.¹ Columns are associated to
sectors, sorted by decreasing score values (worse performing sectors are on the left), while
colors are used to associateKPIs into categories (colored cells highlight whichKPI triggers
for which sector).

As previously introduced, the hotspot score is a mixture of signaling, voice, and data
KPIs. Among the three, typically signaling issues have the highest weights since they can
prevent utilization of voice and data. We can observe how those KPIs (Fig. 6.2.3 top) trig-
germore than the remaining ones. From left to right, we find sectors with signalling issues,
followed by the ones with poor voice quality, and finally the ones that are congested. Voice

¹We cannot reveal the exact list of KPIs nor the exact number of sectors due to their sensitive nature.
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problems are also highly valued due to the traditional service model of mobile operators,
and due to the fact that users clearly perceive voice failures when they occur. Finally, data
issues and congestion are given the lowest priority. Interestingly, the worse 60 sectors ex-
tensively trigger both voice and data KPIs, while for the rest there is a predominance of
data KPIs.

The previous figures are clear examples that state of the art KPI analysis is useful to spot
critical sites. However, this comes at the cost of a very rigid, static and empirical method-
ology for whichwe see a number of issues. First of all, it is unknown up towhich extent the
adopted approach reflects QoE as, to the best of our knowledge, no quantitative analysis
has been performed. Secondly, even assuming the hotspot score function is properly con-
figured, current techniques require a significant (domain knowledge and manual) effort
to keep tools at pace with the constant evolution of Internet services and new technolo-
gies. Finally, while the hotspot score provides rankings of overall performance, it does not
provide any indication about application specific-QoE.

One could argue that application-specific QoE is best captured through its own KPI.
However, this has a clear overhead: monitoring application performance in a large-scale
cellular network requires either the deployment of middle-boxes that are capable of inter-
preting application performance by analyzing the (mostly encrypted) traffic of millions of
users, or it requires collaboration with individual application developers in order to share
their KPIs. Therefore the question we try to answer is: could we use network KPIs that are
already collected to monitor the health of the network to get insights into app performance?

We believe there is the need to focus on network performance monitoring methodolo-
gies that i) shed light on the quality that people experience when interacting with specific
data applications (e.g., web or video) and ii) can adapt to the mobile network dynamics.
Hence, in this work, we address the following two challenges:

• We study hotspot scores using data collected from a real mobile network serving over
10million subscribers. Specifically, we investigateup towhichextent theused thresh-
old and weighting mechanisms are sufficient to identify under-performing sectors.

• Weprovide newmethodologies to enableus togain somevisibility onunder-performing
sectors. Specifically, we want to leverage the vast amount of data collected to create
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an automated data-driven framework capable to go beyond current domain knowl-
edge and empirically-driven approaches.

6.3 A data driven approach to KPIs analysis

We assume to have a set of KPI values per sector that we want to match with specific QoE
metrics that are affected by the performance of the edge-network, such as web throughput
and latency or video performance. In this section, we examine howwe can use the KPIs to
extract a score that bettermatches the ground truth. Based on Eq. 6.1, we identify two pos-
sible directions of exploration. On the one hand, we can keep the already defined hotspot
formula, but create an optimization engine to better tune its parameters: the weights and
the thresholds. On the other hand, we can create a new formula or an implicit model to
combine the same input KPIs.

6.3.1 Optimizing the current score function

Asmentioned, themost straightforwardmechanism to better relate a given ground truth g
and the scores s is by optimizing the thresholds t andweightsw involved in the calculation.
To relate g and s, we can use standard correlation. However, in our application, we are not
interested in the raw quantities in g and s, but rather in the sector rankings they define. In
fact, the twoquantities could lie in different ranges or have amonotonic non-linear relation
and still produce the same sector ranking. Therefore, a natural choice to measure the cor-
relation between g and s is the Spearman’s rank correlation coefficient [54], often called
Spearman’s ρ. The Spearman’s ρ is only affected by changes in the rankings of the input
variables, and is thus invariant to scale, location, andmonotonous non-linear relations. Its
output ranges from−1 (perfect reverse ranking) to 1 (exact same ranking).

Havingdefined the function relatingg and s, we cannow formulateourproblem in terms
of a classical optimization problem [55]: we want to find the weights w and thresholds t
that maximize

ρ(s, g), (6.2)
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where s = [s1, . . . sm] and g = [g1, . . . gm] are vectors collecting all m sector scores
and ground truth measurements, respectively. Notice that, as the values inw and t are real
numbers, we have a potentially infinite number of such combinations.

Given that the calculation of ρ is not directly differentiable (due to the ranking opera-
tion), and that it is computationally cheap (essentially involving two vector sorting, one
vector subtraction, and one vector multiplication), we decide to solve the previous op-
timization problem with a Metaheuristic algorithm [56]. Meta-heuristics conform a gen-
eral algorithmic framework for addressing optimization problems. Unlike classical opti-
mization algorithms and iterative methods, meta-heuristics make few assumptions about
the optimization problem being solved, and can thus be applied in a variety of problems,
including problems with non-differentiable functions. Meta-heuristics allow us to define
our own optimization function, while they provide a way of exploring the parameter space
(thresholds t and weightsw) in a structured and efficient way. Despite being approximate
and non-deterministic, metaheuristic algorithms can efficiently explore the search space
and provide near-optimal solutions within a reasonable amount of time [55], specially if
the optimization function is not computationally expensive (as it is in this case). These
methods are often inspired by processes occurring in nature, such as Darwinian natural
selection, annealing, and collective behaviour of ants [57].

Particle swarm optimization (PSO)

Particle swarm optimization (PSO) [58] is a population-based metaheuristic for solving
continuous and discrete optimization problems [55]. PSO has recently gained increas-
ing popularity among researchers and practitioners as a robust and efficient technique for
solvingdifficult optimizationproblems. Itmakes feworno assumptions about theproblem
being optimized, can search very large spaces of candidate solutions, and can be applied to
problems that are irregular, incomplete, noisy, dynamic, not necessarily differentiable, etc.
(see [55, 58, 59] and references therein).

PSO operates by having a population of candidate solutions, which are metaphorically
represented as particles. At each iteration, these particles explore the search-space accord-
ing to their current positions and a velocity towards a goal. They iteratively calculate the
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fitness ρ corresponding to their current position, and update the latter according to the
available knowledge of the search space. Themovement of a particle is affected by the best
position it has found but, in addition, it is also affected by the best known positions dis-
covered by other particles [59]. Moreover, particle movements are not deterministic, but
partly stochastic, thus facilitating the exploration of the search space.

Before delving into the details of our PSO algorithm, we first need to define what cor-
responds to a particle’s position, which we will denote by the vector xi. Specifically, in our
case, the position will correspond to the 2nweights and thresholds: xi = [w, t]. With that,
we see that we can easily constrain the search space with some domain/intuitive knowl-
edge, imposing upper and lower bounds for the particles’ positions. For the weights, we
define them to be −1 ≤ wi ≤ 1 (a resulting weight of zero means that the triggered KPI
does not influence the ground truth whereas values above or below zero contribute posi-
tively or negatively towards the score). For the thresholds, for eachKPI, theminimum and
maximum over all sectors is used such thatmin(ki) ≤ ti ≤ max(ki). When a particle exits
the search space, its position is reset to a random location inside the established bounds.

Algorithm1details the PSO functioning. First of all, we initialize τ particlesPi with ran-
dom positions x, random velocities v, and lowest possible personal fitness ρ = −1. Next,
we start iterating, with a maximum number of iterations λ. When iterations are finished,
we return the best found correlation ρ⋆ and position x⋆ which, as mentioned, comprises
the best found weights w⋆ and thresholds t⋆. The first inner loop of Algorithm 1 checks
every particle’s fitness by computing the Spearman’s ρ. A particle i updates its best known
location x⋆i and found correlation ρ⋆i if the latter has improved over the previous value the
particle had. The second inner loop performs the actual search towards a better solution.

The first step in the second inner loop is looking for promising positions found by the
particle’s neighbours. To facilitate exploration, it is common practice to consider differ-
ent interactions between the particles, grouping them in so-called neighbourhood topolo-
gies [55]. Inour implementation, particles are grouped followinga ring topology (Fig. 6.3.1).
Therefore, the neighborhood of a particle only consists of two other particles. Particles
that are neighbors in the ring collaborate together and influence each other. This implic-
itly creates small groups of particles that explore different parts of the search space, while
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Algorithm 1: Particle swarm optimization algorithm basics.
Input: The set of KPIs k, a scoring function S, the ground truth g, a fitness function ρ, and position bounds Γ.
Output: Best found correlation ρ⋆, weights w⋆ and thresholds t⋆.

Parameters: Maximum number of iterations λ, number of particles in the swarm τ, and mutation probability α.

// Initialize particles at random with correlations ρ⋆ = −1
P ← Init();

// Iterate
for l ∈ [1, λ] do

// For each particlePi = {xi, vi, x⋆i , ρ⋆i }
for i ∈ [1, τ] do

// Calculate ρ in the current position
w, t← xi;

for b ∈ [1,m] do
sb ← S(kb,w, t);

end
ρi = ρ(s, g);
// Update if better
if ρi ≥ ρ⋆i then

ρ⋆i , x
⋆
i ← ρi, xi;

end
end
// For each particlePi, identify theP ′

j particle in its
// neighbourhood having the highest ρ⋆j
P ′ ← GetNeighbors(P);

// For each particlePi = {xi, vi, x⋆i , ρ⋆i } and
// best neighborP ′

j = {xj, vj, x⋆j , ρ⋆j }
for i ∈ [1, τ] do

// Compute new velocity using random vectors u
vi = χ ·

(
vi+φ1u1 ⊗ (x⋆i − xi) + φ2u2 ⊗ (x⋆j − xi)

)
;

// Mutate velocity components with probability α
vi ← Mutate(α, vi);

// Compute new position
xi = xi + vi ;

// Constrain the particle within the desired bounds
xi ← Constrain(Γ, xi);

end
end
// Identify the particle j with the best correlation ρbestj
ρ⋆,w⋆, t⋆ ← ρj, xj;

return ρ⋆,w⋆, t⋆
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the ring itself is ultimately pulled towards the best known solution [59]. In the example of
Fig. 6.3.1, particle A will be influenced to move towards particle G (as it has found a solu-
tion with better correlation), whereas particle B will move towards particle C. Particle G
will keep moving towards the same direction.
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Figure 6.3.1: Swarm of 7 particles and the Spearman’s ρ of their best discovered po-
sition. Each particle movement is influenced by its own best found position and, at
the same time, is also guided toward the best known position of its two neighbours.

The next step in the second inner loop 1 updates the particles’ velocity². The new ve-
locity of a particle Pi (vi) is influenced by the current position xi, the distance from the
position with its best known fit x⋆i , and the distance from the best known fit of the closest
particle x⋆j . To further enhance the exploration capabilities of particles, the velocity vectors
defined by x⋆i − xi and x⋆j − xi are component-wise multiplied (⊗) with random vectors
u1 and u2, formed by uniformly-distributed random values between 0 and 1.

Constants χ,φ1, andφ2 arepre-set following the so-calledClerc’s constrictionmethod[59],
which is common practice in the PSO literature. These constants control the behaviour of
the particles, and allow an elegant andwell-explainedmethod for preventing explosion and
ensuring convergence [58]. In our implementation, to prevent the stagnation of the swarm

²Notice that a velocity vector in more than one dimension has a modulus and an angle. Therefore, it also
carries information of direction.
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and to facilitate escaping from local maxima, a further random mutation of the velocity
components is employed [60]. For that, we use a small probability α.

According to Algorithm 1, we need to define three parameters: the number of iterations
λ, the numberof particles τ, and themutationprobability α. Froma theoretical standpoint,
the larger the valueof λ and τ, thehigher the chances tofindgloballyoptimal solutions [59].
However, an unreasonably high value of those parameters could harm the efficiency of the
algorithm (in terms of computation time). In practice, we found that, with a ring of τ =

100 particles, α = 0.001 and λ = 500 iterations, we converge towards a solution that does
not significantly improve if we wait longer or perform additional trials. Fig. 6.3.2 shows
the sensitivity of the correlation ρ with respect to the number of iterations. The figure
also shows that, for 500 interations, only unreasonable settings of τ and α produce non-
optimal results. We empirically find these settings to correspond to τ < 50 and α > 10−3.
Therefore, we set α = 10−3.
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Figure 6.3.2: Sensitivity of PSO with respect to number of iterations considering dif-
ferent swarm sizes τ (a) and mutation probabilities α (b).

6.3.2 Improving over the current function

Until now,wehave only discussed how tooptimize the defaultweights and thresholds used
in the scoring function of Eq. 6.1. However, such function could be limited by the applica-
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tion of the thresholds, which hide the raw “analog” KPIs value. Thus, we could potentially
significantly improve the correlation between g and s by using the richer information in
the raw KPI values. We envision two alternative hotspot score functions.
Linear combinationof rawKPIs: this simply consists in removing the thresholding from
Eq. 6.1, such that

Ŝb(kb,w) =
n∑

i=1

wi · kb,i. (6.3)

To avoid having heavily asymmetric weights, we however need to normalize the KPIs to
be in the range between 0 and 1. This is the most simple model we can think of in order to
combine KPIs into a single hotspot score.
Non linear models: in this case, we rely on machine learning algorithms to explore non-
linear relationships between KPIs and the ground truth. More specifically, we will not
create anymore a scoring function, but we will associate directly KPIs and ground truth
g. A generic way to learn such association is through a machine learning regression algo-
rithm [61].

A machine learning-based approach indeed offers a number of advantages. Firstly, the
resultingmodel does not make any assumptions about the underlying function. Secondly,
the model can (potentially) produce an actual value of the estimated performance rather
than just a ranking. For instance, a regression tree [62] builds a model that exploits the
KPIs to estimate the actual conditions for each sector at that time: f(k) → ĝ. Depending
on the availability of ground truth for the training set, the predicted value ĝ can be any
condition that correlates with the KPIs.

At the same time, amachine learning-basedapproachpresents somedisadvantages. Firstly,
most machine learning models optimize against the target variable (e.g., mean squared er-
ror), whereas in the optimization processwe define our target: optimize the ranking. Thus,
this does not exactly match current practice, as operators would prefer a prioritized rank-
ing of sectors to address. Secondly, the resultingmachine learningmodel is often not easily
human-interpretable, and network engineers cannot modify it to include external restric-
tion such as SLAs or other priorities. Furthermore, certain KPIs might have significant
importance in terms of detecting a failure rather than a performance degradation. Thirdly,
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it breaks the current paradigm and the tools that are already used in operation.
In our experiments, we use the scikit-learn toolkit [63], a well-knownmachine learning

framework offering various techniques (e.g., decision trees, random forests, SVMs, neu-
ral network regression, etc). In preliminary analysis, the best results were achieved with
random forests [64]. We use the mean square error for our tree split criterion and 100 tree
estimators. To avoid any over-fitting, we restrict theminimumnumber of samples that end
up in leaf-nodes to 0.5% of the dataset, as this will not allow the tree to grow indefinitely.
These parameters were studiedwith separate training set and theywere later applied to our
validation data set.

6.4 Data sets

As introduced in Section 6.3, we aim to study how to combine sector KPIs to obtain a syn-
thetic score that better reflects users’ QoE. For this purpose, we combine two data sources
i) a set of KPIs collected per sector and per hour, ii) QoE metrics collected using weblogs
at per HTTP request granularity and then associated to specific sectors. We can think of
KPIs as the features that we aim to associate with the QoE ground truth.

We leverage onemonth of suchmeasurements, collected between January andFebruary
2016 in an operational mobile network serving over 10 million subscribers. To ease the
analysis and reduce the impact of night/day fluctuations, we study the peak hour (same
hour across multiple days). It is important to underline that the data sets capture the net-
work at scale, i.e., all sectors and all customers observed during the investigation period.

6.4.1 Sector KPIs - Features

As described in Section 6.2, a number ofKPIs related to i) signaling, ii) voice, iii) data avail-
ability, iv) data congestion and v) radio performance are collected. In total, we consider
21 KPIs ³ for n sectors, where n is in the order of hundreds of thousands. These KPIs are
measured hourly.

³KPIs are selected based on both internal knowledge and vendors recommendation
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6.4.2 Weblogs - ground truth

Web QoE metrics are provided by a web accelerator middlebox (webproxy in the follow-
ing) that is deployed in the operator’s network and is responsible to cache and compress
HTTP objects (see Fig. 6.2.1). At the same time, for each HTTP request, the webproxy
logs information such as timestamp, download duration, subscriber’s id, bytes transferred,
and URL⁴. More importantly, each transaction contains TCP metrics (e.g., min/max/avg
round trip time, dropped or duplicated packets etc.) capturing the delivery performance
between the middlebox and users’ device.
Video QoE: To extract video QoE we exploit the fact that the YouTube player reports
to Google servers summary statistics at the end of each video playback. These include if
the video has successfully loaded, if the playback has started, paused or stopped, if there
were stalls and how long these lasted [7]. Despite most of the content is now served via
HTTPS [65], we still see a residual amount of YouTube videos served over HTTP and
we use this to generate statistics per video transaction (e.g., number and duration of stalls,
average resolution, etc).
Mapping requests to a sector: Thewebproxy logs do not contain any information related
to the sector where the data were consumed. Therefore, we use radio events recorded by the
Mobility Management Entity (MME) (Fig. 6.2.1) in order to enhance each web transac-
tion with the set of sectors that were used. Indeed, MME servers logs the “control plane”
messages (related to paging, radio channel requests, and handovers) each containing the
sector from which users devices sent the message.

For each subscriber we can then create a time-line describing the sectors connected.
With such information we can tag weblogs entries based on the sector where the requests
have been generated. To avoid any ambiguities, if more than one sectors were used to serve
a object (i.e., there was a handover), we discard the transaction (this occurs for less than
5% of the downloads).

Notice that this process is not trivial: radio events and weblogs corresponds to more
than 3TB per day. In our case, we exploited the BigData cluster of the operator to imple-
ment this enrichment. However the described job requires processing that can take hours,

⁴Users’ privacy is protected by proper anonymization techniques.
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even in large data clusters.
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Figure 6.4.1: Weblog throughput validation using country-wide drive tests and vari-
ous devices. The performance measured by the operator’s middlebox matches the one
measured experimentally.

Validation: We validated the fact that the weblog transactions can capture the resulting
web QoE by performing large-scale drive tests. We discovered that the metrics correlate
wellwithoneexception: theweblog-based throughput estimation is onlymeaningfulwhen
considering larger downloaded objects (> 700kB). Therefore, in our analysis we filtered
out smaller objects when measuring throughput. Fig. 6.4.1 demonstrates this correlation
between hundreds of drive tests and the associated weblogs entries for different mobile
devices. These results indicate that web transaction performance counters, as seen by the
webproxy, are a good proxy for the conditions that are experienced by the end-users.
Per-sector metrics: The final step is to aggregate per requests metrics at a per sector and
per-hour granularity (to match the KPI granularity). Therefore, we extract distribution
related to the (min/max/avg and percentiles). In this work we provide correlations with
respect to the median performance but we have internally considered other metrics too.
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6.4.3 Combining the KPIs with the ground truth

At the endof this processwehave hourly per sector information related to the ground truth
g of i) latency, ii) download throughput and iii)YouTube video streaming stalls.

To make any statistically significant correlations we remove all samples where less than
20 web downloads were made by users in a given sector-hour. Overall, the data set con-
tainsmore than 2million of throughput and delay samples and 7,000 video streaming samples
(there are fewer sectors that hadmore than 20 non-encrypted video downloadswithin one
hour).

6.5 Evaluation

We start our evaluation with a high level comparison of the achieved correlation by all
methodologies. Then,wedrill down into the results of PSOandmachine learningmethod-
ologies to better investigate their strengths and weaknesses. Finally, we investigate the in-
tersection among the under performing sectors found by different methodologies, i.e., up
to which extent they offer a different view on performance issues.

To reducepossibleover-fitting,we randomly split each samplespopulation in twohalves:
the first is used to identify the best solution (training), while with the secondwe assess the
correlation with respect to ground truth (testing).

Notice that, for all results, weblogs QoE metrics are normalized with three distinct fac-
tors, one for throughput, one for latency, and one for video stalls, while hotspot scores
are normalized in the range between 0 and 10. This allows to still have meaningful com-
parisonswithout revealing actual values which unfortunately cannot be publicly disclosed.
Table 6.5.1 details the Spearman correlation coefficient ρ for all considered techniques.
Results are averaged across 10 runs.

6.5.1 Overall results

Baseline (1): This corresponds to the achieved correlation with currently used weights
and thresholds. Table 6.5.1 shows a small correlation. This means that the state of the
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Approach Configuration Delay Thput Stalls
(1) Baseline All KPIs 0.15 -0.14 0.07
(2) Baseline Only data KPIs 0.19 -0.17 0.09
(3) PSO on S Only weights 0.29 -0.26 0.17
(4) PSO on S Only thresholds 0.30 -0.29 0.19
(5) PSO on S Weights and thresholds 0.41 -0.36 0.22
(6) PSO on Ŝ weights 0.46 -0.42 0.23
(7) Non-linear Random forest regression 0.40 -0.32 0.23

Table 6.5.1: Spearman’s correlation for different optimization strategies between the
resulting score and the ground truth (web delay, throughput, and video stalls). Pos-
itive correlation for values that increase as resulting hotspot metric increases (e.g.,
delay and video stalls) and negative when values decrease (e.g., throughput).

art solution indeed captures the performance of the sectors. In fact, recall the bimodal
distribution between peak and non-peak hours seen in Fig. 6.2.2, and Fig. 6.2.3 detailing
sectors triggeringmultiple KPIs. Both pictures were suggesting the presence of correlation
which is now quantified in Table 6.5.1.

Interestingly, correlation is different for the considered QoE metrics, with video stalls
presenting the smallest values. This is expected since video stalls depend on a number of
other factors including users’ device type, CDN providers, and is the metric for which we
have the least amount of samples, i.e., the overall performance of sectors is expected to be
associated to a varied set of services besides video streaming.

Baseline (only dataKPIs) (2): As shown in Fig. 6.2.3, the default parameters of the base-
line approach put emphasis on hotspots suffering from signal and voice issues. Given that
we focus on understanding data-related QoE it is important to examine the correlation
when only data KPIs are considered.

Byonly consideringdataKPIs in thebaseline formula (2), wedonotice a slight improve-
ment with respect to (1), although the magnitude of the correlation is still small. This is
an indication that a holistic approach which combines signaling, voice, and datamight not
be ideal to capture the performance of individual applications.

PSOon current hotspot formula ((3), (4), (5)) Applying PSO on the baseline formula
improves correlation, but the entity of such improvement differs based on which parame-
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(b) PSO on Ŝ: weights
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(c) PSO on S: weights and
thresholds

Figure 6.5.1: Detail PSO correlation results for throughput measurements.

ters are optimized. Specifically, optimizing only weights presents the smallest benefit (3),
while the best solution is achieved optimizing bothweights and thresholds (5)with a strik-
ing improvement factor of×2.7, ×2.5, and×3 for delay, throughput, and video stalls, re-
spectively. This is because PSO allows to identify an optimal set of parameters specific for
each target metric, rather than enforcing a single configuration as for the baseline.

PSO on modified hotspot formula (6): As discussed in Sec. 6.3.2, the Heaviside func-
tion transform the raw KPI values into binary values (KPI triggered or not). Our intuition
is that those values provide a wealth of information on performance, hence the raw KPI
values should be directly exploited in the hotspot formula. We now see that when applying
PSO on the modified hotspot formula Ŝ (Eq. 6.3), correlation further improves with re-
spect to baseline by a factor of×3.06,×3, and×3.2 for delay, throughput, and video stalls,
respectively.

Random forest regression (7): Finally, having assessed correlation for all discussed lin-
ear combinations, we explore implicit non-linear functions via random forest regression
(Sec. 6.3.2). Results show that the obtained Spearman’s correlation is not as good as the
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best PSO solution (6). Themain reason is the nature of the objective function that is used
in each algorithm: while in PSOwe can set the optimization target to match our needs (in
our case to provide a better ranking or Spearman’s correlation), off-the-shelf regression
trees depend on metrics such as mean squared errors that better correlate with ground
truth values rather than the ranking. Still, it is interesting to notice that such algorithms
already provide a significantly better solution than the baseline approach.

Takeaways: Meta-heuristic and machine learning algorithms provide significant improve-
ment over baseline approaches. It is also recommended to apply a simple linear combination of
raw KPI values and to avoid the currently used thresholding mechanisms.

6.5.2 Focusing on PSO

Fig. 6.5.1 shows the relationship between the hotspot score and the throughput for the
baseline approach (Fig. 6.5.1a), the hotspot formula S optimized for both weights and
thresholds (Fig. 6.5.1b), and thehotspot formula Ŝwithout theHeaviside function(Fig. 6.5.1c).
Specifically, we bin the performance score in bins from 0 to 10, and for each bin we plot
the throughput distribution using box plots capturing 5th, 25th, 50th, 75th, 95th percentiles.
We further report the average of each bin with a dot.

Notice how the boxplots are relatively “flat” for the baseline approach, with a high con-
centration of sectors having a score of zero or six (Fig. 6.5.1a). This bimodal distribution,
also noticed in Fig. 6.2.3, is the result of the (manual) tuning of weights and thresholds of
the current monitoring system.

Conversely, PSO spreads the scores across all bins, better separating well-performing
from poor-performing sectors. Notice also how median values for the two PSO optimiza-
tions (Figs. 6.5.1b,c) are very similar, but average values are better separated using the
modified formula Ŝ. More in details, while 37% of sectors have a score larger than 0 for
Fig. 6.5.1b, this drops to 19% for Fig. 6.5.1c. Considering results for PSO on Ŝ, sectors
with score 10 have×11.1 less throughput when compared with the sectors with score 0. In
contrast, the baselinemethod (Figs. 6.5.1a) shows significantly smaller separation, namely
×5.7. Finally, sectors with score 0 have×2.6 the throughput when compared to the base-
line scoring, demonstrating that thismethod can better isolate such cases. Results for delay
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and video stalls are similar but we do not report them due to lack of space.
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Figure 6.5.2: Estimating web delay and throughput using the KPIs. We observe that
the average delay matches the predicted value but there is a wide distribution within
each bucket.

6.5.3 Focusing on Random Forests

Table 6.5.1 shows how PSO over-performs random forest regressions in terms of correla-
tion due to the difference in the optimization function. However, the advantage of regres-
sion is that it provides an estimation of the actual conditions (e.g., estimates the expected
delay, throughput an video stall values).

Fig. 6.5.2 shows these estimations of throughput (a) and delay (b) obtained with the re-
gression. Specifically, we split regressed values in 10 bins, and for eachwe plot the distribu-
tion of ground truth values using box plots. In theory, a very good model would have very
narrow distribution centered around each decile. While averages are indeed very close to
the real value, each bin presents a wide distribution of values, i.e., themodel is still affected
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by some noise. Nevertheless, we can clearly separate performing from under-performing
sectors.

Such observation motivated us to perform an additional experiment: create a classifier
based on ground truth buckets. In fact, despite the fact that regression allows to have an
estimate of QoE, as a first approximation it can be sufficient to divide sectors in classes
based on performance ‘labels’ (e.g., poor, medium, good). To achieve this, we need to
partition regression values in classes (we obtained the raw thresholds for the split through
conversations with the operator network teams).

The selected thresholds however create highly imbalanced classes: we can rarely find
samples that belong to the high delay or the low bandwidth case (most of the sectors ex-
hibit medium or high performance even during peak-hours). To address this issue, we use
a balanced tree to assign a higher weight to classes having smaller number of samples (low
throughput or high latency). The reasoning is that providersmostly care about discovering
under-performing sectors and somemiss-classification between high andmedium perfor-
mance classes is tolerable. The confusion matrix in Table 6.5.2 reports the obtained clas-
sification accuracy for both throughput and latency. The best performance is obtained for
good-vs-good and poor-vs-poor, i.e., the classes we aim to separate, while the major con-
fusion comes from medium performance values being confused with poor performance
values.

Real\Est. poor medium good poor medium good
poor 85% 14% 1% 71% 26% 3%
medium 32% 59% 9% 32% 42% 26%
good 5% 21% 74% 2% 16% 82%

Table 6.5.2: Normalized confusion matrix for real v.s. predicted throughput (left)
and delay (right). Ideally, all samples should be on the diagonal.

Takeaways: Off-the-shelf machine learning regression techniques offer a slightly lower cor-
relation with respect to PSO. However, they enable an estimation of the actual values of perfor-
mance metrics (instead of a score) which is, as a first order approximation and without very
fine-grained tuning, sufficiently accurate to separate correctly performing from under performing
sectors.
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6.5.4 Comparing top/bottom performing sectors
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(a) throughput for top (left) and bottom (right) sectors
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Figure 6.5.3: The actual throughput and latency of the sectors that ended up at the
top or at the bottom 500 of each ranking. Results for video are similar.

The final objective of the discussed methodologies is to rank sectors based on perfor-
mance. In our case, bottom performing sectors are the ones with the highest delay, lowest
throughput and highest percentage of videos that experienced stalls. However, it is im-
portant to identify healthy sectors as well, since they can provide further information to
understand the causes behind poor performance (e.g., comparing sites configurations, lo-
cations, etc.)

Comparing different approaches: We focus on the top and bottom 500 sectors, and for
each group of sectors, Fig. 6.5.3 shows the distribution of the ground truth throughput
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Figure 6.5.4: Comparing the PSO optimized vs. baseline rankings for the top 500
samples. Common sectors appear in the top 500 of both rankings, removed sectors do
not appear in the optimized ranking and added sectors did not appear in the default
ranking.

(a) and latency (b) using box plots. As previously observed, the application performance
of sectors that end up at the top and bottom of the rankings varies significantly with each
methodology. We observe that PSO applied on the modified hotspot formula Ŝ (6) and
random forest regression (7) achieve significantly better results in identifying the well-
performing sectors compared to the baseline (left plots). The main reason is the nature of
the original function: to identify faults, the baselinemethodologywould just assign a score
equal to zero to most of the average and good performing sectors since no KPI thresholds
are defined conservatively. Instead, PSO )6) is better at identifying poor-performing sec-
tors in eachof the applications (including for video stallswhich results are not reporteddue
to space constraints). These results further corroborate the overall comparison discussed
in Sec. 6.5.1. Considering instead the bottom performing sectors (right plots), PSO (6)
presents the most consistent performance across metrics, while random forest regression
suffers of lower accuracy in assessing latency performance.
Comparingbaseline andbest solution found: In Fig. 6.5.4we further quantify the inter-
section between the baseline and the best PSO approach (6) rankings. In particular, we fo-
cus on theworst 500performing sectors and compare theQoEmetrics distribution for sec-
tors found in both, only PSO (added), and only baseline (removed) rankings. First of all,
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Figure 6.5.5: Comparing baseline vs. optimised rankings of the 10 percentile worse-
performing sectors in terms of throughput ground truth. Ideally, both rankings should
place them in their top 10 percentile too.

only 56% (49%) are found by both techniques for throughput (latency). On closer inspec-
tion, these are sectors that exhibit poor performance in all possibleKPI classes (voice, data,
signaling) and show the lowest throughput and delay. Notice how the remaining sectors
captured only by the baseline approach (removed) present on average a higher throughput
(lower latency) with respect to the common sectors, whereas the ones discovered (added)
show performance that is as poor as the ones in the common set.

To conclude, Fig. 6.5.5 shows a scatter plot of the sectors’ rank position between these
twomethods for the worse-performing 10% sectors in terms of throughput. An ideal rank-
ing methodology would place these sectors in the top 90% (e.g., areas A and B for (1) and
areas B and D for (6)). As expected, the majority of the sectors cluster at area B, indicat-
ing that both rankings are able to identify a good part of the under-performing sectors.
More interestingly, areas C and D present sectors having very small scores according to
the baseline approach. The reason is that the baseline methodology assigns a large num-
ber of sectors with score zero as none of the KPIs “triggered”. This is compatible with the
nature of the original function: to identify important faults in the network rather than sec-
tors with poor throughput. We further notice that PSO puts most of these sectors at the
top 60% of the ranking with quite a lot being correctly in the top 10% (lower and middle
parts of areaD). Results for delay and video stalls are similar (not shown due to space lim-
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itations), demonstrating that this methodology can better capture individual application
performance. Finally, notice that points in area B do not perfectly lay on the bisect line,
i.e., under performing sectors are spot as an aggregate, but severity is differently captured
by the two methodologies.

Takeaways: By applying a data-driven methodology like PSO, operators are empowered
with a flexible tool that use the already collected KPIs to improve their view on under-performing
sectors.

Category Throughput Latency Stalls
Signaling 2% 37% 3%
Voice 0% 1 % 2%
Availability 8% 30% 30%
Congestion 88% 26% 36%
Radio 2% 6% 29%

Table 6.5.3: Decomposing the most important features for each QoE component
into KPI categories (information gain).

6.6 Discussion

SelectingQoEmetrics: While we used KPIs to estimate web experience (delay, through-
put, video), thismethodology canbeused tobuild a ranking for otherQoEmetrics that can
potentially correlate with the KPIs. These can include dropped calls, VoIP performance,
specific application performance (e.g., facebook, gaming, etc) or even customer satisfac-
tion. Themain requirement is to have enough samples of ground truth to build themodel.

State of the art solutions try to provide a single performance scoring function to cap-
ture different types of problems. To quantify this effect, we focus on the worst 500 sectors
ranked by the best PSO solution (6) and compute the fraction of the score associated to
each KPI class. Table 6.5.3 compares the importance of the KPI classes for the three QoE
metrics considered. As we observe, KPIs’ importance significantly varies depending on the
QoE metric. Throughput, depends almost exclusively on KPIs that have to do with con-
gestion and availability of high-speed channels. Latency is a more complex phenomenon
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as it depends on signaling failures (e.g., failures to establish a dedicated channel), avail-
ability of resources and congestion. Finally, interestingly enough, even if video streaming
is a throughput driven service, the importance of KPIs when capturing stalls significantly
differs from generalized throughput: Video quality also depends on the radio conditions
(interference, noise, etc) as these can create jitter and download stalls.

These results manifest the need of building an adaptive data-driven approach to exploit
the, already collected, KPIs in order to better understand both historical and real-time per-
formance of each application at each sector of the network.

Building a generic ranking:
We envision a system where multiple objective metrics (individually studied to opti-

mize correlation with ground truth) are optimally combined into a single Sector Priority
Index (SPI). In this work, we focused on network measurements since, currently, sector
rankings are based on a KPI scoring function. However, when defining the importance of
a sector, one should consider also other information sources such as network sites prof-
itability, CAPEX/OPEX investments, country regulations, etc. How to synthesize such
SPI is an open question. Nevertheless, we believe that the optimization methodology dis-
cussed in this work can support the creation of such index.

Constant evolution: Network priorities and userQoE expectations are constantly chang-
ing as new usage paradigms emerge. Furthermore, the network is constantly evolving too,
with 5Gdeployments being just a fewyears away. Oneof the implicit benefit of data-driven
approaches is that they empower analysis automation. In our case, we envision a system
that periodically adjust the hotspot score function parameters to capture long and short
term trends. For instance, it can automatically incorporate seasonality effects. Similarly,
automation can provide fine grained configuration across time (e.g., extract different op-
timization parameters to capture separately morning, afternoon, and night hotspots) or
space (e.g., investigate separately residential areas from downtown districts). Notice that
there is is no currently available solutions capable to achieve such a flexibility.

FromKPIs to ground truth: In this work, we used weblogs to build an estimation about
individualQoEcomponents such asweb throughput, delay, and video stalls. Building such
a dataset requires some instrumentation (e.g., middle-boxes), and exhibits significant com-
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putation complexity as we have to bridge the gap of per user (or per flow) performance
with per-sector metrics. Therefore, it is prohibitive to run such processes in a continu-
ous manner. Our work allows to use relatively sparse samples of ground truth to associate
them with KPIs that are already collected. Furthermore, other data sources can be used
for ground truth: active tests (e.g., drive tests), crowd-sourced data such as OOKLA [66]
and user surveys, or even quality metrics coming through collaboration with application
developers and CDNs.

6.7 Summary

With the explosion of mobile internet traffic and the ever-evolving user expectations, it is
of paramount importance for mobile operators to be able to quantify the performance of
their network in terms of the delivered application services quality. We applied a novel
data-driven methodology that builds upon the already collected sector KPIs and bridges
themwith differentQoEmetrics. By doing so, the system empowers operators with an au-
tomated methodology that provides better visibility on under-performing sectors. More-
over, our results indicate that the currently used solution that is based on thresholding is
sub-optimal to identify critical sectors. This opens newareas or research formonitoring so-
lutions enriching the quality and accuracy of the network performance indicators collected
at the network edge.
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7
DetectingNetwork Performance Issues with

Contextual AnomalyDetection

7.1 Introduction

Network performance anomalies can be defined as abnormal and significant variations in a
network’s traffic levels. Being able todetect anomalies is critical for bothnetworkoperators
and end users. However, the accurate detection without raising false alarms can become a
challenging task when there is high variance in the traffic.

To address this problem, we present in this chapter a novel methodology for detecting
performance anomalies based on contextual information. The proposed method is com-
pared with the state of the art and is evaluated with high accuracy on both synthetic and
real network traffic.

More specifically, we first introduce a novel methodology for detecting contextual net-
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workperformanceanomalies andpresent thebenefitsof detecting anomaliesusing thepro-
posed Contextual Anomaly Detection (CAD) algorithm. Next, we propose methods for
improving the state-of-the-art algorithm in terms of accuracy but also scalability. Finally,
we evaluate the context construction and anomaly detection stages of the methodology
with both synthetic and real network data.

7.2 Contextual AnomalyDetection

This section presents the two distinct stages of the proposedmethodology, i.e. the context
construction and the anomaly detection phase.

7.2.1 Context Construction

The purpose of this phase, is to cluster together all instances that exhibit similar temporal
characteristics across a longer period of time. This results in grouping together into a single
context all timeseries that have similar temporal variances within a selected construction
time window Tc and makes it easier to later understand deviations from the nominal con-
text behavior.

In order to construct the context, it is necessary to calculate the pair-wise similarity be-
tween the instances in the dataset. To accomplish that, we need to employ an accurate
timeseries distance measurement method.

However, when dealing with network performance measurements, probe failures, out-
ages or irregular sampling rates may lead to sequences with missing samples, while differ-
ences in speed between sequences can occur due to the propagation delay of an anomaly.
As a result, traditional methods such as the Euclidean distance cannot be relied upon for
accurately calculating the distances between instances.

To address this issue, the pair-wise similarity between instances is calculated using Dy-
namic Time Warping (DTW) [67]. DTW is used to determine the distance between two
sequences thatmay vary in speed, bywarping them in the time dimension in order to prop-
erly align them and get a more accurate measure of their distance.

DTW is a very suitable solution for such cases since it can aid in reducing the number
of False Positives (FP) and False Negatives (FN) and lead to higher accuracies as we will
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show in more detail in Section 7.4.1.
We specifically use the FastDTW [68] implementation of the algorithm which has an

O(N) complexity as opposed to the O(N2) complexity of the original implementation.
After the distances between all the sequences are calculated for a givenTc, the k-Nearest

Neighbors (kNN) algorithm is used to classify them into different contexts. kNNhas been
proven to be a very effective solutionwhen classifying time series sequences based on their
distances. Moreover, the value of k is set equal to 1 in order to minimize the model’s bias
and increase the confidence of the predictions.

7.2.2 Anomaly Detection

After clustering a given instance into a context of similar instances based on its behaviour
on a large time window, we want to examine whether it deviates from the average context
behaviour for shorter periods of time.

Two generic examples of contextual anomalies are shown in Figures 2.4.1a and 2.4.1c,
where athough the red sequences were previously identified as members of their context
during the context construction phase for a larger time window, smaller parts of the se-
quences exibit a very different behavior from the respective context.

We therefore propose the following methodology for identifying any context members
that show anomalous behavior within a given scoring time window Ts such that Ts ≤ Tc.

Initially, we keep only themembers of the context that were identified as TP in the con-
text construction stage. Next, DTW is used to calculate the distancematrix of all themem-
bers of the contextCTs for the new scoringwindowTs. Finally, we define theContextMean
Distance (CMD) as the average value of the CTs .

Contextual Anomaly Definition: A context member OTs is identified as anomalous if
its average distance from the rest of the context members is larger than the CMD plus one
standard deviation.

dist(CTs ,OTs) ≥ dist(CTs) + σ(dist(CTs)) (7.1)

One of themost notable advantages of this approach is that it allows the detection of all
the anomalies in a context for a specific scoring window in a single step. In other words, it
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is not required to evaluate each context member separately for anomalies, which can result
in great performance benefits, specially when dealing with large contexts.

7.3 Datasets

7.3.1 FCC Data

The algorithm’s performance is evaluated with the dataset obtained from the FCC Mea-
suring Broadband America project [69]. The project aims to measure and report the per-
formance of 13 major U.S. fixed and mobile broadband providers.

Themeasurements are collected with the aid of SamKnows [70] platform, where active
measurement probes are installed in the home networks of broadband clients. The probes
measure the performance of the last-mile by running tests against servers located in the
providers’ core network or that are part of the SamKnows infrastructure.

The FCC data contains 13 performancemetrics which can be found in the related tech-
nical appendix [71]. For the evaluationweobtain a copy of the averageRTTmeasurements
which consists of measurements collected over 8 consecutive months in 2015. Apart from
the average RTT, the data also includes the whitebox’s ID, the server’s FQDN, a location
ID and the number of successful and failed tests.

Data Analysis

Before doing the evaluationwith theFCCdata in Section 7.5, we run a preliminary analysis
of the dataset in order to verify that there is correlation between the instances based on the
context they belong to.

To this end, we group all instances in the data based on the server domain that was used
to perform the measurements. Hence, each group corresponds to all clients that are con-
nected to the same server. Clients connecting to the same server share the same network
provider and are located in the same geographical area. These peer groups are equivalent to
contexts since the members in each group are expected to have similar performance char-
acteristics.
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Figure 7.3.1: Average and std. deviation of the in- and out-of-context DTW dis-
tances.

Figure 7.3.2: Kth vs. DTW execution t while increasing the sequence number.

Next, for 5 randomly selected servers we calculate the average and the standard devia-
tion of the DTW distances among the members in the same context and the distances of
the members with all the instances outside the context.

Figure 7.3.1 illustrates the average in- and out-of-context distances and their standard
deviation. In all the 5 cases there is higher similarity among instances of the same context.
In contrast, when comparing with out-of-context instances the distances are much higher
in comparison. This shows that peer groups where the members have a clear correlation
with each other do exist in the FCC dataset, which makes it very suitable for evaluating
ourmethodology since our algorithmaims to automatically group together such behaviors
based on the DTW distance.
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7.3.2 Synthetic Data

In general, it is typical to not have ground truth in real data and the FCC data is no ex-
ception to this rule. A common approach to address this in order to properly evaluate the
algorithm’s performance, is to use an artificially generated dataset where the ground truth
is known. Such a dataset, needs to be created in a way that it accurately represents real net-
work measurements, to ensure that the evaluation results can be generalized to real data.

The synthetic data should consist of multiple contexts for the purpose of evaluating the
algorithm’s context detection capabilities. To find themost accuratemodel and the correct
configurationparameters for creating each context, we take the averageRTTmeasurements
for the month of August and group by the server hostname. In this way, each group rep-
resents a different context with RTT measurements from multiple clients against the same
server.

To identify the statistical model that best fits the data in each context, we apply the
Goodness of Fit (GoF) methodology which allows us to compare the distribution of the
data with other well-known distributions. The metric used to determine the GoF is the
Sum of Squared Errors (SSE).

The GoF was performed for the contexts that correspond to the ten servers with the
largest number of clients and measurements. The ranking of the best fitting distributions
based on the SSE score, revealed that themodel which best describes the data in each con-
text is the Johnson′s SU [72].

Next, each set of parameters that were obtained from fitting each context is used for
generating equal number of synthetic contexts. More specifically, every context consists
of 100 time series that were created using Johnson’s SU and the corresponding settings. All
the time series contain 1 sample per hour and a total length of 1 week.

7.4 Evaluationwith Synthetic Data

7.4.1 Context Construction Evaluation

For the purpose of comparing the performance and accuracy of DTWwith the state of the
art in CAD, the evaluation is performed with two different distancemetrics, first using the
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Figure 7.4.1: mean f1-score comparison for context construction with k-NN using Kth
distance and DTW as distance metrics. Tc = 1 week (left) and 1 month (right)

Kth distance and then with DTW.
The Kth order statistic distance was presented in the work of Chen et al. [73], as a

method to reduce the FP and FN when using the Minkowski distance to construct the
context of a target time series.

Before doing the evaluations, each sequence is labeled according to the context it be-
longs to in order to provide the context construction ground truth. Then, 80% of the data
is used for training the classifier and 20% for testing.

The two evaluations are repeated three times, each time modifying one of three vari-
ables, i.e. the number of contextmembers, the context count and the constructionwindow
Tc. Each time a variable is gradually increased while the other 2 remain fixed.

Moreover, the data for each context is generated using 20 different settings in order to
eliminate the possibility to get results that are specific to a particular configuration.

Kth Distance vs. Dynamic Time Warping

Figure 7.4.1 shows a comparison of the accuracy achieved using the two methods. Both
graphs show the evolution of the f1-score when using the Kth distance and when using
DTW, as the number of contexts increases for Tc = 7 days (left) and for 30 days (right).

In both cases the accuracy improvementwhenusingDTWis evident. When the context
count is equal or greater than 3, the accuracy gain is constantly above 20% and can reach
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up to 35% for Tc = 7 days.
The reason why the Kth distance is outperformed by DTW, is because the alignment of

the two compared time series is done by rearranging their samples based on their point-
wise distance. This can change the shape and the sample order of the sequences and return
a less accurate distance value.

In contrast, DTW performs time warping to find the optimal alignment between the
sequences without sample rearranging. Hence, when compared to Kth, DTW is a more
reliable distance calculation method.

The next part of the comparison is done with regards to the execution time of the two
algorithms. Both algorithms were implemented in Python and all the tests were executed
on a Linux PC with an Intel Core i7 @ 3.4GHz.

Figure 7.3.2 shows the execution time comparison when increasing the number of in-
stances in the dataset while keeping a fixed time series length. Here we observe that DTW
constantly outperforms theKth distance andwhen the time series count reaches 500,DTW
is already twice as fast.

Context Construction with 1NN-DTW

Thefirst phase of the context construction evaluation is performedwith an increasing con-
text size, while the number of contexts are fixed to 5 and theTc window is set to seven days.
The number of members in each context is increased from 10 to 100 in steps of 10. In Fig-
ure 7.4.2 (left), the thick black line shows themean f1-score obtained from the 20 different
settings that were used in each of the steps. The grey dashed lines represent the mean ±
one standard deviation.

These results show that the overall accuracy is improved as the context size is increasing.
Specifically, we find that a 10% improvement is achieved when comparing the accuracy
between the min and the max context size.

Contexts with larger number of members are identified more accurately, due to the ad-
dition of more observations to the training set without increasing the complexity of the
data since each new observation has common characteristics with the other members.

Next, the evaluation is repeatedwith an increasingnumberof contexts, while the context
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Figure 7.4.2: Accuracy of the context construction with increasing context size (left)
and increasing context count (right)

size is fixed to 100 members. The results from this evaluation that can be found in Figure
7.4.2 (right), show that there is anegative correlationbetween the accuracy and thenumber
of contexts.

More specifically, we find that by increasing the context number the complexity of the
dataset increases as well. This has a negative impact on the overall context detection accu-
racy since the algorithm has a more difficult task to classify larger number of observations
with different characteristics.
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Figure 7.4.3: Accuracy of the context construction when increasing the Tc and the
number of contexts.
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The last phase of the evaluation is performed while modifying the length ofTc with val-
ues equal to 7, 15, 21, 30 and 37 days. The plots in Figure 7.4.3 show the accuracy for each
Tc value while the number of contexts is increased. Both plots show that the increment of
the construction window has a very small effect on the accuracy. This result is logical since
a time series in a context is synthesized with the same settings and the window size only
determines then number of samples that the series will have.

7.4.2 Anomaly Detection Evaluation

To evaluate the accuracy of the anomaly detection algorithm, it is required to have the
ground truth that identifies the parts of the data which correspond to anomalous events.
However, the FCC data does not provide such information and therefore it is not possible
to verify if the detection algorithm is making correct predictions.

To overcome this problem, we follow an approach based on the statistical analysis of the
contexts and anomalies, that allows us to evaluate the accuracy of the anomaly detection
methodology. Inmoredetail, we calculate the Inter-QuartileRange(IQR) for eachcontext
and eachTs. The IQRrepresents the data between the 25th and75thpercentiles and canbe
used to verify if the samples of a time series deviate from themain body of the distribution
of the context data.

According to the definition of the IQR and given that a contextmember is following the
behavior of the entire context, at least 50% of amember’s samplesmust be within the IQR.
In contrast, a much higher percentage is expected for outliers with anomalous behavior.

Finally, we identify the anomalies for each context and each scoring window using the
approach described in 7.2.2. Then, we determine the percentage of sample points of each
anomalous sequence that are outside its context’s IQR.

The anomaly detection evaluation is done using 5 different contexts which are obtained
from the context construction phase. For each context, only instances that were identified
as TP are kept, to avoid adding outliers in the contexts.

The data of each context is split into smaller subsets by dividing the construction win-
dow inn equal scoringwindows such that eachTs = Tc/n. For each context, the evaluation
is repeated for all n consecutive scoring windows.
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Figure 7.4.4: Examples of anomalies for 2 different contexts the respective context
IQR.

Additionally, the length of the scoring windows is gradually incremented in steps of 12
hours, to generate evaluation sets with fewer slices that contain longer sequences.

Figures 7.4.4a and 7.4.4b show anomalies that were detected in contexts 1 and 2 respec-
tively. In 7.4.4a, the greatest part of the red sequence is within the IQR except from 2
spikes which are between 5 and 10 times higher than the corresponding IQR points. In
7.4.4b though, amuch higher number of points of the anomalous sequence are outside the
IQR, but the magnitude of the variations is significantly smaller.

These two examples show that the proposed methodology can work very well when
detecting either short and bursty anomalies but also events that are characterized by small
but constant variations.

The two plots in Figure 7.4.5 make a comparison between the characteristics of two dif-
ferent contexts and their detected outliers. The y axis in the plots represents the percent-
age of timeseries points outside the context IQR while the x axis shows the different Ts

sizes that were used to perform the evaluation. Each point of the blue and green lines cor-
responds to the mean percentage of point outside the IQR for the outliers and context
members respectively.

The mean is calculated across all outliers or members for the given Ts and for all the
subwindows equal to Ts that fit in the entire context construction window. The grey areas
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Figure 7.4.5: Comparison of the characteristics of the detected anomalies and their
respective context.

are equivalent to the standard deviation of the percentage of points outside the IQR for
each time window and show how much the values can differentiate from the mean.

In both examples in Figure 7.4.5 it is clear that the the detected outliers have a much
higher number of points outside the context IQR. At the same time, we observe that the
context members have constantly more than 50% of their points inside the IQR.

This findings strongly support the validity of the anomaly detectionmethodology, since
they show that there are significant differences in the characteristics of the sequences that
were identified as anomalous and those that were not.

Finally, we run the evaluationwith 20 different contexts to get the overall accuracy of the
algorithm. A detected anomaly is a TP if 50% ormore of its samples outside the respective
context IQR, otherwise it is considered a FP. Moreover, a context member sequence with
more than 50% points outside the IQR is marked as False Negative (FN).

From the total number of TP, FP and FN for each context, we calculate the algorithm’s
accuracy in terms of Precision, Recall and f1-score. More specifically, the average Preci-
sion, Recall and f1-score from the evaluation with all the contexts are 0.97, 0.81 and 0.88
respectively.

The high precision indicates a very small number of FP which in turn means that the
algorithm is capable of accurately detecting the vast majority of the anomalies in each con-
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text. The smaller Recall value though, shows that there is an increased number of FN,
which corresponds to a higher number of anomalies that were falsely identified as context
members. The lower Recall values are attributed to sequences where the anomaly is very
short in duration and the rest of the sequence is within the IQR limits.

The overall good accuracy indicated by the f1-score, can be further improved by fine-
tuning equation (7.1). The threshold of 1 standard deviation can be increased to increase
the Recall values and the overall accuracy.

7.5 Evaluationwith the FCCData

7.5.1 Context Construction Evaluation

The evaluation with the FCC data is done using the average RTT measurements from Au-
gust 2015 and following the same approach as with the synthetic data.

The evaluation is performed for different number of contexts, while the construction
window is fixed to 1 week. Each context is defined as the collection of time series that
correspond to measurements against the same server. In this way the context represents
clients in the same geographical area that are using the network of the same provider.

In contrast to the evaluationwith the synthetic data, we donot initiallymodify the num-
ber of members in each context. The number of members is adjusted when applying class
balancing by means of undersapmling before the training phase. A balanced training set
where all the classes have equal number of instances is necessary for creating a model that
is not biased by under- or over-represented classes.

Next, weevaluate againusing1NN-DTWandwecompare thebenefits fromusingDTW
over the Kth distance. The process is repeated while increasing the number of contexts in
the dataset from 1 to 20 (Figure 7.5.1 (left)) while the construction window is fixed to 1
week.

From the figure we see that the use of DTW always results in a higher accuracy score as
compared to theKth distance. More specifically, the improvement fromusingDTWinstead
of Kth can reach up to 20% while the average accuracy gain throughout the evaluation is
approximately 11%.
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Figure 7.5.1: f1-score comparison for the context construction evaluation with the
FCC data. Using k-NN with kth distance and DTW as distance metrics, while increas-
ing the number of contexts (left) and the construction window (left).

Thesecond phase of the evaluation is performedwith a fixed number of 10 contexts and
an increasing Tc from 7 to 30 days in 7 day steps. Figure 7.5.1 (right) shows the accuracy
in each step for both DTW and Kth distances.

Again the results indicate that there is significant improvement in the context construc-
tion accuracywhen usingDTW. Similar to the findings in the synthetic data evaluation, we
find that the length of the construction window has a small impact on the overall accuracy.
Moreover, we see that the accuracy is improving when the Tc is increased, while a Tc = 30
days can lead to approximately 10% accuracy gain when compared to the respective result
for Tc = 7 days.

The performance increase for larger time windows which was also observed in Section
7.4, is attributed to the information gain obtained by introducing longer sequences. This
allows amore precise reconstruction of the context by the classifier, since the distances are
calculated more accurately when considering a larger part of the sequences.

Overall, the results in this section show that the context construction can be performed
successfullywith real networkmeasurements andmaintain satisfactory accuracy evenwhen
the dataset consists of a large number of contexts.

Moreover, we verifiedwith the FCCdata as well that there are significant improvements
in accuracy when using DTW instead of the Kth distance.
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7.5.2 Anomaly Detection Evaluation

Following the same approach as in Section 7.4.2, five different contexts are obtained from
the context construction phase and for each context the anomaly detection evaluation is
repeated for n consecutive scoring windows. In turn, after each set of evaluations is com-
plete, the value of n is incremented in order to get more but shorter scoring windows.

Figure 7.5.2 illustrates one detected anomaly for each of the first two contexts for Ts =

24. The anomaly in Figure 7.5.2a has smaller variance but almost the entirety of the points
of the sequence are outside the IQR of its context. Figure 7.5.2b on the other hand, cor-
responds to an outlier that has more points inside the IQR but includes spikes 20 and 10
times higher than the IQR upper bound respectively.

This verifies our findings from the evaluation with the synthetic data and shows that
the algorithm is capable of identifying anomalies that are longer in duration even if their
deviation from the IQR is small, but also those that are short but large in magnitude.

Both these types of anomalies can be equally challenging to detect. Small variances that
extend over longer time periods are difficult to distinguish from their context, especially
when the context itself is ruled by high variance. Moreover, sparse and short-lived bursts
often do not make a large enough impact on the overall variance of the time series in order
to be identified as anomalies.
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Figure 7.5.2: Examples of anomalies for 2 different contexts the respective context
IQR.
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Figure 7.5.3: Comparison of the characteristics of the detected anomalies and their
respective context.

Additionally, in both Figures 7.5.3a and 7.5.3b we see that all context members have
approximatelly half of their points inside the IQR with the variance being very small. The
mean values close to 50% and the small deviations show that there are almost no outliers
falsely detected as context members. This is an indicator that significantly increases the
confidence for the algorithm’s good performance.

Also, in both cases there is a clear distinction between the characteristics of the outliers
and the context, where the outliers have mean values within 70% and 90%.

In all examples we observe a clear difference between the characteristics of the outliers
and the characteristics of the context. This is an important observation that reveals that in
contrast to the context members, a significant part of all the outliers are outside the IQR
area and a strong indicator that the algorithm can accurately detect anomalies.

Moreover, the graphs in Figure 7.5.3 show that the Ts length has a small but noticeable
impact on the anomaly detection, since the percentage of points outside the IQRdecreases
as the window size is increased.

Similar to the evaluationwith the synthetic data, the anomalydetection is evaluatedwith
20 different contexts in order to get the overall accuracy of the algorithm. The resulting
average values for the Precision, Recall and f1-score respectively are 0.96, 0.7 and 0.8.

Overall, the anomaly detection accuracy with the FCC data is at the same levels with
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the synthetic evaluation. However, there is a drop in the Recall value which indicates an
increase in the number of FN. This is attributed to the higher number of small anomalies
in the FCC data in terms of both duration and magnitude, that are more difficult to be
detected by the algorithm. The detection thresholds can be adjusted accordingly, to more
accurately detect this type of anomalies and improve the overall accuracy.

7.6 Summary

In this chapter we presented a novel approach for detecting network performance anoma-
lies using contextual information. We have shown that not only this method can be suc-
cessfully applied in both synthetic and real network traffic but it also offers improvements
in terms of detection accuracy but also performance when compared to the state of the art
algorithms.
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8
RelatedWork

8.1 VideoCharacterization

VideoCharacterization refers to the process of identifying and categorizing videos accord-
ing to their technical attributes, content or popularity, for the purpose of conveying infor-
mation about them. The significance of this procedure, lies in understanding the viewers’
preferences in terms of video quality and content, so as to evaluate current and future view-
ing patterns.

In [74] and [75], traffic from university campuses was captured and processed in order
to characterize usage patterns and local and global video popularity respectively. Other
researchers have “crawled” YouTube to collect meta information [76] or gather video and
social statistics [77]. As a result, they found that video popularity and user preferences
have a great impact on local and remote networks. Therefore, different caching polices
were proposed to handle the increasing traffic generated by YouTube.
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8.2 VideoDelivery Infrastructure

TheYouTube infrastructure and server selectionmechanisms have been put under themi-
croscope by researchers, as well as the physical location of YouTube servers [78], [79].
Additionally, in [80] there is an analytical comparison among YouTube and other video
sharing services via crawling the websites and measuring delays. In [40], there is a com-
parison between PC and mobile users of YouTube and how their behavior can be related
to system performance degradation. The conclusions derived in these papers agree on a
load balancingmechanism that redirects YouTube users to preferred video servers in order
to achieve a more uniform load distribution in the system. Additionally, in cases where
load balancing resulted in redirection to non-preferred servers, there were factors such as
DNS server variation, lack of video availability in some servers and high server load due to
popular video content.

8.3 VideoUser Experience

With respect to the research concerning the YouTube user experience, Mok et al. [3] ap-
proached user QoE through investigating network QoS metrics. The procedure followed
here, included a customized Flash video player able to detect buffering events which are
in consequence related to user experience. A similar approach was followed in [4], where
a custom browser-based plug-in was implemented to provide feedback about the videos’
buffering status and predict possible disruptions in the playback due to buffer underflow
events. In addition, the same authors [5], enhanced the aforementionedmethod forWire-
lessMeshNetwork environments, with the addition of an application to perform resource
management tasks. In [41] theMeanOpinion Score (MOS) scale was successfully related
to the occurrence of increased packet loss that resulted in re-buffering events during video
playback. TheMOS represents the average of the scoreswhen rating the quality of a service
on a scale of 1 to 5, where lower numbers indicate poorer experience. Finally, in the work
of Dobrian et al. [6], client-based tools in controlled lab settings where used to extract
statistics for short and long Video on Demand (VoD) and for streaming video services.
More specifically, user experience for different types of media content was evaluated in
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terms of quality metrics and content types. The work done in the publications related to
User Experience is the most relevant to the one presented in this paper. Their results re-
veal that networkQoSmetrics such as RoundTrip Time (RTT) and packet loss, may affect
the buffering process of a YouTube video and therefore affect the user’s experience. More
specifically, either by using the re-buffering frequency or the buffering ratio as performance
metrics, researchers were able to derive MOS marks and link network QoS to user QoE.
Ourwork ismostly related to thework previously done onYouTubeuser experience. How-
ever, we differ from these papers for the reason that we do not rely on custom-made players
or browser plug-ins to make measurements nor do we rely on controlled experiments per-
formed in the lab. In contrast, we were able to extract all the important metrics for our
study, under a real-life scenario, only from passively monitoring the related traffic in a net-
work hosting thousands of users per day. Prometheus [20] uses passive measurements on
a mobile network to estimate the QoE of two applications, Video on Demand and VoIP.
For the video QoE only Buffering Ratio is considered as a QoE indicator, while the sys-
tem is evaluated only on unencrypted traffic using binary classification to detect buffering
issues with 84% accuracy.

Using similar approaches, OneClick [21] and HostView [22] develop predictive mod-
els to detect the QoE of multiple applications including video streaming, using network
performancemetrics. However, both approaches are limited by the requirement of instru-
mented devices to capture the feedback from the users.

In [12, 81, 82] YouTube buffer outages are detected by comparing the playback times
of the video frames and the time stamps of the received packets. These methods rely on
passive measurements and DPI to extract QoE information but require the inspection of
each packet in order to calculate timing offsets. Therefore, this method can be difficult to
scale when dealing with high number of videos and high frame-rates.

Hossfeld et al. [39] study the impact of the amplitude and frequency of representation
switches on the user experience. The authors re-encoded a video in multiple qualities and
introduced different levels and frequencies of switching and performed crowd-sourced ex-
periments to detect correlations with the received MOS from the users. In this work only
a single short video was used, which can be considered a very limited representation of the
diverse content found in popular services.

144



In [38] the authors perform subjective tests inmobile networks to assess the impact that
the video quality level and quality switching among other factors has on the users’ expe-
rience. The experiments were conducted with a very limited sample of very short videos,
while only the direction of quality switching, i.e. resolution upscaling or downscaling was
taken into consideration but not the effects of the amplitude or the frequency.

Finally, the work of Liu et al. [83] investigates three factors that influence the user per-
ceived quality, initial delay, stalling and quality level variation. The authors conducted ex-
periments in the lab with different network conditions in order to derive functions for cal-
culating each of the three impairment factors. The fact that the tests were performed in the
lab however, minimizes the generalization of the results to real network conditions and
to real streaming services where CDNs and different quality adaptation logics can create
different effects in terms of initial delay and quality switches respectively.

Overall, although significant work has been done previously in detecting and quantify-
ing the factors that affect thequality of video streaming, ourwork is the first that extensively
studies these factors in a large scale network using encrypted traffic.

8.4 PathDiagnosis

The works presented here deal with common issues in wireless, broadband and WANs.
This informationprovideduseful insights for the problems thatmay affect the performance
of video streaming services and the users QoE.

In [23] intra- and inter-ISP linksweremeasured to identify issues affecting video stream-
ing QoE. The findings show that most of the issues originate from fluctuations in intrado-
main links, however there is no clear correlation of these problemswithQoE. Finally, [24],
showed that voice streamingover backbone links is only affected in rare cases of packet loss.

[85] presents Pythia, a measurement framework for diagnosing performance problems
in wide area networks. The proposed system relies on inter-domainmonitoring and active
measurement probes in order to detect and localize the root-cause of performance issues.

G-RCA [86] is a RCA platform that is capable of identifying the root cause of a perfor-
mance issues in large IP networks and provides different root cause analysis tools for newly
discovered issues.
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8.5 Mobile Video Traffic Characterisation

In [87], the authors analyse YouTube traffic from a university campus network to conclude
that caching improves the performance and the scalability of the service. Plissonneau et al.
[88], study the impact of throughput and delay on YouTube abandonment for DSL users.
In [89], distributed active measurements are used to measure YouTube and find the effect
of redirections and load balancing on video performance. The authors of [90] propose a
YouTube traffic generation model based on traces collected from real use cases.

Plissonneau et al. [91] analysed the performance of video streaming over 2G and 3G,
while amore recent work [92] evaluated the impact of YouTube onmobile networks. [93]
reported 10% packet loss due to redundant TCP connections when streaming on Android
and iOS mobile devices. Hoque et al. [94] studied the energy consumption with five mo-
bile video streaming services. [95] provided a comparative study between Android and
iOS video streaming where larger number of duplicate data was found on iOS.

The information in the works mentioned above, allow us to obtain a more concrete un-
derstanding of the generated traffic patterns and important parameters that affect the per-
formance of these services.

8.6 Video StreamingQoE andQoSCorrelation

Krishnan et al. [25] used quasi-experimental designs correlate the abandonment rate with
the startup delay or the total buffering time. In [3] the authors concluded that the main
metric affecting the QoE is the rebuffering frequency. Dobrian et al. [6], show that aban-
donment is affected by the buffering ratio and startup time.

In [9] apredictivemodel for videoQoE isused to improveuser engagementby20%. The
same author in [10] employedmachine learning to predict user engagement. In [11], user
behaviour is correlated with startup delay, redirections and server response time. Schatz
et al. [12] used passive network measurements at ISP-based VPs to infer the rebuffering
frequency and duration.

In the related work of Casas et al. [96], the network measurement and analysis frame-
work mPlane is used to detect YouTube QoE anomalies from a large-scale ISP network.
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The analysis module raises alerts whenever the video download throughput and bit-rate
ratio drops below a certain ratio, since this was found in a previous work to be correlated
with buffer outages and stalls.

Contrary to these works, our system does not aim at improving user engagement nor at
estimating the video QoE from QoS metrics. We focus on identifying video sessions with
low QoE scores and accurately detecting the location and the root cause of the problem.

8.7 QoE fromNetwork KPIs

Metaheuristics have been used in the past for network optimization and planning [97].
For instance, simulated annealing and tabu searchwereused to allocate radio channels or to
discover theminimumconnected dominating set forwireless networks [98]. Randomized
greedy algorithms have been used to find the optimal location of base-stations in order to
maximize the traffic covered and minimize installation costs [99]. In [100] cloud services
are ranked based on diverse KPIs such as cost, performance, stability, usability, elasticity,
etc., using multi-criteria decision-making [101]. With respect to these works, we attempt
to build a methodology that is able to estimate individual QoE components using a set of
already collected KPIs. To the best of our knowledge, this is the first time that someone
addresses this challenging problem.

Over the years there have been many attempts to understand how KPIs can be used to
spot cellular performance bottlenecks [53] and network planning [15]. In [26], an itera-
tive process of network deployment andmonitoring throughKPIs and drive tests was used
to identify the optimal network configuration. Nokia engineers demonstrated how con-
trolled experiments such as drive tests and on-site inspections, together with A-B testing,
can be used to establish the relation between ground truth and KPIs in order to optimize
the network [16]. In [102], the authors show how drive tests can be used to identify the
main KPIs that relate to QoS in a tetra network. Finally, field tests are used to build an
empirical correlation between KPIs and throughput [103].

In addition to these works, there have been vendor recommendations on how to set
performance thresholds and identify the worse performing sectors in the network. For in-
stance, Huawei [52] also describes an iterative A-B process and provide recommendations
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for default values while Nokia [17] has extensively analyzed themeaning of each KPI. Our
work breaks these long-term assumptions that QoE has to be build only with iterative field
tests that are costly and inflexible. We propose a data-driven methodology that is able to
automatically establish the relation between KPIs and the groundtruth in order to provide
insights about underperforming sectors.

8.8 AnomalyDetection

This section covers two categories of related works, i.e. those that although not related to
network performance anomalies, they deal with CAD and those that deal with anomaly
detection specific to network performance.

To the extend of our knowledge, this is the first work that uses contextual information
for network performance anomaly detection. Nevertheless, the concept of context-based
detection algorithms is not new and has been presented in a few different fields in the past.
The paper from Chen et al. [73], which is the most related to our work, presents a contex-
tual change detection approach that uses theKth distance for context construction and the
TADmetric to detect changes. Our approach uses DTWdistances and standard deviation
for the anomaly detection respectively instead.

CAD has also been applied in big sensor data [104], where point anomalies are identi-
fied using a univariate Gaussian predictor, while the k-means-based contextual detection
is used as a post-processing step. [105] used a prediction-based CAD for detecting stock
market manipulation. Here, instead of using a time series’ historical data to predict fu-
ture values, predictions aremade fromcontextual information. Although there is extensive
work previously done to cover network security and network intrusion detection, signif-
icantly fewer articles have dealt with network performance anomalies. Here we present a
few notable related publications in this field.

In the related literature, a wide array of different methods has been used to detect net-
work anomalies. [19, 106] use PCA on backbone network traffic to capture the variance
of anomalous time series. Other statistical methods such as Kalman filters in [107] and
wavelets in [108] and [109] were also successfully used to perform anomaly detection.
Other examples include, the use of Haar-wavelet analysis [110], a method based on en-
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tropy [111], change-point detection using the CUSUM algorithm [112–114], adaptive
threshold analysis [115], Holt-Winters seasonal forecasting basedmethods [116], data re-
duction techniques with sketches [117, 118] and SNMP MIB Support Vector Machine
(SVM) analysis [119]. However, in contrast to our work none of the these methods takes
into consideration the contextual information when identifying anomalies.
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9
Conclusions

This thesis has addressed some of the most important challenges regarding the detection,
troubleshooting andprevention of videoQoE issues. More specifically, this work provided
the required tools and methods for identifying the nature of quality problems during a
video session and the impact they have on the user’s experience. The proposed solutions
rely on passivemeasurements in order tominimize the interferencewith the traffic and the
user and can detect problems with high accuracy in large-scale fixed or cellular networks,
with clear-text and/or encrypted video streams.

Thefindings of this work showed that the redirectionsmake the greatest contribution to
the initial delays, while the stall duration has the greatest impact on the user’s experience.
This study was the first to the extend of our knowledge to look into the impact that pre-
rolled video advertisements have on the QoE and find that non-skippable video ads lead
to higher abandonment rates.

Also we showed that it is possible to achieve accuracies as high as 93% when detecting
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QoE issues from encrypted video streams, based on a minimal set of features that are ex-
tracted from the transport layer. Among these features, we found that the video segment
size and arrival time variations played themost significant part in identifying quality prob-
lems.

The thesis has presented a framework that can be used to perform root-cause analysis
on video QoE faults. This framework can be deployed on multiple vantage points, e.g. the
user’s device, thehomegateway, the ISP’s corenetwork, the video server and soon, inorder
to provide insights regarding the existence of QoE impairments, which was the offending
part of the network path that gave rise to the impairments and what was the root cause
behind them.

The framework was evaluated with over 80%when deployed in the wild andwe showed
that three vantagepoints are enough to successfully identify, locate and troubleshoot faults.
Moreover, we find that each entity that can take advantage of the framework to detect and
analyze QoE issues without having to share information with others, however the overall
accuracy can be improved when collaboration between entities is possible.

We also proposed a novel data-driven methodology of combining the important KPIs
in an ISP’s mobile network to capture the under-performing parts of the network, where
the delivered QoE of a service does not meet the provider’s SLA. This approach, allows
operators to pin-point “red” sectors that need to be prioritized for upgrades that will im-
prove the quality received by the connected subscribers. At the same time, sectors that are
not “red” but have increasing performance issues can be proactively dealt with in order to
prevent the quality degradation of different services in the future.

By applying the proposed data-driven methodology, operators are empowered with a
flexible tool that canutilize the alreadycollectedKPIs to improve the viewonunder-performing
sectors in termsof thedeliveredQoE.Moreover, our results indicate that the currently used
solution that is based on thresholding is sub-optimal to identify critical sectors. This opens
new areas or research for monitoring solutions enriching the quality and accuracy of the
network performance indicators collected at the network edge.

Finally, we have presented a novel approach for detecting network performance anoma-
lies using contextual information. We have shown that not only this method can be suc-
cessfully applied in both synthetic and real network traffic but it also offers improvements
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in terms of detection accuracy and performance when compared to the state of the art al-
gorithms. This solution can have immediate benefits for network operators, since it allows
them to detect network anomalies that affect individual clients as soon as they occur and
troubleshoot them before they escalate to cause QoE issues.

Overall, this thesis has advanced the related state-of-the-art by contributing a series of
novel methodologies, frameworks and algorithms that successfully tackle some very chal-
lenging problems in the related areas of research. These contributions can be adopted by
researchers as tools that aid they study of videoQoE and network performance anomalies.
At the same time, they can be quite beneficial to fixed and mobile network operators who
require updated and accurate solutions for monitoring the performance of their networks.

9.1 FutureWork

This thesis has successfully addressed all the major challenges that were discussed in Sec-
tion 1.1. Nevertheless, the always evolving ecosystemof technologies and formats of video
streaming services maintains a constant research interest from both the academia and the
industry for updating and extending the current state-of-the-art.

Towards this direction, one of the steps forward in this work is to extend the evaluation
of the QoE issue detection methodologies to include a wider array of video streaming ser-
vices. In this way, we can ensure that the proposed methods can be generalized to other
video streaming systems, where different delivery mechanisms, traffic patterns and proto-
cols could be encountered.

Moreover, theRCA framework thatwasdescribed inChapter 5 canbe augmentedwith a
set of activemeasurements to detect faults that passivemeasurements cannot capture such
asDNS failures, the existence ofmiddleboxes that alter the traffic and/or the video stream,
routing and path changes and so on. Another interesting direction towards which that this
work can be extended to, is to explore is the detection of multiple co-occurring faults that
simultaneously cause the degradation of the video streaming quality. These features will
greatly expand the framework’s capabilities and allow a more comprehensive analysis of
the causes that affect the user’s experience.

Next, the framework can be deployed in the wild to capture measurements related to a
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wide range of faults. The resulting dataset can then be used to evaluate the performance
of the Contextual Anomaly Detection algorithm with different types of anomalies. The
successful evaluation with numerous network faults will establish the anomaly detection
method as a highly generalizable and accurate solution that can be applied inmany scenar-
ios.
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