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To the pale blue dot. . .
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“No matter what you look at, if you look at it closely enough, you are

involved in the entire universe.”

Michael Faraday





Abstract

A photonic quantum memory (QM) is a device that has the capability

of storing a quantum state of light and retrieving back after a controlled

time. It is an important element in quantum information science and is,

among other applications, a crucial device for quantum repeater architec-

tures which have been proposed to overcome the loss and the decoherence

issues in long distance transmission of photons. Rare earth ion doped

solid state systems are promising candidates for QMs which combine the

advantages of solid state systems, such as scalability and reduced experi-

mental complexity, with the long coherence time typically found in atomic

systems. In this thesis, I investigated three different QM protocols in a

Pr3+:Y2SiO5 crystal.

The first part describes here the first demonstration of the spectral hole

memory (SHoMe) protocol which was proposed theoretically in 2009. This

protocol relies on slowing down the light in a long-lived spectral hole and

transferring the excitations to the spin state. We first prepare a spectral

hole, then send an input pulse whose bandwidth is comparable with the

hole and stop the compressed light in the crystal by transferring the off-

resonant coherence to the spin state with an optical π pulse. Later a

second π pulse transfers the coherence back and leads to the emission of

the stored light. We reached a storage and retrieval efficiency of around

40% in the classical regime, and of 31% in the single photon level, with a

signal-to-noise ratio of 33 ± 4 for a mean input photon number of 1. These

results demonstrate the most efficient and noiseless spin-wave solid-state

optical memory at the single photon level to date.

The second part of the thesis describes new experiments using the well-

known atomic frequency comb (AFC) protocol. It is based on tailoring the

inhomogeneously broadened absorption profile of the crystal with periodic

absorptive peaks, which induce the re-emission of the absorbed light field

after a certain time determined by the separation between the peaks. In



this chapter I describe several AFC experiments. First I present the storage

of frequency converted telecom photons into our crystal where we obtained

a total efficiency of 1.9 ± 0.2 % for a storage time of 1.6 µs and signal-to-

noise ratio of more than 200 for a mean input photon number of 1. Then

I discuss the results of improved excited state storage efficiency values for

long storage times where we achieved 30% at short storage times and up

to 17% at 10 µs storage time. And finally I present a spin-wave AFC

experiment where we obtained a signal-to-noise ratio value of 28 ± 8 for a

mean input photon number of 1, the highest value achieved so far for this

kind of experiment.

Finally, in the last part, I describe the first demonstration of a solid-state

photon pair source with embedded multimode quantum memory. The aim

of the protocol is to combine a single photon source and a QM in one

ensemble as in the well-known Duan-Lukin-Zoller-Cirac (DLCZ) scheme

however this time not in a cold atomic ensemble but in a solid-state crys-

tal. The protocol takes advantage of the AFC protocol for rephasing the

ions and obtaining efficient read-out. The use of AFC also makes the proto-

col temporally multi-mode. In the experiment, after the AFC preparation

we send an on-resonant write pulse and detect the decayed Stokes photons

which herald single spin excitations. At a later time a read pulse transfers

the spin excitation back to the excited state and we detect the anti-Stokes

photons. We show strong non-classical second order cross-correlations be-

tween the Stokes and anti-Stokes photons and demonstrate storage of 11

temporal modes.

The results presented in this thesis represent a significant contribution to

the field of solid-state quantum memories and an important steps towards

the realization of scalable quantum network architectures with solid state

systems.



Resum

Una memòria quàntica (MQ) és un dispositiu que té la capacitat d’em-

magatzemar l’estat quàntic de la llum i retornar-lo després d’un temps

controlat. És un element important en la ciència de la informació quàntica

i és un dispositiu crucial per a arquitectures de repetidors quàntics, els

quals han estat proposats per tal de solucionar els problemes de deco-

herència i pèrdues en la transmissió de fotons de llarga distancia. Els

sistemes d’estat sòlid basats en ions de terres rares són candidats promete-

dors per implementar MQs, ja que combinen els avantatges dels sistemes

sòlids (escalabilitat i poca complexitat experimental) amb els llargs temps

de coherència dels sistemes atòmics. En aquesta tesis he investigat tres

protocols diferents de MQ en un cristall de Pr3+:Y2SiO5.

La primera part descriu la primera demostració del protocol de memòria

basat en forats espectrals (MFE), que va ser proposat teòricament el 2009.

Aquest protocol es basa en disminuir la velocitat de la llum en un fo-

rat espectral de vida llarga i transferir les excitacions a un estat d’esṕın.

Comencem preparant un forat espectral, després enviem un pols de llum

amb una amplada espectral comparable a la del forat i aturem la llum

comprimida en el cristall transferint la coherència fora de ressonància a

l’estat d’esṕın amb un pols òptic. Seguidament un segon pols retorna la

coherència i porta a l’emissió de la llum emmagatzemada. Aconseguim

una eficiència d’emmagatzematge i recuperació de 40% en el règim clàssic

i de 31% al nivell de fotons individuals, amb una relació senyal-soroll de

33±4 per un nombre mitjà de fotons incidents igual a 1. Aquests resultats

demostren la memòria òtica operant al nivell de fotons individuals amb

més eficiència i més lliure de soroll.

La segona part de la tesis descriu nous experiments que utilitzen el protocol

de pintes de freqüència atòmiques (PFA). Aquest està basat en modificar

el perfil d’absorció eixamplat inhomogèniament dels ions de terres rares,

creant pics d’absorció periòdics que indueixen la reemissió del camp de



llum absorbit, després d’un cert temps que ve determinat per la separació

dels pics. En aquest caṕıtol descric varis experiments de PFA. Primer

presento l’emmagatzematge en el nostre cristall de fotons amb freqüència

convertida des de telecom, obtenint una eficiència total de 1.9±0.2% per un

temps d’emmagatzematge de 1.6µs i una relació senyal-soroll de més de 200

per un nombre mitjà de fotons incidents igual a 1. Seguidament discuteixo

els resultats obtinguts amb una millorada eficiència d’emmagatzematge en

l’estat excitat per temps d’emmagatzematge llargs, on vam obtenir 30%

per temps curts i 17% a 10µs. I finalment presento un experiment de PFA

amb ona d’esṕın on vam obtenir una relació senyal-soroll de 28±8 per un

nombre mitjà de fotons incidents igual a 1, el valor més alt assolit mai en

un experiment d’aquest tipus.

Finalment, en la última part, descric la primera demostració d’una font de

parelles de fotons d’estat sòlid integrada amb una memòria quàntica mul-

timodal. L’objectiu del protocol és combinar en un sol sistema una font de

fotons individuals i una MQ, com té lloc en el conegut esquema de Duan-

Lukin-Cirac-Zoller (DLCZ), però en aquest cas amb un cristall en lloc d’un

sistema d’àtoms freds. El protocol agafa els avantatges del protocol PFA

per refasar els ions i obtenir una recuperació eficient. Utilitzant PFA fa

que el protocol sigui temporalment multimodal. En l’experiment, després

de la preparació de la PFA, enviem un pols d’escriptura en ressonància i

detectem un fotó Stokes que anuncia excitacions d’esṕın individuals. Un

temps més tard, un pols de lectura transfereix l’excitació d’esṕın de tor-

nada cap a l’estat excitat i detectem fotons anti-Stokes. Mostrem fortes

correlacions de segon ordre no-clàssiques entre els fotons de Stokes i anti-

Stokes i demostrem l’emmagatzematge de 11 modes temporals.

Els resultats presentats en aquesta tesis representen una contribució sig-

nificativa en el camp de les memòries quàntiques d’estat sòlid i un pas

important cap a la realització d’arquitectures de xarxes quàntiques amb

sistemes d’estat sòlid.
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thank all the models and photographers that I collaborated or exchanged

ideas.

Finally, I thank my family for being always there and supportive all these

years. Thank you.





List of publications
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Chapter 1

Introduction

Communication is a basic need of all the livings. It is even crucial for

survival. We communicate to share information, thoughts, feelings, and

ideas as the word commūnicāre means “to share” in Latin. This might be

the very reason why the word communication shares the same root with

the word community. Without communication societies would not exist,

so would the modern era [1].

A society would be open to threats if people belonging to it did commu-

nicate only with each other but not with the outside world. The more

information a society can gather, the longer it can survive. Hence, long

distance communication plays an important role in human history. Sym-

bols are the key elements of long distance communication, they are what

we share as I do in this very moment. When the first language/speech

appeared is a contentious topic but we know that the first symbols started

to be developed around 30.000 years ago [2]. Even though there were the

times when smoke, drums, horns, and even reflection of the sun from metal

mirrors were used to alarm people, since these kinds of techniques do not

have large vocabulary, their use stayed very limited. The ability to write

on a papyrus on the other hand was a vital step forward in that sense.

It appeared in ancient Egypt around 2500BC [3]. From the BC era only

1



Chapter 1. Introduction

postal system and newspaper are still in use. With the invention of paper in

100AD [4], pigeon post started to be another alternative for long distance

communication. Then the next breakthrough came with the invention of

electric telegram and the Morse code in the first half of 19th century. The

communication speed was then only limited with the response of electrons

to an applied voltage. It was followed by the invention of telephone, still

one of the most used long distance communication devices today. Using

electromagnetic (EM) waves in free space for transmission started another

branch of communication. The radio is the first device of this kind invented

in the late 19th century. Around 50 years after the first radio broadcast,

we were able to launch geosynchronous communication satellites to the

Earth’s orbit, the first step through GSM operators. Transmitting data

over fiber optic cables completes the historical advance until today with

the birth of ARPANET, the ancestor of the Internet, and the development

of first personal computer (PC). Today in 2017, around 40% of the world

population (3 billion) have Internet access [5], and the total number of

cell phone subscriptions is around 7 billion [6]. Therefore long distance

communication itself is not an issue any more, it is the security of the

information flow more likely to be a problem. 1

The long distance communication methods widely available today are based

on classical bits. Data strings are encoded in the bits as either a 0 or 1.

This is a simple two-state, binary approach. Any symbol can be encoded

in the strings of bits. As it is mentioned above, long distance commu-

nication can be realized via electrical (telegraph, telephone etc.) or EM

(radio, microwave transmission, fiber optics, satellites etc.) systems. The

world wide web mostly depends on fiber optic network due to its low cost

and reliability. Even though the data signal attenuates in the fibre optic

1On the other hand, as a note to history, 10% of the population does not have any
access on clean water [7] and one out of nine people on earth do not have enough food
to lead a healthy active life [8]. Even though free market economy with the support of
capitalism and imperialism accelerates technological advances, it is also the very reason
of income inequality and ignorance to it all over the world maintained by the corporate
media [9, 10]. However this issue is not in the scope of this thesis.

2



Chapter 1. Introduction

cable, the issue can be solved by employing fiber amplifiers every few hun-

dred kilometres. One problem is the eavesdroppers who can monitor the

information flow without being noticed. Data encryption methods (i.e.

triple DES, RSA, blowfish, twofish, AES) offer some degree of security

but cannot guarantee that your information is perfectly safe. With the

help of quantum mechanical properties of particles, transferring quantum

information (QI) offers much higher degree of security.

1.1 Quantum information

Quantum physics is a fascinating world with its counter-intuitive nature

and ability to describe the world in sub-atomic regime. It is an immensely

successful theory which has solved many mysteries. However we were not

able to implement quantum phenomena such as superposition and entan-

glement in our technological advances until recent times. With new pro-

posals and ideas, there are now possibilities for boosting the computational

power [11], solving much complex simulations [12] and having much more

secure communication networks [13]. They all depend on operations based

on QI. Therefore this section will be on the basic concepts of quantum

information science (QIS).

1.1.1 Qubits

Classical bits can take only two values, 0 or 1. However in quantum me-

chanics the state of a quantum system is described as the superposition of

orthogonal states instead of binary states. Therefore the wave function of

a quantum bit, or qubit [14], is a quantum superposition of 0s and 1s. A

qubit can be represented in Dirac notation as,

|ψ〉 = α|0〉+ β|1〉, (1.1)

3



Chapter 1. Introduction

Figure 1.1: Bloch sphere representation of a quantum system.

where, α and β are the complex probability amplitudes with |α|2+|β|2 = 1.

Here, |0〉 and |1〉 are the two orthogonal basis states.

We can visualize a qubit by using the Bloch sphere concept, as in Figure

1.1. A qubit on Bloch sphere can be described as,

|ψ〉 = cos

(
θ

2

)
|0〉+ eiφsin

(
θ

2

)
|1〉, (1.2)

where θ and φ are azimuthal and longitudinal angles. While a qubit can

be represented by any point on the surface of the sphere, a classical bit can

only be represented by the north or the south poles of the sphere. When

a measurement is made on the qubit, the wavefunction collapses into one

of the bases. Hence, the possible outcomes of an experiment could be still

only 0 or 1 with the probability of |α|2 or |β|2, respectively.

Qubits in general can be categorized into two types: stationary qubits and

flying qubits. Stationary qubits are matter qubits, capable of storing and

processing the quantum information that they receive or create. Nuclear

spin, electronic spin, and electronic charge can be used as qubits. Many

approaches have been successfully demonstrated as stationary qubits, such

as cold and hot atomic gases, nitrogen-vacancy (NV) centers, rare earth

4



Chapter 1. Introduction

ion doped solids, Josephson junctions, quantum dots, and trapped ions.

Flying qubits on the other hand can travel long distances, as the name

suggests, and are used to transfer quantum information from one place to

another. Quantum information can be coded into the polarization, time

of arrival (time-bin), frequency, path, and/or orbital angular momentum

of photons.

1.1.2 Entanglement

Entanglement is probably the most counter-intuitive concept in quantum

physics. When a quantum state of two or more particles is inseparable,

which means that the states of the particles cannot be described individu-

ally but only as a whole, then it is called an entangled state. For example,

given two non-interacting Hilbert spaces, A and B, with two basis states

|0〉 and |1〉, an entangled state can be written as

|Ψ±1,2〉 =
1√
2

(|0A, 1B〉 ± |1A, 0B〉) , (1.3)

As an inevitable fact, when the quantum state of one particle is measured,

the state of the other one also collapses instantaneously, in principle no

matter how far apart the two systems are. At first sight this result seems to

contradict Einstein’s special theory of relativity which states that the speed

of light is constant and that no message can be delivered faster than light

[15]. However since there is no information transfer, there is no violation.

But still it is incompatible with the principles of local realism. In 1935 Ein-

stein, Podolsky, and Rosen first draw the attention to this phenomenon in

their famous EPR paper [16]. They came to the conclusion that quantum

physics is not complete. Shortly after the EPR paper, Schrödinger intro-

duced the term entanglement and his famous Schrödinger’s cat thought

experiment [17]. Einstein later called this phenomenon spooky action at

a distance. Both Einstein and Schrödinger were not satisfied with the in-

deterministic nature of the entanglement. In 1952 Bohm suggested the

5



Chapter 1. Introduction

hidden variables concept as a possible resolution of the paradox [18]. It

was argued that wavefunctions are governed by hidden variables and any

possible outcomes of a measurement are determined beforehand when the

particles interacts. However in 1964, John Bell showed that certain en-

tangled systems can violate the upper limit of classical correlations which

obey local realism [19]. He proposed an inequality, now named after him

as Bell’s inequality, that can be experimentally tested. And it was first

Freedman and Clauser who demonstrated experimentally that the inequal-

ity can be indeed violated [20]. In 1982, Aspect’s experiment showed even

stronger violation of Bell’s inequality [21]. In 2015, Hanson’s group in Delft

performed the first loophole free Bell test experiment [22] and shortly af-

ter it was followed by other loophole free Bell tests with better statistical

violations [23–25].

Although entanglement is a counter-intuitive concept, it can be a useful

tool in quantum communication, specifically necessary in the schemes de-

signed to overcome the issue of loss in the fiber cables. Entangled states

are also required in quantum teleportation [26] and superdense coding [27].

1.2 Quantum communication

The interaction of quantum systems with the environment leads the sys-

tems to decohere. It is very challenging to isolate a quantum system from

environment. Therefore it was not until recently that quantum information

experiments could go out of the labs [28], be adaptable to technology and

become commercial. In 2004, the world’s first bank transfer using quan-

tum key distribution (QKD) was carried out in Vienna, Austria. QKD is

a method to secure communication between distant parties by creating a

secret key based on single photons transmitted between two parties. In

classical cryptography, two parties can share a secret key, a sequence of

bits, to encrypt and decrypt any messages that they share through public

channels. However if the secret key is compromised, their message would

6
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Table 1.1: Secret key creation in QKD

Alice’s photons → ↑ ↑ → ↗ ↑ ↗ ↘ ↘
Bob’s basis ⊕ ⊗ ⊕ ⊗ ⊕ ⊕ ⊗ ⊕ ⊗
Bob’s measurement → ↗ ↑ ↘ → ↑ ↗ → ↘
Secret key → ↑ ↑ ↗ ↘

not be secure anymore. When the parties are far apart, creating any se-

cret key in a secure manner becomes the main issue. In 1984, Bennett

and Brassard proposed a way to create the secret key by using a quantum

channel, now called BB84 protocol [29].

The idea is the following: Alice and Bob (the conventional names of the

sender and receiver, respectively) have two channels, a quantum channel to

transmit the quantum states of single photons and a public channel. The

quantum channel is for the creation of a secret key and the public channel is

for the transmission of encrypted messages. Alice first prepares a string of

photons randomly choosing among four different non-orthogonal quantum

states that constitute two maximally conjugate bases, for example, the

states | ↑〉 and | →〉 in the basis of ⊕ and | ↗〉, and | ↘〉 in the basis of

⊗. In each basis, one of the states corresponds to 0 and the other state to

1. Alice sends randomly chosen states through the quantum channel and

Bob measures them in one of the two basis chosen randomly, as in Table

1.1. After the transmission is completed they can communicate in a public

channel to compare the basis that they use for each photon and discard

the bits prepared/measured in different basis. For a photon for which they

use the same basis, the state that Alice prepares and the state that Bob

measures should be the same which will correspond to a bit in the secret

key. At the end statistically half of the times Bob would use the same

basis as Alice and they end up with half of the original string that Alice

prepared.

After all, in the public channel they share only the basis and Alice/Bob

does not reveal the states she/he prepares/measures, and the actual photon

sequence, the secret key, stays secure. However there might be someone,

7
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an eavesdropper (usually called Eve), monitoring the quantum channel

before Bob receives the photons. One strategy for Eve would be nothing

but acting like Bob and measuring the photons in random basis likewise

Bob. Eve could guess the right basis 50% of the times, measure the correct

state and prepare a photon in that state to send to Bob. In this case no

one would notice the interruption. Yet in the case when Eve’s basis and

Alice’s basis do not match, Eve’s measurement would be wrong 50% of the

time and send a wrong state to Bob. If for that measurement Bob uses

the same basis as Alice, they expect to record the correct state. In total,

the interruption leads to a 25 % error. Therefore, as a security check, after

the public discussion of the basis, Alice and Bob can also reveal some of

the states in the remaining string. The mismatch of the bits reveals the

existence of Eve so that Alice and Bob can disregard the key and probably

try again via a different quantum channel. At the end, without revealing

any important message, the existence of an eavesdropper can be noticed.

Later, in 1991 Artur Ekert proposed another QKD protocol which uses

entangled photon pairs [30]. However for both protocols there is a critical

obstacle in the way of using QKD world-wide: attenuation in optical fibers.

The optical loss and decoherence in the fibers scale exponentially with the

distance (0.2 dB/km for telecom C-band). The transmitted energy drops

down to around 1 % after 100 km [31]. While fiber amplifiers can solve this

issue in classical information transfer, when it comes to the quantum state

transfer the no-cloning theorem [32, 33] prohibits that kind of method. It

states that no arbitrary (unknown) quantum state can be perfectly copied.

If one wants to copy an unknown quantum state, it has to be measured

first, however any measurement would collapse the wave function and alter

the state. Therefore employing fiber amplifiers is not possible to extend

the quantum communication distance. This limitation led researchers to

find other solutions.
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Bell State Measurement

1st Link

L

L0

Emitted 

single photons

Figure 1.2: Entanglement swapping operation

1.3 Quantum repeaters

A possibility to overcome exponential scaling of loss and decoherence with

distance is the use of quantum repeaters (QR). The concept, proposed

in [34], is based on dividing the long distance into smaller segments and

creating long distance entanglement from shorter distance entanglement

via entanglement swapping [35].

Entanglement swapping is a way to create entanglement between two quan-

tum systems (nodes) which may have never interacted. Suppose that there

are 2 pairs of entangled systems, pair AC1 and pair C2B, as in Figure 1.2.

While A is entangled with C1, C2 is entangled with B. The task is to per-

form an operation which will result with the entanglement of A and B, that

are separated with the distance L. If one performs a joint measurement

between C1 and C2 in a basis of entangled states, which is a Bell state

measurement, it is possible to create entangled states between A and B in

a heralded fashion.

In order to establish a quantum channel between two distant systems, i.e.

Alice and Bob, the total distance L can be divided into N smaller segments

9



Chapter 1. Introduction

∞ ∞ ∞ ∞.   .   .   .   .   .   .   .   

.   .   .   .   .   .   .   .   

Last Entanglement Swapping
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1st Entanglement Swapping

C2N-4 C2N-3 C2N-2

C2N-4

Figure 1.3: Quantum repeater architecture

each of which individually covers a distance of L0. The whole link has N =

2n elementary pairs and 2N − 2 intermediate nodes as C1, C2, ..., C2N−2.

The first step in the operation would be creating entanglement between

the elementary pairs, i.e. between A and C1, C2 and C3, ..., C2N−2 and

B. If the nodes can emit identical photons, the detection of one photon

which could have been emitted by either two of the nodes could destroy

the which-way information and heralds entanglement between the pairs.

In the second step, entanglement swapping operations at the odd number

links in the order, i.e. 1st link at C1 − C2, 3rd link at C5 − C6, 5th link at

C9 − C10,..., are performed again via Bell state measurements. After the

first entanglement swapping, the distance between the entangled nodes is

already doubled. Entanglement swapping operations continue in the same

way until node A and node B become entangled, see Figure 1.3. Once the

operation is completed, the quantum state of a qubit can be transferred

from one end to the other.

In that configuration, having a quantum memory at each node is required

for the synchronization of entanglement swapping operations. If the en-

tanglement can be stored in each elementary link, the different links can

be essentially independent and are not required to be entangled simultane-

ously. This leads to a much better scaling when increasing the number of

links, and the distance. In 2001, Duan, Lukin, Cirac, and Zoller suggested

a scheme, now known as DLCZ scheme, that allows the implementation
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of robust quantum communication over long distances with atomic en-

sembles and linear optics [36]. It is based on the heralded creation of

collective atomic spin excitations in atomic ensembles, by the detection of

a single photon. After the DLCZ proposal, many other proposals came

out with suggestions of improvements, e.g. entanglement swapping based

on two photon detection offering suppression of errors due to multi-photon

emission [37], entanglement generation via two photon detection offering

long-distance phase stability [38], photon-pair sources with multi-mode

memories allowing greater wavelength flexibility and higher entanglement

distribution rate [39], protocols based on local generation of high fidelity

entangled pairs and two-photon entanglement swapping leading to higher

quality entangled pairs which significantly improves the overall quantum

repeater protocol [40]. Although different approaches may require differ-

ent ingredients, they all depend on quantum memories. Otherwise all the

entanglement creations in the links must be realized simultaneously. In

that case the protocol called quantum relays cannot overcome the issue of

photon loss [41].

The DLCZ proposal triggered intense experimental efforts to realize the

basic building blocks of the scheme. The first experimental observation

of non-classical correlations between a photon and an atomic ensemble

was demonstrated in 2003 [42, 43]. Entanglement storage in two and four

quantum memories have been demonstrated in 2005 and 2010 respectively

[44, 45]. In 2007 and in 2008, entanglement swapping with storage and

retrieval of light demonstrations, basic quantum repeater nodes have been

reported [46, 47]. The protocol shows its promise also with the demonstra-

tions of high retrieval efficiencies [48–50], and long storage times [51–54].

The quantum repeater schemes are not only limited to atomic ensembles.

Proposals which uses single trapped ions [55], single ions in cavities [56],

or Rydberg atoms [57]. It is worth to note that other possible solutions

which do not require entangled links and quantum memories have been

proposed for long distance quantum communication architectures [58, 59].

11
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However the resources needed are way more challenging than the schemes

with quantum memories.

1.4 Quantum memories

A quantum memory (QM) is a system which has the capability of stor-

ing quantum state and retrieving it back. It is called optical or photonic

QM if the memory is able to store quantum information carried by pho-

tons of visible or telecom wavelength. Photonic QMs are essential not

only for quantum repeaters and network architectures, but also for many

prospective applications in QIS, such as deterministic single photon sources

[60, 61], efficient generation of multi-photon states [62], and linear optics

quantum computation [63]. Each application may demand a particular set

of requirements in order to reach their best performance, therefore QMs

have been implemented in several systems with different protocols. In

the context of this thesis, we focus more on the requirements of quantum

repeater architectures.

Strategies to create entanglement between light and matter concentrate

QMs into two main types, absorptive (read-write) and emissive (read only)

quantum memories [64], see Figure 1.4. Absorptive QMs are based on

resonant interaction between light and matter. The quantum state of a

single photon is mapped onto an atomic state of the QM, where it can

be retrieved back when necessary. Emissive QMs operate via the creation

of a single atomic excitation by application of a classical light pulse and

the excitation is heralded by a photon. The heralding photon is entangled

with the single excitation. The excitation can be read-out resulting in the

emission of another photon. An emissive QM is equivalent to a photon

pair source with embedded QM. In this thesis, we will investigate both

types.

The system to work with is chosen depending on the requirements of

the application. Therefore many systems with different properties have
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Figure 1.4: Absorptive quantum memory: a single photon is first
absorbed by the system and retrieved afterwards. Emissive quantum
memory: A classical pulse creates a single spin excitation which is then

read-out.

been investigated so far. Cold atomic ensembles, hot atomic vapours, sin-

gle trapped ions, rare earth ion doped crystals (REID), nitrogen-vacancy

centers (NVC), and quantum dots are well-adapted platforms for QMs.

The experiments performed throughout this thesis have been realized with

REID QMs.

The performance of a QM is described by several figures of merit. These

will be in use throughout this work therefore it is worth to introduce them

here.

• Efficiency (η) : The efficiency of a QM can be defined as the ratio of

retrieved light pulse energy to input light pulse energy. Therefore it is a

good figure of merit for absorptive systems. In emissive QMs, the efficiency

term is more related to the read-out of the single atomic excitation which

is frequently referred to as read-out or retrieval efficiency. For practical

QR applications which can outperform direct transmission, the desired

efficiency is around 90% [31]. There are experimental results which report

storage efficiencies of 96±1% [65] and 87±2% [66] both in cold atomic

ensembles. However only coherent state of light have been stored in these
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experiments. Heralded single photons created by a cold atomic ensemble

have been stored in another cold atomic ensemble with a storage efficiency

of 49±3% in 2012 [67] and very recently with an efficiency of 65% in 2017

[68]. When dealing with the quantum state storage, the effect of various

noise sources begin to be very crucial. Therefore another figure of merit is

necessary for this kind of characterization.

• Fidelity (F) : In the case of storage of a qubit, what matters is not only

the amount of light retrieved but also how well the state of quantum light

is preserved. We assess this characteristic with the Fidelity of the storage.

It can be described as the overlap of the output and input states if the

system is used as an absorptive memory. It is called conditional fidelity

when we only consider the case that the memory gives an output.

F c = Tr(ρinρout). (1.4)

It is also possible to compare the output state with a state intended to

obtain, |ψ〉.
F c|ψ〉 = 〈ψ|ρout|ψ〉. (1.5)

An overall fidelity of around 90% is required for the whole QR for a rea-

sonable application [31]. Hence each QM should have much more than

90% of fidelity.

• Storage Time : Another figure of merit is the storage time. QR archi-

tectures require QMs in order to synchronize entanglement swapping oper-

ations due to the fact that it is very unlikely to complete all the operations

at the same instance when the entanglement creations are probabilistic.

While the operations at links continue until successful creations, the en-

tangled nodes have to store the quantum information. It means that the

storage time has to be much longer than the time required to distribute

entangled pairs. At least storage of the orders of seconds is necessary for

a QR length of around 600km with storage efficiency and fidelity of 90%
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[31]. Coherent classical light storage in the order of one minute [69] and

coherence time of six hours have been reported with REID crystals [70].

•Multi-mode capacity : It can be taken as another figure of merit even

though not all the QMs are able to store multi-mode light. The ability

to store qubits separated in time, in frequencies or in space can shorten

entanglement creation operation time, with a gain equal to the number of

stored modes [39]. Therefore multi-modality can loosen the requirement

of very long storage time.

•Wavelength : The whole idea of QR architectures is to beat the atten-

uation of light at telecom wavelengths in direct transmission through the

optical fibers. Hence it is certainly necessary to carry on the entanglement

swapping operations in the far away nodes with telecom photons. However,

this criteria by itself limits the number of systems that can be exploited.

Many optical QM systems operate at visible wavelength range. One ap-

proach to overcome this limitation is implementing quantum frequency

converters with nonlinear crystals [71]. It is possible to efficiently convert

visible light to telecom wavelengths by using this technique [72]. Another

idea suggested in [73] modifies the regular QR approach by adding photon

pair sources which creates two entangled photons, one resonant with QM

whatever the operation wavelength is and other one at telecom wavelength,

which will be used for entanglement swapping. In our research group, we

investigate both approaches [74, 75].

1.5 Scope of this thesis

In this thesis, we investigate several QM protocols in REID crystals. I

describe three of them in detail and present the first demonstrations of

two new protocols in a Pr3+ :Y2SiO5 crystal. The work presented here

was carried out during the period between November 2012 and May 2017.
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In Chapter 2, I give an overview of REID systems in general, and for

Pr3+ :Y2SiO5 crystal in particular.

Chapter 3 provides the basics of light-matter interactions required to im-

plement QM protocols. I also describe the two-pulse photon echo scheme.

Chapter 4 is devoted to the experimental setup that was used in all the ex-

periments. It includes the laser system, locking of the laser frequency with

the Pound-Drever-Hall technique, details of the cryostat and the detection

& data acquisition hardware.

Chapter 5 starts with the overview of spectral hole memory (SHoMe) pro-

tocol based on spin-wave storage of slow light. Later I present the first

demonstration of the protocol which achieves the state of art of spin-wave

storage efficiency in solid state medium with weak coherent state of light.

In Chapter 6, I first describe a well-known protocol, the atomic frequency

comb (AFC). I present the results of an experiment where we convert tele-

com photons to 606nm and store them in our QM. Additionally I discuss

more recent results of excited states and spin-wave storage obtained by

using AFC protocol and present the results of the highest spin-wave AFC

efficiency and lowest unconditional noise to date.

In Chapter 7, another well-known protocol, Duan Lukin Cirac Zoller (DLCZ),

is discussed. I present the first demonstration of DLCZ-type protocol us-

ing photon counting in REID systems. Furthermore, preliminary results

of time energy entanglement between the photons of the pair is presented

by showing two-photon interference fringes with high visibility.

I conclude the thesis in Chapter 8 by giving a summary and an outlook.

1.6 State of the art in the lab

When I joined the group in November 2012, the group was 2 years old and

there were already two experimental demonstrations completed in the solid

16



Chapter 1. Introduction

state memory part. The group had demonstrated the storage of polariza-

tion qubit in the excited state of the crystal and the storage of temporally

multimode light in the spin state. Both experiments were realized by using

the AFC protocol. The highest excited state AFC echo efficiency was 15%

at 2 µs storage time and the highest spin wave AFC efficiency was 5.6% at

4 µs storage time in the spin state. 5 temporal modes had been stored in

the spin state. Moreover these values were obtained by the classical light

pulses, not in the single photon level. Around one year after I joined the

group, we started to build a new experimental setup in an empty lab. In

this thesis I present the results that we obtained in the new setup. Now, as

of June 2017, we can reach excited state AFC efficiency values of around

17% at 10 µs storage time, more than 30% spin-wave storage efficiency

values in the single photon level with the Signal-to-Noise ratio of 33 ± 4

for an average input photon number of 1 by using the spectral hole mem-

ory protocol, and can store and retrieve 11 temporal modes of single spin

excitation by using DLCZ-AFC protocol.
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Chapter 2

The rare-earth ion doped

system Pr:YSO

This chapter reviews the electronic and optical properties of the atomic

system used throughout my PhD work: Pr3+:Y2SiO5 (Pr:YSO). The prop-

erties discussed here are taken with a specific focus on quantum informa-

tion processing applications. This chapter is inspired from several books

[76–78], and PhD thesis [79, 80].

Rare-Earth ions have been studied extensively since their first discovery.

There are seventeen rare earth elements in the periodic table, fifteen lan-

thanides as well as scandium and yttrium. Rare-earth elements’ atomic

numbers range from 57 to 70 and their 4f shells are not completely filled.

The 5s and 5p shells have lower energies than the 4f shell therefore electrons

fill the 5s and 5p first. On the other hand the 4f shell has lower principle

quantum number which keeps its radial distribution closer to the nucleus

than the 5s and 5p shells’, as shown in Figure 2.1. Thus electrons at 4f

shell are shielded by the filled 5s and 5p electrons. This is called screening

effect, which limits the interaction of 4f electrons with the environment,

and leads to very sharp spectral lines, e.g. optical transition linewidth in

the sub-kHz range [81, 82]. By employing dynamical decoupling method,
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Figure 2.1: Radial charge density, P 2(r), as a function of radius, r, for
the 4f, 5s, 5p, and 6s orbitals of Gd+ taken from [86].

the decoherence of hyperfine transitions could be reduced to observe long

spin coherence times around 6 hours [70] at cryogenic temperatures. As a

result the rare-earth ions exhibit unique characteristics which make them

valuable for many optical applications such as solid-state lasers [76], optical

amplifiers [83, 84], and optical data storage [85].

2.1 Properties of Pr:YSO

The host materials for rare earth ions depend on the application but are

mostly inorganic crystals. The Y2SiO5 (YSO) crystal is a low symmetry

(C6
2h) insulator host with a bandgap of around 4.2 eV (≈295.2 nm or ≈

1015.5THz) [87]. When doped with Pr+3 ions, they substitute for Y+3 ions

in the crystal lattice and introduce energy states in the bandgap. In other

words the ions which interact with light are naturally trapped by the host
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Figure 2.2: Orientations of the crystal and polarization axis in Y2SiO5

[90].

crystal lattice, hence decoherence caused by atomic motion almost disap-

pears. However lattice phonons can still interact with the ions and cause

perturbations. We cool down the crystals to liquid helium temperatures

in order to minimize the issues related with phonon interaction.

The YSO crystal structure is monoclinic biaxial with unit cell dimensions

a = 1.4371 nm, b = 0.671 nm, c = 1.0388 nm, and β= 122.17◦ [88]. The

ionic radii of Pr and Y are 112.6 pm and 101.9 pm, respectively [89]. There

are two crystallographic site that Pr ions substitute in, site 1 and site 2.

Site 1 is much more likely to be occupied by Pr dopant ions with respect

to site 2. Therefore the optical density is higher for absportion transitions

of site 1 ions. The optical 3H4(0) −→ 1D2(0) transition is at 605.977 nm in

site 1 and at 607.934 nm in site 2. We use the site 1 ions in the experiments

described in this thesis.

b, D1, and D2 are the three polarization axes of the Pr:YSO crystal. For

maximum absorption, the polarization of light is supposed to be parallel

to the D2 axis. Their directions with respect to the crystallographic axis

(a, b, c) can be determined by X-ray measurement as shown in Figure 2.2

[90].
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The advantage of REID systems is their long lifetimes and coherence times.

In our group, an excited state lifetime of 160 µs and an inhomogeneous

broadening of around 10 GHz was measured with a 0.05% doped Pr:YSO

crystal (absorption coefficient α of around 20 cm−1). We also measure

an excited state coherence time of 90 µs (see Chapter 3.2) at T = 3.5 K

and without magnetic field, corresponding to homogeneous linewidth of

γh = 3.5 kHz. The ground state hyperfine level lifetime of around 100 sec-

onds has been reported [91]. In the measurement done in our group, the

population decay shows a double-exponential behaviour with 7.5 seconds

and 198 seconds decay constants. The coherence time in the ground state

hyperfine level is around 500 µs [92] at zero external magnetic field. In-

troducing external magnetic fields and dynamical decoupling techniques,

the coherence time can be pushed towards the lifetime limit [69]. All these

unique properties make the Pr:YSO system a very promising candidate for

a photonic quantum memory.

2.2 Energy levels

Pr (praseodymium) atoms have the atomic number 59. They loose usually

3 electrons and become Pr3+ when bonded to oxygen. The electronic

configuration of Pr3+ is [Xe] 4f2, i.e. there are two electrons in the 4f shell.

For the understanding of energy levels, there are many interactions which

should be taken into account in the Hamiltonian.

H = [H0 +HC +HSO] + [HCF +HHF +HQ +Hz +HZ ] (2.1)

Here I discuss the Hamiltonian of only the lowest energy ground state

state. The energy levels are shown in Figure 2.3. Further detailed analysis

can be found in [76, 77, 86].

Due to the screening effect, interactions of the ions in a solid matrix can

be considered as perturbation of the free ion case, which is represented

by the Hamiltonians on the left bracket. Central field approximation is a
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Figure 2.3: Energy levels of 4f electrons in Pr3+:Y2SiO5 inferred from
Dieke diagram [93].

conventional approach to solve Schrödinger equation for N-electron atomic

system and evaluate energy levels of lanthanide. In that context, the non-

spherical electronic interactions are taken as perturbations to the spheri-

cally symmetric potentials. The first Hamiltonian (H0) consists of kinetic

and potential energy of the electrons in the field of the nucleus which is

purely radial hence does not affect the energy level structure.

The Coulomb interaction (HC) between the electrons removes the degener-

acy of the 4f shell into the ground and excited terms which are represented

with 2S+1L. It dominates the Hamiltonian in light atoms whose radius

is small hence the electrostatic interaction is strong. The total orbital

angular momentum L, total spin angular momentum S, and the net angu-

lar momentum J determine the spectral terms of the ground and excited

states. For two electrons in the 4f shell, S = |
∑
ms| = | 1/2 + 1/2 | =

1, and L = |
∑
m`| = | 3 + 2 | = 5. In order to calculate the L value

of the lowest energy, we start to fill the highest m` levels which gives the

smallest interaction and the minimum average repulsion. While J and S

are specified numerically, L is conventionally specified with letters in the
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following manner; L = 0, 1, 2, 3, 4, 5, ... ≡ S, P, D, F, G, H,... Therefore

the spectral term of the lowest energy ground state is 3H.

The motion of electrons in the orbit around the nucleus creates a mag-

netic field which interacts with the electron spins. It is called spin-orbit

interaction (HSO) and splits the term into manifolds, 2S+1LJ . In the many

electron free ion case when the 4f shell is less than half full, the ground

state manifold can be built with the Hund rule, where J = L - S. In Pr

the ground state manifold is 3H4.

The spherical symmetry of the dopants is disturbed by the YSO crystal.

Therefore the electric field of the crystalline environment splits the ionic

energy levels. Nevertheless the interaction of the electrons with the crys-

tal field (HCF ) is weaker than the spin-orbit interaction thus the effect is

mostly localized as perturbations within the single manifolds. It removes

the degeneracy on each J manifold which can be then splitted into a max-

imum of 2J + 1 levels, written 2S+1LJ(n), n = 0,...,2J+1. The number of

crystal field levels as well as the magnetic properties of rare-earth ions de-

pend on the number of electrons in the 4f shell. If it is an odd number, the

ion, called Kramers ion, has larger magnetic moment due to the unpaired

electron [94]. Ions with even number of electrons are called non-Kramers

ions, i.e. Pr3+ which has 2 electrons in the 4f shell. For those in sites with

lower than axial symmetry, it results with a “quenching” of the angular

momentum.

HHF is the hyperfine interaction between the nuclear spin momentum I

and the effective magnetic field induced by the electronic angular momen-

tum J. Pr has nuclear spin of 5/2, thus each crystal field singlet splits

into three levels labeled ±1/2, ±3/2, and ±5/2. In fact, for singlets the

first order hyperfine interaction vanishes, and only the second order effect

is considered. The second order nuclear hyperfine term is similar to the

electric quadrupole Hamiltonian HQ [95]. The two Hamiltonians can be

written together as an effective Hamiltonian and the splittings of level due

to the effective Hamiltonian is commonly called the hyperfine splittings.
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Table 2.1: Relative oscillator strengths of hyperfine transitions in
Pr:YSO. [97]

±1/2e ±3/2e ±5/2e
±1/2g 0.55 0.38 0.07
±3/2g 0.44 0.60 0.01
±5/2g 0.05 0.02 0.93

The last two Hamiltonians, nuclear Zeeman effect Hz and electronic Zee-

man effect HZ , exist only when an external magnetic field is applied. The

external field lifts the ± degeneracy in the hyperfine levels and splits each

level into two. The magnitude of the splitting is directly proportional to

the amplitude of the applied field (around 100MHz/T in the ground state

of Pr:YSO [96]). In the work presented in this thesis, no external magnetic

field is applied.

All the 4f intra-configurational transitions are weakly allowed in REID

crystals. The relative oscillator strengths of all 9 possible transitions are

given in Table 2.1.

2.3 Homogeneous and inhomogeneous broaden-

ing

Homogeneous broadening refers to the spectral linewidth of a single ion’s

absorption and emission. It arises from dynamical processes such as life-

time and dephasing of ions in the electronic levels hence it is the same for

all ions. It can be defined as

Γh =
1

2πT1
+

1

πT ∗2
=

1

πT2
(2.2)

where T1 is the population lifetime, T∗2 is the dephasing time (so-called

pure dephasing) and T2 is the overall coherence time.
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The screening effect minimizes the broadening of the absorption line by di-

minishing the phonon-ion interaction at liquid helium temperatures. Phonon

interaction dominates at higher temperatures and broadens the linewidth.

Besides the phonon interaction, magnetic field fluctuations in neighbouring

atoms can increase the homogeneous linewidth. Therefore host material

with low nuclear magnetic moment are preferable. An effective technique

to reduce the magnetic field fluctuations is applying external magnetic field

in a specific direction which results in zero first order Zeeman shift (ZE-

FOZ) at a certain magnetic field strength [98]. It is a powerful technique

not only for Kramers ions which are more sensitive to field fluctuations

but also for non-Kramers ions to obtain long spin coherence times [69].

Interactions between rare-earth ions in the crystal may also contribute to

homogeneous broadening by instantaneous spectral diffusion during the

light matter interaction [99]. Introducing a low dopant concentration

would be the easiest solution which increases the distance between ions

and therefore reduces the interaction.

By mitigating the effects due to dephasing mechanisms, homogeneous

linewidths as narrow as 122 Hz for Eu3+:Y2SiO5 [82] and 50 Hz for Er3+:Y2SiO5

have been reported [100].

When we probe the ensemble, the absorption profile of the crystal suggests

a much broader linewidth than the homogeneous one as depicted in Figure

2.4. The reason behind it is the fact that even though each ion has a narrow

linewidth, they may experience slightly different crystal field strength. The

ionic radii of Pr3+ and Y3+ do not perfectly match which results in crystal

strains. Furthermore lattice defects and chemical impurities are inevitable

in most of the growth processes. The consequence of all these imperfections

throughout the crystal appears as an inhomogeneous broadening of the

absorption linewidth. It is in the order for some GHz for Pr:YSO ensembles

with 0.05% doping concentration and can be reduced by decreasing the

doping concentration of the crystal.
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Figure 2.4: Representation of homogeneous and inhomogeneous broad-
enings in a REID crystal. Each peak represents individual single ion.

The inhomogeneous broadening in Pr:YSO crystal is around 3 orders of

magnitude larger than the hyperfine splittings. The inhomogeneity in the

crystal spreads all the possible transitions in a broad range of frequencies.

As a consequence, an optical pulse at a certain frequency can excite many

ions in all the transitions. A group of ions which resonate with the light in

the same transition is considered as a class. With 3 ground and 3 excited

state hyperfine levels, 9 possible classes can be excited with the same light

pulse in a Pr:YSO ensemble. Population at a certain frequency can be

distributed to other frequencies determined by the hyperfine level splitting

if a long enough optical pulse from a narrow-band light source is applied.

The process is called spectral hole burning. More details on spectral hole

burning techniques and characterization of Pr:YSO ensemble can be found

in Chapter 2.4 and also Nilsson et. al. [97].

2.4 Spectral hole burning

Spectral hole burning (SHB) is at the heart of many experiments, not

only with REID crystals but also any media which has inhomogeneous
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broadening [77, 101]. SHB creates a narrow transmission window within

an inhomogeneously broadened absorption profile at a certain frequency

which is opaque otherwise.

When we consider a REID system with two ground states and two excited

states with splittings of ∆a and ∆b, respectively, applying a pulse to burn a

hole has other consequences, see Figure 2.5. A resonant pulse at frequency

ω0 excites ions to the excited state. However the ions decay from the

excited state back to the ground states. If the pulse is long enough in

time, it removes ions from one ground states and the decay populates the

other one. Here we assume that the lifetime of the ground state is longer

than the excited state. Due to the inhomogeneous broadening larger than

the hyperfine splittings, there are four classes of ions in the system. In this

condition removing ions from one ground state does not create only one

hole but three holes. The other consequence is the creation of anti-holes,

the result of decaying ions from the excited state to the other ground state.

The state becomes more populated than the equilibrium case therefore the

absorption in that transitions frequency will be higher. The absorption

can be quantified by the optical depth (OD) which is related with the

absorption coefficient α and the length of the crystal L, OD = αL. OD

can be easily measured by a weak probe field transmitted through the

crystal. An illustration of a spectral hole burning in the given system

is shown in Figure 2.5. The ground state hyperfine population decay of

Pr:YSO crystal is measured around 200s [79] with an optical excited state

lifetime of 164 µs, making spin polarization and thus spectral hole burning

easier. It should also be noted that our Pr:YSO crystal has 9 classes (see

Appendix A) which makes the process much more complicated.

All the experiments we present in this thesis are based on spectral hole

burning. Creating a single hole by itself can be considered as a memory

preparation as we do in Chapter 5. Besides, we will tailor the absorption

profile by spectral hole burning to create AFC structures in the next chap-

ters. Therefore the control over the hole burning process to obtain the

necessary hole or anti-hole spectral width and optical depth in a limited
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Figure 2.5: Illustration of holes and anti-holes in a system with two
ground and two excited states. An optical pulse distributes the popula-
tion at a certain frequency to the other levels. Having different classes

leads to various holes and antiholes.

time is crucial. The laser linewidth and the homogeneous linewidth of the

atoms limit the narrowest hole width that we can achieve in the first place.

Additionally, spectral diffusion takes place in the millisecond range hence

the preparation should not be slow. In our experiments, we do not see

spectral diffusion. On the other hand applying strong pulses to be fast in

time results with power broadening [102]. Therefore the parameters have

to be carefully optimized.

2.4.1 Class cleaning and memory preparation with holes

and antiholes

Antiholes may appear as unwelcome complications. However we take ad-

vantage of them as controllable absorptive features since we are capable of

fine adjusting the OD, width, and frequency of not only the holes but also

the antiholes.
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Figure 2.6: Memory preparation steps.

Our usual memory preparation process starts by preparing a wide trans-

parency window of 15 MHz by sending strong laser pulses (500 pulses,

100µs long) of 20 mW and sweeping them. This has the effect of emptying

the 1/2g and 3/2g states of a given class of ions. We then send 2-4 MHz

broad burn-back pulses resonant with the transition 5/2g - 5/2e (+32.3

MHz away from the center of the pit) to repump back atoms in the states

1/2g and 3/2g. Afterwards we clean the spin-storage state, the 3/2g, us-

ing 5 MHz broad pulses resonant to the 3/2g - 3/2e transition. We want

this state to be totally empty, in order to reduce the noise generated by

the control pulses during the spin wave storage. Moreover, these cleaning

pulses have the additional effect of removing any absorption feature asso-

ciated to different transitions of other atomic classes from the frequency

range of interest. The process until this point takes about 90 ms. At this

stage, we have a 2-4 MHz-wide single class absorption feature resonant

to the transition 1/2g - 3/2e, where we can prepare the specific structure

that the protocol requires, for example a single spectral hole or an atomic

frequency comb. Figure 2.6 shows the spectral features of the memory

preparation steps.

However there is another common procedure for the spin-wave memory
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protocols. When we create the desired feature at ±1/2g - ±3/2e transition,

some of the ions decay back to the ±3/2g state. We want to keep this state

empty in order to realize spin-wave storage. Therefore we again remove

the population by optical pumping the ±3/2g - ±3/2e transition. With

this final atomic manipulation, the memory becomes ready to use.

More information about class cleaning and memory preparation can be

found in [79, 97, 103].
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Chapter 3

Coherent light-matter

interaction

This chapter is dedicated to introduce the basic theoretical concepts of

light-matter interaction relevant to the experiments presented in the thesis.

I have benefited from various resources in the theoretical part of the chapter

[104–106]. Additionally, I describe a basic photon echo scheme, namely the

two-pulse photon echo.

3.1 Evolution of a resonant two-level system

A two level atomic system is a good candidate for a stationary qubit and

also the basic system to describe the physical concepts of the light-matter

interaction. Here I follow the semi-classical approach where only the atoms

are quantized but not the light field. The wave function of a two level

system can be written as:

|ψ(r, t)〉 = c1(t)|0〉+ c2(t)|1〉 (3.1)
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where c1(t) and c2(t) are complex probability amplitudes of the excited

state |1〉 and ground state |0〉, respectively and satisfy |c1(t)|2 + |c2(t)|2 =

1. The energy difference between the two states can be defined as ω0~.

The density matrix operator of the wave function takes the form of:

ρ̂ = |ψ〉〈ψ| =

(
|c1|2 c1c

∗
2

c∗1c2 |c2|2

)
(3.2)

where the diagonal elements present the populations and the off-diagonal

elements present the coherences. The wave function can also be written in

a more general way:

Ψ(r, t) =
∑
i

ci(t)ψi(r)e
−ı̇Eit/~ (3.3)

where Ei is the energy of the corresponding level. When a monochromatic

light field is on or near resonance with the system, the Hamiltonian can

be written as:

Ĥ = Ĥ0 + ĤI(t) (3.4)

where H0 is the free evolution Hamiltonian and HI(t) is the interaction

Hamiltonian, the time dependent perturbation term. Assuming that the

light field induces dipole oscillations only in the x axis, the interaction

Hamiltonian can be written as:

ĤI(t) = exE0cos(ωt) (3.5)

where ex presents the dipole moment, E0 is the amplitude of the electric

field and ω corresponds to the angular frequency of the light wave. The

matrix elements of the perturbation are given by:

HI,ij(t) = −E0

2
cos(wt)µij (3.6)

where µij is the dipole matrix element. µ11 = µ22 = 0 due to the fact that

x is a odd parity operator and also µ12 = µ21.
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We use the time dependent Schrödinger equation to describe the evolution

of the system:

ĤΨ(r, t) = ı̇~
∂

∂t
Ψ(r, t) (3.7)

The free evolution Hamiltonian has two solutions for a two level system:

Ĥ0ψi(r) = Eiψi(r) {i = 1, 2} (3.8)

We insert the Equation 3.3 and 3.4 into the Equation 3.7, multiply with

ψ∗i and integrate over the whole space. Due to the orthogonality between

the eigenfunctions we obtain :

ċ1(t) = ı̇
E0µ12

2~
(eı̇(ω−ω0)t + e−ı̇(ω+ω0)t)c2(t)

ċ2(t) = ı̇
E0µ12

2~
(e−ı̇(ω−ω0)t + eı̇(ω+ω0)t)c1(t)

(3.9)

Now we define an important parameter, the Rabi frequency as:

ΩR =
E0µ12

~
(3.10)

Under the rotating wave approximation we can assume that the high fre-

quency terms, i.e. ω+ω0, rapidly average to zero if the light is on or near

resonance with the transition. Hence, we can neglect the terms e±ı̇(ω+ω0)t.

If the light field is resonant and in the inital case all the population is in

the ground state, then we obtain a simple solution:

c1(t) = cos(ΩRt/2)

c2(t) = ı̇sin(ΩRt/2)
(3.11)

Therefore the population in the states oscillate with the Rabi frequency.

The average dipole moment of the system can be written with the density

matrix elements

〈d〉ψ = 〈ψ|d|ψ〉 = d12(ρ21e
−ı̇ω0t + ρ12e

ı̇ω0t) (3.12)
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The Bloch sphere representation as shown in Figure 1.1 is a helpful way to

visualize and understand the evolution of a two level system resonant with

the light field. We can define ρ̃12 = ρ12e
−ı̇(ω−ω0)t and write the average

dipole moment as

〈d〉ψ = d12(ρ̃12e
ı̇ωt + ρ̃21e

−ı̇ωt) = d12[R1cos(ωt)−R2sin(ωt)] (3.13)

where R1 = 2Re(ρ̃12) and R2 = 2Im(ρ̃12). They are the in-phase and in-

quadrature components of the dipole. The R3 component is the population

difference as ρ22 − ρ11. Then the Bloch vector is defined as

~R = (R1, R2, R3) (3.14)

The optical Bloch equations can be written by introducing two relaxation

terms, T1 = γ|| and T2 = γ⊥ for the diagonal and off-diagonal elements

where γ|| and γ⊥ are the corresponding decay constants. As stated in Chap-

ter 2, T1 and T2 correspond to the excited state life-time and coherence

time, respectively. The equations obtained are

Ṙ1 = δR2 −
R1

T2

Ṙ2 = −δR1 −
R2

T2
+ ΩR3

Ṙ3 = −δR2 −
R3 −Req3

T1

(3.15)

where Req3 is the population difference in the equilibrium condition.

The optical Bloch equations describe the effect of the light field on the

atomic system. However it should be coupled with classical Maxwell equa-

tions in order to consider how the atomic system acts back on the field. In

the rest frame, the Maxwell equation can be written as

∇2 ~E(z, t)− n2

c2

∂2

∂t2
~E(z, t) =

1

ε0c2

∂2

∂t2
~P (z, t) (3.16)
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where P is the macroscopic polarization and defined as

P (z, t) =
Nµ

2π

∞∫
0

[R1cos(ω0t− kzz)−R2sin(ω0t− kzz)]g(ω)dω (3.17)

where N is the number of atoms, and g(ω) is the inhomogeneous broaden-

ing. After some math, the propagation equations can be written as

∂Ωc

∂z
=

α

4π

∫ ∞
−∞

R2g(∆)d∆

∂Ωs

∂z
= − α

4π

∫ ∞
−∞

R1g(∆)d∆

(3.18)

where Ωc and Ωs are the in-phase and in-quadrature parts of the field, α

is the absorption coefficient, and ∆ is the detuning from the frequency of

the rotating frame.

Additionally the change in the atomic polarization σ can be written as

follows
δσ(z, t)

δt
= −ı̇δσ(z, t) + ı̇µ2ΩR(z, t)/~ (3.19)

The combination of Equations 3.15 and 3.18 represents the Maxwell-Bloch

equations. Together with 3.19 they are useful to describe the memory

protocols that I will present in the thesis.

3.2 Two-pulse photon echo

The two-pulse photon echo (2PE) scheme is one of the most common

method to observe the evolution of the dipoles. It was first observed by

Kurnit and co-workers in 1964 [107] and later explained by the same group

[108]. It is a quite useful technique to measure the homogeneous linewidth

of an ensemble which has inhomogeneous broadening.

The protocol is based on the Rabi oscillation and free precession. The

Bloch sphere representation and the time sequence of the scheme are shown
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Figure 3.1: Evolution of the dipoles in the Bloch sphere and time
sequence of the 2PE scheme.

in Figure 3.1. Initially all the atoms are in the ground state. A π/2 pulse

rotates the Bloch vector around the R1 axis and brings the system to the

R1(0) = 0, R2(0) = 1, and R3(0) = 0 condition right after the pulse at t

= 0+. At that moment all the dipoles in phase create a coherent emis-

sion called free induction decay (FID) [109]. Due to the inhomogeneous

broadening, the dipoles evolves in time with slightly different speeds which

leads to the dephasing of the system. We can describe the evolution of the

dipoles for t > 0 as

R1(t) = −sin(∆t)

R2(t) = cos(∆t)

R3(t) = 0

(3.20)

We can revert the dephasing and convert it to a rephasing by applying a

π-pulse at time τ . Each Bloch vector undergoes a 180◦ rotation around

the R1 axis. Their precession continues in the same direction with the

same speeds however the system this time rephases instead of dephasing.

A collective coherent emission occurs at time 2τ .
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Figure 3.2: 2PE measurements to find T2 value in our Pr:YSO crystal.
The blue straight line is the fit to the highest values, the green dashed

line is the fit to the mean average of the measurements.

We use the 2PE protocol to measure the excited state coherence time T2

and extract the homogeneous linewidth. In order to do this we changed

the storage time τ from 11.2 to 51.2 µs by steps of 4 µs and measured the

emitted echoes. For each storage time the measurements were repeated

20 times as shown by the red dots in Figure 3.2. The fluctuations in the

measurements is possibly due to the vibration of the cryostat which will be

discussed in the next chapter. We fit the data, both the maximum and the

average amplitudes, to an exponential decay containing the coherence time.

From both fits, we found T2 values of around 90 µs which corresponds to

the homogeneous linewidth of 3.5 kHz.
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Experimental setup

This chapter presents the equipments and the setup used in the experi-

ments described in this thesis. It is divided in three sections including the

606 nm laser sources, the cryostat, and other devices such as detectors,

acousto-optical modulators, and control electronics.

4.1 606 nm lasers

The atomic system used as quantum memory, the Pr:YSO crystal, has

a relevant transition at around 605.977 nm as stated in Chapter 2. For

the manipulation of the Pr ions and preparation of the memory, we need

a laser with a narrow linewidth (ideally sub-kHz range). However there

are not many commercially available options due to the lack of the laser

diodes which emit light at 606 nm. One directly applicable solution would

be the use of dye lasers which can be tuned over a large spectral range.

However because of the possible operational complications, e.g. difficulties

in frequency stabilization, we preferred using an all solid-state option. In

the experiment presented in Chapter 6, we obtain 606 nm light via sum

frequency generation (SFG) of two amplified laser diodes (987 nm and

1569 nm) in a non-linear periodically poled potassium titanyl phosphate
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(PP-KTP) crystal. In 2014, custom built 606 nm lasers based on second

harmonic generation (SHG) process became commercially available and we

continued our research with this kind of laser.

4.1.1 606 nm laser via SFG

Sum frequency generation is a non-linear frequency mixing technique to

access light at a desired wavelength by exploiting the nonlinear optical

properties of materials. It is a second order non-linear (χ(2)) parametric

process which satisfies the energy conservation between two input photons,

ω1 and ω2, and the converted output photon, ω3, as in the following form:

~ω1 + ~ω2 = ~ω3 (4.1)

The intensity of the generated output field I3 can be calculated from [110]

I3 =
8deff

2ω2
3I

2
1I

2
2

n1n2n3ε0c2
L2sinc2(

∆kL

2
) (4.2)

where deff
2 = χ(2)/2, I1 and I2 are the input light intensities, n1, n2 and n3

are the refractive indices of the material for the three light fields, ε0 is the

electric permeability of free space, c is the speed of light, L is the length

of the nonlinear material and finally ∆k is the phase mismatch which can

be written as ∆k = k1 + k2 - k3 [110].

The phase mismatch rises from the fact that the generated and propagated

light fields experience different refractive indices. The output intensity is

maximum when there is no phase mismatch, however in practice it is very

challenging to reach this condition. When the mismatch becomes more

than π, see Figure 4.1, the process reverses and the generated ω3 photons

start to be converted back to ω1 and ω2 photons.

One strategy to circumvent the phase matching issue is the quasi-phase

matching technique. The idea is to change the sign of the phase period-

ically at the points where the interaction is about to reverse otherwise.
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Figure 4.1: (a) Sum frequency generation in a periodically poled crys-
tal. (b) Phase matching conditions. (c) Output field amplitude as a
function of length of the periodically poled crystal for three different

phase matching conditions [110].

Therefore the phase vectors stay in the regime where the interactions al-

ways allow to generate a ω3 photon from ω1 and ω2 photons. Periodic

poling of electrical polarization of a non-linear material is a method for

obtaining quasi-phase matching. Ferro-electric crystals allow this kind of

permanent modification in the specific regions of the material. By applying

external electric field (in the order of 10 kV/mm) via patterned electrodes

on the crystal surface, the direction of the electrical polarization of the

crystal can be altered. With respect to the perfect phase matching condi-

tion, deff is reduced by a factor of 2/π. With a poling period, Λ, around

tens of micrometers, the mismatch can be compensated and written as ∆k

= k1 + k2 - k3 + 2π/Λ.

The PP-KTP crystal is a widely used nonlinear material. Our crystal is

manufactured by the company AdvR and consists of many waveguides.

We produce 606 nm light with two amplified laser diodes, one at 1570

nm (Toptica, DL 100) and the other at 987 nm (Toptica, TA pro). The

1570 nm laser output is amplified by a Keopsys Erbium-doped fiber am-

plifier (EDFA). We have 980 mW of 1570 nm light before the in-coupling
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Figure 4.2: Output power of the converted 606 nm light via SFG as a
function of the temperature of the PPKTP waveguide.

lens while the power of the 987 nm light is 380 mW. We couple the two

laser fields on a dichroic mirror which reflects 987 nm and transmits 1570

nm light. The crystal, the in-coupling, and the out-coupling lenses are

mounted on three translational stages to ensure the best possible coupling.

The crystal has a length of 25 mm and its temperature can be adjusted

with a Peltier module. We can produce 20 mW of 606 nm light with a

conversion efficiency around of 85%/W. Another dichroic mirror separates

the converted 606 nm light and the transmitted input lights. Tempera-

ture is one of the important factor. The temperature dependence of the

generated 606 nm light is shown in Figure 4.2. We observed the optimum

temperature around 34.5◦C. Tuning the temperature changes the Λ so the

phase matching condition and results in different output powers.

In the AFC experiment presented in the Chapter 6, the 606 nm light was

created via the SFG method. Later on we switched to a SHG laser.
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Figure 4.3: Main components of Toptica TA-SGH Pro laser.

4.1.2 606nm light via SHG laser

The Toptica tapered amplifier (TA) SHG Pro laser system offers directly

606 nm light at the output thanks to the built-in SHG process. The 1212

nm master diode laser has an output power of around 85 mW which is then

amplified to 1.5 W by the TA. A folded ring cavity in bow-tie configuration

converts the 1212 nm light to 606 nm via the SHG process. The second

harmonic generation is based on the same principle as the SFG while there

is only one input wavelength which is converted to its half. Hence the

process is also called frequency doubling. The bow-tie cavity resonant to

1212 nm light allows the not converted 1212 nm light to pass through the

nonlinear crystal multiple times thus boosting the total conversion. The

maximum output power is around 900 mW.

We used SHG laser in the experiments presented in Chapter 5 and Chapter

7. The SHG laser provides higher power so that our transfer pulses (control

or Raman pulses) are more effective. It provides also less noisy operation

due to an increased signal to background ratio, which is crucial to minimize

the noise in the single photon counting regime.
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4.1.3 Frequency locking

The quantum memory protocols we use require stable frequency and nar-

row laser linewidth, ideally in the kHz range. Even though the Toptica

lasers offer narrow linewidth (lower than 100 kHz in the specs), they do not

perfectly match with our requirements. In this respect, we built an optical

Fabry-Perot (FP) cavity to lock the frequency of the laser to a mode of

the cavity with the Pound-Drever-Hall (PDH) technique. It allows active

tuning of the laser frequency to the resonance frequency of the cavity. The

cavity made of invar to avoid thermal drift is placed inside of a vacuum

chamber under the pressure of around 2 x 10−7 mbar in order to mitigate

pressure and temperature fluctuations.

The FP cavity has a length of 15 cm and consists two mirrors with the re-

flection of around 99.86% at 606 nm. The free spectral range of the cavity

is 1 GHz with a linewidth of 1.2 MHz hence the finesse is ∼ 830. In order

to realize the PDH technique, we pick up some light at 606 nm and send it

through an electro-optical modulator (EOM). It creates sidebands ± 12.5

MHz away from the carrier frequency ω. A Toptica Digilock 110 module

creates the local oscillator signal for the EOM. The modulated light then

goes to the cavity. The light reflected from the cavity consists of the direct

reflection from the first mirror and the light leaked from the same win-

dow after traveling back and forth inside the cavity many times. There is

a phase shift between the direct reflection and the leaked light which de-

structively interfere the two components. If the frequency of the laser drifts

away from ω, the frequency of the laser and the cavity will not resonate

any more hence a complete destructive interference would not take place.

Therefore detecting the reflected light components could help us to create

an error signal to use as feedback into the laser. However the interference

without the sidebands does not give us any hint about the direction of the

drift. This is the reason why we use an EOM. The interference between the

reflected light and the sidebands generate a beating pattern which has the

information about the direction of the drift. The detected signal is then
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Figure 4.4: PDH frequency locking system. We generate 606 nm light
with and lock the frequency to either built-in SHG system or the SFG

system.

compared with a local oscillator signal at 12.5 MHz via a mixer. After a

low-pass filter which we use to eliminate the higher order frequencies, it

feeds the Fast Analog Linewidth Control (FALC) module of Toptica which

creates the fast feedback signal. The current control of the master diode

offers the fastest response to the feedback signal therefore we lock the fre-

quency by controlling the current unit. The Digilock unit also receives the

signal, however the longer response time of the piezo provides only long

term stability of the frequency. The same cavity and electronics were used

for both laser sources but in the case of SFG, the feedback signal is sent

only to the 987nm laser. The schematic of the system is shown in Figure

4.4.

In order to quantify the stability of the PDH system and find out the

effective linewidth of our system, we send 1 ms long pulses to our Pr:YSO

crystal and measure the spectral full width half maximum (FWHM) of

the holes created. We first prepare a 12 MHz transmission window by

optical pumping and then create a 2 MHz single class absorptive feature

by back burning process. After applying a 1 ms pulse on the center of

the feature, a weak pulse chirped by 3 MHz in 4 ms is sent to read out

the absorption profile. The transmitted light is detected by a photo diode

with a bandwidth of 300 kHz. With these conditions the resolution of

the detection is around 1 kHz. We acquire many traces at different pulse
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Figure 4.5: FWHM characterization of spectral holes created by Top-
tica TA-SHG Pro laser at different pulse powers in 1 ms.

powers of the hole burning beam and we fit the experimental data with the

power function of the form FWHM = a + b × Power1/2 since the power

scales with the square of the electric field amplitude as follows [111]

γPB = γ0

√
1 + (2Ω/γ0)2 (4.3)

where γ0 is the natural linewidth, and Ω is the Rabi frequency. We estimate

that the linewidth at zero power, where supposedly the power broadening

does not affect the the hole width, is around 44 kHz as shown in Figure

4.5. However, assuming that the width of the hole is limited by the laser

linewidth, due to the fact that we probe the spectral holes with the same

laser, the effective linewidth can be found by calculating the deconvolution

of two functions with the same FWHM. We assume that the emission spec-

trum of the laser is of Lorentzian shape and that there is no low-frequency

noise from the electronics coupled to the laser. From the deconvolution of

two Lorentzian function we obtain around 22 kHz natural linewidth.
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Figure 4.6: The cryostation chamber and the samples.

4.2 Cryostat

Our memory crystal reveals its unique characteristics only when it is cooled

below 5 K as mentioned earlier in Chapter 2. We use a closed cycle liquid

helium cryostat from Montana Instruments, named Cryostation, which

offers low vibrations and stable thermal performance (∼10 mK) at the

base temperature. It has 5 optical ports with around 60◦ angle of view

which greatly facilitates optical alignment.

There are two main stages to provide temperature below 5 K. The first

stage is cooled down to 40 K and thermally coupled to a radiation shield

which surrounds the sample. The vacuum housing below 0.09 mTorr pres-

sure provides the interface from room temperature to the 40 K stage. The

second stage consists of the sample platform with the sample mount cooled

down below 5 K. The system operates with the cooling power of around

100 mW at 4 Kelvin and 1 kW of power input.
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The sample chamber is rigidly fixed to the optical table just like any op-

tical element and isolated from the cryo-cooler vibrations using a very

specialized thermal link. Nevertheless the measurements are still affected

by the vibrations caused by the helium compression and expansion. We

synchronize our measurements with the 1 Hz compressor cycle thanks to

the built-in Hall probe sensor placed at the top of the cold head. A small

magnet on the top of the displacer triggers a Hall probe signal which is

later converted to a TTL signal for the synchronization.

Figure 4.7 shows how our signal is affected by the vibrations. The signal

amplitude values, blue dots, correspond to the measurements of the AFC

echo signals (See Chapter 6). We prepare the memory in the first 150 ms

and delay the input pulse for each data point. The decay time of the first

part until 500 ms is 1.1 s which is limited not only by the T1 of the ground

state but also related with the deterioration of the AFC in time. In one

cycle, there are two vibrational regions at around 50 ms and 600 ms where

the signal is extremely affected and diminished. The first part lasts 100 ms

while the second one takes 200 ms. Therefore we adjust the preparation of

the memory accordingly. Usually memory preparations start with creating

a transparency window and then creating a single class absorptive feature.

These processes are not too much affected by the vibration. We realize

these processes in the first vibrational window. However tailoring the

absorptive feature and sending/detecting pulses are much more delicate

operations. We squeeze the whole process before the second vibrational

region. If we want to send more pulses, it is possible to pause the process

during the second part and continue 200 ms later. Yet, after such a long

time, the amplitude of the signal is already 60% of its maximum.
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Figure 4.7: Effect of the vibration of the cryostat on the AFC echo
signal. We can also see the exponential decay of the signal.

4.3 Detectors and other electronics

4.3.1 Classical detectors

Our experiments require different detectors and detection techniques. Clas-

sical light detection is more straightforward than the photon counting. Our

main detector for the classical light is a ThorLabs 450A photo detector

with switchable gain. The responsivity of the detector is 17 mV/µW with

4 MHz bandwidth at the gain of 105 and 180 mV/µW with 300 kHz band-

width at the gain of 106. The gain of 105 is sufficient to detect retrieved

classical echo signals from the memory. High responsivity becomes im-

portant when it is required to send pulses at low intensity for reading the

spectral features such as holes and AFC without destroying the feature.

We can compensate the low detection bandwidth by increasing the time

duration of the frequency sweep. All data measured in the classical regime,

i.e. pulses, echoes, spectral hole and AFC traces, presented in this thesis

were acquired with this detector. We also use other photo diodes, such as

ThorLabs PDA36A-EC and PDA10A-EC, as reference detectors and for

characterization purposes.
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The oscilloscope we use to analyze the signals of the detectors is a Tek-

tronix DPO5034. It has 350 MHz bandwidth and 5 GS/s sample rate. We

take advantage of fast frame data acquisition mode when we do repetitive

measurements while changing a parameter at a time.

4.3.2 Single photon counters

The equipments become more sophisticated when we want to detect single

photons. The single photon detectors (SPDs) that we use are based on

semiconductor avalanche photodiodes (APD). They rely on the generation

of large current flow due to the avalanche breakdown of the semiconductor

sensor when exposed to high electric field. We use a PicoQuant τ -SPAD

module, an Excelitas AQRH-14FC module, and a Laser Component 10C-

FC module. All the SPDs have efficiency of around 60% (including the

fiber coupling) at 606 nm and the dark count rates are ranging from 10

Hz to 45 Hz. In experiments presented in Chapter 5 and Chapter 6 we

used only the PicoQuant τ -SPAD module with 10 Hz dark count. In

the experiment discussed in Chapter 7, we use the PicoQuant τ -SPAD

module for antiStokes detection, the Excelitas module with 45Hz dark

count for Stokes detection. For the auto-correlation measurements the

Laser Component module was also used.

The extreme sensitivity of SPDs makes them very vulnerable. We place

home-made acoustic mechanical shutters in front of the SPDs to protect

them from any incidence of strong pulses and leakages during the prepa-

ration time of the memory. However the response time of the mechanical

shutters is not fast enough when we have to send a strong pulse, i.e. a read

pulse, just a few microsecond before the detection window. In that case

acousto-optic modulators (AOM) with rise time of a few tens of nanosec-

onds are convenient. We use two AA Opto Electronics MT200 AOMs to

gate the read pulses. The reason behind using two AOMs is that the first

AOM shifts the frequency of the light and we have to shift it back with

the second one for the spectral filtering stage.
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Figure 4.8: Schematic of the laser table with various AOM lines.

4.3.3 Pulse creation for memory preparation

AOMs are necessary not only for temporal gating but also for the memory

protocols. They are capable of providing a high degree of control over

frequency, amplitude, phase, and shape of the pulse. In order to create

all the pulses needed for the preparation and the probing of our quantum

memory, we have 4 AOM lines in double pass configuration, a strategy

to cancel the deflection of the beam during frequency sweeps. They are

driven by Signadyne electronics and the required power is provided by AA

Opto Electronic AMPA-B-34 RF amplifiers.

The Signadyne hardwares and the software ensure total control over the
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pulse sequences, the synchronizations, and the data acquisition. Two ana-

log modules, a SD-PXE-AOU with 500 M/s sampling rate and 200 MHz

output and a SD-PXE-AUO AWG with 1 G/s sampling rate and 400 MHz

output, drive the AOMs and control the pulse sequences. The ability

of generating arbitrary waveform (AWG) is a key resource to create the

most effective AFC and pulse shapes. The timings of the shutters and the

data acquisition are controlled with a SD-PXE-DIO digital module. The

synchronization between cryostat trigger, pulse generation, shutters, gat-

ing AOMs, and data acquisition is managed by PROCESSflow software,

based on LabVIEW. A SD-PXE-TDC Time-to-digital module with 320 ps

resolution provides the data acquisition from SPDs. The data acquisition

is controlled with another software called VIRTUALknob. All the four

modules are mounted into a National Instrument chassis PXIe-1073.
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Spectral Hole Memory

The first quantum memory protocol that I present is the spectral hole

memory (SHoMe). The idea and the theoretical work were proposed by

Lauro and coworkers [112] in 2009 from the group of Thierry Chanelière

and Jean-Louis le Gouët. The first demonstration was realized by a collab-

oration between our group, Chanelière’s group, and M. Florencia Pascual-

Winter in 2016. In this chapter I will first introduce the idea and the

theoretical background. I will then describe the experimental details. Fi-

nally I will present the results, including a memory protocol demonstration

in the classical and single photon regime. The experiments presented in

this chapter was conducted at ICFO while the numerical simulations were

done by T. Chanelière. These results were published in Physical Review

A as a rapid communication [113]. Some parts of this chapter are taken

directly from the paper.

5.1 Introduction

SHoMe is a simple and a robust alternative protocol to the electromagnet-

ically induced transparency (EIT), a well-known technique for quantum
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Figure 5.1: Schematic description of SHoMe protocol. Left panel:
spectral hole and the hyperfine levels. Right panel: pulse sequence and

the position of the light pulse along the crystal.

storage of light [67, 114–116]. EIT relies on the creation of a narrow trans-

parency window in an otherwise opaque medium, thanks to the application

of a control field. Stopped light based on EIT has also been demonstrated

in rare-earth-doped crystals (Pr:YSO) [117], leading (together with dy-

namical decoupling techniques) to ultra long storage time for bright pulses

[118], up to the regime of 1 minute [69], the longest light storage time

demonstrated so far. However, the efficiency values in these experiments

were around few percent at most. Only recently has a multi-pass config-

uration been implemented in a Pr:YSO crystal to increase the effective

optical depth of the medium and to store classical pulses for a few µs with

an internal efficiency of about 76% [119]. Nonetheless, EIT has not yet

been demonstrated at the single-photon level in doped crystals. This may

prove challenging, because of the noise induced by the control field during

the readout.

The SHoMe protocol proposed by Lauro et al. [112] uses a permanent

transparency window created in a doped crystal by spectral hole burning.

While the protocol is similar to EIT because it is based on slow light,

there are two important differences. First, the transparency window is

not created dynamically with a control pulse, but by optical pumping way

before the photons to be stored enter the medium. Second, the photons
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excite optical coherence with off-resonance atoms. There is therefore no

dark-state as in EIT. This becomes crucial in the single photon regime.

Slow light experiments based on spectral holes have been performed be-

fore with bright pulses [120–122], but without the possibility for storage.

This protocol enables us to reach high efficiencies and single-photon level

operation.

The storage mechanism depicted in Figure 5.1 is based on the sequential

conversion of the optical coherence into a spin coherence, using short Ra-

man π pulses. This is important in practice because the Raman pulses can

be much shorter than the retrieved single photon, which enables temporal

filtering. This greatly facilitates the operation at the single-photon level.

Thanks to the robust memory preparation, we demonstrate storage and re-

trieval efficiencies around 40% for bright pulses. In addition, we store and

retrieve weak coherent pulses at the sub-photon level with an efficiency of

31%, the highest achieved so far for a single-photon-level solid-state spin-

wave optical memory [123, 124]. We reach an unconditional noise floor

of (2.25 ± 0.25) × 10−3 photons/µs. For a detection window of 4µs, this

leads to a signal-to-noise ratio of 33 ± 4 for an average input photon num-

ber of 1 (together with a slightly reduced efficiency of 23%), the highest

demonstrated so far in a crystal.

5.2 Theoretical background

The pulse propagation and storage is modeled by the Schrödinger-Maxwell

equations in one dimension (along z). For three-level atoms, the rotating-

wave probability amplitudes Cg, Ce and Cs for the ground (1/2g), ex-

cited (3/2e) and spin (3/2g) states, respectively, are governed by the time-

dependent Schrödinger equation:

i∂t


Cg

Ce

Cs

 =


0 E/2 0

E/2 −∆ Ω/2

0 Ω/2 0



Cg

Ce

Cs

 (5.1)
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where E(z, t) is the envelope of the input signal. As a consequence, Cg, Ce

and Cs depend on z and t for a given detuning ∆ within the inhomogeneous

broadening. Raman pulses applied on the 3/2e → 3/2g are described by

the envelope Ω(t) which does not depend on z because the state 3/2g is

initially empty (no absorption). The Raman beam satisfies the two-photon

resonance condition. We neglect the decoherence in this first approach

since we are mostly interested in modeling the efficiency for storage times

shorter than the coherence time.

The propagation of the signal E(z, t) is described by the Maxwell equation

that can be simplified in the slowly varying envelope approximation:

∂zE(z, t) +
1

c
∂tE(z, t) = − iα

2π

∫
∆
g (∆)CgC

∗
ed∆ (5.2)

The term CgC
∗
e is the atomic coherence on the 1/2g → 3/2e transition,

proportional to the atomic polarization. The light coupling constant is

directly included in the absorption coefficient α. The Schrödinger-Maxwell

equations (5.1,5.2) can be further simplified because the signal is weak. In

the perturbative regime Cg ' 1, so the atomic evolution is only described

by Ce and Cs.

Slow-light propagation (without Raman pulses) can be described analyti-

cally because in that case Cs = 0 thus reducing eq. (5.1) to the evolution of

Ce only [125]. For the storage step (with Raman pulses), the Schrödinger-

Maxwell equations are integrated numerically. For a given inhomogeneous

detuning ∆, we calculate the atomic evolution (5.1) by using a fourth-order

Runge-Kutta method. After integrating over the inhomogeneous broad-

ening using the hyperlorentzian function (5.3) for g (∆), the propagation

equation (5.2) is integrated along z using the Euler method.

58



Chapter 5. Spectral hole memory

5.3 Experiment

In the SHoMe experiment the source of coherent light at 606 nm is the

Toptica TA-SHG-pro laser described in Chapter 4.1.2. The input pulse

has a power of 150µW and waist of 35µm at the memory crystal. The

power of the Raman pulse is 20 mW and the waist is 150µm. We use the

Raman mode also for the memory preparation. Two beams overlap on

the memory crystal, a 0.05 % doped Pr:YSO sample of length L = 5 mm,

located in our cryostat operating at 3.5 K. After the storage, depending

on the intensity of the input pulse, there are two methods of detection

(see Figure 5.2). In the case of a classical input pulse, the retrieved signal

is coupled in a polarization maintaining single-mode fiber and collected

with a photo detector. In the weak coherent state case, there are several

filtering stages which will be described in the following section.

5.3.1 Characterization with classical light

The beginning of the memory preparation procedure is describe in Chapter

2.4.1. In this experiment, the absorptive feature created is 2.1 MHz wide.

The spectral hole is created by burning a narrow hole in the center of this

feature at the frequency of the ±1/2g → ±3/2e transition. Compared to

a bare hole burning procedure, this technique has three advantages. It

permits to address only a single class of ions (thus allowing the Raman

pulses to address only one transition), to empty the spin storage state

(3/2g), and also to control the optical depth of the spectral hole, by varying

the burn back power used to create the single class absorption feature.

An example of absorption trace with a spectral hole, about ∆0 = 230 kHz

wide and of optical depth αL = 8.7, is provided in Figure 5.3. Due to the

limited dynamical range of the photodetector, we cannot directly measure

the optical depth of the spectral hole at the 1/2g → 3/2e transition. We

extrapolate the value by fitting the hole on the 1/2g → 5/2e transition
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Figure 5.2: Left panel: experimental setup. The detection method
depends on the input pulse intensity. Right panel: hyperfine splitting of
the first sub-levels (0) of the ground 3H4 and the excited 1D2 manifold

of Pr3+ in YSO crystal.

(shown in the inset of Figure 5.3), which is not affected by the detector non-

linearity, and applying a scaling factor according to the relative oscillator

strength of the two optical transitions [97]. The validity of our approach is

tested by preparing weakly absorbing features and comparing the directly

measured optical depth with the one extrapolated.

The shape of the hole is mostly due to frequency jitter of the laser. To

account for it, we fit the absorption profile to a hyperlorentzian function

given by the equation

g (∆) = 1− 1

1 + |2∆/∆0|n
(5.3)

(n = 2 for a lorentzian), where ∆ is the frequency detuning. From the fit,

we obtain the previously mentioned values ∆0 = 230 kHz with n = 3.0 and

αL = 8.7.

The light storage sequence is depicted in Figure 5.4. An input pulse is sent

resonantly to the spectral hole prepared in the 1/2g → 3/2e transition.
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Figure 5.3: Spectral holes burnt in 2.1 MHz-wide single class absorp-
tion features. Inset: magnification of the spectral hole resonant with the
1/2g−5/2e transition. The fit of the hole shape (see text for the details)

is also shown.

The Gaussian pulse has a duration of 3µs (full width at half maximum,

FWHM). The black dot trace in Figure 5.4 represents the input pulse,

linearly polarized perpendicular to the D2 axis to minimize the absorp-

tion, travelling through the transparency window. We assume that it is

not delayed hence we take it as a reference. When the pulse penetrates

through the spectral hole presented in Figure 5.3, it is slowed down by

approximately 5µs (green solid circles in Figure 5.4). The delayed pulse is

stretched and slightly attenuated with respect to the input pulse because

its bandwidth ∼ 150 kHz FWHM is comparable to the more squarish hole

width ∆0 = 230 kHz. A longer pulse would be less stretched but not

sufficiently separated from the input for the spin storage step [112].

We then transfer the optical collective excitation to a spin-wave using a

short Raman pulse (grey square trace in Figure 5.4) on the 3/2e → 3/2g

transition. After a controllable time Ts, a second Raman pulse triggers

the pulse emission by reconverting the spin-wave into an optical excitation

that will slowly propagate through the crystal. This is shown with the

blue solid trace in Figure 5.4. Since the delay of the slow light is not
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Figure 5.4: The spectral hole memory scheme. Black dotted trace:
input pulse; green solid circles: slowed pulse; blue solid trace: stopped
light; grey square trace: Raman pulses (arbitrary units); red dashed

trace: the numerical simulation of stopped light.

sufficient to completely compress the initial pulse into the crystal, some

light escapes before we send the first Raman pulse. For this measurement,

the storage and retrieval efficiency ηS , calculated as the ratio between the

areas of the retrieved pulse (after the second Raman pulse) and the input

pulse, is 39 %.

The overall transfer efficiency is calculated as the ratio of the retrieved

light to the transferred part of the slow light and found to be 64 %. It

includes the transfer efficiency of the Raman pulses and the decoherence

in the spin-state, around 8 % for 4 µs storage 25 kHz linewidth. Hence the

individual Raman pulse efficiency is around 83 %.

The stopped light temporal profile can be well reproduced by our numerical

simulation described in Chapter 5.2. The result is given in Figure 5.4 with

the red dashed trace. To account for a possible imperfection of the Raman

transfer to the spin state, we have adjusted the Raman pulse area to 0.85π

instead of π. This artificially incorporates the decoherence mechanism that

is not included in our model.
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Figure 5.5: Storage efficiencies as a function of the delay Ts between
the two Raman pulses. The decay is fitted with a Gaussian profile and
the inhomogeneous spin broadening of γIS = (25.6 ± 0.2) kHz is ex-

tracted.

In order to characterize the storage, we investigate the efficiency of the

stopped light as a function of the delay between the two Raman pulses,

Ts, and of the hole optical depth. We show in Figure 5.5 that the decay

of the signal is compatible with the inhomogeneous broadening of the spin

transition ( γIS = (25.6±0.2) kHz) measured in an independent experiment

with the same crystal, confirming that the pulse energy is stored as a spin

wave [123, 126, 127].

In Figure 5.6 we compare the experimental values of storage efficiencies

(red circles) and the results of the numerical simulations (blue squares) as

functions of the optical depth αL. For these measurements, the position

of the first Raman pulse is always optimized in order to maximize the

efficiency since the group delay decreases at lower optical depths. We

observe that the efficiency grows steadily as a function of optical depth.

The maximum storage and retrieval efficiency observed is around 39 %,

for a group delay of 5 µs and Ts = 4 µs. The experimental measurements

are well reproduced by the numerical simulations, thus supporting our

analysis.

We show the relation between the storage efficiency, time delay and the
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Figure 5.6: Storage efficiencies (experimental: red circles; numerical
simulation: blue squares) as a function of the hole optical depth.

width of the spectral hole in Figure 5.7. The FWHM of the input pulse is

kept 3 µs while we sweep the frequency of the hole burning pulse in order

to change the hole widths and observe the effect of different widths on

the efficiency of the stopped light and on the time delay of the slow light.

On the upper panel we plot four spectral holes with different widths. We

follow the same strategy as in Figure 5.3 to calculate the optical depth

of the 1/2g - 3/2g transition. On the lower panel we see that the time

delay decreases (the group velocity increases) as the spectral holes become

larger. On the other hand, the storage efficiency does not scale directly

with the width of the spectral hole. There is an optimum hole width to

obtain the highest storage efficiency. When the spectral hole is narrower

that the optimum width, the pulse is partly absorbed by the ions and

cannot be converted back. If the hole width is wider, then the pulse cannot

sufficiently interact with the medium hence the storage become again less

efficient. The optimum hole width varies with the OD and also with the

FWHM of the pulse.
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Figure 5.7: Above: spectral holes with different linewidth. Below:
storage efficiency and time delay of the slow light as a function of spectral

hole linewidth.

5.3.2 Performance at the single photon level

In order to test the suitability of our optical memory to work in the quan-

tum regime, we insert neutral density filters in the input mode to decrease

the intensity of the input pulses down to the single-photon level. For these

measurements, we perform 1000 storage and retrieval trials for each mem-

ory preparation, at a rate of 5 kHz. In order to discriminate the retrieved

single-photon-level signals from the noise originated by the Raman pulses,

we apply several filtering strategies (see Figure 5.2) [123]. First of all, the

input and the preparation/Raman modes are spatially separated with an

angle of about 4 ◦. After the memory, the retrieved signal is first steered

to two single pass AOMs acting as temporal gates. Then it is sent to a

second Pr:YSO crystal where a 1 MHz transparency window is created at
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Figure 5.8: (a) Time histograms of the retrieved photons for different
input photon numbers µin for a spectral hole with ∆0 = 275 kHz in
the memory crystal. The input with µin = 0.87 (blue solid trace) and
the Raman pulses (black dotted trace), as measured in photon counting
and from a reference photodiode, respectively, are also displayed. The
detection window ∆td = 4µs is indicated by the dashed lines about
the retrieved signal. (b) SNR as a function of µin. The error bars are
evaluated with Poissonian statistics. The black dashed line indicates the
limit of detection SNR = 1. The dotted line is a linear fit of the data,

from which we obtain µ1 value of 0.030± 0.004 can be obtained.

the input pulse frequency [128, 129]. The fluorescence not resonant with

the Pr3+ 3H4(0) →1D2(0) transition is then suppressed with a diffraction

grating. Finally, the stored and retrieved light is detected with a single-

photon detector (SPD). The total transmission of the input light from the

cryostat window until the SPD is around 15 %.

We record the arrival times of the photons and reconstruct the time his-

togram for different input photon numbers µin, as shown in Figure 5.8.

From the trace with µin = 0, we measure an unconditional noise floor of

(9 ± 1) × 10−3 photons per pulse in a detection window ∆td = 4µs. ηS

is around 23 % for ∆td = 4µs and 31% for ∆td = 7µs. These are the

highest efficiencies obtained so far for solid state spin-wave optical mem-

ories at the single-photon level. Figure 5.8(b) shows the behavior of the

signal-to-noise ratio (SNR) of the retrieved photons as a function of µin.
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We measure a SNR of 33± 4 (23± 3) for µin = 1 when ∆td = 4µs (∆td

= 7µs), the highest values measured so far for a single photon level solid

state spin-wave memory [123, 124].

An important figure of merit for a single-photon-level optical memory is

the parameter µ1 = µin/SNR, which gives the minimum µin to reach a

SNR = 1 for the retrieved photon. It has been shown that, in order to

achieve quantum storage with an external single-photon source, a necessary

condition is to have p > µ1, where p is the probability to find a single

photon before the memory [123, 124]. From the slope in Figure 5.8 (b), we

find µ1=0.030±0.004. Our system is therefore very promising for quantum

light storage, provided that µs-long single photons are available. Such long

photons could be created from atomic ensembles [130, 131] or single ions

[132] and frequency shifted to the resonance frequency of the Pr3+ doped

crystal by quantum frequency conversion techniques [51, 72, 133]. Shorter

photons could also be stored if larger holes are prepared. However, in order

to keep a sufficient separation between the second Raman pulse and the

emitted photon, shorter Raman pulses should be used, which in turn will

require a larger Rabi frequency. This could be achieved by increasing the

Raman pulse power, or more efficiently by confining the interaction, e.g.

in a waveguide configuration [134].

5.4 Discussion

The efficiency obtained in this work is mostly limited by the available op-

tical depth and by the limited transfer efficiency. Higher optical depths

will lead to higher efficiencies. Numerical simulations show that with a

two-times larger optical depth αL = 17.5, we would reach an efficiency of

55 % (assuming 100 % transfer efficiency), for a properly adjusted input

pulse duration around 5µs. This shows that our protocol has a favourable

scaling for an increasing optical depth. It should be also noted that further

improvements could be reached by optimizing the temporal shape of the
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input and control pulses and the spectral shape of the spectral hole. Fur-

ther modelling is ongoing. The recent simulations show that it is possible

to reach stopped light efficiency more than 50% by changing the temporal

shape of the input pulse.

In our experiment, we store and retrieve single mode weak pulses. When

extended to the storage of true single photons, the protocol could be ex-

ploited to demonstrate entanglement between remote crystals using the

scheme proposed in [39]. Nonetheless, many applications require the stor-

age and retrieval of photonics qubits. While our protocol is not a good can-

didate to store light in multiple temporal modes [135], it could be readily

extended to the storage of polarization qubits [136–139] or to frequency-bin

qubits [140, 141].

In this chapter, I presented the first demonstration of a light storage pro-

tocol based on stopped light in a spectral hole in a doped crystal. We

achieved a storage and retrieval efficiency of around 40 % in the classi-

cal regime. Thanks to a low unconditional noise floor, we stored and

retrieved single-photon-level pulses with high signal-to-noise ratio. This

demonstrates that the memory can work in the quantum regime, with the

highest efficiency so far obtained for spin-wave solid state optical memories.

These results are promising for the realization of robust, highly efficient

and long-lived spin-wave solid state quantum memories.
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Atomic Frequency Comb

In this chapter, I discuss a well-known quantum memory technique, the

atomic frequency comb (AFC) protocol. I present the results of an exper-

iment where we stored up-converted telecom photons with the AFC pro-

tocol in the excited state of a Pr:YSO crystal. This work was published

in New Journal of Physics [72]. Besides I will present the improvement on

the AFC preparation which leads to higher storage efficiency and longer

excited state storage time. I will also show the performance of spin-wave

storage of classical pulses and weak coherent state at the single photon

level. These results show the highest signal-to-noise ratio demonstrated

with spin-wave AFC protocol at the single photon level.

6.1 Introduction

Storing a train of pulses, i.e. implementing the so called temporally multi-

mode storage, is one of the key features which can improve the speed of

quantum repeater schemes [39]. The capability of storing multiple tem-

poral modes with a given efficiency depends on the optical depth d of

the medium in many quantum memory protocols. For example, for a
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fixed efficiency, the number of modes scales with d in the controlled re-

versible inhomogeneous broadening (CRIB) scheme and with
√
d in EIT

and Raman-type memories [135]. This scaling strongly limits the number

of modes that can be stored. This was the driving force for the proposal of

the AFC protocol in which the temporal multi-modality does not depend

on the optical depth [142].

The AFC technique proposed by Afzelius and coworkers [142] takes the

inhomogeneous broadening in the solid state systems as an advantage. It

is based on tailoring the profile of an optical transition as a spectral comb

with periodic and highly absorptive peaks which can be created by spectral

hole burning techniques described as in Chapter 2.4. The separation of the

peaks, ∆, determines the storage time in the excited state, τAFC = 1/∆

[142]. The input light is absorbed by the AFC structure and the collective

atomic excitation starts to dephase. However due to the periodic frequen-

cies the ions are then rephased which leads to a collective re-emission at

1/∆ as shown in Figure 6.1. This built-in rephasing mechanism which is

not dictated by any strong optical field, i.e. an optical pi-pulse in the two

pulse photon echo, makes the technique suitable for single photon storage,

practically noise-free. The first demonstration of the AFC protocol was

also the first storage and retrieval of light fields at the single photon level

in a solid state device [143]. The storage efficiency at the time was 0.5%

after 250 ns storage time. In 2010, 9% efficiency at 1.5 µs storage time

[144], 35% efficiency at 800 ns storage time [145], and 25% efficiency at

the single photon level at 800 ns storage time [146] have been reported. In

2013 and 2014 AFC experiments assisted with impedance matched cavity

in order to increase the absorption of the input light have been demon-

strated with efficiencies of 56% at 1.1 µs, 53% at 2 µs and 28% at 10 µs

storage times [147, 148]. In the experiment conducted in 2014, spin-wave

storage efficiency of 12% was also reported [148] for spin state storage time

of 5.4 µs.

In the two-level AFC scheme, we determine the AFC storage time before
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Figure 6.1: (a) A schematic representation of the AFC protocol where
the inhomogeneous broadening is tailored with periodic peaks. An input
pulse creates a coherence between |g〉 and |e〉. A control pulse transfers
the coherence to the spin-state |s〉. The second control pulse applied
on-demand converts the spin coherence into optical coherence back. See
panel (b) for the timing. (c) Bloch sphere representation of dephasing

and rephasing process.

the arrival of input photon to the crystal. We therefore speak of a pre-

determined storage time. The ability of extending the storage to the spin

state by applying two transfer pulses offers on-demand read-out and longer

storage times thanks to the slower decoherence in the spin state. If a π-

pulse resonant with the transition between the excited state and an empty

spin state is applied before 1/∆, the coherence can be transfered to the

spin-state. A second π pulse can be applied on-demand and transfers the

spin-wave back to the excited state. Then the dephasing resumes and the

rephasing leads the emission of the spin-wave echo. The dephasing in the

spin state can be minimized by using spin echo dynamical decoupling (DD)

technique and storage times in the order of millisecond range have been

reached at the single photon level [124, 149]. The three level spin-wave

AFC protocol requires 3 ground states, one empty state for the storage,

one for the AFC structure and an auxiliary state for the population tai-

lored out during the AFC preparation. Among the known REID materials,

Eu and Pr doped crystals can satisfy this requirement. The first spin-wave

AFC experiment has been reported in 2010 with Pr:YSO crystal [126]. 2
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years later the first spin-wave AFC experiment with Eu+3 has been pub-

lished [150]. The first demonstrations of spin-wave AFC experiments at

the single photon level have been reported in 2015 by our group and the

Geneva group [123, 124].

The temporal multi-mode capacity of the protocol is limited by the num-

ber of AFC peaks. The first demonstration was realized with Nd3+:YVO4

crystal in the first demosntration of the AFC protocol [151]. Later, thanks

to large splitting between the ground states, a 100 MHz wide AFC could be

tailored to store a train of 64 single photon level input pulses in the excited

state [152]. The storage of 1060 temporal mode has been demonstrated

in the excited state of a Tm3+:YAG crystal in the classical regime [153].

However the preparation procedure limits the achievable efficiency. The

storage in the spin state demands more complex techniques due to the fact

that the maximal width of the comb is limited by the spacing between hy-

perfine states. However storage and retrieval of 50 modes has been realized

with Eu3+:Y2SiO5 crystal [154]. Besides these demonstrations of highly

multi-mode storage, our group demonstrated the first quantum memory

for time-bin qubits, with on-demand read-out of the stored quantum in-

formation [123]. In the experiment, two single photon level input pulses

were sent to the Pr:YSO memory where the coherence was transferred to

the spin state by two partial write pulses whose separation in time is same

as the separation of the inputs. We varied the relative phases of both the

inputs and the write pulses in order to compute the fidelity of the storage.

The AFC storage was also extended to the polarization degree of free-

dom. Three groups, including ours, have reported the storage and retrieval

of arbitrary polarization states of light from solid-state quantum memo-

ries [136–138]. While neither the materials (Pr3+:Y2SiO5, Nd3+:Y2SiO5,

Nd3+:YVO4) nor the strategies are the same, the fidelities obtained are

around 95% exceeding the maximum value achievable by a classical mem-

ory. The experiment also extended to the spin-wave storage of polarization

qubits in 2016 [139].
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The storage of correlated photons is an important step toward the im-

plementation of quantum information networks. In our group we first

demonstrated a quantum storage of heralded single photons from an ultra

narrow-band source in the excited state of a Pr:YSO crystal [74]. The

heralding photon emitted from the source is at telecom wavelength while

the signal photon is resonant with our crystal. This experiment has been

recently extended to the spin-wave storage where correlations between sin-

gle telecom photons and single spin excitation in the crystal have been

demonstrated [155].

One of the fundamental requirement of quantum memories in quantum

repeater schemes is the entanglement storage. The storage of a single

photon emitted by a entangled photon pair source has been demonstrated

by two groups in 2011 [156, 157]. These experiments were followed by the

demonstration of heralded quantum entanglement between two crystals

[158]. Quantum storage of three-dimensional orbital-angular-momentum

entanglement has also been demonstrated by using the AFC protocol [159].

Another important experiment using the AFC protocol is the quantum

teleportation of the polarization state of a telecom wavelength photon onto

the state of a solid-state quantum memory [160]. In the experiment the

combined distance traveled by both telecom wavelength photons was 25 km

in standard optical fiber which demonstrates the long-distance capability of

the approach. The same group also reported an experimental observation

of heralded quantum entanglement between two separate crystals [158].

6.2 Theoretical background

In this part I benefited from the original proposal [142], from a book chap-

ter [161] and also from M. Gündoğan’s PhD thesis [162].

A single photon field can be completely absorbed by an AFC if its band-

width is larger than periodicity ∆. The atomic state which consists of N
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atoms can be described by
∑

j cj |g1 · · · ej · · · gN 〉 as a collective Dicke state

where the amplitudes cn depend on the detuning and spatial position of

the jth atom. After the excitation, each atom acquires a particular phase

eı̇δjt, where δj is the detuning of the jth excited atom, hence the state

dephases into a non-collective one

N∑
n=1

cne
ı̇δjteı̇kzj |g1 · · · ej · · · gN 〉 (6.1)

where zj is the position of the jth atom and k is the wave number of the

light field. We can assume δj = mj∆ due to the periodicity of the AFC

peaks. Therefore the non-collective state returns into the collective state

again after a time 1/∆ and this results in a collective re-emission.

The AFC can be characterized by ∆, the Gaussian peak width γ̃ and the

overall comb with Γ. By using these parameters, the spectral distribution

of the atoms in the AFC can be described as

e−δ
2/(2Γ2)

∞∑
j=−∞

e−(δ−j∆)2/(2γ̃2) (6.2)

In order to find a mathematical expression of the re-emitted field, we can

plug the atomic distribution into the Maxwell-Bloch equations and solve

it analytically. The ratio of intensity of the output field to the input field

gives the efficiency of the storage and reads as

ηAFC ≈ d̃2e−7/F 2
e−d̃e

−d0
(6.3)

where F = ∆/γ is the finesse of the comb and γ =
√

8ln2γ̃ is the FWHM

of the comb peak, d̃ = d/F is the effective optical depth that the input

pulse experiences where d is the optical depth (OD) of the AFC, and d0

is the background OD. The equation 6.3 is for the 2 level storage and for

the emission in the forward direction. The emission in the forward di-

rection is limited to 54% due to the reabsorption of the emitted light in

the medium. However it is possible to reach unity efficiency by applying
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counter-propagating control pulses which transfer the coherence back and

forth between the excited and a spin state and force the backward emis-

sion due to the phase matching condition. The storage in the spin level is

called spin-wave (also called 3-level) AFC storage and provides on-demand

read-out, independent of the direction of the emission. In the backward

emission, even though the re-absorption still exists, a constructive interfer-

ence effect between all possible emission paths results in a possible unity

storage efficiency for the optimum F value at high OD values. If we as-

sume that control pulses are π pulses infinitely short in time and there is

no decoherence in the spin state, then the backward AFC efficiency can be

written as

ηBW−AFC ≈ (1− e−d/F )2e−7/F 2
(6.4)

In the spin-wave AFC experiments, we have to consider the transfer effi-

ciency of each control pulse ηT and also the decoherence in the spin state

of the ensemble ηDec. Therefore the total efficiency is given by

ηSW = ηAFC × η2
T × ηDec (6.5)

It is worth to note that the square peaks instead of Gaussian peaks provide

higher efficiency at low and intermediate ODs for the optimum F values

which is in this case F = π/arctan(2π/d) [148, 163]. The AFC efficiency

is now described by

ηAFC = d̃2e−d̃sinc2(π/F ) (6.6)

However the maximum ηAFC in the forward direction is still limited to

54%.
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6.3 Storage of up-converted telecom photons

6.3.1 Motivation

Photons at telecommunication wavelengths are to be the flying qubits in

long distance quantum communication hence quantum memories operating

in this frequency range are of great interest. However most of the atomic

systems perform at visible range. One of the exception is erbium (Er)

doped systems. Unfortunately this material suffers from low efficiency for

memories based on spectral tailoring of the inhomogeneous profile due to

the poor optical pumping dynamics [164]. Other protocols such as Revival

of Silenced Echo (ROSE) derived from two-pulse echo technique can offer

promising efficiencies because they do not rely on optical pumping. Mem-

ory efficiency of 40% was observed with strong input pulses by using the

ROSE protocol [165]. However the experiments with the ROSE protocol

have stayed limited to input weak coherent states of 14 photons per pulse,

due to the noise created by the strong control pulses. Spectral filtering is

not possible in two level systems like Er doped solids.

2 years after our experiment, long coherence times and efficient optical

pumping in 167Er:YSO have been demonstrated in strong magnetic field

[166], making this material very promising for quantum memory applica-

tions.

An alternative approach would be quantum frequency conversion via non-

linear processes as an interface between a memory and telecom wave-

lengths. Back in the days of our experiment, only two experiments had

been reported following this strategy [51, 133]. Both were realized with

emissive quantum memories by using the DLCZ scheme and showed the

preservation of non-classical nature of the pairs after the conversion.

In this experiment, we convert single photon level telecom photons from

1570 nm to 606 nm in a nonlinear waveguide via frequency up conversion

in order to interface with our Pr:YSO memory. We store the up-converted
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light for up to τAFC = 10 µs in the excited state with the two level AFC

scheme. The maximum overall efficiency that we reach is 1.9 ± 0.2%

at τAFC = 1.6 µs, the highest reported efficiency among the absorptive

telecom optical memories at the single photon level at the time [72].

6.3.2 Experimental Setup

We have two main parts in this experiment: the quantum frequency con-

verter (QFC) and our Pr:YSO memory. The experiment was realized to-

gether with another PhD student, Nicolas Maring. While he was in charge

of the QFC setup, I was responsible from the quantum memory part. We

used the AFC protocol for the storage and here I focus mostly on the mem-

ory part of the experiment for the sake of the compactness of the chapter.

More details on the QFC part can be found in the paper [72].

We use two Toptica external cavity diode lasers (ECDL) to create the

light at 606 nm as describe in Chapter 4.1.1. We split the output of the

lasers into two and feed two waveguides, one for creating the preparation

light and the other is for the QFC. The maximum pump power at the

input of the QFC waveguide is 600 mW. We have an additional Keopsys

erbium-doped fiber amplifier to have around 1W of 1570 nm. A 95:5 fiber

beam splitter divides 1570 nm light where 95% is used to create 606nm

preparation light. We obtain 2 mW of preparation light power.

In the QFC part, the 1570 nm light is attenuated to the single photon

level by optical density filters and then coupled with the 987 nm pump

light into a 2.6 cm long PPKTP nonlinear waveguide. We employ a single

pass AOM in the pump mode during the detection of the AFC echo for

temporal filtering from the noise induced by the strong pump light. Turn-

ing the AOM on reduces the light passing through the 0th mode of the

AOM and with the distorted mode shape we reach around one order of
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Figure 6.2: Left: The experimental setup. Input telecom light at 1570
nm is reduced to single photon level using optical density filters. Both in-
put photons and pump light at 987 nm are coupled into the periodically-
poled potassium titanyl phosphate (PPKTP) nonlinear QFC waveguide.
We prepare the AFC in the crystal with the preparation mode. The AFC
echo is emitted in the forward mode and collected with a fiber coupled
single photon detector (SPD). We also employ a shutter to protect the
SPD from the scattered light of the strong preparation pulses. Right:

the relevant level scheme of Pr:YSO crystal.

magnitude reduction in the up-converted light. There is also a spectral fil-

tering stage which consists of a diffraction grading (Thorlabs, GR13-1205)

and an etalon with finesse 6 and linewidth 10 GHz.

The Pr:YSO memory crystal has a length of 5 mm and a doping con-

centration of 0.05%. We place it inside the Montana cryostation that is

already introduced in Chapter 4. The PDH frequency locking system is

also already introduced in the same chapter.

We start to prepare the AFC structure as described in Chapter 2.4.1.

Later by spectral hole burning technique, discussed in Chapter 2.4, we

create periodic, comb like absorptive features, as shown in Figure 6.3, by

moving the frequency of the laser by a fixed amount ∆ on the single class
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Figure 6.3: An example of the atomic frequency comb for ∆ = 700 kHz.
The OD values are limited due to the dynamic range of the detector.

absorptive feature. In total, the preparation procedure takes around 200

ms.

Besides the temporal filtering with the single pass AOM in the pump mode,

we also apply spatial and spectral filtering strategies. The preparation

mode has an angle of around 4 ◦ with the single photon level input mode

to provide spatial filtering of the strong preparation light. For the spectral

filtering, we employ a diffraction grating to remove the the pump light from

the converted photons and also an etalon with finesse of 6 and linewidth

of 10 GHz to reduce the effect of Raman scattering and spurious SPDC

noise.

We detect the single photon level signal with a PicoQuant (Tau SPAD-

20) SPD. It has a measured 10 Hz dark count rate and 60% detection

efficiency at 606 nm. A shutter protects the SPD from scattered light of

the preparation pulses and a band pass filter of 14 nm centered at 600 nm

filters out the spurious light.

We perform start-stop measurement with the Signadyne TDC module,

described in Chapter 4. For each AFC preparation, we send 6000 input

telecom pulses.
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6.3.3 Results

Here I will first summarize the performance of the QFC device without

the memory. Then I will present the results of the storage. More details

on the QFC performance can be found in the paper [72].

We characterize the QFC with a mean input photon (at 1570 nm) num-

ber of 1, µin = 1, and with the pulse FWHM of 140 ns. The maximum

measured QFC device efficiency ηdev is 21 ± 1 % at 252 mW pump power.

However the signal-to-noise ratio (SNR) at this pump power is 2.07 ± 0.02

due to the noise created by the high pump power.

We realize the AFC storage characterization at 141 mW pump power which

provides 15.2 ± 0.8 % device efficiency and SNR of 3.85 ± 0.04 for µin = 1

after the QFC. While keeping the pump power constant we measure SNR

as a function of mean input telecom photon number. In Figure 6.4 I present

a histogram of a τAFC = 1.6 µs storage where µin = 0.1. The orange plot

shows the input photons which pass through the transparency window

prepared in the memory crystal, taken as the input of the AFC. The high

noise level is due to the QFC pump. By turning the gate AOM on at 1

µs, we can dramatically decrease the noise and can observe the AFC echo.

The gate AOM is on for 5 µs. We characterize the SNR value for three

cases: only QFC, AFC input and AFC echo. The characteristic value we

choose to compare for the three cases is the minimum input photon number

required to achieve a signal to noise ratio of 1, the so-called µ1. We fit

the data with a linear function which is forced to pass through zero. The

fit of the QFC measurement data gives SNR of 1 at µin of 0.37 ± 0.02.

A noise window of 2.36 µs is chosen to be centered at 7.48 µs, then it is

normalized to the 400 ns integration window of the input. By taking the

same noise and signal windows, we measure µ1 = 0.23 ± 0.004 for the AFC

input. The improvement in the µ1 is attributed to the absorption of the

noise by the 6-12 GHz inhomogeneous profile of the memory crystal. In

the storage case, we measure µ1 = 1.38 ± 0.03 × 10−3. Our strategy of

gating the pump light with an AOM after the input light but before the
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Figure 6.4: On the left panel, a histogram plot of an input (orange)
pulse and the corresponding AFC echo (dark blue) at τAFC = 1.6 µs are
shown. The AFC echo histogram is 10 times magnified. We turn the gate
AOM on at 1 µs. The dashed lines are the integration windows which are
400 ns wide. The bin size of the histogram is 10.24 ns. Right panel: SNR
values of AFC echo (blue squares), AFC input (orange circles) and QFC
output (red triangles) as a function of input telecom photon number for

the pump power of 144 mW.

echo results in a 270-fold improvement compared to the QFC only case,

even though the AFC echo efficiency, ηAFC , is measured to be 19.8 ± 0.1

% at τAFC = 1.6 µs. The 4 MHz AFC memory is narrow band compared

to the noise hence the storage of the noise photons in the AFC become

negligible. The total device efficiency before the QFC until detection after

storage is measured to be ηtotal = 1.55 ± 0.02 %.

Another characterization of the storage process is measuring the SNR and

efficiency values at different storage times while keeping the pump power

of 144 mW and µin of 1 constant. We increased the input photon duration

to 560 ns and the integration window to 1200 ns. I present the results

in Figure 6.5. At the time of the experiment, we could keep the AFC

efficiency around 10% until around 5 µs. Achieving high storage efficiencies

at long AFC storage times requires precise control over the AFC peak

width γ and separation ∆, i.e. on the finesse of the AFC. The line-width

of the laser is a dominant factor in this case. Alternative AFC preparation

methods mentioned in the following sections can be used to circumvent this
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Figure 6.5: (a) Signal to noise ratio and (b) echo and total efficiency
versus storage time for µin = 1 telecom photons per 560 ns pulse (ex-
cluding the data point at 10 µs where µin = 0.4 is used with the SNR
normalized accordingly). The SNR and efficiencies stay relatively flat for
storage times up to and including 5 µs. For these storage times, the total
efficiency is always above 1% and the SNR is always above 100 which
would correspond to a µ1 lower than 10−2. The efficiency drops below
10% at storage times longer than 7.5 µs, limited by the tailoring of the
AFC. Dashed lines in both figures are used to guide the eye. Error-bars

(often smaller than the symbol) represent one standard deviation.

limitation [154]. Here, we reach ηAFC of 27.4% at τAFC = 1.6 µs while

the total efficiency including the QFC and the optical losses is 1.9 ± 0.2

%. The increase in the efficiency is due to the fact that the longer input

pulse matches better with the bandwidth of the AFC structure. However

we loose in SNR (now 162 ± 19) partly because of the larger integration

window thus including more noise and partly due to the less effective gate

AOM for this set of measurement. The SNR and efficiency values start to

decay after 5 µs τAFC due to the poor AFC finesse.
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6.4 Improved performances for excited state stor-

age

The efficiency of a two level AFC echo is limited to 54% for the optimum

finesse. Therefore it is crucial to have the best control over the finesse

in order to reach high efficiency at different storage times. Long storage

times require narrow ∆ values which can be hard to obtain even with nar-

row linewidth lasers. For example 10 µs excited state storage time means

creating ∆ of 100 kHz. Different AFC preparation strategies have been ex-

plored over the years to reach high efficiency values at long storage times.

In the heralded single photon storage paper we published in 2014 [74], we

prepared the AFC structure by directly burning spectral holes outside of

the transparency window which means that the AFC consisted of many

antiholes burned back individually. The ηAFC values we had were around

7% at 2 µs and 1% at 4 µs storage time. Later we switched to another

approach which has already been described in this chapter. By creating a

wide absorptive feature and then tailoring the AFC by creating spectral

holes provide us better control over the finesse and ηAFC values around

10% until 5 µs storage time. However any direct comparison of the ηAFC

values between two approaches may not be fair because the first experi-

ment was realized in a different setup with a Oxford Inst. cryostat which

suffers more from vibrations and provides less stable results. Later we

switched to the 606 nm SHG laser, increased the waist of the prepara-

tion mode from 120 µm to 300 µm and also followed another strategy to

prepare the AFC memory. The idea, first proposed by Bonarota et. al.

[163], and later optimized by Jobez et. al. [154], is to create a waveform

whose Fourier transform gives the desired AFC structure with the opti-

mum finesse. As discussed in [163] and in Chapter 6, the optimum AFC

peak shape to maximize the efficiency is square. We prepare a waveform

of a square AFC structure by considering the OD of the crystal and the

excited state storage time. The Fourier transform of the desired AFC gives

the temporal waveform of the pulse train that we use to shape the single
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Figure 6.6: Two level AFC storage traces and efficiency values at
different storage times.

class absorption feature [154]. While we burn the AFC at the 1/2g - 3/2e

transition frequency, some ions are also coherently driven back to the 3/2g

state. Thus, we proceed by sending cleaning pulses at the frequency of the

3/2g - 3/2e transition. The advantage of this approach is that the finesse

becomes less dependent on the laser linewidth since we do not burn the

teeth of the comb one by one. More details about this strategy can be

found in Jobez et. al. [154] and Seri et. al. [155]. In Figure 6.6 we show

almost constant ηAFC values of around 28% up to 8 µs storage time, and

still more than 10% of ηAFC at 12 µs storage time. These data were taken

in March 2016 and present our progress on the control of the AFC during

my PhD studies.

6.5 Spin-wave AFC storage

On-demand retrieval of stored light is of great importance for the tasks

where quantum memories are employed for the synchronization of the sys-

tem. The two level AFC scheme can provide only a pre-programmed delay

limited by the excited state coherence time of the memory. On the other
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hand, if we can transfer the population to a spin state where the coher-

ence time is much longer, we can read-out the spin coherence at the desired

time. The full AFC scheme (also called spin-wave or three level AFC) is

capable of this kind of storage as already described in the beginning of the

chapter. In this section, I will briefly discuss spin-wave AFC results which

are not reported elsewhere. To our knowledge they represent the highest

spin-wave AFC efficiencies both with classical light and single-photon level

weak coherent state. These data were taken in January 2015.

The experimental setup and the relevant level structure are the same as

in Figure 5.2. The beginning of the memory preparation is described in

Chapter 2.4.1 and the AFC preparation is the same as in the previous

section 6.3 such that we create the AFC by hole burning in single class

absorptive feature. In this experiment we prepare a 3 MHz absorptive

feature in the 1/2e - 3/2g transition. More detailed description about the

AFC preparation can be found in Gündoğan et al. [123].

In this experiment, we prepare the AFC structure for 5 µs excited state

storage time. Figure 6.7 shows the temporal pulse sequence both in classi-

cal regime and with weak coherent states. The input pulse has a FWHM

of 1 µs while the control pulses are 1.2 µs. The first control pulse is ap-

plied just 500 ns after the input pulse. The spin-wave storage time Ts is 6

µs therefore the total storage time is 11 µs. The spin-wave echo appears

around 4.5 µs after the second control pulse, which becomes important

in the photon counting regime where the main noise source is the strong

second control pulse. In the classical regime, we reach ηAFC of 24.5% and

spin-wave efficiency ηSW of 14% which is the highest demonstrated ηSW

with the AFC protocol to our knowledge. In a recent cavity enhanced

experiment, Jobez et. al., reached an spin-wave efficiency of 12 % [148].

The control pulse transfer efficiency is around 81% and we calculate the

coherence in the spin state ηC for 6 µs storage as 87%. In the measurement

of weak coherent state, we send 1000 pulses for each AFC preparation and

we repeat the process 200 times. We observe ηAFC of around 14%. We
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Figure 6.7: The spin-wave AFC memory schemes with classical input
pulse on the left panel and with weak coherent input pulses (µin=0.280)
on the right panel. τAFC is 5 µs and Ts = 6 µs in both cases. The input
pulses, whose polarization is orthogonal to the optical D2 axis of the
crystal, are sent through a 15 MHz transparency window. The control
pulses in the classical measurement are detected by another photo diode.
However in the weak coherent state measurement we could observe their

leakage into the detection mode.

attribute the decrease to the deterioration of the AFC in time while send-

ing 1000 pulses and it is also possible that some of the pulses might be

sent in the noisy part of the cryo-cycle, discussed in Chapter 4. We reach

ηSW of around 8.5% which leads to µ1 of 0.058 ± 0.014 for the integration

window of 1.1 µs with the unconditional noise level of 7.5 × 10−4 per µs.

If we narrow the window to 700 ns, we loose in the ηSW which decreases

to 7% although the µ1 value improved to 0.035 ± 0.011, which is the best

single photon level performance to our knowledge for AFC spin-wave mem-

ories, and comparable to the results with the SHoMe protocol presented

in Chapter 5.

6.6 Discussion and conclusion

The experimental results that I presented in the section 6.3 show how

efficient AFC memories can be used to store single photon level light. As
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a “telecom” memory, these results outperformed previous realizations of

absorptive telecom memories at the single-photon-level at the time [167,

168]. In this particular experiment, with the strategy that we used to

detect converted and stored photons, we showed that the AFC can be

used as a narrowband filter which could improve the SNR around 2 orders

of magnitude compared to the only QFC output.

I also presented the improvement in 2-level AFC storage efficiency due to

optimized comb preparation, where we cold reach efficiencies up to 30%,

close to the theoretical prediction of around 40%. Finally, I described our

capability of on-demand storage with the 3 level AFC protocol. These re-

sults show the highest spin-wave AFC efficiencies and the best on-demand

performance both in single photon level and in the classical regime. The

ability to store single photon level light on-demand with the AFC protocol

will be crucial in the next chapter.

In order to increase the ηAFC , hence the ηSW , we may follow a few ap-

proaches in the future. The first and the straight forward one might be

employing a longer crystal. This increases the optical depth without in-

troducing more ion-ion interaction which decreases the coherence time as

increasing the doping concentration would do. Another strategy would be

tailoring the AFC structure better in order to obtain the optimum finesse

value to realize the highest possible ηAFC for the given optical depth.

Another possibility is to include the crystal in an impedance matched

cavity [169, 170] as was shown in [147, 148].
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A solid-state multi-mode

emissive quantum memory

with DLCZ-AFC

In this chapter, I present an emissive quantum memory protocol. It com-

bines two different schemes, namely the AFC scheme and the DLCZ scheme

to take the advantage of both schemes, i.e. creation of single spin exci-

tation in the DLCZ and the multimodality of the AFC. The protocol can

also be understood as a temporal multi-mode photon pair source with an

embedded quantum memory. The idea was proposed by Sekatski and his

coworkers in 2011 [171]. Here I present the background, the experimental

details and the results of this first demonstration which was published in

Physical Review Letters as an Editor suggestion [172] and also featured

in Physics as a ViewPoint by J. Nunn [173]. A similar experiment from

the Geneva group was published back to back [174]. Many parts in this

chapter have been taken from our publication.
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7.1 Introduction

Most of the experiments to date in REIDS have demonstrated absorptive

(read-write) quantum memories, where external quantum states of light are

mapped on the QM [74, 156, 157, 175]. This process requires the genera-

tion of single or entangled photons by an external source with demanding

spectral properties to achieve strong interactions between the quantum

light and the QM [74, 176]. In 2001, Duan, Lukin, Cirac, and Zoller

(DLCZ) proposed an alternative scheme combining a correlated photon-

pair source and a quantum memory in atomic gases [36], which has enabled

fast progress towards elementary quantum networks [44–47, 114, 115]. It

is based on the creation of a single collective spin excitation (spin-wave)

via off-resonant spontaneous Raman scattering, heralded by the detection

of a Stokes photon. After a programmable storage time, the spin-wave can

be transferred with high efficiency into a single anti-Stokes photon using a

resonant read pulse. Since the first demonstration [42], impressive progress

has been realized, including the demonstration of elementary quantum net-

works [44, 46, 47, 114–116], entanglement between four atomic ensembles

[45], and long-lived quantum memories [51, 177]. These demonstrations

have made cold atomic ensembles one of the most advanced systems to

date for quantum networks applications. The DLCZ scheme has also been

implemented with phonons in diamond [178] and in a mechanical resonator

[179].

Schemes to combine QMs and photon pair sources in rare-earth doped

solid-state ensembles have also been proposed [171, 180]. REIDS have

much weaker optical transitions than atomic gases (their dipole moments

is 2-3 orders of magnitude lower than alkali atoms), making off-resonant

excitation challenging [181]. A solution is to excite atoms on resonance to

achieve stronger interaction. However, this leads to fast dephasing due to

inhomogeneous broadening of the optical transition in the crystal, mak-

ing a rephasing mechanism mandatory to recover the collective emission

of the second photon [171, 180]. Early demonstration of time-separated
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correlations between crystal and light field have been reported [129, 182]

using the scheme of Ref. [180], including entanglement between a light

field and a solid-state spin-wave QM [183]. In these experiments, quantum

correlations were demonstrated in the continuous variable regime using

heterodyne detection techniques.

The last couple of years of my PhD have been devoted to demonstrate

a temporally multi-mode DLCZ-like scheme [171] in the photon counting

regime in a rare-earth doped quantum memory. The work described in

last sections of Chapter 6 on the improvement of the rephasing protocol

can also be included in this effort.

In this chapter, I present the first demonstration of another quantum mem-

ory protocol which is used to generate pairs of correlated photons with a

controllable delay. We demonstrate quantum correlation between the pho-

tons for delays up to 20 µs. The photon pairs are created through spin-

wave storage, effectively generating quantum correlations between single

photons and single collective spin-waves in the crystal. Combining the

DLCZ scheme with rephasing techniques allows us to demonstrate the

creation of spin-waves into multiple temporal modes. The use of photon

counting detection enabling discrete variable encoding, combined with the

high quantum correlation demonstrated, makes our source of photon pairs

with embedded quantum memory directly usable for quantum repeater

schemes.

7.2 Theoretical background

In this part I benefited from the DLCZ and the DLCZ-AFC proposals

[36, 171] and also from B. Albrecht’s PhD thesis [162].

The DLCZ scheme [36] requires a three level λ-type energy level configu-

ration, as shown in Figure 7.1. The spin states |g〉 and |s〉 should be long

lived state and |e〉 is the excited state. Initially, all atoms are in the state

91



Chapter 7. A solid-state multi-mode emissive quantum memory with
DLCZ-AFC

s

e

g

εstokes

εAnti stokes

Write
mode

Read mode

QM

Figure 7.1: A three level λ-type energy level configuration in DLCZ
scheme.

|g〉, in a collective state |G〉 = |g1, . . . gN 〉. A short write pulse is applied

off-resonantly to the |g〉 - |e〉 transition and it can result with a transfer

of a single atom to the |s〉 state and an emission of a Stokes photon via

Raman scattering. The emitted photons and the excitations are correlated

such that

S =
1√
N

N∑
j=1

e−ı̇(kW−kS)·rj |g〉j〈s| (7.1)

where rj is the position of the jth atom, kW is the wave vector of the

write pulse and kS is the wave vector of the Stokes photon. Even though

the Stokes photon emission is isotropic, we are only interested in a single

spatial mode where we collect and detect them. After detecting a single

Stokes photon which heralds a single spin excitation (a spin-wave), the

state of the ensemble can be written as

|ψ(0)〉 = S†|G〉 =
1√
N

N∑
j=1

e−ı̇(kW−kS)·rj |g1 . . . sj . . . gN 〉 (7.2)

In the experiments, we introduce a small angle between the write mode

and the Stokes mode in order to spatially filter out the write and read
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modes from the Stokes and anti-Stokes photons detection modes.

The joint state of the light and the matter system is a two-mode squeezed

state and can be described by

|φ〉 =
√

1− p
∞∑
n=1

pn/2
(a†S†)n

n!
|0〉s|G〉 (7.3)

where p is the probability to create one Stokes photon, a† is the Stokes

photon creation operator, and |0〉s is the vacuum state. After a storage

time ts we can map the single spin-wave into an anti-Stokes photon by

applying a read pulse with a wavevector kR. The spatial emission mode of

the anti-Stokes photon is determined the phase-matching condition kaS =

kW + kR − kS . After the emission of the anti-Stokes photon, the state of

the pair can be written as

|ϕ〉 =
√

1− p(|0s0as〉+
√
p|1s1as〉+ p|2s2as〉+O(p3/2)) (7.4)

At high p values, it becomes possible to create multiple spin-waves which

would decrease the photon pair correlation. Therefore in the experiments,

we adjust the write pulse power in order to have p values lower than 1%.

In the DLCZ-AFC protocol, the origin of the Stokes photon is spontaneous

emission instead the Raman scattering because the excitation of the |g〉−|e〉
transition is resonant as shown in Figure 7.2. Ts (Tas) is the time separation

between a Stokes (anti-Stokes) photon and the write (read) pulse. T is the

width of the Stokes detection window. The write pulse is resonant with

the AFC with a storage time of τAFC and the Stokes photos are detected

1.4 µs after the write pulse. The Stokes are emitted in the whole solid

angle, but we only collect the Stokes field backward at an angle of ∼ 4 ◦

with respect to the write mode. Then we unconditionally send strong read

pulses. The write and read pulses are counter-propagating, therefore, due

to the phase matching condition (
−→
k as =

−→
k w +

−→
k r −

−→
k s) and collective

interference, the anti-Stokes photons are emitted counter-propagating with

respect to the detected Stokes photon.
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Figure 7.2: Left panel: hyperfine splitting of the first sub-levels (0)
of the ground 3H4 and the excited 1D2 manifolds of Pr3+ in YSO. The
AFC structure (blue comb) is prepared with the read mode. Right panel:

temporal pulse sequence.

The Stokes photon that heralds a single-spin excitation is emitted from

the ions which have already spent a time TS in the excited state. After

a storage time ts in the spin state, the read pulse then transfers the spin

excitation from the spin-state back to the excited state. At that moment,

the phase evolution in the excited state resumes, and the correlated anti-

Stokes photon will be emitted at time TaS after the read pulse, such that

TS + TaS = τAFC .

If we assume that |g〉 − |e〉 and |s〉 − |e〉 transitions have the same dipole

moment and the optical depth of the ensemble is large enough to obtain

high read-out efficiency, p can be reduced to [171]

p ≈ θ2
0 (7.5)

where θ0, the area of the write pulse at the entrance of the ensemble, is

equal to 1/2
∫
dsΩW (s). In the same conditions, the read out efficiency is

described by [171]

(1− e−(αL/F )
√
π/(4ln2))e−π

2/(2ln(2)F 2) (7.6)
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where αL is the optical depth of the ensemble and F is the finesse of the

AFC. If we assume that the spontaneous emission during the anti-Stokes

detection is the dominant noise contribution in the system, in the same

conditions above, the signal-to-noise ratio can be deduced to [171]

< ≥ 2

p
. (7.7)

7.3 Experiment

The memory crystal, a 5 mm long, 0.05% doped, Pr3+:YSO, is hosted in a

Montana Cryostation cooled down to 3.5 K, see Figure 7.3. The write and

read pulses are counter-propagating. Their polarization is rotated along

the D2 crystal axis in order to maximize the absorption. Narrow-band

filters at 600 nm (width 10 nm) are placed on both Stokes and anti-Stokes

modes. The Stokes photons are fiber coupled to the detector with about

75 % transmission. The anti-Stokes photons are first temporally gated by

two acousto-optic modulators (AOMs) and later spectrally filtered by a 1

MHz-wide spectral hole burnt at the 1/2g - 3/2e transition frequency in a

second Pr3+:YSO crystal, 3-mm long, also at 3.5 K. The total transmission

in the anti-Stokes arm, from the cryostat to the detector, is typically 24 %.

We use two Silicon single photon detectors (SPD) for the detection of both

photons.

We prepare the AFC memory for τAFC = 8 µs. The AFC preparation

has two main step. The first step is described in Chapter 2.4.1. The

second step is the shaping the AFC structure shown in Figure 7.4 on the

single class feature. We follow the procedure discussed in Chapter 6.4 on

the improved AFC efficiency section. The AFC shaping and spin-state

cleaning procedures are repeated 1100 times. All the preparation pulses

are sent along the read spatial mode. Then we start a progression of trials,

each consisting of the pulse sequence depicted in Figure 7.2.
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Figure 7.3: The experimental setup. Detailed description is given in
the text.

The write pulses are 1 µs long (FWHM), and have a negative frequency

chirp with a hyperbolic tangent waveform of 800 kHz. The read pulses,

sent 8 µs after the write pulses, have a power of 24 mW, a duration of

900 ns (FWHM) and are +800 kHz frequency chirped with a hyperbolic

tangent waveform. For one AFC preparation we send 500 write and read

pulse pairs at intervals of 313 µs for Pw lower than 128 µW. For higher Pw

we decrease the number of trials in order to prevent deterioration of the

AFC.

7.3.1 Characterization of Stokes and Anti-Stokes photons

We start our measurements by characterizing the light emitted in the

Stokes mode. Figure 7.5(a) shows the temporal Stokes histogram in a

2 µs window, for a write power Pw = 16 µW. Figure 7.5(b) shows the

time histogram of the anti-Stokes mode, after sending the read pulse. The
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Figure 7.4: The AFC structure for 8 µs excited state storage time.

dotted vertical bars indicate the temporal mode where the anti-Stokes pho-

tons correlated to the Stokes photons of panel (a) should lie to satisfy the

condition TS + TaS = τAFC . This histogram shows a peak at around

8.5 µs originated from the second echo of the write pulse leaked into the

anti-Stokes mode. Note that this peak is not in the temporal mode of the

correlated anti-Stokes photons therefore it does not affect the correlation

calculations.

We measure the probability to generate a Stokes photon Ps as a function

of Pw, as shown in Figure 7.6(a). We observe a linear dependence, as

predicted in [171] for Ps � 1. Figure 7.6(b) shows the spectrum of the

emitted Stokes field. We characterize the Stokes photons frequency by

spectral filtering with the help of the filter crystal that we use in the

experiment. We send the write pulse from the read mode therefore we

detect the Stokes photons after they pass through the filter crystal. We

shift the 1 MHz hole burnt in the filter crystal to different frequencies. We

infer that the branching ratio of the Stokes photons, βBR, at the relevant

3/2g - 3/2e transition frequency is about 60%. It is worth to note that

only 3% of the populations decays to the 3H4 ground state. However the

narrow band filter in the Stokes arm suppresses the Stokes photons that
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Figure 7.5: (a) Stokes count rate in a 2 µs detection window, for write
pulse power of 16 µW. We send the write pulse at TS = 0. (b) Anti-

Stokes photons histogram. The read pulse is sent at TaS = 0.

heralds other spin excitations. These observations suggest that the light

emitted in the Stokes mode comes from the direct excitation of the ions

by the write pulse.

7.3.2 Non-classical correlations

We now look for coincidence detection between the Stokes and anti-Stokes

modes.

We record the detection times of the Stokes (TS) and anti-Stokes (TaS)

photons, and plot an histogram of the coincidences as a function of the

sum TS + TaS . For correlated pairs, we expect a coincidence peak at

TS + TaS = τAFC . Figure 7.7(a) shows such a histogram for Pw = 16 µW ,

where we see a clear correlation peak around τAFC = 8 µs. The shaded

area indicates the time window used to quantify the second order cross-

correlation function of the pairs. We also observe a smaller peak at 11

µs, due to the noise generated by the second AFC echo of the write pulse

(see Figure 7.5(b)). However, this peak is also present when Stokes and
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Figure 7.6: (a) Probability to create Stokes photons as a function of the
write pulse power. The solid curve is a linear fit of the experimental data
points. (b) Stokes counts as a function of the position of a 1 MHz-wide
spectral hole burnt in the filter crystal. The 0 frequency corresponds to
the frequency of the write pulse. The dotted gray horizontal line is the

noise given by the detector dark counts.

anti-Stokes photons are detected in different trials and therefore does not

correspond to correlated photons.

In order to quantify the correlation between Stokes and anti-Stokes pho-

tons, we measure intensity correlation functions. The second order cross-

correlation function g
(2)
S,aS is defined as g

(2)
S,aS = pS,aS/(pS ·paS), where pS,aS

is the probability to detect a coincidence between Stokes and anti-Stokes

photons and ps (paS) is the probability to detect a Stokes (an anti-Stokes)

photon. To infer g
(2)
S,aS , we measure the number of coincidences in a time

window ∆τ around TS + TaS = τAFC in the same trial, and we com-

pare this number with the accidental coincidences recorded for Stokes and

anti-Stokes photon emitted in different independent trials. An example is

shown in Figure 7.7(b) for Pw= 16 µW and ∆τ = 1µs, which includes

around 76 % of the total peak counts. For this particular example, with

average ts = 5.6µs, we find g
(2)
S,aS(∆τ = 1µs) = 21 ± 4. This is much

higher than the threshold of about 6 enabling the violation of a Bell in-

equality if at least two modes are stored [184]. The inset in Figure 7.7(b)
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Figure 7.7: (a) Coincidence counts between Stokes and anti-Stokes
photons as a function of the sum TS+TaS . The bin-size is ∆τ = 400
ns. (b) Coincidence counts per hour between Stokes and anti-Stokes
photons in the 1 µs wide temporal mode around TS+TaS = τAFC =
8 µs in the same storage trial (bar at 0) and in different storage trials

separated by multiples of 313 µs. The g
(2)
S,aS value is calculated as the

ratio between the coincidences in the same storage trial and the average
of the coincidences in different storage trials. The inset shows the peak

in the g
(2)
S,aS with bin-size of ∆τ = 400 ns. The fit of the correlation peak

to a Gaussian curve, done over a 2 µs window around the peak, is also
shown.

shows a zoom on the correlation peak for a smaller ∆τ = 400 ns, leading

to g
(2)
S,aS(∆τ = 400ns) = 24 ± 6. The shape of the normalized correlation

peak is fitted with a Gaussian curve and a temporal FWHM of (940 ±
100) ns is extracted. This is close to the expected width corresponding to

the write pulse duration convoluted with the time-bin size.

To further characterize our system, we measure g
(2)
S,aS(∆τ = 1µs) as a

function of PS (Figure 7.8), which can be adjusted by tuning Pw (see

Figure 7.6(a)). We observe a reduction of the g
(2)
S,aS value when PS is

increased, as expected for a DLCZ-like process. At lower PS , the rate of

Stokes photons becomes comparable to the noise and the value of g
(2)
S,aS

decreases.
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Figure 7.8: g
(2)
s,as value (squares) and read-out efficiency (diamonds)

as a function of the Stokes creation probability, Ps, calculated by the
raw detection counts back propagated at the crystal using known losses.

The black horizontal line sets the classical threshold for the g
(2)
s,as given

by the Cauchy-Schwarz inequality.

In order to prove unambiguously the non-classical correlations between the

two photons, we use the Cauchy-Schwarz inequality:

R =
(g

(2)
S,aS)2

g
(2)
S,S ·g

(2)
aS,aS

≤ 1,

where g
(2)
S,S and g

(2)
aS,aS are second order auto-correlation functions of Stokes

and anti-Stokes photons, respectively. To measure these quantities, we

introduce a 50/50 fiber splitter and two SPDs in the Stokes (anti-Stokes)

and proceed in a similar way as for the cross-correlation. With Pw = 64

µW we find g
(2)
S,S(∆τ = 1µs) = 1.85±0.36, g

(2)
aS,aS(∆τ = 1µs) = 1.75±0.57,

and g
(2)
S,aS(∆τ = 1µs) = 11.9 ± 0.9. Eventually we find R = 44 ± 20 
 1

which clearly violates the inequality by more than 2 standard deviation.
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Figure 7.9: Autocorrelation measurements of Stokes and anti-Stokes
photons. The dotted line represents the average of the side bins.

7.3.3 Read-out efficiency

We also measure the read-out efficiency ηRO = (pS,aS − paccS,aS)/pS as a

function of PS , where paccS,aS is the accidental coincidence probability. The

measured value of the read-out efficiency can be compared to the expected

one with our experimental parameters. The latter can be estimated as

ηexpRO = ηRP · ηreph · ηcoh · βBR · βG, where ηRP is the transfer efficiency of

the read pulse, ηreph is the rephasing efficiency of the AFC, ηcoh is the

coherence in the spin-state, βBR is the branching ratio of 60%, and βG is

the fraction of the pulse counts in the detection window ∆τ . We calculate

ηexpRO by measuring ηRP , ηreph, ηcoh, and βBR separately.

In order to find the ηRP we conduct classical DLCZ-AFC experiment. We

prepare the AFC and send a write pulse but, instead of Stokes photons

detection, a weak probe pulse resonant with the 3/2g - 3/2e transition

is sent which transfers a small part of the ions from the excited state

to the spin state. The weak probe is sent from the anti-Stokes spatial

mode in the temporal window of the Stokes detection. The stimulated

transfer generates photon emission (gain) during the weak pulse which

is proportional to the number of ions transferred to the spin state. The

strong read pulse transfers the population back to the excited state and

the collective emission occurs. By detecting the gain of the weak probe

and the collective emission of the AFC we extract ηRP = 40%.
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We calculate the coherence in the spin state by taking into account the

inhomogeneous spin broadening measured in the Figure 7.10(a). For a 2

µs-wide Stokes window, the average spin state storage time is 5.6 µs which

leads to preservation of 64% of the coherence.

The AFC efficiency can be defined as ηAFC = ηwrite ·ηrephasing ·ηloss, where

we measure ηAFC = 17%. The efficiency of the write pulse is defined as

ηwrite ≈ 1− e−d/F where d is the absorption depth and F is the finesse of

the AFC. The loss in the AFC protocol is defined as ηloss = e−d0 where d0

is the background absorption. We measure an average d of 5.4, F of 4.4

and d0 = 0.4, and finally find ηrephasing = 36%.

When measuring the read-out efficiency, we consider ∆τ = 1µs, which

includes a fraction βG = 76% of the coincidence peak.

Finally the expected readout efficiency is ηexpRO = 40%·64%·36%·60%·76% =

4.2%. We observe a linear increase up to PS=1 %, due to the noise in

the Stokes mode. Afterwards it stays constant around 3%, close to the

expected value.

7.3.4 Controllable delay between the pairs and multi-modality

In order to show that the delay between the Stokes and anti-Stokes photons

can be controlled, we measure the retrieval efficiency as a function of the

storage time in the spin-state ts, as shown in Figure 7.10(a). The data are

fitted with a Gaussian curve, from which we extract a 1/e decay constant

of (8.3 ± 0.8) µs. This decay is likely due to inhomogeneous broadening

of the spin transition. The same measurement in a standard spin-wave

AFC experiment in this crystal gives a similar value (9.9 ± 1.5) µs. The

decay in ηRO also affects g
(2)
S,aS , as shown in Figure 7.10(b). Nevertheless,

we observe non-classical correlation for ts up to 12 µs, corresponding to a

total storage time of ts + τAFC = 20 µs.
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Figure 7.10: Read-out efficiency (a) and g
(2)
S,aS(∆t = 1µs) cross-

correlation values (b) as a function of the storage time in the spin state
ts. The red line is the fit of the experimental data to a Gaussian decay
which gives a 1/e decay time of (8.3 ± 0.8) µs, corresponding to a spin

inhomogeneous linewidth of 45 ±2 kHz (44 ±4 kHz for g
(2)
S,aS). For this

curve, we do not subtract the accidental counts. The blue horizontal

line in (b) sets the classical threshold for the g
(2)
S,aS given by the Cauchy-

Schwarz inequality. (c) g
(2)
S,aS(∆t = 1µs) cross-correlation (squares) and

coincidence counts per hour (circles) between the Stokes and anti-Stokes
photons as a function of Stokes window size, T. The total Stokes window

size is 5.5 µs.

Finally, we discuss the temporal multimode nature of our source. The

detection of a Stokes photon at a different time T ′S creates a spin-wave that

will also rephase at a different time T ′aS , still preserving T ′S +T ′aS = τAFC .

The maximal number of modes is given by Nm = T/∆τ , where T is the

detection window of the Stokes photons. In the data processing stage

we adjust the Stokes window size as multiples of the temporal FWHM

of the write pulse. The values are averages of all possible windows for

different window sizes, e.g. 11 data for 500 ns window, 9 data for 1500 ns

window etc. In this measurement, the write pulses have Pw = 64 µW and

a duration of 500 ns (FWHM). The read pulse is sent 15 µs after the write

pulse. The decrease on g
(2)
S,aS with respect to the one in Figure 7.10(a) is

due to the longer spin-state storage time and less efficient read-out for 500
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ns write pulse (ηRO = 1 %). Note that there is a trade-off between the

number of modes and the read-out efficiency of each mode. The efficiency

is maximized if ∆τ is bigger than the correlation peak. In our case, we

choose ∆τ comparable to the FWHM of the peak. Figure 7.10(c) shows

the coincidence count rate and the g
(2)
S,aS as a function of T . We observe a

linear increase in the coincidence count rate as a function of T . At the same

time, the g
(2)
S,aS values stay constant. This shows an important feature of

our scheme: adding more temporal modes increases the coincidence rate

but does not increase the noise. The maximal number of modes in our

current experiment is Nm = T/∆τ = 11 modes, a factor of 5 improvement

with respect to previous multimode DLCZ-like experiments [183, 185].

7.4 Towards entanglement between a photon and

a spin-wave

In the previous section, we demonstrated quantum correlations between

the Stokes and anti-Stokes photons. In this section, we report prelimi-

nary experiments towards the demonstration of energy-time entanglement

between the two photons. Due to the temporal multiplexing capability

of the protocol, the photon pairs are emitted in a superposition of sev-

eral temporal modes, with TS + TaS = 1/∆. In order to analyze such an

entanglement, we should send the two photons through two unbalanced in-

terferometers, analogous to the Franson configuration [186]. Here, instead

of using interferometers, we use an AFC in the filter crystal, as proposed

in [187] where the transmitted part of the light plays the role of the short

interferometer arm, while the AFC echo represent the long arm. We pre-

pare an AFC structure with a storage time of 2 µs in the filter crystal and

send both Stokes and anti-Stokes photons to the Filter AFC, as depicted

in the experimental setup in Figure 7.11.

The effect of sending both Stokes and anti-Stokes photons to an AFC is

described in the schematic in Figure 7.12. After the filter AFC, each Stokes
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Figure 7.11: The modified version of the setup. Both Stokes and anti-
Stokes photons are directed to the filter crystal where a 2 µs AFC is

burnt.

(anti-Stokes) mode is separated into two time-bins, transmitted Stokes

(anti-Stokes) |ST 〉 (|AST 〉) and echo Stokes (anti-Stokes) |SE〉 (|ASE〉).
When we look at the Ts + Tas coincidence window, there will be three

peaks. The first one collects the coincidences of the pairs coming from the

transmitted parts of both Stokes and anti-Stokes by the filter AFC without

any delay (as if both passed through the short arm of the interferometers)

hence the peak appears at the storage time of the memory AFC τMemory.

The last peak is also similar to the first one. It is built by the coincidences

between Stokes and anti-Stokes both being stored in the filter AFC and

appears at τMemory + 2τFilter. The peak in the middle is the one we are

interested in, since two states overlaps at that time-bin indistinguishably.

It contains not only the coincidences of transmitted Stokes and echo anti-

Stokes but also the echo Stokes and transmitted anti-Stokes, where both

give a coincidence peak at τMemory + τFilter. The post-selected time-bin

state can be written as

1√
2

(|STASE〉+ eiθ|SEAST 〉) (7.8)
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Figure 7.12: Schematic of the time-bin states of Stokes and anti-Stokes
photons and the expected coincidence histogram with the time-bin over-

laps.

where θ = θs − θas. The frequency detuning δ between the input field

and the AFC leads to a phase factor ei2πδ/∆ in the output field [142].

Therefore by shifting the frequency of one field, we can observe a two

photon interference fringe and show the coherence in the process.

We modified some of the experimental parameters in order to distinctly

separate the time-bins. In the memory crystal we prepare the AFC struc-

ture with the same strategy described in the experimental part except for

the excited state storage time which becomes 9 µs. The FWHM of the

write and pulses are now around 800 ns and the Stokes window size is 2.4

µs. We adjust the efficiency and the transmitted parts of the 2µs filter

AFC such that both areas are equal and around 35% of the input pulse.

In this configuration, we suffer from the leakage of the read pulse which

couples into the Stokes mode, creates echos in the filter crystal and leaks

to the anti-Stokes detection mode. In order to observe the least leakage

we follow the conditional sequence approach and we send the read pulse

only when we detect a Stokes photon.
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Figure 7.13: Plots (a) and (b) show the accidental counts and the
probability to generate Stokes photons, respectively, at different phase
conditions. (c) and (d) show the g2S,aS and the coincidence values, re-
spectively, as a function of the phase θ. In plots (e) and (f), the AFC in
the filter crystal is shifted by 250 kHz which affects in the same measure

in the echo of both Stokes and anti-Stokes photons.

We adjust the phase of the echo of the anti-Stoke photons by shifting the

frequency of the gating AOMs in order to observe the interference fringe.

For example, a 250 kHz shift in the anti-Stokes frequency corresponds to

a π shift in the echo due to the fact that ∆ of the AFC in the filter crystal

is 500 kHz for 2 µs AFC storage. The results of this strategy is given

in Figure 7.13. Each data point is the average of 5 measurements of 1

hour, taken without any order. We first look at the plot (a) and (b) for

any sign of single photon interference in the accidentals and in the Stokes

probability, respectively. No interference fringe is observed in both cases.

In the plot (c) and (d) we show the g
(2)
S,aS and the coincidence values. We

fit the data with sinusoidal functions and obtain a two photon interference
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visibility of around 83%. In the second part, we shift the frequency of the

AFC in the filter crystal by 250 kHz and repeat the experiment. In this

case, the phase of both Stokes and anti-Stokes echoes are shifted by the

same amount hence we do not see any shift in the fringe. However we are

still able to see visibility values around 70 % which lets us to conclude that

the coherence is preserved during the storage.

7.5 Discussion

Several improvements to our system are possible. The Stokes probability

could be improved, without resorting to higher write pulse powers. For

example longer crystals or, to some extent, higher concentrations could be

employed to achieve higher OD. The light-atom interaction could also be

enhanced with external cavities. The read-out efficiency can be increased

by filtering the Stokes photon to suppress wrong heralds, by improving

the quality of the AFC, by increasing the optical depth using e.g. longer

crystals, and by optimizing the transfer efficiency. The storage time could

be greatly improved using spin-echo techniques [124], with prospects of

up to tens of seconds in our crystal [69] or hours in Europium doped

crystals [70]. Even though the emitted photons are at 606 nm, it is possible

to efficiently convert them to telecom C-band wavelength using quantum

frequency conversion techniques [72].

It is worth to note that swapping the Stokes and anti-Stokes spatial modes

decreases the coincidence rate around 1 order of magnitude even though

the phase matching condition should still satisfy. The reason is still under

investigation.

Our observation of non-classical correlations between photon pairs emit-

ted from a solid-state ensemble with a controllable delay by using photon

counting techniques represents an important achievement towards scalable
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quantum repeater architectures. It also paves the way towards heralded en-

tanglement of remote solids with temporal multiplexing, which can greatly

enhance the distribution rate of entanglement [39].

In the last part of the chapter, we presented measurements of two photon

interference between the Stokes and anti-Stokes photons, with visibilities

up to 83 ± 2.5 % . In order to violate Bell inequality and prove entan-

glement unambiguously, we need to show visibilities higher than 70% in

two basis phase shifted by 90◦. With the current configuration, we do not

have access to the second base. By burning two independent AFCs for

Stokes and anti-Stokes photons in the filter crystal, spectrally or spatially

separated, it would be possible to realize the experiment in two different

basis.
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Conclusions and outlook

8.1 Summary of the thesis

The main goal of this thesis was to investigate new quantum memory

protocols for solid state devices. I demonstrated two protocols for the

first time which offer certain advantages over the current schemes. I also

presented important improvements in a well-known protocol, reporting

state-of-art results. In all the experiments, we used a rare-earth doped

crystal, specifically Pr3+Y2SiO5. My PhD studies also included building a

new experimental setup and contributing to other important experiments

which are not included in this thesis.

The first protocol that we demonstrated is the spectral hole memory (SHoMe)

scheme. It was proposed by Lauro and co-workers in 2009 [112]. The pro-

tocol is based on creation of a spectral hole in the absorption line of the

doped crystal and transferring the coherence back and forth between the

spin state and excited state with two π Raman pulses. The SHoMe proto-

col is similar to the well-known electromagnetically induced transparency

(EIT) protocol with the slow and stopped light phenomena. However,

the SHoMe protocol relies on a long-lived spectral hole created before the

pulse to be stored is sent. This allows the use of Raman control pulses
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separated in time from the retrieved signal. This is beneficial in the single

photon level light storage which have never been demonstrated with EIT in

doped solids. The SHoMe protocol does not rely on complicated prepara-

tion processes, it only requires a Λ system, a single class of ions with high

OD and Raman pulses with high transfer efficiency. In the experiment,

we sent an input pulse with 3 µs FWHM to a 230 kHz spectral hole with

OD around 8. We reached stopped light efficiency of around 40% which

outperforms other reported single pass 3-level storage efficiency values in

solid-state devices. We characterized storage efficiencies as a function of

OD and compared the experimental values with the results of numerical

simulation. We observed that squarish hole shapes can provide higher stor-

age efficiency. We also characterized the effect of the hole width on the

storage efficiency and on the slow light time delay. Later we moved to the

single photon level regime. By applying temporal and spectral filtering

techniques, we reached a storage efficiency of 31% and also a SNR of 33

± 4 for an input photon number of 1, the highest reported values for solid

state spin-wave optical memories at the single photon level. In the light

of these results, we can say that this protocol is very promising for the

storage of quantum light.

In the second experimental chapter, we discussed the well-known AFC pro-

tocol. It is based on tailoring the absorption profile of the ensemble with

periodic features with period ∆, which lead to rephasing and collective

re-emission after a predetermined time storage time of 1/∆. In the first

experiment, we presented the result of a 2-level AFC storage of 1570nm

telecom photons after conversion to 606 nm using a non-linear PP-KTP

crystal with a strong 987nm pump light. We used the AFC as a spectral

filter which led to a 270-fold improvement in the µ1 value compared to

only QFC case. The measured AFC storage efficiency was 19.8% at 1.6 µs

storage time with a total efficiency of 1.55% including the QFC device effi-

ciency and optical losses. These results outperformed the previous storage

experiments of telecom light in the single photon level. In this chapter I
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also presented measurements of excited state storage with improved stor-

age efficiency and storage times and briefly discussed the experimental

modifications. We obtained 2-level AFC efficiencies around 28% until 8 µs

storage time and more than 10% at 12 µs. I also showed 3-level AFC re-

sults. We reached spin-wave AFC efficiency of 14% and 8.5% with classical

pulses and at the single photon level, respectively. These values present

the state-of-art of the reported spin-wave AFC efficiencies in both regimes.

The last quantum memory protocol that I presented is a hybrid combi-

nation of the DLCZ and AFC protocols. It offers the advantages of both

schemes, such as creation of non-classical photon pairs with embedded

memory and temporal multi-modality. The protocol starts with the AFC

preparation and then continues with sending write and read pulses. The

Stokes photons are detected between the write pulse and its first AFC

echo. Each Stokes photon heralds a single spin excitation which is then

stored for a programmable time and retrieved by a read pulse to create an

anti-Stokes photon. The total time spent in the excited state should be

equal to the τAFC hence we expect to see a peak at that time when we

sum the time delays between the write pulse and a Stokes detection and

between the read pulse and an anti-Stokes detection. In the experiment,

the peak was clearly visible and gave a g
(2)
s,as of 21 ± 4 for 16 µW write

pulse power. We characterized the Stokes photons creation probability as

a function of write pulse power and also the number of Stokes counts as

a function of frequency. We also characterized the g
(2)
s,as and the read-out

efficiency values as a function of the Stokes creation probability and of

the spin-state storage time. In order to prove the non-classical nature of

the pairs, we measured the g
(2)
s,s and the g

(2)
as,as functions and observed a

violation of the Cauchy-Schwarz inequality with more than 2 standard de-

viations. We showed the storage of 11 temporal modes by dividing the

Stokes window into smaller parts and calculating the g
(2)
s,as and coincidence

rate. We went one step further by showing preliminary measurements

demonstrating energy-time entanglement between Stokes and anti-Stokes

photons. To analyse the entanglement they are both sent to an equally
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balanced AFC which played the role of an unbalanced interferometer. We

observed two-photon interference fringes with visibility values of 83 ± 2.5

% and 68 ± 6.4 % in the time-bin where the coincidences are indistinguish-

able. All these results present a significant step towards scalable quantum

repeater architectures.

8.2 Outlook

8.2.1 Performance improvements

In the thesis I presented state of art results in terms of storage efficiencies

in the SHoMe and AFC protocols. However there are still space for im-

provements. For example higher OD and more efficient control pulses (with

more power or longer pulse durations) can lead to larger efficiency values

in all the protocols presented here. There are also other improvements

that can be realized in specific protocols.

The analytical simulations done by T. Chanelière show that it is possible

to reach efficiency values higher than 50 % in the SHoME protocol. There

are several improvements that can be done, such as increasing the optical

depth, optimizing the duration and the shape of the input and the Raman

pulses, and also optimization of the shape of spectral hole. In the near

future, we will work on the shape and the duration of the pulses and the

spectral hole.

In the 2-level AFC, the maximum theoretical efficiency that we can obtain

is around 40 % for an OD value of 7 with square comb shapes [163]. Here

we presented efficiency values around 30 % hence we are not far away from

the theoretical limit. However we have limited the emission in the for-

ward direction due to the fact that we have always applied co-propagating

control pulses in the spin-wave storage. It is possible to overcome this limi-

tation by applying counter propagating control pulses and obtain backward

emission. However this scheme requires dividing the optical power into two
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modes. Therefore in order to keep the same Rabi frequency, we have to

double the power.

The g
(2)
s,as values in the DLCZ-AFC protocol can be increased by filtering

the Stokes photons, however our main concern here would be the coinci-

dence rate since our g
(2)
s,as values are high enough. Larger Stokes detection

windows hence higher degree of temporal multi-modality would lead to an

increase in the coincidence rate but it would require longer excited state

storage time in order to not overlap with the leakage of the write pulse

echo in the Stokes mode. The coincidence rate can be also increased by

increasing the repetition rate of the experiment. The readout efficiency is

mostly limited by the rephasing and read pulse efficiencies. The rephasing

efficiency can be increased by optimization of the AFC preparation.

Another important improvement that we will work on is the storage time.

All three protocols store the information in the spin state of the crystal

which offers prospects for long-lived storage. However, the current realiza-

tions are limited to storage times of the order of a few tens of microseconds

by the inhomogeneous spin broadening. It is possible to increase the total

storage time to the order of hundreds of micro seconds by using spin-echo

techniques. We are currently working on this implementation.

8.2.2 Future directions

Quantum teleportation is a key resource in the quantum repeater architec-

tures. In our group, one of the long run goal is demonstrating teleportation

between two ensemble nodes. It first requires to generate heralded entan-

glement between remote crystals. This can be realized by using two SPDC

photon pair sources and two Pr:YSO crystal setups which we already have.

The AFC protocol is suitable for this experiment. Another way would be

to use the DLCZ-AFC protocol to create photon pairs in the two Pr:YSO

crystals. Quantum entanglement does not have to be done in the same
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Chapter 8. Conclusions and outlook

atomic systems, we can also demonstrate it between a cold atomic en-

semble and a crystal. It is possible to overcome the frequency mismatch

between two systems by using quantum frequency conversion techniques

[72, 188].

Another long term goal of the group is the miniaturization of the devices

in order to integrate on-chip demonstrations. There are already ongoing

research using waveguide structure in our group [134] and other groups

[157, 189, 190]. Another way of miniaturization is coupling REID en-

sembles on photonic nanocavities [191, 192]. REID optical fibers are also

candidates for scalable integrated quantum memories [193, 194]. Investi-

gations on the detection of single Pr3+ ion have also been conducting in

different groups [195–197]. Finally, another research direction deals with

the detection and manipulation of single rare-earth ions in optical cavities

[198].
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Appendix A

9 classes of ions in Pr:YSO

The Pr:YSO crystal has 3 ground and 3 excited states in the 3H4(0) -

1D2(0) transition. The effect of the crystal field on the ions varies due to

the inhomogeneity in the crystal which leads to 9 different classes of ions,

as shown in Figure A.1. Figure A.2 shows all the individual transitions

with the relative oscillator strengths (see 2.1) represented with the vertical

bars. The last figure was made by Patrick M. Ledingham, one of the former

post doc in our group.
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Figure A.1: Hyperfine level structures of 9 classes
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Figure A.2: Spectral positions of each individual transition
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[56] J. Borregaard, P. Kómár, E. M. Kessler, M. D. Lukin, et al.: Long-

distance entanglement distribution using individual atoms in optical

cavities, Phys. Rev. A 92, 012307 (2015).

[57] Y. Han, B. He, K. Heshami, C.-Z. Li, et al.: Quantum repeaters

based on Rydberg-blockade-coupled atomic ensembles, Phys. Rev. A

81, 052311 (2010).

[58] M. J., S. M., D. J., H. A., et al.: Quantum communication without

the necessity of quantum memories, Nat Photon 6, 777 (2012).

[59] S. Muralidharan, J. Kim, N. Lütkenhaus, M. D. Lukin, et al.: Ultra-

fast and Fault-Tolerant Quantum Communication across Long Dis-

tances, Phys. Rev. Lett. 112, 250501 (2014).

[60] S. Chen, Y.-A. Chen, T. Strassel, Z.-S. Yuan, et al.: Deterministic

and Storable Single-Photon Source Based on a Quantum Memory ,

Phys. Rev. Lett. 97, 173004 (2006).

124



Bibliography

[61] D. N. Matsukevich, T. Chaneliere, S. D. Jenkins, S.-Y. Lan, et al.:

Deterministic Single Photons via Conditional Quantum Evolution,

Phys. Rev. Lett. 97, 013601 (2006).

[62] J. Nunn, N. K. Langford, W. S. Kolthammer, T. F. M. Champion,

et al.: Enhancing Multiphoton Rates with Quantum Memories, Phys.

Rev. Lett. 110, 133601 (2013).

[63] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, et al.: Linear optical

quantum computing with photonic qubits, Rev. Mod. Phys. 79, 135

(2007).

[64] M. Afzelius, , N. Gisin, and H. de Riedmatten: Quantum memory

for photons, Physics Today 68 (2015).

[65] Y.-F. Hsiao, P.-J. Tsai, H.-S. Chen, S.-X. Lin, et al.: EIT-based

photonic memory with near-unity storage efficiency , arXiv (2016).

[66] Y.-W. Cho, G. T. Campbell, J. L. Everett, J. Bernu, et al.: Highly

efficient optical quantum memory with long coherence time in cold

atoms, Optica 3, 100 (2016).

[67] S. Zhou, S. Zhang, C. Liu, J. F. Chen, et al.: Optimal storage and

retrieval of single-photon waveforms, Opt. Express 20, 24124 (2012).

[68] J. Li, Y. Wang, S. Zhang, J. He, et al.: High efficiency quantum

storage of single photons in cold atoms, arXiv:1706.01404 (2017).

[69] G. Heinze, C. Hubrich, and T. Halfmann: Stopped Light and Im-

age Storage by Electromagnetically Induced Transparency up to the

Regime of One Minute, Phys. Rev. Lett. 111, 033601 (2013).

[70] M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, et al.:

Optically addressable nuclear spins in a solid with a six-hour coher-

ence time, Nature 517, 177 (2015).

125



Bibliography

[71] X. Fernandez-Gonzalvo, G. Corrielli, B. Albrecht, M. Grimau, et al.:

Quantum frequency conversion of quantum memory compatible pho-

tons to telecommunication wavelengths, Opt. Express 21, 19473

(2013).

[72] N. Maring, K. Kutluer, J. Cohen, M. Cristiani, et al.: Storage of up-

converted telecom Photon in a doped crystal , New Journal of Physics

16, 113021 (2014).

[73] C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, et al.:

Quantum Repeaters with Photon Pair Sources and Multimode Mem-

ories, Phys. Rev. Lett. 98, 190503 (2007).

[74] D. Rieländer, K. Kutluer, P. M. Ledingham, M. Gündoğan, et al.:
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tral hole burning in a Tm3+-doped yttrium-aluminum-garnet crystal ,

Phys. Rev. A 79, 063844 (2009).

[126] M. Afzelius, I. Usmani, B. Amari, A.and Lauritzen, A. Walther,

et al.: Demonstration of Atomic Frequency Comb Memory for Light

with Spin-Wave Storage, Phys. Rev. Lett. 104, 040503 (2010).
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T. Chanelière: Quantum memory for light: large efficiency at tele-

com wavelength, arXiv:1312.0763 .
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