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Summary 

A system that attempts to find cracks in a RGB picture of a concrete beam, measure the cracks 
angles and widths; and classify crack patterns in 3 pathologies has been designed and 
implemented in the MATLAB programming language. The system is divided in three parts: Crack 
Detection, Crack Clustering and Crack Pattern Classification.  

The Crack Detection algorithm attempts to detect pixels depicting cracks in a region of interest 
(ROI) and measure the crack angles and widths. The input ROI is segmented several times: First 
with an artificial Neural Network (NN) that classifies image patches in “Crack” or “Not Crack”, 
then with the Canny Edge detector and finally with the local Mean and Standard deviation of 
the intensities. Then all neighborhoods in the mask are passed through special modified line 
kernels called “orientation kernels” designed to detect cracks and measure their angles; in order 
to obtain the width measurement, a line of pixels perpendicular to the crack is extracted and 
with an approximation of the intensity gradient of that line the width is measured. This algorithm 
outputs a mask the same size as the input picture with the measured angles and widths. 

The Crack Clustering algorithm groups up all the crack image patches recognized from the Crack 
Detection to approximate clusters that match the quantity of cracks in the image. To achieve 
this a special distance metric has been designed to group up aligned crack image patches; then 
with an algorithm based on the connectivity among the crack patches the clusters are obtained.  

The Crack Pattern Classification takes the mask outputs from the Crack Detection step as input 
for a Neural Network (NN) designed to classify crack patterns in concrete beams in 3 classes: 
Flexion, Shear and Corrosion-Bond cracks. The width and angles masks are first transformed into 
a Feature matrix to reduce the degrees of freedom of the input for the NN. To achieve a desirable 
classification in cases when more than 1 pathology is present, every angle and width mask is 
separated in as many Features matrices as clusters found with the Clustering algorithm; then 
separately classified with the NN designed.  

Several photos depicting concrete surfaces are presented as examples to check the accuracy of 
the width and angle measurements from the Crack Detection step. Other photos showing 
concrete beams with crack patterns are used to check the classification prowess of the Crack 
Pattern Classification step.  

The most important conclusion of this work is the transference of empirical knowledge from 
rehabilitation of structures to a machine learning model in order to diagnose the damage on an 
element. This opens possibilities for new lines of research to make a larger system with wider 
utilities, more pathologies and elements to classify. 

 

 

 

  



iii 
 

Resumen 

Se ha diseñado un sistema que a partir de una foto a color de una superficie de hormigón realiza 
las siguientes tareas: Detectar fisuras, medir su ángulo y ancho, clasificar los patrones de 
fisuración asociados a tres patologías del hormigón; el cual ha sido implementado en el lenguaje 
de programación MATLAB. El sistema se divide en tres partes: Detección y medición de fisuras; 
algoritmo de análisis de grupos de fisuras y clasificación de patrones de fisuración. 

El algoritmo de detección de fisuras detecta los pixeles en donde hay fisuras dentro de una 
región de interés y mide el ancho y ángulos de dichas fisuras. La región de interés es segmentada 
varias veces: Primero con una red neuronal artificial que clasifica teselas de la imagen en dos 
categorías “Fisura” y “No fisura”; después se hace otra segmentación con un filtro Canny de 
detección de bordes y finalmente se segmenta con la media y desviaciones intensidades en 
teselas de la imagen. Entonces todas las localidades de la máscara de imagen obtenida con las 
segmentaciones anteriores se las pasa por varios filtros de detección de líneas diseñados para 
detectar y medir las fisuras. Este algoritmo resulta en dos máscaras de imagen con los anchos y 
ángulos de todas las fisuras encontradas en la región de interés. 

El algoritmo de análisis de grupos de teselas reconocidas como fisuras se hace para intentar 
reconocer y contar cuantas fisuras aparecen en la región de interés. Para lograr esto se diseñó 
una función de distancia para que teselas de fisura alineadas se junten; después con un 
algoritmo basado en la conectividad entre estas teselas o vectores fisura se obtienen los grupos 
de fisura. 

La clasificación de patrones de fisuración toma las máscaras de imagen del paso de detección 
de fisuras y lo toma como dato de entrada para una red neuronal diseñada para clasificar 
patrones de fisuración en tres categorías seleccionadas: Flexión, Cortante y Corrosión-
Adherencia. Las máscaras de imagen de ancho y ángulo se transforman en una matriz de 
características para reducir los grados de libertad del problema, estandarizar un tamaño para la 
entrada al modelo de red neuronal. Para lograr clasificaciones correctas cuando más de 1 
patología está presente en las vigas, cada máscara de imagen de ángulos y anchos de fisura se 
divide en cuantos cuantos grupos de teselas de fisuras haya en la imagen, y para cada uno se 
obtienen una matriz de características. Entonces se clasifican separadamente dichas matrices 
con la red neuronal artificial diseñada. 

Varias fotos con superficies de hormigón se presentan como ejemplos para evaluar la precisión 
de las mediciones de ancho y ángulo del paso de detección de fisuras. Otras fotos mostrando 
patrones de fisuración en vigas de hormigón se muestran para revisar las capacidades de 
diagnóstico del paso de clasificación de patrones de fisuración. 

La conclusión más importante de este trabajo es la transferencia del conocimiento empírico de 
la rehabilitación de estructuras hacia un modelo de inteligencia artificial para diagnosticar el 
daño en un elemento de la estructura. Esto abre un campo grande de líneas de investigación 
hacia el diseño e implementación de sistemas automatizados con más utilidades, más patologías 
y elementos para clasificar.  
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1. Introduction 
 

 

 

 

1.1. Research relevance 
Cracking of concrete elements is something expected in service conditions of reinforced (RC) 
and partially prestressed concrete (PPC) structures.  However, it should be controlled with 
adequate design, in order to assure durability and serviceability. This is done to ensure the 
durability of the concrete structures, as wider cracks make concrete elements vulnerable to 
chemical attacks such as carbonation, chlorides, sulphates and alkali-silica reaction. Being able 
to measure with precision the width of the fissures may help improve existing models (Bazant 
1979) (Ho y R 1987) to predict the advance of these attacks in existing structures as almost all 
of them include the crack width in the calculations. 

On the other hand, existence of particular crack patterns characteristics may inadequate 
performance or even that a structure may be prone to failure.    Many resisting models, such as 
the aggregate interlock (Taylor 1970) (Walraven 1980) (Zararis 1997), relate to crack width and 
orientation and may use them explicitly in their formulations. 

Moreover, rehabilitation of structures has been a problem even before the appearance of civil 
engineering as a standalone field. Rehabilitation starts with the inspection, diagnosing and 
identification of the damage caused pathology affecting the concrete structures as most authors 
on works on classic rehabilitation and diagnosing have stated ((AENOR) 2009) (Elizalde Javier 
1980) (Muñoz 1994) (Woodson 2009).    Multiple research works have been done on 
rehabilitation of concrete structures featuring uses of new materials (Mikulica, Laba y Hela 2017) 
(Saadatmanesh 1997), improvement of known techniques (Chau-Khun, y otros 2017), new 
techniques (Ihekwaba, Hope y Hansson 1996).  But there is certainly a lack of studies on the 
topic of the visual diagnosing techniques on existing structures given that this task has always 
been very dependent on the experience and empirical criteria rather than in mathematical 
models. Very recently some works on the tasks of crack detection and measurement with image 
processing and machine learning have made their way in the field (Gopalakrishnan y Khaitan 
2017) (Davoudi, Miller y Kutz 2017) (Pauley, Peel y S. 2017) (Kim, y otros 2017)  and it is the start 
of a new wave towards the widespread usage of these techniques. 

 

 

1.2. Motivation 
 Early identification of undesirable crack patterns is usually considered as an indicator of 
malfunctioning or the existence of pathological behavior.  Identifying these patterns and analysis 
is essential in diagnosis and inspection.  Systematic inspection of large infrastructures networks 
can be costly, especially in regions that are of difficult access.  Moreover, recognition of patterns 
and their analysis requires expertise, especially experience.  Therefore, automatization of this 
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process is relevant for cost reduction of maintenance, systematization and inspection of zones 
that are difficult to reach for man visual inspection.  Therefore, an automatic identification and 
measurement system would be useful to combine with mechanical resisting models and identify 
need for repair a retrofit. 

 

1.3. Scope and objectives 
 

1.3.1. General objective 
 

The general objective of this thesis is to develop a system that measures and detects cracks’ 
widths, lengths and able to identify the pathology that caused the given cracks. All this based on 
a digital color picture of a concrete surface or element. 

1.3.2. Specific objectives 
 

The general objective can be divided and expanded with the following arguments: 

• Identify and characterize cracking patterns in reinforced concrete elements from the 
pictures taken in bare concrete surface with a digital camera using digital image processing 
techniques. 

• Measure the direction and width of all the cracks detected in a concrete surface. 
• Develop a method to quantity the cracks in a picture and determine their separation and 

direction. 
• Develop a method to diagnose a crack pattern on a concrete structure only from the picture 

of this element using Machine Learning models. 
 

1.4. Methodology 
 

This Thesis uses different techniques to perform the tasks proposed in the objectives: 
Segmentation of the crack pixels, measuring of width and angle of cracks, Machine learning for 
classification and clustering of crack image patches. 

The Machine Learning models for classification are validated by dividing the total training 
examples in Training, Cross-Validation and Test sets; training the model with the Training set 
and checking its performance in the unseen Cross-Validation and Tests sets. 

The measurements of the crack widths and angles are validated with pictures focusing on single 
cracks whose widths has been measured manually with a measuring magnifier.  

The results from the Segmentation of the crack pixels are evaluated subjectively by visual 
inspection as there is not a generally accepted way to measure in a quantitative way the 
performance of a segmentation algorithm. 

The results from the crack clustering algorithm will be evaluated by visual inspection as they are 
linked to the segmentation results.  
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1.5. Outline of the Thesis 
 

This document has been divided in 7 chapters and 2 annexes being the current introduction the 
first of them in which the objectives, the relevance of the work and motivations are presented. 

In the second chapter is the description of the State of the Art, where the most important 
concepts, equations, criteria and methods from the different areas of knowledge involved in this 
document are reviewed. These range from the bases of Photogrammetry, Digital Image 
Processing, Diagnosis of pathologies in Concrete Structures and Machine learning. Within these 
sub-sections the scope are the visual diagnosing techniques for cracks, the spatial filtering, 
image segmentation techniques, Neural Networks (NN). 

The third chapter presents the method developed to detect and measure cracks in images from 
concrete surfaces using Neural Networks, segmentation and spatial filtering. This method is 
implemented in a script from the computer program MATLAB to present its outputs. This 
chapter is divided in two parts: the first being a description and evaluation of the NN designed 
to obtain image patches which may contain cracks in the given Region of Interest (ROI).  The 
second part of the chapter presents a proposed algorithm to detect pixels which belong to a 
crack and to measure the orientation and width of these cracks by means of image 
segmentation, spatial filtering and other digital image processing techniques. 

Chapter 4 deals with a clustering a method that takes the output from the process described in 
chapter 3 and attempts to use a new clustering technique to group up the pixels that are labeled 
as cracks in clusters. This clustering method is also used to decrease the amount of false positives 
detection from the output of chapter 3. 

In Chapter 5, the filtered output from the method described in Chapter 3 is taken as starting 
point to train a classifier of crack patterns for concrete beams. This classifier is used to recognize 
crack patterns separated with the clustering technique presented in Chapter 4 and separate 
cracks from different pathologies. 

In Chapter 6 presents a set of case studies that allows demonstrating the capabilities of the 
system developed as well as validation set.  Here, the methods described in chapter 3 to 5 are 
used on 6 images of concrete beams with cracks in their surfaces in order to show the potential 
and limitations of the methods proposed.   

Finally, in Chapter 7 the conclusions of this work are presented together with a discussion of the 
potential of the methods designed and future lines of work. Recommendation for further 
research are also given, highlighting the possible improvements of presented methods and spark 
interest towards Machine Learning and Digital Image Processing for improving models, 
experimental techniques and methods in Civil Engineering. 

Annexes A and B include the databases of the images used to train the Neural Network in 
chapter 3 and the Neural Network to classify crack patterns in chapter 5. 
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2. State of the Art 
 

 

 

 

 

In the following chapter, a review of the most relevant techniques of digital image analysis, 
Photogrammetry is presented in the context of the different application sectors in which they 
have been implemented.  Further, the basis of machine learning is also discussed.  Different 
applications of machine learning exist nowadays in different engineering sectors.  These are 
analyzed with emphasis on applications to computer vision and diagnosis through images.  
Finally, process of inspection and assessment of a concrete structures is discussed, highlighting 
the phase of visual inspection and expert opinion analysis, including the previous research works 
carried out. The requirements of a machine learning system to this task are identified and 
discussed. 
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2.1. Photogrammetry 
The first half of this Chapter will make a brief review first on the definition of this area of 
knowledge, the applications in other fields, and some insight on its relation and applications on 
civil engineering. Then on the second half of the Chapter the theory and equations that compose 
the base for the photogrammetric measurements will be resumed and presented starting with 
the optics of thin lenses in cameras. 

Definition 
Photogrammetry is defined as the science of making measurements or reconstruct the object 
space from images. It involves a compendium of methods of image measurement and 
interpretation in order to measure something in one or a series of pictures. Usually, it is used to 
obtain coordinates of surfaces in real life units (meters, mm) and to obtain 3D reconstruction of 
objects. Although, Tough the spam range of applications is large and covers other fields. 

 

2.1.2. Types of Photogrammetry 
Photogrammetry can be classified in a number of ways, but one standard approach is to divide 
the field based on the camera location during photography. On this basis, there are two types: 
“Aerial Photogrammetry”, (AP) and “Close-Range Photogrammetry” (CRP) (Walford 2010). 

In Aerial Photogrammetry (AP) the camera is mounted in an aircraft and is usually pointed 
vertically towards the ground. Multiple overlapping photos of the ground are taken as the 
aircraft flies along a flight path, as shown in Figure 2.1.  

 
Figure 2.1: An airplane taking overlapping photos in an area to make a map through photogrammetric methods 

In Close-range Photogrammetry (CRP) the camera is close to the subject and is typically hand-
held or on a tripod. Usually the output from this process are 3D models, measurements and 
point clouds are used to measure buildings, engineering structures, forensic and accident 
scenes, mines, archaeological artifacts, film sets, etc.   

 

2.1.3. Applications of close-range Photogrammetry 
Next, some other applications of CRP are presented:  (Luhmann T 2006): 

 Architecture, heritage conservation, archaeology 
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 Engineering 
 Medicine and physiology 
 Forensic, including police work 
 Automotive, machine and shipbuilding industries 
 Aerospace industry 

 

2.1.4. Applications in Civil Engineering 
 

Topography 
The most widespread usage of Photogrammetry in Civil Engineering is its use in Topography, 
their relation goes way back to the invention of photography, as the first uses of 
Photogrammetry were as a tool to make-up maps, by Laussadat in 1849 (Polidori 2014), and that 
continues nowadays.  Both fields (Topography and Photogrammetry) share the same concepts 
of perspective and projective geometry; and those methods are used for determining the 
positions of real life points. 

Aerial Photogrammetry (AP) branched out from the relation Topography-Photogrammetry a 
while ago when the former developed its own devices (theodolites, total stations) specialized in 
achieving its main objective (measuring exact position of featured points in terrain in means of 
latitude, longitude and altitude or other local coordinate systems).  Some books on aerial 
photogrammetry trace back to the beginning of the 20th century  (Lüscher 1920) (Lassalle 1941) 
and the bases are still the same until the appearance of digital cameras that modified some 
processes to obtain the interior orientation (Luhmann T 2006) (Schenk 1999). 

Generally speaking, AP is used to create topographical maps. Topographical maps are created 
so that both small and large geographical areas can be analyzed. In many cases, topographical 
maps are used in conjunction with geographic information systems (Sanders s.f.). Some other 
Topography-like applications works are on monitoring deformation in structures (Maas y 
Hampel 2006) (Albert, y otros 2002). 

Digital Image Correlation 
Commonly known in its short version as DIC, Digital Image Correlation is a sub-field of 
Photogrammetry that concerns all optical methods and formulation to obtain displacement and 
strain fields in 2D or 3D of objects depicted by a digital image within a region of interest (ROI) 
(Phillip 2012). 

 DIC uses image processing techniques in an attempt to solve this problem. The idea is to 
somehow obtain a one-to-one correspondence between object points in the reference (initial 
undeformed picture) and current (subsequent deformed pictures) configurations. DIC does this 
by taking small subsections of the reference image, called subsets, and determining their 
respective locations in the current configuration (block matching) (Blaber J 2015).  

Algorithm Basis 
There are several formulations for the task of matching a subset in an image taken in a time “𝑡𝑡” 
and in the next image on time “𝑡𝑡 + 1” and with this computing the displacement of that subset.  

The computation of the displacements starts by obtaining the correlation matrix 𝐶𝐶 between two 
subsets 𝑚𝑚(𝑡𝑡) and 𝑚𝑚(𝑡𝑡+1) that are part of images 𝐼𝐼(𝑡𝑡) and  𝐼𝐼(𝑡𝑡+1) , one of the several expressions 
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(Blaber J 2015) to obtain this is the cross-correlation equation for obtaining an element 𝑐𝑐[𝑖𝑖,𝑗𝑗] of 
the correlation matrix 𝐶𝐶 and presented on (2.1) : 

 

Where [𝑖𝑖, 𝑗𝑗] is the local indexing of the subset matrices  𝑚𝑚(𝑡𝑡) , 𝑚𝑚(𝑡𝑡+1)  and    𝑚𝑚� (𝑡𝑡) ,𝑚𝑚� (𝑡𝑡+1) are the 
mean intensities of the subsets. 

 
Figure 2.2: Detected displacement of subset m from time t to time t+1 (Blaber J 2015) 

 With the Correlation matrix, the displacement may be obtained by finding the minimum in that 
Correlation matrix (or maximum if (2.1)  is 1 − 𝑐𝑐[𝑖𝑖,𝑗𝑗]) and flagging that as the new position of 
subset 𝑚𝑚(𝑡𝑡). In order to get a subpixel precision position, the correlation matrix can be 
interpolated with an approximation to a linear, quadratic, gaussian curve or any other the user 
may want.  

The displacement field is obtained by repeating this minimum search for all the subsets defined 
and interpolating it in the pixel positions that are not a subset centroid. 

 Strains are more difficult to resolve than the displacement fields because strains involve 
differentiation, which is sensitive to noise. This means any noise in the displacement field will 
magnify errors in the strain field.  Some works involving DIC and Civil engineering have topics 
concerning testing of materials (Rodriguez, y otros 2012) , obtaining elastic properties (Hild y 
Roux 2006) (Criado, Llore y Ruiz 2013),  for getting fluids particles velocity (Thielicke 2014). 

 

2.1.5. Mathematical Foundations 
This subsection will include a resumed basis of the mathematical background behind the 
photogrammetric processes. Presenting a brief review on the classic physics model of thin 
converging lenses, an introduction on interior and exterior orientation for single camera systems 

𝐜𝐜[𝐢𝐢,𝐣𝐣] =
∑ ∑ �𝐦𝐦(𝐭𝐭)(𝐢𝐢, 𝐣𝐣) −𝐦𝐦� (𝐭𝐭)��𝐦𝐦(𝐭𝐭+𝟏𝟏)(𝐢𝐢, 𝐣𝐣) −𝐦𝐦� (𝐭𝐭+𝟏𝟏)�𝐲𝐲𝐱𝐱

�∑ ∑ [𝐦𝐦(𝐭𝐭)(𝐢𝐢, 𝐣𝐣) −𝐦𝐦� (𝐭𝐭)]𝟐𝟐 ∑ ∑ [𝐦𝐦(𝐭𝐭+𝟏𝟏)(𝐢𝐢, 𝐣𝐣) −𝐦𝐦� (𝐭𝐭+𝟏𝟏)]𝟐𝟐𝐲𝐲𝐱𝐱𝐲𝐲𝐱𝐱

 (2.1) 
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including the most common optical errors (Radial Distortion and Tangential Distortion) in CRP 
processes. 

 

2.1.6. Thin Lenses  
A lens with a thickness (distance along the optical axis between the two surfaces of the lens) 
that is negligible compared to the radius of curvature of its surface is known as a thin lens.  

The thin lens approximation ignores optical effects due to the thickness of lenses and simplifies 
ray tracing calculations. It is often combined with the paraxial approximation in techniques such 
as ray transfer matrix analysis. Light rays follow simple rules when passing through a thin lens, 
this set of assumptions is known as the paraxial ray approximation (Hecht 2002): 

• Any ray that enters parallel to the axis on one side of the lens proceeds towards the 
focal point F on the other side. 

• Any ray that arrives at the lens after passing through the focal point on the front side, 
comes out parallel to the axis on the other side. 

• Any ray that passes through the center of the lens will not change its direction. 

By tracing these rays, the relationship between the object distance ℎ and the image distance 𝑐𝑐′ 
is described by Eq. (2.2). 

Thin lenses are one of the main components in a digital camera, as they determine how the 
image will be formed inside a camera. The trajectory of light rays from an object in space through 
thin converging lenses towards the camera sensor based on the paraxial approximation is 
illustrated in Figure 2.3. It is assumed that the camera uses some type of digital sensor and is 
not a film based camera (Luhmann T 2006). 

1
ℎ

+
1
𝑓𝑓′

=
1
𝑐𝑐

 (2.2) 
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Figure 2.3 : Ray tracing of the light going from an object in the real world through the camera lenses and into the 
camera sensor. 

The variables presented on Figure 2.3 are:  ℎ:  object distance, 𝑐𝑐: principal distance, z: focal 
object distance, 𝑧𝑧’: focal image distance, 𝐻𝐻1 and 𝐻𝐻2: external and internal principal planes, 𝑂𝑂’: 
origin of the camera coordinate system and perspective center.  

2.1.7. Interior Orientation 
The first step towards reconstructing the object space from images is obtaining the interior 
orientation defined as the transformation between the pixel coordinate system to the camera 
coordinate system that are presented in the next subsection (Schenk 1999).  

Pixel Coordinates 
The reference system for all digital images is the pixel coordinate system. It is a coordinate 
system defined in 2 dimensions and measured in the pixel space, this system has the same 
structure as a matrix coordinate system with the rows and columns starting on the top left of 
the plane; this system uses only positives and integer values. This system is presented in Figure 
2.6. The Fiducial center (FC) is the geometric center of the rectangle representing the digital 
image and is presented on Figure 2.4 together with the pixel coordinate system. 𝑃𝑃𝑟𝑟 and  𝑃𝑃𝑐𝑐 are 
the height and length of a single pixel in real life length units (mm, inches). 

One way to quantify the detail that the camera can capture is called the resolution (in non-
Photogrammetry argot (Luhmann T 2006) ), and it is measured in pixels. The more pixels a 
camera has, the more detail it can capture and the larger pictures can be without becoming 
blurry or "grainy." 

When the pixel counts are referred to as resolution, the convention is to describe the pixel 
resolution with the set of two positive integer numbers, where the first number is the number 
of pixel columns (width) and the second is the number of pixel rows (height), for example as 
7680 by 6876. Another popular convention is to cite resolution as the total number of pixels in 
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the image, typically given as number of megapixels, which can be calculated by multiplying pixel 
columns by pixel rows and dividing by one million. Other conventions include describing pixels 
per length unit or pixels per area unit, such as pixels per inch or per square inch. None of these 
pixel resolutions are true resolutions, but they are widely referred to as such; they serve as 
upper bounds on image resolution (Kiening 2008) (Koren 1999). 

 
Figure 2.4: Pixels coordinates of a digital image and its fiducial center (FC) 

Camera Coordinates 
Camera coordinates are defined as the coordinates of the picture formed inside the camera by 
the light passing through the aperture and lenses of the camera; the origin of the camera 
coordinate system is placed in the Projection Center (𝑂𝑂’) and at a distance of 𝑐𝑐 (principal 
distance) from the plane of the sensor camera. A projection of the 2 dimensions of the parallel 
to the image plane is featured in Figure 2.5. 

 
Figure 2.5: Projection of the camera coordinate system with its origin on the projection center 
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Pixel to Camera Coordinates 
Figure 2.6 and Figure 2.7 shows in two perspectives how an arbitrary point 𝑛𝑛 in the pixel 
coordinate can be mapped into the camera coordinates. The point 𝑛𝑛 on the sensor can be 
expressed in the Pixel coordinates as [𝑟𝑟𝑛𝑛, 𝑐𝑐𝑛𝑛] and then in the camera coordinates as [𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛, 𝑧𝑧𝑛𝑛]. 
The projection center point projected on the sensor plane is labeled as 𝑃𝑃𝑃𝑃.  𝑃𝑃𝑟𝑟 and 𝑃𝑃𝑐𝑐 are the 
dimensions of each pixel in real life units, which can be obtained by dividing the dimensions of 
the sensor by the number of pixels in each direction. 

 
Figure 2.6: Relations between the Camera Coordinate system and the pixel coordinate system 
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Figure 2.7: Perspective view to feature the projection relations between the camera coordinate system and pixel 
coordinate system 



From the relations shown in Figure 2.7 the Eq. (2.3)  can be obtained and also used to 
transform a point 𝑛𝑛 in pixel coordinates [𝑟𝑟𝑛𝑛, 𝑐𝑐𝑛𝑛] to camera coordinates[𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛, 𝑧𝑧𝑛𝑛]: 

�
𝑥𝑥𝑛𝑛
𝑦𝑦𝑛𝑛
𝑧𝑧𝑛𝑛
� = �

�𝑐𝑐𝑛𝑛 − 𝑐𝑐𝑝𝑝𝑝𝑝� + 𝑃𝑃𝑐𝑐
−(𝑟𝑟𝑛𝑛 − 𝑟𝑟𝑝𝑝𝑝𝑝)𝑃𝑃𝑟𝑟

−𝑐𝑐
� (2.3) 

Correction functions 
The camera coordinates are subject to deviations from the ideal central perspective model. 
These are derived from the imperfections of the optical elements of cameras. In order to 
compensate such deviations, a correction function is defined. The expression for the corrected 
coordinates takes the form described in (2.4) (Luhmann T 2006).  

�
𝑥𝑥′𝑐𝑐𝑐𝑐𝑐𝑐
𝑦𝑦′𝑐𝑐𝑐𝑐𝑐𝑐
𝑧𝑧′𝑐𝑐𝑐𝑐𝑐𝑐

� = �
𝑥𝑥′ + 𝑥𝑥𝑝𝑝 + ∆x′
𝑦𝑦′ + 𝑦𝑦𝑝𝑝 + ∆𝑦𝑦′

−𝑐𝑐
� (2.4) 

The distance 𝑐𝑐 was presented before on Figure 2.3 and Figure 2.7 . The origin of the camera 
coordinates lies on the projection center(PP) and it usually does not coincide with the perfect 
center of the plane rectangle where the picture lies (Fiducial Center, FC). The offset from the 
center of the rectangle in camera coordinates is labeled as (𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝) and is obtained through the 
camera calibration to measure the radial and tangential distortion which will be presented 
below. 
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Radial Distortion 
Radial distortion constitutes the main source of imaging error for most camera systems. It is 
attributable to variations in refraction at each individual component lens within the objective. It 
is a function of the lens design, chosen focal length, object distance. Visually, it looks as going 
from a perfectly aligned grid with parallel grid lines, to a barrel-like distortion or pincushion 
deformation, as illustrated in Figure 2.8. 

 

 
Figure 2.8: Deformation of coordinates caused by barrel and pincushion type of distortion (Luhmann T 2006) 

One of the better-known models for radial distortion is the one developed with polynomial 
series by Brown in 1971 (Brown 1966).  In Brown’s model, the radial distortion takes the form 
of Eq. (2.5). 

∆𝑟𝑟′𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐾𝐾1𝑟𝑟 + 𝐾𝐾2𝑟𝑟3 + 𝐾𝐾3𝑟𝑟5 + 𝐾𝐾4𝑟𝑟7 … (2.5) 

Where 𝑟𝑟 is the radial distance of each point with respect to the origin of the camera coordinates 
system, computed as in (2.6). In this equation, 𝑥𝑥′, 𝑦𝑦′,𝑦𝑦𝑝𝑝, 𝑥𝑥𝑝𝑝  are in camera coordinates.  Then, 
the radial distortion correction terms, for 𝑥𝑥 and 𝑦𝑦 directions, are computed as in Eq.  (2.7). 

𝑟𝑟2 = �𝑥𝑥′ − 𝑥𝑥𝑝𝑝�
2 + �𝑦𝑦′ − 𝑦𝑦𝑝𝑝�

2
 (2.6) 

∆𝑥𝑥′𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑥𝑥′ ∆𝑟𝑟
′
𝑟𝑟𝑟𝑟𝑟𝑟
𝑟𝑟′

            ∆𝑦𝑦′𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑦𝑦′ ∆𝑟𝑟
′
𝑟𝑟𝑟𝑟𝑟𝑟
𝑟𝑟′

 (2.7) 

 

Tangential Distortion 
Another source of deviation is the tangential distortion, also called Radial-asymmetric distortion.  
This error is caused by decentering and misalignment of individual lens elements within the 
objective, as shown in Figure 2.9. This error can be measured with Eq. (2.8), proposed by Brown 
(Brown 1966). 

∆𝑥𝑥′𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐵𝐵1�𝑟𝑟′
2 + 2𝑥𝑥′2�+ 2𝐵𝐵2𝑥𝑥′𝑦𝑦′       ∆𝑦𝑦′𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐵𝐵2�𝑟𝑟′

2 + 2𝑦𝑦′2� + 2𝐵𝐵1𝑥𝑥′𝑦𝑦′ (2.8) 

 



State of the Art 15 
 

 

The order of magnitude of the tangential distortion is typically smaller than radial distortion; 
hence, this correction is only used if high accuracy is needed.  

 
Figure 2.9: Visual representation of the misalignment between the camera sensor and the lenses causing tangential 

distortion (Mathworks, Camera Calibration 2016) 

The total correction for the camera coordinates due to distortion would have the form: 

∆𝑥𝑥′ = ∆𝑥𝑥′𝑟𝑟𝑟𝑟𝑟𝑟 + ∆𝑥𝑥′𝑡𝑡𝑡𝑡𝑡𝑡      ∆𝑦𝑦′ = ∆𝑦𝑦′𝑟𝑟𝑟𝑟𝑟𝑟 + ∆𝑦𝑦′𝑡𝑡𝑡𝑡𝑡𝑡 (2.9) 

2.1.8. External Orientation 
This subsection will review the bases for obtaining the exterior orientation parameters for single 
camera systems. The exterior orientation can be defined as the set of steps to transform points 
in the camera coordinates to the real-life coordinates or object coordinate system.  

Image Scale 
The distances used for obtaining the image scale (relation between distances in object 
coordinates and distances in camera coordinates) are shown in Figure 2.10.   
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Figure 2.10 :Relation between object distance, principal distance and the camera and real coordinates (Luhmann T 

2006) 

The image scale value (𝑚𝑚 or 𝑀𝑀) can be obtained with the relation between measurement of a 
distance 𝑋𝑋 on the object space and its equivalent in the camera space 𝑥𝑥’ another way would be 
from the ratio of object distance ℎ to the principal distance 𝑐𝑐 and. The equation describing this 
relation is (2.10): 

𝑚𝑚 =
ℎ
𝑐𝑐

=
𝑋𝑋
𝑥𝑥′

=
1
𝑀𝑀

 (2.10) 

 

Camera to Object Coordinate system 
The object coordinate system is the one defined around the real-life objects depicted in the 
images. The transformation from the camera coordinates to the object coordinate system will 
depend in the type of camera used, the number of cameras and the number of points with 
known coordinates. All of them based on the projective geometry shown in Figure 2.11 and thin 
lens model presented before in Figure 2.3. The transformation from a point 𝑛𝑛’ in the camera 
coordinates to point 𝑛𝑛 in the object coordinate system is described in Figure 2.11 and Eq. (2.11) 
and (2.12) (Luhmann T 2006). 
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Figure 2.11: Projection relations between the camera coordinate system and the object coordinate system 

𝑋⃗𝑋 is the 3 components vector that defines the position in space of a generic point 𝑛𝑛 in the object 
coordinate system.  𝑋⃗𝑋0 is a 3 components vector that defines the position in space of the 

perspective center (O’).  Finally, 𝑥𝑥′���⃗  is the 3 components vector that defines the point 𝑛𝑛’ in camera 
coordinates 

On the other hand, 𝜑𝜑,𝜔𝜔, 𝜀𝜀 are the rotation angles between the object coordinate system axes 
X, Y, Z and the camera coordinate system axes 𝑥𝑥’,𝑦𝑦’, 𝑧𝑧’. From these quantities, the rotation 
matrix can be obtained, Eq. (2.11): 

𝑅𝑅 = �
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

� (2.11) 

 

Then the transformation from an image point in camera coordinates to object coordinates is 
set by the collinearity Eq. (2.12), based from the relations shown in Figure 2.11. 

𝑋⃗𝑋 = 𝑋⃗𝑋0 +𝑚𝑚𝑚𝑚 𝑥𝑥′����⃗  (2.12) 
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2.2. Digital Image Processing 
Image processing and Photogrammetry has been increasingly used the last decades as the 
applications spread to all science.  Researchers and engineers realize these techniques enable 
measurements and detection with low cost and with little or no affectation to the system 
performance. 

A digital image may be defined as a two-dimensional function, 𝐼𝐼(𝑥𝑥,𝑦𝑦), where x and y are spatial 
coordinates, and the amplitude of 𝐼𝐼 at any pair of coordinates (𝑥𝑥,𝑦𝑦) is called the intensity or 
gray level of the image at that point. When 𝑥𝑥, 𝑦𝑦 and the amplitude of 𝐼𝐼 are all finite, discrete 
quantities, the image can be called a digital image. The field of digital image processing refers to 
managing information in digital images by means of a digital computer.  

There are no clear boundaries in the continuum from image processing at one end to the field 
of computer vision at the other. However, attempts of categorizing the processes can be done 
as follows: 

Low-level imaging processes  
These processes involve primitive operation such as: Intensity Transformations, Spatial Filtering, 
Frequency Domain Filtering, Logarithmic and Contrast-Stretching Transformations; Histogram 
transformations.  

Mid-level processes  
These processes involve tasks such as: segmentation (partitioning an image into regions or 
objects), Edge detection, Corner detection, Image Sharpening, Hough Transform, Morphological 
operations, 

High-level processes 
High-level processes involve “making sense” of an ensemble of recognized objects, as in image 
analysis, and at the far end of the continuum, performing the cognitive functions normally 
associated with human vision such as: neural networks for object recognition, convolutional 
neural networks, pattern matching, etc.  (Gonzalez, Woods y Eddins 2010). 

In the following subsections, a brief review will be made on the topics within digital image 
processing that are used with this work. 

2.2.1. Spatial Filtering 
Spatial filtering or neighborhood processing is an image operation where each pixel value 
𝑓𝑓(𝑥𝑥,𝑦𝑦) is changed by a function of the intensities of pixels in a neighborhood around pixel (𝑥𝑥,𝑦𝑦). 
It consists of mainly 4 steps (Gonzalez, Woods y Eddins 2010): 

• Selecting a center point (𝑥𝑥,𝑦𝑦) in the image 
• Performing a number operation that involves only the pixels in a predefined 

neighborhood about (𝑥𝑥,𝑦𝑦). 
• Letting the result of that operation be the response of the process at that point, it may 

replace previous point or fabricate a new matrix with only the response values 
• Repeating the process for all the pixels in the image.  

If the operations performed on the pixels of the neighborhoods are linear, the operation is called 
linear spatial filtering; otherwise, the filtering is referred as non-linear. 

Most of the operations performed in spatial filtering fall in the category of linear spatial filtering. 
Most linear operation usually used imply the multiplication of each element in the neighborhood 



State of the Art 19 
 

 

matrix 𝑼𝑼(𝑥𝑥, 𝑦𝑦) sized 𝑁𝑁 x 𝑁𝑁 pixels by another matrix 𝐻𝐻 with the same size and then sum all the 
elements from the resulting matrix to obtain the response 𝑅𝑅(𝑥𝑥,𝑦𝑦)) in the given point, this 
operation is called “correlation”, when one the operators (𝑈𝑈,𝐻𝐻) is flipped in both directions the 
operation is called “convolution”. 

In the previous type of operations, the matrix H is commonly known as “filter”, “filter mask”, 
“mask”,” kernel”, template” and its elements will have special characteristics depending on the 
transformation that is wanted for the input picture. In many implementations, the fastest way 
to do correlation between a kernel and 2D matrix is by using the Convolution theorem (Arfken 
1985) which transforms the regular correlation or convolution operation into a pointwise 
multiplication between the Fourier Transform of each argument and the result should be 
transformed back with the Inverse Fourier Transform. The convolution between functions 𝑓𝑓 and 
𝑔𝑔 is shown in Eq. (2.14). 

𝑓𝑓 ∗ 𝑔𝑔 = 𝐹𝐹−1�𝐹𝐹{𝑓𝑓} . 𝐹𝐹{𝑔𝑔}�                  (2.13) 
 

For images in the 2D discrete space, the convolution between an image function 𝑓𝑓(𝑥𝑥,𝑦𝑦)  and a 
kernel 𝐻𝐻(𝑥𝑥,𝑦𝑦)    can be defined as:                      

𝑅𝑅(𝑥𝑥,𝑦𝑦) = 𝑓𝑓(𝑥𝑥,𝑦𝑦) ∗ 𝐻𝐻(𝑥𝑥,𝑦𝑦) = � � 𝑓𝑓(𝑖𝑖, 𝑗𝑗) .𝐻𝐻(𝑥𝑥 − 𝑖𝑖,𝑦𝑦 − 𝑗𝑗)
∞

𝑖𝑖=−∞

∞

𝑗𝑗=−∞

 (2.14) 

Following the strict mathematical definition this operation is defined in an infinite 2D space 
(Arfken 1985); so, in the discrete space needs to be limited to the size of the input image. An 
example of the output function from the convolution between a small 3x3 pixels input matrix 
and a 3x3 kernel matrix is presented in Figure 2.12. The way to compute every element 𝑅𝑅(𝑥𝑥,𝑦𝑦) 
is done by flipping the kernel matrix in the horizontal and vertical direction and sliding it through 
the input 𝑓𝑓, then if the kernel is centered (aligned) exactly at the element 𝑅𝑅(𝑥𝑥,𝑦𝑦) being 
computed, the next step is to multiply the kernel cells by the overlapped input cells.  It should 
be noted that the resulting matrix 𝑅𝑅 domain is usually limited to have same size as the input 
matrix.  

 
Figure 2.12: Example of the resulting matrix between a convolution operation done between an input matrix and a 

Sobel kernel (Sobel 1968) 

For further explanation, the Figure 2.13 shows the computation of the element 𝑅𝑅(1,1) in the 
upper left corner of the output convolution matrix: 
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Figure 2.13: Computation of element R(1,1) of the output matrix 

Then the result would be obtained with the following summations: 

𝑅𝑅(1,1) = 0 ∗ 1 + 0 ∗ 2 + 0 ∗ 1 + 1 ∗ 0 + 2 ∗ 0 + 0 ∗ (−1) + 4 ∗ (−2) + 5 ∗ (−1) = −13   

 

2.2.2. Feature detection 
Feature detection is the process of finding any aspect of interest, referred as features, that exists 
in digital photographs.  There is no universal or exact definition of what constitutes a feature, 
and the exact definition often depends on the problem or the type of application.  A feature can 
be defined as an "interesting" part of an image, and features are used as a starting point for 
many computer vision algorithms. Since features are used as the starting point and main 
primitives for subsequent algorithms, the overall algorithm will often only be as good as its 
feature detector. Consequently, the desirable property for a feature detector is repeatability: 
whether or not the same feature will be detected in two or more different images of the same 
scene (Gonzalez, Woods y Eddins 2010). 

Feature detection is a low-level operation. That is, it is usually performed as the first operation 
on an image, and examines every pixel to see if there is a feature present at that pixel. If this is 
part of a larger algorithm, then the algorithm will typically only examine the image in the region 
of the features  (Canny 1986).  

Many computer vision algorithms use feature detection as the initial step, so as a result, a very 
large number of feature detectors have been developed. These vary widely in the types of 
features detected, the computational complexity and the repeatability (Shi 1994). 

Among the most known feature detectors are: edge detectors, line detectors, segmentation, 
corner detection and many are created for different applications. In the following subsections, 
the one method to obtain edges and a line detection algorithm will be explained. 

Edges 
Although point and line detection certainly are important in any discussion on image 
segmentation, edge detection is by far the most common approach for detecting meaningful 
discontinuities in intensity values (Wanjari, Kalaskar y Dhore 2015).  

The first step to obtain an edge it to obtain an approximation of the first and sometimes the 
second derivatives of the image function denoted 𝑓𝑓(𝑥𝑥,𝑦𝑦). When the first derivatives are used, 
the gradient of the image function is denoted as in Eq. (2.15): 

https://en.wikipedia.org/wiki/Pixel
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∇𝑓𝑓 = �
𝑔𝑔𝑥𝑥
𝑔𝑔𝑦𝑦� =

⎣
⎢
⎢
⎡
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕⎦
⎥
⎥
⎤
 (2.15) 

 

In the discrete space that is the image function, there are several kernels operators used to 
achieve by convolution an approximation of the derivatives; among them the most known are 
the 3x3 kernel operators Sobel (Sobel 1968), Prewitt (Prewitt 1970) and Roberts (Roberts 1963) 
presented in Eq. (2.16), (2.17), (2.18), (2.19), (2.20) and (2.21)  respectively. 

𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑥𝑥 = �
−1 −2 −1
0 0 0
1 2 1

� (2.16)  𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑦𝑦 = �
−1 0 1
−2 0 2
−1 0 1

� (2.17) 

𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑥𝑥 = �
−1 −1 −1
0 0 0
1 1 1

� (2.18) 
  𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑦𝑦 = �

−1 0 1
−1 0 1
−1 0 1

� (2.19) 

𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑥𝑥 = �−1 0
0 1� 

(2.20) 𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑦𝑦 = �−1 0
0 1� 

(2.21) 

 

The gradient in each direction is obtained by convolving one of the kernel operators presented 
in Eq. (2.16) to (2.21) with the image matrix as shown in Eq. (2.22) and (2.23): 

𝑔𝑔𝑥𝑥 = 𝐺𝐺𝑥𝑥 ∗ 𝑓𝑓(𝑥𝑥,𝑦𝑦) (2.22) 𝑔𝑔𝑦𝑦 = 𝐺𝐺𝑦𝑦 ∗ 𝑓𝑓(𝑥𝑥,𝑦𝑦) (2.23) 

 

Then the magnitude of the gradient computed with (2.22) and (2.23) is presented in Eq. (2.24): 

𝑚𝑚𝑚𝑚𝑚𝑚(∇𝑓𝑓) = �𝑔𝑔𝑥𝑥2 + 𝑔𝑔𝑦𝑦2�
1
2 (2.24) 

 

Sometimes the square root is omitted or only absolute values are taken in order to reduce the 
number of operations and simplify computation.  In these cases, the magnitudes of the gradient 
are defined as in Eq. (2.25) and (2.26), respectively (Gonzalez, Woods y Eddins 2010). 

𝑚𝑚𝑚𝑚𝑚𝑚(∇𝑓𝑓) = 𝑔𝑔𝑥𝑥2 + 𝑔𝑔𝑦𝑦2 (2.25) 

𝑚𝑚𝑚𝑚𝑚𝑚(∇𝑓𝑓) = |𝑔𝑔𝑥𝑥| + �𝑔𝑔𝑦𝑦� (2.26) 
                           

When second derivatives of the image function 𝑓𝑓 are to be used, the Laplacian of the function 
is considered as the magnitude of analysis, Eq. (2.27). 

𝑚𝑚𝑚𝑚𝑚𝑚(∇𝑓𝑓) =
𝜕𝜕2𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦2

 
 

(2.27) 

 

The basic idea behind edge detection is to find places in an image where the intensity changes 
rapidly using one or two general criteria (Gonzalez, Woods y Eddins 2010): 
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• Find places where the first derivative of the intensity is greater in magnitude than a specified 
threshold  

• Find places where the second derivative of the intensity has a zero crossing. 

The final results from most edge detectors are very similar, one of the most used is the Canny 
edge detector (Canny 1986) which has the following steps (Gonzalez, Woods y Eddins 2010): 

• The image is smoothed using a Gaussian filter with a specified standard deviation, 𝜎𝜎 to 
reduce noise. 

• The local gradient �𝑔𝑔𝑥𝑥2 + 𝑔𝑔𝑦𝑦2�
1
2 and edge direction, defined by 𝑡𝑡𝑡𝑡𝑛𝑛−1 �𝑔𝑔𝑥𝑥

𝑔𝑔𝑦𝑦
� are computed 

with any of the gradient operators described above in Eq. (2.16) (2.17) (2.18)(2.19)(2.20) 
(2.21) . An edge point is defined to be a point whose strength is locally maximum in the 
direction of the gradient. 

• The edge points determined, give rise to ridges in the gradient magnitude image. The 
algorithm then tracks along the top of these ridges and sets to zero all pixels that are 
not actually on the ridge top to give a thin line in the output, a process known as 
nonmaximal suppression. Then “strong” and” weak” edges are divided with a threshold 
that is a fraction of the maximum gradient in the input picture. 

• Finally, the algorithm performs edge linking by incorporating the weak pixels that are 8-
point connected to the strong pixels.  

An example of the transformation of an image the Canny edge detector with a threshold of [0.03 
0.06] is presented on Figure 2.14: 

 
Figure 2.14: A photo passed through the Canny edge detector 

Hough Transform 
 

A recurring problem in computer picture processing is the detection of straight lines in digitized 
images. In the simplest case, the picture contains a number of discrete, black figure points lying 
on a white background. The problem is to detect the presence of groups of collinear or almost 
collinear figure points. It is clear that the problem can be solved to any desired degree of 
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accuracy by testing the lines formed by all pairs of points. However, the computation required 
for 𝑛𝑛 points is approximately proportional to 𝑛𝑛2, and may be prohibitive for large n. 

The method involves transforming each of the figure points into a straight line in a parameter 
space (Duda R 1972). The parameter space is defined by the parametric representation used to 
describe lines in the picture plane. Hough chose to use the familiar slope-intercept parameters 
as in Eq. (2.28), and thus, his parameter space was the two-dimensional slope-intercept plane. 
Unfortunately, both the slope and the intercept are unbounded, which complicates the 
application of the technique.  The alternative parametrization involves another definition of a 
straight line called “normal parametrization”, this parameterization specifies a line by the angle 
0 of its normal and its algebraic distance p from the origin. The equation of a line corresponding 
to this geometry is shown in Eq. (2.29) and Figure 2.15 . 

𝑦𝑦 = 𝑚𝑚𝑚𝑚 + 𝑏𝑏 (2.28) 
 

 

 

Figure 2.15: Defining a line in the 2D plane with 𝜌𝜌 and 𝜃𝜃 as parameters 

 

𝜌𝜌 = 𝑥𝑥 cos𝜃𝜃 + 𝑦𝑦 sin𝜃𝜃  (2.29) 
 

Given a set of 𝑛𝑛 2D coordinates {(𝑥𝑥1,𝑦𝑦1), … , (𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛)}, and there is a task to find a set of straight 
lines that this set. The point coordinates  (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) can be mapped into the sinusoidal curves in 
the 𝜃𝜃 − 𝜌𝜌 plane defined by  𝜌𝜌 = 𝑥𝑥𝑖𝑖 cos𝜃𝜃 + 𝑦𝑦𝑖𝑖 sin𝜃𝜃 . It is easy to show that the curves 
corresponding to collinear figure points have a common point of intersection. This point in the 
𝜃𝜃 − 𝜌𝜌 plane, say (𝜃𝜃0,𝜌𝜌0) defines the line passing through the colinear points. Thus, the problem 
of detecting collinear points can be converted to the problem of finding concurrent curves. A 
dual property of the point-to-curve transformation can also be established by assuming a set of 
coordinates in the 𝜃𝜃,𝜌𝜌 plane {(𝜃𝜃1,𝜌𝜌1), … , (𝜃𝜃𝑛𝑛,𝜌𝜌𝑛𝑛)}  , all lying on the curve 𝜌𝜌 = 𝑥𝑥 cos𝜃𝜃 + 𝑦𝑦 sin𝜃𝜃 
(Duda R 1972). Then it can be shown that all these points correspond to lines in the 𝑥𝑥 − 𝑦𝑦 plane 
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passing through the point (𝑥𝑥0,𝑦𝑦0). The most interesting properties of the point-to-curve 
transformation can be summarized as follows:  

• A point in the picture plane corresponds to a sinusoidal curve in the parameter plane. 
Property  

• A point in the parameter plane corresponds to a straight line in the picture plane. 
• Points lying on the same straight line in the picture plane correspond to curves through a 

common point in the parameter plane.  
• Points lying on the same curve in the parameter plane correspond to lines through the same 

point in the picture plane (Duda R 1972). 

 

2.3. Machine Learning 
Since the invention of digital computers people have been trying to answer the question of 
whether a computer can ‘learn’, and before talking about theorems and algorithms it should be 
define d what ‘learning’ means for a machine.  

Tom Mitchell (Mitchell 1997) provides a more explicit definition for Machine Learning: "A 
computer program is said to learn from experience E with respect to some class of tasks T and 
performance measure P, if its performance at tasks in T, as measured by P, improves with 
experience E."  

Machine learning can also be defined as a subfield of computer science and artificial intelligence 
and also as a method of teaching computer programs to make and improve predictions or 
behaviors based on some data. In the context of this research, for the problem of learning to 
diagnosis damage, data can be considered as the crack pattern observed and identified through 
computer vision. 

Machine learning can be divided in two great categories: Supervised and unsupervised learning. 
This field has had such a widespread in the last 10 years that its successful applications span 
through many tasks and fields. And there are many other applications that most users are 
unaware that are made using machine learning, some of these applications are listed below: 

• Computer vision including object recognition, face recognition ( Facebook adding a tagging 
seed on all faces in a picture (Taigman 2014), Face Swap” type apps) 

• Medical diagnosis  
• Natural language processing (WhatsApp predictive text) 
• Online advertising, real-time ads on web pages and mobile devices (Russell y Christothoulou 

2010))) 
• Recommender systems (Google (News), Netflix (movies), Amazon (products) (Smith y Linden 

2017), Facebook (ads and webpages), YouTube (recommended videos) (Davison, Liebald y 
Liu 2010)) 

• Search engines (Google (Brin y Page 1998), Yahoo, Bing) 
• Adaptive websites (Changing featured products, news based on last activities  
• Spam filtering (on any email service (Androutsopoulos 2000)) 

 

 

https://en.wikipedia.org/wiki/Object_recognition
https://en.wikipedia.org/wiki/Diagnosis_(artificial_intelligence)
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Online_advertising
https://en.wikipedia.org/wiki/Recommender_system
https://en.wikipedia.org/wiki/Search_engines
https://en.wikipedia.org/wiki/Adaptive_website
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2.3.1. Supervised Learning 
Supervised Learning englobes all methods that have the task of inferring a function from labeled 
training data. The training data consist of a set of training examples. In supervised learning, each 
example is a pair consisting of an input object (typically a vector) and a desired output value. A 
supervised learning algorithm analyzes the training data and infers a function or model, which 
can be used for mapping new examples. One way to determine if the model is acceptable is to 
check if it correctly determines the class labels for unseen instances or training examples. This 
requires the learning algorithm to generalize from the training data to unseen situations in a 
"reasonable" way. (Ng, Machine Learning: Supervised Learning 2016). 

Supervised learning problems are categorized into "regression" and "classification" problems. In 
a regression problem, the objective is to predict results within a continuous output, meaning 
that the objective is to map the input variables to some continuous function. In a classification 
problem, the prediction is a discrete output or to classify them into categories.  

Some examples of both Regression and Classification tasks and problems: 

2.3.1.1. Regression 
• Given the dimensions, compression, tensile strength of concrete, amount of steel 

reinforcement, boundary conditions of a given beam; predict the maximum load it can 
bear. 

• Given a set of atmospheric magnitudes measured in a given day predict the mm of rain 
for the next day. (an example would be  𝑥𝑥𝑛𝑛 =
[ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ]  ) 

• Given the grades a student has had in the current semester previous evaluations, 
predict the grade of the final evaluation. 

2.3.1.2. Classification 
• Given an audio recording, recognize the words spoken in it 
• Given a picture or part of it, recognize if there is a face or not in that picture. 
• Given an email, decide whether it is spam or not 

As a general trend researchers and engineers have realized that supervised learning has a 
greater potential to solve problems in the Classification category.  Supervised learning can offer 
a solution for problems that do not have a clear or widely accepted idea of the type of 
mathematical model explaining the phenomena. The proposed problems presented in the 
paragraph above under the title “Classification” serve as excellent examples for this argument.  

 

2.3.1.3. Mathematical Models 
Given a set of m training examples of the form  {(𝑥𝑥1,𝑦𝑦1) , … , (𝑥𝑥𝑚𝑚,𝑦𝑦𝑚𝑚)} such that 𝑥𝑥𝑖𝑖 is the feature 
vector of the i-th example 𝑌𝑌 is the label or results vector (label or class for classification or real 
numbers for regression), a learning algorithm seeks a hypothesis function ℎ mapped as ℎ ∶ 𝑋𝑋 →
𝑌𝑌,  where X is the input space and 𝑌𝑌 is the output space.  

Also, a cost or error function J, defined as ∶ 𝑋𝑋 ×  𝑌𝑌 → ℝ ; this function sums up the error or 
difference between the hypothesis vector ℎ(𝑥𝑥) and the result vector 𝑦𝑦. The objective of the 
learning task is to minimize this cost function 𝐽𝐽 (so that it becomes zero) so that the in the ideal 
case the hypothesis ℎ is equal to 𝑦𝑦 for all the “m” examples. 
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There are some cost functions that can be used to measure the error; one frequently used is 
the mean squared error (MSE) shown in Eq. (2.30): 

𝐽𝐽 = �
�ℎ�𝑥𝑥𝑖𝑖� − 𝑦𝑦𝑖𝑖�2

𝑚𝑚

𝑚𝑚

𝑖𝑖=1

  (2.30) 

 

The learning from the program comes from the minimization of the cost function. Which can be 
done in several ways in response to the algorithm used. 

Some models frequently used are: 

- Linear Regression (Regression) 

- Logistic Regression (Classification, Regression) 

- Neural Networks (Classification, Regression) 

- Support Vector Machine (Regression) 

- Perceptron (Classification, Regression) 

- Decision Trees (Regression) 

- Naives-Bayes (Regression) 

From all these models presented above, only the Linear Regression, Logistic Regression and 
Neural Networks will be explained in the following subsections as they used for the present 
work. 

 

Linear Regression 
The linear regression has a hypothesis function or model function presented in (2.31): 

ℎ(𝑥𝑥𝑖𝑖) = Ө𝑇𝑇 ∙ 𝑥𝑥𝑖𝑖 = [Ө0  Ө0 … Ө𝑛𝑛] ∙

⎣
⎢
⎢
⎡
𝑥𝑥0
𝑥𝑥1.
.
𝑥𝑥𝑛𝑛⎦
⎥
⎥
⎤
 

 

(2.31) 

 

Where  𝑛𝑛 is the dimension of the feature vector 𝑥𝑥. Both the 𝑦𝑦 response vector and hypothesis 
vector ℎ is made up of real numbers, Ө is the parameter vector that is what the “learning” 
procedure will attempt to modify. The value of 𝑥𝑥0 in the example vector is always 1, and its 
commonly known as the bias.  Then the regularized cost function based on the least squares 
error has the form described in (2.32), where 𝜆𝜆  is the factor of the regularization term used to 
control the overfitting of the model. 

𝐽𝐽 =
1

2𝑚𝑚���ℎ�𝑥𝑥𝑖𝑖� − 𝑦𝑦𝑖𝑖�2 + �𝜆𝜆Ө𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1

� 
 

(2.32) 

 

Then the derivative of the cost function with respect to the parameter vector Ө  can be obtained 
deriving expression in Eq. (2.33). 
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⎢
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⎢
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1
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(ℎ(𝑥𝑥0) − 𝑦𝑦0)

1
𝑚𝑚

(ℎ(𝑥𝑥1) − 𝑦𝑦1)𝑥𝑥1 + 𝜆𝜆𝜃𝜃1
.
..

1
𝑚𝑚

(ℎ(𝑥𝑥𝑛𝑛)− 𝑦𝑦𝑛𝑛)𝑥𝑥𝑛𝑛 + 𝜆𝜆𝜃𝜃𝑛𝑛⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
 
 
 

(2.33) 

 

The objective is to obtain the values where the cost function is minimum with the aid of the 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 
partial derivative. One of the ways to achieve the minimization of the cost function 𝐽𝐽 is the 
iterative method known as the gradient descent which is described in the algorithm in Eq. (2.34). 
Where on each iteration the vector of parameters 𝜃𝜃  is changed by the partial derivative vector 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 multiplied by a factor 𝛼𝛼 called “learning rate” which should be a real, positive and non-zero 
value; it should be noted that for starting this algorithm the values of the parameters vector 𝜃𝜃 
must be initialized, usually what is done is to use random numbers from a normal distribution 
with mean 𝜇𝜇 = 0  and standard deviation < 1. 

𝜃𝜃 ≔ 𝜃𝜃 − 𝛼𝛼
𝜕𝜕𝐽𝐽
𝜕𝜕𝜕𝜕

 
 

(2.34) 

 

The learning rate 𝛼𝛼 will change the speed of the convergence towards the minimization of the 
cost function, if set too low the algorithm may take too much iterations/time to get to a 
minimum value of the cost function; but if set too high the algorithm will diverge and the cost 
function will not decrease after each iteration of gradient descent, both these behaviors may be 
seen in Figure 2.16.  

 
Figure 2.16: Graphic attempting to explain the difference between the usage of a too small or too large learning rate 

Classification 
The classification is almost the same as the regression problem, except that the prediction 𝑦𝑦 
now only takes small number of discrete values. To start, the binary classification problem will 
be explained in which the output 𝑦𝑦 can take only two values, 0 and 1. (Most of what is true for 
this case can also be generalized to the multiple-class case.) For instance, if there is an attempt 
to make a face recognition algorithm from a group of images, then 𝑥𝑥(𝑖𝑖) would be the intensities 
of all the pixels of an image patch, and 𝑦𝑦(𝑖𝑖) may take a value of 1 if it there is a face in the image 
patch, and 0 otherwise. Hence, 𝑦𝑦 ∈ {0,1}. Zero (0)  is also called the negative class, and one (1) 
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the positive class, and they are sometimes also denoted by the symbols “-” and “+.” Given a 
feature vector 𝑥𝑥(𝑖𝑖), the corresponding 𝑦𝑦(𝑖𝑖) is also called the label for the training example. 

An approach to the classification problem is to change the form the hypotheses ℎ (𝑥𝑥(𝑖𝑖)) to 
satisfy  0 ≤ ℎ (𝑥𝑥(𝑖𝑖)) ≤ 1. This is accomplished by substituting the result 𝜃𝜃𝑇𝑇𝑥𝑥 into the Sigmoid 
Function described in Eq. (2.35)  and (2.36) : 

ℎ(𝑥𝑥) = 𝑔𝑔(𝜃𝜃𝑇𝑇𝑥𝑥)  (2.35) 

𝑧𝑧 = 𝜃𝜃𝑇𝑇  (2.36) 

 

Where the Sigmoid function is shown in Eq. (2.37) and Figure 2.17 : 

𝑔𝑔(𝑧𝑧) =
1

1 + 𝑒𝑒−𝑧𝑧
  (2.37) 

 

 
Figure 2.17: Sigmoid function in a domain subset of [-10,10] 

The sigmoid function shown in Figure 2.17  maps any real number to the (0, 1) interval, making 
it useful for transforming an arbitrary-valued function into a function better suited for 
classification. With this change ℎ(𝑥𝑥) compute the probability that the output is 1. For example, 
ℎ(𝑥𝑥) = 0.7 represents a probability of 0.7 (70%) that the output is 1. Hence, the probability that 
the prediction is 0 is the complement of the previous probability (0.3). In order to get a discrete 
prediction value out of the model, a threshold value 𝑇𝑇 is needed to select the adequate option. 
Then, the prediction is set to 0 if the computed value is lower than 𝑇𝑇 or 1 if greater than T. 

Another cost function 𝐽𝐽(𝜃𝜃) must be defined given the different ℎ(𝑥𝑥)  with the sigmoid function 
as in Eq. (2.41) and the conditions in expressed in Eq.(2.38) and (2.39) . 

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ𝜃𝜃(𝑥𝑥),𝑦𝑦) = −log (ℎ(𝑥𝑥))       if   𝑦𝑦 = 1  (2.38) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ𝜃𝜃(𝑥𝑥),𝑦𝑦) = −log (1 − ℎ(𝑥𝑥)) if   𝑦𝑦 = 0  (2.39) 
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𝐽𝐽(𝜃𝜃) =
1
𝑚𝑚
��𝑦𝑦(𝑖𝑖)𝑙𝑙𝑙𝑙𝑙𝑙 �ℎ𝜃𝜃�𝑥𝑥(𝑖𝑖)�� + �1 − 𝑦𝑦(𝑖𝑖)�𝑙𝑙𝑙𝑙𝑙𝑙 �1 − ℎ𝜃𝜃�𝑥𝑥(𝑖𝑖)���
𝑚𝑚

𝑖𝑖=1

  (2.40) 

 

Then it is clear that when 𝑦𝑦 = 1, then the second term �1 − 𝑦𝑦(𝑖𝑖)�𝑙𝑙𝑙𝑙𝑙𝑙 �1 − ℎ𝜃𝜃�𝑥𝑥(𝑖𝑖)�� in (2.40) 

will be zero and will not affect the result. If 𝑦𝑦 = 0, then the first term −𝑦𝑦(𝑖𝑖)𝑙𝑙𝑙𝑙𝑙𝑙 �ℎ𝜃𝜃�𝑥𝑥(𝑖𝑖)�� in 

(2.40) will be zero and will not affect the result. 

The derivative with respect to the parameter 𝜃𝜃 is the same as the linear regression in Eq.(2.33). 
The gradient descent algorithm will have the same expression as in Eq. (2.34). 

An extension of the binary classification case is the multiclass classification; in this case the task 
involves training a model where the output may take more than 2 values as: y ∈ {0,1,2. . n} . 
One approach to solve this is called “One vs all”; this consist of dividing the problem of classifying 
“n” labels into the same quantity of Binary Classification. In each one, the probability that 'y' is 
a member of one of the classes (0 to n) is obtained. Then there will be a set of parameters θ to 
train for each class hypothesis function   ℎ𝑡𝑡; formally expressed in  (2.41). 

 ℎ𝑡𝑡(𝑥𝑥) = 𝑃𝑃(𝑦𝑦 = 𝑡𝑡|𝜃𝜃) ∶  𝑡𝑡 ∈ {0,1. .𝑛𝑛} (2.41) 

 

After all 𝑛𝑛 binary classification models are trained the each prediction is obtained by running all 
of them and taking the maximum output from all the hypothesis functions: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = max ({ℎ0(𝑥𝑥) … ℎ𝑛𝑛(𝑥𝑥) })  (2.42) 

Neural Networks 
This method falls in a category of machine learning called “Deep Learning” and is a method that 
attempts to mimic artificially the way a brain learns to perform a task. At a very simple level, 
neurons in a brain are basically computational units that take inputs (dendrites) as electrical 
inputs (called "spikes") that are channeled to outputs (axons) (Bishop 1996). A standard neural 
network (NN) consists of many simple, connected processors called neurons, each producing a 
sequence of real-valued activations; in a nutshell, a neuron is a function that takes a sum of 
many variables (vector x) with its respective constants (parameter vector) now labeled as 𝑤𝑤, just 
as the linear regression model seen above.  In Figure 2.18 and Eq. (2.43) the simplest model of 
an artificial neuron and one widespread nomenclature is shown: 

𝑦𝑦 = 𝑥𝑥0𝑤𝑤0 + �𝑥𝑥𝑖𝑖𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=1

  (2.43) 
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Figure 2.18: The generation of an output “y” in a simple neuron with 4 inputs  

This is called the linear neuron, with the first term being called the “bias” where 𝑥𝑥0 is always 1 
as in the other models. The 𝑤𝑤 values are part of the vector of learnable weights before noted as 
𝜃𝜃. The 𝑥𝑥  values are the inputs to the neuron and 𝑦𝑦 is the output. 

Other two types of neurons are the logistic unit based on the sigmoid function and the rectified 
linear unit (ReLU) presented in Eq. (2.44) and (2.45).  

𝑧𝑧 = 𝑥𝑥0𝑤𝑤0 + �𝑥𝑥𝑖𝑖𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=1

   →     𝑦𝑦 = �
𝑧𝑧  ;   𝑧𝑧 > 0

0 ;   𝑧𝑧 ≤ 0
  (2.44) 

 

𝑧𝑧 = 𝑥𝑥0𝑤𝑤0 + �𝑥𝑥𝑖𝑖𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=1

   →     𝑦𝑦 =
1

1 + 𝑒𝑒−𝑧𝑧
  (2.45) 

 

These neurons are the most used in most applications in image classification problems 
nowadays (Krizhevsky, Sutskever y Hinton 2012). The logistic unit outputs values between [0,1] 
which makes it useful for classification problems and has a smooth derivable function; but has 
problems when the output values are too large in the positive or negative direction as the 
derivative becomes almost zero which makes learning more difficult. The ReLU neurons do not 
have this problem and researchers have reported some advantages in comparison to the logistic 
unit (Zeiler, y otros 2013). 

The neural networks can be also seen as an expansion of the multiclass classification model, 
where the outputs  ℎ𝑖𝑖(𝑥𝑥) are not the final values but just a “layer” where the 𝑛𝑛 elements in this 
layer are then processed another time with another multiclass classification to get a 𝑘𝑘 number 
of outputs and these outputs can be again processed, this can go on until a final layer is reached. 
All the layers between the input layer and the final layer are called “hidden layers”. In Figure 
2.19 the architecture of a neural network with 1 hidden layer is presented. 
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Figure 2.19: Architecture of a neural network with 1 hidden unit 

The units with sub-index zero are the bias units which take a value of 1 on any layer except the 
output layer where they are absent. It can also be noted the super indexes added to the weights 
to label the layer to which the weight is being applied; another convention used in neural 
networks is adding a sub-index for each weight to tell the neuron involved on the preceding and 
next layer.   The network in Figure 2.19  has 2 input units, 3 units in the hidden layer and 2 output 
units; the bias units are not counted in the architectures as any method used will always add 
them when needed. This type of network falls in the category of a “feed-forward network”. In 
Eq.  (2.46)(2.47) to (2.50) the computation of each of the units in the hidden layer and output 
layer of the network in figure are described: 

𝑎𝑎1 = 𝑤𝑤[0,1]
1 𝑥𝑥0 + 𝑤𝑤[1,1]

1 𝑥𝑥1 + 𝑤𝑤[2,1]
1 𝑥𝑥2  (2.46) 

𝑎𝑎2 = 𝑤𝑤[0,2]
1 𝑥𝑥0 + 𝑤𝑤[1,2]

1 𝑥𝑥1 + 𝑤𝑤[2,2]
1 𝑥𝑥2  (2.47) 

𝑎𝑎3 = 𝑤𝑤[0,3]
1 𝑥𝑥0 + 𝑤𝑤[1,3]

1 𝑥𝑥1 + 𝑤𝑤[2,3]
1 𝑥𝑥2  (2.48) 

ℎ1 = 𝑤𝑤[0,1]
2 𝑎𝑎0 + 𝑤𝑤[1,1]

2 𝑎𝑎1 + 𝑤𝑤[2,1]
2 𝑎𝑎2 +𝑤𝑤[3,1]

2 𝑎𝑎3  (2.49) 

ℎ2 = 𝑤𝑤[0,2]
2 𝑎𝑎0 + 𝑤𝑤[1,2]

2 𝑎𝑎1 + 𝑤𝑤[2,2]
2 𝑎𝑎2 +𝑤𝑤[3,2]

2 𝑎𝑎3  (2.50) 

Backpropagation  
The learning in neural networks still has the objective of minimizing the cost function 𝐽𝐽 , in 
previously reviewed models such as the Linear Regression and Classification, the learning 
methods require the computation of the derivative of the error or cost function with respect to 
the parameter or weight vector (𝑤𝑤). These derivatives are obtained with the backpropagation 
algorithm that can be summarized in Eq. (2.53),(2.54),(2.55) derived from  Figure 2.20 and Eq. 
(2.51), (2.52). 
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Figure 2.20: Architecture of a part of a neural network featuring the computation of the element 𝑎𝑎𝑚𝑚
(𝑘𝑘+1)from elements 

on layer k 

For neural network in Figure 2.20, the layers number 𝑘𝑘 and 𝑘𝑘 + 1 are shown, and the 
connections featured are the ones connecting the neuron unit  𝑎𝑎𝑚𝑚

(𝑘𝑘+1) to all the units in layer 𝑘𝑘. 
Layer 𝑘𝑘 has P units and the expression to generate  𝑎𝑎𝑚𝑚

(𝑘𝑘+1) can be seen in Eq. (2.51), (2.52). 

𝑧𝑧𝑚𝑚
(𝑘𝑘+1) = �𝑤𝑤[𝑖𝑖,𝑚𝑚]

(𝑘𝑘) 𝑎𝑎𝑖𝑖
(𝑘𝑘)

𝑃𝑃

𝑖𝑖=0

  (2.51) 

𝑎𝑎𝑚𝑚
(𝑘𝑘+1) =

1

1 + 𝑒𝑒𝑧𝑧𝑚𝑚
(𝑘𝑘+1)   (2.52) 

 

     

From Eq. (2.51),(2.52) the derivatives needed can be obtained: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧𝑚𝑚𝑘𝑘+1

=
𝑑𝑑𝑎𝑎𝑚𝑚

(𝑘𝑘+1)

𝑑𝑑𝑧𝑧𝑚𝑚𝑘𝑘+1
𝜕𝜕𝜕𝜕

𝑑𝑑𝑎𝑎𝑚𝑚
(𝑘𝑘+1) = 𝑎𝑎𝑚𝑚

(𝑘𝑘+1) �1 − 𝑎𝑎𝑚𝑚
(𝑘𝑘+1)� 

 
 (2.53) 

𝜕𝜕𝜕𝜕

𝑑𝑑𝑎𝑎𝑚𝑚
(𝑘𝑘) = �

𝑑𝑑𝑧𝑧𝑚𝑚
(𝑘𝑘+1)

𝑑𝑑𝑎𝑎𝑖𝑖𝑘𝑘
𝜕𝜕𝜕𝜕

𝜕𝜕𝑧𝑧𝑚𝑚
(𝑘𝑘+1)

𝑃𝑃

𝑖𝑖=0

= �𝑤𝑤[𝑖𝑖,𝑚𝑚]
(𝑘𝑘) 𝜕𝜕𝜕𝜕

𝜕𝜕𝑧𝑧𝑚𝑚
(𝑘𝑘+1)

𝑃𝑃

𝑖𝑖=0

 

 

 (2.54) 

𝜕𝜕𝜕𝜕

𝜕𝜕𝑤𝑤[𝑛𝑛,𝑚𝑚]
(𝑘𝑘) =

𝜕𝜕𝑧𝑧𝑚𝑚
(𝑘𝑘+1)

𝜕𝜕𝑤𝑤[𝑛𝑛,𝑚𝑚]
(𝑘𝑘)

𝜕𝜕𝜕𝜕

𝜕𝜕𝑧𝑧𝑚𝑚
(𝑘𝑘+1) = 𝑎𝑎𝑛𝑛

(𝑘𝑘) 𝜕𝜕𝜕𝜕

𝜕𝜕𝑧𝑧𝑚𝑚
(𝑘𝑘+1)  (2.55) 

 

The last expression will serve to implement any of the iterative methods to minimize the cost 
function and modify the weights to improve the prediction such as gradient descent presented 
above in Eq. (2.34). 

Dimensionality Reduction 
Solving a problem with Machine Learning is very much dependent on the set of features chosen 
to train the model hypothesis function. One approach when the inputs are images is to use the 
raw pixels from the picture patches and use them as features directly; then the problem falls in 
the category   known as deep learning. The sub-category known as Convolutional Neural 
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Networks (CNN) is the one typically used for image recognition and classification problems 
(Mathworks, Convolutional Neural Networks 2016). The limitation for this type of NN is 
obtaining the data, meaning getting enough labeled training examples to train the network. 

Feature engineering is sub-task for data scientists who use neural networks to expand or reduce 
the size 𝑛𝑛 of the input vectors. Usually the task is to reduce the feature vector size through 
arithmetical operations or any transformation that takes a subset of the input features as 
arguments; a small sample is shown in Eq. (2.56) where a set of features [𝑥𝑥1 … 𝑥𝑥𝑛𝑛]  is 
transformed into a new set of features [𝑡𝑡1 … 𝑡𝑡𝑘𝑘]. Each element 𝑡𝑡𝑘𝑘 of the new features vector is 
obtained with a user defined function that takes some elements of the previous feature vector 
as stated in Eq. (2.57).   This transformation is done whether to improve the hypothesis or to 
simply reduce the degrees of freedom of the problem; as stated before. Having less features 
translates into faster training (less iterations) and less training examples needed; and with the 
counterpart of having a less powerful network that cannot generalize well. 

[𝑥𝑥1 … 𝑥𝑥𝑛𝑛] →  [𝑡𝑡1 … 𝑡𝑡𝑘𝑘]  (2.56) 

𝑡𝑡𝑘𝑘 = 𝑓𝑓1(. . 𝑥𝑥𝑎𝑎 ,𝑥𝑥𝑎𝑎+1,𝑥𝑥𝑎𝑎+2 … )  (2.57) 

2.3.2. Unsupervised Learning 
The goal of unsupervised learning is to approach problems with little or no idea what the results 
should look like.  Also, to find some structure from data where the effect of the variables is not 
necessarily known. Such structure can be achieved by clustering the data based on relationships 
among the variables in the data. With unsupervised learning, there is no feedback based on the 
prediction results (Dayan, Sahani y Deback 1999). 

A central case of unsupervised learning is the problem of density estimation in statistics, though 
unsupervised learning encompasses many other problems (and solutions) involving 
summarizing and explaining key features of the data. 

Some of the most used algorithms in unsupervised learning are: 

- K-Means Clustering 
- Hierarchical Clustering 
- Mixture Clustering models 
- Anomaly detection 
- Neural Networks 
- Principal component analysis 
- Singular value decomposition 

Next section will feature a sub-group of the models in unsupervised learning, only the clustering 
models as these techniques are used for this work in following sections. 

2.3.2.1. Clustering 
Cluster analysis involves all the methods and techniques used to group data objects based only 
on information found in the data that describes the objects and their relationships. The objective 
is to group up in a cluster all the objects that have similar characteristics. The greater the 
similarity within a group (cluster) and greater differences between groups(clusters); the better 
the quality of the clustering task. In many applications, the notion of a cluster is not well defined 
and deciding the ideal quantity of clusters and deciding how to define a cluster. In order to 
visualize the difficulty to define what is a cluster small example is shown in Figure 2.21, the shape 
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of the markers define the membership of the cluster; (a) the original points are shown, in (b) the 
data is divided in two clusters, in (c) the data is divided in 4 clusters and in (d) is divided in six 
clusters. This shows that the definition of a cluster is imprecise and that the best definition 
depends on the nature and the desired results (Tan, Steinback y Kumar 2006). 

 
Figure 2.21: Four different ways of forming clusters from a dataset (Tan, Steinback y Kumar 2006) 

Among the clustering algorithms only the type that will be used for this work will be reviewed 
in the following sub-section. 

 

Hierarchical Clustering 
This clustering approach refer to a collection of clustering techniques that produce each cluster 
in steps. There are two types of hierarchical approaches: 

 Agglomerative: This method can be resumed in the following steps: 

1. Each data object is assigned to its own cluster.  

2. Then, the similarity is computed (e.g., distance) between each of the clusters and   
join the two most similar clusters.  

3. Finally, repeat steps 2 and 3 until there is only a single cluster left.  

Divisive: This is a "top down" approach: all data objects start in one cluster, and splits are 
performed recursively as one moves down the hierarchy. 

A hierarchical agglomerative clustering is often displayed graphically using a tree like diagram 
called dendogram, which displays both the cluster-sub cluster relationships and the order in 
which the clusters were merged. Also, if the data has 2 or 3 dimensions the clustering can be 
represented by a nested cluster diagram. Both of these are presented in a simple example with 
only 4 data objects in Figure 2.22. It can be seen that both observations or data p2 and p3 are 
the closest ones and are joined in a cluster in the first step, then the point p4 is the one closest 
to cluster created by p2 and p3; so, they are joined to make the cluster with p2, p3 and p4. Last, 
the cluster (p2,p3,p4) is joined with the last point p1 (Tan, Steinback y Kumar 2006). 
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Figure 2.22:The dendrogram and clusters for example points p1 to p4 (Tan, Steinback y Kumar 2006) 

 Distance or dissimilarity 
In order to decide which clusters should be combined (for agglomerative), or where a cluster 
should be split (for divisive), a measure of dissimilarity between sets of data objects is required. 
In most methods of hierarchical clustering, this is achieved by use of an appropriate metric (a 
measure of distance between pairs of data objects). The most typical distance metrics are 
presented in Table 2-1 where 𝑎⃗𝑎 and 𝑏𝑏�⃗  are 2 different data object vectors: 

Table 2-1: The most common different dissimilarity or distance metric between data  

Type of Distance 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅�𝒂𝒂��⃗ ,𝒃𝒃��⃗ � 

Euclidean Distance ��𝑎⃗𝑎 −𝑏𝑏�⃗ � ∙ �𝑎⃗𝑎 −𝑏𝑏�⃗ � 

Squared Euclidean Distance �𝑎⃗𝑎 −𝑏𝑏�⃗ � ∙ �𝑎⃗𝑎 −𝑏𝑏�⃗ � 
City Block �𝑎⃗𝑎 −𝑏𝑏�⃗ � 

Minkowski Distance with exponent “p” ��𝑎⃗𝑎 −𝑏𝑏�⃗ �
𝑝𝑝𝑝𝑝

 

Cosine Distance 1 −
𝑎⃗𝑎 ∙ 𝑏𝑏�⃗

��𝑎⃗𝑎 ∙ 𝑏𝑏�⃗ ��𝑎⃗𝑎 ∙ 𝑏𝑏�⃗ �
 

Correlation Distance 1 −
(𝑎⃗𝑎 −𝜇𝜇𝑎𝑎) ∙ �𝑏𝑏�⃗ −𝜇𝜇𝑏𝑏�

�(𝑎⃗𝑎 −𝜇𝜇𝑎𝑎) ∙ �𝑏𝑏�⃗ −𝜇𝜇𝑏𝑏� ∙ �(𝑎⃗𝑎 −𝜇𝜇𝑎𝑎) ∙ �𝑏𝑏�⃗ −𝜇𝜇𝑏𝑏�
 

For most algorithms, from the type of distance defined for a problem a distance square matrix 
𝐷𝐷 is generated with all the distances between the data objects. Where its element 𝐷𝐷(𝑖𝑖,𝑗𝑗) 
represents the distance between data objects 𝑥⃗𝑥(𝑖𝑖) and 𝑥⃗𝑥(𝑗𝑗) . It must be noted that the distance 
functions are commutative so 𝐷𝐷(𝑖𝑖,𝑗𝑗) = 𝐷𝐷(𝑗𝑗,𝑖𝑖). This is described in Eq. (2.58) and (2.59).   

𝐷𝐷(𝑖𝑖,𝑗𝑗) = 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅�𝑥⃗𝑥(𝑖𝑖), 𝑥⃗𝑥(𝑗𝑗)�  (2.58) 

   

𝐷𝐷 =

𝑥𝑥(1) 𝑥𝑥(2)      𝑥𝑥(3)  …   𝑥𝑥(𝑛𝑛)

𝑥𝑥(1)

𝑥𝑥(2)

𝑥𝑥(3)

⋮
𝑥𝑥(𝑛𝑛) ⎣

⎢
⎢
⎢
⎢
⎡ 0 𝐷𝐷(1,2) 𝐷𝐷(1,3) … 𝐷𝐷(1,𝑛𝑛)

𝐷𝐷(2,1) 0 𝐷𝐷(2,3) … 𝐷𝐷(2,𝑛𝑛)

𝐷𝐷(3,1)
⋮

𝐷𝐷(𝑛𝑛,1)

𝐷𝐷(3,2)
⋮

𝐷𝐷(𝑛𝑛,2)

0
⋮

𝐷𝐷(𝑛𝑛,3)

…
⋱
⋯

𝐷𝐷(3,𝑛𝑛)
⋮
0 ⎦

⎥
⎥
⎥
⎥
⎤
 

 

(2.59) 

 

Distance matrices are used to avoid computing several times the distances between the data 
object as most clustering algorithms require the computation of each distance more than once.  
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Linkage 
Linkage is one term used to refer to the distance criteria method used to determine the distance 
between a data object and a cluster of data objects. This linkage criteria must be defined in order 
to perform any hierarchical algorithm; the most used linkage criteria are presented in Table 2-2: 

Table 2-2: Most used linkage criteria for hierarchical clustering algorithms 

Type of Linkage 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳�𝒂𝒂��⃗ ,𝑪𝑪�� 

Average (distance from centroid if 
distance metric is Euclidean) 

1
𝑘𝑘
�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝒂𝒂��⃗ ,𝑪𝑪�(𝒕𝒕)�
𝑘𝑘

𝑡𝑡=1

 

Complete (farthest distance) 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝒂𝒂��⃗ ,𝑪𝑪�(𝟏𝟏)�,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝒂𝒂��⃗ ,𝑪𝑪�(𝟐𝟐)�…𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝒂𝒂��⃗ ,𝑪𝑪�(𝒌𝒌)�� 

Median 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝒂𝒂��⃗ ,𝑪𝑪�(𝟏𝟏)�,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝒂𝒂��⃗ ,𝑪𝑪�(𝟐𝟐)�…𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝒂𝒂��⃗ ,𝑪𝑪�(𝒌𝒌)�� 

Min (closest distance) 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝒂𝒂��⃗ ,𝑪𝑪�(𝟏𝟏)�,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝒂𝒂��⃗ ,𝑪𝑪�(𝟐𝟐)�…𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝒂𝒂��⃗ ,𝑪𝑪�(𝒌𝒌)�� 
 

An example of a distance matrix for a set of data objects is described in Table 2-3. Each row in 
Table 2-3represents a data point, and each column is a component or dimension from the data 
point, this example has 8 points with each point has 4 dimensions. Based on the data from Table 
2-3, a distance matrix was computed with the cosine distance in Table 2-4.  It should be noted 
that the diagonal of the distance matrix for any distance metric is always filled with zeros as it 
represents the distance between two identical points. 

 

Table 2-3:An example with 8 data points, and each data points with 4 dimensions 
𝒙𝒙(𝒎𝒎) = [𝒙𝒙𝟏𝟏,𝒙𝒙𝟏𝟏 . . .𝒙𝒙𝒏𝒏] 𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4 

𝑥𝑥(1) 0 -1 2 4 
𝑥𝑥(2) 3 2 1 -6 
𝑥𝑥(3) 10 2 0 0 
𝑥𝑥(4) 1 2 3 4 
𝑥𝑥(5) 5 5 0 -2 
𝑥𝑥(6) -3 3 5 -1 
𝑥𝑥(7) 0 0 3 -5 
𝑥𝑥(8) 1 1 1 1 

  

Table 2-4: The cosine distances matrix between the data points presented in Error! Not a valid bookmark self-
reference. 

 𝒙𝒙(𝟏𝟏) 𝒙𝒙(𝟐𝟐) 𝒙𝒙(𝟑𝟑) 𝒙𝒙(𝟒𝟒) 𝒙𝒙(𝟓𝟓) 𝒙𝒙(𝟔𝟔) 𝒙𝒙(𝟕𝟕) 𝒙𝒙(𝟖𝟖) 
𝒙𝒙(𝟏𝟏) 0 1,74 1,04 0,20 1,39 0,90 1,52 0,45 
𝒙𝒙(𝟐𝟐) 1,74 0 0,53 1,36 0,29 0,83 0,20 1,00 
𝒙𝒙(𝟑𝟑) 1,04 0,53 0 0,75 0,20 1,35 1,00 0,41 
𝒙𝒙(𝟒𝟒) 0,20 1,36 0,75 0 0,83 0,61 1,34 0,09 
𝒙𝒙(𝟓𝟓) 1,39 0,29 0,20 0,83 0 0,96 0,77 0,46 
𝒙𝒙(𝟔𝟔) 0,90 0,83 1,35 0,61 0,96 0 0,48 0,70 
𝒙𝒙(𝟕𝟕) 1,52 0,20 1,00 1,34 0,77 0,48 0 1,17 
𝒙𝒙(𝟖𝟖) 0,45 1,00 0,41 0,09 0,46 0,70 1,17 0 
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2.4. Diagnosis of Structures 
In this section, the main aspects related to visual inspection and diagnosis will be described in 
the context of existing structures. Existing guidelines and recommendations to recognize some 
pathologies with mechanical and chemical origin are described with emphasis on concrete 
beams. Several books and reports on the topic of diagnosis and rehabilitation of buildings have 
been consulted ((AENOR) 2009) (Broto Xavier 2006) (Elizalde Javier 1980) (Schenk 1999) to 
introduce the current knowledge on the philosophy of diagnosing and rehabilitation; on the 
origins of most pathologies. The focus in this section will be placed into the visual diagnosis of 
concrete beams. 

2.4.1. General Problem 
The problem of diagnosing the state of a structure has been present for as long as humans have 
constructed. In modern times, with all the knowledge accumulated on the pathologies and 
symptoms that structures through history have presented, the task for trained technicians to 
find the cause or causes for the damage can be described in some way as a detective/medical 
work. This analogy is made as the technician must first inspect all the structure and acknowledge 
the damage, but also be very diligent not to miss all the details/clues that may be present. Then 
with the use of his/her knowledge, expertise, tests, structural plans, numerical models and 
calculations, the technician must make a hypothesis on the origin of the damage. And based on 
these allegedly recognized pathologies and causes may propose a course of action for repair or 
even decide that the structure damage is beyond repair and advise demolition. 

Given these characteristics on the problem it is also certain that an ideal technician in charge of 
the diagnosis and rehabilitation of a structure needs to have experience in construction, on 
pathologies, knowledge on the testing and structural design to be able to propose a decent 
plausible hypothesis.  And taking into account that these hypotheses may still be wrong as a 
structure in use will bear its loads in a way different from what numerical models predicted for 
the design. Also, some pathologies may have their symptoms hidden in locations that are hard 
to access or to view; and this fact adds another layer of difficulty to the hypothesis accuracy.  

Most recorded knowledge on diagnose and rehabilitation of structures is on the topic of 
buildings as they are the most common structure in Civil Engineering. Therefore already there 
are many works that serve as guidelines to diagnosis, tests and rehabilitation of existing 
buildings especially. And each author has its own division for classifying and dividing the 
methodology for the diagnosis; among these, the division proposed by Broto and Comerma 
(Broto Xavier 2006) is presented in the subsection below to introduce the origin/causes of the 
pathologies and the symptoms.  

2.4.2. Causes of structural pathologies 
Within the general causes of lesions on structures derived directly from human error are: 

• Deficiencies in the project originated on the phase of design, calculation errors, bad 
design of the structure or inadequate selection of the materials used. 

• Low quality of the construction materials. 
• Bad execution of the project or constructive errors (most common cause) 
• The misuse of the building is also cause of many lesions for the application of 

unexpected loads or change of use of the structure, lack of maintenance, not controlled 
remodeling that may suppress or damage structural elements. 
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Among the indirect and sometimes unavoidable causes: 

• The aging and fatigue of materials and chemical attacks on elements exposed to 
aggressive environment (marine, industrial or urban with high levels of pollution) are 
frequent.   

• Earthquakes, settlement of soil and terrain slides. 
• Extraordinary actions, such as floods, fires, phreatic water and other accidents. 

2.4.3. Symptoms in Buildings 
Constructive structural elements present a broad range of symptoms in the event of the 
appearance of lesions. From the occurrence of cracks to changes in color, deformations, 
shedding, crushing, etc. It must be adverted that these symptoms may show with delay on the 
bearing structures; or, on the other hand,  show first on non-structural components. 

In all cases the apparition of the first symptoms is sufficient to put the building under 
surveillance, in order perform the rehabilitation that prevent a critical advance of the lesions 
and in a latter instance, a real danger to the structure. 

Among the different symptoms; cracks, fissures and micro-cracks are the most common 
symptoms in structural concrete elements. Besides, they are usually the first to  become 
apparent and are given more importance usually as they are more evident and esthetically less 
pleasant to users and may be consequences of improper structural performance. It is known 
that the diagnosis of a structure must be done with a global holistic vision, considering possible 
interaction between causes, but the symptoms may be separated by the type of element where 
a pathology may be found: 

 

- Structural 
• Foundations 
• Retaining Walls 
• Beams 
• Columns 
• Slabs 
• Joints 
• Bearing Wall Systems 

- Non-Structural 
• Non-structural walls and façades 
• Roofs and ornamental Ceilings 
• Interior partitions 
• Stairs 
• Electrical, gas, water and other pipes 
• Mechanical components and systems including air conditioning equipment, ducts, 

elevators, escalators, pumps, and emergency generators 

And again, the pathologies may be divided on the material where they appear: 

• -Steel 
• -Concrete 
• -Wood 
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On the origin of the pathology: 

• -Mechanical 
• -Chemical 

2.4.4. Pathologies in concrete beams 
Among all the pathologies that appear in beams, only the ones that cause cracking will be 
listed below. 

- Thermal gradients 
- Creep and shrinkage 
- Freeze thaw  
- Plastic settlement during casting 
- Inner volume changes related to delay ettringite formation, alkali-silica reaction, etc. 
- Compression Stresses 
- Traction Stresses 
- Shear Stresses 
- Bending Moments 
- Torsion Stresses 
- Bending-Shear 
- Corrosion 
- Bond Slip 

From the list above only 4 type of cracks patterns will be discussed in detail below reviewed; 
the reasoning behind this decision will be explained later in section 2.4.4.5. 

 

2.4.4.1. Flexure 
An external force applied perpendicularly to the main axis of a beam will induce a reaction 
known as bending moment. The internal forces representing this moment will divide a cross 
section in two parts: a compression and tensile zone.  In concrete beams, the most common 
symptoms suggesting high bending moment are cracks. These cracks appear when a concrete 
section is bearing a moment that surpasses the tensile resistance of the concrete. Their 
distribution and direction will depend on the boundary conditions of the beam. It should be 
noted that all reinforced concrete beams are designed to fail by flexion, with the condition that 
it occurs by the yielding of the flexion reinforcement in the traction zone. Thus, the tensile zone 
of the section usually cracks before reaching loads close to the beam maximum load, this is 
desirable because under this situation the steel reinforcement starts bearing the tensile 
stresses. A failure due to the yielding of the longitudinal reinforcement is the desirable one 
under all design criteria. This type of failure is ductile meaning it will deform significantly before 
reaching failure; to feature this, a typical moment-curvature curve for a concrete beam is 
presented in Figure 2.23. The cracking expected must be limited for durability reasons, as 
excessive cracking may leave the reinforcement exposed to chemical attacks in aggressive 
environments; the Eurocode 2 recommends values between 0.2 to 0.4 mm (CEN 2004).  
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Figure 2.23: Typical moment-curvature relation for a reinforced concrete section (Kwak Hyo 2002) 

Characterization of flexion cracks 
Simply supported beams: The flexion cracks start in the center of the span in the traction zone 
(bottom) of the section and progress vertically then start to curve when arriving to the 
compression zone. Two cases of flexion beams are presented in Figure 2.24 and Figure 2.25. 

 
Figure 2.24: Flexion cracks that curve a little as they progress through the section of a short beam 

 
Figure 2.25: Flexion cracks in a simply supported concrete beam with a large span (Vidal 2007) 

 

Cantilever beams: The flexion cracks extend vertically at the top and near the support. With the 
ones near the support being larger in length.  

Double Fixed beams: The flexion cracks appear first in the bottom and center of the beam and 
as loads progress the cracks may appear near the supports in the top area. The cracks will behave 
as in the simply supported beams case, meaning the direction will rotate as they progress 
towards the compression zone an example is presented in Figure 2.26. 
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Figure 2.26: Flexion and shear crack patterns in double fixed beams (ce-ref.com s.f.)  

 

2.4.4.2. Shear 
The shear forces will be a direct result of the transversal forces applied to a surface. In the case 
of a beam such forces will be a reaction opposing the vertical forces applied to the beam. These 
internal forces travel internally in the beam towards the supports, one of the most popular 
models attempting to explain how these forces are distributed is the Strut and tie model 
(Schlaich y Shafer, Toward a consistent design of Structural Concrete 1987). An example of the 
struts and ties’ distribution across a beam can be seen in Figure 2.27.  

 
Figure 2.27 Strut and ties model for a concrete beam (Schlaich y Shafer, Toward a consistent design of Structural 

Concrete 1987) 

Characterization of shear cracks 
The shear cracks will occur when the compression struts that transfer the loads towards the 
supports are close to failure. These types of cracks appear near the supports, which are usually 
beam column joints. Also, they will appear in the parts of the beams where there is a lack of 
transversal reinforcement. They usually extend in a 45° direction (assuming vertical loads on the 
beam) and when they occur for a lack of reinforcement; they tend to be wider near the neutral 
axis of the section. As a beam approaches shear failure, the cracks tend to extend horizontally 
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towards the supports.  Figure 2.28 and Figure 2.29 feature beams with shear cracks across their 
web. 

Shear failure is undesirable and the appearance of any shear cracks is considered dangerous for 
the beam because the failure is not ductile.  

 
Figure 2.28: Shear cracks in concrete beams in a building (GHARPEDIA.COM 2016) 

 
Figure 2.29: Shear cracks in the web of a prestressed concrete beam (Celada 2018) 
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2.4.4.3. Corrosion in reinforced concrete 
The corrosion in concrete beams will initiate when the natural alkalinity of the concrete is lost, 
as this pH condition protects the steel reinforcement. The two most common mechanisms that 
may cause corrosion are (Mays, 1992):  

-Carbonation: the natural reaction of the carbon dioxide present in the atmosphere with the 
concrete will decrease the alkalinity of the concrete leaving it exposed.  

-Chlorides present in aggregates: The presence of chlorides in the aggregates or water for the 
concrete mix destroys the passive corrosion film that protects the reinforcement. 

 

There are other chemical attacks that may damage the concrete and indirectly cause corrosion 
by exposing the reinforcement to the environment such as: the alkali-silica reaction, concrete 
with alumina and sulphate attacks (Mays 1992). 

Characterization of corrosion cracks 
The sub-product of the corrosion of the reinforcement bars expands and pushes the concrete 
around it. The first visible signs from this is cracking on the surface, when the corrosion advances 
usually there is delamination and spalling of the concrete cover as a result of the increasing 
pressure from the expanding corroding reinforcement. The total delamination and loss of the 
concrete cover would leave the steel reinforcement totally exposed to the environment making 
the corrosion process even faster. There is also the detrimental effect on the anchoring and 
bond strength of the reinforcement, if enough concrete is lost around the steel reinforcement. 

Another danger of the corrosion is that the sub-product of corrosion is a brittle material with 
lower resistance (Abdelhamid y Morsyb 2016). The final effect is a reduction of the effective 
area of steel reinforcement and if this process is advanced enough, it can lead to failure of an 
element.   

Corrosion cracks from carbonation origin will occur on almost the total length of the bar as it is 
an attack that advances gradually through all the depth of the concrete. On the other hand, 
cracks from chlorides attacks will appear more locally where the penetration occurred. On either 
case, the cracks will follow the position of the reinforcement.  

Usually corrosion cracks appear to “follow” the longitudinal reinforcement as the corroded bars 
have a larger diameter and push concrete in the surface. There are cases where cracks appear 
around the transversal reinforcement. In Figure 2.30 and Figure 2.31 there are two cases of 
concrete beams cracking as a result of the corrosion of their longitudinal reinforcement are 
shown. 
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Figure 2.30: Concrete beam with the bottom longitudinal reinforcement affected by corrosion (Muñoz 1994) 

 
Figure 2.31: Corrosion induced cracking in a beam (Du, Chan y Clark 2013) 
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2.4.4.4. Bond Slip 
A brief insight on the bond slip mechanism that causes these types of cracks will be given in the 
following paragraphs. 

Models 
The steel-concrete bond in reinforced concrete is the phenomenon that allows longitudinal 
forces to pass from the reinforcement steel bars to the concrete surrounding it. When there is 
a difference between the strains in concrete and the steel.  The relative displacement that occurs 
as a result is usually referred as bond slip.  

Researchers who have contributed to the study of this phenomenon agree that the interaction 
between the concrete and a bar subjected to a pull-out force is characterized by four different 
stages that are described in Figure 2.32: 

Stage I: (uncracked concrete): for low bond-stress values, 𝜏𝜏 <  𝜏𝜏1  =  (0.2 − 0.8)𝑓𝑓𝑐𝑐𝑐𝑐  the bond 
is maintained mainly by chemical adhesion, and no bar slip occurs. 

Stage Il: (first cracking): for higher bond stress values 𝜏𝜏 >  𝜏𝜏1  the chemical adhesion breaks 
down; and some transverse microcracks appear on the tips of the steel bars’ ribs which allow 
some slipping. But still no concrete splitting occurs. 

Stage III:  At higher bond stress values 𝑓𝑓𝑐𝑐𝑐𝑐𝜏𝜏 > 𝜏𝜏 > 3𝑓𝑓𝑐𝑐𝑐𝑐𝜏𝜏 the longitudinal cracks or splitting cracks 
start spreading due to the wedging action enhanced by the crushed concrete strut that 
originates on each steel rib. The pressure component surrounding the reinforcement is exerted 
by the concrete and the transversal reinforcement. This stage ends when the splitting cracks 
reach the outer surface of the concrete member. 

Stage IV: This stage immediately follows the breakage of adhesive bond then the force transfer 
is exerted only by friction and strongly affected by the confinement of concrete. This stage 
represents the residual strength of the bond and follows failure either by pull-out or by 
splitting failure.  

 
Figure 2.32: Local bond stress-slip law (Task Group 2000) 

 
 
Finally, the failure by bond strength may occur by the following modes: 
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 Splitting failure- This happens when the failure comes from the crushing of the struts that fan 
out from the steel ribs and when this failure reaches the struts at the borders of the concrete 
element. This failure mode is more desirable as it is more ductile as it cracks the surface of the 
element and still the friction helps at the same time. The characterization of the splitting cracks 
is explained in Figure 2.33. 
Pull-out failure-  This occurs when the bond strength has the friction as the sole resistant 
mechanism or when it is the main one. 
Failure may come by a combination of the two modes described above and this is described in 
Figure 2.34.  
 

 
Figure 2.33: Different viewpoint of the splitting cracks caused by the compression on the struts around reinforced 

bars (Task Group 2000) 

 
Figure 2.34: Modes of bond failure: (a) pull-out failure, (b) splitting-induced pull out accompanied by crushing and 
shearing-off in the concrete below the ribs and (c) splitting accompanied by slip on the rib faces (Task Group 2000) 

Characterization of cracks 
The most typical resistant mechanism under working loads in beams is the one described in 
stage III above.  As a result, the typical visible sign that the concrete-steel bond is reaching its 
limit is the appearance of a cracks parallel to the reinforcement in the surface of the beam; these 
cracks patterns are known as Bond or splitting cracks. Four test beams from an experimental 
campaign (Plizzari y Franchi 1996) to study bond slip are presented in Figure 2.35  to illustrate 
the parallel crack pattern just mentioned. 
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Figure 2.35:Hairlike splitting cracks along the bottom face of a beam-test specimen (Plizzari y Franchi 1996) 

Another type of pattern that these cracks feature are diagonal cracks that origin from the small 
compression struts that origin on the ribs of the bars and fan out towards the concrete surface. 
One example of this type pattern is shown in Figure 2.36, the test beam pictured presents shear, 
flexion and bond cracks. These types of cracks often appear together with cracks from other 
pathologies as in real beams no load combination is resisted exclusively by the concrete-steel 
bond mechanisms. Beams that are close to failure or have failed by the effect of high shear 
forces tend to show shear cracks together with bond cracks. Other most common cases are the 
appearance of corrosion cracks together with bond cracks; in the previous subsection is was 
commented 2.4.4.3 that corrosion cracks can reduce greatly the bond strength as concrete 
around the steel reinforcement is cracked or removed. 

 
Figure 2.36: Crack pattern in a concreted partially prestressed beam presenting flexion, shear and bond cracks. 

(Duarte 2019) 
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2.4.4.5. Crack Patterns and Visual inspection 
 

As commented in this section (2.4.4 Pathologies in concrete beams), only four pathologies and 
their respective crack pattern types were selected to review. The reason for this choice is that 
all these crack patterns and their causes can be identified by mere visual inspection. This 
empirical task done through visual inspection will be modeled with the help of machine learning 
techniques and models in chapter 5. 
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3. Crack Detection and 
Measurement 

 

 

 

 

 

The methods described in this Chapter attempt to solve one of the problems stated in the 
objectives:  To find a way to detect and measure cracks in a ROI within a picture showing a 
concrete surface; these methods can be divided as follows:  

Crack Detection with a Neural Network, in this step a segmentation of the ROI is carried out in 
order to separate the sub-regions of the ROI that contain cracks and the regions that do not. 
This segmentation is don with a Neural Network designed to classify concrete image patches as 
“containing a crack” or “not containing a crack”.  The method is explained in detail in section 
3.2. 

Crack Measurement with Digital Image Processing, in this part techniques such as 
segmentation and spatial filtering are used to determine which pixels are cracks; then to 
measure these cracks width and determine their angle. This process will be explained in section 
3.3. 
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3.1. Hypothesis 
In the approach followed, it is assumed that cracks are a type of feature that has the following 
characteristics: 

• Cracks are edges, or close to edges. 
• Cracks are represented by darker pixels points than the background. 
• Cracks are similar to lines, so they have a direction or orientation. 
• Nearby points within a crack will have similar orientation; i.e. it is assumed that crack 

orientation does not change abruptly. 

The present method also assumes the following: 

• The surface plane of the concrete element depicted in the digital image is perpendicular 
or almost perpendicular to the camera principal axis. 

• A region of interest (ROI) has already been chosen from the input image and inside this 
ROI only a concrete surface is depicted.  

• Concrete surfaces in the ROI do not have any markings on them and are not painted. 

 

3.2. Crack detection with a Neural Network 
 

In order to segment the image and obtain a mask with pixels in the areas where cracks are found. 
The approach implemented is a segmentation using a neural network (NN) to detect the 
presence of cracks in a picture. The NN will segment the image by classifying each concrete 
image patch in two classes: “Crack” or “Not Crack”. The generation of the training examples, 
diagnosis of the NN and an example of this method are presented the subsections below. 

3.2.1. Training Examples 
 

In order to train the NN, a collection of training examples is needed to define the labels for the 
machine learning problem, the size in pixel of the image patches that will be labeled and which 
pictures or pixel patches will be used for labeling. 

Twenty-six (26) image files obtained from web search (added in the Annex I) showing cracked 
concrete surfaces in *.jpg format have been used as the source of the training examples. From 
each picture, each 25x25 pixel patch will be labeled as “Crack” or “Not Crack”, with a sliding 
between the patches of 13 pixels. Figure 3.1 shows the Graphic User Interface (GUI) developed 
to label the image patches. 
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Figure 3.1: GUI panel used to classify an image patch as “Crack” or “Not Crack” to generate examples 

From 20 images, out of the 22 mentioned in the paragraph above, 6107 image patches have 
been labeled to generate a Training Set. The rest four image files will be used to extract and 
label image patches for the Test and Cross-Validation Sets, that sum up 1658 labeled image 
patches.  For the label vector, “1” will be “Crack” and the value of “2” will mean “No Crack”. 

296 image patches from the Training Set labeled as “Crack” and “Not Crack” are presented in 
Figure 3.2 and Figure 3.3. The total image patches are presented in the Annex I at the end of the 
document. 

 
Figure 3.2:Image patches labeled as “Crack” from the training set 
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Figure 3.3 Image patches labeled as “Not Crack” in the training set 

3.2.2. Engineered Features 
 

The input image patches are sized 25x25 pixels, and being a RGB picture would make it an input 
of 25x25x3.  If the matrix of pixels is unrolled in a vector, it would make it a vector with 1875 
elements/features. This was considered excessive for the problem at hand, so the approach 
taken was to reduce the degrees of freedom of the problem. For this reason, the reduction of 
the input vector has been done through feature engineering: 

Each image patch “𝐼𝐼𝑘𝑘” (a 25x25 subset of the original image) is transformed to its grayscale 
equivalent (𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘), then the result is thresholded with the mean grayscale intensity (𝜇𝜇𝑘𝑘) and 
factor of the standard deviation (𝜎𝜎𝑘𝑘) to obtain a binary mask that follows Eq. (3.1)  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘 = [𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑘𝑘 < 𝜇𝜇𝑘𝑘 − 1.5𝜎𝜎𝑘𝑘]  (3.1) 
 

The mask is then passed through the Hough Transform, to find lines in the mask (described in 
0). The resolution used for the 𝜃𝜃 space was 5 degrees ranging from -90 to +89 degrees, the 𝜌𝜌 
space resolution was every 2.5 pixels. From the Hough transform matrix “𝐻𝐻” the largest 10 
values are taken ( 𝐻𝐻𝑚𝑚10 = [ 𝑚𝑚1𝐻𝐻 𝑚𝑚2𝐻𝐻 ⋯ 𝑚𝑚10𝐻𝐻]), their respective coordinates in the 𝜌𝜌 
and 𝜃𝜃 space ( 𝜌𝜌𝑚𝑚10,𝜃𝜃𝑚𝑚10).  The minimum 𝑚𝑚𝑚𝑚𝑚𝑚(𝜌𝜌𝑚𝑚10), maximum 𝑚𝑚𝑚𝑚𝑚𝑚(𝜌𝜌𝑚𝑚10), mean 𝜇𝜇(𝜌𝜌𝑚𝑚10) 
and standard deviation 𝜎𝜎(𝜌𝜌𝑚𝑚10) of the 𝜌𝜌𝑚𝑚10 is taken. From the set 𝜃𝜃𝑚𝑚10 ,  two sets cos (𝜃𝜃𝑚𝑚10) 
and sin (𝜃𝜃𝑚𝑚10) are computed, and finally the mean 𝜇𝜇(𝜃𝜃𝑚𝑚10) and standard deviations 𝜎𝜎(𝜃𝜃𝑚𝑚10) 
too.  

The angle perpendicular 𝜃𝜃𝑝𝑝𝑝𝑝𝑝𝑝 to the maximum value of 𝐻𝐻(𝜃𝜃𝑝𝑝𝑝𝑝𝑝𝑝) is obtained and all the values in 
the 𝐻𝐻 matrix with that angle coordinate are extracted  𝐻𝐻�𝜌𝜌, 𝜃𝜃 = 𝜃𝜃𝑝𝑝𝑝𝑝𝑝𝑝� Then, the maximum value 
of in the Hough Transform (𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚) is divided by the set 𝐻𝐻�𝜌𝜌,𝜃𝜃 = 𝜃𝜃𝑝𝑝𝑝𝑝𝑝𝑝�. 

Other features considered in the approach are the mean 𝜇𝜇(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑘𝑘)‖ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘 = 1  and standard 
𝜎𝜎(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑘𝑘)‖ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘 = 1 deviation of the local matrix 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑘𝑘 on the points where the 
segmentation matrix 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘 = 1 ,  and also the mean 𝜇𝜇(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑘𝑘)‖ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘 = 0 and standard 
deviation 𝜎𝜎(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑘𝑘)‖ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘 = 0 of the same matrix 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑘𝑘 in the areas of the matrix outside 
the segmentation, meaning 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘 = 0.  
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From the RGB image patch “𝐼𝐼𝑘𝑘“  on each color channel the mean, standard deviation of the pixels 
where 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘 = 1. The final feature is the computation of the number of pixels in the matrix 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘that are equal to 1 ( #|𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘 = 1 |) 

Then an input layer vector would have 54 units as presented in expression (3.1), and the next 
step is to decide the architecture of the neural network.  

[ 𝑚𝑚1𝐻𝐻 𝑚𝑚2𝐻𝐻 ⋯ 𝑚𝑚10𝐻𝐻 𝑚𝑚𝑚𝑚𝑚𝑚(𝜌𝜌𝑚𝑚10) 𝑚𝑚𝑚𝑚𝑚𝑚(𝜌𝜌𝑚𝑚10) 𝜎𝜎(𝜌𝜌𝑚𝑚10) 𝜇𝜇(𝜌𝜌𝑚𝑚10) 𝑚𝑚𝑚𝑚𝑚𝑚(𝜌𝜌𝑚𝑚10) ⋯ 
𝑚𝑚𝑚𝑚𝑚𝑚(𝜌𝜌𝑚𝑚10) cos ( 𝑚𝑚1𝐻𝐻 𝑚𝑚2𝐻𝐻 ⋯ 𝑚𝑚10𝐻𝐻) sin ( 𝑚𝑚1𝐻𝐻 𝑚𝑚2𝐻𝐻 ⋯ 𝑚𝑚10𝐻𝐻) 𝜇𝜇(𝜃𝜃𝑚𝑚10) ⋯  

𝜎𝜎(𝜃𝜃𝑚𝑚10)
𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚

𝐻𝐻�𝜌𝜌,𝜃𝜃 = 𝜃𝜃𝑝𝑝𝑝𝑝𝑝𝑝�
𝜇𝜇(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑘𝑘)‖ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘 = 1  𝜎𝜎(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑘𝑘)‖ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘 = 1 ⋯ 

𝜇𝜇(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑘𝑘)‖ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘 = 0 𝜎𝜎(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑘𝑘)‖ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘 = 0 #|𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘 = 1 | 𝜇𝜇�𝐼𝐼𝑘𝑘𝑅𝑅𝑅𝑅𝑅𝑅� 𝜇𝜇�𝐼𝐼𝑘𝑘𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺� ⋯ 

𝜇𝜇�𝐼𝐼𝑘𝑘𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵� 𝜎𝜎�𝐼𝐼𝑘𝑘𝑅𝑅𝑅𝑅𝑅𝑅� 𝜎𝜎�𝐼𝐼𝑘𝑘𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺� 𝜎𝜎�𝐼𝐼𝑘𝑘𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�] 

(3.2) 

 

3.2.3. Hidden Layer Size 
 

The first step is to set a number of hidden units that will work best for the model proposed (NGS 
- Neuro Genetic Solutions GmbH 2009). To achieve this the labeled dataset will be divided in 
three sets:  Training set, Cross-Validation set and the Test Set. For making up the Training Set 
random examples are taken from the total dataset, usually between 60-90% (Bishop 1996) of 
the number of examples in the total dataset. Both the Cross-Validation Set and Test Set both 
take and equal part of the rest of the dataset not used for the Training Set.   

The Training Set, as its name states, will be used to train the network by gradient descent 
method. On the other hand, the Cross-Validation will be used to diagnose the models trained 
from the Training Set and the Test Set is used to check the predictions and misclassification error 
after a threshold has been decided. The error or cost function used for the following sections 
will be the one presented in section 2.3.1.2 in Eq. (2.40). 

The Training Error curve is supposed to decrease as more hidden units are used as the model 
becomes more complex as more weights are added.  After a number of hidden units, the error 
should reach and asymptotic value   when the model correctly predicts almost all the training 
examples correctly. The Cross -Validation error curve is expected to begin with a high error 
value, as the model is usually too simple with few hidden units; further it starts to produce lower 
error values until it reaches a region when the curve derivative becomes zero.  After that, for a 
large number of units, the cross-validation error starts increasing more than the Training set 
error.  This indicates that the model predicts perfectly the training set but not the independent 
Cross-validation set, this is known as overfitting. For the proposed model, the ideal number of 
hidden is obtained from the plot presented Error vs Hidden Units in Figure 3.4 ,where the 
minimum error is about 0.36 and at 5 to 15 hidden units. From this a value of 9 hidden units will 
be used to train the final network.  All the NN to make Figure 3.4 were trained with 1000 
iterations of gradient descent and with a value λ =0. 
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Figure 3.4: Curve to determine ideal hidden layer size for the Neural Network for the Crack detection step 

Next, the architecture of the neural network is defined and its unit’s connections are resumed 
in Figure 3.5.This neural network will be a feed forward one with 54 input units, 9 units on its 
hidden layer and 2 output units with all being fully connected layers.  

 
Figure 3.5: Architecture of the Neural Network for the Crack detection step 

The feed forward operation to obtain the output units from an input vector can be summarized 
with Eq. (3.3), (3.4), (3.5), (3.6), (3.7) and (3.8): 

𝐻𝐻1 = �ℎ1
(1) ℎ2

(1) … ℎ100
(1) � = 𝐿𝐿0 𝑥𝑥 𝑊𝑊1  (3.3) 

𝐻𝐻1 = �𝑎𝑎0
(0) 𝑎𝑎1

(0) … 𝑎𝑎55
(0)�  𝑥𝑥  

⎣
⎢
⎢
⎢
⎢
⎡ 𝑤𝑤[0,1]

(1) 𝑤𝑤[0,2]
(1) … 𝑤𝑤[0,100]

(1)

𝑤𝑤[1,1]
(1) 𝑤𝑤[1,2]

(1) … 𝑤𝑤[1,100]
(1)

⋮
𝑤𝑤[55,1]

(1)
⋮

𝑤𝑤[55,2]
(1)

⋱ ⋮
… 𝑤𝑤[55,100]

(1)
⎦
⎥
⎥
⎥
⎥
⎤

 

 

 (3.4) 

𝐿𝐿1 = �𝑎𝑎0
(1) 𝑎𝑎1

(1) … 𝑎𝑎12
(1)� = [1  𝑆𝑆(𝐻𝐻1)  ]  (3.5) 

𝐻𝐻2 = �ℎ1
(2) ℎ2

(2)� = 𝐿𝐿1𝑥𝑥 𝑊𝑊2  (3.6) 
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𝐻𝐻2 = �𝑎𝑎0
(1) 𝑎𝑎1

(1) … 𝑎𝑎100
(1) �𝑥𝑥

⎣
⎢
⎢
⎢
⎢
⎡ 𝑤𝑤[0,1]

(2) 𝑤𝑤[1,2]
(2)

𝑤𝑤[1,1]
(2) 𝑤𝑤[1,2]

(2)

⋮
𝑤𝑤[100,1]

(2)
⋮

𝑤𝑤[100,2]
(2)

⎦
⎥
⎥
⎥
⎥
⎤

  (3.7) 

𝐿𝐿2 = �𝑎𝑎1
(1) 𝑎𝑎2

(1)� = [ 𝑆𝑆(𝐻𝐻2) ]  (3.8) 

 

Where 𝑆𝑆(𝐻𝐻) in (3.5) and (3.14 is the output of passing each element of the transfer vector 𝐻𝐻  
through the sigmoid function as showed in Eq. (3.15). 

𝑆𝑆(𝐻𝐻) = �
1

1 + 𝑒𝑒ℎ1
1

1 + 𝑒𝑒ℎ2
⋯�  (3.9) 

 

3.2.4. Learning Curves 
To check if the amount of training examples is enough for the model, two plots with the error 
vs training set size and another error versus cross-validation set size are drawn. The expected 
behavior is as the number of training examples grows, both curves almost join in an asymptote 
behavior. These curves are called Learning Curves and are part of the diagnosis techniques for 
neural networks and other supervised learning models. The learnings curves for the task of 
labeling an image patch as “Crack” or “Not Crack” are shown in Figure 3.6. 

 
Figure 3.6:Learning curve for the Neural Network for the Crack detection step 

The NN for all the points plotted in Figure 3.6 had the following characteristics: 9 hidden units, 
1000 iterations of gradient descent and a value of𝜆𝜆 = 0. It can be seen that the error metric 
reaches an almost asymptotic value after the 5000 examples at an error value around 0.37. After 
this analysis, it can be concluded that the number of training examples is enough for the 
proposed model. 

 

3.2.5. Regularization 
The 𝜆𝜆 parameter presented in Eq. (2.32) from the regularization term must be adjusted for the 
model to prevent overfitting.  Again, a similar approach followed is similar to the one used for 
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finding the right number of hidden units is used.  Several values of 𝜆𝜆 are used to train the neural 
network, and for each one the Cross-Validation error is computed without the regularization 
term. The 𝜆𝜆 value chosen is the one that produces the less Cross-Validation error, and this value 
is used for the test set to check if the model is generalizing well. The values of  𝜆𝜆 tried ranged 
from 1𝑥𝑥10−1  to 100. Based on the plot presented in Figure 3.7 the point the minimum Cross 
Validation error occurs when𝜆𝜆 = 3, although different local minima are observed between 3 
and 10.  Nevertherless, in this model, the value 𝜆𝜆 = 3 is selected. 

 
Figure 3.7: Curve Error vs λ regularization term 

3.2.6. Misclassification Error 
After the number of hidden units, the output layer, the 𝜆𝜆 factor and the amount of training 
examples have been tuned and checked, the last step to verify is the misclassification error on 
the Test Set to measure the classifying prowess of the model. This step is also used to adjust the 
threshold for the NN output.  The final network has been trained on the 6107 training examples, 
and with 1000 iterations of the gradient descent an error of 0.08 was obtained in the end. The 
prediction for the Test and Cross-Validation sets are based on a thresholding of 0.5 for the 
output layer, assigning each label and choosing whichever label has a higher value. This step is 
explained in Table 3-1 with a small example in expression which shows 3 inputs and their 
respective predictions using a threshold of 0.5. Some predictions from the Test sets are 
presented in Figure 3.8 and Figure 3.9 and the complete predictions are included in section 
Annex I. 

 

Table 3-1: Four outputs from the Neural Network for crack detection being classified with a Threshold of 0.5 

Output Layer 
[“Crack”  “Not Crack”] 

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 Prediction 

[0.85 0.11] 0.5 “Crack” (1) 
[0.30 0.77] 0.5 “Not Crack” (2) 
[0.17 0.39] 0.5 “Undetermined”  
[0.58 0.25] 0.5 “Crack” (1) 
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Figure 3.8: Image patches from Test predicted as “Not Cracks” 

 
Figure 3.9:Image patches from Test set predicted as “Crack” 

The percentage of false positives true positives, false negatives and true negatives for the test 
set can be summarized the False Positives and Negative Table 3-2 shown below. The true 
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positives will be the all image patches that were classified as “Crack” and are labeled also as 
“Crack”. The confusion matrix for the Cross-Validation set is shown in Table 3-3. 

Test Set Prediction “Crack” (1) Prediction “Not Crack” (2) 
“Crack” (1) 47.30 0.00 

“Not Crack” (2) 0.81 50.20 
Table 3-2:Confusion matrix of the result of the NN in the Cross-Validation Set 

The percentages in Table 6 and Table 7 do not add up to 100% as there are 4 data examples that 
were considered as not having a clear prediction, these were simply included in the total 
misclassification error. With this in mind, the total misclassification Error for the Test Set is 2.45% 
and the total misclassification error for the Cross-Validation Set is 6.28%. 

 

Cross-Validation Set Prediction “Crack” (1) Prediction “Not Crack” (2) 
“Crack” (1) 43.05 0.27 

“Not Crack” (2) 3.27 50.68 
Table 3-3: Confusion matrix of the results of the NN in the Test Set 

Given both results on the Cross-Validation and Test Sets, it can be concluded that the neural 
network proposed is proficient at telling apart un-cracked concrete image patches from cracked 
concrete patches. The results can be attributed to the simplicity of the classification task and 
the engineered features that helped the model tell apart the image patches in an efficient way. 
The following section will feature an example this method to obtain a segmentation with zones 
with and without cracks in images with cracks. 

3.2.7. Example 
The segmentation was used on a picture of a test beam presented in Figure 3.10 , then a region 
of interest was picked as seen in Figure 3.11 and the result from the NN segmentation is 
presented in Figure 3.12. 

 
Figure 3.10: Picture of a prestressed concrete beam during testing 
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Figure 3.11: Region of interest picked by user from picture in Figure 3.10 

 
Figure 3.12: Mask obtained by the NN segmentation of the picture in Figure 3.10 
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3.3. Crack Measurement with Digital Image processing  
This section will explain a method to detect, measure the width and angle from cracks in a 
concrete surface. The approach taken is to use several Digital Image Processing techniques such 
as spatial filtering, edge detection and segmentation. The starting ROI for this method is mask 
output from the Crack Detection with a Neural Network method explained in section 3.2.  The 
algorithm steps will be explained in detail in the following subsection and can be resumed as: 

1.        Find thresholded edges in ROI. 

2. Obtain a mask from pixels around the edges detected in step 1 and whose pixel 
intensities are lower than the local mean minus a factor of the local standard deviation. 

3.   Pass all areas or image patches detected in step 2 through several modified line 
detection kernels to detect the orientation to obtain a response that will determine if 
the image patch has a crack or not depending on a tuned threshold. 

4.   All image patches which were detected as cracks and have an orientation from step 3 will 
be analyzed to measure the width measured with the help of the gradient of the image 
patches. 

3.3.1. Algorithm 
3.3.1.1. Edges 
From the four statements presented in section 0, the first one argued that crack are edge pixels. 
Therefore, the next step towards obtaining all pixels which are cracks will be to find edges in the 
input image. 

From the grayscale image 𝐼𝐼𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 an approximation of the gradient 𝐺𝐺  is generated with the 

Prewitt kernel help as showed in Eq.  (3.10) (3.11) and (3.12). Where 𝑆𝑆𝑥𝑥 = �
−1 0 1
−1 0 1
−1 0 1

� and  

𝑆𝑆𝑦𝑦 = �
−1 −1 −1
0 0 0
1 1 1

� are the 3x3 Prewitt kernels in horizontal and vertical direction 

respectively.  The symbol “ ∗ " represents the correlation operation between the 2 matrices and 
all the operations in Eq.   (3.12) are element wise operation. 

𝐺𝐺𝑥𝑥 = 𝑆𝑆𝑥𝑥 ∗ 𝐼𝐼𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺   (3.10) 

𝐺𝐺𝑦𝑦 = 𝑆𝑆𝑦𝑦 ∗ 𝐼𝐼𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺   (3.11) 

𝐺𝐺 = �(𝐺𝐺𝑥𝑥)2 + �𝐺𝐺𝑦𝑦�
2

    (3.12) 

Then an upper and lower threshold (𝑇𝑇ℎ𝑚𝑚𝑚𝑚𝑚𝑚,𝑇𝑇ℎ𝑚𝑚𝑚𝑚𝑚𝑚) is adjusted and applied to the gradient mask 
𝐺𝐺 to get potential crack pixels. This new mask 𝐺𝐺𝑇𝑇ℎ will be generated by segmenting all the points 
where the inequality  𝑇𝑇ℎ𝑚𝑚𝑚𝑚𝑚𝑚 < 𝐺𝐺 < 𝑇𝑇ℎ𝑚𝑚𝑚𝑚𝑚𝑚 is satisfied. 

 

3.3.1.2. Mean detection 
The pixels in the edge mask 𝐺𝐺𝑇𝑇ℎ  from the last step are not exactly the cracks pixels themselves, 
the edges will be surrounding the crack pixels. The pixels which have an intensity less than the 
local mean of the neighborhood  𝜇𝜇𝑙𝑙𝑙𝑙𝑙𝑙 will minus the local standard deviation 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 multiplied by 
a factor 𝑏𝑏  be picked as potential crack pixels meaning that the new mask 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 would be 
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computed with Eq. (3.13) . Where 𝑡𝑡 is a pixel in with the position 𝑡𝑡(𝑖𝑖,𝑗𝑗). The idea behind this mask 
is to pick up the darker pixels which should belong to the cracks as stated in the hypothesis in 
section 0.  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡)  =       𝐺𝐺𝑡𝑡ℎ(𝑡𝑡)   < 𝜇𝜇𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡) − 𝑏𝑏 .𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡) (3.13) 

 
The new mask called 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, is then passed through a region connectivity function (Matlab in-
built function “regionprops”) derived from the procedure described by Haralick (Haralick y 
Shapiro 1992) which gets features from all 8 pixel-connected regions that can be found on the 
mask. These features include: numerical label, centroid, area, perimeter, major axis, minor axis, 
etc.   

These regions generated will be called 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 for the later parts of this document.  

 

3.3.1.3. Orientation kernels 
The pixels in 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 may still be dark blobs or other unwanted points which are not really 
cracks. So, the next characteristic that will tell apart the cracks is used:   orientation. 

From all the regions in 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, the ones with small areas and relation between major and 
minor axis closer to 1 are removed.  Further, each of the filtered regions from 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 are 
passed through a modified line kernel that has been designed to respond to group of pixels that 
are lines with a specific direction. The algorithm automatically creates 180 kernels belonging to 
the respective 180 degrees to be evaluated in a neighborhood size given by the scale input.  

The kernel is generated from a piecewise function described in Eq. (3.14 and plotted in Figure 
3.13. Where the set  𝑀𝑀 = [1,2, …𝑚𝑚]  and  𝑥𝑥 ∈  𝑀𝑀 , the size of the kernel is m x m and “m” is 
always and odd number.  “w” is the width of the expected crack. The relation between the size 
of the kernel and the width is   𝑚𝑚

𝑤𝑤
= 5 . C is the pixel in the middle of the kernel and knowing 

that m is odd then  𝐶𝐶 = 𝑚𝑚+1
2

 .  

 

 

Figure 3.13:Function to generate the orientation kernel 
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𝑓𝑓(𝑥𝑥)

⎩
⎪
⎨

⎪
⎧

1 𝑥𝑥 = 𝐶𝐶
2𝑥𝑥 −𝑚𝑚 − 1
𝑚𝑚 − 1

1 ≤ 𝑥𝑥 < 𝐶𝐶
2𝑥𝑥 − 1 −𝑚𝑚

1 −
𝑥𝑥 𝐶𝐶 < 𝑥𝑥 ≤ 𝑚𝑚

−1 𝑥𝑥 > 𝑚𝑚  𝑜𝑜𝑜𝑜 𝑥𝑥 < 1

 (3.14) 

The base kernel is generated evaluating the function for 𝑥𝑥 = 1,2, . .𝑚𝑚 and placing the values in 
a column vector then copying this vector to form the complete 𝑚𝑚 x 𝑚𝑚 matrix. The kernel is then 
divided by the term “𝑚𝑚 𝑤𝑤” to make sure the positive pixels add up to 1. The base kernel 
represents the 0 degrees orientation 𝐾𝐾(𝜃𝜃 = 0); to generate the kernel for the other degrees 
the base kernel is rotated. For illustration purposes a small example of the procedure for 
generating an orientation kernel Eq. (3.15) summarizes the generation of a base kernel 𝐾𝐾 for 
zero degrees with 𝑚𝑚 = 5, 𝑤𝑤 = 1,𝐶𝐶 = 1. 

𝐾𝐾(0) =

⎢
⎢
⎢
⎢
⎡
−1
−0.5
   1
−0.5
−1 ⎥

⎥
⎥
⎥
⎤
→

1
(𝑚𝑚 ∗ 𝑤𝑤)

⎣
⎢
⎢
⎢
⎡
−1 −1 −1 −1 −1
−0.5 −0.5 −0.5 −0.5 −0.5
   1
−0.5
−1

   1
−0.5
−1

   1
−0.5
−1

   1
−0.5
−1

   1
−0.5
−1 ⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
−0.2 −0.2 −0.2 −0.2 −0.2
−0.2 −0.2 −0.2 −0.2 −0.2
   0.2
−0.1
−0.2

   0.2
−0.1
−0.2

  0.2
−0.1
−0.2

 0.2
−0.1
−0.2

   0.2
−0.1
−0.2⎦

⎥
⎥
⎥
⎤
  (3.15) 

 

The rotation from a base kernel 𝜃𝜃 = 0º to 𝜃𝜃 = 60º with 𝑚𝑚 = 5,𝑤𝑤 = 1,𝐶𝐶 = 1  is shown in Eq. 
(3.16). 

𝐾𝐾(𝜃𝜃 = 60)   =

⎣
⎢
⎢
⎢
⎡
−0.14 −0.14 −0.07 0.14 −0.07
−0.14 −0.07      0.14 0.14 −0.07
  −0.14
−0.07
−0.07

  −0.07
0.14
0.14

0.14
0.14
−0.07

 −0.07
−0.07
−0.14

−0.14
−0.14
−0.14⎦

⎥
⎥
⎥
⎤
  (3.16) 

 

For illustration purposes, another kernel generated with 𝑤𝑤 = 5,𝑚𝑚 = 25,𝐶𝐶 = 13, 𝜃𝜃 = 60° is 
shown in a surface 3D plot with 2 different points of view in Figure 3.14 and Figure 3.15. 

 
Figure 3.14: Orientation kernel for 60 degrees and a size of 25x25 pixels, viewpoint 1 
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Figure 3.15: Orientation kernel for 60 degrees and a size of 25x25 pixels, viewpoint 2 

3.3.1.4. Angle Detection 
As mentioned before, the filtered regions from 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 are multiplied elementwise in Eq. 
(3.17)  with the kernels generated for a given example. The results of each matrix elementwise 
multiplication and sum of all the cells will be called response, denoted by an 𝑅𝑅. The angle is then 
determined by selecting the direction which outputs the larger response and is greater than a 
threshold 𝑇𝑇 that is a real number between 0 and 1. Where  𝑡𝑡 is index for a filtered region in 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ; 𝜃𝜃 is the angle with 𝜃𝜃 = 1,2,3 … 180 ; 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅𝑅𝑅 is a local matrix in 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶; 
𝐾𝐾𝑚𝑚(𝜃𝜃) is the orientation kernel with size 𝑚𝑚 for 𝑚𝑚 pixels for the angle 𝜃𝜃 and (𝑖𝑖, 𝑗𝑗) is the indexing 
for the cells in the local matrices 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅𝑅𝑅 and 𝐾𝐾𝑚𝑚. For illustration purpose, a neighborhood 
from the mean detection matrix and the original RGB neighborhood is shown in Figure 3.16.  

 

𝑅𝑅(𝜃𝜃) = ��𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡)𝑖𝑖𝑖𝑖 ∗ 𝐾𝐾𝑚𝑚(𝜃𝜃)𝑖𝑖𝑖𝑖

𝑚𝑚

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

 (3.17) 

 

 
Figure 3.16: Neighborhood from an input picture and the same neighborhood segmented with the mean detection 
thresholding 

The maximum point (𝜃𝜃𝑀𝑀,𝑅𝑅(𝜃𝜃𝑀𝑀))   from the function 𝑅𝑅(𝜃𝜃) presented in Eq. (3.17) is expected 
to be the orientation angle 𝜃𝜃𝑀𝑀 of the crack represented in the image patch. Figure 3.17 shows 
the responses 𝑅𝑅(𝜃𝜃) from the neighborhood shown in Figure 3.16 to some kernels orientations 
with size 𝑚𝑚 = 15 pixels. From the plot presented in Figure 3.17 , the maximum seems to occur 
at 𝜃𝜃 = 136° and to obtain a closer approximation to the maximum 𝜃𝜃𝑀𝑀 an interpolation is 
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needed given that only discrete and integer values of 𝜃𝜃  have been tried.  Hence the angle 𝜃𝜃𝑀𝑀 of 
the crack is obtained with interpolation presented in Eq. (3.18) ; where (𝜃𝜃0, 𝑅𝑅(𝜃𝜃)0) is the point 
with the maximum response (𝜃𝜃0 = 136° in Figure 3.17 ); (𝜃𝜃1, 𝑅𝑅(𝜃𝜃)1) and (𝜃𝜃2, 𝑅𝑅(𝜃𝜃)2) are the 
other 2 points on each side of the maximum response (𝜃𝜃1 = 133°  and 𝜃𝜃2 = 139° from example 
Figure 3.17 ). 

𝜃𝜃𝑀𝑀 = �
𝜃𝜃2 − 𝜃𝜃1

2
��

ln(𝑅𝑅(𝜃𝜃2)) − ln (𝑅𝑅(𝜃𝜃1))
2 ln(𝑦𝑦1) − 4 ln(𝑦𝑦0) + 2ln (𝑦𝑦2)�

  (3.18) 

 
Figure 3.17: Response of the neighborhood shown in Figure 3.16 to the orientation kernels of size m=15 

3.3.1.5. Width  
After the angle has been determined the width is determined by taking each point 𝑡𝑡 that has an 
angle 𝜃𝜃𝑀𝑀(𝑡𝑡) and generating a local matrix 𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡) around its neighborhood.   

In theory, given a local square matrix 𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡) in the input matrix 𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅 where a crack is found. If 
a line is drawn perpendicular to the image patch with a crack and in this line the pixel local 
positions vs color intensity are plotted, the distribution in any of the 3 color channels should be 
of a constant line (representing the intensity of the background concrete), that makes a sudden 
drop of intensity on the pixels that belong to the crack. This is exemplified in Figure 3.18. 
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Figure 3.18: Theoretical color intensities in a line of pixels perpendicular to the crack width Where: BC is the color 
intensity of the background (concrete); CC is the color intensity of crack; C is the center of the line of pixels; w is the 

width of the crack 

However, the color of the background in concrete elements has seldom a constant distribution 
of intensity. Instead, it is usually observed a distribution like the one shown on Figure 3.19 
where the drop of intensity because of the crack is blurred by the demosaicing or color filter 
array interpolation of the RGB image. 

A line of pixels perpendicular to the crack angle is taken from the local matrix 𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡), as the 
width of the crack would be measured in the direction perpendicular to the crack.  To measure 
the width, from the values represented in Figure 3.19 a gradient approximation with central 
differences is computed. This is shown in Figure 3.20, and with this information the width can 
be measured as the horizontal distance between the minimum and the maximum of the gradient 
function. 
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Figure 3.19: Color intensities in a line of pixels perpendicular to the crack width. Where: BC is the color intensity of 

the background (concrete); CC is the color intensity of crack 

 
Figure 3.20: Gradient of the color intensities in a line of pixels perpendicular to the crack; Where: C is the center of 

the line of pixels; w is the width of the crack 

  



Crack Detection and Measurement 67 
 

 

3.4. Resume on Crack Detection Step 
 

The crack pixels obtained from the method described in 3.3, will be marked on a matrix with the 
same size of the input picture. Meaning that if the input picture has a resolution of  𝑀𝑀𝑀𝑀𝑀𝑀 pixels, 
the output matrices will be a matrix of 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀3, in which the first layer �𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑍𝑍 = 1)� of 
the output matrix will have a “1” where a crack pixel is found and “0” elsewhere. This layer will 
be used for the drawing of the crack pattern. The second layer will have the values of the angle 
detected where the crack pixels were found and “0” elsewhere and the third layer will have the 
crack width measured. 

 

The final objective of these algorithms so far is to go from an input RGB picture with a given ROI 
to two mask matrices with the size of the input picture carrying the information of the crack 
pattern position and with 2 layers: “angles” and the “width”. This process is resumed by Figure 
3.21: 
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Figure 3.21: Graphical resume of the transformations and processes  
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4. Cracked Patch Clustering 
 

 

For multiple reasons (separation among parallel cracks, recognize longest cracks, recognize 
wider cracks, etc.), there exists interest to know the quantity of individual cracks that appear in 
an element. 

The previous chapter outputs two masks with the crack width and angle in each pixel; but these 
values lack information about the individual cracks composed by different pixels in the whole 
ROI.  Hence, it is still unknown how these crack patches group together and make up a single 
crack in the ROI, also there is no criteria to decide the quantity of cracks. This problem will be 
addressed in this chapter with the use of clustering techniques.  
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4.1. Problem statement 
The crack measurement algorithm explained in section 3.3 will output four important features 
for any image patch classified as “Crack”: Angle (orientation), Width, Position and Image Patch 
size in pixels or real-life metrics. Then, each image patch classified as “Crack” will have its four 
features (Angle, Width, Position and Image Patch Size or Kernel Size) transformed into a 
feature/crack vector that is described in Eq. (4.1). Where: 𝑥𝑥,𝑦𝑦  ∴  position in the image, 𝜃𝜃 ∴ is 
the angle of the crack, 𝑊𝑊 ∴ is the width in “mm”, 𝐾𝐾𝑠𝑠  ∴ is the size of the kernel size in pixels and  
𝑁𝑁 ∴ is the number of pixels that are considered cracks in that image patch 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛).   

 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛) = [𝑥𝑥 𝑦𝑦 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑊𝑊 𝐾𝐾𝑠𝑠 𝑁𝑁]  (4.1) 

 

Each crack patch represented as the crack vectors presented in (4.1) will be used as input for a 
clustering algorithm, this algorithm will have the objective of grouping up all crack vectors that 
belong to a single crack together in a cluster.  

 

4.2. Distance Metric 
Most clustering methods need a distance metric between data points (crack vectors) to be 
defined. A custom distance metric based on the geometrical properties of the crack vectors has 
been designed to group them up. This distance metric between any crack vector 𝑃𝑃(𝑎𝑎) and 𝑃𝑃(𝑏𝑏) is 
defined in Eq. (4.2):  

𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙 =
��𝑉𝑉�⃗𝑒𝑒𝑒𝑒𝑒𝑒��

3

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑉𝑉��⃗𝑒𝑒𝑒𝑒𝑒𝑒→𝑉𝑉��⃗ (𝑎𝑎) ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑉𝑉��⃗𝑒𝑒𝑒𝑒𝑒𝑒→𝑉𝑉��⃗ (𝑏𝑏)
 (4.2) 

 

Where the terms defined can be obtained from the data points 𝑃𝑃(𝑎𝑎) and 𝑃𝑃(𝑏𝑏) as stated in  Eq. 
(4.3) (4.4) (4.5) (4.6) (4.7) (4.8) (4.9) (4.10) (4.11) to: 

𝑃𝑃(𝑎𝑎) = [ 𝑥𝑥𝑎𝑎 𝑦𝑦𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎 𝑊𝑊𝑎𝑎 𝐾𝐾𝑠𝑠𝑎𝑎 𝑁𝑁𝑎𝑎]   (4.3) 

𝑃𝑃(𝑏𝑏) = [ 𝑥𝑥𝑏𝑏 𝑦𝑦𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑏𝑏 𝑊𝑊𝑏𝑏 𝐾𝐾𝑠𝑠𝑏𝑏 𝑁𝑁𝑏𝑏]   (4.4) 

𝐶𝐶(𝑏𝑏) = [𝑥𝑥𝑏𝑏 𝑦𝑦𝑏𝑏]                                                                        (4.5) 

𝐶𝐶(𝑎𝑎) = [𝑥𝑥𝑎𝑎 𝑦𝑦𝑎𝑎]                                                  (4.6) 

𝑉𝑉�⃗ (𝑏𝑏) = [𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑏𝑏]  (4.7) 

𝑉𝑉�⃗ (𝑎𝑎) = [𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎]  (4.8) 

𝑉𝑉�⃗𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐶𝐶(𝑎𝑎) − 𝐶𝐶(𝑏𝑏) = [(𝑥𝑥𝑎𝑎 − 𝑥𝑥𝑏𝑏) (𝑦𝑦𝑎𝑎 − 𝑦𝑦𝑏𝑏)]   (4.9) 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑉𝑉��⃗𝑒𝑒𝑒𝑒𝑒𝑒→𝑉𝑉��⃗ (𝑎𝑎) =
𝑉𝑉�⃗𝑒𝑒𝑒𝑒𝑒𝑒 ∙  𝑉𝑉(𝑎𝑎)

‖𝑉𝑉(𝑎𝑎)‖   (4.10) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑉𝑉��⃗𝑒𝑒𝑒𝑒𝑒𝑒→𝑉𝑉��⃗ (𝑏𝑏) =
𝑉𝑉�⃗𝑒𝑒𝑒𝑒𝑒𝑒 ∙  𝑉𝑉(𝑏𝑏)

‖𝑉𝑉(𝑏𝑏)‖   (4.11) 

 

In Figure 4.1 and Figure 4.2 the distances involved are shown for 2 different situations in which 
crack direction vectors 𝑉𝑉�⃗ (𝑎𝑎) and 𝑉𝑉�⃗ (𝑏𝑏) are either aligned or almost perpendicular to the vector 
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(𝑉𝑉����⃗𝑒𝑒𝑒𝑒𝑒𝑒) between its coordinates  𝐶𝐶(𝑎𝑎) and 𝐶𝐶(𝑏𝑏). In Figure 4.1 ,both projections 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑉𝑉��⃗𝑒𝑒𝑒𝑒𝑒𝑒→𝑉𝑉��⃗ (𝑎𝑎)  and 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑉𝑉��⃗𝑒𝑒𝑒𝑒𝑒𝑒→𝑉𝑉��⃗ (𝑏𝑏) are small and will output a rather low distance 𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙 as both projections terms are 
large and are in the denominator of Eq. (4.2). On the other had in Figure 4.2 when the projections 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑉𝑉��⃗𝑒𝑒𝑒𝑒𝑒𝑒→𝑉𝑉��⃗ (𝑎𝑎)  and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑉𝑉��⃗𝑒𝑒𝑒𝑒𝑒𝑒→𝑉𝑉��⃗ (𝑏𝑏)  are larger the distance 𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙 is larger. The objective of this 
distance metric is to make crack data points 𝑃𝑃 that are aligned have a low distance and join them 
up in a cluster, and from any other situation obtaining a smaller distance 𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙. 

 

 

Figure 4.1: The projection and distances between data points 𝑃𝑃(𝑎𝑎) and 𝑃𝑃(𝑏𝑏)when the Euclidean vector 𝑉𝑉�⃗𝑒𝑒𝑒𝑒𝑒𝑒  is almost 
perpendicular to both crack direction vectors 𝑉𝑉�⃗ (𝑎𝑎)and  𝑉𝑉�⃗ (𝑏𝑏) 
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Figure 4.2: The projection and distances between data points 𝑃𝑃(𝑎𝑎) and 𝑃𝑃(𝑏𝑏)when the Euclidean vector 𝑉𝑉�⃗𝑒𝑒𝑒𝑒𝑒𝑒  is almost 
collinear to both crack direction vectors 𝑉𝑉�⃗ (𝑎𝑎)and  𝑉𝑉�⃗ (𝑏𝑏) 

Note that when the angle between and 𝑉𝑉�⃗𝑒𝑒𝑒𝑒𝑒𝑒 and 𝑉𝑉�⃗ (𝑎𝑎) or 𝑉𝑉�⃗ (𝑎𝑎) is 90 degrees the projections 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑉𝑉��⃗𝑒𝑒𝑒𝑒𝑒𝑒→𝑉𝑉��⃗ (𝑎𝑎)  or 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑉𝑉��⃗𝑒𝑒𝑒𝑒𝑒𝑒→𝑉𝑉��⃗ (𝑎𝑎)  are zero. In these cases, each projection that is zero is set to 1e-

4. Also, that when the vectors 𝑉𝑉�⃗𝑒𝑒𝑒𝑒𝑒𝑒, 𝑉𝑉�⃗ (𝑎𝑎) and 𝑉𝑉�⃗ (𝑏𝑏) are all aligned, one gets the minimum 𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙 
distance for a given 𝑉𝑉�⃗𝑒𝑒𝑒𝑒𝑒𝑒. Another feature of this distance metric is that given a Euclidean vector 
𝑉𝑉�⃗𝑒𝑒𝑒𝑒𝑒𝑒 , the set of  𝑉𝑉�⃗ (𝑎𝑎) and 𝑉𝑉�⃗ (𝑏𝑏) that outputs the minimum distance is when all  𝑉𝑉�⃗𝑒𝑒𝑒𝑒𝑒𝑒  , 𝑉𝑉�⃗ (𝑎𝑎) and 
𝑉𝑉�⃗ (𝑏𝑏)  are aligned pointing in the same direction. And that distance would be equal to �𝑉𝑉�⃗𝑒𝑒𝑒𝑒𝑒𝑒� that 
is the Euclidean distance between 𝑉𝑉�⃗ (𝑎𝑎) and 𝑉𝑉�⃗ (𝑏𝑏). 

 

4.3. Linkage Criteria 
 

In order to implement the clustering algorithm besides the distance metric, the linkage criteria 
must be decided to determine the distance between clusters. In this problem, it has been 
decided to use a minimum distance criteria. This means that the distance between two clusters 
is the distance between the closest points in the given clusters. In Figure 4.3 the concept of the 
minimum linkage is illustrated for a set of points in the 2D space using the Euclidean distance 
criteria. 
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Figure 4.3: Minimum distance “d” between a cluster “A” and a cluster “B” 

4.4. Algorithm 
The algorithm to group up all crack data points that belong to a single crack will be done in two 
parts: The first step will form up the clusters based on the distance metric proposed above and 
a second step will filter the clusters based on the characteristics of their endpoints and their 
lengths. Both these steps will be explained in the subsections below. 

 

4.4.1. Clustering with distance metric and patch size threshold 
The steps to create each cluster are resumed in the workflow presented in Figure 4.4. where:  
𝑇𝑇ℎ is the distance threshold (to decide if a given point is close enough to another to form a 
cluster or not and), 𝐶𝐶𝐶𝐶𝑛𝑛 is a cluster generated by the algorithm, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ is the minimum cluster 
size (in data points); ‖𝜃𝜃𝑎𝑎 − 𝜃𝜃𝑏𝑏‖ is the maximum difference angle between 2 data points (point 
𝑎𝑎 outside cluster and point 𝑏𝑏 in a cluster 𝐶𝐶𝐶𝐶𝑛𝑛) , 𝑆𝑆  is the set with all available crack points 
available to cluster. 
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Figure 4.4: Flowchart for making up the crack clusters 
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The algorithm proposed differs from other hierarchical clustering algorithms in that some data 
points are left without cluster and some clusters are deleted. 

In Figure 4.5 an artificial crack example drawn in AutoCAD software to check how the clustering 
algorithm proposed works. To achieve this, the example image will be passed through the Crack 
Measurement algorithm described in 3.3. The image from Figure 4.5 will not be passed through 
the Crack Detection with Neural Networks step described in 3.2 as that step is useful only for 
real images with concrete surfaces.  Intentionally some dots and figures were drawn and are 
expected to be ignored by the Crack Measurement algorithm. The output in angle and width are 
shown in Figure 4.6 and Figure 4.7 in which it can be seen that the additional figures were 
ignored and erased by the algorithm. 

 
Figure 4.5: Artificial cracks and symbols drawn in AutoCAD to use as input for the Crack detection algorithm 

 
Figure 4.6: Mask with the widths of the cracks after passing the image in Figure 4.5 through the Crack Detection 
algorithm 
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Figure 4.7: Mask with the angles of the cracks after passing the image in Figure 4.5 through the Crack Detection 
algorithm 

 

The clustering algorithm was used on the width and angle masks shown in Figure 4.6 and Figure 
4.7  with  the settings : 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ = 5 , ‖𝜃𝜃𝑎𝑎 − 𝜃𝜃𝑐𝑐‖ = 45 and a threshold 𝑇𝑇ℎ that starts with the 
size of the kernel in pixels 𝐾𝐾𝑠𝑠𝑎𝑎 and updates with the mean of all the 𝐾𝐾𝑠𝑠 in the cluster plus its 
standard deviation. The result of the clustering algorithm is presented on Figure 4.8. 

 
Figure 4.8: Clusters found in the Mask presented in Figure 4.6 and Figure 4.7 

 

4.4.2. Cluster Filtering with endpoint distance and direction 
The good results on the clustering method presented in the subsection above can be attributed 
to artificial nature of the example; in pictures from real crack patterns the crack clusters will not 
usually pick up the whole single crack but fractions from it. This behavior is illustrated through 
an example developed in Figure 4.9, Figure 4.10 and Figure 4.11. Figure 4.9 presents the input 
picture and Figure 4.10 shows the result from the crack detection algorithm. Each of the clusters 
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obtained in Figure 4.11 do not represent single cracks but fractions of them. Another feature 
noticeable is that to approach a clean crack pattern with correct separation of single cracks; 
some of the clusters presented should still be merged and there are others that should be erased 
for being too small. 

 
Figure 4.9: Concrete beam being tested in laboratory presenting a shear crack pattern in its web (Celada 2018) 

 
Figure 4.10: Angle Mask obtained from passing the image in Figure 4.9 through the crack detection described in 

chapter 3 
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Figure 4.11: Result of the first step of the clustering algorithm explained in subsection 4.4.1 applied to the mask 

showed in Figure 4.10 

The proposed steps to improve the clusters generated are based on the distances between the 
endpoints of each cluster (each cluster is line-like). The criteria to join two clusters will be the 
following: if the distance �𝑉𝑉�⃗𝑒𝑒𝑒𝑒𝑒𝑒� (presented in (4.9)  ) between two endpoints 𝑃𝑃(𝑎𝑎)  ∈ 𝐶𝐶𝐶𝐶𝑘𝑘 and 

𝑃𝑃(𝑏𝑏) ∈ 𝐶𝐶𝐶𝐶ℎ  is lower than the size of their patch or neighborhood  𝐾𝐾𝑠𝑠
(𝑎𝑎) , 𝐾𝐾𝑠𝑠

(𝑏𝑏) and the angle 
between their direction vectors 𝑉𝑉�⃗ (𝑎𝑎) and  𝑉𝑉�⃗ (𝑏𝑏) is less than 30° then clusters 𝐶𝐶𝐶𝐶𝑘𝑘and 𝐶𝐶𝐶𝐶ℎ can 
be joined.  

The next step to remove clusters which may be not part of any crack will be to remove up 
clusters whose length is lower than 30 mm. These two steps are summarized in the workflow 
presented in Figure 4.12. An example which follows up on the clusters presented in Figure 4.10 
is shown in Figure 4.13, with the merging of the clusters whose endpoints are close. Finally, in 
Figure 4.14 the final clusters can be obtained by removing the clusters with smaller lengths. The 
final clusters are still not perfect as two small clusters were not removed and the long single 
cracks were still split in smaller cluster. This approximation of the correct clusters is enough for 
the application sough that is measuring the separation among cracks and classify individual crack 
clusters (this will be analyzed in the following chapter). This step is also used to filter the angle 
and width masks obtained at the end of chapter 3. 
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Figure 4.12: Flowchart with the steps for the cluster filtering 

 
Figure 4.13: Clusters after merging all clusters whose endpoint crack points are close and have similar direction 

angles 
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Figure 4.14: Final clusters after removing those whose length is smaller than 30 mm 
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5. Crack Pattern 
Classification with Machine 

Learning 
 

 

 

The concrete pathologies reviewed in on section 2.4 (flexure, shear, corrosion and bond-slip of 
the reinforcement bars) express themselves in concrete beams with particular crack patterns 
that trained technicians can recognize by visual inspection.   

In chapters 3 and 4, several methods to identify, measure and cluster cracks have been 
presented; the main objective of this chapter is to use the output and information obtained from 
the formerly mentioned methods and use it as an input for a machine learning model to classify 
the crack patterns into one or several of the reviewed pathologies from section 2.4.  
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5.1. Problem statement 
The input for the machine learning model described in the current chapter will be the angle and 
image masks obtained in 3.3.1.  The target or output labels for the model will be (1) Flexion, (2) 
Shear and (3) Corrosion and Bond; They represent the crack patterns that are caused by the 
pathologies high bending, shear stress, corrosion of reinforcement and bond slip respectively.  
These pathologies have been chosen as labels because they occur often in concrete beams and 
their crack patterns are very distinctive, identifiable by visual inspection and there are abundant 
examples as photos depicting these crack patterns to be used as training examples for a machine 
learning model. Corrosion and Bond were joined up in a label since the inputs (the width and 
angle masks from 3.3.1) proposed for the machine learning model only carry information about 
the cracks in the concrete element; the cracks pattern derived from corrosion and bond are very 
similar; they both tend to extend horizontally parallel to the longitudinal reinforcement and in 
order to tell them apart more information besides the crack pattern would be required. Then 
the problem to solve may be resumed graphically by Figure 5.1 below. 

 
Figure 5.1: Flowchart with the inputs, model and outputs to solve the classification problem of assigning a crack 
pattern to a given pathology. 

5.2. Training Examples for Machine Learning Model 
 

5.2.1. Base Images Set 
In order to train the model, several pictures with flexion, shear and bond-corrosion crack 
patterns have been collected. Some of those pictures were portrayals of real crack patterns in 
concrete structures and others were sketches from drawn crack patterns from experimental 
campaigns (Bairán, Mari y Cladera 2017) or examples from books on repair and rehabilitation of 
structures ((AENOR) 2009) (Broto Xavier 2006) (Elizalde Javier 1980) (Muñoz 1994)  and some 
obtained by web searching.   Some of the images used for training examples are shown in Figure 
5.2, Figure 5.3, Figure 5.4, Figure 5.5, Figure 5.6 and Figure 5.7; in total around 40 photos with 
the chosen crack patterns have been collected, these will be called the Base Image Set and all of 
them are presented in the Annex II. 
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Figure 5.2: Crack pattern from a test beam failing in  (Cladera 2003) 

  
Figure 5.3: Photo from a test beam failing by shear (Walraven 1980) 

 
Figure 5.4: Photo of a beam in a building with shear cracks along all its web (Muñoz 1994) 

 

Figure 5.5: Shear Crack pattern from testing on beams with corroded shear reinforcement (Takahashi 2013) 
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Figure 5.6: Typical crack pattern generated by flexion and shear (Broto Xavier 2006)  

 

  
Figure 5.7: A drawn crack pattern from a test in a concrete beam (Bairán, Mari y Cladera 2017) 

5.2.2. Transformation of Base images into Standardized images 
At the start of the present chapter the input of the classification problem was defined as the 
width and angle masks from chapter 3. In order to obtain those masks, it would be necessary to 
pass all the training images through the methods from the crack detection and measurement 
described in chapter 3. This process requires the manual selection of a ROI by the user to choose 
a concrete surface. To automatize both the ROI selection and the computation of the width and 
angle masks every base image will be transformed into “standardized images”.  

The standardized images were generated with the aid of the AutoCAD software by sketching 
only the crack patterns of the base images and drawing the edges of the concrete beam in red.   
The transformation from a base image to a standardized example is shown in Figure 5.8  and 
Figure 5.9: 

 

 

Figure 5.8: Transformation of an example of a beam cracked by shear and flexion into a standardized image  
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Figure 5.9: Transformation of an example of a beam cracked by corrosion into a standardized image 

 

5.2.3. Standardized Images to Training Image 
When concrete beams crack, there can be multiple pathologies behind that cracking. And 
more than one pathology may affect a beam at the same time; but classification problems in 
machine learning require exclusive labels/classes, meaning that a given training example may 
not belong to more than 1 class or pathology differing from what happens in real life. To solve 
this issue, all standardized images will be transformed into label exclusive training images. An 
example of this would be taking standardized image that presents a crack pattern that has 
both Shear and Flexion cracks, the standardized image will be divided in two training images: 
one with only the shear crack pattern and the next one with only the flexion cracks.  This task 
can be observed in an example in Figure 5.10: 

 
Figure 5.10: Separating a standardized image example in exclusive examples (Flexion and Shear) 

5.2.4. Assumptions 
Some constraints will be included to the training examples images in order to simplify the 
pursued model:  

• The training examples ROI will cover a complete beam or fraction of it.  
• The height of the ROI will be the same as the web length. 
• The beam major axis will be oriented horizontally  
• The web height will be constant along its length.  

 

5.2.5. Expanding the number of Training Images 
Several transformations have been applied to the training images to generate more training 
examples:  

• Left-Right reflections: mirror transformations 
• Up-Down reflections:  only in corrosion-bond examples 
• Division of ROI in two viewpoints 
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• Erasing partially the crack pattern maintaining its class. 

With all these techniques, the training database reached 3858 examples, divided in 1444 
flexion examples, 1788 shear examples and 656 corrosion-bond examples.  

In the Annex II all the base images with crack patterns and all standardized images generated 
from 1 base image are presented. 

 

5.2.6. Transformation of Training Images into Feature Vectors 
All training images will have as ROI the area inside the red lines that compose the drawn limits 
of the beams. Then all of them are passed through the crack detection algorithm and filtered 
with the crack patches clustering. Last the width and angle maskss will be turned into a 3 
dimensional feature matrix generated as follows: 

The transformation will divide the input ROI in subareas by dividing in 6 parts in the vertical 
direction and 10 parts in the horizontal direction, and a depth of 36 representing the intervals 
of the crack angles each 5° (0°to 5°,5° to 10°, 10° to 15° … until 180°); the feature matrix size can 
be seen in Figure 5.11.   

 
Figure 5.11: Transformation from the mask crack output with the angles and width into a feature matrix 

The computation of the elements of the feature matrix can be divided in the following steps:  

• The crack pixels are mapped into a position in the first to dimensions of the matrix 
(Figure 5.12 )  

• Based on the angle the crack pixel has, it is placed inside the its correct depth position; 
as an example, the Figure 5.13 shows how the pixels inside the ROI subarea position 
(3,4) (also the coordinates in the Feature matrix) are placed in the depth or angle 
coordinate 5 that belongs to the interval 20 < 𝜃𝜃 < 25.  

• The value in a cell 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑖𝑖, 𝑗𝑗,𝑘𝑘) of a feature matrix is computed by making a local mask 
with all the crack pixels that belong there and measuring the largest line (𝐿𝐿𝐿𝐿𝐿𝐿) formed 
by the pixels in the local mask (Figure 5.13) with the aid of the Hough transform. The 
length of that line is divided by the size the largest dimension of the subareas as shown 
in Eq.  (5.1). 
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Figure 5.12: Mapping of the crack pixels in the ROI inside the Angle Mask into the Feature Matrix 

 

 
Figure 5.13: Mapping of the Angle mask into the depth of the Feature matrix, the depth represents the angle interval 
where  

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑖𝑖, 𝑗𝑗,𝑘𝑘) =
𝐿𝐿𝐿𝐿𝐿𝐿(𝑖𝑖,𝑗𝑗,𝑘𝑘)

max �𝑆𝑆𝑆𝑆𝑆𝑆𝑥𝑥,𝑆𝑆𝑆𝑆𝑆𝑆𝑦𝑦�
 (5.1) 

 

This Feature matrix setup stores information on the position of the crack pixels relative to the 
ROI, their orientation with the mapping into the depth of the Feature matrix.  

Finally, in order to have training example that can be used as input in any machine learning 
method, the feature matrix is transformed into a feature vector as shown in Figure 5.14: 
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Figure 5.14: Transformation from the feature matrix into a feature vector 

 

5.3. Model Selection 
Several machine learning models have been assessed to solve the classification problem 
proposed in this chapter.  For all of them, a 15% of the training examples were separated for 
testing. The achieved accuracies (in terms of the ratio of number of correct predictions over 
number of predictions) in the test sets for all models are resumed in Table 5-1.  This table shows 
that most models achieve accuracies higher than 90%. This fact allows giving some insight about 
the setup for this classification problem, it can be said that the input feature vector, the quantity 
and sparsity of the examples are close to the ideal values to solve this problem.  Among the 
models tested the ones with the best performances are the K-Nearest Neighbors (K-NN) and 
Neural Network (NN) standing out with 97% accuracy.  The NN has been chosen as the model to 
solve this classification problem; the reason to choose NN over the K-NN is the fact that K-NN 
outputs only the label number not a probability of the example belonging to that category, the 
model does not output a function but the classification is done with the learning examples 
available and it would not work properly with outliers.    

Model Accuracy (%) 
Logistic Regression (𝜆𝜆 = 0.11) 95.5 
Decision Tree (Max Splits=100) 93.2 

Linear Discriminant 91.6 
K- Nearest Neighbors (Cosine Distance, k=15) 97.2 

Support Vector Machine (cubic kernel) 96.3 
Neural Network, 1 hidden layer (𝜆𝜆 = 0.11) 97.1 

 

Table 5-1: Comparison of the performance of different machine learning models for the crack pattern classification 
problem  

A sigmoid function was used as the transfer function for the units of the NN. The diagnosis and 
validation for the proposed NN will be described in the following subsections.  

 

5.3.1. Number of training examples 
In order to check if the amount of training examples is enough for the model, the procedure will 
be the same as in 3.2.4 with the error defined as in (2.40). A Training (90%), Cross-Validation 
(10%) and Test (10%) set will be generated. 

For different numbers of training examples both the training and cross-validation errors are 
evaluated and stored. The discrete plot with the number of examples and errors is shown in 
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Figure 5.15. It is also clear that both the Cross-Validation and Training Errors starts behaving 
asymptotically starting at 1400 examples with error values around 0.1 for the Cross-Validation 
Error and less than 0.01 for the Training Error. The training error takes very small values and in 
the scale shown in Figure 5.15 all the values look like being zero, this scale was set to make sure 
the behavior of the cross-validation error is visualized well as it is the most important to validate 
the number of examples.   The number of examples is right if both the curves join at a level of 
error acceptable for the user (Ng, Machine Learning: Learning Curves 2016), therefore it can be 
concluded that the number of training examples is enough for NN model. 

 

 
Figure 5.15: Error in Training and Test Sets vs Number of Training Examples 

5.3.2. Number of Hidden Units 
In order to determine the optimal number of hidden units the approach taken will be the same 
used in section 3.2.3; to train many NN with different number of hidden units and evaluate both 
Training and Cross-Validation Errors. The ideal number of hidden units will be one that has the 
smallest error in the Cross-Validation set. The plot of number of hidden units vs Error is shown 
in Figure 5.16; and from this plot it is not a clear minimum for the cross-validation error given 
the noisy nature of the plot, but it is clear that after 5 hidden units the error stays around 0.1, 
and among these values after 5 units, at 7 units the error is 0.07. Then the number of hidden 
units will be 7 for the NN proposed. 
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Figure 5.16: Error in Training and Test set vs Number of Hidden Units in the NN 

5.3.3. Regularization Term 
The λ parameter, from the regularization term presented in (2.32) , must be adjusted for the 
model to prevent overfitting. Several values of λ are used to train the neural network, and for 
each one the Training error and Cross-Validation errors are computed without the regularization 
term. The λ value chosen is the one that produces the less amount of Cross-Validation error, and 
this value is used for the Test set to check if the model is generalizing well. The λ value that 
resulted in the lowest Cross-Validation error was λ=3x10-5 as seen in Figure 5.17.  

 
Figure 5.17 Test and Training Error vs the regularization parameter λ 

 

5.3.4. Misclassification Error 
After the number of hidden units, the output layer, the 𝜆𝜆 factor and the amount of training 
examples have been tuned and checked, the last step to verify is the misclassification error. The 
final network has been trained on the 2209 training examples and 770 examples in the Test set 
with 1000 iterations of the gradient descent a training error of 2x10-3.  
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 To measure the classifying prowess of the model a confusion matrix with the percentages of 
correct and incorrect predictions is presented in Table 5-2. 

. The matrix shows that the predictions of the model are good and the model makes mistakes of 
maximum 5% when it confuses Flexion and Corrosion-Bond classes with the Shear class; this 
situation resembles the confusion when there are flexion crack patterns that as they develop 
across the beam their direction rotates and resemble shear cracks.  

Table 5-2: Confusion Matrix with the percentages of true positives, false-positives and false negatives for the 
predictions of the NN model in the Test set. 

 (%) Predicted Class 
 Flexion (1) Shear (2) Bond-Corrosion (3) 

Ac
tu

al
 

Cl
as

s Flexion (1) 95.04 4.96 0 
Shear (2) 1.12 98.60 0.28 

Bond-Corrosion (3) 0 4.58 95.42 
 

 

5.3.5. Classification of real examples 
In order to solve the problem of classifying real examples belonging to more than 1 class an 
approach using the crack clusters will be implemented. The steps to take can be resumed as 
follows: 

• The input ROI will be passed through the method described in chapter 3  to obtain the 
angle and width masks. 

• The crack vectors from the masks will be clustered with the algorithm described in 
chapter  4, as in Figure 5.18 

• The angle and width masks will be generated from each individual crack cluster as in 
Figure 5.19. 

• Based on the crack clusters obtained, a feature matrix will be generated for each crack 
cluster (Figure 5.20).  

• Each feature matrix will be classified with the NN designed in this chapter as showed in 
Figure 5.21. 

This method ensures that all the different cracks will be classified correctly, a final 
representation with each crack cluster classified is presented in Figure 5.22. 

 

Figure 5.18: Crack clusters obtained from the width and angle masks 
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Figure 5.19 Segmenting the width and angle masks based on individual crack clusters, 4 of the clusters 30 found are 

presented in the right side of the figure. 
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Figure 5.20: Generating a Feature matrix from each angle and width mask segmented by their individual clusters  

 
Figure 5.21: Classification of each Feature matrix that belongs to each cluster crack with the NN designed 
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Figure 5.22: Final cluster classification for an example 
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6. Case Studies  
 

In this chapter, 5 concrete beams with cracks in them will be assessed with the automatic 
inspection and diagnosis system to measure their cracks and classify the crack pattern in one of 
the three labels defined: “Flexion”, “Shear” and “Bond-Corrosion”. Additionally, 1 example with 
a picture zooming in a crack pattern will be used to check the crack measurement method 
described in chapter 3. 

 

 

6.1. Shear-Flexure loading of partially prestressed beam 
 

The picture for this example depicts the test beam Viga I-181 from an experimental campaign 
(Celada 2018) (unpublished thesis) at the School of Civil Engineering at Barcelona Tech (UPC). 
The picture (Figure 6.1 ) was taken with a Nikkon D-5200 camera with a spatial resolution of 
6000x4000 pixels, the image scale is 0.16 mm/pixel.  The height of the beam is 0.5 meters and 
a length of 10 meters, the dimensions and marking of the area of the beam focused in shown 
in Figure 6.2 and the cross-section in the ROI focused is presented in  

 
Figure 6.1: Concrete beam  I-181” loaded with 635 kN 
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Figure 6.2: Elevation viewpoint with the dimensions of beam I-181 

 
Figure 6.3: Cross-Section of beam “I-181” in the ROI focused 

 

The ROI picked up for analysis is presented in Figure 6.4 below. 

 
Figure 6.4: Region of interest (ROI) selected from the image presented in Figure 6.1 

The segmentation with a NN is presented in Figure 6.5. 
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Figure 6.5: Segmentation by means of a NN of the ROI in Figure 6.4 

 

A zoom on the angle and width mask obtained at the end of the crack detection algorithms is 
presented in Figure 6.6 and  

 

 
Figure 6.6: Part of the Angle Mask obtained from the crack detection algorithm 
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Figure 6.7: Part of the Width Mask obtained from the crack detection algorithm 

The two steps from the clustering algorithm are presented in Figure 6.8 and Figure 6.9, it can 
be seen that some of the false positive caused by the border between the flange and web of 
the beam passed through. The rest of the cracks clusters were grouped up correctly in general. 

 
Figure 6.8: First part of the clustering algorithm applied on the width and angle masks from Figure 6.6 and Figure 
6.7. 



Case Studies 99 
 

 

 
Figure 6.9: Second part of the clustering algorithm applied on the masks from Figure 6.6 and Figure 6.7. 

The final classification mask is presented in Figure 6.10, the classification is correct in general 
with the exception of the bond corrosion cracks that are a product of the false positives 
detected. Also it must be noted that this example presents a crack pattern inherent to bond slip 
in the transversal reinforcement but this crack pattern was not part of the training images and 
not recognized correctly. 

 

Figure 6.10: Final classification mask of the example 
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6.2. Flexure loading of partially prestressed beam 
The picture for this example depicts the test beam “Biga 2” from an experimental campaign 
(Duarte 2019) at the Barcelona School of Civil Engineering at Barcelona Tech. The picture (Figure 
6.13) was taken with a Nikkon D-5200 camera with a spatial resolution of 6000x4000 pixels, the 
image scale is 0.18 mm/pixel. The beam has a length of 10.1 meters and height of 0.5 meters, 
furthermore the transversal reinforcement and dimensions of the beams are presented in Figure 
6.11 and Figure 6.12. The area of the beam focused in the photo in Figure 6.13 is marked in red 
in the elevation plan presented in Figure 6.11. 

 

 
Figure 6.11: Dimensions of the test beam “Biga 2” 

 
Figure 6.12: Cross-section of test beam “Biga 2” 
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Figure 6.13: Concrete beam “Biga 2” loaded with  486 kN 

The region of interest chosen to analyze is presented in Figure 6.14 and the segmentation with 
the NN is shown in Figure 6.15. 

 
Figure 6.14: Region of interest chosen from the picture presented in Figure 6.13 
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Figure 6.15: Segmentation with a NN of the ROI presented in Figure 6.14 

The crack detection algorithm outputs the Angle and Width masks presented in Figure 6.16 
and Figure 6.17. 

 

 
Figure 6.16: Angle mask obtained from the crack detection algorithm 
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Figure 6.17: Width mask obtained from the crack detection algorithm 

The clusters obtained from the angle and width masks are presented in Figure 6.18 and Figure 
6.19, it can be seen that a lot of false positives are detected due to the speckle pattern painted 
on the concrete surface but later in the final classification mask in Figure 6.20 they are 
removed by excluding that area from the analysis. 

 
Figure 6.18: Clusters obtained with the first part of the clustering algorithm applied on the Width and Angle masks in 

Figure 6.16 and Figure 6.17 
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Figure 6.19: Clusters obtained with the second part of the clustering algorithm applied on the Width and Angle 

masks in Figure 6.16 and Figure 6.17 

 

 
Figure 6.20: Final classification mask of the example 
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6.3. FRC concrete beam loaded in shear 
The picture presented in Figure 6.22 for this example depicts a concrete fiber-reinforced beam 
presented in the paper “Textile-reinforced mortar (TRM) versus fiber-reinforced polymers (FRP) 
in shear strengthening of concrete beams” (Tetta, Koutas y Bournas 2015). No information is 
presented about the camera used and photogrammetric information. The scale of 1.4 mm/pix 
is obtained from measuring the web height of 50 mm in the photo in Figure 6.22. The focused 
area on the beam is marked in red and the geometry, reinforcement and cross-section are 
presented in Figure 6.21. 

 

 
Figure 6.21: Beam geometry and reinforcement (Tetta, Koutas y Bournas 2015) 

 

 
Figure 6.22: Cracked fiber reinforced beam (Tetta, Koutas y Bournas 2015) 

The region of interest chosen to analyze is presented in Figure 6.23 and the segmentation with 
the NN is shown in Figure 6.24. 



Case Studies 106 
 

 

 
Figure 6.23: ROI selected from the picture presented in Figure 6.22 

 
Figure 6.24: Segmentation with a NN of the ROI presented in Figure 6.23 

The crack detection algorithm outputs the Angle and Width masks presented in Figure 6.25 
and Figure 6.26. 
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Figure 6.25: The Angle mask obtained for the ROI presented in Figure 6.23 

 
Figure 6.26: The Width mask obtained for the ROI presented in Figure 6.23 
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Figure 6.27: The crack clusters obtained with the clustering algorithm from the width and angle masks presented in 

Figure 6.25 and Figure 6.26 

 

 
Figure 6.28: Final Classification of the Crack pattern 
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6.4. Plastic hinge in fixed support of partially prestressed beam 
 

The picture for this example depicts the test beam “Biga 3” from an experimental campaign 
(Duarte 2019) at the Barcelona School of Civil Engineering at Barcelona Tech. The test beam 
has a length of 10.10 meters and a cross section of 0.5x0.5 mts, some of the dimensions and 
reinforcement in the beam are presented in Figure 6.30 and Figure 6.31 . The picture (Figure 
6.29) was taken with a Nikkon D-5200 camera with a spatial resolution of 6000x4000 pixels, 
the image scale is 0.152 mm/pixel.  

 

 

 
Figure 6.29: Concrete beam “Biga 3” loaded with 570 kN 

 
Figure 6.30: Elevation viewpoint of test beam “Biga 3” 
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Figure 6.31: Cross-section of “Biga 3” with its transversal and longitudinal reinforcement 

The region of interest chosen to analyze is presented in Figure 6.29 and the segmentation with 
the mean detection step is shown in Figure 6.24. 

 
Figure 6.32: Region of interest (ROI) selected from the image presented in Figure 6.29 

 
Figure 6.33: Mean detection segmentation of the ROI presented in Figure 6.32 
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The crack detection algorithm outputs the Angle and Width masks presented in Figure 6.34 
and Figure 6.35. 

 

 

 

Figure 6.34: Angle mask of the photo presented in Figure 6.29 

 

Figure 6.35: Width mask of the photo presented in Figure 6.29 

The result of the clustering algorithm is presented in Figure 6.36 and it groups up almost all the 
cracks present in the pictures. 
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Figure 6.36: Clusters obtained from the angle and width masks presented in Figure 6.34 and Figure 6.35 

 

The final classification mask is presented in Figure 6.37 and it can be seen that all shear cracks 
are correctly labeled. The flexion cracks are partially misclassified because they join up with a 
type of crack-pattern associated with bond-slip in the transversal reinforcement; this type of 
crack pattern was not included in the training as it is dependent on the position of the transversal 
reinforcement and in the framework of the problem this information is impossible to obtain 
from a photo of the beam.   

 
Figure 6.37: The final classification of the crack pattern in the photo in Figure 6.29 
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6.5. Shear loading in FRC beam without transversal reinforcement 
 

This example will feature an image ( Figure 6.38) depicting a beam reinforced with steel fibers 
obtained from the paper “Shear model for steel fiber reinforced concrete beams without steel 
reinforcement” (Dinh y Parra M. 2011), there is no information about the photograph taken so 
the scale is assumed as 1 mm/pix.  

 

 
Figure 6.38: Photo of fiber reinforced concrete beam without transversal reinforcement after essay 

The mean segmentation of the input picture is presented in Figure 6.39, due to the particular 
discoloration of the concrete surface the lower crack patterns are not detected by the 
algorithm, this happens because of the low resolution of the image; also some false positives 
passed through on the sides of the main crack. 

 
Figure 6.39: Mean segmentation mask obtained from the input picture presented in Figure 6.38 

The angle and width masks resulting from the crack detection algorithm is presented in Figure 
6.40 and Figure 6.41. 
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Figure 6.40: Angle mask obtained from the mean segmentation presented in Figure 6.39 

 

Figure 6.41: Width mask obtained from the mean segmentation presented in Figure 6.39 

The clustered crack patches are presented in Figure 6.42 and show that the clustering 
algorithm filtered out the false positives that had no crack patches to join.   
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Figure 6.42: Clustered crack patches obtained from the masks presented in Figure 6.40 and Figure 6.41 

The final classification of the clusters detected is presented in Figure 6.43 where it can be seen 
that the larger crack pattern was correctly classified. 

 
Figure 6.43: Final classification of the crack pattern 
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6.6. Local flange crack in I-shaped beam 
 

This example presents a small crack pattern ( Figure 6.44) on the flange of beam “I181” (Celada 
2018), the crack widths have been measured with a measuring magnifier. The goal for this 
example will be to check the accuracy of the crack width measurements obtained by the crack 
detection method presented in Chapter 3, so the crack pattern classification step will not be 
used in this example. The scale obtained from the photograph is 0.04810 mm/pix. The area 
focused in the beam and the transversal reinforcement are presented in Figure 6.45. 

 
Figure 6.44: Crack pattern on flange of concrete beam, the crack widths have been measured 

 
Figure 6.45: Elevation viewpoint of test beam “I181” 

The mean segmentation of the photograph in Figure 6.44 is presented in Figure 6.46. A zoom 
on the Width and angle masks is presented in Figure 6.47 and Figure 6.48, it can be observed 
that in general terms the width are consistent with the measurements. 
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Figure 6.46: Mean detection segmentation from applied on the photo presented in Figure 6.44 

 
Figure 6.47: Angle mask generated from the photograph presented in Figure 6.44 
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Figure 6.48: Width mask generated from the photograph presented in Figure 6.44 

A comparison is made in Table 6-1 between the values obtained from the crack detection 
method with the orientation kernels, and the measurements made with the measuring 
magnifier. It can be observed that in general the values are approximately the same and higher 
error occurs when the measurements are close to the minimum value that can be measured 
being 0.048 mm. In cases with larger scales such as 0.15 mm/pixel it was observed that the 
image resolution was  

 

 

  

Table 6-1: Comparison of crack widths obtained with a measuring magnifier and  

# 
Area 

Position Measuring 
Magnifier 

(mm) 

Orientation 
Kernel 
(mm) x y 

1 823 2335 0.05 0.9600 
2 1285 2284 0.10 0.1110 
3 1841 2187 0.20 0.1786 
4 2622 2235 0.30 0.4322 
5 2873 2752 0.45 0.4690 
6 3440 2228 0.50 0.5740 
7 2816 3148 0.90 1.005 
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6.7. Remarks and commentaries 
 

The examples presented were pictures from test beams as they comply with the framework 
constraints presented in 0 to solve the problems, also they present at least one of the crack 
patterns associated to the pathologies chosen for this study. The results were generally good, 
with the system achieving detection of most of the crack pattern when the cracks’ widths were 
larger than 2 pixels.  Detection of cracks which are parallel and really close to each other posed 
a problem. Most correctly detected crack patterns in the examples were correctly classified in 
the pathologies chosen to study; except for a type of bond slip crack pattern in  Example 4 which 
was not included in the training of the machine learning model. 
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7. Conclusions 
 

 

7.1. Global conclusion 
 

This work has designed and implemented a semi-automatic system of crack detection and 
classification of crack pattern in concrete beams. This system is divided in 3 parts: The Crack 
Detection (chapter 3) step which is done through image processing techniques and machine 
learning models; the Crack Clustering (chapter 4) which groups up crack patches to attempt to 
count and extract the cracks in the picture; and the Crack Pattern Classification (chapter 5) which 
uses machine learning models to classify crack patterns in 3 pathologies. The crack detection 
segmentation is validated subjectively by inspection; the machine learning models were 
validated with the typical division in the training, cross-validation and test sets. All steps had 
good performance in the framework limits set at the start of this work.  

 

7.2. Specific conclusions and problems found 
 

The crack detection algorithm proposed in chapter 3 was proved to be effective in the detection 
of cracks ranging from 0.2 to 1.2 mm in photos taken from a distance of 0.7 to 1 meters and 
focusing to areas from 1 to 0.8 meters. The accuracy in the measurement of the crack angle 
reaches the decimal of a degree.  

The segmentation with the NN proposed in 3.2 proved to be good when segmenting relatively 
clean concrete surfaces with only stains or holes; but it may confuse drawn lines and borders 
with cracks. This could be solved by modifying the constrains of the problem and also with a 
different setup (new labels for the different image patches that are not cracks but are lines, 
numbers, borders, etc.); also, another option would be to use more advanced segmentation 
techniques. This problem was not directly addressed in the current work as solving it would lose 
some scope towards the general objective. 

The width’s measurement is greatly influenced by the image scale and the demosaicing 
interpolation inherent to most RGB cameras.  To obtain good precision and accuracy levels on 
measurements between 0.1 and 0.3 mm the pictures had to be focused on areas less than 300 
x 300 mm at 0.5 meters from the beams for a camera with 24 Megapixels. This fact translated 
in a poor accuracy of the width measurement when taking pictures of whole crack patterns. This 
problem is expected to be tackled with future work on undemosaicing techniques, machine 
learning models for the measurement algorithm and with cameras with better resolutions. 

The crack detection algorithm’s most important contribution is its output mask with all the angle 
and width of the cracks with the same spatial resolution as the input picture.  Another feature 
from the algorithm is the automated drawing of crack patterns that are used in every single 
testing of concrete elements and in the data acquisition of the rehabilitation of structures. These 
masks can help automatize the inspection of concrete structures and combined with the 
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information obtained from magnetic and radar rebar locators could be used to take decisions.    
Also, the angle and width masks could be used to improve mathematical models for resistance 
or corrosion that use the width and angle as inputs. 

The proposed crack clustering algorithm presented in Chapter 4 computes an approximation of 
the amount of cracks present in the ROI and assigns these cracks’ centroid, length, mean angle, 
mean width. This algorithm has also served to separate cracks to ease the classification task 
from the crack classifier presented in Chapter 5, to eliminate the amount of false positive 
detections as it excludes clusters with small lengths and number of crack patches.   

The crack classifier from Chapter 5 proved to be efficient in the task of separating the 3 different 
pathologies proposed demonstrating that the empirical visual knowledge from visual diagnosis 
can be transferred into a machine learning model.  This can set up an interest to research in 
using machine learning models to solve problems in rehabilitation of structures and other Civil 
Engineering sub-fields. 

In general terms the computation time depends on the size of the input picture, photographs 
with 24 MP (megapixels) could take 40 min, lower resolutions ranging from 0.5 to 1 MP took 1-
5 min pass the crack detection step which is the bottleneck of the system and where most of 
the effort would be made to improve the processing time. The rest of the steps are done faster, 
the segmentations takes 2-5 seconds; the clustering is in the order of one minute if it takes more 
than 2000 points; and the crack classification task takes around 1-3 minutes also depending on 
the clusters found. 

 

7.3. Recommendations for future works 
Each of the algorithms proposed can still be improved, starting with the crack detection with a 
Neural Network described in 3.2 uses an engineered feature vector whose computation in every 
image patch slows downs the computation. It would be interesting to investigate the capabilities 
of a convolutional neural network taking as input the original image patch. 

The crack detection with digital image processing techniques in 3.3 uses mainly basic image 
processing techniques with the exception of the orientation kernels. These kernels are generally 
accurate in detecting and measuring cracks but with the drawback that the method and 
implementation proposed is exhaustive and slow compared to other image processing 
extractions that take seconds and fraction of seconds. There is a wide field of research in 
segmentation, edge detection (Amahrir, Sabri y Aarab 2017) (Pereira, Morais y C. 2017)  yet to 
be explored and evaluated as a tool for the crack detection task. 

With the aid of machine learning models that can “learn” distance metrics functions such as the 
one proposed by Andrew Nguyen (Xing, y otros 2002) or other advanced clustering metrics; the 
algorithm presented in Chapter 4 may be improved to identify longer cracks as single cracks. 

This research can be seen as the seed for a bigger project attempting to create an automated 
diagnosing system for structures used for maintenance and rehabilitation purposes. The system 
would be implemented in a drone, robot or as a software that takes images from the structure 
as input; in the meantime, it may be implemented in robots to test the feasibility of automatic 
inspection.   

The future system should be able to identify the type of structural or non-structural element it 
is focusing on, then obtain a region of interest containing the element, identify the orientation 
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of the element, the boundary conditions, recognize presence of discoloration, uncovered 
reinforcement, buckling, detect and measure cracks and finally classify the damage as any of the 
pathologies it was trained to detect and decide whether it is a dangerous pathology or not. A 
rough approximation of the tasks and processes for future system is presented in Figure 7.1 
below showing the task of diagnosing the damage on a concrete column based on a photograph.  

 

 
Figure 7.1: A general Flowchart with the steps in a complete diagnosis of concrete structures 
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Annex I 
This section will present the complete source material for the training and validation of the NN 
trained in section 3.2 to classify image patches as “Crack” or “Not-Crack”. First the twenty-two 
images of cracked concrete surfaces used as source for extracting and labeling 25x25 image 
patches are presented in the first section of this appendix. Then the 7765 labeled image patches 
used to train the NN are presented the subsection named “Labeled Image Patches” which are 
divided in Training, Cross-Validation and Test Sets. The predictions on the Test-Set from the NN 
will be presented in the last part of this appendix. 

Cracked Concrete Surfaces 
All the images are taken from an image web search on the Google search engine with the search 
terms “cracks in concrete”. Each of the images website sources are listed below each of them. 

 
A-I- 1: Cracked surface from webpage: https://www.maintainingmyhome.org.nz/issues-and-repairs/issue/concrete-

patio-cracking/ 

 

 
A-I- 2: Crack surface from webpage: http://yellowpages.sulekha.com/articles/concrete-ceilings-repair.htm 
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A-I- 3: Crack surface from webpage: http://carolinafoundationsolutions.com/Cracked-Settling-Sinking-Concrete-

Slabs 

 
A-I- 4: Crack surface from webpage: https://www.houzz.co.nz/discussions/1174596/best-method-to-stop-polished-

concrete-from-cracking-on-floors 

 
A-I- 5: Crack surface from webpage: http://carolinafoundationsolutions.com/Cracked-Settling-Sinking-Concrete-

Slabs 

 

 
A-I- 6: Crack surface from webpage: https://www.muralswallpaper.co.uk/shop-murals/cracked-natural-marble-

wallpaper/ 
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A-I- 7: Crack surface from webpage https://www.dreamstime.com/royalty-free-stock-image-crack-concrete-close-up-

damaged-block-across-image32335256 

 
A-I- 8: Crack surface from webpage: 

http://homerepair.gregvan.com/foundation_repair/small_crack_in_floor_slab.htm 

 
A-I- 9: Crack surface from webpage: https://www.angieslist.com/articles/dont-delay-foundation-repairs.htm 
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A-I- 10: Crack surface from webpage: https://hdfoundationrepair.com/slab-foundation-repair-cost/ 

 
A-I- 11: Crack surface from webpage: 

http://www.appliedtechnologies.com/home/polyurethane_concrete_foundation_and_basement_crack_repair_kits.htm
l 

 
A-I- 12: Crack surface from webpage: https://everdryatlanta.com/extreme-cold-can-crack-atlanta-foundation/ 
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A-I- 13: Crack surface from webpage: https://www.angieslist.com/articles/pros-and-cons-asphalt-vs-concrete-

driveway.htm 

 
A-I- 14: Crack surface from webpage: http://www.concrete.org.uk/fingertips-nuggets.asp?cmd=display&id=510 

 
A-I- 15: Crack surface from webpage: http://www.milanda.eu/studio/downloads/brushes/photoshop-brushes-24-

cracks.html  
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A-I- 16: Crack surface from webpage https://anotherphotographynoob.wordpress.com/2012/04/18/cracks-in-the-

pavement/ 

 
A-I- 17: Crack surface from webpage http://concretemender.com/tag/hairline-cracks/ 

 

A-I- 18: Crack surface from webpage: https://www.pakistanpoint.com/en/weather/news/earthquake-jolted-taiwan-
66171.html 
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A-I- 19: Crack surface from webpage: https://www.picquery.com/c/cracked-concrete-

texture_JGKFglpCOpHiRvt8KeDS8kCGfdxMFlTNn8Uvw1paHbo/ 

 
A-I- 20: Crack surface from webpage: http://www.civilengineeringforum.me/methods-crack-repair-concrete/

 

A-I- 21: Crack surface from webpage: https://inspectapedia.com/structure/Concrete-Slab-Crack-Repair-FAQs.php 
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A-I- 22: Crack surface from webpage: http://tilt-up.org/tilt-uptoday/tag/convention/ 

 
A-I- 23: Crack surface from webpage: https://www.doityourself.com/forum/bricks-masonry-cinder-block-paving-

walking-stones-asphalt-concrete/479238-how-bad-crack-foundation.html 

 

Labeled Image Patches 
The image patches labeled and separated in the Training, Cross-Validation and Test sets are 
presented in groups of 300-500 image patches per figure: 

Training Set Examples 
The 6107 Training examples are  divided in the ones labeled as “Crack” (1) and the examples 
labeled as “Not Crack” (2) and presented 
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Cross-Validation Set Examples 

 

 

Test Set Predictions 
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Annex II 
 

 

 

 

This appendix will present the base images and the generated standardized examples from one 
of the base images used to train the Crack pattern classifier in chapter 5. 

 

Base Images 
 This subsection will present the base images used for training the crack pattern classifier. 

 
A-II- 1: Source: http://civildigital.com/failure-modes-beams/ 

 

A-II- 2: Source: http://civildigital.com/failure-modes-beams/ 
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A-II- 3: Source: Mari A.; Bairan J.; Cladera A. “Shear-flexural strength mechanical model for the design and 

assessment of reinforced concrete beams subjected to point or distributed loads” 

 

 

 
A-II- 4: Source: Atteshamuddin S. Sayyad, Subhash V. Patankar “Effect of Stirrups Orientation on Flexural 

Response of RC Deep Beams” 

 

 
A-II- 5: Source: Aravinthan T.; Suntharavadivel T.G. “Effects of Existing Shear Damage on Externally Posttensioned 

Repair of Bent Caps” 
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A-II- 6: Source: Marais C.C.; Robberts J.M. Rensburg B. W. “Spherical void formers in concrete slabs” 

 

 
  A-II- 7: Source: Walraven,. “Aggregate interlock: A theoretical and experimental investigation” 

 

 
  A-II- 8: Source: Mohr S. “Nonlinear static and dynamic model for the analysis of reinforced concrete frames 
under high shear force” 
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  A-II- 9: Source: Muñoz, H. M. (1994). “Diagnosis y causas en patologia de la edificación” 

 

 
  A-II- 10: Source: Broto J. (2006). “Elementos Constructivos, Enciclopedia Broto de Patologías de la 
Construcción” 

 

 

  A-II- 11: Source: Muñoz, H. M. (1994). “Diagnosis y causas en patologia de la edificación” 

 



Annex II 149 
 

 

 

 
 A-II- 12: Source: Santos .D  (2013). “A model for the nonlinear, time-dependent and strengthening analysis of 
shear critical frame concrete structures” 

 

 

 
A-II- 13: Source: Santos .D  (2013). “A model for the nonlinear, time-dependent and strengthening analysis of shear 

critical frame concrete structures” 

 

 

 
A-II- 14: Source: Santos .D  (2013). “A model for the nonlinear, time-dependent and strengthening analysis of shear 

critical frame concrete structures” 
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A-II- 15: Source: Santos .D  (2013). “A model for the nonlinear, time-dependent and strengthening analysis of shear 

critical frame concrete structures” 

 

 
A-II- 16: Source: Santos .D  (2013). “A model for the nonlinear, time-dependent and strengthening analysis of shear 

critical frame concrete structures” 

 

 
A-II- 17: Source: https://theconstructor.org/concrete/types-of-cracks-in-concrete-beams/5948/ 

 
A-II- 18: Source: https://theconstructor.org/concrete/types-of-cracks-in-concrete-beams/5948/ 
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A-II- 19: Source: https://gharpedia.com/types-summary-of-cracks-in-reinforced-concrete-beams/ 

 

 
A-II- 20: Source: https://theconstructor.org/concrete/types-of-cracks-in-concrete-beams/5948/ 

 
A-II- 21: Source: Muttoni A.,Fernandez M.  (2008) “Shear strength in one- and two-way slabs according to the 

Critical Shear Crack Theory” 
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A-II- 22: Source: http://www.globalspec.com/reference/45680/203279/chapter-7-limit-analysis-of-perfect-plasticity 

 

 

A-II- 23: Source: http://slideplayer.com/slide/10776083/,   
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A-II- 24: Source: http://slideplayer.com/slide/10776083/,  

 

 

A-II- 25: Source: Maaddawy T. , Soudki K. (2005) “Carbon-Fiber-Reinforced Polymer Repair to Extend Service Life 
of Corroded Reinforced Concrete Beams”  

 

 

A-II- 26: Source: Manos C. ; Katakalos K.V. (2013) “The Use of Fiber Reinforced Plastic for The Repair and 
Strengthening of Existing Reinforced Concrete Structural Elements Damaged by Earthquakes”  
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A-II- 27: Source: Takahashi, R.  (2013) “Shear failure behavior of RC beam with corroded shear reinforcement”  

 

 

 

Standardized Image Example 
This section will present the generation of a set of standardized images examples spawned 
from a base image from the former section Base Images. 

The root image to generate a set of standardized images is presented again in Figure A-II-27 
and depicts a drawn crack pattern from a beam tested in a laboratory. The standardized image 
example generated from the base image in figure A-II-27 is presented in figure A-II-28.  

 
A-II- 28: Source: Mari A.; Bairan J.; Cladera A. “Shear-flexural strength mechanical model for the design and 

assessment of reinforced concrete beams subjected to point or distributed loads” 
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 A-II- 29: Standardized Image example generated from base image presented in A-II- 27 

 

Training Image  
The final training images that spawn from the standardized image example presented in figure 
A-II-28 are presented in this section to visualize the generation of the training images valid for a 
machine learning model. 

The first step to obtain training images is to make the examples label or class exclusive, then this 
is done by drawing separately the cracks that make up flexion, shear and bond-corrosion cracks. 
Besides separating the original crack pattern, some cracks are erased partially or completely to 
generate more examples. The set of training images from flexion cracks is presented in figure A-
II-29; the set with shear cracks is presented in figure A-II-30 and the set with the bond-corrosion 
cracks is shown in figure A-II-31. As commented in chapter 5, to further increase the number of 
training images transformations such as rotations, scaling and viewpoint cropping (Figure A-II-
32) are done on the training images generated.  
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A-II- 30: Flexion Training Examples generated from the standardized image example from figure A-II-28  
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A-II- 31: Shear Training Examples generated from the standardized image example from figure A-II-28  
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A-II- 32: Bond-Corrosion Training Examples generated from the standardized image example from figure A-II-28  
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A-II- 33: Training images generated from Viewpoint cropping of the flexion set presented in figure A-II-29  
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