
Departament de Ciències de la Computació

Ph.D. in Computing

Structure discovery techniques for circuit

design and process model visualization

Javier de San Pedro Martín

Advisor: Jordi Cortadella Fortuny

Barcelona, April 2017





Abstract

Graphs are one of the most used abstractions in many knowledge fields because
of the easy and flexibility by which graphs can represent relationships between
objects. The pervasiveness of graphs in many disciplines means that huge
amounts of data are available in graph form, allowing many opportunities for
the extraction of useful structure from these graphs in order to produce insight
into the data.

In this thesis we introduce a series of techniques to resolve well-known chal-
lenges in the areas of digital circuit design and process mining. The underlying
idea that ties all the approaches together is discovering structures in graphs.
We show how many problems of practical importance in these areas can be
solved utilizing both common and novel structure mining approaches.

In the area of digital circuit design, this thesis proposes automatically dis-
covering frequent, repetitive structures in a circuit netlist in order to improve
the quality of physical planning. These structures can be used during floor-
planning to produce regular designs, which are known to be highly efficient
and economical. At the same time, detecting these repeating structures can
exponentially reduce the total design time.

The second focus of this thesis is in the area of the visualization of process
models. Process mining is a recent area of research which centers on studying
the behavior of real-life systems and their interactions with the environment.
Complicated process models, however, hamper this goal. By discovering the
important structures in these models, we propose a series of methods that can
derive visualization-friendly process models with minimal loss in accuracy.

In addition, and combining the areas of circuit design and process mining,
this thesis opens the area of specification mining in asynchronous circuits.
Instead of the usual design flow, which involves synthesizing circuits from
specifications, our proposal discovers specifications from implemented circuits.
This area allows for many opportunities for verification and re-synthesis of
asynchronous circuits.

The proposed methods have been tested using real-life benchmarks, and
the quality of the results compared to the state-of-the-art.





Acknowledgments

This thesis would have been impossible without the expertise, guidance, and,
sometimes, necessary insistence of my advisor, Prof. Jordi Cortadella. As all
his students will attest, including myself, it is quite an opportunity to be able
to work with him. I am thus extremely thankful for this opportunity, that has
allowed me a firsthand view of both the academic and industrial worlds of
Computer-aided design; as well as his ability to make sense even from the most
terrible of my explanations.

I would also like to thank every person I have had the pleasure to work with.
For the extremely useful guidance during the early days, Nikita Nikitin, Prof.
Josep Carmona, and Prof. Jordi Petit. For their insights on Chip multiprocessors
and Networks-on-Chip, Francesc Guim, Antoni Roca and Daniel Rivas. For his
knowledge on the, for me, novel topic of Process Mining, Jorge Muñoz-Gama.
For our discussions on asynchronous circuits and transition systems, Thomas
Bourgeat. I hope that I have been as useful to you as you have been to me in,
believe me, very stressful times.

And then, I would also like to thank all the people I have not been able
to work with, but would have enjoyed to. From my lab colleagues working
on similar topics, I would like to thank Alex Vidal, Alberto Moreno, and Lu-
cas Machado. A special gratitude goes to Seppe vanden Broucke, Joos Buijs,
and the CoSeLoG, ActiTraC, and 4TU.Datacentrum projects, for providing the
benchmarks that have been used to evaluate many of the methods proposed
in this thesis. Plus, big thanks to all the excellent people in UPC, including
professors, researchers, and administrative staff.

I obviously will not forget about all the support provided by my family, nor
from all all the friends made during this experience – Daniel Alonso, Sergi Oliva,
Adrià Gascón, Ramón Xuriguera, Josep Lluís Berral, Alberto Gutiérrez, Evelia
Lizárraga, Eva Martinez, Carles Creus, Albert Vilamala and M. Àngels Cerveró.
Good luck you all in your future endeavors!

This work has been supported by a scolarship from the Catalan Government
(FI-DGR 2013).





Contents

1 Introduction 1
1.1 Contributions of this thesis . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Structure of this document . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries 9
2.1 Graph mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Process mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 VLSI design flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Asynchronous circuits . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 Mathematical optimization . . . . . . . . . . . . . . . . . . . . . . . 31

3 Physical planning for chip multiprocessors 33
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Architectural exploration . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Floorplanning methodology . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 Wire planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Regularity-constrained floorplanning 57
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 Exploring regularity and hierarchy . . . . . . . . . . . . . . . . . . 61
4.4 Regular floorplanning algorithm . . . . . . . . . . . . . . . . . . . . 65
4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Log-based simplification of process models 81
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



5.3 Metrics for relevant arcs . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4 Simplification methods . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Structured mining of Petri nets 103
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3 Structured mining flow . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.4 Construction of an LTS from a log . . . . . . . . . . . . . . . . . . . 106
6.5 Extraction of LTS slices . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.6 Synthesis of Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7 Discovery of duplicate tasks 121
7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.3 Local Excitation Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.4 Discovering duplicate tasks . . . . . . . . . . . . . . . . . . . . . . . 125
7.5 Meta-transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8 Specification mining of asynchronous controllers 139
8.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
8.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.3 Circuits with constrained environment . . . . . . . . . . . . . . . . 144
8.4 Specification mining . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
8.5 Properties of the specification model . . . . . . . . . . . . . . . . . 151
8.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9 Conclusions and future work 161
9.1 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . 161
9.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Bibliography 165



Chapter 1

Introduction

The ever increasing amount of information generated and captured during
day-to-day activities have firmly entrenched data mining as an essential part of
almost every sector in the global economy. The goal of data mining is to allow
the extraction of useful knowledge from large amounts of data. This data may
be generated either as a by-product of other activities, e.g. trails of consumer
interactions with both physical and online services, or data expressly captured
by all types of sensors.

Data of interest may be represented in various forms. Unstructured data is
perhaps the most simple, and includes free-form text, untagged audio or video,
or any other data that does not reside in fixed fields [105]. On the other hand,
structured data is organized according to some model. Fixed fields, tags and
other types of markers are used to separate the individual data elements.

With the rise of the Internet, relational databases, semantic tagging and
other advances, the amount of usable structured data has increased signifi-
cantly. Furthermore, in many knowledge domains data naturally lends itself
to a certain structure. It is common for trails of consumer interactions to be
comprised of well-delimited events tagged with timestamps, even if the event
information itself is unstructured. It is also common to find data described
in terms of relations between objects, such as in relational databases, or any
dataset describing a physical structure or a network. Structure mining, a subfield
of data mining, centers on extracting information from all types of structured
and semi-structured data.

Graphs provide an ideal abstraction model for structured data. At its core, a
graph represents the relationships between a set entities in a specific knowledge
domain. Because of the ease and flexibility by which graphs can represent
structured data, they are abundant in many topics of interest. Thus, there has
been a growing interest in the structured mining of graph data, an area referred
as graph mining [81].



2 Chapter 1. Introduction

Register request

Examine request

Accept request Reject request

Ask for more data

(a) A graph representing a process
(Petri net [112]).

Router Router

Router Router

L2 L2

Core Core

L3

L2 L2

Core Core

L3

L2 L2

Core Core

L3

L2 L2

Core Core

L3

(b) A graph representing a Chip multi-
processor (block-level netlist).

Figure 1.1: Examples of graph-based data structures.

The generality of graphs allows graph mining techniques to be used in a
variety of different knowledge fields. Figure 1.1 contains two examples of
graphs, modeling data sets of the two different domains in which this thesis will
primarily operate. However, graph mining is applicable to a myriad of other
real-world topics.

Figure 1.1a describes the control flow of a business process using a modeling
abstraction known as a Petri net [112]. Petri nets provide a formalism to describe
concurrent systems, effectively describing all possible executions of a system.
In the figure, a snippet of the behavior of an online request system is detailed.
While the vertices represent the different tasks performed by the system, the
edges specify the dependencies of the different tasks, e.g. it is necessary to
register the request before examining it.

The area of Process mining deals with the discovery of process models, such
as the one in Fig. 1.1a, from event logs. Process mining also deals with the
analysis and extension of these process models. Process models, Petri nets,
and the associated area of Process mining are documented with more detail in
Section 2.2.

From a different knowledge field, Fig. 1.1a shows a netlist, which describes
the physical connectivity of an electronic circuit. In this case, the vertices
represent the different high-level functional blocks of a Chip multiprocessor:
cores, I/O routers, and L2 and L3 cache memory modules. An edge indicates
a physical bus, perhaps comprising thousands of individual on-chip wires,
between a pair of components. Connectivity graphs like these are used, for
example, as inputs during the design stage of chip multiprocessors, to ensure
that highly connected components are kept physically close and thus minimize
total wire length. Netlists and the general design process of integrated circuits
will be further introduced in Section 2.3.



3

O

T

P

V

B

I

Q

R

A

Q

C

S

F

H
U

D

E

G

J

M

N

Figure 1.2: Process model extracted from consumer interactions with the
helpdesk of a telecommunications company.

As in other related fields of data mining, one of the significant challenges in
graph and structure mining is the ever growing amount of available data [105].
More information is being produced and captured than ever, and the trend for
the next decade is towards exponential growth. Such growth can provide new
opportunities to gather additional insights from the data. Due to the increased
complexity of the data, however, more advanced mining tools are required
before these benefits can be reaped. We center on two requirements, that we
describe with more detail below.

First, the danger of overwhelming data, i.e. too much ‘noise’ and not enough
‘signal’ so as to provide useful insight into the data. In Figure 1.2, we show
a process model constructed automatically from the event logs of real-life
helpdesk consumer interactions of a large telecommunications company [56].
The graph shown is too complex to provide any insight into the underlying
process, and thus fails at one of the primary objectives of data mining: providing
useful information. Simplifying or entirely avoiding these types of models is
one of the desirable objectives.

Second, larger data sets demand more efficient algorithms to process the
available data under reasonable time constraints. Algorithms for graph mining
should always consider efficiency in terms of the size of the input dataset.



4 Chapter 1. Introduction

Circuit netlists, for example, typically contain millions of individual vertices.
Algorithms should be scalable in the number of vertices and edges, whenever
possible. Alternatively, problems should be partitioned into smaller instances
to avoid excessive runtimes.

The ability to apply graph mining strategies to a wide range of problems
in the areas of circuit design and process mining, and the challenges and
opportunities provided by the ever-increasing available data in graph form
motivate this thesis. The rest of this chapter will describe the goals of this thesis
with more detail.

1.1 Contributions of this thesis

In this thesis, we propose using graph and structure mining methods to solve
various real-life problems in the areas of process mining and circuit design. The
underlying idea behind all of the proposed methods is structure discovery, i.e.,
automatically extracting new structures from structured data, usually in the
form of a graph. Specifically, the challenges addressed in this thesis are:

1. Finding repeating structures in netlists to optimize regularity in chip
floorplans (Chapters 3 and 4).

2. Simplifying process models by discovering visually-friendly structures
(Chapters 5, 6 and 7).

3. Reverse engineering asynchronous circuit specifications from implemented
circuits (Chapter 8).

The following subsections provide an high-level summary of each one of
these challenges.

1.1.1 Physical planning for regular layouts

In circuit design, the floorplanning problem comprises allocating the physical
space required to functional blocks in a chip. Structures that are highly con-
nected should be placed close together, so as to minimize the total required
length of the wires. The computational complexity of the floorplanning problem
highly depends on the number of components of the design.

Regular floorplans, which contain runs of repeating subpatterns, each of
them with the same subfloorplan, are well-known to provide multiple benefits.
Each of the repeating identical parts needs to be designed only once, thereby
exponentially reducing the design cost and search space of the problem.



1.1. Contributions of this thesis 5

In Chip multiprocessors (CMPs), a standard industry practice to exploit
regularity is via the use of tiles. A tiled CMP is usually entirely comprised of a
single tile design that is replicated tens or hundreds of times, usually in a grid-
like fashion. Chapter 3 presents a method to perform efficient floorplanning in
presence of these tiles, while still guaranteeing the global physical constraints
for manufacturing such as routability or abutability. The goal of the proposed
method is to be used during the early exploration of CMP architectures, as an
efficient estimator of the physical viability of candidate designs.

In Chapter 4, on the other hand, we present an approach that is more gen-
erally oriented towards all types of circuits. For this, we propose automatically
finding repeating subgraphs in the design netlist using frequent subgraph min-
ing techniques. We introduce a floorplanner, HiReg, that can use these frequent
subgraphs to accelerate floorplanning runtime and automatically produce regu-
lar floorplans, with configurable focus on area or wire length minimization. The
problem of frequent subgraph mining will be defined in Section 2.1.2, while
the algorithm used will be detailed in Chapter 4.

These chapters are based on the following publications:

• J. de San Pedro, N. Nikitin, J. Cortadella, and J. Petit, Physical Planning
for the Architectural Exploration of Large-Scale Chip Multiprocessors, in
Proceedings of the 2013 IEEE/ACM Seventh International Symposium on
Networks-on-Chip, Tempe, Arizona, USA, 2013.

• J. Cortadella, J. de San Pedro, N. Nikitin, and J. Petit, Physical-aware
system-level design for tiled hierarchical chip multiprocessors, in Proceedings
of the 2013 ACM International Symposium on Physical Design, New York,
NY, USA, 2013, pp. 3–10.

• J. de San Pedro, J. Cortadella, and A. Roca, A hierarchical approach
for generating regular floorplans, in Proceedings of the 33th IEEE/ACM
International Conference on Computer-Aided Design, San Jose, California,
USA, 2014.

1.1.2 Visualization of process models

As with any other discipline in data mining, a significant challenge in process
mining is presenting the results in a way such that new insight may actually
be gained from the data. While ever increasing computing power combined
with huge data sets provide new opportunities, in practice, there is a big gap
between what computers can store and what humans can interpret and use. For
crucial areas like health care, extracting value from the data is a challenge [7].



6 Chapter 1. Introduction

The visualization of process models in a understandable way for a human is a
crucial step towards this end.

In this thesis we propose a series of methods with the goal of simplifying
existing process models as well as process discovery techniques that allow the
direct generation of visually-friendly models. The proposed methods involve
applying graph mining techniques on top of either the process models them-
selves, or derived transition systems. While the methods are primarily oriented
towards Petri nets, many of the methods can be extended to other Process
model formalisms.

The first proposed approach, described in Chapter 5, introduces a series of
methods to simplify existing process models. We also propose a metric that
is able to rank the importance of the different control flow structures when
reproducing the behavior of the original process. This way, parts of a model
that have high visual complexity but only specify infrequent behavior can be
identified and removed. The understandability of the model can be enhanced
with a minimal impact on its fitness and precision.

Chapter 6 proposes an alternate approach in order to allow the simplification
of process models without incurring any cost in precision. Representing all the
behavior of a process in a single process model may not be possible without
sacrificing simplicity, fitness or precision. This is because real-life processes are
usually highly unstructured. The proposed approach automatically discovers
multiple process models, each of them satisfying certain structural properties
while centering on a specific aspect of the behavior of the process. Therefore,
the complexity of the obtained models can be kept under check even for complex
event logs.

Duplicate tasks [7] are an extension available in many process model for-
malisms, which allows two or more vertices in a single model to refer to the same
event. Duplicate tasks can be used to simplify process models with minimal
impact on their accuracy metrics. However, the automatic discovery of duplicate
tasks is an open challenge in Process mining. In Chapter 7, we contribute a
method to automatically discover duplicate tasks that is compatible with most
process mining discovery algorithms. The proposed method utilizes a graph
clustering strategy that is resilient to commonly used control flow structures,
such as loops, choice or concurrency. Additional extensions to the formalisms
of process models are also discussed.

These chapters are based on the following publications:

• J. de San Pedro, J. Carmona, and J. Cortadella, Log-Based Simplification
of Process Models, in Business Process Management (BPM), Innsbruck,
Austria, September 2015.



1.2. Structure of this document 7

• J. de San Pedro and J. Cortadella, Mining Structured Petri Nets for the Visu-
alization of Process Behavior, in Proceedings of the 2016 ACM Symposium
on Applied Computing (SAC), Pisa, Italy, April 2016.

• J. de San Pedro and J. Cortadella, Discovering duplicate tasks in transi-
tion systems for the simplification of process models, in Business Process
Management (BPM), Rio de Janeiro, Brazil, September 2016.

1.1.3 Specification mining for asynchronous circuits

Asynchronous circuits are not driven by a global clock signal, and offer many
potential benefits in terms of lower power consumption and higher performing
functional units, specially in light of the modern manufacturing processes and
the involved challenges. However, they have since long claimed to be more
difficult to design. In the traditional design flow of asynchronous control
circuits, the desired behavior of the circuit is formally specified in the form of a
Signal Transition Graph, from which an implementation can be automatically
synthesized [46].

In Chapter 8, we introduce the concept of specification mining, in which
a formal specification is obtained from the implementation of a circuit. We
propose a method to perform specification mining valid for many types of
asynchronous controllers and considering several delay models. The proposed
method combines both graph mining and process mining techniques, such as
the discovery algorithm proposed in Chapter 6.

This chapter is based on the following conference article:

• Javier de San Pedro, Thomas Bourgeat and Jordi Cortadella, Specification
mining for asynchronous controllers, in Proceedings of the 2016 IEEE
International Symposium on Asynchronous Circuits and Systems (ASYNC),
Porto Alegre, Brazil, May 2016.

1.2 Structure of this document

This thesis is structured in 9 chapters. This chapter constitutes the introduction
to the thesis. Chapter 2 introduces the necessary basic concepts in graphs,
circuit design, and process mining required for understanding this thesis.

Chapters 3–4 deal with the explotation of regularity during floorplanning. In
Chapter 3, we focus on Chip multiprocessors. Chapter 4 extends the method to
all types of circuits by using frequent subgraph mining strategies and providing
a more general version of the constraints defined in the previous chapter.



8 Chapter 1. Introduction

Chapters 5–7 center on the visualization of process models. Chapter 5 intro-
duces a method to simplify process models for visual consumption by directly
removing control flow structures that are least important to reproduce the most
frequent behavior in the log. In Chapter 6, we propose an alternative method
that allows simplification by generating a sequence of visually-friendly process
models, each of them centering on specific aspects of the process, rather than
constructing a unique model that may be difficult to simplify. Chapter 7 proposes
a method to exploit the concept of duplicate tasks for further simplification of
process models.

Chapter 8 opens the topic of specification mining for asynchronous circuits,
and shows a method to obtain the specifications of asynchronous controllers
with specific constraints for various delay models.



Chapter 2

Preliminaries

This chapter introduces the necessary background of concepts, algorithms and
knowledge areas that will be used in the rest of this document.

Section 2.1 introduces the area of graph mining, which is behind most
of the algorithms and methods presented in this thesis. Section 2.2 gives an
overview of the area of process mining, that will be the basis of Chapters 5,
6, 7. Section 2.3 provides a tour of the basic design flow of VLSI circuits to
help understand the context of Chapters 3, 4 and 8. Section 2.4 reviews the
area of asynchronous circuit design used in Chapter 8. Finally, Section 2.5
summarizes the area of mathematical optimization, including satisfiability and
linear programming.

2.1 Graph mining

The domain of data mining concerns itself with the extraction of patterns and
knowledge from data to facilitate understanding and further use of the data.
Structure mining is a proper subset of data mining that centers on structured
datasets. In particular, graph mining centers on providing efficient algorithms
to mine structures embedded in graphs [136]. Graphs, being one of the most
generic types of structure, are naturally suited to represent most types of
structured datasets.

Some examples of popular research areas in graph mining are [81]: frequent
subgraph mining; graph classification, clustering, and search; work-flow mining.
This section will provide an introduction to two of the most common subareas
of graph mining, frequent subgraph mining and graph clustering.



10 Chapter 2. Preliminaries

2.1.1 Graph basics

An undirected graph G = 〈V, E〉 is a two-tuple comprising a set V of vertices
and a set E of edges. An edge e = {v1, v2} ∈ E is an unordered pair of vertices
v1, v2 ∈ V . We say that any two vertices v1, v2 ∈ V are adjacent if there is an
edge e = {v1, v2} ∈ E connecting them. In this case, we also say that v1 and v2

are incident to e. The degree of a vertex v ∈ V is the number of edges incident to
v. Note that there can be only one edge between any pair of vertices v1, v2 ∈ V .

A path in G is a finite sequence of different vertices v1, . . . , vn ∈ V so that
e1 = {v1, v2}, . . . , en = {vn−1, vn} ∈ E. A path v1, . . . , vn ∈ V where v1 = vn is also
called a cycle. A graph is connected if there exists a path between each pair of
vertices. It is cyclic if contains any cycle.

In a directed graph G = 〈V, E〉, V is the set of vertices, while E = V 2 is a set
of ordered pairs of vertices. Every e = (v1, v2) ∈ E is a directed edge. Unlike
undirected graphs, every edge e = (v1, v2) has a direction, with v1, v2 being the
head and the tail of e respectively. In addition, v2 is direct successor of v1, while
v1 is a direct predecessor of v2.

A path in a directed graph respects the direction of the edges: v1, . . . , vn ∈ V
is a path only if e1 = (v1, v2), . . . , en = (vn−1, vn),∈ E. Given a directed graph G
and two vertices v1, v2 ∈ V , if there exists a path between v1, v2, we say that
v2 is a successor of v1, while v1 is a predecessor of v2. Similarly to undirected
graphs, a directed cycle is a path v1, . . . , vn ∈ V in which v1 = vn.

A directed graph is strongly connected if there is a path between every
ordered pair of vertices. Otherwise, a graph is weakly connected if there is a
path between each unordered pair of vertices. A directed acyclic graph (DAG) is
directed graph in which there are no cycles.

A subgraph G′ of graph G = 〈V, E〉 is another graph G′ = 〈V ′, E′〉 in which
V ′ ⊆ V and E′ ⊆ E. We say G′ is an induced subgraph if for every v ∈ V ′, all of
the incident edges of v in G are in E′.

A graph vertex labeling is a function L : V → Σ that assigns a label l ∈ Σ
for each vertex, where Σ is the alphabet of labels. Conversely, an edge labeling
L : E→ Σ maps a label to every edge. Often the combination of a graph and
labeling is referred as labeled graph.

Planar graphs

An embedding or drawing of a graph G = 〈V, E〉 on a surface S is an assignment
of a unique geometric position to each vertex v ∈ V and of a curve to every edge
e = {v1, v2} ∈ E so that the starting and ending points of the curve correspond
to the positions of v1 and v2. Unless specified, we will always assume S to
be the two-dimensional plane, R2. An embedding is planar if no two edges



2.1. Graph mining 11

intersect except possibly at the endpoints. A graph is planar if it has no planar
embedding in R2.

The crossing number of an embedding is the number of all intersections of
the curves representing the edges (excluding the common endpoints). For a
graph G, its crossing number is the minimal crossing number from all of its
possible embeddings in R2. Thus, a graph is planar iff its crossing number is 0.

The crossing number of a graph has often been used as a more accurate
measure of its complexity than its number of vertices or average degree. For
example, the crossing number of a netlist has been used to provide bounds on
the area and wire length required for routing a design [102].

Computing the crossing number of an arbitrary graph is a well-known NP-
complete problem [68]. Despite that, there are several methods to estimate it.
In this thesis we will use a technique derived from the mincross procedure as
used in the commonly used graph drawing program dot [66] from the Graphviz
suite [67]. As it is only an estimation, mincross may sometimes overestimate
the number of crossings in large, dense graphs. These pathological cases, most
often, are already highly complex even if the crossing number is overestimated.

Graph isomorphism

Two graphs G1 = 〈V1, E1〉, G2 = 〈V2, E2〉 are isomorphic if there exists a bijective
function f : V1→ V2 so that if any two vertices v1, v2 ∈ V1 are adjacent in G1 iif
f (v1), f (v2) are adjacent in G2. This forms an equivalence relation on graphs.

Two graphs G1, G2 labeled respectively with L1 and L2 are usually only
considered isomorphic if the bijection f preserves the labeling of the vertices.
That is, if ∀v ∈ V1,L1(v) =L2( f (v)).

The complexity of computing whether two general graphs are isomorphic is
currently an open question. There are polynomial-time algorithms for specific
types of graphs, such as for planar graphs. However, this not the case for all
types of graphs, even if in practice it can often be solved efficiently [44].

Given two graphs G1, G2, the subgraph isomorphism problem is defined as
finding G′1, a subgraph of G1 isomorphic to G2. Unlike graph isomorphism, the
problem of subgraph isomorphism is well-known to be NP-complete [44].

2.1.2 Frequent subgraph mining

Frequent subgraph mining (FSM) [81,90] is one of the most important areas
of graph mining. The objective of FSM is to extract all the subgraphs in a
given dataset (a labeled graph, or a set of labeled graphs) which satisfy certain
constraints. The most common goal is to find frequently recurring patterns,
i.e. runs of isomorphic or almost isomorphic subgraphs with high occurrence



12 Chapter 2. Preliminaries

S1

S1

S1

S1

(a) Frequent subgraph discovery.

S1

S1

S1

S1S2 S2

S2 S2

(b) Iteration of FSM.

S1 =

S1

S1

S2 =

(c) Discovered subgraphs.

Full graph

S2

S1 S1

S2

S1 S1

(d) Discovered hierarchal structure.

Figure 2.1: Frequent subgraph and structure discovery.

counts. However, additional constraints may be used. For example, finding
subgraphs that satisfy specific structural properties. Some of the most important
applications of FSM have been seen in the domains of chemistry, biology, and
web mining [81].

An example of the objectives of FSM can be seen in Fig. 2.1a [90]. We will
refer to the graph shown in this figure as G. Different labels for every vertex in
G are represented by different visual shapes in the figure. In G, subgraph S1

has been identified as the most frequent, since there are 4 instances of S1 in G.
Any other subgraph of G is either less frequent than S1, or has fewer vertices.

Note how the south-west instance of S1 in Fig. 2.1a contains an additional
edge that does not exist in other instances of S1. Most FSM algorithms allow
for inexact isomorphism, in which two subgraphs are not required to be entirely
isomorphic to be counted as two instances of the same pattern. Instead, an
approximate measure of similarity is used, depending on the nature of the
underlying problem.



2.1. Graph mining 13

Instances = 12

Instances = 4

Instances = 2

Instances = 1

4

2

1

4

2

2

. . .

4

2

2

. . .

2

2

. . .

Figure 2.2: Partial search tree of frequent subgraph mining.

General-purpose FSM is a high-complexity problem because of its depen-
dence on subgraph isomorphism, an NP-complete problem. The basic idea
behind most FSM algorithms is based on two alternating steps: candidate
generation and filtering. During candidate generation, each of the candidate
subgraphs from the previous iteration is grown by adding new vertices and
edges. The new, enlarged subgraphs form the set of candidates for the next
step. This next step, filtering, counts the number of instances of each candidate
subgraph: any candidate that is not frequent enough or violates any other
constraint is purged. The process iterates until there are no further candidates.

Figure 2.2 illustrates this by showing a potential search tree of FSM in the
graph from Fig. 2.1a (G). The first column corresponds to the first subgraph
candidate set, composed of all possible 1-vertex subgraphs of G. The number
of instances of each subgraph is also shown. On each next iteration (successive
columns), every candidate is extended by adding exactly one vertex. Each
candidate has multiple extensions, depending on the number of possible vertex
labels. Note how, given a candidate, the number of instances of each successor is



14 Chapter 2. Preliminaries

Purpose Input graph Desirable subgraphs
Optimizing regularity in chip
floorplans (Chapter 4)

Netlist Maximally frequent sub-
graphs.

Visually simplify process models
(Chapter 5)

Process model
(e.g. Petri net)

Subgraph of a specific size
that maximizes an objec-
tive function.

Mine structurally-simple pro-
cess models (Chapter 6)
Mine specifications from asyn-
chronous circuits (Chapter 8)

Labeled
transition
system

Subgraphs that satisfy
structural properties.

Table 2.1: Summary of graph mining variations proposed in this thesis.

always less or equal that of the candidate. The largest, most frequent candidate
found in the search tree is indicated by a dashed line.

Different FSM algorithms are distinguished [81] by the candidate generation
method (e.g. whether to enlarge a single vertex at at time or by combining
multiple graphs), search strategy (e.g. BFS, DFS, . . . ), and candidate evaluation
(metrics used for selecting the best graph, filtering, etc.). Adapting the algorithm
to the nature of the specific application domain may allow significant reductions
in the search space.

Subgraph mining is a core concept behind many of the approaches proposed
in this thesis. In Chapter 4, frequent subgraph mining is used to discover
repetitive patterns in netlists in order to increase the regularity of floorplans.
Chapter 5 shows how to simplify existing process models by extracting a single
subgraph that maximizes the quality of the model while keeping the complexity
under check. In both Chapter 6 and Chapter 8, graph mining is performed on
top of a labeled transition system An overview of these variations is described
in Table 2.1.

2.1.3 Structure discovery

One of the practical applications of FSM is structure discovery, sometimes also
called hierarchical clustering. The goal of structure discovery is to enhance the
interpretation of data in graph form by producing a hierarchical description of
the structural regularities in the data [43]. While FSM can be used to discover
repeated structures in the graph, structure discovery can be used to organize
these repeated structures into a hierarchical description of the data, allowing
an higher level of abstraction.



2.1. Graph mining 15

A simple yet common method to perform structure discovery is by perform-
ing multiple passes of FSM. This approach is described in Fig. 2.1. Once a
frequent subgraph S1 is discovered in Fig. 2.1a, each of its instances is replaced
by a new vertex that acts as a placeholder to the discovered subgraph instance,
as seen in Fig. 2.1b. This is commonly referred to as compressing the graph,
since it reduces the size of the graph.

The better a particular set of frequent subgraphs describe a graph, the more
the graph will be compressed by replacing the instances of each subgraph with
a placeholder vertex. Repeated iterations will discover additional subgraphs,
including hierarchical ones, containing previously compressed subgraphs. This
is exemplified by subgraph S2 in Fig. 2.1b, which comprises two instances of S1.
Whenever a newly-discovered subgraph is defined in terms of existing identified
subgraphs, these form a hierarchy. For example, the hierarchy tree formed by
S1 and S2 is shown in Fig. 2.1d. This structure describes the graph in a much
more compact way, and also provides an abstracted view of the regular patterns
in the graph.

Structure discovery has been applied to areas such as data compression [117]
or knowledge conceptual clustering [84]. The discovered hierarchies can pro-
vide varying levels of interpretation, with increased or decreased detail depend-
ing on the goals of the data analysis. As in FSM, inexact compression is often
used, even allowing for potentially overlapping subgraphs.

In this thesis, structure discovery is the basis of the method described in
Chapter 4 to generate regular floorplans. Existing structure in the input netlist
is automatically discovered and used to enhance the quality of floorplans.

2.1.4 Graph clustering

Despite the name, graph clustering is the problem of trying to find sets of
“related” vertices in a graph [124]. It should not be confused with the clustering
of graphs themselves.

Clustering in general is one of the main areas of research in data mining.
Unfortunately, no single definition of a cluster is universally accepted. Formally,
the vertices assigned to a particular cluster should be similar and/or connected
in some predefined sense. In some applications, it is desirable for clusters of
vertices to be connected: the number of edges that remain within a cluster
should be high, while there should be few edges that cross cluster boundaries.
In this scenario, good clusters usually form dense subgraphs.

Alternatively, it might be desirable for clusters to be composed of similar
vertices. The higher the similarity index, the more likely two vertices are clus-
tered together. Computing similarities between vertices may not be necessarily



16 Chapter 2. Preliminaries

simple. The most straightforward manner to compute a similarity index be-
tween two vertices is by using adjacency information, i.e., the overlap of their
neighborhoods [124].

The method described in Chapter 7 to simplify process models using dupli-
cate tasks involves clustering vertices on a transition system by their context.

2.2 Process mining

The digital data revolution that is taking place worldwide requires new algo-
rithms that enable acquiring value from the vast amount of data stored by the
current technology. Process-Aware Information Systems (PAIS) are at the center
of this revolution, since they are in charge of monitoring processes taking place
in our daily life, like banking, municipalities, shopping, health care, etc. Event
data, recorded in a PAIS in the form of event logs, denotes the footprints of
process executions, and is an important source of information for reasoning on
how the PAIS interacts with its environment when running its processes.

The area of Process mining uses these logs to discover, analyze and extend
process models [2]. Process models deliver valuable insight into the execution of
the underlying processes. Models can be used to find errors in real-life systems,
such as deadlocks. Bottlenecks and other factors influencing the response time
of a system can be identified by using simulation techniques. A process model
may also be used as description or specification of a PAIS.

Discovery, one of the major areas of process mining, fosters this goal by
constructing abstract process models that describe the high level structure of
the process. These models are automatically learned from the execution traces
of the proces, without using any other a-priori information.

An additional important area in process mining is conformance, in which
existing process models are compared with event logs generated by the same
process. Conformance checking verifies if the behavior described by the model
corresponds to the behavior observed in the event log. Deviations may be
detected in either the model or the event log, indicating potential hazards in
the execution of the PAIS. The area of enhancement, on the other hand, aims at
changing or extending an existing process model to better reflect the behavior
observed in the event log.

Traces and event logs

Event logs are the starting point to apply process mining techniques, guided
towards the discovery, analysis or extension of process models. Informally, an
event log is a set of traces, each of them being the footprint of a single execution



2.2. Process mining 17

Trace Parikh vector
a b c d

abcd 1 1 1 1
acba 2 1 1 0
aaaa 4 0 0 0

Table 2.2: Event log and Parikh vectors for each trace.

a

b

c

d

(a) Marked graph.

a

b c

(b) Free choice.

a

b

c

d

(c) Non-free choice.

Figure 2.3: Petri net types.

of a process. Traces, thus, are a chronological sequence of events, such as
“Request rejected”. Usually we will refer to the different types of events with a
single letter, e.g. A, B, . . ..

Let Σ be an alphabet of events. A trace is a word σ ∈ Σ∗ that represents a
finite sequence of events. An event log L ∈B(Σ∗) is a multiset of traces1.

Given a trace σ ∈ Σ∗, the Parikh vector of σ, ψ(σ) : Σ → N maps every
event e ∈ Σ to the number of times it appears in σ. Table 2.2 illustrates this
with an example. Parikh vectors are an important concept in transition systems,
as will be seen in the rest of this thesis.

Events usually contain additional attributes, such as the timestamp or the
actor that initiated the event. However, this work centers on the control flow
itself, and thus event attributes are not used. In many scenarios we propose
how the work could be improved by the use of such additional information.

2.2.1 Process models

Process models are formalisms to represent the behavior of a process. Among
the different formalisms, Petri nets are perhaps the most popular, due to its
well-defined semantics. In this thesis, we will primary focus on Petri nets as a
process model, although some of the work may be adapted to other formalisms
like BPMN [140], EPC [88] or similar.



18 Chapter 2. Preliminaries

Petri Nets

A Labeled Petri Net [112] is a tuple N = 〈P,Σ, T,L ,F , m0〉, where P is the set
of places, Σ is the alphabet of labels (corresponding to events), T is the set
of transitions, L : T → Σ∪ {τ} assigns a label (or the empty label τ) to every
transition, F : (P × T )∪ (T × P)→ N is the flow relation, and m0 is the initial
marking. A marking is an assignment of a non-negative integer to each place.
If k is assigned to place p by marking m, denoted m(p) = k, we say that p is
marked with k tokens. Given a node x ∈ P ∪ T , the set •x = {y|F (y, x)≥ 1}
is the pre-set of x , while x• = {y|F (x , y)≥ 1} is the post-set of x .

A transition t is enabled in a marking m when ∀p ∈• t, m(p) ≥ F (p, t).
When t is enabled, it can fire by removing F (p, t) tokens from each place
p ∈• t and putting F (t, p) tokens to each place p ∈ t•. A marking m′ is
reachable from m if there is a sequence of firings t1 t2 . . . tn that transforms m
into m′, denoted by m[t1 t2 . . . tn〉m′. A sequence t1 t2 . . . tn is feasible if it is
firable from m0. A trace σ fits N if there exists a feasible sequence in N with
the same labels.

A Petri net is live if for every marking m reachable from m0, and ∀t ∈ T ,
there is a marking m′ reachable from m which enables t. A Petri net is k-bounded
if for each p ∈ P and for every reachable marking m, m(p)≤ k. A 1-bounded
Petri net may also be referred to as safe.

In a Petri net, a choice is a place with more than one output transition. Two
transitions are said to be concurrent if they do not have dependencies between
them, i.e. they can fire in any order.

A transition labeled with the empty label τ is called a silent transition. A
duplicate task is a transition with the same label as some other transition in N .

A set of restrictions on the structure of Petri nets define several classes of
Petri nets. A Petri net N is a Marked Graph if ∀p ∈ P : |•p| ≤ 1∧ |p•| ≤ 1. It is a
Free-Choice net if ∀p1, p2 ∈ P : p•1 ∩ p•2 6= ; ⇒ |p

•
1|= |p

•
2|= 1. Note that every

marked graph is a free-choice net. Figure 2.3 illustrates these concepts. In
Fig. 2.3c, the choice between a, b is free, but the choice between c, d is not.

Workflow nets

We also introduce two additional two classes of Petri nets in which the starting
and ending markings are clearly delimited by special source and sink places.

A workflow net [1] is a Petri net N = 〈P,Σ, T,L ,F , m0〉 with exactly one
source place i ∈ P, with •i = ;, and exactly one sink place o ∈ P with o• = ;. In
addition, in a workflow net there is a path from i to every other node n ∈ P ∪ T ,
and a path from each node n ∈ P ∪ T to o.

1B(A) denotes the set of all multisets over A.



2.2. Process mining 19

a
b

c b

c
e

(a)

a

b
c

(b)

a

b

c

d

d

(c)

Figure 2.4: LTS corresponding to the Petri nets in Fig. 2.3

The Petri nets in Fig. 2.3b and 2.3c are workflow nets. However, the Petri
net in Fig. 2.3a is not, since there is no sink place.

A workflow net is sound [6] if and only if it satisfies the following properties:

• Option to completion: from every marking m reachable from m0, a marking
m′ with m′(o)> 0 can always be reached. Thus, the ending marking is
always reachable.

• Proper completion: for any reachable marking m where m(o) > 0, and
∀p ∈ P with p 6= o, m(p) = 0. That is, once the ending marking has been
reached, no other transition can fire.

• No dead transitions: every transition t ∈ T is enabled in at least one
reachable marking.

These properties ensure that a sound workflow net is both bounded and live
for all markings except the ending markings, where m(o)> 0. Sound workflow
nets are heavily used in process mining because their semantics are similar to
real-life processes.

2.2.2 Labeled Transition Systems

A finite labeled transition system is a tuple A= 〈S,Σ, T, s0〉 where S is a finite set
of states, Σ is the alphabet of labels, T ∈ S ×Σ× S are the transition relations
between states, labeled with Σ, and s0 is the initial state. A transition system
may also be interpreted as a directed graph where S is the set of vertices and T
is the set of edges.

We use s
e
−→ s′ as a shorthand for the arc (s, e, s′) ∈ T . Similar to Petri nets,

a trace σ = e1e2 . . . en fits LTS A if there exists a sequence s1, s2, . . . , sn ∈ S with
s0

e1−→ s2
...
−→ sn−1

en−→ sn.



20 Chapter 2. Preliminaries

Definition 2.1 (Excitation Set). For a given LTS A and event e ∈ Σ, we define
the Excitation Set of e as the set of states in which e is enabled, i.e.,

ES(e) = {s ∈ S | ∃s′ ∈ S : s
e
−→ s′}.

The following definitions formalize causality relations between two events:

Definition 2.2 (Concurrency and conflict). Two events a, b are concurrent if

there are four states, s1 . . . s4 in S such that s1
a
−→ s2

b
−→ s4 and s1

b
−→ s3

a
−→ s4.

In this case we will also say that a, b are concurrent in s1. Two events a, b are
in conflict if there is a state s ∈ ES(a)∩ ES(b) and a, b are not concurrent in s.

Definition 2.3 (Free-choice conflict). Two events a and b are in free-choice
conflict if they are in conflict and ES(a) = ES(b). In this situation the two events
are always enabled or disabled simultaneously, which corresponds to a similar
situation in Free-Choice nets.

Definition 2.4 (Trigger events). Given two states s1, s2 with s1
a
−→ s2 ∈ T , we

say a triggers another event b iff b is enabled in s2, but not in s1. In a sense, a
triggering b implies a causality relation between the two events. Analogously,
we say a disables b iff b is enabled in s1, but not in s2.

Definition 2.5 (Persistence). An event e ∈ Σ is persistent if no event f 6= e
disables it.

A bounded Petri net can be transformed into an LTS by creating a state for
every reachable marking in the net, and arcs according to the enabled Petri net
transitions in each marking. Figure 2.4 shows the LTS associated to the Petri
nets from Fig. 2.3. The opposite problem, however, is known as the synthesis
problem [45,60], and is not as straightforward for most Petri nets types.

2.2.3 Conformance checking

An important set of techniques in process mining is conformance checking, which
compare the observed (log) and modeled behavior in order to evaluate the
model. There are four quality dimensions for comparing model and log: replay
fitness, simplicity, precision, and generalization [2]. While the four dimensions
are not entirely orthogonal, balancing them is an important aspect to produce
high-quality models for real-life processes [30].



2.2. Process mining 21

Replay fitness

The replay fitness of a model indicates how good the model can reproduce the
behavior of the process as observed in the event log. A model has perfect replay
fitness if all traces in the log can be replayed by the model from beginning to
end. This may not be necessary in all scenarios, e.g., if the event log contain
noise [7]. Still, fitness is considered the most important metric.

Several metrics for precision exist in the literature [31]. In this thesis we
will use the definition provided by [10], which computes an optimal alignment
between the log and trace before calculating the fitness score, providing a more
fine-grained evaluation in the presence of small deviations.

Simplicity

The simplicity of a model evaluates how easy it is to analyze and understand
it. The simplest model that can explain the behavior seen in the log is the best
model, a principle known as Occam’s Razor. On the other hand, complicated
models, with a high number of elements and dense control flow structure,
prevent the extraction of useful insight from process mining. These complicated
models are often called spaghetti models, such as the one shown in Fig. 1.2.

Process discovery algorithms may derive spaghetti process models in various
situations, e.g., when the log represents a complex process with hundreds of
different event classes or when the log contains noise. Other problems like
concept drift (the log contains the executions of different versions of the process
model) or vertical event granularity (event classes from different hierarchies
coexist in the log) may also cause the derivation of a dense process model. Un-
fortunately, the aforementioned situations happen often in real life [79]. Thus,
the discovery of simple process models and the simplification of larger models
is a significant challenge when presenting data obtained by process mining.

The most common methods to estimate the complexity of a process model
involve the size of the model or the average degree of its vertices [108]. In
this work, however, we propose the use of the crossing number of a graph as
measure of complexity, a concept closely related to the planarity of a graph. For
a formal definition, we refer to Section 2.1.1.

Precision

Fitness and simplicity alone are not sufficient to judge the quality of a discovered
process model. For example, it is very easy to construct an extremely simple
Petri net (flower model, as in Fig. 2.5a) that is able to replay all traces in an
event log. However, this model also replays any other event log referring to the



22 Chapter 2. Preliminaries

a b

cd

(a) Flower model
(underfitting).

a

a

a

b

c

d

c

b

b

d

d

c

(b) Trace model (overfitting).

Figure 2.5: Underfitting and overfitting Petri net examples.

same set of activities. Thus, the model is not useful for describing the behavior
of an specific process.

Precision compares how much behavior is reproduced by the model that is
not present in the log. A model is precise if it does not contain behavior that
has not been observed in the log. A model that is not precise is underfitting,
such as the flower model.

In this work, we use the metric proposed in [111], based on the concept of
escaping arcs. A escaping arc represents a choice that is available in the model,
but never taken while replaying the event log.

Generalization

On the other hand, event logs contain only observed behavior and many traces
that are possible may not have been captured in the logs. Thus, it may be
undesirable to have a model that only allows for the exact behavior seen in the
event log.

In contrast to precision, a model should generalize and not restrict behavior
to just the examples seen in the log. A model that does not generalize is
overfitting. Overfitting is the problem that a very specific model is generated
whereas it is obvious that the log only holds partial behavior. A good example
is a trace model (as in Fig. 2.5b). The model may explain a particular sample
log with very high precision, but there is a high probability that the model will
be unable to explain the next batch of cases.

In this work we will generally use the metric provided in [30], which
penalizes models where most parts are visited very infrequently when replaying
the logs. If infrequently-visited parts are prevalent in the model, it is unlikely
that new, slightly different traces will fit.

Finding a good balance between overfitting and underfitting models is one
of the challenges in process mining [5].



2.3. VLSI design flow 23

2.3 Very-Large-Scale Integration design flow

In this thesis, Chapters 3 and 4 focus on using graph mining during physical
design of large-scale chip designs. This section provides a tour of the basic
design flow of Very-Large-Scale Integration (VLSI) circuits to help understand
the context of these chapters.

Modern chips are extremely huge and complex. In the present day, chip
designs with billions of transistors are not uncommon (current commercial
designs have well over 7 billion transistors [48]). These designs combine
hundreds of cores, on-chip memories, routers, interconnects and many other
components in a single chip, possibly pre-designed by third parties. Thus, many
of the challenges found during the design of modern chips will revolve around
managing this complexity.

Because of such complexity, the design process for any chip is partitioned in
interrelated tasks, both in space (e.g. the different modules of the chip) and
time (e.g. early core architecture design versus gate-level).

Hierarchy and abstraction are two concepts often used during VLSI design.
Large systems are often partitioned into many structures that can be recursively
partitioned into smaller, independent units. To save time, it is preferable to
have many instances of the same module versus many different modules. Thus,
the rise of the Chip multiprocessor (CMP), which allows the construction of
highly performant machines at a fraction of the cost by replicating hundreds of
pre-designed processing tiles.

Furthermore, different teams usually work concurrently on tasks that nor-
mally would be done sequentially. Dependencies between stages are lessened
by the use of abstraction mechanisms (e.g., so that the designer of the core
does not need to be involved into logic gate internals).

Even with these abstraction mechanisms, however, there are still times when
the output of one stage is required as input of another stage. For example, the
designer of the core microarchitecture needs to know the characteristics of the
physical design, including clock speed, in order to properly create a pipelined
architecture. Experienced engineers are required in this case in order to create
estimations so that all the teams have something to start with. These estimations
are refined continuously as the design process advances.

Current VLSI design flows usually split tasks into 4 big stages, each composed
of many smaller stages. These are not fixed and it is common for the stages
to be rearranged depending on the implementation of the design flow. An
overview of the 4 stages [139] can be seen in Fig. 2.6, and in the following list:

1. Architectural design (also functional or black-box design), which is the first
stage, involves deciding on the general (or system-level structure) of the



24 Chapter 2. Preliminaries

Architectural

Core

Cache

Logical

A

Circuit

Vss

A Q

Vdd

module M
 assign Q = A or not B 

QB

Physical

Core

L1

IO
Router

L2

Figure 2.6: Summary of the main VLSI design flow stages.

chip. In the case of CMPs, this stage involves finding the promising config-
urations (combinations of different core architectures, on-chip memories,
etc.) that satisfy the performance, cost and other requirements.

2. Logic design describes how the diverse components of a chip work. For a
core, the behavior of the ALU, floating point, etc. is described.

3. Circuit design considers how to implement the logic design into an elec-
tronic circuit (selection of transistors, etc.)

4. Physical design layouts all required transistors and wires and thus deter-
mines the final geometry of the chip.

Each of these stages will be described in more detail in the following sections.

2.3.1 Architectural design

During architectural design the system-level structure of the chip is defined.
A designer usually has a set of required metrics (desired performance, etc.)
and a limited budget (in cost, chip area, power usage, etc.). In traditional CPU
design, this involved deciding on parameters such as the length of the pipeline,
the memory hierarchy, whether to use out-of-order execution, etc.

For example, in the case of CMP design, it is generally assumed that the
designer has a library of components (cores, caches, etc.) at its disposal, and
that he/she needs to decide which (and how many) of those components are
to be placed on the CMP, and how to interconnect each of those components.

Because these components may have never been built yet, or have been
manufactured before but using different physical parameters, there might be
no real-world estimations of their parameters. Additionally, the high number of
possible combinations and permutations of the components in the library often
generates a design space with billions of possible configurations. For this reason,
during architectural design fast estimators for each of the diverse component



2.3. VLSI design flow 25

metrics are necessary. Interpolation, analytical modeling or simulations are
used, depending on the accuracy required. These methods will be discussed in
Section 3.3.

2.3.2 Logic design

At this stage, the required functionality is implemented in terms of boolean
functions. The interfaces (inputs and outputs) for the different modules are
also usually defined during this stage.

However, logic is not necessarily specified in terms of the traditionally used
logic gates. This is because during physical design there is a step, technology
mapping, in which, depending on the manufacturing technology used, there
might be be more efficient ways to convey boolean functions that by using the
standard logic gates.

2.3.3 Circuit design

During circuit design, a electronic circuit is created from the previously created
logic. Exactly at which level the circuit is designed depends on the manufactur-
ing technology.

When using HDLs, this process is usually fully automated using a tool
called synthesizer, which handles an HDL input and converts it to the required
representation. The output is usually a list of logic gates and the connections
or nets between them (a netlist). Technology mapping is the process by which
the high-level logic gets mapped into lower-level elements such as cells.

2.3.4 Physical design

At the start of physical design, the design is represented in terms of a netlist
including all low-level components (cells, gates, transistors, . . . ) with their
shapes and the appropriate interconnections between those components. The
result of physical design is a physical layout, including both the positions of
each of the design components (the placement) as well as the paths for each of
the interconnections (the routing).

From this stage and until the final circuit, limitations of the physical world
are now taken into account. Depending on the implementation technology,
design rules prohibit certain layouts. For example, by setting minimum distance
between wires or forcing insertion of repeaters whenever wires exceed a certain
maximum length [75].

Physical design is often split in the following sub-stages [86]:



26 Chapter 2. Preliminaries

1. Floorplanning is often the first step during physical design. A floorplan
provides an estimation of the shapes and locations of the major units in
the circuit. For the case of CMPs, this usually confers the locations of
the individual cores, memories, etc. In a hierarchic fashion, a single core
might also have a floorplan containing the locations for the arithmetic
and logic units, etc.

Because no physical information about the innards of the components
is available at this early stage of physical design, floorplanning often
uses area estimations as inputs. As more accurate estimations become
available during later physical design stages, the floorplan is updated.

Additionally, creating a floorplan allows early estimations of the length of
the largest nets. This is often called wire planning.

2. Placement defines the final locations for the individual low-level units
(e.g. cells) inside each high-level block. Unlike floorplanning, regular
structures such as grids are often considered because most of the cells
have similar sizes or sizes in multiples of a common base unit.

3. Clock tree synthesis. In sequential circuits, keeping the propagation delay
of the clock signal to a minimum is usually mandatory to avoid clock skew.
Because of this importance and singularity, the clock signal is usually the
first net to be routed.

4. Global routing estimates and reserves the required routing resources that
are required by the interconnections. Usually, global routing considers
only those nets that use the most resources. Each net is given a estimated
width depending on the design rules and the number of wires composing
it, but individual wires are not considered. These estimated paths reduce
the search space for the detailed routing stage that will come next.

5. Detailed routing, on the other hand, calculates the final routes for each
individual wire of the chip, at the same time verifying that the previously
generated global routing is feasible.

6. Timing analysis checks that all of the design’s timing constraints are
satisfied. Different logic paths have different timing requirements, and
during this process every factor that alters net delay is taken into account:
length of wires, repeaters, transistor sizing, etc. If any of the constraints
is not met, the design is reiterated, restructuring the layout of the critical
paths. Thus, even the floorplan might need to be changed and the physical
design process restarted.



2.4. Asynchronous circuits 27

In this thesis, Chapter 3 will center on the topic of physical design oriented
towards CMPs, while Chapter 4 will expand the proposed methods towards
general VLSI design.

2.4 Asynchronous circuits

One the focus of this thesis will be to propose the concept of specification mining
for asynchronous controllers (Chapter 8). This chapter introduces the context
of this contribution by providing an overview of asynchronous circuit design.

Asynchronous circuits are logic circuits that do not rely on a global syn-
chronization signal, the clock, to dictate when signals are sampled. Instead of
clocks, asynchronous circuits favor handshaking to synchronize the different
components in a circuit. Asynchronous logic offers many advantages [46],
among them: increased performance, reduced power consumption, and better
composability and modularity.

While early computers were mostly asynchronous, the prevalence of asyn-
chronous design today has significantly decreased in favor of synchronous design
and global clocks. In part, this is because of the complexity usually associated
with the design of asynchronous circuits. There are few asynchronous design
tools in comparison with the huge amount of well-entrenched synchronous tools.

In asynchronous circuits two main parts are often distinguished: the data
path and the control. While the former comprises wide units performing arith-
metic or other types of transformations on the data processed by the circuit, the
control unit determines and generates the diverse control signals that will config-
ure the data path units. As control manages the synchronization requirements,
this thesis will exclusively focus on the analysis of control circuits.

We define a circuit C as a tuple C = 〈X , G, s0〉 where:

• X = I ∪ O ∪ Z is the set of signals, with I , O and Z being pairwise
disjoint sets that represent the input, output and internal signals of the
circuit, respectively.

• G : (O ∪ Z)→ f (X ) is a set of gates that assigns a Boolean function to
each non-input signal of the circuit. We denote by fx i

(X ) the Boolean
function assigned to signal x i.

• s0 is a binary vector representing the value of the signals at the initial
state.

The environment of a circuit reacts to the outputs from the circuit and sends
new inputs to it.



28 Chapter 2. Preliminaries

2.4.1 Operating modes and delay models

A hazard is a deviation from the expected behavior of a circuit caused by the de-
lay present in real-word gates and wires. Hazards are one of the main challenges
during asynchronous circuit design. To help manage the complexity associated
with asynchronous circuits, several design styles have been developed. Within
each style, different models and assumptions are made about the timing and
behavior of physical elements of the circuit: gates, wires, and the environment.

This section overviews some of the common styles. Broadly, we distinguish
between delay models, i.e. assumptions about the operating delays of gates and
wires, and operating modes, models about the interaction between a circuit and
its environment. For an exhaustive analysis into the design of asynchronous
circuits, we refer the reader to existing documentation [17,46].

Operating modes

Operating modes model the interaction between the circuit and its environment.
In fundamental mode [77], inputs from the environment are constrained to
change only when all the outputs are stable, i.e., the environment allows the
circuit to stabilize before generating new inputs.

Burst mode [53] is a related operating mode in which a burst of multiple
sequential input changes are allowed. However, when all inputs in the burst
have changed, the environment must wait for the circuit to stabilize before
starting a new burst.

Compare with input-output mode [110], in which new inputs may occur at
any time, as part of specified responses to changes in the outputs. Thus, input
and output changes may be concurrent.

Delay models

The delay model defines the assumptions made, during the design, about delays
in gates and wires. Strong assumptions may simplify the design flow, while
less strict ones generally lead to designs that are more robust to manufacturing
process variations. In this section we describe some of the common models.

• In the bounded delay model, delays of both gates and wires are assumed
to be lying within given minimum and maximum bounds. The circuit is
guaranteed to work correctly if these bounds are satisfied. While this may
lead to smaller circuits, extensive analysis is needed to ensure all bounds
are met in all conditions.



2.4. Asynchronous circuits 29

C
a
b

c

(a) C-element.

a b cn

0 0 0
0 1 cn−1

1 0 cn−1

1 1 1

(b) Truth table.

c−

a+

b+

c+

a−

b−

(c) Signal transition graph.

000

100

010

110

001

011

101

111

a+

b+

b+

a+

a−

b−

b−

a−

c− c+

(d) State graph.

Figure 2.7: C-element and specifications.

• A speed-independent (SI) circuit works correctly even in the presence of ar-
bitrary but finite delay on its gates. However, it works with the assumption
that wires, on the other hand, are ideal, i.e., with zero delay [110].

• A circuit is delay-insensitive (DI) when its correct operation does not
depend on neither the delays in the gates nor the wires. While this
is an extremely interesting class of circuits because of its robustness,
unfortunately it has been proven that very few circuits can truly be made
delay insensitive [106,121].

• Delay-insensitive interfacing proposes that only inputs to the circuit are
required to be handled in a delay-insensitive fashion. This is a compromise
in order to alleviate the impracticality of DI circuits while still allowing
long interconnects. The assumption is that even if it is not practical to
assume that long wires have zero delay, a designer may still keep control
on the delays of short internal wires [121].

2.4.2 Signal transition graphs

The most common design methodologies for asynchronous controllers involve
first specifying the behavior of the circuit and the necessary requirements from
the environment. From these specifications, automated tools generate hazard-
free implementations of the circuits [46].



30 Chapter 2. Preliminaries

Asynchronous circuits are intrinsically concurrent, and thus naturally suited
to Petri nets (Section 2.2.1), one of the most powerful formalisms for reasoning
about concurrent systems. A Signal Transition Graph (STG) is formal model
based on Petri nets for conveying the behavior of an asynchronous circuit.

Given a circuit C = 〈X , G, s0〉, a Signal Transition Graph is a labeled Petri
net N = 〈P,Σ, T,L ,F , m0〉 in which Σ= X × {+,−}∪τ. Thus, each transition
label corresponds to either the transition (rising or falling) from a signal of C ,
or a silent event τ that does not change the state of the circuit. By x+ and x−,
we will distinguish the rising and falling transitions of signal x ∈ X respectively.

Figure 2.7c shows an example STG of a C-element, one of the fundamental
components in asynchronous circuits, whose truth table is depicted in Fig. 2.7b.
The C-element is a stateful element that sets its output to 0 when both inputs
are 0, and to 1 when both inputs are set to 1. In any other input combination,
the output does not change.

2.4.3 State graphs

An STG is just a succinct representation of (a part of) the behavior of the circuit,
which focuses on the causality relations amongst events. An state graph also
represents the behavior of the circuit by enumerating all of its possible states
and transitions between states as a Labeled Transition System (LTS). While
this may result in a much larger representation than an STG, many algorithms
require exhaustive explorations of the state space. For the full definition of an
LTS, we refer to Section 2.2.2.

Given a circuit C = 〈X , G, s0〉, an state graph of C is an LTS A= 〈S,Σ, T, s0〉
in which:

• S = {0, 1}n, with n = |X |, the set of binary vectors representing all possible
states of the signals.

• Σ= X × {+,−}, i.e. the set of signals of the circuit plus the direction of
the transition.

• T = {s1
x
−→ s2} with s1, s2 ∈ S and x ∈ Σ, is the set of transitions.

• The initial state s0 coincides with the initial state of the circuit.

Given a state s = (x1, . . . , xn), we denote by s(x i) the value of signal x i in s.
Given a state s = (x1, . . . , x i, . . . , xn), we denote by s¬x i = (x1, . . . ,¬x i, . . . , xn)
the state in which the values of the signals are identical to the ones of s except
for x i, that has the complementary value. Notice thus that for each s1

x
−→ s2 ∈ T ,

s2 = s¬x
1 and s1 = s¬x

2 .



2.5. Mathematical optimization 31

Figure 2.7d shows an example of the state graph associated to the behavior
of the C-element described by the STG in Fig. 2.7c.

2.5 Mathematical optimization

Many of the methods described in this thesis involve optimization problems.
This section provides a brief introduction to two commonly used subfields of
mathematical optimization, albeit it is not indented to cover the finer details.
The approaches described in this section will be frequently used in this thesis
when encoding, e.g., desired structural constraints in graphs.

An optimization problem involves finding the best solution out of a set
of feasible solutions. The search space of feasible solutions is delimited by
a set of constraints, such as formulas, inequalities, etc. Generally, the best
solution is that which maximizes (or minimizes) the value, usually defined as a
real function.

2.5.1 Boolean satisfiability

A formula P is a combination of boolean variables (denoted by p, q, . . .) built
using the 3 logical operators and, or, not (represented respectively by∧,∨and¬).
An interpretation I of P is an assignment of {0, 1} to each variable in P. I satisfies
P iff the evaluation of P under I is 1. P is satisfiable if it is satisfied by at least
one interpretation. Generally, formulas are written as conjunctions of clauses,
which are disjunctions of (possibly negated) variables.

Satisfiability (SAT) is the problem of determining, given a formula P, whether
there is an interpretation I that satisfies it. SAT is a well-known NP-complete
problem, with all known algorithms having worst-case exponential cost on the
size of P [24].

The maximum satisfiability problem (MaxSAT) is the optimization version
of SAT. Given an formula P, MaxSAT involves finding an interpretation that
maximizes the number of clauses that evaluate to 1. Inversely, the minimum
satisfiability problem (MinSAT) finds satisfying interpretations that minimize
the number of clauses that evaluate to 1. As typical extensions, weights can be
added to individual clauses, allowing for arbitrarily complicated optimization
goals [24]. MaxSAT and MinSAT are heavily used as a natural way to model
many optimization problems.



32 Chapter 2. Preliminaries

2.5.2 Linear programming

A linear inequality a · x ≤ b is defined by a vector a ∈ Rn and a constant b ∈ R.
A linear programming problem (LP) is a set of linear inequalities plus a linear
function that needs to be maximized, called the objective function. It is usually
represented as:

maximize cT · x
subject to A · x ≤ b

where A is a matrix with a row for every linear inequality, b contains the constant
terms of the inequalities, and c is a vector with the coefficients of the objective
function. A solution of the LP, thus, is a vector x ∈ Rn that satisfies all linear
inequalities. From the potentially infinite set of solutions, a solution x is optimal
if it also maximizes the objective function cT · x over the set of all solutions. An
LP is feasible if it has at least one solution.

There are algorithms to solve LPs in polynomial time [91]. However, the
most common algorithm used is simplex, which is exponential in the worst case,
although performs efficiently in practice [93].

An integer linear program (ILP) is an LP in which some of the variables are
constrained to have only integer values. Unlike LP, ILP is NP-complete. There
are many available methods to solve ILP. ILP solvers may also be used to solve
MaxSAT problems [52].



Chapter 3

Physical planning for the
architectural exploration of Chip
multiprocessors

At the early stages of the design of a CMPs, physical parameters are often
ignored and postponed for later design stages. In this chapter, the importance
of physical-aware system-level exploration is investigated.

Additionally, this chapter presents an strategy for deriving chip floorplans
that include physical constraints specific for tiled hierarchical CMPs. Over-the-
cell routing is also used as a major area savings strategy. Wire planning of the
on-chip interconnect is also studied, as its topology and organization affect the
physical layout of the system.

This chapter will be structured as follows. Section 3.1 introduces and moti-
vates the topic, evaluating the impact of the physical aspects on the selection of
architectural parameters. Section 3.2 reviews the existing literature. Section 3.3
describes the proposed combination of architectural exploration and physical
planning. Section 3.4 and Section 3.5 give details on how to perform efficient
physical planning, centering on floorplanning and wire planning respectively.
Finally, in Section 3.6 the proposed flow is evaluated, with future work and
conclusions discussed in Section 3.7.

3.1 Motivation

This section will justify the need to adapt the traditional physical design flow
with physical planning constraints during CMP design. In addition, it will show
how using this new physical design flow during early design stages improves
the quality of designs and minimizes the number of design reiterations.



34 Chapter 3. Physical planning for CMPs

M
C

R R R R

R R R R

R R R R

R R R R

MC

MC

M
C

C

L2 R

C

L2

L3 RNI

IC

M
C

R R

R R

MC

MC

M
C

C

L2

(a) (b)

Figure 3.1: Two different configurations for a CMP: (a) tiled flat, (b) tiled
hierarchical.

3.1.1 Chip multiprocessors

During the past decades, many-core chip multiprocessors [16] have become the
major trend in designing scalable computing architectures. Multiple processing
units with distributed memory combined with power saving schemes are the
platforms used today for exploiting application parallelism while keeping power
consumption under control.

A CMP integrates more than one computing core in a chip. Each of the cores
is individually similar to the one inside a single-core processor, containing and
arithmetic and logic unit, registers, private cache, a datapath, and a control unit.
In addition to private caches, however, a CMP also contains caches shared by
two or more cores, and possibly more than one input/output ports to external
memories. The interconnect provides communication between cores, shared
caches and I/O. The latency and throughput of the on-chip interconnect is
crucial to the overall performance of a CMP. Thus, it is a very important factor
to consider during design. Networks-on-Chip (NoCs) [50] have been firmly
established as a the paradigm of choice for scalable interconnects.

Tiled CMP architectures facilitate the design process of CMPs by offering a
rapid way to assemble platforms with tens or hundreds of cores. A tiled CMP is
constructed by replicating pre-designed tiles [16,18,76]. An example is shown
in Fig. 3.1a, where each tile contains a single core (C), cache (L2) and a router
(R) that connects it with neighboring tiles.

Nevertheless, challenges appear when constructing many-core CMPs using
tile replication, as the two-dimensional mesh structure means increased dis-
tance and power consumption for every new core. To overcome this problem,
hierarchical CMP organizations have been proposed to better exploit spatial
locality [16,51].

Figure 3.1b depicts the block diagram of a tiled hierarchical CMP with 8
cores and distributed L3 cache. The chip is organized as a 2×2 regular grid of



3.1. Motivation 35

tiles (clusters), each one including two computing cores (C) with private cache
(L2), a distributed shared cache (L3), a router of the global mesh (R) and a
local interconnect (IC). The two-level hierarchical interconnect constitutes the
backbone of this architecture. The purpose of the global mesh is to provide
inter-cluster communication, as well as access to the memory controllers (MC).
Intra-cluster communication is supported by low-latency rings that significantly
improve the bandwidth of the system given the locality of memory references
inherent to the applications.

The problem of system-level design for a many-core CMP consists of select-
ing high-level architectural parameters (e.g., number of cores, size of cache,
topology of the interconnect, etc.) so as to maximize system performance
for the selected workload and satisfy the design constraints (e.g., area and
power). System-level design is performed early in the design cycle. The main
complexity of this task is determined by the vast space of potential architectural
configurations and the inaccuracy of the models to represent the components
of the system and the workload.

To alleviate the problem complexity, most strategies for architectural explo-
ration disregard physical parameters and postpone them to later design stages.
However, in this chapter we show that physical planning has a non-negligible
impact on performance and area of a CMP. In the rest of this chapter we will pro-
pose methods for floorplanning and wire planning of tiled hierarchical CMPs and
show the impact of physical parameters in the configuration of the architecture.

3.1.2 Physical design flow for CMPs

The problems of physical planning for CMPs are related to traditional prob-
lems in VLSI physical design [125]. CMP floorplanning is similar to classical
VLSI floorplanning, while wire planning is more common with global routing.
However, there are several aspects inherent to tiled hierarchical CMPs which
motivate us to extend existing approaches.

As shown in Fig. 3.1a, the tiled organization of CMPs reduces the floor-
planning problem from chip to cluster level. However, the cluster floorplan
has to satisfy the property of symmetry in the location of the North/South and
East/West ports at the boundaries of the tile. This enables the construction of a
full chip by replicating and abutting of tiles.

Floorplanning of the local interconnect introduces another complexity into
the design. For example, when considering rings, it is required that the links
between the ring routers (r) have balanced lengths to guarantee similar hop
delays. If the link delays are imbalanced the communication through the ring
may have a negative impact on performance.



36 Chapter 3. Physical planning for CMPs

A special type of constraints, such as adjacency or maximum net delay con-
straints are required to prevent certain components be placed far from each
other. A typical example may be a core and its L2 cache. Placing a cache
far from the core may increase its access delay and result into a significant
performance penalty. While adjacency of the two components may appear as a
too strict constraint, a weaker requirement of the inter-component distance to
be less than one hop will be enough to assure no loss of performance.

An important observation is the recent tendency to design CMPs with wide
links. Communication links of the on-chip interconnect may incorporate thou-
sands of wires, aiming at transferring a complete cache line in one cycle. Given
the ITRS prediction for minimal wire spacing [80], links of a global mesh can
have a width of about 102 µm, occupying a significant amount of chip area.

One of the possible ways to alleviate the area overhead is to benefit from
over-the-component routing. Some of the CMP components, such as memories,
do not use all the metal layers available in the technology and, therefore, these
available resources can be used to implement global nets across the chip.

In this scenario, the most complex components using all metals layers may
act as blockages for over-the-component routing. Hence, one of the purposes
of wire planning is to verify chip routability. Another purpose is the estimation
of wire length, which is one of the main parameters when evaluating design
quality [131].

3.1.3 Impact of physical planning in exploration

During architectural exploration, parameters for the system-level design of
a CMP, such as the number of cores, size of cache, etc. are selected so as to
maximize the performance of the chip and satisfy the area and power constraints.
Physical planning usually comes after architectural exploration in the design
flow, and thus, physical parameters are often disregarded during architectural
exploration. However, we will show that disregarding this information at this
level has a non-negligible impact in the performance and area of the chip.

Sample configuration

Let us assume that an architectural exploration tool has generated a configura-
tion such as the one shown in Fig. 3.2. This configuration has a total of 224
identical cores, split in tiles of 4 cores each. In total, there are 56 tiles arranged
in a 7× 8 mesh.

Figure 3.2 does not include any physical information. We assume that these
cores are predesigned and have an estimated area of 1.2 mm2, including private



3.1. Motivation 37

M
C

R R R R

R R R R

R R R R

MC

M
C

R R R R

R

R

RR

R R R

R R R

R R RR R R

R R R R RR R R

R R R R RR R R

R R R R RR R R

R R R R RR R R

MC

C
L2

C
L2

L3
R

S

EW

N

r r

r r

r

r

C
L2

L2

C

Figure 3.2: Structural representation of a hierarchical tiled CMP with two-
level interconnect: a global mesh and a ring inside each tile.

L1 cache, with an aspect ratio of 0.8, where the aspect ratio r is defined as:

r =
h
w

The layout of the cores can be flipped and rotated, but not resized.
At the same time, each core has an associated private L2 cache of 1 mm2,

and each tile has 1 mm2 of shared L3 cache (thus having a total of 56 mm2 of
shared cache in the entire chip). Unlike the cores, we assume that the caches
are soft blocks, where the width and height are not fixed as long as the area is
kept constant. It is generally expected to at least have minimal and maximum
aspect ratios that limit the available shapes.

Apart from cores and caches, each tile contains a router for the global
mesh interconnect (R, 0.99 mm2), and every component participating in a ring
contains a corresponding ring router (r, 0.17 mm2). Similarly to cores, we
assume that every router is a hardblock with an aspect ratio of 1.

From the point of view of over-the-component routing, we also assume that
cores and routers are complex components that will use all available routing
resources (metal layers), while memories will leave at least two layers available
for routing.

Using conventional floorplanning

When we consider the floorplan of the entire system, we face a problem with
about 900 components, including cores, L2 and L3 caches and routers. However,
in this work we deal with tiled hierarchical CMPs, which have several proven
benefits by enabling a divide-and-conquer design strategy. Floorplanning, place-
ment, routing, and timing closure are processes that can be applied to a single
tile while guaranteeing correctness for the global system. For this reason, we
will center on the floorplanning of a single tile.



38 Chapter 3. Physical planning for CMPs

Figure 3.3: A minimal area floorplan for the configuration in Fig. 3.2

Figure 3.3 depicts a minimum-area floorplan that could be obtained by a
conventional floorplanner such as CompaSS [37]. In this example, the total
area of the tile is 12.52 mm2. However, from the point of view of a hierarchical
CMP, this floorplan has some undesirable problems:

1. Some cores are not adjacent to their private L2 caches, potentially in-
creasing the communication latency between them. Similarly, there are
long distances between some caches and the corresponding ring routers.

2. Ring routers for the local interconnect are not evenly separated. In a ring,
the wire length of the longest hop dictates the maximum speed for the
entire ring. If this distance is too long, some timing constraints might be
violated. Therefore, it is desirable to minimize the length of each link
hop separately instead of minimizing the total link length.

3. Assuming that cores (C) and the router (R) use all metal layers, the two
rightmost ring routers (r) have no available routing area in their bound-
aries. Thus, the design cannot be routed without whitespace insertion.

Using CMP-aware floorplanning

An alternative floorplan is shown in Fig. 3.4. This floorplan has been generated
using all the constraints and enhancements discussed in this work. Since area
minimization is no longer the only objective, this floorplan has a 16% area
increase (14.57 mm2). However, all of the cores are now adjacent to their
private L2 caches. Additionally, a route can be found between all the ring
routers so that the the link length for each hop is always between 0.1 and
1.1 mm, and the distance between a component and its attached ring router is
strictly less than 0.5 mm.

As an example, Fig. 3.5 shows a floorplan for the entire system, including
all clusters, based on the cluster floorplan from Fig. 3.4.



3.1. Motivation 39

Figure 3.4: CMP-aware floorplan for the configuration in Fig. 3.2

Figure 3.5: CMP-aware floorplan (full chip).



40 Chapter 3. Physical planning for CMPs

A 16% increase in area may induce an unacceptable overhead in manu-
facturing cost. This fact may encourage a designer to select an alternative
architectural configuration, with a slightly lower performance, although with
better floorplan properties.

3.2 Related work

Floorplanning as a part of the VLSI design flow has been extensively studied for
decades. The traditional definition involves minimizing a linear combination of
area and estimated wire length [85], leaving actual wire planning to posterior
stages in the design process.

Hierarchical approaches to floorplanning have already been shown to reduce
the algorithm runtime. Quite often hierarchical floorplanning is applied to
the design of Systems-on-Chip (SoCs), for which every component can be
considered as a fixed-size block. These blocks can be generated using fixed-
outline floorplanners such as [12], while the system-level floorplanning can be
solved using the traditional minimal area techniques such as [37]. In this work,
we will instead exploit the regularity of tiled hierarchical CMPs.

When floorplanning a CMP, it might also be desirable to optimize factors
other than area and wire length. Previous approaches exist that evaluate
floorplans based on other qualities such as temperature minimization [109,123]
or power consumption [129], using analytical models. For floorplanning at the
system-level, [145] proposes a method that creates tile arrangements which
minimize the overall wire length for several 3D topologies.

Floorplanning with constraints is also commonly considered in modern
floorplanning [131]. For example, restrictions on the valid placement of blocks:
adjacency constraints, limits in the distance between pairs of blocks, and objects
in fixed positions [146]. Specifically considering CMP constraints at this stage,
as in this chapter, is less common. In [142] the authors show how over-simplified
models for those constraints (e.g., disregarding pin placement) produces sub-
optimal floorplans, but only for classic bus-based interconnects.

On the integration of floorplanning with earlier design stages, the work
in [20] incorporates a linear programming-based floorplanner into a synthesis
framework for application-specific System-on-Chips. The floorplanner is used
to obtain better area estimates.

The influence of physical information on system performance at the micro-
architectural level was studied in [42]. The authors proposed physical planning
to estimate area and link delay, which were then used to refine the accuracy of
throughput estimations obtained by simulation.



3.3. Architectural exploration 41

3.3 Architectural exploration

This section overviews the flow for architectural exploration of CMPs and intro-
duces the context for physical planning. Consider the problem of maximizing
CMP performance (throughput) subject to a resource budget, i.e. constraints
on area and power. The given formulation is an example of the architectural
exploration problem with the objective of efficiently distributing the chip re-
sources among the components of a multi-core system, e.g. cores, memories
and interconnect.

The design space for exploration is specified through a set of models and
design constraints. The models describe the behavior of individual compo-
nents. There can be different models for cores characterizing different micro-
architectural features that trade-off area, power and performance (in-order/out-
of-order execution, multi-threading, etc). The memory models define the size,
area and latency of different memory modules. The models for the interconnect
define their physical and performance properties (latency, contention, etc).

The expected workload for the CMP requires another type of models that
characterize the observable behavior produced by the generated memory pat-
terns (memory locality, burstiness, etc). Constraints on power consumption and
area are typically defined to confine the design space.

Exploration is a complex optimization problem due to the vast discrete
space of architectural variables that determine the configuration of a CMP
(e.g. number of cores, cache sizes, interconnect topology, link width). To
handle this complexity, in this work we resort to a three-stage divide-and-
conquer approach to solve the exploration problem. Figure 3.6 illustrates our
methodology, with the main stages being the architectural exploration, physical
planning and validation.

Architectural exploration

During the first stage, analytical models are used to rapidly prune the de-
sign space and generate a set of promising configurations in the area/power/
performance space. The analytical model from [114] is used to evaluate CMP
configurations and discriminate those with poor performance. Static and dy-
namic power are also evaluated using analytical approximations based on the
area and activity of the CMP components [115]. The area is approximated as
the sum of the areas of all components on chip.

Analytical models are used as a cost estimator for an iterative metaheuristic-
based search to efficiently navigate through the design space. This space is
described with a set of architectural variables and a set of transformations is
defined to explore the neighborhood of any particular configuration. Some



42 Chapter 3. Physical planning for CMPs

Cores

On-chip caches

Off-chip memories

Interconnects

Workloads

Models
(performance/power)

Number of cores

Cluster size

L2/L3 cache size

Intra-cluster interconnect

Inter-cluster interconnect

Architectural configuration

Cluster-level floorplan

Wire length estimation

Generation
of configurations

Analytical
modeling

Simulation

Pool of
promising

configs

Wire planning Floorplanning

Architectural exploration

Physical planningValidation

Area

Throughput

Power

Constraints

Search directionCores

Caches

Interconnects

Physical info

Figure 3.6: Modified architectural exploration flow that includes physical
planning.

examples of transformations include modifying the dimensions of the top-level
mesh, the number of cores per cluster or the topology of the local interconnect,
among others. Simulated Annealing [92] and Extremal Optimization [26] are
used to explore the design space by probabilistically applying transformations
and tracking the best discovered solution.

Physical planning

The objective of this stage is to evaluate wire length and give a more accurate
area estimation. The floorplanning and wire planning algorithms at this stage
consider physical constraints for individual CMP components, such as the aspect
ratio and the number of metal layers. This accuracy comes at the expense of a
higher algorithmic cost, which is however tolerated by performing the planning
for a moderate number of configurations, selected during the first stage.

Validation

Finally, the validation phase of the flow is aimed at verifying performance and
power, which may differ from the initial analytical estimates. In the current
setup we use a cycle-accurate simulation for CMP interconnect, supplied with
probabilistic automata models for cores and memories [55].

The following sections will focus on algorithms for the physical planning of
hierarchical CMPs. Their objective is to accurately estimate the chip area and
wire length, subject to the physical constraints. The methods proposed in this
work are applied at the second phase of the described exploration flow.



3.4. Floorplanning methodology 43

A

BC

h

v

A

B

C

Figure 3.7: Example of a slicing floorplan and associated slicing tree.

3.4 Floorplanning methodology

This section presents the first step of physical planning: floorplanning.

3.4.1 Floorplan representations

Floorplanning is the task of defining tentative locations for the blocks of system
under certain geometric constraints. The blocks represent pre-designed CMP
components such as cores, memories and routers. The blocks can either have a
fixed size or accept a set of different aspect ratios. The traditional floorplanning
problem only considers the minimization of the total area occupied by the
components. More advanced floorplanning strategies can also consider the
minimization of other metrics such as the estimated wire length.

Because of the complexity of the problem, it is essential to select efficient data
structures to represent floorplans. In this work, we use Simulated Annealing
for the exploration of slicing floorplans similarly as proposed in [141], where
the cost function is defined as a linear combination of area and wire length
approximated with half-perimeter wire length. In addition, the cost function is
extended with other components that aim at generating floorplans with some
properties and constraints for tiled hierarchical CMPs.

Slicing trees

Slicing trees [141] is one of the most popular floorplan representations. It can
represent only a family of floorplans called slicing floorplans. This subset of all
possible floorplans contains only floorplans that can be represented entirely by
a series of horizontal or vertical cuts. A slicing tree is just a tree representation
of such series of cuts (see Fig. 3.7).

It has been proven that slicing trees, when combined with a compaction
post-process, can represent all possible maximally compact layouts of any given
library of components [99]. Hence the use of the slicing floorplans does not limit
the search space. In this work, compaction is not applied and the generation of
area-optimal floorplans is not guaranteed. However, the difference is expected
to be acceptable, specially in the presence of soft blocks [147].



44 Chapter 3. Physical planning for CMPs

C

h

C B
CCBB

C

B

C

B

C

B

C

B

x

y

(2,1)(2,1)

x

y

(2,4)

(4,2)

x

y
(2,4+1)

(4,2+1)

Figure 3.8: Example of vertical composition of the bounding curves for two
components B and C .

Bounding curves

To represent the possible shapes of the individual components, bounding curves
are used. A point (x , y) belongs to the bounding curve of a component if x and
y are a valid width and height for that component (Fig. 3.8). There are efficient
vertical and horizontal composition operations on bounding curves [116] to
calculate all the valid aspect ratios of such compositions.

3.4.2 Search strategy

Algorithm 1 Floorplanning algorithm (Simulated Annealing)

FP← “Initial slicing floorplan”
T ← “Initial temperature”
while improvements in the last k iterations do

for p iterations do
select FPnew randomly from neighbors of FP

gain← COST(FP) − COST(FPnew)
if RANDOMACCEPT(T , gain) then FP← FPnew

T ← T ·α
return FP

Even reducing the search to slicing floorplans, the space of solutions is high
enough that the use of metaheuristics is unavoidable [144]. The floorplanning
process described in this work uses an extension of the Wong-Liu algorithm,
except for changes to the cost function that will be described in this section and
Section 3.4.3.

The Wong-Liu algorithm [141] is a customization of Simulated Anneal-
ing [92] for the search of slicing trees. It defines a neighborhood function



3.4. Floorplanning methodology 45

NoC
Router

Core
Cache

FEOL
m1

Area available
 for interconnect

m2
m3
m4
m5
m6

BEOL

Figure 3.9: Multi-layered CMOS technology: FEOL includes the front-end
layers (polysilicon and diffusion), m1-m6 represents the available
metal layers.

consisting of three movements that operate on top of Polish expressions, which
are a string representation of slicing trees.

An overview of the search procedure is presented in Algorithm 1. One
important ingredient of any Simulated Algorithm is the cost function. To allow
trade-offs between area and other factors to be explored, we introduce weights
to the different factors of the cost function:

COST(FP)= αArea(FP) + βWL(FP) + γWLEq(FP) + P(FP)

In this expression, FP is the floorplan being evaluated, Area is defined as the
effective area of the floorplan, WL is the sum of the wire length estimation for
each net, and WLEq is the sum of the squares of the estimated wire lengths for
nets in the ring interconnect, if any. The goal of WLEq is to penalize floorplans
where equidistantly-spaced nets have excessively diverging lengths. The last
term, P(FP), aggregates all possible penalties. We will explain each of these
factors in more detail in section Section 3.4.3.

The α, β and γ parameters are weights that a designer can use to guide the
search towards floorplans with smaller area or towards floorplans with smaller
wire lengths. An example of this trade-off will be seen in Section 3.6.

3.4.3 CMP-aware floorplanning

In Section 3.1 we mentioned some of the requirements for the physical planning
of tiled hierarchical CMPs. In this section we address them in more detail.

Over-the-cell routing

Current CMOS-VLSI design is multilayered. Individual devices such as transis-
tors are patterned on the bottom layer, which in modern fabrication is composed
of polycrystalline silicon (polysilicon) [139]. This layer is often called the front



46 Chapter 3. Physical planning for CMPs

end of line (FEOL). Successive layers are applied that can be used to make con-
nections between the different transistors and external connections, collectively
called the back end of line (BEOL). An example can be seen in Fig. 3.9.

The BEOL layers are used for the required wiring inside the various CMP
components. However, different component types have different requirements
of routing resources. On-chip memory often uses less layers than more complex
circuits such as cores. If the input data models this, these free layers can be
used for the wires between the different CMP components.

Because of the prevalence of cache memories in CMP tiles, we can assume
that every configuration can be routed using the available metal layers on top of
the components without requiring any extra whitespace. During floorplanning,
and as part of the wire length estimation that will be described later in this
section, unroutable configurations are discarded.

Abutability

Because only a single tile of a chip is floorplanned, some nets that connect
different clusters will have floating terminals that must be placed on one of
the boundaries of the tile. However, the placement of this terminal must lie
adjacent to the placement of a corresponding terminal on the next cluster. Thus,
a special symmetry constraint is created between pairs of nets. All the global
interconnectnets have this property.

Wire length constraints

Due to performance reasons, certain critical nets must have a wire length
constraint. In case these constraints are violated the floorplan is rejected. This
maximum length will depend on the desired interconnect operating frequency,
wire sizing and other parameters [80].

Equidistantly-spaced nets

For most interconnects, the communication delay is determined by the maxi-
mum length of a set of links. For example, in a ring, the cycle period must be
long enough to allow packets to propagate across the longest of the ring hops.
In these cases, it is desirable not to strictly minimize the total wire length, but
to balance the individual lengths of the respective links. For this reason, nets
that must satisfy this requirements are evaluated differently in the cost function
(Section 3.4.2), minimizing the sum of the squares of the lengths instead:

WLEq(FP) =
∑

∀net∈Ring

WL(net)2



3.4. Floorplanning methodology 47

0
0
0 0

0
1 1
2 2
3 3 4
4 4 5

5

55
6

6

76 8
7

7
8
9

1
2 3
3 4

4
5

54 6

N

S

R

Figure 3.10: Maze routing a pair of nets with abutability constraint (floorplan
from Fig. 3.4, blockages marked in black).

Wire length estimation

A good wire length estimator is important for the evaluation of the cost function.
Wire length estimations are used in the WL(FP) and WLEq(FP) terms of the cost
function. Additionally, it is used to check satisfiability of some of the constraints,
such as abutability and wire length limits.

In over-the-cell routing, the only space considered for routing is the free
space over the components that have the top metal layers available. Since cores
and routers typically implement a complex internal wiring and thus utilize the
highest number of layers, memories are the only components in the entire design
that leave some metal layers unused. In fact, the relative area of memories in a
tile is defined by the configuration, but it usually ranges between 50%-60% for
the best configurations as seen in our tests.

Thus, the lowest metal layers will typically have no space for routing, while
the upper layers will have up to 60% of space available, thereby making over-
the-cell routing possible. An example can be seen in Fig. 3.10, which represents
a middle metal layer from the floorplan in Fig. 3.4, with the area occupied by
components marked in a dark color.

The work upon this floorplanning algorithm has been based on, [141],
proposes the use of the half-perimeter wire length as an estimator. In this work,
we propose the use of Lee’s algorithm [119], often known as Maze routing. The
reduce the complexity of the algorithm, three relaxations are applied:



48 Chapter 3. Physical planning for CMPs

1. Routing full links, not individual wires

2. Routing each net independently, so that no collisions are considered

3. Routing is performed on one metal layer only

Thus, routes might be generated that may be found unfeasible during wire
planning. However, for the case of nets with two terminals, we can guarantee
that a route found using this method is a valid lower bound. Thus, this infor-
mation can be used to verify wire length and routability constraints. Because
of simplification (1), the size of the routing grid is determined by the minimum
link width.

The use of Lee’s algorithm also enables checking for violations of the abutabil-
ity requirement. When planning pairs of nets with such requirement, the algo-
rithm will only accept a path if a matching path has been found on the opposite
side for the paired net. The algorithm also will not stop at the first path, but
rather collect all paths and select the one where the route is shortest to both
opposing extremes of the tile. In Fig. 3.10, this algorithm is applied to estimate
the length of the two vertical mesh links (from the Router to the north side and
from the Router to the south). The shortest route for the north net is discarded
because at the opposing side of the tile (same column, last row) there has been
no path found for the south net.

A more accurate estimation of routability is performed during wire planning
(Section 3.5) to discard those floorplans that are unroutable when considering
all signals simultaneously.

3.5 Wire planning

In order to fully realize the floorplan estimated in the previous section, we need
to establish a wire planning that connects all the required nets between the
components and that allows the tiling of the cells. This wire planning must use
over-the-cell routing and minimize its wire lengths, while balancing the nets.

This problem corresponds to a routing problem and we solve it in two steps.
In the first step, we formulate the routing problem as a Boolean satisfiability
problem for which we obtain a feasible solution with a SAT solver. Then, in the
second step, we iteratively reduce the wire length of several nets by converting
the satisfiability problem to an integer linear programming problem that we
solve with an ILP solver. In the following, we describe their essential elements.



3.5. Wire planning 49

Top view

Cross-section view

Figure 3.11: Grid structure used for wire planning.

3.5.1 Problem formulation

We formulate the routing problem as a Boolean satisfiability problem in the
lines of [78], which we extend with some insights that are needed in the context
of CMPs.

At this early design stage, wire planning is only performed on the wide
communication links of the system, neglecting local control wires. These links
can have more than 103 wires, e.g. full cache lines with data, address and
control bits. The routes are calculated globally for the complete links and not
for the individual wires that compose each link.

The routing region is represented by a uniformly-sized coarse grid (Fig. 3.11).
The grid unit is determined by the minimum width of a link, w= n · p, where
n is the number of wires of the narrowest link and p is the wire pitch, i.e.,
the smallest distance between wires. Routing is performed on a 3D grid with
blockages according to the metal layers occupied by the CMP components, as
illustrated in Fig. 3.9.

The main variables of the SAT problem correspond to the presence (or
absence) of a wire segment between two adjacent nodes of this 3D grid. Another
set of variables encodes the assignment of wire segments to specific nets. The
SAT problem includes several types of constraints:

• Consistency constraints enforce the expected behavior of the variables
we have introduced, e.g., if an edge is assigned to a net, then the edge
must be occupied by a wire.

• Routability constraints define a legal routing between the components.
Basically, these constraints establish that a set of wire segments guarantee
the connectivity of all pins of a net. The formulation is similar to the
one presented in [78] but extended to handle floating terminals. Our



50 Chapter 3. Physical planning for CMPs

solution is based on the idea that routing must be performed among
regions of points that define the endpoints of the nets. These regions are
characterized by a set of (not necessarily adjacent nor disjoint) points
that may describe the location of a component or the set of all possible
locations for a pin. The correctness of our routability constraints is based
on Euler’s graph theory.

• Abutability constraints ensure the symmetry between the wires that are
used to interconnect tiled cells. These constraints assert that if a wire in
the North boundary provides a signal for a net that interconnects adjacent
cells, another wire for the same cell must be placed in the same position
in the South boundary. Similar relations must also occur in the other
direction and for East/West boundaries.

• Optionally, constraints for design rules can be requested in order to fulfill
fabric requirements or to reduce running time. One of the typical design
rules is to assign one direction to each metal layer.

Solving the previous satisfiability problem provides a first feasible solution
for the wire planning problem (or shows the absence of such a solution!).

3.5.2 Reduction of wire length

Once we have a feasible solution for the wire planning problem, we improve
it by reducing its wire length while maintaining its feasibility. Our strategy
is iterative, where each iteration consists in ripping out a small set of nets
from the feasible solution and reroute them, subject to the previously specified
constraints and minimizing the total wire length.

To do so, we convert our Boolean satisfiability problem into an integer
linear problem: Boolean variables are transformed in 0/1 variables, Boolean
constraints are easily converted to linear inequalities and, the linear function
that counts the amount of wire is used as the objective function of the ILP.

Since the above process is applied for a small set of nets at each iteration,
the resulting problem is tractable and can be solved with efficient solvers in
a moderate amount of time. Note that solving the original problem with all
the nets and seeking for the absolute minimum is too slow for the sizes of the
problems we are faced to.

The currently implemented iterative process proceeds by just ripping out
and rerouting one net at a time, with the exception of the set of nets that
interconnect tiled cells, which are ripped out and rerouted in one step. This
process is repeated while reductions in the wire length are obtained, favoring
the reduction of long nets before the reduction of shorter nets.



3.6. Results 51

Parameter Value
Maximum chip area 350 mm2

Maximum chip power 350 W
Interconnect frequency 1.6 GHz
Global interconnect types Mesh
Global mesh dimensions 2×2 to 16×16
Local interconnect types Bus, Ring
Local interconnect sizes Limited by chip area only
Memory density 1 mm2/MB
Cache latency (per size) 5.0 · CacheSize0.5 cycles
Off-chip memory latency 100 cycles
Interconnect link width 10 µm (103 wires×10 nm)

Available metal layers m1, m2, m3, m4
Used by cores All
Used by routers All
Used by cache memories m1, m2

Core types C1 C2 C3
Core performance (IPC) 1.75 2 2.5
Core area 1 mm2 1.25 mm2 2 mm2

L1 size 64, 96, 128 KB per core
L2 size 64 KB to 1 MB per core
L3 size Up to 100 MB per chip

Table 3.1: Parameters for system-level exploration.

3.6 Results

In this section we demonstrate the impact of using physical planning during
system-level exploration, and also show the need of CMP-specific constraints
during physical planning for a proper evaluation of architectural configurations.

3.6.1 Exploration setup

All of the experiments from this section use configurations that were obtained
using automated system-level exploration [113]. The parameters of this explo-
ration are described in Table 3.1. We limit the search to tiled hierarchical CMPs
using a mesh as the global interconnect, with the second level interconnect
being a bus or a ring (bi-directional or uni-directional). The number of tiles, the
number of cores and the distribution of cores among the tiles are exploration
variables. We assume that three different models of cores are available (C1,
C2 and C3), with different performance and area characteristics obtained by
scaling publicly available data of the Intel Core 2 Duo E6400 processor [48]. We
also assume that, while cores and interconnect routers occupy all metal layers,



52 Chapter 3. Physical planning for CMPs

cache memories only use two of them. Therefore, routing can be performed
over the cache memories. The operating frequency of the interconnect has been
used to define the constraints on the maximum wire length for the links.

The wire planning models were solved using PicoSAT [23], and Gurobi [72]
was used to optimize the wire length as per Section 3.5.

To characterize the memory accesses, a model extracted from the SPEC2006
soplex benchmark is used. The exploration generates 200 configurations in
around 20 minutes. Each configuration is described by its architectural param-
eters. For example, the best configuration from this exploration has 25 clusters
connected with a 5× 5 mesh. Each cluster has a bus as local interconnect, two
C2 cores and two C3 cores, along with 1 MB of L2 cache per core. The CMP has
a total of 50 MB L3 cache distributed across the 25 clusters. It has an estimated
throughput of 107.77 IPC.

3.6.2 Impact of physical planning

In order to prove how the use of physical planning can significantly alter the
results of system-level exploration, we applied our physical planning tool to
the 200 configurations found by the exploration. This floorplanning process, if
run sequentially, takes 5 hours (an average of 90 seconds per configuration).
However, on a machine with multiple cores each of the 200 configurations can
be run separately.

 320

 330

 340

 350

 360

 370

 380

 100  101  102  103  104  105  106  107  108

A
re

a 
[m

m
2 ]

Throughput [IPC]

Block area
Conventional floorplan

NoC-aware floorplan

Figure 3.12: Area as measured by different floorplanning strategies.



3.6. Results 53

The results are shown in Fig. 3.12. For each configuration, block area
indicates the sum of the areas from all components. The exploration tool,
before physical planning, uses this value as estimator for the expected chip
area in order to satisfy the maximum area constraint. In this example, no
configuration has a block area larger than 350 mm2. Conventional floorplan
shows a minimal area floorplan obtained without using any of the constrains
described in this work (abutability, link length optimization, etc.). On the other
hand, NoC-aware floorplan depicts the floorplan with minimal area that satisfies
these constraints. A dashed line connects the block area data point with the
minimal NoC-aware floorplan area for the same configuration.

Despite the fact that all configurations have a block area lower than the
limit, a large number exceeds the area limit once physical planning is taken
into account. As an example, the best configuration found by the exploration
(rightmost in Fig. 3.12) has a block area of 348.45 mm2, which is below the
area constraint. A conventional, minimal area floorplan exists with an area
of 349.17 mm2, also below the constraint. However, using the tool presented
in this work, we find that the smallest floorplan satisfying all floorplanning
constraints has an area of 355.59 mm2. This violates the area constraint and,
therefore, is not actually a valid configuration.

The first viable configuration with area below the limit has a significantly
lower performance at 105.85 IPC. Out of the 200 configurations selected dur-
ing the exploration, 39% of configurations had no floorplan satisfying all the
constraints. Even for the configurations for which such a floorplan was found,
only 23% satisfy the 350 mm2 area limit. Configurations using rings as local
interconnect, despite their excellent performance characteristics, have much
stricter physical constraints and thus often violate design constraints. Without
physical planning, those configurations would have been tagged as “promising”
and would have been analyzed with more accurate simulation tools.

3.6.3 Physical planning search space

A single CMP configuration can have a large number of alternative floorplans.
Nevertheless, it is desirable to select one or few candidate floorplans. At the
same time, we are considering two metrics by which feasible floorplans can be
evaluated: area and wire length. Thus, there is a trade-off.

In Section 3.1 we showed two candidate floorplans where one had much
shorter total wire length at the cost of a 15% increase in the chip area. Since
this trade-off might be inconvenient for some designs, the weights in the cost
function (described in Section 3.4) can be modified to guide the search towards
floorplans with better area or towards shorter wire length.



54 Chapter 3. Physical planning for CMPs

 360

 380

 400

 420

 440

 460

 480

 500

 380  390  400  410  420  430  440

W
ir

e 
le

ng
th

 [1
06  µ

m
]

Area [mm2]

(a)

(b)

Figure 3.13: Example of physical planning search space for a single CMP
configuration.

(a) (b)

Figure 3.14: Two design points from the exploration space in Fig. 3.13.



3.7. Conclusions 55

Figure 3.13 is an example of the available floorplans for a given CMP
configuration. In the chart, each point represents a valid floorplan and its
position depends on the area and wire length for that floorplan. The 10 Pareto-
dominating solutions are represented as a solid line (Pareto frontier). By
changing the weights in the cost function, a designer can decide which of these
solutions are most desirable. We expect this small set to be further reduced by
area or other types of physical constraints.

To illustrate, we selected two representative floorplans from the Pareto
frontier that we show in Fig. 3.14. These are, respectively, the floorplan with
the minimal area (but satisfying all constraints) and the overall best floorplan
assuming we give the same weights to both area and wire length minimization.

3.6.4 Publications

As part of this research topic we have published the following articles:

• J. de San Pedro, N. Nikitin, J. Cortadella, and J. Petit, Physical Planning
for the Architectural Exploration of Large-Scale Chip Multiprocessors, in
Proceedings of the 2013 IEEE/ACM Seventh International Symposium on
Networks-on-Chip, Tempe, Arizona, USA, 2013, pp. 1–2.

• J. Cortadella, J. de San Pedro, N. Nikitin, and J. Petit, Physical-aware
system-level design for tiled hierarchical chip multiprocessors, in Proceedings
of the 2013 ACM International Symposium on Physical Design, New York,
NY, USA, 2013, pp. 3–10.

The first article centers on the integration of physical planning into ar-
chitectural exploration, while the second article centers on the specifics of
floorplanning for CMPs.

3.7 Conclusions

The impact of physical layout is often neglected when exploring the architec-
tural parameters of a CMP. This chapter has presented a framework in which
physical planning has been integrated with architectural exploration to generate
physically-viable high-performance CMPs. The presence of physical constraints
has been shown to have an important impact in deciding the parameters for
the design of CMPs.

This is a first step towards future design frameworks in which accurate
power-performance models and advanced technologies with hierarchical on-
chip interconnects can be incorporated. Future work in this direction has to



56 Chapter 3. Physical planning for CMPs

address the issues of physical planning for alternative interconnect topologies,
such as crossbars. Additionally, the accuracy of performance prediction can be
improved by using physical information while estimating the system throughput.
Another important task is to look for alternative approaches to physical planning
in order to speed-up the phase of system-level design for CMPs.



Chapter 4

Regularity-constrained
floorplanning

The complexity of the VLSI physical design flow grows dramatically as the level
of integration increases. An effective way to manage this increasing complexity
is through the use of regular designs which contain more reusable parts. In
this chapter we introduce HiReg, a new floorplanning algorithm that generates
regular floorplans.

In Chapter 3, the benefits of regular designs were already demonstrated
with tiled Chip multiprocessors (CMPs). In a tiled CMP, there is a single design
for a tile that is designed once but replicated many times, thereby reducing the
design effort. HiReg goes further and automatically extracts repeating patterns
in a design by using graph mining techniques, without any information from the
designer. As will be seen, this also allows HiReg to extract multiple hierarchical
levels of repeating patterns, instead of being limited to a single tile pattern.

Regularity is exploited by reusing the same floorplan for multiple instances of
a pattern, as long as neither area, wire length or existing hierarchy constraints
are violated or compromised. Experiments will show the scalability of the
method for many-core CMPs and competitive results in area and wire length
with traditional floorplanners.

This chapter starts by giving a brief motivation of the problem in Section 4.1.
The current state of the art is reviewed in Section 4.2. Section 4.3 uses an
example to demonstrate the challenges solved by the presented approach.
Section 4.4 describes the inner workings of HiReg. In Section 4.5, HiReg is
compared with other floorplanning tools to evaluate the benefits of regularity.
Conclusions are discussed in Section 4.6.



58 Chapter 4. Regularity-constrained floorplanning

4.1 Motivation

The computational complexity of the floorplanning problem highly depends
on the number of components of the system. For large systems, a flat view
makes the floorplanning problem intractable. For this reason, hierarchical
methods [135, 143] has been proposed and successfully used to reduce this
complexity. Hierarchical methods divide the floorplanning problem into multi-
ple subproblems that may be either fully or partially independent from each
other, thereby enhancing scalability.

An important metric often disregarded during floorplanning is regularity,
known to lead to efficient and economical designs [128]. Large-scale systems
have significant amounts of regular patterns than can be exploited (on-chip
memories, many-core CMPs, etc.). The design cost of such systems can be
brought down by reducing the number of distinct subcircuits to be designed, and
then replicating the pre-designed subcircuits as many times as possible. To allow
this reduction, a regular floorplan uses the exact same layout for all replications
of a subcircuit. To reduce complexity of timing closure, it is also desirable for
all of the adjacent components to be placed in similar relative positions, so that
the interconnect geometries are regular and timing analysis is similar.

In many-core CMPs, tiled layouts [16] are often used to exploit regularity, as
in the previous chapter. The design is split into homogeneous tiles that are only
floorplanned once and then replicated. However, with industry moving towards
heterogeneous CMPs [97], it is no longer possible to assume that most CMPs will
have only a single type of tile. Integrated graphics, accelerators and I/O blocks
are some of the special types of co-processors that introduce heterogeneity.

On the other hand, enforcing regularity in a design may compromise other
floorplan metrics such as area or wiring. Existing designs are often hierarchical
in nature. CMPs with hierarchical topologies are a good example. Preserv-
ing the pre-defined hierarchy may result in a better wiring quality (e.g. by
reducing the number of wires that cross between different subcircuits). Very
often, hierarchy is manually enforced by designers to split the design and assign
components to different design teams. Thus, breaking the existing hierarchy
could be counterproductive to the goal of simplifying design. Another example
is the concept of choppability [122]. In a choppable floorplan, large functional
blocks can be chopped away, reducing the total die size and varying perfor-
mance/power metrics in order to construct multiple versions of a product from
the same basic design.

In this chapter we introduce a new floorplanning algorithm, HiReg, that
considers area, wiring, regularity and hierarchy as floorplanning objectives.
Very often these objectives are conflicting, e.g., reducing final area compromises
regularity and vice versa. To deal with this issue, HiReg uses a new method



4.2. Related work 59

C C C M M C C C

C C M C C M C C

C M C C C C M C

M C C C C C C M

M C C C C C C M

C M C C C C M C

C C M C C M C C

C C C M M C C C

(a) Diamond pattern

r

r

r
r

r

r
r

r

r

r
r r r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r r
r

r
r

r r

r r r

r
r

r

r

r
r
r

r

r

r

r
r
r

r

r

r

r

r

r

r

r

r r

r

r

r

r

r

r

r

r
r
r

r

r

r

r

r

r

r

r
r

r

r
r

r

r

rr

r
r r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r
r

r

rr

rr

r

r

r

r

r

r

r
r
r

r

r

r
r r

r

r
r
r

r

r

r

r

r

r

r
r
r

r

r

r

r

r

r

r r

r

r

r

r

r

r

r

r r

r

r

r

r

r

r
r

r

r
r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r
r

r r

r

r

r

r

r

r

r

r

r

r

r

r
r
r

r

r

r

r

rr

r

r

r

r

r

r

r
r
r

r

r

r

r

r

r

r r

r

r

r

r

r

r r

r r

r

r

r

r

r r

r

r

r

r

r

r

r

r
r
r

r

r

r

r

r

r

r
r
r

r

r

r

r

r

r

r r

r

r

r

r

r

r
r

r
r

r

r

R

RR R

RR R

R

RR R

RR R R

R

R R R

R

R

RR R

RR R

R
R

RR R

R

RR R

R

R R

RR R

R

RR R

RR R

R

RR R

RR R R

R

R R R

R

R

R

L2

L2

L2

L2
L2

L2

L2

L2
L2

L2

L2

L2

L2L2

L2

L2
L2
L2

L2

L2

L2

L2
L2

L2

L2

L2

L2

L2
L2

L2

L2

L2

L2L2

L2

L2
L2
L2

L2

L2

L2

L2
L2

L2

L2

L2

L2

L2 L2

L2

L2

L2

L2

L2

L2

L2

L2
L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2 L2

L2

L2

L2

L2

L2
L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2
L2

L2

L2

L2
L2

L2

L2

L2

L2L2

L2

L2
L2
L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2
L2

L2

L2

L2

L2L2

L2

L2
L2
L2

L2

L2

L2

L2
L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2
L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2
L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2L2

C

C
C

C

C
C

C

C

C

C

C C

C

C

C

C

C
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
C

C

C

C
C

C

C

C

C

C

C

C

CC
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C C

C

C

C

C

C

CC

C

C

C

C

C

C

C

C

CC

C

C

C

C

C

C

C

C

C

C

C

C

C
C

C

C

C
C

C

C

C
C

C

C
C

C

C

C

C

C C
C

C

C

C

C

C
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
C

C

C

C

C

C C

C

C

C

C

C

C

CC

C

C

C
C

C

C

C
C

C

C

C

C

C

C

C

C

C

C

CC
C

C C

C

C

C

C

C

C

MC

MC
MC

MCMC

MC MC

MC

MC MC

MCMC

MC MC

MC MC

L3

L3

L3
L3

L3

L3

L3

L3

L3

L3

L3

L3

L3

L3

L3

L3 L3

L3

L3

L3

L3

L3

L3

L3

L3

L3

L3

L3

L3

L3

L3

L3L3

L3

L3

L3

L3

L3

L3

L3

L3

L3

L3

L3

L3

L3

L3

L3

Buf

Buf

Buf

Buf

Buf

Buf

Buf

Buf

Buf Buf

Buf

Buf

Buf

Buf Buf

Buf

(b) CompaSS

R

r CL2
r
C

L2 r CL2

rC L2

r
L3

r

R

r
CL2

r CL2 r

C L2

r

C
L2 r L3

r

R

r
CL2

r CL2 r

C L2

r
C L2

r L3
r

R MC

Buf

R

MC
Buf

R
r

C L2

r
C
L2 r
C L2

r

C

L2
r

L3

r R

r
CL2

r CL2 r

C L2

r

C
L2 r

L3r

R r
CL2

r
C
L2r
CL2

r

C

L2
r

L3

r

R

rC L2
r

C
L2 r CL2

r C
L2

r
L3

r

R

r CL2
r
C
L2rC L2

r CL2r

L3

r
R MC

Buf

R
r

CL2

r CL2 r
C L2

r
C L2

r L3
r

R
r CL2

r CL2
r
C

L2 r CL2
r

L3

r
R

MC
Buf

R

r
CL2

r CL2 r

C L2

r

C
L2 r

L3r

R

rC L2
r

C

L2 r CL2

rC L2
r

L3

r

R

r
C L2

rC L2r

CL2

r

CL2
rL3
r

R MC

Buf

R

rC L2
r

C
L2rC L2

r
C L2

r
L3

r

R

r
CL2

r CL2 r

C L2

r

C
L2 r L3

r

R

r
CL2

r CL2 r

C L2

r

C
L2 r

L3r

Rr
C L2

r
C
L2 r
C L2

r

C

L2
r

L3

r R

MC
Buf

R

r
CL2

r
C
L2r
CL2

r
C

L2 r

L3

r

RMC

Buf

R
r

CL2

r CL2 r
C L2

r
C L2

r L3
r

R

r CL2
r
C
L2rC L2

r
C L2

r
L3

r

R

rC L2
r

C

L2 r CL2
rC L2 r

L3

r

R

r
CL2

r CL2 r

C L2

r

C
L2 r

L3r

R

r CL2
r
C

L2rC L2
r CL2r
L3

r

R
rC L2

rC L2
r

C
L2 rC L2

r
L3

r
R

MC
Buf

R

MC
Buf

R

r
C L2

r
C
L2 r
C L2

r
C

L2r

L3

r

R

r

CL2

r CL2 r
C L2

r
C

L2 r L3
r

R

r
CL2

r
C
L2r
CL2

r
C

L2 r

L3

r

R

rC L2
r

C

L2rC L2

rC L2

r
L3

r

R

r
CL2

r CL2 r

C L2

r

C
L2 r L3

r R

r
C L2

rC L2r

CL2

r

CL2
rL3
r

R MC

Buf

R
r CL2

r CL2
r
C

L2 r CL2

r
L3

r
R

MC
Buf

R

r

CL2

r CL2 r
C L2

r
C
L2 r L3

r

R

rC L2
r

C
L2 r CL2

r
C L2 r

L3

r

R

r CL2
r
C

L2rC L2

rC L2

r
L3

r

R

r CL2
r
C
L2rC L2

r
CL2r

L3

r

RMC

Buf

R
r

CL2

r CL2 r
C L2

r
C L2

r L3
r

R

r

CL2

r CL2 r
C L2

r
C
L2 r L3

r

Rr
C L2

r
C
L2 r
C L2

r

C

L2
r

L3

r R

MC
Buf

R
r
CL2

r
C
L2r
CL2

r

C

L2
r

L3

r

R
r

C L2

rC L2r
CL2

r
CL2

rL3
r

R MC

Buf

R

r CL2
r
C

L2 r CL2

r C
L2

r
L3

r

R

r
CL2

r CL2 r

C L2

r

C
L2 r L3

r

R

r

CL2

r CL2 r
C L2

r
C
L2 r L3

r

R

rC L2
r

C

L2 r CL2

rC L2
r

L3

r R
rC L2

rC L2
r

C

L2 rC L2
r

L3

r
R

MC
Buf

RMC

Buf

R

r

CL2

r CL2 r
C L2

r

C L2

r
L3r

R

rC L2
r

C

L2 r CL2

r C
L2

r
L3

r

R

rC L2
r

C
L2 r CL2

r
C L2 r

L3

r

(c) DeFer

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

R MC

Buf r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

R MC

Bufr
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

R MC

Buf r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

R MC

Bufr
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

R MC

Bufr
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

R MC

Buf r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

R MC

Bufr
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

R MC

Buf r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

R MC

Bufr
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

R MC

Buf r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

R MC

Bufr
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

R MC

Buf r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

R MC

Buf r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

R MC

Bufr
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

R MC

Buf r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

R MC

Bufr
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

(d) HiReg

Figure 4.1: Example CMP floorplans generated using different floorplanning
strategies.

that can trade-off hierarchy and regularity constraints. Both hierarchy and
regularity are automatically discovered from the block netlist.

4.2 Related work

There has been little work in the area of regular floorplans. Regularity is more
common in the area of physical design for analog circuits, where it is often
a strict requirement due to the peculiarities of analog design [15]. However,



60 Chapter 4. Regularity-constrained floorplanning

Hierarchy Regularity
[38] No Arrays only
REGULAY [145] Yes Tiles only
DeFer [143] Yes No
CompaSS [37] By similarity No
[135] Yes No
ArchFP [64] Manual Manual
HiReg Yes Yes

Table 4.1: Comparison of related work.

most of the techniques in analog design involve symmetry properties that are
not relevant for maximizing design reusability.
[38] acknowledges the importance of regular designs in CMPs and describes

a simulated annealing-based floorplanner that organizes groups of similar blocks
in regular arrays. However, the technique does not fully exploit regularity since
adjacent components may not be placed in aligned locations that enable regular
interconnection geometries. The blocks that are to be placed in regular groups
must also be manually selected by the designer.

In System-on-Chip design, REGULAY [145] also mentions the importance of
preserving regularity and hierarchy. REGULAY discovers the optimal mapping
of heterogeneous tiles into a regular grid arrangement, and does not consider
the floorplanning of the individual tiles themselves.

On the other hand, the advantages of using hierarchy during floorplanning
are not new [49]. Nonetheless, most existing work uses hierarchy only to im-
prove the scalability of the floorplanning problem, allowing efficient generation
of floorplans with large numbers of components, and differ in the methodologies
used to discover hierarchy.

DeFer [143] uses graph bipartitioning to generate a binary tree of balanced
netlist partitions, a method similar to the one proposed in this work for hi-
erarchy discovery. This hierarchy tree is then used to generate a slicing tree,
reducing the number of floorplans that need to be explored during the search.
CompaSS [37] automatically clusters blocks with similar or identical shapes, and
then creates grid floorplans for them. However, CompaSS ignores connectivity
information. [135] applies a recursive slice-and-partition method derived from
cell placement strategies.

All three examples use slicing floorplans and bounding curves that will also
be used in this work to efficiently represent floorplans. Slicing floorplans are not
able to represent the entire set of optimal floorplans. However, this difference
is minimal given a large number of soft blocks [147], as it often occurs in CMPs.



4.3. Exploring regularity and hierarchy 61

Component Area Aspect ratio
Core (C) 1.38 mm2 0.8 or 1.25
L2 cache 1 mm2 0.5 ÷ 2
L3 cache 3 mm2 0.5 ÷ 2
Ring router (r) 0.27 mm2 1
Mesh router (R) 0.99 mm2 1
Memory controller (MC) 2.5 mm2 0.8 or 1.25
Buffer (Buf) 12 mm2 0.5 ÷ 2

Table 4.2: Physical information for Fig. 4.1.

Whitespace HPWL (m)
CompaSS 6.3% 6801
DeFer 8.2% 630
HiReg 12.6% 516

Table 4.3: Floorplanning results for Fig. 4.1.

ArchFP [64] describes a different strategy that can produce floorplans that
are both regular and hierarchical. However, ArchFP assumes that a designer
will construct, previously to the floorplanning process, a manual hierarchy of
the CMP components and will choose a floorplanning approach for each group
of components. Our work extracts hierarchy and regularity in an automated
way, without any previous knowledge of the topology of the input netlist. Table
4.1 summarizes the differences between these strategies.

4.3 Exploring regularity and hierarchy

This section will use an example to illustrate the trade-offs between regularity
and hierarchy. Figure 4.1 shows the result of floorplanning the same netlist using
HiReg and two other hierarchical floorplanners. Table 4.3 contains whitespace
and wire length results. This netlist represents a hierarchical tiled CMP, with
192 cores. It contains 64 tiles, with 48 processing tiles containing 4 cores each,
and 16 memory controller tiles. This CMP uses a hierarchical Network-on-
Chip topology. An 8× 8 mesh interconnects all tiles. Inside each tile, a ring
provides connectivity.

The mapping of processing and memory controller tiles has been selected to
match the diamond pattern (Fig. 4.1a, [9]) which maximizes off-chip memory
performance. Thus, this configuration is representative of a potential many-core
CMP design. For the sake of easy visualization, both types of tiles have similar



62 Chapter 4. Regularity-constrained floorplanning

C C C M M C C C

C C M C C M C C

C M C C C C M C

M C C C C C C M

M C C C C C C M

C M C C C C M C

C C M C C M C C

C C C M M C C C

(a) Regularity without hierarchy

C L2
r

C L2
r r

CL2r CL2rr R

L3

C L2
r

C L2
r r

CL2r CL2rr R

L3

R

MC
Buf

C

L2
r

C

L2
r

r

C

L2
r

C

L2
r
r

R

L3

C

L2
r

C

L2
rr

C

L2
r

C

L2
r

rR

L3

C

L2
r

C

L2
rr

C

L2
r

C

L2
r

rR

L3

R MC

Buf

C L2
r

C L2
r r

CL2r CL2rr R

L3

C L2
r

C L2
r r

CL2r CL2rr R

L3

R

MC
Buf

C

L2
r

C

L2
r

r

C

L2
r

C

L2
r
r

R

L3

C

L2
r

C

L2
rr

C

L2
r

C

L2
r

rR

L3

C

L2
r

C

L2
rr

C

L2
r

C

L2
r

rR

L3

R MC

Buf

C

L2
r

C

L2
rr

C

L2
r

C

L2
r

rR

L3 C

L2
r

C

L2
rr

C

L2
r

C

L2
r

rR

L3 R

MC
Buf

C L2
r

C L2
r r

CL2r CL2rr R

L3

C L2
r

C L2
r r

CL2r CL2rr R

L3

R

MC
Buf

C

L2
r

C

L2
r

r

C

L2
r

C

L2
r

r

R

L3

C

L2
r

C

L2
r

r

C

L2
r

C

L2
r
r

R

L3

C

L2
r

C

L2
r

r

C

L2
r

C

L2
r

r

R

L3

C

L2
r

C

L2
r

r

C

L2
r

C

L2
r
r

R

L3

C

L2
r

C

L2
r

r

C

L2
r

C

L2
r
r

R

L3

C L2
r

C L2
r r

CL2r CL2rr R

L3

C L2
r

C L2
r r

CL2r CL2rr R

L3

R

MC
Buf

C

L2
r

C

L2
r

r

C

L2
r

C

L2
r
r

R

L3

C

L2
r

C

L2
rr

C

L2
r

C

L2
r

rR

L3

C

L2
r

C

L2
rr

C

L2
r

C

L2
r

rR

L3

R MC

Buf

C L2
r

C L2
r r

CL2r CL2rr R

L3

C L2
r

C L2
r r

CL2r CL2rr R

L3

R

MC
Buf

C

L2
r

C

L2
r

r

C

L2
r

C

L2
r
r

R

L3

C

L2
r

C

L2
rr

C

L2
r

C

L2
r

rR

L3

C

L2
r

C

L2
rr

C

L2
r

C

L2
r

rR

L3

R MC

Buf

C

L2r

C

L2r

r

C

L2
r

C

L2
r
r

R

L3

C

L2r

C

L2r

r

C

L2
r

C

L2
r
r

R

L3
R MC

Buf

C

L2
r

C

L2
r

r

C

L2
r

C

L2
r

r

R

L3

C

L2
r

C

L2
r

r

C

L2
r

C

L2
r

r

R

L3

R MC

Buf

CL2r

CL2
rr

CL2
r

CL2r

r

R L3

C L2
r

C L2
r r

C
L2
r

C
L2
r r

R

L3

C L2
r

C L2
r r

C
L2
r

C
L2
r r

R

L3

C

L2r

C

L2r

r

C

L2
r

C

L2
r
r

R

L3

C

L2r

C

L2r

r

C

L2
r

C

L2
r
r

R

L3

C L2
r

C L2
r r

CL2r CL2rr R

L3

C L2
r

C L2
r r

CL2r CL2rr R

L3

R

MC
Buf

C

L2
r

C

L2
r

r

C

L2
r

C

L2
r

r

R

L3

C

L2
r

C

L2
rr

C

L2
r

C

L2
r

rR

L3

C

L2
r

C

L2
rr

C

L2
r

C

L2
r

rR

L3

R MC

Buf

C L2
r

C L2
r r

CL2r CL2rr R

L3

C L2
r

C L2
r r

CL2r CL2rr R

L3

R

MC
Buf

C

L2
r

C

L2
r

r

C

L2
r

C

L2
r

r

R

L3

C

L2
r

C

L2
rr

C

L2
r

C

L2
r

rR

L3

C

L2
r

C

L2
rr

C

L2
r

C

L2
r

rR

L3

R MC

Buf

(b) Floorplan generated from (a)

C C C M M C C C

C C M C C M C C

C M C C C C M C

M C C C C C C M

M C C C C C C M

C M C C C C M C

C C M C C M C C

C C C M M C C C

(c) Regularity preserving hierarchy

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

R MC

Buf r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

R MC

Bufr
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

R MC

Buf r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

R MC

Bufr
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

R MC

Bufr
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

R MC

Buf r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

R MC

Bufr
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

R MC

Buf r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

R MC

Bufr
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

R MC

Buf r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

R MC

Bufr
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

R MC

Buf r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

R MC

Buf r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

R MC

Bufr
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

R MC

Buf r
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

R MC

Bufr
L2

C

r
L2

C

r
L2C
r
L2 C

R

L3

r
r

(d) Floorplan generated from (c)

Figure 4.2: Example floorplans with and without hierarchy constraints.



4.3. Exploring regularity and hierarchy 63

area requirements in this example. In general, each tile may have a different
area constraint.

In addition to cores (C), processing tiles contain L2 caches private to each
core, a tile-shared L3 cache block, ring routers for intra-tile communication
(r) and mesh routers for inter-tile communication (R). The memory controller
tiles each contain a buffer (Buf), mesh router, and a memory controller itself
(MC). Physical information is described in Table 4.2. Cores come in several hard
aspect ratios, but we assume memories to be flexible within a limited range.
We also assume every net represents a link with 1024 wires.

In Fig. 4.1b, CompaSS groups blocks by similarity and creates arrays in
order to improve packing quality, thus resulting in floorplans that have some
regularity. However, connectivity information is not considered, resulting in
floorplans with good area metrics but poor wire length.

DeFer minimizes area and wire length, and uses hierarchy to floorplan
efficiently. In Fig. 4.1c, we disabled compaction in order to easily visualize the
effects of hierarchy, but it was enabled for obtaining the results in Table 4.3.
Because of hierarchy, the floorplan is divided in 4 quadrants, with each quadrant
also divided in 4 quadrants, and so on. However, small differences in the
floorplans used for every quadrant prevent reusing the same design for all sub-
quadrants. The construction of hierarchy from connectivity information results
in a 2% area increase compared to CompaSS, but generates a significantly
reduced wire length.

HiReg, on the other hand, constructs a floorplan that exploits the regularity
and hierarchy inherent to a tiled CMP design. It is able to extract additional
regularity by grouping cores inside tiles in blocks of 2. This tiled structure is
discovered despite HiReg not having any previous knowledge of the interconnect
topology. The use of hierarchy and regularity causes an additional 4% area
increase over DeFer results, but generates a 20% reduction in wire length.
Because of regularity, the entire CMP can now be constructing by replicating
the two types of tiles. At the same time, two cores in every processing tile can
be constructed by replication, resulting in significant design time savings.

4.3.1 Discovering regularity

In order to create regular floorplans, HiReg automatically finds repeating pat-
terns in the input netlist. We define a pattern as a subgraph from the netlist. We
consider a pattern P to be repeated if there is at least one additional subgraph
in the netlist isomorphic to P. We call all the repetitions of P the instances of P.

An example of the way HiReg extracts regularity is shown in Fig. 4.4a. The
initial netlist contains 4 instances of the same pattern (composed of C , L2 and
r each). After identifying this pattern, HiReg compresses the graph, replacing



64 Chapter 4. Regularity-constrained floorplanning

C CP1=

M C CP2=

C C M

C C M
P3=

(a) Patterns used in Fig. 4.2a

Full CMP

Left half Right half

NE corner SE corner SW cornerNW corner

(b) Discovered hierarchy tree

Figure 4.3: List of patterns and hierarchy tree.

C
L2

r

C
L2

r
L3r

C
L2

C
L2

r r

L3r

L3r

rR

rR

rR

(a) Regular extraction process

Full CMP

L3 r

C
L2

r

C L2 r

R

(b) Generated DAG

Figure 4.4: Regular extraction process and example generated DAG.

every instance with a new vertex, representing the compressed instance. The
process iterates until no additional patterns can be found.

Because of this iterative process, the result of regularity discovery is actually
a directed acyclic graph (Fig. 4.4b). In this DAG, there is a leaf node (with no
exit edges) for each component type in the netlist. Every other node represents a
pattern. An edge between two patterns Pa, Pb indicates that pattern Pa contains
an instance of Pb. The root pattern (with no entry edges) represents the entire
original netlist.

HiReg uses this DAG to apply a divide-and-conquer strategy. Instead of
floorplanning the entire netlist, the problem is split into floorplanning every
pattern. To ensure regularity, HiReg enforces using the same or similar floorplans
for all instances of a pattern, albeit this restriction may be relaxed if better area
or wire length results are required.

4.3.2 Trading off regularity and hierarchy

An important contribution of this chapter is the importance of preserving existing
hierarchy when discovering regularity.



4.4. Regular floorplanning algorithm 65

Our initial approach completely disregarded hierarchy and centered on
regularity as defined in Section 4.3.1. The regularity extraction process is
primarily based on local decisions and lacks a global vision of the entire netlist.
By centering on regularity only, the results may contradict existing design
hierarchy, which can be counterproductive to the goal of reducing design time.

A visual example is shown in Fig. 4.2. This example shows a CMP design
identical to the one in Fig. 4.1, containing processing (C) and memory controller
(M) tiles. In a and b floorplanning is performed using discovered regularity
only, without preserving hierarchy. c and d show the results of floorplanning
using both regularity and hierarchy discovery.

The set of repeating patterns that have been extracted to construct a are
shown in Fig. 4.3a. Because the regularity discovery process lacks global vision
of the netlist, it discovers a set of patterns that break the natural tile hierarchy
of the CMP. Despite patterns P1 and P2 being frequent patterns, using these to
compress the netlist limits further extraction of regularity. The only remaining
patterns left after compressing the netlist with P1 and P2 are combinations that
do not respect the mesh topology, such as P3. P3 groups a non-rectangular set of
tiles. In these situations, good area and wire length metrics cannot be obtained
if the same layout must be strictly replicated for all instances of P3. Thus, the
regularity of the design is compromised, as shown in Fig. 4.2b.

In HiReg, existing netlist hierarchy is automatically discovered using re-
cursive graph bisection (similar to [143], described in Section 4.4.1). The
recursive graph bisection procedure divides the design into a recursive series of
area-balanced partitions. To account for topologies with a non-power-of-two
number of partitions, HiReg allows for up to 1-to-3 imbalance in the area of the
automated bisections. Alternatively, the hierarchy information may be provided
by the designer.

This hierarchy information is represented as a tree, such as the one in
Fig. 4.3b, which guides the regularity discovery process. Specifically, no pattern
instances can cross boundaries delimited by hierarchy. In Fig. 4.2c, no pattern
instance was allowed to extend to more than one CMP quadrant, based on the
hierarchy tree discovered by bisection (Fig. 4.3b) which separates the four CMP
quadrants. This restriction reduces the number of P1 instances, but eventually
allows a larger number of more regular patterns to be found. In this way,
maintaining hierarchy adds a global vision to the regularity extraction process.

4.4 Regular floorplanning algorithm

The algorithm can be divided in 5 stages, as seen in Fig. 4.5. The first 3 stages
of the algorithm perform hierarchy discovery and regularity discovery based on



66 Chapter 4. Regularity-constrained floorplanning

Netlist
Hierarchy
discovery

Hierarchy tree
collapsing

Regularity
discovery

Set of
regular

hierarchies

Bounding
curve con-
struction

Bounding
curve

Floorplan
construction

Set of
regular

floorplans

Figure 4.5: High-level flow of the algorithm.

the input netlist. During hierarchy tree collapsing, trade-offs between hierarchy
and regularity are explored. Instead of generating a single regular hierarchy,
between stages 3 and 4 we store a set of candidate regular hierarchies, delaying
the selection on which hierarchy is most optimal until after all hierarchies have
been evaluated.

The latter two stages perform actual floorplanning for all the candidate
hierarchies. Stage 4 (bounding curve construction) enumerates all possible
floorplans for each of the hierarchies, and stores the outlines efficiently as a
single bounding curve. After this stage, the outlines for each possible floorplan
are known and the designer can select a smaller subset based on physical
metrics such as aspect ratio. Stage 5 (floorplan construction) constructs the
selected floorplans.

Algorithm 2 contains a formal definition of this multiple stage flow, showing
all 5 stages. The stages will be explained in detail during this section.

4.4.1 Hierarchy discovery

The first stage discovers the existing hierarchy in the input design. This is
performed in order to ensure that an existing high-level topology in the design
is preserved. Respecting existing design hierarchies is not only desirable from a
reusability point of view, but also generates results with improved wire length
when compared to results that create layouts which ignore the existing topology.

The method proposed in this section is based on hypergraph partitioning,
an extension of the methodology proposed in [143].

We assume that the input netlist, represented as the hypergraph G, has a
natural number of partitions. For example, a CMP with 8× 8 tiles would have
64 natural partitions. A 63-way or 65-way partition would result into more
interconnections between the different subcircuits than the natural 64-way
partition. The goal of the algorithm is to discover these natural partitions.



4.4. Regular floorplanning algorithm 67

Algorithm 2 General overview of the algorithm

function REGULARFLOORPLANNING(G)
1. Hierarchy discovery:

CandidateHierarchies← ;
HierarchyTree← HIERARCHYDISCOVERY(G)
for threshold in {0 . . . n} do

2. Hierarchy tree collapsing:

CollapsedHierarchyTree←
COLLAPSEHIERARCHY(HierarchyTree, threshold)

3. Regularity discovery:

RegularHierarchyDAG←
REGULARITYDISCOVERY(CollapsedHierarchyTree)

append RegularHierarchyDAG to CandidateHierarchies
. CandidateHierarchies contains candidate regular hierarchy DAGs

4. Bounding curve construction:

Γ ← empty bounding curve
for all RegularHierarchyDAG ∈ CandidateHierarchies do
Γ ← Γ ∪

CONSTRUCTBOUNDINGCURVE(RegularHierarchyDAG)

. Γ contains the bounding curve of all possible floorplans for all of the
candidate hierarchies

SelectedPoints← select desired outlines from Γ

5. Floorplan construction:

return CONSTRUCTFLOORPLANS(SelectedPoints)

The input netlist G is partitioned into two smaller circuits, minimizing the
total number of interconnections between the two partitions, as long as both
partitions have an area imbalance ≤ 2

3 . Such imbalance margin allows handling
circuits whose natural number of partitions is not a power of 2, by dividing the
circuit into a partition with 2

3 of the area and one with 1
3 . Between multiple

bipartitions with the same number of interconnections, the most balanced
partition is preferred.

The process is recursively applied to the two generated partitions, until all
partitions contain a low enough number of blocks so that further bisectioning
is not required (MinSize). This process is described in Algorithm 3.

During the process a binary tree is created where every leaf node is a
subcircuit (with a number of components < MinSize), and every other node is



68 Chapter 4. Regularity-constrained floorplanning

a bipartition, the root node being a bipartition of the input netlist G. We call
this tree the hierarchy tree (Fig. 4.3b).

Algorithm 3 Hierarchy discovery algorithm

function HIERARCHYDISCOVERY(G)
. G is the input netlist
if |G|<MinSize then

. Trivial case if there are too few elements left
return G

G1, G2← bipartition of G minimizing number of
edges between G1 and G2 with
AREAIMBALANCE(G1, G2) ≤ 2

3
T1← HIERARCHYDISCOVERY(G1)
T2← HIERARCHYDISCOVERY(G2)
return CREATETREE(T1, T2)

function AREAIMBALANCE(G1, G2)
return MAX(AREA(G1),AREA(G2))

AREA(G1)+AREA(G2)

4.4.2 Hierarchy tree collapsing

The trees generated during hierarchy discovery are used to constrain the regu-
larity discovery procedure and ensure that existing circuit hierarchy is preserved.
However, strictly preserving all hierarchy would prevent the floorplanner from
finding regularity, as discussed in Section 4.3. Thus, this stage generates hierar-
chies that have been relaxed, giving more flexibility to the posterior regularity
discovery procedure.

It is often the case that only the high-level hierarchy is significant. For
example, it is important to ensure that tile boundaries are honored in a CMP,
but the contents of the tiles themselves often have a less well defined hierarchy,
and a reduced connectivity impact if such hierarchy is not preserved. For this
reason, it is preferable to relax hierarchy at the leaves of the hierarchy tree.

Algorithm 4 shows the details of the algorithm. threshold is an input param-
eter, specified as an absolute area value. For tree nodes where the total area is
less than this threshold, the tree node is collapsed: all of its descendants are
enumerated, combined into a single subcircuit, and the tree node is replaced
by the new leaf subcircuit node. Thus, the resulting collapsed tree will have
fewer nodes than the input hierarchy tree, with larger leaf nodes containing
more components. See Fig. 4.6 for a visual example.



4.4. Regular floorplanning algorithm 69

Top design

6

3 2

1

2 1

⇒

Top design

6 5

4

Figure 4.6: Tree collapsing with a threshold of 4 mm2. Labels in leaf nodes
indicate block area (in mm2).

Multiple possible hierarchies are generated by this process by automatically
testing for several values of the threshold parameter. This way, the trade-
off between hierarchy and regularity is explored. The selection of the best
threshold is thus deferred until floorplans are generated and area, wire length
and additional metrics are available.

Algorithm 4 Tree collapsing

function COLLAPSETREE(HierarchyTree, threshold)
. any nodes representing parts of the netlist with less area than threshold

are collapsed
if BLOCKAREA(Tree) > threshold then

. Keep this node intact; continue walking the tree
T1← COLLAPSETREE(HierarchyTree.leftChild,

threshold)
T2← COLLAPSETREE(HierarchyTree.rightChild,

threshold)
return CREATETREE(T1, T2)

else
T ← combine all descendants of H into single node
return T

4.4.3 Regularity discovery

An essential stage in the floorplanning algorithm is finding repeated patterns of
blocks in the netlist. The methodology proposed in this work is based on the
ideas of frequent subgraph discovery (FSM), a popular research area within
the domain of data mining [90]. As seen in Section 2.1.2, the goal of FSM is to
identify repeated subgraphs in a graph.

We consider two distinct subgraphs G1, G2 of a graph G to be a repetition if
they are isomorphic. In such case, we call both G1 and G2 instances of the same



70 Chapter 4. Regularity-constrained floorplanning

repeating pattern P. In our formulation, each type of block in the netlist (core,
router, memory module, etc.) has a different label. Two vertices of a graph are
considered to be isomorphic only if they have the same label.

The algorithm is shown in Algorithm 5. REGULARITYDISCOVERY starts from
a FlattenedTree as input. At every iteration of the inner loop the most frequent
pattern is found, and then the netlist graph is compressed with all the instances
of such graph. This iterative process generates the regularity DAG as seen in
Fig. 4.4.

The outer loop ensures that the existing hierarchy indicated by FlattenedTree
is preserved. Instead of finding the most frequent pattern of the entire netlist,
we initially limit our search to the subcircuits in nodes FlattenedTree whose
depth is equal to the maximum depth of the entire tree.

Only if no repeating patterns are found in those subcircuits, the search
proceeds by enlarging the search are to include all subcircuits in nodes with
fewer depth, decreasing the minimum allowed depth (CurMinDepth) by one.
This way, the search algorithm ensures that patterns that are fully contained
inside the partitions marked by hierarchy boundaries are preferred before
patterns that do not.

Procedure FINDMOSTFREQUENTPATTERN implements frequent subgraph
discovery based on [90]. It is based on a constructive beam search model [120].
At every iteration, we keep a list L of candidate patterns. This list is initialized
with all trivial patterns of size 1 (that is, every subgraph with a unique label).
At every iteration, every pattern P in L is tested to check which of its instances
can be extended by including an adjacent vertex. Each possible extension is
stored in Lnew. The extended patterns in Lnew are sorted by their VALUE and
only a subset of them is selected according to their best value. The number of
surviving patterns is determined by b (beam width). The algorithm finishes
when no further extensions for any pattern in L can be found.

The VALUE function is used to discriminate between valid patterns when
more than one pattern is found for a given graph G. In HiReg the following
function is used:

VALUE(P) = “number of instances of P in G”× |G|+ |P|

This value ensures all patterns are ordered firstly by their frequency. When
comparing two patterns with the same number of repetitions, the pattern with
the largest vertex count (|P|) is preferred.

4.4.4 Bounding curve construction

In this stage, a bounding curve is constructed for each one of the regular hierar-
chy trees discovered by the previous stage. The bounding curve is constructed



4.4. Regular floorplanning algorithm 71

Algorithm 5 Frequent subgraph discovery

function FINDMOSTFREQUENTPATTERN(G)
G← input graph
L ← {∀ label l ∈ G : a subgraph with a single node

v ∈ G with label(v)= l}
b← beam width
Pbest ← FRONT(L)
while ¬ EMPTY(L) do

Lnew←∅
for all P ∈ L do

for all vertex u /∈ P adjacent to v ∈ P do
Lnew← Lnew ∪ EXTEND(P, u)

SORT(Lnew by descending VALUE())
L← first b elements of Lnew

if VALUE(FRONT(L)) > VALUE(Pbest) then
Pbest ← FRONT(L)

return Pbest

function REGULARITYDISCOVERY(CollapsedTree)
PatternList← ;
CurMinDepth← maximum depth of CollapsedTree
while CurMinDepth ≥ 0 do

G ← contents of all nodes from CollapsedTree
with depth >= CurMinDepth

repeat
P ← FINDMOSTFREQUENTPATTERN(G)
append P to PatternList
G← COMPRESS(G, P)

until no repeating patterns in G
CurMinDepth← CurMinDepth −1

return PatternList



72 Chapter 4. Regularity-constrained floorplanning

by a post-order walk in the hierarchy tree. This is similar to the techniques
used in other hierarchical floorplanners [37,143].

Every regular hierarchy tree is a directed acyclic graph where every non-leaf
node is a subcircuit representing a regular pattern, and and edge between P1

and P2 indicates that P1’s definition contains an instance of P2. Only once the
bounding curves for every children of a pattern P have been constructed the
algorithm can proceed to construct the bounding curve of P itself.

To construct the bounding curve of a pattern P, two different search strate-
gies are used depending on the number of blocks n. For patterns where n is
less than a threshold N , an exhaustive branch-and-bound search algorithm is
used. This algorithm explores every possible slicing floorplan.

If n≥ N , a more efficient heuristic search based on simulated annealing and
slicing trees is used. This heuristic search generates a much reduced number of
results than the branch-and-bound approach, but is capable of handling patterns
with a much larger number of components. The threshold N depends on the
specifications of the host computer, such as the amount of available memory.

The bounding trees for each hierarchy tree are combined into a single bound-
ing curve that represents the outlines of all floorplans found. Because many
hierarchy trees will contain similar sets of patterns, HiReg uses memoization in
order to decrease the runtime of this stage.

4.4.5 Floorplan construction

After selecting a subset of points from the final bounding curve (Γ ), the final
stage of the algorithm constructs floorplans starting from the outlines specified
by these points.

A single point in a bounding curve can represent multiple floorplans with
the same outline, including floorplans that only differ in mirroring and simple
block swapping (but also floorplans with entirely different layouts that happen
to share the same outline). Because the outline is fixed, the selection of these
floorplans cannot affect whitespace, but it may have a significant impact on the
wire length and regularity metrics.

The algorithm in Algorithm 6 implements a greedy search that finds a
combination of floorplans for a selected point P of the bounding curve that
minimizes a given cost function comparing wire length and regularity. By
manipulating the cost function, the designer is able to guide the search to either
enforce more regular floorplans, or on the other hand prefer floorplans with
increased connectivity quality.

An important technique used during this process is terminal propagation [59].
When selecting a floorplan for a pattern T , we know the layout and positions
of all instances of other subpatterns t1, t2, . . . , tn contained in T . Thus, for all



4.5. Results 73

nets that have a terminal in a child subpattern t i, but also have other terminals
in any other subpatterns of T , the algorithm can propagate the approximate
terminal positions of those terminals outside t i. This allows calculation of the
wire length when selecting floorplans for t i, even for nets external to t i.

Algorithm 6 Floorplan construction

function CONSTRUCTFLOORPLANS(P, T)
. P is the selected point of Γ
. T is the hierarchy tree that was used
F ← floorplans from Γ with size P
for all t in CHILDREN(T) do

propagate terminal positions from F to t
p← shape of t in F
Ft ← CONSTRUCTFLOORPLANS(p, t)

select combination of F1, . . . , Fn that minimizes COST(F, F1, . . . , Fn)
expand F with F1, . . . , Fn

return F

function COST(F, F1, F2, . . . , Fn)
return WIRELENGTH(F1)+WIRELENGTH(F2)+...

number of floorplans in F1, F2, . . . with the same layout

To increase floorplan quality or in order to generate more than one result,
HiReg combines this algorithm with the technique of beam search [120]. Instead
of keeping a single current solution, the b best solutions are kept.

4.5 Results

We implemented HiReg in C++ and tested it on a set of design examples. All the
experiments in this section were run on a Intel Xeon 2.8Ghz CPU with 32GB of
RAM. While the implementation can make use of multiple cores, it was limited
to a single thread for fair comparisons. METIS [87] was used to generate the
graph bisections required for hierarchy discovery.

Since there is little previous work on regularity-constrained floorplanning
for multi-processors, there are not many available benchmarks designed to
compare the quality of regular floorplans. Commonly used floorplanning public
domain benchmarks are mostly from old designs that do not contain much
regularity. Thus, during this section, we will use artificial benchmarks based on
many-core CMP designs.

It is hard to give a numerical metric for regularity in a floorplan. For HiReg
generated floorplans, we can provide an estimation of regularity based on the



74 Chapter 4. Regularity-constrained floorplanning

C1L2r

C1L2r

r

L3

C1 L2 r

C1 L2 r
r

R

C2 L2 r

r

L3

r

r L2 C2

R

A B

B A B A ... B A

Figure 4.7: Netlist used for the scalability and quality experiments.

regularity DAG used to generate them. Every node in the DAG with multiple
input edges represents a sublayout that has been replicated. Thus, a regularity
metric can be built by comparing the area of all nodes in this DAG with an
expanded version where none of the layouts are replicated:

Regularity = 1−
area of DAG

area of equivalent expanded tree

Because other tools do not target the creation of regular floorplans, we cannot
provide similar regularity metrics for non-HiReg floorplans.

4.5.1 Heterogeneous tiled CMP example

We start this section by mentioning the results presented during Section 4.3,
the heterogeneous tiled CMP. We also show the differences in wire length from
a floorplanning that preserves hierarchy versus one that does not.

The netlist used represents a CMP containing 64 tiles, with 48 tiles being
processing tiles, containing 4 cores each, and 16 memory controller tiles. The
tiles are arranged according to the diamond pattern from [9]. The benchmark
has a total of 816 blocks. The physical information for these blocks is shown in
Table 4.4.

For this example CMP configuration, HiReg generates a floorplan (Fig. 4.2d)
with 12.6% whitespace and a HPWL of 516 m. Up to 81% of the floorplan area
is regular. This floorplan was used by combining hierarchy and regularity. HiReg
automatically prefers floorplans where hierarchy is preserved to around the tile
level, as those provide the best regularity with minimal loss in other metrics.
For comparison, the floorplan in Fig. 4.2b, which was created without hierarchy
constraints, has a slightly worse whitespace (13.5%), worse regularity (66.6%



4.5. Results 75

 0.1

 1

 10

 100

 1000

 200  2000 100  1000

F
lo

or
pl

an
ni

ng
 r

un
ti
m

e 
[s

ec
s.

]

Number of components

HiReg
DeFer

 0

 2

 4

 6

 8

 10

 200  2000 100  1000

T
ot

al
 w

hi
te

sp
ac

e 
[%

]

Number of components

HiReg
DeFer

  101

  102

  103

  104

 200  2000 100  1000

H
P

W
L
 [
m

]

Number of components

HiReg
DeFer

Figure 4.8: Comparison of runtime, area and wire length.



76 Chapter 4. Regularity-constrained floorplanning

Component Area Aspect ratio
Global ring routers (R) 0.27 mm2 1

Clusters of type A
4 × Core (C1) 1.38 mm2 0.8 or 1.25
4 × L2 cache 1 mm2 0.5 ÷ 2
1 × L3 cache 3 mm2 0.5 ÷ 2
6 × Local ring router (r) 0.27 mm2 1

Clusters of type B
2 × Core (C2) 3.75 mm2 0.8 or 1.25
2 × L2 cache 2 mm2 0.5 ÷ 2
1 × L3 cache 6 mm2 0.5 ÷ 2
4 × Local ring router (r) 0.27 mm2 1

Table 4.4: Physical information for Fig. 4.7.

of area) and a much worse HPWL (1076 m). These hierarchy-less floorplans
were explored but discarded by HiReg because of the lower metrics.

When compared to other tools (Table 4.3), HiReg provides results that are
competitive in wire length but slightly less in area. We configured DeFer to
optimize for area and wire length given a maximum aspect ratio constraint of
4
5 . CompaSS was configured to optimize for area within the same aspect ratio
constraint. HiReg used 15.4 seconds to generate that example floorplan. 13%
of the time was spent during hierarchy and regularity discovery, 27% of the
time was spent floorplanning all the discovered patterns, and 60% generating
the final floorplans. Both DeFer and CompaSS took less than one second to
generate the floorplans.

4.5.2 Scalability and floorplan quality

This experiment measures the loss of optimality in area and wire length caused
by the use of regularity, as well as measure the execution time required for
the implemented algorithm. We compare HiReg, configured to optimize for
maximum regularity, to DeFer, configured to optimize for both area and HPWL.

All the test cases were generated based on the configuration shown in
Fig. 4.7. This configuration is a ring of rings, where a global ring connects a set
of clusters of two alternating types. The physical characteristics are detailed in
Table 4.4. For this example, every net contains 1024 wires, and the wire pitch is
0.1µm. This configuration is used in this testcase because the total number of
clusters in the ring can be easily parameterized, providing multiple testpoints
with different numbers of components.



4.5. Results 77

r

L2C2

r

L2C2

r r

r
L2

C1

r
L2

C1
r
L2

C1
r
L2

C1

L3
RR
r r

L3

r

L2C2

r

L2C2

r r

r
L2

C1

r
L2

C1
r
L2

C1
r
L2

C1

L3
RR
r r

L3

r

L2C2

r

L2C2

r r

r
L2

C1

r
L2

C1
r
L2

C1
r
L2

C1

L3
RR
r r

L3

r

L2C2

r

L2C2

r r

r
L2

C1

r
L2

C1
r
L2

C1
r
L2

C1

L3
RR
r r

L3

r

L2C2

r

L2C2

r r

r
L2

C1

r
L2

C1
r
L2

C1
r
L2

C1

L3
RR
r r

L3

r

L2C2

r

L2C2

r r

r
L2

C1

r
L2

C1
r
L2

C1
r
L2

C1

L3
RR
r r

L3

r

L2C2

r

L2C2

r r

r
L2

C1

r
L2

C1
r
L2

C1
r
L2

C1

L3
RR
r r

L3

r

L2C2

r

L2C2

r r

r
L2

C1

r
L2

C1
r
L2

C1
r
L2

C1

L3
RR
r r

L3

AB

B A B A B A B A

A B A B BA A B

(a)

r

L2 C2

r

L2 C2

R

L3r
r

r

L2 C2

r

L2 C2

R

L3r
rr

L2C1
r

L2C1

rL2C1
rL2C1 R

L3
rr

r
L2C1

r
L2C1

rL2C1
rL2C1 R

L3
rr

r

L2 C2

r

L2 C2

R

L3r
r

r

L2 C2

r

L2 C2

R

L3r
rr

L2C1
r

L2C1

rL2C1
rL2C1 R

L3
rr

r
L2C1

r
L2C1

rL2C1
rL2C1 R

L3
rr

r

L2 C2

r

L2 C2

R

L3r
r

r

L2 C2

r

L2 C2

R

L3r
rr

L2C1
r

L2C1

rL2C1
rL2C1 R

L3
rr

r
L2C1

r
L2C1

rL2C1
rL2C1 R

L3
rr

r

L2 C2

r

L2 C2

R

L3r
r

r

L2 C2

r

L2 C2

R

L3r
rr

L2C1
r

L2C1

rL2C1
rL2C1 R

L3
rr

r
L2C1

r
L2C1

rL2C1
rL2C1 R

L3
rr

B
A

A

B

A

B B

A A

B B B B B

A A A A

(b)

Figure 4.9: Regular floorplans for two different ring configurations.

Figure 4.8 shows the results of the comparison. For a highly regular netlist
such as the one used in this experiment, the runtime growth of both hierarchi-
cal floorplanners (proposed and DeFer) is close to linear. However, a purely
hierarchical floorplanner such as DeFer is still much faster. On the other hand,
the results show that both the whitespace and HPWL of floorplans generated
by HiReg are comparable to the results provided by DeFer.

4.5.3 Trading off hierarchy and regularity

Figure 4.9 shows two different potential configurations for the ring configuration
described in Fig. 4.7. These two configurations differ in the organization of the
global ring. In configuration a, clusters A and B appear in alternating order in
the global ring. Configuration b contains the same clusters but configured so
that clusters of the same type are grouped together. The net for the global ring
is shown in both figures as a dashed line.

For Fig. 4.9b, HiReg generates a regular floorplan where the different cluster
types are strictly separate. The floorplan provides good whitespace metrics
because the similar clusters are being packed into arrays. However, in case a,
such packing would not be possible without impacting wire length. Therefore,
the best floorplan found by HiReg relaxes hierarchy a bit, and combines the
two cluster types into a single repeating pattern, providing better packing.

HiReg can also be configured to further relax regularity when improved
wire length or other metrics are preferable. In figure 4.10, we show three
different floorplans for the configuration in Fig. 4.9b. Figure 4.10b and c are
generated by varying the cost function mentioned from Section 4.4.5, while a



78 Chapter 4. Regularity-constrained floorplanning

 100

 110

 120

 130

 140

 150

 0  0.2  0.4  0.6  0.8  1

(b)

(c)

H
P

W
L
 [
m

]

Regularity

HiReg
DeFer

R
r

C1

L2
r

C1 L2

r
C1 L2

r
C1L2

r L3
r

R

r
C1L2

r

C1L2

r
C1L2

r C1L2
r L3
r

R

r

C1
L2 r

C1
L2

r
C1L2

r
C1L2

r
L3

r
R
r

C1L2

r

C1

L2
r

C1
L2

r C1L2

r
L3

r

R

r C1

L2

r

C1

L2

r
C1

L2

r

C1 L2

rL3
r

R

r

C1

L2
r

C1

L2

r
C1

L2

r

C1L2

r L3
r

R

r

C1

L2
rC1

L2

r
C1

L2

r

C1L2

r L3
r

R

r

C1

L2
rC1

L2

r
C1

L2

r

C1L2

r L3
r

R r

C2

L2 r

C2L2

r L3
r

R r

C2

L2 r

C2L2

r L3
r

R r

C2

L2 r

C2L2

r L3
rR r

C2

L2
r

C2L2

r L3r
R
r

C2

L2

r
C2

L2

r

L3

r
R

r

C2

L2

r
C2

L2

r

L3

r

R
r

C2

L2

r

C2

L2
r

L3

r

R
r

C2

L2
r

C2

L2
r

L3

r

(a) DeFer

r
r
r
r

C2

L2

C2

L2

L3

RR

r
r
r
r

C2

L2

C2

L2

L3r r

C1
L2

C1
L2

r r

C1
L2

C1
L2

r r

L3
RR

r r

C1
L2

C1
L2

r r

C1
L2

C1
L2

r r

L3

r
r
r
r

C2

L2

C2

L2

L3

RR

r
r
r
r

C2

L2

C2

L2

L3

r
r C1L2

C1L2

r r
C1L2

C1L2
r
r L3

R
R

r
rC1 L2

C1 L2

r r
C1L2

C1L2
r
rL3

r
r
r
r

C2

L2

C2

L2

L3

RR

r
r
r
r

C2

L2

C2

L2

L3 r r

C1
L2

C1
L2

r r

C1
L2

C1
L2

rr

L3
RR

r r

C1
L2

C1
L2

r r

C1
L2

C1
L2

r r

L3

r
r
r
r

C2

L2

C2

L2

L3

RR

r
r
r
r

C2

L2

C2

L2

L3

r
r C1L2

C1L2

r r
C1L2

C1L2
r
r L3R

R

r
rC1 L2

C1 L2

r r
C1L2

C1L2
r
rL3

(b)

r

L2 C2

r

L2 C2

R

L3r
r

r

L2 C2

r

L2 C2

R

L3r
rr

L2C1
r

L2C1

rL2C1
rL2C1 R

L3
rr

r
L2C1

r
L2C1

rL2C1
rL2C1 R

L3
rr

r

L2 C2

r

L2 C2

R

L3r
r

r

L2 C2

r

L2 C2

R

L3r
rr

L2C1
r

L2C1

rL2C1
rL2C1 R

L3
rr

r
L2C1

r
L2C1

rL2C1
rL2C1 R

L3
rr

r

L2 C2

r

L2 C2

R

L3r
r

r

L2 C2

r

L2 C2

R

L3r
rr

L2C1
r

L2C1

rL2C1
rL2C1 R

L3
rr

r
L2C1

r
L2C1

rL2C1
rL2C1 R

L3
rr

r

L2 C2

r

L2 C2

R

L3r
r

r

L2 C2

r

L2 C2

R

L3r
rr

L2C1
r

L2C1

rL2C1
rL2C1 R

L3
rr

r
L2C1

r
L2C1

rL2C1
rL2C1 R

L3
rr

(c)

Figure 4.10: Trading off regularity and wire length in configuration described
in Fig. 4.9b



4.6. Conclusions 79

is generated using DeFer. The plot shows how by trading off regularity, HPWL
can be improved, approaching the HPWL of the floorplan generated by DeFer
for the same configuration. As DeFer does not generate regular floorplans, the
plot uses only its HPWL as baseline for comparisons.

4.5.4 Publications

As part of this research topic we have published the following conference article:

• J. de San Pedro, J. Cortadella, and A. Roca, A hierarchical approach
for generating regular floorplans, in Proceedings of the 33th IEEE/ACM
International Conference on Computer-Aided Design, San Jose, California,
USA, 2014.

4.6 Conclusions

This chapter has introduced HiReg, a new floorplanning tool that generates
regular floorplans while preserving the inherent regularity of the design. The
method is specially suited for CMPs with many cores and can handle systems
with heterogeneous tiles. The method delivers layouts with high regularity
and acceptable area, and also reduces wire length when compared to other
hierarchical approaches.



80 Chapter 4. Regularity-constrained floorplanning



Chapter 5

Log-based simplification of process
models

The visualization of models is essential for user-friendly human-machine inter-
actions during Process mining. A simple graphical representation contributes
to give intuitive information about the behavior of a system. Quality-preserving
model simplifications can be of paramount importance to alleviate the complex-
ity of finding useful and attractive visualizations.

This chapter presents a collection of log-based techniques to simplify process
models. The techniques trade off visual-friendly properties with quality metrics
related to logs, such as fitness and precision, to avoid degrading the resulting
model. The algorithms, either cast as optimization problems or heuristically
guided, find simplified versions of the initial process model, and can be applied
in the final stage of the process mining life-cycle, between the discovery of a
process model and the deployment to the final user.

A tool called PNsimpl has been developed and tested on large logs, producing
simplified process models that are one order of magnitude smaller while keeping
fitness and precision under reasonable margins.

This chapter is organized as follows. Section 5.1 exemplifies the goals of
this work with a simple example, and Section 5.2 compares these goals with
the state of the art. In Section 5.3, a log-based technique to estimate the
importance of arcs and places in a Petri net is described. Section 5.4 proposes
several algorithms to simplify a Petri net using this information. The techniques
are evaluated in Section 5.5. Finally, conclusions are discussed in Section 5.6.



82 Chapter 5. Log-based simplification of process models

5.1 Motivation

The understandability of a process model can be seriously hampered by a
poor visualization. Many factors may contribute to this, being complexity a
crucial one: models that are unnecessarily complex (incorporating redundant
components, or components with limited importance) are often not useful
for understanding the process behind. On the other hand, process models
are expected to satisfy all quality metrics when representing an event log:
fitness, precision, simplicity and generalization [2]. In this chapter we present
techniques to simplify a process model while retaining the aforementioned
quality metrics under reasonable margins.

Given a spaghetti-like process model, one may simply remove arcs and
nodes until a nice graphical object is obtained. However, this naive technique
has two main drawbacks. First, the capability of the simplified model to replay
the process executions may be considerably degraded, thus deriving a highly
unfitting model. Second, the model components, arcs and places in a Petri net,
are not equally important when replaying process executions, and therefore one
may be interested in keeping those components that provide more insight into
the real boundaries on what is allowed by the process (i.e., its precision). Given
a Petri net and an event log, PNsimpl first ranks the importance of places and
arcs using a simple simulation of the log by the Petri net, and then simplifies
the model by retaining those arcs and places that are important in restricting
the behavior allowed by the model. Thereby, PNsimpl is more accurate at
mantaining the precision of the model. Several alternatives are presented,
which extract certain Petri net subclasses (State Machines, Free-Choice) or
structural subclasses (Series-Parallel graphs).

Some of the proposed alternatives can, as a user decision, also reduce fitness
in order to further increase the simplicity of the model. This option can be used
when dealing with highly complex processes, where a slightly unfit model may
be preferable to a non-understandable model. Additionally, this feature may be
used to remove the complexity caused by noise [7] in the original process logs.
In Chapter 6, we propose an alternative method to handle highly unstructured
process by splitting them into several easier to understand slices.

5.1.1 Example

We will illustrate one of the techniques presented in this chapter with the help
of an example. We have used the general-purpose tool dot [66] to render these
examples. Figure 5.1a reports a process model that has been discovered by the
ILP miner from a real-life log, a well-known method for process discovery [138].
This miner guarantees perfect fitness (i.e., the model is able to reproduce all



5.2. Related work 83

the traces in the log), but its precision value is low (31.5%) which indicates
that the model may generate many traces not observed in the log.

Clearly, this model does not give any insight about the executions of the
process behind. Hence, although it is a model having perfect fitness, some of
the other quality metrics (precision, simplicity) are not satisfactory. Applying
the simplification techniques of PNsimpl, a process model can be transformed
with the objective of improving its understandability. The process models at the
bottom of Fig. 5.1 are the result of applying two of the proposed techniques. In
Figure 5.1b the model is simplified while preserving as much as possible the
quality metrics of the original model. The model has 6 times less places and
arcs, making it much easier to understand. The resulting fitness is still perfect,
but the precision has been reduced to 22.5%.

In Figure 5.1c we reduce the model to a series-parallel graph, further im-
proving its simplicity and understandability. Fitness has been reduced to 64.1%,
but on the other hand its precision has improved considerably (now 48.7%).

5.2 Related work

Currently, most of the existing academic tools for visualization of process models
are based on the dot algorithm [66, 67], which is a four-stage approach for
laying out directed graphs. dot tries to minimizes both edges crossing and edge
length. Using dot on very dense graphs results in spaghetti-like visualizations.
All the models displayed in this thesis have been laid out with dot. When the
underlying graph has certain structure (as general business process models
have), then ad-hoc algorithms that take advantage of this structure can be
considered, like the one presented in [70]. In summary, the aforementioned
work does not consider log-based simplifications like the ones presented in this
work, and therefore, they can be used in combination with the techniques of
this chapter to optimize the visualization.

The closest work to the methods of this chapter is [63], where a technique
was presented for the simplification of process models that controls the degree
of precision and generalization. It applies several stages. First, a log-based
unfolding of the model is computed, deriving a precise unfolded model. Second,
this unfolding is then filtered, retainning only the frequent parts. Finally, a
folding technique is applied which controls the generalization of the final
model. Further simplifications can be applied, which help on alleviating the
complexity of the derived model. There are significant differences between the
two approaches: while in our case, the techniques rely on light methods and
can be oriented towards different objectives, the approach in [63] requires the
computation of unfoldings, which can be exponential on the size of the initial



84 Chapter 5. Log-based simplification of process models

(a) Initial process model.

f r

s t a ho d

be gl u v

i j km nq

c p

(b) Simplified fitting process model.

r

i

m h
n

k

p

t j

fs

o

c

d

q a

b

u

e

g

l

v

(c) Simplified series-parallel process model.

Figure 5.1: Log-based simplification of an spaghetti-like process model.



5.3. Metrics for relevant arcs 85

model [107]. Also, the filtering on the unfolding is done on simple frequency
selection on the unfolding elements, while in this work the importance of model
elements is assessed with the frequency but also triggering information, which
is related to the precision dimension. On the other hand, the techniques of
this chapter may need to verify model connectedness at each iteration. In
conclusion, both techniques can be combined to further improve the overall
simplification of a model.

The simplification of a process model should be done with respect to quality
metrics, and in this chapter we have focused on fitness and precision. An
alternative to this approach would be to include these quality metrics in the
discovery, a feature that has only been considered in the past by the family
of genetic algorithms for process discovery [4,28,134]. All these techniques
include costly evaluations of the metrics in the search for an optimal process
model, in order to discard intermediate solutions that are not promising. This
makes these approaches extremely inefficient in terms of computing time.

Furthermore, there exist discovery techniques that focus on the most fre-
quent paths [71, 137]. These approaches are meant to be resilient to noise,
but on the other hand give no guarantees on the quality of the derived model.
Additionally, these methods are oriented towards modeling formalisms with less
expressiveness, such as heuristic nets, or formalisms with less strict semantics,
such as fuzzy models. A recent technique that is guided towards the discovery
of block-structured models (process trees) and that addresses these issues may
be a promising direction [101]. However, this technique is guided towards a
particular class of Petri nets (workflow and sound), describing a very restricted
type of behaviors. An important drawback of this technique is that silent ac-
tivities need to be introduced in the resulting process model to represent the
model with this restricted structure. For instance, for the log used to generate
the example of Figure 5.3, the inductive miner derives a model with twice the
size of the models generated by our techniques. Finally, the techniques of this
chapter can be combined with abstraction mechanisms to further improve the
visualization of the underlying process model.

5.3 Metrics for relevant arcs

Given a Petri net and an event log, in this section we introduce a technique to
obtain a scoring of the arcs (and, indirectly, places) of the net with respect to
their importance in describing the behavior underlying in the log.

The idea of the proposed technique is simple: when a Petri net replays a
particular trace in the log, some arcs may have more importance than others
for that particular trace. Hence, triggering and utilization scores will be defined



86 Chapter 5. Log-based simplification of process models

to provide an estimation of the importance of the arcs in replaying the log.
Arcs F (p, t) 6= 0 with high trigger score correspond to frequent situations
in the model where more behavior should not be allowed (i.e., the arc, and
therefore p, is frequently disabling certain transitions to occur). By keeping
these arcs/places in the model, one aims at deriving a model where precision
is not degraded. Conversely, an arc F (t, p) 6= 0 with high utilization score
denotes a situation where transition t is frequently fired (thus frequently adding
tokens to p), and therefore should not be removed to avoid degrading fitness.

Definition 5.1 (Trigger Arc). Let N = 〈P,Σ, T,L ,F , m0〉 be a Petri net, σ a
fitting trace for N , and e ∈ σ an event that is represented by firing m[t ′〉m′ in
N . For any pair p ∈ P, t ∈ T , an arc F (p, t) 6= 0 is trigger in m[t ′〉m′ iff t is not
enabled in m but enabled in m′ and m(p)<F (p, t) but m′(p)≥F (p, t).

Intuitively, an arc F (p, t) 6= 0 is trigger at every transition t ′ ∈ σ in which
t becomes enabled and p is in the set of places which, in that transition t ′,
received the last tokens required for enabling t. Thus, a frequently-trigger arc
indicates p is important in restricting the behavior allowed by the model, and
that p or F (p, t) cannot be removed without sacrificing precision. Note that
for a single transition t there may be more than one trigger arc, even in the
same transition t ′ ∈ σ. To use this information, we define a trigger score which
characterizes the frequency of an arc in playing the trigger role:

Definition 5.2 (Trigger Score of an Arc). Let N = 〈P,Σ, T,L ,F , m0〉 be a Petri
net, and L a log fitting N . The trigger score of an arc F (p, t) 6= 0, denoted by
T (p, t), is the number of transitions from L in which F (p, t) is trigger.

For F (t, p) 6= 0 arcs, we use a simpler frequency metric:

Definition 5.3 (Utilization Score of an Arc). Let N = 〈P,Σ, T,L ,F , m0〉, and L
a log fitting N . The utilization score of an arc F (t, p) 6= 0, denoted by U (t, p),
is the number of times transition t is fired in L.

Given a log and a Petri net, obtaining the trigger scores can be done by
replaying all traces in the log, shown by Algorithm 7. For every transition in the
log, the scores are updated by comparing the markings from the predecessor
places of all newly enabled transitions.

Figure 5.2 shows the results of computing, on an example trace and model,
both trigger and utilization scores. Utilization scores are shown in italics.

Finally, notice that the definitions of this section assume fitting traces. Given
an unfitting trace (i.e., a trace that cannot be replayed by the model), an
alignment between the trace and the model will provide a feasible sequence
that is closest to the trace [10]. This allows widening the applicability of the
scoring techniques of this section to any pair (log, model).



5.3. Metrics for relevant arcs 87

AC
BDEF
BDEF
BDEF
BEDF
BEDF

(a) Example trace

A

B

C

D

E

F

1

5

5

1

5

5

1
5

5

2

3
5

(b) Petri net with trigger/utilization scores

Figure 5.2: Trigger and utilization score computation for an example trace
and model.

Algorithm 7 TRIGGERSCORES

Input: An event log L and a Petri net N = 〈P,Σ, T,L ,F , m0〉
Output: A score T (p, t) for every arc F (p, t) 6= 0
for σ ∈ L do

Let m0[t1〉m1[t2〉 . . . [tn〉mn = σ
for i← 1 . . . n do

for t ∈ T do
if t is enabled in mi ∧ t was not enabled in mi−1 then

for p ∈ • t do
. t is enabled in mi =⇒ mi(p)≥F (p, t)
if mi−1(p)<F (p, t) then T (p, t)←T (p, t) + 1

return T



88 Chapter 5. Log-based simplification of process models

5.4 Simplification methods

The triggering and utilization scores computed in previous section provide an
estimation of the importance of the arcs in replaying the log. Arcs F (p, t) 6= 0
with high trigger score correspond to frequent situations in the model where
more behavior should not be allowed (i.e., the arc, and therefore p, is fre-
quently disabling certain transitions to occur). By keeping these arcs/places
in the model, one aims at deriving a model where precision is not degraded.
Conversely, an arc F (t, p) 6= 0 with high utilization score denotes a situation
where transition t is frequently fired (thus frequently adding tokens to p), and
therefore should not be removed to avoid degrading fitness.

In this section, 3 different approaches to the simplification problem are
shown. Figure 5.3 illustrates these approaches by applying each one to the
input model shown in Fig. 5.3a. The first approach reduces the input to a
Petri net that is visually close to a series-parallel graph, removing the least
important arcs and places according to their scores (Fig. 5.3b). However, it
has the greatest computational cost. We introduce a second approach that
reduces the simplification problem to an Integer Linear Programming (ILP)
optimization problem that is more efficient and optionally guarantees the
preservation of fitness (Fig. 5.3c and d). These two techniques use scoring
information computed from the log, as described in the previous section. The
third approach, however, does not consider this information. Instead, the Petri
net is projected into different structural classes: free choice (Fig. 5.3e) and
state machine (5.3f). The following subsections will describe each one of these
approaches in detail.

5.4.1 Simplification to a Series-Parallel Net

A series-parallel net is one obtained by the recursive series or parallel composi-
tion of smaller nets. Series-parallel Petri nets are amongst the most compre-
hensible types of models. In a series-parallel net, forks and choices (and thus
concurrency) are immediately visible. In fact, existing documentation often
uses series-parallel nets as examples to illustrate concepts related to Petri nets.

For this reason, one of the main contributions in this work is a heuristic that
reduces a complex Petri net into an almost series-parallel net. The algorithm
iteratively removes the least important edges until the graph is either strictly
series-parallel, or no additional reduction can be applied without losing the
connectedness of the net. The importance of every arc is determined by their
trigger score T (p, t), for place-transition arcs, and their utilization scoreU (t, p)
for transition-place arcs. The approach is grounded in the notion of a set of
reduction rules, explained below.



5.4. Simplification methods 89

b
d

e

g

f
c

a

(a) Original model using the algorithm
in [138].

a

c

g

f

d b

e

(b) Simplified to series-parallel.

a

c

d

b

g

e

f

(c) Simplified using ILP model.

a
c

f
g

e

b

d

(d) Simplified using ILP model, preserving
fitness.

b d

c

f

e

g

a

(e) Simplified to free choice.

f

b

a

g

d

e

c

(f) Simplified to state machine.

Figure 5.3: Overview of the different simplification techniques.



90 Chapter 5. Log-based simplification of process models

(a) Reduction rule.

(1)

(2)

(b) Source Petri net
(with rule violations).

(c) Transformed net.

Figure 5.4: Applying a transformation and transformation cost.

Reduction rules

In [112] a set of reduction rules used for the analysis of large Petri net systems
is introduced. Each of the transformations preserves liveness, safeness and
boundedness of a Petri net. Thus, verification of these properties can be done
in the simplified net instead of the original one. The transformations proposed
are: fusion of series places/transitions, fusion of parallel places/transitions and
elimination of self-loop places/transitions. A rule can be applied only when its
preconditions are satisfied. An example of the fusion of parallel places rule can
be seen in Fig. 5.4a.

Because of the construction of a series-parallel Petri net, it is possible to
reduce such a net to a single place or transition by recursive application of
these transformations. Therefore, every violation of the preconditions of a rule
indicates a subnet which is not series-parallel.

To reduce a Petri net to a series-parallel skeleton, this work uses these
reduction rules in an indirect way. We do not use the transformed Petri net that
results from the application of the rules. Instead, the proposed method removes
those arcs and places which prevent the rules from being applied. For every one
of the reduction rules, a transformation cost is defined: the sum of the trigger
and utilization scores of all the arcs that would need to be removed in order
to apply such transformation. The transformation cost therefore models the
importance of the arcs that would need to be removed.

Figure 5.4 shows an example rule, the computation of its transformation
cost, and the resulting graph after applying the transformation rule. This rule
can only be applied in this input Petri net if two arcs (dashed lines in Fig. 5.4b)
are removed. Thus, the transformation cost is equal to the trigger score of arc
(1) and utilization score of arc (2).



5.4. Simplification methods 91

Algorithm

Algorithm 8 describes the main iteration of the method. Function APPLICABLE-
TRANSFORMATIONS identifies all possible applications of the reduction rules,
and computes the transformation cost for each of the possible applications.

Algorithm 8 Series-Parallel algorithm

Input: A Petri net N0 = 〈P,Σ, T,L ,F , m0〉, a trigger score T (p, t) for every
(p, t) arc, and a utilization score U (t, p) for every (t, p) arc.
Output: A simplifed Petri net
N ← N0

M ← APPLICABLETRANSFORMATIONS(N)
while |M |> 0 do

m← transformation with least cost from M
N ′← APPLYTRANSFORMATION(N , m)
if N ′ is disconnected then

M ← M \ {m}
continue

N0← N0\ PRECONDITIONVIOLATINGARCS(N , m)
N ← N ′

M ← APPLICABLETRANSFORMATIONS(N)
return N0

At every iteration the transformation m with the least cost is selected, that
is, the one that requires removing the least amount of important arcs in order
to be applied. Function APPLYTRANSFORMATION applies such transformation
m. If applying the transformation breaks the net into more than one con-
nected component, the next best transformation is selected instead. Otherwise,
function PRECONDITIONVIOLATINGARCS enumerates all the arcs that had to be
removed in order to satisfy the preconditions of transformation m. Those arcs
are removed them from the original Petri net N0. The next iteration repeats the
process on the transformed net N ′, finding new APPLICABLETRANSFORMATIONS

only around the nodes that were changed on the previous iteration.
Once no additional reduction rules can be applied (e.g. because the net is

now a single place or transition), the algorithm stops. The currently graph N is
discarded, and the result of the algorithm is the simplified Petri net N0. A final
postprocessing step removes unneeded places (e.g. without incident arcs).

The nets generated by this heuristic are not necessarily fully series-parallel,
since arcs necessary to preserve connectivity are never removed. This is the
only method from this work that presents such a global guarantee, with the



92 Chapter 5. Log-based simplification of process models

other methods providing weaker connectivity constraints. It is also possible to
configure the method to generate strictly series-parallel models.

5.4.2 Simplification Using ILP Models

This section shows a different approach to simplify a Petri net for visualization.
The selection of which arcs to remove is seen as an optimization problem, and
modeled as an Integer Linear Program (ILP). The use of ILP allows for highly
efficient solving strategies. On the other hand, some constraints cannot be
modeled using ILP. For example, the models attempt to preserve connectivity
of the net at a localized level (i.e. ensuring transitions maintain at least one
predecessor and successor place), but cannot guarantee global net connectivity.

The aim of the ILP model is to reduce the number of arcs as much as possible.
The inputs are a Petri net N = 〈P,Σ, T,L ,F , m0〉, trigger scores T (p, t) and
utilization scoresU (t, p). We define a binary variable S(p) for every p ∈ P, and
a binary variable A(p, t) or A(t, p) for every arc in N . In a solution of this model,
variable S(p) is 0 when place p is to be removed from the input graph (similarly
for arc variables A(p, t) and A(t, p)). Below we describe the ILP model in detail.

min
∑

F (p,t)>0

A(p, t) +
∑

F (t,p)>0

A(t, p) (5.1)

s.t. ∀p ∈ P : S(p) ⇐⇒
∑

t∈p•
A(p, t)> 0∧
∑

t∈•p

A(t, p)> 0 (5.2)

∑

F (p,t)>0

T (p, t)A(p, t)>= Γ (5.3)

∑

F (t,p)>0

U (t, p)A(t, p)>= Φ (5.4)

∀t ∈ T :
∑

p∈t•
A(t, p)> 0∧
∑

p∈• t

A(p, t)> 0 (5.5)

∀p ∈ P : M(p)> 0 =⇒ S(p) (5.6)

∀t ∈ T, p ∈ P :F (t, p)> 0∧ S(p) =⇒ A(t, p) (5.7)

The objective function, Eq. 5.1, minimizes the number of preserved arcs.
Constraint 5.2 encodes the relationship between A and S variables. A place is
retained in the output net iff at least one predecessor/successor arc is retained.

The model ensures that the most important arcs, according to the trigger
scores T , are preserved. For this, constraint 5.3 imposes a minimum number
of preserved arcs. Γ can be configured as a percentage of the combined trigger



5.4. Simplification methods 93

score from all place transition arcs. A similar threshold constant Φ is imposed
using the utilization score U for transicion place arcs (Eq. 5.4).

A fully connected graph cannot be guaranteed by the ILP model. Instead,
Eq. 5.5 models a weaker constraint: every transition will preserve at least one
predecessor and successor arc. In addition, every place marked in m0 is always
preserved, to avoid deriving a structurally deadlocked model (Eq. 5.6).

Preserving fitness (optional)

The ILP model as described so far does not guarantee preservation of fitness
from the original Petri net. A simple modification can ensure that the existing
fitness is preserved, at the cost of being able to remove only a reduced number
of arcs from the model. Following a well-known result in Petri net theory,
removing only F (t, p) arcs never reduces the fitness of a model for any given
log. Constraint 5.7 implements this restriction.

5.4.3 Projection into structural classes

In this section we present ILP models to reduce Petri nets to two types of
structural classes: free choice and state machines [112]. These methods do
not require a log as they do not use trigger or utilization scores. Therefore,
these proposals can be used to simplify Petri nets for visualization even when
logs are not available, albeit their results may be of lower quality since scoring
information is not used.

Note that [138] can also be configured to generate state machines or marked
graphs, but this approach requires having a log. In addition, the models ex-
tracted may still be complex because of the requirement to preserve fitness.

Free Choice

In this method, we simplify Petri nets by converting them into free choice
nets. This method preserves the fitness of the model, but reduces precision.
While this reduction does not necessarily result in models simple enough for
visualization, complexity is reduced while mantaining most structural properties.
Thus, reducing a dense net into free choice both opens the door to efficient
analysis and to further decomposition (state machine or marked graph covers)
techniques [57].

We encode this definition as a set of constraints and create a ILP problem
which maximizes the number of arcs. For every p ∈ P, t ∈ T , we define a binary
variable A(p, t) which indicates whether arc F (p, t) is preserved.



94 Chapter 5. Log-based simplification of process models

max
∑

F (p,t)>0

A(p, t) (5.8)

s.t.
∀p ∈ P : |p•|> 1∧ |•(p•)|> 1 =⇒
∑

t∈p•
A(p, t) = 1 ∨ ∀t ∈ p•, p′ ∈• t : p 6= p′ =⇒ ¬A(p′, t) (5.9)

Equation 5.9 guarantees a free choice net. If |p•| > 1 (it is a choice)
and •|p•| > 1 (it is not free), then p contains a non-free choice, and one of
the conditions must be removed. Either only one of the successor arcs of p
is preserved, eliminating the choice, or it is turned free by removing every
predecessor arc of p• except for the ones originating from p itself. Because
F (t, p) arcs are never being removed, this simplification preserves fitness.

State Machine

In a state machine Petri net, every transition has exactly one predecessor arc
and one successor arc. To encode this requirement into an ILP model, we again
define a binary variable A(p, t) or A(t, p) for every arc in N .

max
∑

F (p,t)>0

A(p, t) +
∑

F (t,p)>0

A(t, p) (5.10)

s.t. ∀t ∈ T :
∑

F (p,t)>0

A(p, t) = 1 (5.11)

∀t ∈ T :
∑

F (t,p)>0

A(t, p) = 1 (5.12)

Constraints 5.11 and 5.12 encode the definition of a state machine. However,
note that this method may reduce the fitness of the model. A similar ILP model
can be created to extract a marked graph.

5.5 Results

The methods proposed in this chapter have been implemented in C++. The
ILP-based methods have been implemented using a commercial ILP solver,
Gurobi [72]. To obtain the input models, the ILP miner [138] available in
ProM 6.4 was used over a set of 10 complex logs, both real-life [29,56] and
synthetic [137]. The publicly available dot utility [66] has been used to
generate the visualizations of all the models of this section. The measurements



5.5. Results 95

Nodes Arcs Crossings Fitness Precision
(a) Original net 13 35 7 100% 43.1%
(b) Series-parallel 13 17 0 100% 37.9%
(c) ILP model 12 16 0 68% 75.4%
(d) ILP (fitting) 11 21 0 100% 40.7%
(e) Free choice 13 24 1 100% 31.3%
(f) State machine 13 13 0 49.2% 81.3%

Table 5.1: Simplicity, precision and fitness comparison for models in Fig. 5.3.

of fitness and precision have been done using alignment-based conformance
checking techniques [10]. Both the logs and our implementation are publicly
available at http://www.cs.upc.edu/~jspedro/pnsimpl/.

5.5.1 Comparison of the simplification techniques

In Section 5.4 (Fig. 5.3), an artificial model was used to illustrate the different
simplification techniques presented in this work. Table 5.1 shows the details
for each one of the simplified models.

Several metrics are used to evaluate the results from the simplification
techniques. To evaluate the understandability and simplicity of a model, we
use the size of the graph, in number of nodes and arcs, as well as the number of
crossings. This is the number of arcs that intersect when the graph is embedded
on a plane. Thus, a planar graph has no crossings. A graph with many crossing
arcs is clearly a spaghetti that is poorly suited for visualization. To approximate
the number of crossings, the mincross algorithm from dot [66] is used.

To measure how much the simplified Petri nets model the behavior of the
original process we use fitness and precision, as defined in [10]. In this example,
the series-parallel reduction offers perfect fitness, and only 5% loss of precision
while removing half of the arcs and all crossings. However, the other methods
also remain interesting. For example, the state machine simplification offers
the best reduction in simplicity and increases the precision of the model to 80%,
at the cost of reducing the fitness by 50%.

This section also includes a comparison with some of the previous work in
the area: the Inductive Miner (IM) [101] and a unfolding-based method [63].
The IM is a miner guided towards discovering block-structured models and
which we see as a promising technique (see Section 5.2) since it can be tunned
to guarantee perfect fitness. On the other hand, the unfolding procedure is
more closely related to the methods proposed in this work. This technique uses
an unfolding process to simplify an existing Petri net. We have evaluated both
methods using the same nets as with our proposed methods.

http://www.cs.upc.edu/~jspedro/pnsimpl/


96 Chapter 5. Log-based simplification of process models

Figure 5.5 shows the Petri nets produced by the different techniques on a
real-life log [56] that is more spaghetti-like. The high number of crossings in
the original model make it unsuitable for visualization. In this example, the
series-parallel method no longer offers perfect fitness but still shows a good
trade-off between complexity and fitness/precision. The other methods may be
used if for example strict fitness preservation is required, at the cost of more
complex models.

In Fig. 5.6, we compare numerically the techniques of this chapter for the
10 logs. For most of the logs, the series-parallel reduction and the ILP-based
techniques are able to reduce the number of crossing edges by several orders
of magnitude (note the logarithmic scale), creating small visualizable graphs
from models that would otherwise be impossible to layout. On the other hand,
the simplification to free choice results in very large and complex models. As
mentioned, the benefits of deriving free choice models come from the ability to
apply additional reduction strategies. Simplifying to state machines generally
produces poorly fitting models, but they tend to have very few crossings and
high precision.

The models generated by the Inductive Miner, one of the existing methods
included in the comparison, generally contain fewer crossings, caused by the
addition of a significant number of silent transitions 1 which increase the size
of the model. For example, in the incidenttelco example the number of tran-
sitions of the model derived by the IM is 37, whilst the original model (and,
correspondingly, those generated by the simplification techniques) has 22. The
addition of silent activities can be beneficial for visualization, specially if the
underlying process model is meant to be block-structured.

On the other hand, the unfolding procedure is more closely related to the
methods proposed in this work. This technique uses an unfolding process to
simplify an existing Petri net, and has been evaluated using the same nets as
with our proposed methods. In general, it produces better results in terms of
fitness and precision with respect to the ILP models, at the expense of longer
computation time. When compared with the series-parallel method, the results
in fitness and precision are comparable, but the unfolding method requires
more computation time and the results are worst in terms of visualization.

In Fig. 5.7 we compare the runtimes of the different methods. The ILP
solver resolved all the ILP simplification models in less than 1 minute, even for
the largest of the input Petri nets from the test set (25K nodes and arcs). The
series-parallel simplification, which is not ILP based, has a lower performance.
However, there are many parts where the algorithm could be optimized. Still,
the total execution runtime for the largest graph (25 minutes) was less than the

1A silent activity in the model is not related to any event in the log.



5.5. Results 97

(a) Original Petri net. (b) Simplified to Free Choice.

sp

e

ci tv

r

ah j k m

u

b

f

l

n

d

g

q

o

(c) Using ILP model, 60% threshold.

q

s

p

c

i

t v

r

e

b

f ln

d

g

o

a hj km u

(d) Using ILP model (fitting), 60% thres.

rs

b

p

i

c

a hj k m u fn

q

d

t

e

g

o l

v

(e) Simplified to Series-parallel.

a

b

u

c d e f

h

k

s

t

l

g

i

j

m n

p q

ro

v

(f) Using Inductive Miner [101].

a

d

i

m

b

c el q fj oh k r g

np s t uv

(g) Using unfoldings-based method [63].

Nodes Arcs Crossings Fitness Precision
(a) 54 448 9805 100% 31.5%
(b) 54 320 5069 100% 19.4%
(c) 44 93 76 76.7% 42.2%
(d) 37 163 728 100% 15.6%
(e) 39 54 2 74.5% 37.8%
(f) 56 76 0 100% 47.24%
(g) 41 158 1448 99.5% 25.8%

(h) Fitness and precision results.

Figure 5.5: Running all methods on real-life log (incidenttelco).



98 Chapter 5. Log-based simplification of process models

100

101

102

103

104

105

106

107

108

N
um

be
r 

of
 c

ro
ss

in
gs

 (
lo

ga
ri

th
m

ic
) Original model

Series-parallel
ILP model (fitting)

ILP model
Free choice

State machine
Inductive miner

Unfoldings

0%

20%

40%

60%

80%

100%

F
it
ne

ss
 [
%

]

0%

20%

40%

60%

80%

100%

activities

documentflow

documentflow2

fhmilu
fhmn5

incidenttelco

incidenttelco2

incidenttelco3

purchasetopay

receipt

P
re

ci
si

on
 [
%

]

Figure 5.6: Simplicity (logarithmic scale on the number of crossings), fitness
and precision comparison between the different techniques using
10 different logs.



5.5. Results 99

0.1 s

1 s

10 s

1 min.

10 min.

1 h
4 h

 0  5000  10000  15000  20000  25000

Si
m

pl
ifi

ca
ti
on

 r
un

ti
m

e 
(l
og

ar
it
m

ic
)

Input graph size (|V| + |E|)

Series-parallel
ILP model
Free choice

State machine
Unfoldings

Figure 5.7: Execution runtimes for the different simplification techniques.

1 hour required for the miner in [138] to generate the input Petri net from the
log, and significantly less than the 5 hours required by the unfolding technique
presented in [63] (also shown in the plot).

The experiments presented in this section show the proposed simplification
ILP models to be highly efficient and able to generate models that are orders
of magnitude simpler than the original models. If additional simplification is
required, the series-parallel method can be used with an increased runtime.

5.5.2 Effect of the ILP model parameters

The ILP simplification model presented in Section 5.4.2 contains a threshold
parameter (Γ and Φ) which can be used to tune the complexity and size of the
simplified models. In previous experiments and figures, a threshold was set
manually so that models with approximately 2|T | arcs were generated (where
T is the set of transitions from the input Petri net).

To illustrate how varying these thresholds affects the model complexity and
quality, the ILP simplification model was executed for each of the input logs,
with varying threshold parameters. Fig. 5.8 shows the number of crossings
and the fitness for each combination. Generally the fitness decreases with the
threshold parameter, but there are some models where the trend reverses. This
is because nothing in the model ensures that a log with a given threshold Γ will
strictly capture all the behavior of a log simplified using Γ ′ with Γ > Γ ′.

5.5.3 Publications

The methods and the tool described in this chapter have been described in the
following conference article:



100 Chapter 5. Log-based simplification of process models

100

101

102

103

104

105

106

107

108

N
um

be
r 

of
 c

ro
ss

in
gs

 (
lo

ga
ri

th
m

ic
)

Original model
80%
60%
40%
20%

0%

20%

40%

60%

80%

100%

activities

documentflow

documentflow2

fhmilu
fhmn5

incidenttelco

incidenttelco2

incidenttelco3

purchasetopay

receipt

F
it
ne

ss
 [
%

]

Figure 5.8: Simplicity and fitness comparison using different thresholds for
the ILP model.



5.6. Conclusions 101

• J. de San Pedro, J. Carmona, and J. Cortadella, Log-Based Simplification
of Process Models, in Business Process Management (BPM), Innsbruck,
Austria, September 2015.

In addition, the tool is available in http://www.cs.upc.edu/~jspedro/
pnsimpl/.

5.6 Conclusions

A collection of techniques for the simplification of process models using log-
based information has been presented in this chapter. The techniques proposed
tend to improve significantly the visualization of a process model while retaining
its main qualities in relation with an event log. This contribution may be used on
the model derived by any discovery technique, as an intermediate step between
discovery and visualization. Also, the analysis of simplified models may be
considerably alleviated (e.g., if deriving a free-choice net). The experiments
done on dense models have also shown a significant simplification capability in
terms of visualization metrics like density or edge-crossings.

http://www.cs.upc.edu/~jspedro/pnsimpl/
http://www.cs.upc.edu/~jspedro/pnsimpl/


102 Chapter 5. Log-based simplification of process models



Chapter 6

Structured mining of Petri nets

This chapter presents a novel approach for generating process models with
structural properties that induce visually friendly layouts. Instead of simplifying
an existing complicated model that captures all behaviors, as in Chapter 5, the
approach proposed in this chapter delivers a set of models, each one covering a
subset of the traces in the log.

The models are mined by extracting slices of labeled transition systems with
specific properties from the complete state space produced by the process logs.
As the results will show, in most cases a few simple Petri nets are sufficient to
cover a significant part of the behavior produced by the log.

In this chapter, Section 6.1 will discuss the objectives of this method, while
Section 6.2 will highlight it in terms of the related work. The proposed approach
will be given an overview in Section 6.3, while Sections 6.4, 6.5 and 6.6 detail
each one of the main steps. Section 6.7 evaluates the method with a set of
benchmarks, and the conclusions are discussed in Section 6.8.

6.1 Motivation

Process mining is used to deliver valuable insight into the execution of real-life
processes. Real-life processes, however, are often highly unstructured. Traces
obtained from running systems generally show repetitive patterns, but also
contain plenty of unrelated events.

Building unique and compact models out of such unstructured behavior
results in the so-called spaghetti models. As models are generated by auto-
matically learning causal dependencies between different events, fitting many
unrelated behaviors into a single model produces highly complex relations. The
model may learn fake dependencies between events that are, in truth, unrelated
in the original process.



104 Chapter 6. Structured mining of Petri nets

One possible way for simplifying a model is by over-generalizing the model,
i.e. allowing behavior that is not present in the execution traces. This is
the method that has been explored in Chapter 5. When the log contains
unstructured behavior, however, it may be difficult to find a balance between a
complicated model and an underfitting one [5].

In this chapter, we propose a new methodology to mine easy-to-understand
process models (Petri nets) from logs, even those containing unstructured data.
At the core of this proposal is a new clustering approach which automatically
separates out behaviors with structural properties that induce visually friendly
models. Thereby, our approach generates multiple process models, each of
them conceptually simple, but without removing any of the behaviors. For
most types of processes, only a few models are required to cover a majority of
the behavior.

6.2 Related work

The problem of trying to find simple yet fitting models from process logs has
been approached from several areas. The closest approaches are those related to
clustering. Our approach is novel in that clustering is performed by examining
properties of transition systems, not log properties, thus being more accurate in
determining which clusters will be visually friendly. A related approach is pre-
sented in [56], where the quality and simplicity of the models obtained by the
heuristic miner is used to determine similarity of traces. Our approach does not
depend on any miner during the clustering process. Most other clustering meth-
ods estimate similarity based on the log structure, such as vector distance [127]
or edit distance [27]. Significantly, event ordering information can be used to
construct the pattern vectors [14]. [61] also targets complexity reduction, but
it does so by using hierarchical clustering, unifying repeated patterns.

Another group of techniques try to mine simple nets directly, by selectively
ignoring noise from logs, such as the inductive miner [100] or the region-based
FSM miner [5]. When two or more significantly distinct behaviors are present
in the input logs, these methods must greatly reduce fitness or precision to
generate simple models. Our clustering approach, instead, generates separate
models for the separate behaviors.

The rest of simplification approaches reduce the complexity of models
already mined, such as the approach proposed in Chapter 5. Like the previous
strategies, these approaches also end up generating a single model. For example,
the authors of [62] perform a log-based unfolding of the model and compute a
new model that only keeps the frequent parts.



6.3. Structured mining flow 105

Log

Saturation

Labeled Transition System

Clustering

LTS slice 1 LTS slice n. . .

Synthesis Synthesis

Petri net 1 . . . Petri net n

Log slice n

Mining

Figure 6.1: Scheme of the proposed flow.

6.3 Structured mining flow

In this section we give an overview of the contributions of this chapter. Figure 6.1
shows the main components of the mining flow.

The most important step is the clustering process, which separates the log
into several (possibly non-disjoint) subsets of traces. The classification criteria is
based on exploring properties of the labeled transition system (LTS) constructed
from the log. The procedure extracts slices from the LTS induced by subsets of
transitions satisfying certain properties. Each LTS slice has an associated subset
of traces from the log (a log slice).

By ensuring certain properties on each LTS slice, Petri nets with specific
structures can be synthesized. This work focuses on Marked Graphs and Free-
Choice nets because of their inherent visually friendly structure. However, the
paradigm does not preclude to use other structural properties that may induce
other classes of nets. The details on how the slices are generated are described
in Sections 6.4 and 6.5.

In the second step, the different log slices are converted into Petri nets
(dashed line in Fig. 6.1). Any miner can be used to transform these clusters
into a Petri net. However, this work proposes a method (Section 6.6) based on
the theory of regions that generates Petri nets based on the LTS slices produced
by the clustering step.



106 Chapter 6. Structured mining of Petri nets

6.3.1 Visual example

Figure 6.2 illustrates the different stages of the mining flow with a simple
example. Fig. 6.2a contains a fictional event log used as input to the flow.

Fig. 6.2b shows the LTS constructed from the log, where the presence of

transition s1
d
−→ s11, coloured in Fig. 6.2b, violates certain structural properties

(later detailed in Section 6.5). These violations imply that it is not possible to
synthesize a visually-friendly Petri net from the LTS. The result is the intricate
structure shown in Fig. 6.2c.

The clustering process proposed in this work finds a set of slices of the LTS
that satisfy certain structural properties. In this case, the LTS only needs to be
split into two slices, shown in Fig. 6.2d. Each slice also fits only a subset of the
traces from the log, shown in Fig. 6.2e, and these log slices are the result of the
clustering process. In this particular case, the log slices are disjoint. However,
overlapping slices can be produced in the most general case.

Fig. 6.2f shows the Petri nets synthesized from the individual LTS slices. The
LTS properties give rise to free-choice nets, which are more visually friendly.

6.4 Construction of an LTS from a log

This section details the first step of the mining process, which starts from
the input log, constructs a transition system, and performs an initial set of
transformations to simplify the relationships between events in the LTS.

Many methods exist to construct an LTS from a log. This work uses a
variation of the prefix multiset conversion [5] which will detailed below.

In real-life, logs obtained from execution traces often miss information
required to fully learn the correct process model. For example, in the log in
Fig. 6.3a, events a and b are seemingly concurrent as a is still enabled after
firing b and viceversa. The log shows trace b a, but does not contain a b. The
original prefix multiset technique would generate an LTS where a and b are
not concurrent (Fig. 6.3b). The technique presented below generates an LTS
where a b is also feasible.

For an input log L ∈B(Σ∗), the procedure creates a new LTS A as follows:

1. The Parikh vector ψ(σ) of every possible prefix σ ∈ Σ∗ appearing in L is
computed. A new state is created for every such different Parikh vector.

2. A transition s1
ei−→ s2 is inserted in A for every pair of states s1, s2 ∈ A if

ψ(s1) = (x0, . . . , x i, . . . , xn) and ψ(s2) = (x0, . . . , x i + 1, . . . , xn).

3. The initial state s0 is the zero Parikh vector.



6.4. Construction of an LTS from a log 107

a b c d e a b
a c d b e c b
a c b d e a b
a c b e a
a d e c
a c b e c
a d e a

(a) Input log.

s0 s1
a

s2
c

s11d

s14

b
s3d

s8

b

s12e

c

s4

b

d

s9
e

s13
a

s17c

s5
e

s10

c
s18a

s6c

s15
a

s7
b

s16
b

(b) Labeled Transition System.

a

c

d

a

d

e

b

b

(c) Petri Net covering the full log.

s0 s1
a

s2c

s14
b

s3d

s8

b

c

s4
b

d

s9
e

s5
e

s18a

s10

c

s6c

s15
a

s7
b

s16
b

s0 s1
a

s11
d

s12
e

s18c

s13
a

(d) Two slices extracted from the LTS.

a b c d e a b
a c d b e c b
a c b d e a b
a c b e a
a c b e c

a d e c
a d e a

(e) Corresponding log-slices.

a
c

b

d

e

b
a

c

a d e
c

a

(f) Synthesized Petri nets.

Figure 6.2: Examples at different stages of the mining flow.



108 Chapter 6. Structured mining of Petri nets

a a b
b a

(a) Log.

(0, 0)

(1, 0)

a b

(0, 1)

(2, 0)

a
(1, 1)

b

(2, 1)

a

(b) Prefix multiset LTS.

(0, 0)

(1, 0)

a b

(0, 1)

(2, 0)

a b

(1, 1)

b

(2, 1)

a

a

(c) Arc-completed LTS.

Figure 6.3: Log and steps to construct LTS.

a

a

a

a

b

b

b

c

cc

d

d

1
a

1
a

a2

a2

c
2

c
1

c
1

b

b

b

d

d

Figure 6.4: Splitting maximal connected ESs.

An example of a log and the LTS generated using this method can be seen
in Fig. 6.3c.

The transformations presented in the rest of the section aim at enforcing
unique concurrency/conflict relationships between pairs of events.

6.4.1 Splitting events with disconnected Excitation Sets

It is frequent to observe disconnected instances of the same event in different
states of the LTS. This transformation considers each instance as a different
event.

The transformation splits each event e into a set of events e1 . . . ek such
that the ESs of each event is maximally connected (only has one connected
component). Figure 6.4 illustrates this transformation with an example, in
which event a has two maximally connected sets of states in ES(s). Therefore,
two new events, a1 and a2 are created to substitute the original event a. A
similar situation occurs with event c.



6.4. Construction of an LTS from a log 109

a

a

a

a
b

b

b

b

c

c

c

c

x

a

a

a
b

b

b
c

c

c

x

a a
b

b
c

c

c

x

(b) (c)(a)

Figure 6.5: Examples to illustrate c-saturation.

When synthesizing a Petri net from the LTS, these events may end up by
being represented by different transitions in the Petri net if the Free-Choice
property requires the splitting. The decision about whether the splitting is
necessary is left at the criterion of the synthesis tool [47].

6.4.2 Saturation of concurrency

The goal of this transformation is to define a unique relationship between every
pair of events. For every pair a and b, there are two options:

ES(a)∩ ES(b) = ; ⇒ ordered.

ES(a)∩ ES(b) 6= ; ⇒ concurrent and/or conflict.

This transformation aims at disambiguating the second case by exclusively
choosing between concurrency or conflict. The following definition formally
describes what concurrency saturation is.

Definition 6.1 (C-saturation). Two concurrent events are concurrency-saturated
(c-saturated) if they are concurrent in all states of ES(a)∩ES(b). An LTS is said
to be c-saturated if all pairs of events are c-saturated.

An analogue concept can be defined for the reversed LTS, in which the
direction of all transitions has been reversed.

Figure 6.5 shows three LTSs with different concurrency properties. The
one in 6.5a is c-saturated since all pairs of concurrent events, (a, b), (b, c), and
(a, c), are c-saturated. The one in 6.5b is also c-saturated with the pairs (a, c)
and (b, c) being concurrent. However, 6.5c is not c-saturated since the pair
(a, b) is concurrent, but not in all the states of ES(a) ∩ ES(b). Therefore the
pair (a, b) is also in conflict.

Any LTS can be transformed into c-saturated by adding states and transitions
to complete the missing diamonds of the concurrent events. This process can
be applied iteratively, both in the original and reversed LTS, until reaching a
fixpoint in which all pairs of concurrent events are c-saturated.



110 Chapter 6. Structured mining of Petri nets

In the example of Fig. 6.5, the LTS in 6.5c would become the one in 6.5a
after c-saturation. With this transformation, there is no pair of events that
can be concurrent and in conflict simultaneously. This contributes to remove
intricate event relations, thus resulting in simpler Petri net structures.

6.5 Extraction of LTS slices

Once an LTS A representing the input log L is constructed and transformed,
the following step extracts several LTS slices A1, A2, . . . , Ak satisfying a set of
properties than make it amenable for the synthesis of visually friendly Petri
nets. Each slice Ai covers a subset of traces (log-slice) Li of L. The output of the
clustering process is a set of log-slices that completely cover L. In the example
of Fig. 6.2, two log-slices are delivered, shown in Fig. 6.2e.

We first describe the properties enforced in the LTS slices and then the
satisfiability model that extracts the slices.

6.5.1 Properties of the LTS slices

Three properties are desired in the LTS slices: forward persistency, backward
persistency and free-choiceness.

Persistency is a property tightly related to the state spaces of Marked Graphs
(see Section 2.2.2). An LTS A= 〈S,Σ, T, s0〉 is forward persistent (FP) if

∀s1
a
−→ s2, s1

b
−→ s3 : ∃s3

a
−→ s4.

Informally, if two events are simultaneously enabled, they must be concurrent.
Backward persistency (BP) is an analogous property applied to the reversed LTS
(reversing the direction of transitions). It is known that forward and backward
persistency are necessary conditions for an LTS to be the state space of a Marked
Graph [21].

The third property is free-choiceness (FC). An LTS is said to be free-choice
if for every pair of events a and b, the following condition holds:

a and b are in conflict =⇒ ES(a) = ES(b).

FC characterizes the state space for conflicts in Free-Choice Petri nets. Given that
two transitions in conflict have the same predecessor places in a free-choice net,
the set of markings in which they are enabled is identical for both transitions.
This means that both excitation sets will be identical in the corresponding
LTS. The FC property is the one used in [47] to split events and guarantee
free-choiceness.



6.5. Extraction of LTS slices 111

a a
b

c

c

c

d

d

e

e

d
f

f
d

a

d

b

b

0

1

2

3

4 5

6

7 8

9

11

10

12

b c d e f
a F ‖ ‖ C S
b ‖ ‖ C
c
d ‖ ‖
e

Figure 6.6: LTS with various conflict relations between events.

ba c

e d

f

a b e d

f

c

(a) (b)

Figure 6.7: Petri nets obtained from the synthesis of the LTS in Figure 6.6: (a)
from the the full LTS, (b) from a slice obtained by removing states
1 and 4.

Figure 6.6 shows an LTS and the relationship between pairs of events (‖:
concurrent, C: conflict, F: free-choice conflict). Blank cells in the table represent
ordered events (disjoint ES’s). We observe that the only free-choice conflict is
between a and b, given that ES(a) = ES(b) = {s0, s2, s6}. The conflicts for the
pairs (a, e) and (b, e) are not free-choice.

Figure 6.7 depicts two Petri nets obtained from the LTS in Fig. 6.6. The one
in Fig. 6.6a has been obtained by synthesizing the full LTS, whereas the one
in Fig. 6.6b has been obtained by a slice in which states 1 and 4 have been
removed. In the latter case, all conflicts for the pairs (a, b), (a, e) and (b, e)
become free-choice, and so does the Petri net.

6.5.2 Satisfiability model

An LTS slice is simply a subset of the original LTS. The goal of the approach
presented in this chapter is to extract LTS slices with the FP, BP and FC properties.
Let us call them Well-Behaved (WB) slices.



112 Chapter 6. Structured mining of Petri nets

If each transition t i ∈ T of the LTS is represented by a Boolean variable, the
set of WB-slices can be characterized by a Boolean formula WB(T) in which
every satisfying assignment corresponds to a WB-slice that contains only the
transitions t i for which their variables are asserted.

Fortunately, the function WB(T) can be easily constructed by observing that
the FP, BP and FC properties can be formulated locally, i.e., in terms of neighbor
transitions. Once the WB formula is constructed, a SAT solver can be used to
extract slices. Alternatively, the SAT model can be transformed into an Integer
Programming model in which some specific cost function can be optimized.

Let us now see how the FP, BP and FC properties can be characterized with
Boolean constraints. Note that after the transformations applied to the LTS, all
pairs of events have a unique relationship, i.e., they can only be concurrent or
in conflict (but not both) in case their ESs intersect.

Forward persistency (FP)

This property is only applicable to pairs of concurrent events (a, b). For every
state s1 ∈ ES(a)∩ ES(b), a diamond exists with the following transitions:

t1 = (s1, a, s2), t2 = (s1, b, s3), t3 = (s2, b, s4), t4 = (s3, a, s4).

Any selected subset of {t1, t2, t3, t4} must preserve the FP property, which
means that the selection of t1 and t2 must imply the full diamond. The constraint
can be formulated as follows:

(t1 ∧ t2) =⇒ (t3 ∧ t4).

Backward persistency (BP)

This property is analogous to the previous one, but reversing the direction of
the transitions. A similar Boolean formulation can be constructed.

Free-choiceness (FC)

This property is applied to pairs of events in conflict. The constraints must
ensure that both events have the same excitation sets in case both events are
present in the LTS slice.

The formalization of the constraints for each pair of events in conflict can
be stated as follows:

Once one of the events is enabled in one state, then the same en-
abling relation must be maintained in the successor states reachable
by other events.



6.5. Extraction of LTS slices 113

s
1

s
2

t
1

t
3

t
2

t
4

x

a

b b

a
x

x

Figure 6.8: Example to illustrate the FC constraint.

Figure 6.8 depicts an scenario in which FC must be applied for two events,
a and b, that are in conflict. Notice that the event x with transition s1

x
−→ s2

must be concurrent with a and b, otherwise a, b would not be enabled in s2,
according to the c-saturation transformation applied to the LTS.

Three options are possible with regard to the selection of transitions t1 and
t2 at state s1:

1. Both t1 and t2 are selected: in this case, the two events must be enforced
to have the same ESs and, thus, both or none of t3 and t4 must be selected,
i.e., t3⇔ t4.

2. Only one of them is selected, say t1. t3 would be present (because of the
FP condition) and t4 cannot be selected, otherwise ES(a) 6= ES(b).

3. None of them is selected. In this case, no constraints are imposed on t3

and t4 with regard to state s1.

Formally, the Boolean constraint applicable to s1 with regard to events a
and b is stated as follows:

(t1 ∧ t2) =⇒ (t3⇔ t4)
(t1 ∧¬t2) =⇒ ¬t4

(¬t1 ∧ t2) =⇒ ¬t3

The previous constraints can be simplified if a and b are in conflict but not
all transitions of Fig. 6.8 are present in the original LTS. For example, if t1 is
not present (¬t1), the previous constraints would be simplified and reduced to:

t2 =⇒ ¬t3.

Generation of choice-free Petri nets.
The previous constraints characterize LTS slices that derive Petri nets in

which all choices are free. A simple modification of the model can characterize
Petri nets without choices (only causality and concurrency relations). In particu-
lar, the FC conditions can be rewritten to disable the selection of two transitions
that are in conflict. This would be equivalent to adding the constraint ¬t1∨¬t2.



114 Chapter 6. Structured mining of Petri nets

6.5.3 Trace coverage

The conjunction of constraints for FP, BP and FC conform the Boolean formula
WB(T) that characterizes all WB-slices of the LTS. The question now is: which
subset of slices should be extracted? Two properties are desired:

• Every trace of the log must be covered by at least one WB-slice.

• A small number of WB-slices should cover the majority of traces of the log.

At this point, the satisfiability problem becomes an optimization problem that
can be modeled as an Integer Programming model with only binary variables.

A log L is a set of traces L = {σ1, . . . ,σn}, and each trace σi covers a set of
transitions σi = {t i1 , . . . , t ik} of the LTS, according to the construction described
in Section 6.4.

Each trace can be represented by a Boolean variable σi that acts as a trace
selector. The assertion of σi implies the selection of all transitions of the trace
in the LTS, i.e.,

σi =⇒ (t i1 ∧ · · · ∧ t ik)

Including this constraint in the model, a subset of traces can be covered
by selecting their variables. The number of covered traces is maximized by
incorporating a cost function:

max
∑

σi

6.5.4 Algorithm for extracting WB-slices

Algorithm 9 Extraction of WB-slices
1: Input: A log L
2: Output: A set of pairs (LTS slice, Log slice)
3: A← c-saturated LTS from L
4: R← L . Remaining (uncovered) traces from L
5: i← 1
6: while |R|> 0 do
7: Ai ← SOLVEWB(A, R) . extract new LTS slice
8: Ti ← traces from L fitting Ai . associated traces
9: R← R \ Ti . subtract from remaining traces

10: i← i + 1
11: return (A1, T1), (A2, T2), . . . , (An, Tn)



6.6. Synthesis of Petri Nets 115

0

1 2

3

4

5

6

7

8

9

a

a

a

a

b

b

c

d

d

e

(a)

reg states
r1 0, 1
r2 2, 3
r3 0, 2,4, 6,8
r4 1,3, 5,7
r5 4, 5,6, 7,8
r6 9

(b)

e

r 6

r 5

r 3

r 1

r 2

4r

c

a

b

d

(c)

e

b

b

a

d

a

a

c

(d)

e

a b

c

a

d

(e)

Figure 6.9: Synthesis of Petri nets using regions.

Algorithm 9 shows the main algorithm for extracting LTS and log slices.
The algorithm iterates until each trace in log L is covered by at least one of the
extracted LTS slices. Variable R stores the list of traces not yet covered.

Function SOLVEWB extracts an slice from A that maximizes the number of
covered traces from R. Still, this slice may cover traces already covered by
previous slices (in line 8, the traces assigned to Ti are obtained from L, not R).

6.6 Synthesis of Petri Nets

In addition to the main clustering procedure, we propose a method to transform
the LTS slices into Petri nets, extending a region-based synthesis tool, Petrify [45].
Region-based miners are known for their tendency to construct overfitting
models [2]. The proposed modification allows Petrify to construct Petri nets
that trade off precision for visualization-friendliness, and implements the ideas
of [35].

Any mining tool can be used to obtain process models from the log slices
generated by the clustering method. However, the synthesis procedure described



116 Chapter 6. Structured mining of Petri nets

in this section reuses the LTS slices constructed by the clustering algorithm, and
thus has inherent benefits in both efficiency and simplicity. For full details on
the theory of regions, we refer to [47]. The following section briefly surveys
the basics of the theory.

6.6.1 Theory of regions

The theory of regions provides an algorithmic method to derive a Petri net from
an LTS. Given an LTS A= (S, E, T, s0) and a subset of states r ⊆ S, a transition
s

e
−→ s′ enters r if s /∈ r ∧ s′ ∈ r, exits r if s ∈ r ∧ s′ /∈ r, and does not cross r

otherwise. r is a region if for every event e ∈ E, all transitions t ∈ T labeled e
are in the same relation with r (entering, exiting, or not crossing). A region
r is minimal if no subset of r is a region. Figure 6.9a shows an example LTS,
with 6.9b listing the minimal regions.

Intuitively, a region r corresponds to a place p in the Petri net. p will pre-
condition any of the events exiting r. Thus, it will be marked only in states
corresponding to those in r, receiving tokens only from transitions correspond-
ing to events entering r. Straightforwardly, to construct a Petri net from the
list of minimal regions, a transition t i is created for every event ei ∈ A and a
place p j is created for every minimal region r j. If ei enters r j, then p j ∈ • t i.
Conversely, if ei exits r j, then p j ∈ t•i . p j is marked iff s0 ∈ r j.

Excitation Closure

Let L (A) be the language of the LTS A, i.e., the set of all traces fitting A, and
L (N) the set of all traces fitting N , where N is a Petri net constructed from A
using the above method. Assuming e ∈ E, let ◦e be the set of minimal regions
of A where e is exiting. A is excitation closed [47] if:

∀e ∈ E, ◦e 6= ; ∧ ES(e) =
⋂

r∈◦e
r

L (A) = L (N) is only guaranteed if A is excitation closed [47]. If not, then
L (A) ⊆L (N) [35], N fits more traces than A.

Figure 6.9c depicts the Petri net N obtained from the minimal regions of the
LTS A shown in 6.9a, whereas 6.9d shows the LTS that models L (N). Since the
LTS in 6.9a is not excitation closed, N fits more traces than A (e.g., trace abce).

Traditional region-based synthesis tools, including Petrify, transform the LTS
to guarantee the excitation closure property and thus enforce L (A) =L (N).
These transformations often degrade the visualization quality of the resulting
Petri nets [35] and result in hard to understand overfitting models which are
not ideal for Process Mining. For these reasons, our modification drops the



6.7. Results 117

Log size Time [sec.]
Log Unique traces Event types Our proposal ActiTraC
documentflow 1411 70 90 95
fhmilu 701 12 60 106
fhmn5 693 13 174 38
incidenttelco 212 22 32 17
kim 1174 18 37 20
purchasetopay 76 21 7 55
receipt 116 27 15 7
tsl 1908 42 111 60

Table 6.1: Time required for clustering.

excitation closure requirement to avoid these transformations. Because of this
relaxation, the resulting Petri nets are less overfitting.

Finally, event splitting can contribute to further enhance the structure of
the Petri net while keeping the recognized language. Figure 6.9e shows a new
structure after splitting event a. The details on how label splitting may be
performed are discussed in Chapter 7.

6.7 Results

We have implemented the algorithms described on this work in Python, using
the PMLAB [36] package. 8 logs combining real-life sources [29,56] and bench-
marks [137] have been used as inputs. The logs and our implementation are
available at http://www.cs.upc.edu/~jspedro/pnsimpl/. Gurobi [72]
has been used to solve all ILP models. The quality of the models has been evalu-
ated using the ETConformance plugin in ProM, which computes the best align-
ment between trace and log before measuring fitness and precision [10,111].

As for the important issue of visualization-friendliness, there are several
studies in the literature [108]. In this work we propose a metric related to the
concept of planarity: the minimal number of crossings required to embed the
graph on a plane. As described in Section 2.1.1, the mincross algorithm from
dot [66] is used to obtain an estimation of this number.

In order to compare our proposal with the related work we propose two
experiments. In the first one, we show how many slices and crossings (Cros.)
are required by our mining process, depending on how much behavior of the log
is preserved. We also compare it to ActiTraC [56], a state-of-the-art clustering
procedure that also targets visualization.

In the second experiment, we show how our slicing approach results into
visualization-friendly models even when using alternative miners.

http://www.cs.upc.edu/~jspedro/pnsimpl/


118 Chapter 6. Structured mining of Petri nets

Our proposal
85% 90% 95%

Log Slices Crossings Slices Crossings Slices Crossings
documentflow 1 0 1 0 4 8
fhmilu 1 4 1 4 1 4
fhmn5 1 1 1 1 1 1
incidenttelco 1 0 1 0 2 1
kim 1 0 1 0 2 0
purchasetopay 1 0 1 0 1 0
receipt 1 3 1 3 1 3
tsl 1 3 3 3 10 9

ActiTraC
85% 90% 95%

Log Slices Crossings Slices Crossings Slices Crossings
documentflow 1 0 2 14 3 946701
fhmilu 6 4 Timeout computing fitness a

fhmn5 3 1 6 2 8 2
incidenttelco 1 3 1 3 2 3
kim 1 2 1 2 2 3
purchasetopay 1 2 1 2 1 2
receipt 2 5 2 5 2 5
tsl 1 25 1 25 2 145

aBecause of the large number of Petri Nets, replay fitness could not be measured for this
benchmark.

Table 6.2: Number of slices and crossings required to reach specific fitness
thresholds.

Using Petrify as miner Using α miner
1st slice (our method) Naive method 1st slice (our) Naive method

Log Fit. Prec. Cros. Fit. Prec. Cros. Fit. Cros. Fit. Cros.
documentflow 92.1% 81.7% 0 97.9% 57.2% 0 37.8% 0 37.5% 2286
fhmilu 97.8% 64.5% 4 Out of memory 38.0% 8 16.8% 29
fhmn5 99.1% 49.4% 1 Out of memory 40.6% 4 25.5% 116
incidenttelco 92.6% 53.7% 0 99.3% 30.7% 14 63.1% 9 46.7% 53
kim 92.9% 75.1% 0 94.6% 84.6% 38 66.4% 7 56.1% 80
purchasetopay 99.8% 68.2% 0 94.0% 100.0% 0 96.9% 6 100.0% 0
receipt 98.0% 71.3% 3 95.9% 100.0% 0 99.8% 8 76.6% 1
tsl 82.7% 83.9% 3 99.7% 53.1% 1 Timeout 75.7% 310

Table 6.3: Comparing the first slice from the proposed clustering method vs.
a naive noise removal algorithm (removing 20% least frequent
traces), using different miners.



6.7. Results 119

6.7.1 Minimum number of log slices

We configured our implementation to generate as many slices as required in
order to obtain a set of slices that include at least 80% of traces from the input
log. Petrify was used to generate models for each of the slices. The size of the
logs, in number of unique traces and event types, as well as the time spent during
the slicing process is shown in Table 6.1. Similarly, ActiTraC was configured
with the default settings, but a stop criteria of having generated enough clusters
to cover 80% of the traces. By default, ActiTraC uses the Heuristic Miner to
generate models for the clusters.

The models mined by both tools are generally underfitting, i.e., precision is
sacrificed to aid model visualization. Thus, each model allows for more traces
than those present in the corresponding log slices. For this reason, measuring
entire log replay fitness using ProM usually results in values higher than 80%
of the log as configured.

In this experiment, we measure how many slices are actually required to
reach a specific level of fitness when replaying the entire input log. For both
clustering algorithms, the slices with the largest number of traces are selected
first. This number of slices estimates how much behavior a clustering algorithm
can fit into a single model. However, the clustering algorithm needs to ensure
each model is still visualization-friendly. To estimate this, we measure the total
number of crossings present in each of the selected slices.

The results, shown in Table 6.2, indicate that our approach compares posi-
tively with ActiTraC. For most examples, the first slice already provides with a
model that fits 90% of the original full log. In addition, these first slices have
few or almost no crossings.

6.7.2 Metrics of the first slice

In the second experiment, we repeat the proposed slicing procedure on the
same logs, but center on the metrics of the slice containing the highest number
of traces, which we call the first slice. Two distinct miners are used: Petrify
(using the modifications described in Section 6.6) and the α-miner [8]. The
experiment shows how the slices generated by the proposed algorithm are
visualization friendly even when using other types of miners.

As a baseline for comparisons, we also show the metrics of models obtained
directly from the log, without applying our slicing approach, but after applying
a naive noise filtering algorithm. This naive strategy removes the least frequent
20% traces from each log, effectively removing most infrequent behavior. With-
out this noise removal, attempting to mine the full log would result in huge
spaghetti models which would be meaningless to compare with the models



120 Chapter 6. Structured mining of Petri nets

generated after our slicing procedure. Yet, the results show that even when
compared to models where most noise has been removed, using our slicing
algorithm still results in simpler models with comparable fitness (Fit.) and
precision (Prec.).

Table 6.3 shows these metrics on the first slice of each of the logs as well as
using the naive algorithm. When using Petrify as miner, some of the models
generated after the naive noise elimination still have tens of crossings or low
precision. The models generated all have very few crossings despite maintaining
similar levels of fitness and precision.

When using the α-miner, low-fitting spaghetti models are discovered even
after noise elimination. When applied to the first slices, the α-miner discovers
models with a significantly reduced number of crossings, and increased fitness.

6.7.3 Publications

As part of this research topic we have published the following conference article:

• J. de San Pedro and J. Cortadella, Mining Structured Petri Nets for the Visu-
alization of Process Behavior, in Proceedings of the 2016 ACM Symposium
on Applied Computing (SAC), Pisa, Italy, April 2016.

6.8 Conclusions

In this chapter, we have introduced a new method to mine visualization-friendly
Petri nets from real-life process logs. We have shown our method to improve on
the visualization quality of other similar slicing methods while being competitive
in performance.

This work is just an initial incursion into the study of properties of labeled
transition systems with the goal of process model visualization. We envision
this effort to be a starting point for further simplifications using other struc-
tural properties.



Chapter 7

Discovery of duplicate tasks

In Chapters 5 and 6 we have presented a series of methods to improve the
understandability of process models. The methods presented in Chapter 5 trade
off quality metrics, such as fitness or precision. In Chapter 6, unstructured
event logs are divided into several process models instead of constructing a
single model. The methods proposed in this chapter, however, construct a single
simplified model while preserving or even increasing fidelity metrics.

The first problem addressed in this chapter is the discovery of duplicate
tasks. A new method is proposed that avoids overfitting by working on the
transition system generated by the log. The method is able to discover duplicate
tasks even in the presence of concurrency and choice.

The second problem is the structural simplification of the model by identify-
ing optional and repetitive tasks. The tasks are substituted by annotated events
that allow the removal of silent tasks and reduce the complexity of the model.
An important feature of the methods proposed in this chapter is that they are
independent from the actual miner used for process discovery.

This chapter is structured as follows. Section 7.1 gives an overview of the
topic. In Section 7.2, we discuss the related work. Section 7.3 introduces
the concept of a local excitation set that will be used during duplicate task
discovery. Section 7.4 describes the first proposed technique: a method to
discover discover duplicate tasks. The second technique, a set of structural
transformations to simplify a Petri net, is shown in Section 7.5. Both techniques
are evaluated in Section 7.6. Finally, Section 7.7 presents the conclusions.

7.1 Motivation

This chapter presents a set of techniques to explore the trade off between
simplicity and precision. More specifically, by introducing a small number of



122 Chapter 7. Discovery of duplicate tasks

new elements, the proposed techniques result in tangible improvements in
precision. They can work in combination with any existing discovery (mining)
algorithm. While some of the techniques can be applied to different formal
models, this work will focus on Petri nets.

The first technique enables the discovery of duplicate tasks in process models.
Duplicate tasks allow several nodes to refer to the same activity in the event log,
and are thus ideal to represent different behaviors for the same task in a single
event log. While this is not a new concept in Process Mining [7,34,54,126,133],
our proposal is novel in that the splitting criteria is based on properties of
Labeled Transition Systems, thus allowing more precision than other existing
techniques for duplicate tasks.

The second technique performs structural simplifications that do not modify
the semantics of the model, thus preserving the quality metrics. We introduce
extensions to the formalism that allow single nodes to represent more complex
control-flow structures, such as loops or optional tasks.

7.1.1 Example

Figure 7.1 will be used to illustrate the main contributions of this chapter. We
start from a simple log, a subset of which is shown in Fig. 7.1a. Figure 7.1b
shows the model discovered by the Inductive Miner [101] for this log. This
model is highly imprecise (50%): while it is not a pure flower model, almost
all the words are recognized.

The reason why many discovery algorithms generate such a low-precision
model is because of the presence of duplicate tasks in the original process.
Several reasons can lead to this scenario. For example, two different tasks may
have been improperly tagged with the same label.

Figure 7.1c shows the process model after the discovery of some duplicate
tasks. The original process had two different tasks for each of the labels a, b,
and e. This information is discovered automatically using the methods proposed
in this work. Duplicate tasks also allow the discovery of more precise models.
In this particular case, the new model has a precision of 90% and the workflow
structure is clearer. However, the model has increased the total number of com-
ponents, including silent transitions, which unnecessarily increases cognitive
load in this example.

Many of the silent transitions in Fig. 7.1c can be removed without affecting
the semantics of the model, as shown in Fig. 7.1d. A method to remove silent
transitions will also be presented in this work.

By applying some structural transformations to Fig. 7.1d, further reductions
on the structure of the Petri net can be achieved. In this work, the alphabet
of labels is enhanced to incorporate meta-transitions, which represent control



7.1. Motivation 123

a c d e a
a c d b a
a c b d b e b a
a c b b d b b e b b a

b b b e c d e a
b b b e c d b a
b b b e c b d b e b a
b b b e c b b d b b e b b a
(a) Subset of the example log.

a

e

c

τ

b

d

τ

τ

τ

(b) Model discovered by the Inductive Miner.

a1

τ
τ

b1

e1

c τ

d
e2

τ
τ

b2

τ

τ a2

(c) Model constructed after duplicate task discovery.

a1

τ

b1

e1

c
d

e2

τ

b2

a2

(d) Removal of unneeded silent transitions from (c).
a1

b∗1 e1

c
d e2?

b∗2

a2

(e) Using meta-transitions to simplify (d)

Figure 7.1: Applying the method presented in this chapter to a sample model
discovered by the Inductive Miner.



124 Chapter 7. Discovery of duplicate tasks

flow patterns. For example, an e? meta-transition can replace a choice between
e and a silent transition, as in Fig. 7.1d. Similarly, a meta-transition b∗ can
sometimes replace a self-loop transition with label b. We introduce Petri net
transformations that, in this particular example, allow the removal of all silent
transitions without altering its behavior.

7.2 Related work

Several methods already exist for duplicate task detection, with the approaches
being classifiable into several families. In [133], a set of heuristics creates
a candidate set of duplicate tasks, which is then explored by a local search
procedure working in tandem with an arbitrary mining algorithm. The method
produces high-quality results in combination with advanced miners. However,
since the miner influences the direction of the search, it is difficult to predict
the runtime of the discovery process. In this work, the miner algorithm is only
used to evaluate the set of candidate results. The number of results is exactly
bounded by the maximum number of allowed duplicate tasks per event. The
work in [126] proposes a clustering approach based on the context of events
similar to the one described in this work. However, our work uses excitation
sets to identify the context of events, which allows for more accurate detection
that using the log directly.

A different family of methods to perform duplicate task detection are tied to
specific mining technologies. For example, Fodina [132], Genetic Miner [54],
AGNEs [69], InWoLvE [74], region theory [34], α∗-algorithm [103]. The
proposal in this work works with any mining algorithm, and does not require
e.g. workflow nets or other specific process models.

For the second proposal in this work, structural simplifications, a poten-
tial comparable work is the use of other process modeling notations, such as
BPMN [140]. However, the formalisms presented in this chapter still allow
the full expressiveness of Petri nets, yet hide complexity in the presence of the
common flow control operators.

7.3 Local Excitation Sets

Figure 7.2b shows an LTS constructed from the process in Fig. 7.2a. Notice how
ES(a) contains the states in which the three duplicate tasks of a are enabled.
We now define the concept of local excitation set which distinguishes each such
instance of a, including the concurrent ones:



7.4. Discovering duplicate tasks 125

a
a

b

c

a
d

(a) Initial process.

a
a
b

c
b
a

b
c
a

a
c d

(b) ES(a) in the LTS.

b

c
b

b
c

c d

(c) The three LES(a)
after removal of
a-transitions.

Figure 7.2: Calculation of Local Excitation Sets.

Definition 7.1 (Local Excitation Set). Given LTS A = 〈S,Σ, T, s0〉 and event
e ∈ Σ, the local excitation sets of e, LES(e)1, . . . , LES(e)k are the maximally con-
nected subsets of ES(e) such that, ∀s1

e
−→ s2 ∈ A, if s1 ∈ LES(e)i and s2 ∈ LES(e) j,

then i 6= j.

Notice that the definition does not allow both the source and target states of
a transition with label e to be in the same LES(e)i. The set of LES of an event
can be efficiently computed with a simple algorithm, illustrated in Fig. 7.2c
for event a. The algorithm has the following steps: (1) calculate ES(a), (2)
remove the transitions with label a from the LTS, (3) identify all LES(a) as the
maximally connected subsets of ES(a) after the removal of the a-transitions.

The next two sections describe the two simplification techniques introduced
in this work: discovery of duplicate tasks and structural simplifications to
represent control-flow patterns.

7.4 Discovering duplicate tasks

This section introduces a method that automatically discovers which events from
an event log correspond most likely to duplicate tasks, i.e. should be represented
by more than one task in order to enhance the quality of the model. The
technique works with the LTS constructed from a log and can be combined with
any discovery algorithm. By adding new tasks, the method slightly increases the
element count of the model but results in tangible improvements in precision.

Given a log L, the goal of this procedure is to generate, for every activity
a ∈ L, a partition of all the events in L referring to a. When mining a process
model, every different partition will be represented by a different task. We will
generally refer to each task by a1, a2, . . . , an. A partition that, for every activity
a, maps all events into a single task a1 results in a model with no duplicate
tasks. Figure 7.3b shows an example partition for the log in Fig. 7.1a.



126 Chapter 7. Discovery of duplicate tasks

Clustering

Log

... Candidate splits

Log preprocessor

construction

Miner

... Candidate models

Select best Final model

LTS

LTS

(a) Overview of the flow.

a1 c d e2 a2

a1 c d b2 a2

a1 c b2 d b2 e2 b2 a2

a1 c b2 b2 d b2 b2 e2 b2 b2 a2

b1 b1 b1 e1 c d e2 a2

b1 b1 b1 e1 c d b2 a2

b1 b1 b1 e1 c b2 d b2 e2 b2 a2

b1 b1 b1 e1 c b2 b2 d b2 b2 e2 b2 b2 a2

(b) Split version of the log from Fig. 7.1a.

Figure 7.3: Summary of the duplicate task discovery process.

An overview of the proposed method is shown in Fig. 7.3a. At the core of
the proposal lies a clustering process that generates a small set of candidate
partitions. An existing mining algorithm is used to generate a process model for
each of these partitions, and the best model is selected out of these discovered
models. This way, the method adapts to the subtleties of the different mining
algorithms. Even for miners that automatically discover duplicate tasks, the
proposed method may help improving the results.

The clustering method uses a bottom-up (agglomerative) approach: starting
from the trivial partition which maps every event to a different task, the pro-
cedure iteratively selects pairs of similar events, grouping them into the same
task. To find similar events, the algorithm uses causality relationships between
events as discovered in a LTS, instead of using log information directly (e.g.
direct predecessors or successors of an event). An LTS can be built from the log
with a variety of methods [5]. Section 7.4.1 describes how similar events are
found in the LTS, while Section 7.4.2 details the actual clustering algorithm.

7.4.1 Partitioning based on Excitation Sets

A significant difference between this proposal and previous approaches to
duplicate tasks is that the proposed method works at the Transition System
level. The log is first converted into an LTS, and the clustering procedure
generates a partition based on causality relationships between excitation sets in
this LTS, rather than directly using the preceding and successor events in the
log. Because of this, the approach is resilient to processes where duplicate
tasks are combined with concurrency and choice. The use of clustering-based



7.4. Discovering duplicate tasks 127

LES(b)

LES(b)

LES(b)
3

1

2

a b

c e

db c

b ed bd

a e b dbe

a e ab

a

(a) Constructed LTS, high-
lighting all LES(b).

a1 b1

c1

a2

a3

e1

b2

b3

d1 c2

d2e2

e3

(b) Excitation set graph of
the LTS in (a).

LES Triggers Triggered by
a1 {c} ;
a2 ; {b, d}
a3 ; {b, d}
b1 {e} ;
b2 {a} {c}
b3 {a} {c}
c1 {b, d} {a}
c2 {b, d} {e}

(c) Trigger relations between
LES.

Figure 7.4: Example excitation set graph of a subset of Fig. 7.1a (loops re-
moved).

methods [82] and similarity metrics rather than looking for exact matches
also allows the proposed flow to gracefully handle noise and incompleteness
in the log.

Let us use an example to show the benefits of using ESs. Figure 7.4a shows
the LTS constructed from the log in Fig. 7.1a, with no duplicate task detection
performed. For simplicity, loops have been removed (allowing one iteration
only). As per the definition of LES, there are 3 LESs for activity b, shown in
Fig. 7.4a.

Notice how the LESs of b provide an intuitive view of the correct partition for
activity b (as shown in Fig. 7.3b): LES(b)1 corresponds to the events of task b1,
while LES(b)2 ∪ LES(b)3 would correspond to b2. Our proposal classifies these
LES by their relationships with other LES. The excitation set graph represents
all the LES of a TS as well as the causality relationships between those:

Definition 7.2 (Excitation Set Graph). Given a LTS A= 〈S,Σ, T, s0〉, the excita-
tion set graph of A is a graph ESG(A) where:

• The set of vertices V (ESG(A)) corresponds to the set of LES of A.

• For every pair (LES(a)i, LES(b) j) of A, with a, b ∈ Σ, there is an edge
(LES(a)i, LES(b) j) ∈ E(ESG(A)) iff for any s1 ∈ LES(a)i and s2 ∈ LES(b) j,

s1
a
−→ s2 triggers b.



128 Chapter 7. Discovery of duplicate tasks

Figure 7.4b shows the corresponding excitation set graph of the example
LTS, while 7.4c summarizes the immediate trigger relations. Notice how the
information on 7.4c allows us to trivially distinguish between LES(b)1 and
{LES(b)2, LES(b)3}, since LES(b)1 triggers a different set of events.

Compare this to using predecessor and successor information from the log
directly, without constructing an LTS first. It is difficult to distinguish events
of b by looking at the immediately following event. For example, an event b
followed by e may indicate an instance of task b1 as discovered in the previous
section, but it may also be caused by an instance of b2, since it is concurrent
with e. Thus, using log information only, it would be difficult to construct an
accurate partition for b. The use of excitation sets avoids this problem.

Even when using excitation sets, the combination of choice, loops and/or
incomplete logs may introduce LES that have related but slightly different sets
of predecessors/successors, yet should be mapped to the same task. For this
reason, the proposed flow includes a clustering method that combines similar
LES. This method is described in the following section.

7.4.2 Hierarchical clustering algorithm

This section describes the method used by our proposal to classify local excitation
sets into groups with similar causality relationships. The described clustering
method is agglomerative [82], discovering clusters using a bottom up approach:
the algorithm starts by assuming every that, for every activity a, every LES(a)i
belongs to its own cluster. In this initial solution, each LES maps to its own
duplicate task. Then, the algorithm considers the pairwise similarity of all the
LES, and combines the two closest (LES(a)i, LES(a) j) (of the same activity a)
into the same task ai. The entire process iterates until no further clustering
can be performed. On every iteration, the algorithm explores a solution with
exactly one duplicate task less than the previous solution.

The full discovery algorithm can be seen in Algorithm 10. The input is a log
L. A is an LTS constructed from L (for example using the methods described
in [5]), while G is the initial ESG, constructed using the rules seen in 7.2. The
output R is a process model with duplicate tasks.

In every iteration, procedure FINDMOSTSIMILARNODES selects two vertices
of G with the most similar context vectors, a numeric way to represent their
causality relations which will be explained in the following section. The selected
vertices are then merged into a single new vertex, representing the new cluster,
which inherits the causality relationships of the merged vertices. Note that only
vertices with the same activity label will be selected. The loop ends when there
is only vertex in G for every activity, i.e. there are no duplicate tasks.



7.4. Discovering duplicate tasks 129

Algorithm 10 Discovery flow with duplicate tasks

1: function DUPLICATETASKDISCOVERY(L, M)
. L is the input log, M is a miner algorithm.

2: A← CONSTRUCTLTS(L)
3: G← ESG(A)
4: R← M(L) . Stores the best result (process model) discovered so far
5: while |V (G)|> |Activi t ies(A)| do . While there is some duplicate task
6: vx , vy ← FINDMOSTSIMILARNODES(G)
7: merge vx , vy into single node in G
8: Li ← TAGLOG(L, G) . Tag events in the log according to current partition
9: Ni ← M(Li) . Discover a temporary model for evaluation

10: if Ni is better than R then
11: R← Ni

12: return R

a1 a2 a3 b1 b2 b3 c1 c2 d1 d2 e1 e2 e3

Dup. tasks Model size Precision

0 17 0.53

1 24 0.60

2 25 0.65
3 22 0.95
4 23 0.86

5 26 0.88
6 33 0.88
7 36 0.95

8 38 0.95

←

Figure 7.5: Dendogram showing clustering of LTS in Fig. 7.4a.

To select which partition of tasks will be returned by our procedure, we
construct a temporary process model Ni at every iteration. The provided miner
is called using a log where events have been tagged according to the currently
evaluated partition. The details of how models are compared will be described
in a later section. Note that the total maximum number of models to evaluate
(i.e. the number of iterations in the procedure) is limited by the number of
excitation sets in the LTS. However, most processes contain only a few duplicate
tasks. Limiting to 4 or 5 tasks per activity reduces the number of models that
need to be evaluated to a few, depending on the number of different activities.

Figure 7.5 visualizes the clustering procedure. The initial solution, where
every LES is partitioned into its own duplicate task, is shown at the bottom



130 Chapter 7. Discovery of duplicate tasks

row. The following row represents one iteration of the clustering process, in
which a2, a3 were the most similar LES and were merged. Thus, the number
of duplicate tasks, in the first column, is reduced by 1. The top row shows the
result after all nodes have been merged and thus there are no duplicate tasks
left. Columns 2 and 3 show sample metrics of the evaluation model for each
row: Petri net size and precision. The selected model has the best precision
and smallest size.

Representing excitation set relations in vector space.

In order to find the closest two groups of LES, a distance metric capable of
evaluating the similarity of the relationships of two LES is required. For this,
we will first provide a way to represent, as a numeric vector, the causality
relationships of a given vertex (representing a LES or cluster of LES) in a ESG.

This representation needs to satisfy several requirements: a) it needs to be
normalized, allowing meaningful comparisons between different vertices, b) it
needs to distinguish vertices by their immediate predecessors/successors, but
also more distant neighbors. Otherwise, duplicate tasks sharing the same set of
immediate predecessors or successors would not be distinguishable. However,
similarity of closer neighbors should have more weight than distant neighbors.

Definition 7.3 (Context vector). Given LTS A, ESG(A), and a vertex v ∈ ESG(A),
the forward context vector of v,

−→
Cv , is a function E 7→ R that maps an activity

e ∈ Σ to

−→
Cv(e) =

|Succ(v, e)|
2|Succ(v)|

+

∑

v′∈Succ(v)
−→
Cv′(e)

4|Succ(v)|

where Succ(v) is the set of immediate successors of v and Succ(v, e) is the set
of immediate successors of v of activities with label e. Similarly, we can define
the backwards context vector,

←−
Cv , using predecessors instead of successors.

For a given vertex v and event e, the value of
−→
Cv(e) depends on the number

of e-successors of v relative to the total number of successors of v. Notice the
function gives decreasing weight to more distant successors using the pattern
1
2 +

1
4 +

1
8 + . . .. Thus, the function is normalized between [0 . . . 1), allowing for

numeric comparisons between different vectors.
Imposing a limit k to the recursion depth, context vectors are easy to compute

with a single pass over the graph. As the weight of successors decreases with
distance, this limit does not impact the quality of the metric. An example list of
context vectors for the graph in Fig. 7.4b is shown in Table 7.1, assuming k = 2.



7.4. Discovering duplicate tasks 131

Table 7.1: Context vectors for the ESG in Fig. 7.4b.

Forward Backward
LES a b c d e a b c d e
a1 0 1/8 1/2 1/8 0 0 0 0 0 0
a2 0 0 0 0 0 0 1/4 0 1/8+ 1/8 1/4
a3 0 0 0 0 0 0 1/4 0 1/8+ 1/8 1/4

b1 0 0 1/4 0 1/2 0 0 0 0 0
b2

1/2 0 0 0 0 1/4 0 1/2 0 0
b3

1/2 0 0 0 0 0 0 1/2 0 1/4

c1
1/16+ 2/16 1/4 0 1/4 1/16 1/2 0 0 0 0

c2
1/16+ 2/16 1/4 0 1/4 1/16 0 1/4 0 0 1/2

Distance function.

To measure the similarity (distance) between two vertices v1, v2 ∈ ESG(A), the
following formula is used, where d is the Euclidean distance:

dist(v1, v2) =min(d(
−→
Cv1

,
−→
Cv2
), d(
←−
Cv1

,
←−
Cv2
))

Using the minimal distance between the forward and backward vectors
allows proper detection of duplicate tasks in the first and last iterations of loops.
For tasks in a loop, several LESs may exist in the LTS for different iterations of
the same task. The causality relations of the LESs corresponding to the first
and last iterations will be different of those from inner iterations. For example,
only the LES corresponding to the last iteration will not trigger other LESs of
the same task. By centering on either the backward or forward context vector,
depending on which pair is the closest, these LESs will still be clustered into a
single task.

Comparing candidate models.

Traditional hierarchical clustering algorithms use various criteria to determine
which clustering solution is more suited to the data, such as for example the
elbow criteria [83]. However, the flow proposed in this work produces more
than one candidate model, allowing the exploration of the trade-off between
precision and simplicity. By limiting the maximum number of allowed duplicate
tasks, the set of candidate models can be kept under manageable sizes. There-
fore, conventional conformance checking strategies may be used to accurately
compare the candidate models, e.g. measuring fitness, precision, generalization
or simplicity. Generally, a combination of these parameters will be used, depend-



132 Chapter 7. Discovery of duplicate tasks

τ

(a) Fusion of series
places.

τ

(b) Fusion of series
places (only live
or sound nets).

τ

a

a

a

τ

a

(c) Fusion of series transitions.

a

b

a

b

(d) Parallel places.

τ τ τ

(e) Identical trans.

a a

(f) Identity place.

τ

(g) Identity trans.

Figure 7.6: Reduction rules for behavior-preserving removal of silent transi-
tions.

ing on user preference. For example, maximizing precision while constraining
the simplicity to a minimum threshold value.

Figure 7.5 shows that the precision increases with every duplicate task until
95% with 3 duplicate tasks, and then decreases, revealing that more duplicate
tasks introduce unnecessary choices and are not necessary for this process. The
result, with 3 duplicate tasks, exactly matches the model shown in Fig. 7.1c.

7.5 Meta-transitions

This section introduces the structural simplifications proposed in this work:
substituting common control flow patterns with special meta-tasks that represent
optional or iterative behavior.

The simplifications are especially suitable for Petri nets. They reduce the
complexity of the net while still allowing the full expressiveness of Petri nets.
In addition, the proposed simplifications exactly preserve the semantics of the
models, and thus, conformance metrics such as fitness and precision.

The simplifications center on two aspects. First, the removal of unnecessary
silent transitions. While silent transitions are a useful construct, many mining
algorithms or conversions from other modeling languages often generate silent



7.5. Meta-transitions 133

a τ a?

(a) Optional task.

a a∗

(b) Loop.

aτ a+

(c) Loop with at least one iteration.

Figure 7.7: Rules for transformation using meta-transitions.

transitions that may be unnecessary [3]. Second, we introduce a series of
meta-transitions which extend the language of Petri nets and represent simple
flow control operations such as optional or iterative behavior.

Removal of silent transitions.

Our proposal removes unnecessary silent transitions by following the transfor-
mations shown in Fig. 7.6. The objective of these transformations is to eliminate
as many silent transitions as possible without impacting the semantics of the
Petri net, so that the set of traces fitting the original net is identical to the traces
fitting the transformed Petri net. The transformations proposed are similar to
the liveness and safeness-preserving transformations proposed in [112], that
have been already used in previous work [3,58] also with the goal of removing
silent transitions. However, the existing set of transformations is not exhaustive.
For example, it is not possible to remove all the silent transitions from the model
in Fig. 7.1c using only the rules defined in [112].

By centering on a commonly used structural type of Petri nets, sound work-
flow nets [1,6], we are able to introduce additional transformations covering
the removal of more silent transitions. For example, Fig. 7.6b proposes that
fusion of serial places can be performed even if the first place has other outgo-
ing arcs. However, this transformation does not fully preserve the behavior of
general Petri nets, as it may remove deadlocks present in the original Petri net.
Full preservation of behavior, including liveness, is only guaranteed in the case
of live Petri nets or nets with deadlocks only on specific states, such as sound
workflow nets. For the former subtype of Petri nets, deadlocks only appear in
states where the output sink place is marked [6], and the output place will
never be modified by the transformation rule.



134 Chapter 7. Discovery of duplicate tasks

Meta-transitions.

A meta-transition replaces common a Petri net substructure (e.g., a self-loop)
with a single transition that is defined to have identical behavior. By transform-
ing a Petri net, replacing instances of these structures by meta-transitions, the
element count of a Petri net can be reduced while completely preserving its
behavior. The transformed net will fit exactly the same traces as the original net.
In addition, the transformation may open the door to further simplifications
such as removal of additional silent transitions.

In Figure 7.7 we show the proposed 3 new meta-transitions, as well as the
behavior represented by each meta-transition. These specific patterns have been
selected because of their high frequency in real-life processes. In addition, the
well-known regular expression-like syntax used in the meta-transitions makes
their meaning familiar.

The first meta-transition, a?, models an optional event: it is equivalent to a
choice between the empty label τ and trace a. The other two meta-transitions
represent iterative behavior. a∗ is equivalent to a self-loop. Thus, it fits the
empty trace, but also {a, aa, aaa, . . .}. Meta-transition a+ similarly represents
a loop of a, but requires at least one iteration.

7.6 Results

The algorithms described in this work have been implemented using PM-
LAB [36]. To construct an LTS from the input log, the multiset abstraction
from [5] is used. Our implementation of the clustering procedure uses the
centroid linkage functionality of [83] to avoid recomputing context vectors on
every iteration.

For a set of benchmarks, we compare the quality metrics of the models
obtained with and without the proposed duplicate task discovery algorithm,
as well as the reduction in complexity after the structural simplifications and
use of meta-transitions. Our tool as well as all benchmarks are available at
http://www.cs.upc.edu/~jspedro/pnsimpl/. In order to demonstrate
the ability of our tool to work with multiple miners, two different miners
will be used: Inductive Miner [101] (IM) and Petrify [35]. While the current
version of the Inductive Miner does not support duplicate tasks, Petrify contains
some support for automatic discovery of duplicate tasks [34]. Thus, models
discovered by Petrify may already contain duplicate task before the clustering
method proposed in this article takes place.

Precision and generalization are measured using the available ProM plugins
[11,30]. To measure complexity, we will show the size of the Petri nets. For

http://www.cs.upc.edu/~jspedro/pnsimpl/


7.6. Results 135

non-workflow Petri nets, such as those generated by Petrify, we will also use
a complexity metric closely related to the concept of planarity: the minimal
number of crossings required to embed the graph on a plane. This number is
estimated using dot [66].

The method used to select a model from the list of candidates produced by
the duplicate task discovery method depends on the miner used. When using
the IM, the smallest model (in terms of places and transitions) out of all models
with highest precision will be selected. When using Petrify, the model with
lowest number of crossings, out of those with highest precision, is used instead.

7.6.1 Artificial benchmarks.

To evaluate our duplicate task discovery workflow and compare to the results
presented by previous work, we reuse an existing dataset comprising a combi-
nation of small logs [74,126,133] whose source processes are well-known and
reproduce behavior commonly found in real-life. Because these benchmarks
have no noise, the miners were configured to generate perfectly fitting models.

Table 7.2 summarizes the results. For every benchmark, there are three
different runs: in the first one, the log is mined with the default miner configu-
ration. In the second run, the flow with duplicate task discovery as presented
in this work is used. In the third result, we apply structural simplifications
(silent transition elimination and meta-transitions) on top of the model dis-
covered on the second run. For each run, we evaluate the size of the model
(number of places, transitions and silent (τ) transitions) as well as its precision
and generalization.

The proposed method significantly increases the precision on all the bench-
marks. In some examples, generalization is reduced, yet still shows that the
method results in models that are not overfitting. In tests with the Inductive
Miner, using duplicate tasks allows removing most of the silent transitions, and
thus the overall complexity of the model decreases. Using meta-transitions,
additional silent tasks can be removed. On the other hand, when combining our
discovery flow with Petrify, the discovery of duplicate tasks allows for models
with fewer crossings. However, results after simplification are not as remarkable
as with the IM, since Petrify does not discover silent transitions.

For the majority of benchmarks, the partition of tasks discovered by the
proposed flow exactly matched the duplicate tasks in the original process.
The exceptions are marked with †. These cases are usually situations where,
e.g., duplicate tasks are concurrent with themselves. Despite the fact that the
partition is not exactly correct, the increase in quality metrics is still significant.



136 Chapter 7. Discovery of duplicate tasks

Inductive Miner With duplicate tasks After simpl.
|P| |T | |τ| Prec. Gen. |P| |T | |τ| Prec. Gen. |P| |T | |τ|

alpha 11 17 6 68% 100% 11 16 4 70% 100% † 9 13 1
betaSimpl 14 21 8 62% 86% 14 16 1 94% 73% 14 15 0
Fig5p19 9 14 6 67% 89% 12 14 5 85% 76% 12 12 3
Fig5p1AND 9 8 3 83% 28% 10 8 2 100% 0% 9 7 1
Fig5p1OR 5 6 1 70% 33% 6 6 0 100% 0% 6 6 0
Fig6p10 15 24 13 63% 100% 19 25 10 77% 100% 18 19 4
Fig6p25 22 35 14 76% 100% 24 35 12 84% 100% 23 27 4
Fig6p31 6 10 1 63% 72% 9 11 0 100% 42% 9 11 0
Fig6p33 7 11 1 67% 70% 10 12 0 100% 38% 10 12 0
Fig6p34 17 24 12 58% 100% 19 20 4 93% 100% 17 18 2
Fig6p38 13 11 4 62% 84% 12 14 6 66% 87% 11 11 3
Fig6p39 12 12 5 90% 94% 12 12 5 90% 94% † 10 9 2
Fig6p42 7 18 4 23% 100% 26 32 12 75% 96% † 24 29 9
Fig6p9 10 15 8 67% 82% 9 12 3 83% 72% 9 9 0
flightCar 10 14 4 67% 64% 10 14 4 67% 64% † 11 9 1
RelProc 21 28 12 71% 100% 21 28 11 74% 100% † 19 21 4

Petrify With duplicate tasks After simpl.
|P| |T | Cros. Prec. Gen. |P| |T | Cros. Prec. Gen. |P| |T | Cros.

alpha 13 11 11 92% 100% 12 12 1 92% 100% † 12 12 1
betaSimpl 11 13 1 80% 77% 14 15 0 97% 39% 15 15 0
Fig5p19 8 8 2 100% 74% 9 9 1 100% 58% 9 9 1
Fig5p1AND 8 5 0 100% 0% 7 6 0 100% 0% 7 6 0
Fig5p1OR 5 5 3 100% 0% 5 6 0 100% 0% 5 6 0
Fig6p10 7 11 1 39% 100% 13 15 1 91% 100% 13 15 1
Fig6p25 14 21 6 80% 100% 14 23 0 80% 100% 18 23 0
Fig6p31 7 9 12 100% 42% 8 11 0 100% 42% 8 11 0
Fig6p33 8 10 7 100% 38% 9 12 0 100% 38% 9 12 0
Fig6p34 9 12 4 39% 100% 14 16 0 89% 100% 14 16 0
Fig6p38 8 7 0 71% 85% 10 8 0 100% 64% 10 8 0
Fig6p39 6 7 0 72% 98% 7 8 1 86% 86% † 8 8 0
Fig6p42 11 14 20 37% 98% 21 23 3 96% 94% † 21 23 3
Fig6p9 9 7 9 100% 54% 8 9 0 100% 54% 8 9 0
flightCar 6 8 0 58% 72% 6 8 0 58% 72% † 7 8 0
RelProc 16 16 11 87% 100% 15 17 2 87% 100% † 15 17 2

Table 7.2: Comparison using artificial benchmarks.



7.7. Conclusions 137

7.6.2 Logs with noise.

An additional experiment shows the resilience of the proposed method to
noise. We used Process Log Generator (PLG) [32] to generate a set of 3 random
processes using a process depth of 3 and uniform probabilities for all control flow
operators. Then, for each of these processes, we generated 10 logs containing
1000 traces each. In each log a different amount of random control-flow noise
was injected using PLG, ranging from 0% to 10%.

Figure 7.8 compares the precision of the models obtained using the Inductive
Miner – infrequent [101] (IMi) miner, configured with a 20% threshold, with
the models obtained by the combination of our duplicate task discovery flow
and the IMi. For the 3 evaluated processes, our flow can discover duplicate
tasks and thus increase the precision even when confronted with noise. The
differences in fitness were always smaller than 5% between both versions.

On a Intel Core i5-2520m, our implementation of the clustering procedure
is able to provide a set of candidate partitions in less than 4 seconds, even for
the largest of these logs. The runtime of the miner, required to evaluate each
candidate, is usually much larger than the clustering process. However, the
number of candidates to be evaluated can be limited by setting an upper bound
to the number of allowed duplicate tasks per label.

7.6.3 Publications

The methods proposed in this chapter have been accepted in a conference:

• J. de San Pedro and J. Cortadella, Discovering duplicate tasks in transi-
tion systems for the simplification of process models, in Business Process
Management (BPM), Rio de Janeiro, Brazil, September 2016.

7.7 Conclusions

This chapter has presented methods for simplification of process models that
improve the quality of discovered models, in both simplicity and precision,
while using different mining algorithms.

As future work, we envision methods that work even in the presence of
concurrent duplicate tasks, which are currently handled with unsatisfactory
results. In addition, the language of structural tasks can be extended, for
example, to allow simple regular expressions in nodes, e.g., (a|bc)∗.



138 Chapter 7. Discovery of duplicate tasks

0% 2% 4% 6% 8% 10%
0%

20%

40%

60%

80%

100%

Inserted noise

Pr
ec

is
io

n

Model 1

0% 2% 4% 6% 8% 10%
0%

20%

40%

60%

80%

100%

Inserted noise

Pr
ec

is
io

n

Model 2

0% 2% 4% 6% 8% 10%
0%

20%

40%

60%

80%

100%

Inserted noise

Pr
ec

is
io

n

Model 3

Inductive Miner - infrequent IMi with Duplicate Tasks

Figure 7.8: Resilience of duplicate task discovery to different artificial noise
levels.



Chapter 8

Specification mining of
asynchronous controllers

The chapter presents a first effort at exploring a novel area in the domain of
asynchronous controllers: specification mining. Rather than synthesizing cir-
cuits from specifications, we aim at doing reverse engineering, i.e., discovering
safe specifications from the circuits that preserve a set of pre-defined behavioral
properties (e.g., hazard freeness). The specifications are discovered without
any previous knowledge of the behavior of the circuit environment.

This area may open new opportunities for re-synthesis and verification
of asynchronous controllers. For example, the specifications obtained by the
proposed flow may be used to decompose the behavior of a controller under
test for more efficient verification using formal approaches.

The effectiveness of the proposed approach is demonstrated by mining
concurrent specifications (Signal Transition Graphs, STG) from multiple im-
plementations of 4-phase handshake controllers, and a selection of controllers
with choice.

This chapter is structured as follows. Section 8.1 provides a brief overview
of the topic and a visual example to motivate it. In Section 8.2, we perform
a review of the related literature. Section 8.3 gives an initial foray into the
behavioral properties that are preserved in the discovered specifications. The
specification mining algorithm itself is detailed in Section 8.4. In Section 8.5, we
introduce an extension that allows the mining flow to also consider properties
specific to the specification language used, and detail the specific constraints
for different structural subtypes of STGs. Finally, Section 8.6 shows the results
of applying the proposed mining flow to a set of testcases, while in Section 8.7
we discuss future work and conclusions of this topic.



140 Chapter 8. Specification mining

la

lr rr

ra

(a) (b)

RST

lr+

la+

lr−

la−

rr−

ra−

rr+

ra+

Figure 8.1: Specification mining of a handshake controller.

8.1 Motivation

The design automation efforts in the area of asynchronous circuits have been
mostly focused on two problems: synthesis and formal verification. The syn-
thesis problem consists of obtaining a circuit from a specification, e.g., a gate
netlist from a Signal Transition Graph (STG). The verification problem consists
of checking the conformance of a circuit with regard to a specification.

In this chapter we study a new problem for asynchronous circuits: Spec-
ification Mining. The problem consists of discovering formal specifications
from implementations [13], without any previous knowledge of their original
specifications.

The problem can be illustrated using the example in Fig. 8.1(a). The circuit
implements a handshake controller in which only the initial state is known (all
handshake signals at 0, RST=1). The reset signal (RST) is assumed to be silent
during the normal operation of the circuit and the cross-coupled NOR gates are
assumed to have an atomic behavior (negligible internal delay). We pose the
following challenge:

Can we discover a specification of the interface that guarantees a
speed-independent behavior of the circuit?

The answer to this question is not unique. Several interfaces could exercise
the circuit without producing any hazard. In particular, an empty interface
(no events) would guarantee such behavior. Our interest is to find maximally
concurrent interfaces that honor the desired properties of the circuit.

Fig. 8.1(b) shows one possible safe interface. This interface has been discov-
ered automatically by the approach proposed in this work and coincides with
the L440R2044 4-phase controller (according to the nomenclature in [25]).



8.1. Motivation 141

Specification mining can define not only properties that must be preserved
in the circuit, but also properties of the interface. For example, it is possible to
enforce that the interface is choice-free, i.e., no conflicts in the environment.

Specification mining opens a new research direction in the area of asyn-
chronous controllers that could potentially have applications in different do-
mains, e.g.,

• Reverse engineering, to discover the behavior of some intricate controllers
for which no specification is known.

• Re-synthesis of asynchronous controllers, since the discovered interfaces
can be used as specifications for synthesis tools that can produce higher-
quality solutions and substitute the existing ones [94].

• Compositional verification, by substituting some components of a large
circuit by the mined specifications. In this way, an assume/guarantee
scheme could be applied to verify the circuit by using the mined interfaces
while hiding the internal signals of the components [40,118].

The main goal of this chapter is to demonstrate that specification mining
is feasible for a variety of controllers. The application of this paradigm to
specific problems in asynchronous design and verification is out of the scope of
this work.

8.1.1 Example

This section gives an informal overview of the approach proposed for speci-
fication mining, using the example shown in Fig 8.2. The goal is to obtain a
specification for the environment of the circuit shown in the Fig. 8.2(a) in such
a way that certain behavioral properties are guaranteed.

In this particular case, we would like the circuit to be speed-independent (SI)
and have a delay-insensitive (DI) interface. Speed-independence is guaranteed
when the circuit is output persistent (only input signals can disable each other).
A circuit has a DI interface if its behavior does not depend on the arrival order
of the inputs.

The labeled transition system (LTS) shown in Fig. 8.2(b) shows all possible
behaviors of the circuit under a free environment, i.e., all input signals can
switch at any time instant. Every state corresponds to a binary vector that
represents the value of the signals at that state. We will identify each state by
its binary vector 〈abx y〉.

The labels x+ and x− represent rising and falling transitions of signal x .

The double arcs
a∗
←→ represent alternating a+ and a− transitions between a



142 Chapter 8. Specification mining

b

x

y

a

Environment

ab=11

x+

x+

y+

y+

a*

b*

ab=01

b*
y−

a*
b*

b*

ab=10

ab=00

y+

x−

x+

x−

xy=01 xy=00 xy=10 xy=11

y−

x−

a+ a−
y+

b+

x+ y+

(a)

(b)

(c)

(d)

(e)

a+

b+

y+

x+

y−

a−

b−

x−

x+

x+

y−

b*

b−

y+

x−
b+

a+ x+
a+

y+

y+ b+

x− y+

b*

a+
y+

a−
a−

a−

x−
b−

b−

Figure 8.2: Simple circuit for specification mining.



8.1. Motivation 143

pair of states and are used to model the switching of input signals in a free
environment. The transitions of x and y are depicted in the horizontal direction,
whereas the transitions of a and b are depicted in the vertical and diagonal
directions, respectively. For the sake of clarity, not all the labels are shown in
the picture, although they can be easily deduced from the depicted information.

We will assume that the initial (reset) state is also known. In the example,
the initial state is 〈0000〉 (unfilled circle).

A free environment leads to many circuit malfunctions (hazards). For ex-

ample, transition 〈0010〉
x−
−→ 〈0000〉 produces a violation of output persistence

that may be manifested as a glitch in signal y, since y+ is enabled in 〈0010〉
and disabled in 〈0000〉.

The goal of specification mining is to discover one or several specifications
for the environment that:

• have good properties, e.g., guarantee a hazard-free behavior of the circuit,
and

• are general enough to cover a large set of behaviors.

As an example, the cyclic behavior (b+ y+b− y−)∗ is hazard free. However,
we might be unsatisfied by the fact that signals a and x are not exercised.

Fig. 8.2(c) depicts an LTS with output persistence, i.e., no output transition
can be disabled by another transition. The largest LTS fulfilling this property
can be uniquely obtained from the one in Fig. 8.2(b) by deleting the transitions
that produce violations of output persistence.

Still, Fig. 8.2(c) does not model a delay-insensitive (DI) interface (see
Section 2.4.1 for a formal definition). For example, the transitions a− and b+

are enabled in state 〈1011〉. The arrival of a− (leading to 〈0011〉) disables b+,
whereas the arrival of b+ (leading to 〈1111〉) does not disable a−.

Unfortunately, there is no unique solution when trying to find a subset
of the LTS that fulfills the DI interfacing conditions. Given the fact that the
circuit cannot be modified, the only chances are reduced to constraining the
environment by deleting some input transitions. In the previous example, a DI
interface can be obtained in different ways, e.g., by removing either transition
a− or b+ from state 〈1011〉. Other deletions are also required in other parts of
the LTS to guarantee a complete DI interface.

Fig. 8.2(d) depicts an LTS that models an SI circuit with a DI interface.
An STG modeling the same behavior is shown in Fig. 8.2(e). Obtaining this
specification is the most challenging problem tackled in this chapter. We will
show how the problem can be modeled with a Boolean formula and solved
using SAT or Integer Linear Programming.



144 Chapter 8. Specification mining

In the rest of the chapter we propose the methodology used to obtain
specifications from a circuit that fulfill a set of properties defined a priori.

8.2 Related work

In this chapter we tackle a novel area, the specification mining [13] of asyn-
chronous controllers.

Specification mining is becoming popular in the software engineering com-
munity as a machine-learning approach to infer properties from the observable
behavior of the systems [96]. One example is the work presented in [73] in
which safe and permissive interfaces (sequences of library calls) are synthesized
for software systems in such a way that the interfaces do not violate the internal
invariants of the system. Another example is [98] where specifications repre-
sented as Message Sequence Graphs are synthesized from the traces observed
from the execution of a concurrent system.

In [104], a method is presented which automatically infers high-level de-
scriptions from circuits, representing them as a combination of instances of
abstract functional blocks from a predetermined library.

8.3 Circuits with constrained environment

The main purpose of specification mining is to find a specification of the envi-
ronment of the circuit that fulfills certain properties. In other words, finding
a constrained environment that prevents the circuit from reaching states in
which the desired properties are violated. This section formalizes the concepts
of the LTS of a circuit under a free/constrained environment, and then intro-
duces some examples of desirable behavioral properties in a LTS. For a formal
definition of an LTS, we refer to Section 2.2.2.

Definition 8.1 (LTS under free environment). Given a circuit C = 〈X , G, s0〉,
we define LTS(C) = 〈S,Σ, T, s0〉 as the LTS associated to C and generated by a
free environment. Formally:

• S = {0, 1}n, with n = |X |, the set of binary vectors representing all possible
states of the signals.

• Σ = X × {+,−}, where x+ and x− distinguishes the rising and falling
transitions, respectively, of signal x ∈ X .

• T = Tenv ∪ Tg , where Tenv and Tg are the transitions produced by the
environment and the circuit, respectively (defined later).



8.3. Circuits with constrained environment 145

The set of transitions Tenv in a free-environment circuit is defined as follows:

Tenv = {s
x
−→ s¬x | s ∈ S ∧ x ∈ I},

representing the fact that any input signal can switch at any state. The set of
transitions Tg produced by the circuit is defined as follows:

Tg = {s
x
−→ s¬x | s ∈ S ∧ x ∈ (O ∪ Z)∧ s(x) 6= fx(s)},

representing all transitions of non-input signals produced by the logic gates
when the value at the output of the gate is different from the function computed
by the gate.

The goal of specification mining, to discover a constrained environment E
that satisfies all desired properties, is equivalent to finding a subset of transi-
tions of Tenv that prevent the circuit from reaching states in which the desired
properties are violated.

Definition 8.2 (LTS under constrained environment). Given a circuit C , its
free-environment LTS(C) = (S, X , T, s0) and a subset of transitions E ⊆ Tenv rep-
resenting a constrained environment, we denote by LTS(C , E) the LTS obtained
from LTS(C) after deleting the transitions in Tenv \ E. Formally, LTS(C , E) =
(S′, X , T ′, s0) is the maximal LTS such that:

• S′ ⊆ S is the subset of reachable states from s0.

• T ′ is the maximal set of reachable transitions from s0 such that T ′ ⊆ (E ∪ Tg).

LTS(C , E) can be computed from LTS(C) by deleting the transitions in
Tenv \ E and iteratively deleting unreachable states and transitions until a great-
est fixed point is reached.

8.3.1 Properties of an LTS

Let LTS(C , E) = 〈S,Σ, T, s0〉 be the LTS associated to circuit C = 〈X , G, s0〉 with
environment E. We say that x is enabled in state s if s

x
→ s¬x ∈ T . We say that

x disables y in state s if s
x
→ s¬x ∈ T , y is enabled in s and not enabled in s¬x .

Finally, we say that x triggers y in state s if s¬x x
→ s ∈ T , y is not enabled in s¬x

and enabled in s. For more details on these definitions we refer to Section 2.2.2
and Section 2.4.

Definition 8.3. In an LTS a signal x is persistent if no signal y 6= x disables
it. If a signal x disables another signal y in any state s, then there is a conflict
between x and y .



146 Chapter 8. Specification mining

Example. Let us consider the LTS in Fig. 8.2(b), where the initial state is
s0 = 〈0000〉 (unfilled circle). Let us consider the state s1 = 〈1000〉 and the

transition s0
a+
→ s1. We can say that a+ triggers x+ in s1, since x+ is not enabled

in s0 but it is in s1. Let us now consider the transition s1
a−
→ s0. We can see

that a− disables x+ in s1 since x+ is enabled in s1 but not in s0. Notice how
Fig. 8.2(c) and (d) show LTSs where both x and y are persistent signals while
a, b are in conflict.

Speed-independence

In this work, we deal with circuits with unbounded gate delays, i.e., any gate
of the circuit can switch at any time as long as it is enabled. A circuit whose
behavior does not depend on the delay of its gates is called speed-independent.

Proposition [46, 89] Given a circuit C and an environment E, C under E is
speed-independent iif in LTS(C , E) all pairs of signals x , y are in conflict only if
both x , y are input signals.

This property implies every non-input signal is persistent.

Delay insensitive interfacing

Another desired property is that the behavior of the circuit is insensitive to the
arrival order of the input transitions. This property is called delay-insensitive
(DI) interfacing and is formally defined as follows.

Proposition [121]. The LTS associated to a circuit satisfies the DI interfacing
conditions if no input transition triggers another input transition.

Rather than dealing with pure delay insensitivity, DI interfacing assumes
that wire delays can be kept under control within the circuit and only tolerance
to delay variability at the interface is required.

Multi-environment interfaces

In some scenarios for re-synthesis and compositional verification, a system may
have been split into different components (circuits). From the point of view of
the circuit of interest, the surrounding components can be considered as a set
of independent environments, E1 . . . En, that interact with the circuit, as shown
in the example of Fig. 8.3.

When mining specifications for a circuit, we might want to consider multi-
environmental scenarios where independence between different environments
is to be preserved. Informally, this means that, given two environments Ei and
E j, signals from Ei cannot directly trigger or disable inputs from E j. Such a



8.3. Circuits with constrained environment 147

E2

E3E1 Circuit
a

b

cx

y

z

Figure 8.3: Multi-environment interfacing.

x y x triggers y x disables y
Input Input Violates DI Only if x , y ∈ Ei

Output Output Allowed Violates SI
Input Output Allowed Violates SI

Output Input Only if x , y ∈ Ei Violates SI

Table 8.1: Allowed relations in a circuit with multiple environments.

causality relation would imply a connection between Ei, E j outside of the circuit
of interest, making Ei and E j dependent from each other. However, an input
from Ei may excite an output in a different environment E j, via the circuit.

Definition 8.4. Let us consider the LTS(C) associated to a circuit C . Let the set
of signals of C be

X = X1 ∪ . . .∪ Xn ∪ Z

where Z is the set of internal signals and {X1, . . . , Xn} is a partition of the
set of input/output signals (I ∪O), with each X i corresponding to a different
environment. The LTS preserves the multi-environment interface for partition
{X1, . . . , Xn} if:

∀a ∈ X i, b ∈ X j ∩ I , i 6= j : a cannot trigger or disable b.

In the example of Fig. 8.3, the preservation of the multi-environment inter-
face would not allow {x , a} to trigger or disable {b, c}, {y, b} to trigger/disable
{a, c} and {z, c} to trigger/disable {a, b}.

Note that, by this definition, a circuit where each environment has one input
only, i.e. ∀Ei, |Ei ∩ I | ≤ 1, any LTS preserving the multi-environment interface
would be input-persistent, as no signal would be allowed to disable an input.

Table 8.1 summarizes the previous properties, showing the allowed causality
relations between two different signals x , y depending on the type (input or
output) of each signal. For example, x cannot trigger y if both x , y are inputs,
since that would violate the delay-insensitive interfacing property. However, x
may disable y , but only if both x , y are in the same environment Ei.



148 Chapter 8. Specification mining

C

Circuit LTS(C)

environment)

(under free Miner ...SAT model

Snippet

Snippet

1

n

Figure 8.4: Overview of the specification mining flow.

8.4 Specification mining

This section describes the main contribution in this chapter: a process used to
mine a specification from a circuit C , while guaranteeing a set of properties
for both the circuit and the interface. The process works by starting from a
free environment E, and then constraining this environment until both the
environment and the circuit under such environment satisfy all properties.

Note, however, that for certain properties there may be more than one
specification satisfying all the properties. The environments in each specification
may only exercise a small subset of the full circuit behavior. In these situations,
our flow will discover each of these specifications, which we call snippets. The
original specification of the circuit will be contained in one of these snippets.
Our mining flow will give priority to the most general snippet, containing the
environment exercising most behavior from the circuit. An example of this will
be discussed in Section 8.6.1.

A summary of the proposed mining flow can be seen in Fig. 8.4. The first
step constructs LTS(C) containing all the behaviors of the circuit under a free
environment, starting from the circuit netlist. For the circuit in Fig. 8.2, this
would correspond to the LTS in (b).

The desired properties for the mined specifications are then specified into
a set of constraints on top of this LTS. In this section, we will specify these
constraints as satisfiability (SAT) formulae. Every truth assignment of the
formula represents a valid environment under which circuit C satisfies all the
desired properties, and from which a snippet may be synthesized.

The most interesting snippets can be then synthesized into different types of
specifications, such as Signal Transition Graphs (STGs). For most circuits, only
the snippet containing the most general behavior will be of interest. However,
the secondary snippets may provide an insight into alternative behaviors of
the system.

The following sections describe this flow in more detail, including examples
that show how the most common circuit properties are modeled.



8.4. Specification mining 149

8.4.1 Satisfiability model for behavioral properties

Many of the most interesting circuit properties imply constraints on the causal-
ity/concurrency/choice relations between events of the LTS. Table 8.1 shows
the causality constraints to guarantee speed independence, delay insensitive
interface and multi-environment properties.

In this section, we show how different circuit and environment properties can
be mapped into constraints between different signals, and how these constraints
can be implemented on a SAT model.

Let LTS(C) = 〈S,Σ, T, s0〉 be the LTS associated to a circuit C constructed
using the method defined in the previous section. The SAT model extracts a
subset of LTS(C), LTS(C , E), satisfying the required properties. In our formu-
lation, for every transition t i ∈ T , we define a variable with the same name
indicating whether t i is selected, i.e. whether t i ∈ LTS(C , E). Definitions of the
most typical constraints are as follows:

x cannot trigger y

For every pair of states s1, s2 ∈ S, with a transition t2 = s1
x
→ s2, x triggers y if

y is enabled in s2 but not in s1. i.e., when t3 = s2
y
→ exists but t1 = s1

y
→ does

not. This pattern is illustrated in Fig. 8.5(b).
To guarantee this property, if both t2 and t3 are selected, then t1 must exist

and be selected:
t2 ∧ t3 =⇒ t1.

In case t1 does not exist in LTS(C), then the previous constraint must be rewrit-
ten accordingly, forbidding selection of both t2 and t3:

¬(t2 ∧ t3).

These constraints may be used for example to enforce the delay-insensitive
interfacing property when applied to pairs of inputs signals, as shown in Ta-
ble 8.1.

x cannot disable y (persistence of y)

For every pair of states s1, s2 ∈ S, with a transition t2 = s1
x
→ s2, x disables y if

y is enabled in s1 but not in s2. This is similar to the trigger definition above,
except that the roles of t1 and t3 are reversed: x disables y when t1 = s1

y
→

exists but t3 = s2
y
→ does not, as seen in Fig. 8.5(c).

Thus, to satisfy the property, selecting t1 and t2 implies t3 must exist and
be selected:

t1 ∧ t2 =⇒ t3.



150 Chapter 8. Specification mining

s1

t3

t1
t2

s2y x

y

(a) Persistence of y .

s1

t3

t2
s2y x

y

(b) x triggers y .

s1

t1
t2

s2y x

y

(c) x disables y .

Figure 8.5: Causality patterns in LTS.

Similar to the previous constraint, this constraint can be simplified if any of
t1, t2, t3 is not present in LTS(C).

Preservation of non-input signals

The SAT model searches for a subset LTS(C , E) representing the behavior of the
circuit under a constrained environment E. For this reason, the model should
only remove transitions of input signals, and potentially all transitions from
unreachable states under environment E.

However, it must always select all non-input transitions from an state if it
is reachable. Thus, for every state s, the following constraint must be added,
which forces the selection of all non-input transitions if any incoming transition
is selected:

∀s ∈ S :
∨

t i=s1
x
→s∈T

t i =⇒
∧

t j=s
y
→s2∈T
y 6∈I

t j.

Strong connectedness

This property ensures that the initial state is reachable from every other reach-
able state. There are several known methods to require conectedness with SAT
or ILP models [41]. To identify the initial state, we assume that the values of
the output signals are known at reset time, and that it is stable, i.e. no output
transitions are enabled.

Additional constraints

Many controllers impose additional properties on the environment that can be
modeled as constraints between different inputs. For example, in Section 8.6.2
we show a circuit with a mutual exclusion requirement between two different
input signals, i.e. the two signals cannot be enabled simultaneously.



8.5. Properties of the specification model 151

These properties can be enforced by removing states from LTS(C). For exam-
ple, guaranteeing mutual exclusion between two input signals x , y is equivalent
to removing every state s where s(x)∨ s(y). In the proposed formulation, this
can be achieved by prohibiting the selection of any t i incident to s.

8.4.2 Algorithm for specification mining

Algorithm 11 Extracting LTS snippets
1: Input: Circuit C and a set of desirable properties P
2: Output: LTS1, . . . , LTSn under which C satisfies P
3: L← LTS(C) . construct full LTS from C
4: R← T (LTS(C)) . transitions not yet in any snippet
5: i← 1
6: while |R|> 0 do
7: LTSi ← SOLVE(LTS(C), P, maximize |t i ∈ R|)
8: . extract subset of LTS(C) satisfying P
9: if LTSi = ; break

10: R← R \ T (LTSi) . subtract from remaining transitions
11: i← i + 1
12: return LTS1, . . . , LTSn

Algorithm 11 describes the procedure to mine specifications using the SAT
model described in the previous section. At the start of the procedure, the
complete LTS(C) is built. The algorithm iterates, generating a new snippet on
each cycle, until all transitions from LTS(C) appear on at least one snippet or it
is impossible to create new ones without violating P. To account for the former,
R contains all transitions not yet included in any LTS1, . . . , LTSi.

Procedure SOLVE uses the SAT model to find the subset of LTS(C) satisfying
P that contains the largest subset of transitions from R. Thus, every iteration
discovers a snippet containing the largest behavior from C not yet covered in
any previous snippet. Different strategies may be used to solve the SAT model
with the cost function, such as MaxSAT or ILP.

8.5 Properties of the specification model

In the previous section we have shown a method to mine snippets in which
both the circuit and the environment satisfy a set of properties. These snippets
are provided in the form of LTSs. However, it is often desirable to use more
succinct representations, such as Signal Transition Graphs (STGs). An STG may
be obtained from an LTS using Petri net synthesis tools such as petrify [45].



152 Chapter 8. Specification mining

This section shows that, by adding some constraints during the mining
process, properties of the specification model can be enforced. For example,
structural Petri net properties, such as marked graphs or free-choiceness, can
be modeled in this way. These extra properties may contribute to enhance the
visualization and analysis of the specification models.

This section is focused on structural properties of Petri nets, generating two
different types of STGs: marked graphs and free choice.

Marked Graphs

A marked graph is a Petri net in which all places have exactly one predecessor
and one successor transition [112].

Forward and backwards persistence are necessary conditions for a strongly-
connected LTS to model the space state of a marked graph [21]. Thus, to obtain
a marked graph, it is necessary to extend the constraints of the mining flow to
prevent conflicts between all pairs of signals. Backwards persistence can be
guaranteed using a similar set of constraints.

Free-choiceness

A Petri net is free choice is for any two transitions x and y that share a prede-
cessor place p, then x and y have only one predecessor [112]. While there is a
choice in p between x and y , we say the choice is free because on any marking
where x can be fired, y can be fired too, and vice versa.

In a LTS, this is equivalent to guaranteeing that if x , y are in conflict, then
x must be enabled in all the states where y is enabled, and y must be enabled
in all states where x is. We model this by introducing a new Boolean variable,
choicex ,y , which indicates whether the snippet contains a conflict between x and
y , and a new set of constraints which relate these variables to the relationship
between x and y .

The first set of constraints removes all conflicts between x , y (identical to
the constraint described in section 8.4.1), unless choicex ,y is asserted:

(t1 ∧ t2 =⇒ t3)∨ choicex ,y .

In addition, for every state s where either x or y is enabled, a constraint is
added forcing both to be enabled or disabled if choicex ,y is asserted. With

t1 = s
x
→ s1 and t2 = s

y
→ s2:

choicex ,y =⇒ t1 = t2.



8.6. Results 153

la

lr rr

ra
RST

(a) Circuit

lr+

la+

lr−

la−

rr−

ra−

rr+

ra+

(b) Mined specification

Figure 8.6: Example of circuit and mined specification for L440oR2264.

As in previous constraints, the formula is simplified appropriately if there is no
t1 or t2 in s. For example, if there is a state s where t1 exists but t2 does not,
the constraint becomes:

choicex ,y =⇒ ¬t1.

8.6 Results

In this section we demonstrate the effectiveness of the proposed flow with a
series of selected benchmarks.

Configuring our proposed flow to search for environments where the circuit
is speed-independent and with delay-insensitive interfacing, we were able to
discover the correct specifications for the basic asynchronous building blocks:
C-element, handshake decouplers (B and D-element [33]), etc.

Section 8.6.1 centers on one of these basic blocks: the 4-phase latch con-
troller. In 8.6.2, designs with free choices in the environment are also included.

8.6.1 Mining specifications for 4-phase latch controllers

The 4-phase latch controller is at the core of the data paths of many asyn-
chronous designs. A 4-phase latch controller is composed of 4 handshake
signals controlling 2 channels: left (lr, la) and right (rr, ra), as shown in the
example of Fig. 8.1.

In [25], the design space of 4-phase controllers is studied. While these de-
signs all have the same external interface, they vary on the level of concurrency
allowed by the protocol. Each variation cuts away some states of the controller.

Every variation is given a name depending on the number of states that are
removed. L000oR0000 is the version with all states, and thus, the most con-
current of all variations. The circuit in Fig. 8.1 represents L440oR2044, which



154 Chapter 8. Specification mining

removes 18 states, and results in a more constrained protocol. L440oR2264
removes an additional 4 states, resulting in a slightly simpler circuit also shown
in Fig. 8.6

In this case study, we will focus on the 137 controllers presented in [25]
which are speed independent and deadlock-free. In the experiment we will
synthesize a circuit for each one of these controllers, and then rediscover the
specifications from each one using the proposed mining flow.

Environment setup

The input to our mining flow is a netlist. To generate circuits for each of
the 137 controllers, we used petrify [45] to synthesize gate netlists from the
specifications. After generating the LTS with free environment from the circuit,
we transformed the SAT models into ILP, and used Gurobi [72] to mine the most
general specification for each controller.

We configured our mining flow to ensure the following circuit and environ-
ment properties:

• Speed independence and delay-insensitive interfacing.

• Strong connectedness.

• Multi-environment interface to ensure the independence between the left
and right channels. This will be further discussed in a subsection below.

No other information was given to the miner.

Results

The 137 specifications were mined from the circuits in 177 seconds (Intel Core
i5-2520M). Each run of the ILP model took less than 1 second on average, with
the rest of time spent in generating the model and preparing the environment.

The size of the ILP model is O(|T |2) where T is the set of transitions in
the LTS of the circuit. However, our implementation performs a preprocessing
in which many redundant constraints are removed before generating the ILP
model. The most concurrent circuit, with 256 states, also resulted in the largest
model, with 267 variables and 996 constraints.

For each one of the 137 circuits, the first snippet obtained from the mining
flow was always bisimilar to the original specification of the controller.



8.6. Results 155

Snippets Circuits
Identical behavior 1 25

Additional behavior
1 59
2 48
3 5

Table 8.2: Circuit implementations allowing additional behavior after remov-
ing constraints.

lr+ rr-

la+

lr-

la-

ra-

rr+

ra+
(a) Combined into single STG.

lr+

la+

lr−

la−

rr−

ra−

rr+

ra+

(b) First marked graph.
lr+

la+

lr−

la−

rr−

ra−

rr+

ra+

(c) Second marked graph.

la-

lr+

ra+

ra+

ra+

la-

lr+

rr-

rr-

rr-

la-

lr+

ra-

ra-

ra-

la-

lr+
la+

lr-

rr+

(d) LTS corresponding to (b).

Figure 8.7: Mined specification for L440oR2044.



156 Chapter 8. Specification mining

Relaxing constraints to discover additional behavior

We also experimented our mining flow by discovering additional behaviors when
relaxing some of the environmental constraints imposed in previous section. In
particular, we allowed the left and right environments to be dependent from
each other. In practice this means that the output of one channel can trigger the
input of the other channel (i.e., la can trigger ra and rr can trigger lr). However,
we still preserved the SI and DI interfacing properties.

With this reduced set of constraints, our tool discovered more general
specifications for 113 out the 137 controllers. All the specifications still include
the original specifications. In addition, out of the 113 specifications with
additional behavior, 53 required a minimum of two snippets. That is, no single
snippet was able to model the entire behavior of these 53 snippets without
violating DI or SI. Table 8.2 shows the total numbers of circuits that exhibited
additional behavior and/or required more than one snippet.

An example of a 4-phase protocol where additional behavior is discovered
is L440oR2044, whose original specification and circuit are shown in Fig. 8.1.
An STG showing the additional behavior is represented in Fig. 8.7a. To aid
legibility, our mining flow was configured to enforce the marked graph property
described in section 8.5, which divides this specification into the two snippets
shown in Fig. 8.7b and c.

Notice that the snippet in Fig. 8.7b, however, assumes an environment
where the left and right channels are not independent. For example, output r r+
triggers input l r+, which is on a different channel. Thus, the multi-environment
constraints used in the last section would allow only the behavior described by
snippet c. This snippet is bisimilar to the original specification of L440oR2044.

8.6.2 Mining controllers with choice

This section shows the results of applying the proposed mining flow to a selection
of asynchronous controllers from well-known benchmarks. In these examples,
we introduce environments with input conflicts, i.e. inputs may disable other
inputs.

As in the previous case study, the properties of SI and DI interfacing are
enforced. When possible, we also enforce multi-environment interfacing as
well as any required mutual exclusion between pairs of input signals.

Table 8.3 reports the total number of snippets discovered by our mining
flow, as well as whether the original specification of the circuit was included in
one of the discovered snippets. The rest of this section delves into the details of
some of the test cases with interesting properties.



8.6. Results 157

Benchmark
Number of
snippets

Original specif.
included in

ILP runtime
[sec.]

SM-latch [95] 1 Snippet #1 0.10
RLM [39] 4 Snippet #4 0.14
1-bit variable [19] 1 Snippet #1 0.31
alloc-outbound [46] 3 Snippet #1 0.73
vmebus [46] 4 Snippet #1 0.12
A/D converter ctrl. [46] 1 Snippet #1 0.43
tsend-csm [65] – – > 1 h.

Table 8.3: Summary of free-choice results.

C

C

req

ackctl

ack

ackbus

nakbus
busctl

reqbus

(a)

nakbus+ackbus+

reqbus+

busctl+

ackctl+req−

ack−

ack+

ackctl−

busctl−

reqbus−reqbus−ackbus−

busctl−

nakbus−

ackctl−

req+

(b)

Figure 8.8: Circuit and mined specification for alloc-outbound.

alloc-outbound

alloc-outbound is part of a set of well-known academic benchmarks [46], repre-
senting part of an HP bus controller. The circuit used as input for the mining
flow is shown in Fig. 8.8. The interface is composed of three different environ-
ments: 1) reqbus, ackbus, nakbus, 2) busct l, ackct l, 3) ack, req. Notice only
environment 1 has more than one input, with only signals ackbus and nakbus
allowed to be in conflict.

Without this constraint, the number of possible SI and DI snippets grows to
12. The ILP runtime also rises up to 1 hour, showing the effectiveness of the
multi-environment constraint in restricting the size of the state space. With this
constraint, there are only 3 valid snippets, with the original specification being
the first discovered snippet, shown in Fig. 8.8b.



158 Chapter 8. Specification mining

wr_1

wr_0

ack_wr

rd_0

req_rd

rd_1

(a) Original circuit.

wr_1

wr_0

ack_wr

rd_0

req_rd

rd_1

(c) Resynthesized circuit.

ack_wr− wr_0+

wr_1+

req_rd−rd1−

ack_wr+

wr_1− ack_wr+

wr_0−

rd1+

wr_1+ ack_wr− wr_0+

req_rd+

req_rd+ rd0+

rd0− req_rd−

(b) Mined specification.

Figure 8.9: Circuit and mined specification for a 1-bit variable.

1-bit variable

In this example we use a simple implementation of a 1-bit variable with a single
read and write port [19]. The original circuit is shown in Fig. 8.9a. The write
port includes the input signals wr_0, wr_1 as well as the write acknowledgment
signal ack_wr. The read port includes req_rd as well as the response signals
rd_0, rd_1.

Of significance is that the original circuit, in Fig. 8.9a, may go into metasta-
bility if both wr_0 and wr_1 are asserted. Our mining flow, thus, discovers
environments in which wr_0 and wr_1 are mutually exclusive.

Hazards may also be produced when simultaneous read and write requests
are asserted. In this particular implementation, hazards only occur when
the read value is different from the one being written (e.g., read a 1 while
writing a 0). Hazards are not produced when both values are the same. The
mined specification (not shown in this work because of its complexity) accepts
concurrent read/write requests of the same value.

Yet, because of higher-level environmental conditions, it may be desirable
to enforce the mined behavior to have mutually exclusive inputs, i.e.,:

wr_0+wr_1+ req_rd≤ 1

When configured to honor this property, the mining flow generates the specifi-
cation shown in Fig. 8.9b.

Figure 8.9c shows an alternative implementation of the circuit obtained by
synthesizing the mined specification. Interestingly, this implementation has
no metastability problems when both wr_0 and wr_1 are asserted, although



8.7. Conclusions 159

glitches may be observed when such situation occurs. This feature, however, is
irrelevant for a well-behaved environment that would never allow both inputs
to be asserted simultaneously.

Negative results

Not all the experimental results are as attractive as the ones presented in
previous sections. One of the major challenges of specification mining is to deal
with state explosion. The runtime of the ILP models grows exponentially with
the number of states present in LTS(C).

As seen with alloc-outbound, constraining the environment is an effective
approach to handle state spaces that are initially too large to explore. However,
some designs are not amenable to this type of constraints. For example, in
tsend-csm, separate environments cannot be assumed. Our approach explores
the full state space, resulting in large ILP models.

To obtain a reasonable runtime in these situations, further environment
constraints are necessary. This is an area for further research. For larger circuits,
divide-and-conquer approaches, as in compositional verification scenarios [40,
118], may be necessary.

8.6.3 Publications

The results of this research have been published in the following conference
article:

• Javier de San Pedro, Thomas Bourgeat and Jordi Cortadella, Specification
mining for asynchronous controllers, in Proceedings of the 2016 IEEE
International Symposium on Asynchronous Circuits and Systems (ASYNC),
Porto Alegre, Brazil, May 2016.

8.7 Conclusions

The intricate structure of asynchronous controllers makes their design error-
prone. Discovering safe specifications contributes to understanding the implicit
protocols behind them and their properties.

This chapter has presented a novel approach for behavior discovery that
can offer useful mechanisms for re-synthesis and verification.

As new challenges for the future we envision two directions: applying
specification mining to compositional verification and mining specifications
with bounded delays [77], relative timing [130] and other delay models.



160 Chapter 8. Specification mining



Chapter 9

Conclusions and future work

This chapter concludes this thesis by first summarizing its contributions and
their relevance (Section 9.1). Then, we list several of the directions in which the
research in this area could be continued, and discuss some potential applications
(Section 9.2).

9.1 Summary of contributions

The primary goal behind this thesis has been the research of structure mining
approaches to solve a variety of problems in the areas of circuit design and
process model visualization. The contributions in this work show that applying
graph and structure mining techniques to these challenges results in quantifiable
improvements when compared to the existing approaches. Below is a short
summary of each contribution.

• Physical planning for regular layouts:

– Chapter 3 has shown the importance of considering physical informa-
tion during early architectural exploration of CMPs, and introduced
a framework for early physical planning of CMPs.

– Chapter 4 introduced HiReg, a new floorplanning tool that uses
frequent subgraph discovery to generate regular floorplans, and
shown that highly regular layouts can be produced automatically
without incurring excessive area and wire length costs.

• Visualization of process models:

– Chapter 5 presented several methods for simplifying existing process
models by computing the usefulness of various parts of the model



162 Chapter 9. Conclusions and future work

with information from the log. Using a set of real-life models, it
also experimentally shown how these methods handle the trade-off
between simplicity and the other quality metrics.

– Chapter 6 introduced a new discovery flow that mines a series of
visualization-friendly Petri nets from logs, rather than centering on
a single model covering all behavior. It also shown that only a few
models are required to cover significant chunks of the behavior of
real-life processes, and that the models generated by the proposed
flow have high simplicity when compared to other mining strategies.

– Chapter 7 proposed a novel method for the discovery of duplicate
tasks that can be combined with existing process discovery algo-
rithms. In addition, it introduced a set of extensions to the Petri nets
formalism. The experiments illustrated how these transformations
can be used to generate highly simplified models with minimal loss
in precision and generalization.

• Specification mining for asynchronous circuits:

– Chapter 8 introduced the topic of reverse engineering asynchronous
circuit specifications, and discussesed potential applications of spec-
ification mining in the verification and resynthesis of asynchronous
circuits. It also proposed a flow for mining specifications that uses
graph mining techniques on the state graph, and demonstrated its
effectiveness with a set of benchmarks.

9.2 Future work

In this section we propose a few directions in which the presented research may
be continued.

9.2.1 Physical planning for regular layouts

The proposed architectural exploration flow proposes using physical planning
flow to enhance the phase of early system-level design during large-scale chip
design. In a similar vein, the availability of physical planning information would
allow future work the use of accurate power-performance models to further
improve the quality of the predictions.

The world of interconnect design for CMPs is also constantly evolving.
Addressing the issues presented by the physical planning for alternative in-



9.2. Future work 163

terconnect topologies, such as crossbars, would allow for more exhaustive
architectural exploration of the large design space of modern CMPs.

In addition, the ideas of regularity and hierarchy discovery (Chapter 4)
can be extended into other stages of VLSI design, such as placement. While
the ideas could lead to huge increases in the design regularity at cell-level in
addition to the block-level, future work in this direction would need to tackle
new challenges such as the increased scalability requirements.

9.2.2 Visualization of process models

The methods presented in Chapter 5 are appropriate in scenarios where there
is an existing process model, discovered using an existing process mining tool,
that needs to be simplified for visualization. On the other hand, Chapter 6
proposes a different technique where multiple models are generated starting
directly from the log. We envision this technique as a starting point in the use
of transition system properties with the goal of process model visualization.

One of the potential areas for improvement for both techniques is allowing
further constraints on the structural type of the simplified Petri nets, such as
extended free choice [57] or workflow nets [1]. In addition, further research
in the study of the properties of labeled transitions [22] could allow for more
efficient mining of other structural classes.

In Chapter 7, a method to discover duplicate tasks was presented. Properly
discovering concurrent duplicate tasks, however, is left as future work since
changes would be required to many of the underlying assumptions in the
formalisms (e.g. by introducing indeterminate transition systems).

Many of the techniques proposed can also be adapted to other formalisms
such as BPMN [140]. The study of additional visualization metrics could lead
to better understanding of how to evaluate process models. The language of
structural tasks proposed in Chapter 7 could also be extended, for example, to
allow simple regular expressions in nodes, e.g., (a|bc)∗.

9.2.3 Specification mining for asynchronous circuits

Chapter 8 introduces the area of specification mining for asynchronous designs,
opening many potential applications in the analysis and verification of already
implemented designs. Using our approach, a series of snippets describing
multiple aspects of the behavior of a system could be obtained from a working
circuit, allowing for the compositional verification of a complex system. In
addition, the existing implementations could be resynthesized, obtaining circuits
with better quality metrics, perhaps using newer toolchains.



164 Chapter 9. Conclusions and future work

The proposed specification and behavioral properties were illustrated using
circuits operating under the input/output mode [110]. A future direction
for research would be mining specifications of circuits operating under burst
mode [53], or with bounded delays [77].

An additional area of improvement for the mining flow is the ability to extract
specifications from circuits designed under relative timing [130] assumptions.
A relative timing constraint indicates an expected ordering between two events
(e.g. when both are enabled, x+ always fires before y+). Synthesis tools [45]
can use these assertions to simplify logic complexity. However, from an analysis
tool that is unaware of these timing assumptions, the implemented circuit can
appear to violate the delay model constraints (e.g., persistence). To ensure that
our mining flow discovers complete specifications, it will be necessary to relax
the delay model constraints according to the relative timing assumptions.



Bibliography

[1] W. M. P. van der Aalst. The application of Petri nets to workflow man-
agement. Journal of Circuits, Systems and Computers, 08(01):21–66,
1998.

[2] W. M. P. van der Aalst. Process Mining: Discovery, Conformance and
Enhancement of Business Processes. Springer, 1st edition, 2011.

[3] W. M. P. van der Aalst, M. Dumas, C. Ouyang, A. Rozinat, and E. Verbeek.
Conformance checking of service behavior. ACM Trans. Internet Technol.,
8(3):13:1–13:30, May 2008.

[4] W. M. P. van der Aalst, A. K. A. d. Medeiros, and A. J. M. M. Weijters.
Genetic process mining. In G. Ciardo and P. Darondeau, editors, Appli-
cations and Theory of Petri Nets 2005, volume 3536 of Lecture Notes in
Computer Science, pages 48–69, 2005.

[5] W. M. P. van der Aalst, V. Rubin, H. M. W. Verbeek, B. F. van Dongen,
E. Kindler, and C. W. Günther. Process mining: a two-step approach
to balance between underfitting and overfitting. Software & Systems
Modeling, 9(1):87–111, 2010.

[6] W. M. P. van der Aalst, K. M. van Hee, A. H. M. ter Hofstede, N. Sidorova,
H. M. W. Verbeek, M. Voorhoeve, and M. T. Wynn. Soundness of work-
flow nets: classification, decidability, and analysis. Formal Aspects of
Computing, 23(3):333–363, 2011.

[7] W. M. P. van der Aalst and A. J. M. M. Weijters. Process mining: a research
agenda. Computers in Industry, 53(3):231–244, 2004.

[8] W. M. P. van der Aalst, T. Weijters, and L. Maruster. Workflow mining:
discovering process models from event logs. IEEE Trans. on Knowledge
and Data Engineering, 16(9):1128–1142, Sept. 2004.



166 Bibliography

[9] D. Abts, N. D. Enright Jerger, J. Kim, D. Gibson, and M. H. Lipasti.
Achieving predictable performance through better memory controller
placement in many-core CMPs. In Proc. of the Annual International
Symposium on Computer Architecture, pages 451–461, 2009.

[10] A. Adriansyah. Aligning observed and modeled behavior. PhD, Technische
Universiteit Eindhoven, 2014.

[11] A. Adriansyah, J. Muñoz-Gama, J. Carmona, B. van Dongen, and W. M. P.
van der Aalst. Measuring precision of modeled behavior. Information
Systems and e-Business Management, 13(1):37–67, 2015.

[12] S. N. Adya and I. L. Markov. Fixed-outline floorplanning: enabling
hierarchical design. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 11(6):1120–1135, 2003.

[13] G. Ammons, R. Bodík, and J. R. Larus. Mining specifications. In 29th
ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages
(POPL), pages 4–16, 2002.

[14] A. Appice and D. Malerba. A co-training strategy for multiple view
clustering in Process Mining. IEEE Trans. on Services Computing, 2015.
Early online access.

[15] F. Balasa and K. Lampaert. Symmetry within the sequence-pair represen-
tation in the context of placement for analog design. Trans. Comp.-Aided
Des. Integ. Cir. Sys., 19(7):721–731, Nov. 2006.

[16] J. Balfour and W. J. Dally. Design tradeoffs for tiled CMP on-chip net-
works. In Proceedings of the 20th Annual International Conference on
Supercomputing, ICS ’06, pages 187–198, New York, NY, USA, 2006.
ACM.

[17] P. A. Beerel, R. O. Ozdag, and M. Ferretti. A designer’s guide to asyn-
chronous VLSI. Cambridge University Press, 2010.

[18] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay,
M. Reif, L. Bao, J. Brown, M. Mattina, C. C. Miao, C. Ramey, D. Wentzlaff,
W. Anderson, E. Berger, N. Fairbanks, D. Khan, F. Montenegro, J. Stickney,
and J. Zook. TILE64 - Processor: A 64-Core SoC with Mesh Interconnect.
In 2008 IEEE International Solid-State Circuits Conference - Digest of
Technical Papers, pages 88–598, Feb. 2008.



Bibliography 167

[19] K. v. Berkel. Handshake Circuits: an Asynchronous Architecture for VLSI
Programming, volume 5 of International Series on Parallel Computation.
Cambridge University Press, 1993.

[20] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini,
and G. De Micheli. NoC synthesis flow for customized domain spe-
cific multiprocessor systems-on-chip. IEEE Transactions on Parallel and
Distributed Systems, 16(2):113–129, 2005.

[21] E. Best and R. Devillers. Characterisation of the state spaces of live and
bounded marked graph Petri Nets. In Language and Automata Theory
and Applications, volume 8370 of LNCS, pages 161–172. Springer, 2014.

[22] E. Best and R. Devillers. The Power of Prime Cycles. In F. Kordon and
D. Moldt, editors, Proceedings of the 37th International Conference on
Application and Theory of Petri Nets and Concurrency, pages 59–78, Torun,
Poland, June 2016. Springer.

[23] A. Biere. PicoSAT essentials. Journal on Satisfiability, Boolean Modeling
and Computation (JSAT), 4:75–97, 2008.

[24] A. Biere, M. Heule, and H. van Maaren. Handbook of satisfiability, volume
185. IOS Press, 2009.

[25] G. Birtwistle and K. Stevens. Modelling mixed 4phase pipelines: Struc-
tures and patterns. In 20th IEEE Int. Symp. on Asynchronous Circuits and
Systems (ASYNC), pages 27–36, 2014.

[26] S. Boettcher and A. G. Percus. Extremal optimization: methods de-
rived from co-evolution. In Proceedings of the Genetic and Evolutionary
Computing Conference, Orlando, FL, July 1999. Morgan Kaufman.

[27] R. P. J. C. Bose and W. M. P. van der Aalst. Context aware trace clustering:
Towards improving process mining results. In Proceedings of the 2009
SIAM International Conference on Data Mining, pages 401–412, 2009.

[28] J. Buijs. Flexible Evolutionary Algorithms for Mining Structured Process
Models. PhD thesis, Technische Universiteit Eindhoven, 2014.

[29] J. Buijs. Receipt phase of an environmental permit application process
(âĂŸwaboâĂŹ), coselog project, 2014.

[30] J. C. A. M. Buijs, B. F. van Dongen, and W. M. P. van der Aalst. On the role
of fitness, precision, generalization and simplicity in Process discovery.



168 Bibliography

In On the Move to Meaningful Internet Systems, pages 305–322, Rome,
Italy, 2012. Springer.

[31] J. C. A. M. Buijs, B. F. van Dongen, and W. M. P. van der Aalst. Quality
dimensions in process discovery: The importance of Fitness, Precision,
Generalization and Simplicity. International Journal of Cooperative Infor-
mation Systems, 23(01), 2014.

[32] A. Burattin and A. Sperduti. PLG: A framework for the generation of
business process models and their execution logs. In Business Process
Management Workshops, volume 66 of Lecture Notes in Business Informa-
tion Processing, pages 214–219, Hoboken, NJ, USA, Sept. 2010. Springer.

[33] A. Bystrov, D. Shang, F. Xia, and A. Yakovlev. Self-timed and speed
independent latch circuits. In 6th UK Asynchronous Forum. University of
Manchester, July 1999.

[34] J. Carmona. The label splitting problem. In Transactions on Petri Nets
and Other Models of Concurrency VI, volume 7400 of LNCS, pages 1–23.
Springer, 2012.

[35] J. Carmona, J. Cortadella, and M. Kishinevsky. A region-based algo-
rithm for discovering Petri Nets from event logs. In Business Process
Management, volume 5240 of LNCS, pages 358–373. Springer, 2008.

[36] J. Carmona and M. Solé. PMLAB: An scripting environment for Process
Mining. In Proceedings of the BPM Demo Sessions 2014, pages 16–21,
Oct. 2014.

[37] H. H. Chan and I. L. Markov. Practical slicing and non-slicing block-
packing without simulated annealing. Technical report, University of
Michigan, May 2004.

[38] X. Chen, J. Hu, and N. Xu. Regularity-constrained floorplanning for
multi-core processors. Integration, the VLSI Journal, 47(1):86–95, 2014.

[39] T.-A. Chu. Synthesis of Self-Timed VLSI Circuits from Graph-Theoretic
Specifications. PhD thesis, MIT, June 1987.

[40] J. M. Cobleigh, D. Giannakopoulou, and C. S. Păsăreanu. Learning
assumptions for compositional verification. In Proc. of the 9th Int. Conf.
on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’03, pages 331–346. Springer-Verlag, 2003.



Bibliography 169

[41] N. Cohen. Several graph problems and their Linear Program formulations.
Technical report, INRIA, July 2010.

[42] J. Cong, A. Jagannathan, G. Reinman, and M. Romesis. Microarchitecture
evaluation with physical planning. In Proceedings of the 40th annual
Design Automation Conference, DAC ’03, pages 32–35, New York, NY,
USA, 2003. ACM.

[43] D. J. Cook and L. B. Holder. Substructure discovery using minimum
description length and background knowledge. Journal of Artificial
Intelligence Research, 1:231–255, 1994.

[44] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub)graph isomor-
phism algorithm for matching large graphs. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 26(10):1367–1372, Oct. 2004.

[45] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev.
Petrify: a tool for manipulating concurrent specifications and synthesis of
asynchronous controllers. IEICE Transactions on Information and Systems,
E80-D(3):315–325, Mar. 1997.

[46] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev.
Logic Synthesis of Asynchronous Controllers and Interfaces. Springer, 2002.

[47] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Deriving Petri
nets from Finite Transition Systems. IEEE T. on Comp., 47(8):859–882,
Aug. 1998.

[48] Stanford CPU DB. http://cpudb.stanford.edu.

[49] W.-M. Dai. Hierarchical placement and floorplanning in BEAR. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
8(12):1335–1349, 1989.

[50] W. J. Dally and B. Towles. Route packets, not wires: on-chip intercon-
nection networks. In Proceedings of the 38th annual Design Automation
Conference, DAC ’01, pages 684–689, New York, NY, USA, 2001. ACM.

[51] R. Das, S. Eachempati, A. K. Mishra, V. Narayanan, and C. R. Das. Design
and evaluation of a hierarchical on-chip interconnect for next-generation
CMPs. In Proceedings of HPCA 2009, HPCA 2009, pages 175–186, 2009.

[52] J. Davies and F. Bacchus. Exploiting the power of MIP solvers in MAXSAT.
In Proceedings of the 16th International Conference on Theory and Appli-
cations of Satisfiability Testing, SAT’13, pages 166–181. Springer, 2013.

http://cpudb.stanford.edu


170 Bibliography

[53] A. Davis, B. Coates, and K. Stevens. Automatic synthesis of fast compact
asynchronous control circuits. In Proceedings of the IFIP WG10.5 Work-
ing Conference on Asynchronous Design Methodologies, pages 193–207,
Amsterdam, The Netherlands, The Netherlands, 1993. North-Holland
Publishing Co.

[54] A. K. A. de Medeiros. Genetic Process Mining. PhD, Technische Universiteit
Eindhoven, Eindhoven, The Netherlands, 2006.

[55] J. de San Pedro. A simulation framework for hierarchical Network-on-
Chip systems. Master’s thesis, UPC, June 2012.

[56] J. De Weerdt, S. vanden Broucke, J. Vanthienen, and B. Baesens. Active
trace clustering for improved process discovery. IEEE Trans. on Knowledge
and Data Engineering, 25(12):2708–2720, Dec. 2013.

[57] J. Desel and J. Esparza. Free Choice Petri nets, volume 40 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1995.

[58] B. F. van Dongen, A. K. A. Medeiros, H. M. W. Verbeek, A. J. M. M. Weijters,
and W. M. P. van der Aalst. The ProM Framework: A new era in process
mining tool support. In Proceedings of the 26th International Conference
on Applications and Theory of Petri Nets, pages 444–454. Springer, June
2005.

[59] A. E. Dunlop and B. W. Kernighan. A procedure for placement of standard-
cell VLSI circuits. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 4(1):92–98, Jan. 1985.

[60] A. Ehrenfeucht and G. Rozenberg. Partial (set) 2-structures. Acta Infor-
matica, 27(4):343–368, 1990.

[61] C. C. Ekanayake, M. Dumas, L. García-Bañuelos, and M. La Rosa. Slice,
mine and dice: Complexity-aware automated discovery of business pro-
cess models. In Business Process Management, volume 8094 of LNCS,
pages 49–64. Springer, 2013.

[62] D. Fahland and W. M. P. van der Aalst. Simplifying mined process models:
An approach based on unfoldings. In Business Process Management,
volume 6896 of LNCS, pages 362–378. Springer, 2011.

[63] D. Fahland and W. M. P. van der Aalst. Simplifying discovered process
models in a controlled manner. Information Systems, 38(4):585–605,
2013.



Bibliography 171

[64] G. Faust, R. Zhang, K. Skadron, M. Stan, and B. Meyer. ArchFP: rapid
prototyping of pre-RTL floorplans. In Proceedings of the 2012 IEEE/IFIP
20th International Conference on VLSI and System-on-Chip (VLSI-SoC),
pages 183–188, 2012.

[65] R. M. Fuhrer and S. M. Nowick. Sequential Optimization of Asynchronous
and Synchronous Finite-State Machines: Algorithms and Tools. Kluwer
Academic Publishers, 2001.

[66] E. R. Gansner, E. Koutsofios, S. C. North, and K. Vo. A technique for
drawing directed graphs. IEEE Trans. Software Eng., 19(3):214–230,
1993.

[67] E. R. Gansner and S. C. North. An open graph visualization system
and its applications to software engineering. Software – Practice and
Experience, 30(11):1203–1233, 2000.

[68] M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM
Journal on Algebraic Discrete Methods, 4(3):312–316, 1983.

[69] S. Goedertier, D. Martens, J. Vanthienen, and B. Baesens. Robust process
discovery with artificial negative events. J. Mach. Learn. Res., 10:1305–
1340, June 2009.

[70] T. Gschwind, J. Pinggera, S. Zugal, H. A. Reijers, and B. Weber. A linear
time layout algorithm for business process models. J. Vis. Lang. Comput.,
25(2):117–132, 2014.

[71] C. Günther. Process Mining in Flexible Environments. PhD thesis, Technis-
che Universiteit Eindhoven, 2009.

[72] Gurobi Optimization. Gurobi Optimizer reference manual, 2015.

[73] T. A. Henzinger, R. Jhala, and R. Majumdar. Permissive interfaces. SIG-
SOFT Softw. Eng. Notes, 30(5):31–40, Sept. 2005.

[74] J. Herbst and D. Karagiannis. Workflow mining with InWoLvE. Computers
in Industry, 53(3):245–264, 2004. Process / Workflow Mining.

[75] R. Ho, K. W. Mai, and M. A. Horowitz. The future of wires. Proceedings
of the IEEE, 89(4):490–504, 2001.

[76] J. Howard, S. Dighe, S. Vangal, G. Ruhl, N. Borkar, S. Jain, V. Erraguntla,
M. Konow, M. Riepen, M. Gries, G. Droege, T. Lund-Larsen, S. Steibl,
S. Borkar, V. De, and R. Van Der Wijngaart. A 48-core IA-32 processor in



172 Bibliography

45 nm CMOS using on-die message-passing and DVFS for performance
and power scaling. IEEE Journal of Solid-State Circuits, 46(1):173–183,
2011.

[77] D. A. Huffman. The synthesis of sequential switching circuits. Journal of
the Franklin Institute, 257(3):161–190, Mar. 1954.

[78] W. N. N. Hung, X. Song, T. Kam, L. Cheng, and G. Yang. Routability
checking for three-dimensional architectures. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 12(12):1371–1374, 2004.

[79] IEEE Task Force on Process Mining. Process Mining Manifesto. In Busi-
ness Process Management Workshops, pages 169–194, Clermont-Ferrand,
France, 2011.

[80] International Technology Roadmap for Semiconductors. http://www.
itrs.net/reports.html.

[81] C. Jiang, F. Coenen, and M. Zito. A survey of frequent subgraph mining
algorithms. The Knowledge Engineering Review, 28(01):75–105, 2013.

[82] S. C. Johnson. Hierarchical clustering schemes. Psychometrika,
32(3):241–254, Sept. 1967.

[83] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific
tools for Python, 2001–. [Online; accessed 2016-03-18].

[84] I. Jonyer, L. B. Holder, and D. J. Cook. Hierarchical conceptual structural
clustering. International Journal on Artificial Intelligence Tools, 10(1-
2):107–136, 2001.

[85] A. B. Kahng. Classical floorplanning harmful? In Proceedings of the 2000
international symposium on Physical design, ISPD ’00, pages 207–213,
New York, NY, USA, 2000. ACM.

[86] A. B. Kahng, I. L. Markov, J. Hu, and J. Lienig. VLSI physical design: from
graph partitioning to timing closure. Springer, USA, 4 edition, Feb. 2011.

[87] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM J. Sci. Comput., 20(1):359–392, Dec.
1998.

[88] G. Keller, M. Nüttgens, and A. W. Scheer. Semantische prozeßmodel-
lierung auf der basis ereignisgesteuerter prozeßketten. Veröffentlichungen
des Instituts für Wirtschaftsinformatik, 89, 1992.

http://www.itrs.net/reports.html
http://www.itrs.net/reports.html


Bibliography 173

[89] R. M. Keller. A fundamental theorem of asynchronous parallel compu-
tation. In Parallel Processing: Proceedings of the Sagamore Computer
Conference, pages 102–112. Springer, 1975.

[90] N. S. Ketkar, L. B. Holder, and D. J. Cook. Subdue: compression-based
frequent pattern discovery in graph data. In Proceedings of the 1st inter-
national workshop on open source data mining: frequent pattern mining
implementations, OSDM ’05, pages 71–76, New York, NY, USA, 2005.
ACM.

[91] L. G. Khachiyan. Polynomial algorithms in linear programming. USSR
Computational Mathematics and Mathematical Physics, 20(1):53–72,
1980.

[92] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220:671–680, 1983.

[93] V. Klee and G. J. Minty. How good is the simplex algorithm? In Proc.
Third Sympos. Inequalities, pages 159–175, Los Angeles, 1969. Academic
Press.

[94] T. Kolks, S. Vercauteren, and B. Lin. Control resynthesis for control-
dominated asynchronous designs. In Proc. International Symposium on
Advanced Research in Asynchronous Circuits and Systems, Mar. 1996.

[95] A. Kondratyev, M. Kishinevsky, A. Taubin, and S. Ten. Analysis of Petri
nets by ordering relations in reduced unfoldings. Formal Methods in
System Design, 12(1):5–38, Jan. 1998.

[96] I. Krka, Y. Brun, and N. Medvidovic. Automatic mining of specifications
from invocation traces and method invariants. In 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pages
178–189, 2014.

[97] R. Kumar, D. M. Tullsen, N. P. Jouppi, and P. Ranganathan. Heterogeneous
chip multiprocessors. IEEE Computer, 38(11):32–38, 2005.

[98] S. Kumar, S.-C. Khoo, A. Roychoudhury, and D. Lo. Mining message se-
quence graphs. In 33rd International Conference on Software Engineering
(ICSE), pages 91–100, 2011.

[99] M. Lai and D. Wong. Slicing tree is a complete floorplan representation.
In Proceedings of the conference on Design, Automation and Test in Europe,
DATE ’01, pages 228–232, Piscataway, NJ, USA, 2001. IEEE.



174 Bibliography

[100] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst. Discovering block-
structured process models from event logs - a constructive approach. In
Application and Theory of Petri Nets and Concurrency, volume 7927 of
LNCS, pages 311–329. Springer, 2013.

[101] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst. Discovering block-
structured process models from incomplete event logs. In Application
and Theory of Petri Nets and Concurrency, volume 8489 of Lecture Notes
in Computer Science, pages 91–110. Springer, 2014.

[102] F. T. Leighton. New lower bound techniques for VLSI. Mathematical
systems theory, 17(1):47–70, 1984.

[103] J. Li, D. Liu, and B. Yang. Process mining: Extending α-algorithm to
mine duplicate tasks in process logs. In Advances in Web and Network
Technologies, and Information Management, pages 396–407, Huang Shan,
China, June 2007. Springer.

[104] W. Li, Z. Wasson, and S. Seshia. Reverse engineering circuits using
behavioral pattern mining. In IEEE Int. Symp. on Hardware-Oriented
Security and Trust (HOST), pages 83–88, June 2012.

[105] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and
A. H. Byers. Big Data: the next frontier for innovation, competition, and
productivity. Technical report, McKinsey Global Institute, June 2011.

[106] A. J. Martin. The limitations to delay-insensitivity in asynchronous
circuits. In W. H. J. Feijen, A. J. M. van Gasteren, D. Gries, and J. Misra,
editors, Beauty Is Our Business: A Birthday Salute to Edsger W. Dijkstra,
pages 302–311. Springer, New York, NY, 1990.

[107] K. L. McMillan. Using unfoldings to avoid the state explosion problem in
the verification of asynchronous circuits. In Computer Aided Verification,
volume 663 of Lecture Notes in Computer Science, pages 164–177, 1993.

[108] J. Mendling, G. Neumann, and W. M. P. van der Aalst. Understanding the
occurrence of errors in process models based on metrics. In On the Move
to Meaningful Internet Systems, volume 4803 of LNCS, pages 113–130.
Springer, 2007.

[109] M. Monchiero, R. Canal, and A. Gonzalez. Power / performance / thermal
design-space exploration for multicore architectures. IEEE Transactions
on Parallel and Distributed Systems, 19(5):666–681, 2008.



Bibliography 175

[110] D. E. Muller and W. S. Bartky. Theory of asynchronous circuits. Tech-
nical report, University of Illinois, Graduate College, Digital Computer
Laboratory, Dec. 1955.

[111] J. Muñoz-Gama and J. Carmona. A fresh look at precision in process
conformance. In Business Process Management, volume 6336 of LNCS,
pages 211–226. Springer, 2010.

[112] T. Murata. Petri Nets: Properties, analysis and applications. Proc. of the
IEEE, 77(4):541–580, Apr. 1989.

[113] N. Nikitin. Automatic Synthesis and Optimization of Chip Multiprocessors.
PhD thesis, UPC, Apr. 2013.

[114] N. Nikitin, J. de San Pedro, J. Carmona, and J. Cortadella. Analytical
performance modeling of hierarchical interconnect fabrics. In Proceedings
of the Sixth IEEE/ACM International Symposium on Networks on Chip
(NoCS), pages 107–114, 2012.

[115] N. Nikitin, J. de San Pedro, and J. Cortadella. Architectural exploration
of large-scale hierarchical chip multiprocessors. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 32(10):1569–
1582, 2013.

[116] R. H. J. M. Otten. Efficient floorplan optimization. In Proc. International
Conf. Computer Design (ICCD), pages 499–502, 1983.

[117] J. Rissanen. Stochastic complexity in statistical inquiry, volume 15. World
scientific, 1998.

[118] O. Roig, J. Cortadella, and E. Pastor. Hierarchical gate-level verification
of speed-independent circuits. In Asynchronous Design Methodologies,
pages 129–137. IEEE Computer Society Press, May 1995.

[119] F. Rubin. The lee path connection algorithm. IEEE Trans. Comput.,
23(9):907–914, Sept. 1974.

[120] S. M. Rubin and R. Reddy. The locus model of search and its use in image
interpretation. In Proceedings of the 5th International Joint Conference on
Artificial Intelligence, volume 2 of IJCAI’77, pages 590–595, San Francisco,
CA, USA, 1977. Morgan Kaufmann Publishers Inc.

[121] H. Saito, A. Kondratyev, J. Cortadella, L. Lavagno, and A. Yakovlev. What
is the cost of delay insensitivity? In Proc. International Conf. Computer-
Aided Design (ICCAD), pages 316–323, Nov. 1999.



176 Bibliography

[122] K. Samadi. Accurate estimators and optimizers for networks-on-chip. PhD
thesis, UC San Diego, 2010.

[123] K. Sankaranarayanan, S. Velusamy, M. Stan, C. L, and K. Skadron. A case
for thermal-aware floorplanning at the microarchitectural level. Journal
of ILP, 7, 2005.

[124] S. E. Schaeffer. Graph clustering. Computer Science Review, 1(1):27 – 64,
2007.

[125] N. A. Sherwani. Algorithms for VLSI Physical Design Automation. Kluwer
Academic Publishers, Norwell, MA, USA, 2nd edition, 1995.

[126] J.-L. Song, T.-J. Luo, S. Chen, and W. Liu. A clustering based method to
solve duplicate tasks problem. Journal of University of Chinese Academy
of Sciences, 26(1):107, 2009.

[127] M. Song, C. W. Günther, and W. M. P. van der Aalst. Trace clustering in
Process Mining. In Business Process Management Workshops, volume 17
of LNBIP, pages 109–120. Springer, 2009.

[128] D. Sreenivasa Rao and F. J. Kurdahi. On clustering for maximal regularity
extraction. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 12(8):1198–1208, Aug. 1993.

[129] K. Srinivasan and K. S. Chatha. A low complexity heuristic for design of
custom network-on-chip architectures. In Proceedings of the Conference
on Design, Automation and Test in Europe, DATE ’06, pages 130–135,
Leuven, Belgium, 2006. European Design and Automation Association.

[130] K. S. Stevens, R. Ginosar, and S. Rotem. Relative timing. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 11(1):129–140, Feb. 2003.

[131] X. Tang, R. Tian, and M. D. F. Wong. Minimizing wire length in floorplan-
ning. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 25(9):1744–1753, 2006.

[132] S. K. L. M. vanden Broucke. Advances in Process Mining. Phd, Katholieke
Universiteit Leuven, 2014.

[133] B. Vázquez-Barreiros, M. Mucientes, and M. Lama. Mining duplicate
tasks from discovered processes. In Proceedings of the International
Workshop on Algorithms & Theories for the Analysis of Event Data, volume
1371, pages 78–82, Brussels, Belgium, June 2015. CEUR.



Bibliography 177

[134] B. Vázquez-Barreiros, M. Mucientes, and M. Lama. ProDiGen: Mining
complete, precise and minimal structure process models with a genetic
algorithm. Information Sciences, 294:315–333, 2015.

[135] R. Wang and N. Shah. Scalable hierarchical floorplanning for fast phys-
ical prototyping of systems-on-chip. In Proceedings of the 2012 ACM
international symposium on International Symposium on Physical Design,
ISPD ’12, pages 187–192, New York, NY, USA, 2012. ACM.

[136] T. Washio and H. Motoda. State of the art of graph-based data mining.
SIGKDD Explor. Newsl., 5(1):59–68, July 2003.

[137] A. J. M. M. Weijters and J. T. S. Ribeiro. Flexible Heuristics Miner (FHM).
In Computational Intelligence and Data Mining, pages 310–317, 2011.

[138] J. M. E. M. van der Werf, B. F. van Dongen, C. A. J. Hurkens, and
A. Serebrenik. Process discovery using Integer Linear Programming.
In Applications and Theory of Petri Nets, volume 5062 of LNCS, pages
368–387. Springer, 2008.

[139] N. Weste and D. Harris. CMOS VLSI Design: A Circuits and Systems
Perspective. Addison-Wesley Publishing Company, USA, 4th edition, 2010.

[140] S. A. White and D. Miers. BPMN Modeling and Reference Guide: Under-
standing and Using BPMN. Future Strategies Inc., 2008.

[141] D. F. Wong and C. L. Liu. A new algorithm for floorplan design. In
Proceedings of the 23rd ACM/IEEE Design Automation Conference, DAC
’86, pages 101–107, Piscataway, NJ, USA, 1986. IEEE Press.

[142] B.-S. Wu and T.-Y. Ho. Bus-pin-aware bus-driven floorplanning. In
Proceedings of the 20th Great Lakes Symposium on VLSI, GLSVLSI ’10,
pages 27–32, New York, NY, USA, 2010. ACM.

[143] J. Z. Yan and C. Chu. DeFer: deferred decision making enabled fixed-
outline floorplanning algorithm. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 29(3):367–381, Mar. 2010.

[144] B. Yao, H. Chen, C.-K. Cheng, and R. Graham. Floorplan representations:
Complexity and connections. ACM Trans. Des. Autom. Electron. Syst.,
8(1):55–80, Jan. 2003.

[145] T. T. Ye and G. D. Micheli. Physical planning for on-chip multiprocessor
networks and switch fabrics. In Proceedings of the 14th IEEE International



178 Bibliography

Conference on Application-Specific Systems, Architectures, and Processors,
ASAP 2003, pages 97–107, The Hague, The Netherlands, June 2003.

[146] E. F. Y. Young, C. C. N. Chu, and M. L. Ho. Placement constraints in
floorplan design. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 12(7):735–745, 2004.

[147] F. Y. Young and D. F. Wong. How good are slicing floorplans? In
Proceedings of the 1997 International Symposium on Physical Design, ISPD
’97, pages 144–149, New York, NY, USA, 1997. ACM.


	Introduction
	Contributions of this thesis
	Structure of this document

	Preliminaries
	Graph mining
	Process mining
	VLSI design flow
	Asynchronous circuits
	Mathematical optimization

	Physical planning for chip multiprocessors
	Motivation
	Related work
	Architectural exploration
	Floorplanning methodology
	Wire planning
	Results
	Conclusions

	Regularity-constrained floorplanning
	Motivation
	Related work
	Exploring regularity and hierarchy
	Regular floorplanning algorithm
	Results
	Conclusions

	Log-based simplification of process models
	Motivation
	Related work
	Metrics for relevant arcs
	Simplification methods
	Results
	Conclusions

	Structured mining of Petri nets
	Motivation
	Related work
	Structured mining flow
	Construction of an LTS from a log
	Extraction of LTS slices
	Synthesis of Petri Nets
	Results
	Conclusions

	Discovery of duplicate tasks
	Motivation
	Related work
	Local Excitation Sets
	Discovering duplicate tasks
	Meta-transitions
	Results
	Conclusions

	Specification mining of asynchronous controllers
	Motivation
	Related work
	Circuits with constrained environment
	Specification mining
	Properties of the specification model
	Results
	Conclusions

	Conclusions and future work
	Summary of contributions
	Future work

	Bibliography

