
 

 

 

 

 

 

 

 
ANTIOXIDANT EFFECT OF MELATONIN ON SACCHAROMYCES AND NON-

SACCHAROMYCES WINE YEASTS 
 

Jennifer Vázquez González 
 

 
 

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets 

de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials 
d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual 
(RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En 
qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la 
persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació 
efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc 
s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de 
drets afecta tant als continguts de la tesi com als seus resums i índexs. 
 
 
ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los 

derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en 
actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto 
Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización 
previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá 
indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se 
autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación 
pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una 
ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como 
a sus resúmenes e índices. 
 
 
WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It 

can be used for reference or private study, as well as research and learning activities or materials in the 
terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and 
previous authorization of the author is required for any other uses. In any case, when using its content, full 
name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit 
use or public communication from outside TDX service is not allowed. Presentation of its content in a window 
or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis 
and its abstracts and indexes. 



  

	
	
	
	
	
	
 
 
Antioxidant effect of melatonin on Saccharomyces 

and non-Saccharomyces wine yeasts 
 

 
Jennifer Vázquez González 

	
	
	

 
 
 

 
DOCTORAL THESIS 

2017 
 



	
	

 
	

 

  



	
	

	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
	

 
	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

	

	



	
	

	

Jennifer	Vázquez	González	

	

	

“Antioxidant	effect	of	melatonin	on	

Saccharomyces	and	non-Saccharomyces	wine	yeasts”	

	

Doctoral	thesis	directed	by:	

Dr.	Ma	Jesús	Torija	Martínez	and	Dr.	Gemma	Beltran	Casellas	

Department	of	Biochemistry	and	Biotechnology		

	

	

	

	

	

Tarragona	2017		

	

	



	
	

 
	

 
  



	
	

	

  

Department	of	Biochemistry	and	Biotechnology	

Faculty	of	Oenology	

C/	Marcel·lí	Domingo,	1	
43007	Tarragona	
Telf:	977	558043	
Fax:	977	558232	
	
	

WE	STATE,	

	

That	 the	present	study,	entitled	“Antioxidant	effect	of	melatonin	on	Saccharomyces	

and	 non-Saccharomyces	 wine	 yeasts”,	 presented	 by	 Jennifer	 Vázquez	 González	 for	

award	of	the	degree	of	Doctor	with	International	Mention,	has	been	carried	out	under	

our	supervision	at	the	Department	of	Biochemistry	and	Biotechnology	of	this	university.	

	

Tarragona,	4th	September	2017	

	

	

	

	

Dr.	Ma	Jesús	Torija	Martínez	 	 	 														Dr.	Gemma	Beltran	Casellas	

  



	
	

 
	

   



	
	

	

AGRADECIMIENTOS	

La	 aventura	 comenzó	 cuatro	 años	 atrás	 y	 paradójicamente	 diciendo	 adiós	 a	 Tarragona.	
Recuerdo	 como	 si	 de	 ayer	 se	 tratara,	 justo	 entrando	 en	 Premiá	 de	Mar	 con	 todos	 mis	
enseres	a	cuestas,	que	el	teléfono	sonó.	Esa	llamada	significó	una	nueva	etapa	en	mi	vida;	
el	doctorado	en	Tarragona.	Aunque	muchas	veces	me	he	preguntado	“¿no	podrías	haberte	
quedado	dónde	estabas	bonita?”	aquí	estoy,	tras	recorrer	un	largo	y	a	veces	duro	camino	y	
con	la	sensación	de	haber	hecho	todo	lo	imposible	por	lograrlo.	A	todo	mi	entorno	os	doy	
las	 gracias	 por	 felicitarme,	 pero	 el	 triunfo	 es	 vuestro	 queridos	 amigos,	 por	 animarme,	
soportarme	y	respaldarme.	Motivos	más	que	suficientes	para	estar	agradecida.	

Partiendo	de	la	base	que	lo	hallado	en	el	efecto	es	por	una	causa	(Figura	1),	quisiera	empezar	
agradeciendo	a	mis	dos	directoras	de	tesis;	Dra.	Gemma	Beltrán	y	Dra.	MJ	Torija	y	también	
al	Dr.	Albert	Mas.	Gracias	a	los	tres	por	ser	la	causa	de	esta	tesis	al	brindarme	la	oportunidad	
de	 formar	 parte	 del	 grupo	 de	 Biotecnología	 Enológica.	 Por	 la	 confianza	 que	 habéis	
depositado	en	mi	y	por	regalarme	tantas	experiencias	(austriacas,	portuguesas,	sevillanas,	
valencianas,	etc).	“Jefas”,	gracias	por	vuestra	cercanía,	por	mostrar	siempre	una	sonrisa,	por	
la	 libertad	que	me	habéis	 dado,	 así	 como	por	 relajarme	dentro	de	un	mundo	 con	 tanto	
estrés.	¡De	corazón,	gracias	miles!	

A	mi	padre	y	a	mi	madre	me	faltan	palabras	para	agradecerles	todo	lo	que	soy:	por	como	
son,	por	los	valores	que	me	han	inculcado,	como	me	ayudan,	me	escuchan,	me	apoyan…	
estando	tan	cerca,	pero	a	la	vez	tan	lejos,	como	os	echo	de	menos	¡Gracias	por	vuestro	amor	
incondicional!	 A	mi	 hermana	 pocas	 palabras	 bastan,	 si	 es	 que	 compartimos	 los	mismos	
padres,	para	mí	no	hay	“tati”	igual.	A	los	tres,	gracias	por	haberme	animado	a	subir	a	este	
tren.	¡Os	quiero	infinito!	Además,	no	puedo	dejar	de	agradecer	al	patriarca,	a	la	mestressa	
y	a	todo	el	clan	familiar	ya	que	como	unos	buenos	“Gypsy	Kings”,	siempre	estamos	ahí.	

Aunque	parezca	un	tópico,	soy	consciente	y	con	la	madurez	cada	vez	más,	que	amigos	se	
cuentan	 con	 los	 dedos	 de	 la	 mano.	 En	 este	 aspecto	me	 siento	muy	 afortunada	 pues	 a	
Tarragona	me	vine	con	un	saquito	lleno	de	las	mejores.	Con	nuestros	defectos	y	virtudes,	
parece	ser	que	esto	ya	es	inquebrantable.	Saber	que	cuando	es	necesario	estamos,	me	lleva	
a	la	verdadera	definición	del	valor	de	la	amistad,	a	ponerle	nombre	propio:	Anna,	Carmen,	
Carol,	Cristina,	Elena,	Nerea	¡Gracias	por	vuestros	ánimos	en	esta	etapa!	

Los	efectos	de	estos	cuatro	años	bien	podrían	ocupar	una	tesis	paralela.	Quisiera	agradecer	
a	todo	el	mundo	que	me	he	cruzado	en	el	camino	(Figura	1)	ya	que,	de	todos	y	cada	uno	de	
ellos	he	podido	y	he	intentado	aprender.	Generalizando,	a	todos	los	compis	de	poyata	que	
han	pasado	por	el	Laboratorio	122	(mi	segunda	residencia	en	TgN)	y	a	todas	las	“Melatonin	
girls”;	gracias	por	los	momentos	vividos.	Y	aunque	mal	de	muchos,	consuelo	de…	¡Gracias	
Beatriu!	por	este	último	tramo	de	apoyo	mútuo	porqué	al	final,	juntas	como	al	principio	“lo	



	
	

 
	

hicimos,	 lo	 hicimos”.	 Compañeros	 del	 Laboratorio	 119,	 Lácticos,	 BMA,	 Fernandas	 y	
Fernanditos	gracias	por	los	momentos	lúdico-festivos	y	por	la	ayuda	ofrecida	siempre	que	
lo	he	necesitado.	No	quiero	dejar	de	agradecer	al	departamento	de	nutri	por	tenderme	la	
mano	 ante	 algunas	 dudas	 técnicas.	 Al	 super	 equipo	 “PAS”	 que	 tanta	 envidia	me	 dan,	 a	
secretaría	y	a	consergería,	gracias	por	vuestra	predisposición,	por	hacerlo	todo	más	fácil.	Y	
a	seguridad	gracias	por	las	charlas	y	suministro	de	café	esas	veces	que	he	trasnochado	en	el	
laboratorio.	A	mis	“Darth	Vaders”	favoritos:	María	Martí,	mi	Angelita,	y	a	mi	Braulín,	gracias	
por	esos	momentos	de	reflexión,	risas,	y	apoyo	en	el	banquito.	A	estudiantes	de	grado	que	
vienen	y	no	se	van	sin	dejar	huella;	Verónica	y	Julia,	¡gracias!	

Agradecer	a	Günther	y	todo	su	equipo	(Karin,	Andreas,	Isa,	Martina,	Ariane	y	especialmente	
Francesca	y	Heinzi)	por	aceptarme	e	integrarme	como	uno	más.	Y	por	supuesto,	a	Julien	y	
Radia	por	haber	hecho	su	casa	mía.	¡Gracias	Graz!	

A	mi	Olguis	y	Nestorito,	resumo:	“Encontrar	amistades	con	tu	mismo	desorden	mental	¡no	
tiene	precio!”.	Amigüitos,	muchas	gracias	por	ser	como	sois,	por	como	hemos	disfrutado	y	
disfrutarémos,	por	abrirme	las	puertas	de	Campaspero,	Fredes,	Castellón	y	vuestro	corazón.	
Lo	mejor	está	por	venir,	“¡Cañoneeerooo!”.	Dentro	del	club	de	saraos:	al	equipo	chuletón	y	
al	Galliner	así	como	a	mis	dos	mozas	que	tanto	echo	de	menos;	Estelita	querida	y	Elena,	a	
todos	¡Gracias!	

Amoret,	nos	conocimos	cuando	sonaba	“prometo	estarte	agradecido”.	A	día	de	hoy,	a	ritmo	
de	rock	no	me	cansaría	de	decirte	gracias	por	ser	como	eres,	por	todo	lo	que	hemos	pasado	
y	lo	que	está	por	venir,	¡t’estimo!	Y	a	nuestra	gosseta	Tina,	¡GuaU,	GuaU!,	o	sea,	gracias	por	
tu	compañía	y	amor	“perruno”.	

		

	

	

	

	

	

	

	

 

 

Avi/	Iaia

TESIS

Beatriu
Néstor

Ricky

Mariona
Isa

Judit

Julia

Angelita
Jessica

Rosa

Niurka

Gemma
Gael

Samanta
Mar

Pere

Deniz
María N

Mery

Ali

AndreasMiguel

Günther
Santiago

Heinzi

LisaMerçè
Marisa

Ramón

Canario
Nikos

Radia
Aitor

Amalia

Diego

Nicolás
Ricardo

Montse
Carmen

Fernando
Joanmi

Francesca

Cristina	

Albert	

Fredes

Esti

Mabel

Roser

Castellón

Mari

David

Iara

Kiara Isa

Karin
Ariane

Marta

Figura	1.	Árbol	de	causas	y	efectos	de	la	tesis	doctoral.	A	todos,	¡GRACIAS!	



	
	

	

 

 

 

 

 

 

 

 

 

 

Dedicada a mis padres y a mi hermana, 

 

 

 

 

 

 

 

 

 

 

  



	
	

 
	

  



	
	

	

INDEX	

OBJECTIVES	AND	OUTLINE	OF	THESIS	......................................................................	15	

INTRODUCTION	.......................................................................................................	21	
1.	YEASTS	AND	WINE	FERMENTATION	.................................................................	23	
1.1.	Wine	yeast	ecology	..........................................................................................	23	
1.2.	Metabolic	traits	of	wine	yeasts	........................................................................	26	

2.	OXIDATIVE	STRESS	...........................................................................................	29	
3.	YEAST	OXIDATIVE	STRESS	RESPONSE	................................................................	34	
3.1.	Antioxidant	defense	systems	...........................................................................	35	
3.2.	Regulation	of	oxidative	stress	response	..........................................................	42	

3.2.1.	Transcription	factors	...........................................................................................................	42	
3.2.2.	Signaling	oxidative	stress	....................................................................................................	44	

4.	YEAST	LIPID	COMPOSITION	AND	OXIDATIVE	STRESS	........................................	48	
4.1.	Lipid	composition	.............................................................................................	49	
4.2.	Lipid	biosynthesis	.............................................................................................	53	
4.3.	Oxidative	stress	and	lipid	composition	............................................................	55	

5.	ANTIOXIDANTS	IN	WINE	...................................................................................	57	
5.1.	Melatonin	.........................................................................................................	58	

5.1.1.	Molecular	characteristics	....................................................................................................	59	
5.1.2.	Synthesis	and	regulation	.....................................................................................................	59	
5.1.3.	Melatonin	as	an	antioxidant	...............................................................................................	61	

REFERENCES	............................................................................................................	63	

RESULTS	..................................................................................................................	75	
CHAPTER	1	...........................................................................................................	77	
The	 role	 of	 the	membrane	 lipid	 composition	 in	 the	 oxidative	 stress	 tolerance	 of	
different	wine	yeasts	...........................................................................................	77	
CHAPTER	2	.........................................................................................................	109	
Melatonin	 reduces	 oxidative	 stress	 damage	 induced	 by	 hydrogen	 peroxide	 in	
Saccharomyces	cerevisiae	..................................................................................	109	
CHAPTER	3	.........................................................................................................	139	
Melatonin	 minimizes	 the	 impact	 of	 the	 oxidative	 stress	 induced	 by	 hydrogen	
peroxide	in	Saccharomyces	and	non-Saccharomyces	yeasts	...............................	139	
CHAPTER	4	.........................................................................................................	161	
Transcriptomic	 insights	 into	 the	 melatonin	 effect	 on	 oxidative	 responses	 in	
Saccharomyces	cerevisiae	..................................................................................	161	

GENERAL	DISCUSSION	...........................................................................................	201	

GENERAL	CONCLUSIONS	........................................................................................	215	
	

 

  



	
	

 
	

 

 

 

 

 

 

 

 

 
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

OBJECTIVES AND OUTLINE OF THESIS 



	
	

 
	

  



OBJECTIVES	AND	OUTLINE	OF	THESIS	

17	
	

The	aim	of	the	present	work	was	to	obtain	a	PhD	degree,	and	it	was	performed	from	

2013	to	2017	in	the	Oenological	Biotechnology	research	group,	at	the	Department	of	

Biochemistry	and	Biotechnology	in	the	Faculty	of	Oenology	at	Rovira	i	Virgili	University	

(URV).	 During	 this	 period,	 I	 held	 a	 grant	 2013PMF-PIPF-09	 from	 the	Martí	 Franquès	

program	(URV).		

This	 thesis	 was	 created	within	 the	 framework	 of	 the	 BIOACTIYEAST	 project	 entitled	

“Production	and	physiological	effects	of	bioactive	compounds	derived	 from	aromatic	

amino	 acids	 in	 yeast	 populations”,	 which	 has	 given	 continuity	 to	 the	 existing	

SYNBIOFERM	project	entitled	“Metabolism	and	protective	effects	of	indole	compounds	

in	yeasts	of	food	interest”.	Both	projects	have	been	funded	by	the	Spanish	Ministry	of	

Economy	 and	 Competitiveness	 (AGL2013-47300-C3-1-R	 and	 AGL2016-77505-C3-3-R,	

respectively).	The	primary	goal	of	 these	 two	projects	was	 to	 improve	our	knowledge	

about	the	synthesis	of	these	bioactive	molecules	by	yeasts	during	alcoholic	fermentation	

by	 studying	 the	 effects	 and	 production	 of	 these	 bioactive	 compounds,	 with	 special	

attention	to	melatonin.	This	molecule	modulates	circadian	rhythms	and	exerts	multiple	

pleiotropic	functions	in	humans.	One	of	these	functions	is	a	powerful	antioxidant	activity	

through	 which	 melatonin	 protects	 against	 oxidative	 stress	 by	 acting	 as	 a	 direct	

scavenger	 to	 detoxify	 free	 radicals	 or	 indirectly	 by	 increasing	 the	 activities	 of	

endogenous	 cellular	 antioxidant	 defenses.	 Melatonin	 has	 recently	 been	 detected	 in	

wine,	and	as	is	the	case	for	other	indolic	compounds,	it	seems	to	come	mostly	from	the	

tryptophan	metabolism	 of	 the	 yeasts	 that	 participate	 in	 the	 alcoholic	 fermentation.	

However,	neither	its	physiological	effects	nor	the	metabolic	reason	for	its	synthesis	by	

yeast	is	completely	understood.		

Therefore,	the	working	hypothesis	of	the	present	thesis	was	as	follows:	Melatonin	acts	

as	an	antioxidant	compound	in	both	Saccharomyces	and	non-Saccharomyces	yeasts,	

reducing	the	oxidative	stress	damage.	

To	test	this	hypothesis,	the	general	objective	was	to	study	the	possible	role	of	melatonin	

against	oxidative	stress	 in	different	yeast	species	with	food	or	oenological	 interest	as	

well	as	the	molecular	mechanisms	involved	in	this	response.	To	achieve	this	general	aim,	

three	specific	objectives	were	developed:	
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Objective	 1:	 Analysis	 of	 tolerance	 to	 oxidative	 stress	 in	 Saccharomyces	 and	 non-

Saccharomyces	yeasts.	(Chapters	1	and	3)	

To	 complete	 this	 objective,	 the	 yeast	 response	 to	 oxidative	 stress	 (as	 induced	 with	

hydrogen	peroxide,	H2O2)	was	evaluated	in	S.	cerevisiae	and	non-Saccharomyces	strains.	

The	 non-Saccharomyces	 strains	 belonged	 to	 the	 following	 four	 wine	 yeast	 species:	

Torulaspora	 delbrueckii,	 Metschnikowia	 pulcherrima,	 Starmerella	 bacillaris	 and	

Hanseniaspora	 uvarum.	 In	 Chapter	 1,	 we	 focused	 primarily	 on	 changes	 in	 the	 lipid	

composition	as	one	of	the	primary	components	of	biological	membranes	and	its	relation	

to	 the	 tolerance	 of	 the	 different	 Saccharomyces	 and	 non-Saccharomyces	 strains	 to	

oxidative	stress	from	hydrogen	peroxide	(H2O2).	Fatty	acids	(FAs)	and	the	composition	

of	 individual	 sterols	 were	 analyzed	 by	 gas	 liquid	 chromatography	 (GLC	 and	 GC-MS,	

respectively).	 Phospholipids	 (PLs)	 were	 separated	 by	 two-dimensional	 thin	 layer	

chromatography	(TLC)	and	quantified	by	estimating	the	amount	of	phosphates	in	each	

PL.	 	 Additionally,	 the	 H2O2	 resistance	 of	 these	 strains	 was	 assessed	 using	 the	 agar	

diffusion	method,	and	the	production	of	ROS	species	was	tracked	by	flow	cytometry.		

In	Chapter	3,	the	lipis	damage	produced	by	oxidative	stress	in	Saccharomyces	and	non-

Saccharomyces	 strains	 was	 evaluated	 by	 measuring	 lipid	 peroxidation	 using	

thiobarbituric	acid	reacting	substances	(TBARS).	Furthermore,	the	catalase	activity	and	

peroxisomes	 proliferation	 were	 determined	 by	 measuring	 the	 decrease	 in	 H2O2	

absorbance	 at	 240	 nm	 and	 performing	 a	 western	 blot	 analysis	 against	 Fox1p,	

respectively.	

	

Objective	 2:	 Evaluation	 of	 the	 antioxidant	 role	 of	 melatonin	 in	 Saccharomyces	

cerevisiae.	(Chapters	2,	3	and	4)	

To	complete	this	objective,	the	effect	of	melatonin	on	S.	cerevisiae	was	evaluated	in	the	

presence	and	absence	of	oxidative	stress	from	H2O2	(2	mM).	

In	Chapter	2,	we	evaluated	the	effect	of	melatonin	(5	µM)	in	a	commercial	wine	strain	

of	 S.	 cerevisiae	 (QA23)	 by	 measuring	 the	 ROS	 production	 using	 flow	 cytometry,	 by	

measuring	the	intracellular	levels	of	reduced	and	oxidized	glutathione	by	fluorescence	

detection,	 and	by	measuring	 the	 expression	of	 genes	 related	 to	 antioxidant	 defense	
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systems	 such	 as	 glutathione,	 catalase,	 superoxide	 dismutase,	 glutaredoxin	 and	

thioredoxin	by	qPCR.	In	addition,	in	Chapter	4,	we	performed	a	transcriptomic	analysis	

in	the	same	strain	(QA23)	to	create	a	global	approach	to	the	primary	genes	or	families	

affected	by	 the	presence	of	melatonin	with	 and	without	oxidative	 stress.	Moreover,	

intracellular	melatonin	was	quantified	with	a	liquid	chromatograph	coupled	to	a	triple	

quadrupole	mass	spectrometer	(GL-TQMS).		Finally,	in	Chapter	3,	we	analyzed	the	lipid	

damage	caused	by	the	oxidative	stress,	also	in	the	presence	of	melatonin,	to	determine	

the	catalase	and	TBARS	activity	(as	explained	in	objective	1)	in	six	strains	of	S.	cerevisiae.		

	

Objective	 3:	 Evaluation	 of	 the	 role	 of	 melatonin	 as	 an	 antioxidant	 in	 non-

Saccharomyces	yeasts.	(Chapter	3)	

To	complete	this	objective,	the	possible	antioxidant	effect	of	melatonin	was	studied	in	

four	 non-Saccharomyces	 species	 (T.	 delbrueckii,	M.	 pulcherrima,	 S.	 bacillaris	 and	H.	

uvarum)	 in	 the	presence	and	absence	of	H2O2.	 For	 this	purpose,	we	determined	 the	

catalase	and	TBARS	activity,	as	described	in	objective	1.		

Thus,	these	three	objectives	were	developed	in	the	following	four	chapters	of	this	thesis	

(Figure	1):	

	

CHAPTER	1:	The	role	of	the	membrane	lipid	composition	in	the	oxidative	stress	

tolerance	of	different	wine	yeasts.	Results	submitted	to	Food	Microbiol.	

CHAPTER	2:	Melatonin	 reduces	oxidative	 stress	damage	 induced	by	hydrogen	

peroxide	 in	 Saccharomyces	 cerevisiae.	 Results	 published	 in	 Front.	 Microbiol.	

8:1066	(2017).	

CHAPTER	3:	Melatonin	minimizes	the	impact	of	the	oxidative	stress	induced	by	

hydrogen	 peroxide	 in	 Saccharomyces	 and	 non-Saccharomyces	 yeasts.	 Results	

submitted	to	Front.	Microbiol.	

CHAPTER	 4:	 Transcriptomic	 insights	 into	 the	 melatonin	 effect	 on	 oxidative	

responses	 in	 Saccharomyces	 cerevisiae.	 Manuscript	 in	 preparation	 to	 be	

submitted	to	J.	Pineal	Res.	
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Figure	1.	Schematic	summary	of	objectives	and	outline	of	thesis.	
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1.	YEASTS	AND	WINE	FERMENTATION	

Yeasts	have	an	enormous	 impact	on	food	and	beverages	production.	A	scientific	and	

technological	understanding	of	 their	 roles	 in	 this	production	began	 to	emerge	 in	 the	

mid-1800s,	starting	with	the	pioneering	studies	of	Louis	Pasteur	on	the	microbiology	of	

wine	 fermentations,	 which	 demonstrated	 that	 fermentation	 is	 initiated	 by	 living	

organisms.	Although	it	was	a	breakthrough	to	show	that	fermentation	resulted	from	the	

action	 of	 microorganisms,	 this	 finding	 did	 not	 explain	 the	 basic	 nature	 of	 the	

fermentation	process		(Barnett,	2000).	

Success	 came	 in	 1897,	 when	 Eduard	 Buchner	 found	 that	 the	 fermentation	 of	

carbohydrates	results	from	the	action	of	different	enzymes	contained	in	yeast	and	not	

from	the	yeast	cell	itself.	His	discoveries,	for	which	he	received	the	Nobel	Prize	in	1907,	

showed	that	the	enzyme	zymase	can	be	extracted	from	yeast	cells	and	that	 it	causes	

sugar	to	break	up	into	carbon	dioxide	and	alcohol	(Barnett	and	Lichtenthaler,	2001).		

These	 findings	 opened	 the	 way	 to	 elucidating	 the	 metabolic	 pathways	 of	 alcoholic	

fermentation	 in	 yeasts.	During	 the	 twentieth	 century,	 this	 research	generated	major	

advances	in	biochemistry,	with	very	important	economic	applications	(Barnett,	2003).	

Thus,	alcoholic	fermentation	was	gradually	revealed	until	reaching	the	knowledge	of	the	

current	day.	

1.1.	Wine	yeast	ecology	

Wine	 is	 a	 natural	 product	 that	 results	 from	 several	 biochemical	 reactions.	 Wine	

production	starts	with	the	ripening	and	harvesting	of	the	grapes,	and	it	continues	with	

the	alcoholic	fermentation,	clarification	and	bottling.	

As	early	as	1876,	Louis	Pasteur	wrote	that	‘the	taste	and	properties	of	the	wine	could	

depend	on	the	special	nature	of	yeasts	which	develop	during	the	 fermentation	of	 the	

grapes’.	 Since	 then,	 countless	 studies	 have	 focused	 on	 understanding	 the	 ecology,	

biochemistry,	 physiology	 and	 molecular	 biology	 of	 the	 yeasts	 involved	 in	 the	

fermentation	process	and	to	select	specialized	yeast	strains	to	improve	the	quality	of	

wine	(Fleet,	2003,	2008;	Pretorius,	2000;	Swiegers	et	al.,	2005).	
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The	current	taxonomy	recognizes	149	yeast	genera	that	comprise	nearly	1500	species	

(Kurzman	et	al.,	2011).	Of	these,	more	than	40	species	have	been	isolated	from	grape	

must	 	 (Ciani	et	al.,	2010;	 Jolly	et	al.,	2006).	During	 traditional	winemaking,	 there	 is	a	

sequential	succession	of	yeasts	engaged	in	spontaneous	fermentation	(Figure	1).	During	

the	process,	non-Saccharomyces	yeasts	play	a	substantial	role	starting	from	the	vineyard	

until	 S.	 cerevisiae	 establishes	 its	 anaerobic	 conditions	 and	 increases	 the	 ethanol	

concentration	 in	 the	environment,	until	 approximately	until	mid-fermentation	 (Fleet,	

2006).	S.	cerevisiae	is	the	primary	party	responsible	for	the	catalytic	conversion	of	grape	

sugar	 into	 alcohol	 and	 CO2.	 In	 addition,	 this	 species	 plays	 an	 important	 role	 in	 the	

formation	of	secondary	metabolites	and	the	release	of	aroma	precursors	(Bely	et	al.,	

1990;	 Jolly	 et	 al.,	 2014).	 However,	 the	 presence	 of	 non-Saccharomyces	 during	 early	

stages	of	fermentation	also	has	an	impact	on	the	wine	composition;	and	consequently,	

their	contribution	during	the	fermentation	process	cannot	be	ignored.	

	

Figure	1.	Sequential	presence	of	different	yeasts	during	the	winemaking	process	(Adapted	from	Fleet,	
2006).	
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S.	cerevisiae,	which	is	often	simply	known	as	the	wine	yeast	par	excellence,	has	been	

selected	and	optimized	for	commercial	use	as	a	starter	culture	(Ribereau-Gayon,	1985;	

Fleet	and	Heard,	1993).	The	primary	rationale	for	selected	starters	is	to	produce	wines	

with	a	uniform	quality	during	different	years,	 thus	avoiding	 the	variability	associated	

with	spontaneous	fermentations	and	the	risk	of	spoilage	(Beltran	et	al.,	2002).	

As	 shown	 in	Figure	2,	despite	 the	advantages	of	using	pure	cultures	of	S.	 cerevisiae,	

wines	 produced	 with	 yeast	 monocultures	 lack	 the	 complexity	 that	 the	 presence	 of	

various	non-Saccharomyces	species	can	offer.	Thus,	non-Saccharomyces	yeasts	are	used	

now	with	the	intention	of	producing	consumer-directed	wines	with	differentiated	styles.		

Although	these	yeasts	are	not	able	to	consume	all	of	the	sugar	present	in	grape	must	

because	they	are	unfortunately	incapable	of	completing	alcoholic	fermentation,	several	

studies	have	demonstrated	that	some	non-Saccharomyces	yeasts	used	with	sequential	

inoculation	 techniques	 can	 positively	 contribute	 to	 the	 aroma	 profile,	 sensory	

complexity	and	color	stability	of	the	resulting	product	(Fleet,	2008;	González-Royo	et	al.,	

2015;	Padilla	et	al.,	2016a;	Pretorius,	2000).	

Figure	2.	Use	of	selected	Saccharomyces	and	non-Saccharomyces	yeasts	strains	in	winemaking	(Padilla	
et	al,	2016b).	(a)	Spontaneous	fermentation	allows	for	the	development	of	indigenous	yeasts	from	
grapes	(primarily	non-Saccharomyces)	and	wineries	(primarily	Saccharomyces).	(b)	Mixed	cultures	of	
selected	Saccharomyces	and	non-Saccharomyces	strains.	(c)	Inoculation	with	a	selected	strain	of	

Saccharomyces.	



INTRODUCTION	

26	
 

Thus,	non-Saccharomyces	 species	can	 influence	the	organoleptic	properties	of	wines,	

increasing	the	volatile	compounds	or	secondary	metabolites	such	as	gyclcerol,	aromatic	

alcohols,	esters,	and	acetates	(Belda	et	al.,	2017;	Jolly	et	al.,	2014;	Romano	et	al.,	2003).	

For	exemple,	Torulaspora	delbrueckii	has	been	proposed	to	reduce	the	volatile	acidity	

produced	by	Saccharomyces	(Bely	et	al.,	2008),	whereas	Metschnikowia	pulcherrima	is	

recommended	for	the	release	of	some	volatile	thiols	and	terpenes	in	white	wines,	which	

increases	the	aromatic	intensity	(Belda	et	al.,	2017).	Other	species	such	as	Starmerella	

bacilaris	 have	 been	 reported	 to	 contribute	 by	 producing	 higher	 amounts	 of	 glycerol	

(Mas	et	al.,	2016).	The	Hanseniaspora	species	have	been	suggested	to	increase	the	wine	

quality	(Masneuf-Pomarede	et	al.,	2016).		

1.2.	Metabolic	traits	of	wine	yeasts	

Saccharomyces	and	non-Saccharomyces	species	have	similarly	conserved	the	metabolic	

pathways	that	are	involved	in	central	carbon	metabolism.	However,	the	mechanisms	of	

nutrient	uptake	and	those	involved	in	regulating	respire-fermentative	metabolism	differ	

significantly	(Flores	et	al.,	2000).		

Glycolysis	and	the	TCA	cycle	are	the	central	pathways	of	yeast	metabolism,	producing	

energy	and	 reducing	equivalents	 in	 the	 form	of	ATP,	NADH	or	NADPH	and	providing	

building	blocks	to	synthesize	other	biomolecules.	As	shown	in	Figure	3,	both	respiration	

and	 fermentation	 start	 during	 the	 glycolysis	 pathway	 to	 convert	 glucose	 into	 two	

molecules	of	pyruvate	and	ATP.	During	fermentation,	pyruvate	is	transformed	in	ethanol	

without	 producing	 additional	 ATP.	 Conversely,	 the	 NADH	 released	 by	 glycolysis	 is	

recycled	 into	 NAD+	 by	 the	 action	 of	 alcohol	 dehydrogenase,	 which	 catalyzes	 the	

reduction	 of	 acetaldehyde	 into	 ethanol.	 By	 contrast,	 during	 respiration,	 pyruvate	 is	

converted	into	acetyl-CoA	to	be	oxidized	into	CO2	during	the	tricarboxylic	(TCA)	cycle	

and	to	undergo	oxidative	phosphorylation	(OXPHOS),	where	it	yields	additional	ATP	but	

requires	oxygen	(Flores	et	al.,	2000;	García	et	al.,	2016).	
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Figure	3.	Yeast	energy	metabolism	(García	et	al.,	2016).	

	

In	terms	of	yeast	biomass	production,	the	Crabtree	effect	is	a	distinctive	physiological	

phenomenon	for	the	classification	of	yeasts	as	Crabtree-positive	or	negative	on	the	basis	

of	their	cultivation	conditions	and	pyruvate	destination	(Table	1).	The	yeasts	classified	

as	Crabtree-positive	produce	ethanol	even	under	aerobic	conditions,	with	high	external	

glucose	 concentrations,	 resulting	 in	 lower	 biomass	 production	 because	 a	 fraction	 of	

sugars	is	converted	into	ethanol	(Figure	4).	Because	only	a	fraction	of	sugar	is	used	for	

the	biomass	and	energy	production,	this	could	theoretically	result	in	lower	growth	rate	

in	Crabtree-positive	yeasts,	being	out-competed	by	Crabtree-negative	yeasts	and	other	

microorganisms.	However,	ethanol	is	used	by	the	Crabtree-positive	yeasts	as	a	tool	to	

slow	down	and	control	the	proliferation	of	other	competitive	microorganisms	(Dashko	

et	al.,	2014;	De	Deken,	1966;	Pronk	et	al.,	1996).	
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Figure	4.	Crabtree	effect	(Dashko	et	al.,	2014)	

	

Thus,	glycolysis	is	accelerated	by	glucose,	which	results	in	the	production	of	ATP	through	

the	phosphorylation	of	the	substrate.	At	the	same	time,	the	lower	need	for	oxidative	

phosphorylation	via	electron	transport	chain	decreases	the	oxygen	consumption	(Figure	

3).	This	phenomenon	is	observed	in	most	species	of	Saccharomyces.	

Table	1.	Mode	of	fermentation	for	different	wine	yeasts	(Mas	et	al.,	2016).	

	

	

	

	

	

	

*Although	 T.	 delbrueckii	 is	 normally	 described	 as	 Crabtree-positive	 by	
several	authors,	respiration	makes	a	higher	contribution	to	metabolism	in	
this	species	than	in	S.	cerevisiae	(Alves-Araújo	et	al.,	2007;	González	et	al.,	
2013;	Merico	et	al.,	2007)	

	

One	of	the	main	problems	an	organism	faces	under	anaerobic	conditions	is	the	lack	of	

the	 final	 electron	 acceptor	 in	 the	 respiratory	 chain.	 This	 reduces	 or	 eliminates	 the	

activity	 of	 Krebs	 cycle,	 respiratory	 chain,	 and	 mitochondrial	 ATP	 generation.	 As	 a	

Mode	of	fermentation	
Crabtree-positive	 Crabtree-negative	
Saccharomyces	cerevisiae	
Zygosaccharomyces	balilii	
Brettanomyces	intermedius	
Torulopsis	glabrata	
Schizosaccharomyces	pombe	
Hanseniaspora	guillermondi	
Candida	stellata	
Torulaspora	delbrueckii*	

Hanseniaspora	uvarum	
Pichia	anomala	
Candida	utilis	
Hansenula	neofermentans	
Kluyveromyces	marxianus	
Debaryomyces	hansenii	
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response	 to	 hypoxic	 and	 anaerobic	 conditions,	 organisms	 have	 developed	 several	

processes	to	optimize	the	utilization	of	oxygen	and	even	reduce	the	dependence	on	the	

presence	 of	 oxygen.	 According	 to	 their	 dependence	 on	 oxygen	 during	 the	 life	 cycle,	

yeasts	 are	 classified	 as:	 (1)	 obligate	 aerobes	 displaying	 exclusively	 respiratory	

metabolism,	 (2)	 facultative	 anaerobes,	 displaying	 both	 respiratory	 and	 fermentative	

metabolism,	and	(3)	obligate	anaerobes	(Fleet,	2006;	Merico	et	al.,	2007).	Most	yeasts	

are	aerobic	and	few	can	tolerate	strictly	anaerobic	conditions.	The	ability	of	yeasts	to	

grow	under	oxygen-limited	conditions	seems	to	be	strictly	dependent	on	the	ability	to	

perform	alcoholic	fermentation	(Dashko	et	al.,	2014).		

S.	cerevisiae	is	a	facultative	fermentative	yeast	and	it	requires	oxygen	for	the	synthesis	

of	 oleic	 acid	 and	 ergosterol	 (Andreasen	 and	 Stier,	 1953,	 1954).	 Although	 the	

concentration	of	molecular	oxygen	is	particularly	low	during	wine	fermentation,	several	

practices	that	are	employed	during	the	first	stages	of	winemaking,	such	as	pumping	over	

or	micro-oxygenation,	can	transiently	but	significantly	increase	the	O2	concentration.	

2.	OXIDATIVE	STRESS	

During	 the	 winemaking	 process,	 yeasts	 must	 respond	 to	 environmental	 changes	

primarily	 produced	 by	 fluctuations	 in	 the	 dissolved	 oxygen	 concentration,	 pH,	

osmolarity,	ethanol	concentration,	nutrient	starvation	and	temperature.		Furthermore,	

practices	such	as	using	selected	natural	yeasts	have	been	created	and	commercialized	

as	 active	 dry	 yeasts	 to	 use	 as	 an	 inoculum	 for	 must	 fermentations,	 increasing	 the	

magnitude	of	 the	 stresses	 to	which	yeasts	are	 subjected	 (Gómez-Pastor	et	al.,	 2012;	

Pretorius,	2000).	

Oxygen	is	a	highly	reactive	molecule	that	can	be	partially	reduced	to	generate	reactive	

species	oxygen	(ROS),	including	superoxide	anions	(O2
·-),	singlet	oxygen	(1O2),	hydroxyl	

radicals	(OH-)	or	hydrogen	peroxide	(H2O2)	(Figure	5).	 In	a	biological	context,	ROS	are	

the	natural	byproducts	of	the	normal	metabolism	of	oxygen,	and	they	have	important	

roles	 in	 cell	 signaling.	 However,	 the	 ROS	 levels	 can	 increase	 dramatically,	 thereby	

disturbing	the	imbalance	between	the	systemic	manifestation	of	ROS	and	the	biological	

systems	to	readily	detoxify	the	reactive	intermediates	or	repair	the	resulting	damage.	

Cumulative	ROS	is	known	as	oxidative	stress.	
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Figure	5.	Formation	of	reactive	oxygen	species	(Kiley	and	Storz,	2004).	

	

The	oxidative	stress	response	is	triggered	when	cells	sense	an	increase	in	ROS,	which	

may	result	from	the	following:		

Ø The	transition	from	anaerobic	to	aerobic	conditions	

Ø An	 increase	 in	 the	mitochondrial	 respiratory	 chain	 activity	 (e.g.,	when	 yeasts	

change	from	a	fermentable	to	a	non-fermentable	carbon	source)	

Ø The	exposure	of	the	cells	to	low	concentrations	of	oxidants	such	as	H2O2	or	drugs	

that	generate	superoxide	radicals	

Ø The	decrease	in	antioxidant	defenses	

	

Excessive	ROS	can	overwhelm	 the	cellular	mechanism,	damage	cellular	 structures	by	

oxidizing	lipids,	proteins,	carbohydrates	and	nucleic	acids	and	even	lead	cells	to	death	

(Halliwell	and	Gutteridge,	1990).	

Although	alcoholic	fermentation	is	an	anaerobic	process,	oxidative	stress	is	considered	

one	cause	of	the	early	mortality	of	yeasts	during	fermentation.	However,	it	is	important	

to	highlight	that	other	types	of	stresses	can	generate	ROS.	For	exemple,	the	mechanism	

of	 ethanol	 toxicity	 includes	 a	 generalized	 increase	 in	 oxidative	 stress,	 and	 ethanol	

accumulation	during	batch	fermentation	leads	to	the	generation	of	hydrogen	peroxide	

and	superoxide	as	the	primary	ROS	(Pérez-Gallardo	et	al.,	2013).	Furthermore,	there	is	

a	considerable	overlap	between	the	yeast	oxidative	stress	responses	and	other	stress	

responses,	 including	 starvation,	 heat	 shock,	 osmotic	 shock	 and	 resistance	 to	 heavy	

metals	such	as	cadmium	(Jamieson,	1998).	

Spontaneous univalent electron
transfer	from reduced components
of	the electron transport chain

Enzymatic or
spontaneous dismutation Reaction with Fe2+

molecular	oxygen superoxide hydrogen peroxide hydroxyl radical water

REDUCTION	(additional electrons)
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As	such,	the	presence	of	oxygen	plays	an	important	role	during	the	winemaking	process	

throughout	the	following	uses:	

Ø Biomass	propagation:	Active	dry	yeast	(ADY)		

The	ADY	 that	 is	used	as	a	 starter	 in	alcoholic	 fermentation	must	be	 functionally	and	

metabolically	active	to	facilitate	the	quick-start	of	the	process	(Poirier	et	al.,	2002).	To	

this	 end,	 ADYs	 are	 subjected	 to	 a	 multiple-stage	 process	 that	 involves	 continuous	

oxidative	stress	steps	primarily	due	to	the	maintenance	of	production	under	respiratory	

metabolism,	which	could	negatively	affect	the	yeast	performance	further	(Pérez-torrado	

et	al.,	2005,	2009).	

To	initiate	the	biomass	propagation	step,	the	cells	are	firstly	inoculated	into	the	batch	

while	 using	 molasses	 as	 a	 carbon	 source,	 and	 ammonia,	 urea,	 phosphoric	 acid	 and	

magnesium	sulfphate	meet	the	nitrogen,	phosphorous	and	magnesium	requirements	

(Figure	6).	Then,	the	process	 initiates	a	sequence	of	consecutive	batch	and	fed-batch	

fermentations	 in	 increasing	 volumes	 until	 being	 finished	 during	 the	 “commercial”	

fermentation	 (Gómez-Pastor	et	al.,	2011;	 	Degre,	1993;	Chen	and	Chiger,	1985).	This	

methodology	 is	 aimed	 at	 favoring	 respiratory	 metabolism	 to	 obtain	 higher	 biomass	

rates.	

	

	

	

	

	

	

	

	

Figure	6.	Diagram	of	the	different	stages	in	the	industrial	yeast	biomass	propagation	process	(Gómez-
Pastor	et	al.,	2011).	
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In	 addition,	 as	 cells	 are	 aerated	 to	minimize	 the	 fermentative	process,	 the	oxidative	

stress	is	accentuated.	Nevertheless,	aeration	is	important	for	promoting	the	synthesis	

of	 unsaturated	 fatty	 acid	 and	 ergosterol,	 the	 absence	 of	 which	might	 affect	 plasma	

membrane	 functions,	 increasing	 ethanol	 sensitivity	 (Degre,	 1993).	 Cells	 within	 the	

maturation	 step	 experience	 2	 h	 of	 rest	 time,	 and	 then	 they	 reach	 stationary	 phase,	

during	 which	 they	 accumulate	 metabolites	 such	 as	 glycogen	 and	 trehalose.	 These	

metabolites	will	help	them	to	better	resist	the	rest	of	the	drying	process	and	maintain	a	

suitable	fermentative	capacity	after	rehydration.	At	the	end	of	the	biomass	propagation,	

the	 yeasts	 are	 separated	 from	 the	 fermented	media	by	 centrifugation.	 The	 resulting	

yeast	paste	is	dehydrated	by	using	rotatory	and	press	vacuum	filters	until	the	product	

displays	less	than	8%	of	its	residual	humidity	and	is	then	packed	under	a	vacuum	or	inert	

atmosphere	and	stored	for	long	periods	(Chen	and	Chiger,	1985;	Gómez-Pastor	et	al.,	

2011).	

Ø Replicative	and	chronological	lifespan	

Cellular	 ageing	 can	 be	 measured	 using	 two	 models	 as	 follows:	 replicative	 ageing	 is	

defined	by	the	number	of	daughter	cells	produced	by	a	mother	cell	before	senescence	

(replicative	 lifespan,	 RLS),	 and	 chronological	 ageing	measures	 the	 time	 in	 stationary	

phase	during	which	a	cell	can	maintain	its	viability	in	a	non-dividing	state	(chronological	

lifespan,	CLS)	(Figure	7;	Kaeberlein,	2010).	ROS	are	known	to	have	a	direct	role	in	cellular	

ageing	(Gutteridge	and	Halliwell,	2000).	In	the	replicative	model,	both	ageing	and	age-

related	 damage	 are	 inherited	 by	 the	 daughter	 cell	 from	 the	 mother	 cell,	 and	 the	

daughter	retains	its	full	replicative	capacity	until	the	end	of	the	RLS	of	the	mother	cell.	

In	the	chronological	model,	damage	is	accumulated	over	time	within	a	non-dividing	cell	

until	 the	cell	 is	no	 longer	able	 to	 re-enter	 the	cell	 cycle	 (Figure	7;	Kaeberlein,	2010).	

Although	 the	 CLS	 has	 a	 negative	 impact	 on	 the	 RLS,	 the	 CLS	 becomes	 increasingly	

significant	during	the	winemaking	process	because	fermentation	is	performed	mostly	

by	 non-dividing	 cells.	 As	 explained	 above,	 modern	 winemaking	 practices	 use	 the	

inoculation	 of	 grape	 juice	 with	 ADY	 at	 high	 concentrations	 to	 initiate	 the	 alcoholic	

fermentation;	 under	 these	 conditions,	 yeast	 divides	 only	 4-6	 times,	 far	 from	 the	 20	

divisions	as	a	mean	of	natural	isolates.	Therefore,	the	RLS	is	not	a	limiting	factor	for	the	

yeast	performance,	unlike	 the	CLS,	which	 is	 3-4	 times	 longer	 than	 the	growth	phase	
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under	winemaking	conditions	(Orozco	et	al.,	2012).	Moreover,	the	oxidative	stress	effect	

on	the	CLS	has	a	paradoxical	role	because	greater	ROS	production	has	a	negative	impact	

but	 is	 also	 essential	 for	 extending	 the	 lifespan,	 increasing	 cell	 tolerance	 to	 oxidative	

stress	(Fabrizio	and	Longo,	2003;	Orozco	et	al.,	2012).		

	

Figure	7.	Damage	accumulation	during	yeast	ageing	(Modified	from	Kaeberlein,	2010).	

	

Ø Micro-oxygenation		

Micro-oxygenation	is	a	common	winemaking	treatment	that	is	used	to	introduce	oxygen	

into	 wine	 in	 a	 controlled	 manner,	 with	 the	 aim	 of	 improving	 the	 red	 wine	 color	

development	and	diminish	the	vegetal	aroma,	among	other	effects	(Figure	8).	Thus,	it	is	

not	a	“real”	oxidative	stress,	but	oxygen	does	play	an	important	role;	consequently,	the	

micro-oxygenation	 impacts	 the	 yeast	 redox	 balance,	 releasing	 ROS	 during	 alcoholic	

fermentation	 (Salmon,	2006).	A	correct	addition	of	oxygen	can	confer	higher	cellular	

tolerance	 to	ethanol	 and	 fermentative	activity.	 In	 general,	 yeasts	need	5-10	mg/L	of	

oxygen	during	the	initial	growing	phase.	At	the	beginning	of	the	winemaking	process,	

grape	must	is	saturated	with	oxygen,	but	at	the	end	of	the	growing	phase,	the	yeast	still	

needs	oxygen;	this	 is	 the	key	moment	for	oxygen	addition	(Han	et	al.,	2017;	Salmon,	

2006).	Under	anaerobic	 conditions,	 yeast	 growth	normally	 requires	added	oxygen	 to	

synthesized	 lipids	 (sterols	 and	 unsaturated	 fatty	 acids	 (UFA))	which	 are	 essential	 for	
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plasma	 membrane	 integrity	 (Andreasen	 and	 Stier,	 1953,	 1954).	 Oxygen	 availability	

during	the	first	stages	of	alcoholic	fermentation	favored	the	persistence	of	several	non-

Saccharomyces	yeasts	(Hansen	et	al.,	2001).	By	contrast	selective	oxygen	addition	at	the	

end	of	growth	phase	during	mixed	culture	fermentations	of	grape	musts	 favored	the	

Saccharomyces	strain	(Salmon,	2006).	

	

Figure	8.	Diagram	of	red	wine	technology	and	possible	oxygen	additions	(From	Gómez-Plaza	and	Cano-
López,	2011).	

	

3.	YEAST	OXIDATIVE	STRESS	RESPONSE	

Yeasts	have	developed	mechanisms	to	respond	to	oxidative	stress.	These	mechanisms	

are	obviously	aimed	at	protecting	yeast	from	the	detrimental	effects	of	redox	imbalance	

and	at	repairing	possible	damage	but	also	at	acquiring	cellular	oxidative	stress	tolerance.	

The	 oxidative	 stress	 response	 involves	 sensor	 systems	 and	 the	 activation	 of	 signal	

transduction	pathways	that	adjust	the	genomic	expression	program	to	activate	the	most	

efficient	response.	In	addition	to	activating	a	specific	response	against	oxidative	stress,	

yeasts	have	developed	a	common	molecular	mechanism	for	cellular	protection	that	is	

provoked	when	cells	are	exposed	to	different	stressful	stimuli.	Thus,	exposure	to	one	

type	of	stress	leads	to	tolerance	to	other	types	of	stress	as	well	(Costa	and	Moradas-

Ferreira,	2001;	Gibson	et	al.,	2007)	(Figure	9).	
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Figure	9.	Schematic	representation	of	the	different	molecular	and	physiological	responses	of	yeast	to	
changes	in	the	environment	(Modified	from	Costa	and	Moradas-Ferreira,	2001).	

	

Thus,	both	the	specific	and	general	stress	responses	are	initiated	by	oxidative	challenges	

(Costa	 and	 Moradas-Ferreira,	 2001).	 Adaptations	 to	 stress	 conditions	 involve	 early	

responses	to	provide	almost	immediate	protection	against	sublethal	stress	conditions,	

and	late	responses	provide	more	efficient	protection	against	a	severe	stress	and	allow	

cells	 to	 return	 to	non-stress	conditions	 (Figure	9).	Early	 responses	 result	 in	 the	post-

translational	 activation	 of	 pre-existing	 defenses,	 and	 the	 activation	 of	 signal	

transduction	pathways	 that	 initiate	 late	 responses,	namely,	 the	de	novo	synthesis	of	

stress	proteins	and	antioxidant	defenses.	

There	are	many	studies	on	the	response	mechanisms	of	S.	cerevisiae	 to	the	different	

drugs	that	are	used	to	generate	oxidative	stress.	Among	them,	hydrogen	peroxide	has	

been	commonly	used	as	an	oxidative	stress	promoter	model.	This	molecule	is	formed	

during	 normal	 aerobic	 respiration	 but	 also	 after	 exposure	 to	 several	 environmental	

factors.	 It	 not	 only	 generates	 oxidative	 stress	 damage	 but	 also	 serves	 as	 a	 signaling	

molecule	for	the	regulation	of	several	biological	processes	(Veal	et	al.,	2007).		

3.1.	Antioxidant	defense	systems	

Antioxidant	 defense	 systems	 are	 present	 in	 cells	 under	 physiological	 conditions;	

however,	they	confer	a	limited	capacity	to	resist	sudden	oxidative	aggression.	Thus,	cells	

induce	 the	 antioxidant	 defenses	 and	 protective	 factors	 needed	 to	 survive.	 These	
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antioxidant	defense	systems	are	grouped	into	enzymatic	(Table	2)	and	non-enzymatic	

(Table	3)	systems	that	operate	at	different	 levels	(Costa	and	Moradas-Ferreira,	2001;	

Jamieson,	 1998;	 Moradas-Ferreira	 and	 Costa,	 2000).	 The	 defense	 systems	 include	

several	enzymes	that	are	able	to	remove	oxygen	radicals	and	their	products	and/or	to	

repair	 the	 oxidative	 damage.	 By	 contrast,	 non-enzymatic	 defense	 systems	 consist	 of	

small	molecules	that	act	as	radical	scavengers	(Jamieson,	1998).		

	

	Table	 2.	 The	most	 relevant	 enzymatic	 antioxidant	 systems	 in	 S.	 cerevisiae	 (adapted	 from	 Costa	 and	
Moradas-Ferreira,	 2001;	 Estruch,	 2000;	 Grant,	 2001;	 Jamieson,	 1998;	 Moradas-Ferreira	 et	 al.,	 1996;	
Moradas-Ferreira	and	Costa,	2000;	Walker	and	Van	Dijck,	2006).		

	

Enzymatic	system	 Protein	 Localization	 Function	

Catalases	
Cta1p	 Peroxisome	 Decomposition	of	H2O2	to	H2O	and	O2	

	Ctt1p	 Cytosol	

Superoxide	
dismutases	

Sod1p	 Cytoplasm	
Dismutation	of	superoxide	anion	to	H2O	and	O2	Sod2p		 Mitochondria	

Enzymes	of	pentose	
phosphate	pathway	

Zwf1p	 Cytoplasm	 Reduction	of	NADP+	to	NADPH	

Tkl1p	 Cytoplasm	

Rpe1p	 Cytosol	

Glutathione	
reductase	

Glr1p	
Cytosol	
Mitochondria	

Reduction	of	oxidized	glutathione	(GSSG)	

Glutathione	
peroxidases	

Gpx1p	
Mitochondria	
Peroxisome	
Cytosol	

Reduction	of	H2O2	and	organic	peroxides	using	
reduced	glutathione	(GSH)	

Gpx2p	
Cytoplasm	
Mitochondria	
Nucleus	

Gpx3p	
Mitochondria	
Peroxisome	
Cytosol	

Thioredoxin	
peroxidases	

Tsa1p	 Cytosol	

Reduction	of	H2O2	and	alkyl	hydroperoxides		

Tsa2p	 Cytosol	

Ahp1p	 Cytosol	

Prx1p	 Mitochondria	

Dot5p	 Nucleus	

Thioredoxin	
reductase	

Trr1p	 Cytosol	
Thioredoxin	oxidases	reduction	

Trr2p	 Mitochondria	
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Table	3.	The	most	relevant	non-enzymatic	antioxidant	systems	in	S.	cerevisiae	(adapted	from	Costa	and	
Moradas-Ferreira,	 2001;	 Estruch,	 2000;	 Grant,	 2001;	 Jamieson,	 1998;	 Moradas-Ferreira	 et	 al.,	 1996;	
Moradas-Ferreira	and	Costa,	2000;	Walker	and	Van	Dijck,	2006).		

	

	

	

Among	its	enzymatic	strategies,	S.	cerevisiae	has	developed	a	sophisticated	mechanism	

to	detoxify	ROS	as	follows:	one	group	of	enzymes	acts	directly	as	ROS	detoxifiers,	and	

the	second	group	consists	of	enzymes	that	act	as	redox	regulators	of	protein	thiols	and	

help	 maintain	 the	 redox	 balance	 of	 the	 cell	 (Herrero	 et	 al.,	 2008).	 However,	 both	

strategies	overlap	(Figure	10).	

	

Non-enzymatic	

system	
Protein	 Localization	 Function	

Glutathione	

Glutamate-

cysteine	ligase	

Cytosol	

Mitochondria	

Synthesis	of	reduced	glutathione	

(GSH).		

Reduction	of	protein	disulphides,	

scavenging	of	free	radicals,	

conjugation	with	electrophilic	

substrates,	binding	of	Cd			

Glutathione	

synthase	
	

Glutaredoxin	

Grx1p	 Cytoplasm	

Glutathione	peroxidase	activity	

Glutathione	S-transferase	activity	

Grx2p	
Cytoplasm	

Mitochondria	

Grx3p	 Nucleus	

Nucleous	Grx4p	

Grx5p	 Mitochondria	

Grx6p	 Endoplasmic	

reticle	Grx7p	

Thioredoxins	

Trx1p	
Cytosol	

Reduction	of	protein	disulphides	

Trx2p	

Trx3p	 Mitochondria	

Poliamines	 	 	
React	with	ROS,	specially	with	O2

-.	

Protection	of	lipids	from	oxidation	

Methallothioneins	

Cu-MT	(1-1)	

Cytosol	

Avoid	ROS	production	by	Fenton	

reaction.		

Store	metals	in	a	non-toxic	form	
Cu-MT	(1-2)	
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Figure	10.	Primary	interrelationships	between	different	enzymatic	systems	involved	in	detoxification	
and	the	control	of	the	redox	state	in	S.	cerevisiae	(From	Herrero	et	al.,	2008).	

	

Ø Superoxide	dismutases	(SODs)	

Yeast	cells	possess	two	intracellular	SODs,	the	cytoplasm-located	Cu/Zn-Sod,	which	 is	

encoded	by	the	SOD1	gene,	and	the	mitochondria-located	Mn-Sod,	which	is	encoded	by	

the	 SOD2	 gene	 (Jamieson,	 1998).	 Both	 SODs	 catalyze	 the	 disproportionation	 of	 the	

superoxide	anion	into	H2O2,	and	their	activity	requires	redox-active	metal	ions	(Herrero	

et	 al.,	 2008).	 Because	 of	 the	 slower	 growth	 of	 Sod2	 null	mutants	 under	 respiratory	

conditions,	 Mn-Sod	 seems	 to	 be	 essential	 for	 eliminating	 the	 superoxide	 anions	

generated	by	the	respiratory	chain	(Jamieson,	1998;	Moradas-Ferreira	et	al.,	1996).	By	

contrast,	Sod1	seems	to	be	essential	for	targeting	externally	added	oxidants,	and	it	plays	

a	role	in	protecting	cells	against	respiration-derived	superoxide	anions	(Herrero	et	al.,	

2008).	 In	 fact,	 Sod1	 mutants	 show	 many	 oxygen-related	 growth	 defects,	 such	 as	

cysteine,	methionine	and	 lysine	auxotrophy,	when	they	are	grown	 in	air.	These	Sod1	

defects	 can	be	 suppressed	by	 the	overexpression	of	metallothioneins,	which	directly	

minimizes	OH	radicals	through	the	sequestration	of	transition	metals	such	as	copper	and	

iron		(Halliwell,	1996;	Kumari	et	al.,	1998).	

Ø Catalases	

Catalases	catalyzes	the	breakdown	of	H2O2	into	O2	and	H2O,	and	as	SODs,	they	depend	

on	the	redox	properties	of	the	metal	group	associated	with	the	enzyme	(Herrero	et	al.,	
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2008).	S.	cerevisiae	has	two	catalases:	catalase	A	(Cta1)	is	encoded	by	the	CTA1	gene,	

which	localizes	at	peroxisomes,	and	catalase	T	(Ctt1)	is	encoded	by	CTT1	gene,	which	is	

cytosolic	 (Cohen	 et	 al.,	 1988;	 Hartig	 and	 Ruis,	 1986).	 Catalase	 A	 is	 involved	 in	 the	

detoxification	of	the	H2O2	generated	by	acyl-CoA	oxidase	during	fatty	acids	b-oxidation	

in	 peroxisomes.	 The	 role	 of	 catalase	 T	 at	 the	 cytosol	 is	 less	 clear	 because	 null	 Ctt1	

mutants	 display	wild	 type	 exponential	 growth	 under	 aerobic	 conditions	 and	 are	 not	

more	sensitive	to	H2O2	than	are	wild-type	cells	(Izawa	et	al.,	1995,	1996).	However,	their	

expression	is	regulated	by	oxidative	and	osmotic	stresses	and	even	by	starvation		(Ruis	

and	Schüller,	1995).	Furthermore,	the	double	Cta1	and	Ctt1	mutants	are	hypersensitive	

to	H2O2	during	the	stationary	phase,	and	both	single	and	double	catalase	mutants	are	

unable	to	mount	an	adaptive	response	to	H2O2	(Izawa	et	al.,	1996;	Martinez-Pastor	et	

al.,	1996).	

Ø Peroxidases	

Unlike	catalases	and	SODs,	the	role	of	peroxidases	as	ROS	detoxifiers	does	not	depend	

on	the	redox	properties	of	the	metal	group	associated	with	the	enzyme.	Peroxidases	act	

by	reducting	of	organic	and	inorganic	peroxides	into	alcohol	with	the	help	of	active	site	

cysteine	 thiols.	 Thus,	 the	 electrons	 of	 thiols	 are	 essential	 for	 peroxidase	 activity.	

Depending	on	 this	 property,	 two	 types	of	 peroxidases	 exist:	 glutathione	peroxidases	

(GPXs),	which	use	GSH,	and	thioredoxin	(TRX)	peroxidases	(also	named	peroxiredoxins	

(PRXs)),	which	 use	 TRXs	 as	 reductants	 (Herrero	 et	 al.,	 2008).	 Three	GPXs	 have	 been	

described	in	S.	cerevisiae,	and	they	are	called	Gpx1,	Gpx2	and	Gpx3.	However,	further	

studies	have	shown	that	GPX	proteins	are	similar	in	sequence,	structure,	and	function	

to	phospholipid	hydroperoxide	glutathione	peroxidases	(PHGPxs),	the	primary	enzymes	

for	repairing	membrane	lipid	peroxidation	(Avery	et	al.,	2004;	Avery	and	Avery,	2001).	

Thus,	in	addition	to	protecting	cells	directly	from	peroxides	during	oxidative	stress,	they	

also	regulate	and	act	as	a	hydroperoxide	sensor	for	the	oxidative	stress	transcription	

factor	Yap1	(Avery	et	al.,	2004;	Delaunay	et	al.,	2002;	Ma	et	al.,	2007).	

Ø Glutathione/glutaredoxins	and	thioredoxins	systems	

	The	glutathione/glutaredoxin	and	thioredoxin	systems	are	two	of	the	most	important	

antioxidant	defenses	for	maintaining	the	reduced	environment	of	the	cell,	and	they	play	

an	especially	significant	role	 in	defending	the	cell	against	oxidative	stress	(Figure	11).	
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These	antioxidant	 systems	have	been	described	as	 essential	 under	both	aerobic	 and	

anaerobic	conditions	(Auchère	et	al.,	2008;	Grant,	2001;	Herrero	et	al.,	2008).		

The	 tripeptide	 glutathione	 (g-glutamylcysteinylglycine,	 or	 GSH)	 is	 well	 known	 as	 the	

primary	 and	 most	 abundant	 endogenous	 antioxidant	 in	 the	 cells,	 consisting	 of	 a	

ubiquitous	low-molecular-mass	thiol	with	high	reducing	power	due	to	its	free	sulfhydryl.	

GSH	directly	reacts	with	ROS,	donating	an	electron	to	neutralize	them	and	becoming	

reactive	itself,	and	GSSG,	its	oxidized	state,	is	formed	through	the	combination	of	two	

reactive	forms	of	GSH.	Thus,	the	presence	of	ROS	results	in	a	decrease	in	GSH	and	an	

increase	in	GSSG,	for	which	cells	try	to	compensate	through	the	action	of	glutathione	

reductase	 (Glr1),	which	 reduces	GSSG	 to	GSH	 in	 an	NADPH-dependent	 process,	 and	

through	the	synthesis	of	new	GSH,	which	 involves	two	ATP-dependent	steps	that	are	

catalyzed	by	g-glutamylcysteine	synthetase	(GSH1)	and	glutathione	synthetase	(GSH2)	

(Figure	11).	During	the	first	step,	GSH1	catalyzes	the	formation	of	g-glutamylcysteine	

from	 glutamic	 acid	 and	 cysteine.	 In	 the	 second	 step,	GSH2	 catalyzes	 the	 ligation	 of	

glycine	 with	 the	 dipeptide	 (Grant	 et	 al.,	 1997;	 Izawa	 et	 al.,	 1995;	 Jamieson,	 1998;	

Moradas-Ferreira	et	al.,	1996).	

Glutaredoxins	(GRXs)	are	small	heat-stable	proteins	with	an	active	site	containing	two	

redox-sensitive	 cysteines.	 These	 enzymes	 act	 as	 thiol	 oxidoreductases	 that	 are	

responsible	for	reducing	protein	disulfides	or	glutathione-protein	mixed	disulfides.	The	

GRX	system	also	 includes	NADPH,	and	because	of	GRX,	Glr1	 is	 reduced	by	GSH	using	

electrons	donated	by	NADPH.	GRXs	are	divided	in	two	families.	The	first	one	protects	

the	 cells	 against	 superoxide	 anions	 (Grx1)	 and	 H2O2	 (Grx2).	 Both	 GRXs	 have	 been	

demonstrated	 to	be	active	as	glutathione	peroxidases	and	glutathione	S-transferases	

(Collinson	and	Grant,	2003).	The	second	one	includes	six	other	members	(Grx3-8),	which	

are	present	in	different	subcellular	compartments.	Grx3/4	are	involved	in	intracellular	

iron	trafficking.	Grx5	has	a	potential	role	in	the	protecting	against	oxidative	stress	during	

growth	under	normal	conditions	and	after	exposure	to	oxidant	agents	such	as	H2O2	and	

menadione	(Estruch,	2000;	Morano	et	al.,	2012).	Grx6/7	are	thought	to	be	involved	in	

the	 regulation	 of	 sulfhydryl	 in	 the	 early	 secretory	 pathways	 under	 stress	 conditions.	

Finally,	Grx8	does	not	seem	to	have	a	function	in	the	oxidative	stress	response	(Morano	

et	al.,	2012).	
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Thioredoxins	 are	 small	 oxidoreductases;	 as	 GRXs,	 they	 possess	 two	 redox-sensitive	

cysteines	 in	 their	active	sites.	The	primary	difference	between	them	is	whether	their	

thioredoxins	are	directly	reduced	by	NADPH	through	the	thiorredoxin	reductase	(Trr1,	

Trr2).	 Thus,	 the	 thioredoxin	 system	 consists	 of	 thioredoxins	 (Trx),	 thioredoxin	

reductases	(Trr)	and	NADPH.	Yeasts	possesses	one	thioredoxin	system	in	the	cytoplasm	

(Trx1,	Trx2	and	Trr1)	and	the	other	system	in	the	mitochondria	(Trx3	and	Trr2).	The	Trx3	

oxidation	 state	 might	 depend	 on	 Trr2	 in	 cells	 that	 are	 exposed	 to	 oxidative	 stress,	

whereas	under	normal	 growing	 conditions,	 they	 stay	 in	 a	 reduced	 form,	even	 in	 the	

presence	of	the	TRR2	gene.	The	suppression	of	TRX1	and	TRX2	has	been	shown	to	result	

in	a	decreased	resistance	to	H2O2	(Estruch,	2000;	Trotter	and	Grant,	2005).		

	

	

	

	

	

	

	

	

	

	

	

Figure	11.	Scheme	of	the	cytosolic	and	mitochondria	glutathione/glutaredoxin	and	thioredoxin	systems	
(From	the	doctoral	thesis	of	García,	2008). (�)	reduced	form,	(�)	oxidized	form).	

	

As	 shown	 in	 Figure	 11,	 glutathione,	 glutarredoxins	 and	 thioredoxins	 share	 common	

operational	traits.	The	redox	status	of	GSH	may	provide	a	functional	link	between	the	

glutathione/glutaredoxin	 and	 thioredoxin	 systems	 because	 cytoplasmic	 thioredoxins	

function	along	with	Glr1	to	maintain	the	high	intracellular	GSH/GSSG	ratio	(Trotter	and	
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Grant,	 2002,	 2005).	 Furthermore,	 thioredoxins	 indirectly	 influence	

glutathione/glutaredoxin	 through	 Yap1	 transcription	 factor,	 which	 regulates	 several	

genes	 involved	 in	 the	 oxidative	 stress	 response,	 including	 genes	 for	 the	 glutathione	

synthesis	(Estruch,	2000).	Oxidation	of	Yap1	avoids	its	export	from	the	nucleus	activating	

then,	the	expression	of	numerous	genes	including	TRR1	and	TRX2.	Thioredoxin	system	

is	 responsible	 for	 reducing	 and	deactivating	 Yap1.	 It	 is	 such	a	 loop	of	 self-regulation	

where	oxidative	stress	activates	Yap1	which	activates	recovery	systems	which	in	turns	

inactivate	Yap1	 to	 restore	 the	equilibrium	 (Delaunay	et	 al.,	 2000;	 Izawa	et	 al.,	 1999;	

Temple	et	al.,	2005).	

3.2.	Regulation	of	oxidative	stress	response	

3.2.1.	Transcription	factors	

The	specific	strategies	of	different	cellular	antioxidant	defense	systems	are	related	to	

their	 differential	 regulation,	 by	which	 specific	 genes	 increase	 their	 expression	 under	

oxidative	 conditions	 as	 part	 of	 an	 oxidative	 stress	 response	 pathway	 (Table	 4).	 The	

transcription	factors	Yap1,	Skn7,	Msn2	and	Msn4	are	the	primary	regulators	of	the	S.	

cerevisiae	 oxidative	 stress	 response	 and	 of	 cells	 that	 grow	 aerobically.	 The	 Hap1	

transcription	factor	is	also	included	in	this	group,	and	it	regulates	the	genes	encoding	

components	 of	 the	 mitochondrial	 respiratory	 chain	 through	 the	 CGGnnnTAnCGG	

consensus	core	sequence	(Godon	et	al.,	1998;	Costa	and	Moradas-Ferreira,	2001).	Yap1	

is	 a	member	of	 the	Yap	 family	 that	binds	 to	 YRE	 (consensus	 TTACTAA	or	 TGACTAA),	

conferring	 the	ability	 to	 tolerate	oxidants	 such	as	H2O2	 through	 the	up-regulation	of	

genes	 that	 encode	most	of	 the	 antioxidant	 enzymes	and	 components	of	 the	 cellular	

thiol-reducing	pathways.	 Skn7	 is	 a	 transcription	 factor	 that	 co-regulates	many	 target	

proteins	in	response	to	H2O2	in	association	with	Yap1.	Unlike	Yap1,	this	transcriptional	

regulator	does	not	participate	in	the	regulation	of	metabolic	pathways	that	regenerate	

glutathione	and	NADPH.	Msn2	and	Msn4	(Msn2/4)	activate	genes	that	are	involved	in	

the	 general	 stress	 response,	 the	 promoters	 of	 which	 contain	 the	 stress	 response	

element	(STRE:CCCCT).	These	elements	respond	to	a	wide	variety	of	stresses,	including	

nutritional,	osmotic,	acidic	and	oxidative	stresses	(Costa	and	Moradas-Ferreira,	2001;	

Delaunay	et	al.,	2000;	Godon	et	al.,	1998;	Hasan	et	al.,	2002).		
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Table	4.	Compilation	of	most	of	the	genes	induced	by	oxidative	stress	and	their	regulation	by	transcription	
factors	(TF)	(Costa	and	Moradas-Ferreira,	2001;	Hohmann	and	Mager,	1997).	

Gene	 Function	 Hydrogen	peroxide	 Respiratory	growth	
Induction	 TF	 Induction	 TF	

Glutathione	system	 	 	 	 	 	
GSH1	
	
GSH2	
GLR1	
GPX1	
GPX2	
GRX1	
GRX2	

Glutamate-cysteine	
ligase	
Glutathione	synthetase	
Glutathione	reductase	
Glutathione	persoxidase	
Glutathione	peroxidase	
Glutaredoxin	
Glutaredoxin	

+	
	
+	
+	
+	
+	
+	
+	

Yap1	
	
Yap1	
Yap1	
?	
Yap1	
Msn2/4	

	
	
	
+	
+	
	
+	
+	

	
	
	
Yap1;?	
?	
	
?	
?	

Thioredoxin	system	 	 	 	 	 	
TRX2	
TRR1	
TSA1	
AHP1	
mTPx	
cTPII	

Thioredoxin	2	
Thioredoxin	reductase	
Thiol	peroxidase	
Thiol	peroxidase	
Thiol	peroxidase	
Thiol	peroxidase	

+	
+	
+	
+	
+	
+	

Yap1;Skn7	
Yap1;Skn7	
Yap1;Skn7	
Yap1;Skn7	
?	
Yap1;Skn7	

	 	

Other	antioxidants	 	 	 	 	 	
CCP1	
	
CTA1	
CTT1	
	
SOD1	
SOD2	
	
CUP1	

Cytochrome-c	
peroxidase	
Catalase	A,	peroxisomal	
Catalase	T,	cytosolic	
	
Superoxide	dismutase	
Superoxide	dismutase	
	
Metallothionein	

+	
	
+	
+	
	
+	
+	
	

Yap1;Skn7	
	
Yap1	
Yap1;Skn7,	
Msn2/4;	
Yap1;Skn7	
Yap1;Skn7	
	

+	
	
+	
+	
+	
+	
	
	
+	

?	
	
?	
Msn2/4	
?	
	
Mns2/4p;		
HAP2/3/4/5	
?	

Drug	transporters	 	 	 	 	 	
FLR1	
ATR1	

ATP	transporter	
ATP	transporter	

+	
+	

Yap1	
Yap1	

	 	

Carbohydrates	
metabolism	

	 	 	 	 	

ZWF1	
NTH1	
TSL1	
TPS1	
TPS2	
UGA2	
	
ALD3	

G-6-P	dehydrogenase	
Neutral	trehalase	
Trehalose-6-P	synthase	
Trehalose-6-P	synthase	
Trehalose-6-P	synthase	
Succinate	 semialdehyde	
dehydrogenase	
Aldehyde	
dehydrogenase	

+	
+	
+	
+	
+	
+	
	
+	

Yap1	
	
Msn2/4	
Yap1	
	
Msn2/4	
	
Msn2/4	

	 	

Heat	shock	proteins	 	 	 	 	 	
SSA1	
SSA3	
SSA4	
HSP12	
HSP26	
HSP42	
HSP82	
HSP104	

HSP70	family	
HSP70	family	
HSP70	family	
HSP	
HSP	
HSP	
HSP	
HSP	

+	
+	
+	
+	
+	
+	
+	
+	

Yap1;Skn7	
	
	
Skn7;Msn2	
	
	
Yap1;Skn7	
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3.2.2.	Signaling	oxidative	stress		

Yeasts	have	developed	a	 large	and	complex	regulatory	network	 to	mediate	oxidative	

stress.	The	system	of	regulation	 involves	a	sensing	step	followed	by	the	transduction	

signal	to	different	pathways,	which	overlap	between	them	to	activate	the	best	oxidative	

stress	 response.	 The	TOR,	RAS,	 and	 cell	wall	 integrity	 (CWI)	 signaling	pathways	have	

been	well	characterized	as	routes	that	play	important	role	in	transducing	the	oxidative	

signals	in	S.	cerevisiae	(Torre-Ruiz	et	al.,	2012).	

Mtl1	is	a	transmembrane	protein	and	a	homologue	of	Mid2	that	is	localized	to	the	cell	

periphery.	 It	 has	 been	 described	 as	 being	 responsible	 for	 detecting	 environmental	

changes	 and,	 more	 specifically,	 acting	 as	 an	 oxidative	 stress	 sensor	 and	 nutritional	

starvation	signal	 (Petkova	et	al.,	2010;	Vilella	et	al.,	2005).	Although	Mtl1	 is	 the	best	

candidate	to	act	as	a	cell	surface	sensor,	others	have	been	described,	such	as	actin	or	

the	ROS	produced	in	the	mitochondria	itself,	which	can	act	as	sensors/transmitters	of	

oxidative	stress	(Torre-Ruiz	et	al.,	2012).	

The	CWI	pathway	involves	a	mitogen-activated	protein	kinases	(MAPKs)	cascade,	which	

participates	 in	 sensing	 and	 transmitting	 several	 extracellular	 signals	 and	 stresses,	

including	 cell	 wall,	 osmotic,	 mating	 and	 nutritional	 stresses	 (Figure	 12).	 The	 MAPK	

pathway	 includes	 three	components	 that	activate	each	other	 through	 the	 sequential	

phosphorylation	of	specific	residues	of	conserved	motifs	(MAPKKK,	MAPKK	and	MAPK).	

Six	 plasma	 membrane	 proteins	 (Wsc1-Wsc4,	 Mid2	 and	 Mtl1)	 containing	 a	 single	

transmembrane	segment	have	been	identified	as	being	important	for	activating	the	CWI	

pathway.	They	transmit	signals	to	Rom2,	which	activates	Rho1,	which	in	turn	activates	

the	protein	kinase	Pkc1.	Rho1,	similar	to	Cdc24,	can	interact	with	phosphates	in	the	head	

groups	of	membrane	phospholipids.	Pkc1	is	then	responsible	for	activating	the	sequence	

of	MAPKs	in	the	following	sequence:	Bck1	(MAPKKK)	phosphorylates	Mkk1	and	Mkk2	

(MAPKK),	and	both	activate	Slt2.	Activated	Slt2	is	also	a	regulator	of	gene	expression	via	

the	direct	phosphorylation	and	activation	of	 the	 transcription	 factor	Rlm1	 (Chen	and	

Thorner,	2007;	Torre-Ruiz	et	al.,	2012).	The	upper	elements	of	cell	integrity	are	involved	

in	the	organization	of	the	actin	cytoskeleton	under	different	conditions,	including	cell	

wall	and	nutritional	stresses,	oxidative	stress	and	pH	(Chen	and	Thorner,	2007;	Helliwell	

et	al.,	1998;	Motizuki	et	al.,	2008;	Torres	et	al.,	2002;	Vilella	et	al.,	2005).		
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Although	 CWI	 is	 the	 best-characterized	MAPK	 in	 response	 to	 oxidative	 stress,	 other	

paths	within	MAPK	signaling	modify	the	expression	of	genes	related	to	mating,	the	cell	

cycle	response,	and	osmolality	as	well	as	filamentous	growth	in	response	to	oxidative	

stress	 (Figure	 12,	 Zhao	 et	 al.,	 2015).	 For	 exemple,	 it	 has	 been	 suggested	 that	 H2O2-

mediated	 signaling	 increases	 the	 level	 of	 CDC28	 level,	 favoring	 a	 G2/M	 delay	 and	

filamentation	 (Starovoytova	 et	 al.,	 2013).	 However,	 anoxic	 conditions	 and	 some	

preservatives	have	been	shown	to	have	repressive	effects	on	 invasive	growth	(Zupan	

and	Raspor,	2010).	

	

	

	

	

	

	

	

	

	

	

	

Figure	12.	MAP	Kinase	and	PKA	signaling	pathways.	Red	and	green	colors	indicated	the	up-	and	down-
regulated	genes,	respectively,	of	a	mutant	strain	of	S.	cerevisiae,	which	improve	stress	tolerance	relative	

to	the	wild-type	(From	Zhao	et	al.,	2015).	

	

Phosphatidylinositol	(PI)	plays	an	important	role	in	signaling	regulation.	PI	forms	PI-4-

kinase,	which	 is	encoded	by	STT4	and	 localizes	to	the	plasma	membrane	(Figure	13).		

This	kinase	functions	upstream	of	Pkc1	in	both	the	regulation	of	polarized	growth	and	

in	the	cell	wall	 integrity	pathway.	The	sequential	actions	of	Stt4	and	Mss4	at	the	cell	

surface	 generate	 PI4,5-kinase,	 which	 recruits	 Rom2	 to	 the	 plasma	 membrane.	 The	
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sensors	activate	Rom2,	which	in	turn	activates	Pkc1	(Levin,	2005;	Strahl	and	Thorner,	

2007).	

	

	

	

	

	

	

Figure	13.	Phosphoinositide	signaling	system	at	the	plasma	membrane	(From	Levin,	2005).	

	

The	Pkc1	pathway	is	also	related	to	the	TOR	pathway.	Yeast	possesses	two	different	TOR	

protein	 complexes,	 TORC1	 and	 TORC2,	 which	 are	 encoded	 by	 TOR1	 and	 TOR2,	

respectively.	TORC1	mediates	the	rapamycin-sensitive	signaling	branch,	whereas	TORC2	

signaling	 is	 rapamycin-insensitive	 and	 is	 required	 for	 the	 organization	 of	 the	 actin	

cytoskeleton	 (Figure	 14).	 In	 a	 global	 sense,	 TOR	 inhibits	 the	 transcription	 of	 stress-

responsive	elements,	the	nitrogen	pathway,	starvation	genes,	and	genes	related	to	the	

retrograde	response	through	the	sequestration	of	transcription	factors	in	the	cytoplasm.	

Moreover,	TOR	modulates	translation	initiation,	inhibits	protein	turnover	and	represses	

the	transcription	factors	of	genes	related	to	nutrient	starvation.	The	TOR	function	also	

regulates	ribosomal	protein	expression	in	response	to	environmental	conditions	via	PKA	

(Loewith	et	al.,	2002;	Wullschleger	et	al.,	2006).	

Mitochondrial	retrograde	signaling	(RTG)	 is	the	pathway	for	communication	between	

mitochondria	 and	 the	 nucleus	 under	 normal	 and	 dysfunctional	 mitochondrial	

conditions.	 RTG	 is	 linked	 to	 ageing,	 the	 chronological	 life	 span,	 mitochondrial	 DNA	

maintenance,	TOR	signaling	and	nutrient	sensing	pathways	(Liu	and	Butow,	2006).	RTG	

contains	three	proteins	(Rtg1,	Rtg2	and	Rtg3).	When	this	pathway	is	activated,	Rtg1	and	

Rtg3	form	a	transcription	factor	that	translocates,	with	the	help	of	Rtg2,	to	the	nucleus,	

where	it	controls	the	expression	of	a	set	of	genes	that	code	for	mitochondrial	proteins.	

The	 Lst8	 component	 of	 the	 TOR	 complex	 (Figure	 14)	 negatively	 regulates	 the	 RTG	
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pathway	 at	 the	 Rtg2	 level.	 Mitochondrial	 dysfunction	 leads	 to	 a	 decrease	 in	 the	

intracellular	 ATP	 concentration,	 which	 may	 favor	 Rtg2-Mks1	 interactions	 and	 allow	

Rtg1-Rtg3	 activation.	 One	 target	 of	 the	 RTG	 pathway	 is	 the	 CIT2	 that	 encodes	 a	

peroxisomal	 isoform	of	 citrate	 synthase,	which	enables	 the	cells	 to	utilize	acetate	or	

ethanol	as	the	sole	carbon	sources	(Liao	et	al.,	1991).	

	

Figure	14.	TOR1	and	TOR2	complexes	and	mitochondrial	retrograde	signaling	(RTG)	(From	Da	Cunha	et	
al.,	2015;	Wullschleger	et	al.,	2006).	

	

The	 RAS/cAMP	 pathway	 acts	 immediately	 downstream	 of	 cAMP-dependent	 protein	

kinase	to	control	adaptations	to	nutrient	limitations.	It	controls	the	reprogramming	of	

the	metabolism	at	the	diauxic	transition	when	glucose	becomes	limiting,	some	of	the	

subsequent	 adaptations	 during	 both	 the	 post-diauxic	 phase,	 when	 cells	 grow	

respiratively	 on	 ethanol,	 and	 entry	 into	 the	 stationary	 phase,	 which	 is	 negatively	

controlled	 by	 the	 RAS/cAMP.	 Thus,	 under	 a	 normal	 carbon	 source,	 the	 pathway	 is	

activated	by	GTPases	called	Ras1	and	Ras2,	which	signal	the	protein	kinases	PKA	and	

cAMP,	 thereby	 repressing	 the	 function	 of	 the	 general	 stress	 transcription	 factor	

Msn2/Msn4.	By	contrast,	nutrient	starvation	or/and	oxidative	stress	negatively	regulate	

RAS/cAMP.		

The	protein	kinase	encoded	by	SCH9	increases	the	ROS	through	respiratory	metabolism	

activation,	which	in	turn	decreases	the	life	span	and	increases	DNA	damage	(Madia	et	

al.,	2009).	To	extend	the	life	span,	it	is	necessary	to	down-regulate	the	Sch9	signal	and	

reduce	the	TOR	pathway	function	in	order	to	decrease		the	mitochondrial	activity	(Pan	

and	Shadel,	2009).	

RTG	



INTRODUCTION	

48	
 

As	noted	 at	 the	beginning	of	 the	 section,	 these	 signaling	 routes	 cooperate	with	one	

another	 to	 lead	 to	 the	 best	 response	 according	 to	 the	 needs	 of	 the	 cell.	 Figure	 15	

schematizes	 and	 summarizes	 the	 complex	 interrelations	 between	 the	 different	

pathways	described	before	in	response	to	oxidative	stress.		

	

Figure	15.	Oxidative	stress	response	signaling	network	in	S.	cerevisiae	(From	Torre-Ruiz	et	al.,	2012).	
After	oxidative	stress	is	sensed,	complex	Torc11	and	Ras	activities	are	negatively	regulated.	Torc1	
responds	to	nutrient	availability	and	is	inhibited	by	rapamycin	and	stress	conditions.	When	Torc1	is	
activated,	it	promotes	the	sequestration	of	specific	transcription	factors	in	the	cytoplasm.	Torc1	and	
Ras/cAMP	pathways	activate	the	Sfp1	transcription	factor,	including	ribosomal	gene	expression.	Both	

TORC1	and	RAS	converge	in	Sch9.	RAS	signals	Pka	kinase,	which	inhibits	both	Yak1	kinase	and	
Msn2/Msn4.	Yak1	in	turn	activates	the	Skn7/Hsf1	transcription	factor	that	is	required	for	an	oxidative	
response.	For	this	response,	Torc1	signals	to	Ras	activation.	Torc	inhibits	the	CWI	activity.	However,	the	
Torc2	complex	signals	to	cytoplasm	elements	of	the	CWI	pathway	to	organize	the	actin	cytoskeleton.	
CWI,	cell	wall	integrity;	STRE,	stress-responsive	element;	DAL,	degradation	of	urea	and	allantoin;	NDP,	

nitrogen	discrimination	pathway;	and	RTG,	retrograde	pathway.	

	

4.	YEAST	LIPID	COMPOSITION	AND	OXIDATIVE	STRESS	

Biological	 membranes	 are	 selectively	 permeable	 lipid	 bilayers	 with	 associated	 and	

embedded	proteins,	 and	 they	have	 long	been	proposed	as	one	of	 the	prime	sites	of	

vulnerability	or	tolerance	to	stress	(Ernst	et	al.,	2016;	Hunter	and	Rose,	1972;	Steels	et	



INTRODUCTION	
	

49	
	

al.,	 1994;	 van	 der	 Rest	 et	 al.,	 1995).	 Their	 lipid	 component	 has	 a	 vital	 role	 in	 yeast	

tolerance	 to	 oxidative	 stress	 and	 to	 other	 physiological	 stressors	 because,	 under	

unexpected	 changes	 in	 environmental	 conditions,	 lipids	 are	 able	 to	 change	 the	

organizational	 and	 dynamic	 structure	 of	 the	 membrane	 to	 stabilize	 the	 plasma	

membrane	and	maintain	its	functions	(Arroyo-López	et	al.,	2010;	Beltran	et	al.,	2008;	

Ding	et	al.,	2009;	Redón	et	al.,	2009;	Renaud	and	Lorgeril,	1992;	Rodríguez-Vargas	et	al.,	

2007;	Torija	et	al.,	2003).		

4.1.	Lipid	composition		

The	bulk	of	 total	 cellular	 lipids	 is	 found	 in	biological	membranes	and	can	be	 roughly	

divided	into	the	following	classes:	

Ø Fatty	acids	(FAs)		

FAs	 are	 the	 basic	 components	 of	 complex	 lipids.	 Free	 FAs	 are	 carboxylic	 acids	 with	

hydrocarbon	 chains	 that	 vary	 in	 chain	 length.	 Depending	 on	 their	 double	 bonds	

contents,	 they	 can	 be	 classified	 as	 saturated	 (SFAs	 that	 contain	 no	 double	 bonds),	

monounsaturated	 (MUFAs	containing	one	double	bond)	and	polyunsaturated	 (PUFAs	

containing	more	than	one	double	bond)	(Figure	16;	Boyle	J.	Lehninger,	2005).	

The	major	FAs	in	S.	cerevisiae	are	palmitoleic	(C16:1)	and	oleic	(C18:1)	acids,	followed	

by	palmitic	(C16:0)	and	stearic	(C18:0)	acids	(Klug	and	Daum,	2014).	Unlike	other	non-

Saccharomyces	yeast	species,	such	as	M.	pulcherrima,	S.	cerevisiae	does	not	have	PUFAs	

in	its	fatty	acid	composition	(Rozès	et	al.,	1992).			

FAs	influence	in	the	function	of	cellular	membranes.	The	primary	function	of	UFA	is	to	

modulate	the	physical	properties	of	membranes,	especially	their	fluidity.	Thus,	the	fatty	

acyl	composition	varies	 in	response	to	environmental	stress	 (Hunter	and	Rose,	1972;	

Lands	and	Davis,	1984).	In	addition,	other	functions	are	associated	with	FAs,	including	

roles	as	signaling	molecules,	transcriptional	regulators	and	posttranslational	modifiers	

of	 proteins.	 FAs	 also	 play	 a	 role	 in	 cell	 secretion	 and	provide	 energy	 through	 the	b-

oxidation	 pathway	 (Duplus	 et	 al.,	 2000;	 Trotter,	 2001;	 van	 Meer	 et	 al.,	 2008;	 van	

Roermund	et	al.,	1998,	2003).	
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Figure	16.	Representation	and	classification	of	saturated,	mono-	and	poly-unsaturated	fatty	acids.	

Ø Phospholipids	(PLs)		

Because	 of	 their	 amphiphilic	 characteristic,	 PLs	 serve	 as	 precursors	 and	 structural	

compounds	of	membranes,	and	they	are	the	most	abundant	membrane	lipids	(Ejsing	et	

al.,	2009).	The	structure	of	PLs	is	based	on	a	non-polar	part	(tails),	consisting	of	two	FAs	

attached	 to	 a	 polar	 head	 through	 an	 ester	 bond	 to	 the	 first	 and	 second	 carbons	 of	

glycerol.	 This	 glycerol	 links	 with	 its	 third	 carbon	 to	 the	 phosphate	 group	 through	 a	

phosphodiester	bond.	PLs	are	subdivided	into	different	classes	according	to	their	polar	

head	group	(Figure	17).	Although	the	PL	composition	can	vary	according	to	the	culture	

conditions,	the	major	PLs	in	the	total	yeast	cell	extracts	are	phosphatidylethanolamine	

(PE),	 phosphatidylcholine	 (PC),	 phosphatidylinositol	 (PI)	 and	 phosphatidylserine	 (PS).	

However,	their	distribution	varies	depending	on	the	organelle,	e.g.,	cardiolipin	(CL)	is	an	

important	minor	PL	predominantly	found	in	the	mitochondria	(Flis	et	al.,	2015;	Joshi	et	

al.,	 2009;	 Klug	 and	 Daum,	 2014).	 Each	 phospholipid	 class	 comprises	 a	 multitude	 of	

molecular	species	that	are	defined	by	the	length	and	degree	of	saturation	in	their	acyl	

chains	(De	Kroon	et	al.,	2013;	Holthuis	and	Menon,	2014).		

The	cellular	role	of	PLs	is	not	only	limited	to	a	structural	function.	They	can	also	provide	

precursors	for	the	synthesis	of	other	molecules,	act	as	a	reservoir	of	lipid	messengers	

(Exton,	 1994),	 be	 involved	 in	 the	 activity	 of	 membrane	 proteins	 (Fairn	 et	 al.,	 2011;	

Suetsugu	et	al.,	2014),	engage	 in	 fission	and	fusion	events	 (Grillitsch	et	al.,	2014),	be	

involved	in	the	transport	to	the	plasma	membrane	(Opekarová	et	al.,	2002),	maintain	

the	mitochondrial	 structure	and	 function	 (Joshi	 et	 al.,	 2009),	 and	 take	part	 in	mRNA	

localization	(Hermesh	et	al.,	2014).	
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Figure	17.	Representation	of	the	phospholipid	(PL)	structure	and	the	shape	of	each	PL	class	(Modified	
from	Zanghellini	et	al.,	2010).	

	

Ø Sterols		

Sterols	are	essential	structural	lipid	constituents	of	yeast	membranes,	and	ergosterol	is	

the	major	sterol	present	in	yeast.	Ergosterol	is	derived	from	its	precursor	squalene,	and	

it	is	the	final	product	of	the	yeast	sterol	biosynthetic	pathway.	Its	structure	consists	of	

four	 fused	 rings,	 an	 acyl	 side	 chain	 and	 a	 hydrophilic	 hydroxyl	 group	 that	 facilitates	

insertion	 into	membranes	 (Figure	 18).	 Ergosterol	 serves	many	 of	 the	 functions	 that	

cholesterol	has	 in	animal	cells.	Free	sterols	are	predominantly	present	 in	 the	plasma	

membrane,	 which	 controls	 its	 physical	 state	 by	 modulating	 its	 bilayer	 fluidity	 and	

permeability	(Nes	et	al.,	1993;	Sharma,	2006).	

	

	

	

	

	

Figure	18.	Representation	of	the	ergosterol	structure	as	the	primary	sterol	plasma	membrane.	

	

Ø Sphingolipids	

Sphingolipids	 are	 basically	 very	 long	 chain	 fatty	 acids	 that	 serve	 as	 structural	

components	at	the	cell	surface.	They	contain	saturated	or	trans-unsaturated	acyl	chains	

linked	to	a	serine	backbone.	Furthermore,	sphingolipids	serve	as	key	signaling	roles	such	



INTRODUCTION	

52	
 

as	regulating	endocytosis,	ubiquitin-dependent	proteolysis	and	cell	cycle	control	(Klug	

and	Daum,	2014).		

Ø Membrane	properties	depending	on	the	lipid	composition	

Physical	membrane	properties	are	highly	influenced	by	the	lipid	composition	(Figure	19).	

Lipid	packaging	predetermines	the	fluidity	of	the	membranes,	meaning	the	viscosity	of	

the	 lipid	 bilayer	 underlying	 the	 cell	 membrane,	 and	 it	 can	 affect	 the	 rotation	 and	

diffusion	of	proteins	and	other	molecules	within	the	membrane	(Holthuis	and	Menon,	

2014;	Quinn,	1981;	van	Meer	et	al.,	2008).	

The	head	group	and	acyl	chain	composition	of	PLs	influence	the	physical	properties	of	

the	membrane	 (De	 Kroon	 et	 al.,	 2013).	 PC	 usually	 contains	 one	 cis-unsaturated	 acyl	

chain,	such	as	oleic	(C18:1)	acid,	which	lowers	the	packing	density	of	the	acyl	chains	and	

increases	 the	membrane	 fluidity	 (Koynova	and	Caffrey,	1998).	With	 facilitation	by	 its	

cylindrical	 shape	 (Figure	 17),	 PC	 self-assembles	 spontaneously	 into	 closed	 bilayers,	

which	adopts	a	liquid	crystalline	state.	Thus,	PC	provides	a	stable	and	fluid	matrix	for	

cellular	membranes.	 By	 contrast,	 PE	 possesses	 a	 small	 polar	 head	 group,	 and	 it	 is	 a	

conically	shaped	PL	that	imposes	negative	curvature	stress	on	the	membrane.	The	non-

bilayer	propensity	of	PE	increases	with	acyl	chain	unsaturation,	creating	lipid	packaging	

defects	 that	 facilitate	 membrane	 fusion	 and	 influence	 the	 binding	 and	 activity	 of	

peripheral	membrane	proteins	(Holthuis	and	Menon,	2014;	Marsh,	2007;	Frolov	et	al.,	

2011).	 Although	 they	 are	 in	 lower	 abundance	 than	 PC	 and	 PE,	 PS	 and	 PI	 are	 key	

determinants	of	the	membrane	surface	charge	and	mediate	functional	interactions	with	

positively	charged	regions	of	peripheral	and	integral	membrane	proteins.	Thus,	higher	

membrane	fluidity	is	promoted	by	lipids	with	short,	unsaturated	fatty	acids	(Ernst	et	al.,	

2016).	 The	 double	 bonds	 introduce	 kinks	 that	 lower	 the	 packing	 density	 of	 the	 acyl	

chains	and	inhibit	the	transition	of	the	membrane	from	fluid	to	solid	gel	phases.	

By	contrast,	sterols	rigidify	fluid	membranes	by	reducing	the	flexibility	of	unsaturated	

acyl	 chains	 and	 increasing	 the	 membrane	 thickness	 and	 impermeability	 to	 solutes	

(Brown	 and	 London,	 1998).	 High	 levels	 of	 packing	 defects	 are	 found	 in	 lipids	 with	

unsaturated	acyl	chains	and	small	head	groups.	The	surface	charge	is	determined	by	the	

presence	of	anionic	 lipids	 such	as	PS	and	PI	 (Ernst	et	al.,	2016;	Holthuis	and	Menon,	

2014).		
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The	curvature	is	determined	by	the	lipid	shape.	Lipids	with	a	small	polar	head-to-acyl	

chain	 ratio	 (creating	a	cone	shape)	 induce	a	negative	curvature.	Lipids	with	an	equal	

head-to-chain	ratio	(creating	a	cylinder	shape)	are	neutral,	and	those	with	a	much	larger	

head	 compared	with	 the	 acyl	 chain	 area	 (creating	 an	 inverted	 cone	 shape)	 induce	 a	

positive	curvature	(Antonny,	2011;	Bigay	and	Antonny,	2012)	(Figure	19).	

	

	

	

	

	

	

	

	

	

	

	

Figure	19.	Membrane	physical	properties	depend	on	the	lipid	compositions	(From	Holthuis	and	Menon,	
2014).	

4.2.	Lipid	biosynthesis		

Lipid	 metabolism	 is	 quite	 complex	 and	 involves	 a	 very	 large	 number	 of	 metabolic	

reactions	 in	 different	 cellular	 compartments,	 resulting	 in	 the	 formation	 of	 a	 diverse	

group	of	chemical	compounds.	Despite	the	wide	chemical	variety	of	lipids,	they	all	have	

the	 same	 key	 carbon	 precursor,	 acetyl-CoA,	 and	 all	 of	 the	 initial	 steps	 of	 lipid	

biosynthesis	occur	in	the	cytosol	(Figure	20;	Nielsen,	2009).	

The	 lipid	 biosynthesis	 pathway	 involves	 the	 decarboxylation	 of	 pyruvate	 into	

acetaldehyde,	 which	 is	 then	 converted	 into	 acetate	 and	 acetyl-CoA.	 Although	

acetaldehyde	 is	 primarily	 converted	 into	 ethanol	 under	 fermentative	 conditions,	
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sufficient	 acetaldehyde	 is	 converted	 to	 acetyl-CoA	 to	 ensure	 an	 efficient	 lipid	

biosynthesis.	Furthermore,	this	pathway	is	functional	under	fully	respiratory	conditions	

(Ernst	 et	 al.,	 2016;	Nielsen,	 2009).	 Lipid	biosynthesis	 basically	 involves	 two	branches	

from	 acetyl-CoA:	 one	 leading	 to	 sterols	 and	 the	 other	 leading	 to	 FAs	 that	 serve	 as	

building	 blocks	 for	 the	 biosynthesis	 of	 TAG,	 phospholipids,	 steryl	 esters	 and	

sphingolipids	(Figure	20).	

Figure	20.	Representation	of	lipid	biosynthesis	(From	Nielsen,	2009).	

	

In	 the	 branch	 towards	 sterols,	 the	 first	 step	 is	 the	 condensation	 of	 two	 acetyl-CoA	

molecules	that	yield	acetoacetyl-CoA.	Later,	after	several	reactions,	squalene	is	formed	

from	 two	 molecules	 of	 farnesyl	 pyrophosphate	 (FPP),	 and	 through	 several	 oxygen-

dependent	reactions,	squalene	 is	 transformed	 into	 lanosterol,	zymosterol,	 fecosterol,	

episterol	and	ergosterol,	which	is	finally	synthesized	in	the	endoplasmic	reticulum	(ER)	

and	is	then	transported	to	the	plasma	membrane	to	prevent	its	accumulation	(Baumann	

et	 al.,	 2005).	 In	 the	 other	 branch	 of	 lipid	 biosynthesis,	 acetyl-CoA	 is	 converted	 into	

malonyl-CoA,	which	serves	as	a	precursor	for	further	FA	synthesis	reactions,	as	catalyzed	

by	FA	synthetases	(FAS).	The	primary	product	of	FAS	is	palmitic	acid	(C16:0),	which	can	

be	 further	converted	 into	stearic	acid	 (C18:0).	They	can	then	be	converted	 into	 their	

corresponding	MUFAs,	palmitoleic	(C16:1)	and	oleic	(C18:1)	acids,	respectively,	by	D9-

desaturase	encoded	by	OLE1	in	yeasts.	S.	cerevisiae	lacks	the	ability	to	convert	oleic	acid	

into	PUFAs,	such	as	linoleic	(C18:2)	and	linolenic	(C18:3)	acids.	FA	synthesis	occurs	in	the	

cytosol	and	mitochondria,	and	it	is	restricted	to	occasions	when	there	is	a	high	energy	

load	in	the	cells	(Tehlivets	et	al.,	2007).	
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FAs	can	be	degraded	by	b-oxidation	 inside	peroxisomes,	or	 they	can	enter	 the	 route	

towards	PLs	synthesis,	during	which	two	FAs	are	added	to	glycerol-3	phosphate	to	form	

phosphatidic	acid	(PA),	which	serves	as	a	central	metabolite	in	the	synthesis	of	PLs	(De	

Kroon	et	al.,	2013).	PA	can	either	be	dephosphorylated	 to	diacylglycerol	 (DG),	which	

contributes	to	PE	and	PC	synthesis,	or	 it	can	be	converted	 into	cytidine	diphosphate-

diacylglycerol	 (CDP-DG),	 which	 is	 converted	 into	 PI	 or	 PS	 in	 the	 ER	 and	

phosphatidylglycerol	phosphate	(PGP)	 in	the	mitochondria.	PS	can	be	decarboxylated	

into	PE,	which	can	subsequently	be	methylated	to	form	PC	(Klug	and	Daum,	2014).	The	

PGP	in	the	mitochondria	produces	phosphatidylglycerol	(PG)	to	form	CL.	The	insertion	

of	additional	double	bonds	performed	by	specific	desaturases	that	are	present	in	the	ER	

membrane	 occurs	 when	 FAs	 are	 present	 as	 phospholipids.	 By	 contrast,	 elongation	

occurs	only	when	the	FAs	are	present	as	CoA-esters	(Nielsen,	2009).	

4.3.	Oxidative	stress	and	lipid	composition		

ROS	production	can	initiate	changes	in	the	lipid	layer	composition,	resulting	in	a	 lipid	

peroxidation	 process	 in	 which	 unsaturated	 lipids	 are	 converted	 into	 polar	 lipid	

hydroperoxides.	 ROS,	 in	 particular	 hydroxyl	 radical,	 react	with	 lipid	membranes	 and	

generate	 reactive	 aldehydes,	 including	 malondialdehyde	 (MDA)	 and	 4-hydroxy-2-

nonenal	(HNE),	in	three	phase	reactions	(Figure	21).	PLs	are	particularly	susceptible	to	

the	 oxidative	 damage	 mediated	 by	 ROS	 due	 to	 their	 polyunsaturated	 FAs	 (PUFAs)	

content,	which	are	more	sensitive	to	peroxidation	than	monounsaturated	FAs	(MUFAs)	

(Ayala	 et	 al.,	 2014;	 Howlett	 and	 Avery,	 1997).	 Extensive	 lipid	 peroxidation	 has	 been	

correlated	with	membrane	disintegration	and	cell	death.	

	

	

	

	

	

	

Figure	21.	Major	products	of	lipid	peroxidation	(From	Shah	et	al.,	2014).	
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Membrane	dysfunction	as	a	consequence	of	ROS	is	not	systematically	observed	because	

yeasts	are	able	to	compensate	for	these	changes	by	modulating	the	membrane	fluidity	

and	phase	 transitions	 through	 lipid	 composition	modification.	 These	 changes	 in	 lipid	

composition,	which	are	used	by	yeasts	as	a	defense	mechanisms,	are	fundamental	for	

maintaining	 membrane	 integrity	 and	 functionality	 after	 stress	 exposure	 and	 for	

conferring	a	higher	 survival	 rate	 to	cells	when	 they	are	 further	exposed	 to	 the	same	

stress	(Beney	and	Gervais,	2001;	Los	and	Murata,	2004).	In	fact,	several	authors	have	

suggested	a	relationship	between	the	membrane	composition	and	tolerance	to	stress	

(Landolfo	et	al.,	2010;	Rodríguez-Vargas	et	al.,	2007).	Thus,	the	lipid	composition	is	the	

result	of	a	sum	of	complex	phenomena	for	maintaining	the	optimal	viability	of	the	cell	

under	different	conditions.	

In	yeasts,	studies	of	adaptive	responses	have	primarily	been	focused	on	tolerance	to	

ethanol	and	low	or	high	temperatures	(Beltran	et	al.,	2008;	Redón	et	al.,	2009;	Torija	et	

al.,	2003).	Furthermore,	cells	with	adaptive	response	to	oxidative	stress	primarily	face	

changes	 in	 the	 systems	 responsible	 for	 repairing	 the	 H2O2-induced	 damage	 in	 S.	

cerevisiae.		

Alterations	 in	yeast	during	the	stress	 tolerance	reactions	 induced	by	H2O2	have	been	

observed	to	decrease	the	long	chain	fatty	acid	unsaturation,	basically	through	decreased	

levels	of	oleic	acid.	These	changes	end	with	a	decrease	in	the	fluidity	and	permeability	

of	 cellular	membranes	 (Pedroso	 et	 al.,	 2009).	 However,	 this	 	 adaptation	mechanism	

seems	to	depend	on	the	oxidizing	agent	because	several	studies	have	highlighted	the	

ability	of	cells	to	increase	the	concentration	of	unsaturated	fatty	acids,	raising	the	oleic	

acid	in	the	plasma	membrane	as	the	principal	mechanism	for	adapting	to	ethanol	stress	

(Dinh	et	al.,	2008).		

An	increase	in	the	PC/PE	ratio	has	also	been	reported	as	another	yeast	adaptation	to	

oxidative	stress.	As	described	before,	PC	has	an	overall	cylindrical	shape	and	is	organized	

as	 a	 bilayer,	 which	 makes	 it	 ideally	 suited	 for	 preserving	 the	 membrane	 integrity.	

Increases	in	the	PC/PE	ratio	and	the	squalene	levels	of	the	plasma	membrane	in	cells	

under	oxidative	stress	have	been	suggested	 to	decrease	 the	membrane	permeability	

against	H2O2	(Pedroso	et	al.,	2009).	In	fact,	phospholipid	model	vesicles	have	shown	that	

decreasing	ratios	of	PC/PE	are	highly	correlated	with	increasing	permeability	for	glucose.	
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Multiple	studies	have	shown	that	compositional	changes	in	UFAs	are	regulated	by	either	

the	 transcriptional	or	post-transcriptional	modification	of	desaturases	 (Cossins	et	 al.,	

2002).	 An	 increase	 in	 the	 UFA	 percentage	 within	 yeast	 cells	 was	 correlated	 with	 a	

decrease	 in	the	responsiveness	of	 the	stress	response	promoter	element	 (STRE)	 in	S.	

cerevisiae	(Chatterjee	et	al.,	2000).		

However,	the	yeast	lipid	composition	is	highly	influenced	by	the	aerobic	or	anaerobic	

yeast	growth	as	well	as	by	the	nature	of	the	yeast’s	own	metabolism	(Table	1).	Anaerobic	

cellular	 growth	 has	 lower	 levels	 of	 total	 lipids,	 decreased	 phospholipids	 and	 sterol	

components,	and	 increased	hydrocarbon	content.	Oxygen	deficiency	 is	 recognized	as	

the	reason	for	sterol	and	UFA	auxotrophy	in	S.	cerevisiae	(Rattray	et	al.,	1975;	Rosenfeld	

and	 Beauvoit,	 2003).	 Anaerobic	 growth	 has	 also	 been	 characterized	 by	 lower	 PE	

contents	and	higher	PC	and	PI	levels,	especially	at	the	entrance	of	the	stationary	growth	

phase	(Rattray	et	al.,	1975).	

5.	ANTIOXIDANTS	IN	WINE	

For	many	years,	 yeasts	have	been	 recognized	as	 a	 source	of	 antioxidant	 compounds	

(Forbes	et	al.,	1958).	More	recently,	knowledge	of	natural	antioxidant	compounds	has	

been	directed	to	the	screening	of	microbial	sources	to	replace	the	synthetic	ones	that	

are	 currently	 in	 use	 as	 food	 antioxidants.	 For	 this	 reason,	 yeast	 constituents	 are	

considered	as	compounds	that	possess	nutritional	value	for	humans	and	higher	animals.	

The	interest	of	antioxidant	compounds	of	wine	started	in	1992	with	the	publication	of	

the	 “French	Paradox”	 theory	 in	which	Renaud	and	de	 Lorgeril	 associated	 the	French	

habit	 to	 drink	 red	 wine	 with	 lower	 mortality	 from	 heart	 disease	 caused	 by	 high	

consumption	of	saturated	fats.	Since	then,	regular	moderate	wine	consumption	in	the	

daily	 diet	 is	 considered	 to	 be	 protective	 against	 oxidative	 stress-associated	 diseases	

(German	and	Walzem,	2000).	 Its	benefits	have	been	attributed	to	higher	well-known	

levels	of	antioxidant	compounds,	such	as	vitamins	C	and	E	and	polyphenolic	flavonoids	

such	as	catechins,	quercetin,	resveratrol	and,	as	more	recently	discovered,	the	bioactive	

compound	melatonin	(Auger	et	al.,	2005;	Mercolini	et	al.,	2008,	2012;	Minussi	et	al.,	

2003;	Olas	and	Wachowicz,	2002;	Ross	and	Kasum,	2002).	
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5.1.	Melatonin		

Melatonin	is	an	indoleamine	that	is	produced	from	the	amino	acid	tryptophan,	and	it	is	

known	as	a	neurohormone	because	 it	was	originally	believed	 that	 this	molecule	was	

unique	to	the	pineal	gland	of	vertebrates.	However,	over	the	last	two	decades,	it	has	

been	identified	in	a	wide	range	of	invertebrates,	plants,	bacteria	and	fungi	(Hardeland	

and	 Poeggeler,	 2003).	 Therefore,	 melatonin	 is	 currently	 considered	 a	 ubiquitous	

molecule	that	is	present	in	most	living	organisms.	

Melatonin	 was	 isolated	 and	 identified	 in	 the	 bovine	 pineal	 gland	 by	 Lerner	 and	

colleagues	in	1958,	their	aim	was	to	treat	skin	diseases	such	as	vitiligo.	However,	their	

finding	was	that	melatonin	had	the	ability	to	change	the	color	of	the	skin	in	amphibians	

and	reptiles.	Hence,	its	name	is	composed	of	“mela”,	for	its	bleaching	effect,	and	“tonin”	

because	it	derives	from	serotonin.		

In	 the	 mid-1970s,	 Lynch	 and	 collaborators	 demonstrated	 that	 the	 production	 of	

melatonin	exhibited	a	circadian	rhythm	in	the	human	pineal	gland.	Since	the	early	1980s,	

numerous	physiological	functions	have	been	attributed	to	melatonin,	such	as	regulating	

circadian	rhythms	and	synchronizing	the	reproductive	cycle	and	oncostatic,	anti-aging,	

antioxidant	 and	 anti-inflammatory	 activities;	 and	 even	 the	 modulation	 of	 neural,	

endocrine	 and	 immune	 functions	 (Eghbal	 et	 al.,	 2016;	 Romero	 et	 al.,	 2014).	 Thus,	

melatonin	 has	 revealed	 itself	 to	 be	 not	 only	 as	 a	 ubiquitously	 distributed	 but	 also	 a	

functionally	diverse	molecule.	

Several	studies	have	uncovered	the	presence	of	melatonin	in	grapes	and	wine.	Since	Iriti	

and	colleagues	first	detected	melatonin	in	the	berry	skins	of	grapes,	other	studies	have	

measured	 this	 indolamine	 in	all	 berry	 tissues	 (Vitalini	 et	 al.,	 2011).	 Furthermore,	 the	

melatonin	 concentration	 in	 grapes	 has	 been	 observed	 to	 be	 dependent	 on	 the	

maturation	 stage	 (Murch	 et	 al.,	 2010)	 or	 to	 fluctuate	 with	 the	 harvest	 schedule	

(Boccalandro	et	al.,	2011).		

Melatonin	was	firstly	reported	in	Italian	wines,	ranging	from	approximately	0.4	–	0.5	ng/	

mL	(Mercolini	et	al.,	2008).	In	addition	to	showing	higher	melatonin	concentrations	in	

wines	(74-420	ng/mL),	an	additional	study	related	its	presence	to	the	activity	of	the	yeast	

involved	 in	 the	 fermentation	 process,	 specifically	 with	 the	 S.	 cerevisiae	 species	
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(Rodriguez-Naranjo	 et	 al.,	 2011a,	 2011b).	 However,	 regarding	 the	 presence	 or	

production	of	melatonin	in	yeast,	Sprenger	et	al.,	(1999)	were	the	pioneers	in	relating	

the	presence	of	melatonin	to	S.	cerevisiae.	Recently,	other	studies	have	reported	the	

production	of	melatonin	by	non-Saccharomyces	species,	which	are	significantly	present	

in	grapes	and	at	the	beginning	of	alcoholic	fermentation	(Fernández-Cruz	et	al.,	2017;	

Vigentini	et	al.,	2015).		

5.1.1.	Molecular	characteristics	

Melatonin	is	also	known	as	N-acetyl-5-methoxytryptamine	(Figure	22),	and	it	belongs	to	

the	family	of	methoxyindoles,	which	are	synthesized	from	tryptophan.	

	

	

	

	

	

	

Figure	22.	Chemical	structure	of	melatonin.	

Melatonin	possesses	an	indolic-type	ring	with	two	functional	groups,	a	methoxy	group	

in	position	5	and	an	N-acetyl	group	in	position	3.	These	two	groups	not	only	contribute	

to	 its	 antioxidant	 properties,	 but	 they	 are	 also	 decisive	 in	 the	 specificity	 of	 receptor	

binding	and	for	its	amphipathic	character.	Its	amphipathy	enables	melatonin	to	cross	all	

biological	membranes	and	remain	at	a	sufficiently	high	proportion	in	the	aqueous	phase,	

giving	a	fundamental	advantage	relative	to	other	relevant	radical	scavengers,	which	are	

either	hydrophilic	or	lipophilic	(Costa	et	al.,	1995;	Hardeland	et	al.,	2006;	Poeggeler	et	

al.,	2002;	Shida	et	al.,	1994).	

5.1.2.	Synthesis	and	regulation	

Melatonin	 is	 primarily	 synthetized	 and	 secreted	 in	 the	 pineal	 gland	 located	 in	 the	

epithalamus,	near	the	center	of	the	brain	between	both	hemispheres	(Figure	23).			

In	 the	 pineal	 gland,	 melatonin	 synthesis	 follows	 a	 rhythm	 determined	 by	 the	

suprachiasmatic	nucleus	(SCN),	the	biological	clock.	This	route	is	dramatically	repressed	



INTRODUCTION	

60	
 

by	light	during	the	day.	During	the	night,	the	external	signal	processed	by	the	retina	is	

transmitted	to	the	SCN	and	subsequently,	neural	signals	are	sent	to	the	superior	cervical	

ganglia	 (SGC)	 through	 a	 multisynaptic	 pathway.	 The	 noradrenaline	 liberated	 from	

postganglionic	 fibers	 binds	 to	 adrenoceptors	 in	 the	 membrane	 of	 the	 pinealocyte,	

leading	 to	 increased	 levels	 of	 cAMP,	 a	 second	 messenger	 that	 activates	 the	

arylalkylamine	N-acetyltransferase	enzyme	(AA-NAT),	which	is	the	rate-limiting	step	in	

melatonin	synthesis	(Reiter	et	al.,	2010,	2016).	

The	initial	precursor	of	melatonin	biosynthesis	is	the	amino	acid	tryptophan.	Tryptophan	

is	 captured	 from	 the	 bloodstream	 and	 hydroxylated	 enzymatically	 by	 tryptophan	

hydroxylase	 (TPH)	 in	 the	 mitochondria.	 The	 aromatic	 L-amino	 acid	 decarboxylase	

(AAAD)	subsequently	converts	5-hydroxytryptophan	into	serotonin	in	the	cytosol,	which	

is	then	acetylated	by	AA-NAT,	forming	N-acetylserotonin.	Finally,	N-acetylserotonin	is	

converted	into	melatonin	by	the	enzyme	hydroxyindole-O-methyltransferase	(HIOMT).	

Alternatively,	but	at	lower	flux	rates,	melatonin	can	be	formed	via	the	O-methylation	of	

serotonin	 and	 the	 subsequent	 N-acetylation	 of	 5-methoxytryptamine	 or	 by	 the	 O-

methylation	of	tryptophan	followed	by	decarboxylation	and	N-acetylation	(Hardeland	

et	al.,	1993;	Sprenger	et	al.,	1999;	Tan	et	al.,	2007).	Melatonin	is	then	released	into	the	

vascular	 system	 to	 access	 the	 remaining	 tissues	 and	 exert	 its	 pleiotropic	 functions	

(Guerrero	et	al.,	2007).	

Nevertheless,	melatonin	production	 is	not	 limited	 to	vertebrates;	 rather,	 it	has	been	

observed	in	almost	all	living	organisms	including	invertebrates,	plants,	bacteria,	etc.,	and	

none	of	them	possess	a	pineal	gland.	Therefore,	although	the	pineal	gland	is	the	largest	

producer	of	melatonin,	its	association	with	the	pineal	gland	of	vertebrates	may	be	due	

to	 the	 need	 to	 produce	 and	 regulate	 melatonin	 in	 a	 circadian	 manner	 by	 neural	

information	from	light	perception.			

Although	 little	 information	 is	 available	on	melatonin	biosynthesis	 in	organisms	other	

than	vertebrates,	the	pathway	and	enzymes	involved	in	yeast	seem	to	be	similar	to		the	

ones	described	in	vertebrates	(Mas	et	al.,	2014;	Sprenger	et	al.,	1999).	Most	melatonin	

studies	in	yeasts	are	based	on	production;	however,	its	functions	and	effects	in	yeast	

are	completely	unknown.		
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Figure	23.	Physiological	regulation	of	circadian	melatonin	production	and	the	synthesis	of	melatonin	
from	tryptophan	(Adapted	from	Reiter	et	al.,	2016).	Abbreviations:	SCN,	suprachiasmatic	nucleus;	SCG,	
superior	cervical	ganglia;	TPH,	tryptophan	hydroxylase;	AAAD,	aromatic	amino	acid	decarboxylase;	NAT,	

N-acetyltransferase;	AANAT,	arylalkylamine	NAT;	and	HIOMT,	hydroxyindole	O-methyltransferase	

	

5.1.3.	Melatonin	as	an	antioxidant	

Since	melatonin	was	discovered	over	50	years	ago,	it	has	been	linked	to	a	wide	range	of	

functions	in	addition	to	its	primary	function	as	synchronizer	of	the	biological	clock,	with	

its	powerful	antioxidant	activity	being	amongst	its	best-studied	attributes	(Reiter	et	al.,	

2000,	2010;	Štětinová	et	al.,	2002).	

In	 fact,	melatonin	 has	 been	 compared	with	 classic	 antioxidants	 such	 as	 glutathione,	

mannitol	or	vitamins	C	and	E,		with	melatonin	always	performing	in	a	superior	manner	

(Martín	et	al.,	2000;	Qi	et	al.,	2000).	Hence,	it	is	reasonable	to	believe	that	melatonin	

plays	a	vital	role	in	the	body’s	defenses	by	fighting	free	radical-related	diseases.	

Ø Melatonin’s	physiological	weapons	

Through	 a	 wide	 variety	 of	 different	 means,	 melatonin	 is	 exceptionally	 efficient	 in	

decreasing	 oxidative	 stress	 under	 a	 remarkably	 large	 number	 of	 circumstances.	

Furthermore,	it	is	important	to	highlight	that	melatonin	oxidation	leads	to	the	formation	

of	other	metabolites	that	are	also	biologically	active,	such	as	cyclic	3-hydroxymelatonin	

(3OHM),	 N1-acetyl-N2-formyl-5-methoxykynuramine	 (AFMK)	 and	 N1-acetyl-5-



INTRODUCTION	

62	
 

methoxykynuramine	(AMK)	(Hardeland	and	Pandi-Perumal,	2005;	Reiter	et	al.,	2016).	

The	 multiple	 actions	 of	 melatonin	 and	 its	 metabolites	 against	 oxidative	 stress	 are	

summarized	in	Figure	24.		

Due	to	its	amphiphilic	nature,	melatonin	easily	reaches	cell	compartments,	such	as		the	

nucleus	 and	 mitochondria,	 where	 it	 is	 able	 to	 act	 as	 a	 direct	 scavenger	 of	 oxygen-

centered	radicals	and	toxic	ROS	(Hardeland	et	al.,	1993,	1995;	Hardeland	and	Rodríguez,	

1995).	In	addition,	melatonin	can	indirectly	reduce	oxidative	stress	by	stimulating	the	

production	 and	 activation	 of	 endogenous	 antioxidant	 enzymes,	 interacting	

synergistically	with	other	antioxidants	to	increase	the	antioxidant	efficiency	(Antolín	et	

al.,	 1996;	 Gitto	 et	 al.,	 2001;	 López-Burillo	 et	 al.,	 2003;	 Rodriguez	 et	 al.,	 2004)	 and	

increasing	the	efficiency	of	the	mitochondrial	electron	transport	chain	(León	et	al.,	2005;	

López	et	al.,	2009;	Martín	et	al.,	2000).	

Because	of	these	properties,	melatonin	is	involved	in	different	functions	at	the	cellular	

and	 subcellular	 levels.	 Melatonin	 stabilized	 biological	 membranes,	 especially	 at	 the	

mitochondrial	 level;	 it	 protected	 DNA	 against	 oxidation	 and	 prevented	 cellular	

apoptosis.	Furthermore,	 these	antioxidant	properties	may	be	applicable	 to	situations	

involving	 heightened	 cellular	 damage	 related	 to	 a	 dramatic	 increase	 in	 ROS,	 such	 as	

ageing.	

	

Figure	24.	Multiple	actions	of	melatonin	in	reducing	oxidative	stress	(Reiter	et	al.,	2016).	The	pink	area	
indicates	the	reactive	oxygen	(ROS)	and	reactive	nitrogen	species	(RNS)	that	are	neutralized	by	

melatonin	and	its	metabolites.	The	blue	area	identifies	enzymes	that	impact	the	redox	state	of	the	cell.	
The	green	area	lists	characteristics	that	aid	melatonin	in	terms	of	its	ability	to	quench	free	radicals	and	

reduce	oxidative	damage.	
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Ubiquitous distribution

Very high levels in	the CSF
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	Abstract	

Oxidative	 stress	 is	 a	 common	 stress	 in	 yeasts	 during	 the	 stages	 of	 the	 winemaking	

process	in	which	aerobic	growth	occurs,	and	it	can	modify	the	cellular	lipid	composition.	

The	 aim	 of	 this	 study	 was	 to	 evaluate	 the	 oxidative	 stress	 tolerance	 of	 two	 non-

conventional	 yeasts	 (Torulaspora	 delbrueckii	 and	 Metschnikowia	 pulcherrima)	

compared	 to	Saccharomyces	 cerevisiae.	 Therefore,	 their	 resistance	 against	H2O2,	 the	

ROS	production	and	the	cellular	 lipid	composition	were	assessed.	The	results	showed	

that	 the	 non-Saccharomyces	 yeasts	 used	 in	 this	 study	 exhibited	 higher	 resistance	 to	

H2O2	 stress	and	 lower	ROS	accumulation	 than	Saccharomyces.	Regarding	 the	cellular	

lipid	 composition,	 the	 two	non-Saccharomyces	 species	 studied	here	displayed	a	high	

percentage	of	polyunsaturated	 fatty	 acids,	which	 resulted	 in	more	 fluid	membranes.	

This	result	could	 indicate	that	these	yeasts	have	been	evolutionarily	adapted	to	have	

better	resistance	against	the	oxidative	stress.	Furthermore,	under	oxidative	stress,	non-

Saccharomyces	yeasts	were	better	able	to	adapt	their	 lipid	composition	as	a	defense	

mechanism	by	decreasing	their	percentage	of	polyunsaturated	fatty	acids	and	squalene	

and	increasing	their	monounsaturated	fatty	acids.	

	

Keywords:	 Saccharomyces	 cerevisiae,	 non-conventional	 yeast;	 ROS;	 oxidative	 stress;	

lipids,	phospholipids,	fatty	acids,	sterols	
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1. INTRODUCTION	

Our	understanding	of	the	response	and	adaptation	of	yeasts	to	external	environmental	

changes	 is	 very	 important	 within	 the	 biotechnological,	 pharmaceutical,	 food	 and	

beverage	 industries.	Changes	 in	 the	 temperature,	pH	and	osmotic	pressure,	nutrient	

starvation,	ethanol	toxicity,	prolonged	anaerobiosis,	exposure	to	chemical	preservatives	

and	oxidative	stress	are	the	primary	causes	for	the	decrease	in	yeast	viability	and	vitality	

in	industrial	processes	(Briggs	et	al.,	2004;	Walker	and	Dijck,	2006;	Gibson	et	al.,	2007).	

Oxidative	stress	is	the	result	of	an	imbalance	between	the	presence	of	reactive	oxygen	

species	 (ROS)	 and	 the	 capacity	 of	 cells	 to	 detoxify	 these	 reactive	 intermediates	 of	

molecular	oxygen,	or	to	repair	the	resulting	damage.	Disturbances	in	the	normal	redox	

state	 of	 cells	 can	 damage	 all	 of	 their	 components,	 including	 lipids,	 carbohydrates,	

proteins	and	nucleic	acids,	and	they	may	even	induce	programmed	cell	death	(Moradas-

Ferreira	 et	 al.,	 1996;	 Costa	 and	Moradas-Ferreira,	 2001;	 Gibson	 et	 al.,	 2008). Under	

normal	physiological	conditions,	yeasts	are	able	to	effectively	defend	themselves	against	

the	 direct	 consequences	 of	 stress	 exposure	 and	 damage	 by	 immediate	 cellular	

enzymatic	 and	 non-enzymatic	 responses,	 and	 finally,	 the	 adapted	 cells	 can	 resume	

proliferation	(Jamieson,	1998;	Moradas-Ferreira	and	Costa,	2000;	Herrero	et	al.,	2008).	

Biological	membranes	are	primarily	made	of	proteins	and	phospholipids,	and	they	form	

the	first	barrier	that	separates	yeast	cells	and	their	organelle	compartments	from	their	

external	environment.	Fatty	acids	(FAs),	both	free	and	as	part	of	complex	lipids,	play	a	

number	of	key	roles	in	metabolism.	They	can	be	incorporated	into	phospholipids	(PLs),	

which	 are	 considered	 as	 primary	 structural	 elements	 of	 biological	 membranes	 and	

sphingolipids,	or	they	can	serve	as	an	energy	reservoir	in	the	form	of	triacylglycerols	and	

steryl	esters	(Klug	and	Daum,	2014).	Another	important	and	essential	group	of	lipids	for	

maintaining	the	membrane	integrity	is	the	sterols,	and	ergosterol	is	the	primary	sterol	

in	 yeast	 (Daum	 et	 al.,	 1998;	 Klug	 and	 Daum,	 2014).	 Membrane	 dysfunction	 can	 be	

associated	 with	 a	 loss	 of	 viability	 (Avery,	 2011).	 Excessive	 ROS	 production	 can	

overwhelm	 the	 detoxifying	 mechanism	 and	 initiate	 changes	 in	 the	 lipid	 layers	

composition,	resulting	 in	a	 lipid	peroxidation	process,	 in	which	unsaturated	 lipids	are	

converted	into	polar	lipid	hydroperoxides.	PLs	are	particularly	susceptible	to	oxidative	

damage	mediated	by	ROS	due	to	their	content	of	polyunsaturated	FAs	(PUFAs),	which	
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are	more	sensitive	to	peroxidation	than	monounsaturated	FAs	(MUFAs)	(Howlett	and	

Avery,	1997;	Ayala	et	al.,	2014).	Extensive	lipid	peroxidation	has	been	correlated	with	

membrane	 disintegration	 and	 cell	 death.	 However,	 lethal	 consequences	 are	 not	

systematically	observed	because	yeasts	are	able	to	compensate	for	these	changes	by	

modifying	 the	membrane	 fluidity	and	phase	 transitions	and	by	activating	 the	cellular	

control	of	the	chemical	membrane	composition.	These	changes	in	lipid	composition	are	

used	by	yeast	as	a	defense	mechanism,	and	they	are	important	for	conferring	resistance	

to	oxidative	stress	(Beney	and	Gervais,	2001;	Los	and	Murata,	2004).	

Yeast	species,	and	even	different	strains	of	the	same	species,	can	exhibit	variations	in	

their	membrane	lipid	composition	(Hunter	and	Rose,	1972).	In	fact,	yeast	membranes	

are	 structurally	 and	 functionally	 dependent	 on	 the	 growth	 conditions,	 e.g.,	

Saccharomyces	 cerevisiae	 is	 auxotrophic	 for	 oleic	 acid	 and	 ergosterol	 under	 strict	

anaerobic	conditions	(Walker	and	Dijck,	2006).	Thus,	the	lipid	composition	should	not	

be	considered	a	fixed	and	static	characteristic	of	a	single	yeast	strain	(Hunter	and	Rose,	

1972;	Torija	et	al.,	2003;	Beltran	et	al.,	2008).	

S.	 cerevisiae	 is	 the	 primary	 yeast	 species	 involved	 in	 wine	 fermentation	 (Ribéreau-

Gayon,	1985;	Fleet	and	Heard,	1993);	however,	many	other	yeast	species	can	participate	

in	different	stages	of	the	process	(Beltran	et	al.,	2002).	Currently,	non-Saccharomyces	

yeasts	are	studied	to	produce	final	products	with	improved	organoleptic	characteristics	

(Jolly	et	al.,	2014,	González-Royo	et	al.,	2015).	In	general,	these	yeasts	are	not	able	to	

complete	 the	 alcoholic	 fermentation,	 several	 studies	 have	 demonstrated	 that	 some	

non-Saccharomyces	 yeasts	 such	 as	 Torulaspora	 delbrueckii	 and	 Metschnikowia	

pulcherrima	used	with	sequential	 inoculation	techniques,	can	positively	contribute	to	

the	 aroma	 profile,	 sensory	 complexity	 and	 color	 stability	 of	 the	 resulting	 product	

(Pretorius,	 2000;	 Fleet,	 2008;	 González-Royo	 et	 al.,	 2015;	 Mas	 et	 al.,	 2016).	

Nevertheless,	despite	the	importance	of	these	yeasts,	there	is	still	a	lack	of	knowledge	

about	the	non-Saccharomyces	species	compared	with	S.	cerevisiae.	Therefore,	studies	

on	the	effect	of	oxidative	stress	on	non-Saccharomyces	yeasts	are	interesting,	not	only	

for	the	investigating	their	cellular	physiology	but	also	to	acquire	a	better	understanding	

of	the	adaptations	of	non-conventional	yeasts	in	response	to	the	changes	imposed	by	

oxidative	stress.	
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The	 goal	 of	 this	 study	 was	 to	 compare	 the	 effects	 of	 oxidative	 stress	 between	 S.	

cerevisiae	and	two	species	of	non-Saccharomyces	(T.	delbrueckii	and	M.	pulcherrima)	by	

focussing	on	the	effects	on	the	lipid	composition.	To	accomplish	this	goal,	we	evaluated	

the	H2O2	resistance,	intracellular	ROS	production	and	the	lipid	composition	(FAs,	PLs	and	

sterols)	in	these	species	before	and	after	oxidative	stress	exposure	via	H2O2.	

2. MATERIAL	AND	METHODS	

2.1. Yeast	strains	and	growth	conditions		

The	yeast	 strains	used	 in	 this	 study	were	as	 follows:	 two	strains	of	S.	 cerevisiae	 (the	

laboratory	 strain	 BY4742,	 (EUROSCARF	 collection,	 Frankfurt,	 Germany)	 and	 a	

commercial	 wine	 strain	 (QA23Ò)),	 two	 strains	 of	 Torulaspora	 delbrueckii	 (BIODIVAÒ	

(TdB)	and	Tdp)	and	two	strains	of	Metschnikowia	pulcherrima	(FLAVIAÒ	(MpF)	and	Mpp).	

Commercial	 Saccharomyces	 and	 non-Saccharomyces	 wine	 strains	 QA23,	 FLAVIA	 and	

BIODIVA	were	provided	by	Lallemand	S.A.	(Montreal,	Canada),	and	the	other	two	non-

Saccharomyces	strains	(Tdp	and	Mpp)	were	isolated	from	natural	musts	that	were	taken	

from	the	Priorat	Appellation	of	Origin	(Catalonia,	Spain)	(Padilla	et	al.,	2016;	Padilla	et	

al.,	2017)	and	deposited	in	the	Spanish	Type	Culture	Collection	(CECT)	as	CECT	13135	

and	CECT	13131,	respectively.	

The	commercial	strains	were	in	active	dry	yeast	form	and	were	rehydrated	according	to	

the	 manufacturer’s	 instructions.	 For	 all	 experiments,	 precultures	 for	 biomass	

propagation	were	prepared	in	YPD	liquid	medium	(2%	(w/v)	glucose,	2%	(w/v)	peptone	

and	1%	(w/v)	yeast	extract	(Panreac,	Barcelona,	Spain))	and	incubated	for	24	h	at	28ºC	

with	orbital	shaking	(120	rpm).	

2.2. Resistance	to	hydrogen	peroxide	(H2O2)	

Yeast	 resistance	 to	H2O2	was	assessed	using	 the	agar	diffusion	method	 (Bauer	et	al.,	

1966;	 Acar,	 1980).	 Approximately	 5x106	 cells	 were	 seeded	with	 glass	 beads	 on	 YPD	

plates,	and	6	mm	blank	disks	were	impregnated	with	10	µL	of	30%	(v/v),	15%	(v/v),	3%	

(v/v)	or	0.3%	(v/v)	H2O2	(PerdrogenTM,	Sigma-Aldrich,	MO,	USA)	and	placed	on	the	agar	

surface	after	drying.	One	disk	impregnated	with	10	µL	of	H2O	was	used	as	the	negative	

control.	After	48	h	of	incubation	at	28	ºC,	the	diameter	of	the	inhibition	haloes,	including	

the	disk,	was	measured	with	a	ruler	and	photographed	using	a	ProtoColHr	automatic	
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colony	 counter	 (Microbiology	 International,	 Frederick,	 USA).	 The	 means	 of	 three	

biological	replicates	were	calculated.	

2.3. Determination	of	reactive	oxygen	species	(ROS)	

The	effect	of	H2O2	on	the	intracellular	ROS	concentration	was	evaluated	in	the	six	yeast	

strains.	The	yeast	cells	were	inoculated	into	50	mL	of	YPD	broth	(5x105	cells/mL)	and	

grown	for	6	h	(early	exponential	phase)	at	28ºC	with	orbital	shaking	at	120	rpm.	The	

cells	were	then	exposed	to	different	concentrations	of	H2O2	(from	2	mM	to	8	mM)	for	1	

h,	and	the	ROS	were	determined	and	compared	to	the	control	(sample	without	exposure	

to	 H2O2).	 Three	 biological	 replicates	 were	 set	 up	 for	 each	 condition.	 An	 ROS	

determination	was	performed	according	 to	 the	method	described	by	Vázquez	 et	 al.,	

(2017)	using	dihydrorhodamine	123	(DHR	123;	Sigma-Aldrich)	as	an	ROS	indicator.	

2.4. Experimental	conditions	for	lipid	analysis	

Cells	 from	each	of	 the	six	yeast	strains	were	 inoculated	 into	450	mL	of	YPD	broth	 to	

obtain	an	initial	population	of	5x105	cells/mL	and	grown	at	30ºC	with	orbital	shaking	at	

130	rpm.	After	6	h	(early	exponential	phase),	sublethal	oxidative	stress	was	induced	in	

each	strain	by	adding	2	mM	H2O2	to	the	yeast	culture.	The	optical	density	at	600	nm	

(OD600)	was	measured	at	6h	(before	stress)	and	18	h	after	the	stress	exposure	to	allow	

the	 cells	 to	 respond/adapt	 to	 this	 stress	 (thus,	 24	 h	 from	 the	 beginning	 of	 the	

experiment).	At	these	same	time	points,	the	total	cells	pellets	(50	mL)	were	harvested	

for	subsequent	lipid	analysis.	Two	biological	replicates	were	set	up	for	each	strain.	

2.5. Lipid	analysis	

2.5.1. Cell	homogenates,	protein	quantification	and	lipid	extraction	

Homogenates	of	the	yeast	cells	were	obtained	by	extracting	the	pellets	in	the	presence	

of	glass	beads	using	a	Disruptor	GenieÒ	(Scientific	Industries,	Inc.,	NY,	USA)	at	4	ºC	for	

10	 min.	 Proteins	 from	 the	 homogenates	 were	 then	 precipitated	 with	 10%	 (v/v)	

trichloroacetic	acid	and	quantified	with	the	Folin	phenol	reagent	(Lowry	et	al.,	1951).	

The	total	lipids	were	extracted	from	cell	fractions	corresponding	to	1	mg,	3	mg	or	0.5	

mg	of	total	cell	protein	during	the	FA,	PL	or	sterol	assays,	respectively,	according	to	Folch	

et	al.,	(1957).	
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2.5.2. Fatty	acids	

The	cell	FA	composition	was	analyzed	by	gas	liquid	chromatography	(GLC)	according	to	

Rubmayer	et	 al.,	 (2015).	 In	brief,	 the	 total	 FAs	 from	 lipid	extracts	 (1	mg	of	 total	 cell	

protein)	were	converted	to	methyl	esters	by	methanolysis	with	sulfuric	acid	 (2.5%	 in	

methanol	 (v/v))	 and	heating	 at	 80	 ºC	 for	 90	min.	 These	 FA	methyl	 esters	were	 then	

extracted	twice	with	light	petroleum	and	water	(3:1;	v/v)	by	shaking	on	a	VibraxÒ	orbital	

shaker	(IKA,	Staufen,	Germany)	for	30	min,	and	separated	by	GLC	on	a	Hewlett-Packard	

6890	 gas-chromatograph	 (Agilent	 Technologies,	 CA,	 USA)	 using	 an	 HP-INNOWax	

capillary	column	(15	m	x	0.25	mm	x	0.50	µm	film	thickness)	with	helium	as	a	carrier	gas.	

Finally,	 the	 FAs	 were	 identified	 by	 comparing	 with	 a	 commercial	 FA	 methyl	 ester	

standard	mix	(NuCheck,	Inc.,	MN,	USA)	and	quantified	using	pentadecanoic	acid	(C15:0,	

Sigma-Aldrich)	 as	 an	 internal	 standard.	 Two	 analytical	 replicates	were	 used	 for	 each	

biological	replicate.	

2.5.3. Phospholipids	

The	PLs	were	separated	by	two-dimensional	thin	layer	chromatography	(TLC)	on	Silica	

Gel	60	plates	(Merck)	using	chloroform:	methanol:	ammonia	solution	(25%)	(65:35:5;	

per	vol.)	as	the	first	dimension	solvent	and	chloroform:	acetone:	methanol:	acetic	acid:	

water	 (50:20:10:10:5;	per	 vol.)	 as	 the	 second	dimension	 solvent	 (Athenstaedt	et.	 al.,	

1999).	 Individual	PLs	were	visualized	on	TLC	plates	by	staining	with	 iodine	vapor	and	

then	scraping	the	spots	off	the	plate,	which	were	quantified	by	measuring	the	amount	

of	phosphate	(Broekhuyse,	1968).	The	phosphate	quantity	was	calculated	as	a	relative	

amount	 of	 the	 total	 phosphate	 (%).	 Two	 analytical	 replicates	 were	 taken	 for	 each	

biological	replicate.	

2.5.4. Sterols	

The	individual	sterol	composition	was	determined	by	gas-liquid	chromatography-mass	

spectrometry	(GC-MS)	after	the	alkaline	hydrolysis	of	the	lipid	extracts	(0.5	mg	of	total	

cell	protein)	(Quail	and	Kelly,	1996).	GLC-MS	was	performed	on	a	Hewlett-Packard	5690	

Gas	Chromatograph	equipped	with	an	HP	5972	mass	selective	detector	using	a	capillary	

column	(HP	5-MS;	30	m	x	0.25	mm	i.d.	x	0.25	µm	film	thickness).	The	injection	was	set	

at	270	ºC	using	helium	as	the	carrier	gas	with	a	constant	flow	rate	set	to	0.9	mL	min-1.	
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To	 identify	the	mass	fragmentation	pattern	of	each	sterol,	a	cholesterol	solution	was	

used	as	an	internal	standard.	The	determinations	were	performed	in	duplicate.	

2.6. Data	analysis	

The	data	were	subjected	to	a	one-way	analysis	of	variance	(ANOVA)	and	Tukey’s	post-

hoc	 test	 to	 evaluate	 the	 effect	 of	 each	 treatment.	 The	 results	 were	 considered	

statistically	significant	at	a	p-values	less	than	0.05	(IBM	SPSS	Inc,	XLSTAT	Software).	A	

Principal	Component	Analysis	(PCA)	was	performed	to	visualize	a	2D	plot	of	the	first	two	

principal	components	(PCs)	and	heatmap	of	relative	changes	in	lipid	composition	using	

XLSTAT	Software.	

3. RESULTS	

3.1. 	Yeast	resistance	to	hydrogen	peroxide		

The	six	yeast	strains	described	above	were	plated	on	YPD	medium,	and	the	inhibition	

haloes	 around	 the	 disks	 that	 had	 been	 previously	 soaked	 with	 3%	 (v/v)	 H2O2	 were	

measured.	The	inhibition	haloes	for	the	S.	cerevisiae	strains	(BY4742	and	QA23)	were	

2.90	±	0.19	cm	and	1.80	±	0.12	cm,	respectively	(Figure	1A,	B).	By	contrast,	the	size	of	

the	inhibition	haloes	was	significantly	smaller	for	all	the	non-Saccharomyces	strains.	The	

M.	pulcherrima	strains,	and	especially	Mpp,	had	the	highest	resistance	against	3%	(v/v)	

of	H2O2	(Figure	1E,	F;	1.2	±	0.05	cm	(MpF)	and	0.75	±	0.01	cm	(Mpp)).	Both	T.	delbrueckii	

strains	 exhibited	 similar	 inhibition	 haloes,	 with	 an	 intermediate	 size	 between	 the	 S.	

cerevisiae	and	M.	pulcherrima	strains	(TdF,	1.40	±	0.17;	Tdp,	1.40	±	0.02;	Figure	1C,	D).	

	

	

Figure	1.	Resistance	to	H2O2	(10	µL	from	H2O2	3%	(v/v))	by	disk	diffusion	method	for	six	yeast	strains	
grown	on	YPD	plates	over	48	h.	Saccharomyces	cerevisiae:	(A)	BY4742	and	(B)	QA23	strains.	Torulaspora	

delbrueckii:	(C)	TdB	and	(D)	Tdp	strains.	Metschnikowia	pulcherrima:	(E)	MpF	and	(F)	Mpp	strains.	
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At	 lower	concentrations	of	H2O2	 (0.3%),	only	BY4742	showed	a	small	 inhibition	halo,	

while	exposure	to	higher	concentrations	of	H2O2	(15%	and	30%)	resulted	in	an	increase	

in	the	sizes	of	inhibition	haloes	for	all	the	strains	(Figure	S1).	As	with	the	3%	(v/v)	H2O2,	

the	 S.	 cerevisiae	 strains	were	 the	most	 affected	 ones	 by	 high	 concentrations	 of	 this	

oxidant.	

3.2. 	Determination	of	reactive	oxygen	species		

For	all	the	yeast	species,	the	intracellular	ROS	levels	were	measured	with	and	without	

H2O2	stress	at	the	early	exponential	phase.	Under	these	stress	conditions,	S.	cerevisiae	

strains	accumulated	higher	amounts	of	ROS	than	non-Saccharomyces	species	(Figure	2).		

	

Figure	2.	Effect	of	H2O2	on	ROS	accumulation	as	evaluated	in	six	yeast	strains	with	and	without	stress.	
The	flow	cytometry	histogram	profile	expressed	as	the	number	of	events	with	0	mM	(-)	and	2	mM	(-)	of	
H2O2.	The	mean	fluorescence	index	(MFI)	was	calculated	according	to	Boettiger	et	al.,	(2001)	as	follows:	
[(geometric	mean	of	the	positive	fluorescence)	–	(geometric	mean	of	the	control)]	/	(geometric	mean	of	

the	control).	

	

BY4742	was	the	least	H2O2-resistant	strain	(Figure	1A),	and	it	showed	the	highest	levels	

of	ROS	 (Figure	2B)	 followed	by	QA23	(Figure	2A)	and	the	non-Saccharomyces	 strains	

(Figure	2C-F),	with	M.	pulcherrima	Mpp	having	 the	 lowest	 levels	of	endogenous	ROS	

(Figure	2F).	Exposure	to	increasing	concentrations	of	H2O2	from	2	mM	to	8	mM	resulted	
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in	 a	 gradual	 increase	 in	 ROS	 accumulation	 in	 S.	 cerevisiae.	 Instead,	 in	 non-

Saccharomyces,	 practically	 no	 change	 in	 ROS	 accumulation	 was	 observed	 until	 the	

applied	H2O2	concentrations	reached	8	mM	(depending	on	the	species),	showing	very	

low	MFI	values	at	all	concentrations	(Figure	S2).	

3.3. 	Lipid	composition	before	and	after	stress	exposure		

First,	the	FA,	PL	and	sterol	compositions	in	the	six	strains	in	this	study	were	evaluated	

after	 6	 h	 of	 growth	 in	 a	 rich	 medium	 to	 study	 the	 differences	 in	 lipid	 composition	

between	the	three	species	used	here	(S.	cerevisiae,	T.	delbrueckii	and	M.	pulcherrima).	

The	 cells	 were	 then	 subjected	 to	 oxidative	 stress	 (2	 mM	 of	 H2O2),	 and	 the	 lipid	

composition	of	these	six	strains	was	analyzed	after	18	h	to	determine	how	the	different	

species	 could	 modify	 their	 lipid	 composition	 to	 better	 resist	 the	 oxidative	 stress	

exposure.	

Fatty	acid,	phospholipid	and	sterol	composition	before	stress	exposure	

FAs	 typically	 make	 up	 parts	 of	 complex	 lipids,	 and	 they	 are	 important	 structural	

components	of	biological	membranes.	An	FA	analysis	of	the	total	cell	extracts	showed	

differences	 between	 the	 species	 (Table	 1).	 In	 the	 S.	 cerevisiae	 strains	 (QA23	 and	

BY4742),	MUFAs	(palmitoleic	(C16:1)	and	oleic	(C18:1)	acids)	and	palmitic	acid	(C16:0)	

represented	 almost	 90%	 of	 the	 FA	 in	 the	 cell	 extracts.	 By	 contrast,	 the	 non-

Saccharomyces	 strains	 contained	 a	 lower	 percentage	 of	 C16:1	 (especially	 in	 the	M.	

pulcherrima	strains),	which	was	compensated	by	the	presence	of	linoleic	acid	(C18:2),	a	

PUFA.	Moreover,	in	the	case	of	the	M.	pulcherrima	strains,	a	low	percentage	of	linolenic	

acid	 (C18:3)	was	also	present.	As	a	result	of	 this	 fatty	acid	pattern,	 the	T.	delbrueckii	

strains	presented	higher	UFA/SFA	ratios	than	the	other	studied	species.	

PLs	 are	 major	 structural	 components	 of	 cell	 membranes	 and	 are	 essential	 for	 vital	

cellular	 processes.	 The	 PL	 percentages	 of	 the	 homogenates	 showed	 a	 similar	

composition	 in	 all	 the	 studied	 yeasts,	 with	 phosphatidylcholine	 (PC)	 and	

phosphatidylethanolamine	(PE)	representing	approximately	50%	and	24%	of	the	total	

PLs,	respectively	(Table	1).	However,	there	were	also	small	shifts	in	some	PLs	between	

different	 yeast	 species.	 In	 general,	 all	 the	 non-Saccharomyces	 strains	 showed	 a	

significantly	lower	percentage	of	dimethyl	phosphatidylethanolamine	(DMPE),	and	the	

T.	delbrueckii	strains	had	the	lowest	amounts	of	lysophospholipids	(LP).	Of	the	strains	
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studied	here,	Mpp	showed	the	most	different	PL	composition,	resulting	in	the	highest	

PC/PE	and	the	lowest	phosphatidylinositol/phosphatidylserine	(PI/PS)	ratios.	In	fact,	the	

highest	PI/PS	ratio	was	found	in	the	QA23	strain.	

Table	1.	Fatty	acid	(FA),	phospholipid	(PL)	and	sterol	compositions	of	different	strains	after	6	h	of	growth	
in	YPD	medium.	The	QA23	and	BY4742	strains	are	S.	cerevisiae	species,	the	TdB	and	Tdp	strains	belong	to	
T.	delbrueckii,	and	the	MpF	and	Mpp	strains	belong	to	M.	pulcherrima.	Different	letters	in	superscripts	
indicate	significant	differences	between	strains	for	each	studied	compound	(P<	0.05).	

	

	

% Lípid composition Yeast strain 
QA23 BY4742 TdB Tdp MpF Mpp 

Fa
tty

 a
ci

ds
 (F

A
s)

 

Myristic (C14:0) acid 2.58 ± 0.34a 2.45 ± 0.59a 1.30 ± 0.34b 1.55 ± 0.09b 0.98 ± 0.02c 0.89 ± 0.30c 
Palmitic (C16:0) acid 23.17 ± 1.75a 23.55 ± 0.67a 18.30 ± 0.30b 20.03 ± 0.26c 23.27 ± 1.47a 21.76 ± 0.80a,d 
Palmitoleic (C16:1) acid 36.29 ± 3.14a 42.64 ± 0.63b 21.14 ± 2.28c 19.81 ± 0.21c 2.95 ± 0.09d 3.69 ± 0.72d 
Stearic (C18:0) acid 7.64 ± 1.57a 8.36 ± 1.16a 8.09 ± 0.19a 7.40 ± 0.56a 9.37 ± 0.34a 8.62 ± 0.19a 
Oleic (C18:1) acid 30.32 ± 0.53a 22.99 ± 1.14b 24.21 ± 0.52b 25.59 ± 0.86b,c 17.21 ± 0.61d 26.43 ± 1.10b,c 
Linoleic (C18:2) acid n.d. n.d. 26.95 ± 2.21a 25.63 ± 0.26a 40.17 ± 1.29b 34.67 ± 1.05d 
Linolenic (C18:3) acid n.d. n.d. n.d. n.d. 6.05 ± 0.16a 3.95 ± 0.15b 
Total FAs # 86.25 ± 1.14a 87.84 ± 1.48a 76.53 ± 9.34a 91.9 ± 2.72a,b 65.75 ± 6.17c 80.49 ± 0.80a,d 

C16:1/ C18:1 1.20 ± 0.08a 1.86 ± 0.12b 0.87 ± 0.11c 0.77 ± 0.03c 0.17 ± 0.00d 0.14 ± 0.03e 
UFA/SFA 2.01 ± 0.33a 1.91 ± 0.04a 2.61 ± 0.06b 2.45 ± 0.05b 1.98 ± 0.16a 2.20 ± 0.13a 
UI* 0.67 ± 0.03a 0.66 ± 0.00a 0.99 ± 0.03b 0.97 ± 0.00b 1.19 ± 0.03c 1.11 ± 0.02d 

Ph
os

ph
ol

ip
id

s 
(P

L
s)

 

PI 
(Phosphatidylinositol) 12.49 ± 1.31a 12.19 ± 0.61a 14.63 ± 2.01a 12.93 ± 1.13a 10.10 ± 0.46b 8.94 ± 1.44b 
PS 
(Phosphatidylserine) 4.01 ± 0.21a 6.19 ± 0.76b 5.82 ± 1.61a,b 5.22 ± 1.29a,b 6.45 ± 1.42b 6.91 ± 0.63b,c 
PC 
(Phosphatidylcoline) 43.47 ± 0.51a 40.63 ± 1.07b 44.23 ± 1.55a 46.65 ± 2.00a 44.10 ± 4.56a 51.53 ± 0.93c 
PE 
(Phosphatidylethanolamine) 24.61 ± 1.38a 24.07 ± 1.66a 23.34 ± 2.64a 23.32 ± 4.19a 21.71 ± 0.17a,b 20.39 ± 1.03b 

CL 
(Cardiolipin) 5.66 ± 0.23a 2.86 ± 0.18b 6.02 ± 1.33a 6.87 ± 1.24a 7.03 ± 0.23a,c 4.71 ± 0.94a 
DMPE (Dimethyl-
phosphatidylethanolamine) 3.76 ± 1.12a 5.39 ± 0.10b 0.99 ± 0.25c 1.18 ± 0.62c 1.60 ± 0.37c 1.02 ± 0.36c 
PA 
(Phosphatidic acid) 2.00 ± 0.28a 4.48 ± 2.57a 4.18 ± 1.27a,b 3.39 ± 1.37a 4.67 ± 0.67a,b 3.75 ± 0.11a,b 
LP 
(Lysophospholipids) 4.01 ± 0.21a 4.19 ± 2.06a 0.79 ± 0.25b 0.43 ± 0.54b 4.35 ± 1.48a 2.75 ± 0.29a,c 

PI/PS 3.11 ± 0.16a 2.00 ± 0.34b 2.56 ± 0.36b 2.52 ± 0.40b 1.61 ± 0.43b,c 1.31 ± 0.33c 
PC/PE 1.77 ± 0.12a 1.69 ± 0.16a 1.90 ± 0.14a 2.02 ± 0.27a 2.03 ± 0.19a 2.53 ± 0.17b 

St
er

ol
s 

Squalene 18.51 ± 2.41a 2.91 ± 0.52b 33.15 ± 3.19c 36.37 ± 3.93c 6.24 ± 0.09d n.d. 
Zymosterol 16.78 ± 0.80a 8.39 ± 0.29b 4.16 ± 0.56c 6.15 ± 1.19d 0.91 ± 0.33e n.d. 
4-methylzymosterol 1.21 ± 0.08a n.d. n.d. 1.71 ± 0.87a n.d. n.d. 
Fecosterol 6.48 ± 0.05a 14.11 ± 0.32b 9.36 ± 0.37c 6.02 ± 0.07d n.d. 2.24 ± 1.16e 
14-methylfecosterol n.d. n.d. n.d. 1.17 ± 0.10 n.d. n.d. 
Episterol 1.38 ± 0.06a n.d. 1.08 ± 0.07b 4.51 ± 0.89c n.d. n.d. 
Lanosterol 2.75 ± 0.04a 3.72 ± 0.22b 11.26 ± 1.31c 5.67 ± 0.89d 3.91 ± 1.32a,b,d 1.22 ± 1.03e 
Ergosterol 52.89 ± 1.58a 70.88 ± 0.77b 40.99 ± 2.00c 38.39 ± 1.70c 88.95 ± 1.56d 96.54 ± 1.89d 
Total sterols # 26.92 ± 0.69a 16.52 ± 0.40b 27.94 ± 0.87a 24.97 ± 4.69a 3.78 ± 0.86c 8.16 ± 0.50d 

Ergosterol/Squalene 2.88 ± 0.46a 24.78 ± 4.71b 1.24 ± 0.18c 1.07 ± 0.16c 13.95  ± 0.05d - 
# (µg/ mg protein)  
*UI, unsaturation index. The unsaturation index was defined as follows: ((percentage of C16:1 + percentage of C18:1) + 2(percentage of 
C18:2) + 3(percentage of C18:3)) /100 (Rodríguez-Vargas, et al., 2007). 
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Sterols	are	essential	lipid	constituents	of	membranes,	and	they	were	also	analyzed	from	

yeast	homogenates	(Table	1).	The	total	sterol	content	was	significantly	lower	in	both	M.	

pulcherrima	 strains	 (4-8	µg	 sterol/mg	 total	 protein)	 compared	 to	 the	 other	 studied	

strains	(approximately	15-25	µg	sterol/mg	total	protein).	The	primary	sterol	 in	all	the	

strains	was	ergosterol,	although	the	percentages	varied	markedly	between	species	(38-

96%).	In	the	M.	pulcherrima	strains,	practically	the	only	sterol	that	was	quantified	was	

ergosterol.	 Instead,	 the	 T.	 delbrueckii	 strains	 exhibited	 the	 lowest	 percentage	 of	

ergosterol	(38-40%)	and	the	highest	levels	of	squalene	(33-36%)	and	lanosterol	(6-11%).	

For	S.	cerevisiae,	 the	strains	used	 in	this	study	showed	significant	differences	 in	their	

sterol	 compositions.	Thus,	without	accounting	 for	 the	ergosterol,	QA23	had	a	higher	

percentage	of	squalene	and	zymosterol,	whereas	BY4742	contained	a	higher	proportion	

of	fecosterol	than	the	other	strains.	

Fatty	acid,	phospholipid	and	sterol	composition	after	stress	exposure	

Differences	in	the	cellular	lipid	compositions	before	and	after	stress	exposure	are	shown	

in	Figure	3.	QA23	and	BY4742	showed	only	a	few	changes	in	the	FA	composition	(Figure	

3).	In	QA23,	slightly	decreased	amounts	of	C16:0	and	C18:0	and	increased	amounts	of	

C16:1	were	found,	leading	to	an	increase	in	the	unsaturated	FA/saturated	FA	(UFA/SFA)	

ratio	 and	 in	 the	 unsaturation	 index	 (UI)	 (Figure	 3).	 By	 contrast,	 non-Saccharomyces	

species	experienced	highly	modified	FA	compositions	after	 stress.	 The	percentage	of	

PUFAs	(C18:2,	and	for	Mp	also	C18:3)	and	SFA	(C16:0	and	C18:0)	decreased,	whereas	

the	MUFAs	(C16:1	and	C18:1)	strongly	increased.	In	fact,	under	these	stress	conditions,	

the	percentages	of	C18:1	in	non-Saccharomyces	strains	were	higher	than	they	were	in	

S.	 cerevisiae	 (Table	2),	unlike	what	we	observed	under	 the	control	 conditions.	These	

variations	 resulted	 in	 a	 higher	 UFA/SFA	 ratio	 and	 a	 lower	 UI	 in	 non-Saccharomyces	

species	(Figure	3	and	Table	2).	

The	PL	composition	was	 slightly	affected	by	 stress,	but	 the	 total	PL	profile	 remained	

similar	between	species	(Table	2).	The	PC	and	PE	persisted	as	the	primary	PLs	in	all	the	

yeast	 strains,	and	although	all	 the	strains	 showed	 increased	PC/PE	 ratios	after	 stress	

(Figure	3),	 this	 increase	was	statistically	higher	 in	the	TdB	and	Mpp	strains	(Table	2).	

Moreover,	the	PI/PS	ratio	decreased	in	non-Saccharomyces	strains	but	increased	greatly	

in	S.	cerevisiae	 (Figure	3)	due	to	 the	 increased	PI	and	the	decreased	PS	 in	QA23	and	
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BY4742.	Notably,	there	was	a	significant	decrease	in	the	cardiolipin	(CL)	content	under	

stress	exposure	in	all	the	strains	except	for	Mpp,	the	most	H2O2-resistant	strain,	which	

increased	 the	 CL	 content	 under	 these	 conditions	 (Figure	 3).	 Moreover,	 both	 M.	

pulcherrima	strains	showed	significantly	decreased	amounts	of	lysophospholipids	(LP),	

whereas	 the	 S.	 cerevisiae	 strains,	 especially	 BY4742,	 were	 the	 ones	 with	 higher	 LP	

contents	after	stress	(Table	2).	

	

Figure	3.	Heatmap	representing	the	fold	changes	in	the	lipid	composition	of	cells	following	stress	
exposure	relative	to	the	cells	before	stress	exposure.	S.	cerevisiae	strains:	QA23	and	BY4742;	T.	

delbrueckii	strains:	TdB	and	Tdp;	and	M.	pulcherrima	strains:	MpF	and	Mpp.	

	

Q
A
23

BY
47
42

Td
B

Td
p

M
pF

M
pp

Myristic (C14:0) acid

Palmitic (C16:0) acid

Palmitoleic (C16:1) acid

Stearic (C18:0) acid

Oleic (C18:1) acid

Linoleic (C18:2) acid

Linolenic (C18:3) acid

C16:1/C18:1

UFA/SFA

Unsaturation Index

Phosphatiylinositol (PI)

Phosphatidylserina (PS)

Phosphatitylcoline (PC)

Phosphatidylethanolamine (PE)

Cardiolipin (CL)

Dimethylphosphatidylethanolamine (DMPE)

Phosphatidic acid (PA)

Lysophospholipids (LP)

PI/PS

PC/PE

Squalene

Zymosterol

Ergosterol

4-methylzymosterol

14-mehylfecosterol

Fecosterol

Episterol

Lanosterol

Ergosterol/Squalene

 n.d. 

 < -1 

 -1 - -0.25 

 -0.25 - 0 

 0 - -0.25 

 0.25 - 1 

 1 - 4 

 > 4 

Ranges of relative values 



CHAPTER	1	

	

91	

	

Table	2.	Fatty	acid	(FA),	phospholipid	(PL)	and	sterol	compositions	of	different	strains	after	stress	exposure	
at	24	h	of	growth	in	YPD	medium.	The	QA23	and	BY4742	strains	belong	to	the	S.	cerevisiae	species,	the	
TdB	and	Tdp	strains	 to	T.	delbrueckii	and	MpF	and	Mpp	strains	 to	M.	pulcherrima.	Different	 letters	 in	
superscripts	indicate	significant	differences	within	a	line	and	asterisks	indicate	differences	between	cells	
before	(Table	1)	and	after	stress	exposure	(P<	0.05).	

	

	

	

% Lípid composition 
 

Yeast strain 
QA23 BY4742 TdB Tdp MpF Mpp 

Fa
tty

 a
ci

ds
 (

FA
s)

 

Myristic (C14:0) acid 2.03 ± 0.71a 2.35 ± 0.35a 1.83 ± 0.19a 1.68 ± 0.09a,b 1.12 ± 0.07c 0.68 ± 0.16d 
Palmitic (C16:0) acid 19.88 ± 0.20a,* 23.63 ± 0.73b 13.94 ± 2.11c,* 15.18 ± 0.08c,* 21.75 ± 0.93b 17.17 ± 0.63c,* 
Palmitoleic (C16:1) acid 40.44 ± 0.33a,* 43.28 ± 0.89b 33.32 ± 0.58c,* 31.07 ± 0.02d,* 10.81 ± 0.45e,* 8.59 ± 0.29f,* 
Stearic (C18:0) acid 6.61 ± 0.86a 8.47 ± 1.05a 3.91 ± 0.41b,* 4.03 ± 0.02b,* 4.14 ± 0.61b,* 3.48 ± 0.08b,c* 
Oleic (C18:1) acid 30.53 ± 0.32a 22.27 ± 1.25b 39.96 ± 1.24c,* 41.98 ± 0.73c,* 31.28 ± 1.16a,* 52.23 ± 0.56d,* 
Linoleic (C18:2) acid n.d. n.d. 7.03 ± 0.89a,* 6.07 ± 0.76a,* 30.00 ± 0.80b,* 17.32 ± 0.39c,* 
Linolenic (C18:3) acid	 n.d. n.d. n.d. n.d. 0.90 ± 0.16a,* 0.54 ± 0.05b,* 
Total FAs #	 86.26 ± 3.70a 68.12 ± 4.15b,* 101.08 ± 0.43c,* 93.42 ± 3.53a 88.02 ± 0.34a,* 74.2 ± 1.43d,* 

C16:1/ C18:1	 1.33 ± 0.00a,* 1.95 ± 0.07b 0.83 ± 0.01d 0.74 ± 0.01e 0.35 ± 0.03f,* 0.16 ± 0.00g 
UFA/SFA	 2.49 ± 0.02a,* 1.91 ± 0.18b 4.13 ± 0.71c,* 3.79 ± 0.00c,* 2.70 ± 0.03d,* 3.69 ± 0.16c,* 
UI *	 0.71 ± 0.01a,* 0.66 ± 0.02a 0.87 ± 0.04b,* 0.85 ± 0.01b,* 1.05 ± 0.01c,* 0.97 ± 0.01d,* 

Ph
os

ph
ol

ip
id

s 
(P

L
s)
	

PI 
(Phosphatidylinositol)	 15.86 ± 3.40a 15.83 ± 2.37a,* 14.52 ± 2.82a 13.48 ± 0.50a 7.71 ± 0.46b,* 8.37 ± 0.19a 
PS 
(Phosphatidylserine)	 3.46 ± 0.21a,* 5.09 ± 0.63b 7.32 ± 1.69b 5.76 ± 1.65a,b 6.35 ± 0.54b 7.37 ± 0.42b 
PC 
(Phosphatidylcoline)	 46.55 ± 2.85a,* 41.38 ± 1.80b 45.90 ± 2.37a 51.73 ± 1.87b,* 51.12 ± 1.69b,* 53.90 ± 3.05b 
PE 
(Phosphatidylethanolamine)	 23.06 ± 0.54a 23.82 ± 0.67a 19.73 ± 2.88b,* 21.36 ± 2.97a,b 22.13 ± 1.11b 17.01 ± 1.01c,* 

CL 
(Cardiolipin)	 3.44 ± 0.45a,* 1.57 ± 0.07b,* 4.67 ± 0.12c,* 4.29 ± 0.22c,* 5.93 ± 0.50c,* 6.64 ± 1.48c 
DMPE (Dimethyl-
phosphatidylethanolamine)	 2.34 ± 0.15a,* 3.63 ± 0.82b,* 1.61 ± 0.73c 1.28 ± 0.28c 1.10 ± 0.44c 1.62 ± 0.74c 
PA 
(Phosphatidic acid)	 2.87 ± 0.60a 4.54 ± 0.76a,b 3.97 ± 2.08a,b 1.33 ± 1.37a 3.90 ± 0.70a,b 3.65 ± 0.19a,b 
LP 
(Lysophospholipids)	 2.42 ± 0.27a,* 4.14 ± 0.11b 1.28 ± 1.07c 0.75 ± 0.80c 1.77 ± 0.06c,* 1.44 ± 0.16c,* 

PI/PS	 4.64 ± 0.35a,* 3.10 ± 0.26b,* 1.99 ± 0.07c,* 2.33 ± 0.13d 1.21 ± 0.03e 1.13 ± 0.09e 
PC/PE	 2.02 ± 0.08a,* 1.74 ± 0.03b 2.36 ± 0.16c,* 2.40 ± 0.22c 2.32 ± 0.19c 3.18 ± 0.36d,* 

St
er

ol
s	

Squalene	 6.37 ± 1.75a,* 11.01 ± 0.86b,* 3.06 ± 0.15c,* 3.34 ± 1.52c,* 2.51 ± 0.49c,* n.d. 
Zymosterol	 13.90 ± 0.57a,* 6.10 ± 1.16b,* 11.48 ± 1.56a,* 9.09 ± 0.27c,* 1.28 ± 0.02d,* n.d. 
4-methylzymosterol	 0.90 ± 0.07a,* n.d. 2.29 ± 0.53b,* 2.77 ± 0.86b,* n.d. n.d. 
Fecosterol	 4.06 ± 0.17a,* 11.09 ± 1.30b,* 11.78 ± 0.21b,* 9.63 ± 0.77b,* n.d. n.d. 
14-methylfecosterol	 n.d. n.d. 1.91 ± 0.34a,* 1.77 ± 0.38a,* n.d. n.d. 
Episterol	 0.31 ± 0.44a,* n.d. 1.59 ± 0.08b,* 1.73 ± 0.30c,* n.d. n.d. 
Lanosterol	 1.63 ± 0.17a,* 6.05 ± 0.34b,* 7.88 ± 0.23c.* 8.97 ± 1.38c,* 1.76 ± 0.59a n.d. 
Ergosterol	 72.83 ± 1.48a,* 65.15 ± 1.94b,* 60.89 ± 3.34b,* 62.69 ± 2.81b,* 94.47 ± 1.69c,* 100 ± 0.00d,* 
Total sterols #	 40.91 ± 2.10a,* 20.00 ± 2.17b,* 43.41 ± 2.48a,* 27.80 ± 1.60c 8.52 ± 1.00d,* 9.99 ± 1.02d,* 

Ergosterol/Squalene	 11.90 ± 3.49a,* 2.88 ± 0.46b,* 19.92 ± 2.04c,* 21.13 ± 2.46c,* 38.26 ± 2.46d,* - 
# (µg/ mg protein)  
*UI, unsaturation index. The unsaturation index was defined as follows: ((percentage of C16:1 + percentage of C18:1) + 2(percentage of 
C18:2) + 3(percentatge of C18:3)) /100 (Rodríguez-Vargas, et al., 2007). 
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After	the	stress,	ergosterol	remained	the	primary	sterol	in	all	the	studied	yeasts	and	the	

only	one	in	Mpp	(Table	2).	However,	a	different	behavior	was	observed	between	the	

wine	yeast	strains	and	laboratory	strain	BY4742.	All	the	wine	yeasts	showed	increased	

ergosterol	 contents	 and	 decreased	 squalene	 contents	 under	 stress	 (resulting	 in	 an	

increase	 of	 the	 ergosterol/squalene	 ratio;	 Figure	 3).	 However,	 BY4742	 showed	 the	

opposite	 behavior,	 with	 increasing	 squalene	 and	 decreasing	 ergosterol	 contents,	

resulting	 in	 a	 decrease	 in	 the	 ergosterol/squalene	 ratio	 (Figure	 3).	 In	 fact,	 BY4742	

showed	the	highest	value	for	this	ratio	before	stress	and	the	lowest	after	stress	(Table	

2).	However,	 the	T.	delbrueckii	 strains	showed	the	highest	ergosterol/squalene	ratios	

under	stress	(mostly	due	to	the	drop	in	squalene	content),	and	they	were	the	strains	

that	had	more	diverse	 sterol	 compounds	and	 the	only	 species	 that	exhibited	methyl	

fecosterol.	 In	 fact,	whereas	 both	 S.	 cerevisiae	 strains	 experienced	 decreases	 in	 their	

zymosterol	and	fecosterol	percentages	under	stress,	the	T.delbrueckii	strains	increased	

their	component	(Figure	3).	

3.4. 	Principal	component	analysis	(PCA)	

PCA	was	applied	to	correlate	the	different	variables	(lipid	composition,	inhibition	haloes	

and	ROS	levels	(MFI))	and	highlight	some	grouping	patterns	within	the	different	species	

under	different	conditions.	Before	stress	(Figure	4A),	the	species	were	clearly	separated	

into	three	groups	by	their	 lipid	composition	(Table	1),	with	M.	pulcherrima	being	the	

most	diverse	compared	to	S.	cerevisiae	and	T.	delbrueckii.	Both	M.	pulcherrima	strains	

(MpF	 and	Mpp)	 were	 different	 from	 the	 other	 strains	 in	 that	 they	 exhibited	 higher	

ergosterol	 and	PS	percentages	and	 lower	PI	 and	PE.	 Furthermore,	 the	percentage	of	

total	PUFAs	(C18:2	and	C18:3)	was	clearly	higher	in	the	M.	pulcherrima	strains	(the	T.	

delbrueckii	only	showed	low	levels	of	C18:2,	and	S.	cerevisiae	had	no	PUFAs	in	its	lipid	

composition).	Both	S.	cerevisiae	strains	were	characterized	by	high	levels	of	myristic	acid	

(C14:0)	and	oleic	acid	(C16:1),	DMPE,	PI/PS	ratios	and	zymosterol	and	low	UI	values.	The	

lowest	LP,	C16:0	and	ergosterol	contents	and	the	highest	squalene	content	and	UFA/SFA	

ratio	were	characteristics	of	the	T.	delbrueckii	species,	which	showed	similarities	with	

the	other	non-Saccharomyces	but	also	with	Saccharomyces.	
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Figure	4.	Biplots	of	principal	components	analysis	(PCA)	using	fatty	acids	(FAs),	phospholipids	(PLs),	
sterols,	inhibition	halo	measures	and	ROS	accumulation	markers	(MFI)	as	variables.	S.	cerevisiae	strains:	
QA23	( )	and	BY4742	( );	T.	delbrueckii	strains:	TdB	( )	and	Tdp	( );	M.	pulcherrima	strains:	MpF	( )	
and	Mpp	( ).	The	explicative	variables	were	distributed	along	the	PCA	as	follows:	(A)	Biplot	with	72.60%	

of	the	variance	before	the	oxidative	stress	was	applied.	Component	1:	(+);	phosphatidylinositol	(PI),	
phosphatidylethanolamine,	(PE),	PI/	phosphatidylserine	(PI/PS)	ratio,	myristic	(C14:0)	and	palmitoleic	
(C16:1)	acids,	C16:1/oleic	(C16:1/C18:1)	ratio,	fecosterol	and	zymosterol.	(-);	PS,	phosphatidylcholine	
(PC),	PC/PE	ratio,	stearic	(C18:0),	linoleic	(C18:2)	and	linolenic	(C18:3)	acids,	ergosterol,	unsaturated	
index	and	ergosterol/squalene	ratio.	Component	2:	(+);	unsaturated/saturated	(UFA/SFA)	ratio,	

cardiolipin	(CL),	squalene,	14-methylfecosterol	and	episterol.	(-);	dimethylphosphatidylethanolamine	
(DMPE),	lysophospholipids	(LP)	and	palmitic	(C16:0)	acid.	(B)	Biplot	with	82.18%	of	the	variance	after	
oxidative	stress	(2	mM	H2O2)	was	applied.	Component	1:	(+);	inhibition	halos,	MFI,	C14:0,	C16:0,	C16:1,	
C18:0,	and	C16:1/	C18:1	ratios,	squalene,	fecosterol,	zymosterol,	PI,	PE,	DMPE	and	PI/PS.	(-);	C18:1,	
C18:2,	C18:3,	ergosterol,	ergosterol/squalene	ratio,	PC,	CL,	PC/PE	ratio	and	unsaturation	index.	

Component	2:	(+);	4-methilzymosterol,	14-methylfecosterol,	episterol,	lanosterol	and	UFA/SFA	ratio.	(-);	
LP	and	C16:0.	
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The	key	indicative	features	of	oxidative	stress	were	the	higher	ROS	accumulation	(Figure	

2)	 and	 higher	 inhibition	 haloes	 (Figure	 1),	which	were	 positively	 correlated	with	 the	

percentage	of	C14:0,	stearic	acid	(C18:0),	C16:1,	PI,	PE,	DMPE,	LP	and	squalene,	and	the	

PI/PS	and	C16:1/C18:1	ratios	(Figure	4B,	positive	component	1	and	Table	S1).	However,	

high	ROS	and	inhibition	haloes	were	negatively	correlated	with	the	UFA	(C18:1,	C18:2	

and	 C18:3),	 UI,	 CL,	 PC	 and	 ergosterol	 contents,	 and	 with	 the	 ratios	 of	 PC/PE	 and	

ergosterol/squalene	 (Figure	 4B,	 negative	 component	 1	 and	 Table	 S1).	 Thus,	 both	 S.	

cerevisiae	strains	were	clearly	different	from	both	non-Saccharomyces	species	because	

they	were	grouped	on	the	positive	side	of	component	1,	which	is	indicative	of	less	stress	

tolerance	 (with	 BY4742	 having	 higher	 positive	 values).	M.	 pulcherrima	 strains	 were	

placed	on	 the	opposite	side	 (negative	component	1),	with	Mpp	being	 the	strain	 that	

exhibited	 more	 negatives	 values,	 indicating	 a	 higher	 resistance	 to	 stress.	 Thus,	 the	

component	1	places	the	strains	according	to	their	resistance	to	oxidative	stress,	with	the	

less	H2O2-tolerant	strain	BY4742	on	one	side,	and	Mpp	on	the	opposite/negative	side,	

which	was	the	most	resistant	to	this	stress.		

Although	the	differences	between	species	in	terms	of	lipid	composition	increased	under	

stress,	it	is	important	to	highlight	that	the	primary	differences	were	already	observed	

before	stress	exposure	(Figure	S1	and	Table	S2).		

4. DISCUSSION	

Although	S.	cerevisiae	is	the	wine	yeast	par	excellence	due	to	its	fermentative	capacity,	

there	 is	 currently	 a	 strong	 interest	 that	 is	 being	 driven	 by	 consumer	 and	 industry	

demand	for	wines	with	improved	characteristics	to	study	the	possibility	of	using	non-

conventional	 yeasts	 with	 peculiar	 features	 in	 industrial	 fermentations.	 Under	 these	

conditions,	yeasts	are	exposed	to	a	variety	of	stresses.	Many	studies	on	stress	resistance	

have	been	performed	in	S.	cerevisiae,	but	few	have	addressed	other	yeast	species,	which	

have	also	shown	a	significant	impact	on	food	and	beverage	production	(Pretorius,	2000).	

In	 this	 study,	we	evaluated	oxidative	stress	 tolerance	 in	selected	non-Saccharomyces	

wine	strains,	namely,	T.	delbrueckii	and	M.	pulcherrima,	and	we	compared	it	to	the	S.	

cerevisiae	response.		

Our	findings	clearly	indicated	that	these	non-conventional	yeasts	are	more	tolerant	to	

oxidative	stress	than	S.	cerevisiae.	As	reported	elsewhere	(Moradas-Ferreira	et	al.,	1996;	
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Jamieson,	 1998;	 Moradas-Ferreira	 and	 Costa,	 2000),	 exposing	 yeast	 to	 H2O2	 was	

associated	with	a	rapid	ROS	generation	and	a	 loss	of	viability,	at	 least	until	 the	yeast	

manages	 to	 adapt	 to	 the	 new	 environmental	 conditions,	 i.e.,	 after	 the	 activation	 of	

defense	mechanisms	to	maintain	a	proper	redox	state.	Under	our	conditions,	 the	M.	

pulcherrima	 species,	 and	 especially	 the	 autochthonous	 strain	 (Mpp),	 exhibited	 the	

greatest	resistance	to	oxidative	stress	(low	ROS	generation	and	higher	H2O2	tolerance).	

Both	T.	delbrueckii	strains,	also	showed	a	higher	oxidative	resistance	compared	with	S.	

cerevisiae	 as	 reported	 by	 Alves-Araújo	 et	 al.,	 2004	 in	 a	 baking	 industry	 study.	

Furthermore,	all	the	wine	yeasts	tested	here	were	clearly	more	resistant	to	oxidative	

stress	than	the	laboratory	strain,	probably	due	to	their	adaptive	evolution	to	adverse	

stress	conditions	(Querol	et	al.,	2003,	Guillamón	and	Barrio,	2017).	In	fact,	the	BY4742	

strain	grew	poorly	after	stress	was	applied,	achieving	only	one	more	generation	after	

stress	exposure	in	liquid	medium	(data	not	shown).	BY4742	is	part	of	a	set	of	deletion	

strains	 derived	 from	 S288C	 (Branchmann	 et	 al.,	 1998)	 with	 very	 poor	 fermentation	

capacity	 (Rossouw	et	 al.,	 2013).	Unlike	wine	 yeast	 strains,	 BY4742	 is	 not	 adapted	 to	

withstand	 adverse	 growth	 conditions	 such	 as	 those	 found	 during	 the	 fermentation	

process	(Carrasco	et	al.,	2001).	

The	cell’s	first	barrier	against	stress	is	the	cellular	membrane,	and	lipids	are	one	of	its	

primary	components.	 In	this	study,	we	evaluated	the	differences	 in	 lipid	composition	

between	 the	 species	 before	 and	 after	 stress	 exposure.	 Our	 results	 showed	 that	 the	

cellular	lipid	composition	differed	widely	between	species,	and	thus	it	may	be	involved	

with	their	different	abilities	to	resist	and	tolerate	oxidative	stress.	Regardless	of	stress,	

the	primary	 feature	was	 the	high	 fatty	acid	unsaturation	 rate	observed	 in	both	non-

Saccharomyces	species,	which	was	basically	due	to	the	presence	of	PUFAs,	resulting	in	

high	membrane	 fluidity.	 It	 is	well	 known	 that	 S.	 cerevisiae	 cannot	 synthesize	 PUFAs	

because	it	only	contains	one	desaturase,	Δ9	fatty	acid	desaturase	(OLE1),	which	can	only	

produce	MUFAs	of	 16-	 and	18-carbon	 compounds	 (Stukey	 et	 al.,	 1990).	However,	S.	

cerevisiae	 can	 incorporate	 exogenous	 PUFAs	 into	 its	 cell	 membranes	 (Rosi	 and	

Bertuccioli,	1992;	Beltran	et	al.,	2008).	Instead,	in	yeasts	such	as	Kluyveromyces	lactis,	

oleic	 acid	 (C18:1)	 is	 subsequently	desaturated	 to	 linoleic	 acid	 (C18:2)	 and	 then	 to	α-

linolenic	 acid	 (C18:3)	 by	 Δ12	 and	 omega	 (D15)	 fatty	 acid	 desaturases,	 respectively	
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(Ratledge	and	Evans,	1989;	Kainou	et	al.,	2006,	Santomartino	et	al.,	2017).	In	our	case,	

both	non-Saccharomyces	species	presented	PUFAs	in	their	lipid	compositions,	although	

linolenic	acid	(C18:3)	was	a	unique	feature	of	the	M.	pulcherrima	strains.	By	contrast,	

the	ratio	C16:1/C18:1	ratio	was	higher	in	the	S.	cerevisiae	strains,	with	the	highest	content	

of	palmitoleic	acid	 (C16:1),	 the	primary	UFA	 in	aerobically	grown	S.	cerevisiae	 strains	

(Steels	et	al.,	1994),	which	 is	correlated	with	higher	membrane	rigidity	 (Redón	et	al.,	

2009).	Many	S.	cerevisiae	studies	have	reported	a	correlation	between	an	increase	in	

membrane	 fluidity	 (due	 to	 an	 increase	 in	 the	 degree	 of	 unsaturation)	 and	 a	 higher	

tolerance	to	various	types	of	stresses,	such	as	cold	or	ethanol	stress	(Guerzoni	et	al.,	

1997;	 Suutari	 and	 Laakso,	 1994;	 Casey	 and	 Ingledew,	 1986,	 Beltran	 et	 al.,	 2008).	

Therefore,	 according	 to	 the	 unsaturation	 degree,	 the	 studied	 non-Saccharomyces	

species	 were	 also	 expected	 to	 be	 more	 resistant	 to	 oxidative	 stress.	 In	 fact,	 the	

introduction	of	the	gene	encoding	the	Δ12	fatty	acid	desaturase	gene	(FAD2)	in	the	S.	

cerevisiae	strains	reportedly	resulted	in	a	higher	resistance	to	ethanol	(Kajiwara	et	al.,	

1996),	to	NaCl	and	freezing	(Rodríguez-Vargas	et	al.,	2007).	Moreover,	the	introduction	

of	both	desaturases	 (FAD2	and	FAD3	 (ω3	 fatty	acid	desaturase)	 from	K.	 lactis)	 into	a	

strain	of	S.	cerevisiae	has	been	reported	to	increase	the	alkaline	pH	tolerance	(Yazawa	

et	al.,	2009).	Therefore,	although	PUFAs	seem	to	increase	yeast	tolerance	to	stress,	they	

can	also	be	 toxic	 to	cells	because	of	 their	 susceptibility	 to	peroxidation	 (Cipak	et	al.,	

2006,	 Johansson	 et	 al.,	 2016).	 In	 fact,	 the	 heterologous	 production	 of	 PUFAs	 in	 S.	

cerevisiae	has	been	shown	to	 increase	oxidative	stress	 (Ruenwai	et	al.,	2011),	and	 in	

non-Saccharomyces	strains,	a	higher	proportion	of	C18:2	acid	does	not	assure	increased	

tolerance	 to	 ethanol	 stress	 (Aguilera	 et	 al.,	 2006,	 Archana	 et	 al.,	 2015).	 Under	 our	

conditions,	 i.e.,	 under	 oxidative	 stress,	 high	 levels	 of	 C18:2	 acid	 were	 positively	

correlated	with	low	ROS	generation	and	high	H2O2	tolerance.	Nevertheless,	the	amounts	

of	PUFAs	decreased	in	all	the	non-Saccharomyces	strains	after	stress	exposure,	probably	

indicating	that	the	strategy	of	these	species	was	a	reduction	of	the	PUFA	content	due	to	

their	high	sensitivity	 to	peroxidation	 (Ayala	et	al.,	2014,	 Johansson	et	al.,	2016).	This	

effect	could	be	a	mechanism	in	non-conventional	yeasts	to	withstanding	the	oxidative	

stress	 better	 without	 compromising	 membrane	 integrity.	 The	 other	 principal	

mechanism	used	by	non-Saccharomyces	yeasts	 to	cope	with	oxidative	stress	was	the	

modulation	 of	 their	 FA	 composition,	 by	 raising	 the	 proportion	 of	 MUFAs,	 such	 as	
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palmitoleic	acid	and	oleic	acid,	and	by	decreasing	the	amounts	of	SFA,	such	as	palmitic	

acid	and	stearic	acid.	Oleic	acid	has	been	suggested	as	a	membrane	fluidity	sensor,	and	

it	seems	to	be	the	most	important	UFA	for	counteracting	the	toxic	nature	of	ethanol	by	

increasing	the	membrane	stability	and	antagonizing	the	fluidity	caused	by	ethanol	(You	

et	 al.,	 2003).	 Furthermore,	 palmitoleic	 acid	 is	 induced	 by	 stress	 in	 high-density	

fermentations,	 and	 it	 has	 a	 protective	 function	 against	 damage	 (Ding	 et	 al.,	 2009).	

According	to	Redón	et	al.	(2009),	the	supplementation	of	palmitoleic	acid	in	wine	yeast	

culture	 has	 a	 positive	 effect	 on	 the	 yeast	 viability	 and	 the	 fermentation	 kinetics.	

However,	although	the	UFA/SFA	ratio	increased,	the	results	showed	a	decrease	in	the	

unsaturation	index	in	non-Saccharomyces	species,	indicating	how	yeasts	try	to	maintain	

their	membrane	fluidity.	

Regarding	 the	 phospholipid	 composition,	 PC	 and	 PE	 are	 the	 primary	 PLs	 of	 yeast	

membranes,	representing	up	to	60-70%	of	total	PLs	(Schneiter	et	al.,	1999).	The	PC/PE	

ratio	 is	an	important	parameter	for	the	biophysical	status	of	the	membrane,	and	low	

PC/PE	ratios	(in	combination	with	low	UFA/SFA	and	high	amounts	of	ergosterol)	cause	

high	membrane	rigidity	(high	anisotropy	values)	(Flis	et	al.,	2015).	The	large	quantities	

of	PC	in	non-conventional	yeasts	could	lead	to	an	increase	in	membrane	fluidity	(Flis	et	

al.,	 2015).	 Furthermore,	 an	 increase	 in	 the	 PC	 concentration	 correlates	 with	 an	

enhanced	oxidative	stress	tolerance	by	non-conventional	yeasts	in	a	similar	way	to	what	

has	been	observed	in	S.	cerevisiae	ethanol	tolerance	(Vendramin	et	al.,	1995,	Chi	and	

Arneborg,	1999).	The	PI/PS	ratio	is	another	important	parameter	for	cell	function	(Xia	et	

al.,	2011).	The	synthesis	of	these	PLs	is	closely	correlated,	because	both	require	the	same	

precursor	cytidyldiphosphate	diacylglycerol	(CDP-DAG)	precursor.	Moreover,	PS	can	be	

a	precursor	for	the	synthesis	of	PE	and	PC	(Voelker	and	Frazier,	1986).	However,	PI	is	

considered	essential	for	S.	cerevisiae	because	the	lack	of	this	PL	can	reduce	cell	viability	

(Becker	and	Lester,	1977).	Our	results	show	that	the	S.	cerevisiae	strains	exhibited	a	high	

PI/PS	ratio,	especially	after	stress	exposure,	whereas	the	M.	pulcherrima	strains,	which	

had	the	highest	resistance	to	H2O2	stress,	exhibited	the	lowest	values,	especially	after	

stress	exposure.	In	fact,	this	ratio	was	negatively	correlated	with	tolerance	to	oxidative	

stress.	Our	results	also	demonstrate	that	similar	amounts	of	PI	and	PS	seemed	to	confer	

lower	sensitivity	to	H2O2.	
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Normal	mitochondrial	 function	 is	 required	 for	 resistance	 to	oxidative	 stress,	 and	 the	

maintenance	 of	 a	 stable	 respiratory	 chain	 strongly	 prevents	 the	 generation	 of	

mitochondrial	 ROS	 (Barros	 et	 al.,	 2003).	 CL,	 a	 mitochondrial	 PL	 found	 in	 the	 inner	

mitochondrial	membrane	(De	Kroon	et	al.,	2013),	plays	a	key	role	in	the	stabilization	of	

electron	transport	chain	complexes	and	the	resistance	against	oxidative	stress	during	

respiratory	growth	(Chen	et	al.,	2008).	Most	of	the	strains	in	this	study,	and	especially	

those	of	S.	 cerevisiae,	 decreased	 their	CL	 content	 after	 stress	exposure,	which	 could	

indicate	a	destabilization	of	the	respiratory	chain.	However,	despite	this	decrease,	non-

Saccharomyces	species	displayed	higher	CL	values,	suggesting	a	better	maintenance	of	

functional	mitochondria	during	H2O2	stress	as	previously	described	for	ethanol	stress	

(Chi	and	Arneborg,	1999).	

Sterols	are	necessary	for	maintaining	membrane	integrity	and	essential	for	cell	viability	

(Daum	et	al.,	1998).	Consistent	with	the	results	obtained	by	Murakami	et	al.,	(1996)	in	

freezing-tolerant	strains,	our	study	demonstrated	that	the	sterol	content	was	low	in	the	

most	 H2O2-tolerant	 strains	 (M.	 pulcherrima	 species).	 However,	 a	 direct	 correlation	

between	the	sterol	content	and	H2O2	tolerance	was	not	observed	because,	e.g.,	BY4742	

was	the	most	sensitive	strain,	but	it	also	contained	low	levels	of	sterols.	Ergosterol	is	the	

primary	yeast	sterol	and	the	end	product	of	the	yeast	sterol	biosynthetic	pathway	(Daum	

et	 al.,	 1998,	 Klug	 and	 Daum,	 2014).	 Although	M.	 pulcherrima	 showed	 the	 highest	

ergosterol	percentage	(but	the	lowest	content),	this	parameter	could	not	be	correlated	

with	the	oxidative	stress	either.	

By	 contrast,	 high	 amounts	 of	 squalene,	 the	 ergosterol	 precursor,	 led	 to	 a	 low	

ergosterol/squalene	ratio	and	was	positively	correlated	with	less	tolerance	to	stress.	The	

growth	of	the	BY4742	strain	was	clearly	affected	after	stress	exposure	(data	not	shown),	

and	it	showed	the	highest	squalene	content	and	lowest	ergosterol/squalene	ratio	after	

stress	exposure.	This	result	is	consistent	with	the	finding	of	Spanova	et	al.,	2012,	who	

hypothesized	 that	 the	 presence	of	 squalene	 in	membranes,	 especially	 in	 the	 plasma	

membrane,	may	affect	yeast	growth	and/	or	cause	sensitivity	to	external	stress.		

High	ratios	of	UFA/SFA,	low	amounts	of	ergosterol	and	high	PC/PE	ratios	in	membranes	

are	known	to	lead	to	high	membrane	fluidity	(Flis	et	al.,	2015).	In	the	natural	strains	of	

this	study,	these	parameters	also	seem	to	lead	to	higher	tolerance	against	to	H2O2.	
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5. CONCLUSIONS	

In	 conclusion,	 our	 results	 suggest	 that	 non-conventional	 yeasts	 are	 best	 at	 resisting	

induced	 oxidative	 stress.	 The	 highest	 stress	 tolerance	 was	 associated	 with	 the	 non-

conventional	 yeasts’	 abilities	 to	maintain	 a	high	proportion	 and	 level	 of	 unsaturated	

fatty	acids,	particularly	linolenic	acid	and	linoleic	acid.	Furthermore,	the	large	variability	

in	the	fatty	acid	composition	can	result	from	adaptive	responses	to	changes	in	external	

physico-chemical	parameters.	
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Appendix	A.	Supplementary	data	

	

	

	

Supplementary	Figure	1.	Resistance	to	H2O2	(10	µL	from	H2O2	0.3,	15	and	30%	(v/v))	by	disk	diffusion	
method	from	six	yeast	strains	grown	on	YPD	plates	over	48	h.	Saccharomyces	cerevisiae:	BY4742	and	
QA23	strains.	Torulaspora	delbrueckii:	TdB	and	Tdp	strains.	Metschnikowia	pulcherrima:	MpF	and	Mpp	

strains.	

	

Supplementary	Figure	2.	Effect	of	H2O2	(from	2	mM	to	8	mM)	on	the	ROS	accumulation	as	evaluated	in	
three	yeast	strains	with	and	without	stress	(S.	cerevisiae	QA23,	T.	delbrueckii	TdB	and	M.	pulcherrima	

Mpp).	The	mean	fluorescence	index	(MFI)	was	calculated	according	to	Boettiger	et	al.,	(2001)	as	follows:	
[(geometric	mean	of	the	positive	fluorescence)	–	(geometric	mean	of	the	control)]	/	(geometric	mean	of	

the	control).	
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Supplementary	Figure	3.	Biplot	of	principal	components	analysis	(PCA;	69.4%	of	variance)	using	the	fatty	acid	(FA),	phospholipid	(PL)	and	sterol	composition	in	the	S.	
cerevisiae,	T.	delbrueckii	and	M.	pulcherrima	strains	before	and	after	stress	exposure	with	2	mM	of	H2O2.	Component	1:	(+);	phosphatidylinositol	(PI),	

phosphatidylethanolamine	(PE),	dimethylphosphatidylethanolamine	(DMPE),	myristic	(C14:0)	and	palmitoleic	(C16:1)	acids,	palmitoleic/oleic	(C16:1/C18:1)	ratio,	

phosphatidylinositol/	phosphatidylserine	(PI/PS)	ratio,	zymosterol	and	fecosterol.	(-);	Phosphatidylcholine	(PC),	cardiolipin	(CL),	linoleic	(C18:2)	acid,	PC/PE	ratio,	ergosterol,	

ergosterol/	squalene	ratio	and	unsaturation	index.		Component	2	(+):	lysophospholipids	(LP)	and	palmitic	(C16:0),	stearic	(C18:0)	and	linolenic	(C18:3)	acids.	(-);	C18:1	acid,	

unsaturated/saturated	(UFA/SFA)	ratio,	4-methylzymosterol,	and	14	mehylfecosterol.	
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Supplementary	Table	1.	Correlation	of	the	ROS	(MFI)	and	inhibition	haloes	variables	with	the	FA,	PL	and	
sterol	variables	obtained	with	a	Pearson	correlation	matrix	from	the	PCA	after	oxidative	stress	exposure	
using	H2O2	(Figure	4B).	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

	 MFI	 Inhibition	
halo	

MFI	 1	 0.417	

Inhibition	halo	 0.417	 1	
PI	(Phosphatidylinositol)	 0.488	 0.673	

PC	(Phosphatylcoline)	 -0.749	 -0.532	

PE	(Phosphatidylethanolamine)	 0.543	 0.583	

CL	(Cardiolipin)	 -0.834	 -0.632	

DMPE	
(Dimethylphosphatidylethanolamine)	

0.737	 0.382	

LP	(Lysophospholipids)	 0.897	 0.412	

C14:0	(Mirystic	acid)	 0.654	 0.663	

C16:0	(Palmitic	acid)	 0.721	 0.298	

C16:1	(Palmitoleic	acid)	 0.630	 0.753	

C18:0	(Stearic	acid)	 0.924	 0.646	

C18:1	(Oleic	acid)	 -0.778	 -0.612	

C18:2	(Linoleic	acid)	 -0.525	 -0.651	

C18:3	(Linolenic	acid)	 -0.365	 -0.544	

UFA/SFA	(unsaturated/saturated	ratio)	 -0.786	 -0.518	

PI/PS	 0.508	 0.810	

PC/PE	 -0.658	 -0.645	

squalene	 0.915	 0.597	

zymosterol	 0.082	 0.751	

ergosterol	 -0.337	 -0.452	

4-methylzymosterol	 -0.398	 0.066	

14-mehylfecosterol	 -0.414	 -0.182	

fecosterol	 0.409	 0.214	

episterol	 -0.405	 -0.051	

lanosterol	 0.131	 0.001	

ergosterol/squalene	 -0.487	 -0.667	

C16:1/C18:1	 0.892	 0.686	

Unsaturation	Index	(IU)	 -0.769	 -0.740	
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Supplementary	Table	2.	Pearson	correlation	matrix	from	the	variables	used	in	the	PCA	before	and	after	oxidative	stress	was	applied	(Figure	S3).	PLs:	phosphatidylinositol	(PI),	
phosphatidylcholine	 (PC),	 phosphatidylethanolamine	 (PE),	 cardiolipin	 (CL),	 dimethylphosphatidylethanolamine	 (DMPE),	 and	 lysophospholipids	 (LP).	 FAs:	myristic	 (C14:0),	
palmitic	 (C16:0),	 palmitoleic	 (C16:1),	 stearic	 (C18:0),	 oleic	 (C18:1),	 linoleic	 (C18:2),	 and	 linolenic	 (C18:3)	 acids,	 unstaturated/saturated	 (UFA/SFA)	 ratio,	 zymosterol	 (A),	
ergosterol	(B),	4-methylzymosterol	(C),	14-methylfecosterol	(D),	fecosterol	(E),	ergosterol/squalene	ratio	(F),	C16:1/C18:1	(G),	and	unsaturation	index	(E). 
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	Abstract	

Melatonin	 (N-acetyl-5-methoxytryptamine),	which	 is	 synthesized	 from	 tryptophan,	 is	

formed	during	alcoholic	fermentation,	though	its	role	in	yeast	is	unknown.	This	study	

employed	 Saccharomyces	 cerevisiae	 as	 an	eukaryote	model	 to	 evaluate	 the	possible	

effects	 of	 melatonin	 supplementation	 on	 endogenous	 cellular	 defense	 systems	 by	

measuring	its	effects	on	various	cellular	targets.	Cell	viability,	intracellular	reduced	and	

oxidized	glutathione	levels	(GSH	and	GSSG,	respectively),	reactive	oxygen	species	(ROS)	

production,	and	expression	of	genes	related	to	antioxidant	defense	in	yeast,	such	as	the	

glutathione	system,	catalase,	superoxide	dismutase,	glutaredoxin	and	thioredoxin,	were	

assessed.	Melatonin	alone	decreased	GSH,	increased	GSSG,	and	activated	antioxidant	

defense	system	genes,	which	reached	maximum	levels	in	the	stationary	phase.	These	

results	indicate	that	melatonin	supplementation	enables	cells	to	resist	better	the	stress	

generated	 in	 the	 stationary	phase.	However,	when	 cells	were	 subjected	 to	oxidative	

stress	 induced	 by	 H2O2,	 melatonin	 was	 able	 to	 partially	 mitigate	 cell	 damage	 by	

decreasing	 ROS	 accumulation	 and	 GSSG	 and	 increasing	 GSH;	 this	 was	 followed	 by	

enhanced	 cell	 viability	 after	 stress	 exposure,	 mostly	 when	 occurring	 in	 the	 early	

stationary	 phase.	 Additionally,	 under	 such	 conditions,	 most	 genes	 related	 to	

endogenous	 antioxidant	 defense	 continued	 to	 be	 up-regulated	 with	 melatonin	

supplementation.	The	findings	demonstrate	that	melatonin	can	act	as	antioxidant	in	S.	

cerevisiae.	

	

	

Keywords:	 Saccharomyces	 cerevisiae;	 melatonin;	 glutathione;	 ROS;	 oxidative	 stress	

response;	gene	expression	
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1.	INTRODUCTION	

Melatonin	(N-acetyl-5-methoxytryptamine)	(MEL)	 is	synthesized	from	tryptophan	and	

exhibits	 various	 biological	 activities	 in	 humans.	 One	 such	 activity	 is	 its	 antioxidant	

capacity:	MEL	protects	various	biomolecules	against	damage	caused	by	free	radicals	by	

acting	as	a	direct	scavenger	to	detoxify	reactive	oxygen	and	nitrogen	species	(Reiter	et	

al.,	2001;	Anisimov	et	al.,	2006;	Reiter	et	al.,	2016).	In	addition,	MEL	can	indirectly	reduce	

oxidative	stress	by	increasing	the	activities	of	antioxidative	defense	systems,	stimulating	

the	synthesis	of	other	important	intracellular	antioxidants	such	as	glutathione	(Antolín	

et	 al.,	 1996;	 Rodriguez	 et	 al.,	 2004),	 increasing	 the	 efficiency	 of	 the	 mitochondrial	

electron	transport	chain	(Martín	et	al.,	2000;	León	et	al.,	2005;	López	et	al.,	2009)	and	

interacting	synergistically	with	other	antioxidants	(Gitto	et	al.,	2001;	López-Burillo.,	et	al	

2003).	Most	studies	to	date	confirm	the	antioxidant	properties	of	MEL,	but	it	might	also	

exert	a	pro-oxidant	effect	in	specific	situations,	e.g.,	cancer	cell	killing,	even	though	this	

is	not	well	documented	in	vivo	(Zhang	and	Zhang,	2014).	

MEL	can	be	found	in	small	quantities	in	wines	(74-420	ng/mL,	Rodriguez-Naranjo	et	al.,	

2011),	because	it	is	present	in	grapes	(Iriti	et	al.,	2006;	Stege	et	al.,	2010;	Murch	et	al.,	

2010)	and	is	also	synthesized	by	yeast	during	alcoholic	fermentation	(Rodriguez-Naranjo	

et	al.,	2012;	Mas	et	al.,	2014;	Wang	et	al.,	2016;	Fernández-Cruz	et	al.,	2017).	Despite	

very	 little	 information	 is	 available	 on	melatonin	 biosynthesis	 in	 yeast,	 its	 pathway	 is	

supposed	to	be	similar	to	the	one	described	in	vertebrates,	in	which	four	enzymes	are	

involved	 in	 the	 conversion	 of	 tryptophan	 to	 melatonin,	 via	 serotonin	 and	 N-

acetylserotonin	 intermediates	 (Mas	 et	 al.,	 2014).	 However,	 the	 role	 of	MEL	 in	 yeast	

remains	unknown.	Saccharomyces	cerevisiae	is	the	simplest	eukaryote	model	and	is	also	

the	main	 yeast	 used	 in	 the	 winemaking	 process,	 where	 is	 exposed	 to	 a	 number	 of	

stressors,	 each	with	 the	potential	 to	 cause	 cellular	 damage	and	 impair	 fermentation	

performance	(Pretorius,	2000;	Gibson	et	al.,	2007).	One	such	stressor	is	oxidative	stress,	

whereby	yeast	cells	need	to	manage	the	toxic	effects	of	reactive	oxygen	species	(ROS)	

formed	from	molecular	oxygen,	including	superoxide	anion	(O2
·-),	singlet	oxygen	(1O2),	

hydroxyl	 radical	 (OH-)	 or	 hydrogen	 peroxide	 (H2O2)	 (Gibson	 et	 al.,	 2008;	 Moradas-

Ferreira	 et	 al.,	 1996).	 ROS	 are	 generated	 endogenously	 during	 normal	 cellular	

metabolism,	 and	 their	 production	 can	 also	 be	 stimulated	 by	 the	 presence	 of	 pro-
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oxidants.	 Under	 normal	 physiological	 conditions,	 yeast	 cells	 are	 able	 to	 maintain	 a	

reduced	 intracellular	 redox	environment.	However,	ROS	become	harmful	when	 their	

concentration	 exceeds	 the	 ability	 of	 the	 cells	 to	 remove	 them,	 causing	 respiratory	

deficiencies	 that	 result	 in	 oxidative	 stress.	 This	 oxidative	 stress	 can	 damage	 lipids,	

carbohydrates,	proteins	and	nucleic	acids,	potentially	 leading	to	cell	death	(Gibson	et	

al.,	2008;	Moradas-Ferreira	et	al.,	1996;	Costa	and	Moradas-Ferreira,	2001).	

Yeast	 cells	 are	 constantly	monitoring	 ROS	 concentrations	 in	 an	 attempt	 to	maintain	

them	at	a	basal	level	by	invoking	antioxidant	defense	mechanisms,	which	are	grouped	

into	enzymatic	and	non-enzymatic	systems	that	operate	at	different	levels	(Costa	and	

Moradas-Ferreira,	2001;	Jamieson,	1998;	Moradas-Ferreira	and	Costa,	2000).	Enzymatic	

systems,	which	include	catalase,	superoxide	dismutase	and	glutathione	peroxidase,	are	

primary	defenses	that	function	to	neutralize	ROS.	In	contrast,	non-enzymatic	systems,	

such	as	 the	glutathione,	 glutaredoxin	 family	or	 thioredoxins,	 are	 secondary	defenses	

that	 repair	 or	 remove	 the	 products	 of	 oxidative	 damage	 (Jamieson,	 1998;	Moradas-

Ferreira	 et	 al.,	 1996).	 To	 eliminate	 ROS,	 cells	 need	 to	 be	 equipped	 with	 regulatory	

molecules	 that	 rapidly	 sense	 and	 respond	 to	 oxidative	 stress.	 In	 yeast,	 the	 parallel	

glutathione/glutaredoxin	 and	 thioredoxins	 pathways	 (essential	 under	 aerobic	 and	

anaerobic	 conditions)	 (Herrero	 et	 al.,	 2008)	make	 a	 large	 contribution	 to	 protection	

against	oxidative	damage	by	reacting	with	ROS	(Auchère	et	al.,	2008).	Glutathione	(GSH)	

is	well	known	as	the	main	and	most	abundant	endogenous	antioxidant	in	cells	(Moradas-

Ferreira	et	al.,	1996;	Jamieson,	1998;	Izawa	et	al.,	1995).	GSH	reacts	with	ROS,	donating	

an	electron	to	neutralize	them	and	becoming	reactive	itself,	resulting	in	the	formation	

of	GSSG,	the	oxidized	state,	through	the	combination	of	two	reactive	forms	of	GSH.	Thus,	

the	presence	of	ROS	results	in	a	decrease	in	GSH	and	an	increase	in	GSSG	(Herrero	et	al.,	

2008;	Auchère	et	al.,	2008).	The	enzymes	directly	implicated	in	the	maintenance	of	the	

GSH/GSSG	redox	balance	are	as	follows: g-glutamylcysteine	synthetase,	which	catalyzes	

the	first	step	in	the	biosynthesis	of	glutathione;	glutathione	reductase,	which	reduces	

GSSG	to	GSH	in	an	NADPH-dependent	process;	glutathione	peroxidase,	which	reduces	

H2O2	by	oxidizing	GSH	 to	GSSG;	and	glutaredoxins,	which	 regulate	 the	protein	 redox	

state	 using	 GSH	 and	 NADPH.	 Similar	 to	 glutaredoxins,	 thioredoxins	 are	 thiol	

oxidoreductases;	however,	in	this	case,	they	are	not	glutathione	dependent	but	are	only	
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reduced	by	NADPH	and	thioredoxin	reductase.	Although	cytosolic	thioredoxin,	encoded	

by	TRX2,	is	the	most	important	enzyme	required	for	defense	against	externally	added	

hydroperoxides,	cytosolic	glutaredoxin,	encoded	by	GRX2,	also	contributes	to	resistance	

to	 hydroperoxides	 (Herrrero	 et	 al.,	 2008;	 Auchère	 et	 al.,	 2008;	 Gómez-Pastor	 et	 al.,	

2012).	 Furthermore,	 S.	 cerevisiae	 possesses	 two	 catalases	 and	 two	 superoxide	

dismutases,	 which	 also	 act	 as	 enzymatic	 antioxidants.	 Catalase	 A	 and	 catalase	 T	

decompose	H2O2	to	oxygen	and	water	in	the	peroxisome	and	the	cytosol,	respectively.	

Superoxide	dismutases	catalyze	the	conversion	of	superoxide	anion	to	oxygen	and	H2O2	

in	 the	 cytoplasm	 (Cu/ZnSOD)	and	 in	mitochondria	 (Mn/ZnSOD)	 (Costa	 and	Morades-

Ferreira,	 2001;	 Jamieson,	 1998;	 Auchère	 et	 al.,	 2008).	 Most	 of	 these	 antioxidant	

mechanisms	are	considered	universal	in	living	organisms,	and	regulating	expression	of	

the	genes	involved	as	well	as	enzyme	activity	is	crucial	for	cell	survival.	

The	goal	of	this	study	was	to	evaluate	the	effect	of	MEL	on	S.	cerevisiae	and	its	possible	

role	as	an	antioxidant.	To	accomplish	this,	we	evaluated	ROS	production,	intracellular	

glutathione	levels	(GSH/GSSG),	and	expression	of	certain	genes	involved	in	the	oxidative	

stress	response	in	a	commercial	wine	yeast	strain	in	both	the	presence	and	absence	of	

MEL	 (5	 µM)	 and	 oxidative	 stress	 (addition	 of	 2	 mM	 H2O2).	 Furthermore,	 as	 several	

studies	have	demonstrated	that	yeast	cells	in	the	stationary	phase	exhibit	a	significant	

degree	of	resistance	toward	oxidants	(Gibson	et	al.,	2008;	Jamieson,	1998),	the	effect	of	

MEL	was	evaluated	in	both	the	exponential	and	stationary	phases.	

2.	MATERIAL	AND	METHODS	

2.1. 	Yeast	strains	and	growth	conditions		

The	 wine	 yeast	 QA23,	 a	 commercial	 strain	 of	 S.	 cerevisiae	 (Lallemand,	 Montreal,	

Canada),	was	used	in	this	study.	For	all	experiments,	after	yeast	rehydration,	precultures	

for	biomass	propagation	were	prepared	 in	YPD	 liquid	medium	(2%	(w/v)	glucose,	2%	

(w/v)	peptone	and	1%	(w/v)	yeast	extract)	and	incubated	for	24	h	at	28ºC	with	orbital	

shaking	(120	rpm).	

2.2. 	Determination	of	reactive	oxygen	species	(ROS)	

A	preliminary	test	to	evaluate	the	concentration	of	H2O2	and	MEL	to	be	used	in	different	

experiments	 was	 carried	 out	 by	 determining	 their	 effect	 on	 the	 intracellular	

concentration	of	ROS.	
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The	effect	of	H2O2	was	first	examined.	Yeast	cells	were	inoculated	into	100	mL	of	YPD	

broth	(5	x	105	cells/mL)	and	grown	for	6	h	(until	cells	reached	the	exponential	phase)	at	

28ºC	 with	 orbital	 shaking	 at	 120	 rpm.	 The	 cells	 were	 then	 exposed	 to	 different	

concentrations	of	H2O2,	(from	2	mM	to	4	mM,	PerdrogenTM,	Sigma-Aldrich,	Misuri,	USA)	

for	1	h,	and	intracellular	ROS	were	determined	and	compared	to	the	control	(without	

exposure	to	H2O2).	Another	assessment	to	fix	MEL	concentrations	was	performed.	In	this	

case,	the	same	procedure	was	followed	with	the	cells	grown	in	the	presence	of	different	

concentrations	of	MEL	(0,	5	µM,	25	µM	or	50	µM)	for	6	h.	

Reactive	oxygen	species	determination	was	carried	out	according	to	a	modified	version	

of	the	method	described	by	Madeo	et	al.	(1999)	using	dihydrorhodamine	123	(DHR	123;	

Sigma-Aldrich)	as	a	ROS	indicator.	Cells	were	stained	with	10	µg	DHR	123	(stock	solution	

of	2.5	mg/mL)	per	mL	of	cell	culture	for	15	min	at	120	rpm	in	darkness.	After	incubation,	

the	 cells	 were	 washed	 twice	 with	 phosphate-buffered	 saline	 (PBS,	 pH	 7.4),	 and	 the	

fluorescence	intensity	was	analyzed	by	flow	cytometry	at	a	low	flow	rate	with	excitation	

and	emission	settings	of	488	and	525-550	nm	(filter	FL1),	respectively.	FloMax	software	

(Quantum	Analysis	GmbH,	Münster,	Germany)	was	used	for	instrument	control	and	data	

acquisition,	and	the	captured	files	were	processed	using	WinMDI	2.9	software	(Joseph	

Trotter,	 Salk	 Institute	 for	 Biological	 Studies,	 CA,	 USA).	 The	mean	 fluorescence	 index	

(MFI)	 was	 calculated	 according	 to	 Boettiger	 et	 al.,	 2001:	 [(geometric	 mean	 of	 the	

positive	 fluorescence)	 –	 (geometric	mean	 of	 the	 control)]	 /	 (geometric	mean	 of	 the	

control).	 Moreover,	 cells	 were	 visualized	 using	 a	 Leica	 fluorescence	 microscope	

(DM4000B,	Stuttgart,	Germany)	with	a	40X	lens.	

2.3.	Experimental	conditions	

Yeast	cells	were	inoculated	into	600	mL	of	YPD	broth	with	and	without	supplementation	

of	5	µM	MEL	(MEL	and	Control,	 respectively)	 to	obtain	an	 initial	population	of	5x105	

cells/mL	and	grown	for	24	h	at	28ºC	with	orbital	shaking	at	120	rpm.	Both	conditions	

were	carried	out	in	triplicate,	and	yeast	growth	was	controlled	by	measuring	the	optical	

density	at	600	nm	(OD600)	every	2	h,	at	which	1	x	108	cells	were	transferred	to	2-mL	

Eppendorf	 tubes	 and	 centrifuged.	 The	pellets	were	washed	 twice	with	PBS	 (pH	7.4),	

frozen	in	liquid	nitrogen	and	stored	at	-80ºC	for	glutathione	assays.	
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Sublethal	oxidative	stress	was	induced	under	both	conditions	by	adding	2	mM	hydrogen	

peroxide	(H2O2)	to	the	yeast	cultures.	In	different	phases	of	the	growth	curve	(the	early	

exponential	phase	(6	h),	early	stationary	phase	(16	h)	and	late	stationary	phase	(30	h)),	

the	Control	and	MEL	conditions	were	divided	into	two	flasks	of	100	mL	of	culture	each.	

Stress	 was	 induced	 in	 one	 flask	 of	 each	 condition	 with	 2	 mM	 H2O2	 for	 120	 min	 to	

generate	four	conditions:	Control	and	MEL	(without	stress);	H2O2	and	MEL	H2O2	(with	

stress).	Samples	were	collected	before	and	after	stress	exposure	(0,	10,	45,	90	and	120	

min	for	glutathione	quantification;	0,	45	and	120	min	for	gene	expression)	and	stored	as	

previously	described.	Three	biological	replicates	were	performed	for	each	condition.	

2.4. 	Evaluation	of	yeast	viability	after	stress	exposure	

Yeast	viability	after	exposure	to	stress	 (MEL	H2O2	and	H2O2)	 in	comparison	with	cells	

without	stress	(MEL	and	control)	was	evaluated	by	a	microplate	bioassay	in	which	96-

well	plates	were	prepared	by	dispensing	250	µL	of	YPD	broth	inoculated	with	cells	of	

each	condition	 into	each	well	 to	obtain	an	 initial	OD600	of	0.050.	The	microplate	was	

incubated	at	28ºC	for	24	h,	and	OD600	was	measured	every	30	min	using	a	microplate	

reader	(Omega	Polarstar,	BMG	Labtech	Gmbh,	Ortenberg,	Germany).	OD	max,	growth	

rate	and	generation	time	were	calculated	from	growth	curves	data,	according	Warringer	

et	 al.,	 2003.	Moreover,	 the	 relative	 viable	 fraction	was	 calculated	 using	 the	 formula	

described	by	Murakami	et	al.,	2008:	

!" = 1
2(
∆()
* )

 1 

where	Vn	=	viability	of	the	cultures	exposed	to	stress	(MEL	H2O2	and	H2O2)	relative	to	

cultures	before	stress	exposure	(MEL	and	Control,	respectively),	∆tn	=	time	shift	between	

the	stressed	and	unstressed	outgrowth	curves	to	reach	OD	=	0.5,	and	 d	=	doubling	time	

in	each	condition.	

2.5. 	Determination	of	glutathione	levels	

Samples	 (1	x	108	cells)	were	rapidly	 thawed	 in	a	water	bath	at	37ºC.	For	glutathione	

extraction,	a	modified	version	of	the	method	described	by	Borrull	et	al.,	2016	was	used.	

Pellets	were	weighed	and	three	volumes	of	5%	5-sulfosalicylic	acid	(SSA)	were	added	

and	vortexed.	The	cell	suspensions	were	then	frozen	in	liquid	nitrogen	and	thawed	at	
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37ºC	in	a	water	bath	three	times,	incubated	for	5	min	at	4ºC	and	centrifuged	at	800xg	

for	 10	 min	 at	 4ºC.	 For	 quantification,	 GSSG	 first	 needs	 to	 be	 reduced	 to	 GSH.	 This	

enzymatic	 reduction	was	 performed	 using	 glutathione	 reductase	 (GR;	 Sigma-Aldrich)	

and	the	cofactor	NADPH	(Sigma-Aldrich).	Briefly,	50	µL	of	homogenate	and	3	units	of	GR	

solution	were	dissolved	in	950	µL	PBS	(pH	7.8)	with	16	mg/mL	NADPH	and	incubated	at	

25ºC	for	10	min.	Total	glutathione	(GSHtot)	and	GSH	were	determined	using	the	method	

described	by	White	et	al.,	2003.	Briefly,	20	µL	of	supernatant	was	transferred	to	a	96-

well	 plate	 designed	 for	 fluorescence	 detection,	 and	 180	 µL	 of	 2,3-

naphthalenedicarboxyaldehyde	(NDA)	derivatization	solution	(50	mM	Tris,	pH	10,	0.5	N	

NaOH,	and	10	mM	NDA	in	Me2SO,	v/v/v;	Sigma-Aldrich)	was	added.	The	microplate	was	

shaken	for	10	min	at	150	rpm	and	at	20	±	2ºC	in	darkness,	as	recommended	by	Lewicki	

et	 al.,	 2006,	 to	 maintain	 stability	 of	 the	 NDA-GSH	 adduct.	 After	 this	 incubation,	

fluorescence	 intensity	 was	 measured	 (488	 ex	 /	 530	 em)	 using	 a	 fluorescence	 plate	

reader.	For	total	and	reduced	glutathione	quantification,	linear	regression	curves	were	

generated	using	GSSG	and	GSH	standard	solutions	(Sigma-Aldrich).	The	concentration	of	

GSSG	was	calculated	by	subtracting	reduced	GSH	from	total	GSH	and	dividing	this	value	

by	2.	Other	pellet	(1x108	cells)	was	previously	dried	at	28ºC	for	48	h	and	weighed.	Thus,	

the	results	are	expressed	as	µM	of	glutathione	per	mg	of	dry	weight.	

2.6. 	Gene	expression	analysis	by	quantitative	PCR	(qPCR)	

Expression	 levels	of	 specific	genes	 (Table	1)	were	determined	using	qPCR.	Total	RNA	

from	 1	 x	 107	 cells	 was	 isolated	 using	 a	 PureLinkâ	 RNA	 Mini	 kit	 from	 Ambion	 Life	

Technologies	(Massachusetts,	USA)	as	recommended	by	the	manufacturer.	To	remove	

DNA,	a	DNAse	(Qiagen,	Barcelona,	Spain)	step	was	performed	at	37ºC	for	15	min	before	

washing.	 Reverse	 transcription	 and	 qPCR	 reactions	were	 performed	 as	 described	 by	

Beltran	et	al.,	2004.	cDNA	was	synthesized	from	320	ng/µL	RNA	using	SuperScript®	III	

Reverse	 Transcriptase	 (Invitrogen)	 and	 Oligo	 (dT)	 20	 Primer	 (Invitrogen).	 qPCR	 was	

performed	 using	 the	 Applied	 Biosystems	 7300	 Fast	 Real-Time	 PCR	 system	 (Applied	

Biosystems,	CA,	USA).	Samples	were	prepared	as	follows:	2	µL	cDNA,	0.4	µL	each	primer,	

0.4	µL	ROX,	10	µL	SYBR	Green	(Takara®	SYBR	Green	master	mix)	and	H2O	q.s.p	20	µL.	

Relative	gene	expression	was	calculated	using	the	2-ΔΔCt	formula,	where	Ct	is	defined	as	

the	 cycle	 at	 which	 fluorescence	 is	 determined	 to	 be	 statically	 significantly	 above	
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background;	ΔCt	 is	the	difference	 in	Ct	of	the	gene	of	 interest	and	the	housekeeping	

gene	(ACT1),	and	ΔΔCt	is	the	difference	between	ΔCt	of	the	condition	MEL	at	6	h	or	16	

h	and	the	Control	at	6	h	or	16	h	(see	figure	legends	for	relative	expression	details).	Three	

biological	replicates	were	analyzed	for	each	time	point	and	condition.	

Table	1.	Primers	used	in	this	study	based	on	Verbelen	et	al.,	2009,	Auchère	et	al.,	2008	and	Gómez-Pastor	
et	al.,	2012	(supplied	by	Invitrogen)	

	

Gene	description	 Primer	 Nucleotide	sequence	(5’	to	3’)	
Cu/Zn	superoxide	dismutase	 SOD1_F	 TGATCAAGCTTATCGGTCCTACCT	
	 SOD1_R	 GCCGGCGTGGATAACG	
Mn	superoxide	dismutase	 SOD2_F	 GCAAGCTGGACGTTGTTCAA	
	 SOD2_R	 AGAGGAACTAGTGGGCCTGTGA	
Peroxisomic	catalase	A	 CTA1_F	 GGACAGCAAAAGAACTTGGCATA	
	 CTA1_R	 TGAGGACAGGCGCCTTCTA	
Cytosolic	catalase	T	 CTT1_F	 GTCAGGCTCCCACCCTGAT	
	 CTT1_R	 TTTTCGCCATTTTGCAATTG	
Glutathione	peroxidase	I	 GPX1_F	 GGGAAGTCTGGAATAAAAATGATAAA	
	 GPX1_R	 TTCTTCTGGTGGTTGATTCAGTA	
g-glutamylcysteine	synthetase	 GSH1_F	 GACACCGATGTGGAAACTGA	
	 GSH1_R	 CCCTTTTTGGCATAGGATTG	
Glutathione-disulfide	reductase	 GLR1_F	 AGGTTGTCGGTCTGCACATT	
	 GLR1_R	 CCTTAGTGGCACCCATCTTT	
Glucose-6-phosphate	dehydrogenase	 ZWF1_F	 CCAGAGGCTTACGAGGTGTT	
	 ZWF1_R	 GGTGAATATGCCCCAACTGA	
Glutaredoxin	 GRX2_F	 GGCCAAAAGGAAGTGTTTGT	�	
	 GRX2_R	 TTCAATTCTTGGAAGAGGGTAGA	�	
Thioredoxin	 TRX2_F	 AAATCCGCTTCTGAATAC		
	 TRX2_R	 CTATACGTTGGAAGCAATAG		

	

2.7. Data	analysis	

Data	were	subjected	to	one-way	analysis	of	variance	(ANOVA)	and	Tukey’s	post	hoc	test	

to	 evaluate	 the	 effect	 of	 each	 treatment.	 The	 results	 were	 considered	 statistically	

significant	at	a	p-value	less	than	0.05	(IBM	SPSS	Inc,	XLSTAT	Software).	Furthermore,	a	

Principal	 Component	 Analysis	 (PCA)	 was	 performed	 at	 6	 h,	 16	 h	 and	 30	 h	 (XLSTAT	

Software).	PCs	were	assessed	using	glutathione	levels	(GSH	and	GSSG,	at	10,	45,	90	and	

120	min),	and	growth	data	(OD	max,	and	maximum	growth	rate	calculated	at	5,	10,	15,	

20	h).		
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3. RESULTS	

3.1. Effect	of	melatonin	on	reactive	oxygen	species	(ROS)	

To	 evaluate	 the	 possible	 role	 of	 MEL	 as	 an	 antioxidant	 agent	 in	 S.	 cerevisiae,	 we	

determined	 the	 levels	 of	 ROS	 in	 stressed	 and	 unstressed	 cells	 (using	 H2O2	 as	 the	

oxidative	agent)	in	the	presence	and	absence	of	MEL	in	the	growth	medium	(Figure	1).		

	

Figure	1.	Effect	of	H2O2	and	melatonin	on	ROS	accumulation,	as	evaluated	in	the	exponential	phase.	
Flow	cytometry	histogram	profile	expressed	in	number	of	events	with	0	mM,	2	mM,	3	mM	and	4	mM	
H2O2	(A)	in	the	absence	or	presence	of	melatonin	(5	µM,	25	µM	and	50	µM)	in	cells	under	oxidative	
stress	with	2	mM	H2O2	(B)	or	4	mM	H2O2	(C).	The	control	condition	corresponds	to	unstressed	cells	

without	melatonin.	(D)	Mean	fluorescence	intensity	(MFI)	of	unstressed	and	stressed	cells	(2	mM	H2O2)	
in	the	presence	of	melatonin	(5	µM)	compared	with	the	control	condition.	Error	bars	represent	SD	of	

n=3	by	ANOVA	and	Tukey’s	post-test	(b,	c,	d),	p<0.05.	

	

Although	S.	cerevisiae	can	synthetize	MEL,	we	have	previously	observed	that	in	these	

conditions,	the	concentration	of	MEL	in	the	extracellular	medium	is	negligible	(below	

0.4	nM,	data	not	shown).	Preliminary	experiments	were	conducted	to	select	a	sublethal	

dose	of	H2O2	and	the	concentration	of	MEL	with	a	possible	antioxidant	effect.	Exposure	

to	 increasing	 concentrations	 of	 H2O2	 resulted	 in	 an	 increase	 in	 ROS	 (Figure	 1A).	
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However,	when	the	oxidative	stress	was	applied	to	cultures	growing	with	MEL	(from	5	

µM	to	50	µM),	a	reduction	 in	ROS	was	only	observed	at	2	mM	H2O2	(Figure	1B);	 this	

reduction	was	dependent	on	MEL	addition	but	independent	of	the	MEL	concentration	

in	 the	medium.	 In	contrast,	no	effect	on	ROS	accumulation	was	observed	when	cells	

were	exposed	 to	higher	H2O2	 concentrations	 (4	mM,	Figure	1C).	 Thus,	we	 chose	 the	

lowest	assayed	dose	of	MEL	(5	µM)	and	H2O2	(2	mM)	for	the	ensuing	experiments.	As	

shown	 in	 Figure	 1D,	 cells	 exposed	 to	 oxidative	 stress	 (2	mM	H2O2)	 exhibited	 strong	

increases	in	total	ROS,	with	four	times	higher	levels	than	unstressed	cells	(Figure	1D).	

However,	 ROS	 accumulation	 in	 cells	 under	 the	 same	 oxidative	 stress	 conditions	 but	

previously	grown	in	presence	of	MEL	was	significantly	lower	(only	2-times	higher	than	

unstressed	cells).	Conversely,	a	low	dose	(5	µM)	of	MEL	alone,	without	the	presence	of	

the	oxidative	agent,	resulted	in	slightly	increased	total	ROS.	

3.2. 	Effect	of	melatonin	on	the	glutathione	redox	status	of	the	S.	cerevisiae	wine	strain	

To	 further	 study	 the	 role	 of	 MEL	 in	 yeast	 cells,	 we	 evaluated	 the	 effect	 of	 its	

supplementation	 (5	 µM	 MEL)	 on	 intracellular	 glutathione	 levels	 by	 analyzing	 both	

reduced	 (GSH)	 and	 oxidized	 (GSSG)	 glutathione	 over	 24	 hours	 of	 growth	 (Figure	 2).	

Although	similar	growth	curves	were	observed	for	both	conditions	(with	and	without	

MEL),	with	MEL,	cells	grew	faster	during	the	exponential	phase	(Figure	2A).	Total	GSH	

remained	almost	constant	until	the	mid-exponential	phase,	when	it	began	to	increase,	

with	a	similar	pattern	observed	in	both	conditions;	however,	GSHtot	levels	were	slightly	

lower	 in	 the	 presence	 of	MEL	 (Figure	 2B).	 Despite	 the	 lack	 of	 significant	 changes	 in	

GSHtot	when	MEL	was	added,	the	glutathione	ratio	(GSH/GSSG)	with	and	without	MEL	

supplementation	differed.	In	the	presence	of	MEL,	cells	exhibited	low	levels	of	GSH	and	

high	levels	of	GSSG	during	the	first	20-22	h	(Figure	2C,	D).	GSH	evolution	showed	similar	

trends	with	and	without	MEL	until	22	h.	As	for	GSHtot,	the	concentration	of	GSH	was	

almost	constant	until	the	mid-log	phase	and	then	increased	to	reach	its	maximum	value	

at	20-22	h.	After	this	point	(22	h),	the	level	of	GSH	decreased	without	MEL	but	remained	

constant	with	MEL	 (Figure	2C).	Although	the	GSSG	content	was	higher	 in	 the	culture	

supplemented	with	MEL,	its	concentration	remained	essentially	unchanged	during	the	

24	h	of	study.	Without	MEL,	the	GSSG	concentration	increased	after	the	mid-log	phase	

and	was	higher	under	this	condition	at	22-24	h	than	in	the	presence	of	MEL	(Figure	2D).	
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Figure	2.	Effect	of	the	presence	(MEL;	5	µM)	or	absence	(Control)	of	melatonin	on	intracellular	glutathione	

levels	in	S.	cerevisiae	(QA23	strain)	over	24	h	of	growth	in	YPD.	Error	bars	represent	±SD	of	n=3.	(A)	Growth	

of	the	QA23	strain	(OD,	optical	density).	 (B)	Total	glutathione	(GSHtot)	 levels.	 (C)	Reduced	glutathione	

(GSH)	levels.	(D)	Oxidized	glutathione	(GSSG)	levels.	

	

3.3. 	Effect	 of	 melatonin	 on	 expression	 levels	 of	 genes	 related	 to	 the	 antioxidant	

response	

Quantitative	PCR	was	used	 for	 transcriptional	 analysis	 of	 certain	 genes	 implicated	 in	

endogenous	antioxidant	defense,	such	as	CTA1	and	CTT1	(catalase	A	and	T,	respectively),	

SOD1	 and	SOD2	 (cytoplasmic	and	mitochondrial	 superoxide	dismutase,	 respectively),	

GRX2	 (glutaredoxin),	 and	TRX2	 (thioredoxin)	 and	 in	 glutathione	metabolism,	 such	 as	

GSH1	(g-glutamylcysteine	synthetase),	GLR1	(glutathione	reductase),	GPX1	(glutathione	

peroxidase)	and	ZWF1	(glucose-6-phosphate	dehydrogenase,	which	reduces	NADP+	to	

NADPH).	The	effect	of	MEL	supplementation	(5	µM)	on	the	expression	levels	of	all	these	

genes	was	determined	in	the	early	exponential	(6	h)	and	early	stationary	(16	h)	phases	

(Figure	3).	After	6	h	in	the	presence	of	MEL,	CTT1,	CTA1,	SOD1	and	GRX2	expression	was	

higher	than	that	under	the	control	condition,	whereas	expression	of	GSH1,	GPX1,	and	
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especially	TRX2,	was	lower.	Conversely,	expression	of	GLR1,	ZWF1	and	SOD2	was	not	

affected.	

Upon	 entry	 into	 the	 stationary	 phase	 (16	 h),	 expression	 of	 all	 genes	 increased	

significantly	under	 the	 control	 condition	 (Figure	3),	with	 the	highest	 levels	 found	 for	

catalase	genes	(CTT1	and	CTA1;	1000	and	600	times,	respectively)	and	the	lowest	for	

GLR1	and	ZWF1	(2	and	3	times,	respectively).	Moreover,	at	this	time	point,	the	presence	

of	MEL	resulted	in	a	greater	increase	in	the	expression	level	of	most	genes	(GSH1,	GPX1,	

GLR1,	CTA1,	 SOD1,	 SOD2	and	 GRX2),	between	 3	 and	 5	 times	 higher	 than	 under	 the	

control	condition	(Figure	3,	inset).	Exceptions	were	CTT1	and	ZWF1,	expression	of	which	

was	 similar	 to	 the	 control,	 and	 TRX2,	 expression	 of	which	 remained	 lower	 than	 the	

control.	

MEL	activated	the	cytosolic	catalase	gene	(CTT1)	but	only	in	the	early	exponential	phase.	

Instead,	 at	 the	 stationary	 phase	 (16	 h)	 expression	 of	 CTT1	was	 highly	 up-regulated,	

regardless	of	the	presence	of	MEL	(Figure	3).	

Figure	3.	Effect	of	melatonin	on	expression	of	genes	encoding	enzymes	involved	in	the	response	to	
oxidative	stress:	g-glutamylcysteine	synthetase	(GSH1),	glutathione	peroxidase	(GPX1),	glucose	6-
phosphate	dehydrogenase	(ZWF1),	glutathione	reductase	(GLR1),	catalase	T	and	A	(CTT1	and	CTA1,	
respectively),	Cu/ZnSOD	(SOD1),	MnSOD	(SOD2),	glutaredoxin	(GRX2)	and	thioredoxin	(TRX2).	Gene	
expression	was	determined	at	the	early	exponential	(6	h)	and	early	stationary	(16	h)	phases	with	and	

without	melatonin	(MEL	and	Control,	respectively).	The	values	are	expressed	relative	to	expression	at	6	
h	without	melatonin	(Control	6	h).	Relative	expression	of	all	genes	in	MEL	16	h	relative	to	Control	16	h	
are	also	shown	in	the	inset.	Error	bars	represent	±	SD	of	n=3	by	ANOVA	and	Tukey’s	post-test	a,b,c,d	or	*	

p<0.05.	



CHAPTER	2	
	

123	
	

3.4. 	Effect	of	melatonin	on	the	glutathione	redox	status	under	oxidative	stress	

To	evaluate	the	effect	of	MEL	on	the	glutathione	redox	balance	in	yeast	under	oxidative	

stress,	 the	 response	 to	 the	 addition	 of	 an	 oxidant	 compound	 such	 as	 H2O2	 in	 the	

presence	or	absence	of	MEL	was	assessed	at	different	phases	of	growth.	Glutathione	

levels	(GSH	and	GSSG)	were	analyzed	before	and	after	stress	induction	with	2	mM	H2O2	

(at	 0,	 10,	 45,	 90	 and	 120	min	 of	 exposure)	 and	 at	 different	 stages	 of	 growth	 (early	

exponential	(6	h),	early	stationary	(16	h)	and	late	stationary	(30	h)	phases).	To	determine	

the	ability	of	cells	 to	grow	after	stress	exposure,	cells	were	 reinoculated	 in	YPD,	and	

growth	was	followed	for	24	h.	The	levels	of	GSH/GSSG	and	cell	growth	recovery	differed	

depending	on	the	time	at	which	the	stress	was	applied	(Figure	4	A-I).	The	presence	of	

MEL	at	the	early	exponential	phase,	as	shown	in	Figure	2,	caused	small	differences	in	

intracellular	glutathione	levels,	slightly	decreasing	GSH	and	increasing	GSSG	(Figure	4A,	

B),	and	these	changes	did	not	alter	cell	growth	recovery	 (Figure	4C).	When	oxidative	

stress	 was	 applied	 (H2O2),	 the	 redox	 balance	 changed,	 and	 a	 significant	 increase	 in	

GSSG/decrease	in	GSH	was	detected.	Moreover,	the	relative	viable	fraction,	calculated	

from	cell	growth	curves,	dramatically	decreased	until	43.0	±	1.2	%	(considering	100%	

the	value	of	Control	condition),	indicating	that	the	initial	viability	was	highly	affected	by	

stress.	In	consequence,	cell	growth	was	highly	affected,	presenting	a	longer	lag	phase,	

higher	generation	time	and	lower	final	cell	concentration	(Figure	4C).	This	damage	was	

slightly	mitigated	when	 stress	was	 applied	 in	 the	 presence	of	MEL	 (MEL	H2O2),	with	

lower	GSSG	accumulation	and	slightly	higher	GSH	than	in	stressed	cells	in	the	absence	

of	MEL.	Although	the	viable	fraction	was	also	affected,	this	value	was	higher	with	MEL	

supplementation	(51.9	±	1.8	%),	resulting	in	a	slight	improvement	of	cell	growth	(Figure	

4C).		

At	 the	 early	 stationary	 phase,	 the	 total	 amount	 of	 glutathione	 (GSH	 and	GSSG)	was	

higher	 under	 all	 conditions	 (Figure	 4D,	 E),	 as	 shown	 in	 Figure	 2B.	When	 stress	 was	

applied,	larger	differences	between	stressed	and	non-stressed	cells	were	observed,	with	

again	lower	levels	of	GSH	and	higher	levels	of	GSSG	in	stressed	cells.	Moreover,	recovery	

of	cell	growth	and	viability	was	also	strongly	affected	by	stress	exposure	 (Figure	4F),	

presenting	a	relative	viable	fraction	of	60.0	±	1.5	%.	Instead,	the	presence	of	MEL	under	

oxidative	stress	significantly	decreased	GSSG	and	increased	GSH,	reaching	similar	levels	
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as	non-stressed	cells	(Figure	4D,	E).	In	addition,	the	relative	viable	fraction	in	presence	

of	MEL	was	significantly	higher	(80.9	±	2.9	%),	greatly	enhancing	cell	growth	after	stress,	

with	a	growth	curve	similar	to	non-stressed	cells	(Figure	4F).	

Finally,	when	stress	was	applied	at	30	h,	GSH/GSSG	levels	were	similar	for	all	conditions,	

with	the	only	significant	differences	found	at	120	min	after	stress	exposure,	i.e.,	lower	

GSH	(Figure	4G)	and	higher	GSSG	(Figure	4H)	 levels.	 In	this	case,	the	decrease	of	the	

relative	viable	fraction	was	similar	within	both	stressed	conditions	(MEL	H2O2:	94.8	±	1.9	

%;	H2O2:	91.8	±	1.5	%)	and	much	higher	than	in	early	exponential	and	stationary	phases,	

allowing	 the	 cells	 to	 normally	 recover	 growth	 after	 stress	 exposure	 (Figure	 4I).	 The	

presence	of	MEL	did	not	significantly	modify	the	glutathione	profile	or	the	growth	curve	

at	this	stage.	 In	 fact,	under	all	conditions	(Control,	MEL,	MEL	H2O2	and	H2O2),	similar	

population	sizes	were	achieved	at	the	stationary	phase,	which	were	lower	than	those	

after	oxidative	stress	exposure	at	6	h	or	16	h	(Figure	4	I).	

	

Figure	4.	Effect	of	the	presence	of	melatonin	on	reduced	glutathione	(GSH:	A,	D,	G),	oxidized	glutathione	
(GSSG:	B,	E,	H)	and	viability	(C,	F,	I)	of	unstressed	and	stressed	cells	before	and	at	10,	45,	90	and	120	min	
after	oxidative	stress	induction.	Control:	control	cells;	MEL:	5	µM	melatonin;	MEL	H2O2:	5	µM	melatonin	
and	2	mM	H2O2;	H2O2:	2	mM	H2O2.	Stress	was	applied	in	the	early	exponential	phase	(6	h,	A,	B,	C),	in	the	
early	stationary	phase	(16	h,	D,	E,	F),	and	in	the	late	stationary	phase	(30	h,	G,	H,	I).	For	the	viability	test,	

cells	from	the	four	conditions	were	reinoculated	in	YPD	fresh	medium.	
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For	further	analysis	of	these	data	(Figure	4),	a	PCA	was	applied	to	correlate	the	different	

variables	 (reduced	and	oxidized	glutathione	and	growth	curves	data)	and	highlight	 if	

there	were	grouping	patterns	within	the	different	conditions	(Control,	MEL,	MEL	H2O2,	

H2O2)	at	6	h,	16	h	and	30	h	(Figure	5).		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	5.	Bi-plots	of	principal	components	analysis	(PCA)	using	the	following	variables:	intracellular	
reduced	GSH,	oxidized	GSH	(GSSG),	maximum	optical	density	(ODmax)	and	maximum	growth	rate	values	
calculated	at	5,	10,	15	and	20	h	based	on	cell	growth	obtained	in	the	viability	test.	Control:	control	cells;	
MEL:	5	µM	melatonin;	MEL	H2O2:	5	µM	melatonin	and	2	mM	H2O2;	H2O2:	2	mM	H2O2.	(A)	Oxidative	stress	
applied	at	early	exponential	phase	(6	h).	Component	1:	(+);	GSH	(10,	45,	90	and	120	min),	OD	max	and	
growth	rate	(5,	10,	15	and	20	h).	(-):	GSSG	(10,	45	and	120	min).	Component	2:	(+);	GSSG	90	min.	(B)	
Oxidative	stress	applied	at	early	stationary	phase	(16	h).	Component	1:	(+);	GSH	(10,	45,	90	and	120	
min),	OD	max	and	rate	(5,	10,	15	and	20	h).	(-);	GSSG	(0,	45	and	90	min).	Component	2:	(+);	GSSG	120	

min.	(E)	Oxidative	stress	applied	at	late	stationary	phase	(30	h).	Component	1;	(+);	GSH	120	min,	OD	max	
(5,	10,	15	and	20	h),	growth	rate	(5	and	10	h).	Component	2:	(+);	GSH	10	min.	
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In	the	resulting	PCA	plot	at	6	h	(Figure	5A)	and	16	h	(Figure	5B),	the	PCs	explained	82.83%	

and	88.52%	of	 the	variance,	 respectively.	 In	both	PCA,	parameters	 indicating	greater	

viability	(higher	rate	and	OD	max)	were	positively	correlated	with	higher	levels	of	GSH	

(positive	component	1)	and	negatively	correlated	with	higher	levels	of	GSSG	(negative	

component	1)	 (Figure	5A,	B).	Thus,	when	stress	was	applied	 in	 the	early	exponential	

phase	(6h,	Figure	5A),	the	different	conditions	were	clearly	separated	into	four	groups,	

where	cells	without	stress	presented	better	growth,	higher	GSH	and	lower	GSSG	levels	

than	stressed	cells.	MEL	condition	was	grouped	apart	from	the	control	due	to	a	higher	

oxidized	state	(higher	GSSG	and	lower	GSH).	In	contrast,	in	MEL	H2O2,	a	decrease	in	the	

oxidized	 state	 in	 comparison	 to	 stressed	 cells	 resulted	 in	a	 shift	 in	 the	 component	1	

towards	the	unstressed	conditions,	being	this	shift	even	greater	when	the	stress	was	

applied	at	16	h	(Figure	5B).	Finally,	in	the	late	stationary	phase	(30	h),	the	PCs	explained	

81.64%	of	the	variance	(Figure	5C),	but	merely	by	the	cellular	growth	variables	and	GSH	

at	120	min	(positively	correlated	within	the	positive	component	1).	Only	stressed	cells	

without	 MEL	 were	 grouped	 together	 and	 separated	 from	 the	 other	 conditions,	

presenting	the	lowest	GSH	levels	at	120	min,	rate	growth	and	OD	max,	what	indicated	

that	MEL	also	has	a	slight	effect	when	the	stress	was	applied	at	30	h.	

3.5. 	Effect	 of	 melatonin	 on	 expression	 levels	 of	 genes	 related	 to	 the	 antioxidant	

response	under	oxidative	stress	

Expression	of	 selected	genes	 implicated	 in	endogenous	antioxidant	defense	was	also	

determined	at	45	and	120	min	after	oxidative	stress	(2	mM	H2O2)	applied	in	the	early	

exponential	(6	h)	or	early	stationary	(16	h)	phase	and	in	the	presence	or	absence	of	MEL	

(Figure	6).	

In	the	early	exponential	phase	(Figure	6A),	the	expression	levels	of	all	genes	increased	

significantly	at	120	min	after	stress	exposure,	with	six	of	increasing	already	at	45	min	

(GSH1,	 CTT1,	 CTA1,	 SOD1,	 SOD2,	 and	GRX2).	 The	 presence	 of	MEL	 in	 stressed	 cells	

resulted	in	faster	up-regulation	of	most	genes	(except	for	CTT1	and	GRX2),	as	the	levels	

obtained	at	45	min	with	MEL	 (MEL	H2O2)	were	 similar	 to	 those	obtained	at	120	min	

without	MEL	(H2O2).	Indeed,	at	120	min,	the	expression	levels	of	all	genes	(except	GRX2)	

were	significantly	higher	with	MEL	than	without.	Exposure	to	stress	at	6	h	caused	a	30-

fold	increase	in	expression	of	the	CTT1	gene	at	45	minutes,	an	activation	that	was	much	
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lower	than	that	observed	upon	entry	into	the	stationary	phase	(Figure	3).	However,	at	

120	 min,	 expression	 remained	 constant	 in	 the	 presence	 of	 MEL	 but	 declined	 in	 its	

absence.	 In	 general,	 the	 levels	of	 gene	up-regulation	obtained	by	exposure	 to	 stress	

during	the	log	phase	(6	h)	were	lower	than	those	obtained	upon	entry	into	the	stationary	

phase	(Figure	3),	except	for	TRX2,	the	levels	of	which	were	higher	under	stress	in	the	

presence	of	MEL.	

	

Figure	6.	The	effect	of	melatonin	on	expression	of	genes	involved	in	the	oxidative	stress	response,	as	
determined	before	and	after	45	and	120	min	after	stress	exposure	(2	mM	H2O2),	in	cells	previously	
grown	with	MEL	(5	µM)	and	without	MEL.	(A)	Gene	expression	in	the	early	exponential	phase,	when	

stress	was	applied	at	6	h.	(B)	Gene	expression	in	the	early	stationary	phase,	when	stress	was	applied	at	
16	h.	Changes	are	expressed	relative	to	gene	expression	of	the	Control	condition	at	time	6	h	or	16	h.	

Error	bars	represent	±	SD	of	n=3	by	ANOVA	and	Tukey’s	post-test	(a,	b,	c),	p<0.05.	
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and	TRX2)	were	quickly	activated	after	stress	exposure,	with	higher	values	at	45	minutes,	

though	 their	 expression	 levels	 decreased	 over	 time.	 The	 presence	 of	MEL	 increased	

expression	of	some	of	these	genes	(ZWF1,	GLR1,	CTA1,	SOD1	and	TRX2)	but	only	during	

the	first	45	min.	At	120	min,	expression	of	only	GSH1,	GPX1	and	TRX2	remained	high	in	

the	presence	of	MEL	(MEL	H2O2).	Compared	to	non-stressed	cells,	CTT1	expression	at	

the	stationary	phase	was	lower	in	stressed	cells,	with	the	lowest	levels	in	the	absence	of	

MEL.	GSH1	and	GPX1	also	exhibited	lower	levels	of	expression	than	the	control	condition	

at	45	min	after	stress	exposure,	though	these	levels	were	up-regulated	over	time,	with	

higher	levels	of	expression	in	the	presence	of	MEL.	

As	 mentioned	 above,	 MEL	 alone	 was	 able	 to	 up-regulate	 certain	 genes	 in	 cells	 not	

exposed	to	stress,	yet	this	increase	in	expression	due	to	the	presence	of	MEL	at	6	h	was	

much	lower	than	the	levels	observed	after	stress	exposure.	For	most	genes	(GSH1,	GPX1,	

GLR1,	CTA1,	SOD1,	and	SOD2),	this	increase	at	16	h	was	similar	or	even	higher	than	that	

obtained	after	120	min	of	stress	exposure.	

4. DISCUSSION	

Recently,	 it	 has	 been	 described	 that	 S.	 cerevisiae	 synthetizes	 bioactive	 compounds	

derived	from	aromatic	amino	acids	such	as	MEL	during	alcoholic	fermentation.	The	role	

of	MEL	in	cells	has	been	extensively	studied	in	humans	and	other	organisms	(Hardeland	

and	Poeggeler,	2003;	Tan	et	al.,	2015),	and	its	antioxidant	capacity	is	among	the	most	

important	 biological	 activities	 described.	 However,	 its	 role	 in	 yeast	 is	 unknown.	

Therefore,	in	this	study,	the	possible	effect	of	MEL	in	protecting	against	oxidative	stress	

was	evaluated	in	S.	cerevisiae,	a	well-established	eukaryotic	model	and	considered	the	

wine	yeast	par	excellence.	

Exposure	 to	 oxidative	 stress	 generates	 ROS,	 which	 adversely	 affect	 cells	 when	 their	

capacity	 to	eliminate	 these	 reactive	 species	 is	 exceeded.	 Therefore,	 cells	 need	 to	be	

equipped	with	regulatory	molecules	to	rapidly	sense	and	respond	to	oxidative	stress.	

We	have	 focused	our	 research	on	GSH	as	 the	main	and	most	abundant	endogenous	

antioxidant	in	cells	(Moradas-Ferreira	et	al.,	1996;	Jamieson,	1998),	and	accordingly,	the	

effect	 of	MEL	on	 the	 glutathione	 status	with	 and	without	 stress	was	 evaluated	 in	S.	

cerevisiae	in	the	current	study.	Our	results	show	that	the	presence	of	MEL	at	low	doses	

(5	µM)	alters	basal	glutathione	levels	with	a	slight	increase	in	ROS	accumulation.	ROS	
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accumulation	with	a	decrease	in	GSH	due	to	MEL	has	been	exclusively	reported	in	the	in	

vitro	response	in	human	cells,	mostly	in	cancer	cells	in	which	MEL	exhibits	pro-oxidant	

properties	(Osseni	et	al.,	2000;	Wölfer	et	al.,	2001;	Albertini	et	al.,	2006).	 Interaction	

between	 calmodulin	 and	 MEL	 might	 represent	 the	 mechanism	 involved	 in	 the	

stimulation	of	ROS	by	MEL	(Radogna	et	al.,	2009).	We	also	observed	that	MEL	repressed	

the	GSH1	and	GPX1	genes,	which	encode	g-glutamylcysteine	synthetase	and	glutathione	

peroxidase,	 respectively,	 in	 the	 early	 exponential	 phase.	 Such	 repression	 by	 the	

presence	 of	 MEL	 has	 not	 previously	 been	 reported.	 These	 results	 confirm	 that	 the	

reduced	 ratio	 of	 GSH:GSSG	 corresponds	 to	 a	 decrease	 in	 mRNA	 levels	 of	 g-

glutamylcysteine	 synthetase.	Many	 studies	 have	 documented	 the	 effects	 of	MEL	 on	

gene	regulation	in	human	cells,	and	the	mechanism	by	which	MEL	alters	expression	of	

antioxidant	 genes	 in	 S.	 cerevisiae	may	 also	 be	mediated	 by	MEL	 receptor	 activation	

(Rodriguez	et	al.,	2004;	Tomás-Zapico	and	Coto-Montes,	2005).	In	this	way,	MEL	would	

act	indirectly	on	the	glutathione	system	by	decreasing	GSH.	Furthermore,	thioredoxin,	

encoded	by	TRX2,	which	is	specialized	in	protection	against	ROS,	was	strongly	repressed	

in	the	presence	of	MEL,	even	though	its	mRNA	levels	were	derepressed	over	time.	This	

fact	could	explain	the	observed	slight	accumulation	of	ROS.	Furthermore,	very	low	doses	

of	ROS	(non-toxic	levels)	can	serve	as	signaling	molecules	for	cells	to	adapt	and	become	

more	resistant	to	a	subsequent	lethal	exposure.	

Simultaneously,	MEL	activates	genes	involved	in	primary	defense,	which	are	normally	

repressed	or	present	at	very	low	levels	during	anaerobic	growth	in	high-glucose	culture	

media	 (Jamieson,	 1998;	 Belazzi	 et	 al.,	 1991;	DeRisi	 et	 al.,	 1997;	 Boy-Marcotte	 et	 al.,	

1998;	Puig	et	al.,	2000;	Büyükavci	et	al.,	2006),	including	those	encoding	both	catalases	

(CTT1	 and	 CTA1)	 and	 cytosolic	 superoxide	 dismutase	 (SOD1).	 However,	 in	 the	 early	

stationary	phase,	when	glucose	was	consumed	by	the	cells	(data	not	shown),	all	genes	

examined	in	the	study	were	derepressed,	and	their	expression	increased.	The	transition	

of	S.	cerevisiae	from	fermentative	to	respiratory	metabolism	increases	ROS	production	

and	 involves	 modulation	 of	 the	 antioxidant	 system	 that	 confers	 cell	 resistance	 to	

oxidants.	For	this	reason,	as	our	results	confirmed,	cells	are	more	susceptible	to	stress	

during	the	exponential	phase	than	during	the	stationary	phase.	This	also	agrees	with	the	

viability	 results	of	cells	after	 stress	exposure,	where	 the	viability	 increased	when	 the	



CHAPTER	2	 	

130	
 

stress	was	applied	in	early	and	late	stationary	phase.	In	addition	to	activation	of	these	

genes	 in	 the	 early	 stationary	 phase,	 a	 clear	 effect	 of	MEL	 was	 observed	 because	 it	

potentiated	expression	of	many	genes	involved	in	primary	(GPX1,	CTA1,	SOD1,	SOD2)	

and	secondary	(GSH1,	GLR1,	GRX2)	defense	systems.	ROS	accumulation	and	changes	in	

the	basal	glutathione	balance	followed	by	activation	of	stress	genes	in	the	presence	of	

MEL	 had	 no	 effect	 on	 S.	 cerevisiae	 viability,	 indicating	 a	 lack	 of	 correlation	 with	

cytotoxicity	or	apoptosis	(Osseni	et	al.,	2000;	Büyükavci	et	al.,	2006;	Girish	et	al.,	2013).	

Our	 results	 appear	 to	 indicate	 that	 MEL	 prepared	 the	 cells	 to	 better	 endure	 stress	

generated	in	the	stationary	phase	by	inducing	an	increase	in	mRNA	levels	of	antioxidant	

genes.	

Nonetheless,	exposure	to	oxidative	stress	(2	mM	of	H2O2)	caused	an	increase	in	ROS,	

which	 activated	 defense	 mechanisms	 to	 maintain	 a	 proper	 redox	 state.	 Upon	 H2O2	

challenge,	yeast	cells	activate	various	antioxidant	functions,	including	a	gene	expression	

program	mediated	 largely	 by	 the	 transcription	 factors	Msn2p/4p	 in	 a	 general	 stress	

response	 and	 Yap1p	 and	 Skn7p	 in	 a	 specific	 response	 to	 oxidative	 stress.	 (Moradas-

Ferreira	 et	 al.,	 1996;	 Costa	 and	 Moradas-Ferreira,	 2001;	 Jamieson,	 1998;	 Moradas-

Ferreira	 and	 Costa,	 2000).	 Skn7p	 factor	 controls	 a	 subset	 of	 genes	 involved	 in	 the	

thioredoxin	 system,	whereas	 Yap1p	 is	 required	 for	 the	 induction	 of	 all	 the	 oxidative	

responsive	genes	(Gómez-Pastor,	et	al.,	2010).	The	effect	of	stress	on	S.	cerevisiae	cells	

was	higher	in	the	early	exponential	(6	h)	and	stationary	(16	h)	phases	than	in	the	late	

exponential	phase	 (30	h).	At	30	h,	 the	cells	appeared	to	have	already	prepared	their	

defense	mechanisms	and	be	more	resistant	to	oxidants.	Under	such	stress	conditions,	

our	results	clearly	showed,	as	have	the	vast	majority	of	studies	in	humans	(Reiter	et	al.,	

2016;	Tan	et	al.,	2015),	that	MEL	has	an	antioxidant	effect	on	S.	cerevisiae	in	the	early	

exponential	 and	 early	 stationary	 phases.	 Although	MEL	mitigated	 ROS	 accumulation	

generated	by	low	concentrations	of	H2O2	in	S.	cerevisiae,	this	effect	was	not	observed	at	

higher	concentrations	of	H2O2	(4	mM),	likely	because	the	oxidative	stress	exceeded	the	

endogenous	 antioxidant	 capacity.	 Additionally,	MEL-treated	 cells	 exhibited	 increased	

GSH	and	decreased	GSSG	concentrations.	This	state	of	lower	oxidative	stress	resulted	in	

a	 clear	 enhancement	 in	 cell	 viability	 in	 the	 early	 stationary	 phase.	 In	 humans,	MEL	

displays	multiple	mechanisms	to	protect	cells	against	oxidative	stress,	e.g.,	it	possesses	
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direct	free	radical	scavenging	activity,	whereby	 it	 is	able	to	detoxify	 ·OH	produced	by	

H2O2	(Tan	et	al.,	2000).	In	our	case,	analysis	of	expression	of	certain	stress-related	genes	

under	 oxidative	 stress	 appeared	 to	 indicate	 that	MEL	 in	S.	 cerevisiae,	 as	 in	 humans,	

might	interact	with	different	components	of	antioxidant	defense	systems.	In	fact,	the	

amphiphilic	 characteristics	of	MEL	allow	 it	 to	 cross	all	morpho-physiological	barriers,	

reaching	any	subcellular	structure	and	guaranteeing	 its	ability	 to	act	as	a	 free	radical	

scavenger	(Tan	et	al.,	2000;	Reiter	et	al.,	2007).	Although	MEL	is	able	to	act	as	a	direct	

radical	scavenger	in	S.	cerevisiae,	our	results	showed	that	MEL	might	also	function	as	an	

indirect	 antioxidant	 by	 increasing	 the	 transcription	 level	 of	 genes	 related	 to	 the	

antioxidant	 response.	 Furthermore,	 stimulation	 of	 expression	 of	 genes	 encoding	

antioxidant	 enzymes	 by	 MEL	 via	 receptor	 activation	 can	 occur	 at	 nanomolar	

concentrations	in	cultured	cells	(Rodriguez	et	al.,	2004;	Mayo	et	al.,	2002;	Kotler	et	al.,	

1998).	

As	discussed	above,	an	 intense	change	 in	gene	activity	occurred	within	minutes	after	

exposure	to	H2O2	in	both	the	early	exponential	and	stationary	phases,	and	our	results	

evidenced	 how	 low	 concentrations	 of	 MEL	 influenced	 even	 more	 changes	 in	 gene	

expression.	A	number	of	in	vitro,	in	vivo	and	ex	vivo	studies	in	humans	have	documented	

the	ability	of	MEL	to	increase	expression	of	multiple	antioxidant	stress	genes,	including	

copper	 zinc	 and	manganese	 superoxide	dismutases,	 glutathione	peroxidase,	 catalase	

and	g-glutamylcysteine	synthase	(Kotler	et	al.,	1998;	Esparza	et	al.,	2005;	Gómez	et	al.,	

2005;	Mauriz	 et	 al.,	 2007;	 Fischer	 et	 al.,	 2013).	Moreover,	 this	 effect	 on	 antioxidant	

enzyme	 genes	 appears	 to	 be	 consistent	 with	 the	 ability	 of	 MEL	 to	 up-regulate	 the	

activities	of	these	enzymes	as	well	as	glutathione	reductase	and	glucose-6-phosphate	

dehydrogenase.	 In	 the	current	 study,	as	 in	mammalian	 studies,	 the	presence	of	MEL	

induced	high	levels	of	GSH1,	GPX1,	CTT1,	CTA1,	SOD1	and	SOD2	mRNA	(Tomas-Zapico	

and	Coto-Montes,	2005;	Mayo	et	al.,	2002;	Kotler	et	al.,	1998).	Furthermore,	our	results	

showed	 that	 in	 S.	 cerevisiae,	 MEL	 also	 up-regulated	 expression	 of	GLR1,	 ZWF1	 and	

particularly	TRX2,	which	 encodes	 the	most	 important	 hydrogen	 peroxide-eliminating	

enzyme.	 Conversely,	 CTT1	 expression	 exhibited	 a	 different	 profile:	 it	 was	 rapidly	

activated	 by	 H2O2	 in	 the	 early	 exponential	 phase,	 but	 it	 was	 repressed	 in	 the	 early	

stationary	phase,	showing	an	earlier	decrease	in	gene	expression	in	the	absence	of	MEL.	



CHAPTER	2	 	

132	
 

CTT1,	which	encodes	cytosolic	catalase	T,	is	involved	in	the	primary	antioxidant	defense	

induced	by	H2O2.	This	gene	is	not	only	induced	by	hyperoxidant	conditions	but	also	by	

starvation	and	heat	or	osmotic	shock	(Moradas-Ferreira	et	al.,	1996;	Costa	and	Moradas-

Ferreira,	2001;	Jamieson,	1998).	Our	results	showed	that	induction	of	this	gene	occurred	

mainly	during	the	exponential	phase	and	that	the	effect	of	MEL	on	CTT1	was	significantly	

reduced	after	 this	phase.	Nonetheless,	 some	effect	was	still	observed	because	 lower	

levels	 were	 reached	 in	 the	 absence	 of	 MEL.	 ZWF1	 stimulation	 by	 MEL	 has	 been	

suggested	 in	 a	 few	 studies,	 as	 activation	 of	 the	 enzyme	 glucose-6-phosphate	

dehydrogenase	was	observed	in	the	presence	of	the	molecule	(Pierrefiche	and	Laborit,	

1995;	 Hardeland,	 2005).	 The	 overexpression	 of	 ZWF1	 due	 to	 MEL	 under	 stress	

conditions	observed	in	our	study	appears	to	highlight	the	importance	of	this	gene	in	GSH	

recycling,	 as	 NADPH	 is	 a	 necessary	 cofactor	 for	 glutathione	 reductase	 and	 provides	

reducing	equivalents	for	redoxin	systems.	TRX2-encoded	thioredoxin,	the	mRNA	levels	

of	 which	 were	 up-regulated	 with	MEL	 addition	 under	 oxidative	 stress	 conditions,	 is	

specialized	in	protecting	against	ROS	and	is	essential	for	YAP1-dependent	resistance	to	

hydroperoxides	(Herrero	et	al.,	2008;	Gómez-Pastor	et	al.,	2012;	Kuge	and	Jones,	1994);	

indeed,	 this	 gene	 (TRX2)	 is	 one	 of	 the	 first	 targets	 of	 the	 major	 oxidative	 stress	

transcription	 factor	Yap1p.	TRX2,	 besides	 to	be	 required	 to	 regulate	 redox	 state	and	

levels	of	glutathione	in	response	to	oxidants,	it	can	be	also	upregulated	in	response	to	

changing	 growth	 conditions,	 providing	 a	 first	 line	 of	 defense	 against	 oxidative	 stress	

(Gómez-Pastor	et	al.,	2012).	Therefore,	our	results	indicate	that	MEL	indirectly	increases	

the	resistance	of	S.	cerevisiae	to	oxidative	stress	via	overexpression	of	TRX2,	enhancing	

the	fermentative	capacity	and	viability	of	this	wine	strain	under	vinification	conditions.	

MEL	 has	 frequently	 been	 compared	 with	 vitamins	 C	 and	 E	 in	 terms	 of	 antioxidant	

properties	 (Reiter	 et	 al.,	 2007).	 The	 effect	 of	 MEL	 on	 S.	 cerevisiae	 may	 also	 be	

comparable	 to	 the	effect	of	 resveratrol	on	yeast	 (Escoté	et	al.,	2012),	which	 induces	

Yap1p	activity	(the	major	regulator	of	genes	involved	in	the	oxidative	stress	response)	

to	reduce	ROS	levels	under	oxidative	stress.	

The	literature	contains	many	references	regarding	the	biological	properties	of	MEL	as	a	

hormone	and	its	antioxidant	properties,	among	other	beneficial	effects	in	vertebrates.	

Based	on	our	results,	MEL	synthesis	by	S.	cerevisiae	during	wine	production	could	be	
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related	to	the	ability	of	yeast	cells	to	adapt	to	and	endure	the	hostile	environment	of	

the	wine-making	process	and	probably	 counteract	 the	prooxidant	effects	of	ethanol.	

Furthermore,	S.	cerevisiae	in	active	dry	yeast	form,	used	as	starter	in	biotech	and	food	

industries,	can	suffer	oxidative	stress	during	biomass	propagation	and	dehydration	steps	

of	their	production,	which	could	negatively	affect	yeast	performance.	Oxidative	stress	

also	 influences	 the	 replicative	 lifespan	 of	 yeast,	 particularly	 important	 in	 re-pitching	

practices.	 Thus,	 protective	 treatments	 against	 oxidative	 damage	 with	 natural	

antioxidants,	may	have	important	biotechnological	implications.	

5. CONCLUSIONS	

MEL	 presents	 antioxidant	 properties	 in	 S.	 cerevisiae.	 However,	 these	 antioxidant	

properties	were	dependent	on	the	dose	and	the	phase	at	which	stress	was	induced.	In	

the	 absence	 of	 stress,	 MEL	 exposure	 appears	 to	 prepare	 cells	 for	 further	 oxidant	

assaults,	whereby	MEL	clearly	reduces	oxidative	damage	in	S.	cerevisiae	by	decreasing	

ROS	and	oxidized	glutathione	(GSSG)	levels.	Our	analysis	offers	insight	into	the	effect	of	

MEL	on	antioxidant	defense	systems	in	S.	cerevisiae.	However,	the	findings	also	raise	a	

number	of	intriguing	questions	related	to	the	regulation	of	gene	expression	by	oxidative	

stress	 as	 a	 complex	 process	 controlled	 by	 different	 key	 regulators	 and	

intercommunication	with	different	stress	response	pathways.	Evaluation	of	the	impact	

of	MEL	on	transcription	factors	(especially	Yap1p	and	Snk7p),	or	their	influence	on	gene	

expression	related	to	MEL	receptors	in	S.	cerevisiae	could	offer	a	productive	avenue	for	

further	research.	Furthermore,	the	effect	of	lower	concentrations	of	MEL,	closer	to	the	

ones	found	in	fermented	beverages,	should	also	be	assessed.	
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Abstract	

Melatonin	 (N-acetyl-5-methoxytryptamine)	 is	 synthesized	 from	 tryptophan	 by	

Saccharomyces	 cerevisiae	 and	 non-conventional	 yeast	 species.	 Antioxidant	 properties	

have	been	suggested	as	a	possible	role	of	melatonin	in	a	Saccharomyces	cerevisiae	wine	

strain.	However,	the	possible	antioxidant	melatonin	effect	on	non-Saccharomyces	species	

and	 other	 strains	 of	 S.	 cerevisiae	 must	 be	 evaluated.	 The	 aim	 of	 this	 study	 was	 to	

determine	the	antioxidant	capacity	of	melatonin	in	eight	S.	cerevisiae	strains	and	four	non-

conventional	 yeasts	 (Torulaspora	 delbrueckii,	Metschnikowia	 pulcherrima,	 Starmerella	

bacillaris	 and	 Klockera	 appiculata).	 Therefore,	 the	 ROS	 formation,	 lipid	 peroxidation,	

catalase	activity	and	peroxisome	proliferation	were	investigated.	The	results	showed	that	

the	presence	of	melatonin	increases	peroxisome	accumulation	and	slightly	increases	the	

catalase	activity.	When	cells	that	were	grown	in	the	presence	of	melatonin	were	exposed	

to	oxidative	stress	induced	by	H2O2,	lower	ROS	accumulation	and	lipid	peroxidation	were	

observed	in	all	tested	strains.	As	a	consequence,	the	increased	catalase	activity	that	was	

a	consequence	of	oxidative	stress	was	lower	in	the	presence	of	melatonin.	These	findings	

demonstrate	that	melatonin	can	act	as	an	antioxidant	compound	in	both	S.	cerevisiae	and	

non-Saccharomyces	yeasts.	

	

Keywords:	 Torulaspora	 delbrueckii,	Metschnikowia	 pulcherrima,	 Starmerella	 bacillaris,	

Klockera	appiculata,	ROS,	TBARS,	catalase,	peroxisomes.	
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1.	INTRODUCTION	

Melatonin	(N-acetyl-5-methoxytryptamine)	(MEL)	is	not	only	known	as	a	neurohormone	

in	vertebrates,	but	it	 is	as	well	considered	as	a	ubiquitous	molecule	that	is	present	in	

most	living	organisms	(Hardeland	&	Poeggeler,	2003).	Sprenger	et	al.,	(1999)	were	the	

first	authors	to	associate	the	production	of	MEL	with	Saccharomyces	cerevisiae.	Later,	

other	reports	showed	high	quantities	of	MEL	being	produced	by	S.	cerevisiae,	and	by	

other	 non-conventional	 yeast	 species	 such	 as	 Torulaspora	 delbrueckii	 and	

Zygosaccharomyces	 bailii	 (Rodriguez-Naranjo	 et	 al.,	 2011;	 Vigentini	 et	 al.,	 2015).	

Although	only	limited	information	is	available	on	MEL	biosynthesis	in	organisms	other	

than	vertebrates,	the	pathway	in	yeasts	is	thought	to	be	similar	to	the	synthetic	route	

described	 in	vertebrates.	Four	enzymes	are	 involved	 in	 the	conversion	of	 tryptophan	

into	 serotonin	 and	N-acetylserotonin	 intermediates	 and	 finally	 into	MEL	 (Mas	 et	 al.,	

2014).		

The	functions	of	MEL	have	been	extensively	studied	in	mammals	and	animals,	and	they	

are	 primarly	 related	 to	 the	 regulatory	 mechanisms	 involved	 in	 circadian	 rhythms.	

However,	 the	 role	 of	MEL	 in	 yeasts	 still	 needs	 to	 be	 elucidated.	 Recently,	 we	 have	

reported	that	MEL	is	able	to	act	as	an	antioxidant	compound	in	one	commercial	wine	

strain	of	S.	cerevisiae	(Vázquez	et	al.,	2017).	As	is	the	case	in	humans,	MEL	might	protect	

various	 biomolecules	 from	 damages	 caused	 by	 free	 radicals	 by	 acting	 as	 a	 direct	

scavenger,	 detoxifying	 reactive	 oxygen	 and	 nitrogen	 species	 (Anisimov	 et	 al.,	 2006;	

Reiter	 et	 al.,	 2001,	 2016)	 and	 indirectly	 increases	 the	 activities	 of	 the	 antioxidant	

defense	 systems.	 It	 could	 also	 act	 by	 stimulating	 the	 synthesis	 of	 other	 important	

intracellular	 antioxidants	 such	 as	 glutathione	 peroxidase	 and	 superoxide	 dismutase	

(Antolín	et	al.,	1996;	Rodriguez	et	al.,	2004).	

Oxidative	 stress	 is	 the	 outcome	 of	 an	 imbalance	 between	 the	 presence	 of	 reactive	

oxygen	species	(ROS)	and	the	capacity	of	cells	to	detoxify	these	reactive	intermediates	

of	molecular	oxygen,	or	to	repair	the	resulting	damage.	ROS	are	constantly	generated	

during	 normal	 metabolism,	 and	 they	 exert	 physiologic	 actions.	 However,	 when	

produced	 in	 excess,	 ROS	 cause	 detrimental	 effects	 and	 can	 damage	 cell	

macromolecules,	 such	 as	 DNA,	 lipids	 or	 proteins	 (Gutteridge	 and	 Halliwell,	 2000;	

Halliwell,	2006).	Among	these	targets	of	ROS,	lipid	peroxidation	leads	to	one	of	the	most	
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damaging	consequences	for	cells	when	unsaturated	lipids	are	converted	into	polar	lipid	

hydroperoxides	because	it	allows	the	propagation	of	free	radical	reactions	that	could	

affect	membrane	integrity	and	even	result	in	cell	death	(Ayala	et	al.,	2014;	Howlett	and	

Avery,	 1997).	 However,	 ROS	 formation	 is	 accompanied	 by	 an	 increase	 in	 yeast	

antioxidant	 defenses,	with	 the	 aim	 of	 protecting	 the	 cells	 against	 noxious	 ROS.	One	

system	for	neutralizing	 the	excessive	ROS	 formation	 in	cells	 is	 to	degrade	 them	with	

antioxidant	 enzymes	 such	 as	 catalase,	 gluthathione	 peroxidase	 and	 superoxide	

dismutase.	By	contrast,	non-enzymatic	systems	such	as	glutathione,	glutaredoxins	and	

thioredoxins	repair	or	remove	the	products	of	oxidative	damage	(Auchère	et	al.,	2008;	

Costa	and	Moradas-Ferreira,	2001;	Herrero	et	al.,	2008;	Jamieson,	1998).			

Due	to	its	high	fermentation	capacity,	S.	cerevisiae	is	the	yeast	that	is	traditionally	used	

in	 the	 biotechnology,	 food	 and	 beverage	 industries.	 However,	 non-Saccharomyces	

yeasts	 are	 now	 gaining	 higher	 interests	 for	 industries;	 in	 fact,	 several	 studies	 have	

demonstrated	 that	 the	 presence	 of	 non-conventional	 yeasts	 during	 the	winemaking	

process	can	contribute	to	the	aroma	profile,	sensory	complexity	and	color	stability	(Jolly	

et	al.,	2014).	During	these	industrial	processes,	yeasts	are	involved	in	different	stages	

that	can	 lead	to	oxidative	stress	for	the	cells,	which	could	negatively	affect	the	yeast	

performance	(Gómez-Pastor	et	al.,	2012;	Pérez-Gallardo	et	al.,	2013;	Pretorius,	2000).	

Thus,	 protective	 treatments	 against	 oxidative	damage	with	natural	 antioxidants	may	

have	important	biotechnological	implications.		

The	goal	of	this	study	was	to	evaluate	the	possible	antioxidant	effect	of	MEL	on	different	

yeast	 species.	 To	 this	 end,	we	 evaluated	 the	ROS	production,	 lipid	 peroxidation	 and	

intracellular	catalase	activity	in	sixteen	yeast	strains	of	different	species.	We	evaluated	

the	response	to	oxidative	stress	response	 induced	by	H2O2	and	analyzed	the	possible	

protective	activity	of	MEL	supplementation.	

2.	MATERIAL	AND	METHODS	

2.1. 	Yeast	strains	and	experimental	conditions		

The	 yeast	 strains	 used	 in	 this	 study	 were	 eight	 S.	 cerevisiae	 and	 eight	 non-

Saccharomyces.	 The	 S.	 cerevisiae	 strains	 included	 three	 laboratory	 strains	 (BY4741,	

BY4742	and	Sigma	1278b	from	the	EUROSCARF	collection,	Frankfurt,	Germany),	three	

commercial	wine	strains	(QA23Ò,	Uvaferm	HPSÒ	and	the	hybrid	VIN7	(S.	cerevisiae	x	S.	
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kudriavzevii	 AWRI1539Ò))	 and	 two	 commercial	 strains	 used	 for	 animal	 nutrition	

(Levucellâ	SC20	and	SB20).	The	non-Saccharomyces	species	included	two	wine	strains	

of	Torulaspora	delbrueckii	(BIODIVAÒ	(TdB)	and	Tdp),	two	wine	strains	of	Metschnikowia	

pulcherrima	(FLAVIAÒ	(MpF)	and	Mpp),	two	wine	strains	of	Starmerella	bacillaris	(Cz4	

and	 Cz11)	 and	 two	 wine	 strains	 of	 Hanseniaspora	 uvarum	 (Hu4	 and	 Hu35).	 The	

commercial	Saccharomyces	and	non-Saccharomyces	strains	QA23,	Uvaferm	HPS,	SC20,	

SB20,	FLAVIA	and	BIODIVA	were	provided	by	Lallemand	S.A.	(Montreal,	Canada),	and	

VIN7	was	provided	by	AWRI	(Glen	Osmond,	Australia).	The	other	six	non-Saccharomyces	

strains	(Tdp,	Mpp,	Cz4,	Cz11,	Hu4	and	Hu35)	were	isolated	from	natural	musts	from	the	

Priorat	Appellation	of	Origin	(Catalonia,	Spain)	(Padilla	et	al.,	2016).	The	Tdp,	Mpp,	Cz4	

and	Hu4	were	deposited	in	the	Spanish	Type	Culture	Collection	(CECT)	as	CECT	13135,	

CECT	13131,	CECT	13129	and	CECT	13130,	respectively.	

All	 commercial	 strains	 were	 provided	 as	 active	 dry	 yeasts	 and	 were	 rehydrated	

according	to	the	manufacturer’s	 instructions.	For	all	 the	experiments,	precultures	for	

biomass	propagation	were	prepared	in	YPD	liquid	medium	(2%	(w/v)	glucose,	2%	(w/v)	

peptone	and	1%	(w/v)	yeast	extract	(Panreac,	Barcelona,	Spain))	and	incubated	for	24	h	

at	28ºC	with	orbital	shaking	(120	rpm).	Yeast	cells	were	subsequently	inoculated	into	50	

mL	of	YPD	broth	(initial	population	5x103	cells/mL)	with	and	without	supplementation	

of	5	µM	MEL	(two	flasks	for	each	condition)	and	grown	until	the	cells	reached	the	initial	

exponential	phase	at	28ºC	with	orbital	shaking	at	120	rpm.	Sublethal	oxidative	stress	

was	then	induced	in	one	flask	for	each	condition	with	2mM	of	H2O2	for	1	h	to	generate	

the	following	four	conditions:	Control	and	MEL	(without	stress);	and	H2O2	and	MEL	H2O2	

(with	stress).	The	MEL	and	H2O2	concentrations	were	chosen	from	our	previous	study	in	

the	QA23	strain	(Vázquez	et	al.,	2017).	Three	biological	replicates	were	tested	for	each	

condition.	

2.2. 	Determination	of	reactive	oxygen	species	(ROS)		

The	effect	of	H2O2	(2	mM)	with	and	without	MEL	(5	µM)	on	the	intracellular	ROS	was	

evaluated	in	the	sixteen	yeast	strains.	Furthermore,	ascorbic	acid	(25	µM),	a	well-known	

antioxidant,	was	used	as	a	positive	control	(Saffi	et	al.,	2006).	ROS	was	detected	using	

dihydrorhodamine	 123	 (DHR	 123;	 Sigma-Aldrich),	 according	 to	 the	method	 used	 by	

(Vázquez	et	al.,	2017).	In	brief,	the	cells	were	stained	with	10	µg	of	DHR	123	per	mL	of	
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cell	culture	for	15	min	at	120	rpm	in	the	dark.	Then,	cells	were	then	washed	twice	with	

phosphate-buffered	saline	(PBS,	pH	7.4),	and	the	fluorescence	intensity	was	measured	

by	flow	cytometry.	The	captured	files	were	processed	using	the	WinMDI	2.9	software	

(Joseph	Trotter,	Salk	Institute	for	Biological	Studies,	La	Jolla,	CA,	USA)	and	the	ROS	were	

represented	as	the	mean	fluorescence	index	(MFI)	and	calculated	according	to		Boettiger	

et	al.,	 (2001)	as	 follows:	 [(geometric	mean	of	the	positive	fluorescence)	–	 (geometric	

mean	of	the	control)]	/	(geometric	mean	of	the	control).	

2.3. 	Thiobarbituric	acid-reacting	substances	(TBARS)		

The	degree	of	lipid	peroxidation	was	measured	in	unstressed	and	stressed	cells	with	and	

without	MEL	supplementation	in	terms	of	TBARS	content	(Buege	and	Aust,	1978;	Aust	

1994).	 Following	 a	 treatment	 using	 2	mM	H2O2	 for	 1	 h,	 1x107	 yeast	 cells	 from	each	

condition	were	mechanically	homogenized	over	three	cycles	of	alternating	sonication	

and	 liquid	 nitrogen	 (10/10	 sec).	 The	 samples	 were	 then	 mixed	 with	 250	 µL	 of	

trichloroacetic	acid	(10%	v/v),	incubated	for	15	min	on	ice,	and	after	centrifugation	at	

2200	 g	 for	 15	 min	 at	 4ºC,	 200	 µL	 of	 the	 supernatant	 was	 mixed	 with	 200	 µL	 of	

thiobarbituric	acid	(6.7	g/	L).	These	samples	were	then	incubated	in	a	boiling	water	bath	

for	10	min	and	cooled	at	room	temperature.	Finally,	the	absorbance	was	measured	at	

532	nm	with	a	microplate	 reader	 (Omega	Polarstar,	BMG	Labtech	Gmbh,	Ortenberg,	

Germany).	The	TBARS	content	was	estimated	by	referring	to	a	standard	curve	prepared	

with	1,1,3,3-tetramethoxypropane,	and	the	results	were	expressed	as	nmol	of	TBARS	

per	mg	of	protein.	

2.4. 	Catalase	activity		

The	catalase	activity	was	evaluated	in	unstressed	and	stressed	cells	with	and	without	

MEL.	First,	1x107	yeast	cells	were	suspended	in	PBS	(50	mM,	pH	7.0)	with	one	tablet	of	

protease	inhibitor	per	10	mL	of	extraction	solution	(cOmpleteTM;	Roche),	and	they	were	

disrupted	 using	 glass	 beads	with	 six	 cycles	 alternating	 cycles	 of	 cooling	 and	 shaking	

(30/30	sec)	and	centrifuged	at	14.000	rpm	for	2	min.	The	assay	was	performed	according	

to	the	method	described	by	Aebi	in	1984.	In	brief,	cells	extracts	were	exposed	to	10	mM	

of	H2O2,	and	 the	decrease	 in	absorbance	at	240	nm	due	 to	H2O2	decomposition	was	

monitored	for	4	min,	with	measurements	every	30	sec	a	constant	temperature	(25	ºC)	

using	a	microplate	reader	(Omega	Polarstar,	BMG	Labtech	Gmbh,	Ortenberg,	Germany).	
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The	catalase	activity	was	expressed	as	units	of	catalase	per	mg	of	protein.	One	unit	of	

catalase	activity	decomposes	1	mmol	of	H2O2	per	min.	

2.5. 	Protein	estimation		

The	total	protein	levels	were	determined	using	the	Bradford	method	(Bradford,	1976)	

by	 spectrophotometric	 determination	 at	 545	 nm,	 with	 bovine	 serum	 albumin	 (BSA,	

Sigma-Aldrich)	 as	 a	 standard.	 The	 absorbance	 was	 measured	 an	 Omega	 Polarstar	

microplate	reader	spectrophotometer.	

2.6. 	Western	Blot	(immunoblot)	analysis		

The	immunological	characterization	of	of	QA23	and	TdB	strains	homogenates	from	the	

four	 conditions	 (Control,	MEL,	MEL	H2O2	 and	H2O2)	was	 performed	by	Western	 blot	

analysis	as	described	by	Haid	and	Suissa	(1983).	In	brief,	the	cells	were	disrupted	with	

glass	beads	using	a	Disruptor	GenieÒ	(Scientific	Industries,	Inc.,	NY,	USA)	at	4	ºC	for	10	

min	and	centrifuged	at	4ºC	at	500g	for	5	min.	After	TCA	precipitation	of	supernatants,	

protein	 samples	 were	 separated	 by	 sodium	 dodecyl	 sulfate	 polyacrylamide	 gel	

electrophoresis	 (SDS-PAGE,	12.5%),	 and	 later	 transferred	 to	 the	nitrocellulose	 sheets	

according	to	standard	procedures	(Laemmli,	1970).	Finally,	a	western	blot	analysis	was	

performed	using	a	primary	 rabbit	 antibody	against	 Fox1p	protein	 (multifunctional	β-

oxidation	protein	from	peroxisomal	membranes),	a	marker	of	peroxisomes	organelles.	

Immunoreactive	 bands	 were	 visualized	 using	 a	 peroxidase-conjugated	 secondary	

antibody	according	to	the	manufacturer’s	instructions	(SuperSignal	TM,	Pierce	Chemical	

Company,	 IL,	 USA).	 The	 cytosolic	 protein	 GAPDH	 (glyceraldehyde-3-phosphate	

dehydrogenase)	 was	 used	 as	 a	 loading	 control,	 and	 isolated	 peroxisomes	 from	 S.	

cerevisiae	were	the	positive	control.	The	identified	bands	were	quantified	using	ImageJ	

software	(National	Institutes	of	Health,	MD,	USA)	and	normalized	to	the	positive	control.	

2.7. 	Data	analysis		

The	data	were	subjected	to	a	one-way	analysis	of	variance	(ANOVA)	and	Tukey’s	post-

hoc	 test	 to	 evaluate	 the	 effect	 of	 each	 treatment.	 The	 results	 were	 considered	

statistically	significant	at	a	p-values	less	than	0.05	(IBM	SPSS	Inc,	XLSTAT	Software).	
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3.	RESULTS	

3.1.	Reactive	oxygen	species	(ROS)		

To	evaluate	the	possible	role	of	MEL	as	an	antioxidant	agent	in	the	Saccharomyces	and	

non-Saccharomyces	species,	the	intracellular	ROS	levels	were	measured	in	stressed	cells	

with	and	without	5	µM	of	MEL	(Vázquez	et	al.,	2017).	Stressed	cells	with	2	mM	of	H2O2	

and	without	MEL	were	used	as	a	positive	control,	cells	without	stress	and	without	MEL	

were	used	as	a	negative	control.	Cells	treated	with	25	µM	of	ascorbic	acid	were	the	as	

positive	antioxidant	control	(Figure	1).		

Figure	1.	Melatonin	(MEL,	5	µM)	effect	on	ROS	accumulation	as	evaluated	in	sixteen	yeast	strains	under	
oxidative	stress	that	was	induced	with	2	mM	of	H2O2.	Cells	without	MEL	and	H2O2	were	used	as	negative	
control,	cells	with	2	mM	of	H2O2	were	used	as	the	positive	control	and	cells	treated	with	ascorbic	acid	
(25	µM)	served	as	the	positive	antioxidant	control.	(A)	The	mean	fluorescence	index	(MFI)	of	the	T.	

delbrueckii	(TdB	and	Tdp),	M.	pulcherrima	(MpF	and	Mpp)	and	C.	zemplinina	(Cz4	and	Cz11)	strains.	(B)	
The	MFI	of	the	S.	cerevisiae	(BY4742,	BY4741,	Sigma	1278b,	QA23,	VIN	7,	SC20,	SB20	and	Uvaferm	HPS)	

and	H.	uvarum	(Hu4	and	Hu35)	strains.	(A	and	B)	Different	letters	indicate	significant	differences	
between	conditions	within	each	strain	at	p<0.05.	(C	and	D)	Flow	cytometry	histogram	profiles	as	
expressed	as	the	number	of	events	in	VIN	7	(C)	and	Cz4	(D)	with	MEL	(5	µM)	or	ascorbic	acid	(ASC,	

25µM)	and	with	2mM	of	H2O2.	
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The	results	showed	that	cells	that	had	been	exposed	to	oxidative	stress	(2	mM	H2O2)	

exhibited	an	 increase	 in	 the	 total	ROS.	However,	 the	ROS	accumulation	was	species-

dependent,	with	M.	pulcherrima,	S.	bacillaris	and	T.	delbrueckii	exhibiting	 the	 lowest	

levels	of	endogenous	ROS	(Figure	1A).	By	contrast,	the	Saccharomyces	and	H.	uvarum	

strains	presented	the	highest	levels	of	ROS	(Figure	1B).	For	the	S.	cerevisiae	strains,	clear	

differences	 were	 observed	 between	 the	 wine	 strains	 and	 laboratory	 and	 animal	

nutrition	strains,	with	the	wine	strains	exhibiting	the	lower	levels	of	endogenous	ROS.	

The	antioxidant	effects	of	MEL	were	very	similar	 to	 those	of	ascorbic	acid	 for	all	 the	

investigated	 strains.	 MpF	 was	 the	 only	 exception	 where	 no	 statistically	 significant	

protective	 effect	 was	 seen.	 However,	 there	 were	 few	 cases	 in	 which	 none	 of	 the	

antioxidants	 had	 any	 protective	 effects	 (S.	 cerevisiae	 strains	 SC20	 and	 SB20	 and	 S.	

bacillaris	Cz11	(Figure	1)).	

3.2.	Lipid	peroxidation		

The	effect	of	MEL	on	oxidative	damage	in	the	membranes	was	evaluated	in	all	the	yeasts	

by	measuring	the	lipid	peroxides	in	the	TBA	derivative	form	(Figure	2A).	Most	strains	

studied	 here	 suffered	 from	 a	 significant	 increase	 in	 lipid	 peroxidation	 after	 stress	

exposure,	with	the	Mpp	strain	being	the	only	one	in	which	its	lipid	peroxidation	was	not	

triggered	by	H2O2.	In	fact,	the	lipid	peroxidation	results	were	positively	correlated	with	

ROS	accumulation	(Figure	2B,	R2=0.85863).	Thus,	the	M.	pulcherrima,	S.	bacillaris	and	T.	

delbrueckii	 strains,	which	showed	 lower	ROS	accumulation,	also	exhibited	 lower	 lipid	

peroxidation	and	vice	versa.	Strains	with	higher	ROS	accumulation	showed	higher	lipid	

peroxidation	 (Figure	 2B).	 The	 positive	 effect	 of	 MEL	 supplementation	 was	 clearly	

observed	under	stress	conditions	(Figure	2A,	MEL	H2O2),	in	which	MEL	seems	to	protect	

Saccharomyces,	T.	delbrueckii	and	H.	uvarum	cells	against	H2O2	damage	by	decreasing	

lipid	peroxidation.	In	M.	pulcherrima	and	S.	bacillaris,	no	MEL	effect	was	observed	on	

lipid	 peroxidation.	 However,	 no	 significant	 differences	 were	 observed	 in	 the	 lipid	

peroxidation	between	unstressed	cells	with	or	without	MEL,	although	in	some	strains,	

there	was	an	increasing	trend	in	lipid	peroxidation	in	the	presence	of	MEL	(Figure	2A	

and	Table	S1,	Control	and	MEL).	
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Figure	2.	(A)	Lipid	peroxidation	in	unstressed	and	stressed	yeast	cells	with	2	mM	of	H2O2,	growing	with	and	without	5	µM	melatonin	(MEL).	The	strains	analyzed	here	(n=3	
of	each	strain)	were	S.	cerevisiae	(BY4742,	BY4741,	Sigma	1278b,	QA23,	VIN	7,	SC20,	SB20	and	Uvaferm	HPS),	T.	delbrueckii	(TdB	and	Tdp),	M.	pulcherrima	(MpF	and	Mpp),	

C.	zemplinina	(Cz4	and	Cz11)	and	H.	uvarum	(Hu4	and	Hu35).	Error	bars	represent	±	SD	of	n=3	by	ANOVA.	Different	letters	indicate	significant	differences	between	
conditions	within	each	strain,	p<0.05.	(B)	The	correlation	between	ROS	accumulation	(MFI,	Figure	1)	and	lipid	peroxidation	(TBARS,	Table	S1)	in	the	sixteen	strains	(n=3	of	

each	strain)	after	stress	exposure	with	H2O2	(2	mM).	
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3.3.	Catalase	activity		

To	further	study	the	role	of	MEL	in	yeasts,	the	effect	of	its	supplementation	(5	µM	MEL)	

on	catalase	activity	was	evaluated	in	unstressed	and	stressed	cells	(Figure	3).	The	control	

condition	(without	stress	and	without	melatonin)	for	non-conventional	yeasts	showed	

higher	catalase	activity	than	did	the	Saccharomyces	species	(Table	S1).	When	MEL	was	

added	in	the	absence	of	stress,	the	catalase	activity	of	Saccharomyces,	T.	delbrueckii	and	

H.	uvarum	slightly	increased	(Figure	3	and	table	S1).	However,	when	cells	were	exposed	

to	H2O2,	the	catalase	activity	clearly	increased	in	all	the	strains	except	for	Mpp	and	S.	

bacillaris	(Figure	3).	However,	this	activity	was	significantly	reduced	when	the	cells	had	

been	grown	 in	 the	presence	of	MEL	before	 the	stress	was	applied	 (Table	S1).	Under	

these	stress	conditions,	no	numeric	correlation	was	found	between	the	catalase	activity	

and	ROS	accumulation	or	TBARS	assay	(data	not	shown).	

	

Figure	3.	Catalase	activity	in	unstressed	and	stressed	yeast	cells	with	2	mM	of	H2O2,	growing	with	and	

without	5	µM	of	melatonin	(MEL).	The	strains	used	here	were	as	follows:	S.	cerevisiae	(BY4742,	BY4741,	
Sigma	1278b,	QA23,	VIN	7,	SC20,	SB20	and	Uvaferm	HPS),	T.	delbrueckii	(TdB	and	Tdp),	M.	pulcherrima	
(MpF	and	Mpp),	C.	zemplinina	(Cz4	and	Cz11)	and	H.	uvarum	(Hu4	and	Hu35).	The	error	bars	represent	±	
SD	of	n=3	by	ANOVA.	Different	letters	indicate	significant	differences	between	conditions	within	each	

strain,	p<0.05.	

	

3.4.	Analysis	of	peroxisomes	proliferation		

A	western	blot	analysis	using	the	direct	antibody	against	the	multifunctional	b-oxidation	

protein	 from	the	peroxisomal	membranes	 (Fox1)	was	performed	with	QA23	and	TdB	

homogenates,	with	and	without	stress	exposure,	and	in	the	presence	or	absence	of	MEL.	

As	shown	in	Figure	4A	and	B,	the	enrichment	of	Fox	1p	was	higher	in	T.	delbrueckii	than	

in	 S.	 cerevisiae	 under	 both	 stressed	 and	 unstressed	 conditions.	 Under	 the	 control	
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condition,	Fox1p	was	undetectable	 in	S.	cerevisiae,	but	 its	detection	 increased	 in	 the	

presence	 of	 H2O2.	 Instead,	 T.	 delbrueckii	 showed	 a	 high	 number	 of	 peroxisomes	

independent	of	stress	exposure.	MEL	induced	the	proliferation	of	peroxisomes	in	the	

absence	of	stress,	especially	 in	S.	cerevisiae.	Under	stress	conditions,	MEL	seemed	to	

decrease	the	peroxisomes	accumulation	slightly	in	both	species.	

	

	

	

	

	

	

	

	

	

Figure	4.	Western	blot	analysis	of	homogenates	analyzed	with	an	antibody	against	peroxisome	marker	

Fox1p	using	antibody	GDPDH	antibody	as	the	loaded	protein	control.	(A)	Isolated	peroxisomes	from	S.	
cerevisiae	were	used	as	the	positive	control	(1).	Homogenates	from	S.	cerevisiae	QA23	(2-5)	and	T.	

delbrueckii	BIODIVAÒ	(6-9)	in	cells	without	treatment	(Control:	2	and	6),	cells	without	stress	and	5µM	of	

melatonin	(MEL,	3	and	7),	cells	with	2	mM	H2O2	(4	and	8)	and	cells	with	2	mM	H2O2	and	5µM	of	MEL	(5	

and	9).	(B)	Fox1p/GADPH	quantification	from	the	bands	identified	in	Figure	4A	were	normalized	to	the	

positive	control.	

	

4.	DISCUSSION	

The	role	of	MEL	in	cells	has	been	extensively	studied	in	humans	and	other	organisms	

(Hardeland	&	Poeggeler,	2003;	Tan	et	al.,	2015),	and	its	antioxidant	capacity	is	one	of	

the	most	important	biological	activities	described	to	date.	S.	cerevisiae	synthetizes	MEL	

from	 tryptophan	 during	 alcoholic	 fermentation	 (Mas	 et	 al.,	 2014),	 but	 very	 little	

information	 is	 available	 on	 MEL	 biosynthesis	 and	 its	 bioactive	 functions	 in	 yeast.	

Recently,	we	reported	that	MEL	is	able	to	act	as	an	antioxidant	compound	in	a	wine	S.	

cerevisiae	 strain	 (Vázquez	 et	 al.,	 2017);	 however,	 its	 antioxidant	 role	 in	 other	
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Saccharomyces	 strains	 and	 other	 non-conventional	 yeast	 species	 is	 still	 unknown.	

Therefore,	sixteen	strains	from	six	different	yeast	species	were	used	to	evaluate	if	the	

protective	 effect	 of	 MEL	 against	 oxidative	 stress	 is	 provided	 due	 to	 an	 intra	 or	

interspecific	response.		

As	expected,	ROS	formation	positively	correlated	with	lipid	peroxidation.	Exposure	to	

oxidative	 stress	 caused	 an	 increase	 in	 intracellular	 ROS	 that	 resulted	 in	 a	 loss	 of	

membrane	integrity	due	to	the	peroxidation	of	unsaturated	fatty	acids	by	ROS	because	

the	 polyunsaturated	 fatty	 acids	 are	more	 prone	 to	 oxidation	 than	monounsaturated	

fatty	acids	(Ayala	et	al.,	2014;	Johansson	et	al.,	2016).	However,	the	M.	pulcherrima,	T.	

delbrueckii	and	S.	bacillaris	species,	which	include	polyunsaturated	fatty	acids	as	native	

constituent	in	their	biological	membranes,	have	exhibited	higher	resistance	to	oxidative	

stress	 (Rozès	 et	 al.,	 1992)	 together	 with	 lower	 ROS	 formation	 and	 lower	 lipid	

peroxidation.	Cipak	et	al.,	(2008)	reported	that	even	if	a	PUFA-producing	S.	cerevisiae	

yeast	 was	 initially	 more	 sensitive	 to	 oxidative	 stress	 than	 the	 wild-type	 strain,	 this	

transgenic	strain	became	more	resistant	to	H2O2	after	some	time	of	cultivation	time	had	

passed,	indicating	that	there	was	an	adaptation	to	the	endogenous	oxidative	stress	due	

to	the	presence	of	PUFAs.	The	authors	hypothesized	that	the	presence	of	those	PUFAs	

during	aerobic	growth	generated	low	but	significant	levels	of	lipid	peroxidation	products	

(specifically	4-hydroxynonenal,	or	HNE),	even	in	the	absence	of	exogenous	stress,	which	

can	act	as	a	signaling	molecule	to	activate	the	stress	response	and	prepare	the	cells	for	

subsequent	stresses	(Chen	et	al.,	2006;	Cipak	et	al.,	2008).	At	sublethal	concentrations,	

the	 accumulation	 of	 lipid	 peroxidation	 products	 stimulates	 the	 defense	 network,	

triggering	 the	 early	 response	 enzymes	 (antioxidative	 and	 detoxifying	 enzymes)	 and	

induces	an	adaptive	response	to	cope	with	the	forthcoming	oxidative	stress	(Chen	et	al.,	

2006).	A	similar	stress	response	mechanism	might	explain	the	higher	resistance	of	these	

yeasts	species	of	our	study	that	characteristically	contained	membranes	rich	in	PUFAs.		

The	results	obtained	here	show	that	under	unfavorable	conditions	that	affect	the	redox	

balance,	Saccharomyces,	T.	delbrueckii	and	H.	uvarum	 clearly	 take	advantage	of	MEL	

supplementation	in	the	growth	medium,	reducing	the	toxic	effects	of	H2O2	(decreasing	

the	 ROS	 levels	 and	 lipid	 peroxidation).	 These	 results	 are	 in	 accordance	with	 several	

studies	in	humans	(Taysi	et	al.,	2003;	Tesoriere	et	al.,	1999;	Ündeğer	et	al.,	2004)	and	
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with	our	previous	studies	with	a	wine	S.	cerevisiae	strain	(Vázquez	et	al.,	2017)	in	which	

the	protective	action	of	MEL	might	be	attributed	to	its	ability	to	scavenge	ROS	particles	

and	consequently	prevent	cellular	damage.	MEL	 is	able	to	act	as	a	direct	 free	radical	

scavenger	and	as	an	indirect	antioxidant,	detoxifying	for	numerous	ROS	including	H2O2,	

hydroxyl	 radicals	 (
·
OH),	 peroxyl	 radicals	 (ROO

·
),	 singlet	 oxygens	 (

1
O2)	 and	 also	 RNS	

(Romero	et	al.,	2014).		

Catalases	are	clearly	important	for	proper	resistance	toward	H2O2.	However,	the	role	of	

catalases	 enzymes	 in	 yeasts	 is	 not	 fully	 understood.	 Catalase	 A	 is	 located	 in	 the	

peroxisome	and	is	primarily	responsible	for	detoxifying	H2O2	formed	by	acyl-CoA	oxidase	

during	b-oxidation,	whereas	the	physiological	role	of	the	cytosolic	catalase	T	is	less	clear.	

However,	the	expression	of	the	CTT1	gene,	which	encodes	this	enzyme,	is	regulated	by	

oxidative	and	osmotic	 stress	 (Jamieson,	1998;	Krantz	et	al.,	 2004).	 The	process	of	b-

oxidation	 is	 exclusively	 housed	 by	 peroxisomes	 in	 yeast.	 Here,	 peroxisomal	 oxidases	

such	 as	 Pox1p/Fox1p	 pass	 electrons	 directly	 to	 oxygen	 to	 generate	 H2O2,	 which	 is	

decomposed	 into	 water	 and	 oxygen	 by	 catalase	 A	 with	 the	 concomitant	 release	 of	

energy	as	heat.	b-oxidation	per	se	does	not	depend	on	a	functional	peroxisomal	catalase		

(Hiltunen	et	al.,	2003).	

Non-conventional	yeasts	showed	slightly	higher	catalase	activity	 than	Saccharomyces	

strains	 under	 the	 control	 condition	 (without	 stress	 or	 MEL).	 Cipak	 et	 al.,	 (2008)	

uncovered	related	PUFA	production	with	an	increase	in	the	catalase	activity,	pinpointing	

cytosolic	 catalase	 T	 as	 essential	 for	 the	 survival	 of	 cells	 against	 oxidative	 stress,	 and	

peroxisomal	 catalase	A	was	 important	 in	 adaptating	 to	 this	 stress.	 Therefore,	 higher		

catalase	activity	in	non-Saccharomyces	strains	prior	to	stress	occurs	can	also	be	induced	

as	a	 response	 to	 the	presence	of	PUFA	 in	 the	membrane	composition,	 resulting	 in	a	

faster	adaptation	and	a	better	 tolerance	 to	 the	 stress.	Although	 the	catalase	activity	

increased	in	the	presence	of	oxidative	stress	with	H2O2,	no	direct	correlation	between	

catalase	activity	and	ROS	or	lipid	peroxidation	was	observed	in	our	results,	suggesting	

that	 catalase,	 which	 is	 as	 a	 primary	 enzymatic	 defense,	 is	 quickly	 activated	 in	 the	

presence	 of	 H2O2	 with	 the	 aim	 of	 avoiding	 cellular	 damage	 and	 neutralizing	 ROS.	

Furthermore	this	finding	could	indicate	that	other	antioxidant	primary	defenses	such	as	

superoxide	dismutase	and	glutathione	peroxidase	(not	determined	in	this	study),	which	
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rapidly	 sense	 and	 respond	 to	 oxidative	 stress,	 may	 also	 be	 contributing	 to	 the	

maintenance	of	the	ROS	concentrations	at	a	basal	 level	(Costa	and	Moradas-Ferreira,	

2001;	Jamieson,	1998;	Moradas-Ferreira	and	Costa,	2013).		

Moreover,	MEL	supplementation	increased	their	catalase	activity	in	the	Saccharomyces,	

T.	delbrueckii	and	H.	uvarum	 strains.	Together	with	our	previous	 results	 in	 the	QA23	

strain	(Vázquez	et	al.,	2017)	in	which	we	also	observed	that	MEL	slightly	increased	the	

ROS	amount	as	well	as	the	mRNA	levels	of	CTT1	and	CTA1	(genes	enconding	catalase	T	

and	 catalase	 A,	 respectively)	 and	 other	 enzymes	 involved	 in	 primary	 defense,	 these	

current	results	seem	to	confirm	the	role	of	MEL	as	a	prooxidant	that	prepares	the	cells	

to	better	endure	subsequent	stress.	As	expected,	the	catalase	activity	was	even	higher	

in	cells	exposed	to	H2O2.	When	cells	exposed	to	H2O2	were	pretreated	with	MEL	catalase	

activity	significantly	decreased.	Similar	results	were	obtained	by	Saffi	et	al.,	(2006),	but	

by	 using	 L-ascorbic	 acid	 as	 an	 antioxidant	 and	 paraquat	 as	 an	 oxidative	 agent.	 The	

authors	hypothesized	that	the	reduced	catalase	activity	caused	by	the	presence	of	L-

ascorbic	 acid	 could	 indicate	 that	 L-ascorbic	 acid	 has	 sequestered	 part	 of	 the	 ROS	

generated	by	paraquat,	thereby	reducing	the	need	for	catalase	biosynthesis.	Therefore,	

the	presence	of	antioxidant	compounds	such	as	MEL	would	reduce	the	amount	of	ROS	

when	an	oxidative	stress	is	applied	and	would	modulate	the	catalase	levels	in	yeast	cells.	

Peroxisomes	play	important	roles	in	yeast	metabolism,	mostly	in	the	β-oxidation	of	fatty	

acids	 and	 in	 the	 degradation	 of	 toxic	 hydrogen	 peroxide	 via	 catalase	 and	 other	

antioxidant	enzymes	(Hiltunen	et	al.,	2003;	Schrader	and	Fahimi,	2006).	The	amount	of	

peroxisomes	 in	 the	 cell	 (proliferation	 or	 degradation)	 is	 modulated	 in	 response	 to	

nutritional	 and	 environmental	 stimuli.	 Our	 results	 showed	 higher	 peroxisome	

proliferation	in	cells	under	stress	coinciding	with	higher	catalase	activities,	indicating	a	

direct	relationship	between	both	parameters.	In	fact,	the	responses	to	oxidative	stress	

in	 S.	 cerevisiae	 seem	 to	 be	 co-regulated,	 similar	 to	 the	 increased	 ROS	 and	 lipid	

peroxidation,	which	activates	the	proliferation	of	peroxisomes.	The	observed	increase	

in	peroxisome	proliferation	comes	hand	in	hand	with	elevated	catalase	activitiy.	To	shed	

cellular	organelles	from	harmful	ROS,	yeasts	sequester	ROS	in	peroxisomes,	an	organelle	

specialized	 and	 perfectly	 enzymatically	 equipped	 for	 detoxification	 of	 harmful	

molecules	such	as	H2O2.	In	fact,	peroxisomes	are	considered	a	source	of	oxidative	stress	
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due	to	the	generation	of	ROS	in	its	respiratory	pathway.	However,	peroxisomes	can	also	

respond	 to	 oxidative	 stress	 and	 ROS	 when	 they	 are	 generated	 at	 other	 intra-	 or	

extracellular	 locations,	 protecting	 the	 cell	 against	 oxidative	 damage	 (Schrader	 and	

Fahimi,	 2006).	 Higher	 amounts	 of	 peroxisomes	 were	 observed	 in	 the	 TdB	 strain	

(together	with	higher	amounts	of	catalase	activity	and	lower	ROS	levels)	in	comparison	

to	QA23.	Although	several	authors	have	described	T.	delbrueckii	as	Crabtree-positive,	its	

respiratory	metabolism	makes	greater	contribution	to	the	overall	metabolism	than	in	

Saccharomyces	 (Alves-Araújo	 et	 al.,	 2007;	 Merico	 et	 al.,	 2007).	 Moreover,	 genes	

encoding	for	peroxisomal	b-oxidation	in	S.	cerevisiae	are	repressed	by	glucose,	even	in	

the	presence	of	both	oleate	and	oxygen,	which	are	two	 inducers	of	 the	peroxisomes	

proliferation	(Hiltunen	et	al.,	2003;	Schrader	and	Fahimi,	2006).	Therefore,	this	higher	

peroxisomal	activity	in	the	TdB	strain,	even	before	stress,	together	with	the	lower	levels	

of	ROS,	indicates	that	T.	delbruekii	(TdB	strain)	could	have	established	a	sophisticated	

strategy	 to	maintain	an	equilibrium	between	 the	production	and	 scavenging	of	ROS.	

Peroxisomes	proliferation	was	induced	by	MEL,	even	without	stress	and	primarily	in	S.	

cerevisiae	(QA23	strain).	Those	results	suggest	a	possible	role	for		MEL	as	a	pro-oxidant	

because	it	seems	capable	to	prepare	the	cells	for	better	enduring	later	oxidative	stress,	

as	observed	by	Vázquez	et	al.,	(2017).		

Our	results	indicate	that	MEL	presents	antioxidant	properties	against	hydrogen	peroxide	

stress	in	all	the	studied	yeasts.	To	the	best	of	our	knowledge,	the	antioxidant	effect	of	

MEL	 in	 non-Saccharomyces	 yeasts	 was	 not	 previously	 investigated.	 Furthermore,	 in	

terms	of	antioxidant	properties,	MEL	is	comparable	to	vitamin	C	(Reiter	et	al.,	2007),	

and	its	effect	was	even	higher	under	our	conditions,	because	similar	results	under	ROS	

reduction	but	at	a	lower	MEL	concentration.	

5.	CONCLUSIONS	

In	conclusion,	the	present	results	provide	a	significant	advance	in	our	understanding	of	

the	 in	 vivo	 antioxidant	 activity	 of	 MEL	 in	 Saccharomyces	 and	 non-Saccharomyces	

species.	MEL	 can	 serve	 to	mitigate	oxidative	 stress	 and	 reduce	oxidative	damage	by	

leading	 to	 a	 decrease	 in	 the	 intracellular	 ROS	 content	 and	 TBARS	 levels	 under	

unfavorable	 conditions.	 Furthermore,	MEL	 previously	 activated	 the	 catalase	 activity,	

reducing	the	need	for	its	biosynthesis	against	future	oxidative	redox	changes.	
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Appendix	A.	Supplementary	data	

Supplementary	Table	1.	Catalase	activity	and	lipid	peroxidation	(TBARS)	in	unstressed	and	stressed	yeast	cells	with	2	mM	of	H2O2,	growing	with	and	without	5	µM	of	melatonin	

(MEL).	The	strains	used	here	were	as	follows:	S.	cerevisiae	 (BY4742,	BY4741,	Sigma	1278b,	QA23,	VIN	7,	SC20,	SB20	and	Uvaferm	HPS),	T.	delbrueckii	 (TdB	and	Tdp),	M.	
pulcherrima	 (MpF	and	Mpp),	C.	 zemplinina	 (Cz4	and	Cz11)	and	H.	uvarum	 (Hu4	and	Hu35).	Different	 letters	 in	 superscripts	 indicate	 significant	differences	between	 the	

conditions,	p<0.05.	

	

	

 Catalase (U catalase/ mg protein) TBARS (nmol MDA/ mg protein) 

 Control MEL MEL H2O2 H2O2 Control MEL MEL H2O2 H2O2 

BY4742 69.86 ± 4.71a 81.93 ± 4.18b 103.91 ± 2.18c 153.02 ± 1.25d 1.35 ± 0.01a 1.40 ± 0.01b 1.93 ± 0.12c 2.32 ± 0.07d 

BY4741 80.67 ± 1.11a 95.42 ± 1.74b 110.97 ± 8.46c 159.28 ± 1.68d 1.15 ± 0.05a 1.25 ± 0.05a 1.98 ± 0.07b 2.23 ± 0.12c 

Sigma 1278b 80.95 ± 1.79a 97.40 ± 2.71b 113.34 ± 8.93c 137.40 ± 6.59d 1.21 ± 0.05a 1.33 ± 0.08a 1.56 ± 0.07b 1.85 ± 0.09c 

QA23 53.18 ± 1.01a 60.83 ± 0.86b 72.12 ± 5.87c 88.17 ± 5.38d 0.71 ± 0.07a 0.87 ± 0.11a 1.14 ± 0.11b 1.34 ± 0.04c 

VIN 7 64.02 ± 5.03a 78.32 ± 6.67b 101.90 ± 6.37c 134.38 ± 8.37d 1.08 ± 0.08a 1.19 ± 0.02b 1.62 ± 0.10c 1.97 ± 0.06d 

Uvaferm HPS 52.16 ± 1.43a 59.74 ± 0.75b 78.75 ± 8.00c 91.94 ± 2.06d 1.05 ± 0.08a 1.01 ± 0.06a 1.22 ± 0.05b 1.41 ± 0.11c 

SC20 73.82 ± 4.93a 82.32 ± 2.60b 89.08 ± 6.32b 114.87 ± 8.90c 0.98 ± 0.07a 1.12 ± 0.06a 1.40 ± 0.05b 1.87 ± 0.15c 

SB20 73.20 ± 4.22a 82.42 ± 2.55b 88.37 ± 1.80 c 100.58 ± 4.60d 1.11 ± 0.04a 1.14 ± 0.07a 1.58 ± 0.10b 1.83 ± 0.12c 

TdB 89.77 ± 6.54a 103.69 ± 1.56b 168.62 ± 4.17c 184.35 ± 3.43d 0.59 ± 0.05a 0.60 ± 0.06a 0.78 ± 0.07b 1.06 ± 0.10c 

Tdp 96.30 ± 9.99a 115.18 ± 4.79b 140.94 ± 7.32c 171.22 ± 17.13d 0.56 ± 0.05a 0.64 ± 0.05a 0.78 ± 0.04b 1.09 ± 0.10c 

MpF 92.56 ± 6.47a 99.48 ± 3.73a 143.26 ± 8.86b 175.67 ± 7.02c 0.47 ± 0.09a 0.48 ± 0.06a 0.67 ± 0.03b 0.77 ± 0.07b 

Mpp 134.51 ± 10.91a 142.54 ± 6.34a 146.80 ± 7.13a 150.70 ± 1.93a,b 0.46 ± 0.10a 0.53 ± 0.08a  0.56 ± 0.12a 0.56 ± 0.08a 

Cz4 90.33 ± 9.93a 91.78 ± 9.71a 82.46 ± 1.78a 94.64 ± 18.14a 0.42 ± 0.03a 0.47 ± 0.02a 0.58 ± 0.06b 0.62 ± 0.06b 

Cz11 88.09 ± 7.00a 92.42 ± 4.99a 91.97 ± 2.96a 96.48 ± 1.16a 0.50 ± 0.04a 0.52 ± 0.08a 0.74 ± 0.13b 0.79 ± 0.06b 

Hu4 88.80 ± 5.93a 112.16 ± 6.17b 143.85 ± 10.98c 171.55 ± 3.75d 0.91 ± 0.09a 0.94 ± 0.03a 1.22 ± 0.05b 1.42 ± 0.07c 

Hu35 93.71 ± 1.28a 102.29 ± 2.88b 155.49 ± 5.32c 183.52 ± 10.27d 1.02 ± 0.06a 0.92 ± 0.09a 1.33 ± 0.07b 1.56 ± 0.05c 
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Abstract	

Melatonin	 (N-acetyl-5-methoxytryptamine)	 is	 a	 ubiquitous	 indolamine	 that	 plays	

important	 roles	 in	 various	 aspects	 of	 biological	 processes	 in	 mammals.	 Antioxidant	

properties	have	been	determined	to	be	a	possible	role	of	melatonin	in	Saccharomyces	

cerevisiae,	and	it	acts	by	modulating	some	of	the	genes	involved	in	endogenous	defenses	

systems.	Thus,	melatonin	might	be	involved	in	multiple	processes	in	yeast	that	affect	on	

genome-wide	 gene	 expression.	 The	 aim	 of	 this	 study	 was	 to	 unravel	 the	 role	 of	

melatonin	at	 the	 transcriptional	 level	 in	S.	cerevisiae	 in	 the	presence	and	absence	of	

oxidative	 stress.	We	 found	 that	 exogenous	melatonin	was	 able	 to	 cross	 cellular	 and	

subcellular	membranes	at	nanomolar	concentrations	and	modulate	the	expression	of	

genes	 related	 to	stress	 responses	 to	cadmium	and	other	metal	 ions.	However,	when	

cells	 were	 subjected	 to	 oxidative	 stress	 induced	 by	 H2O2,	 777	 genes	 that	 were	

differentially	 expressed	 in	 response	 to	 	melatonin	were	 identified	 by	 transcriptomic	

analysis.	 Melatonin	 conferred	 antioxidant	 and	 oxidoreductase	 activity	 to	 cells;	

furthermore,	 several	 pathways	 were	 markedly	 affected	 by	 melatonin	 treatment,	

indicating	that	cells	experience	increased	stress	tolerance	in	the	presence	of	melatonin.	
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1.	INTRODUCTION	

Melatonin	 (N-acetyl-5-methoxytryptamine)	 is	 a	 versatile	 indolamine	 that	 is	 better	

known	as	a	neurohormone	in	vertebrates.	Since	it	was	discovered	in	the	bovine	pineal	

gland	(Lerner	et	al.,	1958),	it	has	been	found	in	most	living	organisms	(Hardeland	and	

Poeggeler,	2003).	In	humans,	melatonin	has	numerous	physiological	functions,	such	as	

regulating	circadian	rhythms	and	synchronizing	the	reproductive	cycle,	and	it	has	anti-

ageing,	antioxidant	and	anti-inflammatory	activities.	It	can	even	modulate	a	variety	of	

neural,	endocrine	and	immune	functions	(Eghbal	et	al.,	2016;	Romero	et	al.,	2014).	The	

ways	 in	 which	melatonin	 acts	 as	 an	 antioxidant	 in	mammals	 have	 been	 extensively	

studied	(Reiter	et	al.,	2016;	Zhang	and	Zhang,	2014).	Thus,	melatonin	can	act	as	a	direct	

scavenger	to	detoxify	reactive	oxygen	species	(ROS)	and	other	free	radicals,	but	it	can	

also	 act	 indirectly	by	 activating	 antioxidant	 enzymes,	 increasing	 the	efficiency	of	 the	

mitochondrial	 electron	 transport	 chain	 and	 interacting	 synergistically	 with	 other	

antioxidants	(Antolín	et	al.,	1996;	León	et	al.,	2005;	Reiter	et	al.,	2000;	Rodriguez	et	al.,	

2004).		

Even	 since	 Sprenger	 et	 al.,	 1999	 related	 	 melatonin	 production	 to	 Saccharomyces	

cerevisiae,	several	studies	have	reported	on	the	ability	of	yeasts	to	synthetize	melatonin	

(Rodriguez-Naranjo	et	al.,	2012;	Vigentini	et	al.,	2015).	Melatonin	biosynthesis	in	yeasts	

is	believed	 to	have	a	 similar	 route	 relative	 to	 that	described	 in	vertebrates,	 in	which	

melatonin	is	synthesized	using	a	four-steps	pathway	from	its	precursor,	tryptophan	(Mas	

et	 al.,	 2014).	However,	 the	 role	of	melatonin	 in	 yeasts	 is	 still	 unknown.	We	 recently	

reported	that	melatonin	acts	as	an	antioxidant	molecule	in	a	wine	strain	of	S.	cerevisiae	

(Vázquez	et	al.,	2017).	Exogenously	applied	melatonin	enabled	cells	to	resist	the	stress	

generated	 by	 hydrogen	 peroxide,	 enhancing	 cell	 viability	 after	 ROS,	 decreasing	 the	

oxidized	glutathione	(GSSG)	and	increasing	the	reduced	glutathione	(GSH).	Furthermore,	

melatonin	activated	certain	genes	that	were	involved	in	the	oxidative	stress	response	

such	 as	 glutathione/glutaredoxin	 and	 thioredoxin	 and	 catalase	 and	 superoxide	

dismutase.		

S.	cerevisiae	has	a	number	of	 inducible	adaptive	stress	responses	to	oxidants	such	as	

H2O2,	superoxide	anion	and	lipid	peroxidation	products.	The	oxidative	stress	responses	
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are	regulated	at	the	transcriptional	level,	and	there	is	a	considerable	overlap	between	

them	and	the	stress	responses	associated	with	other	types	of	stresses	(general	stress	

response)	 (Costa	 and	Moradas-Ferreira,	 2001;	 Jamieson,	 1998).	 The	 oxidative	 stress	

response	 is	 thus	 not	mediated	 by	 an	 isolated	 linear	metabolic	 or	 signaling	 pathway.	

Rather,	 cells	 are	 able	 to	 reprogram	 gene	 expression	 to	 optimize	 their	 signaling	

transduction	 for	more	 efficient	 and	 effective	 adaptation,	 setting	 up	 a	 general	 stress	

response	 that	 encompasses	 a	 much	 larger	 stress	 signaling	 network	 and	 integrating	

information	from	many	pathways	(Causton	et	al.,	2001;	Thorpe	et	al.,	2004;	Zhao	et	al.,	

2015).	Consequently,	the	physiological	changes	in	yeast	by	melatonin	supplementation	

and	the	ways	in	which	yeasts	respond	to	oxidative	stress	suggest	that	melatonin	might	

be	involved	in	multiple	biological	processes	in	yeasts.		

To	 gain	 insight	 into	 the	 antioxidant	 role	 and	 regulatory	mechanism	 of	melatonin	 in	

yeasts,	we	evaluated	the	effect	of	melatonin	on	gene	transcription	after	analyzing	the	

ability	of	the	yeast	to	incorporate	exogenous	melatonin	into	the	cell.	For	this	purpose,	

we	measured	 the	 intracellular	melatonin	 and	 performed	 a	 transcriptomic	 study	 in	 a	

commercial	 wine	 yeast	 strain	 of	 S.	 cerevisiae	 in	 the	 presence	 and	 absence	 of	 both	

melatonin	and	oxidative	stress.	

2.	MATERIAL	AND	METHODS	

2.1.	Yeast	strain	and	experimental	conditions		

The	wine	yeast	QA23,	which	is	a	commercial	strain	of	S.	cerevisiae	(Lallemand,	Montreal,	

QA,	 Canada),	was	 used	 in	 this	 study.	 For	 all	 the	 experiments,	 yeast	 rehydration	was	

performed	 according	 to	 the	manufacturer’s	 instructions,	 and	 yeast	 precultures	were	

prepared	in	YPD	liquid	medium	(2%	(w/v)	glucose,	2%	(w/v)	peptone	and	1%	(w/v)	yeast	

extract	(Panreac,	Barcelona,	Spain))	and	incubated	at	28ºC	for	24	h	with	orbital	shaking	

(120	 rpm).	 The	 yeast	 cells	 were	 subsequently	 inoculated	 into	 175	 mL	 (melatonin	

detection	assay)	or	50	mL	(transcriptomic	assay)	of	YPD	broth	(initial	population	5x103	

cells/mL)	 with	 (5	 µM)	 and	 without	 melatonin	 supplementation	 (5MEL	 and	 control	

condition,	respectively),	and	grown	until	the	cells	reached	the	initial	exponential	phase	

(OD	0.5	–	0.6),	at	28ºC	with	orbital	shaking	at	120	rpm.	The	sublethal	oxidative	stress	

was	then	induced	with	2	mM	H2O2	for	1	h	(5MELH	and	H	condition,	respectively).	The	

melatonin	and	H2O2	concentrations	were	chosen	from	our	previous	study	on	the	QA23	
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strain	 (Vázquez	 et	 al.,	 2017).	 Three	 biological	 replicates	 were	 employed	 for	 each	

condition.	

2.2.	Intracellular	melatonin	quantification		

Intracellular	melatonin	was	extracted	by	adapting	the	boiling	buffered	ethanol	method	

as	 previously	 described	 by	 Gonzalez	 et	 al.,	 1997.	 In	 brief,	 a	 volume	 of	 culture	

corresponding	to	1	x	108	cells	was	sampled	before	and	after	1	h	of	stress	exposure	and	

centrifuged	at	5000	rpm	for	15	min	at	4ºC.	A	1	mL	volume	of	a	solution	containing	75%	

(v/v)	boiling	absolute	ethanol	buffered	with	0.5M-HEPES	(pH	7.5)	was	added	to	the	cell	

pellet	 (final	concentration	70	mM	HEPES).	The	mix	was	subsequently	 incubated	for	3	

min	 at	 80ºC,	 and	 the	 extract	 was	 concentrated	 by	 evaporation	 at	 45ºC	 using	 a	

SpeedBack	(Concentrator	plus,	Eppendorf,	Eppendorf	Ibérica,	Madrid,	Spain).	The	final	

intracellular	content	was	resuspended	in	1	mL	of	milliQ	water	and	centrifuged	at	5000	

rpm	for	10	min	to	remove	the	insoluble	particles.	The	melatonin	in	the	supernatants	was	

analyzed	 by	 liquid	 chromatography-mass	 spectrometry,	 as	 described	 by	 Rodriguez-

Naranjo	et	al.,	2011,	using	a	liquid	chromatograph	coupled	to	a	triple	quadrupole	mass	

spectrometer	 (Agilent	 G6410A;	 Agilent	 Technologies,	 Waldbronn,	 Germany).	

Separations	were	performed	on	a	Phenomenex	Luna	C18	column	(250	x	4.6	mm,	5	µM).	

Melatonin	was	identified	by	comparing	the	233/174	transition	MS	data	of	the	sample	

and	the	melatonin	standard.	In	parallel,	1	x	108	cells	were	sampled	and	dried	at	28ºC	for	

48	h	to	determine	the	dry	weights	of	the	samples.	Thus,	melatonin	was	expressed	in	

nM/mg	dry	weight.	

2.3.	RNA	isolation	and	quantification		

The	total	RNA	was	extracted	from	the	cells	without	(Control	and	5MEL	conditions)	and	

with	 (5MELH	and	H	conditions)	oxidative	stress	 (2	mM	of	H2O2).	Furthermore,	under	

these	stress	conditions,	the	culture	with	higher	melatonin	supplementation	(25	µM)	was	

added	(25MELH).	Then,	1	x	107	cells	from	each	condition	were	isolated	using	a	TrizolÒ	

Plus	RNA	Purification	Kit	from	Ambion	Life	Technologies	(Woburn,	MA,	United	States)	

as	recommended	by	the	manufacturer,	but	by	repeating	the	chloroform	step	before	the	

upper	phase	containing	the	RNA	was	transferred	to	a	fresh	RNase-free	tube	to	add	the	

ethanol	(70%	v/v).	Furthermore,	to	remove	the	DNA,	a	DNAse	(Qiagen,	Barcelona,	Spain)	

step	was	performed	at	37ºC	for	15	min	before	washing	with	wash	buffer	 II.	The	RNA	
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samples	were	quantified	by	NanoDrop	1000	TM	(Thermo	Scientific,	USA)	and	the	integrity	

was	analyzed	with	an	RNA	2100	Bioanalyzer	(Agilent	Technologies	Inc,	CA,	USA),	using	

the	RNA	6000	Nano	kit	and	 the	Plant	RNA	Nano	protocol	 in	 the	Agilent	2100	Expert	

software.		

2.4.	Microarray	analysis		

The	gene	expression	 levels	were	assessed	using	a	 Yeast	Gene	Expression	Microarray	

(8x15K	format)	containing	6256	S.	cerevisiae	probes.	Fifteen	samples	(three	biological	

replicates	of	each	condition	for	the	Control,	MEL,	5MELH,	25MELH	and	H)	were	chosen	

to	 hybridize.	 Each	 sample	 was	 labeled	 with	 Cy3	 and	 hybridized	 using	 a	 one-color	

microarray-based	exon	analysis	(Low	Input	Quick	Amp	WT	Labeling	kit	protocol	version	

2.0,	Agilent	Technologies)	according	to	the	manufacturer’s	instructions.	An	Agilent	scan	

control	in	version	A.8.5.1	software	was	used	to	scan	the	3-µm	resolution	slides	using	the	

Agilent	G2565CA	microarray	scanner	system	with	sure	scan	high	resolution	technology.	

Feature	extraction	version	12.0.1.1	software	(Agilent	Technologies)	was	used	for	data	

extraction.	

2.5.	Analysis	of	the	sterols,	fatty	acids	and	phospholipids		

The	composition	of	sterols,	fatty	acids	(FAs)	and	phospholipids	(PLs)	were	determined	

in	 stressed	 and	 unstressed	 cells,	 which	 were	 untreated	 and	 treated	 with	 5	 µM	 of	

melatonin	(Control,	MEL,	5MELH	and	H).	First,	yeast	cell	homogenates	were	obtained	

using	glass	beads	and	a	Disruptor	GenieÒ	(Scientific	Industries,	Inc.,	NY,	USA)	for	10	min	

at	4ºC.	The	total	lipids	were	extracted	from	cell	fractions	corresponding	to	1	mg,	0.5	mg	

or	3	mg	of	total	cell	protein	for	FA,	sterol	or	PL	assays,	respectively,	according	to	the	

method	by	Folch	et	al	(1957).	The	individual	sterol	composition	was	then	determined	by	

gas-liquid	chromatography-mass	spectrometry	(GC-MS)	after	the	alkaline	hydrolysis	of	

the	lipid	extracts	(Quail	and	Kelly,	1996).	The	FA	composition	was	determined	by	gas-

liquid	chromatography	(GLC)	(Rußmayer	et	al.,	2015),	and	the	PLs	were	first	separated	

by	two-dimensional	thin	layer	chromatography	(TLC)	(Athenstaedt	et	al.,	1999).	Later,	

individual	PLs	were	scraped	off	the	plate	and	quantified	by	estimating	the	amount	of	

phosphates	(Broehuyse,	1968).	Two	biological	replicates	were	used.		
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2.6.	Data	analysis		

Data	from	the	melatonin	quantification	and	lipid	content		analysis	were	subjected	to	a	

one-way	 analysis	 of	 variance	 (ANOVA)	 and	 Tukey’s	 post	 hoc	 test.	 The	 results	 were	

considered	statistically	significant	at	a	p-value	<	0.05	(XLSTAT	Software).	The	statistical	

transcriptomic	analysis	for	finding	the	significant	changes	between	the	conditions	was	

performed	 using	 Gene	 Spring	 GX	 Software	 v.	 13.1.1	 from	 Agilent	 Technologies.	 The	

signal	for	each	spot	was	normalized	at	the	75%	percentile,	and	the	moderated	T-test	

with	a	Benjamini-Hochberg	multiple	testing	correction	was	used.	Genes	with	p-values	<	

0.05	were	designated	as	being	differentially	 expressed.	Venn	diagrams	were	 created	

with	the	web	application	Genevenn	(Pirooznia	et	al.,	2007),	and	the	molecular	functions,	

biological	processes	and	cellular	components	were	determined	with	Gene	Ontology	(CC-

BY	4.0,	Carbon	et	al.	2009).	Specific	pathways	in	the	differentially	expressed	genes	were	

analyzed	with	the	KEGG	pathway	mapping	database	(Kanehisa	et	al.,	2002).	

3.	RESULTS	

3.1.	Intracellular	melatonin		

To	 evaluate	whether	 the	QA23	 strain	was	 able	 to	 incorporate	 exogenous	melatonin	

(5µM)	 into	 the	 cell,	 intracellular	 melatonin	 was	 quantified	 in	 cells	 grown	 with	 and	

without	melatonin	 supplementation,	and	with	and	without	oxidative	 stress	exposure	

(Figure	1).		

	

	

	

	

	

	

	

Figure	1.	Intracellular	melatonin	quantification	in	cells	untreated	and	treated	with	5µM	of	exogenous	
melatonin,	before	(Control	and	5MEL)	and	after	(H	and	5MELH)	being	exposed	to	oxidative	stress	with	2	

mM	of	H2O2.	
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The	 intracellular	melatonin	 amounts	 significantly	 increased	when	 the	 cells	 had	 been	

growing	with	melatonin	supplementation,	 independent	of	oxidative	stress,	 indicating	

that	S.	cerevisiae	(QA23	strain)	was	able	to	take	up	exogenous	melatonin	at	nanomolar	

concentrations.	 However,	 the	 highest	 levels	 of	 intracellular	melatonin	were	 reached	

when	oxidative	stress	was	applied	to	cells	that	were	previously	grown	in	the	presence	

of	melatonin.	

3.2.	Differential	gene	expression	profiling		

To	 obtain	 an	 overview	 of	 the	 gene	 expression	 profile	 involved	 with	 melatonin	

supplementation	in	S.	cerevisiae,	a	comparative	transcriptomic	analysis	was	performed	

between	cells	that	were	untreated	and	treated	with	melatonin	(5	µM),	with	and	without	

oxidative	stress	 (2mM	H2O2)	 (Control,	5MEL,	H	and	5MELH	conditions).	Furthermore,	

under	 oxidative	 stress,	 the	 effect	 of	 the	melatonin	 concentration	 was	 evaluated	 by	

adding	other	conditions	with	25	µM	of	melatonin	 (25MELH).	A	representation	of	 the	

changes	in	global	gene	expression	(FC	³	1,	p-value	<	0.05)	is	shown	in	Figure	2.	A	total	

of	21	genes	were	differentially	expressed	by	exogenous	melatonin	treatment,	including	

13	up	and	8	down-regulated	genes	 (Figure	2A;	5MEL-Control).	A	 total	of	4224	genes	

were	differentially	expressed	by	the	oxidative	stress	induced	with	H2O2,	including	1687	

up	 and	 2537	 down-regulated	 genes	 (Figure	 2A;	 H-Control).	 From	 those	 results,	 the	

expression	of	 1466	up	 (Figure	2B)	 and	2185	down	 (Figure	2C)-regulated	genes	were	

common	 under	 the	 stress	 condition	 (H)	 with	 exogenous	 melatonin	 (5MELH).	

Nevertheless,	melatonin	clearly	changed	the	expression	profile	of	the	cells	under	stress,	

showing	 492	 up	 and	 285	 down-regulated	 genes	 (Figure	 2A,	 5MELH	 -	 H).	 All	 these	

conditions	 showed	 four	 genes	 in	 common	 between	 them,	 and	 under	 the	 control	

conditions	(Figure	2B	and	C),	there	were	two	up-regulated	(RTS3	and	DIP5,	encoding	a	

putative	 component	 of	 protein	 phosphatase	 type	 2A,	 and	 a	 dicarboxylic	 amino	 acid	

permease,	 respectively	 (Regenberg	 et	 al.,	 1999;	 Samanta	 and	 Liang,	 2003))	 and	 two	

down-regulated	genes	(YOR338W	and	AQR1,	encoding	a	putative	protein	and	a	plasma	

membrane	transporter,	respectively	(Slattery	et	al.,	2006;	Velasco	et	al.,	2004;	)).	The	

effect	of	the	higher	melatonin	concentration	(Figure	2A,	25MELH-5MELH)	showed	40	

up-	and	42	down-regulated	genes.	
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Figure	2.	Distribution	of	differentially	expressed	genes	in	yeast	cells	grown	with	and	without	melatonin	
(5	µM	or	25	µM),	in	stressed	(2	mM	of	H2O2)	and	unstressed	conditions	(Control,	5MEL,	5MELH,	25MELH	
and	H).	(A)	The	number	of	differentially	expressed	genes	between	different	conditions	(fold	change	³1;	

p-value	<	0.05).	(B	and	C)	Venn	diagram	showing	the	number	of	genes	found	in	common	between	
comparisons	5MEL-Control,	5MELH-Control	and	H-Control	(Up-	(B)	and	down-(C)	regulated	genes)	

	

3.3.	Classification	of	differentially	expressed	genes	into	functional	categories		

A	Gene	Ontology	(GO)	enrichment	analysis	was	performed	to	study	the	transcriptional	

regulatory	mechanism	of	melatonin	 to	 analyze	which	GO	 terms	 (molecular	 function,	

biological	 process,	 and	 cellular	 component)	 were	 over-represented	 among	 all	 the	

differentially	expressed	genes	 in	the	presence	of	melatonin	or	stress.	Of	all	21	genes	

that	were	differentially	expressed	in	5MEL	with	respect	to	the	Control	condition	(Table	

1),	 both	 metallothioneins	 CUP1-1	 and	 CUP1-2,	 which	 are	 the	 cytosolic	 copper	 and	

cadmium-binding	proteins	(Fogel	and	Welch,	1982)	that	are	up-regulated	in	melatonin,	

were	significantly	representing	a	100%	of	the	total	genes	involved	in	stress	response	to	

cadmium,	copper	and	other	metal	 ions,	and	their	detoxification	(p-value	≤	1.36E-04).	
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Both	 genes	 were	 also	 involved	 in	 superoxide	 dismutase	 activity,	 and	 its	 respective	

oxidoreductase	activity	acted	on	superoxide	 radicals	as	 the	acceptor	and	antioxidant	

activity	 (p-value	 ≤	 1.23E-03).	 Furthermore,	 six	 genes	 represented	 7.36%	 of	 the	 fold	

enrichment	 for	 the	 ion	 transmembrane	 transporter	 activity	 (p-value	 4.35E-02).	 The	

genes	that	were	up-regulated	by	melatonin	were		MPC3,	DUR3	and	DIP5,	encoding	a	

subunit	of	 the	mitochondrial	 pyruvate	 carrier	 (MPC,	 Zamboni	 et	 al.,	 2012),	 a	plasma	

membrane	 transporter	 for	 both	 urea	 and	 polyamines	 (Uemura	 et	 al.,	 2007)	 and	 a	

dicarboxylic	 amino	 acid	 permease,	 which	 mediates	 the	 high-affinity	 and	 capacity	

transport	 of	 L-glutamate	 and	 L-aspartate,	 respectively	 (Regenberg	 et	 al.,	 1998).	 	 By	

contrast,	 melatonin	 down-regulated	AQR1,	 CTR1	 and	 PHO84.	 CTR1	 encodes	 a	 high-

affinity	copper	transporter	in	the	plasma	membrane	(Dancis	et	al.,	1994),	and	PHO84	

encodes	a	high-affinity	inorganic	phosphate	transporter	(Bun-Ya	et	al.,	1991).	

	

Table	1.	Genes	differentially	expressed	(fold	change	(FC)	³1;	p-value	<	0.05)	by	the	presence	of	5	µM	of	
melatonin	(5MEL)	respect	Control	condition.		

Gene	standard	name	 Name	description	 FC	 p-value	

PHO84	 Phosphate	transporter		 -2.34	 1.03E-04	

CTR1	 High-affinity	Cu	transporter	 -2.11	 4.51E-05	

YOR338W	 Hypothetical	protein	 -2.08	 4.06E-05	

GPX2	 Glutathione	peroxidase		 -2.07	 9.30E-05	

YFL051C	 Hypothetical	protein	 -1.83	 4.37E-05	

NDE1	 NADH-ubiquinone	reductase	(H(+)-translocating)		 -1.67	 7.68E-05	

GUT2	 Glycerol-3-phosphate	dehydrogenase	 -1.64	 8.27E-05	

AQR1	 Plasma	membrane	transporter	 -1.56	 1.26E-04	

ATF1	 Alcohol	O-acetyltransferase	 1.65	 7.90E-05	

MPC3	 Pyruvate	transporter		 1.86	 1.16E-04	

RTS3	 Component	phosphatase	type	2A	complex	 1.88	 3.61E-05	

DIP5	 Dicarboxylic	amino	acid	permease	 1.91	 3.83E-05	

IZH4	 Protein	involved	in	zinc	ion	homeostasis	 1.96	 1.50E-04	

ISF1	 Increasing	suppression	factor	 1.96	 1.21E-04	

DUR3	 Plasma	membrane	transporter	(urea	and	polyamines)	 1.97	 1.30E-04	

CUP1-2	 Metallothionein		 2.19	 4.63E-05	

ANB1	 Translation	elongation	factor	eIF-5A	 2.24	 1.52E-05	

TIR4	 Cell	wall	mannoprotein	 2.32	 2.89E-05	

CUP1-1	 Metallothionein		 2.36	 2.04E-05	

YHR022C	 Hypothetical	protein	 2.51	 1.52E-05	

DAN1	 Cell	wall	mannoprotein	 6.14	 8.22E-07	
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The	 effect	 of	melatonin	was	 notoriously	 higher	 under	 oxidative	 stress.	 Interestingly,	

although	different	gene	expression	profiles	were	observed	under	higher	concentrations	

of	melatonin	 (Figure	 2A,	 25MELH–5MELH,	Table	 S1),	 no	 significant	 differences	were	

observed	in	molecular	functions	or	biological	processes.	The	molecular	functions	that	

were	over-represented	under	the	5MELH	condition	and	all	the	genes	involved	here	are	

listed	 in	 Table	 2.	 Of	 all	 the	 up-regulated	 genes,	 2.71%	were	 involved	 in	 antioxidant	

activity	and	11.48%	were	involved	in	oxidoreductase	activity,	with	those	two	molecular	

functions	 being	 the	 only	 ones	 over-represented	 ones	 under	 this	 condition.	 These	

percentages	were	representative	of	36.11%	and	15.63%,	respectively,	of	the	total	genes	

involved	 in	 these	 molecular	 functions	 in	 S.	 cerevisiae.	 The	 13	 genes	 involved	 in	

antioxidant	 activity	 that	 were	 transcriptionally	 induced	 by	 melatonin	 encoded	 2	

signaling	molecules	(ECM4	and	GTO1),	4	peroxidases	(DOT5,	HYR1,	GPX1	and	CTT1),	4	

oxidoreductases	 (TRX1,	 TRX2,	 GRX1	 and	 GRX2),	 both	 metallothioneins	 (CUP1-1	 and	

CUP1-2)	and	sulfiredoxin	(SRX1).	Moreover,	these	genes	were	also	included	within	the	

57	genes	involved	in	oxidoreductase	activity	(Table	2).	These	genes	have	been	described	

to	 be	 important	 against	 oxidative	 stress.	 For	 instance,	HYR1	 is	 similar	 in	 sequence,	

structure	 and	 function	 to	 the	 phospholipid	 hydroperoxide	 glutathione	 peroxidases	

(PHGPxs)	(Avery	et	al.,	2004;	Avery	and	Avery,	2001).	This	peroxidase	plays	an	important	

role	 against	 oxidative	 stress	 functioning	 as	 a	 hydroperoxide	 receptor,	 sensing	

intracellular	 hydroperoxide	 levels	 and	 transducing	 the	 redox	 signal	 to	 the	 oxidative	

stress	transcription	factor	Yap1p	(Delaunay	et	al.,	2002;	Ma	et	al.,	2007)	Furthermore,	

HYR1	 protects	 cells	 directly	 from	 peroxides	 during	 oxidative	 stress	 by	 acting	 on	

glutathione,	phospholipid	hydroperoxides	and	thioredoxins	as	substrates	(Delaunay	et	

al.,	 2002;	 Avery	 et	 al.,	 2004).	 TRX1	 and	 TRX2,	 encode	 thioredoxins	 and	 they	 are	

specialized	 in	 protecting	 cells	 against	 ROS.	 They	 are	 essential	 for	 YAP1-dependent	

resistance	to	hydroperoxides	(Gómez-Pastor	et	al.,	2012;	Herrero	et	al.,	2008;	Kuge	and	

Jones,	1994),	whereas	glutaredoxins	(GRX1	and	GRX2)	regulate	the	protein	redox	state	

by	 using	 GSH	 and	 NADPH.	 SRX1	 is	 a	 sulfiredoxin	 that	 reduces	 cysteine-sulfinic	 acid	

groups,	and	 it	 is	 formed	upon	exposure	to	oxidants	 (Biteau	et	al.,	2003;	Tkach	et	al.,	

2012).	The	methionine-S-sulfoxide	reductase	is	encoded	by	MXR1,	which	protects	iron-
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sulfur	 clusters	 from	 oxidative	 inactivation	 (Sideri	 et	 al.,	 2009).	 The	 sphinganine	 C4-

hydroxylase	encoded	by	SUR2	is	involved	in	sensitivity	to	H2O2	(Berry	et	al.,	2011).		

Among	the	down-regulated	genes,	the	over-represented	molecular	functions	were	as	

follows:	helicase	activity	(with	6.07%	of	the	genes	within	this	molecular	function	being	

down-regulated),	 organic	 cyclic	 compound	 binding	 (with	 41.14%),	 and	 binding	 (with	

58.21%)	(Table	2).	

	

Table	 2.	Molecular	 function	 enrichment	 from	Gene	 ontology	 (GO)	 analysis	 of	 differentially	 expressed	
genes	 up-	 and	 down-regulated	 (fold	 change	 ³1;	 p-value	 <	 0.05)	 among	 stressed	 cells	 in	 absence	 or	
presence	of	melatonin	(5	µM)	(5MELH	–	H).		

	

	

	

	 GO	term	molecular	function	(p-value	<0.05)	 Gene	names	(|2|	≤	FC	≥	|1|)	

U
p-
	re

gu
la
te
d	

Oxidoreductase	activity	(2.46E-04)	

YKL071W,	QCR9,	COX5A,	 EUG1,	HFD1,	GPX1,	GDH3,	AAD10,	DOT5,	 TSC13,	QCR7,	COX7,	 FDH1,	
ECM4,	THI4,	HYR1,	MXR1,	COX2,	YCR102C,	TRX1,TRX2,	DLD3,	COX1,	ETR1,	PRM4,	SER33,	FRE3,	
GRX1,	 SDH4,	GRX2,	COX8,	COQ11,	YJR096W,	 CTT1,	GAL80,	CUP1-2,	AYR1,	COX3,	HOM6,	GLT1,	
TRX1,TRX2,	 FRE6,	 TPA1,	GTO1,	 CUP1-1,	YLR456W,	 ALD3,	YKL107W,	 SUR2,	MPD1,	 COX6,	 POX1,	
YPR127W,	HBN1,	SRX1,	ALD5	

Antioxidant	activity	(5.94E-03)	 GPX1,	DOT5,	HYR1,	ECM4,	GTO1,	TRX1,	TRX2,	GRX1,	GRX2,	CTT1,	CUP1-1,	CUP1-2,	SRX1	

Do
w
n-
re
gu

la
te
d	

Helicase	activity	(1.60E-02)	

	
MSS116,	 SNF2,	 YKU80,	DHH1,	YBL113C,	DBP1,	ARP5,	YLL067C,	MPH1,	YHL050C,	DBP7,	 YRF1-8,	
YEL077C,	YRF1-7,	YRF1-6,	YRF1-5,	DBP3	
	

Binding	(2.48E-02)	

	
LAS17,	 ALT2,	 YME1,	 VTS1,	 UBX2,	 AIM10,	 SLX5,	 SEC1,	 CRN1,	 NFS1,	 TOS8,	 YGR054W,	 UTP15,	
MSS116,	 ERG11,	MRM1,	 CWC2,	 PCL8,	 RTT101,	 RRP14,	 NOG2,	 PKH1,	 INN1,	 UFO1,	 YCL001W-B,	
INP1,	EAF1,	RIO1,	CBK1,	CCM1,	SNF2,	YJR084W,	EPS1,	CMP2,	MSK1,	GPB1,	STE12,	YKU80,	POP2,	
VAC17,	MLP1,	RAD23,	UPC2,	CPS1,	SPA2,	CHS5,	YSC84,	MSL5,	RCK1,	FET5,	TEL1,	YCL001W-A,	ILV3,	
PUS7,	MLP1,	ERF2,	NRD1,	SEY1,	UBC11,	PUF4,	YLF2,	ADA2,	LSG1,	CDD1,	SRO9,	NTH1,	INO2,	RAD27,	
ELP2,	MRX1,	AFT1,	MRE11,	FKH1,	RRP6,	SCH9,	MYO1,	CAB3,	GEP3,	TRF5,	POG1,	MGA1,	SPS18,	
DHH1,	XDJ1,	PSP2,	ECM2,	MET4,	MPT5,	DBP1,	SSC1,	PEX1,	SFP1,	ATM1,	PEX8,	PKP1,	HCM1,	CAR2,	
SHS1,	MPS3,	VPS16,	ILV1,	NOP14,	MRN1,	YLL067C,	MPH1,	NPL3,	NUP2,	MDL1,	TUP1,	BDF1,	HPR1,	
PUS1,	SLT2,	CBP2,	EXO5,	YTA12,	HEM1,	YOR338W,	YHP1,	DPS1,	NTH1,	CDC20,	MAE1,	YHL050C,	
DBP7,	 STB3,	BRO1,	DUS4,	WTM2,	WHI3,	PTC5,	 SPS1,	KAR1,	 YRF1-8,	BI4,	 YEL077C,	RCL1,	CDC9,	
GZF3,	CDC11,	MUD2,	PTC3,	RRP9,	BRE5,	RSP5,	FRA1,	YBR238C,	HAP4,	HOS4,	YHM2,	CMR1,	CNA1,	
COQ1,	YRF1-7,	SMI1,	CTR9,	YRF1-6,	BIK1,	YCK3,	ETP1,	DBP3,	YRF1-5	
	

	
	
Organic	cyclic	compound	binding	(2.59E-02)	
	

	
ALT2,	YME1,	VTS1,	AIM10,	NFS1,	TOS8,	YGR054W,	UTP15,	MSS116,	ERG11,	MRM1,	CWC2,	RRP14,	
NOG2,	PKH1,	EAF1,	RIO1,	CBK1,	CCM1,	SNF2,	YJR084W,	MSK1,	STE12,	YKU80,	POP2,	MLP1,	RAD23,	
UPC2,	MSL5,	RCK1,	TEL1,	PUS7,	MLP1,	ERF2,	NRD1,	SEY1,	UBC11,	PUF4,	YLF2,	ADA2,	LSG1,	SRO9,	
NTH1,	NO2,	RAD27,	MRX1,	AFT1,	MRE11,	FKH1,	RRP6,	SCH9,	MYO1,	CAB3,	GEP3,	POG1,	MGA1,	
DHH1,	PSP2,	ECM2,	MET4,	MPT5,	DBP1,	SSC1,	PEX1,	SFP1,	ATM1,	PKP1,	HCM1,	CAR2,	SHS1,	MPS3,	
ILV1,	NOP14,	MRN1,	YLL067C,	MPH1,	NPL3,	MDL1,	BDF1,	HPR1,	PUS1,	SLT2,	CBP2,	EXO5,	YTA12,	
HEM1,	 YOR338W,	 YHP1,	 DPS1,	MAE1,	 YHL050C,	 DBP7,	 STB3,	 DUS4,	WHI3,	 SPS1,	 YRF1-8,	 BI4,	
YEL077C,	RCL1,	CDC9,	GZF3,	CDC11,	MUD2,	RRP9,	BRE5,	YBR238C,	HAP4,	YHM2,	CMR1,	YRF1-7,	
SMI1,	CTR9,	YRF1-6,	YCK3,	DBP3,	YRF1-5	
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The	 GO	 enrichment	 analysis	 indicated	 that	 several	 biological	 processes	 were	

significantly	affected	by	melatonin	treatment	under	oxidative	stress	(Figure	3,	Table	S2).	

It	 is	 important	to	highlight	that	the	most	 frequently	represented	biological	processes	

were	classified	by	up-regulated	genes	(Table	S2),	which	were	involved	in	mitochondrial	

electron	transport	(approximately	60%	of	the	genes	involved	in	this	biological	process	

were	 up-regulated),	 followed	 by	 processes	 related	 to	 cellular	 detoxification	 (>30%),	

oxidation-reduction	and	transport	by	vesicles	(approximately	15%	for	each	one)	(Figure	

3).	The	cellular	components	associated	with	up-	and	down-	regulated	melatonin	genes	

under	stress	 included	the	cell	wall	and	plasmatic	membrane,	cytoplasm	and	different	

organelles	(membrane	and	sub	compartment),	with	the	inner	mitochondrial	membrane	

protein	complex	and	the	respiratory	chain	being	the	most	representative	(Figure	4).	It	is	

important	to	highlight	that	melatonin	up-regulated	essential	genes	for	the	maintenance	

of	normal	mitochondrial	morphology	in	yeast,	such	as	TOM7,	which	is	required	for	the	

insertion	of	morphogenesis	factors	into	the	outer	membrane	(Dimmer	et	al.,	2002),	and	

ETR1,	which	is	essential	for	a	respiratory	competence	and	is	involved	in	FA	biosynthesis	

(Torkko	et	al.,	2001).	

Figure	3.	Biological	process	enrichment	from	Gene	ontology	(GO)	analysis	of	differentially	expressed	
genes	up-	(n)	and	down-	(n)	regulated	(fold	change	³1;	p-value	<	0.05)	among	stressed	cells	in	absence	
or	presence	of	melatonin	(5	µM).	Percentages	are	calculated	in	relation	to	the	total	genes	involved	in	

each	biological	process	in	S.	cerevisiae.	
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Figure	4.	Cellular	component	enrichment	from	Gene	ontology	(GO)	analysis	of	differentially	expressed	
genes	up-	(n)	and	down-	(n)	regulated	(fold	change	³1;	p-value	<	0.05)	among	stressed	cells	in	absence	
or	presence	of	melatonin	(5	µM).	Percentages	are	calculated	in	relation	to	the	total	genes	involved	in	

each	cellular	component	in	S.	cerevisiae.	

	

3.4.	Metabolic	pathways	affected	by	melatonin		

The	KEGG	database	was	used	to	understand	the	basic	mechanism	of	melatonin	in	yeast	

and	the	primary	enriched	metabolic	or	signaling	pathways.	Of	the	21	genes	(Table	1),	

whose	 expression	was	modified	when	 comparing	 5MEL	 and	Control	 conditions,	 only	

glutathione	peroxidase	(GPX2)	and	glycerol-3-phosphate	dehydrogenase	(GUT2),	both	

of	 which	 were	 down-regulated	 genes,	 were	 involved	 in	 different	 pathways.	 These	

pathways	pertained	to	arachidonic	acid	(20%)	and	glutathione	metabolism	(4.17%)	 in	

the	case	of	GPX2,	and	glycerophospholipid	metabolism	(2.70%)	in	for	GUT2.		

As	expected,	many	pathways	were	involved	in	the	cellular	response	to	oxidative	stress	

(H-Control).	Under	these	stress	conditions,	the	transcriptional	response	was	different	

depending	 on	melatonin	 supplementation.	 In	 the	 transcriptional	 response	of	 5MELH	

(compared	to	H,	777	genes	with	modified	expression),	92	enriched	pathways	involved	

in	metabolism,	genetic	information	processing,	environmental	information	processing	

and	cellular	processes	were	identified.	Most	pathways	were	represented	by	more	than	

10%	 of	 the	 total	 genes	within	 the	 pathway	 (Table	 3).	 The	 primary	 differences	were	

classified	into	the	following	different	pathways:	
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Table	 3.	 Enriched	 pathways	 from	 KEGG	 analysis	 database	 of	 genes	 differentially	 expressed	 among	
stressed	cells	 in	absence	or	presence	of	melatonin	 (5	µM)	(5MELH	–	H).	Percentages	are	calculated	 in	
relation	to	the	total	genes	involved	in	each	pathway	in	S.	cerevisiae.	

 

Pathway % of total 
genes Gene name (up-regulated) Gene name (down-regulated) 

METABOLISM    

Global and overview maps    

Carbon metabolism 13.04 ACS1, CIT2, GPM2, SDH4, EMI2, 
NQM1, CTT1, SER33, MET17, FDH1 ALT2, ILV1, MAE1, MET12 

2-Oxocarboxylic acid metabolism 11.43 CIT2, BAT1 ALT2, ILV3 

Fatty acid metabolism 18.18 ETR1, TSC13, POX1, PHS1  

Biosynthesis of amino acids 9.76 CIT2, GPM2, GLT1, NQM1, BAT1, 
SER33, HOM6, MET17, ARO7 ALT2, ILV1, ILV3 

Carbohydrate metabolism    

Glycolysis / Gluconeogenesis 10.34 ACS1, GPM2, EMI2, HFD1, ALD3 ALD5 

Citrate cycle (TCA cycle) 6.25 CIT2, SDH4  

Pentose phosphate  7.14 NQM1  

Fructose and mannose metabolism 8.70 EMI2, PMI40  

Galactose metabolism 8.33 EMI2, IMA3  

Starch and sucrose metabolism 9.75 EMI2, IMA3, GPH1 NTH1 

Amino sugar and nucleotide sugar 9.38 EMI2, PMI40, CHS1  

Inositol phosphate metabolism 15.00 STT4, PLC1 INP51 

Pyruvate metabolism 12.82 ACS1, DLD3, HFD1 ALD5, MAE1 

Glyoxylate and dicarboxylate 11.54 CIT2, CTT1, FDH1  

Propanoate 7.69 ACS1  

Energy    

Oxidative phosphorylation 23.61 

COX1, ATP8, COX2, COX3, COX5A, 
COX6, COX7, COX8, COX17, SDH4, 
QCR7, QCR9, ATP14, ATP15, ATP18, 
ATP20 

BI4 

Methane metabolism 14.29 ACS1, GPM2, SER33, FDH1  

Nitrogen metabolism 57.14 GDH3, GLT1, NCE103 YJR149W  

Sulfur metabolism 20.00 CYC7, MET14, MET17  

Lipid metabolism    

Fatty acid elongation 37.5 ETR1, TSC13, PHS1  

Fatty acid degradation 15.79 POX1, HFD1 ALD5 

Steroid biosynthesis 11.76  ERG11, ARE2 

Glycerolipid metabolism 7.69 HFD1 ALD5 

Glycerophospholipid metabolism 5.41 AYR1, CPT1  

Ether lipid metabolism 28.57 AYR1, CPT1  

Sphingolipid metabolism 7.14 SUR2  

Arachidonic acid metabolism 40.00 HYR1, GPX1  

alpha-Linolenic acid metabolism 33.33 POX1  

Biosynthesis of unsaturated fatty acids 27.27 TSC13, POX1, PHS1  

Nucleotide metabolism    

Purine metabolism 8.08 YSA1, RPB5, RPC11, DPB4, RPA12, 
MET14, RPB10 RPA34 

Pyrimidine metabolism 11.43 RPB5, RPB10, RPB11, RPB12, DPB4, 
DCD1 RPA34, CDD1 
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Pathway % of total 
genes Gene name (up-regulated) Gene name (down-regulated) 

Amino acid metabolism    

Arginine biosynthesis 11.76 GDH3 ALT2 
Alanine, aspartate and glutamate 
metabolism 10.00 GDH3, GLT1, ASP3-1 ALT2 

Glycine, serine and threonine metabolism 15.15 GPM2, SER33, HOM6 HEM1-5, ILV1 

Cysteine and methionine metabolism 12.50 BAT1, HOM6, SPE4, MET17, SAM4, 
ACS1  

Valine, leucine and isoleucine 
degradation 

 
23.08 BAT1, HFD1 ALD5 

Valine, leucine and isoleucine 
biosynthesis 25.00 BAT1 ILV1, ILV3 

Lysine biosynthesis 8.33 HOM6  

Lysine degradation 14.29 HFD1 ALD5 

Arginine and proline metabolism 19.04 SPE4, HDF1 ALD5, CAR2 

Histidine metabolism 21.42 HDF1, ALD3 ALD5 

Tyrosine metabolism 7.14 ALD3  

Phenylalanine metabolism 9.09 ALD3  

Tryptophan metabolism 17.65 CTT1, HFD1 ALD5 

Metabolism of other amino acids    

b-Alanine metabolism 30.77 SPE4, HFD1 ALD5 

Phosphonate and phosphinate 25.00 CPT1  

Cyanoamino acid 12.50 ASP3-1  

Glutathione metabolism 16.67 HYR1, GPX1, SPE4  

Glycan biosynthesis and metabolism   

N-Glycan biosynthesis 13.33 ALG14, OST4, ALG6, OST2  

Various types of N-glycan biosynthesis 13.33 ALG14, OST4, OST2 VAN1 
Glycosylphosphatidylinositol (GPI)-
anchor biosynthesis 12.00 GPI18, GPI19, GPI13  

Metabolism of cofactors and vitamins   

One carbon pool by folate 6.67  MET12 

Thiamine metabolism 21.05 THI4, THI80, THI6 NFS1 

Vitamin B6 metabolism 8.33 YPR127W  

Nicotinate and nicotinamide metabolism 5.00 PNC1  

Pantothenate and CoA biosynthesis 20.00 BAT1 ILV3, CAB3 

Lipoic acid metabolism 33.33 AIM22  

Folate biosynthesis 12.50 FOL2  

Porphyrin and chlorophyll 1 metabolism 11.76  HEM3, HEM1-5 

Metabolism of terpenoids and polyketides   

Terpenoid backbone biosynthesis 15.79 STE14, IDI1 COQ1 

GENETIC INFORMATION PROCESSING   

Transcription    

RNA polymerase 16.67 RPB5, RPC11, RPA12, RPB10 RPA34 

Basal transcription factors 6.25 TAF2 NPL3 

Spliceosome 6.33 LSM2, SSA4, BRR2, SMD1, SMD2, 
HSH155, LSM7, DIB1 

ECM2, BUD31, ISY1, MUD2, 
PRP19 

Translation    

Ribosome biogenesis in eukaryotes 10.99 POP4, POP6, POP7, FCF1, EMG1 LSG1, UTP15, NOG2, RCL1, 
RIO1, MRP4 
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Pathway % of total 
genes Gene name (up-regulated) Gene name (down-regulated) 

Ribosome 8.91 

MRPS5, MRPS5, MRPL3, RPL27B, 
RSM18, RPS27B, RPS14B, MRP17, 
RPS27A, RPS30A, RPL18B, RPS9A, 
RTC6, RPL7B, MRP2 

MRP4 

RNA transport 7.53 
POP7, POP4, POP6, GCD2, NUP133, 
RPM2 MLP1 

Aminoacyl-tRNA biosynthesis 0.89  AIM10, DPS1, MSK1 

mRNA surveillance 8.69 CFT1, SKI7 CDC55, RTS1 

Folding, sorting and degradation    

RNA degradation 14.52 LSM2, LSM7, SKI7, SKI3 DHH1, SSC1, TRF5, POP2 , 
RRP6 

Proteasome 17.14 RPN6, SEM1, RPN9, PRE4, RPN12, 
PRE9  

Protein export 4.55 SRP102  

Ubiquitin mediated proteolysis 10.02 UBC8, GRR1, NUBC12, UBC7 RSP5, CDC20, PRP19, UBC11 

Sulfur relay system 14.29  NFS1 
SNARE interactions in vesicular 
transport 15.00 SNC1, TLG2, SNC2  

Protein processing in endoplasmic 
reticulum 

16.28 
HSP26, YET3, OST4, HSP42, EUG1, 
SSA4, EMP47, SSM4, UBC7, OST2, 
MPD1 

RAD23, EPS1, UBX2 

Replication and repair    

DNA replication 12.90 RFC5, DPB4 CDC9, RAD27 

Base excision repair 16.67 DPB4 CDC9, RAD27 

Nucleotide excision repair 18.92 RFC5, DPB4, RAD26, RAD10, RAD14 CDC9, RAD23 

Mismatch repair 15.00 RFC5, PMS1 CDC9 

Homologous recombination 15.00 SEM1 TEL1, MRE11 

Non-homologous end-joining 30.00  RAD27, YKU80, MRE11 

ENVIRONMETAL INFORMATION PROCESSING   

Membrane transport    

ABC transporters 33.33 PXA1 ATM1 

Signal transduction    

MAPK signaling  10.53 CDC28, YPD1, CTT1, STT4 TUP1, MKC7, PKH1, RSP5, 
SLT2, STE12, SPA2, SLG1 

Phosphatidylinositol signaling system 9.10 STT4, PLC1 INP51 

CELLULAR PROCESSES    

Cell growth and death    

Cell cycle  7.94 CDC28, GRR1 CLN3, MRC1, TUP1, YHP1, 
SCC4, CDC20, CDC55, SLK19 

Meiosis 7.69 CDC28, HMRA1, HXT6, HXT5 CLN3, RGT2, SPS1, CDC20, 
RTS1, SLK19 

Transport and catabolism    

Autophagy  16.67 SEC17, ATG8, ATG12, ATG9, ATG31, 
MON1, TOR1, YPT7, ATG5, ATG29 

PRB1, SLT2, SCH9, VPS16 

Mitophagy 19.51 ATG8, FMC1, TOR1, VPS1 SLT2, BRE5, SLG1, YME1 

Endocytosis 12.16 SSA4, MVB12, PEP8, ARC18, YPT7, 
IST1, VPS28 RSP5, LAS17 

Phagosome 2.94 YPT7  

Peroxisome 15.79 PEX19, YAT2, POX1, CTT1, PXA1 PEX1 

ORGANISMAL SYSTEMS    

Aging    

Longevity regulating pathway - multiple 
species 19.44 SSA4, PNC1, SNF4, CTT1, TOR1, 

ATG5 SCH9 



CHAPTER	4	

	
	

179	

Carbohydrate	metabolism	

The	5MELH	and	H	conditions	significantly	differed	in	terms	of	the	genes	involved	in	the	

metabolic	 flux	 via	 enhanced	 glycolysis,	 pyruvate	 and	 TCA	 cycle	 metabolism.	 For	

exemple,	genes	such	as	ACS1,	which	encodes	acetyl-CoA	synthetase	(De	Jong-Gubbels	

et	 al.,	 1997);	 GPM2,	 which	 is	 involved	 in	 converting	 3-phophoglycerate	 into	 2-

phosphoglycerate	during	glycolysis	(Heinisch	et	al.,	1998);	DLD3	 ,	which	is	a	D-lactate	

dehydrogenase	that	reduces	the	pyruvate	to	D-lactate	(Chelstowska	et	al.,	1999);	CIT2,	

which	encodes	citrate	synthase	and	is	involved	in	the	RTG	pathway	(Liao	&	Butow	1993);	

and	SDH4	which	is	involved	in	coupling	the	oxidation	of	succinate	from	TCA	(Chapman	

et	al.,	1992),	were	up-regulated.	In	the	pyruvate	pathway,	MAE1,	which	catalyzes	the	

oxidative	 decarboxylation	 of	 malate	 to	 pyruvate,	 was	 down-regulated	 (Boles	 et	 al.,	

1998).	

Energy	metabolism		

Melatonin	primarily	enriched	the	oxidative	phosphorylation	pathway,	which	is	used	to	

reform	 ATP	 in	 mitochondria,	 with	 23%	 of	 the	 genes	 up-regulated	 under	 5MELH	

compared	to	H.	In	fact,	many	of	the	genes	that	were	up-regulated	by	melatonin	under	

oxidative	stress	were	 involved	 in	mitochondrial	processes,	namely	electron	 transport	

and	 oxidative	 phosphorylation.	 These	 genes	 were	 taking	 part	 in	 the	 succinate	

dehydrogenase	(complex	II,	SDH4),	in	cytochrome	c	reductase	(complex	III,	QCR7,	QCR9,	

and	CBP6)	and	in	cytochrome	c	oxidase	(complex	IV,	COX1,	COX2,	COX3,	COX5A,	COX6,	

COX7,	COX8,	COX17,	ATP8,	ATP14,	ATP15,	ATP18	ATP20,	and	STF2)	of	the	mitochondrial	

respiratory	chain.	

Lipid	metabolism	and	peroxisome	

These	 pathways	 were	 clearly	 modified	 by	 the	 presence	 of	 melatonin	 under	 stress	

conditions,	especially	the	genes	involved	in	arachidonic	acid	metabolism	(with	40%	of	

the	genes	in	this	pathway	being	up-regulated),	the	fatty	acid	elongation	(37.5%)	and	the	

biosynthesis	 of	 unsaturated	 fatty	 acids	 (27%),	 which	 were	 up-regulated.	 Thus,	 the	

expression	 of	 genes	 such	 as	 HYR1	 and	 GPX1	 were	 involved	 in	 the	 conversion	 of	

arachidonic	acid	into	5-HETE	(5S-hydroxy-6,8,11,14-eicosatetraenoic	acid),	POX1,	which	

encodes	 fatty-acyl	 coenzyme	 A	 oxidase	 and	 is	 involved	 in	  b-oxidation;	PXA1,	 which	

encodes	 the	 peroxisomal	 transporter;	 and	 PEX19,	which	 contributes	 to	 peroxisome	
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partitioning,	 and	 that	 were	 up-regulated	 in	 the	 presence	 of	 melatonin	 under	 stress	

conditions	(Hiltunen	et	al.,	2003).	By	contrast,	genes	 involved	 in	steroid	biosynthesis,	

such	as	ERG11,	which	encodes	lanosterol	14-alpha-demethylase	(Karst	et	al.,	1977),	and	

ARE2,	which	encodes	acyl-CoA:sterol	acyltransferase	genes	(Zweytick	et	al.,	2000),	were	

down-regulated.	 The	 isomerase	 enzyme	 encoded	 by	 IDI1	 that	 is	 involved	 in	 the	

biosynthesis	of	isoprenoids	and	the	sterol	precursor	squalene	(Chemler	et	al.,	2006)	was	

up-regulated	 by	 the	 presence	 of	 melatonin	 and	 CPT1,	 which	 is	 involved	 in	

phosphatidylcholine	biosynthesis	and	has	been	related	to	stress	tolerance	(McMaster	

and	Bell,	1994).		

Metabolism	of	cofactors	and	vitamins	

Genes	related	to	the	biosynthesis	of	thiamine	(THI4,	THI6,	and	THI80),	spermidine	(SPE4)	

and	 folate	 (FOL2)	 were	 up-regulated	 during	 their	 growth	 with	 melatonin.	 Thiamine	

possesses	antioxidative	effects,	and	its	protective	properties	seem	to	be	necessary	for	

the	effectiveness	of	 the	defense	mechanisms	 (Wolak	et	al.,	2014).	THI4	 is	 reportedly	

required	 for	 mitochondrial	 genome	 stability	 in	 response	 to	 DNA	 damaging	 agents	

(Machado	et	al.,	1997;	Chatterjee	et	al.,	2007).	One	of	the	functions	of	spermidine	is	to	

protect	cells	from	damage	caused	by	ROS	produced	by	H2O2	(Rider	et	al.,	2007;	Valdés-

Santiago	 and	 Ruiz-Herrera,	 2013).	 Folic	 acid	 has	 been	 related	 to	 sulfamethoxazole	

resistance,	regardless	of	whether	the	strains	were	folate	utilizers	or	not	 (Bayly	et	al.,	

2001).	 In	 addition,	melatonin	up-regulated	AIM22	 involved	 in	 lipoic	 acid	metabolism	

which	 confers	 resistance	 to	 oxidative	 stress	 (Schonauer	 et	 al.,	 2009).	 By	 contrast,	

melatonin	down-regulated	the	neutral	trehalase	encoded	by	NTH1,	which	degrades	the	

trehalose	 required	 for	 thermotolerance	 but	 is	 also	 related	 to	 abnormal	 nuclear	

morphology	and	cell	cycle	progression	(Niu	et	al.,	2008;	Schepers	et	al.,	2012;	Zähringer	

et	al.,	1997).		

Signaling	pathways	

Significant	transcriptional	differences	were	observed	in	the	MAP	kinases	(MAPKs)	(Table	

3).	 These	 kinases	 were	 up-regulated,	 and	 they	 included	 cyclin-dependent	 kinase,	 as	

encoded	by	CDC28,	which	is	a	regulator	of	the	mitotic	and	meiotic	cell	cycle	pathway	

(Table	3);	cytosolic	catalase	T,	encoded	by	CTT1,	with	a	role	in	H2O2	damage	protection;	

and	YPD1,	which	encoded	tyrosine	phosphatase,	which	 is	 involved	 in	high	osmolality	
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signaling.	By	contrast,	the	transcription	factor	encoded	by	STE12,	which	is	involved	in	

mating	 or	 pseudohyphal/invasive	 growth	 pathways,	 was	 down-regulated.	 Because	

CDC28	 was	 up-regulated	 and	 SLG1,	 STL2,	 SPA2	 and	 PKH1	 were	 down-regulated	 by	

melatonin,	melatonin	seems	to	favor	G2/M	delay	and	filamentation	(Starovoytova	et	al.,	

2013).	In	addition,	melatonin	down-regulated	genes	were	involved	in	nutrient	starvation	

(MKC7	 and	STE12)	 and	up-regulated	 genes	were	 involved	 in	MAPK	 signaling	 by	 high	

osmolality	and	included	YPD1	and	CTT1.		

Additionally,	 melatonin	 was	 involved	 in	 the	 phosphatidylinositol	 signaling	 pathway,	

which	 is	 connected	 to	 the	 MAPK	 pathway	 by	 phosphatidylinositol-4-kinase	 (PI4P2),	

which	is	encoded	by	STT4	and	was	up-regulated	(Table	3).	STT4	is	an	essential	gene	for	

cell	viability	(Audhya	et	al.,	2000;	Yoshida	et	al.,	1994)	and	it	catalyzes	the	synthesis	of	

PI4P2.	 Its	 activity	 is	 required	 for	 the	 maintenance	 of	 vacuole	 morphology,	 cell	 wall	

integrity	and	actin	cytoskeleton	organization	 (Audhya	et	al.,	2000),	and	 it	acts	either	

upstream	or	in	parallel	to	cell	wall	stress	signaling	(Gustin	et	al.,	1998;	Levin,	2005).		

Pathways	involved	in	replication	and	repair	for	nucleotide	excision	and	mismatch	repair	

were	also	enriched	by	melatonin	as	well	as	pathways	involved	in	yeast	transport	and	

catabolism.	The	 important	genes	 involved	 in	regulating	oxidative	stress	were,	among	

others,	 TOR1	 and	 SCH9.	 The	 protein	 kinase	 subunit	 of	 TORC1	 (which	 is	 encoded	 by	

TOR1),	was	involved	in	regulating	cell	growth,	autophagy,	and	the	cellular	response	to	

DNA,	and	the	longevity	regulation	pathways	were	down-regulated	under	both	stressed	

conditions	when	compared	to	the	control.	However,	the	expression	of	this	subunit	was	

significantly	different	between	them,	being	up-regulated	in	the	presence	of	melatonin	

compared	to	the	H	condition.	However,	the	protein	kinase	encoded	by	SCH9,	which	was	

involved	 in	 the	 TORC1	 and	 RAS-cAMP	 pathway,	 was	 clearly	 down-regulated	 with	

melatonin.	 This	 enzyme	 seems	 to	 regulate	 the	 protein	 kinase	 A	 (PKA)	 directly	 by	

phosphorylating	Bcy1,	and	therefore,	it	decreases	the	activity	of	PKA	(Zhang	et	al.,	2011).	

Moreover,	Sch9	is	proposed	to	be	the	downstream	effector	of	TORC1,	but	this	kinase	

seems	to	act	antagonistically	against	TORC1	and	to	induce	several	stress	defense	genes	

that	are	normally	repressed	by	TORC1	(Smets	et	al.,	2008).	

Under	stress	conditions,	the	increase	in	the	melatonin	concentration	(25	µM	MEL)	did	

not	modify	any	additional	pathways	relative	to	the	ones	that	were	already	affected	by	5	



CHAPTER	4	

	
 

182	

µM	MEL;	 thus,	 no	 significantly	 differences	 were	 observed	 between	 them	 (25MELH-

5MELH).	

3.5.	Physiological	changes	in	the	lipid	composition	

Because	 melatonin	 modulated	 the	 expression	 of	 several	 genes	 involved	 in	 lipid	

metabolism,	we	tested	if	these	transcriptomic	modifications	resulted	in	changes	in	the	

cell	lipid	composition,	measuring	the	sterol,	FA	and	PL	contents	of	the	yeast	cells	under	

four	conditions	(Control,	5MEL,	5MELH	and	H,	Figure	5).		

	

Figure	5.	Effect	of	melatonin	supplementation	(5	µM)	on	lipid	composition	in	cells	exposed	and	
unexposed	to	oxidative	stress	with	2	mM	of	H2O2.	(A)		Sterols.	(B)	Fatty	acids	(FA)	(C)	Phospholipids.	(D)	

ergosterol/squalene	ratio,	unsaturated	FA	/	saturated	FA	(UFA/SFA)	ratio	and	unsaturation	index	
defined	as	follows:	((%	C16:1	+	%	C18:1)	+	2	(%	C18:2)	+	3	(%	C18:3))	/100.	(E)	Medium	length	chain	of	

FA	calculated	as	follows:	mCL=	S	(%	FA	x	Nº	FA	carbons)/100.	
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In	the	absence	of	oxidative	stress,	the	melatonin	treatment	showed	lower	total	sterol	

levels	compared	to	the	control	condition	primarily	in	a	lower	ergosterol	content	(Figure	

5A),	leading	to	a	lower	ergosterol/squalene	ratio	(Figure	5D).	By	contrast,	the	opposite	

was	found	under	oxidative	stress,	with	increases	in	the	total	sterols	from	the	increased	

ergosterol,	leading	to	a	higher	ergosterol/squalene	ratio	(Figure	5A,	D).	Changes	in	the	

FA	produced	by	melatonin	were	practically	equal	independent	of	the	stress,	with	higher	

total	FA	contents	from	the	higher	oleic	and	palmitoleic	acids	contents,	both	leading	to	

higher	ratios	of	UFA/SFA	and	a	higher	percentage	of	medium	chain	lengths	(mCL)	(Figure	

5B,	D,	E).	The	only	changes	observed	in	the	PL	contents	were	in	phosphatidic	acid	(PA)	

and	cardiolipin	(CL).	The	PA	was	only	higher	in	the	absence	of	stress,	and	although	the	

cardiolipin	 decreased	 in	 the	 presence	 of	 oxidative	 stress,	 it	 was	 higher	 under	 both	

conditions	supplemented	with	melatonin	(Figure	5C).	

4.	DISCUSSION	

In	previous	studies,	we	analyzed	the	antioxidant	effects	of	exogenous	melatonin	on	an	

S.	cerevisiae	strain	at	the	physiological	level.	Our	data	showed	a	slight	increase	in	ROS	

and	GSSG	with	melatonin	supplementation	when	no	stress	was	 induced.	 In	contrast,	

when	the	cells	were	under	oxidative	stress,	the	melatonin	activated	some	of	the	genes	

in	the	yeast	antioxidant	defense	systems,	and	the	cells	reduced	the	ROS	accumulation,	

thus	enhancing	the	cellular	viability	(Vazquez	et	al.,	2017).	In	this	study,	we	wanted	to	

investigate	the	effect	of	melatonin	on	the	global	transcriptomic	response	of	cells	to	gain	

insight	into	the	antioxidant	role	and	the	regulatory	mechanism	of	melatonin	in	yeast.		

In	vertebrates,	 several	melatonin	 functions	are	mediated	by	 its	membrane	 receptors	

(Slominski	 et	 al.,	 2012),	 but	 others	 are	 receptor-independent,	 such	 as	 antioxidant	

activity,	for	which	melatonin	is	required	to	penetrate	the	cell	and	enter	the	intracellular	

compartments	 (Galano	 et	 al.,	 2011).	 As	 reported	 in	 mammals	 (Reiter	 et	 al.,	 2007;	

Rodriguez	et	al.,	2004),	S.	cerevisiae	was	able	to	 incorporate	exogenous	melatonin	at	

nanomolar	 concentrations,	 and,	 among	other	 possible	 roles,	 it	 could	modulate	 gene	

expression	 independently	 of	 oxidative	 stress.	 Although	 the	 levels	 of	 incorporated	

melatonin	were	also	at	nanomolar	concentration,	these	melatonin	levels	were	higher	

under	oxidative	stress,	probably	because	H2O2	 induces	 rapid	changes	 in	both	plasma	
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membrane	 permeability	 and	 its	 gradient,	 which	 might	 promote	 changes	 in	 cellular	

transport	(Folmer	et	al.,	2008)	that	could	favor	the	entry	of	melatonin	into	the	cell.		

Due	to	its	amphipathic	nature,	melatonin	is	speculated	to	pass	the	cell	membrane	with	

ease;	 however,	 the	 exact	mechanisms	 by	which	melatonin	 enters	 into	 cells	 remains	

unknown.	 Recently,	 it	 was	 reported	 that	 a	 facilitated	 diffusion	 was	 involved	 in	

melatonin’s	 transmembrane	 transportation	 in	 human	 cancer	 cells,	 either	 through	

glucose	transporters	(Hevia	et	al.,	2015),	or	oligopeptide	transporters	(Huo	et	al.,	2017).	

In	S.	cerevisiae,	melatonin	overexpressed	the	membrane	transporter	for	both	urea	and	

polyamines	which	possess	a	similar	structure	to	that	of	melatonin.	This	permease	could	

be	a	candidate	to	mediate	melatonin	transportation,	and	thus	further	studies	could	be	

performed	to	relate	the	role	of	these	permeases	to	melatonin	transportation.	

As	 described	 in	 lines	 of	 human	 tumor	 cells	 lines	 (Alonso-Gonzalez	 et	 al.,	 2008),	

melatonin	 activated	 both	 metallothioneins	 in	 S.	 cerevisiae,	 with	 antioxidant	 and	

superoxide	dismutase	activities	being	involved	in	the	detoxification	of	metal	 ions	and	

the	removal	of	superoxide	radicals.	Melatonin	has	been	shown	to	have	a	protective	role	

in	counteracting	the	toxic	effects	of	metal	exposure	in	human	cells	(Romero	et	al.,	2014).	

In	 our	 previous	 results	 (Vázquez	 et	 al.,	 2017),	 in	which	we	 analyzed	 different	 genes	

related	to	yeast	antioxidant	defenses	using	qPCR,	the	glutathione	peroxidase	encoded	

by	 GPX1	 was	 slightly	 down-regulated	 by	 melatonin	 in	 cells	 that	 were	 at	 the	 early	

exponential	phase.	Furthermore,	the	cytosolic	dismutase	(Cu/ZnSOD)	encoded	by	SOD1	

was	 slightly	 up-regulated,	 which	 could	 be	 in	 accordance	 with	 metallothioneins	

overexpression.	 Our	 results	 seem	 to	 indicate	 that	 the	 protective	 role	 of	 melatonin	

against	metals	 also	works	 in	 S.	 cerevisiae	 because	melatonin	 is	 able	 to	 activate	 the	

different	cellular	defense	mechanisms,	even	without	the	presence	of	metals	to	better	

endure	 further	 stresses.	 However,	 physiological	 changes	 have	 been	 observed	 with	

melatonin	supplementation	in	the	absence	of	stress,	which	could	not	be	uncovered	by	

a	 transcriptomics	assay	 that	 indicated	 factors	 such	as	a	higher	FA	content	and	 lower	

sterol	content.	The	higher	FA	content	could	be	consisitent	with	the	higher	peroxisome	

proliferation	observed	with	melatonin.	 In	absence	of	stress,	these	examples	could	be		

melatonin	mechanisms	for	preparing	cells	for	additional	possible	stresses	(Vázquez	et	

al.,	2017).	
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Cells	 that	 were	 pretreated	 with	 melatonin	 under	 oxidative	 stress	 showed	 greater	

changes	 at	 the	 transcriptional	 level.	 The	 genes	 associated	with	 antioxidant	 defenses	

systems	such	as	glutathione/glutaredoxins	and	thioredoxins	systems,	cytosolic	catalase	

and	glutathione	peroxidase	were	transcriptionally	induced	by	melatonin.	In	fact,	these	

results	are	consistent	with	our	previous	results	where	genes	such	as	GPX1,	GRX2,	TRX2	

and	CTT1	as	 idintified	 	by	qPCR	were	also	up-regulated	by	melatonin	(Vázquez	et	al.,	

2017).	Furthermore,	other	genes	that	were	evaluated	and	up-regulated	by	melatonin,	

such	as	GSH1,	ZWF1,	GLR1,	SOD1,	SOD2	and	CTA1,	were	not	significantly	different	in	the	

transcriptomic	 assays,	 but	 their	 expression	 tended	 to	 be	 higher	 in	 the	 presence	 of	

melatonin.	GPX1	is	a	paralogue	of	HYR1	that	functions	as	a	hydroperoxide	receptor	to	

transduce	the	redox	signal	to	Yap1p	and	it	seem	to	be	important	to	activate	arachidonic	

pathway	at	 transcriptional	 level.	Higher	amounts	of	 arachidonic	acid	 (AA)	have	been	

correlated	with	more	viability	at	higher	temperature	in	yeast	(Mejía-Barajas	et	al.	2017).	

AA	can	be	produced	from	linoleic	and	linolenic	acid	through	the	coexpression	of	D5-	and		

D6-desaturase	with	D6-elongase	(Chemler	et	al.,	2006)	however,	although	S.	cerevisiae	

can	 incorporate	 exogenous	 PUFAs,	 as	 it	 only	 possesses	 D9	 desaturase	 AA	 was	 not	

present	in	its	FA	composition.	As	described	in	human	cells,	arachidonate	potentiation	

by	 melatonin	 could	 be	 a	 parallel	 immediate	 and	 transient	 intracellular	 free	 radical	

stimulation	pathway	(	Godson	and	Reppert,	1997,	Radogna	et	al.,	2009,	2010).	

Mitochondria	 are	 believed	 to	 be	 the	 biological	 targets	 of	 melatonin	 in	 human	 cells	

(Reiter	et	al.,	2016),	and	they	are	the	primary	ATP-generating	organelles	in	eukaryotic	

cells.	Furthermore,	mitochondria	are	both	the	source	and	the	site	for	the	detoxification	

of	 reactive	 oxygen	 species	 in	 yeast	 (Chevtzoff	 et	 al.,	 2010;	 Rhoads	 et	 al.,	 2006).	 As	

reported	 in	humans	 (León	et	 al.,	 2005;	Martín	et	 al.,	 2000),	our	 results	 showed	 that	

melatonin	 modulated	 mitochondria	 at	 the	 transcriptional	 level	 in	 S.	 cerevisiae,	

increasing	the	expression	of	genes	related	to	the	respiratory	chain	(complex	II,	III	and	

IV)	 and	 oxidative	 phosphorylation,	 which	 are	 required	 genes	 for	 ATP	 synthesis.	

Furthermore,	melatonin	up-regulated	essential	genes	 for	 the	maintenance	of	normal	

mitochondrial	morphology	in	yeast,	such	as	TOM7	and	ETR1	(Torkko	et	al.	2001;	Dimmer	

et	al.	2002).	Mitochondrial	function	is	required	for	yeast	resistance	to	oxidative	stress	

(Grant	et	al.,	1997),	and	the	electron	transport	chain	has	been	identified	as	being	vital	
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for	H2O2	tolerance	by	S.	cerevisiae	(Thorpe	et	al.,	2004).	In	addition,	cardiolipin	(CL),	the	

signature	 lipid	 of	 inner	 mitochondrial	 membranes,	 was	 also	 higher,	 with	 melatonin	

supplementation	 indicating	 the	 stabilization	 of	 transport	 chain	 complexes	 and	

resistance	against	oxidative	stress	(De	Kroon	et	al.,	2013;	Joshi	et	al.,	2009).	Our	results	

indicate	that,	as	in	vertebrates	(Reiter	et	al.,	2016),	melatonin	acts	as	a	mitochondria-

targeted	antioxidant	 in	S.	cerevisiae,	both	at	 the	physiological	 level,	by	 reducing	ROS	

accumulation	(Vázquez	et	al.,	2017),	and	at	the	transcriptional	level,	by	activating	genes	

related	to	mitochondrial	function	and	maintenance.		

Energy	is	necessary	for	cell	growth	and	viability,	and	for	processes	such	as	the	repair	of	

damaged	proteins,	detoxification	of	lipoperoxidation	products	and	transport	of	oxidized	

molecules,	especially	under	environmental	stress	conditions	(Gasch	et	al.,	2000;	Grant	

et	 al.,	 1997;	 Zhao	 et	 al.,	 2015).	 In	 fact,	 melatonin	 also	 activated	 genes	 involved	 in	

glycolysis	and	the	TCA	cycle,	 indicating	the	importance	of	choosing	the	most	efficient	

route	 to	 generate	 and	maintain	 energy	 reserves	 in	 cells.	 The	 presence	 of	melatonin	

increased	the	total	FA	levels,	specifically,	the	monounsaturated	FA	such	as	palmitoleic	

and	oleic	acids,	leading	to	higher	UFA/SFA	ratios,	which	have	been	related	to	a	higher	

tolerance	 to	 H2O2	 (Serrazanetti	 et	 al.,	 2015).	 Furthermore,	 genes	 such	 as	 ETR1	 are	

related	to	FA	biosynthesis.	TSC13	and	PHS1	are	both	involved	in	long	chain	FA	elongation	

and	were	up-regulated	with	melatonin.	Those	results	are	consistent	with	the	activation	

of	genes	related	to	FA	synthesis	and	elongation.	However,	melatonin	also	increased	the	

total	sterols	when	cells	were	exposed	to	H2O2,	showing	higher	levels	of	ergosterol	and	

its	precursor	lanosterol	as	well	as	a	higher	ergosterol/squalene	ratio,	which	is	related	to	

higher	 tolerance	 to	 H2O2	 and	 other	 stress	 conditions	 (Henderson	 and	 Block,	 2014).	

However,	the	higher	ergosterol	levels	cannot	be	explained	by	changes	in	the	expression	

of	biosynthetic	genes.	In	fact,	some	genes	involved	in	its	synthesis,	such	as	ERG11,	were	

down-regulated	in	the	presence	of	melatonin,	probably	due	to	the	tight	regulation	at	

the	transcriptional	level	through	a	feedback	mechanism	that	responds	to	high	amounts	

of	 the	 end	 product	 ergosterol,	 as	 previously	 described	 by	 Yuan	 and	Ching	 2015	 and	

Servouse	and	Karst	1986.		Thus,	this	increase	in	the	ergosterol	content	might	be	due	to	

either	 posttranscriptional	 enzyme	 activation	 or	 to	 higher	 oxygen	 availability	 in	 the	

presence	 of	 melatonin,	 as	 required	 for	 ergosterol	 biosynthesis	 (Zavrel	 et	 al.,	 2013).	
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Another	possibility	would	be	 a	 higher	 ergosterol	 uptake	under	melatonin,	 but	 sterol	

import	in	S.	cerevisiae	is	specific	to	anaerobic	growth,	a	phenomenon	known	as	aerobic	

sterol	exclusion	(Lorenz	and	Parks,	1987;	Zavrel	et	al.,	2013).	Moreover,	melatonin	up-

regulated	some	of	 the	genes	 involved	 in	 the	biosynthesis	of	phosphatidylcholine	and	

sphingolipids,	which	are	related	to		stress	tolerance.	Berry	et	al.	(2011)	demonstrated	

that	a	sur2Δ	mutant	showed	high	sensitivity	to	an	oxidizing	agent	as	H2O2,	indicating	a	

role	for	this	gene	in	the	acquisition	of	tolerance	to	that	stress.	In	parallel,	the	Acyl-CoA	

oxidase	encoded	by	the	POX1	gene	was	up-regulated,	indicating	that	melatonin	could	

increase	the	b-oxidation	of	FAs	inside	peroxisomes.	This	gene	confers	the	ability	of	yeast	

to	grow	on	oleic	acid	as	a	sole	carbon	source	(Hiltunen	et	al.,	2003).	These	results	are	

consistent	with	our	previous	studies	in	peroxisomes,	which	also	showed	that	melatonin	

increases	their	proliferation.			

MAPK	pathways	can	be	activated	by	a	number	of	extracellular	and	intracellular	stimuli.	

In	humans,	the	ROS	and	cellular	stimuli	 that	are	able	to	 induce	ROS	production	have	

been	postulated	to	be	one	of	the	primary	activators	of	this	pathway.	Moreover,	it	has	

been	reported	that	the	direct	exposure	of	cells	to	exogenous	H2O2	leads	to	the	activation	

of	 MAPK	 pathways,	 whereas	 the	 presence	 of	 antioxidants	 and	 inhibitors	 of	 ROS-

producing	 enzymatic	 systems	 block	 the	 activation	 of	 the	MAPK	 pathway	 (Son	 et	 al.,	

2011).	Under	the	stress	conditions	in	this	study,	STE11	was	up-regulated.	STE11	is	one	

of	the	core	genes	in	the	MAPK	kinase	cascade,	being	involved	in	the	yeast	pheromone	

response,	 pseudohyphal/invasive	 growth	 pathways	 and	 high-osmolarity	 response	

pathway,	 therefore	activating	the	MAPK	pathway.	 Instead,	under	stress	conditions	 in	

the	presence	of	melatonin,	the	down-regulation	of	STE12	occurs.	STE12	is	a	transcription	

factor	 that	 regulates	 the	mating	genes	and	the	 filamentous	growth,	although	after	 it	

forms	a	hetero-multimer	with	TEC1,	it	seems	to	confirm	that	the	presence	of	melatonin,	

which	implies	a	reduction	of	ROS	content,	can	reduce	the	activation	of	this	pathway.							

In	 our	 study,	 Tor1	was	 down-regulated	 by	 stress,	 supporting	 the	 notion	 that	 TORC1	

activity	is	regulated	by	nutrient	abundance	and	inhibited	by	noxious	stress	(Urban	et	al.,	

2007).	Instead,	under	the	5MELH	condition	(when	compared	to	H),	this	gene	was	up-

regulated.	However,	SCH9	was	down-regulated;	it	is	a	key	downstream	effector	of	ROS	

and	the	Chronological	life	span	(CLS)	and	TOR-mitochondria	pathways.	The	kinase	Sch9	
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is	known	to	activate	respiratory	metabolism	during	the	quiescent	phase,	thus	increasing	

the	ROS	concentration	and	DNA	damage	(Wei	et	al.,	2009).	Therefore,	the	sch9	down-

regulation	by	melatonin	resulted	in	an	extension	of	the	CLS	(Pan	and	Shadel,	2009).	

This	 study	 shows	how	melatonin	apparently	appears	 to	 indirectly	provide	yeast	with	

highly	efficient	machinery	 to	maintain	 a	 reduced	environment.	As	 Zhao	et	 al.	 (2015)	

noted	in	a	mutant	strain	with	higher	tolerance	to	H2O2,	some	of	the	genes	involved	in	

carbohydrate	 metabolism,	 fatty	 acid	 degradation,	 glycolysis/gluconeogenesis,	 the	

peroxisomal	matrix,	pyruvate	metabolism,	amino	acid	metabolism	and	nucleotide	repair	

pathways	 were	 crucial	 to	 oxidative	 stress	 tolerance.	 Furthermore,	 as	 described	 in	

humans,	 melatonin	 may	 stimulate	 other	 antioxidant	 molecules	 such	 as	 thiamines,	

spermidines,	folic	acid	or	lipoic	acid.	

5.	CONCLUSIONS	

This	 study	 is	 the	 first	 to	 reveal	 the	yeast	 transcriptional	 response	 in	 the	presence	of	

exogenous	 melatonin.	 S.	 cerevisiae	 was	 able	 to	 incorporate	 exogenous	 melatonin,	

which,	once	inside,	it	acted	on	a	genome-wide	gene	expression	level.	In	the	absence	of	

stress,	melatonin	exposure	appears	 to	prepare	cells	 for	 further	oxidant	assaults,	and	

melatonin	clearly	modulated	genes	related	to	antioxidant	defenses	systems,	conferring	

a	 higher	 power	 of	 detoxification	 against	 oxidative	 stress	 to	 the	 cell.	 Under	

environmental	 stress	 conditions,	 yeast	 reprograms	 its	 cellular	 machinery	 for	 better	

adaptation	to	stress.	In	this	sense,	melatonin	might	enhance	the	energetic	efficiency	and	

signal	transduction,	conferring	higher	H2O2	tolerance	to	S.	cerevisiae.	
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Appendix	A.	Supplementary	data	

Supplementary	 Table	 1.	Genes	 differentially	 expressed	 (fold	 change	 (FC)	 ³1;	 p-value	 <	 0.05)	 by	 the	
increase	of	melatonin	concentration	(25	µM	and	5	µM)	in	cells	under	oxidative	stress	with	2	mM	of	H2O2	
(25MELH	–	5MELH)	

Gene standard name Name description FC p-value 

YDL114W Putative short-chain dehydrogenase/reductase 2.36 3.35E-02 

YKL070W Putative protein of unknown function 2.00 1.44E-02 
ERR1 Enolase-related repeat 1.92 1.78E-02 

YOR387C Putative protein of unknown function 1.88 1.50E-02 

YGL118C	 Putative protein of unknown function 1.83 1.37E-03 
YPL257W Putative protein of unknown function 1.75 1.67E-02 

YJL027C Putative protein of unknown function 1.68 2.74E-02 
IRC4 Increased recombination centers 1.65 3.80E-02 

FIG1 Factor induced gene 1.56 4.43E-02 
YDL151C	 BUD site selection 1.55 4.72E-02 

YNL194C Integral membrane protein 1.52 4.01E-02 
YCL001W-A Putative protein of unknown function 1.40 2.10E-02 

FRM2 Fatty acid repression mutant 1.39 3.49E-02 
YPR038W	 Increased recombination centers 1.39 3.59E-02 

AGA2 a-Aglutinin 1.36 2.71E-02 
PIR3 Protein containing internal repeats 1.33 2.02E-04 

DAK2 Dihydroxyacetone kinase 1.32 1.30E-02 
YGR115C	 Dubious open reading frame 1.32 7.46E-03 

MSH4 Protein involved in meiotic recombination 1.30 3.56E-02 
YLL017W	 Non-essential Ras guanine nucleotide exchange factor 1.29 3.71E-02 

YOR338W Putative protein of unknown function 1.25 3.84E-03 
PDC5 Pyruvate decarboxylase 1.25 1.44E-02 

SRX1 Sulfiredoxin 1.24 4.51E-02 
CRF1 Co-repressor with FHL1 1.24 2.84E-02 

YML057C-A	 Dubious open reading frame 1.22 4.85E-02 
YPR077C	 Dubious open reading frame 1.22 4.43E-02 

SEG2 Stability of eisosomes guaranteed 1.21 4.50E-02 
NPL3 Nuclear protein localization 1.20 1.02E-02 

TSL1 Trehalose synthase long chain 1.18 2.97E-03 
SFK1 Supressor of four kinase 1.18 4.53E-02 

YEL077C Helicase-like protein  1.17 3.42E-02 
EAF1 Esa1p-associated factor 1.16 1.37E-02 

DYS1 Deoxyhypusine synthase 1.15 1.91E-02 
GAD1 Glutamate decarboxylase 1.14 1.99E-02 

CWC23 Complexed with Cef1p 1.13 1.42E-02 
YCR061W Protein of unknown function 1.11 3.71E-02 

GLO4 Glyoxalase 1.10 4.88E-02 
RSC8 Remodel the structure of chromatin 1.10 4.19E-02 

CIS3 Clk1 suppressing 1.10 3.24E-02 
YNL046W Putative protein of unknown function 1.09 4.36E-02 

MEF2 Mitochondrial elongation factor -1.09 4.00E-02 
ESBP6 Protein with similarity to monocarboxylate permeases -1.09 3.36E-02 

VMA22	 Vacuolar membrane Atpase -1.09 3.47E-02 
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Gene standard name Name description FC p-value 

LOS1	 Loss of suppression -1.09 4.90E-02 

YKR070W	 Putative protein of unknown function -1.10 4.23E-02 
PLC1	 Phospholipase C -1.10 3.46E-02 

EMC5	 ER membrane protein complex -1.10 4.97E-02 
AVT7	 Amino acid vacuolar transport -1.11 4.35E-02 

AIM20	 Putative protein of unknown function -1.11 3.52E-02 
YOR093C	 Putative protein of unknown function -1.12 2.51E-02 

AXL2	 Integral plasma membrane protein -1.12 3.59E-02 
MET18	 Methionine requiring -1.12 2.24E-02 

CTO1	 Protein required for cold tolerance -1.12 2.47E-02 
ERG8	 Ergosterol biosynthesis -1.12 3.43E-02 

YGR016W	 Putative protein of unknown function -1.12 2.45E-02 
YCR064C		 Dubious open reading frame -1.12 2.62E-02 

YNL092W	
S-adenosylmethionine-dependent protein 
methyltransferase -1.12 3.83E-02 

REF2	 RNA-binding protein -1.13 3.41E-02 

RTP1	 Required for the nuclear transport of RNA Pol II -1.13 2.55E-02 
SEC59	 Dolichol kinase -1.13 2.63E-02 

DAD4	 Duo1 and Dam1 interacting -1.13 4.70E-02 
MIF2	 Mitotic fidelity of chromosome transmission -1.13 4.80E-02 

TEL2	 Telomere meintenance -1.13 3.27E-02 
TDA11	 Topoisomerase I damage affected -1.13 2.12E-02 

YKR051W	 Putative protein of unknown function -1.13 4.39E-02 
NGL1	 Putative endonuclease -1.14 3.86E-02 

MNE1	 Protein involved in splicing  -1.14 3.12E-02 
OST4	 Oligosaccharyltransferase -1.14 2.22E-02 

PCI8	 Proteasome-COP9 signalosome (CSN)-eIF3 -1.14 2.32E-02 
YBL096C		 Non-essential protein of unknown function -1.14 4.13E-02 

AEP2	 ATPase expression -1.16 4.16E-02 
APL2	 Clathrin adaptor protein complex large chain -1.16 2.71E-02 

SPT20	 Supressor of Ty -1.18 3.00E-02 
YBL070C		 Dubious open reading frame -1.19 2.40E-02 

YDR467C		 Dubious open reading frame -1.20 2.39E-02 
STE11	 Signal transducing MEK kinase -1.21 4.64E-02 
CRC1	 Carnitine carrier -1.26 4.48E-02 
SPL2	 Suppressor of PLc1 deletion -1.27 3.82E-02 
YBL094C		 Dubious open reading frame -1.41 3.16E-03 
YLR217W		 Dubious open reading frame -1.50 2.85E-02 
DAL1	 Degradation of allantoin -1.61 4.58E-02 
YLL030C		 Putative protein of unknown function -2.55 8.28E-03 



CHAPTER	4	

	
	

191	

Supplementary	Table	2.	Biological	process	enrichment	from	Gene	ontology	(GO)	analysis	of	differentially	
expressed	genes	up-	and	down-regulated	(fold	change	³1;	p-value	<	0.05)	among	stressed	cells	in	absence	
or	presence	of	melatonin	(5	µM)	(5MELH	–	H).	

	

 

 
GO term biological process (p-
value) Gene names (|2| ≤ FC ≥ |1|) 

U
p-

 r
eg

ul
at

ed
 

Mitochondrial electron transport, 
cytochrome c to oxygen (2.17E-02) COX5A, COX7, COX2, COX1, CYC7, COX8, COX3, COX6 

Oxidation-reduction process 
(5.86E-04) 
 
 

 
YKL071W, QCR9, RGI1, COX5A, EUG1, HFD1, GPX1, GDH3, AAD10, DOT5, TSC13, QCR7, COX7, 
FDH1, ECM4, THI4, HYR1, GPH1, MXR1, COX2, MIX14, YCR102C, TRX1,TRX2, DLD3, COX1, ETR1, 
PRM4, CYC7, SER33, FRE3, GRX1, SDH4, GRX2, COX8, COQ11, YJR096W, CTT1, GAL80, AYR1, COX3, 
HOM6, GLT1, FRE6,, TPA1, GTO1, YLR456W, ALD3, YKL107W, MET14, SUR2, COQ10, ALG6, ACS1, 
MPD1, COX6, POX1, YPR127W, CIT2, HBN1, SRX1, ALD3, CIR1 
 

Detoxification (3.22E-02) GPX1, DOT5, ECM4, HYR1, TRX1, TRX2, GRX1, GRX2, CTT1, CUP1-2, GTO1, CUP1-1, SRX1 
 

 
Transport (3.74E-02) 

 
HUT1, YPT7, NTF2, JEN1, CHS7, BAT1,YBT1, ATP18, HOT13, GET1, ATP14, VPS68, CDC31, ATP8, 
QCR9, TVP18, ROY1, ECM10, COX5A, SEC3, GFD1, YGL140C, MAL31, ATG8, GYP8, MFM1, PDR16, 
OPT1, SRP102, VPS1, COG1, SIS1, RER1, ATG31, PBI2, SNC1, CRC1, VPS28, RAV2, YET2, YIP3, GET4, 
NUP133, QCR7, COX7, AQY2, SEM1, EGD1, CDC28, IST1, TIM8, DSS4, HSP30, SIW14, ATP15, RTA1, 
TLG2, COX2, TRX1,TRX2, HXT6, VHC1, COX1, TRS33, NDL1, GMH1, CNL1, COS7, ACB1, FRE3, ATG9, 
EMP47, CCC2, SNC2, ATG5, HSP10, YPT6, BLS1, COX8, CUR1, PEX19, TOM7, IST3, ERV14, PHS1, 
SGE1, YSP2, ATP20, YLL053C, ATG12, PEX25, MRS4, COX3, SEC17, TPM2, TVP15, FRE6, ADY2, 
COX17, YET3, PFY1, YIF1, SPL2, ROD1, SEC66, YAT2, ERP5, COG3, BLI1, MST28, PTH1, HXT5, YOP1, 
BTN2, PAM17, SNX41, IRC6, PEP8, ATG29, COX6, COG7, PEP12, OM14, PMP2, COF1, MON1, SSA4, 
MVB12, ARV1, YRO2, YIP1, DNF3, PXA1 
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mRNA metabolic process (1.93E-
03) 
 
 

 
LAS17, SLK19, YOL019W, YME1, VTS1, VAN1, UBX2, AIM10, MRP4, SLX5, SEC1, CRN1, NFS1, 
YGR054W, IFH1, UTP15, MSS116, ERG11, CAF4, CWC2, MRM1, MMT1, RTT101, PCL8, RRP14, INP51, 
INN1, PKH1, UFO1, YCL001W-B, INP1, EAF1, RIO1, PET9, CBK1, EXO84, PIR3, CCM1, SNF2, 
YJR084W, EPS1, STD1, CMP2, MSK1, GPB1, STE12, YKU80, VAC17, POP2, HOS3, EAR1, MLP1, 
RAD23, UPC2, BCK2, MED1, CPS1, UBP13, IPT1, SPA2, UBP10, CHS5, YSC84, ERC1, MSL5, RCK1, 
MKC7, TMN2, FET5, YCR061W, TEL1, YCL001W-A, USO1, ILV3, PUS7, MLP1, ERF2, NRD1, SEY1, 
DSN1, UBC11, KTR7, MSO1, PUF4, FAR10, ADA2, LSG1, CDD1, RPA34, SRO9, NTH1, BUD8, SCC4, 
INO2, CDC55, ELP2, RAD27, MRX1, GID8, AFT1, MRE11, FKH1, FYV8, RRP6, EPL1, HMT1, SCH9, 
MYO1, CAB3, GEP3, TRF5, POG1, IRC4, DHH1, SPS18, XDJ1, AIM14, ERF2, ECM2, MET4, RGT2, 
DBP1, SSC1, UTR2, PEX1, BUD31, MRC1, SFP1, ATM1, ARP5, PEX8, PKP1, BUD27, HCM1, HLR1, 
SDS23, BMT6, BUD23, CAR2, SHS1, MPS3, MSS51, VPS16, SPO23, ILV1, CLN3, NOP14, MRN1, LDS2, 
MPH1, PSR2, NPL3, NUP2, TUP1, BDF1, RTS1, GAS1, HPR1, PUS1, SLT2, DSE1, CBP2, EXO5, YTA12, 
HEM1, YOR338W, SPO21, YHP1, SDA1, DPS1, NTH1, ALD5, CDC20, MAE1, DBP7, STB3, BRO1, LGE1, 
YNL190W, DUS4, MMS1, WTM2, SUL2, WHI3, PRP19, PSR1, MNN4, ARE2, PTC5, MET12, SPS1, SLX4, 
ISY1, IZH3, KAR1, FRD1, BI4, RCL1, VPS53, CDC9, GZF3, CDC11, MUD2, PTC3, IRS4, RRP9, BRE5, 
HEM3, RSP5, YBR238C, FRA1, UTH1, HAP4, YHM2, SLG1, HOS4, CMR1, IMH1, ALD5, CNA1, YRF1-7, 
COQ1, PRB1, SMI1, NHA1, CTR9, YRF1-6, BIK1, YCK3, ETP1, YRF1-5, DBP3 
 

Negative regulation of gene 
expression (6.09E-03) 
 
 

LAS17, SLK19, VTS1, VAN1, SLX5, SEC1, CRN1, RFU1, NFS1, TOS8, YGR054W, IFH1, UTP15, MSS116, 
CAF4, MMT1, PCL8, RTT101, PKH1, INN1, YCL001W-B, EAF1, RIO1, CBK1, SNF2, YJR084W, EPS1, 
STD1, CMP2, GPB1, STE12, YKU80, POP2, HOS3, MLP1, RAD23, UPC2, BCK2, MED1, UBP13, SPA2, 
UBP10, CHS5, YSC84, RCK1, MKC7, TMN2, FET5, YCR061W, TEL1, YCL001W-A, MLP1, ERF2, NRD1, 
UBC11, PUF4, FAR10, ADA2, NTH1, INO2, CDC55, ELP2, GID8, AFT1, MRE11, FKH1, RRP6, EPL1, 
SCH9, HMT1, TRF5, POG1, MGA1, SPS18, DHH1, XDJ1, AIM14, MET4, MPT5, DBP1, RGT2, SSC1, 
PEX1, MRC1, SFP1, ATM1, ARP5, PET111, BUD27, HCM1, SDS23, MPS3, MSS51, VPS16, SPP41, CLN3, 
MRN1, MPH1, NPL3, NUP2, TUP1, BDF1, RTS1, GAS1, HPR1, SLT2, DSE1, YOR338W, SDA1, YHP1, 
CDC20, STB3, BRO1, LGE1, MMS1, WTM2, SUL2, WHI3, MNN4, PTC5, SPS1, SLX4, IZH3, RCL1, VPS53, 
GZF3, CDC11, PTC3, IRS4, BRE5, RSP5, FRA1, UTH1, HAP4, HOS4, SLG1, CMR1, CNA1, YRF1-7, SMI1, 
NHA1, CTR9, YRF1-6, BIK1, YCK3, YRF1-5 

 
Positive regulation of biological 
process (7.87E-04) 
 

LAS17, SLK19, VTS1, SEC1, CRN1, IFH1, UTP15, RIO1, SNF2, STD1, GPB1, STE12, POP2, HOS3, MLP1, 
UPC2, BCK2, MED1, SPA2, PUF4, ADA2, NTH1, INO2, CDC55, GID8, AFT1, FKH1, EPL1, SCH9, 
HMT1, MET4, MPT5, SSC1, SFP1, PET111, HCM1, MSS51, NPL3, BDF1, HPR1, SLT2, YOR338W, SDA1, 
CDC20, STB3, BRO1, WTM2, WHI3, GZF3, CDC11, RSP5, UTH1, HAP4, SLG1, CTR9 

Regulation of cellular process 
(1.69E-07) 

 
LAS17, SLK19, VTS1, SLX5, SEC1, CRN1, RFU1, TOS8, YGR054W, IFH1, UTP15, MSS116, CAF4, 
MMT1, PCL8, RTT101, PKH1, EAF1, RIO1, CBK1, SNF2, YJR084W, EPS1, STD1, CMP2, GPB1, STE12, 
YKU80, POP2, HOS3, MLP1, RAD23, UPC2, BCK2, MED1, SPA2, UBP10, CHS5, YSC84, RCK1, MKC7, 
MLP1, UBC11, PUF4, FAR10, ADA2, NTH1, INO2, CDC55, ELP2, GID8, AFT1, MRE11, FKH1, EPL1, 
SCH9, HMT1, POG1, MGA1, DHH1, AIM14, MET4, MPT5, RGT2, SSC1, MRC1, SFP1, ARP5, PET111, 
BUD27, HCM1, SDS23, MPS3, MSS51, VPS16, SPP41, CLN3, MRN1, MPH1, NPL3, NUP2, TUP1, BDF1, 
RTS1, GAS1, HPR1, SLT2, DSE1, YOR338W, SDA1, YHP1, CDC20, STB3, BRO1, LGE1, MMS1, WTM2, 
WHI3, SPS1, SLX4, GZF3, CDC11, PTC3, IRS4, BRE5, RSP5, FRA1, UTH1, HAP4, HOS4, SLG1, CMR1, 
CNA1, SMI1, CTR9, BIK1, YCK3 
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Regulation of nitrogen compound 
metabolic process (2.03E-04) 

 
VTS1, SLX5, RFU1, YGR054W, TOS8, IFH1, UTP15, MSS116, CAF4, PCL8, PKH1, EAF1, RIO1, SNF2, 
STD1, GPB1, STE12, YKU80, POP2, HOS3, MLP1, UPC2, RAD23, MED1, UBP10, CHS5, PUF4, ADA2, 
NTH1, INO2, CDC55, ELP2, AFT1, MRE11, FKH1, EPL1, SCH9, HMT1, POG1, MGA1, DHH1, MET4, 
MPT5, SSC1, MRC1, SFP1, ARP5, PET111, BUD27, HCM1, MPS3, MSS51, SPP41, CLN3, MRN1, MPH1, 
NPL3, NUP2, TUP1, BDF1, HPR1, GAS1, YOR338W, YHP1, CDC20, STB3, BRO1, LGE1, WTM2, WHI3, 
SLX4, GZF3, CDC11, PTC3, IRS4, RSP5, FRA1, UTH1, HAP4, CTR9, SMI1 
 

Regulation of transcription, DNA-
templated (3.21E-04) 
 

 
VTS1, SLX5, YGR054W, TOS8, IFH1, UTP15, MSS116, CAF4, PCL8, EAF1, RIO1, SNF2, STD1, STE12, 
YKU80, POP2, HOS3, MLP1, UPC2, RAD23, MED1, UBP10, CHS5, PUF4, ADA2, NTH1, INO2, CDC55, 
ELP2, GID8, AFT1, MRE11, FKH1, EPL1, SCH9, HMT1, POG1, MGA1, DHH1, MET4, MPT5, MRC1, 
SFP1, ARP5, PET111, BUD27, HCM1, MPS3, MSS51, SPP41, CLN3, MRN1, NPL3, NUP2, TUP1, BDF1, 
HPR1, GAS1, YOR338W, YHP1, STB3, LGE1, WTM2, WHI3, GZF3, IRS4, RSP5, FRA1, UTH1, HAP4, 
CTR9, SMI1 

Cell cycle (2.34E-02) 

 
SLK19, YOL019W, CWC2, RTT101, INN1, RIO1, HOS3, MLP1, BCK2, SPA2, CHS5, DSN1, MSO1, 
FAR10, LSG1, BUD8, SCC4, CDC55, GID8, AFT1, MRE11, FKH1, EPL1, MYO1, TRF5, POG1, BUD31, 
MRC1, HCM1, BUD23, SHS1, MPS3, SPO23, CLN3, LDS2, RTS1, DSE1, YOR338W, SPO21, SDA1, 
YHP1, CDC20, LGE1, MMS1, WTM2, WHI3, SPS1, KAR1, CDC9, CDC11, UTH1, SLG1, CTR9, BIK1 
 

Cellular component organization or 
biogenesis (1.10E-02) 

 
LAS17, SLK19, YOL019W, YME1, VAN1, UBX2, SLX5, CRN1, NFS1, IFH1, UTP15, CAF4, MRM1, CWC2, 
RRP14, NOG2, PKH1, INN1, YCL001W-B, INP1, EAF1, RIO1, CBK1, EXO84, PIR3, CCM1, SNF2, 
YJR084W, YKU80, VAC17, HOS3, MLP1, UBP13, SPA2, UBP10, CHS5, YSC84, MKC7, YCR061W, TEL1, 
USO1, YCL001W-A, PUS7, ERF2, SEY1, DSN1, KTR7, MSO1, PUF4, ADA2, LSG1, RPA34, SCC4, CDC55, 
RAD27, AFT1, MRE11, FKH1, RRP6, EPL1, SCH9, HMT1, MYO1, GEP3, DHH1, XDJ1, ECM2, SSC1, 
UTR2, PEX1, MRC1, SFP1, ARP5, PEX8, PET111, BUD27, HCM1, HLR1, BMT6, BUD23, SHS1, MPS3, 
MSS51, VPS16, CLN3, NOP14, MRN1, LDS2, MPH1, NPL3, NUP2, TUP1, BDF1, RTS1, GAS1, SLT2, 
DSE1, EXO5, YTA12, YOR338W, SPO21, SDA1, DBP7, BRO1, LGE1, WHI3, PRP19, SPS1, ISY1, KAR1, 
RCL1, ALB1, CDC9, MUD2, IRS4, RRP9, RSP5, UTH1, HOS4, YHM2, SLG1, CNA1, YRF1-7, SMI1, YRF1-
6, BIK1, DBP3, YRF1-5 
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In	recent	years,	melatonin	has	attracted	a	great	deal	of	attention	due	to	its	potentially	

beneficial	effects	on	human	health.	These	benefits	have	been	attributed	to	melatonin’s	

multiple	 functions,	 including	 its	powerful	antioxidant	effect,	which	 is	one	of	 its	best-

studied	 attributes	 in	 mammals	 (Reiter	 et	 al.,	 2016).	 The	Wine	 Biotechnology	 group	

(yeast	subgroup)	at	Rovira	i	Virgili	University,	where	the	present	thesis	was	performed,	

is	 one	 of	 the	 first	 groups	 to	 relate	 the	 production	 of	 melatonin	 by	 Saccharomyces	

cerevisiae	to	wine	alcoholic	fermentation	(Rodriguez-Naranjo	et	al.,	2011,	2012).	Since	

then,	most	studies	on	melatonin	 in	yeasts	have	focused	their	attention	on	melatonin	

production	 and	 detection	 (Fernández-Cruz	 et	 al.,	 2017;	 Muñiz-Calvo	 et	 al.,	 2017;	

Vigentini	et	al.,	2015),	but	the	role	of	melatonin	in	yeast	is	completely	unknown.	

In	addition	to	being	the	simplest	eukaryote	model,	S.	cerevisiae	has	been	considered	the	

primary	 yeast	 for	 use	 in	 the	 winemaking	 process.	 Even	 though	 it	 remains	 the	 best	

candidate	for	performing	alcoholic	fermentation,	there	is	an	increasing	interest	in	the	

utilization	 of	 non-Saccharomyes	 species,	with	 a	 view	 towards	 developing	 consumer-

directed	 wines	 with	 differentiated	 styles	 (González-Royo	 et	 al.,	 2015;	 Padilla	 et	 al.,	

2016).	The	winemaking	process	is	a	hostile	environment	for	yeasts,	especially	for	non-

Saccharomyces	that	are	considered	less	resistant	species	than	S.	cerevisiae	for	enduring	

this	 process,	 which	 is	 traditionally	 associated	 with	 their	 lower	 ethanol	 tolerance.	

Nevertheless,	the	stress	induced	by	ethanol	is	not	the	only	one	that	yeasts	have	to	resist	

during	alcoholic	fermentation.	Other	stresses,	such	as	oxidative	stress,	are	also	involved	

in	this	process	(Gómez-Pastor	et	al.,	2012;	Pretorius,	2000).		

Knowledge	of	melatonin’s	effects	on	yeast	will	help	to	control	its	synthesis	for	uses	as	

natural	antioxidants,	which	could	have	important	biotechnological	implications	such	as	

diminishing	 cellular	 oxidative	 damage	 during	 the	 biotechnological	 production	 of	 dry	

starters	 (Gamero-Sandemetrio	 et	 al.,	 2015)	 or	 even	 for	 use	 as	 potential	 therapeutic	

targets	for	several	oxidative	stress-related	diseases	(Escoté	et	al.,	2012;	Gutteridge	and	

Halliwell,	 2010;	Halliwell,	 2006).	We	 focused	our	 studies	 on	 the	possible	 antioxidant	

effect	of	melatonin	on	both	Saccharomyces	and	non-Saccharomyces	yeasts.	However,	

given	the	small	amount	of	information	that	is	available	about	how	non-Saccharomyces	

yeasts	respond	to	oxidative	stress,	we	were	compelled	to	initiate	a	study	in	which	we	



GENERAL	DISCUSSION	
	

204	
 

compared	 the	 oxidative	 stress	 responses	 between	 Saccharomyces	 and	 non-

Saccharomyces	wine	yeast	species.		

Ø Effect	of	oxidative	stress	on	Saccharomyces	and	non-Saccharomyces	yeasts	

Different	 approaches	 have	 been	 commonly	 employed	 to	 determine	 the	 effect	 of	

induced	 oxidative	 stress	 on	 yeasts.	 In	 the	 present	 work,	 we	 aimed	 to	 compare	 the	

response	 of	 different	 yeast	 species	 (S.	 cerevisiae,	 Metschnikowia	 pulcherrima,	

Torulaspora	delbrueckii,	Starmerella	bacillaris	and	Hanseniaspora	uvarum)	to	oxidative	

stress	(2	mM	H2O2)	by	evaluating	their	resistance	to	the	oxidizing	agent,	their	levels	of	

reactive	oxygen	species	(ROS),	catalase	activity,	lipid	peroxidation	and	changes	in	their	

lipid	 composition.	 Thus,	 the	 results	 give	 us	 a	 general	 view	 of	 the	 consequences	 of	

oxidative	 stress	 in	 yeast,	 including	 free	 radical	 production	 by	 oxidative	 stress,	

endogenous	 antioxidant	 defenses	 to	 scavenger	 ROS,	 damage	 produced	 by	 ROS	 and	

adaptive	responses	by	yeast.	

Our	findings	indicated	that	polyunsaturated	fatty	acids	(PUFAs)	play	an	important	role	

in	the	resistance	and	tolerance	of	yeast	to	oxidative	stress.	M.	pulcherrima,	T.	delbrueckii	

and	S.	bacillaris	 species,	which	contain	PUFAs	 in	 their	 lipid	 composition	 (Rozès	et	al.	

1992),	were	able	to	better	resist	an	induced	oxidative	stress	compared	with	S.	cerevisiae	

and	H.	uvarum,	which	do	not	contain	PUFAs	in	their	membranes	(Rozès	et	al.	1992).	The	

PUFA	synthesis	strategy	used	by	these	species	to	acquire	oxidative	tolerance	could	be	

related	 to	 hydroperoxide	 signaling.	 In	 the	 absence	 of	 stress,	 these	 cells	 accumulate	

higher	 PUFA	 contents,	 which	 in	 turn	 generate	 low	 but	 significant	 amounts	 of	 lipid	

peroxidation	products.	Those	products	are	able	to	act	as	signaling	molecules	to	activate	

the	enzymes	involved	in	yeast	antioxidant	defense	systems	(Chen	et	al.,	2006;	Cipak	et	

al.,	 2008),	 such	 as	 cytosolic	 and	 peroxisomal	 catalases	 (Cipak	 et	 al.,	 2008).	 As	 a	

consequence,	these	yeasts	would	be	better	prepared	for	subsequent	stresses,	including	

oxidative	stress.	In	fact,	the	catalase	activity	was	higher	in	non-conventional	yeasts	in	

the	 absence	 of	 stress.	 However,	 no	 clear	 differences	were	 observed	 in	 this	 enzyme	

under	 oxidative	 stress,	 which	 could	 be	 an	 indication	 that	 other	 primary	 antioxidant	

defenses	systems	in	M.	pulcherrima,	T.	delbrueckii	and	S.	bacillaris	are	cooperating	with	

catalase	to	respond	quickly	to	this	stress,	scavenging	ROS	molecules	and	subsequently	

resulting	in	a	lower	lipid	peroxidation.	Thus,	although	PUFAs	are	the	lipids	that	are	more	
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susceptible	to	peroxidation	(Cipak	et	al.,	2006;	Johansson	et	al.,	2016),	PUFA-containing	

cells	are	better	equipped	to	face	oxidative	stress.	

Moreover,	under	oxidative	stress	conditions	non-Saccharomyces	yeasts	exhibited	the	

greatest	increase	in	monounsaturated	fatty	acids	(MUFAs)	with	a	concomitant	decrease	

in	saturated	fatty	acids	(SFA)	to	cope	with	oxidative	stress.	These	changes	led	to	a	higher	

UFA/SFA	ratio,	an	indicator	of	more	fluid	membranes	(You	et	al.,	2003).	As	described	for	

ethanol	tolerance,	oleic	acid	also	seemed	to	be	the	most	important	UFA	at	counteracting	

the	toxic	nature	of	oxidative	stress	in	non-conventional	yeasts.	Furthermore,	palmitoleic	

acid	has	been	reported	to	possess	a	positive	effect	on	yeast	viability	(Ding	et	al.,	2009;	

Redón	et	al.,	2009).	

Additionally,	 the	 most	 resistant	 strains,	 namely,	M.	 pulcherrima	 and	 T.	 delbrueckii,	

showed	higher	PC/PE	ratios,	which	have	been	related	to	an	enhanced	ethanol	tolerance	

in	S.	cerevisiae	(Chi	and	Arneborg,	1999;	Vendramin-Pintar	et	al.,	1995).	By	contrast,	a	

higher	PI/PS	ratio	was	observed	in	the	S.	cerevisiae	species.	The	PI	has	been	considered	

essential	for	maintaining	cellular	viability	in	S.	cerevisiae	(Becker	and	Lester,	1977;	De	

Kroon	et	al.,	2013).	However,	our	results	negatively	correlated	tolerance	to	stress	with	

a	high	PI/PS	ratio	as	well	as	with	the	squalene	content,	which	was	higher	in	the	most	

ROS-producing	strains	and	the	most	affected	strains	by	oxidative	stress.	Thus,	squalene	

accumulation	may	 compromise	 yeast	 growth	 and	 increase	 its	 sensitivity	 to	 external	

oxidizing	agents	(Spanova	et	al.,	2012).	

Thus,	considering	that	the	primary	differences	correlated	with	higher	stress	tolerance	

were	already	observed	before	stress	exposure,	the	adaptive	evolution	of	each	yeast	may	

influence	the	way	it	copes	with	stress.	For	example,	the	preference	for	respiratory	or	

fermentative	metabolism	as	well	as	the	oxygen	requirements	of	each	yeast	could	explain	

why	peroxisomes	proliferated	markedly	in	T.	delbrueckii	compared	to	S.	cerevisiae.	It	is	

well	known	that	anaerobic	growth	of	S.	cerevisiae	requires	oxygen	to	synthesize	UFAs	

such	as	oleic	acid,	which	is	needed	to	induce	yeast	peroxisomes	(Grillitsch	et	al.,	2011;	

Kohlwein	et	al.,	 2013).	Moreover,	 although	both	 species	were	classified	as	Crabtree-

positive,	T.	delbrueckii	has	been	reported	to	exhibit	a	higher	respiratory	contribution	to	

its	metabolism	than	S.	cerevisiae	(Alves-Araújo	et	al.,	2007;	González	et	al.,	2013;	Merico	

et	al.,	2007;).	Thus,	 in	 the	absence	of	stress,	S.	cerevisiae	did	not	exhibit	peroxisome	
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proliferation,	 which	 was	 surely	 due	 to	 the	 glucose	 repression	 of	 genes	 encoding	

peroxisome	oxidation	 (Hiltunen	et	 al.,	 2003).	 Instead,	T.	 delbrueckii	 needs	 functional	

peroxisomes	as	a	major	site	of	oxygen	utilization.	After	stress	exposure,	the	peroxisomes	

of	the	TdB	strain	were	more	frequently	induced,	probably	by	the	capacity	to	synthesize	

oleate,	which	 is	able	to	 induce	the	enzymes	 in	the	peroxisomal	oxidation	cycle.	Even	

before	stress,	this	higher	peroxisomal	activity	indicates	that	T.	delbrueckii	has	a	greater	

ability	to	maintain	the	equilibrium	between	the	production	and	scavenging	of	ROS.	This	

respiratory-deficient	condition	of	S.	cerevisiae	may	also	influence	the	oxygen-sensitive	

process	in	the	conversion	of	squalene	to	ergosterol	as	noted	before.	

Ø Effect	of	melatonin	on	Saccharomyces	and	non-Saccharomyces	yeasts	

S.	cerevisiae	has	been	the	most	studied	yeast	 in	this	work.	Because	it	 is	considered	a	

model	 for	 eukaryotic	 cell	 biology,	 there	 is	much	more	 information	available	 to	drive	

studies	of	transcriptomics,	functional	genomics	and	systems	biology.	Thus,	in	our	study,	

the	melatonin	effect	was	first	evaluated	in	a	S.	cerevisiae	wine	strain	(QA23)	and	after,	

compared	with	other	Saccharomyces	strains	and	non-Saccharomyces	species.	

As	 reported	 in	mammals	 (Rodriguez	et	al.,	2004),	our	 results	 showed	 that	melatonin	

easily	 enters	 the	 S.	 cerevisiae	 cell	 and	 is	 detected	 intracellularly	 at	 nanomolar	

concentrations.	 This	 property	 has	 been	 attributed	 to	 its	 amphiphilic	 nature,	 which	

allows	it	to	cross	all	membranes	and	arrive	at	the	intracellular	compartments,	where	it	

may	directly	exert	its	antioxidant	actions	(Galano	et	al.,	2011;	Rodriguez	et	al.,	2004).	

Nevertheless,	 melatonin	 has	 also	 been	 reported	 to	 be	 transported	 by	 glucose	 or	

oligopeptide	 transporters	 (Hevia	 et	 al.,	 2015;	 Huo	 et	 al.,	 2017).	 In	 this	 study,	 we	

observed	that	melatonin	activated	the	genes	of	some	permeases	in	S.	cerevisiae,	which	

could	 be	 candidate	 melatonin	 transporters	 in	 yeast,	 opening	 the	 doors	 to	 further	

research.	

The	 cells	 that	were	 previously	 grown	with	 exogenous	melatonin	 (5	µM),	 and	 in	 the	

absence	of	oxidative	 stress,	 showed	 few	changes	with	 respect	 to	 their	 cellular	 redox	

state.	 During	 the	 exponential	 phase,	 S.	 cerevisiae	 slightly	 increased	 both	 the	 ROS	

production	and	lipid	peroxidation,	which	may	in	turn	promote	a	decrease	in	the	reduced	

to	oxidized	glutathione	ratio	(GSH/GSSG).	Very	low	doses	of	ROS	and/or	hydroperoxides	
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(non-toxic	 levels)	 could	 serve	 as	 signaling	molecules	 to	 prepare	 antioxidant	 defense	

systems,	such	as	catalase	activity,	amongst	others	(Chen	et	al.,	2006;	Cipak	et	al.,	2008).	

The	catalase	activity	slightly	increased	in	the	presence	of	melatonin.	Furthermore,	the	

phosphatidic	 acid	 (PA),	 cardiolipin	 and	 peroxisomes	 proliferation	 were	 significantly	

higher	in	the	presence	of	melatonin;	indicating	that	melatonin	may	act	by	increasing	the	

electron	 transport	 chain	 activity	 in	 mitochondria,	 and	 consequently	 increasing	 b-

oxidation	in	peroxisomes.	In	addition,	significant	changes	were	observed	in	other	lipids:	

melatonin	 decreased	 the	 total	 sterol	 levels,	 basically	 by	 lowering	 the	 amounts	 of	

ergosterol,	 and	 increased	 the	 total	 fatty	 acid	 composition,	 by	 increasing	 oleic	 and	

palmitoleic	acids,	leading	to	higher	ratios	of	UFA/SFA	and	higher	amounts	of	medium	

chain-length	FAs.	In	parallel,	as	in	human	cells	(Romero	et	al.,	2014),	our	results	seems	

to	indicate	that	melatonin	may	also	have	a	protective	role	against	metals	in	S.	cerevisiae,	

since	different	cellular	defense	mechanisms	were	activated,	even	without	the	presence	

of	metals.	 Regardless	 of	melatonin,	when	 cells	 entered	 in	 the	 stationary	 phase	 they	

derepressed	all	the	tested	genes	encoding	antioxidant	enzymes	when	the	glucose	was	

exhausted.	Nevertheless,	 the	 presence	 of	melatonin	maintained	 the	 genes	 encoding	

glutathione	 production	 (GSH),	 glutathione	 peroxidase	 (GPX1),	 glutathione	 reductase	

(GLR1),	 peroxisomal	 catalase	 (CTA1),	 both	 Sod	 dismutases	 (SOD1	 and	 SOD2),	

glutaredoxin	(GRX2)	and	thioredoxin	(TRX2),	highly	expressed.	This	up-regulation	seems	

to	 indicate	 that	 cells	 with	 melatonin	 were	 more	 efficient	 detoxifying	 ROS	 and	

subproducts	of	lipid	peroxidation.	In	fact,	shortly	after	16	h	had	passed,	the	GSH:GSSG	

ratio	increased	in	the	presence	of	melatonin.	

Nonetheless,	exposure	to	oxidative	stress	with	H2O2	(2	mM)	caused	an	increase	in	ROS,	

as	well	as	in	lipid	peroxidation,	which	severely	affected	the	cellular	viability	in	further	

inoculations,	 especially	 when	 stress	 was	 applied	 during	 the	 early	 exponential	 and	

stationary	 phases.	 Under	 these	 redox	 imbalance	 conditions,	 the	 cells	 initiated	 a	

remodeling	 process	 of	 their	 cellular	 machinery,	 which	 involved	 changes	 at	 the	

transcriptional	 level	 to	 fully	 activate	 all	 the	 genes	 involved	 in	 the	 oxidative	 stress	

response	as	well	as	the	general	stress	response	to	maintain	a	proper	redox	state	(Costa	

and	Moradas-Ferreira,	 2001;	 Jamieson,	 1998;	Moradas-Ferreira	 and	 Costa,	 2013).	 In	

addition,	as	discussed	in	the	previous	objective,	an	adaptive	response	to	oxidative	stress	
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was	 observed	 in	 the	 different	 yeast	 species,	 which	 involved	 changes	 in	 their	 lipid	

composition.	

Under	these	adverse	conditions,	the	presence	of	melatonin	was	clearly	able	to	mitigate	

ROS	 accumulation	 and	 lipid	 peroxidation.	 In	 fact,	 stressed	 cells	 that	 incorporated	

exogenous	melatonin	enhanced	 their	 viability	when	 reinoculated	 into	 fresh	medium.	

This	protective	effect	of	MEL	was	especially	significant	when	stress	was	applied	during	

the	early	stationary	phase.	These	results	confirm	that	the	cells	are	more	susceptible	to	

oxidative	stress	during	the	early	exponential	phase	(DeRisi,	1997;	Jamieson,	1998;	Puig	

and	Pérez-Ortín,	2000)	and	in	the	role	in	which	melatonin	prepares	cells	to	better	resist	

oxidative	 stress.	Moreover,	 the	 antioxidant	 function	was	 one	 of	 the	most	 important	

molecular	functions	attributed	to	melatonin	in	our	transcriptomic	assay.	

It	 is	 important	 to	 highlight	 that	 cells	 previously	 treated	 with	 melatonin	 which	 are	

exposed	to	oxidative	stress	have	up-regulated,	among	others,	genes	associated	with	the	

gluthathione/	glutaredoxin	and	thioredoxin	systems,	which	have	been	correlated	with	

higher	 levels	of	 reduced	glutathione	and	 lower	 levels	of	 its	oxidized	form.	Therefore,	

melatonin	seems	to	activate	these	glutathione/glutaredoxin	and	thioredoxin	systems,	

which	are	considered	essential	under	aerobic	and	anaerobic	conditions	(Herrero	et	al.,	

2008),	 and	 which	 provide	 the	 most	 important	 protection	 against	 oxidative	 stress	

generated	by	ROS	and	hydroperoxides	 in	S.	 cerevisiae	 (Auchère	et	al.,	 2008;	Gómez-

Pastor	 et	 al.,	 2012).	 These	 defense	mechanisms	 for	 detoxifying	 ROS	 can	 act	 in	 both	

cytosolic	 and	 mitochondrial	 compartments.	 Thus,	 melatonin	 could	 also	 cross	

mitochondrial	membranes	acting	as	a	mitochondria-targeted	antioxidant	in	S.	cerevisiae	

both	at	the	physiological	level,	by	reducing	ROS	accumulation,	and	at	the	transcriptional	

level,	 by	 activating	 genes	 related	 to	 mitochondrial	 function	 and	 maintenance.	

Furthermore,	the	content	of	cardiolipin,	a	phospholipid	that	is	primarily	localized	in	the	

inner	mitochondria	membrane,	was	higher	in	cells	treated	with	melatonin,	suggesting	a	

more	functional	mitochondrion	during	H2O2	stress,	as	has	been	previously	described	for	

ethanol	stress	(Chi	and	Arneborg,	1999).	

In	response	to	oxidative	stress,	melatonin	may	not	only	contribute	by	generating	energy	

in	 the	 mitochondria	 (ATP),	 but	 it	 also	 produces	 the	 acetyl-CoA	 required	 for	 the	

biosynthesis	of	FAs.	Cells	grown	 in	presence	of	melatonin	maintained	higher	MUFAs,	
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such	as	palmitoleic	and	oleic	acids,	leading	to	higher	UFA/SFA	and	higher	medium	chain-

length	 fatty	 acids	 after	 oxidative	 stress	 exposure.	 Regarding	 sterols,	 melatonin	 also	

increased	the	total	 levels	of	sterols,	 leading	to	a	higher	ergosterol/squalene	ratio.	As	

discussed	 before,	 both	 the	 UFA/SFA	 and	 ergosterol/squalene	 ratios	 have	 been	

correlated	with	higher	tolerance	to	oxidative	stress.	As	a	consequence,	melatonin	could	

increase	 the	b-oxidation	within	peroxisomes.	Moreover,	melatonin	produced	cellular	

changes	 at	 the	 transcriptomic	 level,	 which	 would	 imply	 changes	 in	 fatty	 acid	

degradation,	 the	 glycolysis/gluconeogenesis	 pathway,	 peroxisomal	 matrix,	 pyruvate	

metabolism,	 amino	 acid	metabolism	 and	 nucleotide	 repair.	 According	 to	 Zhao	 et	 al.	

(2015),	 these	 transcriptomic	 changes	 could	 be	 crucial,	 among	 others	 functions,	 for	

detoxifying	lipoperoxidation	products,	thus	reaching	higher	oxidative	stress	tolerance.	

The	mechanisms	of	action	exerted	by	melatonin	as	described	until	the	present	could	be	

extrapolated	to	other	strains	of	S.	cerevisiae	and	to	non-Saccharomyces	species	because	

our	results	seem	to	indicate	a	similar	protection	effect	by	melatonin	against	oxidative	

stress	in	all	the	tested	strains.	However,	further	research	is	needed	to	evaluate	its	effect	

on	the	enzymatic	and	non-enzymatic	defense	systems	of	those	species,	especially	in	the	

more	 resistant	 ones.	 In	 any	 case,	 the	melatonin	 in	 unstressed	 cells	 also	 seemed	 to	

activate	 catalase	 activity	 indirectly	 in	 S.	 cerevisiae,	 T.	 delbrueckii	 and	H.	 uvarum.	 In	

stressed	 cells,	 melatonin	 partially	 mitigated	 oxidative	 damage	 by	 decreasing	 ROS	

production	 and/or	 lipid	 peroxidation	 without	 increasing	 the	 catalase	 activity.	 This	

finding	 could	 indicate	 that	 melatonin	 has	 a	 direct	 effect	 on	 ROS	 scavengers	 or	 the	

simultaneous	actions	of	other	defense	 systems	such	as	glutathione/glutaredoxin	and	

thioredoxins	systems,	which	could	decrease	the	need	for	catalase	activity.	

In	summary,	regarding	the	antioxidant	activity	of	melatonin,	we	were	able	to	show	its	

powerful	 antioxidant	properties	 in	 yeasts.	When	exogenous	melatonin	was	added	 (5	

µM)	 in	 the	 absence	 of	 stress,	 our	 results	 indicated	 that	melatonin	 supplementation	

enables	cells	to	better	resist	further	stresses.	However,	when	cells	were	subjected	to	

oxidative	stress,	melatonin	exerted	a	prominent	antioxidant	activity.	Our	results	showed	

that	melatonin	can	act	at	different	levels	in	yeast	to	reduce	oxidative	stress	(Figure	1),	

(1)	as	an	antioxidant	that	directly	scavenges	ROS	(2)	by	modulating	the	gene	expression	

to	 indirectly	 stimulate	 the	 antioxidant	 enzyme	 production	 and	 (3)	 by	 increasing	 the	
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effectiveness	of	mitochondrial	functions,	refining	the	oxidative	phosphorylation	in	the	

mitochondrial	 respiratory	 chain,	 which	 would	 further	 decrease	 the	 peroxidation	 of	

membrane	lipids.	

	

	

Figure	1.	Primary	melatonin	effect	as	an	antioxidant	in	S.	cerevisiae	(figure	modified	from	Gostimskaya	
and	Grant	2016	and	adapted	for	melatonin	effects).	

	

In	many	respects,	the	mechanisms	used	by	melatonin	to	exert	its	antioxidant	capacity	in	

yeasts	are	similar	to	the	ones	described	in	several	studies	in	mammals,	which	show	the	

strong	direct	and	indirect	radical-scavenging	potential	of	melatonin	(León	et	al.,	2005;	

Reiter	et	al.,	2000,	2016;	Rodriguez	et	al.,	2004;	Zhang	and	Zhang,	2014).	Its	antioxidant	

effect	seems	to	be	even	greater	than	the	one	observed	with	ascorbic	acid,	well	known	

antioxidant	compound	(Montilla-López	et	al.,	2002).	

Therefore,	the	results	presented	in	this	thesis	 indicate	that	our	 initial	hypothesis	was	

correct	 because	 melatonin	 is	 able	 to	 act	 as	 an	 antioxidant	 compound	 in	 both	

Saccharomyces	 and	 non-Saccharomyces	 yeasts	 by	 indirectly	 interacting	 with	 yeast	

endogenous	defense	systems.		
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ü Metschnikowia	pulcherrima,	Torulaspora	delbrueckii	and	Starmerellera	bacillaris	

wine	 yeasts	 are	 best	 at	 resisting	 the	 oxidative	 stress	 induced	 by	 hydrogen	

peroxide. 

 
 

ü A	high	proportion	of	unsaturated	fatty	acids,	particularly	 linolenic	and	 linoleic	

acids,	are	associated	with	higher	stress	tolerance	in	non-conventional	yeast.	 

	

ü Oleic	acid	and	the	PC/PE	and	ergosterol/squalene	ratios	are	important	indicators	

of	oxidative	stress	tolerance	in	yeast	strains. 

	

ü S.	cerevisiae	can	incorporate	exogenous	melatonin	at	nanomolar	concentrations,	

which	act	on	genome-wide	gene	expression	and	interfere	with	the	regulation	of	

specific	and	general	stress	responses. 

 

ü In	 the	 absence	 of	 oxidative	 stress,	melatonin	 prepares	 cells	 to	 better	 endure	

further	 stresses	 by	 activating	 cellular	 antioxidant	 defense	 systems	 in	 both	 S.	

cerevisiae	and	non-Saccharomyces	species.	 

 

ü Under	oxidative	stress,	melatonin	exerts	antioxidant	properties	in	yeast,	partially	

mitigating	the	damage	produced	by	oxidative	stress	by	decreasing	intracellular	

ROS	and	lipid	peroxidation,	which	enhances	yeast	viability. 

 

ü Melatonin	modulates	the	gene	expression	in	S.	cerevisiae,	stimulating	the	genes	

encoding	 antioxidant	 enzymes,	 such	 as	 glutathione/glutaredoxin	 and	

thioredoxin	 systems,	 catalases,	 superoxide	dismutases,	methallothioneins	and	

oxidoreductases,	which	play	an	 important	role	 in	detoxifying	free	radicals	and	

mitigating	the	damage	they	produce. 
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ü Melatonin	indirectly	stimulates	the	glutathione	system	to	enhanced	the	redox	

cellular	state,	by	increasing	reduced	glutathione	under	oxidative	stress.	 

 

ü Melatonin	enhances	the	mitochondrial	functions	by	activating	genes	related	to	

its	metabolism	and	maintenance,	which	results	in	higher	cardiolipin	contents.	

	

ü Melatonin	improves	stress	tolerance	to	stress	in	S.	cerevisiae	by	increasing	the	

total	 fatty	 acid	 content,	 primarily	 unsaturated	 fatty	 acids,	 and	 the	

ergosterol/squalene	 ratio.	 Furthermore,	 melatonin	 increases	 peroxisome	

proliferation	independently	of	oxidative	stress.	

 

 

  



	

	
	

	

	 	



	

	
 

	 	



	

	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

No reniego de mi naturaleza, no reniego de 

mis elecciones, de todos modos he sido 

afortunada.  

Muchas veces en el dolor se encuentran los 

placeres más profundos, las verdades más 

complejas, la felicidad más certera. 

Tan absurdo y fugaz es nuestro paso por el 

mundo, que sólo me deja tranquila el saber 

que he sido auténtica, que he logrado ser 

lo más parecida a mi que he podido. 

 

                          (Frida Kahlo) 

	



	

	
 

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	

	
	

	

	

	

	

	

	

	


