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Abstract

Speaker diarization has received several research attentions over the last decade. Among

the different domains of speaker diarization, diarization in meeting domain is the most

challenging one. It usually contains spontaneous speech and is, for example, susceptible

to reverberation.

The appropriate selection of speech features is one of the factors that affect the perfor-

mance of speaker diarization systems. Mel Frequency Cepstral Coefficients (MFCC) are

the most widely used short-term speech features in speaker diarization. Other factors

that affect the performance of speaker diarization systems are the techniques employed

to perform both speaker segmentation and speaker clustering.

In this thesis, we have proposed the use of jitter and shimmer long-term voice-quality

features both for GMM and i-vector based speaker diarization systems. The voice-

quality features are used together with the state-of-the-art short-term cepstral and long-

term speech ones. The long-term features consists of prosody and Glottal-to-Noise

excitation ratio (GNE) descriptors. Firstly, the voice-quality, prosodic and GNE features

are stacked in the same feature vector. Then, they are fused with cepstral coefficients

at the score likelihood level both for the proposed Gaussian Mixture Modeling (GMM)

and i-vector based speaker diarization systems.

For the proposed GMM based speaker diarization system, independent HMM models

are estimated from each set of features. In speaker segmentation, the fusion of the

short-term descriptors with the long-term ones is carried out by linearly weighting the

log-likelihood scores of Viterbi decoding. In speaker clustering, the fusion of the short-

term cepstral features with the long-term ones is carried out by linearly fusing the BIC

scores corresponding to these feature sets.

For the proposed i-vector based speaker diarization system, the feature fusion is per-

formed exactly the same as the one in the previously mentioned GMM based system.

But, the speaker clustering technique is based on the recently introduced factor analysis

paradigm. Two sets of i-vectors are extracted from the speaker segmentation hypothesis.
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Whilst the first i-vector is extracted from short-term spectral features, the second one

is extracted from the stacked voice quality, prosodic and GNE descriptors. Then, the

cosine-distance and Probabilistic Linear Discriminant Analysis (PLDA) scores among i-

vectors are linearly weighted to obtain a unique similarity score. Finally, the final fused

score is used as speaker clustering distance.

We have also proposed the use of delta dynamic features for speaker clustering. The

motivation for using deltas in clustering is because they capture the transitional char-

acteristics of the speech about speaker specific information. The proposed speaker di-

arization system uses both the static and delta dynamic features for speaker clustering.

The speaker segmentation is based only on the static MFCC feature set.

The experiments have been carried out on Augmented Multi-party Interaction (AMI)

meeting corpus. The experimental results show that the use of voice-quality, prosodic,

GNE and delta dynamic features improve the performance of both GMM and i-vector

based speaker diarization systems.



Resumen

La diarización del altavoz ha recibido varias atenciones de investigación durante la última

década. Entre los diferentes dominios de la diarización del hablante, la diarización en el

dominio del encuentro es la más dif́ıcil. Normalmente contiene habla espontánea y, por

ejemplo, es susceptible de reverberación.

La selección apropiada de las caracteŕısticas del habla es uno de los factores que afectan el

rendimiento de los sistemas de diarización de los altavoces. Los Coeficientes Cepstral de

Frecuencia Mel (MFCC) son las caracteŕısticas de habla de corto plazo más utilizadas en

la diarización de los altavoces. Otros factores que afectan el rendimiento de los sistemas

de diarización del altavoz son las técnicas empleadas para realizar tanto la segmentación

del altavoz como el agrupamiento de altavoces.

En esta tesis, hemos propuesto el uso de jitter y shimmer caracteŕısticas de calidad de voz

a largo plazo tanto para GMM y i-vector basada en sistemas de diarización de altavoces.

Las caracteŕısticas de calidad de voz se utilizan junto con el estado de la técnica a corto

plazo cepstral y de larga duración de habla. Las caracteŕısticas a largo plazo consisten

en la prosodia y los descriptores de relación de excitación Glottal-a-Ruido (GNE). En

primer lugar, las caracteŕısticas de calidad de voz, prosódica y GNE se apilan en el mismo

vector de caracteŕısticas. A continuación, se fusionan con coeficientes cepstrales en el

nivel de verosimilitud de puntajes tanto para los sistemas de diarización de altavoces

basados en el modelo Gaussian Mixture Modeling (GMM) como en los sistemas basados

en i.

Para el sistema de diarización de altavoces basado en GMM propuesto, se calculan

modelos HMM independientes a partir de cada conjunto de caracteŕısticas. En la seg-

mentación de los altavoces, la fusión de los descriptores a corto plazo con los de largo

plazo se lleva a cabo mediante la ponderación lineal de las puntuaciones log-probabilidad

de decodificación Viterbi. En la agrupación de altavoces, la fusión de las caracteŕısticas

cepstrales a corto plazo con las de largo plazo se lleva a cabo mediante la fusión lineal

de las puntuaciones BIC correspondientes a estos conjuntos de caracteŕısticas.
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Para el sistema de diarización de altavoces basado en un vector i, la fusión de car-

acteŕısticas se realiza exactamente igual a la del sistema basado en GMM antes men-

cionado. Sin embargo, la técnica de agrupación de altavoces se basa en el paradigma

de análisis de factores recientemente introducido. Dos conjuntos de i-vectores se ex-

traen de la hipótesis de segmentación de altavoz. Mientras que el primer vector i se

extrae de caracteŕısticas espectrales a corto plazo, el segundo se extrae de los descrip-

tores de calidad de voz apilados, prosódicos y GNE. A continuación, las puntuaciones de

coseno-distancia y Probabilistic Linear Discriminant Analysis (PLDA) entre i-vectores

se ponderan linealmente para obtener una puntuación de similitud única. Finalmente,

la puntuación final fusionada se utiliza como distancia de agrupación de altavoces.

También hemos propuesto el uso de caracteŕısticas dinámicas delta para el agrupamiento

de altavoces. La motivación para usar deltas en la agrupación es porque capturan las

caracteŕısticas de transición del discurso sobre la información espećıfica del hablante. El

sistema de diarización de altavoces propuesto utiliza tanto las caracteŕısticas dinámicas

estáticas como delta para la agrupación de altavoces. La segmentación del altavoz se

basa únicamente en el conjunto de funciones MFCC estáticas.

Los experimentos se han llevado a cabo en el corpus de reunión de interacción multipar-

tito aumentada (AMI). Los resultados experimentales muestran que el uso de calidad

vocal, prosódica, GNE y dinámicas delta mejoran el rendimiento de los sistemas de

diarización de altavoces basados en GMM e i-vector.
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Chapter 1

Introduction

Speech technologies have been applied in automatic searching, indexing and retrieval

of audio information by extracting meta-data from an audio signal. An audio segment

normally consists of different speakers, music segments, noises, etc.

Speaker diarization is the process of segmenting and clustering a speech recording into

homogeneous regions and answers the question “Who spoke when” without any prior

knowledge about the speakers [Tranter and Reynolds, 2006]. Speaker diarization needs

to first classify the speech and non-speech parts of the audio signal. Then, it marks the

speaker changes in the detected speech and clusters speech segments which belong to

different speakers [Meignier et al., 2006].

Speaker diarization has received much attention recently [Anguera et al., 2012], and is

used in automatic speech recognition, rich transcription, audio indexing and retrieval,

audio archival and monitoring, speaker counting, etc.

There are three major domains for speaker diarization [Reynolds and Torres-Carrasquillo,

2004]. These are broadcast news, meetings and conversational telephone speech. The

broadcast news include radio and television programs over a single channel. The meet-

ing domain includes public gatherings or lectures in which people interact in the same

room. The meeting domain recordings are normally held with one or several micro-

phones. If there is only one microphone in the meeting room, the input format is called

single distant microphone (SDM). If there are more than one microphones in different

locations of the meeting room, it is called multiple distant microphones (MDM). Finally,

the conversational telephone speech is a telephone conversation of two more more people

over a single channel.

Speaker diarization systems use mostly the static Mel-frequency Cepstral Coefficients

(MFCC) as acoustic signal representations. They commonly model the MFCC features

1



2 Chapter 1. Introduction

distribution using Gaussian Mixture Modeling (GMM) and apply Bayesian Information

Criterion (BIC) methods for both speaker segmentation and clustering. The main focus

of this thesis is improving the performance of the baseline HMM/GMM based speaker

diarization system which is exclusively based on MFCC feature set and GMM modeling

technique.

Hence, this thesis has proposed the use of jitter and shimmer voice-quality features with

the other long-term and short-term speech features for GMM and i-vector based speaker

diarization systems. The GMM modeling technique is replaced with the recent devel-

opments in the field of speaker recognition (i.e., i-vectors). The clustering techniques

are based on i-vector based cosine distance and Probabilistic Linear Discriminant Anal-

ysis (PLDA) distance metrics. This thesis has also proposed the use of dynamic delta

features for speaker clustering.

1.1 Motivation and Objectives

As it is mentioned in Section 1, the three major domains for speaker diarization are

broadcast news, meetings and conversational telephone speech. Diarization of meeting

rooms is the most challenging one since it normally contains spontaneous speech of

multiple speakers with short-speaker turns. Hence, most of the recent speaker diarization

researches have been on the meeting room conversations.

As it is reported in [Huijbregts et al., 2012], one of the main problems in speaker di-

arization is the high Diarization Error Rate (DER) variation among different shows

using the same speaker diarization system. One of the factors that critically affect

the performance of speaker diarization approaches is the extraction of relevant speaker

features. Mel Frequency Cepstral Coefficients (MFCC) are the most widely used short-

term speech features in speaker diarization [Anguera et al., 2012]. Despite its broadly

use in speech processing applications, it is reported in [Friedland et al., 2009, Zelenák

and Hernando, 2011] that the fusion of short-term features with long-term ones provides

better results for speaker diarization. This is due to the long-term feature’s provision of

complimentary information to the short-term ones.

The techniques used for speaker segmentation and speaker clustering have also impact

on the performance of speaker diarization systems. Speaker diarization systems mostly

use Gaussian Mixture Modeling (GMM) based Bayesian Information Criterion (BIC)

clustering technique to merge clusters within an Agglomerative Hierarchical Clustering

(AHC) approach.
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Since the long-term features add complimentary information to MFCC, we are motivated

to show that the average and high DER variations among different shows can be reduced

by using these long-term features. Hence, we have explored the use of jitter and shimmer

voice-quality features for both GMM and i-vector based speaker diarization systems. The

voice-quality features are fused with the state-of-the-art short-term cepstral and long-

term speech features. The long-term speech features are prosody and Glottal-to-Noise

excitation Ratio (GNE). The fusion of the voice-quality features with the the long-

term and short-term features is carried out at the feature and score likelihood level,

respectively.

The objectives of this thesis can be summarized as follows:

1. The use of Dynamic Features for Speaker Clustering

Mel Frequency cepstral coefficients (MFCCs) are the most widely used short-term

features for speaker diarization [Anguera et al., 2012]. Most of the state of the art

speaker diarization systems use only the static MFCC for diarization.

The first and second order time derivatives of the instantaneous cepstral features:

delta (∆) and (∆∆) features have been successfully used in different speech ap-

plications. The delta dynamic features can be used to capture the transitional

characteristics of the speech signal which contains the speaker specific informa-

tion. These information are not captured by the static MFCC features.

The delta dynamic features have been successfully used in speaker recognition

in [Furui, 1981]. The delta features have aslso been successfully used in speaker

verification [Memon et al., 2009], speaker classification [Nguyen, 2010] and speech

recognition [Kumar et al., 2011].

But, the delta features are not widely used in speaker diarization experiments. For

example, it is reported in [Luque, 2012] that since the delta features deteriorate the

diarization results, only the static MFCC features are used in speaker diarization.

It is also reported in [Yella, 2015] that delta features are not used in speaker

diarization systems.

Speaker clustering is highly related to speaker classification and speaker verifi-

cation. Hence, we propose the use of delta dynamic features only for speaker

clustering. The delta features provide new information related to each frame that

can not be captured with purely static features. The main contribution of this

work is the use of static and delta dynamic features in speaker clustering. The

speaker segmentation is based only on the static MFCC.

2. The use of Voice quality features for HMM/GMM Speaker Diarization

System
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Jitter and shimmer voice-quality measurements discern variations of fundamental

frequency and amplitude, respectively. Studies show that these measurements can

be used to detect voice pathologies [Kreiman and Gerratt, 2005], speaking styles

and emotions [Li et al., 2007], and also identify age and gender [Sadeghi Naini and

Homayounpour, 2006]. For example, the authors in [Farrús et al., 2007] report

that fusing jitter and shimmer voice-quality measurements with the baseline cep-

stral features improve the performance of speaker recognition systems. It is also

described in [Li et al., 2007] that the use of jitter and shimmer measurements to-

gether with cepstral ones improves the classification accuracy of different speaking

styles more than using only the baseline cepstral features. The work of [Zhang,

2008] also reports that the fusion of voice-quality with prosodic features is able to

effectively discriminate different emotions in Chinese speech emotion identification.

The importance of voice-quality features in emotion identification is also discussed

in [Johnstone and Scherer, 1999]. It is also shown in [Kreiman and Gerratt, 2005]

that these voice-quality measurements can be used to characterize voices such as

breathy, tense, harsh, whispery, creaky and hoarse.

Based on these studies, we have proposed the use of jitter and shimmer voice-

quality measurements for speaker diarization since these features add complemen-

tary information to the baseline cepstral features.

Firstly, jitter and shimmer voice quality features are extracted from the fundamen-

tal frequency (F0) contours. Then, the voice-quality features are fused with the

short-term cepstral and long-term prosodic features. The fusion of features is car-

ried out at the feature and score level, respectively. The fusion of the voice-quality

features with the prosodic ones is carried out at the feature level (i.e., they are

stacked in the same feature vector). The prosodic features are the extracted from

the evolution in time of pitch, acoustic intensity and the first four formant fre-

quencies. Then, the stacked long-term speech features are fused with the cepstral

ones at the score likelihood level both in segmentation and clustering stages.

The score fusion in segmentation is based on the log-likelihood scores corresponding

to the short- and long-term speech features. The score in clustering is based on

Bayesian Information Criterion (BIC) combined scores of each feature set.

3. The use of Voice quality features for i-Vector based Speaker Diarization

System

The techniques employed for both speaker segmentation and speaker clustering

factors have also impact on the performance of speaker diarization systems, in

addition to the selection of appropriate speech features. Speaker diarization sys-

tems mostly use Gaussian Mixture Modeling (GMM) based Bayesian Information
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Criterion (BIC) clustering technique to merge clusters within an Agglomerative

Hierarchical Clustering (AHC) approach.

Factor analysis techniques which are the state of the art in speaker recognition have

recently been successfully applied in speaker diarization experiments [Kenny et al.,

2010, Franco-Pedroso et al., 2010, Shum et al., 2011, Shum et al., 2012, Vaquero

Avilés-Casco, 2011, Senoussaoui et al., 2013]. In these works, the speech clusters

generated by the segmentation are first represented by i-vectors. Then, the suc-

cessive clustering stages are carried out using i-vector modeling techniques. Rep-

resenting the speech clusters by i-vectors enables to reduce the large-dimensional

feature vector into a small dimensional one by retaining most of the relevant in-

formation. For instance, it is reported in [Silovsky and Prazak, 2012] that mod-

eling speech segments by i-vector and using cosine-distance clustering technique

improves the performance of a diarization system more than GMM based BIC

clustering technique. It is also shown in [Kenny et al., 2010,Franco-Pedroso et al.,

2010, Shum et al., 2011] that i-vector based cosine-distance clustering technique

has been successfully applied in speaker clustering task.

Note that the above mentioned works extract i-vectors exclusively from the short-

term cepstral features for speaker clustering. The main contribution of our work

is the extraction of i-vectors from the short-term cepstral, and long-term speech

features. The long-term speech features are the voice-quality, prosodic and GNE

features. At first, the long-term voice-quality, prosodic and GNE features are fused

at the feature level (i.e., they are stacked in the same feature vector). Then, two

sets of i-vectors are extracted for each segment given by the Viterbi segmenta-

tion decoding. While the first i-vector is extracted from the short-term cepstral

features, the second one is extracted from the stacked long-term speech features.

Finally, the cosine distance and PLDA scores of these i-vectors are fused as a

distance metrics for speaker clustering.

1.2 Publications from the thesis

The publications extracted from this thesis are summarized as follows:

1. Jitter and Shimmer Voice-quality Measurements for Speaker Diariza-

tion

Jitter and shimmer measure fundamental frequency and amplitude variations, re-

spectively. Previous studies have shown that these voice quality features have been

successfully used in speaker recognition and emotion classification tasks. The work



6 Chapter 1. Introduction

in [Farrús et al., 2007] reports that adding jitter and shimmer voice quality fea-

tures to both cepstral and prosodic features improves the performance of a speaker

verification system. It is also described in [Li et al., 2007] that the fusion of voice

quality features together with the cepstral ones improves the classification accu-

racy of different speaking styles and conveys information that discriminates the

different animal arousal levels. Furthermore, these voice quality features are more

robust to acoustic degradation and noise channel effects [Carey et al., 1996].

Based on these studies, we propose the use of jitter and shimmer voice quality

features for speaker diarization since they provide complementary information to

the baseline cepstral features. The main contribution of this work is the extraction

of jitter and shimmer voice quality features and their fusion with the cepstral ones

in the framework of speaker diarization.

The experiments have been carried out on the Augmented Multiparty Interaction

(AMI) corpus . Experimental results show that incorporating jitter and shim-

mer measurements to the baseline cepstral features decreases the diarization error

rate. The results of this work has been published in [Woubie et al., 2014]. The

publication can be accessed here.

2. Using Voice-quality Measurements with Prosodic and Spectral Features

for Speaker Diarization

Jitter and shimmer voice-quality measurements have been successfully used to

detect voice pathologies and classify different speaking styles. In this paper, we in-

vestigate the usefulness of jitter and shimmer voice measurements in the framework

of the speaker diarization. The combination of jitter and shimmer voice-quality

features with the long-term prosodic and short-term cepstral features is explored in

a subset of the AMI corpus. The appropriate characteristics related to the human

speech prosody are conveyed through intonation, rhythm and stress. Encouraged

by work of [Zelenák and Hernando, 2011], we have extracted features related to the

evolution in time of pitch, acoustic intensity and the first four formant frequencies

to validate their performance in this work. Experimental results show that the

best results are obtained by fusing the voice-quality features with the prosodic

ones at the feature level, and then fusing them with the cepstral features at the

score level. The results of this work has been published in [Woubie et al., 2015].

The publication can be accessed here.

3. Short- and Long-Term Speech Features for Hybrid HMM-i-Vector based

Speaker Diarization System

Recently, i-vector modeling techniques have been successfully used for speaker

clustering. In this work, we propose the extraction of i-vectors from short- and

http://upcommons.upc.edu/bitstream/handle/2117/27438/Abraham.pdf?sequence=1&isAllowed=y
http://www.isca-speech.org/archive/interspeech_2015/papers/i15_3100.pdf
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long-term speech features, and the fusion of their cosine scores within the frame

of speaker diarization.

Firstly, two sets of i-vectors are first extracted from short-term cepstral and long-

term features. The long-term features are the concatenation of voice-quality and

prosodic features. Once the i-vectors are extracted from the short- and long-term

speech features, the cosine scores of these two i-vectors are fused as a distance

metric for speaker clustering.

The experiments have been carried out on AMI corpus. Experimental results show

that the extraction of i-vectors from the short- and long-term speech features, and

the fusion of their cosine-distance scores provide better DER result than extracting

i-vectors only from short-term cepstral features. The experimental results also

show that i-vector based cosine distance clustering technique provides better results

than GMM based BIC clustering technique. The results of this work has been

published in [Woubie et al., 2016b]. The publication can be accessed here.

4. Improving i-Vector and PLDA based Speaker Clustering with Long-

term Features

Recently, i-vector modeling techniques have been successfully used for speaker

clustering. In this work, we propose the extraction of i-vectors from short- and

long-term speech features, and the fusion of their PLDA scores within the frame

of speaker diarization.

Firstly, two sets of i-vectors are first extracted from short-term cepstral and long-

term features. The long-term features are the concatenation of voice-quality,

prosodic and Glottal-to-Noise Excitation Ratio (GNE) features. Then, the PLDA

scores of these two sets of i-vectors are fused as a distance metric for speaker clus-

tering. The main contribution to the work in [Woubie et al., 2016b] is the use of

GNE feature together with the voice-quality and prosodic features. The i-vector

based cosine distance clustering technique in [Woubie et al., 2016b] is also replaced

by i-vector based PLDA clustering one.

Experimental results on AMI corpus show that i-vector based PLDA clustering

technique provides a substantial relative DER improvement more than GMM based

BIC clustering one. It also provides better DER improvement more than i-vector

based cosine distance clustering technique. The addition of GNE feature to the

voice-quality and prosodic features also improve the DER results. The results of

this work has been published in [Woubie et al., 2016a]. The publication can be

accessed here.

http://www.odyssey2016.org/papers/pdfs_stamped/18.pdf
http://www.isca-speech.org/archive/Interspeech_2016/pdfs/0339.PDF
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1.3 Organization of the thesis

The thesis is organized as follows:

• Chapter 2 (State-of-the-art in Speaker Diarization): This chapter provides a brief

overview of the the state of the art techniques in speaker diarization. It describes

the main components of speaker diarization system. It also outlines the most

widely used short- and long-term speech features in speaker diarization. The dif-

ferent speech and non-speech detection methods is also addressed in the chapter.

It also describes the most widely used speaker segmentation and clustering tech-

niques. Finally, it provides details about the different speaker diarization systems

and evaluation metrics of speaker diarization systems.

• Chapter 3 (The UPC Baseline Speaker Diarization System): This chapter describes

the baseline speaker diarization system. First, the front-end processing technique is

outlined. Then, the speaker segmentation and clustering techniques are discussed

along with the features used. Finally, the chapter provides a short summary of the

baseline speaker diarization system merging and stopping criterion techniques.

• Chapter 4 (Long-term Speech Features for Speaker Diarization): This chapter

describes the proposed long-term features for speaker diarization. Detailed de-

scriptions of long-term voice-quality, prosodic and GNE features is given. The

techniques and methods of the extraction of these long-term features are also out-

lined.

• Chapter 5 (Proposed Speaker Diarization Systems): This chapter discusses about

the proposed speaker diarization systems. The proposed speaker diarization archi-

tectures both for the GMM and i-vector based systems are clearly described. The

feature and score fusion techniques carried out in the proposed speaker diarization

systems is also discussed. The different score fusion techniques in segmentation and

clustering for the proposed GMM and i-vector based speaker diarization systems

are also described.

• Chapter 6 (Experimental Setups and Results): This chapter explains about the

experimental setups and results. It discusses about the Augmented Multi-party

Interaction (AMI) meeting corpus used in the thesis. The different partitions of

the AMI dataset for the training, development and test sets are clearly stated. The

Universal Background Model (UBM), T-Matrix and PLDA training techniques are
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also outlined in the chapter. The techniques of the parameter tuning, developmen-

tal and test results are finally presented.

• Chapter 7 (Conclusions and Future works): This chapter summarizes the major

contributions and results obtained from the PhD thesis. It also provides future

research lines that can be continued from the proposed systems.





Chapter 2

State-of-the-art in Speaker

Diarization

2.1 Speaker Diarization

Speaker diarization is the process of segmenting and clustering a speech recording into

homogeneous regions and answers the question “who spoke when” without any prior

knowledge about the speakers [Tranter and Reynolds, 2006]. A typical diarization system

performs three basic tasks. Firstly, it discriminates speech segments from the non-speech

ones. Secondly, it detects speaker change points to segment the audio data. Finally, it

groups these segmented regions into speaker homogeneous clusters.

Although there are many different approaches to perform speaker diarization, most of

them follow the following scheme:

Feature extraction: It extracts specific information from the audio signal and allows

subsequent speaker modeling and classification. The extracted features should ideally

maximize inter-speaker variability and minimize intra-speaker variability, and represent

the relevant information [Duda et al., 2001].

Speaker segmentation: It partitions the audio data into acoustically homogeneous seg-

ments according to speaker identities. It detects all boundary locations within each

speech region that corresponds to speaker change points which are subsequently used

for speaker clustering.

Speaker clustering: It groups acoustically the homogeneous segments of the speaker

segmentation task and displays a single cluster for each speaker in the audio signal.

11
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Figure 2.1: Speaker segmentation and clustering example.

2.2 Speech Features

One of the essential parts of speech processing modules that plays a significant role on the

different speech applications is feature extraction. Feature extraction retrieves relevant

information from the acoustic signal. Therefore, the feature extraction module needs

to extract features that have large between-speaker variability and small within-speaker

variability.

There are generally two broad categories of speech features: short-term and long-term

features.

2.2.1 Short-term Speech Features

Since speech signal continuously varies because of articulatory movements, it needs to

be broken down into short frames of about 20-30 milliseconds duration [Kinnunen and

Li, 2010]. The speech signal is quasi-stationary within this interval and feature vectors

are extracted from each frame. These short term extracted feature vectors provide

information about speaker’s vocal tract characteristics. Due to the easy extraction

process of short-term features and their proven performance, they are the most widely

used features in speech recognition [Zheng et al., 2001], speaker recognition [Friedland

et al., 2009] and different speech applications [Campbell, 1997, Furui, 2004]. They are

descriptors of the short-term spectral envelope which is an acoustic correlate of timbre

and the resonance properties of the supralaryngeal vocal tract.

The frame is pre-emphasized and multiplied by a smooth window function first. The

pre-emphasis boosts the higher frequencies whose intensity would be otherwise very low.

The window function is needed because of the finite-length effects of the discrete Fourier

transform (DFT).
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The fast Fourier transform (FFT) decomposes a signal into its frequency components

[Alan et al., 1989]. The global shape of the DFT magnitude spectrum contains infor-

mation about the resonance properties of the vocal tract. A simple model of spectral

envelope uses a set of band-pass filters to do energy integration over neighboring fre-

quency bands.

Mel Frequency Cepstral Coefficients (MFCC) are the most widely used short-term acous-

tic features for speaker diarization [Anguera et al., 2012]. They are computed with the

aid of a psycho-acoustically motivated filterbank, followed by logarithmic compression

and discrete cosine transform (DCT). The dimensions of MFCCs for speaker diarization

is mostly around 20. Other widely used features include Perceptual Linear Predictive

(PLP) and Linear Prediction Coding (LPC).

Since an audio signal constantly changes, the speech signal need to be partitioned into

short frames. Then, the power spectrum of each frame is calculated. This is motivated

by the human cochlea which vibrates at different spots depending on the frequency of

the incoming sounds. Then, clumps of periodogram bins of are taken and summed up to

get an idea of how much energy exists in various frequency regions. This is performed by

the Mel filterbank. The Mel scale tells us exactly how to space our filterbanks and how

wide to make them. Once the filterbank energies are acquired, we take the logarithm

of them. The final step is to compute the Discrete Cosine Transform (DCT) of the log

filterbank energies. Then, DCT converts signal into time domain to generate MFCCs.

Speech technology applications perform well when they use data from clean environ-

ments. One of the factors that degrade their performance is the acoustic mismatch

between the training and test data. Feature normalization techniques have been stud-

ied to reduce the effect of background noises and channel variability. Feature warping

technique has been proposed by [Pelecanos and Sridhara, 2001] to gaussianize the dis-

tribution of features before modeling. It is shown in [Sinha et al., 2005,Zhu et al., 2006]

that feature warping gives significant improvements. However, feature warping may not

always be useful for speaker diarization since it may also remove part of information

that is used to characterize speaker. It is reported in [Kenny et al., 2010] that feature

normalization does not improve the the performance of speaker diarization.

2.2.2 Long-term Speech Features

While short-term features are extracted from a single speech frame, long-term features

are extracted from portions of speech longer than one frame. Long-term features capture

phonetic, prosodic, lexical, syntactic, semantic and pragmatic information.
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Although short-term spectral features are the most widely used ones for different speech

applications, the authors in [Farrs et al., 2006, Friedland et al., 2009, Zelenák and Her-

nando, 2011] show that long-term features can be employed to reveal individual differ-

ences which can not be captured by short-term spectral features.

Since long-term features provide discriminative power, fusion of short-term spectral fea-

tures with long-term features has been applied on speaker diarization experiments [Fried-

land et al., 2009,Pardo et al., 2007]. Long-term speech features are also robust to channel

variation since temporal patterns do not change with the change of acoustic conditions.

Fusion techniques also increase the reliability of a system [Wang and Shen, 1999]. Fusion

of prosodic and other long-term features together with MFCC dramatically increases the

performance of speaker diarization systems [Friedland et al., 2009,Pardo et al., 2007].

When meetings are recorded with Multiple Distant Microphones (MDM), additional

information can be extracted from the different speech sources. The additional infor-

mation is extracted from time-delays of arrivals (TDOA). TDOA features have been

successfully used together with MFCC in speaker diarization of meeting data [Pardo

et al., 2006]. The combination the TDOA features with the MFCC in [Pardo et al.,

2006] is done at the score likelihood level (i.e., a separate GMM is estimated for each

feature stream and their log-likelihoods are weighted to produce a single score). TDOA

features have also been successfully used together with MFCC to reduce diarization error

rate in [Van Leeuwen and Konečnỳ, 2008,Wooters et al., 2004].

Dynamic Features

It is possible to obtain more detailed speech features by using a derivation on the MFCC

acoustic vectors. This permits the computation of the Dynamic MFCCs, as the first

order derivatives of the MFCC. The speech features which are the time derivatives of

the spectrum-based speech features are known as dynamic speech features.

The delta and delta-delta dynamic features can complement the static information ob-

tained by the MFCC. The delta-MFCC feature vector represents the time derivative of

the MFCC features. The dynamic features represent spectral changes over time. Delta

features add dynamic information to the static cepstral features.These features can also

remove time-invariant spectral information. It is reported in [Memon et al., 2009] that

the static MFCC feature vectors can not accurately capture the transitional character-

istics of the speech signal which contains the speaker specific information. In [Memon

et al., 2009], it is shown that the performance of speaker verification system can be

improved by adding the time derivative dynamic delta feature to the static speech pa-

rameters. The time derivatives of MFCC features can also be used to improve the

performance of a speaker classification [Nguyen, 2010]. In [Kumar et al., 2011], it is
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shown that the addition of delta-cepstral features to the static 13-dimensional MFCC

features improves speech recognition accuracy, and a further (smaller) improvement is

provided by the addition of double-delta cepstral. It is also reported in [Nosratighods

et al., 2006] that the short-term dynamic features such as delta and delta-delta coeffi-

cients can be used to improve speech and speaker verification system by modelling the

short-term transitional information in the speech.

Prosodic Features

Prosody studies those aspects of speech that typically apply to a level above that of the

individual phoneme and very often to sequences of words. Prosody is expressed using

intonation, rhythm and stress, and are perceived by listeners as changes in fundamental

frequency, sound duration and loudness, respectively [Adami, 2007]. While fundamental

frequency is determined physiologically by the number of cycles that the vocal folds

make in a second, intensity is directly related to the subglottic pressure of the air col-

umn. Variations in sound duration, fundamental frequency and intensity normally apply

to more than one phoneme. Since phonemes are speech segments in linguistic terms,

the prosodic elements are considered as suprasegmental features, and they are usually

analyzed over sequences of segments [Dellwo et al., 2007]. They are estimated capturing

the evolution in time of fundamental frequency, acoustic intensity, formant frequencies

and duration.

• Pitch: The default pitch value and range of a speaker is influenced by the length

and mass of the vocal folds in the larynx [Dellwo et al., 2007]. The pitch values of

different speaker vary in relation to their age and gender.

• Acoustic intensity: It is the average amount of energy transmitted per unit time

through a unit area in a specified direction [Pickett and Morris, 2000]. Inten-

sity exhibits micro-perturbations It is used to mark stress and express emotions.

Therefore, changes in loudness can be used as a potential speaker discriminant

measure.

• Formant Frequencies: They are concentrations of acoustic energy around partic-

ular frequencies at roughly 1000-Hz intervals. They occur only in voiced speech

segments around frequencies that correspond to the speaker-specific resonances of

the vocal tract.

• Duration: The duration of silences between words, duration of pauses and the

duration of words between different speakers can also be used as a discriminant

measure to categorize speakers.
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Glottal-to-Noise Excitation Ratio

Different type of acoustic parameters have been proposed to measure different perturba-

tions in speech signal. These parameters are usually grouped into three main categories:

amplitude perturbation, frequency perturbation and noise parameters. Noise parameters

can be used to provide indication of the noise content of the signal and have an extensive

application in the evaluation of voice quality. GNE is an acoustic measure that can be

used to assess the amount of voice excitation by vocal-fold oscillations versus excitation

by turbulent noise. It indicates whether a given voice signal originates from vibrations

of the vocal folds or from turbulent noise generated in the vocal tract [Michaelis et al.,

1997]. Thus, it is closely related to breathiness, and it is considered a reliable mea-

sure for the relative noise level, even in the presence of strong amplitude and frequency

perturbations [Michaelis et al., 1997]. The computation of GNE is independent of vari-

ations of fundamental frequency and amplitude [Sáenz Lechón et al., 2009, Michaelis

et al., 1998a]. Thus GNE is suited even to highly irregular glottal oscillations.

It is reported in [Sáenz Lechón et al., 2009] that GNE parameter has a significant

potential to screen voices since it quantifies the amount of voice excitation and turbulent

noise. It is also reported in [Godino-Llorente et al., 2010] that GNE provides reliable

measurements for discrimination among normal and pathological voices more than other

classical long-term noise measurements, such as Normalized Noise Energy and Harmonics

to Noise Ratio. It has also been used successfully to screen voice disorders in [Godino-

Llorente et al., 2010].

2.3 Speech/Non-speech detection

The speech/non-speech detection detects the speech and non-speech segments of a given

audio signal. The errors made by speech/non-speech detection has impact on the perfor-

mance of the speaker diarization system in two different ways. These are missed speech

segments and false alarm speeches which directly contribute to the Diarization Error

Rate (DER) in the form of missed speeches and false alarms, respectively. The false-

alarm also create impurities in the acoustic models of speaker clusters [Wooters et al.,

2004]. Therefore, the selection of appropriate Speech Activity Detection (SAD) is crucial

since it affects the diarization evaluation metric (see Section 2.8 for DER calculations).

There are two ways to detect the speech/non-speech parts of a signal in speaker diariza-

tion. These are using a Speech Activity Detection (SAD) and the manual references

(Oracle SAD) of the reference files.



2.4. Speaker Modeling Techniques 17

The three widely used techniques for SAD are the following: energy based, model based

and hybrid approaches.

Energy based detectors: This technique uses a threshold on short-term energies to

decide for speech/non-speech segments [Junqua et al., 1994, Lamel et al., 1981]. This

technique does not need any training data and it is easy to implement. A constraint can

be imposed on the the length of the silences to avoid false alarms. The energy-based

method is mostly used in speech recognition. It is mostly used in telephone speech.

Since different recordings have different channels, noise and recording conditions, this

technique does not generalize to different recording scenarios.

Model based detectors: This technique uses a labelled speech and non-speech data

to pre-train models and classifies unlabelled speech data using pre-trained models [Zhu

et al., 2008,Anguera et al., 2005,Fredouille and Senay, 2006]. A Gaussian mixture model

is trained for each class and the detection of speech/non-speech segments is based on

Viterbi decoding. A minimum duration of speech segments is normally constrained for

each class to prevent decoding short-segments. The main problem of this approach is

the amount of labelled data to train the models and their generalizability to new data.

Hybrid approaches: It uses the the threshold energy and model based techniques

discussed previously. The energy based detector is applied first to detect the speech

segments. Then, these segments are used to train new models or adapt pre-trained

models to the current recording scenario. The hybrid technique alleviates the problem

of need of labelled training data. It can also overcome the problem of generalizability of

pre-trained models [Anguera et al., 2006a,Wooters and Huijbregts, 2008].

The second method of detecting speech/non-speech regions is using the Oracle SAD.

When Oracle SAD is used as SAD, the non-speech frames are marked. Therefore, the

missed speech and false alarms have zero values in the DER computation. Since this

thesis focuses on the impact of long-term speech features in GMM and i-vector based

diarization systems, Oracle SAD has been used as it enables us to focus mainly on

the speaker errors that occur due to segmentation and clustering. Hence, DER val-

ues reported in the experimental sections corresponds purely to speaker time confusion

produced by the diarization system.

2.4 Speaker Modeling Techniques

One of the crucial issues in speaker diarization is the techniques employed for speaker

modeling. Several modeling techniques have been used in speaker recognition and
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speaker diarization tasks. The state-of-the-art speaker modeling techniques in speaker

diarization are the following:

2.4.1 Gaussian Mixture Modeling

A Gaussian Mixture Model (GMM) is a parametric probability density function repre-

sented as a weighted sum of Gaussian component densities. GMMs have been success-

fully used to model the speech features in different speech processing applications.

A Gaussian mixture model is a weighted sum of M component Gaussian densities. Each

of the components is a multi-variant Gaussian function. A GMM is represented by mean

vectors, covariance matrices and mixture weights.

λ = {wi, µi,Σi}, i = 1, .......,C (2.1)

The covariance matrices of a GMM, Σi , can be full rank or constrained to be diagonal.

The parameters of a GMM can also be shared, or tied, among the Gaussian components.

The number of GMM components and type of covariance matrices are often determined

based on the amount of data available for estimating GMM parameters.

In speaker recognition, a speaker can be modeled by a GMM from training data or using

Maximum A Posteriori (MAP) adaptation [Reynolds, 2002]. While the speaker model is

built using the training utterances of a specific speaker in the GMM training, the model

is also usually adapted from a large number of speakers called Universal Background

Model in MAP adaptation.

Given a set of training vectors and a GMM configuration, there are several techniques

available for estimating the parameters of a GMM [McLachlan and Basford, 1988]. The

most popular and used method is the maximum likelihood (ML) estimation.

The ML estimation finds the model parameters that maximize the likelihood of the

GMM given a set of data. Assuming an independence between the training vectors

X = {xi, . . . , xN}, the GMM likelihood is typically described as :

p(X|λ) =
N∏
t=1

p(xt|λ) (2.2)

Since direct maximization is not possible on equation 2.2, the ML parameters are ob-

tained iteratively using expectation-maximization (EM) algorithm [Dempster et al.,
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Figure 2.2: Example of speaker model adaptation.

1977]. The EM iteratively estimate new model parameters λ̄ based on a given model λ

such that p(X|λ̄) ≥ p(X|λ).

The parameters of a GMM can also be estimated using Maximum A Posteriori (MAP)

estimation, in addition to the EM algorithm. The MAP estimation technique derives a

speaker model by adapting from a universal background model (UBM). The “Expecta-

tion” step of EM and MAP are the same. MAP adapts the new sufficient statistics by

combining them with old statistics from the prior mixture parameters.

Given a prior model and training vectors from the desired class, X = x1..., xT , we first

determine the probabilistic alignment of the training vectors into the prior mixture com-

ponents. For mixture i in the prior model Pr(i|xt, λUBM ) is computed as the percentage

of the mixture component i to the total likelihood,

Pr(i|xt, λUBM ) =
wi g(xt|µi,Σi)∑M
i=1wi g(xt|µi,Σi)

(2.3)

Then, the sufficient statistics for the weight, mean and variance parameters is computed

as follows:

ni =

T∑
t=1

Pr(i|xt, λprior)weight (2.4)

Ei(x) =
1

ni

T∑
t=1

Pr(i|xt, λprior)xt mean (2.5)
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Ei(x
2) =

1

ni

T∑
t=1

Pr(i|xt, λprior)x2
t variance (2.6)

Finally, the new sufficient statistics from the training data are used to update the prior

sufficient statistics for mixture i to create the adapted mixture weight, mean and variance

for mixture i as follows:

wi = [αwi ni/T + (1− αwi )wi]γ (2.7)

µi = αmi Ei(x) + (1− αmi )µi (2.8)

µ2
i = αviEi(x

2) + (1− αvi )(σ2
i + µ2

i )− µ2
i (2.9)

The adaptation coefficients controlling the balance between old and new estimates are

{αwi , αmi , αvi } for the weights, means and variances, respectively. The scale factor, γ, is

computed over all adapted mixture weights to ensure they sum to unity.

2.4.2 i-Vector

Different approaches have been developed recently to improve the performance of speaker

recognition systems. The most popular ones were based on GMM-UBM. The Joint

Factor Analysis (JFA) [Kenny et al., 2008] is then built on the success of the GMM-

UBM approach. JFA modeling defines two distinct spaces: the speaker space defined by

the eigenvoice matrix and the channel space represented by the eigen-channel matrix.

In [Dehak, 2009], it is proved that channel factors estimated using JFA, which are

supposed to model only channel effects, also contain information about speakers. A

new speaker verification system has been proposed using factor analysis as a feature

extractor that defines only a single space, instead of two separate spaces [Dehak et al.,

2011]. In this new space, a given speech recording is represented by a new vector,

called total factors as it contains the speaker and channel variabilities simultaneously.

Speaker recognition based on the i-vector framework [Dehak et al., 2011] is currently

the state-of-the-art in the field. It is also reported in [Kenny et al., 2010,Franco-Pedroso

et al., 2010,Shum et al., 2011,Shum et al., 2012,Vaquero Avilés-Casco, 2011,Senoussaoui

et al., 2013] that i-vector features can also be successfully used in speaker diarization

experiments. It is also shown in [Silovsky and Prazak, 2012] that modeling the speech
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segments by i-vector and using cosine distance scoring improves the performance of a

baseline speaker diarization system more that GMM based BIC clustering technique.

Given an utterance, the speaker and channel dependent GMM supervector is defined as

follows:

M = m+ Tw (2.10)

where m is a speaker and channel independent supervector, T is a rectangular matrix of

low rank and w is a random vector having a standard normal distribution N (0,1). The

components of the vector w are the total factors. These new vectors are called i-vectors.

M is assumed to be normally distributed with mean vector and covariance matrix TT t.

The total factor is a hidden variable, which can be defined by its posterior distribution

conditioned to the Baum–Welch statistics for a given utterance. This posterior distri-

bution is a Gaussian distribution and the mean of this distribution corresponds exactly

to i-vector. The Baum–Welch statistics are extracted using the UBM.

Given a sequence of L frames {y1, y2, ......, yn} and a UBM Ω composed of C mixture

components defined in some feature space of dimension F, the Baum–Welch statistics

needed to estimate the i-vector for a given speech utterance u is given by :

Nc =
L∑
t=1

P (c|yt,Ω) (2.11)

Fc =
L∑
t=1

P (c|yt,Ω)yt (2.12)

where c = 1, ...., C is the Gaussian index and P (c|yt,Ω) corresponds to the posterior

probability of mixture component c generating the vector yt. The centralized first-order

Baum–Welch statistics has also to be computed for the extraction of i-vectors as follows:

F̂c =

L∑
t=1

P (c|yt,Ω)(yt −mc) (2.13)

where mc is the mean of UBM mixture component c. The i-vector for a given utterance

can be obtained using the following equation:

w = (I + T tΣ−1N(u)T )−1. T tΣ−1F̂ (u) (2.14)
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where Nu is a diagonal matrix of dimension CF×CF whose diagonal blocks are NcI(c =

1, ......, C) . The supervector obtained by concatenating all first-order Baum–Welch

statistics Fc for a given utterance u is represented by F̂ (u) which has CF ×1 dimension.

The diagonal covariance matrix, Σ , with dimension CF × CF estimated during factor

analysis training models the residual variability not captured by the total variability

matrix T .

A clear and concise process of extraction of i-vectors is found in [Dehak et al., 2011].

After the extraction of raw i-vectors, normalization needs to be carried out on the raw

i-vector to remove any useless information [Bousquet et al., 2011, Garcia-Romero and

Espy-Wilson, 2011]. The normalization methods can be carried out at the feature or

score level.

One of the most widely used feature normalization techniques of i-vectors is length

normalization [Bousquet et al., 2011, Garcia-Romero and Espy-Wilson, 2011]. Length

normalization ensures that the distribution of i-vectors matches the Gaussian normal

distribution and makes the distributions of i-vector more similar. It is also reported

in [Jiang et al., 2012] that performing whitening before length normalization improves

the performance of speaker verification systems. It is also reported in [Garcia-Romero

and Espy-Wilson, 2011] that i-vector normalization improves the gaussianity of the i-

vectors. It reduces the gap between the underlying assumptions of the data and real

distributions. It also reduces the dataset shift between development and test i-vectors.

w ← Σ−
1
2 (w − µ)

||Σ−
1
2 (w − µ)||

(2.15)

where µ and Σ are the mean and the covariance matrix of a training corpus, respectively.

The data is standardized according to covariance matrix Σ and length-normalized (i.e.,

the i-vectors are confined to the hypersphere of unit radius).

The two most widely and common intersession compensation techniques of i-vectors

are Within-Class Covariance Normalization (WCCN) and Linear Discriminant Analysis

(LDA). WCCN uses the within-class covariance matrix to normalize the cosine kernel

functions in order to compensate for intersession variability [Dehak et al., 2011]. LDA

attempts to define a reduced special axes that minimize the within-speaker variability

caused by channel effects, and maximize between-speaker variability. It is shown in

[Dehak et al., 2011,Dehak et al., 2010] that cosine kernel function is an effective classifier

to categorize i-vectors.

Cosine Distance
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Figure 2.3: The i-vector extraction process.

Once the i-vectors are extracted from the outputs of speech clusters, cosine distance

scoring tests the hypothesis if two i-vectors belong to the same speaker or different

speakers. Given two i-vectors, the cosine distance among them is calculated as follows:

cos(wi, wj) =
wi.wj

||wi||.||wj ||
R θ (2.16)

where θ is the threshold value, and cos(wi,wj) is the cosine distance score between

clusters i and j. The corresponding i-vectors extracted for clusters i and j are represented

by wi and wj, respectively.

The cosine distance scoring considers only the angle between two i-vectors, not their

magnitude. Since the non-speaker information such as session and channel variabilities

affect the i-vector magnitude, removing the magnitudes can increase the robustness of

i-vector systems [Dehak et al., 2010].

Probabilistic Linear Discriminant Analysis

The i-vector representation followed by probabilistic linear discriminant analysis (PLDA)

modeling technique is the state-of-the-art in speaker verification systems [Prince and

Elder, 2007]. In speaker diarization, each i-vector represents the speech of one speaker.

Speaker diarization needs to determine if two i-vectors belong to the same or different

speakers.
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PLDA has been successfully applied in speaker recognition experiments [Brummer et al.,

2010]. It is also applied in [Jiang et al., 2012] to handle speaker and session variability in

speaker verification task. It has also been successfully applied in speaker clustering since

it can separate speaker and noise specific parts of an audio signal which is essential for

speaker diarization [Prazak and Silovsky, 2011]. PLDA has also been successfully used in

speaker clustering experiments and it is shown in the work of [Prazak and Silovsky, 2011]

that PLDA-based clustering provides significance performance improvement than BIC-

based speaker clustering methods. It is also shown that PLDA scoring provides better

speaker clustering performance than cosine scoring [Sell and Garcia-Romero, 2014].

Figure 2.4: Example of PLDA Model

In PLDA, assuming that the training data consists of J i-vectors where each of these

i-vectors belong to speaker I, the j’th i-vector of the I’th speaker is denoted by:

wij = µ+ Fhi +Gwij + Σij (2.17)

where µ is the overall speaker and segment independent mean of the i-vectors in the

training dataset, columns of the matrix F define the between-speaker variability and

columns of the matrix G define the basis for the within-speaker variability subspace.

Σij represents any unexplained data variation. The components of the vector hi are

the eigenvoice factor loadings and components of the vector wij are the eigen-channel

factor loadings. The term Fhi depends only on the identity of the speaker, not on the

particular segment.

Although the PLDA model assumes Gaussian behavior, there is empirical evidence that

channel- and speaker- effects result in i-vectors that are non-Gaussian. It is reported

in [Kenny, 2010] that the use of Student’s t-distribution, on the assumed Gaussian PLDA

model, improves the performance. Since this normalization technique is complicated, a

non-linear transformation of i-vectors called radial Gaussianization has been proposed
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in [Garcia-Romero and Espy-Wilson, 2011]. It whitens the i-vectors and performs length

normalization. This restores the Gaussian assumptions of the PLDA model.

A variant of PLDA model called Gaussian PLDA (GPLDA) is shown to provide better

results in [Garcia-Romero and Espy-Wilson, 2011]. Because of its low computational

requirements, and its performance, it is the most widely used PLDA modeling. In

GPLDA model, the within-speaker variability is modeled by a full covariance residual

term which allows us to omit the channel subspace. The generative PLDA model for

the i-vector is represented by

wij = µ+ Fhi + Σij (2.18)

The residual term representing the within-speaker variability is assumed to have a

normal distribution with full covariance matrix Σij . A special case of the simplified

PLDA model where the speaker factors S is full-rank is termed as the two-covariance

model in [Brümmer and De Villiers, 2010,Cumani et al., 2013].

Given two i-vectors w1 and w2, the PLDA computes the likelihood ratio of the two

i-vectors as follows:

Score(w1, w2) =
p(w1, w2|H1)

p(w1|H2)p(w2|H2)
(2.19)

where the hypothesis H1 indicates that both i-vectors belong to the same speaker and

H0 indicates they belong to two different speakers.

log(w1, w2) = logN

([
w1

w2

]
;

[
µ

µ

]
,

[
Σ + SST SST

SST Σ + SST

])
−

logN(w1;µ,Σ + SST )− logN(w2;µ,Σ + SST ) (2.20)

After straightforward algebra, this turns out to be,

log(w1, w2) =
[
wT1 wT2

] [Σ + SST SST

SST Σ + SST

]−1 [
wT1 wT2

]
− wT1

[
wT1 wT2

]
−

wT1

[
Σ + SST

]−1
w1 − wT2

[
Σ + SST

]−1
wt + C (2.21)
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where all the constant terms have been incorporated into C, and can be omitted for a

given PLDA model.

2.4.3 Speaker Factors

Given a UBM, a low rank eigenvoice matrix V that describes the speaker variability,

and the supervector mn, the speaker factor xn is extracted as follows:

mn = mUBM + Vxn (2.22)

The process of extracting speaker factors is similar to the i-vector extraction technique

outlined in Section 2.4.2. The UBM training is the same both in the i-vector and speaker

factor extraction techniques. The main difference is in the training of Total variability

and eigenvoice matrices. While all the recordings of a given speaker are considered to

belong to the same person in eigenvoice training, they are considered as being produced

by different speakers in total variability matrix training.

Figure 2.5: Speaker factor extraction process.
The difference between i-vector and speaker factor extraction is the training of the total variability and eigenvoice matrix.

Once the speaker factors are extracted, there are different scoring techniques to check

similarity of speaker factors . The most widely used scoring technique is the cosine

distance and Mahalanobi distance.

Speaker factors have been successfully used for speaker segmentation in [Desplanques

et al., 2016]. The speaker factors have been extracted on a frame-by-frame basis using an
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Figure 2.6: Example of Artificial Neural Network.

eigenvoice matrix and the Mahalanobis distance is applied on speaker factors to generate

speaker boundaries. The work in [Desplanques et al., 2016] shows that the use of speaker

factors provides better DER result more than the BIC segmentation technique.

2.4.4 Artificial Neural Networks

Artificial neural networks (ANNs) have recently been used in different speech appli-

cations. Feed-forward neural networks which moves forward (from the input nodes to

output nodes through the hidden nodes) have been used. A feed-forward neural network

is created for each speaker. Each network contains one output trained to be active only

for this speaker. During testing, a feature vector is fed forward through each network,

and the identification is determined by the network with the highest accumulated output

values.

Artificial neural network (ANNs) have recently been applied successfully in speaker

diarization tasks as reported in [Yella et al., 2014]. Three different neural networks

have been trained in [Yella et al., 2014] which are used to generate features for speaker

diarization. The first network is to decide if two speech segments belong to the same or

different speakers. The second network is trained to classify a given speech segment into

a predetermined set of speakers. The third network is an auto-encoder which is trained

to reconstruct the input at the output layer with as low reconstruction error as possible.

It is reported in [Yella et al., 2014] that the hidden layers of networks trained transform

spectral features into a space more conducive to speaker discrimination.



28 Chapter 2. State-of-the-art in Speaker Diarization

2.4.5 Deep Neural Networks

A deep neural network (DNN) is a feed-forward, artificial neural network that has more

than one layer of hidden units between its inputs and its outputs [Hinton et al., 2012].

Each hidden unit, j, typically uses the logistic function to map its total input from the

layer below, xj , to the scalar state, yj that it sends to the layer above.

yj = logistic(xj) =
1

1 + e−xj
, xj =

∑
i

yiwij (2.23)

where bj is the bias of unit j, i is an index over units in the layer below, and wij is

the weight on a connection to unit j from unit i in the layer below. For multiclass

classification, output unit j converts its total input, xj , into a class probability, pj , by

using the softmax non-linearity as follows:

pj =
exp(xj)∑
k exp(xk)

(2.24)

where k is an index over all classes.

DNN’s can be discriminatively trained by backpropagating the derivatives of a cost

function to calculate the difference between the target outputs and the actual output

[Rumelhart et al., 1988]. When using the softmax output function, the natural cost

function C is the cross-entropy between the target probabilities d and the outputs of

the softmax, p:

C =
∑
j

dj log pj (2.25)

where the target probabilities are the supervised information provided to train the DNN

classifier.

When training large data sets, it is efficient to compute the derivatives on a small,

random mini-batch of training data sets, rather than the whole training set, before

updating the weights in proportion to the gradient. This stochastic gradient descent

method can be further improved by using a momentum coefficient that smooths the

gradient computed for each mini-batch.

One of the main problem in DNN is overfitting. To overcome the problem of overfitting,

a penalty term can be applied on large weights proportional to their squared magnitude.



2.5. Speaker Segmentation 29

The learning can also be stopped at a point where performance on a test data set starts

getting worse [Bourlard and Morgan, 2012].

When the number of hidden layers and the units per layer is increased, the DNN becomes

more flexible to model very complex and highly non-linear relationships between inputs

and outputs. Although this is good for high-quality acoustic modeling, it may also lead

to the overfitting.

DNNs are currently widely applied in audio, image and speech processing applica-

tions [Ciregan et al., 2012,Lee et al., 2009,Mohamed et al., 2012,Dahl et al., 2012,Arisoy

et al., 2012,Stafylakis et al., 2012]. It is reported in [Mohamed et al., 2012,Hinton et al.,

2012, Yao et al., 2012] that DNNs provide better results when they are used as acous-

tic modeling in speech recognition. DNNs have also been used in speaker recognition

experiments successfully in [Ghahabi and Hernando, 2014]. They have also been suc-

cessfully used in different stages of speaker diarization: feature extraction [Yella and

Stolcke, 2015], speaker segmentation and speaker clustering [Jothilakshmi et al., 2009].

Speaker Separation Deep Neural Network has also been used in [Yella and Stolcke, 2015]

to extract features from the bottleneck layer and classify speakers.

2.5 Speaker Segmentation

Speaker segmentation finds points in the audio stream which are likely to be the change

points between speakers. According to [Chen and Gopalakrishnan, 1998], the three

major methods to perform speaker segmentation are:

Silence based methods

These methods assume that a silence occurs between utterances of two speakers. They

are normally dependent on the threshold values of the short term energy. However,

these methods provide poor results [Kemp et al., 2000]. There are two main categories

in this method. These are energy based and decoder based systems. The energy based

systems use energy detector to find the silence segments [Kemp et al., 2000]. The decoder

based systems use a full recognition system to find change points from detected silence

locations [Kubala et al., 1997]. However, there is no clear relationship between the

existence of silence in a recording and change of speaker. Therefore, these methods are

not widely used in speaker diarization.

Model based methods
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These methods train different speaker classes and derive different speaker models for

a closed set of acoustic classes such as telephone or wide-band, male or female, mu-

sic, speech or silence using training corpus. Then, the audio signal is classified using

maximum likelihood techniques [Gauvain et al., 1999]. The boundaries between the

models will be the segmentation change points. However, model based methods have a

robustness problem as they do not generalize for unseen data.

Metric based method

These methods are the most common and wdiely used segmentation techniques [Ajmera

and Wooters, 2003]. Metric based methods do not require any prior knowledge about the

number of speakers and signal characteristics.They use distance metric between every

two contiguous speech segments as a decision measure to determine change points [Sinha

et al., 2005,Siegler et al., 1997].

The metric based method tests two hypothesis: The first hypothesis, H1, assumes that

the two contiguous speech segments belong to the same speaker and is described by

a single model. The second hypothesis, H2 assumes that the two contiguous speech

segments belong to different speakers and are described by different models. The distance

metric is compared to a threshold in order to select one of the two hypothesis.

• Bayesian Information Criterion (BIC)

It is used to evaluate whether a change point occurs between two consecutive

speech segments. Two BIC values, H1 and H2, are computed.

Let us consider to model Xi with d dimensional feature vectors. Assuming that

the two contiguous speech segment analysis windows X and Y are located around

time Tj, we need to find whether a speaker change point occurs at Tj or not.

Let Z = X ∪ Y , the problem is formulated as a statistical test between the two

hypotheses. In the case of H1, there is no speaker change point at time Tj.

The log likelihood H1 is obtained as follows:

H1 =

nx∑
i=1

log p(Xi|θz) +

ny∑
i=1

log p(Yi|θz) (2.26)

where nx and ny are the number of frames in speech segments X and Y, respec-

tively. Speech segments X and Y are are modeled by θz in H1.

In the case of H2, a speaker change point exists at time Tj . The speech segments

X and Y are modeled by two speaker models, which are represented by θx and θy,

respectively. Then, the log likelihood H2 is obtained as follows:
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Figure 2.7: Example of audio signal with three speakers.

H2 =

nx∑
i=1

log p(Xi|θx) +

ny∑
i=1

log p(Yi|θy) (2.27)

The dissimilarity between the two speech segments, X and Y, is estimated by using

BIC criterion defined as:

∆BIC = H2 −H1 −
λ

2
(d+

d+ (d+ 1)

2
) log nz (2.28)

where nz is the number of frames in analysis window Z (i.e., nz= nX + nY ) and

λ is a penalty factor. If BIC is greater than 0, there is a speaker change point

between the two contiguous speech segments. Otherwise, there is no a speaker

change point between the two contiguous speech segments.

It is reported in [Zhou and Hansen, 2005] that the choice of the analysis window

size in BIC computation should be carefully selected. If it is too large, it may

yield a high number of miss detections. If it is too short, it causes poor model

estimation and poor segmentation accuracy.

The penalty factor was introduced to adjust the penalty effect on the comparison

of two adjacent windows that may have different window lengths.

Although BIC is computationally more intensive than other metric methods, its

good performance has kept it as the algorithm of choice in speaker diarization.
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Figure 2.8: Example of ∆ BIC Values.

• Generalized Likelihood Ratio(GLR)

GLR has been proposed as a metric for change detection in [Willsky and Jones,

1976]. Given sequences of feature vectors Xi and Xj from two contiguous speech

segments i and j, respectively, GLR is calculated as a likelihood ratio under the

assumption of H1 and H2.

Therefore, two different speaker models are generated for H1 and H2. In H1, θi,j

is estimated with Xi and Xj. In H2, two models are estimated: θi from Xi, and θj

from Xj. The GLR is then computed as follows:

GLR(
H1

H2
) =

L(Xi,j |θi,j)
L(Xi|θi)L(Xj |θj)

(2.29)

where L is the likelihood. A high value of GLR shows that the two speech segments

are modeled by a single model and a low value of GLR shows that the two speech

segments are modeled by two models. GLR can be used together with BIC in a

two step speaker segmentation process [Delacourt and Wellekens, 2000]. In the

first step, the most likely speaker change points are detected by GLR and, in the

second step, BIC is used to refine the speaker change points.

• Gish Distance

It is a likelihood based metric obtained as a variation to the GLR. It is defined as:
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DGish(i, j) =
−N

2
log(

|Si|α|Sj |(1−α)

|αSi + (1− α)Sj |
) (2.30)

where Si and Sj are the covariance matrices of segments i and j and α = Ni
Ni+Nj

.

• Information Change Rate (ICR)

Information Change Rate (ICR): It is another distance measure that is recently

introduced for speaker diarization [Vijayasenan et al., 2007, Vijayasenan et al.,

2009, Han and Narayanan, 2008]. ICR can be used to delineate the similarity

of two speech speech segments determining the variation in terms of information

that would be obtained by merging them. ICR similarity is not based on model of

speech segments. It is based on the distance between the segments in a space of

relevance variables with maximum mutual information or minimum entropy. ICR

is computationally efficient and more robust to data source variation more than

BIC distance [Han and Narayanan, 2008].

The results of speaker segmentation may contain two types of error. The first type of

error occurs when a true segment boundary is not detected (i.e., deletion). The second

type of error occurs when a segmented boundary does not correspond to the true segment

boundary in the reference (i.e., false alarm).

2.6 Speaker Clustering

Speaker clustering groups speech segments that belong to a particular speaker. It has

two major categories based on its processing requirements. Its two main categories are

online and offline speaker clustering. In the former, speech segments are merged or

split in consecutive iterations until the optimum number of speakers is acquired. Since

the entire speech file is available before decision making in the later, it provides better

results more than the online speaker clustering.

The most widely used and popular technique for speaker clustering is Agglomerative

Hierarchical Clustering (AHC). AHC builds a hierarchy of clusters, that shows rela-

tions between speech segments, and merges speech segments based on similarity. AHC

approaches can be classified into bottom-up and top-down clustering.

Two items need to be defined in both bottom-up and top-down clustering:

1. A distance between speech segments to determine acoustic similarity. The distance

metric is used to decide whether or not two clusters must be merged (bottom-up

clustering) or split (top-down clustering).
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2. A stopping criterion to determine when the optimal number of clusters (speakers)

is reached.

• Bottom-up (Agglomerative): It starts from a large number of speech segments

and merges the closest speech segments iteratively until a stopping criterion is

met. This technique is the most widely used in speaker diarization since it is

directly applied on the output of speech segments from speaker segmentation. A

matrix of distances between every possible pair of clusters is computed and the

pair with highest BIC value is merged. Then, the merged clusters are removed

from the distance matrix. Finally, the distance matrix table is updated using

the distances between the new merged cluster and all remaining clusters. This

process is done iteratively until the stopping criterion is met or all pairs have

a BIC value less than zero . The bottom-up approach has been used for many

years in pattern classification in [Duda and Hart, 1973] but was first considered

for speaker clustering in [Duda et al., 2001] and [Siegler et al., 1997].

A two pass speaker clustering has been proposed in [Chen and Gopalakrishnan,

1998]. In the first pass, the speech data is equally segmented using GLR dis-

tance matrix with agglomerative clustering until the desired number of speakers is

reached. The second pass trains speaker models and iteratively decodes and trains

speaker models until the total likelihood converges.

• Top-down: Top-down Hierarchical Clustering methods start from a small number

of clusters, usually a single cluster, that contains several speech segments, and the

initial clusters are split iteratively until a stopping criterion is met. It is not as

widely used as the bottom-up clustering.

Figure 2.9: Bottom-Up and Top-down approaches to clustering
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2.7 Approaches to Speaker Diarization System

This section describes some of the state-of-the-art speaker diarization systems. The HM-

M/GMM based system provides the the state-of-the-art in NIST-RT [National Institute

of Standards and Technology, 2003] evaluation campaigns. The information bottleneck

framework provides comparable results to that of HMM/GMM based system [Vijayase-

nan and Valente, 2012].

HMM/GMM system

In HMM/GMM based speaker diarization system, each speaker is represented by a state

of an HMM and the state emission probabilities are modeled using GMMs. The initial

clustering is performed initially by partitioning the audio signal equally which generates

a set of segments {si}. Let ci represent ith speaker cluster, bi represent the emission

probability of cluster ci and ft denote a given feature vector at time t. Then, the

log-likelihood logbi(st) of the feature ft for cluster ci is calculated as follows:

logbi(st) = log
∑
(r)

w
(r)
i N(fi, µ

(r)
i ,Σ

(r)
i ) (2.31)

where N() is a Gaussian pdf and w
(r)
i , µ

(r)
i ,Σ

(r)
i are the weights, means and covariance

matrices of the rth Gaussian mixture component of cluster ci, respectively.

The agglomerative hierarchical clustering starts by overestimating the number of clus-

ters. At each iteration, the clusters that are most similar are merged based on the BIC

distance. The distance measure is based on modified delta Bayesian information crite-

rion [Ajmera and Wooters, 2003]. The modified BIC distance does not take into account

the penalty term that corresponds to the number of free parameters of a multivariate

Gaussian distribution and is expressed as:

∆BIC(ci, cj) =
∑

ft∈{ci∪cj}

logbij(ft)−
∑
ft∈ci

logbi(ft)−
∑
ft∈cj

logbj(ft) (2.32)

where bij is the probability distribution of the combined clusters ci and cj . The clusters

that produce the highest B IC score are merged at each iteration. A minimum duration

of speech segments is normally constrained for each class to prevent decoding short-

segments. The number of clusters is reduced at each iteration. When the maximum

∆BIC distance among these clusters is less than threshold value 0, the speaker diarization

system stops and outputs the hypothesis.

Information bottleneck (IB) system
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Information Bottleneck (IB) system is a non-parametric system based on information

theoretic principles. Its results are comparable with the HMM/GMM system [Wooters

and Huijbregts, 2008]. The main advantage of IB is it requires less computation time

more than HMM/GMM systems [Vijayasenan et al., 2009, Vijayasenan and Valente,

2012]. IB clustering clusters segments with similar distributions over a set of variables

called relevance variables.

LetX = {x1, x2, ..., xn} represent the input variables to be clustered and Y = {y1, y2, ..., ym}
denote the relevance variables with meaningful information about clustering output

C = {c1, c2, ..., cr}. IB method tries to optimize the clustering process by maximiz-

ing the following equation:

F = I(Y,C)− 1

β
I(C,X) (2.33)

where β is a Lagrange multiplier, I(X,C) denotes the mutual information where X

represents the speech segment set at each iteration and C represents the clusters, and

I(Y,C) measures the mutual dependence between the relevant variables Y and the clus-

tering partition C.

The IB system uses a greedy technique to optimize the clustering process [Vijayasenan

and Valente, 2012]. It starts with unique segmentation where each segment is consid-

ered as a set of input variables X. The set of relevance variables Y is components of

background GMM estimated from the speech segments. Given input speech segment xi,

the posterior distribution of the relevance variables for the segment xi is obtained using

Bayes rule. The clustering of IB is initialized with each member of the set of speech

segment X and the two clusters with the most similar distribution are merged at each

iteration.

Other approaches

The HMM/GMM and IB based speaker diarization systems are based on an agglomera-

tive clustering framework. There are also other approaches to speaker diarization. They

are described as follows:

Top down system

The top down-approach starts by modeling the entire audio signal with a single speaker

model. Then, it successively generates new speaker models. The generation of new

speaker models can be done using some criterion such as duration of the speech segment.

A new speaker model is generated for these speech segments. This process is performed

iteratively until the final number of speaker is found. Top-down approaches are not
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widely used as the bottom up one. They are however computationally efficient and their

performance can be improved using cluster purification as reported in [Bozonnet et al.,

].

Factor analysis techniques

Factor analysis techniques which are the state of the art in speaker recognition have

recently been successfully used in speaker diarization [Kenny et al., 2010,Franco-Pedroso

et al., 2010, Shum et al., 2011]. The speech clusters are first represented by i-vectors

and the successive clustering stages are performed based on i-vector modeling. The

use of factor analysis technique to model speech segments reduces the dimension of the

feature vector by retaining most of the relevant information. Once the speech clusters are

represented by i-vectors, cosine-distance and PLDA scoring techniques can be applied

to decide if two clusters belong to the same or different speaker(s). [Dehak et al., 2011].

2.8 Evaluation Metrics

Diarization Error Rate (DER) is the metric used to measure the performance of speaker

diarzation systems as described and used by NIST in the RT evaluations (NIST Fall Rich

Transcription on meetings 2006 Evaluation Plan 2006). It is measured as the fraction

of time that is not attributed correctly to a speaker or non-speech. A script named

MD-eval-v12.pl has been used in the experiments.

When DER is calculated, the hypothesized diarization output does not need to identify

the speakers by name or definite ID. The speaker name or speaker id should not be

the same in the hypothesis and the reference segmentation. The evaluation script first

does an optimum one-to-one mapping of all speaker label ID between hypothesis and

reference files. This allows the scoring of different ID tags between the two files. When

evaluating DER, NIST uses a collar of 250 ms at the beginning and end of each segment

boundary not to penalize slight discrepancies in the start and end times of the speech

segments.

The DER is calculated as follows:

DER =

∑S
s=1 dur(s).(max(Nref (s), Nhyp(s))−Ncorrect(s))∑S

s=1 dur(s).Nref

(2.34)

where S is the total number of speaker segments where both reference and hypothesis

files contain the same speaker pairs. Nref (s) andNsys(s) represent the number of speaker

speaking in segment s. The number of speakers that speak in segment s and are correctly
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matched between reference and hypothesis is represented by Ncorrect(s). The duration

of segment s is represented by dur(s).

The DER is composed of the following three errors:

• Speaker Error: It is the percentage of scored time that a speaker ID is assigned

to the wrong speaker. Speaker error is mainly a diarization system error (i.e., it

is not related to speech/non-speech detection.) It also does not take into account

the overlap speeches not detected.

Speaker Error =

∑S
s=1 dur(s).(min(Nref (s), Nhyp(s))−Ncorrect(s))∑S

s=1 dur(s).Nref

(2.35)

• False Alarm: It is the percentage of scored time that a hypothesized speaker is

labelled as a non-speech in the reference. The false alarm error occurs mainly due

to the the speech/non-speech detection error (i.e., the speech/non-speech detection

considers a non-speech segment as a speech segment). Hence, false alarm error is

not related to segmentation and clustering errors.

False Alarm =

∑S
s=1 dur(s).(Nhyp(s))−Nref (s))∑S

s=1 dur(s).Nref

(2.36)

• Missed Speech: It is the percentage of scored time that a hypothesized non-speech

segment corresponds to a reference speaker segment. The missed speech occurs

mainly due to the the speech/non-speech detection error (i.e., the speech segment

is considered as a non-speech segment). Hence, missed speech is not related to

segmentation and clustering errors.

Miss Speech =

∑S
s=1 dur(s).(Nref (s))−Nhyp(s))∑S

s=1 dur(s).Nref

(2.37)

• Overlap Error: When there are multiple speakers in the speech segment, the

speaker diarization system has to detect and assign the segment to to all speakers.

Therefore, overlap error is the percentage of scored time that some of the multiple

speakers in a segment are not assigned to any speaker. The overlap error falls into

one the three types of the previously mentioned diarization errors: speaker error

when a speaker is detected to be present in the speech segment but the speaker is
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not actually present, false alarm speech if more number of speakers are detected

than the actual number of speakers in the overlapped speech segment, and missed

speech when fewer speakers are detected than the actual number of speakers in

the segment.

Therefore, the total DER is calculated as:

DER = Speaker Error + False Alarm+Miss Speech +Overlap Error (2.38)

Once the DER is calculated for each show, the time weighted average is calculated

among all meetings to find average DER for given set of shows. It is usual to score the

diarization error rate ignoring the overlapped speech segment.





Chapter 3

The UPC Baseline Speaker

Diarization System

This chapter describes the techniques and implementation of the baseline speaker di-

arization of UPC which we use as a benchmark for the proposed systems.

The baseline speaker diarization system is based on HMM/GMM systems and uses Mel-

Frequency Cepstral Coefficients (MFCC). It uses a bottom-up agglomerative clustering

approach that uses a modified version of the BIC distance in order to iteratively merge

the closest clusters. Each HMM state represents a speaker whose emission probabilities

are modeled using GMM.

The baseline speaker diarization system follows multiple steps of agglomerative clus-

tering and realignment (i.e., the speaker segmentation and clustering are carried out

iteratively). The system is initialized first with many number of speakers. Then, the

two most similar clusters are merged at each iteration. After merging, the time bound-

aries of segments are realigned using a Viterbi segmentation. The process is iteratively

repeated until a stopping criterion is met. A detailed description about the baseline

system used in the thesis is found in [Luque, 2012].

As it is shown in Figure 3.1, the baseline speaker diarization system consists of three

modules. These are the feature extraction, speaker segmentation and speaker clustering.

The three main stages of the baseline system diarization are as follows:

• Feature extraction and removal of non-speech frames. A uniform initial clustering

is performed by partitioning the data equally (see Fig. 3.1, block A).

• Model complexity selection based on the amount of data per cluster and the cluster

complexity ratio (CCR) is carried out to fix the amount of speech (seconds) per

41
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Gaussian. An HMM/GMM training and cluster realignment is carried out using

by Viterbi decoding by taking the maximum likelihood scores (Fig. 3.1 block B).

• Agglomerative clustering is carried out using Bayesian information criterion (BIC)

metric among clusters. A threshold value is used to stop the speaker diarization

system and output the final hypothesis (Fig. 3.1 block C).

The rest of this paper is organized as follows. Section 3.1 describes the front-end Pro-

cessing technique used in the baseline system. The Cluster Initialization technique is

discussed Section 3.2. The speaker segmentation and clustering techniques are outlined

in Section 3.3 and Section 3.4. Finally, the merge and stopping criterion are discussed

in section 3.5.

Figure 3.1: The UPC baseline speaker diarization system architecture.

3.1 Front-end Processing

The speech parameterization of the baseline system is based on a short-term estimation

of the spectrum energy in several sub-bands. The speech channel is analyzed in frames
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of 30 milliseconds at intervals of 10 milliseconds and 16 kHz of sampling frequency.

Each frame window is processed subtracting the mean amplitude from each sample. A

Hamming window was applied to each frame and a FFT computed. The FFT amplitudes

were then averaged through overlapped triangular filters, with central frequencies and

bandwidths defined according to the Mel scale.

Speech/Non-Speech Detection Technique

Manually annotated speech references (Oracle SAD) have been employed to extract the

speech frames and discard non-speech regions. Since speech references have been used,

the percentage of false alarms and missed speech have zero values in the experimental

results. Hence, DER values reported in the following sections corresponds purely to

speaker time confusion produced by the diarization system.

Speech Features

Mel Frequency Cepstral Coefficients (MFCC) have been used as acoustic features in

the baseline speaker diarization system. They are computed with the aid of a psycho-

acoustically motivated filterbank, followed by logarithmic compression and discrete co-

sine transform (DCT). The dimensions of MFCCs is 20. The MFCC are used without

the ∆ and ∆∆ parameters.

3.2 Cluster Initialization

First, the speech signal is equally partitioned as it is shown in (Fig. 3.1 block A)

which generates the initial clusters. The initial number of clusters depends on meeting

duration but it is constrained in the range [10, 65] clusters. This methods enables to

deal with common issues of AHC such as over-clustering and high computational cost

due to combinatorial explosion in pair-wise distance computation. A method to reduce

manual tuning of these values is also implemented. This reduces the sensitivity of the

initialization values and therefore reduces the need for manual tuning significantly. At

the same, it also increases the accuracy of the system.

The Initial number of clusters is calculated as follows:

Kinit =
N

Ginit RCC
, (3.1)
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where N stands for the number of total frames in a recording and Ginit is the number

of Gaussians initially assigned to each cluster. The complexity ratio, RCC, stands for

the minimum amount of speech data in frames needed per each Gaussian mixture in

the cluster model. They are fixed to 5 Gaussians initially and 7 seconds per Gaussian,

respectively. This method of cluster partitioning allows to build a ”pure” enough initial

cluster segmentation which is a key point in AHC algorithm [Imseng and Friedland,

2010,Luque et al., 2008].

RCC = 0.01× Y + 2.6 (3.2)

where RCC is the number of Gaussians per segment and Y is the amount of speech in

second.

Automatic Model Complexity Selection

At each iteration j, the number M j
i of Gaussian mixtures to model the cluster i is

updated using the following equation:

M j
i =

[
Nj

i
RCC

+ 0.5

]
(3.3)

where N j
i is the number of frames belonging to the cluster i. After merging two segments,

a new segment model is trained by pooling all the features from the merged segments

and fixing the model complexity according to the RCC value. The automatic selection

of the modeling complexity has been shown to provide a good performance and it avoids

the use of the penalty term in the classical BIC metric computation [Anguera et al.,

2006b].

After the initial segmentation is carried out, each cluster is modeled by mixture of Gaus-

sians to fit the probability distribution of the features using the classical expectation-

maximization (EM) algorithm.

The baseline system first compared different values of seconds per Gaussian with their

corresponding speaker error rates and tuned the seconds per Gaussian value. Hence,

seconds per Gaussian values are dependent the duration of the speech data. If the

speech segment is long, it has have more number of Gaussians. If the speech segment is

short, it has have few number of Gaussians.
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Figure 3.2: Ergodic HMM/GMM system with a minimum duration constraint.

The minimum duration constraint of the baseline system that ensures the minimum length of
the speaker turn duration. Each state is a subset of substates.

3.3 Iterative Viterbi-Segmentation

The baseline system models each set of clusters using ergodic hidden Markov model

(HMM) where each state in the model represents one cluster. Give a set of speech

segments {X1, X2, ......., Xn}, the baseline system finds the optimal number of clusters

K and their corresponding acoustic models that produce the best segmentation using

the following equation:

θ∗k, k
∗ = arg max

θk,k
{Pr(X, pbest|θk, k)} (3.4)

where pbest is the Viterbi path with the highest likelihood (i.e., sequence of states that

produce the maximum likelihood given the observations). After the completion of the

algorithm execution, each remaining state is considered to represent a different speaker.

This is done to refine the initial segmentation and improves the speaker boundaries

[Tranter and Reynolds, 2006].
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Figure 3.3: Example of minimum duration constraint.

We want to find a set of clusters and their acoustic models that maximize the likelihood

of the data based on this HMM topology. Since we do not want to consider all possible

values for k, a maximum value is selected for k using the initial segmentation outlined

in Section 3.2. After each iteration of merging clusters, the value of k is reduced until

we find an optimal number of clusters k∗ and their acoustic models θ∗k.

A minimum duration (MD) is also constrained on the HMM topology as it is shown in

Figure 3.3. Each state of the HMM consists of a set of sub-states imposing a minimum

duration for each model. Each one of the sub-states has a probability density function

modeled via a Gaussian mixture model (GMM). The same GMM model is tied for all

sub-states of a given state. After entering a state at time n, the model moves to the

following sub-state with probability 1.0 until the last sub-state is reached. It can remain

in the same sub-state with transition weight α, or jump to the first sub-state of another

state with weight β
K , where K is the number of active states at that time.

After merging of two clusters at each iteration, the the total number of parameters

in the HMM decreases. The likelihood scores at each iteration reduce when the same

amount of data is modeled using fewer parameters. Since the merging process decreases

the likelihoods of equation 3.4, a threshold value to stop merging the process has to

selected.

3.4 Speaker Clustering

Once the speech segments have been generated by Viterbi segmentation, the speaker

clustering merges the speech of the same speakers iteratively. A single cluster is modeled

for each speaker in the audio, and all speech parts of a specific speaker are represented

in a single cluster.

The baseline system is based on the most widely used agglomerative hierarchical clus-

tering (AHC) technique. The speech segments generated by Viterbi segmentation are
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modeled by Gaussian mixtures, fitting the probability distribution of the features by the

classical expectation-maximization (EM) algorithm. Segments which belong to the same

speaker are represented in a single model. The minimum duration of speaker segment is

restricted to 3 seconds as in [Ajmera and Wooters, 2003]. The selection of 3 second as

a minimum duration in the baseline system is also justified in [Luque, 2012] (see Figue

3.4). The figure shows that the selection of 3 provides the best DER among different

minimum duration values.

Figure 3.4: DER results on NIST Transcription 2006 and 2007 evaluation conference
data using the minimum duration into account in the HMM decoding.

The figure is taken from thesis of [Luque, 2012] (baseline system) on page number 167.

The clustering technique groups acoustically similar segments based on the Bayesian

information criterion (BIC) metric among Gaussian distributions. At each iteration, the

two segments with the highest BIC distance are merged. The HMM decoding process

is repeated and a new mixture of Gaussians is assigned for the new set of clusters. The

similarity matrix of the cluster pairs is updated. This procedure is iterated until the

stopping criterion is met.The stopping criterion is met when the maximum BIC distance

among all set of clusters is less than 0. Finally, the speaker diarization system outputs

the hypothesis results (see Figure 3.1, block C).

There are different ways of performing speaker segmentation and speaker clustering in

speaker diarization. One of the method is performing segmentation first and running

speaker clustering next. This method lacks flexibility since it doesn’t provide the option

of correcting the speaker segmentation errors. The other method is performing the

speaker segmentation and speaker clustering together iteratively. This method enables

to refine the speaker segmentation errors. The UPC baseline system uses the second

method. It uses an iterative bottom-up strategy based on HMM alignments and BIC

values. Segments that belong to the same speaker are combined in a new model at
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each iteration. A time constraint is imposed as in [Ajmera and Wooters, 2003] on the

duration of the speaker segments through a hierarchical modeling of each state as it

is shown in Figure 3.3. The Viterbi decoding decisions are based on the estimation of

the observation probabilities of accumulated likelihoods per cluster/state in a 3 seconds

window. This procedure is carried out iteratively until the stopping criterion is reached.

The stopping criterion is reached when the highest BIC distance scores among the set

of clusters is less than 0. Finally, the system output the speaker segmentation outputs.

Since the segmentation and clustering steps are performed iteratively in the baseline

system, the errors made in the segmentation step are corrected in the clustering.

3.5 Merging and Stopping Criterion

One the speech segments have been generated by the Viterbi segmentation and each

segment is assigned a cluster, the speaker clustering modules merges the two closest

clusters. This process is performed iteratively until there are no more clusters to merge.

This techniques requires two metrics: which pairs of clusters to merge at each iteration

and when to stop merging. The UPC baseline speaker diarization system uses the

modified BIC algorithm described in [Ajmera and Wooters, 2003] to merge clusters and

stop merging.

Given two speech segments X and Y , the modified BIC algorithm decides whether the

speech segments X and Y are uttered by the same speaker (H1) or different speakers

(H2). Let Z = X ∪ Y . The modified BIC equation is defined as follows:

∆BIC = BIC(X,Y ) = H1 −H2 ≶ 0 (3.5)

which does not take into account the penalty term that corresponds to the number of

free parameters of a multivariate Gaussian distribution. While model H1 assumes that

the speech segments are represented by the same speaker, model H2 assumes that the

two speech segments belong to two different speakers.

The log likelihood of H1 is obtained as follows:

H1 =

nx∑
i=1

log p(Xi|θz) +

ny∑
i=1

log p(Yi|θz) (3.6)

where nx and ny are the number of frames in speech segments X and Y, respectively.

Speech segments X and Y are are modeled by θz in H1.



3.5. Merging and Stopping Criterion 49

In the case of H2, a speaker change point exists at time Tj . The speech segments X and

Y are modeled by two speaker models, which are represented by θx and θy, respectively.

Then, the log likelihood H2 is obtained as follows:

H2 =

nx∑
i=1

log p(Xi|θx) +

ny∑
i=1

log p(Yi|θy) (3.7)

If BIC (X,Y) is greater than 0, speech segment X and Y are modeled by one speaker

model, θZ. If BIC(X,Y) is less than 0, speech segment X and Y are modeled by two

different speaker models, θX and θY. Equation 3.5 is similar to traditional BIC criterion

except it doesn’t use the penalty term. The number of parameters in model is equal to

the sum of the number of parameters in θx and θy .

The segmentation obtained from the outputs of the segmentation (see Figure 3.1) defines

a new set of speaker clusters and has to be trained at each iteration. We look for the

the set of BIC scores for clusters Y and Y satisfying BIC(X,Y ) ¿ 0. When there are

many candidate pairs, we choose the pair of clusters with highest BIC score. This

method provides a fully automatic stopping criterion that does not require the use of

any tunable parameters.

The stopping criterion for clustering is based on a threshold value of the BIC distances

among all clusters. When the maximum BIC distance among these clusters is less than

threshold value 0, the speaker diarization system stops and outputs the hypothesis.





Chapter 4

Long-term Speech Features for

Speaker Diarization

Feature extraction plays a significant role on the performance of speaker diarization

systems. It needs to extract relevant information from the acoustic signal that can sep-

arate the different speaker present in the signal while discarding unwanted signals at

the same time such as noise. It transforms raw acoustic signal into compact representa-

tion. It computes a sequence of feature vectors that represents compact speech signal.

The feature vectors which are extracted from the raw signal emphasize speaker specific

properties and suppress statistical redundancies.

Although different types of features can be extracted from speech signals, only some

of them can be used to discriminate speakers. According to [Kinnunen and Li, 2010],

an ideal speech features have the following characteristics: they have large between-

speaker variability and small within-speaker variability, they are robust against noise

and distortion, they occur frequently and naturally in speech, they are easy to measure

from speech signal, they are difficult to impersonate and they are not affected by the

speaker’s health or long-term variations in voice.

There are generally two broad categories of speech features. These are the short-term

and long-term features.

Short-term spectrum based features are the most widely used in speaker diarization

systems since the short-term spectrum based features carry information about the vocal

tract characteristics of individual speakers. They are also easy to extract and provide

better performance.

Short-term features are descriptors of the short-term spectral envelope which is an acous-

tic correlate of timbre and the resonance properties of the supralaryngeal vocal tract.

51
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They are extracted from either the short-term Fourier transform of the windowed speech

signal or from linear prediction (LP) analysis. They are typically extracted for every 10

ms from a window size of around 30 ms.

Speech signal continuously vary because of articulatory movements. Therefore, it needs

to be broken down into short frames of about 20-30 milliseconds duration [Kinnunen and

Li, 2010]. The speech signal is quasi-stationary within this interval and feature vectors

are extracted from each frame.

Mel Frequency Cepstral Coefficients (MFCC) are the most widely used short-term acous-

tic features for speaker diarization [Anguera et al., 2012, Ajmera and Wooters, 2003].

They are computed with the aid of a psychoacoustically motivated filterbank, followed

by logarithmic compression and discrete cosine transform (DCT). The dimensionality of

MFCCs for speaker diarization is mostly around 20. Other widely used short-term spec-

tral features used for speaker diarization include perceptual linear prediction coefficients

(PLP) [Sinha et al., 2005], and linear prediction cepstral coefficients (LPCCs) [Ajmera

and Wooters, 2003].

Although short-term spectral features are the most widely used speech features for differ-

ent speech applications including speaker diarization, it is reported in [Friedland et al.,

2009] that long-term features can be employed to reveal individual differences which can

not be captured by short-term spectral features. Long-term speech features also have

more discriminative power more than the short-term speech features. The selection of

prosodic and other long-term features and their combination with MFCCs dramatically

increases the accuracy of a state-of-the-art speaker diarization system [Friedland et al.,

2009]. It is also reported in [Zelenák and Hernando, 2011] the performance of the state-

of-the-art speaker diarization systems can be improved by combining spectral features

with prosodic features to detect overlap speeches in speaker diarization system.

Long-term features are extracted from portions of speech longer than one frame unlike

short-term features which are extracted from a single speech frame. Long-term features

capture phonetic, prosodic, lexical, syntactic, semantic and pragmatic information. They

are also robust to channel variation since lexical usage or temporal patterns do not

change with the change of acoustic conditions [Shriberg, 2007].

The long-term speech features used in the experiments are the delta dynamic, voice-

quality, prosody and GNE features.
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4.1 Dynamic Features

Mel Frequency cepstral coefficients (MFCCs) are the most widely used short-term fea-

tures for speaker diarization [Anguera et al., 2012]. Most of the state of the art speaker

diarization systems use only the static MFCC for diarization. However, the static MFCC

features can not accurately capture the transitional characteristics of the speech signal

which contains the speaker specific information.

The delta dynamic features are the band-pass filtered versions of the static features

that carry the temporal information of the static features. The delta features can be

used to extract more detailed speech features using the time derivation of static MFCC

acoustic vectors. The delta features can add dynamic information to the static MFCC

features [Memon et al., 2009]. The dynamic features represent spectral changes over

time and remove the time-invariant spectral information. The static cepstral features

are also more adversely affected by convolutional noise (i.e. channel effect) more than

the dynamic delta cepstral features.

The dynamic features can be used to characterize the time trajectories of various acoustic

parameters. They correspond to the slope associated with a specific parameter trajec-

tory. The delta dynamic features provide new information to each frame that is not

extracted by the static MFCC features.

The MFCC feature vector describes only the power spectral envelope of a single frame.

But , a speech signal has also information in the dynamics (i.e., what are the trajectories

of the MFCC coefficients over time). The delta features are computed as the time

differences between the adjacent vectors feature coefficients and usually appended with

the static coefficients at the frame level. The extraction of the MFCC trajectories and

appending them to the static MFCC features improves the performance of different

speech applications. The delta features have been shown to improve the performance of

speech recognition systems [Kumar et al., 2011]. It is also shown in the works of [Memon

et al., 2009,Nguyen, 2010] that the delta features can be used to improve the performance

of speaker verification and speaker classification, respectively.

The delta features are computed by the weighted sum of feature vectors differences

within a time window of 2 as follows:

dt =

∑Θ
θ=1 θ(Ci+θ − Ci−θ)

2
∑Θ

θ=1 θ
2

(4.1)

where dt is the delta coefficient at time t computed in terms of the corresponding static

coefficients to Ci−θ to Ci+θ. The delta window size is represented by Θ.
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Figure 4.1: The process of Delta feature extraction.

Since clustering is more or less similar to speaker verification, we have proposed the use

of dynamic features for speaker clustering task of speaker diarization. Note that for the

proposed use of dynamic features for speaker clustering, the short-term static cepstral

features are extracted from speech frames of 30 ms with 10ms shift. The dimension of the

static cepstral features is 20. Then, the delta coefficients are computed with temporal

window of 3 frames and augmented with the static coefficients to create 40 dimensional

feature vector. Finally, the stacked static and dynamic features are used for speaker

clustering. The speaker segmentation is based only on the static MFCC feature sets.

Both the static and delta MFCC features are extracted using Hidden Markov Toolkit

(HTK) [Young and Young, 1993].

4.2 Voice-quality

Voice source quality features characterize the glottal excitation signal of voiced voices

such as glottal pulse shape and fundamental frequency, and carry speaker-specific in-

formation. Analysis of the voice-quality of a person is a valuable technique for speech

pathology detection [Bielamowicz et al., 1996,Zwetsch et al., 2006,Wertzner et al., 2005]

since the voice-disorders can be analyzed using acoustic signal parameters. Voice-quality

features do not have an acoustic property that is easily distinguishable and measurable

from a speech signal unlike F0.

Voice quality is composed of many aspects of the speech production. It is character-

ized by qualitative terms such as hoarseness, whispering, creakiness, etc. The acoustic

parameters can be used to detect if a person has pathological problem or not.
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The most widely used acoustic parameters used to asses the quality of a voice of a person

are jitter, shimmer, Harmonics to Noise Ratio (HNR) and Glottal to Noise Excitation

(GNE). However, their reliable estimation is based on an accurate measurement of the

fundamental frequency which is a difficult task in the presence of certain pathologies.

While fundamental frequency is determined physiologically by the number of cycles that

the vocal folds do in a second, vocal intensity is affected by the amplitude of variation

and tension of vocal folds [Wertzner et al., 2005]. Jitter is mainly affected by the lack

of control of vocal fold vibration [Wertzner et al., 2005]. The more jitter deviates from

zero, the more it correlates with erratic vibratory patterns of the vocal folds [Baken and

Orlikoff, 2000]. Although the vibratory cycles of all speakers are erratic to some extent,

abnormal voices are more erratic than a normal voice. While normal voices have little

jitter, “hoarse” and “breathy” voices have higher degrees of jitter [Baken and Orlikoff,

2000]. It is also reported in [Wertzner et al., 2005] that patients with pathological

problems often have higher values of jitter. Shimmer measures small, cycle-to-cycle

changes of amplitude which occur during phonation and quantify short-term amplitude

instability. It is affected mainly because of the tension and lesions of the vocal folds. It is

correlated with the presence of noise emission and breathiness. Patients with pathologies

have higher values of shimmer [Baken and Orlikoff, 2000]. Jitter and shimmer are used

as measures to assess the micro-instability of vocal fold vibrations.

The calculation of jitter and shimmer measurements is usually based on an autocorre-

lation method for determining the frequency and location of each cycle of vibration of

the vocal folds (i.e.,pitch marks) [Rusz et al., 2011].

Studies show that these voice quality features can be used to detect voice pathologies

[Wagner, 2013, Michaelis et al., 1998b, Kreiman and Gerratt, 2005]. They are normally

used to measure long sustained vowels where voice-quality measurement values above a

certain threshold are considered as pathological voices. In addition to this, voice quality

features are related to the shape and dimension of the speaker’s vocal tract, and the way

how the speech is generated by the voice production mechanism. For example, it is shown

in the work of [Li et al., 2007] that jitter and shimmer measurements provide significant

differences between different speaking styles. It is reported in [Linville, 1995, Schotz,

2001, Minematsu et al., 2002, Wittig and Müller, 2003] that jitter and shimmer are

appropriate features to characterise the age and the gender of a speaker. It is also

reported in [Slyh et al., 1999,Li et al., 2007] that significant differences can occur in jitter

and shimmer measurements between different speaking styles, especially in shimmer

measurement. Since pathological voices normally characterize a particular speaker, they

can be used to discriminate different speakers.
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Jitter and shimmer voice quality features measure variations of the fundamental fre-

quency and amplitude of speaker’s voice, respectively. They are very useful to describe

the fluctuations of the voice signal in a qualitative way. They are given as a percentage

that represents the maximum deviation from a normal frequency or amplitude. Adding

jitter and shimmer voice quality features to both spectral and prosodic features improves

the performance of a speaker verification system [Farrús et al., 2007]. It is also shown

in [Li et al., 2007] that fusion of voice quality features together with the spectral ones

improves the classification accuracy of different speaking styles and conveys information

that discriminates the different animal arousal levels such as happiness, angriness, etc.

There are different type of jitter and shimmer measurements [Boersma and Weenink,

2009]. The five types of jitter measurements are Jitter (local), Jitter (local, absolute),

Jitter (rap), Jitter (ppq5) and Jitter (ddp). The six kinds of shimmer measurements

are Shimmer (local), Shimmer (local, dB), Shimmer (apq3), Shimmer (apq5), Shimmer

(apq11) and Shimmer (ddp).

Although there are different types of jitter and shimmer measurements as it is explained

above, we have extracted only absolute jitter, absolute shimmer and shimmer (apq3)

encouraged by previous work of [Farrús et al., 2007]. It is reported in [Farrús et al., 2007]

that absolute jitter, absolute shimmer and shimmer apq3 measurements provide better

results for speaker recognition more than the other jitter and shimmer measurements.

4.2.1 Jitter

It is a measure of the periodic deviation of pitch perturbation of voice signal. Ideally,

each cycle of speech has same period. Jitter measures how much one period differs from

the next in the speech signal. The variations in jitter is mainly from the vocal cords

where fluctuations in the opening and closing times introduce a noise that is shown as

a frequency modulation in the speech signal.

Jitter is a useful measure in speech pathology since pathological voices often have a higher

jitter than healthy voices [Styler, 2013]. The values of jitter can be higher because a

number of conditions that affect the vocal cords such as nodules, polyps, and weakness

of the laryngeal muscles.

• Jitter (absolute): It is a cycle-to-cycle perturbation in the fundamental frequency

of the voice (i.e., the average absolute difference between consecutive periods). It

is expressed as follows:
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Jitter (absolute) =
1

N − 1

N−1∑
i=1

|Ti − Ti+1| (4.2)

where Ti are the extracted pitch period lengths and N is the number of extracted

pitch periods.

The Multidimensional Voice Program (MDVP) [Deliyski, 1993] calls this parameter Jita,

and sets 83.2 as a threshold for pathology.

 Ti-1  Ti
 Ti+1

Figure 4.2: Jitter measurements for 3 pitch periods

4.2.2 Shimmer

Shimmer is similar to jitter, but instead of looking at periodicity, it measures the dif-

ference in amplitude from cycle to cycle. The shimmer changes with the reduction of

glottal resistance and mass lesions on the vocal cords and is correlated with the presence

of noise emission and breathiness. It is also a useful measure in speech pathology since

pathological voices often have a higher shimmer than healthy voices. [Styler, 2013].

• Shimmer (absolute): This is the average absolute base-10 logarithm of the dif-

ference between the amplitudes of consecutive periods, multiplied by 20. It is

expressed as follows:

Shimmer (absolute) =
1

N − 1

N−1∑
i=1

∣∣20 log
(Ai+1

Ai

)∣∣ (4.3)

where Ai are the extracted peak-to-peak amplitude data and N is the number of

extracted pitch periods.

The Multidimensional Voice Program (MDVP) [Deliyski, 1993] calls this parameter

ShdB and sets 0.350 dB as a threshold for pathology.
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Ai-1
Ai Ai+1

Figure 4.3: Shimmer measurements for 3 pitch periods

• Shimmer (apq3): It is the three-point Amplitude Perturbation Quotient, the aver-

age absolute difference between the amplitude of a period and the average of the

amplitudes of its neighbours, divided by the average amplitude. It is expressed as:

Shimmer (apq3) =
1

N−1

∑N−2
i=2

∣∣Ai − (Ai−1+Ai+Ai+1

3 )
∣∣

1
N

∑N
i=1Ai

(4.4)

where Ai are the extracted peak-to-peak amplitude data and N is the number of

extracted pitch periods.

The main contribution of this thesis is the use of jitter and shimmer voice-quality mea-

surement together with the other long-term speech features and short-term spectral

features in GMM and i-vector based Speaker Diarization Systems. The other long-term

features are prosodic and GNE. The long-term features have been extracted using Praat

voice analysis software [Boersma and Weenink, 2009].

The fusion of the jitter and shimmer measurement with the other long-term speech

features is carried out first at the feature level. Then, they are fused with MFCC at the

score likelihood level in segmentation and clustering both for the proposed GMM and

i-vector speaker diarization systems.

The other contribution of this is the extraction dynamic features from the static cepstral

coefficents, and the use of both static and dynamic features for speaker clustering.

4.3 Prosody

Prosody of speech is defined in the linguistic literature as the suprasegmental properties

of speech. It plays an important role in human communication. Prosody can reflect

various features of the speaker: the emotional state of the speaker; the form of the

utterance, the presence of irony or sarcasm, emphasis, contrast and focus. Prosodic

features are created by source factors or vocal-tract shaping factor [Deller Jr et al., 1993].
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While the source factors occur because of the changes in the speech breathing of muscles

and vocal folds, the vocal-tract shaping factors occur due to the upper articulators

movements.

There are two approaches to extract prosodic features. The first approach uses automatic

speech recognizer (ASR) to obtain the syllabic/phone boundaries. The second approach

that is used in speaker and language recognition is estimating the segment boundaries

using cues derived from the speech signal.

Prosody includes pitch, intensity, and rhythm/duration aspects of speech [Brown et al.,

2006]. Pitch is characterized by the fundamental frequency of speech, denoted F0, which

can be related to the frequency of the vocal fold vibrations. Intensity corresponds to

the loudness of speech. It is the energy of the speech signal and is calculated as the

sum of squared amplitude of each sample in the desired time window. Rhythm is the

speed in which the speaker utters syllables, words, and sentences. The speech rate

is quite variable according to the language, speaker and speaking style. The pauses

and their duration which are related to speaker rate also important aspects of prosody.

However, these attributes can not be measured directly. Their acoustic or perceptual

correlates can only be extracted from speech signal. These measurements are defined

from a perceptual point of view and they have a physical correspondence in the speech

signal.

Prosody also contains non-linguistic information in addition to pitch, intensity, and

rhythm. At the linguistic level, prosody can be used to differentiate utterances. It

also provides emotional states of a speaker such as sadness or happiness by lowering or

increasing pitch, intensity, and speaking rate, respectively.

Prosodic features go beyond phonemes and deal with the auditory qualities of sound.

They are estimated capturing the evolution in time of fundamental frequency, acous-

tic intensity, formant frequencies and duration. Prosodic features have phonetic and

linguistic model etymology and can be used to model the suprasegmental properties of

speech.

Prosody studies those aspects of speech that typically apply to a level above that of

the individual phoneme and very often to sequences of words. It is conveyed through

three different elements: intonation, rhythm and stress, and perceived by the listeners as

changes in fundamental frequency, sound duration and loudness, respectively [Adami,

2007]. The variations in sound duration, fundamental frequency and stress normally

apply to more phones: syllables, words, phrases. Prosodic elements are analysed over

sequences of segments or entire syllables [Dellwo et al., 2007]. They can reflect differences
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in speaking style, sentence type and emotions. Prosodic features are less sensitive to

channel effects than spectral features.

Prosody can be represented in three different level as it is described in [Dutoit, 1997].

These are the acoustic level, perceptual level and linguistic level. The acoustic level is the

measurable properties of the speech signal, such as fundamental frequency and segment

duration. The perceptual is the perceptible features of prosody. While fundamental

frequency is an acoustic property of the signal, pitch is the is the one perceived. Similarly,

intensity is perceived as loudness. The properties of the perceptual level have their own

correspondences to the properties of the linguistic level.

While short-term features are extracted from a single speech frame, prosodic features

are extracted from portions of speech longer than one frame. Prosodic features capture

phonetic, prosodic, lexical, syntactic, semantic and pragmatic information.

Although short-term spectral features are the most widely used ones for different speech

applications, the authors in [Farrs et al., 2006, Friedland et al., 2009, Zelenák and Her-

nando, 2011] report that prosodic features can be employed to reveal individual differ-

ences which can not be captured by short-term spectral features. They have also repoted

that the use of prosodic features together with the spectral features improves the per-

formance of speaker diarization systems. Prosodic features have also been successfully

used to initialize speaker clusters in an agglomerative clustering framework and have

been shown to provide better results than previous initialization methods [Imseng and

Friedland, 2010]. Prosodic cues have also been successfully used in speaker recognition

experiments in [Adami et al., 2003].

Features related to the evolution in time of pitch, acoustic intensity and the first four

formant frequencies have been extracted.

4.3.1 Pitch

Pitch is a term used to refer to variations in fundamental frequency (F0), which serves

as an important acoustic cue for tone, lexical stress, and intonation. It is the most

important prosodic property of speech. The pitch signal is produced from the vibration

of the vocal folds. Pitch is determined by the speed at which the vocal cords vibrate – the

quicker they vibrate, the higher the pitch. The shorter the vocal cords, the faster they

vibrate, and the higher the pitch. The two common features of pitch signal are the pitch

frequency and the glottal air velocity [Ververidis and Kotropoulos, 2006]. Fundamental

frequency is the the vibration rate of the vocal folds. The air velocity through glottis

during the vocal fold vibration is the glottal volume velocity. The pitch contour, a
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perceptual property, is directly related to the fundamental frequency F0 contour, an

acoustic correlate, formed by the larynx during the phonation of speech. The F0 contour

is extracted from speech using a Pitch Detection Algorithm. Current state-of-the-art

methods use cepstrum based Pitch Detection Algorithms algorithms [Noll, 1967, Noll,

1969, Schroeder, 1968] and autocorrelation based methods to extract pitch [Boersma,

1993].

Pitch contains speaker-specific information. The default pitch value and range of a

speaker is influenced by the length and mass of the vocal folds in the larynx [Dellwo

et al., 2007]. The pitch values of different speaker vary in relation to their age and

gender. Pitch can be used as an important acoustic cue for tone, lexical stress, and

intonation. A typical adult male’s fundamental frequency ranges from 100 to 150 Hz,

and that of a typical adult female from 170 to 220 Hz. Since the range of frequencies

produced by men, female and children vary, pitch can be used to discriminate speakers.

4.3.2 Acoustic intensity

Intensity is the power of the speech signal normalized to the human auditory threshold

and is related to the amplitude of the vocal cord vibrations. Vocal intensity is related to

the subglottis pressure of the airflow, which depends on the tension and the vibrations of

the vocal folds. The measurement of intensity is affected by variations in the recording

conditions compared with F0. The problematic nature of the intensity is the squared

relationship between the distance between the sound source and the sound pressure

measured from the recording microphone. Other problems in the estimation of intensity

are the physical dimensions of the recording environment and microphone capsule types.

Intensity is not that much affected by sex and gender of speaker like pitch. It is mostly

relevant to making stress and expressing emotions. It can also be used as a potential

speaker discriminant measure.

4.3.3 Formant Frequencies

They are concentrations of acoustic energy around particular frequencies at roughly

1000-Hz intervals. Each formant corresponds to a resonance in the vocal tract. They

occur only in voiced speech segments around frequencies that correspond to the speaker-

specific resonances of the vocal tract. The first two formants are the most important for

determining the phonetic content. The higher formants are assumed to convey mainly

the speaker specific information. Therefore, they are suitable measures to help discrimi-

nate speakers. However, formant frequencies also depend on the phonetic content. Band-

width limitations should be considered when formants with higher values are measured
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Figure 4.4: Example of prosodic features.

(i.e., the respective frequencies should be available in the signal and it is determined by

the sampling frequency of the digitized signal). We have considered frequencies up to

4kHZ when extracting the formant frequencies.

4.4 Glottal-to-Noise Excitation Ratio

In addition to the jitter and shimmer acoustic parameters that are used to measure

perturbations of speech signals, noise parameters can also be used to assess voice-quality

of a speaker [Sáenz Lechón et al., 2009]. Noise parameters can be used to assess the noise

content of the signal and can be used in the evaluation of voice quality [Sáenz Lechón

et al., 2009].

GNE is an acoustic measure that can be used to assess the amount of voice excitation

by vocal-fold oscillations versus excitation by turbulent noise. It indicates whether a

given voice signal originates from vibrations of the vocal folds or from turbulent noise

generated in the vocal tract [Michaelis et al., 1997]. It is a measure of correlation of

energy modulations across frequency. Energy envelopes are extracted from the outputs

of the bank of bandpass filters. While good correlations across different channels are used

as indicator for glottal pulsing, weak correlations are taken to indicate noise excitation

[Michaelis et al., 1997].

GNE is based on the correlation between Hilbert envelopes of different frequency chan-

nels extracted using inverse filtering of the speech signal [Michaelis et al., 1997]. The

bandwidth of envelops is 1 kHz, and frequency bands are separated by 500 Hz. Triggered

by a single glottis closure, all the frequency channels are simultaneously excited so that

the envelopes in all channels share the same shape leading to high correlation between



4.4. Glottal-to-Noise Excitation Ratio 63

Figure 4.5: Process of GNE extraction.

the envelopes. The shape of each excitation pulse is independent of the preceding or fol-

lowing pulse. For the turbulent signals, a narrowband noise is excited in each frequency

channel. These narrow band noises are uncorrelated. The GNE is calculated picking the

maximum of each correlation functions between adjacent frequency bands. Because of

correlation nature, GNE has a maximum value of 1. When two different envelopes with

two different bands are the same, they have a GNE value of 1. GNE decreases when the

contribution of noise in voice increases.

The process of extracting GNE is described in [Michaelis et al., 1997] as follows:

1. Down-sample the audio signal to 10 kHz.

2. Do inverse filtering of the speech signal.

3. Calculate the Hilbert envelopes of different frequency bands with fixed bandwidth

and different center frequencies.

4. Consider every pair of envelopes for which the difference of their center frequencies

is equal or greater than half the bandwidth: calculate the cross correlation function

between such envelopes.

5. Pick the maximum of each correlation function.

6. Pick the maximum from the maxima.

Inverse filtering is applied to transform the speech wave to a sequence of narrow pulses.

This is achieved by flattening the spectrum so that the harmonics have about the same

amplitude. The peaks of the pulses presumably indicate the instants of glottal closure.

The recovery of the sequence of delta functions from the speech wave is not perfect for

voice samples that are digitized with 48 kHz or 50 kHz sampling frequency, because the

voice energy nearly vanishes above 5 kHz. Therefore, the signal is first down-sampled to
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10 kHz sampling frequency (step 1). The inverse filtering is then carried out using the

linear-prediction error signal by applying a predictor of 13th order computed by auto

correlation method. It normally uses a Hanning window of 30ms length with 10ms shift

in the successive frames.

The calculation of the Hilbert envelopes (step 3) is done most efficiently in the frequency

domain, without using a filter bank as follows:

1. Apply a real discrete Fourier transformation (DFT) on the time signal. The Fourier

components at negative frequencies do not have to be calculated in a real DFT.

2. Select a frequency band from the complex spectrum and apply a Hanning window.

3. Double the length of the signal obtained from step 2 by padding zeros (i.e., setting

the values at negative frequencies to zero).

4. Apply an inverse Fourier transform (IFFT).

5. Take the absolute value of the complex signal.

Steps from (2) to (5) are applied to each frequency band.

Since the envelopes have different phases, it is not sufficient to calculate the zero-time-

shift correlation. The reason for the phase shifts might be that the maximum excitation

of different frequencies does not occur at exactly the same time during glottal closure.

The delay used for the correlation function between two envelopes in step 4 ranges

between -3 and +3 samples (±0.3ms). The maximum within this range is picked for

each correlation function (step 5). Finally in step 6, the maximal correlation is chosen

as the GNE parameter.

In contrast to other acoustic parameters such as jitter and shimmer, the main advantage

of GNE is its computation is independent of variations of fundamental frequency and

amplitude [Sáenz Lechón et al., 2009,Michaelis et al., 1998a].

It is shown in [Sáenz Lechón et al., 2009] that GNE parameter has a significant po-

tential to screen voices since it quantifies the amount of voice excitation and turbulent

noise. It is also reported in [Godino-Llorente et al., 2010] that GNE provides reliable

measurements in terms of discrimination among normal and pathological voices more

than other classical long-term noise measurements, such as Normalized Noise Energy

and Harmonics to Noise Ratio. It has also been used successfully to screen voice dis-

orders in [Godino-Llorente et al., 2010]. It is also reported in [Pop et al., 2007] that

MFCC features have been used together with noise features to reliably assess normal
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and pathological voices. It is also shown in [Sáenz Lechón et al., 2009] that GNE is

reliable measurement to discriminate normal and pathological voices more than other

classical long-term noise measurements found in the literature, such as Normalized Noise

Energy or Harmonics to Noise Ratio.

The voice-quality, prosodic and GNE features are extracted over 30ms frame length and

at 10ms shift using Praat software [Boersma and Weenink, 2009]. After the computation

of the actual values of the voice-quality, prosodic and GNE parameters for any given time

point, suprasegmental statistical characteristics are also computed. The long-term mean

statistics is computed over 500 ms windows with a 10 ms step. This is done to smooth

out the feature estimation of the unvoiced frames. It is also done to synchronize the

long-term features with the short-term ones. The non-speech regions are not considered

when computing the statistical parameter.





Chapter 5

Proposed Speaker Diarization

Systems

This chapter describes the techniques and implementations of the proposed HMM/GMM

and i-vector based speaker diarization systems. The main contributions of the proposed

HMM/GMM system, compared with the baseline speaker diarization system, is clearly

described. The proposed i-vector based clustering techniques based on i-vectors ex-

tracted from the short- and long-term speech features are also explained.

After the extraction of the short-term cepstrl and long-term speech features, different

types of fusion techniques have been carried out for the proposed GMM and i-vector

based speaker diarization systems. The long-term features are the voice-quality, prosodic

and Glottal-to-Noise Excitation Ration (GNE) features. The voice-quality features are

absolute jitter, absolute shimmer and shimmer apq3. The prosodic features are the

evolution in time of pitch, acoustic intensity and the first four formant frequencies. A

detailed description of the long-term features used in the proposed speaker diarization

systems is described in Chapter 4.

Fusion techniques can be carried out at different levels. It can done at the feature

extraction level, the match score level and the decision level [Sim and Lee, 2010,Zhang,

2009].

5.1 Fusion Techniques

Since fusion techniques extract multiple information from multiple sources and improve

accuracy, they have been successfully used in various tasks including speaker recognition

[Farrús et al., 2007] , speaker diarization [Friedland et al., 2009,Zelenák and Hernando,

67
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2011,Woubie et al., 2015] and multi-biometrics [Nandakumar et al., 2009,Nandakumar

et al., 2008].

The feature and score level fusion techniques carried out in the proposed GMM and

i-vector based speaker diarization systems are described as follows:

5.1.1 Feature Level Fusion

Feature level fusion is carried out after the extraction of features from the different

sources. The extracted features can be fused in several ways. The simplest one is

to stack the different features extracted from the different sources in the same feature

vector. Fusion at the feature level can also be carried out in a more complex way on an

algorithmic level by using other techniques.

Fusion at the feature level exploits most of the information of the original data since it

integrates the multi-source information at the most early stage [Xu and Zhang, 2010].

However, fusion at the feature level is susceptible that the different sources of information

may not be consistent and compatible.

In the proposed speaker diarization systems, the feature level fusion is carried by stacking

the voice-quality, prosodic and GNE features in the same feature vector (see Figure 5.1).

Figure 5.1: Example of feature level fusion.

5.1.2 Score Level Fusion

Score level fusion fuses the individual scores obtained from different sources to obtain a

single score. It fuses the outputs of each individual feature source using a combination

algorithm.

The score fusion technique provides a very high accuracy since it allows multiple scores to

be independently treated and integrated [Zhang, 2009]. It uses the sum rule, maximum

rule, minimum rule, and product rule to integrate the scores of different data sources
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[Zhang, 2009]. It is reported in [Kittler et al., 1998] that sum rule provides better result

more than the other score fusion techniques. Hence, in the proposed GMM and i-vector

based speaker diarization systems, the score fusion technique is carried out using the

sum rule as follows:

Fss =
N∑
i=1

si (5.1)

where Fss is the fused sum score, N is the number of features used and si is the score of

feature i.

As it is shown in Table 5.1, the fusion of the short-term spectral features with the long-

term ones is carried out differently in segmentation and clustering at the score level for

the proposed GMM and i-vector based speaker diarization systems. The optimum set

of weight values tuned on the development data for the short- and long-term speech

features have been applied for the score fusion techniques.

Fused scores
Diarization System

Segmentation Clustering

HMM/GMM BIC
HMM/i-vector Cosine distance
HMM/i-vector

Log-likelihood scores
PLDA

Table 5.1: The proposed GMM and i-vector based speaker diariaztion systems and the
score fusion techniques carried out in segmentation and clustering.

The fusion of the short- and long-term speech features is based on the emission proba-

bilities of GMM in speaker segmentation both in the proposed GMM and i-vector based

speaker diarization systems (see Figure 5.2, block B).

The fusion of the short- and long-term speech features is based on the BIC Scores in

speaker clustering in the proposed GMM speaker diarization systems (see Figure 5.2,

block C).

The fusion of the short- and long-term speech features is based on the cosine and PLDA

scores of i-vectors in the proposed i-vector based cosine distance and PLDA clustering

systems (see Figure 5.3 and 5.4).

5.2 Proposed HMM/GMM Speaker Diarization System

As is mentioned in Chapter 3, the UPC baseline speaker diarization system consists

of three basic modules. The first module (Figure 3.1, block A) performs mainly the
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feature extraction process. The second module (Figure 3.1, block B) detects speaker

change points and performs Viterbi segmentation. The third module (Figure 3.1, block

C) performs the bottom-up clustering and outputs the system hypothesis.

Figure 5.2: Proposed HMM/GMM based speaker diarization system using short- and
long-term term speech features.

The highlighted boxes are the ones proposed in the HMM/GMM based speaker
diarization system. The unhighlighted boxes are the same both in the baseline and
proposed systems. Note that the delta features are used only in speaker clustering

together with the static features.
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5.2.1 Feature Extraction

One of the main contributions of the proposed HMM/GMM speaker diarization system

is the extraction of jitter and shimmer voice-quality features, and their fusion with the

prosodic and MFCC features. The prosodic features are pitch, intensity and the first

four formant frequencies. Note that the baseline system is exclusively based on MFCC

feature set.

After the extraction of jitter and shimmer voice-quality features, the following feature

fusion techniques have been carried out at the feature level (see Figure 5.2, block A):

• Fusing Jitter and Shimmer Voice-quality features with Prosodic Ones

• Fusing Jitter and Shimmer Voice-quality with Prosodic and GNE

After the extraction of the short-term spectral features and fusion of long-term features,

the speech signal is then equally partitioned equally to generate an initial number of

clusters. The initial number of clusters depends on meeting duration but it is constrained

the range [10, 65]. This is done to solve the common issues of Agglomerative Hierarchical

Clustering (AHC) such as over-clustering and its high computational cost due to the

combinatorial explosion in pair-wise distance computation. Detailed description about

the selection of the initial number of clusters is described in Section 3.2.

The voice-quality, prosodic and GNE features are extracted over 30ms frame length

with 10ms frame shift using Praat software [Boersma and Weenink, 2009]. Then, each

voice-quality, prosodic and GNE feature is estimated over a 500 ms window with 10ms

shift. This is done to smooth out the feature estimation of the unvoiced frames. It is

also done to synchronize the long-term features with the short-term ones.

The other contribution of the proposed HMM/GMM speaker diarization system is the

extraction of the first order time derivatives of the instantaneous cepstral delta features

for speaker clustering. At first, the static MFCC and the delta features are stacked

in the same feature vector. Then, they are used for speaker clustering. Note that the

speaker segmentation is based only on the static MFCC feature set.

As it is shown in Figure 5.2 (see block A), the short-term and long-term features are

extracted only for the speech frames. The features are extracted using Oracle SAD

(true segmentation). Hence, the non-speech frames are not taken into account when the

long-term statistics is calculated from the long-term speech features.
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5.2.2 Speaker Segmentation

The set of acoustic features corresponding to the short- and long-term speech features

are modeled independently using Hidden Markov Model(HMM). Each state of the HMM

is composed of a mixture of Gaussians, fitting the probability distribution of the features

by the classical expectation-maximization (EM) algorithm. The two HMM models esti-

mated from the short-term and long-term speech features and their best paths obtained

by Viterbi segmentation are fused. The number of mixtures is chosen as a function of

available seconds of speech per cluster in the case of MFCC features. But, they are kept

fixed for the long-term speech features. Finally, a time constraint, as in [Ajmera and

Wooters, 2003], is imposed on the HMM topology. The time constraint forces the mini-

mum duration of the speaker turn to be greater than 3 seconds which is commonly used

as mean value of a speaker intervention or speaker turn [Ajmera and Wooters, 2003].

The fusion of short-term spectral features with the long-term ones is carried out at the

score level in speaker segmentation as it is shown in Figure 5.2, Block B. It is carried

out by fusing the log-likelihood scores corresponding to these feature sets.

Given a set of input features vectors, {x} and {y}, the log-likelihood score in the pro-

posed HMM/GMM segmentation is computed as a joint log-likelihood between features

distributions as follows:

logP (x,y) = α logP (x|θix) + (1− α) logP (y|θiy), (5.2)

where logP (x,y) is the fused emission probabilities for cluster i, θix is the model of

cluster i from MFCC feature vectors, and θiy is the model for the same cluster i using

long-term features. The weight of the spectral feature vector is α and (1 − α) is the

weight of long-term speech features. The values of the α are tuned on development data

set.

5.2.3 Speaker Clustering

Both the baseline and proposed speaker diarization systems are based on Agglomerative

Hierarchical Clustering(AHC) technique. The distance among clusters is based on the

Bayesian Information Criterion (BIC). This distance measures the difference among

each pair of clusters. The stopping criterion is also driven by a threshold on the same

matrix of distances (see Figure 5.2, block C). A modified BIC-based metric [Ajmera and

Wooters, 2003] is employed to select the set of cluster-pairs candidates with smallest

distances among them. The cluster-pairs (i, j) with the highest BIC score is merged
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at each iteration. Then, a two-step training and decoding iteration is performed again

to refine the model statistics and align them with the speech recording (see Figure 5.2,

block B). This process continues iteratively until the highest BIC distance score among

the set of clusters is less than the threshold value of the stopping criterion.

Once the speech segments are generated by the Viterbi segmentation, the speaker clus-

tering of the proposed HMM/GMM speaker clustering system is carried out as follows:

BIC(i, j) = β .BICijx + (1− β) . BICijy, (5.3)

where BICijx and BICijy are the BIC distances between clusters i and j generated

using short- and long-term speech features, respectively. The BIC score computed using

the short- and long-term features set are multiplied by β and (1− β), respectively. The

values of β are tuned on development data set.

Note that the long-term features in equations 5.2 and 5.3 may refer to four different

possibilities: voice-quality features, prosodic features, stacked voice-quality and prosodic

features, and stacked voice-quality, prosodic and GNE features.

We have also proposed the use of delta dynamic features for speaker clustering. The

static MFCC and the delta features (∆) are stacked first in the same feature vector.

Then, the stacked features are used for speaker clustering. The proposed technique is

exactly the same as in Figure 5.2 except that the BIC distance metric is computed using

the stacked static and dynamic features in clustering (see Figure 5.2, block C). The

speaker segmentation is based only on the static MFCC feature set.

5.3 Proposed i-Vector based Speaker Diarization System

Factor analysis techniques which are the state of the art in speaker recognition have

recently been successfully applied in speaker diarization experiments [Kenny et al., 2010,

Franco-Pedroso et al., 2010,Shum et al., 2011,Shum et al., 2012,Vaquero Avilés-Casco,

2011, Senoussaoui et al., 2013]. In these works, i-vectors are extracted from speech

segments and the successive clustering stages are carried out using i-vector modeling

techniques (i.e., the cosine distance and PLDA scores of i-vectors are used as a distance

metrics for clustering).

The main contribution of the proposed i-vector based speaker diarization system is the

extraction of i-vectors from short-term and long-term speech features, and the fusion of
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their cosine and PLDA scores for speaker clustering. The long-term speech feature are

the voice-quality, prosodic and GNE features.

Note that the feature extraction and speaker segmentation modules are the same both

in the proposed GMM and i-vector based speaker diarization systems. The main contri-

bution is on speaker clustering. The fusion of MFCC features with the long-term ones

is carried out in speaker segmentation using the log-likelihood scores corresponding to

these feature sets is carried out as it is explained in equation 5.2.

The stopping criterion in the i-vector based speaker diarization systems is tuned on the

development data set. When the highest cosine-distance/PLDA score among all pair of

clusters is less than λ, the merging process stops. The value of λ is tuned on development

set. Finally, the algorithm outputs the final speaker segmentation hypothesis.

The main reason why i-vectors are not applied in segmentation is because it is difficult to

reliably estimate i-vectors from segments of short duration which degrades the clustering

process.

5.3.1 Speaker Clustering

The proposed speaker clustering of the proposed i-vector based speaker diarization sys-

tems are carried out using two different distance scoring metrics. These are the cosine

distance and PLDA scoring techniques.

Cosine Distance Scoring

The main contribution of the proposed i-vector based cosine distance clustering technique

is the extraction of i-vectors from short- and long-term speech features, and the fusion

of their cosine scores for speaker clustering.

As it is shown in Figure 5.3, two sets of i-vectors are first extracted from the outputs

of Viterbi segmentation. While the first i-vector is extracted from the the short-time

spectral features, the second one is extracted from the long-term features. The long-

term speech features is the concatenation of voice-quality and prosodic features. Then,

the cosine-distance scores are computed among every pair of i-vectors representing each

cluster and are linearly weighted. At each iteration, the Viterbi segmentation outputs a

new clustering from which i-vectors are extracted.

The successive clustering stages group two acoustically similar segments per iteration

based on their cosine distances among corresponding i-vectors. At each iteration, the

Viterbi segmentation outputs a new clustering from which i-vectors are extracted.
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Figure 5.3: Proposed i-vector based speaker clustering architecture based on a weighted
cosine-distance among i-vectors.

The feature extraction and speaker segmentation are exactly the same as in the
proposed HMM/GMM speaker duration system (see Figure 5.2, block A and block B).

At the clustering step, once the speaker clusters are generated using Viterbi segmenta-

tion, the fused cosine-distance score is computed as follows:

CDS = β.
xi · xj

‖xi‖‖xj‖
+ (1− β).

yi · yj

‖yi‖‖yj‖
, (5.4)

where CDS is the fused cosine distance score between clusters i and j, xi and xj are

the corresponding i-vectors extracted from short-term spectral features for clusters i

and j, respectively. The vectors yi and yj represent the i-vectors estimated using long-

term speech features for same clusters i and j, respectively. Furthermore, two different

weights are assigned to both cosine-distances. While β weights the cosine-distance of

i-vectors extracted from short-term features, (1 − β) weights the cosine-distance of i-

vectors extracted from the long-term features.

Note that the long-term features in equations 5.4 refer to two possibilities: stacked voice-

quality with prosodic features, and stacked voice-quality, prosodic and GNE features.

At first, the similarity measure among all pairs of i-vectors is computed. Then, the

two closest clusters are merged at each iteration (i.e., i-vector pairs with the highest

cosine-distance scores). After merging the two closest clusters, the Viterbi segmentation

is carried out and a new i-vector set is extracted from the new clustering. The similarity

matrix between cluster pairs is also updated. This step continues until the speaker

diarization system provides the final segmentation.
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Note that i-vectors are only employed for speaker clustering. The subsequent Viterbi

segmentation and realignments stages employ short- and long-term speech feature as in

our previous work of [Woubie et al., 2015].

Probabilistic Linear Discriminant Analysis (PLDA) Scoring

The use of i-vector based PLDA Clustering is the continuation of the previously men-

tioned i-vector based cosine-distance clustering technique. Note that the i-vector based

cosine-distance clustering technique extracts the i-vectors from the short-term spectral

features, and long-term voice-quality and prosodic features for clustering. The main

contribution here is the extraction of GNE features and its fusion with the voice-quality

and prosodic features at the feature level. The i-vector based cosine distance cluster-

ing technique is also replaced by i-vector based PLDA clustering one. Firstly, two sets

of i-vectors are extracted from the short-term spectral and long-term speech features.

The long-term speech features are the concatenation of voice-quality, prosodic and GNE

features. Then, the PLDA scores of these two i-vectors are fused linearly for speaker

clustering.

Figure 5.4: Proposed i-vector based speaker clustering architecture based on a weighted
PLDA scores among i-vectors.

The feature extraction and speaker segmentation are exactly the same as in the
proposed HMM/GMM speaker duration system (see Figure 5.2, block A and block B).

Once the i-vectors are extracted from the short- and long-term speech features, PLDA

models the i-vectors as follows:

wij = µ+ Fhi + Σij (5.5)
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where wij represent the j ’th segment of i-vector i, µ is the overall speaker and segment

independent mean of the i-vectors in the training dataset, and the columns of the matrix

F define the between-speaker variability. Any unexplained data variation is represented

by Σij . The components of the vector hi are the eigenvoice factor loadings. The term

Fhi depends only on the identity of the speaker, not on the particular segment.

Then, the parameters {µ, F and Σ} are be estimated from a set of training data as-

suming that the speech samples of an individual consist of different number of sessions.

The recognition phase checks whether two i-vectors belong to the same speaker or dif-

ferent speakers.The parameter estimation is done using expectation maximization(EM)

algorithm.

Finally, the fused PLDA score is computed as follows:

γ. log
p(wi, wj |H1)

p(wi|H0)p(wj |H0)
+ (1− γ). log

p(w′i, w
′
j |H1)

p(w′i|H0)p(w′j |H0)
, (5.6)

where wi and wj represent the i-vectors extracted from the short-term spectral feature

for cluster i and cluster j, respectively. The i-vectors extracted from long-term speech

features for cluster i and cluster j are represented by w′i and w′j , respectively. Hypothesis

H1 and H0 assume that the two i-vectors belong to the same and different speakers,

respectively. The PLDA scores of i-vectors extracted from the short- and long-term

features are weighted by γ and (1-γ). Note that the long-term features in equation 5.6

may refer to two different possibilities: stacked voice-quality and prosodic features, and

stacked voice-quality, prosodic and GNE features

Once the similarity measure between i-vectors is computed, the two sets of cluster with

the highest cosine PLDA score are merged at each iteration. A new i-vector is extracted

at each iteration from the outputs of the new segmentation.





Chapter 6

Experimental Setups and Results

6.1 Augmented Meeting Corpus (AMI) Corpus

This section gives a description of the AMI corpus used in the baseline and proposed

speaker diarization systems. The partitions of the AMI recordings into training, devel-

opment and test sets are outlined.

The AMI is a meeting corpus consisting 100 hours of audio in 171 shows which use a

range of signals synchronized to a common timeline. The shows were recorded using

close-talking and far-field microphones. The meetings were recorded in English using

three different rooms with different acoustic properties. The recording were carried

out in Idiap, Edinburgh, and TNO sites. For close-talking microphones, omnidirectional

lapel microphones and headset condenser microphones were used. For the far-field audio

microphones, arrays of four and eight miniature omnidirectional electret microphones

were used. The individual microphones in the arrays are equivalent to the lapel micro-

phones, but they were wired. All of the rooms had a circular array mounted on the

table in the middle of the participants, plus one other array that is mounted on either

the table or the ceiling.

The AMI meeting corpus includes two types of meetings: scenario meetings and non-

scenario meetings. In the scenario meetings, participants were given the task of designing

a remote control over a series of sessions with roles assigned for each participant. One

of the participants is the project manager who has the overall responsibility. These

meetings are generally based on presentations followed by discussions. In the non-

scenario meeting recordings, participants were free to choose their own topic beforehand.

The number of speakers in the recording is mostly four with the exception of few shows

having three speakers. The audio signals are sampled at 16 kHz with 16 bit precision.

79
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6.2 HMM/GMM based Speaker Diarization Systems

As it is explained in Chapter 3, the baseline speaker diarization system uses only the

short-term MFCC features (MFCC). In the proposed HMM/GMM speaker diarization

system, we have proposed the use of jitter and shimmer voice quality features for speaker

diarization. The fusion of the voice-quality features with the state-of-the-art long-term

prosodic and short-term MFCC features is carried out at the feature and score level,

respectively.

The following set of experiments have been carried out in the proposed HMM/GMM

based speaker diarization systems.

• The use of Delta (∆) Features for Speaker Clustering

Most of the state of the art speaker diarization systems use only the static MFCC

for diarization. The delta dynamic features can be used to capture the transitional

characteristics of the speech signal which contains the speaker specific information.

These information are not captured by the static MFCC features.

In this work, we propose the use of delta dynamic features for speaker clustering.

Firstly, the static and the dynamic features are stacked in the same feature vec-

tor. Then, the stacked features are used for speaker clustering only. The speaker

segmentation is based only on the static MFCC feature set.

• The Use of Jitter and Shimmer Voice-quality Measurements for Speaker

Diarization

Jitter and shimmer (JS) voice quality features are first extracted from the funda-

mental frequency contour. Then, they are fused together with the baseline MFCC

features. The fusion of the voice-quality with MFCC is carried out at the score

likelihood level both in segmentation and clustering. While the fusion in segmen-

tation is based on the log-likelihood scores of HMM models of each feature set (see

equation 5.2), the fusion in clustering is based on Bayesian Information Criterion

(BIC) scores of each feature set (see equation 5.3).

• The Use of Prosodic Features for Speaker Diarization

First, features related to the evolution in time of pitch, acoustic intensity and

the first four formant frequencies are extracted. Then, they are fused with the

MFCC features at the score likelihood level both in segmentation and clustering.

The fusion at the segmentation level is based on the log-likelihood scores of HMM

models of each feature set (see equation 5.2). The fusion at the clustering is based

on BIC scores of each feature set (see equation 5.3).
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• Using Voice-quality with Prosodic and MFCC Features for Speaker Di-

arization

The long-term voice-quality and prosodic features are first fused at the feature

level (i.e., they are stacked in the same feature vector). Then, the stacked feature

is fused with the MFCC at the score likelihood level both in segmentation and

clustering. The fusion at the segmentation level is based on the log-likelihood

scores of HMM models of each feature set (see equation 5.2). The fusion at the

clustering is based on BIC scores of each feature set (see equation 5.3).

6.2.1 Experimental Setup

Manually annotated speech references have been employed to extract the speech frames

and discard non-speech regions both for the development and test sets. The main reason

why we are interested to use the speech references, instead of Speech Activity Detection

(SAD), is we want to focus exclusively on speaker errors that occur to the diarization

approach. A feature vector of 20 MFCC features is computed with 30ms frame length

at 10ms frame shift. The MFCC features are extracted using the Hidden Markov Model

Toolkit [Young and Young, 1993].

The voice-quality and the prosodic features are extracted over 30ms frame length and

10ms frame shift using Praat software [Boersma and Weenink, 2009]. Then, we calculate

the mean of each of the voice-quality and prosodic features over a window length of 500ms

with 10ms step. This is done to smooth out the feature estimation of the voice-quality

and prosodic features, and also synchronize them with the MFCC features.

The experiments have been developed and tested on AMI corpus, a multi-party and

spontaneous speech set of recordings [AMI, 2011]. The development and test sets are

based on a mono-channel audio recording.

• Development set: 10 shows have been selected from IDIAP, Edinburgh, and

TNO sites as a development set. The development shows include both the sce-

nario and non-scenario recordings. These shows are used to tune the optimum

parameters (i.e., optimum set of weight values for the short- and long-term speech

features). The total and average duration of the development set is 284 and 28.4

minutes, respectively. The development database is based on far-field microphone

array channels sampled at 16kHz.

• Test set: In order to evaluate the performance of the proposed systems, the test

experiments have been carried out on 120 AMI shows consisting of both scenario

and non-scenario meetings from Idiap, Edinburgh and TNO sites. We have also



82 Chapter 6. Experimental Setups and Results

created another test set from these recordings by chopping them into 10 minutes

duration and generated another 450 chunks test sets. The selected shows are the

ones recorded using the far-field microphone array channels sampled at 16KHz.

The total and average duration of the test sets of the whole recording (i.e., without

chunking) are 4075 minutes (about 69 hours) and 36.38 minutes, respectively.

Note that optimum parameters found through experimentation on the development sets

have been directly used on the test sets.

The performance metric employed for assessing speaker diarization systems is the Di-

arization Error Rate (DER). DER represents the sum of false alarm speech, missed

speech and speaker error along time. Speaker error is the percentage of scored time

that a speaker ID is assigned to the wrong speaker. False alarm is the percentage of

scored time that a hypothesized speaker is labelled as a non-speech in the reference.

Missed speech is the percentage of scored time that a hypothesized non-speech segment

corresponds to a reference speaker segment. Since speech references have been used,

the rate of false alarms and missed speech have zero values in the experimental results.

Hence, DER values reported in the following sections correspond purely to speaker time

confusion produced by the diarization system. We have used a collar of 250ms around

every speaker segment to discard any inaccuracies in the reference annotation when the

DER is scored. 1

6.2.2 Delta Features Results

Speaker diarization systems use mainly the static MFCC speech features extracted from

short-term power spectrum. The static MFCC features represent spectral characteristics

associated with the speech segment. The delta dynamic features capture the transitional

characteristics of the speech signal which contains the speaker specific information.

Hence, we propose the use of delta dynamic features for speaker clustering as they add

dynamic information to the static MFCC features. The speaker segmentation is based

only on the static MFCC feature set.

Experimental Results

As it is shown in Table 6.1, the baseline system of the test set has a DER of 23.97%. Note

that the baseline system is based only on static MFCC feature set both for segmentation

and clustering. The table shows that the use of static MFCC features in segmentation,

1The scoring tool is the NIST RT scoring used as: ./md-eval-v21.pl -1 -nafc -c 0.25 -o -R reference.rttm
-S hypothesis.rttm
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Features
Segmentation Clustering

DER (%)

MFCC MFCC 23.97

MFCC MFCC + Delta (∆) 21.55

Table 6.1: DER of the test sets for HMM/GMM speaker diarization system using
MFCC and MFCC + Delta (∆) feature set.

and static MFCC and delta dynamic features in clustering reduces the DER to 21.55%.

This represents a 10.01% relative DER improvement more than the baseline system.

Summary

We have proposed the use of delta features for speaker clustering since the delta fea-

tures add dynamic information to the static cepstral features. The experimental results

show that use of delta dynamic features improve the performance of speaker diarization

systems by complementing the transitional characteristics of the speech signal which

contains speaker specific information.

6.2.3 Jitter and Shimmer Results

Jitter and shimmer (JS) measure variations in the fundamental frequency and amplitude

of speaker’s voice, respectively. Due to their nature, they can be used to assess differences

between speakers. Therefore, we propose the use of jitter and shimmer voice quality

features for speaker diarization since they provide complementary information to the

baseline MFCC features. The main contribution of this work is the extraction of jitter

and shimmer voice quality features and their fusion with the MFCCs in the framework

of speaker diarization.

Although there are different estimations of jitter and shimmer measurements, we have

extracted the following three measurements called absolute jitter, absolute shimmer

and shimmer apq3 encouraged by previous work of [Farrús et al., 2007]. It is reported

in [Farrús et al., 2007] that these three measurements provide better results for speaker

recognition more than the other jitter and shimmer measurements.

Jitter and shimmer voice quality measurements are first extracted from the fundamental

frequency contour. Then, they are fused together with the baseline MFCC features.

Features Development DER(%) Test DER(%)

MFCC 20.04 23.97

MFCC + JS 18.04 22.83

Table 6.2: DER of the development and test sets for HMM/GMM speaker diarization
system using MFCC, and Jitter and Shimmer (JS) feature sets.
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Experimental Results

As it is shown in Table 6.2, the baseline system of the development and test sets show

DER of 20.04% and 23.97%, respectively. Note that the baseline system is based only

on MFCC feature set. The table shows that the fusion of voice-quality features with the

MFCC provides better DER both in the development and test sets. It provides DER

of 18.04% and 22.83% for the development and test sets, respectively. These represent

a 17.58% and 4.14% relative DER improvement more than the baseline system for the

development and test sets, respectively.

Summary

We have proposed the use of jitter and shimmer voice quality features for speaker di-

arization experiment as these features add complementary information to the baseline

MFCC features. Jitter and shimmer voice quality features are first extracted from the

fundamental frequency contour, and are then fused together with the baseline MFCC

features. The fusion of the two streams in segmentation and clustering is done at the

score likelihood level by weighting linearly the log-likelihoods and BIC scores of each

model (see equation 5.2 and 5.3), respectively. The experimental results show that

adding jitter and shimmer voice quality features to the baseline MFCC features improve

the DER.

6.2.4 Prosody Results

We have also carried out an experiment using prosodic features together with MFCC.

We have extracted the following prosodic features encouraged by the previous work

of [Zelenák and Hernando, 2011]. Features related to the evolution in time of pitch,

acoustic intensity and the first four formant frequencies have been extracted. Then,

they are fused with the MFCC.

Features Development DER(%) Test DER(%)

MFCC 20.04 23.97

MFCC + Prosody 19.49 23.45

Table 6.3: DER of the development and test sets for HMM/GMM speaker diarization
system using MFCC and prosodic feature sets.

Experimental Results

As it shown in Table 6.3, the use of prosodic features together with MFCC provides a

little DER improvement more than the baseline system. The use of prosodic feature

together with the MFCC ones provides a DER of 19.49% in the development set. This

corresponds to a 2.74% relative improvement more than the baseline system. Similarly,
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Figure 6.1: DER of the development and test sets for HMM/GMM speaker diarization
system using MFCC, JS and prosodic feature sets.

the fusion of prosodic features with the MFCC ones provides a 2.74% relative DER

improvement more than the baseline system for the test set.

Summary

The experimental results show that the extraction of selected prosodic features and

their combination with the MFCC ones improves the accuracy of speaker diarization

system. The fusion of the two streams in segmentation and clustering is done at the

score likelihood level by weighting linearly the log-likelihoods and BIC scores of each

model (see equation 5.2 and 5.3), respectively.

As it is shown in Figure 6.1, the use of both voice-quality and prosodic features together

with MFCC provide better results more than using only MFCC feature set. The im-

provements are both for the development and test sets. This shows that the use of both

voice-quality and prosodic features add complimentary information to the short-term

MFCC features.

6.2.5 Voice-quality and Prosody Results

The main contribution of this work is the fusion of jitter and shimmer voice-quality

features both with the long-term prosodic and short-term MFCC features. The fusion of

voice-quality with the prosodic and MFCC features is carried out both at the feature and

score likelihood level. The voice-quality features are absolute jitter, absolute shimmer

and shimmer apq3. The appropriate characteristics related to the human speech prosody

are conveyed through intonation, rhythm and stress. Encouraged by work of [Zelenák

and Hernando, 2011], we have extracted features related to the evolution in time of pitch,
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acoustic intensity and the first four formant frequencies to validate their performance in

this work.

Features Development DER(%) Test DER(%)

MFCC 20.04 23.97

MFCC + JS 18.04 22.83

MFCC + Prosody 19.49 23.45

MFCC + (JS + Prosody) 17.16 21.68

Table 6.4: DER of the development and test sets for HMM/GMM speaker diarization
system using MFCC, JS and prosodic feature sets.

The long-term voice-quality and prosodic features are first fused at the feature level (i.e.,

they are stacked in the same feature vector). Then, the stacked feature is fused with

the MFCC at the score likelihood level both in segmentation and clustering.

Experimental results

At it is shown in Table 6.4, the best results in the HMM/GMM system are obtained

when MFCC features are used with the voice-quality and prosodic features both in the

development and test sets. The fusion of voice-quality features with the prosodic ones at

the feature level and their fusion with the MFCC ones provides a 14.37% relative DER

improvement more than the baseline system for the development set. It also provides

a 9.55% relative DER improvement more than the baseline system for the test set.

Table 6.4 also shows that the use of voice-quality and prosodic features with MFCC

ones provides better DER results more than using only voice-quality and only prosodic

features with the MFCC ones.

Figure 6.2 shows the DER ranges of the HMM/GMM speaker diarization system using

different feature sets for the development and test sets. The figure shows the minimum,

lower quartile, median, upper quartile, and maximum DER of different shows, respec-

tively. The figure shows that the use of voice-quality features together with MFCC

reduces the DER variation among the different shows both for the development and

test sets, compared to the system that is based only on MFCC feature set. The use

of prosodic features also reduces the DER variations among the different shows both

for the development and test sets. The range of the DER variations among the differ-

ent becomes lowest when MFCC features are used together with the voice-quality and

prosodic features both for the development and test sets.

Although the combination of the different fusion systems reduce the DER error for most

of the shows both in the development and test sets, the error rate increases for some

recordings compared to baseline system. Reasons for this effect should be explored in

the future.
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Figure 6.2: Box plot of the development and test sets for HMM/GMM speaker di-
arization system using MFCC, JS and prosodic feature sets.

Summary

In this work, we have proposed the use of jitter and shimmer voice-quality measurements

as complementary source of information to both the long-term prosodic and short-term

MFCC features within speaker diarization task.

Experimental results on AMI corpus show that the fusion of voice-quality and prosodic

features at the feature level and their fusion with MFCC ones at at the score likelihood

provides better DER. The results of the experiments show the usefulness of voice-quality

features as complementary source of information for speaker diarization.

In overall, the experimental results validate the usefulness of fusing voice-quality features

with the prosodic and MFCC ones. The box plots and experimental results show that the

use of voice-quality features with the prosodic and MFCC ones increase the robustness

and reliability of speaker diarization systems.

6.3 i-Vector based Speaker Diarization Systems

Factor analysis techniques which are the state of the art in speaker recognition have

recently been successfully applied in speaker diarization experiments [Kenny et al., 2010,

Franco-Pedroso et al., 2010,Shum et al., 2011,Shum et al., 2012,Vaquero Avilés-Casco,
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2011,Senoussaoui et al., 2013]. The speech clusters are first represented by i-vectors and

the successive clustering stages are performed based on i-vector modeling.

Note that the above mentioned works extract i-vectors exclusively from short-term

MFCC features for speaker clustering. The main contribution of this work is the extrac-

tion of i-vectors from short-term MFCC and long-term speech features. The long-term

features are the concatenation of voice-quality, prosodic and GNE features. Once the

two sets of i-vectors are first extracted from the outputs of the Viterbi segmentation

(i.e., i-vectors from the short-term and long-term features), the cosine and PLDA scores

of these i-vectors are fused as a clustering distance (see equation 5.4 and equation 5.6).

The fusion of short-term MFCC features with the long-term ones is carried out in speaker

segmentation using the log-likelihood scores corresponding to these feature sets as in

[Woubie et al., 2015]. The fusion in segmentation is carried out as it is explained in

equation 5.2. The main contribution is on speaker clustering.

6.3.1 Experimental Setup

The UBM and the T matrix are trained using 100 AMI shows which have duration of

60 hours. Two Universal Background Models (UBMs) of 512 Gaussians components are

trained. While the first UBM is for the short-term MFCC features, the second one is for

the long-term ones. The UBM of short-term MFCC features is trained on 20 cepstral

co-efficients without the deltas. The UBM of long-term features is trained using the

stacked voice-quality, prosodic and GNE features.

A 100 and 50 dimensional raw i-vector sizes are extracted from the short- and long-term

speech features, respectively. The size of the total variability matrix is 100 for the short-

term speech features and 50 for the long-term ones. The i-vector framework is carried

out using ALIZE open source software [Larcher et al., 2013].

The Probabilistic Linear Discriminant Analysis (PLDA) system of the short-term and

long-term speech features use a 40 and 20 dimensional speaker space. The PLDA is

trained on the same data used to train the UBM and T-matrix but the audio signals are

chopped into pieces of 3 second segments.

The selection of threshold value for stopping criterion for the proposed i-vector based

speaker diarization systems is carried out as it is shown in Figure 6.3. It is based on a

data driven approach. The DER and corresponding cosine distance/PLDA score values

at each iteration are compared, and λ value that minimizes the DER value is selected.

Thus, the system stops merging when the highest cosine distance/PLDA score value

among all pair of clusters is less than λ. As it is shown in Figure 6.3, the DER values
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first decrease for some iteration first. But, its values start to increase after some number

of iterations because of over-clustering.

Figure 6.3: DER and cosine-distance score per iteration for selected shows from the
development set.

The same development and test sets explained in Section 6.2.1 are used for the proposed

i-vector based speaker diarization systems. The optimum parameters found through

experimentation on the development set have been directly used on the test sets. The

tuned parameters are the threshold value for stopping criterion, size of i-vectors for the

short- and long-term speech features, size of eigen-voice for PLDA training, and optimum

set of weight values for i-vectors extracted from the short- and long-term speech features.

6.3.2 i-Vector based Cosine Distance Clustering

In the proposed i-vector based cosine distance clustering technique, two sets of i-vectors

are extracted from the outputs of Viterbi segmentation (see Figure 5.3). While the first

i-vector is extracted from the short-term MFCC features, the second one is extracted

from the long-term speech features. After the extraction of i-vectors from the short-

and long-term speech features for each cluster, the cosine-distance scores of i-vectors are

linearly weighted (see equation 5.4) to obtain a single cosine distance similarity score.

Finally, the fused cosine distance score is used a distance metric for clustering. The two

clusters with the highest cosine distance score are merged at each iteration.

The viterbi segmentation and clustering process continues iteratively until the highest

cosine distance score among the set of i-vectors is less than the threshold value for

stopping criterion (i.e., λ value). The Viterbi segmentation outputs a new clustering
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from which i-vectors are extracted at each iteration (i.e., different i-vectors are extracted

at each iteration).

Experimental Results

Table 6.5 depicts the results of the development set. The table shows that the baseline

system of the development set has a DER of 20.04%. Note that the baseline system is

based on GMM based BIC clustering technique exclusively on MFCC feature set. The

table shows that replacing the BIC clustering of the development dataset by i-vector

based cosine-distance speaker clustering technique on the same feature set decreases

the DER to 19.2%. This represents a 4.19% relative DER improvement more than

the baseline system. Tha table also shows that the use of BIC clustering with MFCC,

voice-quality and prosodic features on the development dataset yields a DER of 17.16%.

This corresponds to 14.37% relative DER improvement more than the baseline system.

Finally, the table shows that the use of i-vector based cosine distance clustering technique

with both short-term MFCC and long-term voice-quality and prosodic features provides

a DER of 16.44%. This represents a 17.96% relative DER reduction more than the

system that is based only on MFCC feature set and applies the same clustering technique.

Clustering
Features GMM/BIC i-vector/Cosine distance

MFCC 20.04 19.2

MFCC + (JS + Prosody) 17.16 16.44

Table 6.5: DER of the development set for GMM based BIC and i-vector based cosine
distance clustering techniques using MFCC, JS and prosodic feature sets.

Similarly, Table 6.6 shows the results of the test set. As it is shown in the table, the

baseline system of the test set provides a DER of 23.97%. The use of i-vector based cosine

distance clustering using only MFCC feature set decreases the DER to 22.96%. This

represents a 4.21% relative DER improvement more than the baseline system. Finally,

the table reports that the use of i-vector based cosine distance clustering technique

using short- and long-term speech features provides the lowest DER (i.e., 20.13%). This

corresponds to a 7.15% relative DER improvement more than the system using same

feature sets and GMM based BIC clustering technique. It also provides a 12.33% relative

DER improvement more than the system that is based only on MFCC feature set and

applies the same clustering technique.

We have also carried out test experiments on 450 chunks as it is explained in Section

6.2.1. Table 6.7 shows that the baseline system of the chunk test set which is based

on MFCC feature set and GMM based BIC clustering has a DER of 22.62%. The use

of i-vector based cosine-distance clustering on the same feature set provides a DER

of 21.35%. This correspond to a 5.61% relative DER improvement than the baseline
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Clustering
Features GMM/BIC i-vector/Cosine distance

MFCC 23.97 22.96

MFCC + (JS + Prosody) 21.68 20.13

Table 6.6: DER of the test set for GMM based BIC and i-vector based cosine distance
clustering techniques using MFCC, JS and prosodic feature sets.

system. The use of i-vector based cosine distance clustering provides the best DER

result (i.e., 19.53%). This is similar to the test set results of experiments on whole

shows (i.e., without chunking). Table 6.6 and 6.7 show that the results are consistent

both in whole and chunk test sets.

Clustering
Features GMM/BIC i-vector/Cosine distance

MFCC 22.62 21.35

MFCC + (JS + Prosody) 21.73 19.53

Table 6.7: DER of the chunk test set for GMM based BIC and i-vector based cosine
distance clustering techniques using MFCC, JS and prosodic feature sets.

As it is shown in Figure 6.4, the extraction of long-term speech features improves the

DER results both for the proposed GMM and i-vector based speaker diarization systems.

The improvements are both for the development and test sets. The results show the

usefulness of long-term features both for GMM and i-vector based speaker diarization

systems.

Figure 6.4: DER Comparison of GMM based BIC and i-vector based cosine distance
(CD) clustering using MFCC, JS and prosodic feature sets.
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A semi-automatic threshold value λ is used as a stopping criterion on the matrix of

distances of clusters. When the highest cosine distance score among all pair of clusters

is less than λ, the merging process stops (see Figure 6.3 for more details).

Summary

In this work, we have proposed the extraction of i-vectors from short- and long-term

speech features and the fusion of their cosine-distance scores for speaker clustering.

First of all, experimental results show that i-vector based cosine distance clustering

technique based on short- and long-term features provides better DER more than the

same clustering technique using only short-term features. Secondly, the results show

that i-vector based cosine distance clustering technique provides a substantial relative

DER improvement more than GMM based BIC clustering technique.

Two main interpretations can be made from the results. The first one is that the results

indicate the suitability of applying i-vector modeling technique within the clustering

stage. The second one supports the hypothesis that long-term speech features convey

useful and complementary speaker discrimination more than MFCC features.

In overall, the experimental results manifest the usefulness of i-vector based clustering

technique based on short- and long-term speech features within in the framework of

speaker diarization.

6.3.3 i-Vector based PLDA Clustering

The use of i-vector based PLDA clustering is the continuation of the previously men-

tioned i-vector based cosine-distance clustering. Note that the i-vector based cosine-

distance clustering extracts the i-vectors from the short-term cepstral features, and

long-term voice-quality and prosodic features. The main contribution here is the extrac-

tion of GNE features and its fusion with the voice-quality and prosodic features at the

feature level. The i-vector based cosine distance clustering technique is also replaced by

i-vector based PLDA clustering one.

As it is shown in Figure 5.4, two sets of i-vectors are extracted first from the short-

term cepstral and long-term speech features. The long-term speech features are the

concatenation of voice-quality, prosodic and GNE features. Then, the similarity measure

between i-vectors is linearly weighted to obtain a fused PLDA score (see equation 5.6).

Finally, the fused PLDA score is used a distance metric for clustering. The two clusters

with the highest PLDA score are merged at each iteration.
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The viterbi segmentation and clustering process continues iteratively until the highest

PLDA score among the set of i-vectors is less than the threshold value for stopping

criterion (i.e., λ value). The Viterbi segmentation outputs a new clustering from which

i-vectors are extracted at each iteration (i.e., different i-vectors are extracted at each

iteration).

Experimental Results

As it is shown in Table 6.8, the baseline system of the development set that uses GMM

based BIC clustering technique and MFCC feature set has a DER of 20.04%. The use

of same clustering technique, and the fusion of voice-quality, prosodic and GNE features

reduces the DER to 16.95%. This corresponds to a 15.41% relative DER improvement

more than the baseline system. Replacing the GMM based BIC clustering technique

that uses MFCC feature sets with i-vector based PLDA clustering techniques on the

same feature set reduces the DER to 17.11%. This represents a 14.62% relative DER

improvement more than the baseline system. The use of PLDA clustering using MFCC,

voice-quality, prosodic and GNE features provides the best DER result (i.e., 15.06%).

This corresponds to a 11.2% and 8% relative DER improvement more than the systems

that are based on BIC and cosine distance clustering techniques, and uses the same

feature sets, respectively.

Clustering
Features

GMM/BIC
i-vector/

Cosine distance
i-vector/PLDA

MFCC 20.04 19.2 17.11

MFCC + (JS + Prosody) 17.16 16.44 16.04

MFCC + (JS + Prosody + GNE) 16.95 16.37 15.06

Table 6.8: DER of the development set for GMM and i-vector based speaker clustering
techniques using MFCC, JS, prosodic and GNE feature sets.

Similarly, Figure 6.5 shows the DER results of the test set. The baseline system of the

test set shows a DER of 23.97%. The best results are found when i-vector based PLDA

clustering is used together with MFCC, voice-quality, prosodic and GNE features. It

provides a DER of 19.46%. The results shows that addition of GNE feature to the voice-

quality and prosodic features, and extraction of i-vector from these features improves the

DER, compared to extracting i-vectors only from voice-quality and prosodic features. As

it is shown in Figure 6.5, the improvements are only for i-vector based PLDA clustering

technique. The addition of GNE features does not improve the DER results both for

the GMM based BIC and i-vector based cosine distance clustering techniques.

The figure also shows that i-vector based PLDA clustering technique provides a sub-

stantial relative DER improvement more than GMM based BIC clustering one. It also
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provides a small DER improvement more than i-vector based cosine distance clustering

technique.

Figure 6.5: DER of the test set for GMM and i-vector based speaker clustering tech-
niques using MFCC, JS, prosodic and GNE feature sets.

Finally, Table 6.9 shows the results of the chunk test set. The table shows that the

baseline system of the chunk test which is based on GMM modeling and MFCC feature

set has a DER of 22.62%. The use of same modeling technique and use of MFCC, voice-

quality and prosodic feature sets reduces the DER to 21.73%. This amounts to 3.93%

relative DER improvement more than the baseline system. The use of i-vector based

PLDA clustering technique exclusively on MFCC feature set provides a DER of 20.11%.

This represents a 7.95% relative DER improvement more than the baseline system.

Finally, the table shows that applying i-vector based PLDA clustering technique based

on MFCC, voice-quality, prosodic and GNE features provides a DER of 18.9%. This

corresponds to a 6.6% relative DER improvement more than the system that applies

same clustering technique and uses only MFCC feature set. The results of the chunk

set show that the addition of GNE does not improve the DER both for the GMM based

BIC and i-vector based cosine distance clustering techniques.

Although the addition of GNE feature improves the DER in the development set for

BIC, cosine distance and PLDA clustering techniques, it doesn’t improve the results for

BIC and cosine distance clustering techniques in the test sets (.i.e., whole and chunk

test sets). It provides little DER improvement in PLDA clustering technique, both for

the whole and chunk test sets.



6.3. i-Vector based Speaker Diarization Systems 95

Clustering
Features

GMM/BIC
i-vector/

Cosine distance
i-vector/PLDA

MFCC 22.62 21.35 20.82

MFCC + (JS + Prosody) 21.73 19.53 18.99

MFCC + (JS + Prosody + GNE) 22 20.61 18.9

Table 6.9: DER of the chunk test set for GMM and i-vector based speaker clustering
techniques using MFCC, JS, prosodic and GNE feature sets.

The box plots in Figure 6.6 depict the DER distribution of the different recordings for

the proposed GMM and i-vector based clustering techniques. The box plots show the

DER variations of both the development and test sets. The figure shows the minimum,

lower quartile, median, upper quartile, and maximum DER performed.

First of all, the figure shows that i-vector based cosine distance and PLDA clustering

techniques reduce the DER variations more than GMM based BIC clustering technique.

The extraction of i-vectors from the short- and long-term features reduces the DER

variations more than extracting i-vectors only from the short-term features both for

the i-vector based clustering techniques. The figure also shows that the addtion of long-

term speech features reduces the DER variation more than using only MFCC features in

BIC clustering. Finally, the figure shows that i-vector based PLDA clustering technique

provides the lowest DER variations among different shows.

Figure 6.6: Box plot of the development and test using GMM and i-vector based
clustering techniques using MFCC and Long-Term Speech Features (LT).

LT is the concatenation of Jitter, Shimmer, Prosodic and GNE features.
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Figure 6.7: Box Plot of the chunks test set for GMM based BIC and i-vector based
PLDA clustering techniques using MFCC, JS, Prosodic and GNE features.

Similarly, the boxplots in Figure 6.7 show the DER variation of GMM based BIC and

i-vector based PLDA clustering using short-term and long-term features. The long-term

features are the concatenation of voice-quality, prosodic and GNE features. The figure

shows the DER variations of the chunk test set. The figure shows that the use of i-

vector based PLDA clustering technique reduces the DER variations among different

shows more than GMM base BIC clustering technique. The figure also manifests that

the use of long-term features help in reducing the DER variations both for the GMM

based BIC and i-vector based PLDA clustering techniques.

A semi-automatic threshold value λ is used as a stopping criterion on the matrix of

distances of clusters. When the highest PLDA score among all pair of clusters is less

than λ, the merging process stops (see Figure 6.3 for more details).

Summary

We have proposed the use of GNE feature and i-vector based PLDA clustering tech-

nique within the framework of speaker diarization. The clustering technique is based

on the fusion of PLDA scores of i-vectors extracted from short- and long-term speech

features. The long-term features are the concatenation of voice-quality, prosodic and

GNE features.

The experimental results show that i-vector based PLDA clustering technique provides

a substantial relative DER improvement more than GMM based BIC clustering one.
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Experimental results also show that the extraction of i-vectors from the short- and long-

term speech features provides better DER result more than extracting i-vectors only

from the short-term MFCC features. Finally, the results show that the use of GNE

features together with the voice-quality and prosodic ones provides better DER result

more than the system that uses only the latter features for i-vector based PLDA speaker

clustering technique.

The results of the experiments show the usefulness of replacing GMM based BIC clus-

tering technique with the i-vector based PLDA clustering one. The experimental results

also show the usefulness of voice-quality, prosodic, GNE and delta features for speaker

diarization.





Chapter 7

Conclusions and Future works

This chapter provides a brief summary of the thesis. The proposed techniques are

reviewed with regard to the objectives discussed in Chapter 1. Finally, suggestion for

future works will be outlined.

7.1 Conclusions

This thesis has proposed the use of voice-quality features for GMM and i-vector based

speaker diarization systems. The proposed voice-quality features are used together with

the short-term cepstral, and long-term prosodic and Glottal-to-Noise Excitation Ratio

(GNE) features.

The fusion of the long-term voice-quality features with the prosodic and GNE is first

carried out at the feature level (i.e., they are stacked in the same feature vector). Then,

the stacked long-term speech features are fused with the cepstral features at the score

likelihood level both for the proposed GMM and i-vector based speaker diarization sys-

tems.

The thesis has also proposed the use of delta dynamic features for speaker clustering.

The delta features are stacked in the same feature vector together with the static ones,

and are used for speaker clustering.

The main contributions of this PhD thesis can be summarized as follows:

1. The use of Delta Features for Speaker Clustering

Mel Frequency cepstral coefficients (MFCCs) are the most widely used short-term

features for speaker diarization. Most of the state of the art speaker diarization

99
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systems use only the static MFCC for diarization. The dynamic delta features

capture the transitional characteristics of the speech signal which contains the

speaker specific information. These information are not captured by the static

MFCC features. The delta dynamic features have been successfully used in speaker

recognition, speaker verification, speaker classification and speech recognition.

Thus, this work assess the impact of delta features on speaker clustering since

speaker clustering is related to speaker verification, identification and recognition.

We have proposed the use of static and delta dynamic features for speaker cluster-

ing since the dynamic delta features add dynamic information to the static cepstral

features. The speaker segmentation is based only on the static MFCC feature set.

Experimental results on subset of AMI corpus show that the use of only static

MFCC features in segmentation, and static MFCC features with dynamic ones

in clustering provides better DER more than using only static MFCC feature set

both in segmentation and clustering.

2. The use of Voice-quality Features in Speaker Diarization

Jitter and shimmer voice quality features have been successfully used to char-

acterize speaker voice traits and detect voice pathologies. Jitter and shimmer

measure variations of fundamental frequency and amplitude of speaker’s voice, re-

spectively. Due to their nature, they can be used to assess differences between

speakers. Therefore, we have proposed use of jitter and shimmer voice quality fea-

tures in the framework of speaker diarization as these features add complementary

information to the baseline MFCC features.

At fist, jitter and shimmer voice quality features are extracted from the funda-

mental frequency contour. Then, they fused together with the baseline MFCC

features. Both sets of features are independently modeled and fused together at

the score likelihood level. While the score fusion in segmentation is based on the

fusion of log-likelihoods scores of the cepstral and the voice-quality features, the

score fusion in clustering is based on the fusion of BIC distances of the cepstral

and voice-quality features.

Experimental results on subset of AMI corpus show that fusing jitter and shimmer

voice quality features with the baseline cepstral features provides better DER more

than the baseline system which is based on exclusively MFCC feature set.

3. Using Voice-quality Features together with Prosodic for Speaker Di-

arization

The main contribution of this work is the fusion of jitter and shimmer voice-

quality features both with the long-term prosodic and short-term cepstral features.
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Firstly, the voice-quality and features related to the evolution in time of pitch,

acoustic intensity and the first four formant frequencies are extracted. Then,

the voice-quality and prosodic features are fused at the feature level (i.e., they

are stacked in the same feature vector). Finally, the stacked voice-quality and

prosodic features are fused with the cepstral features at the score likelihood level

both in segmentation and clustering. The score fusion in segmentation is based

on the fusion of log-likelihood scores of the cepstral and the stacked voice-quality

and prosodic features. The score fusion in clustering is based on the fusion of BIC

distances of these feature sets.

Experimental results show that the fusion of voice-quality features together with

the prosodic ones at the feature level, and their fusion with the cepstral at the score

level provides better DER result. It provides better DER results not only on sys-

tems that are based only on short-term cepstral features but also on systems that

based on short-term cepstral and voice-quality features. Hence, the experimental

results show the usefulness of voice-quality features as complementary source of

information for speaker diarization systems based both on short-term cepstral and

long-term prosodic features.

4. Improving i-Vector based Speaker Clustering with Long-term Features

Factor analysis techniques which are the state of the art in speaker recognition

have recently been successfully applied in speaker clustering. The speech clusters

are first represented by i-vectors and the successive clustering stages are carried out

using i-vector modeling techniques. Representing the speech clusters by i-vectors

enables to reduce the large-dimensional feature vector into a small dimensional one

by retaining most of the relevant information. In these works, the i-vectors are

exclusively extracted from short-term cepstral features. Based on these studies,

we propose the extraction of i-vectors from short-term cepstral, and long-term

voice-quality, prosodic and GNE features.

Thus, this work explores the the suitability of applying i-vector modeling tech-

niques based on short- and long-term speech features within the frame of speaker

diarization. Firstly, speech clusters generated by Viterbi segmentation are mod-

eled by two sets of i-vectors. While the first i-vector represents the distribution

of the commonly used short-term Mel Frequency Cepstral Coefficients, the second

one depicts a selection of voice quality, prosodic and GNE features. In order to

combine both the short- and long-term speech features, the cosine-distance and

PLDA scores of these two i-vectors extracted from the corresponding features are

linearly weighted to obtain a unique similarity score. The final fused score is used

as speaker clustering distance.
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The experimental results show the suitability of combining both sources of in-

formation within the i-vector space. Firstly, the experimental results show that

i-vector based clustering techniques based on short- and long-term features provide

better results more than using only the short-term features. Secondly, the results

show that both i-vector based cosine and PLDA clustering techniques provide a

substantial relative DER improvement more than GMM based BIC clustering.

Furthermore, the results manifest that that i-vector based PLDA clustering tech-

nique provides better relative DER improvement more than i-vector based cosine

clustering technique. Finally, the experimental results show the usefulness of GNE

features in i-vector based PLDA clustering techniques. The addition of GNE fea-

tures does not improve the results both in GMM based BIC and i-vector based

cosine distance clustering techniques.

The results of the experiments manifest the usefulness of i-vector based clustering

technique based on short- and long-term speech features within in the framework

of speaker diarization.

7.2 Future Research Lines

The work performed in this thesis may be used as a guide for future research lines in

speaker diarization. The possible future lines that can be continued from our work are

outlined as follows:

Firstly, the proposed voice-quality long-term features have been successfully applied

to detect only single speaker both in the proposed GMM and i-vector based speaker

diarization systems. Therefore, it is worth to explore the impact of the proposed voice-

quality features to detect overlapping speeches both in the proposed GMM and i-Vector

based speaker diarization systems.

Since speaker tracking and speaker diarization are really close to each other and generally

share some key processing components, the proposed long-term features can also be

applied in GMM and i-vector based speaker tracking systems.

Furthermore, it is worth to explore the impact of the proposed voice-quality features

in cross-show speaker diarization where reappearing speakers across shows have to be

labeled with the same speaker identity.

One of the main issues in speaker diarization is the substantial DER differences among

different shows. One of the possible reasons is the threshold value estimated for the

stopping criterion. We have suggested a semi-automatic stopping criteria that is the
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same for all shows. It is also worth to see impact of using an automatic stopping criterion

threshold value that varies per iteration and recording in the proposed systems.

Finally, Deep Neural Networks (DNNs) have recently been successfully applied in speaker

diarization systems. The DNNs can also be applied in the proposed system by replacing

the log-likelihood scores of HMM in segmentation and the distance-metrics of clustering

(BIC, cosine distance and PLDA) by the posterior probabilities the DNN.
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AMI Partitions Used

Site Development Evaluation

ID
IA

P

IS1000c IB4001 IB4002 IB4003 IB4004
IS1004a IB4005 IN1002 IN1005 IN1007
IS1004c IN1012 IN1013 IN1016 IS1000a
IS1008a IS1000b IS1000d IS1001a IS1001b

IS1002c IS1003a IS1004b IS1005a
IS1005c IS1006a IS1006c IS1006d
IS1007a IS1007b IS1007c IS1008b
IS1008c IS1008d IS1009a IS1009b

IS1009c IS1009d

E
d
in
b
u
rg

h EN2009b EN2001a EN2001b EN2001d EN2001e
ES2006b EN2002b EN2002c EN2002d EN2003a
ES2008a EN2004a EN2005a EN2006a EN2006b
ES2011d EN2009c EN2009d ES2002a ES2002c

ES2003b ES2003c ES2003d ES2004c
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Li, H., Mason, J. S. D., and Parfait, J. (2013). ALIZE 3.0 - open source toolkit for

state-of-the-art speaker recognition. In Interspeech.

[Lee et al., 2009] Lee, H., Pham, P., Largman, Y., and Ng, A. Y. (2009). Unsupervised

feature learning for audio classification using convolutional deep belief networks. In

Advances in neural information processing systems, pages 1096–1104.

[Li et al., 2007] Li, X., Tao, J., Johnson, M. T., Soltis, J., Savage, A., Leong, K. M.,

and Newman, J. D. (2007). Stress and emotion classification using jitter and shimmer

features. In Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE

International Conference on, volume 4, pages IV–1081. IEEE.

[Linville, 1995] Linville, S. E. (1995). Vocal aging. Current Opinion in Otolaryngology

& Head and Neck Surgery, 3(3):183–187.

[Luque, 2012] Luque, J. (2012). Speaker diarization and tracking in multiple-sensor

environments. PhD thesis, Universitat Politècnica de Catalunya, Barcelona, Spain.
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