UNIVERSITAT POLITECNICA
DE CATALUNYA
BARCELONATECH

Supporting decentralized collaborative processes
in the digital transformation

David Sanchez Charles

ADVERTIMENT La consulta d’aquesta tesi queda condicionada a l'acceptacié de les seguents
condicions d'Us: La difusi6 daquesta tesi per mitja del repositori institucional
UPCommons (http://upcommons.upc.edu/tesis) [el repositori cooperatiu TDX
(http://www.tdx.cat/) ha estat autoritzada pels titulars dels drets de propietat intel-lectual
Unicament per a usos privats emmarcats en activitats d'investigacié i docencia. No s’autoritza
la seva reproduccié amb finalitats de lucre ni la seva difusié i posada a disposicié des d’'un lloc
alié al servei UPCommons o TDX. No s'autoritza la presentacié del seu contingut en una finestra
o marc alie a UPCommons (framing). Aquesta reserva de drets afecta tant al resum de presentacio
de la tesi com als seus continguts. En la utilitzacio o cita de parts de la tesi és obligat indicar el nom
de la persona autora.

ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptacién de las siguientes
condiciones de uso: La difusion de esta tesis por medio del repositorio institucional UPCommons
(http://upcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale-
attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual
Unicamente para usos privados enmarcados en actividades de investigacion y docencia. No
se autoriza su reproducciéon con finalidades de lucro ni su difusion y puesta a disposicion desde
un sitio ajeno al servicio UPCommons No se autoriza la presentacion de su contenido en una
ventana o marco ajeno a UPCommons (framing). Esta reserva de derechos afecta tanto al
resumen de presentaciéon de la tesis como a sus contenidos. En la utilizaciéon o cita de partes
de la tesis es obligado indicar el nombre de la persona autora.

WARNING On having consulted this thesis you're accepting the following use conditions:
Spreading this thesis by the institutional repository UPCommons
(http://upcommons.upc.edu/tesis) and the cooperative repository TDX (http://www.tdx.cat/?locale-
attribute=en) has been authorized by the titular of the intellectual property rights only for private
uses placed in investigation and teaching activities. Reproduction with lucrative aims is not
authorized neither its spreading nor availability from a site foreign to the UPCommons service.
Introducing its content in a window or frame foreign to the UPCommons service is not authorized
(framing). These rights affect to the presentation summary of the thesis as well as to its contents.
In the using or citation of parts of the thesis it's obliged to indicate the name of the author.

http://upcommons.upc.edu/tesis
http://www.tdx.cat/
http://www.tdx.cat/?locale-attribute=es
http://www.tdx.cat/?locale-attribute=es
http://upcommons.upc.edu/tesis
http://www.tdx.cat/?locale-attribute=en
http://www.tdx.cat/?locale-attribute=en

Supporting Decentralized Collaborative

Processes in the Digital Transformation

David Sanchez Charles

Advisor: Josep Carmona, Universitat Politecnica de Catalunya

Co-advisor: Victor Muntés-Mulero, CA Technologies

Abstract

Crowdsourcing, the art of involving several individuals in the decentralized
execution of business activities, is being positioned as the replacement of
outsourcing, as it allows organization to reach a capable workforce whenever
it is necessary for the business. Nevertheless, adoption among industry is
still low, as the technology is yet not mature and, in particular, it is difficult
to monitor the execution of the business activities in a crowdsourcing plat-
form. In this thesis, we advance towards creating better monitoring tools for
crowdsourcing processes and a mechanism for modelling the worker’s behav-
ior.

Formalizing the work to be done in a process is the first step for improving
the overall efficiency and quality of problem resolution. Still, there is a lack of
mechanisms for defining business processes capable of adapting to the needs
of the crowd. Therefore, we start this thesis by introducing a graphical
modelling language for describing decentralized collaborative processes. The
focus of this work is to allow the definition of complex worker requirements,
as well as provide a quick overview and assessment of the implemented quality
assurance mechanisms. In a longer-term vision, having well-defined processes
will help in making more predictable the performance of any crowdsourcing
project.

For those cases in which there is no formal process and the crowd can self-
organize how they execute the business activities, we have also made the first
steps for designing a method capable of discovering processes by analyzing

the factual work done in the platform. Assuming that all steps recorded by

the platform have some textual description of the work done, we propose to
use novel natural language processing tools for generating groups of similar
activities and, hence, enabling later analytics and insights, such as a process
discovery for understanding, monitoring, or simply formalize the underlying
crowd-process.

As for modelling the worker’s behavior, we started by studying a partic-
ular crowdsourced process pattern that enables the platform to rank users
based on their performance. The novelty of such prototype relies on the
role of the reviewer, played by skilled individuals on the platform, that acts
as reviewers of the translations done by in-training translators. The feed-
back provided by the reviewers is later reused for deciding if an in-training
translator should be promoted to the reviewer role.

Unfortunately, there is no clear way of extrapolating the previous user
evaluation to other processes. In this thesis, we propose to let the platform
monitor the actions performed by individuals in order to create a profile of
their behavior. We assume that those actions can be thougth as events that
can be later processed by a discovery method, summarizing such actions in
the form of a process model. Apart from the fitness of the resulting process
models, precision is a key quality metric of these behavioral profiles. Low-
precision models are more likely to describe the behavior of several users,
reducing the insights obtained by analyzing or comparing process models. In
particular, repetition of activities — very often due to the human nature — is
one of the key trace characteristic that reduces precision of models discovered
with most process mining techniques as we highlight, and palliate, during this

chapter.

We also propose a new similarity metric between process models, enabling
platforms to compare users based on the similarity of the user profiles. In
particular, we have applied this similarity metric with an industrial dataset
compromising several workers with access to a source code repository, and
it turns out that their role in the organization is partially seen in how they

access such source code repository.

Contents

1 Introduction 11
1.1 Problem Description 13

1.1.1 Formal Processes and Quality Monitoring in Crowd-

SOUICING o oo 15

1.1.2 User Profiling Techniques in Crowdsourcing 18

1.2 Objectives 20
1.3 Contributions 21
1.4 Outline. 27
2 Background 29
2.1 Crowdsourcing 29
2.1.1 The Crowdsourced Task Model 31
2.1.2 Examples of Crowdsourcing projects 34
2.1.3 Quality Assurance in Crowdsourcing 36

2.2 Business Process Management 40
2.2.1 Business Process Modelling Languages 41
2.2.2 Process Mining oL 59

6 CONTENTS
I Process Design and Monitoring 63
3 Business Processes in Crowdsourcing 65
3.1 Imtroduction Lo 66

3.2 Related work 68
3.3 Crowdsourcing Workflow Net model 70
3.3.1 Human Tasks and Worker management 72

3.3.2 Control Flow Tasks 74

3.3.3 Workflow Transformation 80

3.3.4 Deadline Management 81

3.4 Examples 83
3.5 CrowdWON Formalization as Colored Petri nets 86
3.5.1 Human Tasks and Worker management 87

3.5.2 Deadline Management 93

3.5.3 Collaborative Processes 96

3.6 Implementation of CrowdWON 104
3.7 Discussion 111

4 Reducing Event Variability 113
4.1 Introduction L Lo 114

4.2 Related work 115
4.3 Log pre-processing via Event Variability Reduction 116
4.4 Approach 120
4.4.1 Word Embeddings 122

4.4.2 Event Rediscovery via Document Embedding Clustering126

4.5 Evaluation oo 127

CONTENTS 7

4.5.1 Structure of Documents in Wikipedia 127
4.5.2 Application of the Event Variability Reduction to Trace

Monitoring of Human-driven Processes 136

4.6 Discussion 142

IT Worker Profiling and Monitoring 145
5 Worker Ranking Determination 147
5.1 Introduction 148

5.2 Related worko 149
5.3 Crowd-based Quality Evaluation. 151
5.4 Aggregation Functions 152
5.5 Using Worker Ranking for Trustworthiness Measuring 157
5.5.1 Automatic Worker Ranking Determination 158

5.6 Crowd-based Text Translation: A Practical Example 160
5.6.1 TQI, a Quality Measure For Text Translation 161

5.6.2 AV-Units Applied to Text Translations 163

5.6.3 Worker Categories and Promotion Mechanisms 164

5.6.4 Numerical examples 165

5.7 Discussion 173

6 Worker Behavior Elicitation 175
6.1 Introduction 176
6.1.1 Label Splitting as Loop Unrolling to Improve Precision 178

6.2 Related work o 180
6.3 Definitions and Notation 180

8 CONTENTS
6.4 Label Splitting with Loop Unrolling 182
6.4.1 Simple Case: Unrolling of Individual Loops 183

6.4.2 General Case: Unrolling of Nested Loops 186

6.5 Evaluation oo 189
6.6 Conclusion 198

7 Process Model Comparison 199
7.1 Introductiono 200
7.2 Related Worko 204
7.3 Background 206
7.3.1 Cophenetic Vectors 206

7.4 The Cophenetic Distance between Deterministic Process Trees 208
7.4.1 Behavioural Information Captured by Cophenetic Values213

7.5 Distance between Indeterministic Process Trees 216
7.6 Evaluation oo 221
7.7 Application to the Comparison of User’s behavior 225
771 Context 226

7.7.2 Homogeneity of Roles in Process-based Clustering . . . 228

7.7.3 Inducing the (real) Role of Outliers 232

7.8 Discussiono 233

8 Conclusions 235
8.1 Limitations 238

8.2 Futureworko 240

List of Figures 243

CONTENTS 9

List of Tables 255

CHAPTER
1 Introduction

Jeff Howe coined the term crowdsourcing as the act of taking a job tradition-
ally performed by a designated agent (usually an employee) and outsourcing
it to an undefined, generally large group of people in the form of an open
call [45]. His article reviewed the successful reborn of the Wisdom of Crowds
philosophy in the new digital era. The main idea behind the wisdom of crowds
is that collaboration between several individuals produce better results than
if individually performed, assuming some conditions on the diversity and in-
dependence of the group. By expanding this collaborative method for solving
problems to the Internet, such conditions are almost trivially satisfied by con-
sidering the large population with access to the Internet.

In crowdsourcing platforms such as Amazon Mechanical Turk!, complex
problems can be solved through the use of unprecedented mechanisms to
allow for the collaboration of thousands of remote Internet users, leveraging
the potential of emerging intelligence from the crowd. Nowadays, millions
of people are asynchronously analysing, synthesising, providing opinion and

labelling and transcribing data that can be automatically mined, indexed

"http://www.mturk. com

11

12 CHAPTER 1. INTRODUCTION

and even learned. Human brain-guided computation is able to perform tasks
that computers can hardly do, at overwhelming speeds.

The translation industry was one of the early-adopters of crowdsourcing.
Hiring translators of minority languages is usually a long and costly process,
whilst it is expected to easily find native speakers on a large community
via the Internet. Besides, most translation companies suffer from a highly-
variable workload that enforces them to hire freelancers in order to meet
deadlines, and hence the elasticity of crowdsourcing is also a key point to
translation companies. Moreover, current translators are used to sign con-
tracts per project, or collaboration, that is the foundation of task resolution
in Crowdsourcing.

The generalisation of on-line social networks, the increase in the unem-
ployment rates in many countries because of the economic recession and the
increasing need of industry to flexibly involve human beings in big data ana-
lytics and processing are just three important motivations for the growth of
the number of platforms and solutions using crowdsourcing strategies. Be-
sides, the current economic recession affects millions of families worldwide.
Just as an example, the unemployment rate in Spain is 19.6, and 43.9 among
citizens younger than 25 years old (July 2016)%. With this situation, un-
employment is not only restricted to workers with low levels of education,
but it also affects highly qualified professionals and, specially, those that are
trying to find their place in the labour market. Apparently, this situation

is just marking the beginning of a long depression period and it may be a

27Seasonally adjusted unemployment”. Eurostat. Unemployment news release,

163/2016, 31 August 2016.

1.1. PROBLEM DESCRIPTION 13

catalyst for crowdsourcing to consolidate as a common new mechanism for

outsourcing.

1.1 Problem Description

Jeff Howe narrowed the application of crowdsourcing methodologies to an
industrial problem resolution with Internet as a medium for finding the right
human intervention. During the last decade, it has already been proven
that crowdsourcing is an efficient replacement for outsourcing, not only in
industrial scenarios [33] but also as a useful tool for academia [13]. Neverthe-
less, current trends seem to indicate that crowdsourcing methodologies and
technologies are going to change to satisfying new paradigms.

Researchers have proposed [36,68,91] processes in which computers ask
for help to human reviewers (possibly in a crowdsourcing platform) in case
of obtaining a classification, or prediction, with low confidence. These exam-
ples of collaboration between a flexible pool of workers and computers are
not isolated cases, as a recent market research performed by Gartner? pre-
dicts that more than 6 billion connected devices will be requesting support
to humans by 2018. Collaboration between those devices and humans may
be automatized and monitored by formal processes, which describes and co-
ordinates the activities performed by the individuals and computers. In this
scenario, a crowdsourcing platform would act as the enabler for individuals

and computers to collaborate, following the guidelines provided by formal

3 Top Strategic Predictions for 2016 and Beyond.

https://www.gartner.com/doc/3142020/top-strategic-predictions-future-digital

14 CHAPTER 1. INTRODUCTION

rules. One can imagine the possibilities for allowing Third Parties to answer
those support petitions, and letting the platform decide which is the best
candidate based on performance and cost.

We have also seen that the industry is moving towards Software-as-a-
Service solutions, in which workers connect to a website or application in
order to collaborate with their peers, and customers, in their daily work. In
such scenario, the only purpose of the workplace is to socialize with your
team members. Under such conditions, employees are starting to demand to
their employers to work remotely from home. Gartner again predicts a shift
on this direction for the near future, stating that more than 3 million workers
will be supervised by a roboboss by 2018. Performance of employees will not
be measured only by direct supervision of their manager, partially possible
due to workplace collocation, but by a machine that constantly measures
performance and behavior of employees. Thanks to the roboboss, managers
will be able to focus on human aspects and career development of their direct
reports. Besides, having an understanding of the user profile will help in the
distribution of tasks to the best suitable workers.

Based on the growing education level of unemployed individuals and the
two aforementioned predictions on how humans will collaborate in a decen-
tralized manner with the involvement of intelligent machines, we believe that
there will be a shift on how crowdsourcing platforms will be considered by the
industry as a real industrial complement or replacement to outsourcing. In
order to support this paradigm-shift on how people and devices collaborate,
a crowdsourcing platform must

e broaden its scope to decentralized collaboration, reducing the relevance

1.1. PROBLEM DESCRIPTION 15

of microtask-oriented marketplace crowdsourcing projects in which work-
ers individually perform low-effort tasks,
e provide a mechanism for describing and monitoring collaborative pro-
cesses, including quality assurance of the outcomes of the process,
e and provide a worker management tool capable of profiling and mea-
suring performance of all the involved actors.
Nevertheless, as we review in the following two sections, state-of-the-art
crowdsourcing solutions are not yet capable of tackling such collaborative,

process-oriented scenario.

1.1.1 Formal Processes and Quality Monitoring in Crowd-

sourcing

Although crowdsourcing has been proven as an efficient mechanism for replac-
ing traditional outsourcing, there are two factors that hinders the penetration
of this model into industry: lack of best practices and output quality.
Research on Crowdsourcing assumes that companies willing to adopt this
technology are able to design and tune their tasks. Results are yet sparse and
its application are narrowed to specific examples [6]. For instance, Thread-
less*, a successful online T-shirt store, outsources the whole design process to
the crowd, letting them to propose new ideas and choose those that will be
manufactured. Nevertheless, there is no mechanism for sharing the specifics
of the underlying process nor study its applicability and effectiveness in other
contexts. In fact, a systematic review in crowdsourcing taxonomy [5] revealed

that process aspects in crowdsourcing projects are only related to the usage

‘http://www.threadless.com

16 CHAPTER 1. INTRODUCTION

of aggregation or validation methods, and task parallelization. There is a
clear gap on the systematic usage of processes, in the sense of several activi-
ties interconnected to solve a larger problem. To the best of our knowledge,
Action-Verification units [76] are the first steps to generalize crowd coor-
dination. In their work, they formalize a small pattern in which a worker
performs a generic action and, then, a set of individuals verifies and scores
its validity.

It is clear that there is an industrial need for monitoring crowdsourced
tasks and processes that ensures quality and warns process owners in case of
deviation, but, due to the focus on sparse interactions between individuals
and companies in crowdsourcing platforms, current quality assurance mech-
anisms focus on small choices in the task design that may improve quality.
Besides, due to the lack of a common language for communicating, sharing
and studying crowdsourced processes, there is no guarantee that those design
choices will work on every context or with a different crowd configuration.

Quality evaluation methods can be broadly classified in three main fam-
ilies: (i) by direct inspection of the job provider, (ii) automatic, and (iii)
methods using the crowd itself as evaluator. Evaluation by the job provider
has a scalability problem, since the crowd can produce a large amount of
work that the job provider may not evaluate as she has a finite amount of
resources. Clearly for most of the tasks, an automatic evaluation is either
impossible or can only guarantee a minimum quality, otherwise it would be
possible to set up a completely automated solution without human inter-
vention. Crowdsource the quality evaluation of the jobs performed by the

crowd has been proposed as an alternative [38,58], but this solution has the

1.1. PROBLEM DESCRIPTION 17

potential problem of trustworthiness and management of opinion and criteria
disparity.

With respect to quality assurance mechanisms prior to the task resolution,
crowdsourced projects try to motivate workers in order to solve it efficiently
while reputation mechanisms have been implemented to remove consistently
low-performance individuals. In general, industrial applications pursue lucra-
tive objectives and, because of this, these applications are more constrained
in terms of motivating the crowd and tend to reward workers economically,
although it is not clear if this increases productivity [46]. Moreover, financial
rewards also attract individuals that want to benefit from their participation
whilst providing poor solutions that may impact the crowdsourced output.
Finally, non-reward prior mechanisms usually forbid a significant amount of
individuals to participate in the problem resolution — increasing the time to
complete the task. For instance, it has been empirically proven that nar-
rowing the worker search to individuals in the United States increases the
overall quality [65], even though only 50% of the crowd is from the United
States [51].

Whereas in the improvement of quality after the task completion, repe-
tition of the same task by several individuals and appropriate aggregation
mechanisms ensure quality even on noisy scenarios [42,89]. It is estimated
that 30% of the crowd workers are producing low-quality outcomes, and hence
it is expected that the majority opinion is an acceptable answer. Neverthe-
less, such approach requires to ask several individuals to perform the same
tasks, impacting on the overall cost and duration of the project. Besides, this

approach is only applicable when data can be aggregated or compared. Alter-

18 CHAPTER 1. INTRODUCTION

natively, some crowdsourcing project may use gold standards for measuring
workers’ performance against a set of questions with verifiable answers [105],
filtering out simple individuals that do not put effort on solving the problem.
Unfortunately, this solution is only available for those crowdsourced tasks in

which there exists such a gold standard.

1.1.2 User Profiling Techniques in Crowdsourcing

Current worker management mechanisms in crowdsourced platforms are still
primitive. Let’s take Amazon Mechanical Turk®, the most popular crowd-
sourcing platform, as an example. Crowdsourcers may upload their tasks
with some restrictions on the type of individuals that may accept and per-
form it. Those restrictions can be based on the location of the individual,
age, educational level, and some other demographics based on recurrent pop-
ulation surveys conducted by Amazon Mechanical Turk. But, the three most

important restrictions are:

1. Location. It has been empirically proven that location of the crowd
worker is correlated to the quality of their work [65] and, hence, crowd-

sourcing platforms offer this feature as part of the profile of the users.

2. Ratio of successfully solved tasks. After an individual has performed
a task on the platform, the task owner must assess the quality of the
worker performance. A positive answer would immediately (financially)
reward the worker, while a negative answer reduces the ratio and do

not reward the worker.

Shttp://www.mturk.com

1.1. PROBLEM DESCRIPTION 19

3. Qualifications. Task owners may create a mandatory test that the

workers must pass in order to be eligible to perform the task.

The combination of those two constraints are the core of the quality assur-
ance tools implemented in crowdsourced platforms. The ratio of successful
tasks is a basic reputation system, which has been proven efficient in other
contexts. Nevertheless, it is quite easy to find task owners that accept all so-
lutions without reviewing its quality because it is a mechanism for attracting
more workers. Also, due to the easiness of creating, answering and evaluating
your own tasks, people can easily create a false profile with high reputation.
On the qualifications side, it ensures that the worker possess some abilities
at the moment of answering the test. But it does not evaluate the evolution
of the worker over time. Besides, individuals usually must solve several qual-
ifications for the same skill as these tests are designed by the task owners
and are not managed by the platform.

An interesting research line for quality assurance mechanisms is the work
done by Rzeszotarski et.al. [87], and later reaffirmed by Kazai and Zitouni
[53]. In their experiments, they showed that individuals interact differently
with the platform and, in particular, those users who differ the most from the
average individual are those that produce worse results. Those results open
the possibility of creating a profile of the behavior of users in the platform.
Such profiles would not only allow the platform to assess the anomaly of the
task resolution (i.e. a potential bad-quality outcomes), but also to compare
individuals, or create a predictor that links behavior to performance in the

platform.

20 CHAPTER 1. INTRODUCTION

1.2 Objectives

Based on the aforementioned limitations of current Crowdsourcing techniques
in the definition, monitoring of crowdsourced processes, and the limited ca-
pabilities of user profiling in digital platforms, we set the following objectives

for this thesis.

Objective O.1: Supporting crowdsourcing methodologies in indus-
trial scenarios by allowing the definition of crowdsourced processes

and monitorization of quality.

Crowdsourcing has the potential to be an efficient alternative to outsourcing.
Still, its popularity has not grow during the last years. Based on our analysis
of the current usage of crowdsourcing platforms, we believe that the lack of
a proper mechanism for defining processes, monitoring its execution and the
lack of efficient quality assurance mechanisms are the main drawbacks for

the industrial application of crowdsourcing.

Objective 0O.2: Design of a mechanism capable of discovering the

normal behavior of a user in a digital platform.

Current quality assurance techniques in crowdsourcing are sustained in the
idea that quality can be ensured when considering the average solution or
idea. Based on the early work done by Rzeszotarski et.al. [87], we plan to
continue the research on creating a normality score of the user’s behavior in
the platform by the means of comparing user’s behavior and, hence, detecting

anomalies that might be a threat to the quality of crowdsourced processes.

1.3. CONTRIBUTIONS 21

We plan to study the usage of process mining techniques as a mechanism
for summarizing the sequence of actions performed a user in the platform.
A process model may be the perfect representation of the user behavior, as
it allows to predict future behavior and generalize the user’s behavior. With
such a process model, we will be more close to a smart automatization of the
platform. For example, automatic assignation of tasks to the best workers in
the platform, or categorization of users based on their expertise, could then

be possible.

1.3 Contributions

Figure 1.1 positions our contributions in relation to the involved actors in
decentralized problem resolution: Users (or workers), processes and the plat-
form. Some subtopics have been depicted towards the resolution of the three
aforementioned objectives.

On the bottom half of the diagram, one may find solutions related to
users and processes without the commitment of the platform. State-of-the-
art quality assurance mechanisms in crowdsourcing focus on this arena, by
proposing processes, designing mechanisms for aggregating information, or
filtering out low-quality workers. In general, the platform only acts as an
enabler of the collaboration, and leave the responsibility of monitoring pro-
cesses, quality and workers to the task owner. Nevertheless, solutions in this
space are typically tailored towards the specifics of the problem to solve.

On the other side of the diagram, the platform steps up and acts as a

monitoring tool for both processes and workers. On the later, user profiling

22 CHAPTER 1. INTRODUCTION

PLATFORM

.o

A Behavioral Similarity Metric

between Process Models | — N
& E P,-o Monitoring of
i\i\‘\ — c@% unstructured
L ’éo processes
) . Iy %,
Improving precision & S
= 3
(-]
USERS PROCESSES
L/ ‘PO/ 924"
%"‘@ 27 St (o"e(, .
An extension of the ©py W 0"‘5—9 A modelling language
Action-Verification Units < SSeg o for crowdsourcing

processes

Figure 1.1: Framework of our contributions and their relationship towards
the three actors in any decentralized collaborative process. The platform
is acting as a technology provider and monitoring tool, while processes are

governing how users should interact and collaborate.

is highlighted as recent findings pointed out to the possibility of detecting
low-quality workers as those individuals whose behavior deviate from the
average. On the former, the platform must monitor the execution of process
and predict its outcomes, warning task owners in case of suspicious activities
or predicted low-quality executions.

Despite this clear dichotomy of solutions with, and without, the commit-

ment of the platform, we have structured this thesis and contributions based

1.3. CONTRIBUTIONS 23

on the two objectives: supporting the design and monitoring of collaborative
processes (Objective O.1) and lack of user profiling techniques (Objective

0.2). Bellow one can find a list of the specific contributions on both arenas.

Description and Monitoring of Collaborative Processes

PLATFORM
| — oo
C | | S Monitoring of
— 00.;} unstructured
2 processes
2.
9
ES
PROCESSES
3
g
o
@6’9‘ A modelling language
o for crowdsourcing

processes

1. A modelling language for crowdsourcing processes.

We propose a graphical modelling language for Crowdsourcing pro-
cesses capable of tackling with industrial needs. More specifically,
deadline and worker management. Besides, the graphical part of the
language puts emphasis on the aggregation mechanisms used on the
process, that is usually an indicator of the quality assurance mecha-
nisms implemented.

An implementation of this modelling language will set the foundation
for designing further monitoring tools, a simulation tool for helping in
the design of crowdsourced processes, or predicting the expected qual-
ity (or delays) based on the behavior of the crowd. Moreover, it will

help on the dissemination of good practices in crowdsourcing processes.

24

CHAPTER 1. INTRODUCTION

2. Monitoring of unstructured processes.

On the other hand, it is expected that some crowdsourced projects will
not be governed by a clearly defined process. Instead, the involved
actors collaborate in deciding how the task should be performed. For
instance, I'T support center solve customer issues by establishing a con-
versation between the two sides. As the conversation evolves, the sup-
port engineer refines the root-cause search through the conversation.

In order to advance in this area, we propose an unsupervised method for
combining events based on the semantically similarity of event names.
This is an opportunity for process model discovery methods, in which
domain-knowledge on events is needed in order to generalize and sim-

plify the process model.

Managing an Elastic Pool of Workers

PLATFORM

A Behavioral Similarity Metric C_

between Process Models | h—
« |G
N
O
. - RQ
Improving precision &
S
USERS
1 M
e% 4’%
e . 7
. 0 Sty
An extension of the %o, W

Action-Verification Units Ses

1. An extension of the Action-Verification [76] units for measuring skill

acquisition.

The Action-Verification units are a small collaborative process in which

1.3. CONTRIBUTIONS 25

one individual performs an action, and then the crowd verifies its cor-
rectness. We built a mechanism for measuring the skill acquisition of
individuals in the platform, allowing us to create a more detailed profile

of the expertise of crowd workers.

2. A method for improving the precision of process models.
This thesis relies on the hypothesis that human actions can be though
as event in a system, and, therefore, human behavior could be mod-
elled as a process model. Unfortunately, most current process discovery
methods produce models without repeated activities. Such constraint
may induce an over-generalization of iterative processes, reducing the
effectiveness of process discovery techniques for discovering a model of
human behavior. We describe an algorithm capable of improving preci-
sion of loops in structured process models so that a precise description

of workers is always obtained.

3. A behavioural similarity metric between process models.
As a first use case of the process models as user profiles, we propose
an extension of the Cophenetic distance [23] for measuring similarities
between process models and, hence, between individuals’ behavior. The
benefit for using this extension is that it captures some differences on

the behavior of the model while being efficient on cost and memory.

The following table links the contributions of this thesis to their corre-
sponding publications, patents, and the structure of this thesis — which is

described in detail afterwards.

26 CHAPTER 1. INTRODUCTION

David Sénchez-Charles, Josep Carmona, Victor Muntés-Mulero and Marc Solé.

Process Model Comparison Based on Cophenetic Distance. Business Process Man-

agement Forum, 2016.

David Sénchez-Charles, Josep Carmona, Victor Muntés-Mulero and Marc Solé.

Clustering Software Developer Repository Accesses with the Cophenetic Distance.

In Pre-Proceeding of the Sixth International Symposium on Data-driven Process

Discovery and Analysis, 2016.

Process Design and Monitoring Thesis
Structure
A modelling language for crowdsourcing processes Chapter 3
David Sanchez-Charles, Victor Muntés-Mulero, Marc Solé, and Jordi Nin. Crowd-
WON: A Modelling Language for Crowd Processes based on Workflow Nets.
In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
AAAT15, 2015.
Worker Profiling and Monitoring Thesis
Structure
An extension of the Action-Verification Units Chapter 5
David Sanchez-Charles, Jordi Nin, Victor Muntés-Mulero and Marc Solé. Worker
ranking determination in crowdsourcing platforms using aggregation functions. In
Proceedings of the 2014 IEEE International Conference on Fuzzy Systems (FUZZ-
1IEEE), 2014.
A method for improving the precision of process models Chapter 6
David Sanchez-Charles, Josep Carmona, Victor Muntés-Mulero and Marc Solé.
Improving Process Model Precision by Loop Unrolling. In Pre-Proceeding of the
Sixth International Symposium on Data-driven Process Discovery and Analysis,
2016.
A behavioural similarity metric between process models Chapter 7

During the development of this thesis, the following patents were filed

to the United States Patent and Trademark Office (USPTO) as an internal

exploitation at CA Technologies. The key concepts of these patents are

partially described in Chapters 4, 6 and 7.

1.4. OUTLINE 27

Filed patents Thesis

Structure

David Sénchez-Charles, Jaume Ferrarons Llagostera, and Victor Muntés-Mulero. | Chapter 4

Filed patent: Use of process mining techniques and natural language processing
to classify textual conversations based on automatic detection of topics and topic

evolution.

David Sanchez-Charles and Victor Muntés-Mulero. Filed patent: Escalation pre-

diction Based on Timed State Machines.

Marc Sole Simo, David Sénchez-Charles, Victor Muntés-Mulero and Josep Car- | Chapter 6

mona. Filed patent: Increasing the precision of mined process models with loops.

David Sanchez-Charles, Steve Versteeg, Victor Muntés-Mulero, Marc Sole Simo Chapter 7

and Li Sun. Filed patent: User Behaviour Anomaly Detection Based on Process

Mining Patterns.

1.4 Outline

An introduction to Crowdsourcing, including a review of the nomenclature
and existing quality-assurance techniques, and a background review of pro-
cess modelling are discussed in Chapter 2.

The first part of this thesis focus on techniques for improving the mon-
itoring of decentralized collaborative processes. In chapter 3 we introduce
a graphical modelling language for Crowdsourcing processes. The described
language emphasizes on the worker and deadline management of processes,
two indispensable aspects for industry. Besides, the graphical language also
highlights the aggregation mechanism implemented in the processes, allowing
a first assessment of the risk of low-quality outcomes.

Then, we explore how the platform may help in the monitoring and defi-
nition of collaborative processes. Chapter 4 reviews novel Natural Language

Processing techniques, that could help practitioners in the monitoring of pro-

28 CHAPTER 1. INTRODUCTION

cesses that are not yet elicited. In particular, we describe a method capable of
combining events with different names, but semantically similar. The merg-
ing of events allowed us to find a graphical representation of the underlying
process.

On the second part of this thesis, we refocus our efforts on improving
the monitoring of users participating in the platform. First, in chapter 5,
we review an existing patterns to iterative increase quality of translations
in a CrowdSourcing platform, and extend it in order to design a mechanism
capable of ranking workers.

Then we advance to tackle the issue of automatically generate a profile
of the workers based on the actions taken in the platform. In this thesis, we
assume that the human behaviour can be summarized in the form of a process
model. Quality of such process model is a key point for understanding its
behaviour and, in Chapter 6, we present a technique to improve the precision
of process models.

Continuing with the automatic user profiling, we formalize a extension of
the Cophenetic distance in Chapter 7 in order to tackle the issue of measuring
the similarity of two process models and, hence, the similarity of two users in
the platform. We also apply this technique in the problem of making groups
of users with similar behaviour.

Finally, Chapter 8 concludes this thesis and presents some future lines of

research.

CHAPTER
2 Background

We start this chapter by introducing the task resolution model in Crowd-
sourcing platforms, and then we illustrate the usage of this technology with
some successful and on-going projects. Then we highlight the most common
quality assurance mechanisms used in Crowdsourcing as this is currently the
only quality monitoring present in crowdsourcing. Then, we review the ter-
minology in Business Process Management and some graphical modelling

languages.

2.1 Crowdsourcing

The term crowdsourcing was coined in 2005 by Jeff Howe to describe a recent
trend in businesses that outsourced tasks to the crowd [45]. Even though Jeff
Howe provided a definition of crowdsourcing in his article, the scientific com-
munity did not accept this definition and several slightly different concepts of
crowdsourcing coexist in the literature. After reviewing more than 40 defini-
tions, Estellés-Arolas et.al. [34] proposed the following integrated definition

of crowdsourcing.

29

30 CHAPTER 2. BACKGROUND

Definition 2.1 (Estellés-Arolas et.al. [34]). Crowdsourcing is a type of par-
ticipative online activity in which an indwidual, an institution, a non-profit
organization, or company proposes to a group of individuals of varying knowl-
edge, heterogeneity, and number, via a flexible open call, the voluntary un-
dertaking of a task. The undertaking of the task, of variable complexity and
modularity, and in which the crowd should participate bringing their work,
money, knowledge and/or experience, always entails mutual benefit. The
user will receive the satisfaction of a given type of need, be it economic, so-
cial recognition, self-esteem, or the development of individual skills, while
the crowdsourcer will obtain and utilize to their advantage that what the user
has brought to the venture, whose form will depend on the type of activity

undertaken.

Notice that for the rest of this thesis, we will deliberately violate such
definition by considering crowdsourcing as an activity in which not only in-
dividuals participate, but also intelligent machines may solve and propose
problems to solve. Besides, we believe that crowdsourcing processes should
be closer to internal business processes and, hence, the open call condition
may be violated for some tasks performed or supervised by in-house workers.
Still, we left intact the essence of a participative online activity in which a
decentralized collaboration helps in the resolution of a problem.

Brabham’s [16] classification of crowdsourced tasks provides an initial
intuition of the potential of crowdsourcing, in which projects are categorized

in 4 possible goals behind the collaborative resolution of tasks:

e Knowledge Discovery and Management. Ideal for information

gathering, data completion, organization, and reporting problems.

2.1. CROWDSOURCING 31

e Broadcast Search. Ideal for ideation problems with empirically prov-

able solutions.

e Peer-Vetted Creative Production. Ideal for ideation problems

where solutions are matters of taste or market support.

e Distributed Human Intelligence Tasking. Ideal for largescale data
analysis where human intelligence is more efficient or effective than

computer analysis.

In the rest of this subsection we will review the nomenclature of crowd-

sourcing, and some examples of successful crowdsourced projects.

2.1.1 The Crowdsourced Task Model

Even though task execution in a crowdsourcing platform is not significantly
different than in traditional in-house processes, it is worth the effort to revisit

its execution and highlight some of its uniqueness.

Definition 2.2. A task in a crowdsourcing platform is any action required
for achieving an objective of the task owner. Such action is usually performed
by an individual on the crowd, or a computer.

The granularity and the level of details of the task are up to the task
owner. When a task cannot be trivially subdivided in smaller tasks, and the
task description provides a clear procedure and guidelines for performing such

action, one uses the term micro tasks instead of task.

Figure 2.1 depicts the flow of actions occurring during the task resolution.

Two actors are involved in the task execution, the Requester is the agent

32 CHAPTER 2. BACKGROUND

Worker Select & Accept Task

Solve Assignment

Requester ——| Publish Task Create Assignment

T

Distribute Tasks & Filter Workers

Aggregate Results [«----------- Asses Assignment

T
!
v

Reward

Figure 2.1: Simplification of the Task creation and execution process in a

typical Crowdsourced platform. Dashed arrows are optional.

expecting results from the crowd and the Worker is any individual who joins
the Crowdsourcing platform. Following, one can find some details on certain

actions. Full details of the usual task execution can be found in [70].

Distribute Task & Filter Workers During task creation, the requester
may establish some conditions on the workers who can contribute to the
problem resolution. Then, the task details are distributed along workers who

satisfy those requirements.

2.1. CROWDSOURCING 33

Such requirements may involve filtering out newcomers to the platform
(by setting a lower threshold on the number of tasks already submitted),
number of tasks submitted in the last day, passing a test, being part of a
group of individuals or by limiting the physical location of the individual to a
selected set of countries. Those requirements are usually a trade-off between

ensuring high-quality outcomes and time to resolution.

Select & Accept Task Contrary to other task distribution models, crowd-
sourcing usually does not involve the assignment of a task to a particular in-
dividual, even though some research shows that this might increase quality.
The most common approach is to show a list of tasks that are available to

the user, which can choose whatever task feels more comfortable.

Create Assignment The task itself is a description of the problem to be
solved, as well as a template to create multiple assignments. But data is not
send to users until they accept the task. The template contained in the task
is used to visualize the data to the user, as well as establishing the tools and
rules to submit the answer or solution.

This model allows the requester to ask users to solve a batch of the
problem, i.e. only a small piece of the problem. How these batches are
distributed among crowd workers is up to the requester, and this choice
may impact on the final quality of the project. For instance, one may send
the same batch to several individuals to retrieve the most popular answer.
Another strategy would be to append some questions with an already known

answer, so the requester can quickly assess the quality of the solution.

34 CHAPTER 2. BACKGROUND

Asses Assignment The final responsibility of assessing the quality of the
assignment is up to the requester. Most Crowdsourcing platforms allow re-
questers to flag those assignments that do not meet the expected quality.
This information may be later used by the platform to filter tasks to a par-
ticular set of individuals. For example, a requester may establish that a
worker must have 80% of their previous assignments accepted in order to be

eligible to enroll the task.

Reward The requester may offer a reward to those workers to participated
in an Assignment. There are multiple mechanisms for financially rewarding
workers, the quantity may depend on the quality of their outcomes. Notice
that the rewards are not received immediately after finishing an Assignment,

as the requester must assess its quality first.

Aggregate Results After all assignments have been solved, the requester
may need to aggregate the results into a unique outcome. The results may

return to the crowd in the form of another Task.

2.1.2 Examples of Crowdsourcing projects

Amazon Mechanical Turk The basic idea behind Amazon Mechanical
Turk is that anybody with a few available minutes can connect to their
website and answer some questions, or solve small tasks, that may help a
company to solve a problem. For instance, one may be asked to tag [106] or
describe an image [85], to classify a set of objects [37], translate sentences [4],

answer a survey [13], or any type of work that humans are expected to per-

2.1. CROWDSOURCING 35

form better than computers. By designing tasks that are solvable with low
effort from the user perspective and providing small financial rewards, com-
panies are able to solve the aforementioned problems within large datasets
whilst controlling costs.

This marketplace of human work set the standard for most of the Crowd-
sourcing terminology and methodology, and proved that people is willing to
spent some time in solving industrial problems in exchange of a financial re-
ward. It also provided a perfect scenario for researchers to create their own

experiments and get real data from humans.

Kaggle In some cases, the effort needed to solve a task is not worth a small
reward of platforms as in platforms such as Amazon Mechanical Turk. And
hence, extra financial reward and motivation are needed. Kaggle! provides a
platform for companies to upload their data-dependant problems along with
a suitable dataset, and then a competition starts to retrieve the best machine
learning solutions from the crowd. Those who obtain the best accuracy and
precision on their solutions get a prize, whilst the rest get nothing from their
participation.

Such model is perfect for solving problems in which it is understood that
there exists a solution, quality of such solution is measurable but the space
of solutions is so huge that it is almost unfeasible to find by an individual.
Each participant provides their knowledge and intuition to the resolution of
the problem, and hence each individual tackles the problem with a differ-

ent approach. As the number of individuals grows, the more solutions are

'https://www.kaggle.com/

36 CHAPTER 2. BACKGROUND

explored.

Threadless Contrary to data-dependent problem resolution as in Kaggle,
there are some problems in which quality of solutions are not easily measured.
For instance, Threadless? asks the crowd to design and chose the T-shirts that
they will sell on their online shop. Again, those designers that pass the crowd
evaluation receive a monetary compensation as well as a share of the profit.
But this company does not only crowdsourced the process of making the
design, but also they ask the crowd to measure the quality of the received

designs.

2.1.3 Quality Assurance in Crowdsourcing

One of the major drawbacks of crowdsourcing solutions is the lack of quality
assurance mechanisms provided by existing platforms. Table 2.1 summarizes
some proposed methods for requesters to implement, so they can have some
control on the final quality. Quality Assurance mechanisms can be roughly
divided on those prior to the task assignation, and those posteriors to the
submission of the task. On the former, some requirements on the workers are
defined or some examples of task designs are explained. On the latter, several
comparisons of results are proposed and some review tasks are recommended.
Unfortunately, all of them are on the requester-side, with few efforts from

the platform side to palliate this issue.

2http://wuw.threadless.com

37

CROWDSOURCING

2.1.

"BUIDINOSPMOL) Ul Pasn senbruypeg (y§)) eourinssy Ajend) jo Arewwung :1°g 9[qR],

[99]

matadr Suraoxdug

[27]
surpqey poyeadoy

[87] A10A0001

[08] suorjejoUUR | puR WOIIOUISIP
Surjoa / Surperr) oidnympy | Iome / seiq
[v1] [€7] [7) yuomuSIssy
MOTADI [oASIYNIN | wotsIOO(] AjLroleyy (G| Ayremnuerr) SINUBE] EIN
[e7] [06] [1¢] ustsop
[18] prepue)g pior) | momoy uolpepiep | Surgoa Ajuolepy | ysey OATSTOJO(T [6¥] uoryeindoyy
pIepue)}g prox dnoax) [oxyuo) Aouepnpoy u3Isa(J se], ISJIOAA

VO sej-1sod

VO Jser-1o11g

38 CHAPTER 2. BACKGROUND

2.1.3.1 Collaborative Processes

Research in crowdsourcing has greatly focused on the study of individual
tasks, reducing the scope of quality assurance mechanisms to those studying
the effects of particular properties of individual tasks. The design of collab-
orative workflows is reduced to some examples, and therefore there are not
so many results linking quality to process design choices. In fact, very few
tools are available to design and deploy sequences of tasks. TurKit [67] is a
tool to automatically create tasks in Amazon Mechanical Turk and gather
the solution from the platform. Its design allows administrators to create a
flow of tasks. Besides, Jabberwocky [3] focuses in the reusability of small
processes. CrowdWeaver [57] is the first tool to allow users define workflows
with a visual interface.

The most discussed process in the literature is the find-fix-verify pat-
tern, introduced by Soylent. Soylent [14] is an extension to Microsoft Word
that allow users to ask for a revision (correct it, or make it shorter) of a
text using crowdsourcing. In the study, they noticed that asking individ-
uals to perform the whole revision was not feasible and quality was below

expectations. Then, they decided to split the task in three steps:

1. In the find phase, individuals are asked to find any sentence, or para-

graph, that needs improvements.

2. In the fix phase, several individuals propose a modification of the sen-

tences found in the previous phase.

3. Finally, in the verify phase, individuals choose the best fix proposed

by the community.

2.1. CROWDSOURCING 39

2.1.3.2 Gold Standards

Adding a human review to assess quality is costly, therefore everything that
we can implement in order to automatically reject useless work is welcome in
crowdsourcing platforms. In this category, crowdsourcing has traditionally
focused on asking individuals to solve task with known answer (or golden
truth) and tasks not-yet solved. That way, one can measure the quality
of the working by assessing the answer to the golden truth data set. The
problem with this approach is that not all tasks may have a golden truth,

and in some cases the generation of this data set is too costly.

2.1.3.3 Ground Truth and Majority Decision

Since the golden standard approach is costly (and sometimes very difficult
to implement), the Amazon Mechanical Turk team recommends to design
tasks with quality in mind. One of their recommendations is to add compa-
rable questions that are difficult to answer without doing the task itself. For
example, one can ask workers to summarize a text in only three keywords.
Honest workers would probably agree on at least one keyword.

When possible, another used quality control mechanism is assigning the
same task to several individuals. Then an aggregated solution is considered
as the valid solution [9,26,72]. There are several ways of aggregating informa-
tion, and sometimes it is useful to ask the crowd to aggregate the information
provided by themselves [56]. When possible, an outlier detection mechanism
is used to maximize the utility of the aggregation mechanisms by removing

noise from the received contributions.

40 CHAPTER 2. BACKGROUND

2.2 Business Process Management

In this section, we will informally review the basics of business process mod-
elling and process mining. For more details on both arenas, one could
check [109] for an in-depth review of process modelling and [101] for an
introduction to process mining. Afterwards, a more in-depth introduction to
3 business process modelling languages is provided.

The idea of business processes was born from the observation that busi-
nesses’ outcomes are derived from the combination of several activities per-
formed. Business processes are the key instrument to organize these activities
and to improve the understandability of their interrelationships.

Most of nowadays business’ activities are performed by humans and sup-
ported by an information system, which provides the necessary tools for
enabling humans to efficiently perform the activity, but their automatiza-
tion is being increasingly demanded by the industry and, hence, information
systems should be able to cooperate with human workers. A company can
efficiently and effectively achieve its business goals only if people and other
enterprise resources play together well. Again, business processes are the key

instrument to govern this collaboration.

Definition 2.3 (Mathias Weske [109]). A business process consists of
a set of activities that are performed in coordination, with the objective of
achieving a particular milestone or business goal.

FEach business process is tailored for a single organization, but it may

interact with business processes performed by other organizations.

In nowadays application economy, companies must quickly react to changes

2.2. BUSINESS PROCESS MANAGEMENT 41

and must be able to continuously improve their performance. While at an
organizational level, business processes are essential to understand how com-
panies operate, business processes also play an important role in the design,
analysis and optimization of businesses’ execution. In the business process
management arena, business practices and computer science collaborate for

helping businesses to achieve their goals in the most efficient manner.

Definition 2.4 (Mathias Weske [109]). Business process management
is a set of methodologies and tools to support the design, administration,

configuration, monitoring, and analysis of business processes.

Traditionally, business processes are enacted manually, guided by the
knowledge of the company’s personnel and assisted by the organizational
regulations and procedures that are installed. Enterprises can achieve ad-
ditional benefits if they use software systems for coordinating the activities
involved in business processes. These software systems are called business

process management systems.

Definition 2.5 (Mathias Weske [109]). A business process model con-
sists of a set of activities and a execution strateqy, i.e. constraints specifying
when an activity may be performed based on the status of previous activi-
ties. A business process instance represents a particular execution of the

activities, which were performed for a particular business case.

2.2.1 Business Process Modelling Languages

Several languages have been defined for visually depict business process mod-

els. During this thesis, we will use four different business process modelling

42 CHAPTER 2. BACKGROUND

languages. It is well known that the choice of the modelling language as-
sumes some underlying properties of the business process and its execution,
and, hence, we will choose the most appropriated language depending on the
context and later usage of the process model. For instance, the Business
Process Modelling Notation® (Section 2.2.1.1) is well known among business
people and practitioners as understandability of processes is one of their ob-
jectives. Nevertheless, execution of models described using the BPMN is not
straightforward and other notations have been considered for such purposes.
For example, the Business Process Execution Language®, Petri nets (Section
2.2.1.2) and colored Petri nets (Section 2.2.1.3) cover the necessary formal-
ization for execution of process models. Finally, we have also considered
process trees (Section 2.2.1.4) during this thesis, as their structure provides

interesting properties not seen in the other modelling languages.

2.2.1.1 BPMN, Business Process Modeling Notation

Business Process Modeling Notation (BPMN) is a standard for business pro-
cess modeling that provides a graphical notation for specifying business pro-
cesses as a flowchart. The objective of BPMN is to support business process
management, for both technical users and business users, by providing a no-
tation that is intuitive to business users, yet able to represent complex process
semantics. In particular, a mapping to Business Process Execution Language
(BPEL) is provided, allowing practitioners to automatize the execution of a

process model designed with BPMN.

3http://www.bpmn.org
‘https://www.oasis-open.org/committees/tcy,ome.php?wg,bbrev = wsbpel

2.2. BUSINESS PROCESS MANAGEMENT

Activities

X D

Gateways

®@
® @

OO

Events

Connectors

43

Figure 2.2: Some examples of the 4 main components in a BPMN process

model.

44 CHAPTER 2. BACKGROUND

Figure 2.2 depicts the 4 main components that are used for modelling
a business process with BPMN: tasks, events, gateways and connectors. A
brief description of each component is provided below. Besides the four main
constructs, BPMN provides other tools for modeling synchronization between

different actors, or roles, and other annotations.

Tasks represent a single unit of work that is done by the company or orga-
nization. Typically, it is an atomic activity, i.e. it cannot be broken down to
a further level of business process detail, and hence is the lowest level speci-
fication of the business process. A task is represented with a rounded-corner

rectangle and describes the kind of work which must be done.

Events are usually described as ” something that "happens” during the exe-
cution of the process model”. Typically, events have a cause (or trigger) and
an impact (or result) on the execution of the process model. An Event is
represented with a circle containing an icon, which denotes the type of event

(e.g., an envelope representing a message, or a clock representing time).

Gateways are a graphical representation of the execution strategy for di-
vergences and convergences of the flow in a process model. An internal
marker identifies the type of gateway, expressing strategies such as exclusive
(only one path is executed), event based (an event decides the flow of execu-
tion), inclusive (at least one of the following paths are executed) or parallel

(all paths are executed concurrently).

2.2. BUSINESS PROCESS MANAGEMENT 45

Payment
Send receipts
Expense
claim farm
Auditing

Figure 2.3: Example of an expense claim process, modeled using BPMN.

Connectors connect different components of the process model, and pro-
vide an ordering on the execution of the different tasks. Besides, it might
also depict an exchange of messages between participants.

An example of a BPMN diagram can be found in Figure 2.3, describing
an expense claim process. When an individual fills an expense claim form,
she must send the receipts to the Finance department. While the documents
are in transit to the Finance team, they might start their internal process
for auditing the expense. Notice that finance may not need to check the
original receipts, but they need to store them for later use. The result of the
expense claim check might end in a refund of the expense to the worker, or in
a rejection. This process model does not specify if the individual is allowed

to fill a new expense claim form for a previously rejected expense claim.

2.2.1.2 Petri nets

A Petri net [95] is a graphical notation for describing distributed systems,

yet its simplicity and expressive power made possible use Petri nets as the de

46 CHAPTER 2. BACKGROUND

facto modelling language for formalizing and studying systems in a plethora

of areas.
Definition 2.6. A Petri net is a tuple (P, T, A, My, W, K) such that
o (PUT,A) is a bipartite directed graph.
— FElements P are known as places of the Petri net, T are its tran-
sitions, and elements of A are known as arcs.
— Fvery arc a 1s composed of a place p, and a transition t,.

o My is the initial marking function, i.e. My is a map between places and

Zzo.

e W is a function that maps arcs (A) to integers in order to define the

flow of data in the net.

e K is a function that maps places (P) to integers in order to define the

capacity of the net. It must satisfy that My(p) < K(p) for all p € P.
In the rest of this thesis, we will assume that our Petri nets are labelled:

Definition 2.7. A labelled Petri net is a tuple (PN, label) such that PN
is a Petri Net (P, T, A, My, W, K) and ‘label’ is a mapping between T and the
universe of labels U U{0}. Typically, the universe of labels is a set of strings
representing the business activities explained by the process model. One says

that a transition t is silent if label(t) = (.

One of the major benefits of Petri nets is the marking function. This
marking function enables practitioners to model the initial status of the sys-

tem, and then the petri net defines how this marking function evolves over

2.2. BUSINESS PROCESS MANAGEMENT 47

time (i.e. the system behaviour). One usually says that the place p has M (p)

tokens instead of using the marking function nomenclature.

Definition 2.8. Let t be a transition in a Petri Net. et is the set of arcs
incoming to transition t, and te is the set of arcs outgoing from transition t.

There exists a one-to-one relationship between places and arcs in ot (al-
tern. te), and, hence, both concepts will be alternatively used when referring

to elements of et (altern. te).

Definition 2.9. A transition t is enabled if, and only if, M(p,) > W(a)
foralla € A.

Definition 2.10. A transition t can be fired only if it is enabled for a given
marking function M. After firing the transition, M is replaced by a new

marking function.

M(p) =W((pt)) if(p,t)e A
M'(p) =9 M(p)+W((t.p)) if(t,p) €A
M (p) otherwise

In particular, this transformation states that W(a) tokens haven been
consumed (removed) from incoming places (i.e. a € ot) in order to execute
transition t. Its outcome are W(b) tokens that are added to its outgoing

places (i.e. b € te)

Marking functions allowed practitioners to model the execution of a busi-
ness process as a Petri net, in which transitions are activities performed by
the organization, or a formalism for modelling the collaboration between ac-

tivities. See Figure 2.4 for an example. This Figure depicts an example of

48 CHAPTER 2. BACKGROUND

/O—» Pay Invoice »C)\A

@—> Add Invoice —>O

Y
Y

Review Invoice

Figure 2.4: Example of a business process model, using a Petri net formalism.

Bullets (e) represent tokens.

a business process model using the Petri net formalism. Three activities are
depicted: Add Invoice, Pay Invoice and Review Invoice.

Figure 2.5 depicts the same process model after firing transition Add
Invoice. One token was consumed from the initial marking, and one token
was generated for each outgoing place. Since we did not define function W
and K, we are assuming that we have infinity capacity and W (p) = 1 for any
place. Two tokens are not available, enabling up to three transitions: Pay
Invoice, Review Invoice and an unlabeled transition.

Figure 2.6 depicts the previous process model after firing transition Pay Invoice.
Notice that only two transitions are now enabled: Review Invoice and the
unlabeled transition in the middle. The right-most transition is not enabled,
as it is expecting a token from each incoming place. The next step in this
process would be to perform Rewview Invoice or to simply skip it by firing

its corresponding unlabeled transition. Afterwards, the right-most transition

2.2. BUSINESS PROCESS MANAGEMENT 49

/@—» Pay Invoice »C)\‘

O—> Add Invoice —>O

Review Invoice

Figure 2.5: Example of a business process model after firing transition Add

Invoice. Bullets (o) represent tokens.

could be fired and the execution of the process would have ended.

The Petri net of the previous example belongs to a particular subclass
of Petri nets named Workflow nets. This subtype of nets have been largely
used for modelling business process models, as there is a special entry place
(a place with no incoming edges) and a place modelling the end of the process

(a place with no outgoing edges).
Definition 2.11. A workflow net WF is a tuple (P,T, A, W, K) such that
e (PUT,A) is a bipartite directed graph.

e There exists a place ps (resp. p.) such that its in-degree (resp. out-
degree) is 0.

o (P,T,A, M, ,W,K) is a Petri Net, where M,, is a function such that
M,.(ps) =1 and 0 for any other place.

20 CHAPTER 2. BACKGROUND

/O—» Pay Invoice »G)\A

O—> Add Invoice —>O

Review Invoice

Figure 2.6: Example of a business process model after firing transition Pay

Invoice. Bullets (e) represent tokens.

2.2.1.3 Colored Petri Nets

Colored Petri nets [50] are an extension of Petri nets in which tokens are
enriched with data and, hence, increases understandability and expressive
power of the models. For instance, colored Petri Nets allow models to clearly
define conditions on when a transition may be fired, whereas transitions are
usually triggered by an external agent in traditional Petri Nets.

The information assigned to a token is formalized with two concepts:
Colour types and colours. The first is the description of the data structure
that will be used to store the information, allowing the formal definition of
conditions over such data, whereas colours are a particular instantiation of

the just mentioned data structure.

Definition 2.12. A colour type is a specification of the data associated

to a token in a Petri Net. This object is similar to types in a programming

2.2. BUSINESS PROCESS MANAGEMENT ol

1D type
User 1D String

Has English certificate | Boolean

Score Integer

Table 2.2: Definition of a colour type modelling a basic user profile. Apart
from the user ID, this colour also enables us to state if the user has an English

certificate, and the obtained score.

language, and, hence, they can be arbitrarily complex. In this Thesis, we will
informally simplify the definition of type to a collection of pairs (1D, type)

in which
1. ID is a unique identifier of the type.
2. type 1is either

e another colour type

e one of the primitive types allowed by any programing language.

l.e. Boolean, string, float or integer.

e a tuple, sequence, or set of simpler colour types.

The symbol ¥ will denote the set of all possible colours.

Table 2.2 depicts an example of a colour type that might be used for
describing the profile of a user. In this particular example, a token might
state if a user with User ID has an English certificate and the score that the

user obtained during the last certification exam.

52 CHAPTER 2. BACKGROUND
1D type | Token 1 | Token 2 | Token 3
ID String Wi Wi w2
Has English certificate | Boolean True True False
Score Integer 10 90 0

Table 2.3: Different colours for the colour type defined in Table 2.2.

Definition 2.13. The colour function C' : P — % assigns a color type to

each place.

The colour type of a place P specifies the type of data that tokens must
contain while being in state P. Then, the colour of the token is a particular

instance of the colour type.

Definition 2.14. We will denote by Colour(c) to the set of all the possible
values following the data structure defined by o € Y. Additionally, there
exists a function valuerp such that it returns the value associated to the

variable 1D, if exists, for a given token.

For the sake of understandability, it will be understood that value;p(token)
is considered whereas I D appears outside the colour type definition. To
which token is applied this function, will be understood from the context.

See Table 2.2 for an example of three instances of the same colour type.
Token 1 and Token 2 share the same User ID, as they are modelling the
same individual but in two different stages: Initially, this user has a score of
10 and, after retaking the exam, her score went up to 90.

In order to facilitate the definition of new instances, we will use the

2.2. BUSINESS PROCESS MANAGEMENT 23

notation ({ID = wvaluerp},;p) to indicate the values associated to a token.
For instance, Token 1 in Table 2.3 could be represented as < ID = W1,
HasFEnglishcerti ficate = True, Score = 10 >.

Definition 2.15. An expression is any function that maps a list of tokens
to an element of Colour(c) for a given o € 3. In the particular case of

o0 = {(Guard, Boolean)}, we will also use the name guard exrpression.

Definition 2.16. A marking function is a function that maps elements in

P to a multiset of tokens.

Definition 2.17. A colored Petri Net is a tuple (>, P, T, A, C, G, E, I)

satisfying the following requirements:

~

. (P, T, A) is a Petri Net and the graph (PUT, A) is a Workflow Net.
2. > is a finite set of non-empty types, called colour sets.

3. Cis a colour function. It is defined from P into).

4. G is a guard function. It is defined from T into a guard expression.

5. E is an arc expression function. It is defined from A into an expres-

Stomn.
6. I is an wnitial marking.

In the rest of the subsection, we review the semantics and execution of
colored Petri Nets.
Figure 2.7 depicts the most basic structure in colored Petri Nets: one

transition (labeled as TASK) and two places. Every transition must have at

54 CHAPTER 2. BACKGROUND

()2 [asK |22 ()

Figure 2.7: As in traditional Petri Nets, every transition is connected to
places. Transitions are the elements in the model that are allowed to move
tokens from incoming places (place 1 in the figure) and putting them on all
outgoing places (place 2). Functions exp, and exp, define how this transfor-

mation is performed, and function g decides if the transition may be fired.

least one incoming and one outgoing edge, and always connecting the transi-
tion to other places. Besides, places are not allowed to be directly connected
to other places. Additionally, colored Petri Nets add two expression func-
tions (exp, and exp,) to the edges from/to a place, and a guard function g
to the transition.

In traditional Petri Nets, a transition is said to be enabled if there is at
least one token in each incoming place. In the case of Figure 2.7, the marking
function must state that the place 1 has at least one token. When a transition
is enabled, then it may be fired. This is the process of consuming one token
from each incoming place, and create one new token in each outgoing place.
This is formalized by modifying the marking function. Again, in the case of
Figure 2.7, a firing of the transition TASK would lead to a marking equation
in which place 2 has one more token, and place 1 has lost one token.

In addition to the token count condition in Petri Nets, guard functions of

transitions in coloured Petri Nets may specify when a transition is enabled

2.2. BUSINESS PROCESS MANAGEMENT 55
based on the information associated to tokens.

Definition 2.18. Let t be a transition in a colored Petri Net CPN, and M

a marking of CPN. The transition t is enabled if, and only if,
Va € ot, 3k, € M(a) such that gi({eq(ka) tacet) is true.

Where k, is a token in place a, g; is the guard function of t, and e, is the

expression of the arc a.

Intuitively, this definition states that a transition ¢ is enabled if there is
a selection of tokens, which are known as a binding of the transition, such
that their combination satisfies the guard expression g;. If there exists such a
selection, then firing the transition will consume such tokens and create new
tokens after the transformation described on the respective expressions. The
next definition formalizes this concept. Notice that if there is no expression

defined for an edge, we will assume that the identity function is considered.

Definition 2.19. Let t be a transition in a colored Petri Net, enabled for a
particular marking M. A firing of the transition t is the following transfor-

mation in the marking M :

1. For each a € ot, find a token k, € M(a) such that
g1({€ea(ka) tacet) is true

2. Define a marking M' as follows

(a) For any place not in ot nor te, M'(p) = M(p).

(b) For any place in ot, M'(p) = M(p) \ ky

o6 CHAPTER 2. BACKGROUND

(c) For any place in te,
M'(p) = M(p) U{ep({€a(ka) tacot)}

2.2.1.4 Process Trees

During this thesis, apart from traditional notations for business process mod-
elling as Petri Nets and BPMN, we will use the process tree notation for defin-
ing a series of techniques and metrics. The process tree notation assumes
that the process model has a certain structure, that allows practitioners to
define the process model as a tree in which every subtree is a valid subprocess.

As we already defined, a business process model is a directed graph con-
sisting of activities A, some edges £ connecting activities and control ele-
ments C, which defines the execution relationship between activities. Typi-
cally, control elements are any of the following types start finish, split-choice,
join-chouce spilt-parallel, join-parallel.

A rooted tree is a directed graph with a distinguished node, called
the root, from which every node can be reached with exactly one path. A
weighted rooted tree is a pair (7,w) consisting of a rooted tree T" and a
weight function w : ' — R. that associates every arc e € E a non-negative
real number w(e) > 0. A labeled rooted tree is a rooted tree 7" such that

there exists a mapping between a subset of the nodes of the tree and a set of

labels S.

Definition 2.20. Structured process imposes extra conditions on the con-
trol elements of a process: all split-parallel nodes (resp. split-choice) must

have a unique corresponding join-parallel node (resp. join-choice) such that

2.2. BUSINESS PROCESS MANAGEMENT 57

Seq And
N N
Xor B Loop Z
N PN
A X Y

Figure 2.8: Example of two structured processes represented as Process Trees.

all paths connecting these two nodes must visit zero or two of any other pair
of control elements. This correspondence is unique in the sense that if two
split nodes u and v have the same corresponding join node, then u and v are

the same node.

This definition allows us to consider structured processes as smaller sub-

processes or individual activities that are interconnected via control elements.

Definition 2.21 (Buijs et.al. [18]). A process tree is a labeled rooted tree
T in which activities are represented as leaves of the tree and internal nodes

describe the control-flow of the process.

Figure 2.8 depicts two processes trees modelling all possible control ele-
ments. On the left, a choice construct is executed before activity (or sub-
process) B. Notice that the absence of a label indicates a silent transition,
and hence { B, AB} is the language of the left model. On the right, a parallel
construct and a loop are depicted.

Let T = (V, E) be a rooted tree. Whenever (u,v) € E, we say that v is a
child of u and that u is the parent of v. The nodes without children are the

leaves of the tree, and the other nodes are called internal. Whenever there

o8 CHAPTER 2. BACKGROUND

exists a path from a node u to a node v, we say that v is a descendant of
u and also that v is an ancestor of v. An internal node is elementary if it
only has one child. The depth of a node u in a tree T', denoted by d7(u), is
the sum of the weights of the arcs in the path from the root to u. Weights
are usually set to 1, but we will later see that we can encode behavioural
information from the process by modifying these weights.

We say that a process tree is deterministic if there is a one-to-one
mapping between activity labels and leaves of T'. For the sake of simplicity,
we will label internal labels as OR?, AND, SEQ and LOOP to represent the
usual behavioural structures in a process model. We will also denote these
internal nodes by gateways, following the BPMN nomenclature. We allow

silent activities by labeling them as ().

Definition 2.22. A process tree is reducible if there are elementary nodes,
silent transitions hanging over a gateway other than OR, or there exist a pair
of internal nodes u and v such that (u,v) is an edge in the graph and both

model the same type of gateway.

Any reducible process tree can be converted into an irreducible tree by
merging all conflicting nodes. We will suppose that all process trees are given
in its irreducible form. Figure 2.9 depicts an example of a reducible process

tree and its irreducible counterpart.

SFollowing the semantics of block-structured models in [18], only exclusive ORs are

modeled.

2.2. BUSINESS PROCESS MANAGEMENT 29

SEQ SEQ
SEQ 0 OR A B C
PN |
A B C

Figure 2.9: Two process trees modeling exactly the same behaviour. The
left model is reducible, and the right model is its irreducible representation.
The silent transition) is removed because it is not part of an OR structure.

The OR elementary node does not provide behavioural information.

2.2.2 Process Mining

A business process model acts as a blueprint for the execution of a business
process instance, also known as traces. Each activity performed during a
business process instance is also depicted as an event of the trace. Notice
that some variations from the activities, and their interdependency, might be
found in the process instances, as mistakes and some deviations are expected

and accepted.

Definition 2.23. An event log is an ordered set of traces for a (possibly

unknown) business process model.

An event log is typically linked to a known business process model. Nev-
ertheless, it is also common that information system registers data from the
organization that is yet not organized, or formalized, as a business process

model. In that case, some techniques (known as process discovery or process

60 CHAPTER 2. BACKGROUND

mining) help practitioners to find a business process model that summarizes

the event log.

Definition 2.24. A process discovery technique is a method that, given
a log L, produces a business process model N that approximates the real

business process behind the log L.

For measuring the quality of a business process model with respect to
an event log, researchers and practitioners defined a series of metrics that
compares the event log with the set of possible business process instances
that the process model is capable to generate, which is known as the language

of a process model.

Definition 2.25. Given a process model N, we define the language of the

process model, L(N), as all the possible business process instances of N.

Business process conformance checking is a family of process mining
techniques to compare a process model with an event log. It is used to
check if the actual execution of a business process, as recorded in the event
log, conforms to the model and vice versa. The most popular conformance
checking technique [100] is based on finding a mapping between events of a
trace to the process model that best maintains the behaviour explained by

the process model.

Definition 2.26 (Buijs et.al. [20]). The quality of a business process model N

with respect to a event log L can be measured with the following four metrics.

e The replay fitness is the ratio of elements in L N L(N) with respect
to L. Le. the ratio of traces that are indeed included in the language

of the process model.

2.2. BUSINESS PROCESS MANAGEMENT 61

e The precision is inversely proportional to the ratio of L(N) \ L with
respect to L(N). Le. the precision of a process model is high if the

ratio of business process instances not seen in the log is fairly low.

o The generalization of a process model is the capability of the model
for generating process instances not yet seen, but very likely to be part

of the real (unknown) business process model.

e Simplicity is a score measuring how simple is the structure and be-

havior of a business process models.

It is well known that none of these metrics is enough by itself to measure
the quality of a process model. For instance, several examples show that
there exist models with a perfect replay fitness, but non-precise. Even though
highly precise process models have usually high fitness, generalization and
simplicity might be significantly affected. It is expected that a good process
model is well balanced in the four aforementioned quality aspects.

Notice that precision is defined in terms of a ratio of elements in a set that,
potentially, might contain infinite elements (in case of an iterative process).
Because of that, approximate metrics have been developed for measuring
precision. In particular, we will use in the rest of this thesis the alignment
approach for measuring fitness [2] and its application to measuring precision
[1], consisting in counting unused edges during the alignment of the log to

the process model.

Part 1

Process Design and Monitoring

63

CHAPTER
PROCESSES
3 @% Business Processes in

" Crowdsourcing

Formalizing the work to be done in a process is the first step for improving the
overall efficiency and quality of problem resolution. We have detected that
there is a lack of mechanisms for defining industrial processes to be executed
by the crowd and, therefore, we start this thesis by introducing a novel
graphical modelling language for describing such decentralized collaborative
processes. The focus of this work is to allow a quick overview and assessment
of the implemented quality assurance mechanisms, as well as the necessary
mechanisms to define worker requirements based on their profile and prior
involvement in the execution of the process . In a longer-term vision, having
well-defined processes will help in making more predictable the performance
of any crowdsourcing project.

For those cases in which the process is yet not formalized, we have also
made the first steps for designing a method capable of discovering processes
by analyzing the factual work done in the platform. Check Chapter 4 for

more details.

65

66 CHAPTER 3. BUSINESS PROCESSES IN CROWDSOURCING

3.1 Introduction

Although business processes may require to solve complex tasks, crowdsourc-
ing is mainly used to solve independent tasks. Previous work such as [14]
shows that finding the proper combination of tasks to solve a complex prob-
lem using crowdsourcing is not straightforward. In fact, designing proper
workflows is one of the major issues in crowdsourcing according to employees
of the crowd-based company CrowdFlower! [57]. Although some previous
works propose mechanisms to express collaboration patterns in a visual way,
their expressive power is still not sufficient to describe the variety of current
crowdsourcing processes. Just as an example, none of the visual workflow
languages used for crowdsourcing allow users to define the complete work-
flow behind a continuously open competition such as those in Threadless?
and Innocentive?, in an easy way.

Recent research [91] shows the interest of industry on increasing the par-
ticipation of in-house workers in crowdsourcing processes. In many of these
applications, requesters need to express restrictions on the characteristics
of individual workers. Unfortunately, previous workflow languages used in
crowdsourcing cannot express usual rules on workers such as allowing to solve
a task to only those individuals who contributed in a previous task of a pro-
cess. Besides, processes in crowdsourcing may change dynamically depending
on worker skillsets or deadline. Authors in [60], discuss the need for contin-

uously adapting workflows depending on the context. Another important

thttp:/ /www.crowdflower.com
Zhttp:/ /www.threadless.com
3http:/ /www.innocentive.com

3.1. INTRODUCTION 67

concern is compliance with deadlines [73,103]. To the best of our knowledge,
and independently confirmed by Kucherbaev et.al. [59], none of the workflow
languages for crowdsourcing presented in the literature allows for expressing
these usual requirements accurately.

In this section, we define CrowdWON, a modelling language suitable for

describing crowdsourcing processes. Our main contributions are:

e We propose a flexible language that allows defining workflows for a

large variety of scenarios, including open competitions.

e We propose the first graphical language for crowdsourcing platforms
able to express sophisticated restrictions on the workers participating

in a task.

e We propose a language that allows to define dynamic workflows that
adapt to the status of the process; in particular, it adapts to deadlines

and worker profiles.

e We also formalize CrowdWON process models as colored Petri nets, en-
abling execution, monitoring and simulation in combination with other

existing tools tailored for colored Petri nets.

Our modelling language makes it easier to define business processes in
crowdsourcing. Thanks to these proposal we can easily visualize and improve
the collaboration between individuals in the crowd, computers and compa-
nies. Our adaptive flows make it possible to design collaboration patterns
that allow to react when the performance of the process is below expecta-

tions. Besides, the formalization of CrowdWON as colored Petri nets allows

68 CHAPTER 3. BUSINESS PROCESSES IN CROWDSOURCING

—_— - orker cancelled ta}
v

Post a Job Position
v
Worker claims task

v
Remove Job Position [———> @

Figure 3.1: Description of the execution of a task in a generic crowdsourcing

platform using an EPC diagram.

practitioners to transform visual process models in a language that allows

them to execute, monitor and simulate crowdsourced processes.

3.2 Related work

Despite the increasing popularity of crowdsourcing, the number of specialized
process-modelling frameworks proposed in the literature is still limited. With
TurKit [67], anyone is able to describe the iterations of simple tasks in crowd-
sourcing. Jabberwocky [3] focuses on the reusability of sequential processes,
but its application to iterative processes is not clear. In Turkomatic [60],
individuals collaborate in the design of the process and contribute, through
refining the textual description of tasks, to its resolution. CrowdWeaver [57]
is the first graphical modelling framework for workflow definition and man-

agement. With this tool, individuals can design a crowdsourcing process by

3.2. RELATED WORK 69

combining human and predefined computer tasks.

In the aforementioned modelling frameworks, tasks and processes are
completed after a known number of individuals contribute to them. How-
ever, using these previous proposals, it is not straightforward to represent
other scenarios, such as for instance, crowdsourced open competitions, in
which the end of the process is defined by a deadline. Deadline management
are usually based on simple mechanisms such as notifications to the process
manager, so that she can manually adjust the workflow (e.g. increasing the
financial reward in order to reduce the time-to-completion of tasks [73]). Task
routing techniques [41] showed that tasks can be adapted to the profile of
crowd workers. However, none of these previous proposals allows expressing
automatic transformations of the workflow based on the context.

Petri Nets [82] are a common tool to model processes and workflows.
Petri Nets can be defined as directed bipartite graphs, in which nodes rep-
resent inactive systems (places) or active systems (transitions). Information
is represented through tokens (pointers to places) and the execution of a
process changes the position of tokens. The basic idea of Petri Nets is that
transitions transform information from one state (place) to another. Several
extensions of Petri Nets can be found in the literature. We highlight three of
them related to process modelling. Workflow Nets [99] are Petri Nets with
two special places to represent the start and end of the process; dualistic
Petri Nets [27], which allow tokens to point to places and transitions in order
to represent that a transformation or task is being performed; finally, colored
Petri nets [50] allows process designers to specify the structure of the data

assigned to token in order to allow the formalization of workflows that adapt

70 CHAPTER 3. BUSINESS PROCESSES IN CROWDSOURCING

to the information contained in the token.

Due to the complexity of describing human collaboration and time man-
agement, other modelling languages—e.g. BPMN* and EPC®-include con-
ditions based on human and timed events. Unfortunately, the use of these
event-based frameworks produces complex, and very difficult to understand,
diagrams in the crowdsourcing context. Figure 3.1 shows the execution of a

single task using the EPC language.

3.3 Crowdsourcing Workflow Net model

In this chapter we propose CrowdWON; a graphical language for describing
crowdsourcing processes which is a combination of Workflow Nets and Du-
alistic Petri Nets. Later in Section 3.5, we formalize CrowdWON as colored
Petri nets. Colored Petri nets have enough expression power for formalizing
the elements described in CrowdWON. We present both approaches as we
envision that a combination of a graphical modelling language and a formal
description will increase the impact of CrowdWON. For instance, due to the
formalism of colored Petri nets, practitioners will be able to execute, moni-
tor and simulate crowdsourcing processes. On the other hand, colored Petri
nets may not be the best formalism for end-users due the complexity of its
semantics.

As in Dualistic Petri Nets, a token pointing to a task (or transition)
represents an individual performing such task. We define the status of tasks

based on the position of the token. Figure 3.2 shows the different status

4Business Process Model and Notation. hwwp://www.bpmn.org
5Event-driven process chain

3.3. CROWDSOURCING WORKFLOW NET MODEL 71

depending on the token position. Places are implicitly represented in any
direct connection between two tasks. Besides, in order to adapt to usual
processes in crowdsourcing, we allow tokens to return to a previous place.
With this, we can design a reverse firing rule: If a worker canceled the task,
the token should return to its previous place.

(K |— (-~

1
1 1

: Performing task
Waiting for worker Task is inactive

Figure 3.2: Status of the task depending on the token location.

It is important to remark the simplicity of CrowdWON thanks to this
representation. As we mentioned before, Figure 3.1 describes the execution
of a single task using EPC (an event-driven language). In our proposal, by
considering the position of a token, we are able to simplify the representation
to only three nodes: Two places connected to a task (see Figure 3.2). A Job
position is created when a token arrives to the first place, and it will be
removed when the token leaves the place. If the worker cancels the task, the
token will return to the first place repeating the creation of the job position
(describing the loop in Figure 3.1). The second place is only involved when
the worker submits the task.

Tasks in CrowdWON are a tuple (ID, typein, typeout, kernel) that de-
fines the execution of the task. ID is a unique identifier allowing future
references of the task; typein is a specification of the structure of the in-
put data (typeout specifies the returned structure); and kernel defines the

method used to perform the task. Depending on the type of task, kernel

72 CHAPTER 3. BUSINESS PROCESSES IN CROWDSOURCING

may contain different information: Human tasks (represented with a box)
require at least a user interface; computer tasks (double-edged box) require
a service protocol; a special case of tasks are control flows, used to describe
non-sequential processes. In Subsection 3.3.2, we describe the different con-
trol flows available in our model.

Tokens in CrowdWON are a tuple (current, data). The token is pointing
to the current node, and data is the information that is being processed
by the current node. If current is a task, then data must be structured as
specified in typein. That allows individuals to complete the task using the
information contained in data. After the task is completed, the contribution
is stored in data as specified in typeout. Therefore, it is important that two
consecutive tasks have compatible data structures. At the end of the process,
data is the proposed solution to the problem. Note that this construction only
allows one individual to perform the task with the same piece of information.
Later in Section 3.3.2, we introduce a mechanism to describe resolution of

tasks by multiple workers.

3.3.1 Human Tasks and Worker management

Popular crowdsourcing platforms allow defining restrictions on which individ-
uals can claim the task. Those restrictions are usually related to the ratio of
successful submitted tasks, passing some preliminary tests and geo-location.
One of the main contributions of CrowdWON is the proposal of a language
that allows expressing worker selection constraints in a simple way. These
restrictions may be complex: a worker might not be able to take a task if

she participated in a particular previous task in the process, workers with

3.3. CROWDSOURCING WORKFLOW NET MODEL 73

a lack of certain skills might only be allowed to solve a task when deadline
compliance is at risk, as the last resort, etc. Although these restrictions may
be usual in many circumstances, previous languages do not allow to express

them. CrowdWON allows for expressing these types of constraints.

Definition 3.1. Let us call worker requirement to a set of constraints
on the group of individuals allowed to choose a certain task. Constraints
are defined over any property of the profile of individuals (such as ratio of
approved contributions, knowledge about a topic, age, gender or location),
belonging to a group of individuals or any combination (using conjunctions,

disjunctions or negations).

CrowdWON provides a set of predefined groups of a given task ID to

facilitate the design of a worker requirement:

e ended(ID), or simply e(ID) is the set of workers who completed the
task.

e revoked(ID), or simply r(ID), is the set of workers who failed to com-

plete the task or revoked it.

e accepted(ID), or simply a(ID), is the set of all workers that at some

point claimed the task.

Definition 3.2. Let us call worker selection to an ordered list of tuples

(wr, d), where wr is a worker requirement and d is an optional deadline.

The list defines a priority on the requirements: Individuals must satisfy

the first worker requirement in the list in order to claim the task. When a

74 CHAPTER 3. BUSINESS PROCESSES IN CROWDSOURCING

requirement is an empty set, or the deadline has already been met, the tuple
is removed from the list. An empty list puts no restriction on individuals,
and so anybody can claim the task.

In Figure 3.3, an example of our worker selection model is depicted. The
Review task only accepts workers with a success ratio greater than 90%.
On the other hand, the selection node has a more complex worker selection:
firstly, only workers with a ratio greater than 80% are considered. After 1
day, the worker selection will decrease the threshold to 40%. After 2 days,
anyone can claim the task as all deadlines in the worker selection have already

passed.

3.3.2 Control Flow Tasks

In CrowdWON, analogously to other modelling languages, the two most basic
tasks to control the data flow are AND and OR operators. The AND operator
must wait until it receives a token from each of the incoming edges. Then,
all these tokens are automatically merged into a single one that remains in
the flow of tasks. If the operator has more than one outgoing edge, then a
copy of the token is created for every outgoing path. In this case, the kernel
parameter may specify extra rules for the merging and creation of the tokens
(such as splitting a list instead of creating copies). On the other hand, the
XOR operator only accepts one token at a time from incoming edges, and
only one outgoing path is executed. The operator will look at data contained
in the token to decide the outgoing path. Conditions for execution will be
written in terms of the received data structure i. The default path will be

represented by an empty condition.

3.3. CROWDSOURCING WORKFLOW NET MODEL 75

3.3.2.1 SELECTION

Authors in [41] show an example of a task that adapts to the expertise of
workers: If an individual has knowledge in the American culture, she will
answer more questions related to America than other countries. In order to
describe these adaptable processes, we extended the XOR operator to include
conditions over the profile of workers. The SELECTION node is a control
flow task that first finds an individual following the worker selection criteria
attached to the node; and then the profile of the selected worker is used to
choose an outgoing path.

Figure 3.3 shows an example of a workflow that behaves differently de-
pending on the individuals involved in solving the task. Inexperienced work-
ers (e.g. success rate lesser than 90%) can perform the post edition task,

reducing the workload of experienced workers.

Post
o - @
| edition T

Success MA Review
st (Stggess > 80%, < 1d) Ao | Post | »
9nd (S%g%gss > 40%, < gd) % 1st (S%g%gss > 90%, @)
edition

Figure 3.3: Example of the Selection operator. If inexperienced workers claim

the first task, then an extra review phase will be required.

76 CHAPTER 3. BUSINESS PROCESSES IN CROWDSOURCING

3.3.2.2 MAPREDUCE STRUCTURE

Collaboration in crowdsourcing processes follows an asynchronous approach:
crowd workers are asked to perform tasks individually, and then an aggre-
gation of their contributions is the final output. The MapReduce structure
defines the level and mechanisms of collaboration.

Following the PartitionMapReduce approach of CrowdForge [56], we di-

vided our structure in:

e A sub-process. The operator contains another crowdsourcing workflow
net, defining how data will be processed. We can graphically represent

it in the parent process as in Figure 3.4.

e A generator of tokens. Every token enters the structure through this
generator. It has some rules to create copies (or chunks) of the received
data. These tokens are processed independently as described in the

sub-process. A list of common generators can be found in Table 3.1

e Finally, we have an aggregation mechanism that produces a single out-
put from all the independent contributions. This last part is connected
to the generator, so it knows how many tokens are being manipulated
by the sub-process. It is also able to request the creation of additional
tokens. A list of common aggregation mechanisms can be found in

Table 3.2.

Figure 3.4 represents the basic definition of a crowdsourced contest: an
infinity generator allows individuals to accept the Submit task at any mo-
ment; then, in order to decide a winner contribution, a review phase is used

to score them by computing the average opinion of N workers.

3.3. CROWDSOURCING WORKFLOW NET MODEL 7

Generator
Description
icon
@ Create N copies of the to-
ken.

Create N copies of the to-
@ ken. The generator will
create more tokens if re-

quested.

The first task in the sub-
process is always available
to claim. A deadline
specifies when the platform
should stop offering the
task.

It is used to independently

process elements in a list

generated by the crowd.

Table 3.1: Examples of generators used in crowdsourcing processes.

As for token management, the token in the parent process points to the
structure until the aggregation mechanism returns a value. Generated tokens
are executed in parallel instances of the same sub-process. This particularly

affects our worker management model. In Section 3.3.1, we introduced three

78 CHAPTER 3. BUSINESS PROCESSES IN CROWDSOURCING

Aggregation
Description
icon

Majority vote. Only the

@ most repeated answer will

be considered.

Returns solutions repeated
by more than N% individ-
uals. Optionally, it can re-
quest more tokens if there is

110 consensus.

There is no aggregation. It
returns a list of contribu-

tions.

Table 3.2: Examples of aggregation mechanisms used in crowdsourcing pro-

cesses.

o s ian)
@ Submit —>®—> Score entry @

Figure 3.4: Basic description of a crowdsourced competition: An unknown
number of submissions are independently reviewed. In the figure, an average

of N evaluations is used to rank submissions.

3.3. CROWDSOURCING WORKFLOW NET MODEL 79

functions on tasks that returns workers involved in their resolution. Due
to the parallel execution of the sub-process, these sets only returns workers
of the current instance. Nevertheless, it might be useful to also consider
workers in parallel executions. See Figure 3.4 for an example. In order to
avoid multiple reviews from the same individual, a restriction on workers
must consider parallel review tasks.

In order to tackle this issue, we define the operator [x] that requests a
higher-level point of view. By attaching the operator [*] to one of the sets, we
are looking at the task from the parent process. So, we can use the condition
workers not in a(Score entry)[x| to avoid the duplication of reviewers in
Figure 3.4. The operator can be stacked, getting access to a broader point

of view: subsequent parent processes will be considered.

3.3.2.3 LOOP STRUCTURE

Even though iterative processes can be modelled by a proper combination of
XOR operators, this approach does not allow us to properly limit the num-
ber of iterations or measure changes between iterations. Consequently, we
introduced a new mechanism to properly define iterative processes. Besides,
this will allow us to improve the worker management of tasks inside a loop.

As in the MapReduce Structure, the LOOP Structure contains a sub-
process that will be executed as many times as needed until an exit condition
is satisfied. As an example, Action-Verification units presented in [77] are
described using our model in Figure 3.5. An Action-Verification Unit is a
pattern used in tasks where human review is required to measure and ensure

quality. In this figure, the Action task is repeated until the Verification task

80 CHAPTER 3. BUSINESS PROCESSES IN CROWDSOURCING

accepts the contribution or the sub-process is executed at least 3 times.

> 3 iterations
or accepte

Y

Verification

1st (e(Action)[-1], 0) 1st (e(Verification)[-1], 0)
2nd (& e(Verification)[x], 0) 2nd (¢ e(Action), %)

Action

Figure 3.5: In this process, Action and Verification tasks are performed it-
eratively. Note that nobody can review an action performed by themselves,

and reviewers are not allowed to contribute to following actions.

The LOOP structure also inherits the [*] operator from the MapReduce.
The absence of the operator represents workers in the current iteration. By
using [], we will consider workers from all iterations. We can restrain the
scope by replacing * with a finite set of non-positive integers. 0 represents
workers involved in the current iteration; —1 represents workers involved in

the previous iteration; etc.

3.3.3 Workflow Transformation

We already described workflows that adapt to the profile of involved individ-
uals. Nevertheless, Turkomatic [60] showed that changes can also come from
decisions made by the crowd. And due to external necessities (such as dead-
lines), process designers may need to adapt the workflow while it is being
performed by the crowd. CrowdWON models those unusual changes in the
process with a map ¢ between the places of two workflows. When a transfor-
mation is requested (by a computer task or the process administrator), every

token pointing to a place p will be now pointing to the place ¢(p). If a token

3.3. CROWDSOURCING WORKFLOW NET MODEL 81

is pointing to a task ¢, the platform will wait until it naturally arrives at a
place. Since tasks are usually performed by humans, we should not discard
their contributions without prior warning.

The description of a generic process in Turkomatic can be found in Figure
3.6. An initial task allows individuals to decide if the subsequent task must
be completed at once or needs to be split into smaller tasks. If so, they
provide a separation of the task and the Request map? task request the
workflow transformation ¢. Note that workflow (a) is now a sub-process in

workflow (b), allowing further subdivisions of the problem.

(a)

Request
Split? | —~(_)—> Big task —>Q
map? //('D \
(b) T oot L7
Split? —>O> workflow > Aggregate >©

Figure 3.6: As in Turkomatic [60], workers may request to split a task in

easier chunks.

3.3.4 Deadline Management

In many different scenarios, the production must be finished before a cer-
tain date. Deadline management is the use of any mechanism to ensure the
process is completed within a certain time frame. Previous mechanisms in
crowdsourcing were based on manual modifications of the process. All these
manual modifications can be formalized with the use of our workflow maps.

Nevertheless, CrowdWON provides a mechanism to automatize those trans-

82 CHAPTER 3. BUSINESS PROCESSES IN CROWDSOURCING

formations. Note that we already included time conditions in the selection
of workers. In order to increase the capabilities of our deadline management,

we introduce the following timed events:

e Deadline of submission. Individuals have an amount of time to

complete claimed tasks.

e Deadline of claim. Individuals have a limited amount of time to

claim a task.

The amount of time available can be fixed at the design phase of the process,
or it can be computed when a token arrives at a node. Deadlines will be
graphically represented with an extra circle, representing a clock. In gen-
eral, the platform will perform an alternative path (represented with dashed
arrows) when the deadline is met. In a more complex scenario, one may
additionally trigger a workflow transformation.

An example of deadline management is depicted in Figure 3.7. Individuals
have 8 hours to submit a contribution to the Post edition or Review task. If
they spend more than that, the platform will revoke the claim and republish
the task (the dashed arrow sends the token to the place before). The only
mandatory task is the final edition. For this process we assume there is a
overall deadline externally set (i.e. deliver translation before a specific day).
For deadlines relative to this external deadline we use the notation < X,
referring to the fact that this deadline will be met if the remaining time is
less or equal than X. For example, the review phase of Figure 3.7 will be
skipped if the process must end before 8 hours. If the process did not start

and we have less than 24 hours to complete the process, then only the final

3.4. EXAMPLES 83

Final edition

"~ .| Notify admin|} -~

Figure 3.7: Deadline management in a post edition process. Individuals in

the post edition and review have 8 hours to submit a task. Tasks may be

skipped depending on the remaining time.

edition will be performed and a notification will be sent to the administrator

of the process.

3.4 Examples

To show the potential of our model, we are going to describe two complex
crowdsourcing processes. We chose one of the first collaboration patterns
present in crowdsourcing as an example of marketplace-like tasks. Then, we
describe an industrial process that combines the power of machine learning
algorithms, in-house analysts and crowd workers.

The FIND-FIX-VERIFY is a pattern designed by Soylent [14] in order to
reduce the length of a text. It consists of three phases: In the FIND phase, 10
individuals flag sentences or paragraphs as potentially reducible. If more than
20% of individuals send the same flag, then it is considered in the following
phases; The FIX and VERIFY phases are executed for every discovered flag
in the FIND phase. First, 10 users propose an alternative text with the

84 CHAPTER 3. BUSINESS PROCESSES IN CROWDSOURCING

same meaning. Finally, 5 individuals vote for the most accurate alternative.
The original text is replaced by the most voted. We assume there is a time-
constraint in the resolution of the process. In order to ensure finishing on
time, we enforce the FIX phase to end in at most 2 days. After that period,
the number of proposed fixes might be less than 10 or even none. In the
latter, we assume that the sentence is already correct or too complex for the

available crowd. This process is described in Figure 3.8 using our model.

o]

pty fix

Figure 3.8: Crowdsourcing process used in Soylent [14]. Given a text, the
crowd find sentences that can be shortened. The group also proposes 10
shorter versions for every sentence. Consensus is reached by a simple voting

system.

Chimera is a crowdsourcing process designed by Walmart Labs [91] to
classify a large set of products. Given the size of the set, using hired analysts
to label products, or review the quality of machine learning algorithms, is
unfeasible. But the crowd can help to reduce the workload of analysts. In
Figure 3.9, one can find a graphical representation of the process. The whole
process is repeated until all the products are labeled. In the first phase, all
products are classified by a combination of machine-learning algorithms and
a set of handmade rules. If the algorithm is not sure about the label of a
product, it remains unlabeled and passes directly to the next phase. If the

algorithm recommends a label, then it is reviewed by the crowd. The total

3.4. EXAMPLES 85

number of reviewers depends on initial consensus: only three crowd workers
are involved if the two first reviewers do not agree on the correctness of the
classification. After that, some of the products will be examined in a second
review. This second phase is done by hired professional analysts: They check
the quality of the classification and create new rules for the machine-learning

algorithm if needed.

77

Label

Remove
labelled [«
T | A T 1st (€ Analyst, 0)
items st (€ Analyst, 0)
Review label

I and create rule

Figure 3.9: Process used by Chimera to label a list of products using machine
learning, crowd workers and analysts. In the model, Analyst is a fixed group

of individuals hired by the company.

86 CHAPTER 3. BUSINESS PROCESSES IN CROWDSOURCING

3.5 CrowdWON Formalization as Colored Petri
nets

Continuing the visual description of a Crowd WON process model, we propose
a formalization based on colored Petri Nets. This formalization will enable
practitioners to exactly define the behaviour of the crowdsourced process
and, in combination with other tools for colored Petri nets (such as CPN
Tools%), to monitor and simulate the execution of the process.

We will propose small additions in order to formalize human interaction,
deadline management and subprocess specification. Although those additions
seem to be rather small, they require a major refactoring of the original
model in order to maintain the level of formalization of colored Petri Nets.
Below one can find the formal definition of a CrowdWON process model.
An introduction to colored Petri nets can be found in Section 2.2.1.3, and
the concepts present in this definition will be introduced in the rest of this

Chapter.

Definition 3.3. A Crowd WON process model is a colored Petri Net (>, P,
T, A C,G, E, I, WS, D) such that

e > contains the Workercolor and TimedFEvents colors.

o WS is a Worker Selection function, mapping a subset of the tran-
sitions T to a guard expression defined, at least, over the color type

Workercolor, such that every transition in the domain of WS has ex-

Shttp://www.cpntools.org

3.5. CROWDWON FORMALIZATION AS COLORED PETRI NETS 87

ID type
Worker ID String

Passed Tasks | Integer

Failed Tasks | Integer

Pending Tasks | Integer

Table 3.3: Definition of Workercolor, a color type modelling the attributes

associated to a Worker in a Crowdsourcing Platform.

actly one incoming and one outgoing edge”.

e D is a Deadline function, mapping some places and transitions to a

guard expression defined over the color type TimedFEvents.

3.5.1 Human Tasks and Worker management

Every transition in a CrowdWON process is expected to perform some mod-
ifications on the data associated to the involved tokens. In general, we will
assume that these transformations will be performed by humans in a crowd-

sourcing platform, although some tasks may be automatized by a machine.

Definition 3.4. Individuals in a crowdsourcing platform, or workers, will be
modeled by a token. Such token will be enriched with data following the color
type Workercolor, as specified in Table 3.3.

"This implies that we will not allow human tasks that uses information from different

tokens. If needed, a normal transition could be used to merge multiple tokens.

88 CHAPTER 3. BUSINESS PROCESSES IN CROWDSOURCING

Popular crowdsourcing platforms allow defining restrictions on which indi-
viduals can claim the task. Those constraints are defined through the worker
requirement, which is a guard expression over the Workercolor (see Table
3.3). Notice that Workercolor is the most basic profile of an individual that
we may ask the platform to implement. The combination of Passed Tasks®,
Failed Tasks® and Pending Tasks'® provides a rough approximation to the
performance of the individual in the platform. Nevertheless, the crowdsourc-
ing platform may include also other properties such as test marks, knowledge

about a topic, age, gender or geo-location.

Definition 3.5. Let us call worker requirement to a guard expression
mapping the Workercolor to a Boolean value. An individual satisfying the

worker requirement would be eligible to perform the human task.

Figure 3.10 depicts the visual representation of crowdsourced tasks in a
CrowdWON process model, in which a task is modeled with a transition
in the underlying Petri Net. The only difference from any other regular
transitions is that a worker requirement ws is linked to the transition through
the Worker Selection function.

The Worker Selection function adds an extra twist to the semantics of
colored Petri Nets. Following the notation of Figure 3.10, the color of a token
at p; must satisfy the guard function ¢ in order to enable the transition.

Nevertheless, the Worker Selection function forces the platform to find a

8Number of tasks finished by the worker, which solution was accepted by the requester

or the crowd.
9Number of tasks unfinished or finished by the worker, but with a solution not accepted

by the requester or the crowd.
10Gimply the number of tasks yet to be evaluated by the requester or crowd.

3.5. CROWDWON FORMALIZATION AS COLORED PETRI NETS 89

ws

C

CROWD TASK

Figure 3.10: Tasks performed by the crowd are modeled by transitions in a
colored Petri Net. Functions exp; and exp, are two arc expressions, and g is
a guard function as in colored Petri Nets. Function ws is a worker selection
function. Figure 3.11 depicts the behaviour of such construct in terms of a

colored Petri net.

human satisfying the expression ws in order to fire the transition. Besides,
any human needs some time to accomplish the modelled tasks and, hence,
the platform should not allow any other individual to start the task unless
the worker rejects the task.

Figure 3.11 depicts the colored Petri Net that models the aforementioned
semantics. One may think that, prior to the execution of the process, any hu-
man task as in Figure 3.10 would be replaced by this colored Petri Net. Place
pw is a shared place between all crowd tasks, with color type Workercolor.
At initialization, each worker has a token representing them in py,. Notice
that now the Assign transition is enabled (and fired) when a token satisfies
the guard function g and a worker token satisfies the guard function ws. If
Assign is fired, the platform consumes the worker token and the human task
may start. Notice that the task cannot be assigned to any other individual

unless Reject is fired. The Reject transition creates again the worker token in

90 CHAPTER 3. BUSINESS PROCESSES IN CROWDSOURCING

CROWD TASK

Reject

Figure 3.11: Any transition labeled as a crowd task will be replaced with this
subprocess. Places 1 and 2 are the two points of connection of this subprocess

with the rest of the process.

pw so she is again available for another crowd task. When the task finished,
the token is modified with the information provided by the human worker.
And, finally, the worker token is released, allowing her to claim another task.

During the execution of a human task, some modifications on the data as-
sociated to the worker will be requested. The following expressions formalize

this transformation the worker token.

Definition 3.6. Given an instance of the Workercolor < ID = id, Passed =

ny, Failed = ny, Pending = n; >, we define

o The worker releases expression as the instance < I D = id, Passed =

ny, Failed =ny, Pending =ny +1 >.

e The worker rejects expression as the instance < ID = id, Passed =

3.5. CROWDWON FORMALIZATION AS COLORED PETRI NETS 91
ny, Failed =ny +1, Pending = n; >.

e The requester accepts expression as the instance < ID = id, Passed =

n, + 1, Failed = ny, Pending =n; — 1 >.

e The requester rejects expression as the instance < I D = id, Passed =

ny, Failed =ny + 1, Pending =ny, — 1 >.

The last two expressions are hidden from Figure 3.11, as they are simply
defined as transitions from and to place py. Notice that we leave open the
possibility of adding extra behavior to pool of worker py, as the platform
may add extra transitions and places for holding back suspicious individuals
(e.g. if an individual has more than 5 pending tasks it might be worth to
temporarily remove her token from py).

The color types of pp,. and pp,s; are an extension of the color types de-
fined for p; and p, respectively. We will ask these color types to also hold the
information related to the worker involved in performing the crowdsourced
task. Apart from the semantic explained in Figure 3.11, we will also take for
granted that the color types of all the places are closed with respect to the

worker history of the process model.

Definition 3.7. The closed version of a color type o € > in a Crowd WON

process model N s a color type o such that
e 0 15 included in .

e [For each human task in N with identifier 1D, the color type & has the

following properties of type ’Sequence of Workercolor’:

92 CHAPTER 3. BUSINESS PROCESSES IN CROWDSOURCING

— ID_Claimed for storing workers who claimed the task ID at some

point.

— ID_Rejected for storing workers who participated in the task ID,
but it was not finished or the requester flagged the worker contri-

bution as unacceptable.

— ID_Finished for storing workers who successfully finished the task
ID.

The inclusion of these closed colors are the foundation for defining the
functions accepted, ended and revoked as defined in Section 3.3.1. This func-
tions allow the process designer to design worker requirements which also

consider previous contribution of the worker in the process.

Definition 3.8. An extended worker requirement is an ordered list of

elements (wr, c) such that
e Function wr is a worker requirement.
e c is a condition for discarding the requirements set by wr.

Extended worker requirements can be used instead of simple worker re-
quirements in order to model worker requirements that evolve over time.
Whenever used, the first worker requirement wr in the list should be con-
sidered until the condition ¢ is met. In that case, the first element of the
list is discarded and the next element is considered as the new worker re-
quirement. In case of of an empty list, all workers are eligible for this task.
Conditions defined by ¢ will be typically defined in terms of time, which will

be formalized in the next subsection.

3.5. CROWDWON FORMALIZATION AS COLORED PETRI NETS 93

~

C

CROWD TASK .-

Figure 3.12: Example of a deadline of claim d; and deadline of submission

do. If deadline d; is met, the execution continues in place p,. For deadline
dy to be considered, a worker must have claimed the task but not finished
it yet. If the deadline is met, the platform reassigns the task to another
worker. Figure 3.13 depicts the behaviour of such construct in terms of a

colored Petri net.

3.5.2 Deadline Management

As already stated in 3.3.4, CrowdWON provides a mechanism to automatize
changes in the execution flow based on timed events. In particular, we include

basic constructs for defining the following deadlines:

e Deadline of submission. Individuals have an amount of time to

complete claimed tasks.
e Deadline of claim. The amount of time that a task is claimable.

Figure 3.12 depicts a task with both types of deadlines, and Figure 3.13
depicts their default behaviour on the colored Petri net formalization. Notice
that deadlines of submission are those deadlines defined over transitions, and

deadlines of claim are defined over places.

94 CHAPTER 3. BUSINESS PROCESSES IN CROWDSOURCING

CROWD TASK

Reject

Figure 3.13: Behaviour of deadlines d; and ds in the task execution. Deadline
d; may completely skip the task, but only if it is not claimed by anybody.
Deadline dy on the other hand, controls how much time is allocated per

worker to accomplish the task.

3.5. CROWDWON FORMALIZATION AS COLORED PETRI NETS 95

In order to formalize time information in the process, we will suppose
that there is a shared token that is connected to all transition in the model,
which contains information related to the current time of the system. We
will denote by CurrentTime to the value of such token. The platform will
need to update this value regularly (for instance, every second). Besides, we
will also assume that all color types have an extra TimeLastModified such
that will be updated with a copy of CurrentTime every time the token is
transformed by a transition. We will deliberately skip all this formalization

in our figures in order to increase understandability.

Definition 3.9. The TimedFEvents color type refers to the combination of

the CurrentTime and TimeLastModified properties.

By combining both values, one could define, for example, conditions over
the time spent in performing a task. Notice that the TimedEvents color
type could be enriched with other properties external to the execution of the
process. For instance, one could also consider to include formal deadlines to
customers.

In general, the platform will treat deadlines as those defined in Figures
3.12 and 3.13. Nevertheless, as we have the information about time hard-
coded in all tokens, we could devise other possible behaviours. For instance,
instead of skipping the task if a deadline of submission is met, one may
execute an alternate path. Nevertheless, this behaviour should be hard-
encoded into the process model, with the appropriated use of timed guards

guiding the execution of the alternate path.

96 CHAPTER 3. BUSINESS PROCESSES IN CROWDSOURCING

3.5.3 Collaborative Processes

Collaboration in CrowdWON is defined with the MapReduce structure, that

is formalized as follows:

Definition 3.10. A MapReduce structure in a CrowdWON process N is

a tuple consisting of

e a transition t in the original process N such that it only has one input

and one output place,

e another CrowdWON process N' such that the underlying Petri Net is a

workflow net (i.e. there exist a a unique start place, and a unique end

place),

e a generator, which a strategy for initialization of the subprocess N' as
well as governing the creation and coordination of multiple instances of
the subprocess N'. Some examples of generators may be found in Table

3.1.

e an aggregation mechanism, which is an strategy or method for combin-
ing the multiple results obtained through the diverse instances of the
subprocess N' created by the generator. The most basic strategy is sim-
ply creating an unordered list with all the token information, but other

strategies can be found in Table 3.2.

Sub-process definition is already contemplated in colored Petri Nets, as
a transition may be replaced by a process defined in a different colored Petri

Net. Some places are labelled with special Input/Output labels, specifying

3.5. CROWDWON FORMALIZATION AS COLORED PETRI NETS 97

the joint point with the places of the transition in the original process. This
is usually done for improving understandability of models, but does not add
new expressive power. Everything explained in this subsection could have
been done in design time, but these additions make easier the work of the
process designer.

In the rest, we will describe 4 usual collaborative processes. These ex-
amples will show how we can define a generator strategy as a modification
on top of the original CrowdWON process N. Prior to start the execution
of the CrowdWON process, the platform will perform this transformation.
Contrary to the usual subprocess replacement, the choice done in the gen-
erator and aggregation mechanism may add extra places and transitions to
the process model. For instance, a Create N copies generator will create
exactly N copies of the subprocess. Notice that the aggregation mechanism
could simply formalized with a final transition that processes a list of tokens
and, hence, we will focus on explaining the transformations lead by the token
generator.

We have decided to use visual templates for defining these common col-
laborative patterns, as we believe this provides a good balance between for-
malization and understandability. In the following figures, two places with
labels s; and s, connected with a dashed arrow, will denote a copy of the
original subprocess N’. If multiple copies of the subprocess N’ appears on
the same figure, we will use superscripts to differentiate them. Places p; and

po are the entry and exit points of the MapReduce structure.

98 CHAPTER 3. BUSINESS PROCESSES IN CROWDSOURCING

Figure 3.14: This process model is a template for creating N copies of the
process model N’ connected to places p; and py. Notice that the number N
is fixed in design time and, hence, this transformation is clearly defined in

execution time.

Create N copies of the token This collaborative process is the most used
strategy in crowdsourced projects. Asking several individuals to perform the
same task usually leads, in average, to the right solution. In this simple
case, we are asking the process to substitute the MapReduce structure with
N copies of the subprocess N’ as depicted in Figure 3.14. Notice that N
is fixed in design time, so this notation is a simplification for the process
designer.

Some crowdsourced projects tweaked the Create N copies of the token
for enabling the platform to create more copies in case there is not enough
consensus between human workers. For modelling such behavior, a combina-

tion of the Create N copies of the token and the Iterative process (explained

3.5. CROWDWON FORMALIZATION AS COLORED PETRI NETS 99

O [— @ O—|—®

Figure 3.15: Proposed modification for modelling infinite subprocesses. Ev-
ery time a token is created in sy, the token in p; is not consumed and, hence,

the process could have always a token available at s;.

below) is needed.

Infinite subprocess In this case, we want the process to continuously
accepts new entries to the subprocess, a collaborative process interesting for
governing crowdsourced contests (as the one depicted in Figure 3.4).

Figure 3.15 depicts the transformation requests to the process model.
Each time a token is generated in sq, the token in p; is not consumed, allowing
the creation of more tokens in s;. This transformation could be combined
with a deadline, consuming the token at p; at some point and, hence, ending
the execution of the subprocess. For instance, this could be used to open a

combination during a fixed period of time.

For each In several cases, we will need to process information contained in
a list. Instead of asking individuals to process the whole list, crowdsourced
processes typically reduce the complexity to process elements of the list indi-
vidually. For doing that, we will ask the subprocess to create as many tokens
as elements in the list, and then execute the subprocess for each of them

independently.

100 CHAPTER 3. BUSINESS PROCESSES IN CROWDSOURCING

Figure 3.16 depicts the proposed modification to the process model. We
included to intermediate places e; and e5 that are used for storing information
as it is computed. In place e;, the complete list is initially stored and one
element is removed from the list every time it is consumed by the transition
prior to s;. This element is stored in a new token in place s;, that will
continue the execution of the subprocess N’. A variable pending is also
updated in the token of place e;, indicating the number of elements that
have been created in s;. When the list associated to place e; is empty, the
token will move to e;. Now, one token will be consumed to s, to be included
in the list of token ey. Notice that every time that a processed element is
included in the list, pending will be modified in order to let the process know
that there is still some token in the subprocess N’ pending to be processed.
Finally, when all information is processed, pending should be zero and the
process may continue.

Figure 3.17 depicts the translation to colored Petri nets of the process
graphically described in Figure 3.8. This process combines three Create N
copies of the token with a For Fach collaboration processes for finding and
fixing mistakes in a text. Notice that we expanded the transformations re-
quired for these two collaborative processes, but we excluded the worker and
deadline management constraints. The figure shows the net modeled using
the CPN Tools, which allowed us to simulate the execution of the process
and validate that the transformation proposed in Figure 3.16 implements the

desired behavior.

3.5. CROWDWON FORMALIZATION AS COLORED PETRI NETS 101

list is not empty

O~ ~a=|—o-o—|

list is empty pending is zero

Figure 3.16: Proposed process for processing elements in a list independently.
A list of elements is hold in place e;, and later split in several tokens in si.
Once the list is empty, it moves to place e; and recollects the processed

elements stored in s,.

Iterative processes Asin the MapReduce Structure, the LOOP Structure
contains a sub-process that will be executed as many times as needed until
an exit condition is satisfied. Figure 3.18 depicts the transformation needed
to model this behaviour in colored Petri Nets. The color in place ¢ starts
with a counter variable stating the number of times the subprocess has been
executed, as well as a list containing all token that goes from ss to s;. All

this information could be used to define the exit condition.

Workflow Transformation

Unusual changes in the process continue to be formalized as a map between

two process models, but we need to ask to clearly define modifications on

CHAPTER 3. BUSINESS PROCESSES IN CROWDSOURCING

102

Figure 3.17: Translation to colored Petri nets of the process used by Soylent and specified with Crowd WON
in Figure 3.8. Worker and Deadline management transformation have not been performed for ensuring

understandability.

3.5. CROWDWON FORMALIZATION AS COLORED PETRI NETS 103

< count =0 >

< count + + >

7777777777777777 —>

not iterate?

iterate?

Figure 3.18: Proposed process for modelling iterative processes. A token in
place c is created for counting the number of times the subprocess is executed,

as well as storing information from previous executions.

data binded to tokens:

Definition 3.11. A workflow transformation is a map ¢ between the
places of two CrowdWON processes. Notice that the color type of the place p
and ¢(p) may not be compatible, and, hence, some modifications on the color
of the token are needed. We will denote the expression that will define the

necessary modifications by ¢'(p).

When a transformation is requested (by a computer task or the process
administrator), every token pointing to a place p will be now pointing to the
place ¢(p). In the case of a token assigned to a place that was not originally
in the description of the CrowdWON process model (for instance, a place

added for modelling that a worker claimed a task but did not finish it yet),

104 CHAPTER 3. BUSINESS PROCESSES IN CROWDSOURCING

the platform should wait until the token arrives to a place in the domain of

®.

3.6 Implementation of CrowdWON

A collaboration between the research team and the globalization team of
CA Technologies lead to a Proof of Concept of an industrial Crowdsourcing
platform. Besides, one translator provider reviewed the development of the
technology, providing their vision on how translation should be done through
crowdsourcing, and evaluating the usefulness of the tool for their company.
In this Proof of Concept, the CrowdWON language was partially imple-
mented in order to let requesters define their own processes and monitor its
execution. We did not include a visual designer for CrowdWON processes
and, hence, requesters had to manually modify a configuration file for defin-
ing their processes. This configuration file was a BPMN file that includes
specific elements tailored to support the data type definitions, the MapRe-
duce structure and deadline assurance mechanisms specifics to CrowdWON.
Figure 3.19 depicts the translation process that showcased the Proof of
Concept in which CrowdWON was implemented. The translation process
starts with the top process model which, after asking the requester the size of
the translation tasks and the target languages, calls the middle process model
for each target language. We used the sub-process notation for representing
the MapReduce structures. Then, an automated script divides the original
text in several chunks as accorded by the requester. These chunks are then

translated without any verification step. A screenshot of such translation

105

3.6. IMPLEMENTATION OF CROWDWON

‘[epow Wo330q 9y} SUIMO[[O] POINIOXD SIR JRY]) SYUNYD [RIIAIS
UL POPIAIP ST JX9) [RUISLIO ST, "9SeNIUR] DR I0] [opowl $so001d o[pprut oy} S[[eo ‘sodengur] 1931e) o) 308
0} I9)senbar o)) Sunse 1oy ‘YoIym [opour sseoord doj oYy Y sire)s sseooxd uoryeisuery oy, “pojusll

-ordwr sem NOMPMOID) TPIYM Ul 3deouo)) Jo JooIJ o) Surmp pajnooxe sseooid uorje[suel], :g1'¢ oINS

UDIB|SUBI]

K1

azI5
yunya Ag peay apiug

syuny2 abiay

=

7 HUNUD Yyaes 104

UOEISUR} g
peCjUMO(

=

sabendug _ g _
& jafie) suyaq & BZIE HUNYD BUYST | g 3l peodn
L @ | @
=

abenbue) yoea 104

106 CHAPTER 3. BUSINESS PROCESSES IN CROWDSOURCING

activity is included in Figure 3.21. One of the benefits of using BPMN is that
there are several process modelers in the market. Nevertheless, the specifics
of CrowdWON are hindered in the underlying XML specification. We are
aware that this approach is not suitable for non-technical individuals, but it
was sufficient for the scope of this Proof of Concept. Figure 3.20 depicts the
underlying procedure for executing one task in a crowdsourcing platform and
highlights the benefit of having a modelling solution tailored to this scenario.

Although not having a visual editor, we include a flatten version of the
process as a mechanism for visualizing the current status of its execution.
Figure 3.23 depicts the flatten visualization of the execution of a translation
process. Nested boxes represent subprocesses triggered by a MapReduce
structure, whilst parallel boxes shows the concurrency of both subprocesses.
Activities that did not start are not depicted in the flatten version of the
process model, as a workflow transformation may change the course of the
process. In fact, the third activity of the process, Define target languages,
decides how many subprocesses will be executed next. In the example, the
requester choose Spanish (Spain) and Spanish (Mezico) and, hence, two con-
current subprocesses started afterwards.

Figure 3.22 depicts the final usage and relation of both graphical version
of CrowdWON and its formalization using colored Petri Nets. The high-
level, graphical version of CrowdWON is used as the interface with the end
user. The graphical representation is translated by the platform to a formal
process model based on colored Petri nets, which governs the execution of the
crowdsourced process. Notice that the connection between the two versions

is bilateral, as information contained in the tokens of the low-level version

107

“JUOWUSISSR
yse) puR JuUoWOFRURW dul[pesp ‘uLIojje[d SUDINOSPMOID S} [IIM UOIJRIITUNWIMOD Surpnpul ‘uriojje(d o)

Aq peSeurwl ST yse) PodInospmord v moy urerdxe jer) ssooord SurAprepun oyy jo osdwii[s y :(0g¢ 9Insig

o

3.6. IMPLEMENTATION OF CROWDWON

CHAPTER 3. BUSINESS PROCESSES IN CROWDSOURCING

108

Translated phrases
Translation
100%
en_en to es_mx

Togge RTL

s_mx)

With Ajman experienci lue skes, you can enjoy its atiractions year-found

skies, you can enjoy fts attractions yearround. </p> 7 7 With Ajman experiencing amost constant

Observations

iche=/strong, the waterfront boulevard, which is a great place for picnics and barbecues and o enjoy spectacular sunsets.

Figure 3.21: Screenshot of the translation task in the process of Figure 3.19.

3.6. IMPLEMENTATION OF CROWDWON 109

a5

l) High-level

N CrowdWON

//f \\ Dualistic Petri Nets + Workflow nets

/
/ A\

c#ﬁﬁdﬁ&’éh Crowdsourcing
Colored Petri Nets platform

Figure 3.22: Diagram describing the relation between the high-level language

(as in Section 3.3) and its low-level version (as in Section 3.5).

can be translated to the high-level version in order to give feedback to the
end-user about the execution of the process.

The overall evaluation of CrowdWON by both the translation provider
and the globalization department was positive, with a special interest in the
definition of worker requirements. In particular, they acknowledged the value
of the translation process later defined in Figure 5.2 and that this process

was not possible to execute within current crowdsourcing platforms as:

e pre-assignment of tasks to particular individuals has been overlooked

but poses several advantages as stated in Chapter 5.

e there is a mechanism for relaxing the process and worker requirements

in order to satisfy deadlines.

For deadline management, we had to be less generic than in the original defi-
nition of CrowdWON. The original level of generalization was perceived as a

bit confusing by newcomers to the language. In particular, we only allowed to

110 CHAPTER 3. BUSINESS PROCESSES IN CROWDSOURCING

Fast One Phase Pattern

Q E=n Q
[] E=n

Figure 3.23: Flatten representation of a translation process for visualizing
the execution of the process. Finished tasks are depicted with a green label,

whilst on progress or failed activities have an orange label.

3.7. DISCUSSION 111

define two types of deadlines: skipping a sequence of tasks if not enough time
to execute the whole process; and the automatic resignation of crowdsourced
tasks if the worker does not reply on time. Besides, we were not able to
assess the utility of the workflow transformations as the translator provider
was not interested in having radical changes on their translation processes: a
mixture of deadline management and adaptive worker requirements satisfies

their current needs.

3.7 Discussion

The research on crowdsourcing has been mostly focused on study individual
tasks properties, and the application of crowdsourcing to the resolution of
real complex problems has been limited to a few examples. However, we
have observed a real industrial interest in crowdsourcing for solving complex
real world processes. To cover this industrial need, the design of tasks takes
a global perspective: deadline management does not only affect particular
tasks, but the whole process; Individuals can participate in multiple tasks
of the same process, but it may be need to limit those contributions, etc.
CrowdWON offers to the industry a graphical language able to represent a
possible workflow for complex industrial processes.

As future work, we want to further investigate the best procedure to de-
scribe reward mechanisms in our model. At the moment, it would be easy to
implement usual financial incentives with a combination of task parameters,
computer-executed tasks and the usage of the ended function, but we still

need to study how our workflow transformations can affect rewards.

112 CHAPTER 3. BUSINESS PROCESSES IN CROWDSOURCING

It still remains to study if our modelling language can also help in the
design of mechanisms to measure the skill acquisition of crowd workers. Our
new contribution-based policy in the selection of workers allows for commu-
nication between individuals contributing to the process. Therefore, it is
possible to give feedback to individuals, so they can improve their contri-
bution. Moreover, this also sets a first step to group-based crowdsourcing.
Groups could claim complex tasks, collaboratively create sub-processes to
solve the problem and assign sub-tasks to their colleagues or the crowd-if
the team does not have expertise in an area.

Another interesting research area is to combine a granulated classification
of crowd tasks and process querying in order to recommend similar processes.
In combination with a simulation tool, a practitioner may then what if sce-
narios by estimating changes in quality or mean time-to-completion if the
proposed modification is performed. For instance, the FIND-FIX-VERIFY
pattern has shown more potential in producing higher quality outcomes, and
other processes may benefit from such boost on quality by replacing partic-

ular activities of their processes by this pattern.

PLATFORM

z

(1l
‘,.,‘-‘7'
&

2

%’é
%
)
)

CHAPTER PROCESSES
4 Gt% Reducing Event Variability
=

for Improving Process

Discovery

During the last Chapter, we described a graphical modelling language for
crowdsourced processes. Having those processes is fundamental for support-
ing optimization and monitoring of the task resolution. Unfortunately, it is
often that processes are not detailed enough or defined prior to its resolu-
tion. In those cases, a human supervisor needs to analyze and understand
the factual work done in each step of the process.

In this chapter, we work towards automatizing the laborious task of mon-
itoring non-defined processes. Assuming that all the steps recorded by the
platform have some textual description of the work done, we propose to use
novel comparison tools for generating groups of similar activities and, hence,
enabling later analytics and insights, such as a process discovery for under-

standing, monitoring, or formalize the underlying crowd-process.

113

114 CHAPTER 4. REDUCING EVENT VARIABILITY

4.1 Introduction

As Microsoft recently highlighted!, the industry is moving toward bots that
automatically answers simple orders or questions. This recent shift towards
conversational bots is primarily thanks to recent developments on Natural
Language Processing, which made possible to analyze messages, answer ap-
propriately and, in some simple and predesigned cases, automatize an action.
Nevertheless, human experts are still needed to validate complex decisions.
But an essential piece is missing for a deeper implementation of conversa-
tional bots on the industry: a lack of monitoring tools for conversations.

The lack of monitoring tools for conversations is not only hindering the
implementation of fruitful, bot-based conversations, but several business-to-
business (or business-to-consumer) services are still provided as a human-to-
human conversation that could benefit from such tools. For instance it is
known that improving the efficiency of customer support channel lead to low
customer churn rates and, hence, to run a more efficient business.

Process modelling has the potential for helping the industry move towards
conversational bots, as data-aware process models are a good candidate for
modelling conversations in which events represent messages interchanged.
Besides, business process modelling languages would be a good visualization
for human experts to monitor behaviour of the bot and, eventually, validate
automatic actions based on the flow of a conversation in the process model.

One of the most frequent assumptions in the literature of business pro-

http://blogs.microsoft.com/blog/2016/08/03/progress—in-the-shift-to-

conversational-computing/

4.2. RELATED WORK 115

cess modelling and process mining is that events are well defined (i.e. the
process execution cannot execute events outside a fixed list of events) and
all variability of an activity is abstracted as attributes of the event, that do
not usually affect the discovery of the process. Nevertheless, this assumption
is no longer acceptable on the aforementioned context, in which events are
manually defined by humans and, hence, variability is expected.

In this chapter, we investigate the problem of event name variability for
process discovery and propose an approach to resolve this problem thorough
event log pre-processing. In particular, we introduce an approach for cluster-
ing event names based on novel similarity metrics between textual data [75]
and, afterwards, create a new refined log by projecting events to the discov-
ered clusters. In Section 4.3, we describe the problem and a general overview
of a solution. Then, in Section 4.4, we explain the details of our solution
which is later validated in a simple use case and in an industrial scenario

during Section 4.5.

4.2 Related work

Different approaches exist in the literature for the problem of discovery and
management of process models with a large set of supported activities. For
instance, the Fuzzy Miner [102] allows practitioners to choose a level of ab-
straction for the discovered process model, and the algorithm automatically
merges different events into a single, and more abstract, cluster of events.
Similar approaches [15,39,40,94] find groups of correlated events and substi-

tute them for the discovery of a more abstract process model. Nevertheless,

116 CHAPTER 4. REDUCING EVENT VARIABILITY

these approaches are either based on the directly-follows relation [39,102],
a temporal correlation [40] or satisfying a particular known pattern [94], or
initially unknown patterns [15]. Our approach is not based on the fact that
events may have a sequential relation between them or follow a predefined
pattern, but that the event name similarity may indicate how similar are two
events.

Bag-of-words techniques, i.e. using the frequency of each word in a doc-
ument, have been largely used for comparing two texts and discover a list of
topics in a set of documents. Nevertheless, we have not found any attempt
on using these techniques for measuring the similarity of two activities with
the purpose of simplifying the complexity of an event log. In fact, the most
similar approach we have found in the literature is [10], in which authors
consider activity names, and their descriptions, to map events to activities

of a known process model.

4.3 Log pre-processing via Event Variability
Reduction

In this section, we introduce a new event log pre-processing based on dis-
covering abstract events that compromises a plurality of the original events.
Its main objective is to decrease the ratio of distinct events per trace and
increase the support of events (i.e. the number of traces in which an event
appears). Although performing such pre-processing will reduce the informa-
tion from individual events, it will enable practitioners to compare different

traces and, hence, perform exploratory analysis such as trace clustering and

4.3. LOG PRE-PROCESSING VIA EVENT VARIABILITY REDUCTION117

Bvent 1 [
Bvez [—
Bvents [

Bventd [
Bvents [
N —

Event7 [|

Bvents []—

Bvento [|—>[1] /
Event 10 [[———>[]

Original events - - - > First reduction - - > Second reduction
| |
A v v
Original log Refined log Refined log

Figure 4.1: Graphical representation of two executions of an event variability
reduction method over 10 fictional events. The color of the box depicts the

final abstract event.

process discovery. In Section 4.5, we will see an example of a datset that
would have been impossible to explore without the use of the Event Variabil-

ity Reduction technique explained in this Chapter.

Definition 4.1. Given a log L, a set of events E and a partition of the event

set {E;}ier, then the Event Variability Reduction is the event log
L' = {<’i0,i1,...,in> / e; € Eij, v<€0,€1,...,6n> € L}

Generally speaking, the Event Variability Reduction replaces all events
in the log L by the unique identifier of the partition in which they belong.
Figure 4.1 depicts a graphical example of the application of Event Variability
Reduction techniques to an Event log L, which is compromised by 10 distinct

events. A first run of the Event Variability Reduction technique reduces the

118 CHAPTER 4. REDUCING EVENT VARIABILITY

number of distinct events to 6, and generated a refined log by projecting
the original events to the new event space as specified by the arrows. In this
example, the refined log will start with two executions of an abstract activity
1" instead of the original sequence of Events 1 and 2. A second run of the
Event Variability Reduction method simplifies even more the event space to
only 2 distinct events.

Notice that the Event Variability Reduction is different from other ap-
proaches for reducing granularity of events already considered in the litera-
ture (see, for instance, [94]). Contrary to these approaches in which the pres-
ence of several events in the same trace indicate the execution of a higher-level
action, we are removing information from the event space in order to enable
the comparison of events that were initially different. For instance, Events 1
and 2 of Figure 4.1 were completely different in the Original Log, but they
are considered the same event after the first run of the Event Variability
Reduction.

Figure 4.2 depicts an example of how the Event Variability Reduction
can be stacked with other BPM tools. In this particular example, which
utilizes an event log later used in the evaluation, a process discovery technique
is used in combination with the Event Variability Reduction. The high-
variability of the original log produced a process model that made impossible
understandability of the process model. The evaluation done in Section 4.5
is primarily based on the flow described in this Figure.

Figure 4.3 depicts a more ambitious example with the aim of comparing
the behaviour of two users in a digital platform. The activities they perform

in the platform are simplified using an Fvent Variability Reduction technique,

4.3. LOG PRE-PROCESSING VIA EVENT VARIABILITY REDUCTION119

Original Log Event Variability Reduction

A4

Refined Log

Process Discovery Process Discovery

l l

Figure 4.2: Example of how the event variability reduction can be stacked in

the usual BPM toolchain as an event log pre-processing tool.

User A’s activities , . User B’s activities
Users comparison
Event Variability Reduction Event Variability Reduction
Refined Log Refined Log

Process Model Process Model

,,,,,,,,,,, | Process Model Comparison [|| - _________

e

Figure 4.3: Diagram summarizing how 3 of the contributions of this thesis

can be stacked for comparing the behaviour of two users in a digital platform.

120 CHAPTER 4. REDUCING EVENT VARIABILITY

that will be used for discovering a set of process models that summarize the
behaviour of the users. The two discovered process models can be fetched
into a Process Model Comparison technique for measuring a similarity score
between the underlying users. The technique later explained in Chapter 5
may be used for this objective. As we are focusing on modelling the behavior
specific to a user, we may want to retrieve a more precise process model. For
instance, one could use the process unrolling technique later explained in
Chapter 6.

The utility of the Event Variability Reduction is based on the quality of
the event set partition that we use. In general, it is expected that if two
events e; and ey are projected into the same event e, then both events have a
property in common that do not necessarily share with events not projected
to e. In the rest of this chapter, one can assume that event names are
messages interchanged by a customer and a conversational bot, and, hence,

we will assume that the event name is good representative of the action taken.

4.4 Approach

In this section, we propose a particular approach for realizing the Event
Variability Reduction. Assuming that the name of the events is a good
representative of the action taken, we propose to group together those events
that have event names with a similar meaning. We will use a novel technique,
summarized in Section 4.4.1, for measuring the similarity of two event names.
Contrary to traditional bag of words techniques, such similarity compares the

semantics of words and sentences.

4.4. APPROACH 121

Event 1 Event 2
Word similarity

Apply [] [1 Applied

DB-SCAN |:|>%<|:| K-means
to 1 L1

to

veetors [—

Embeddings Embeddings

Event similarity
Event similarity l Event similarity

Event similarity Event similarity

Event similarity — 7 Event clustering <—— Event similarity

Event set partition

Figure 4.4: Overview of the Event Variability Reduction based on word em-
beddings. A clustering technique utilizes an embedding-based text similarity

for creating groups of events.

Figure 4.4 summarizes our methodology. First, we retrieve all event
names from the log and we compute the embeddings of all the words con-
tained in the event name, as explained in Section 4.4.1. These word embed-
dings allow us to compute a word similarity, that then is later combined for
measuring a similarity metric between event names such that events with a
similar semantic are very similar according to this metric. Finally, we con-
sider a clustering technique for discovering group of events and we use this as

the event set partition of the embedding-based Event Variability Reduction.

122 CHAPTER 4. REDUCING EVENT VARIABILITY

We expect this approach to work on the conversational bot scenario be-
cause all the information of the action taken is encoded in the messages in-
terchanged between the customer and the conversational bot. Nevertheless,
this approach can be used in other scenarios. For instance, if the event name
does not hold enough information but a textual description for each event is

provided, then we can use the same approach with the textual description.

4.4.1 Word Embeddings

An embedding is a map that generates representations of objects difficult
to analyze into a well-known space, such as a vector space, allowing further
analysis. Notice the resemblance of embedding to hash functions. The later
are used to create a representation that is useful for deciding if two complex
object are equal with some uncertainty, although unlikely. On the contrary,
embeddings have extra properties that allows for studying the original object
based on its representation.

Some advances on embeddings for natural language processing have been
possible thanks to the recent developments on neural networks. For instance,
Word2Vec [75] is a word embedding such that the vector representation of
words with similar meaning are, indeed, close in their vector space. The
major benefit of using Word2Vec is that the training method is unsuper-
vised: No need for building complex taxonomies, we just need to feed lots of
real sentences and the word embedding learns the meaning of the word by
comparing adjacent words. Moreover, performance with respect to other tra-
ditional and unsupervised count-based techniques [11] positions Word2Vec as

the perfect candidate for measuring similarity of textual data.

4.4. APPROACH 123

Input Hidden layer Context

w(t-2)

w(t-1)

o
N’ w(t+1)

w(t+2)

Figure 4.5: Example of the Skip-Gram architecture of the neural network
used to train the Word2Vec model [75]. The neural network is designed to
predict the 2-window context of the word w(t). I.e. given the word w(t), it
computes the embedding e(w(t)) that can best approximate the two previous,

and two future, words found in training examples.

124 CHAPTER 4. REDUCING EVENT VARIABILITY

Technically, the Word2Vec model consists of a fully connected feedforward
neural network with 1 word as input, 1 hidden layer and as many word
outputs as the size of the context we are considering. Figure 4.5 depicts an
example of a neural network used to compute the Word2Vec embedding. The
objective of such neural network is to use a word w for predicting its most
probable context, i.e. words that are next to w in any sentence.

To train such a neural network, we split the example sentences on buck-
ets of words. For instance, The quick brown fox jumps over the lazy
dog would be splitted in buckets The quick (brown) fox jumps?, quick
brown (fox) jumps over, brown fox (jumps) over the, and fox jumps
(over) the lazy, jumps over (the) lazy dog. Once the neural network
is trained, the embedding vector of a word w is the values of the hidden
layer once the neural network is feed with word w. In [11], authors tested
different sizes for the hidden layer over tests related to semantic similarity,
synonyms, concept classification, and then published?® their results alongside
the embedding to be reused for research purposes. Our results are based on
this pre-trained model.

Albeit the simplicity of such definition, one must realize that first we need
to do find a one-to-one mapping from words to numerical vectors, so we can
use this numerical vector as input for the feed-forward neural network. The
simplest choice is to use a one-hot encoder, i.e. the i-th word in the dictionary
is represented by a zero vector with an 1 in the i-th position. By using the

one-hot-encoder, the size of words in the neural network are as big as the

2Words inside parenthesis depict the input word of Figure 4.5, which is used to predict

the surrounding words.
3http://clic.cimec.unitn.it /composes /semantic-vectors.html

4.4. APPROACH 125

number of words in our dictionary. Nevertheless, one can choose the size of
the hidden layer, allowing us to have much shorter word representations.
Even though Word2Vec is a perfect candidate for embedding words in a
vector space, we are interested in comparing small sentences. There are some
variants of Word2Vec in the literature that allows for embedding paragraph
or variable-length texts [62]. Nevertheless, such techniques are usually not
suitable for short-length texts. In [54], authors introduced a technique based
on Word2Vec to compute a similarity between short sentences that shows
better performance. Their approach measures the pairwise similarity between
words of the two sentences, averaging by the inverse document frequency* of

words, as follows

(c+1) maxy,es, Sim (wq,ws)

Similarity(S1, S2) = idf(wn)- ,
wl;gl MaXy,es, Sim (wy,ws) +c- (1 +b—>- ¢)

average length
where S, Sy are two sentences (57 is assumed to be larger than Ss), w; is
a word of the sentence S;, Sim(wy, ws) is the cosine similarity between the
Word2Vec embeddings of w; and wy; and b, c are two regularization con-

stants®.

Number of documents
Occurrences of w

4We follow the classical approach idf(w) = log , even though other

definitions of the inverse document frequency may be used.
SWe set ¢ to 1.2 and b to 0.75 as proposed by [54]

126 CHAPTER 4. REDUCING EVENT VARIABILITY

4.4.2 Event Rediscovery via Document Embedding Clus-
tering

Document Embeddings transform words, paragraphs and/or documents into
a point in a vector space. Some embeddings such as Word2Vec transform
words with similar semantics into points closer in the space, and hence group-
ing those points produce groups of similar events. What we propose is to
use a clustering technique over event names for discovering groups of similar

events to be generalized by an Event Variability Reduction.

Definition 4.2. Given a log L, with a set of distinct events E, we define an
Embedding-based Event Variability Reduction as the Fvent Variabil-
ity Reduction defined over the partition set obtained after running a clustering

technique on E and using the embedding-based similarity metric defined in

441,

After applying an embedding-based Event Variability Reduction, the
newly discovered event log has reduced the uniqueness of event names by
discarding the wording used and, instead, focusing on the semantic of the
words used. Notice that, depending on the clustering technique used, one
could obtain event logs with different levels of granularity. Besides, by re-
ducing the variability of events and increasing the support of the events, we
leverage the utility of other data exploration techniques. In particular, a
process discovery technique could be used to have a general overview of the

process.

4.5. EVALUATION 127

4.5 Evaluation

For evaluating the approach presented in this Chapter, we decided to con-
sider first a dataset in which we know that event names hold information
about an unknown activity, there are some guidelines on how those events
should be named and positioned in the trace (i.e. the system process) and
results can be easily interpreted. With such dataset, we will perform a pre-
liminary process analysis that would have been impossible without the use
of the Event Variability Reduction explained in this Chapter. Afterwards,
we apply the techniques to an industrial dataset compromising several tex-
tual conversations between technical support engineers and customers. Prior
to the technique described in the Chapter, the lack of structure in textual
messages did not allow for a mechanism for monitoring the evolution of con-

versations.

4.5.1 Structure of Documents in Wikipedia

In the context of decentralized human collaboration, some projects rely on
guidelines to palliate the variability of human outcomes and communities in-
side the crowd are created, if its size allows it, to ensure better coherence of
the solutions. Wikipedia is a great example of such a complex project, with
over 200 guidelines®, ranging from behavioral recommendations on a discus-
sion to naming rules, and almost 1500 portals” helping editors of articles on

a specific topic to have a similar style and share knowledge between them.

Shttps://en.wikipedia.org/wiki/Wikipedia:List_of _guidelines
"https://en.wikipedia.org/wiki/Portal:Contents/Portals

128 CHAPTER 4. REDUCING EVENT VARIABILITY

We retrieved over 800 articles from Wikipedia®, selected from the list of
featured articles? of the Media, Literature and Theater, Music biographies,
Media biographies, History biographies and Video gaming categories. From
the list of articles we extracted the structure of the document, i.e. sections
and subsections of the text. Since these articles were featured on the home-
page of Wikipedia, we assume that the contents are consolidated and their
respective communities had refined its contents to maintain the same style
among their pages.

We set two objectives for this preliminary analysis of the Wikipedia

dataset:
e Finding a common structure among articles in the same category.

e Finding similarities in the structure of different articles.

4.5.1.1 Discovery of the Structural Process Model

In regards of our first objective, finding a common structure among articles
of the same category, the literature of Business Process Management has
proposed to use process discovery techniques for finding the common struc-
ture (i.e. the process model) for a set of Wikipedia articles (i.e. traces in
which events are the title of each section). Nevertheless, the variability of
event names on this Wikipedia articles is so high that the discovered models
resemblance the flower model.

Table 4.1 summarizes the size and variability of our dataset. One may

notice the high ratio of distinct events over events seen in the log. This will

88th August 2016
Ynttps://en.wikipedia.org/wiki/Wikipedia:Featured articles

4.5. EVALUATION 129

be an issue as it difficulties understandability of obtained process models.
Besides, this also hints that lots of events are only seen once and, hence,
patterns in the structure of the document is more difficult to find. In fact,
Figure 4.6 shows that most of the section titles (more than 1000) have been
seen only once in the dataset. Moreover, the number of events shared among
traces is very low as the number of distinct events in the complete log (1347)
is not so different to the sum of distinct events considering the traces of
the 6 different datasets individually (1623). Therefore, comparison of traces
between categories is almost impossible. Unfortunately, the most repeated
section names are not useful for comparing two documents, as those sections
are used for referencing external documentation (i.e. External Links, Ref-
erences) and introducing the article (such as Contents). Nevertheless, after
discovering the abstract events we see a complete different picture allowing
us to further analyse this dataset. In order to overcome this challenge, we
applied the embedded-based event variability reduction technique for discov-

ering a set of 50 abstract events shared among all the Wikipedia articles.

Table 4.2 shows six activities discovered by applying the embedded-based
Event Variability Reduction . One may check that Cluster 4 trivially reefers
to sections involving writing, and Cluster 5 combines sections containing re-
turn to. Nevertheless, other combinations are less trivial such as the sections
included in Cluster 2. Unfortunately, some groups are not as accurate as
the aforementioned. For instance, the first cluster seems to contain topics
related to philosophy, religion and history. The three topics are certainly

related, but a better granularity on such cluster may benefit later uses of the

130 CHAPTER 4. REDUCING EVENT VARIABILITY

Events | Distinct events | Abstract events | Traces
History biography 1029 384 39 96
Media biography 677 157 40 66
Music biography 1257 246 41 120
Literature 1862 373 46 181
Video games 1253 124 36 140
Media 2718 339 46 268
Total 8756 1347 50 871

Table 4.1: Table summarizing the size and variability of our dataset. Ab-
stract events have been found using the methodology explained in Section

4.4.

discovered activities.

The embedded-based Event Variability Reduction replaces all the listed
Wikipedia titles in Table 4.2 with the assigned Cluster number. Therefore,
one may take the set of titles as the new event name. This may hinder the
understandability of the discovered abstract activities, as the practitioner
needs to take a look into the clustered items, as we have done in the above
paragraph, to have an understanding of their relation.

Continuing the log analysis, we run a process discovery method on each
of the logs. In particular, we run the Inductive Miner!?. The process models
discovered are depicted in Figures 4.7, 4.8, 4.9, 4.10, 4.11 and 4.12. Most of

them have a small subprocess with a flower-like behavior, and an in-depth

10We run the infrequent version of the Inductive Miner, with default parameters, on

ProM 6.5.1.

4.5. EVALUATION

131

Cluster 1 Cluster 2 Cluster 3
in culture travels aftermath of centralia
philosophy first voyages history of the manuscripts

re-discovery

privateering expedition

with the five

mythology journey the poems
historiography trans-pacific voyage in the media

Cluster 4 Cluster 5 Cluster 6

writing and publishing | return to united states lineups

writing career return to france collaborations

writing style return to missouri recording
writing history return to canada discography
writing return to japan collaborators

Table 4.2: 5 randomly chosen section titles from the first 6 out of 50 discov-

ered clusters from the Wikipedia dataset.

132 CHAPTER 4. REDUCING EVENT VARIABILITY

1200

1000

8OO

600

400

200

Figure 4.6: Absolute frequency of sentences used in less than 50 Wikipedia
articles. Only 35 sentences out of the 1347 sections surpass the threshold.

Figure 4.7: Petri net discovered from articles in the History biography cate-

gory.

4.5. EVALUATION 133

Figure 4.8: Petri net discovered from articles in the Media biography cate-

gory.

o \
I -

|l = [l |

Tom o - | J‘_} — th
I —m a0 / LNy} - - AT
\ul E T 1'. T . I o NEL, o - Pt
e - Sl Fooom P’j"ﬁl P NS
A ‘ Todd on G Y M el Eaa
= = . -
5 [}

Figure 4.9: Petri net discovered from articles in the Music biography category.

analysis of the traces and abstract events highlighted several section and sub-
sections with similar names that may happen in any ordering. Nevertheless,
in general, a more detailed pattern has been found in this dataset thanks to

the event abstraction.

4.5.1.2 Comparison of the Structure on Wikipedia Articles

Apart from the discovery of the structural process models, we would also
like to showcase that the Event Variability Reduction could also help in the
comparison of two Wikipedia articles. In particular, we consider conformance
checking for getting an intuition of how similar are articles from different
categories.

Table 4.3 depicts fitness and precision of the discovered process models

with respect to all the abstract event logs. Fitness is, in general, high for the

134 CHAPTER 4. REDUCING EVENT VARIABILITY

; - I) |
al SR A |
’: o S RN - a Eey n
b L oA /
/LE _ B - -’— 0 - a /
R — ——\ A i
S \ A oot
ri 3‘ -
0 - \

- =
; Son N N R LN R
o - T -] -
) - 5 { .
| .“I
.

Figure 4.12: Petri net discovered from articles in the Media category.

4.5. EVALUATION 135

History Media Music Video

biography | biography | biography | Literature | games | Media

History F 0.94 0.79 0.72 0.79 0.65 0.68
biography P 0.37 0.37 0.37 0.39 0.41 0.43
Media F 0.73 0.91 0.77 0.69 0.59 0.61
biography P 0.47 0.42 0.46 0.49 0.50 0.52
Music F 0.88 0.92 0.97 0.86 0.69 0.72
biography P 0.35 0.34 0.34 0.36 0.38 0.39
F 0.71 0.66 0.66 0.81 0.75 0.80

Literature P 0.41 0.39 0.45 0.48 0.46 0.48
Video F 0.44 0.49 0.55 0.64 0.87 0.73
games P 0.66 0.64 0.65 0.64 0.55 0.65
F 0.74 0.75 0.75 0.83 0.97 0.93

Media P 0.43 0.42 0.44 0.42 0.43 0.46

Table 4.3: Table summarizing quality of the discovered process models. For
each row, fitness and precision of a process model is measured with respect

to all the logs.

136 CHAPTER 4. REDUCING EVENT VARIABILITY

logs used for discovering the process model and slightly lower for the other
logs. One may notice that the three biography process models have high
fitness with the biography logs, but it is significantly lower with respect to
Video gaming and Media categories. The contrary also holds, as fitness of the
Video gaming and Media process models is significantly lower with respect
to the three biography logs. On the other hand, the Literature category fits
fairly well in both groups.

These results were expected, as all biography articles should have a similar
structure (although talking about different types of artists or personalities)
and videogames are nowadays produced as most of films and series (as they
appear in the media category). On the contrary, literature articles usually
talk about the authors and historical context of the book, and also about its

plot (which is very common in videogames and media articles).

4.5.2 Application of the Event Variability Reduction

to Trace Monitoring of Human-driven Processes

Some textual documents such as Tickets in Support systems, or live sup-
port chats, evolve over time. For example, tickets consist of a sequence of
messages exchanged between a customer and one or more support engineers.
The first messages usually provide a first description of the problem. Never-
theless, the content may evolve throughout the chain of messages and derive
to other topic as the root-cause of the issue is being discovered. When the
conversation between the customer and the support team ends, the ticket
is usually enriched with extra information about the conversation outcomes

such as the product causing the issue, type of fix needed, solution proposed,

4.5. EVALUATION 137

time to complete the issue, or satisfaction of the client with the support team.
If this final information is known during the conversation, a support engineer
would be able to better guide the conversation.

Initial conversations with the Data Analytics Team and the Support Team
of CA Technologies highlighted the utility of being able to visualize the evo-
lution of support tickets. Industrial-ready tools for technical support centers
usually rely on a fixed set of troubleshooting stages, which must be updated
by support engineers as tickets evolve. Even though this allow managers to
focus on understanding in which phases is possible to reduce the time-to-
resolution of support tickets, no further insights on the real status of open
tickets can be retrieved. In particular, one interesting question to answer is
if a customer is satisfied with the current performance of an open ticket, and
how we can improve the satisfaction given its current status.

Customer escalation is the formal mechanism that customers have to warn
support engineers, and the company, that the resolution of an issue is not
as fast and smooth as they expected. The number of escalations is used
as a Key Performance Indicator (KPI) for measuring the quality of support
teams, and it is clearly an indicator of customer dissatisfaction and churning.

The objective of this experiment is to discover a model that best de-
scribes the usual evolution of topics in textual conversations and use this
model to classify ongoing communications taking into account the evolution
of the conversation so far. Following the methodology explained in 4.4, top-
ics are automatically discovered by clustering vector representations of the
textual messages contained in a support ticket. l.e. we train a document

embedding that is able to summarize the meaning of the textual messages

138 CHAPTER 4. REDUCING EVENT VARIABILITY

into a fixed-length vector, and then we perform a clustering technique to
group similar messages. Word embeddings have been already used for sen-
timent analysis [93], and therefore there is some evidence that embeddings
may be also able to highlight the customer dissatisfaction from subtle tex-
tual differences. The embedding techniques presented in Section 4.4 are not
tailored for measuring the similarity of long texts as typical messages in a
Support Center. Nevertheless, adaptations of the original Word2Vec allows
for applying this technique for embedding large documents. In particular,
we applied the Doc2Vec technique [62], and the similarity of two documents
is defined as the cosine similarity of the two document embeddings.

Process Mining techniques allow us to discover a process summarizing
the evolution of the newly generated topics. Therefore, one of the immediate
benefits of document embeddings is visualization of the current status of the
support ticket, and measuring the deviation from the general ticket resolu-
tion. Figure 4.13 depicts the discovered usual evolution of a subset of all
support tickets in 2015, whilst Figures 4.14 and 4.15 depicts the discovered
models for tickets that escalated and those which successfully ended. For
these examples, we use the Fuzzy Miner algorithm with default parameter.
For clarity of the results, we depicted the results when only 30 activities were
discovered with the embedded-based Event Variability Reduction. There is a
clear difference in the structure of both process models, in which the escalated
model is less structured that the non-escalated process model. This seems
to indicate that customer complain of support cases that were not properly
handled by the support engineer, but could also be an indicator that the

support engineer needed to spent a lot of time to explore the customer issue

4.5. EVALUATION 139

Figure 4.13: Process model describing a subset of technical support cases. 30
activities are depicted, in which each activity represents a cluster of textual

messages.

140 CHAPTER 4. REDUCING EVENT VARIABILITY

Figure 4.14: Process model describing a subset of all escalated technical
support cases. The structure of this process model hints the lack of an

structure on how escalated cases are handled by support engineers.

to find its root-cause.

Besides the process models discovered in Figures 4.14 and 4.15, we trained
a Hidden Markov Models capable of classifying [25] all traces into the esca-
lated and non-escalated categories. At the initialization step, we used the
process models in the two figures as the structure of the hidden nodes. Then,
probabilities were tuned during the training of the model for maximizing the

accuracy of the classifier. Following this approach, roughly 10% of escalated

4.5. EVALUATION 141

Figure 4.15: Process model describing a subset of all non-escalated technical
support cases. This process model is more structured than the process model
in Figure 4.14, pointing that deviations from the normal process are more

common in escalated cases.

142 CHAPTER 4. REDUCING EVENT VARIABILITY

cases never seen by the Markov model were properly labeled by the classifier.
The high imbalance between the escalated and non-escalated datasets may
have caused the low ratio of detected escalations. Nevertheless, it has been
acknowledged as a useful tool as it reduces the number of cases that need to

be closely monitored for having an impact on customer satisfaction.

4.6 Discussion

In this chapter, we have developed a method for reducing variability of event
names by grouping them according to their similarity. Recent developments
on Natural Language Processing allowed us to compute this similarity based
on semantic information, instead of traditional bag-of-words techniques or
creating a complex ontology.

We have applied this technique on a dataset compromising the structure
of articles in Wikipedia. Initially, it was impossible to find any common
structure nor finding any similarities between articles because section names
were almost never repeated in the dataset. Nevertheless, after discovering
the abstract events, common process discovery technique already discovered
some patterns on the data and enable us to compare two different articles.
Although this use case is very simplistic, the results validate the methodology
and motivates further research on this direction.

Removing information from event names is usually seen as a reduction
of the data quality and, hence, has been overlooked in the Business Process
Management literature. Nevertheless, we have seen that there is an indus-

trial necessity on monitoring processes with highly variable events, such as

4.6. DISCUSSION 143

monitoring conversational bots.

Part 11

Worker Profiling and

Monitoring

145

USERS CHAPTER
0900 Worker Ranking
— 1™
Determination
%, %o,
0.0,0/“?/7/
c@sses

We start the second part of this thesis, related to users or workers, by study-
ing a particular crowdsourced process pattern that enables the platform to
measure the skill acquisition of workers, and how it was implemented in an
industrial prototype for crowdsourced translations. The novelty of such pro-
totype relies on the role of the reviewer, played by skilled individuals on the
platform, that acts as reviewers of the translations done by in-training trans-
lators. The feedback provided by the reviewers is later reused for deciding if
an in-training translator should be promoted to the reviewer role.

This closes the gap between the users and processes in the framework
of this thesis. We have already seen in Chapter 3 that the industry is de-
manding modelling languages that enable them to assign tasks to users with
particular roles. Thanks to the outcomes of this chapter, the method for
granting such roles is automatically governed by the continuous execution of
the crowdsourced process — instead of using preliminary and ad-hoc Qualifi-

cation tests.

147

148 CHAPTER 5. WORKER RANKING DETERMINATION

5.1 Introduction

Historically, crowdsourcing was associated to low quality jobs. The partic-
ipation of a huge amount of geographically distributed workers is at first
glance assumed to be an obstacle for quality. In most of the cases, it is very
costly and expensive to establish automatic mechanisms to monitor, control
and evaluate the quality in crowdsourcing platforms. Due to this, a poor
definition of quality is done and the complexity establishing a universally
accepted quality measure makes job quality assurance a really complex task.

Some examples are:

e How do we measure the degree of innovation of an idea?,
e How do we evaluate the beauty of a proposal?,

e How do we evaluate the writing style of an author?

All these measurements are highly subjective. Nevertheless, many pre-
vious proposals are still based on methods to monitor quality based on au-
tomatic measures or golden solutions, which might not be realistic in many
different scenarios.

In this Chapter, we assume that human beings are required to evaluate
the quality of the output of a task, as an indirect mechanism to evaluate the
skills of other workers in the crowd [38,58]. We propose to use the already
calculated quality evaluation of past tasks as the input of an aggregation
function. The aggregation function fuses them in a single datum able to

summarize, rank and determine the profile and skills of individuals. Taking

5.2. RELATED WORK 149

into account such profiles, we can better determine who are the most suit-
able individuals for a given task and what is the fairest economical reward.
Note that, aggregation functions provide us a huge flexibility in the summa-
rization process, allowing us to define rewards and punishments within their
weighting vector. In addition to that, with our system it is also possible to
establish an automatic promotion system for crowd workers based on their
past tasks evaluations. This fact may also increase the workers’ commitment
for delivering high quality tasks because their quality will determine their

future rewards.

5.2 Related work

Quality evaluation methods can be classified in three main families: (i) by
direct inspection of the job provider, (ii) automatic, and (iii) methods using
the crowd itself as evaluator. Evaluation by the job provider has an inher-
ent scalability problem, since the crowd can produce a large amount of work
and the job provider has a finite amount of expert resources to evaluate it.
Clearly for most of the tasks, an automatic evaluation is either impossible or
can only guarantee a minimum quality, otherwise it would be possible to set
up a completely automated solution without human intervention. Venetis
and Garcia-Molina propose “Gold Standard Performance” to detect workers’
performance before the crowd-sourcing task starts [105]. Workers’ character-
istics such as demographics or personality traits are related to the quality of
their work under specific task conditions [52]. The worker perception of five

quality assurance mechanisms is also studied in [89]. In general, it is con-

150 CHAPTER 5. WORKER RANKING DETERMINATION

sidered that inaccurate acceptance or rejection may not only affect a specific
task in a platform, but may also encourage other fraudsters to misbehave
in the platform. For example, Hirth et al. raise “Majority Decision Ap-
proach” [42] to judge whether worker’s submission is correct in simple tasks,
and using “Control Group Approach” method in complicated cases. Crowd-
source the quality evaluation of the jobs performed by the crowd to avoid the
use of such gold standard units, has been proposed as an alternative. The
main idea behind this proposal is that human beings are the best quality
evaluation method [38, 58], but this solution has the potential problem of
trustworthiness and management of opinion and criteria disparity.

From the industrial perspective, first steps have been done to establish the
basis for crowd coordination and create rewarding mechanisms that are based
on involving human beings in the evaluation of the quality of other workers
through the so-called AV-Units [76]. In [76] the authors propose an approach
to deal with these two challenges (quality evaluation and worker motivation),
by using a general mechanism to also crowdsource the quality evaluation of
a job performed by the crowd and give workers economical rewards based
on the quality of their work. To build a trustworthy crowdsourcing system
effectively, two essential aspects have to be addressed: mechanisms for worker
coordination to guarantee the correct evaluation of quality, and a reliable
mechanism to monitor the skills of workers. Is in this latter aspect that

aggregation functions play a central role.

5.3. CROWD-BASED QUALITY EVALUATION. 151

5.3 Crowd-based Quality Evaluation.

The general mechanism of [76] that guarantees job quality is based on the
idea that human beings are the best quality evaluation method in many
situations [38,58]. Any complex task is subdivided into a series of subtasks
called Action-Verification Units (AV-Unit). AV-Units establish relationship
patterns between the workers of the crowd to help them to provide a higher

degree of quality working in a collaboratively manner.

Action 8 |:> Verification%

Figure 5.1: Action-Verification Unit (AV-Unit) [76]

Figure 5.1 depicts an AV-Unit, and a formalization as a CrowdWON
process model can be found in Figure 5.2. As we observe, an AV-Unit is
divided into two phases: Action and Verification. In the Action phase a single
worker performs a specific action. In the Verification phase a set of workers
verify the quality of the output generated in the previous Action phase. If the
workers in the Verification phase consider that the quality provided is below
a certain threshold, they might ask the first worker to repeat or improve the
action. This process may be repeated iteratively until the output has reached

a certain level of quality or the workers in the Verification phase decide

152 CHAPTER 5. WORKER RANKING DETERMINATION

to substitute the initial worker (or the worker is not available anymore).
In practice, the Verification phase in the AV-Unit acts as a quality filter
barrier, that does not allow to proceed with the process until the quality of
each step in this process is approved by a set of human evaluators working
collaboratively. Note that when more than one worker participates in the
Verification phase, an aggregation function is also used to aggregate the
decisions (scores) of each individual worker and produce a final decision (i.e.,

the job has the required quality or not).

> 3 iterationg
or accepted

3 Action

> Verification 3
1 Action)[-1], 0 1 Verification)[-1], #) '
! 2nd (ng (;((Ve?i;g)cr;)t[ior]l)[*)], 0) StQIS(il((;rle((fcté(i);IZ)[, é)) |

Figure 5.2: An Action Verification unit graphically modelled as a Crowd-
WON process model. In this particular instance, only one reviewer is con-

sidered for each verification.

5.4 Aggregation Functions

Aggregation functions [97] are numerical functions used for information fu-
sion that combine N numerical values into a single one. These operators are

formally described as follows:

Definition 5.1. Let X := {x1,...,xn} be a set of information sources, and

let f(x;) be a function that models the value supplied by the i-th information

5.4. AGGREGATION FUNCTIONS 153

source x; (for the sake of simplicity we often denote f(x;) by a;), then a

function C : RN — R is said to be an aggregation function if it satisfies:

1. inf C(ayq,...,ay) = —00 and sup C(ay,...,ay) = 400 (boundary con-

dition)
2. Clay,...,an) < C(a},...,dy) if a; < a} (monotonicity)

There are several aggregation functions in the literature (see e.g. [22,
97] for further review) but we will focus only on idempotent aggregation
functions, i.e. the aggregated value C(a,...,a) is a. Among them, the most
well-known functions are the arithmetic mean (AM) and the weighted mean

Yager defined in [110] the Ordered Weighted Averaging (OWA) aggrega-
tion function as a weighted linear combination of order statistics. In short,
it works like a weighted mean after ordering the values a;. We provide below
a definition of the OWA operator using a non-decreasing function, as this is

the most useful approach in our context.

Definition 5.2. Let QQ be a non-decreasing function in [0, 1] which satisfies
the boundary condition Q(0) = 0 and Q(1) = 1, then the mapping OWA :
RY — R defined as follows is an OWA operator:

N
OWAQ(CLD s 7aN) = Z (Q(Z/N) - Q((l - 1)/N))a0'(z)
i=1
where o is a permutation of {1,..., N} such that a,@) > Go@it1)-

This operator has several properties. We underline the following ones:

154 CHAPTER 5. WORKER RANKING DETERMINATION

i) For all @, it holds that:

mina; < OWAg(ay,...,ay) < maxa;.
(3 A

The choice of the function () allows us to modulate OWA(from the
minimum to maximum function. For example, when we consider the
family of functions Q,(z) = x%, also called Yager Quantifiers, we have
that large positive values of « lead to an OWA near to the minimum
and, on the contrary, values of o near to zero lead to an OWA near
to the maximum. Besides, when a = (ay,...,ay) is fixed, OWA, is

non-decreasing with respect to a.

ii) The OWA operator is symmetric for all). That is, the order of the

parameters is not relevant for the computation of the output.

OWA operators are generalised by Choquet integrals [98] with respect to
fuzzy measures, a family of fuzzy integrals that can be used for information
fusion. In short, given a function f that represents the information supplied
by the sources in X, the Choquet integral of f represents an aggregated value
of those in f. In such integrals, fuzzy measures play the role of weights in
the weighted mean.

Recall that a fuzzy measure p is a set function over X such that the two
boundary conditions hold (i.e. p (@) =0 and p(X) = 1) and p(A) < u(B)
for every two subsets A C B of X. A fuzzy measure is symmetric if it only
depends on the cardinality of the set.

Formally, the Choquet integral is defined as follows:

5.4. AGGREGATION FUNCTIONS 155

Definition 5.3. Let pu be a fuzzy measure on X; then, the Choquet integral
of a function f: X — R* with respect to the fuzzy measure p is defined by

N
(©) / Fdu =" aom(Aep) — 1(Asii-1))]
i=1
where o is a permutation such that as iy > agit1y and Asiy = {To1), - - - To() }-

The Choquet integral with respect to the fuzzy measure u(A) = Q(|A|/N)
is precisely the OWA(operator. This equivalence shows that OWA weights
do not depend on the information sources nor possible relations between
them. On the other hand, such independence is not required in the definition
of a fuzzy measure and further aggregation functions can be defined with
the Choquet integral (see e.g. [97] for a definition of the Weighted Ordered
Weighted Averaging (WOWA) operator).

When a symmetric fuzzy measure is used, the Choquet integral is symmet-
ric as the OWA operator. This property also holds for other fuzzy integrals.
In particular, it also holds for the Sugeno integral [98]. Formally, the Sugeno

integral is defined as follows:

Definition 5.4. Let i be a fuzzy measure on X; then, the Sugeno integral of
a function f: X — [0, 1] with respect to the fuzzy measure p is defined by

8) [7an=\{aw AnlAu)

where V stands for mazimum, A stands for minimum, s is a permutation

such that as(i) S as(iH) and As(i) = {l‘s(i), e ,J}U(N)}.

In particular, we can choose the symmetric fuzzy measure p(A) = Q(|A|/N)
as in the Choquet integral, obtaining an equivalent to the to the OWMax
operator defined by Yager in [111].

156 CHAPTER 5. WORKER RANKING DETERMINATION

Definition 5.5. Let Q) be a non-decreasing function in [0, 1] such that Q(0) =
0 and Q(1) = 1, then the mapping Sy : RN — R defined as follows is a

Sugeno integral of a function f: X — [0, 1] with respect to the fuzzy measure
u(A) = Q(|A|/N):

N

Slg(a;) = \/(as(i) ANQ(i/N))

=1

where s is a permutation such that ay;) > asitr)-

The twofold integral [78,96] is a generalisation for both Choquet and
Sugeno integrals. The twofold integral is a fuzzy integral that aggregates a
function with respect to two fuzzy measures. The rationale of this generali-
sation is that the semantics of both measures are different. In particular, the
measure in the Choquet integral is seen as a 'probabilistic flavour’ measure,
and the measure used in the Sugeno integral is seen as a ’fuzzy flavour’ mea-
sure. We use u¢c to denote the measure that corresponds to the one in the

Choquet integral, and pg for the one in the Sugeno integral.

Definition 5.6. Let uc and ps be two fuzzy measures on X, then the twofold
integral of a function f : X — [0,1] with respect to the fuzzy measures pg

and pc, denoted Tl .. (f), is defined by:

N)

> ((V as)y A ns(Asi)) (ne(As) — Mc(As(iH))))

i=1 j=1
where s is a permutation such that 0 < ay; < asi1y) < 1 and Ay =

{xs(i)7 s ;xs(n)}-

5.5. USING WORKER RANKING FOR TRUSTWORTHINESS MEASURING157

5.5 Using Worker Ranking for Trustworthi-
ness Measuring

The success of AV-Units highly depends on the workers’ profile. Involving
many workers with low skills in an AV-Unit, might have a negative impact
on the final quality. In most of industrial processes, quality standards are
high and trusting the individuals in the crowd and their capacity to carry
out the different tasks assigned to them is essential. Because of this, the
main concern of a crowdsourcing platform is to monitor workers in order to
evaluate and update their skills based on the quality of their past tasks.

To cope with this requirement, we propose to use a ranking systems that
dynamically modifies the worker skills. Specifically, there are several aspects

that might influence such a ranking system:

e The worker quality is measured from the output of their past
jobs: it is necessary to establish rewarding and penalty measures that
modify the ranking of the workers in the crowd. In general, the actions
with a higher impact for workers are those performed in the Action
phase of an AV-Unit. However, it would be also possible to modify the
ranking of workers based on their activity when they are acting in a

Verification phase.

e General behaviour of the workers in the crowd: other aspects
might influence the ranking, i.e. worker commitment, career, etc. For
instance, a worker might click very fast in order to get solutions quickly

and get an economical reward. Although, improper behaviour will lead

158 CHAPTER 5. WORKER RANKING DETERMINATION

with high probability to bad quality, taking into account behavioural
patterns may help to multiply the positive or negative impact of actions
in the corresponding worker’s ranking and speeding up the detection

of incorrect behaviour.

The main idea behind using ranking systems is that a worker with a higher
rank will be more trustworthy than workers with lower ranks. Therefore, it
is possible to set a fair payment system where workers quality modulates the
economical reward, increasing in this way the workers motivation to deliver
high quality outputs in their future tasks. Additionally, ranking systems
might allow us to automatically determine the most suitable workers for a

given task.

5.5.1 Automatic Worker Ranking Determination

As aforementioned, a natural way to determine the rank of crowd workers
is by combining the quality values of their previous works. This can be
achieved by using aggregation functions, which were reviewed in Section 5.4.
Concretely, for each Action unit of previous AV-Units, denoted by z;, that
has at least one Validation value a;, it is possible to combine all these qual-
ity values a; in a single aggregated number C(ay,...,a,). Note that, for a
worker, this aggregated value cannot be bigger than the maximum quality
achieved for any of her previous works nor lesser than the worst.

The choice of the aggregation function will lead to different ways of pro-
moting and demoting crowd workers. For instance, the use of the arithmetic
mean (AM) equally considers all previous works, independently on whether

a task has been recently delivered or not. In this case, a bad quality task

5.5. USING WORKER RANKING FOR TRUSTWORTHINESS MEASURING159

delivered during the training period counts exactly the same as a more recent
task when the worker skills are better. To overcome this issue, we can replace
the AM by the weighed mean operator (WM), doing this it is possible to give
more importance to recent tasks than older ones.

On the other hand, by using OWA operators it is possible to emphasise
extreme quality values. For example, using the fuzzy quantifier Q(z) = x®
with « close to 0, we are giving more importance to the highest quality tasks
of a certain worker, without taking into account when the task was done
(near in the past or not). In this setting, we are assuming that future tasks
will also have a high quality because the worker finalised in the past (at least
one time) a high quality task.

On the contrary, by using OWA operators with the same fuzzy quantifier
but with a = 2, the bigger the growth of the quantifier is when z values are
near to one. Therefore, the associated weight of the low quality tasks will
be bigger than the high quality ones. In this setting, we are penalising a lot
workers with some low quality tasks. In this model, workers will find more
difficulties to improve their rank. Finally, we can reduce the relevance of
possible outliers by choosing a fuzzy quantifier Q(z) with slow growth near
r=0and x = 1.

In certain industrial scenarios, it may be interesting to consider both
dimensions: task quality and when the task was delivered. To do this, it is
necessary to use the twofold integral. In this integral, it is possible to include

two fuzzy quantifiers, one for delivering time (); and another for task quality

o

160 CHAPTER 5. WORKER RANKING DETERMINATION

5.6 Crowd-based Text Translation: A Prac-
tical Example

For this example we use a crowdsourcing platform for software and text
localization! that is being developed by CA Technologies (CA) for trans-
lating their technical documentation and marketing materials, applying the
aforementioned AV-Units for ensuring task quality. In such platform, crowd
workers are divided into three disjoint categories: newcomers, associates and
seniors. Figure 5.3 presents a description of each category. Newcomers are
workers that use the platform to learn and improve their professional transla-
tion and post-edition (reviewing manually the output of an automatic trans-
lation) skills. They do not receive any economical reward for their transla-
tions and quality in real translations never depends on their work, but they
receive feedback from senior translators to improve their skills. The platform
also offers them many training examples. The main task of associate workers
is to post-edit texts and their economic reward mainly depends on the text
length. Finally, senior workers are those that know CA quality standards for
translations and have proven very high skills in translation and post-edition.
Their main task is to verify the work done by associates and provide them
feedback to improve the quality of their translations and, as a consequence,
their rank to become seniors. Note that, the economical reward of a se-
nior translator is higher than that of an associate translator. The platform

also considers that an associate translator becomes a senior translator if the

similar to text translation [79,113], but localization takes into account cultural differ-

ences between countries with the same first language.

5.6. CROWD-BASED TEXT TRANSLATION: A PRACTICAL EXAMPLFE161

quality of translations is high compared to the quality obtained by senior

translators.

Newcomers Associates Seniors

* Anyone, but restricted at the * Newcomers with a certain * Associates with a certain

beginning to limit growth ranking rank and proven capacities
Reward? Reward? Reward?

* This is a training phase, * Limited by the fact that they * Paid as full professionals

workers may not get paid need reviews by experts
Tasks? Tasks? Tasks?

* Observers in real reviews * Post editions * Post editions

 Restricted and supervised e Restricted and supervised ® Reviews
post editions reviews

Figure 5.3: Translator categories at the CA Technologies crowdsourcing plat-

form for localization.

5.6.1 TQI, a Quality Measure For Text Translation

Translation Quality Index (TQI) [88] measure is the standard way to evaluate
the quality of a professional translation. To compute the TQI, it is necessary
that an expert review the translated text to detect the errors and evaluate
their severity. Therefore, TQI measure reflects the criterion of such expert.
To help experts to decide the severity level of an error, CA Technologies

provides the following categories:

Sev1l Linguistic issues that bring the most direct (critical) impact to end

users, such as:

162 CHAPTER 5. WORKER RANKING DETERMINATION

e unexpected functional results, which are different from the English

product description/statement
e deterring subsequent operations from product execution
e causing product features to fail
e carrying negative legal, political, security, and financial conse-

quences or cultural noncompliance

Sev2 Linguistic issues that bring indirect yet substantial impact, leading

the end user to:
e difficulties in understanding functionalities and technologies in-
vented and developed in CA products
e misleading or incorrect interpretation of concepts for CA products

Sev3 Linguistic issues that do not impact the end user operation, yet impact

the end user experience such as:
e spending additional time trying to figure out the meaning of de-
scriptions/statements
e inconsistencies when trying to read product materials
e incompatibilities with layout and formatting
Sev4 Linguistic issues with minimal impact to overall end user experience,
such as:
e noticeable and tolerable minor linguistic flaws

e layout and formatting errors that are only visible by comparing

to the English source

5.6. CROWD-BASED TEXT TRANSLATION: A PRACTICAL EXAMPLE163

Table 5.1: Text Quality Levels based on TQI ranking.

Level Criteria

Excellent TQI > 90
Good 80 < TQI < 90
Fair 70 < TQI < 80

Acceptable | 60 < TQI < 70
Reject TQI < 60

Once all the translation errors have been detected and categorised, TQI

is calculated as follows,

Total =6a; +2ay +1.2a3 + 0.8ay

Total / Number of Reviewed Words

TQI =100 — 40
Q 0.01

where a; means the number of Sev 7 issues detected in the text. The final
quality levels of a given translation are ranked in five categories, as it is
depicted in Table 5.1. In the next section, we use similar quality levels to

decide whether a worker is ranked as newcomer, associate or senior.

5.6.2 AV-Units Applied to Text Translations

In this section, we present how to use AV-Units to create a crowd-based
platform for text translation. The platform works as follows: Firstly, the

source texts go through a rule-based machine translation engine and a first

164 CHAPTER 5. WORKER RANKING DETERMINATION

automatic translation is produced. Secondly, the original and the machine-
translated texts are sent to external human translators who post-edit the
text written in the target language, we call this step as post-edition step
(PE), and it corresponds to the action part of the AV-Units methodology.
Thirdly, multiple (from one to three) text verifications are performed by CA
translators. It is important to note here that verifiers cannot modify text,
they can only inform about detected errors. We call this part verification
step (VE), and it corresponds to the verification part of the AV-Units. If the
translation does not reach the minimum quality level (TQI > 80), a new PE
and VE steps are performed. To avoid infinite loops, in this second round
verifiers are allowed to modify the text if they think it is required to maintain

a TQI quality up to 80. After this process, the text is ready to be published.

5.6.3 Worker Categories and Promotion Mechanisms

As we have introduced before, workers are ranked into three different cate-
gories. To determine a worker category, we aggregate the TQI values obtained
in the past into an overall TQI value, as it is explained in Subsection 5.5.1.
Table 5.2 depicts worker categories from the obtained overall TQI values.
The platform assumes that the minimum overall TQI level for being consid-
ered an associate translator is equal to 60. Remember that translations with
a TQI quality measure below 60 are rejected. For being considered a senior
translator, the overall TQI obtained by a worker must be up to 80, since this
is the minimum level required for being a CA internal translator.

In the platform, workers are automatically promoted or demoted depend-

ing on the overall TQI obtained in their past translations.

5.6. CROWD-BASED TEXT TRANSLATION: A PRACTICAL EXAMPLE165

Table 5.2: Worker Ranking Categories.

Category TQI value
Senior TQI > 80
Associate 60 < TQI < 80

Beginner TQI < 60

5.6.4 Numerical examples

Some experiments have been done using the weighted mean (WM), OWA
operators and the twofold integral on four different workers (U, I, D, O).
We have generated 300 TQI scores for the U, I, D and O workers by the
following strategy:

e The worker U has a stable performance, in the sense that she is not
learning from the feedback provided by the Verification phase. In the
simulation, each word has a fixed probability for generating a Severity

1, 2, 3 or 4 error.

e The worker I slightly increases her performance with every translation,
simulating that she learns from every Verification phase. In the sim-
ulation, the probability for generating an error is decreased for every

1teration.

e The worker D slightly decreases her performance with every transla-

tion, simulating a worker that is losing commitment and motivation.

166 CHAPTER 5. WORKER RANKING DETERMINATION

Her probabilities for generating an error are increased after every iter-

ation.

e Finally, the worker O deliberately increases or decreases her perfor-
mance in order to achieve a certain status in the platform. In the sim-
ulation, the probability for generating an error depends on how close
her score is to 80, being significantly higher when her score is above 80.
This type of worker simulates a fraudster that is willing to get profit

from the implemented reputation system.

During this simulation, we aim to study how the selected aggregation
functions impact on the evaluation and performance of the four workers.

Two families of weights have been used, defined by the fuzzy quantifiers

[(0% S R 1
Qa<x) = Qa(x) - 1 1 ea—w
. 0 ifz <«

Q(z) =
1 ifz>a«

Here, Q¢ stands for exponential function, @* for the sigmoidal function
and Q' for the threshold function. For these experiments, we considered the

following combinations of weights and aggregation operators:

e The weighted mean with weights computed based on Q) 5, @5, Q6 5-
By using)5, we are putting more emphasis on the latest TQI scores
of the worker, whilst Q) 5 considers the first scores of the worker. On
the other hand, @)j; reduces the relevance of both latest scores and

preliminary results, and averages in-between results.

5.6. CROWD-BASED TEXT TRANSLATION: A PRACTICAL EXAMPLE167

e For the OWA operator, we chose the functions Qf 5, 5, and @5 to
compute the weights. Since we order TQI scores first, ()5, now focus
on the highest scores obtained by the worker, whilst) 5 considers the
lowest scores obtained. In order to reduce the relevance of TQI outliers,

the @ 5 could be considered.

e For the Twofold integration we considered the @ , threshold function,
meaning that the top 20% scores are reduced to the immediately score
below. For example, for a user with ten scores sg < s1 < 89 < ... < Sy,
the twofold integration would assign the value s; to both sg and sg.
After this cut, an OWA operator is used to aggregate the score. For

this experiment, we used again the functions Qf 5, 5, and Q) 5.

Aggregated scores for workers U, I and D Figures 5.4, 5.5 and 5.6
depict the aggregated scores obtained by the chosen aggregation functions
for the worker U (Figure 5.4), worker I (Figure 5.5) and worker D (Figure
5.6). The general impression on these figures is that all aggregated scores
show an stable behavior (although some operators are more prone to recent
changes and, hence, variability is slightly high between iterations) fruit of the
monotony of the TQI scores. Nevertheless, the OWA operator and Twofold
integration (using Qf 5 for weights) consistently shows a pessimistic view of
the worker’s performance. This position the two operators as good candi-
dates for being considered when the platform is in a conservative position,
and Sentor position requires major commitment from workers. We have
also detected that there are no significant differences between the twofold

integration and the OWA operator on the long-term vision of the tool as

168 CHAPTER 5. WORKER RANKING DETERMINATION

100

20+

0 50 100 150 200 250 300

Figure 5.4: Bar plot of the TQI scores obtained by the U worker, and the

aggregated scores obtained with the selected operators.

20

o 50 100 150 200 250 300

Figure 5.5: Bar plot of the TQI scores obtained by the I worker, and the

aggregated scores obtained with the selected operators.

5.6. CROWD-BASED TEXT TRANSLATION: A PRACTICAL EXAMPLE169

100

] 50 100 150 200 250 300

Figure 5.6: Bar plot of the TQI scores obtained by the D worker, and the

aggregated scores obtained with the selected operators.

the twofold integration is resilient towards unexpected improvements on the

worker’s performance (behavior not seen on workers U, I and D).

Aggregated scores for worker O Worker O provides a more interesting
simulation of the aggregated scores, as the behavior of the worker changes
depending on their current score. For the simulations of worker O we have
chosen one metric to be provided to the worker so he knows his current status
on the platform.

Figure 5.7 depicts the TQI scores obtained when worker O is aware of her
own average score. In general, we are obtaining an expected behavior from
this user. Her performance ranges from 60 to roughly 90 (with a mean of 77)

and all the aggregated scores highlights the periodic behavior of the user.

170 CHAPTER 5. WORKER RANKING DETERMINATION

100

20

] 50 100 150 200 250 300

Figure 5.7: Bar plot of the TQI scores obtained by the O worker when he
is aware of his average score, and the aggregated scores obtained with the

selected operators.

What is interesting is the specifics of some of the aggregated scores. For
instance, the OWA operator with Q)f 5 delays the increase of the aggregated
score until a significant amount of work justifies such increase. Figure 5.8
depicts such aggregated score. Besides the wider local minimums of such
metric, decrease of the aggregated score is not significantly delayed since
the real decrease on TQIs. This position this particular OWA operator as a
good candidate for measuring the trust of the worker, in which lower values
of this metric may recommend the platform to put more emphasis on the
evaluation of her work. Figure 5.9 compares such OWA operator with two

weighted means. None of the weighted means were able to capture the idea

5.6. CROWD-BASED TEXT TRANSLATION: A PRACTICAL EXAMPLE171

100

20

] 50 100 150 200 250 300

Figure 5.8: Bar plot of the TQI scores obtained by the O worker when he
is aware of his average score. The aggregated score obtained with the OWA

operator (Q§ 5) is also plotted.

of trust is the sense that it is difficult to obtain and easy to lose.

In the previous example, we have seen how the weighted mean (Qf)
provides an aggregated score which is resilient to discriminate worker for
their latest work and the OWA operator (Qf 5) provides this idea of trust
that the worker must continuously prove their commitment in order to get a
good score. In Figure 5.10 we depict how the worker O would have reacted in
case that she is aware of such metrics. Notice that, when the weighted metric
is considered, the worker learns that she can produce terrible outcomes after
obtaining a good status on the platform. Such metric allows her to reduce

her performance during large periods, as there is some delay until the metric

172 CHAPTER 5. WORKER RANKING DETERMINATION

100 100

Figure 5.9: Bar plots of the TQI scores obtained by the O worker when he is
aware of his average score. On the left plot, the OWA operator of Figure 5.8
is compared with the weighted mean (Qf 5), whilst the right plot compares
it with the weighted mean (Q$,).

penalizes such behavior. On the other hand, the trust-inspired OWA operator
forces the worker to keep producing excellent work for some time until her
status increases. Then, as the trust metric is drastically reduced after the
first bad results, the periods of inefficiency are shorter.

It would be interesting to consider the effects of these metrics on the mo-
tivation of workers. Can we keep workers motivated if they do not see an
increase of their rank after several good quality results? In any implementa-
tion of a crowdsourcing platform, one probably needs to consider a mixture
of such metrics in which a non-trivial and slightly volatile aggregated score is
provided to the users but then another internal metric is used for promoting

or demoting the workers status.

5.7. DISCUSSION 173

rygiey

100 100

8
8

2
8

O
Tl

Figure 5.10: Bar plots of the TQI scores obtained by the O worker when he
is aware of his score. On the left plot, the worker is aware of the weighted
mean (Qf 5), whilst the OWA operator is considered on the right plot. Both

metrics are also plotted in their respective plots.

5.7 Discussion

We have studied the problem of combining past quality task evaluations using
several aggregation functions to automatically determine worker category in a
crowdsourcing platform holding a large professional community with different
professional profiles. We have studied different cases to adjust the platform
behaviour modifying the aggregation process (selected function and fuzzy
measure). In this way, we can set an automatic management system for
worker promotions and demotions. We have also introduced a real crowd-
based platform for text translations, describing how our ideas can be deployed
in it. It is still open to study how aggregation functions may determine the
fairest economical reward for a given text, worker rank and final quality of

the current translation.

PLATFORM

.

i

CHAPTER
6 Evidence-based Worker

Behavior Elicitation

In the previous chapter, we described a particular process that enable re-
questers to ensure overall quality of the problem resolution at the same time
that ensures sustainability of the process by self-governing the promotion
and demotion of the roles performed by the users. Nevertheless, there is no
clear way of extrapolating such mechanism to other processes.

Here we propose to let the platform monitor the actions performed by in-
dividuals in order to create a profile of their behavior. We assume that those
actions can be though as events that can be later processed by a discovery
method, summarizing such actions in the form of a process model. Apart
from the fitness of the resulting process models, precision is a key quality
metric of these behavioral profiles. Low-precision models are more likely to
describe the behavior of several users, reducing the insights obtained by an-
alyzing or comparing process models. In particular, repetition of activities
— very often due to the human nature — is one of the key trace character-
istic that reduces precision of models discovered with most process mining

techniques as we highlight, and palliate, during this chapter.

175

176 CHAPTER 6. WORKER BEHAVIOR ELICITATION

Later in Chapter 7, we will review how we used these models in order
to automatically create groups of users with similar behavior. When ap-
plied to an industrial scenario, we have empirically seen that differences in
these behavioral models are enough to group together workers with the same

organizational role.

6.1 Introduction

Process discovery techniques strive to derive models that are expected to
be good under four quality dimensions: fitness, precision, generalization and
simplicity [19]. Hence, these are multi-objective techniques that search in
a large solution space, where typically not one but many optimal solutions
exist. In practice, each discovery technique puts the emphasis in a proper
subset of dimensions; for instance, techniques based in the theory of regions
focus on deriving fitting and precise models, while simplicity and generaliza-
tion is not always guaranteed. Another example is the recent block-based
techniques that recently appeared [63,64], where structured, fitting, general-
ized and simple process models are preferred.

The techniques from [63,64] are the driving force of this work. On the
one hand, they are among the few scalable process discovery technique that
can derive structured process models. This has made [63,64] one of the most
popular techniques for process discovery nowadays. However, as mentioned
in [17], these techniques can sacrifice precision significantly for the sake of
deriving a fitting structured model (see the example in Section 6.1.1). The

alternative offered in [17] is to use evolutionary techniques, which are far from

6.1. INTRODUCTION 177

scalable. Instead, the technique proposed in this chapter represent a fresh
look at this problem, amending (when possible) process models derived from
the technique in [63,64] as a simple post-processing step, based on unrolling
loops in the model whenever the number of loop iterations found in the event
log satisfy certain criteria. Next section illustrates the intuition behind the
technique of this chapter.

Although the generation of more precise process models is a cross-domain
challenge in the process discovery arena, we explored this problem as an op-
portunity for improving the description of the user behavior in a, possibly
digital, platform. In this thesis, we are envisioning platforms that analyzes
all actions performed by their users and generate a process model summariz-
ing the behavior with two objectives: predict future actions of the users, and
compare (or classify) users based on their behavior. For the first objective,
highly-precise process models may not be the solution as they are usually
lacking generalization on their models and, hence, the platform might be
overlooking interesting options. Nevertheless, for the second objective, im-
proving the precision lead to process models that express the uniqueness of
the user and are less likely to describe others. One may then consider analyz-
ing the event logs directly instead of a process model, but, then, we may fall
into too specific characteristics hindering the comparison of different users.

It is not clear at which point it is not worth, or counterproductive, to
increase the precision in behalf of generalization of a process model. And
we may never be able to answer this question theoretically, as typically this
depends on the later usage of the process model. It is important to have a

mechanism to measure the utility, or objective, of the process models outside

178 CHAPTER 6. WORKER BEHAVIOR ELICITATION

the traditional four quality metrics for process models: fitness, precision,
generalization and simplicity. Then, the question would be how improving
the precision of a process model affects to my overall objective. In our case,
slightly improving precision helps in differentiating the users whilst enabling

a meaningful and understandable comparison between them.

6.1.1 Label Splitting as Loop Unrolling to Improve

Precision

Consider the model Figure 6.1.a, which was discovered by considering the
trace 0 = ABCADCBACDACABCADCBACADE. 1t is hard to notice that
the precision of this model could be improved: Activities A, B and D can
be found in any ordering and hence the parallel construct is appropriate,
and trace ¢ hints that the iterative approach might be a good candidate for
describing such a process. Nevertheless, a further analysis shows that there
is still place for improvement.

In this chapter, we propose to unroll iterative parts of a process to check
if there are hidden relations between the activities that are hindered by the
limitation of only having one single copy of the activity in the model. See
Figure 6.1.b for an example of such unrolling. In this particular case, we
have chosen to repeat the iterative structure so we are forcing to execute its
subprocess twice in each iteration. A replay of trace o on this new process
model highlights that activities B and D were never mutually exclusive. And
hence, one could discover that the process model of Figure 6.1.c might be

more precise in describing o.

6.1. INTRODUCTION 179

Figure 6.1: A first model accepting traces such as ¢ = ABCADCBACDA-
CABCADCBACADE. The second model is an unrolled version that only
accepts executing twice the initial iterative behaviour. Finally, a repair of
the model with respect to the trace o highlighted that the second choice

construct could be simplified to a simple sequence.

180 CHAPTER 6. WORKER BEHAVIOR ELICITATION

6.2 Related work

Different approaches exist in the literature for the problem of label splitting
in the context of process mining. We will focus here in recent approaches,
and will illustrate the different nature of the technique of this chapter with
respect to them. The heuristic techniques in [69,104] rely on a window local
search approach to define the duplication of certain candidate activities. This
process is done in the model itself ([104]) or as a refinement of the input log
([69]). By focusing on the loops of a process model, the technique of this
chapter complements these approaches.

Alternatively, global approaches can be found in [28,84]. These global
methods rely on the use of unfolding of the process model ([84]) and a later
optimization technique to fold back activities, or search for special states
of the underlying state space of the model ([28]), followed by a clustering
strategy to merge them heuristically. By relying on complex representations
and techniques (unfoldings or state spaces can be exponential on the size of

the models), these approaches cannot be applicable for large inputs.

6.3 Definitions and Notation

Although the graphical notation used for representing processes is irrelevant
in terms of the results presented in this chapter, the process tree notation
(see Section 2.2.1.4 for more details) will be used in order to improve under-
standability, as some notions used in this Chapter are easily understood in

the process tree notation.

6.3. DEFINITIONS AND NOTATION 181

Definition 6.1. An iterative subprocess or loop | is the combination of
two subprocesses that describe a process that can be repeated. The forward
path of | (fwd(l)) is the subprocess that must be executed at least once during
the execution I. Whereas the backward path of | (back(l)) is the subprocess

such that its execution enforces the loop to re-execute fwd(l).

From now on we will consider all process models to be structured. Im-
portantly, structured processes allow us to map particular events in the trace
to a subprocess in the process model. Allowing us to define the following

notions:

Definition 6.2. Given a process model N with a loop | and a trace o € L(N),

we define Ey(o) as the number of times fwd(l) is executed during the execution

of o.

Definition 6.3. Let [be a loop of a process model N and o a trace accepted
by N. We define the projection of o to 1 (denoted by o|;) as the result
of keeping the events that are mapped into activities contained in | after a
replay of o in N. Moreover, we define the projection of o to the exit
condition of 1 (denoted by o|gLirqy) as keeping the events that are mapped
into activities of N that cannot coexist with the execution of l. In particular,
all activities contained in [and any other concurrent activity are erased by

this projection.

Considering again the process model of Figure 6.1.a and trace 0 = AB-
CADCBACDACABCADCBACADE, we have a loop structure [consisting of:
as the forward path, activities A, B and D that can be executed concurrently

but B and D are mutually exclusive; and activity C as its backward path.

182 CHAPTER 6. WORKER BEHAVIOR ELICITATION

The forward path was executed Ej(c) = 8 times; o|; = o0 — {E} whereas
0|Ezitqy = E. Any execution of activity E clearly indicates that any event

after event E is not part of the loop.

Definition 6.4. (Fitness and precision) Process mining techniques aim at
extracting from a log L a process model N with the goal to elicit the real
unknown process S. By relating the behaviors of L, L(N) and S, particular
concepts can be defined [19]. A process model N fits log L if L C L(N). A

process model is precise in describing a log L if L(N)\L is small.

Unless stated otherwise, we assume we deal with fitting process models.
In case this condition is violated, we assume the process models are first

aligned with current techniques to satisfy the fitness condition [2].

6.4 Label Splitting with Loop Unrolling

Most discovery algorithms generate processes in which activities are not du-
plicated, forcing the algorithm to introduce loops when an activity is consis-
tently occurring multiple times per trace. Unfortunately, this constraint may
overgeneralize the resulting process model. Consider, for instance, trace o =
ABCA. A technique like the ones in [63,64] will produce an iterative process
model even though the trace is not showing so clearly that behavior.

First we will describe the unrolling algorithm for improving the precision
of loops that are not included in any other iterative process. The main idea
of this algorithm is to create a process model that forces the re-execution of
the loop and then filters out unused elements. Finally, we will extend this

algorithm for the case of nested loops.

6.4. LABEL SPLITTING WITH LOOP UNROLLING 183

6.4.1 Simple Case: Unrolling of Individual Loops

The first process model of Figure 6.1.a depicts a process describing the log
consisting of the trace ABCADCBACDACABCADCBACADE. One may no-
tice that, when replaying the log on the process model, the forward path
(Activities A, B and D) is executed a multiple of two. Hence, we may force
the process model to repeat the loop as in Figure 6.1.b. The unroll of a loop

is precisely the process of making explicit this transformation.

Definition 6.5. A k-unroll of a loop | is the process of substituting the loop

for the subprocess defined by a loop structure with:

o A sequence of k— 1 copies of the sequence fwd(l);back(l) as the forward

path of the new loop structure,
e finishing the aforementioned sequence with another copy of fwd(l);

e The back(l) is maintained as the backward path of the new loop struc-

ture.

In Figure 6.1.b, a 2-unroll of the iterative process is performed. In this
case, the subprocess containing activities A, B and D is the forward path,
whilst activity C' is the backward path. And hence, its 2-unroll produces a
loop structure with the sequence AND(A OR(B,D))C AND(A OR(B, D))

as the forward path and maintains C as the backward path.

Proposition 6.6. Given a process model N describing the log L, a k-unrolling

(k> 1) of a loop | increases the precision of the model.

184 CHAPTER 6. WORKER BEHAVIOR ELICITATION

Besides, if the process model fits log L and k is a divisor of the greatest
common divisor (ged) of the number of executions per trace of the forward

path of I, then the k-unrolled process also fits log L.

Proof. Let [be a loop of N and let N; be a k-unroll of [with £ > 1. By
construction of the k-unroll, we can ensure that any trace is an element of
the language of N such that the forward path of [is executed a multiple of

k times. Le.
L(N) ={o € L(N)| Ei(0) is divisible by k}

We will show that £(Ny) € L(N) and hence, based on Definition 6.4, Ny
improves the precision of process model N. Let ¢’ be a trace accepted by
the process N that visits exactly once the forward path of the loop [, and
hence the backward path of [is never visited. Since 1 is not a multiple of
k, we can ensure that ¢’ is not an element of £(Ny) and hence L(Ny) \ L is
a non-trivial subset of £L(N) \ L and therefore the precision of N’ is bigger
than the precision of N.

Besides, let k be a divisor of the greatest common divisor of the number
of executions per trace of the forward path of [, N a process model that fits
log L and Ny the k-unroll of the process model N. Let ¢’ be a trace of the
log L. Since N fits log L, the trace ¢’ is in the language of the process model.
Moreover, the number of executions of the forward path of [is a multiple of
k and hence the trace o’ is also an element of the language of L. Therefore,
Ny, fits log L. 0 O

Once all loops have been unrolled, some activities and structures of the

resulting process model may be redundant or unused and can be removed or

6.4. LABEL SPLITTING WITH LOOP UNROLLING 185

Figure 6.2: A process model describing the traces ACADBCBD,
BCBDACBD and BCAD.

simplified allowing for further improvement on the precision of the process
model. The first process model of Figure 6.2 describes traces ACADBCBD,
BCBDACBD and BCAD. Such process may benefit from a 2-unroll as
shown in the second process model. Besides, a replay of the three traces
highlight that split choices between C' and D are unnecessary: starting with
C, activities C' and D alternate in the execution of the process model. The
last process model of Figure 6.2 depicts the process model after pruning

unused paths.

186 CHAPTER 6. WORKER BEHAVIOR ELICITATION

6.4.2 General Case: Unrolling of Nested Loops

Structured subprocesses allow process models to have nested loops structures
This poses a problem for deciding the number of unrolls, as the number of
executions of the forward path per trace may be interleaved across embedded
loops. The process model from Figure 6.3 depicts a process with a nested
loop that accepts trace ABBBABBB. If we follow the count executions of the
forward path, then activity B is recommended to be unrolled 6 times, even
though it has never been executed 6 times in a row.

Instead of considering the number of executions per trace, we may count
the number of consecutive executions of a forward path. In the particular
case of trace ABBBABBB, the forward path B is consecutively executed 3
times at two different points in the trace, whilst the forward path consisting of
activities A and B is consecutively executed 2 times. Definition 6.7 formalises
this concept by counting the number of executions on maximal subtraces

contained in the loop subprocess.

Definition 6.7. Let | be a loop structure of the process model N, and o a
trace accepted by N. Then we define the set of continuous executions

of the loop | in the trace o as

()
o= 0,009

O'/|l & [:(l)
CE(o)=<(n |3oy,0' 09 s.t. 0’| Eziry = 0

El(O'/’l) =N

o' is maximal

\

Informally, the set C'Ej(0) represents a set of numbers, each one denoting

6.4. LABEL SPLITTING WITH LOOP UNROLLING 187

continuous executions of [in o.

The combination of no exit condition and maximality of subtrace ¢’ in
Definition 6.7 ensures that we are splitting the trace ¢ on chunks such that a
continuous execution of the loop [is not separated in two different subtraces.
Besides, non-consecutive executions of the loop cannot be included in the
same group as this would have shown some activities incompatible with the
execution of the loop. Notice that activities that are executed concurrently
alongside the iterative subprocess [might be included in the subtrace o', but
they are removed during the projection to the iterative subprocess [and they
are not part of the exit condition.

Consider trace 0 = ABBBABBB and the smaller loop, or B-loop, of
process model 6.3. The exit condition of the B-loop is activity A, since
any execution of that particular activity clearly shows that the execution is
happening outside the B-loop. Hence, we may split o in two instances of o’ =
BBB. Notice that we cannot extend it since then we would include an exit
condition, and ¢’ is accepted by the B-loop. And therefore, CEp_j,0p(0) = 3.

Similarly to the non-nested case, the language accepted by an unrolled
process model can be described as a refinement on the language accepted by

the original process model as depicted in Proposition 6.8.

Proposition 6.8. Let N be a process model, and | a loop subprocess of N.

Let Ny be any k-unroll of I. Then
L(Ny) ={0o € LIN)|Vn € CEj(0),n is divisible by k}

Proof. The definition of the k-unroll of loop [ensures that any execution of

the loop [executed a multiply of k times the forward path of [and hence

188 CHAPTER 6. WORKER BEHAVIOR ELICITATION

any maximal subtrace o’ C o such that o'|; € L(1), 0'| gzirry = 0 must satisfy
that &k divides Ej(o’).

On the other hand, let o be a trace in £(N) such that all continuous
executions C'Ej(o) are divisible by k. Then, o is also an element of the
language L£(Ny). Suppose not, then the trace o violates any behavioural
relation between a set of activities or the iterative process must finish before
repeating k times the forward path. Both cases are not possible. The former
violates the fact that ¢ € £L(N) and the latter violates the fact that C'Ej(o)

only contains multiples of k. O

Proposition 6.9 is a direct consequence of Proposition 6.8, due to the hard

constraint that k divides all n € CE(t,1).

Proposition 6.9 (Generalization of Proposition 6.6). Given a process model
N describing the log L, a k-unrolling (k > 1) of a loop | increases the pre-
cision of the process model. Besides, if the process model fits log L and k is
a divisor of CL(l,t) for all t € L(N), then the k-unrolled process model also
fits log L.

Revisiting the example of trace ABBBABBB and the process model of
Figure 6.3, which contains a nested loop, a replay of the trace contemplates
that the big loop is executed 2 times and the smaller loop is executed 3 times
on each execution. Hence, we could perform a 3-unroll on the latter and a
2-unroll on the former. Doing so, we discover the second process model of
Figure 6.3, and a second replay highlights the possibility of removing the
unnecessary loop structures as illustrated by Figure 6.3.

Proposition 6.9 establishes a necessary condition over k in order to main-

6.5. EVALUATION 189

o -(e-THTH e - H I H T e~
o-CHHHHH HoH o

Figure 6.3: Three process models describing the trace ABBBABBB.

tain the fitness of the k-unroll. Still, practitioners may sacrifice replayability
of some traces by choosing a different k. See Table 6.1 for a simple log in
which not choosing the right k could be a better option. Proposition 6.9
would recommend to choose k = 1, as the greatest common divisor of 3 and
4 is 1. Nevertheless, there is only one trace ¢ with 3 continuous executions
of the iterative subprocess. By choosing k = 2, the resulting model would
accept all traces except that special trace t, and, hence, the k-unroll improves
the precision of the process model while replayability of the log is not signif-
icantly impacted. Still, we believe that the choice of &k in this case should be

analyzed by the practitioner in order to avoid a loss of significant behavior.

6.5 Evaluation

Using an existing dataset compromising 15 small logs [104] whose source
processes are well-known and reproduce behavior commonly found in real-life

scenario, we plan to evaluate the gain on precision in comparison with a state

190 CHAPTER 6. WORKER BEHAVIOR ELICITATION

Continuous executions | 0 |1 /23| 4 |5 6 |>T7

Absolute frequency 30/0[0|1[45]0]12] O

Table 6.1: Example of the number of continuous executions of a subprocess
[in a log L. Besides the number of executions, this table also counts the
number of traces with such number of executions. For instance, only one

trace has 3 consecutive executions of the loop [.

of the art technique for label splitting [28]. The behavioral characteristics
of the considered process models are summarized in Table 6.2. Afterwards,
we discuss some experiments with pairs of process models and event logs
in which the optimal k£ provided by Proposition 6.9 is 1, and hence setting
a bigger k provides a more precise process model but at the cost of losing
fitness.

Table 6.3 contains the precision obtained with the process model discov-
ered with Inductive Miner (IM), the precision obtained after unrolling these
process models and precision obtained by PNSimpl [28]. We have used the
alignment-based precision metric [1] for this evaluation. 7 out of 15 processes
do not show any improvements with our technique since it was not possible
to perform an unroll without losing fitness. For the BPI Challenge 2012 log,
it was also not possible to perform an unrolling without losing fitness. None
of the iterative subprocesses was repeated a multiple of £ times for any k.
Nevertheless, for this dataset we followed another strategy: We choose £ in

order to minimize the loss in fitness. In this particular case, after performing

191

‘red premspeq [eiAL-uou € Yiam sdoof 9so) IopIsuod
sdoor spiym ‘Aydwo st yyed premspeq Iy} eyl yons Ajargor suo uer) oiowr suistorduwoo sdooy asor)
oIR PUDMYIDQ INOYPM SA0OTT TUOIINIDXD ST 199 R A[OJRIPAWIIT UTRSR POINISIXS 9(URD IR} SOIJIAIIOR 0 IoJodl

sdoo) [5G -UOTYRN[RAD O} Ul POIOPISUOD S[PPOW $59001d 91} JO SOIISIIORIRYD O} JO ATRWIWING :g'Q O[qR],

X X pie X 9T 201J1oY
X X X X 1 cydostyg
X X X X L 664931
X X X 4 8¢d9stg
b b b b 0T yedosig
X X X 6 €edosig
X X X X 1% Ggd9styg
X X X X 6 01d931q
X X X X X . 6d9o81q
X X X X 8 61dg3tg
Z
3 X X X g qOoT1dgstyg
=
= X X X S ANV 1destg
w X X X X e1 [duigegaq
AVn X X X X 11 eyde
)
. sdoor | prem>peq moyum sdoor | sdoo] j[og | £Lousarinduo)) [9d10Y)) |[erjuanbag [SOIIAIIOY | [9POA
Yo
N}

192 CHAPTER 6. WORKER BEHAVIOR ELICITATION

Inductive Miner (IM) IM + Unrolling PNSimpl

Model | P |T | 7 |Precision|Fitness| P| T | 7 | Precision | Fitness| Precision
alpha 111716 | 0.6750 1.0 |12]19| 3 | 0.7386 1.0 0.70
betaSimpl |[14|21| 8 | 0.6216 1.0 [14]15| 2| 0.9130 1.0 0.93
FigoplAND| 9| 8| 3| 0.8333 1.0 |10| 8|2 | 1.0000 1.0 1.00
FigbplOR | 5|6 | 1| 0.7000 1.0 |6|6|0]| 1.0000 1.0 1.00
Fighpl9 |9 (14| 6 | 0.6746 1.0 Not applicable 0.85
Fig6p9 10|15| 8 | 0.6667 1.0 Not applicable 0.83
Figbpl0 |15(24|13| 0.6282 1.0 Not applicable 0.76
Figbp25 |22|35|14| 0.7629 1.0 |25|36|13| 0.8467 1.0 0.84
Figbp3l |6 (10| 1| 0.6250 1.0 | 71(10(0 0.90 1.0 1.00
Figbp33 | 7 (11| 1| 0.6667 1.0 |8|11|0 0.90 1.0 1.00
Figbp34 |17(24(12| 0.5785 1.0 Not applicable 0.93
Figbp38 [13|11]4 | 0.6212 1.0 |13]10|2| 0.77 1.0 0.65
Figbp39 |12|12| 5 | 0.8986 1.0 Not applicable 0.89
Figbp42 71181 4| 0.2284 1.0 Not applicable 0.74
RelProc |21|28(12| 0.7143 1.0 Not applicable 0.73

Table 6.3: Comparison of the precision in selected process models discovered
with Inductive Miner and then Unrolled. The simplicity of the processes is
also depicted with the number of places P, transitions 7" and silent activities
7 in the discovered Petri Nets. For some cases the unroll is not possible

without sacrificing fitness.

a 2-unrolling on the activity Calling to add missing information to the appli-
cation, 9% of the traces cannot be replayed by the unrolled process model,

with a minimal impact on fitness, but its precision increases 5%.

6.5. EVALUATION 193

Results indicate that precision gain is similar with both techniques, pro-
vided that unrolling is possible. Nevertheless, both approaches treat the ini-
tial process model differently: Our approach enhances the expressive power
of the initial process, whilst PNSimpl rediscover the process after each label
split and, hence, the final process might be significantly different. In terms
of complexity, the technique of this chapter may be a light alternative for
methods like [28], which require to iteratively apply agglomerative clustering

for special sets in the state-space representation of the event log.

Non-optimal choices of the k-Unrolling After such experiment, we
wanted to test if the usage of non-optimal k gives value to the k-unrolled
process model. We considered the BPI Challenge 2012 dataset as first exam-
ple. This real-life log contains events describing the application process for a
personal loan, or overdraft, within a global financing organization. From all
these events, we have only selected the events starting with W as they show
actions performed by workers of the organization, which are more prone to
have repeated activities. For this dataset we followed another strategy: We
choose k > 1 in order to minimize the loss in fitness. After performing a
2-unrolling on the activity Calling to add missing information to the appli-
cation, 9% of the traces cannot be replayed by the unrolled process model,
with a minimal impact on fitness, but its precision increases 5%. Besides,
this results implies that the financing organization of the BPI Challenge
2012 usually had to call customers an even number of times for getting the
necessary information. Why are odd repetitions too sparse?

Besides those cases in which a very small number of traces do not sat-

CHAPTER 6. WORKER BEHAVIOR ELICITATION

194

Figure 6.4: Example of a process model in which an activity, with grey background, may be executed twice.

The first execution is completely optional, whilst the second execution is mandatory.

6.5. EVALUATION 195

isfy the multiplicity by £ > 1, we believe that one meaningful case in which
we have to manually set k£ is when at least one repetition of the activity is
optional. For measuring the utility in such a case, we manually designed
a process model in which one activity is optionally repeated with some ac-
tivities in-between. See Figure 6.4 for the example we used in this small
experiment. We used such process model to generate a log in which 50% of
the traces only executed the activity once, and it is executed twice in the rest
of the event log. Figure 6.5 depicts the process model discovered with the
Inductive Miner. In this model, the grey activity is depicted as a self-loop
and performing a 2-unrolling has a large impact on the replayability of the
event log, even though it will more close to the original behavior. Figure 6.6
depicts the 2-unrolling of the process model after a model repair has been
performed. One may notice that the second execution of the grey activity is
now optional, thanks to the process model repair.

What we have seen in the repaired 2-unrolling of the process model in
Figures 6.5 and 6.6 is that the discovered model has some hidden non-trivial
relationship between activities. For instance, we have seen that some activi-
ties between the two executions of the grey activity have been duplicated in
the process model and have both been depicted as optional. Nevertheless,
skipping one of these blocks of activities depends on the number of executions
of the grey activity. Besides, we have also seen that concurrent activities with
any of the two grey activities produce process models in which the same con-
currency covers the execution of both repetitions. In the future, we will need
to consider a repairing method that places these concurrent activities next

to their respective activity repetition. These two insights are consistent with

CHAPTER 6. WORKER BEHAVIOR ELICITATION

196

E

E

H

Figure 6.5: Example of a process model in which an activity, with grey background, may be executed twice.
This process model has been discovered using the Inductive Miner over an event log generated by the process

model in Figure 6.4.

197

6.5. EVALUATION

9IN31,] Ul pojordop [OPOJN $Se001J oY) JO SuljoIun-g

69

oY) Suriredol A(Q POISAOISIP [9POW SS9001J :Q'Q 9INSI]

198 CHAPTER 6. WORKER BEHAVIOR ELICITATION

the rest of the process models of this evaluation, as well as in other small

examples we have been testing while preparing this thesis.

6.6 Conclusion

In this chapter, we presented a method for improving the precision of struc-
tural subprocesses based on explicitly repeating iterative subprocesses and
pruning unused constructs and activities. We have shown that this approach
is applicable to simulations of real-life processes, and also it is applicable to
real-life scenarios.

The presented approach is the first step on considering the unrolling of
iterative processes. Results in Table 6.3 show several examples of how un-
rolling improve the precision of the process models, with minimal impact on
their complexity. Nevertheless, bigger process models might be more difficult
to understand and, hence, it remains to conduct expert reviews on readabil-
ity and understandability of process models after unrolling. Besides, we have
experienced on some datasets that some iterative processes can be explained
as a few iterations are used for initialization, and then the real loop starts.
We would also like to study how the k-unroll operation affects the precision
of the process model for a particular precision metric. In particular, is it

possible to establish a lower bound on the increase of the precision?

PLATFORM

.

‘ﬁ]

CHAPTER [
/ Process Model Comparison

Based on Cophenetic

Distance

Continuing the idea of considering process models as representation and sum-
mary of the user’s behavior in the platform, we describe a new similarity
metric between process models in this Chapter. Being able to compare be-
tween process models describing human behavior would enable us to consider
finding groups of humans that work on a similar manner, or detecting those
individuals whose behavior significantly differs from their peers. In particu-
lar, we have applied these techniques with an industrial dataset compromis-
ing several workers with access to a source code repository. It turns out that
their role in the organization is partially seen in how they access such source
code repository.

This Chapter closes the monitoring capabilities of the platform with re-
spect to workers. We have seen that some processes demand a more so-
phisticated user categorization, or profiling, in order to achieve the desired
level of quality. We have proposed a small pattern to assess the acquisition

of skills, which may be used for defining and sustaining the just mentioned

199

200 CHAPTER 7. PROCESS MODEL COMPARISON

categorization. In those cases in which is not possible to use that particular
pattern, the solution presented in this chapter may be used to measure how
similar is a particular worker to a selected set of workers which have already

shown the desired property (either quality or skills).

7.1 Introduction

Nowadays process models are ubiquitous objects in companies and organiza-
tions. They are becoming precious for representing unambiguous and detailed
descriptions of real processes. On the one hand, BPMS platforms, which al-
low designing, deploying and managing the processes in organizations, are
based on process models. On the other hand, evidence-based process models
(i.e., process models with a high alignment with respect to the underlying
real process) can be used to analyze the process formally, e.g., detecting
inconsistencies or performance problems that may hamper the correct and
optimal execution of the process. Furthermore, the existence of environments
for creating, managing and querying process model collections enable the hi-
erarchical and cross-organizational analysis, with process models as atomic
objects.

A core technique necessary in many of the aforementioned situations is the
automated comparison of process models. Due to its importance, this prob-
lem has received significant attention in the BPM field, which can be split
into structural techniques based on graph-edit distance [30,31,32,112], and
behavioural techniques that focus on the execution semantics or behavioural

relations of the corresponding models [7,29,83,107,108]. Intuitively, struc-

7.1. INTRODUCTION 201

tural techniques are fast but inaccurate (in terms of the differences found),
whereas pure behavioural techniques are complex (both in computation time
and memory usage) but accurate.

In this section we propose a novel method to compare process models!.
The technique is based on a recent algorithm [23] from the field of computa-
tional phylogenetics, where the objects to compare are labeled trees showing
the inferred evolutionary relationships among various biological species. We
adapt the algorithm to the BPM context, thus using process trees [18] as
notation. Our proposed similarity metric sits halfway between pure struc-
tural similarity methods (inheriting their low complexity features), and be-
havioural similarity metrics (capable of providing similar behavioural infor-
mation). Moreover, the performance of our approach allows us to consider

this metric for large process models.

Motivating Example

Let us use a real-life example to motivate the contributions of this chapter.
A product manager decides to monitor all accesses to an SVN repository.
Apache Subversion (SVN) is a software versioning and revision control sys-
tem. Software developers use SVN software to collaborate in the maintenance
and development of software, by monitoring changes in files such as source
code, web pages and documentation. All accesses to a SVN repository are

done through HTTP/S, as specified in the WebDAV /DeltaV protocol. Tt

'We assume the problem of dealing with real activity labels, e.g., when the name of an
activity in the models does not perfectly match, is resolved prior to the techniques of this

chapter.

202 CHAPTER 7. PROCESS MODEL COMPARISON

turns out [92] that those read and write requests over HT'TP/S can be trans-
lated to human-friendly SVN commands such as svn update or svn commit.
Continuing the work done by Li Sun et.al. [92], we model the behaviour of de-
velopers by using process discovery techniques. In particular, we discovered
Petri Nets with the default settings of the Inductive Miner Plugin (ProM
6.5.1). Our goal is to measure the differences between those models, induc-
ing a behavioural distance between individuals. This way, intruder attacks
to the repository can be detected globally by analyzing process behaviour

that is clearly separated from the rest.

-
Wawnw
W
aw ww
m

Tommwa
‘aw mm w
W
T

- .-"I
T

It j[I

-) - . : = -
. B St B =<a '
i N AN -5
BN o N b 2 L— - e
- - —m w [- .
A - * . : <
I g \ N ! o »
| e : -t C
‘ T wee - an
| S ——7
e

Figure 7.1: Two process models describing how two users access an SVN

repository.

Figure 7.1 depicts the access behaviour of two users to the same reposi-
tory, using a block-structured process discovery algorithm?. In our prelimi-
nary study, the process model of an average user shows lots of concurrency,

duplicate activities and iterative behaviour®. Existing behavioural compari-

2We used Discover a Process Tree using Inductive Miner (ProM 6.5) and then converted

them to Petri Nets.
3The most common sequence of commands in the dataset is svn -options, sun update,

svn -options indicating they use an IDE that overwrites the SVN options just to perform

an update and then returns to its previous status.

7.1. INTRODUCTION 203

son techniques struggle when dealing with such models. Either they fall short
in describing duplicate activities and loops [107], or the underlying technique

does not scale in the presence of concurrent process branches [7].

Subprocess 1 OR-SEQ " LOOP - 55 S,
OR - LOOP - SEQ TOR LOOP-SEQ LOOP B
52 R
B " LOOP A
Subprocess 2 OR-SEQ
OR - LOOP SE(%/ " LOOP - 8
(LCAT ~ 5

Figure 7.2: Extract of the tree representation of the two processes in Figure
7.1. Only the subtrees related to two common activities A and B are repre-
sented, and their least common ancestors are depicted in bold. Activities S;

are unrelated to A and B.

The approach presented in this chapter evaluates the difference of the
two minimum subtrees containing a selected pair of activities, and extends
the comparison to all possible pairs. Analysis over such subtrees is expected
to be more simple and efficient, while still capable of comparing both the
structure and behaviour of the two processes. See Figure 7.2 for an example,
which focuses on activities A and B in both models. One can check that
the difference between the depth of the two activities is an approximation to
the graph distance between those two models. For instance, in Figure 7.2,
depths of A are 11 in the first subprocess and 4 in the second subprocess,
whilst depths of B are 11 and 6. The difference of their depths sum 12, im-
plying that 8 nodes must be removed and 2 extra edges are needed in order
to transform one model into the other. Besides, and more importantly, one

can see that the common ancestors of activities A and B in Figure 7.2 model

204 CHAPTER 7. PROCESS MODEL COMPARISON

two different behaviours: On the first subprocess, activities A and B are
mutually exclusive; On the second, A is executed after activity B. Notice
that the depth of this common ancestor also highlights how long it takes
to make the behavioural decision of how activities A and B relate to each
other. Therefore, by incorporating these notions into the distance function,
we would be able to not only measure structural differences but also highlight
differences in the behaviour of two process models. For instance, one could
obtain the sentence: Activities A and B in Figure 7.2 are mutually exclusive
in the first subprocess, but activity A always occurs after B in the second
subprocess. Besides, the behavioural decision in the first subprocess is done

6 steps after the decision is taken in the second subprocess.

7.2 Related Work

The state of the art techniques for comparing process models can be split
into structural and behavioural. In the former, process models are considered
as labeled graphs and the comparison is regarded as edit operations over
their edges, nodes or both. In contrast, behavioural techniques focus at the
comparison of the execution semantics of the compared models.

If we focus on the particular case of business process models, structural
comparison techniques based on graph edit operations have been defined [30,
31,32,112]. Although the graph edit distance technique is NP-complete, the
aforementioned techniques use heuristics that can cope with the inherent

complexity of the problem in practice. Also, structural techniques based on

7.2. RELATED WORK 205

similarity flooding represent an alternative to these methods [71].
Analogously to structural techniques, behavioural ones exist for the case
of business process models. The first ones considered the comparison of the
automaton underlying the models [29], although the techniques proposed
in [29] are not complete. behavioural profiles is another way of comparing the
behaviour of process models. A behavioural profile of a process is represented
as an n X n matrix, where n is the number of tasks in the process [107,108].
Each cell in the matrix contains one of three possible ordering relations,
plus an additional co-occurrence relation in case of causal behavioural pro-
files. Unfortunately, this way of representing a process model falls short
in describing several constructs, like skipping/duplicate activities and loops.
These problems also affect a similar formalism that recently appeared [83].
The recent work in [7] represents a complete and fresh approach to the
problem of behavioural model comparison. It regards the problem of diag-
nosing differences between process model as the analysis of the synchronous
product of the corresponding underlying event structures, a partial-order rep-
resentation of the behaviour. Interestingly, it can describe differences using
natural language templates that are more accessible to the general audience.
Although both canonical and reduced representations of event structures can
be used, these optimized representations only help to alleviate partially the
complexity of the approach, as it is shown in the experiments of this paper.

of dealing with the behavioural representations in terms of event structures.

206 CHAPTER 7. PROCESS MODEL COMPARISON

7.3 Background

The metric defined on this Chapter is heavily based on the structureness of a
process model, and its process tree representation. Apart from the essential
notations and definitions of Section 2.2.1.4, here we define the cophenetic
vectors, which hold a key property for comparing trees that will be later

used in Section 7.4.

7.3.1 Cophenetic Vectors

The least common ancestor (LCA) of a pair of nodes u and v of a rooted
tree T, denoted by [u, v]r, is the unique common ancestor of them that is a
descendant of every other common ancestor. The definition of the Cophenetic
vector is based on the discrepancies on the depth of the LCA of every pair

of activities.

Definition 7.1 ([86]). Let S be the set of labels of a weighted labeled rooted

tree T'. For every pair of different labels i, j, their Cophenetic value is
or(i,j) = or([u,v]r) u,v have labels i, j

To simplify notation, we denote the depth of a node with label i by (i, 1),

and pr(i,7) = 0 if either i or j are not activities of the process tree T .

Definition 7.2. Let T' be a weighted rooted tree, and S the set of activity

labels of the tree T', its Cophenetic vector is

o(T) = (@T(iaj))i,jes

7.3. BACKGROUND 207

)

T . -
V) SEQ, A|B|C|D|E A|B|C|D|E SEQ,

A A 21|11 lAf3|2]1]1]1 A

OR, AND, B sl1l111] B 311011 AND, AND,
T — 7~ [¢ 4|3]2]]|cC 428 > T
As Bs OR; Es As Bs OR; Ds
D 4/2||D 3|2
T T
Oy Dy E 3 E 4 Cy E4

Figure 7.3: Example of process trees and their Cophenetic vector (in matrix
representation), assuming the depth of the root is 1. For simplicity, we
included node’s depth as a subscript of the label. For instance, the LCA of
activities C' and F in T7 is the AND gateway that is one children of the root

and, hence, its Cophenetic value is 2.

In an already fifty years old paper [86], Sokal and Rohlf proposed the
use of the cophenetic values to compare dendrograms. Authors in [23] show
that cophenetic values can also be applied to uniquely project labelled trees
into a multidimensional vector space, allowing them to define a distance on

labelled trees as Theorem 7.3 states.

Theorem 7.3 ([23]). Two weighted labeled trees without elementary nodes,
unlabeled leaves nor repeated labels are equal if, and only if, they share the

same Cophenetic vector.

Cophenetic vectors are not enough for determining process tree similar-
ity: for instance, in Figure 7.3 if the OR and AND labels of the left tree
are interchanged, the Cophenetic vectors of both trees are equal whilst the
behaviour represented is different. Besides, constraints in Theorem 7.3 do
not allow models with multiple silent transitions. Next section shows how to

transform process trees in order to overcome this limitation.

208 CHAPTER 7. PROCESS MODEL COMPARISON

7.4 The Cophenetic Distance between Deter-
ministic Process Trees

As we have seen, Cophenetic values unequivocally represents weighted labeled
rooted trees. As it is well known, this allows to induce distance metrics in
the set of labeled trees. Let dist be any distance between two points in a

vector space, we define
d(T,T") = dist((T), p(T"))

as the distance between two trees. For instance, by using the L!'-norm we
get
(T, T = lor(i, §) — (i, j)

1,jES

The Cophenetic values were originally conceived to measure structural
differences between the leaves of two dendrograms, but we can extend its use
to deterministic process trees thanks to Theorem 7.3. This result allow us
to modify the depth of each node in order to model the path of gateways we
are tracing from the root to activities (the leaves of the tree). In Definition
7.4 we propose a depth function to overcome the following weaknesses of
the original Cophenetic distance over labelled trees: (1) ensures that non-
common activities increase the distance between two models; (2) depth of
activities in a sequential order increase in the same sequential order, modeling
the complexity of the blocks already seen by the process; (3) allows for silent
transitions; and (4) differentiates two processes with the same structure but

modeling different gateways at the root.

7.4. THE COPHENETIC DISTANCE BETWEEN DETERMINISTIC PROCESS TREES209

Definition 7.4. Let T be a deterministic process tree. We define the depth

function 0} as follows:
1. Root node has depth 1.
2. Iterate over all nodes in a pre-order traversal.
3. The depth of all nodes is 1 plus the depth of its parent, except

(a) If the parent is an OR clause, increase 0.5 instead of 1.

(b) If the activity is silent, increase 0.25 the depth of the parent and

any other sibling. Afterwards, remove the silent activity.

(c) If the parent is the start of a LOOP, increase also by the mazimum
depth of the underlying tree.

(d) If the parent is a SEQ gateway, consider the depth of deepest vis-
ited children of the node’s siblings instead of the parent.

4. Any remaining elementary node will be removed, and its parent and

children wnll be directly connected.

For the sake of simplicity, tr f(T) will denote the combination of the tree
T with the aforementioned depth function .

Figure 7.4 depicts the transformation of the two processes in Figure 7.3.
With the aforementioned depth function, Cophenetic values now highlight,
for example, differences in the two activities A and B due to the behavioural
change of their parent node. This transformation allow us to overcome the

limitations of Theorem 7.3, since silent transitions are allowed, but also by

210 CHAPTER 7. PROCESS MODEL COMPARISON

)

1 N
) seq, A|lB|Cc|D|E A|lBlCc|D|E SEQ:
/\ Alas| 2 |1 1|1 ||alsl2]1]1]1 /\
ORs ANDys 1B 2501 1 |1 ||B 301 1] 1 AND, AND,
N >~ ¢ 5045(35]| | C 5545 | >
A%Zj B2.5 OR‘LS E4v5 D _ 3 5 D - 4 Aﬁ BS OR{') D"ﬁ
9 . 9
/\
Cs Ds E 4.5 E 5.5 Css Ess

Figure 7.4: Transformation of the process trees in Figure 7.3. For the sake
of simplicity, we included node’s depth as a subscript of the label. For in-
stance, depth of the AND gateway in T} is 3.5 because its parent represents

a sequence and the maximum depth of the previous processed branch is 2.5

ordering children of sequential gateways. As we state in Theorem 7.5, this

transformation uniquely represents deterministic process trees.

Theorem 7.5. Let T and T" be two deterministic process trees. If trf(T)
and tr f(T") share the same Cophenetic vector, then T and T" are the same

process tree.

This theorem shows that Theorem 7.3 is also applicable to the new depth
definition, and therefore useful for checking equality of two process trees
and measuring differences between the models. The proof of this theorem is
based on the observation that the Cophenetic values of any subtree are highly
related to the Cophenetic values of the complete tree, as Lemma 7.6 shows.
Details of the proof of this lemma are omitted, but it is a direct consequence

of the pre-order traversal approach of Definition 7.4.

Lemma 7.6. Let T be a weighted rooted tree, and S a subtree of T'. Then

7.4. THE COPHENETIC DISTANCE BETWEEN DETERMINISTIC PROCESS TREES211

the Cophenetic vector of S satisfies that

905(27]) = QOT(ZL]) - 6&1(T00t Of S) +1
Theorem 7.5. Let’s proof this by induction.

e For processes with 1 or 2 activities, one can list all possible deter-
ministic process trees and check that no two processes share the same

transformed tree.

e For processes with n > 2 activities, we will show that every strict sub-
treet of T is equal to another subtree of T". Let VT be a strict subtree
of T. Suppose A and B are two activities such that [A, By is the
root of VT'. Activities A and B are also included in the deterministic

process tree T", and [A, Bz is the root of a certain subtree VT".

| |
[AaB]T [A7B]T’

T T

A ... B A ... B

Lemma 7.6 ensures that

ovr(i, j) = er(i,j) — 0r([A, Blr) + 1

= or:(i,§) — 07([A, Blr) + 1 = v (4,)

4Here a strict subtree of T is any subtree that does not contain the root of T

212

CHAPTER 7. PROCESS MODEL COMPARISON

where the second equality holds since trf(T") = trf(T") and Theorem
7.3. And therefore, VT and VT share the same Cophenetic vector and
its size is smaller than 7" and 7”. By induction, we can say that both

process trees are equal.

There is one case where there are no two activities A and B such that
[A, B]r is the root of VT: The root of VT is an OR-clause, and one
children is a silent transition. In this particular case, we can work
with the non-silent children V'T},,. The combination of two consecutive
OR conditions is not possible in a valid deterministic process tree, and
therefore VT, falls under the proved assumption. Hence, there is a

subtree VT . of T that is equal to VT,,.

T ™
| |
VT(=OR) X
NG N
0 VT, VT, C

VT,s and VT share the same activities, and VT, is a strict subtree
of T'. Therefore, VT is also a strict subtree of 7. Let X be its parent
node. We will show that X is in fact an OR condition, and it only has
another silent branch. Let’s assume there exists an activity C' under X

but not included in VT .. There are two options:

— X is the root of 7”. In that case, we can replace the subtrees V'T,,,

7.4. THE COPHENETIC DISTANCE BETWEEN DETERMINISTIC PROCESS TREES213

and VT, by a mock activity C’'. We reduced the problem to the
2 activities case, already solved. In that case, we share the same
Cophenetic value but the two process trees are different (77 does
not have a silent transition). We arrived to this contradiction by

assuming that C' exists.

— X is not the root of 7”. In that case, the subtree VX induced
by the node X is a strict subtree of 7" and X is not and OR
condition. By applying the previous reasoning, there is a subtree
W of T that is equal to VX and includes V'T,,. Notice that, in

that case, the only possibility is that C' is a silent transition.

This shows that any subtree of T is equal to a certain subtree of 7.
By applying this result to all the direct children of the root of T" one

can see that T" and 1" are indeed equal.

7.4.1 Behavioural Information Captured by Cophenetic

Values

The syntax of process trees allow us to easily check the direct causality
of two activities in the model: one simply needs to check the behaviour
explained by their LCA. Co-occurrence of activities is described by an AND
gateway, whilst OR internal nodes induce conflict between their underlying
activities. Notice that this causal relation is a property for the minimum

subtree containing the pair of activities. For instance, if the two activities

214 CHAPTER 7. PROCESS MODEL COMPARISON

are inside a bigger loop structure, we would not be able to retrieve this
information due to the loop gateway being some levels above the LCA.

To provide a more global information than the local direct causality,
depths given by Definition 7.4 can be used. They summarize the behavioural
situation of the given node. See, for instance, the processes of Figure 7.4.
Depth of activity D could be seen as the sum of the blocks found from the

root to the node.

57, (D) = 1(root) + 2.5(Seq) + 1(And) + 0.5(Or)
o1, (D) = 1(root) + 3(Seq) + 1(And)
57, (D) — 67,(D) = (1 — 1)(root) + (2.5 — 3)(Seq) + (1 — 1)(And) + (0.5)(Or)
= —0.5(Seq) + 0.5(Or) (7.1)

Notice that by considering the difference of the two depths, i.e. the value
considered by the Cophenetic distance, we start highlighting where are the
differences, and the type of changes committed, of the behaviour up to ac-
tivity D.

When comparing pairs of activities, the cophenetic distance does not
only consider the depth of the two activities but also the LCA. Following the

previous example, let’s compare activity D with C"

57 (C) — 87,(C) = (1 — 1)(root) + (2.5 — 3)(Seq) (7.2)
+ (1 — 1)(And) + (0.5 — 0.5)(Or)
= — 0.5(Seq) (7.3)
or, ([C, D]ry) = o, ([C, D]r,) = (1 = 1)(root) + (2.5 — 3)(Seq) + (1 — 0)(And)
= — 0.5(Seq) + 1(And) (7.4)

7.4. THE COPHENETIC DISTANCE BETWEEN DETERMINISTIC PROCESS TREES215

The Cophenetic value of C' stores the differences on the previous block in
the sequence, as it did with Activity D. Besides, the Cophenetic value of
activities C' and D captures again the difference in the sequence and also an
AND gateway. Hence, the pair of activities C' and D are a step closer to the
end in one of the two process models. But more interesting properties could
be extracted by measuring the difference of such Cophenetic values: Whilst
the cophenetic value o7, ([C, D]) — dr,([C, D]) gives an idea of the difference
of the two processes up to the LCA [C, D], these two new values provides the
same differential analysis on the paths from the ancestor to the activities. In
this example, (2) — (3) = 1 indicates that the position of C' with respect to
their common ancestor differ in the insertion of an AND gateway; whilst in
the case of activity D, (1) — (2) = 0.5 recognizes that an OR gateway has
been added, or replaced by an AND, in one of the models.

This example shows the potential of the LCA, and the Cophenetic values,
to generate more understandable and user-friendly comparison tools between
process trees. Definition 7.7 shows two possible sentences we could build

thanks to this information.

Definition 7.7. A set of human-readable differences can be generated using

the Cophenetic values.

e Given a pair of activities A and B such that they differ in the behaviour
explained by their LCA. We could say that

“In the first model, Activities A and B are (in sequential order /
co-occurrent / conflict). Whilst they are (in sequential order /

co-occurrent / conflict) in the second model. Besides, the position of

216 CHAPTER 7. PROCESS MODEL COMPARISON

this behavioural decision differ in o7, ([A, B]) — o1, ([A, B]) units.”

e Given a pair of activities A and B showing the same causality but

or, ([A, B]) — 0r,([A, B]) # 0. We could say that

”Activities A and B show the same causality, but the position of this
behavioural decision differ in o1, ([A, B]) — 61, ([A, B]) units.”

In this section a formal guarantee for process tree equality based on
Cophenetic distance has been presented, which restricts process trees to be
deterministic. Next section lifts this restriction deriving an approximate

metric based on the existence of a matching between the two process trees.

7.5 Distance between Indeterministic Process

Trees

Only a small fraction of the process models generated from the human in-
teraction with the source code repository are deterministic Process Trees.
In the general case, each SVN command is executed several times during a
developer day of work, and usually in different contexts producing processes
with several duplicated activities. Unfortunately, the Cophenetic distance
definition does not easily extend to such a kind of process. Figure 7.5 de-
picts an example of two indeterministic process trees where one activity, A,
is duplicated. The Cophenetic distance cannot be used as it is was previously
defined. First, the left model has two options for the depth of activity A.

And more importantly, when computing the LCA of A and C, the results

7.5. DISTANCE BETWEEN INDETERMINISTIC PROCESS TREES217

Seq Seq

And/\Or /l\

/y\ P A3 D And
Al A2 B C I

cC 0

Figure 7.5: Example of two indeterministic process trees. Activities A are

indexed for the sake of simplicity, but all of them are indistinguishable.

depend on which copy of activity A we chose. For instance, the LCA of A3
and C'is the root, but the AND gateway w.r.t. A*. Nevertheless, we can still
approximate an upper bound similarity metric between indeterministic pro-
cess trees. In this section, we present a technique that can still be applicable
when (some of) the input process trees are indeterministic.

Notice that two process trees 17 and 75 are equal if there exists a re-
labeling of both process trees such that each new label replaces the same
label in both models, the resulting process trees are deterministic and their
cophenetic distance is zero. Such a relabeling could also be seen as a match-
ing between the activity nodes of both process trees. We could tackle the
challenge of extending the Cophenetic distance by making use of such a
matching: instead of considering pairs of activities (uniquely represented in
a deterministic process tree), this similarity metric compares two pairs of

matched nodes. The aforementioned ambiguities among repetitions of an

218 CHAPTER 7. PROCESS MODEL COMPARISON
activity are removed by considering these matches.

Definition 7.8. Let w be a matching between the nodes of T and the nodes

of Ty, we define their matching Cophenetic distance over w as

dw, = Z Z lor, (i1, J1) — 1, (P2, J2)|

(i1,i2) Ew (J1,j2) Ew
Notice that the nodes 11,19, j1,j2 in Definition 7.8 are not necessarily
representing activities in the model. Such a distance considers all nodes as
labeled. The quality of such a similarity metric depends on the quality of
the matching w. On top of that, the utility of the measurement decreases if

activity labels are not preserved by the matching.

Seqq TTToToTmmommmTTTmTT o~ Seqy
A0 Ta BT ¢ Jaua] or [Seq]D A0 Tan [B] ¢ Jau] or [seq[D
Al s] BEEEERD e [[y
And2 Or4 25 A% 3 12110 AQ) alaa]a]1n A2 D3 AIl(h
B 312 1|1 o B [EERENERE /[\
C 175 1 1 1 C 5.75 1 525 1 1
A3 A3 B3 04.75 @ And 2|1] And HERE A5 OI”5‘25 B5
K\ K\ Or 125 | 1 Or 5250 1 1 ’I\
AN (1 eq 1o Seq 1 K /\
\\\:\“--f ________ : 5 Csrs 0
[0 I

Figure 7.6: Example of two indeterministic process trees and a matching
Cophenetic distance (represented as a matrix) with respect to a certain node
matching. All nodes are matched to their respective nodes with the same
label, except activities A (discontinued lines (1) and (2) depict how they are
paired) and activity D that does not have a representative node in the first

tree. Subscripts depict the depth of the nodes.

Figure 7.6 depicts an example of such a matching Cophenetic distance
of the models of Figure 7.5. From the set of all the possible matching, we

choose to pair activities with the same label and, for activities A and D, we

7.5. DISTANCE BETWEEN INDETERMINISTIC PROCESS TREES219

considered the pairs depicted by discontinued lines. Notice that activity D
does not have a matched node in the first tree. In the middle of the Figure,
one can find the Cophenetic vectors of both process trees. When considering
Activity D, we treat this case as is if the activity does not exist in the first
model. This example shows how the matching Cophenetic distance is com-
puted for a specific node matching, but we could iterate over all matchings

and get the minimum value possible.

Definition 7.9. We define the minimum matching Cophenetic dis-

tance as

dmingo(Tla TQ) = min d(.d<p (Tla Tg)
where the matching w preserves activity’s labels.

Although the matching Cophenetic distance is a quadratic-time algo-
rithm [23], once we have chosen a particular matching w, it is still com-
putationally infeasible to compute this distance for each candidate w in the
manimum matching Cophenetic distance. In a practical scenario in which the
size of the process trees made it impossible to test all possible matchings, one
would be able to bound this ideal distance with an approximate node match-
ing. Although current matching algorithms [8,61,74] focus on preserving the
structure of the graph, they could be used to approximate this matching due
to the structural approach of the Cophenetic distance.

We have chosen the Flexible Tree Matching algorithm (FTM) [61] for
estimating the minimum matching Cophenetic distance with indeterministic
process trees. The FTM finds the minimum-cost matching that takes into ac-

count the cost of relabeling a node, removing or adding a node, and breaking

220 CHAPTER 7. PROCESS MODEL COMPARISON

structural relations between nodes (such as direct descendants and siblings).
Notice the resemblance to the definition of the Graph Edit Distance (GED):
The cost of the matching resulting from FTM is an approximation of the
GED, but assessing also the cost of not having the same neighbors. Tuning
these costs allows us to focus on mapping nodes with the same activity (we
set to 1, the maximum value, the cost of relabeling) and diminishes the rel-
evance of structural differences. The following proposition establishes also a

complexity bound:

Proposition 7.10. The FTM needs at least O(M - N3log N?) operations to
approzimate the matching between two process trees T and Ty. Where M 1is
the number of iterations needed by the algorithm (i.e. the expected quality of
the results) and N is the total number of nodes in Ty and Ts.

Proof. The Flexible Tree Matching iterates M times over a randomly gener-
ated matching, to retrieve the find the best possible matching. In each iter-
ation, the algorithm needs to recompute the N pair of matches. A weighted
bipartite N? graph is considered, where weights represent the cost of adding
such a pair to the matching. To get the best outcomes from this choice, the
algorithm sort all the edges and randomly chooses one of the costless edges.
Hence, each iteration of the Flexible Tree Marching needs O(N?log N?) op-
erations, plus the complexity of computing the cost of each pair of nodes
(which may involve traversing the whole matching depending on the imple-

mentation). O

In summary, extending the technique of this chapter to indeterministic

process trees requires to first compute a matching and then compute the

7.6. EVALUATION 221

Cophenetic distance over this matching. This comes with an increase of the
complexity due to the need to compute a matching, a step that dominates
the complexity of the whole approach. In the next section, we evaluate the

proposed method on various types of benchmarks.

7.6 FEvaluation

We divided the evaluation of our similarity metric in three experiments: First
we consider a small set of synthetic process models to position our metric
with respect to already established comparison tools. Secondly we check that
the results given by our approach are consistent with two other metrics in a
set of real process models. Finally, we stress the Cophenetic distance with

large process models to assess its scalability.

Qualitative Comparison. Figure 7.7 depicts eight models extracted from [12].
These models were used in [12] to evaluate different similarity metrics. All
models are deterministic, and share the same activity set except process
model V3. Table 7.1 depicts the similarity given by the Cophenetic dis-
tance and state-of-the-art process models distances. In order to compute
the Cophenetic distance, all models have been represented as process trees.
Notice that the inclusive gateway of model V3 cannot be translated to a de-
terministic process tree (because only exclusive ORs are accepted), but it
was translated to an AND gateway with all internal branches being com-
pletely optional. The Cophenetic distance differentiates models V and V5,
but considers Vy more similar to V5 than Vj. Discrepancies shown in Table

7.1 highlights the lack of a clear definition of similarity. Overall, the Cophe-

222 CHAPTER 7. PROCESS MODEL COMPARISON

netic distance offers a different view for the comparison with respect to the

other metrics.

(URY ey wewew [ONNsd
o o 5 Sl W °
D05 aUsi IS o0 namanemn

Vi) G
'“"‘.g.‘““”’ §teo

(2
Vs) V7) a
P ATDD SfTo oA T AT 0
Sgh g SR ek
Figure 7.7: 8 process models extracted from [12]. Process models Vi,..., V7

are variants from the same process model V4.

Correlation with two other metrics. We gathered 700 pairs of deter-
ministic process models from the SAP Reference Book [24] to compare our
approach to two other established process model similarity metrics in a real
scenario. We have chosen the traditional graph edit distance as a representa-
tive of a structural comparison tool; and, for the behavioural part, we have
chosen the Event Structures technique [7]. Figure 7.8 depicts the compari-
son of the three metrics. The X and Y coordinates of a point depicts the
distance given by two comparison tools, and the color represents the density
of pairs in such a situation. I.e., the less dark blue a point is, the more pairs
of models satisfying this relation. One can check, for instance, that most
of the models differ at 10 units by the behavioural technique and the graph

edit distance. Histograms show that the measurements given by the three

7.6. EVALUATION 223

Vo compared to

Cophenetic Distance

Percentage of Common Nodes and Edges

Node- and Link-Based Similarity

Graph Edit Distance

Label Similarity and Graph Edit Distance

Number of High-Level Change Operations

Comparing PMs Represented as Trees

Comparing Dependency Graphs

Causal Behavioural Profiles

Event Structures

Longest Common Subsequence of Traces

Similarity Based on Traces

Table 7.1: Similarity of model Vj to the rest of models from Figure 7.7 with
respect to several similarity metrics. Similar models are depicted by darker

cells. Values were extracted from [12], except for the Cophenetic and Event

Structures [7].

metrics are correlated®. It is not clear that the same factual differences are
measured by the three metrics, but the scores obtained are aligned with the

two other established metrics.

Scalability of the Cophenetic distance. We also study the differences

in performance over large process models. We considered 7 additional pairs

5In all three cases, the Pearson correlation coefficient is above 0.85 with a p-value, for

testing non-correlation, below 10712,

224 CHAPTER 7. PROCESS MODEL COMPARISON

2000)
1000 -
v =S w5 ow s w %

Graph Edit Distance
k]
Cophenetic distance
A
} !
Cophenetic distance
i]

Event Structures Event Structures Graph Edit Distance

Figure 7.8: A set of two-dimensional histograms comparing the results of the

three comparison tools in the SAP dataset.

of process models and run the three comparison tools on each pair. The
size of the processes, presence of concurrent blocks and loops varies among
the models to test the applicability of the three tools. Table 7.2 depicts the
size of such models, and the time needed to measure the differences®. The
Graph Edit Distance wins all the tests, the tree structure made this algorithm
work way faster than usual. The complexity of the other two tools increases
significantly with respect the number of activities, although the growth rate
in the Cophenetic distance is considerably smaller. Notice the second pair of
models, in which concurrency is present, make the behavioural tool run out of
memory. Besides, we decided to stop the behavioural tool after 12 hours in all
tested process models with more than 100 activities, even with deterministic
process models in which the cophenetic distance showed significantly smaller

times. This analysis allow us to recommend the Cophenetic distance over

SWe ran all tests in a virtual machine running Linux elementary OS for ensuring com-
patibility will all implementations, with 1 CPU and 4 gigabytes of RAM reserved from
the host machine. The host used a 4-core Intel i7 — 4600 CPU running at 2.1 GHz with 8
gigabytes of RAM.

7.7. APPLICATION TO THE COMPARISON OF USER’S BEHAVIOR225

other behavioural approaches to analyze big process models ”.

Table 7.2: Time spent in computing the distance between a few selected
process models. The table shows the number of activities in each process
model, the distance given by the Cophenetic metric and the other two selected

comparison tools, and the time used.

Size | Deterministic | Concurrency | Realistic dy, Time |dgs|Time (Event Structures) |dgep | Time (GED)
25 No No No 0 1.71s 0 1.63 s 0 0.03 s
30 Yes Yes No 7250 0.005 s Run out of memory 40 0.009 s
50 No No No 3713 54.37s | 9 90.54 s 93 0.12 s
60 No No Yes 8 190 322.48 s. > 12 hours 167 0.19 s
100 No No No 16615 | 467.23 s > 12 hours 184 0.42 s
100 Yes No No 452299 | 0.57 s > 12 hours 189 0.14 s
200 Yes No No 2441571 2.28 s > 12 hours 371 0.53 s

7.7 Application to the Comparison of User’s
behavior

In this section, we explore the idea of compare the behavior of several users
using the Cophenetic distance explained in this section. First, we describe the
provided behavioural data of 200 individuals and their organizational roles in
the company. Process discovery is used to summarize the behavioural data

from each individual, and dissimilarities between those processes are meant

"Remember that the scale of metrics d,, dgs and dggp is different, a fact that explains

the differences on the absolute values provided in each one.
8We discover these processes by analyzing the accesses of two developers to an internal

source code repository. Figure 7.1 depicts an example of a pair of such type of processes.

226 CHAPTER 7. PROCESS MODEL COMPARISON

to measure differences in the behaviour of the individuals. Then, we test some
clustering approaches with three different similarity metrics to measure how

good they approximate the original organizational rules.

7.7.1 Context

Apache Subversion (SVN) is a software versioning and revision control sys-
tem. Software developers use SVN software to collaborate in the maintenance
and development of software, by monitoring changes in files such as source
code, web pages and documentation. All accesses to a SVN repository are
done through HTTP/S, as specified in the WebDAV /DeltaV protocol. It
turns out [92] that those read and write requests over HT'TP/S can be trans-
lated to human-friendly SVN commands such as svn update or sun commit.

Continuing the work done by Li Sun et.al. [92], we model the behaviour of
developers by using process discovery techniques. First, SVN commands are
retrieved from the system and considered as events of a system that represents
the developer, and then a trace is defined as all commands executed during
a complete business day.

This industrial dataset contains all the accesses of more than 200 indi-
viduals to one repository of CA Technologies in production for three years.
After pruning users with few accesses to the repository, 83 individuals were
kept in the study and their organizational roles were retrieved at the end
of the monitoring phase. In particular, 37 Forward Engineering, 19 Qual-
ity Assurance Engineers, 16 Sustaining Engineer, 5 Support, 2 Services, 1
SWAT Engineer, 1 Infrastructure, 1 Technical Writers. The following list

summarizes the responsibilities for each role.

7.7. APPLICATION TO THE COMPARISON OF USER’S BEHAVIOR227

Forward Engineers (R1) are in charge of the implementation of new

features.

o Quality Assurance Engineers (R2) plan, run and design use cases or

tests.

o Sustaining Engineers (R3) are in charge of solving defects, as well as

ensuring that software successfully passes all tests.

o SWAT engineers (R4) are in charge of implementing custom integra-

tions.

e Support (R5), Services (R6) and Infrastructure Engineers (R7) interact
with internal and external customers with respect to defect detection
and solution, software installation and configuration, and maintenance
of the infrastructure of Software as a Service solutions provided by
the company. Support Engineers might push some quick fixes into

products.

e Technical Writers (R8) collaborate with Forward, Sustaining and Qual-
ity Assurance Engineers for creating helpful Knowledge Base and User
Guides. Technical Writers are asked to use the source code repository

to maintain different versions of the documentation.

Among all the engineers, and fairly distributed among roles, 9 individuals
are Managers of a team. Besides, one agent is labeled as a bot, although the
purpose of such bot is unknown to the authors of this chapter. Notice that
one has the possibility of advancing in their career and change to another

department, and, therefore, some individuals might have been misclassified

228 CHAPTER 7. PROCESS MODEL COMPARISON

as their latest role. Infrastructure and Service Engineers are not supposed to
access the repository in their usual pipeline and, therefore, might have been
promoted during the project. Nevertheless, clustering may help us to deduce
their original roles in the organization.

During the rest of this section we plan to answer the following questions

in regard of this scenario:

e How good is clustering of process models for approximating the original

role of the individuals?

e Which is the expected role of the bot? And what about the role of

other anomalies?

7.7.2 Homogeneity of Roles in Process-based Cluster-
ing

In order to measure the quality of the clustering, we will use the purity

as the metric for measuring the homogeneity of the discovered groups. Let

C ={C,...,Cy} be a clustering of the process models, and R;(C};) be the

number of individual in cluster C; with the role R;, then the purity is defined

as
1

Number of processes 4
j

Purity(C, R) =

cC

In other words, the purity computes accuracy as if we label all individuals
inside a group with the most popular role inside it. In particular, very
heterogeneous groups of individuals will lead to a poor purity.

Figure 7.9 depicts the purity obtained from the SVN-repository dataset

with respect to the number of clusters using hierarchical clustering. The

7.7. APPLICATION TO THE COMPARISON OF USER’S BEHAVIOR229

= I
g Cophenetic g Cophenetic —
& og| - GED L. 2098 e GED Ao
BP P BP | !
g 0.96 A
08 . —_— !
o 094 — :
07 . ‘,_."
. 092 |
/ ‘ |
06 . / '
I / ; 090 1
[’5/7.'"‘ 088 T —=- - - -
04 086
0 1 22 30 4 5 & 70 8 90 0 10 20 30 40 50 &0 70 80 80
Number of clusters Number of clusters
Role Manager

Figure 7.9: The solid line depicts the evolution in the purity of the
Cophenetic-based hierarchical clustering as the number of clusters increase,
whilst the dashed (resp. dotted) line depicts the graph edit distance (resp.
Behavioural Profiles). Two different experiments were performed for detect-

ing individuals’ role and their status as managers.

X-axis represents the number of clusters considered, and its respective pu-
rity is represented by the Y-axis. The solid line depicts the purity of the
clustering obtained based on the Cophenetic distance. One may notice that
the three techniques provide similar purity metrics for the first clusters, but
then the Cophenetic distance provides significantly better results starting
from 5 discovered groups until they converge again at 40 groups. In fact,
the range between 5 and 40 groups is the most representative usage of clus-
tering techniques as it is close to the real number of roles and one starts to
discover groups of 1 individual when setting larger number of clusters. On
the right graphic, only the status as a Manager has been considered. Due to
the low number of Managers in the dataset, these results denote the ability

of efficiently filter out abnormal behaviour.

230 CHAPTER 7. PROCESS MODEL COMPARISON

Cophenetic GED Behavioral Profiles
Precision | Recall | Precision | Recall | Precision| Recall
Manager 0.71 0.55 No individual was labelled
Forward Engineer 0.64 0.76 0.46 0.97 0.45 1.00
Sustaining Engineer| 0.00 0.00 0.57 0.26 0.00 0.00
Quality Assurance 0.34 0.57 No indiv. 1.00 0.05
Support 0.50 0.40 No individual was labelled
Others No individual was labelled

Table 7.3: Precision and Recall for each of the roles in the organization by
considering a hierarchical clustering with 6 groups. In some cases, none of

the groups had enough representation of a role.

Table 7.3 summarizes the precision and recall of the hierarchical clustering
of Figure 7.9 when we set the number of clusters to 6. Again, we consider
the classification as if the predicted label of all elements inside a cluster is
the role of the more popular role inside the cluster. These results show again
the capabilities of the Cophenetic distance to highlight the Manager role
and provides, in general, better results for all roles, except the Sustaining
Engineer. On the other hand, GED and Behavioral Profiles tend to group
all individuals in a very big, and heterogeneous, cluster and, therefore, we
obtain those roles with high recall but low precision (and those with high
precision but very low recall).

As for the bad performance with respect to Sustaining Engineers, notice
that responsibilities of the Sustaining (R2), Quality Assurance (R3), SWAT

(R4) and Support engineers (R5) are all related to defects and bug fixing,

7.7. APPLICATION TO THE COMPARISON OF USER’S BEHAVIOR231

and, therefore, they may share some common behaviour and practices. Be-
sides, the number of Sustaining Engineers is slightly below the number of
Quality Assurance Engineers, and, hence, it is more likely to label users as
Quality Assurance Engineers in case of grouping them together.Table 7.4
summarizes the precision and recall for a clustering of 6 groups. Notice that
precision and recall of the Forward Engineer category are not significantly
affected in the case of the cophenetic distance, indicating the existence of
groups with a strong presence of Forward Engineers. On the other hand,
precision and recall are very affected in both GED and Behavioral Profiles
cases. The results provided by the GED are an indication of one or more
small groups of Forward Engineers (perfect precision, but low recall), and
a big group in which half of the developers have a role in R2345 and the
rest are Forward Engineers or other minor roles. As for behavioral profiles,
results are slightly worse than the cophenetic distance, but still incapable of
detecting the group of Managers.

We have run the same experiments using DBSCAN [35] as the clustering
method. The key benefit of DBSCAN is that the number of clusters is not
fixed prior to the clustering, as it defines clusters as groups of individuals that
are densely together?. Unfortunately, results are significantly worse than the
provided by the hierarchical clustering — with purity not surpassing 0.5 across

several hyperparameter of the DBSCAN algorithm.

91.e. for every process model in the cluster, there must be at least k process models at

distance less or equal than d. Both k and d are manually fixed.

232 CHAPTER 7. PROCESS MODEL COMPARISON

Cophenetic GED Behavioral Profiles
Precision | Recall | Precision | Recall | Precision| Recall
Manager 0.71 0.55 No individual was labelled
Forward Engineer (R1)| 0.60 0.78 1.00 0.05 0.65 0.35
R2345 0.72 0.63 0.50 1.00 0.56 0.85
Others No individual was labelled

Table 7.4: Precision and Recall for each of the roles in the organization by
considering a hierarchical clustering with 6 groups after merging Sustaining,
Quality Assurance, SWAT and Support Engineers into a unique role R2345.

In some cases, none of the groups had enough representation of a role.

7.7.3 Inducing the (real) Role of Outliers

Some role anomalies were present in the dataset. For instance, two indi-
viduals were classified as Service Engineers (R6) although accessing to the
source code repository is not part of their responsibilities. As we have already
mentioned, the role data was obtained during the finalization of the project
and, hence, the worker may have changed from one department to another.
In this case, one service engineer (R6) is more close to Quality Assurance
Engineers (R3), and the other is close to a group of Forward Engineers (R1).
The three distances are consistent with these results. With respect to the
Infrastructure Engineer (R7), the cophenetic distance and behavioural pro-
files map this user close to Sustaining Engineers (R2) whilst the graph edit
distance relate her to Forward engineers (R1). Finally, with respect to the

agent labeled as a BOT, the cophenetic and the graph edit distance group

7.8. DISCUSSION 233

it with other Quality Assurance Engineers (R3). This might be a hint that

the bot is indeed an automatic testing system.

7.8 Discussion

In this chapter we have adapted Cophenetic vectors from computational phy-
logenetics area to be able to automatically compare process models. The
state of the art techniques for comparing process models can be split into
structural and behavioural. In the former, process models are considered
as labeled graphs and the comparison is regarded as edit operations over
their edges, nodes or both. In contrast, behavioural techniques focus at the
comparison of the execution semantics of the compared models.

We have shown that our proposed distance fits between the structured and
behavioral worlds, as a metric defined on differences in the structure of the
process tree notation may algo contain information related to the behavioural
similarity. Besides, albeit behavioural techniques are typically computation-
ally demanding, the structural-but-behavioural intermediate approach has
shown excellent results on time computation and scalability, allowing BPM
practitioners to efficiently measure the behavioural similarity between pro-
cess models.

Next steps would focus on extending behavioural differences from the dif-
ference of Cophenetic values. There is also room to improve the utility and
efficiency of the comparison of indeterministic process trees. The presented
approximated matching is computed without taking into account the Cophe-

netic distance itself, but there might be a better matching algorithm that

234 CHAPTER 7. PROCESS MODEL COMPARISON

exploits the properties of the Cophenetic values.

CHAPTER
8 Conclusions

The industry is facing a transition towards decentralization of their work-
force, which might be compromised by a combination of hired workers, com-
puters and one-time contributors due to advances in Crowdsourcing technolo-
gies. Hence, future business process management techniques must support
the execution and monitoring of activities, processes and individuals in a
distributed collaborative scenario.

For this thesis, we initially set two objectives aiming to advance towards a
broader concept of Crowdsourcing. First, a close to market and exploitation-
oriented objective for supporting crowdsourcing methodologies in industrial
scenarios. Then, a more scientific-oriented objective in which we aim to-
wards the creation of a normal behavior profile of users in a digital platform.
Following, one can find how this thesis contributed towards both objectives.
Then, we set the limitations of our contributions and we set lines of research

to continue the work done in this thesis.

235

236 CHAPTER 8. CONCLUSIONS

Advances on supporting crowdsourcing in industrial scenarios

The first difference that we noticed between current crowdsourcing technolo-
gies and industry is the lack of a notion of processes. Business processes are
fundamental for the industry, as they guide workers on how (and when) they
should execute and allow entrepreneurs to monitor and improve their busi-
ness. If crowdsourcing is going to substitute the current outsourcing model,
then processes should be a first citizen in future crowdsourcing platforms.
For tackling such technological gap, we proposed CrowdWON in Chapter
3. CrowdWON is not only a graphical modelling language for crowdsourced
processes, with the inherent benefits on the dissemination of processes and
best practices, but we also proposed a variant capable of define and au-
tomatize the execution of the processes. Such variant was fruit of a Proof
of Concept we built in collaboration with a translation provider, in which
some of their processes were tested. Besides, Chapter 5 shows how we lever-
aged knowledge from Crowdsourcing and industrial translation for defining
a worker ranking mechanism that slightly advances on current reputation
systems implemented in Crowdsourcing platforms.

Apart from the collaboration with a translation provider, we explored
other internal processes that had the potential to be crowdsourced. We de-
tected that technical support could be partially outsourced, or, at least, it
has the potential to allow workers to participate remotely in the resolution of
customer problems. Unfortunately, there is no generic procedure explaining
how support engineer should perform in their day-by-day. The lack of such
best practices hinders the training of new support engineers, which need to

develop their own procedure by experiencing lots of interactions with cus-

237

tomers. We saw a clear link with process mining techniques, which would
analyze the actions taken by the support engineers and discover the under-
lying procedure. But, actions in such scenario are textual descriptions of the
work done and not elements from a set of actions defined by management.
Our embedding-based Event Variability Reduction technique, as proposed
in Chapter 4, is capable of comparing the similarity of the textual descrip-
tions and merge all those actions that produced similar outcomes. Thanks
to that, we were able to discover a generic procedure that we applied for
predicting the customer satisfaction. The results shows that this technique

has the potential to be used for the monitoring of crowdsourced activities.

Advances on the discovery of the normal user behavior

During this thesis we assumed and explored that process mining techniques
could be used for generating a profile of the user’s behavior. Digital platform
have the potential of registering all actions performed by their users and,
then, induce their behavior. We opened this line of research inspired by the
initial results of Rzeszotarski et.al. [87] in which they discovered that users’
behavior (considering scrolling, mouse movements, clicks, keystrokes, delays)
was correlated with quality.

When discovering the profile of the user, we expect to achieve a certain
level of precision in order to ensure that the process model uniquely represents
the user. We considered in Chapter 6 a new addition to the label splitting
literature. Contrary to state of the art techniques, our label splitting tech-
nique does not completely discard the original process model but enhances

it by studying the behavior of loops. In fact, iterative subprocesses are one

238 CHAPTER 8. CONCLUSIONS

of the major threats to the precision of a process model and, still, one of the
most common behaviors seen in human-computer interaction processes.

Afterwards we explore in Chapter 7 the idea of comparing two process
models and, hence, the respective users described by the process models. We
have applied this metric to an industrial dataset compromising the accesses of
software developers to a source code repository and we were able to see that
the functional role was reflected on the behavior explained by the process
models.

None of the contributions of this thesis proposed a specific mechanism
for measuring the normality score that we set as an objective of this thesis.
We assume that conformance checking techniques could be used to measure
how far (and, hence, abnormal) is a trace towards the profile of the user.
Besides, the comparison of user profiles would allow crowdsourcing platforms
to create a profile of the community by considering events from all his users
(or a subset of them, such as those efficient workers known by the platform
administrators) and then compare individual process models towards the

community model.

8.1 Limitations

The evaluation of industrial exploitation outcomes of this thesis is rather
limited to the small set of stakeholders involved in their conception. For
instance, the evaluations of CrowdWON and the Event Variability Reduc-
tion are largely based on the feedback provided by the representatives of

the translation provider and CA Technologies during the assessment of the

8.1. LIMITATIONS 239

Proof of Concepts. Besides, our assessment of CrowdWON may have been
biased by the fact that usual crowdsourced processes are simple and short.
It remains to run a more in-depth evaluation by broadening the scope to
more use case and conducting surveys on usability and utility with experts
in crowdsourcing and process modelling.

We also need to explore if some of the other assumptions done during
this thesis are valid. For instance, we assumed that the comparison of event
names is enough to decide if the two actions should also be considered similar.
In the case of an IT technical support system, this assumption seems to be
true as the support engineers are asked to input a description of the action
performed.

The major limitation of this thesis is the lack of experiences on the user
profiling and worker ranking in real-life crowdsourcing platforms. The eval-
uation of the worker ranking has been done by simulating a set of expected
behaviors in a crowdsourcing platform, including a rather suspicious fraud-
ulent user. Although this shows some consistency for the metric, we are not
able to prove the consistency in a scenario in which the users may intelligently
adapt to the implemented reputation and quality assurance mechanisms. As
for the normality metric, this means that we were not able to obtain a real
dataset in which we could evaluate a user’s deviations from her process model.
Instead, we proved our outcomes utility in related scenarios, showcasing the

promising future of such research challenge.

240 CHAPTER 8. CONCLUSIONS

8.2 Future work

In this thesis, we explored the idea of using process discovery techniques for
automatically generating a profile of the users of a digital platform. Initial
results on a series of industrial datasets shows that this is a promising research
line, but its applicability on other contexts is yet to be explored.

During the development of this thesis, user profiles were used for grouping
users with a similar behavior. Organizations can benefit from such system,
as this would allow practitioners to have a general idea of their users by visu-
alizing a few processes. It would be interesting to consider process discovery
for the categorization of users. I.e. discover as many process models as user
categories, and then classify users depending on the fitness of the event log
with respect to each process model. For doing that, we need an efficient
discovery technique that ensures high fitness and precision with respect to
users in the group it is representing, but low fitness with others. This will
help systems to classify new users within the first interaction with the plat-
form, and organizations would be able to target features, or adapt the UI for
improving the user experience, to selected users based on their behavior. All
these use cases are yet to be explored.

Another interesting technical challenge was arisen from the development
of this thesis. Conformance checking is usually performed by finding the
best alignment, which, in practice, assumes that the link between events and
activities is a binary relation. I.e. an event is an instance of an activity or
they are completely unrelated. In particular, current conformance checking

methods allows for setting a cost for replacing an event for another, but in

8.2. FUTURE WORK 241

practice there is no mechanism for computing such costs. Nevertheless, the
embedding-based similarity we have reviewed in Chapter 4 could be used for
defining for tackling this issue.

It would be interesting to create a simulation of crowdsourced processes
based on a taxonomy of crowdsourced tasks, a modelling language as Crowd-
WON and a pool of workers modeled based on real user profiles. With such
simulator, time-to-completition and quality of crowdsourced processes could

be predicted during design time.

1.1

2.1

2.2

2.3
24

2.5

2.6

List of Figures

Framework of our contributions and their relationship towards
the three actors in any decentralized collaborative process.
The platform is acting as a technology provider and moni-
toring tool, while processes are governing how users should

interact and collaborate.

Simplification of the Task creation and execution process in a
typical Crowdsourced platform. Dashed arrows are optional.

Some examples of the 4 main components in a BPMN process

Example of an expense claim process, modeled using BPMN. .
Example of a business process model, using a Petri net for-
malism. Bullets (e) represent tokens.
Example of a business process model after firing transition
Add Invoice. Bullets (o) represent tokens.
Example of a business process model after firing transition Pay

Invoice. Bullets () represent tokens.

243

32

244

LIST OF FIGURES

2.7 As in traditional Petri Nets, every transition is connected to

2.8

2.9

3.1

3.2
3.3

3.4

places. Transitions are the elements in the model that are al-
lowed to move tokens from incoming places (place 1 in the
figure) and putting them on all outgoing places (place 2).
Functions exp; and exp, define how this transformation is

performed, and function ¢ decides if the transition may be

Example of two structured processes represented as Process
Trees. Y
Two process trees modeling exactly the same behaviour. The
left model is reducible, and the right model is its irreducible
representation. The silent transition () is removed because it
is not part of an OR structure. The OR elementary node does

not provide behavioural information. 59

Description of the execution of a task in a generic crowdsourc-
ing platform using an EPC diagram. 68
Status of the task depending on the token location. 71
Example of the Selection operator. If inexperienced workers
claim the first task, then an extra review phase will be required. 75
Basic description of a crowdsourced competition: An unknown
number of submissions are independently reviewed. In the

figure, an average of N evaluations is used to rank submissions. 78

LIST OF FIGURES

3.5 In this process, Action and Verification tasks are performed
iteratively. Note that nobody can review an action performed
by themselves, and reviewers are not allowed to contribute to
following actions.o

3.6 As in Turkomatic [60], workers may request to split a task in
easier chunks. oo oo

3.7 Deadline management in a post edition process. Individuals
in the post edition and review have 8 hours to submit a task.
Tasks may be skipped depending on the remaining time.

3.8 Crowdsourcing process used in Soylent [14]. Given a text, the
crowd find sentences that can be shortened. The group also
proposes 10 shorter versions for every sentence. Consensus is
reached by a simple voting system.

3.9 Process used by Chimera to label a list of products using ma-
chine learning, crowd workers and analysts. In the model,
Analyst is a fixed group of individuals hired by the company. .

3.10 Tasks performed by the crowd are modeled by transitions in
a colored Petri Net. Functions exp; and exps are two arc
expressions, and g is a guard function as in colored Petri Nets.
Function ws is a worker selection function. Figure 3.11 depicts
the behaviour of such construct in terms of a colored Petri net.

3.11 Any transition labeled as a crowd task will be replaced with
this subprocess. Places 1 and 2 are the two points of connec-

tion of this subprocess with the rest of the process.

245

83

85

89

246

3.12

3.13

3.14

3.15

3.16

LIST OF FIGURES

Example of a deadline of claim d; and deadline of submission
do. If deadline d; is met, the execution continues in place ps.
For deadline dy to be considered, a worker must have claimed
the task but not finished it yet. If the deadline is met, the
platform reassigns the task to another worker. Figure 3.13
depicts the behaviour of such construct in terms of a colored
Petrinet. 93
Behaviour of deadlines d; and ds in the task execution. Dead-
line d; may completely skip the task, but only if it is not
claimed by anybody. Deadline d; on the other hand, controls
how much time is allocated per worker to accomplish the task. 94
This process model is a template for creating N copies of the
process model N’ connected to places p; and py. Notice that
the number N is fixed in design time and, hence, this trans-
formation is clearly defined in execution time. 98
Proposed modification for modelling infinite subprocesses. Ev-
ery time a token is created in s;, the token in p; is not con-
sumed and, hence, the process could have always a token avail-
ableat s;. 99
Proposed process for processing elements in a list indepen-
dently. A list of elements is hold in place e;, and later split in
several tokens in s;. Once the list is empty, it moves to place

eo and recollects the processed elements stored in so. 101

LIST OF FIGURES 247

3.17 Translation to colored Petri nets of the process used by Soy-

3.18

3.19

3.20

3.21
3.22

lent and specified with CrowdWON in Figure 3.8. Worker
and Deadline management transformation have not been per-
formed for ensuring understandability. 102
Proposed process for modelling iterative processes. A token
in place ¢ is created for counting the number of times the
subprocess is executed, as well as storing information from
previous executions. 103
Translation process executed during the Proof of Concept in
which CrowdWON was implemented. The translation process
starts with the top process model which, after asking the re-
quester to set the target languages, calls the middle process
model for each language. The original text is divided in several
chunks that are executed following the bottom model. 105
A glimpse of the underlying process that explain how a crowd-
sourced task is managed by the platform, including communi-
cation with the crowdsourcing platform, deadline management
and task assignment. 107
Screenshot of the translation task in the process of Figure 3.19.108
Diagram describing the relation between the high-level lan-

guage (as in Section 3.3) and its low-level version (as in Section

35). 109

248

LIST OF FIGURES

3.23 Flatten representation of a translation process for visualizing

4.1

4.2

4.3

4.4

4.5

4.6

the execution of the process. Finished tasks are depicted with
a green label, whilst on progress or failed activities have an

orange label.o

Graphical representation of two executions of an event vari-
ability reduction method over 10 fictional events. The color of
the box depicts the final abstract event.

Example of how the event variability reduction can be stacked

in the usual BPM toolchain as an event log pre-processing tool.119

Diagram summarizing how 3 of the contributions of this thesis
can be stacked for comparing the behaviour of two users in a
digital platform. oo
Overview of the Event Variability Reduction based on word
embeddings. A clustering technique utilizes an embedding-
based text similarity for creating groups of events.
Example of the Skip-Gram architecture of the neural network
used to train the Word2Vec model [75]. The neural network
is designed to predict the 2-window context of the word w(t).
Le. given the word w(t), it computes the embedding e(w(t))
that can best approximate the two previous, and two future,
words found in training examples.
Absolute frequency of sentences used in less than 50 Wikipedia

articles. Only 35 sentences out of the 1347 sections surpass the

threshold.

LIST OF FIGURES 249

4.7

4.8

4.9

4.10

4.11

4.12
4.13

4.14

4.15

5.1
5.2

Petri net discovered from articles in the History biography
category. 132
Petri net discovered from articles in the Media biography cat-
EGOTY. v e e e e e e e e e e e e e 133
Petri net discovered from articles in the Music biography cat-
CEOTY. o v i i e 133
Petri net discovered from articles in the Literature category. . 134
Petri net discovered from articles in the Video gaming category.134
Petri net discovered from articles in the Media category. . . . 134
Process model describing a subset of technical support cases.
30 activities are depicted, in which each activity represents a
cluster of textual messages. 139
Process model describing a subset of all escalated technical
support cases. The structure of this process model hints the
lack of an structure on how escalated cases are handled by
SUpport engineers. 140
Process model describing a subset of all non-escalated tech-
nical support cases. This process model is more structured
than the process model in Figure 4.14, pointing that devia-

tions from the normal process are more common in escalated

Action-Verification Unit (AV-Unit) [76] 151
An Action Verification unit graphically modelled as a Crowd-
WON process model. In this particular instance, only one

reviewer is considered for each verification. 152

250

2.3

5.4

2.5

2.6

2.7

2.8

2.9

5.10

LIST OF FIGURES

Translator categories at the CA Technologies crowdsourcing
platform for localization. 161
Bar plot of the TQI scores obtained by the U worker, and the
aggregated scores obtained with the selected operators. 168
Bar plot of the TQI scores obtained by the I worker, and the
aggregated scores obtained with the selected operators. 168
Bar plot of the TQI scores obtained by the D worker, and the
aggregated scores obtained with the selected operators. 169
Bar plot of the TQI scores obtained by the O worker when
he is aware of his average score, and the aggregated scores
obtained with the selected operators. 170
Bar plot of the TQI scores obtained by the O worker when he
is aware of his average score. The aggregated score obtained
with the OWA operator (Qf 5) is also plotted. 171
Bar plots of the TQI scores obtained by the O worker when
he is aware of his average score. On the left plot, the OWA
operator of Figure 5.8 is compared with the weighted mean

(Qf5), whilst the right plot compares it with the weighted

Bar plots of the TQI scores obtained by the O worker when he
is aware of his score. On the left plot, the worker is aware of
the weighted mean (Qf ;), whilst the OWA operator is consid-
ered on the right plot. Both metrics are also plotted in their
respective plots. 173

LIST OF FIGURES 251

6.1

6.2

6.3
6.4

6.5

6.6

7.1

7.2

A first model accepting traces such as 0 = ABCADCBACDA-
CABCADCBACADE. The second model is an unrolled ver-
sion that only accepts executing twice the initial iterative be-
haviour. Finally, a repair of the model with respect to the

trace o highlighted that the second choice construct could be

simplified to a simple sequence. 179
A process model describing the traces ACADBCBD, BCBDACBD
and BCAD. 185
Three process models describing the trace ABBBABBB. . . . 189

Example of a process model in which an activity, with grey
background, may be executed twice. The first execution is
completely optional, whilst the second execution is mandatory. 194
Example of a process model in which an activity, with grey
background, may be executed twice. This process model has
been discovered using the Inductive Miner over an event log
generated by the process model in Figure 6.4. 196
Process model discovered by repairing the 2-unrolling of the

Process Model depicted in Figure 6.5. 197

Two process models describing how two users access an SVN
Tepository.o 202
Extract of the tree representation of the two processes in Fig-
ure 7.1. Only the subtrees related to two common activities A
and B are represented, and their least common ancestors are

depicted in bold. Activities S; are unrelated to A and B. . . . 203

252 LIST OF FIGURES

7.3 Example of process trees and their Cophenetic vector (in ma-
trix representation), assuming the depth of the root is 1. For
simplicity, we included node’s depth as a subscript of the la-
bel. For instance, the LCA of activities C' and E in T} is the
AND gateway that is one children of the root and, hence, its
Cophenetic valueis 2. 207
7.4 Transformation of the process trees in Figure 7.3. For the sake
of simplicity, we included node’s depth as a subscript of the
label. For instance, depth of the AND gateway in T} is 3.5
because its parent represents a sequence and the maximum
depth of the previous processed branch is 2.5 210
7.5 Example of two indeterministic process trees. Activities A are
indexed for the sake of simplicity, but all of them are indistin-
guishable. oo 217
7.6 Example of two indeterministic process trees and a matching
Cophenetic distance (represented as a matrix) with respect
to a certain node matching. All nodes are matched to their
respective nodes with the same label, except activities A (dis-
continued lines (1) and (2) depict how they are paired) and

activity D that does not have a representative node in the first

tree. Subscripts depict the depth of the nodes. 218
7.7 8 process models extracted from [12]. Process models V3, ..., V7
are variants from the same process model V. 222

7.8 A set of two-dimensional histograms comparing the results of

the three comparison tools in the SAP dataset. 224

LIST OF FIGURES 253

7.9 The solid line depicts the evolution in the purity of the Cophenetic-
based hierarchical clustering as the number of clusters in-
crease, whilst the dashed (resp. dotted) line depicts the graph
edit distance (resp. Behavioural Profiles). Two different ex-
periments were performed for detecting individuals’ role and

their status as managers. Lo 229

2.1

2.2

2.3

3.1
3.2

3.3

4.1

4.2

List of Tables

Summary of Quality Assurance (QA) techniques used in Crowd-
SOUTCING. . .« .« v v v v e e e e e e
Definition of a colour type modelling a basic user profile. Apart
from the user ID, this colour also enables us to state if the user
has an English certificate, and the obtained score.

Different colours for the colour type defined in Table 2.2. . . .

Examples of generators used in crowdsourcing processes.
Examples of aggregation mechanisms used in crowdsourcing
PrOCESSES. . o v v o v i e e
Definition of Workercolor, a color type modelling the attributes

associated to a Worker in a Crowdsourcing Platform.

Table summarizing the size and variability of our dataset.
Abstract events have been found using the methodology ex-
plained in Section 4.4.
5 randomly chosen section titles from the first 6 out of 50

discovered clusters from the Wikipedia dataset.

255

o1
52

7

256

4.3

0.1
0.2

6.1

6.2

6.3

LIST OF TABLES

Table summarizing quality of the discovered process models.
For each row, fitness and precision of a process model is mea-

sured with respect to all the logs.

Text Quality Levels based on TQI ranking.
Worker Ranking Categories.

Example of the number of continuous executions of a sub-
process [in a log L. Besides the number of executions, this
table also counts the number of traces with such number of
executions. For instance, only one trace has 3 consecutive
executions of the loop I.
Summary of the characteristics of the process models consid-
ered in the evaluation. Self loops reefer to activities that can
be executed again immediately after its execution. Loops with-
out backward are those loops compromising more than one ac-
tivity such that their backward path is empty, whilst Loops
consider those loops with a non-trivial backward path.
Comparison of the precision in selected process models discov-
ered with Inductive Miner and then Unrolled. The simplicity
of the processes is also depicted with the number of places
P, transitions 1" and silent activities 7 in the discovered Petri
Nets. For some cases the unroll is not possible without sacri-

ficing fitness.o

. 191

LIST OF TABLES

7.1

7.2

7.3

7.4

Similarity of model Vj to the rest of models from Figure 7.7
with respect to several similarity metrics. Similar models are
depicted by darker cells. Values were extracted from [12], ex-
cept for the Cophenetic and Event Structures [7].
Time spent in computing the distance between a few selected
process models. The table shows the number of activities in
each process model, the distance given by the Cophenetic met-

ric and the other two selected comparison tools, and the time

Precision and Recall for each of the roles in the organization
by considering a hierarchical clustering with 6 groups. In some
cases, none of the groups had enough representation of a role.
Precision and Recall for each of the roles in the organization
by considering a hierarchical clustering with 6 groups after
merging Sustaining, Quality Assurance, SWAT and Support
Engineers into a unique role R23/5. In some cases, none of

the groups had enough representation of arole.

257

230

1]

Bibliography

A. Adriansyah, J. Munoz-Gama, J. Carmona, B. F. Dongen, and W. M.
Aalst. Measuring precision of modeled behavior. Inf. Syst. E-bus.
Manayg., 13(1):37-67, February 2015.

Arya Adriansyah. Aligning observed and modeled behavior. PhD thesis,
Technische Universiteit Eindhoven, 2014.

Salman Ahmad, Alexis Battle, Zahan Malkani, and Sepander Kamvar.
The jabberwocky programming environment for structured social com-
puting. In Proceedings of the 24th Annual ACM Symposium on User
Interface Software and Technology, UIST 11, pages 5364, New York,
NY, USA, 2011. ACM.

Vamshi Ambati, Stephan Vogel, and Jaime Carbonell. Collaborative
workflow for crowdsourcing translation. In Proceedings of the ACM
2012 Conference on Computer Supported Cooperative Work, CSCW
12, pages 1191-1194, New York, NY, USA, 2012. ACM.

Hazleen Aris. Current state of crowdsourcing taxonomy research: A

systematic review. In Proceedings of the 6th International Conference

259

260

[10]

[11]

BIBLIOGRAPHY
on Computing and Informatics, ICOCI 2017, 2017.

Hazleen Aris and Marina Md Din. Crowdsourcing evolution: Towards
a taxonomy of crowdsourcing initiatives. In Pervasive Computing and
Communication Workshops (PerCom Workshops), 2016 IEEE Inter-
national Conference on, pages 1-6. IEEE, 2016.

Abel Armas-Cervantes, Paolo Baldan, Dumas Marlon, and Luciano
Garcia-Banuelos. Behavioral comparison of process models based on
canonically reduced event structures. Business Process Management:
12th International Conference, BPM 201/, Haifa, Israel, September
7-11, 2014. Proceedings, pages 267-282, 2014.

Vikraman Arvind, Johannes Kobler, Sebastian Kuhnert, and Yadu Va-
sudev. Approximate graph isomorphism. In Proceedings of the 37th
International Symposium, MFCS 2012, 2012.

Bahadir Ismail Aydin, Yavuz Selim Yilmaz, Yaliang Li, Qi Li, Jing
Gao, and Murat Demirbas. Crowdsourcing for multiple-choice question
answering. In Proceedings of the Twenty-Sizth Annual Conference on

Innovative Applications of Artificial Intelligence, 2014.

Thomas Baier, Jan Mendling, and Mathias Weske. Bridging abstrac-
tion layers in process mining. Information Systems, 46:123-139, 2014.

Marco Baroni, Georgiana Dinu, and German Kruszewski. Don’t count,
predict! a systematic comparison of context-counting vs. context-
predicting semantic vectors. In Proceedings of Association for Com-

putational Linguistics (ACL), volume 1, 2014.

BIBLIOGRAPHY 261

[12]

[13]

[14]

[16]

[17]

[18]

Michael Becker and Ralf Laue. A comparative survey of business pro-

cess similarity measures. Comput. Ind., 63(2):148-167, February 2012.

T. S. Behrend, D. J. Sharek, A. W. Meade, and E. N Wiebe. The via-
bility of crowdsourcing for survey research. Behavior research methods,

43(3), 2011.

Michael S. Bernstein, Greg Little, Robert C. Miller, Bjorn Hartmann,
Mark S. Ackerman, David R. Karger, David Crowell, and Katrina
Panovich. Soylent: A word processor with a crowd inside. In Proceed-
ings of the 23Nd Annual ACM Symposium on User Interface Software
and Technology, UIST ’10, pages 313-322, New York, NY, USA, 2010.
ACM.

RP Jagadeesh Chandra Bose and Wil MP van der Aalst. Abstractions
in process mining: A taxonomy of patterns. In International Confer-

ence on Business Process Management, pages 159-175. Springer, 20009.

Daren C. Brabham. Crowdsourcing: A model for leveraging online

communities. The Participatory Cultures Handbook, 2012.

Joos C. A. M. Buijs. Flexible Fvolutionary Algorithms for Mining
Structured Process Models. PhD thesis, Technische Universiteit Eind-
hoven, 2014.

Joos C. A. M. Buijs, Boudewijn F. van Dongen, and Wil M. P. van der
Aalst. A genetic algorithm for discovering process trees. In Proceed-
ings of the IEEE Congress on Evolutionary Computation, CEC 2012,
Brisbane, Australia, June 10-15, 2012, pages 1-8, 2012.

262

[19]

[21]

[22]

23]

[24]

BIBLIOGRAPHY

Joos C. A. M. Buijs, Boudewijn F. van Dongen, and Wil M. P. van der
Aalst. Quality dimensions in process discovery: The importance of
fitness, precision, generalization and simplicity. Int. J. Cooperative

Inf. Syst., 23(1), 2014.

Joos CAM Buijs, Boudewijn F Van Dongen, and Wil MP van
Der Aalst. On the role of fitness, precision, generalization and simplic-
ity in process discovery. In OTM Confederated International Confer-
ences "On the Move to Meaningful Internet Systems”, pages 305-322.
Springer, 2012.

Chris Callison-Burch and Mark Dredze. Creating speech and language
data with amazon’s mechanical turk. In Proceedings of the NAACL
HLT 2010 Workshop on Creating Speech and Language Data with Ama-
zon’s Mechanical Turk, CSLDAMT ’10, pages 1-12, Stroudsburg, PA,
USA, 2010. Association for Computational Linguistics.

T. Calvo, G. Mayor, and R. Mesiar. Aggregation Operators. Physica-
Verlag, 2002.

Gabriel Cardona, Arnau Mir, Francesc Rosselld, Lucia Rotger, and
David Sanchez. Cophenetic metrics for phylogenetic trees, after sokal

and rohlf. BMC' Bioinformatics, 14(1):1-13, 2013.

Thomas Curran, Gerhard Keller, and Andrew Ladd. SAP R/3 business

blueprint: understanding the business process reference model. 1997.

BIBLIOGRAPHY 263

[25]

[28]

[29]

[30]

Gil Aires Da Silva and Diogo R Ferreira. Applying hidden markov
models to process mining. Sistemas e Tecnologias de Informagao.

AISTI/FEUP/UPF, 2009.

Nilesh Dalvi, Anirban Dasgupta, Ravi Kumar, and Vibhor Rastogi.
Aggregating crowdsourced binary ratings. In Proceedings of the 22Nd
International Conference on World Wide Web, WWW 13, pages 285—
294, Republic and Canton of Geneva, Switzerland, 2013. International
World Wide Web Conferences Steering Committee.

E.P. Dawis, J.F. Dawis, and Wei Pin Koo. Architecture of computer-
based systems using dualistic petri nets. In In proceeding of 2001 IEEE

International Conference on Systems, Man, and Cybernetics, 2001.

Javier de San Pedro and Jordi Cortadella. Discovering duplicate tasks
in transition systems for the simplification of process models. In Busi-
ness Process Management - 14th International Conference, BPM 2016,
Rio de Janeiro, Brazil, September 18-22, 2016. Proceedings, pages 108—
124, 2016.

Remco M. Dijkman. Diagnosing differences between business process
models. In BPM 2008, Milan, Italy, September 2-4, pages 261-277,
2008.

Remco M. Dijkman, Marlon Dumas, and Luciano Garcia-Banuelos.
Graph matching algorithms for business process model similarity
search. In BPM 2009, Ulm, Germany, September 8-10, pages 48—63,
2009.

264

[31]

33]

[34]

[36]

[37]

BIBLIOGRAPHY

Remco M. Dijkman, Marlon Dumas, Luciano Garcia-Banuelos, and
Reina Kaarik. Aligning business process models. In EDOC 2009, 1-4
September 2009, Auckland, New Zealand, pages 4553, 2009.

Remco M. Dijkman, Marlon Dumas, Boudewijn F. van Dongen, Reina
Kaarik, and Jan Mendling. Similarity of business process models: Met-

rics and evaluation. Inf. Syst., 36(2):498-516, 2011.

Schenk Eric and Guittard Claude. Towards a characterization of crowd-
sourcing practices. Journal of Innovation Economics Management,

7(1):93-107, 2011.

Enrique Estellés-Arolas and Fernando Gonzalez-Ladrén-De-Guevara.
Towards an integrated crowdsourcing definition. Journal of Informa-

tion Science, 2012.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu.
A density-based algorithm for discovering clusters in large spatial

databases with noise. pages 226-231. AAAI Press, 1996.

Ju Fan, Meiyu Lu, Beng Chin Ooi, Wang-Chiew Tan, and Meihui
Zhang. A hybrid machine-crowdsourcing system for matching web
tables. In Data Engineering (ICDE), 2014 IEEE 30th International
Conference on, pages 976-987. IEEE, 2014.

Antonio Foncubierta Rodriguez and Henning Miiller. Ground truth
generation in medical imaging: A crowdsourcing-based iterative ap-

proach. In Proceedings of the ACM Multimedia 2012 Workshop on

BIBLIOGRAPHY 265

[38]

[39]

[40]

[41]

[43]

Crowdsourcing for Multimedia, CrowdMM 12, pages 9-14, New York,
NY, USA, 2012. ACM.

Q. Gao and S. Vogel. Consensus versus expertise: a case study of word
alignment with mechanical turk. In Proceedings of the NAACL HLT
2010 Workshop on Creating Speech and Language Data with Amazon’s
Mechanical Turk, CSLDAMT '10, pages 30-34, Stroudsburg, PA, USA,

2010. Association for Computational Linguistics.

Christian W Giinther, Anne Rozinat, and Wil MP Van Der Aalst. Ac-
tivity mining by global trace segmentation. In International Conference

on Business Process Management, pages 128-139. Springer, 2009.

Christian W Giinther and Wil MP van der Aalst. Mining activity
clusters from low-level event logs. Beta, Research School for Operations

Management and Logistics, 2006.

Umair Ul Hassan, Sean O’Riain, and Edward Curry. Effects of expertise
assessment on the quality of task routing in human computation. In
2nd International Workshop on Social Media for Crowdsourcing and

Human Computation, pages 1-10, 2013.

M. Hirth, T. Hossfeld, and P. Tran-Gia. Cost-optimal validation mech-
anisms and cheat-detection for crowdsourcing platforms. In Innovative
Mobile and Internet Services in Ubiquitous Computing (IMIS), 2011
Fifth International Conference on, pages 316-321, 2011.

M. Hirth, T. Hossfeld, P. Tran-gia, Matthias Hirth, Tobias HoAYfeld,
Phuoc Tran-gia, M. Hirth, T. Hossfeld, P. Tran-gia, Matthias Hirth,

266

[45]

[46]

[48]

[49]

BIBLIOGRAPHY

and Tobias HoAYfeld. aceanalyzing costs and accuracy of validation

mechanisms for crowdsourcing platforms.a, 2012.

Chien-Ju Ho and Jennifer Wortman Vaughan. Online task assignment
in crowdsourcing markets. In Proceedings of the Twenty-Siath AAAI
Conference on Artificial Intelligence, AAAT'12, pages 45-51. AAAI
Press, 2012.

J. Howe. Wired 14.06: The Rise of Crowdsourcing, 2006.

Kazushi Tkeda and Michael S. Bernstein. Pay it backward: Per-task
payments on crowdsourcing platforms reduce productivity. In Pro-

ceedings of the 2016 CHI Conference on Human Factors in Computing
Systems, CHI "16, pages 4111-4121, New York, NY, USA, 2016. ACM.

Panagiotis G. Ipeirotis, Foster Provost, Victor S. Sheng, and Jing
Wang. Repeated labeling using multiple noisy labelers. Data Min.
Knowl. Discov., 28(2):402-441, March 2014.

Panagiotis G. Ipeirotis, Foster Provost, and Jing Wang. Quality man-
agement on amazon mechanical turk. In Proceedings of the ACM
SIGKDD Workshop on Human Computation, HCOMP 10, pages 64—
67, New York, NY, USA, 2010. ACM.

Srikanth Jagabathula, Lakshminarayanan Subramanian, and Ashwin
Venkataraman. Reputation-based worker filtering in crowdsourcing. In
Proceedings of the 27th International Conference on Neural Informa-
tion Processing Systems, NIPS'14, pages 2492-2500, Cambridge, MA,
USA, 2014. MIT Press.

BIBLIOGRAPHY 267

[50]

[52]

[53]

[54]

[55]

Kurt Jensen and Lars M. Kristensen. Coloured Petri Nets: Modelling
and Validation of Concurrent Systems. Springer Publishing Company,
Incorporated, 1st edition, 2009.

Nicolas Kaufmann, Thimo Schulze, and Daniel Veit. More than fun and
money. worker motivation in crowdsourcinga“a study on mechanical

turk. In Americas Conference on Information Systems (AMCIS), 2011.

G. Kazai, J. Kamps, and N. Milic-Frayling. The face of quality in
crowdsourcing relevance labels: Demographics, personality and label-
ing accuracy. In Proceedings of the 21st ACM International Conference
on Information and Knowledge Management, CIKM ’12, pages 2583~
2586, New York, NY, USA, 2012. ACM.

Gabriella Kazai and Imed Zitouni. Quality management in crowd-
sourcing using gold judges behavior. In Proceedings of the Ninth ACM
International Conference on Web Search and Data Mining, WSDM ’16,
pages 267276, New York, NY, USA, 2016. ACM.

Tom Kenter and Maarten de Rijke. Short text similarity with word
embeddings. In Proceedings of the 24th ACM International on Con-
ference on Information and Knowledge Management, CIKM 15, pages
1411-1420, New York, NY, USA, 2015. ACM.

J. Kim, P. Nguyen, S. Weir, P. Guo, R. Milller, and K. Gajos. Crowd-
sourcing step-by-step information extraction to enhance existing how-

to videos. In CHI 2014, 2014.

268

[56]

[57]

[59]

[60]

[61]

BIBLIOGRAPHY

A. Kittur, B. Smus, S. Khamkar, and R.E. Kraut. Crowdforge: crowd-
sourcing complex work. In Proceedings of the 24th annual ACM sympo-

sium on User interface software and technology, UIST "11, pages 43-52,
New York, NY, USA, 2011. ACM.

Aniket Kittur, Susheel Khamkar, Paul André, and Robert Kraut.
Crowdweaver: Visually managing complex crowd work. In Proceed-

ings of the ACM 2012 Conference on Computer Supported Cooperative
Work, CSCW 12, pages 1033-1036, New York, NY, USA, 2012. ACM.

D. Kontokostas, A. Zaveri, S. Auer, and J. Lehmann. Triplecheckmate:
A tool for crowdsourcing the quality assessment of linked data. In
Knowledge Engineering and the Semantic Web, volume 394 of Commu-

nications in Computer and Information Science, pages 265-272, 2013.

Pavel Kucherbaev, Florian Daniel, Stefano Tranquillini, and Maurizio
Marchese. Crowdsourcing processes: A survey of approaches and op-

portunities. IEEE Internet Computing, 20(2):50-56, March 2016.

Anand Kulkarni, Matthew Can, and Bji;rn Hartmann. Collabora-
tively crowdsourcing workflows with turkomatic. In In Proceedings of
the ACM 2012 conference on Computer Supported Cooperative Work
(CSCW ’12), pages 1003-1012, New York, NY, USA, 2012. ACM.

Ranjitha Kumar, Jerry O. Talton, Salman Ahmad, Tim Roughgarden,
and Scott R. Klemmer. Flexible tree matching. In Twenty-Second
International Joint Conference on Artificial Intelligence (IJCAI 2011),
2011.

BIBLIOGRAPHY 269

[62]

[63]

[65]

[66]

Quoc V. Le and Tomas Mikolov. Distributed representations of sen-
tences and documents. In Proceedings of the 31th International Con-
ference on Machine Learning, ICML 2014, Beijing, China, 21-26 June
2014, pages 1188-1196, 2014.

Sander J. J. Leemans, Dirk Fahland, and Wil M. P. van der Aalst.
Discovering block-structured process models from event logs - A con-
structive approach. In Application and Theory of Petri Nets and Con-
currency - 34th International Conference, PETRI NETS 2013, Milan,
Italy, June 24-28, 2013. Proceedings, pages 311-329, 2013.

Sander J. J. Leemans, Dirk Fahland, and Wil M. P. van der Aalst. Dis-
covering block-structured process models from incomplete event logs.
In Application and Theory of Petri Nets and Concurrency - 35th Inter-
national Conference, PETRI NETS 201/, Tunis, Tunisia, June 23-27,
2014. Proceedings, pages 91-110, 2014.

Leib Litman, Jonathan Robinson, and Cheskie Rosenzweig. The rela-
tionship between motivation, monetary compensation, and data qual-
ity among us- and india-based workers on mechanical turk. Behavior

Research Methods, 47(2):519-528, 2015.

G. Little, L.B. Chilton, M. Goldman, and R.C. Miller. Exploring it-
erative and parallel human computation processes. In Proceedings of
the ACM SIGKDD Workshop on Human Computation, HCOMP’10,
pages 68-76, New York, NY, USA, 2010. ACM.

270

[67]

[68]

[70]

[71]

[72]

73]

BIBLIOGRAPHY

Greg Little, Lydia B. Chilton, Max Goldman, and Robert C. Miller.
Turkit: Human computation algorithms on mechanical turk. In Pro-
ceedings of the 23Nd Annual ACM Symposium on User Interface Soft-
ware and Technology, UIST ’10, pages 57-66, New York, NY, USA,
2010. ACM.

Christoph Lofi and Kinda El Maarry. Design patterns for hybrid
algorithmic-crowdsourcing workflows. In 16th IEEE Conf. on Business

Informatics (CBI), Geneva, Switzerland, 07/2014 2014.

Xixi Lu, Dirk Fahland, Frank J. H. M. van den Biggelaar, and Wil
M. P. van der Aalst. Handling duplicated tasks in process discovery
by refining event labels. In Business Process Management - 14th In-

ternational Conference, BPM 2016, Rio de Janeiro, Brazil, September
18-22, 2016. Proceedings, pages 90-107, 2016.

Nuno Luz, Nuno Silva, and Paulo Novais. A survey of task-oriented

crowdsourcing. Artificial Intelligence Review, 44(2):187-213, 2015.

Therani Madhusudan, J. Leon Zhao, and Byron Marshall. A case-based
reasoning framework for workflow model management. Data Knowl.

Eng., 50(1):87-115, 2004.

Andrew Mao, Ariel D. Procaccia, and Yiling Chen. Better human

computation through principled voting. 2013.

Winter Mason and Duncan J. Watts. Financial incentives and the " per-

formance of crowds”. In Proceedings of the ACM SIGKDD Workshop

BIBLIOGRAPHY 271

[74]

[75]

(78]

[79]

on Human Computation, HCOMP ’09, pages 77-85, New York, NY,
USA, 2009. ACM.

Adria Alcala Mena and Francesc Rossell6. Ternary graph isomorphism

in polynomial time, after luks. CoRR, abs/1209.0871, 2012.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey
Dean. Distributed representations of words and phrases and their com-

positionality. CoRR, abs/1310.4546, 2013.

V. Muntés-Mulero, P. Paladini, J. Manzoor, A. Gritti, J.L. Larriba-
Pey, and F. Mijnhardt. Crowdsourcing for industrial problems. In
Citizen Sensor Networks, volume 7685 of Lecture Notes in Artificial

Intelligence, pages 6-18. Springer, 2013.

Victor Muntés-Mulero, Patricia Paladini, Jawad Manzoor, Andrea
Gritti, Josep-Lluis Larriba-Pey, and Frederik Mijnhardt. Crowdsourc-
ing for industrial problems. In Jordi Nin and Daniel Villatoro, editors,
Citizen in Sensor Networks, volume 7685 of Lecture Notes in Computer

Science, pages 6-18. Springer Berlin Heidelberg, 2013.

Y. Narukawa and V. Torra. Twofold integral and multi-step choquet
integral. Kybernetika, 40(1):39-50, 2004.

M. Negri, L. Bentivogli, Y. Mehdad, D. Giampiccolo, and A. Marchetti.
Divide and conquer: crowdsourcing the creation of cross-lingual tex-

tual entailment corpora. In Proceedings of the Conference on Empirical

Methods in Natural Language Processing, EMNLP ’11, pages 670-679,

272

[80]

[81]

[82]

[83]

[84]

BIBLIOGRAPHY

Stroudsburg, PA, USA, 2011. Association for Computational Linguis-

tics.

Stefanie Nowak and Stefan Riiger. How reliable are annotations via
crowdsourcing: A study about inter-annotator agreement for multi-
label image annotation. In Proceedings of the International Conference
on Multimedia Information Retrieval, MIR 10, pages 557-566, New
York, NY, USA, 2010. ACM.

David Oleson, Alexander Sorokin, Greg Laughlin, Vaughn Hester, John
Le, and Lukas Biewald. Programmatic gold: Targeted and scalable
quality assurance in crowdsourcing. In Proceedings of the 11th AAAI
Conference on Human Computation, AAAIWS’11-11, pages 43-48.
AAAT Press, 2011.

Carl Adam Petri. Communication with automata. PhD thesis, Univer-

siti;t Hamburg, 1966.

Artem Polyvyanyy, Matthias Weidlich, Raffaele Conforti, Marcello La
Rosa, and Arthur H. M. ter Hofstede. The 4c¢ spectrum of fundamental
behavioral relations for concurrent systems. In PETRI NETS 2014,
Tunis, Tunisia, June 23-27, pages 210-232, 2014.

Hernan Ponce de Leén, César Rodriguez, Josep Carmona, Keijo Hel-
janko, and Stefan Haar. Unfolding-based process discovery. In Au-
tomated Technology for Verification and Analysis - 13th International
Symposium, ATVA 2015, Shanghai, China, October 12-15, 2015, Pro-
ceedings, pages 31-47, 2015.

BIBLIOGRAPHY 273

[85]

[38]

[89]

[90]

Cyrus Rashtchian, Peter Young, Micah Hodosh, and Julia Hocken-
maier. Collecting image annotations using amazon’s mechanical turk.
In Proceedings of the NAACL HLT 2010 Workshop on Creating Speech
and Language Data with Amazon’s Mechanical Turk, CSLDAMT ’10,
pages 139-147, Stroudsburg, PA, USA, 2010. Association for Compu-

tational Linguistics.

F. James Rohlf Robert R. Sokal. The comparison of dendrograms by
objective methods. Tazon, 11(2):33-40, 1962.

Jeffrey Rzeszotarski and Aniket Kittur. Crowdscape: Interactively vi-
sualizing user behavior and output. In Proceedings of the 25th Annual
ACM Symposium on User Interface Software and Technology, UIST
12, pages 5562, New York, NY, USA, 2012. ACM.

R. Schiaffino and F. Zearo. Developing and using a translation quality

index. Multilingual, July /August 2006.

T. Schulze, D. Nordheimer, and M. Schader. Worker perception of
quality assurance mechanisms in crowdsourcing and human computa-

tion markets. In 19th Americas Conference on Information Systems

2013 : AMCIS 2013 Proceedings, Atlanta, Ga., 2013. AlISeL.

Victor S. Sheng, Foster Provost, and Panagiotis G. Ipeirotis. Get an-
other label? improving data quality and data mining using multiple,
noisy labelers. In Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 08, pages
614-622, New York, NY, USA, 2008. ACM.

274

[91]

[92]

[95]

[96]

BIBLIOGRAPHY

Chong Sun, Narasimhan Rampalli, Frank Yang, and AnHai Doan.
Chimera: Large-scale classification using machine learning, rules, and

crowdsourcing. PVLDB, 7(13):1529-1540, 2014.

Li Sun, Serdar Boztas, Kathy Horadam, Asha Rao, and Steven Ver-
steeg. Analysis of user behaviour in accessing a source code repository.

Technical report, RMIT University and CA Technologies, 2013.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting Liu, and Bing
Qin. Learning sentiment-specific word embedding for twitter sentiment

classification. In ACL (1), pages 1555-1565, 2014.

Niek Tax, Natalia Sidorova, Reinder Haakma, and Wil M. P. van der
Aalst. Event abstraction for process mining using supervised learning

techniques. CoRR, abs/1606.07283, 2016.

P. S. Thiagarajan. Elementary net systems. In Advances in Petri Nets
1986, Part I on Petri Nets: Central Models and Their Properties, pages
26-59, London, UK, UK, 1987. Springer-Verlag.

V. Torra. Twofold integral: A choquet integral and sugeno integral
generalization. Butlleti de I’Associacio Catalana d’Intel-ligencia Artifi-
cial, 29:13-19 (in Catalan). Preliminary version: IITA Research Report
TR-2003-08 (in English)., 2003.

V. Torra and Y. Narukawa. Modeling decisions: Information Fusion

and Aggregation Operators. Springer, 2007.

M. Sugeno V. Torra, Y. Narukawa. Non-Additive Measures. Springer,
2014.

BIBLIOGRAPHY 275

[99]

[100]

[101]

[102]

103]

[104]

[105]

W. M. P. van der Aalst. The application of petri nets to workflow
management. Journal of Circuits, Systems and Computers, 8(1):21—

66, 1998.

Wil Van der Aalst, Arya Adriansyah, and Boudewijn van Dongen. Re-
playing history on process models for conformance checking and per-
formance analysis. Wiley Interdisciplinary Reviews: Data Mining and

Knowledge Discovery, 2(2):182-192, 2012.

Wil M. P. van der Aalst. Process Mining: Discovery, Conformance and
Enhancement of Business Processes. Springer Publishing Company,

Incorporated, 1st edition, 2011.

Wil M. P. van der Aalst and Christian W. Giinther. Finding structure
in unstructured processes: The case for process mining. In ACSD,

pages 3—-12. IEEE Computer Society, 2007.

Wil M. P. van der Aalst, Michael Rosemann, and Marlon Dumas.
Deadline-based escalation in process-aware information systems. Decis.

Support Syst., 43(2):492-511, March 2007.

Borja Vazquez-Barreiros, Manuel Mucientes, and Manuel Lama. Min-
ing duplicate tasks from discovered processes. In Proceedings of the

ATAED Workshop, pages 78-82, 2015.

P. Venetis and H. Garcia-Molina. Quality control for comparison mi-
crotasks. In Proceedings of the First International Workshop on Crowd-
sourcing and Data Mining, CrowdKDD ’12, pages 1521, New York,
NY, USA, 2012. ACM.

276

[106]

107]

[108]

[109]

[110]

[111]

[112]

[113]

BIBLIOGRAPHY

Luis von Ahn and Laura Dabbish. Labeling images with a computer
game. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI '04, pages 319-326, New York, NY, USA,
2004. ACM.

Matthias Weidlich, Jan Mendling, and Mathias Weske. Efficient con-
sistency measurement based on behavioral profiles of process models.

IEEE Tr. Soft. Eng., 37(3):410-429, 2011.

Matthias Weidlich, Artem Polyvyanyy, Jan Mendling, and Mathias
Weske. Causal behavioural profiles - efficient computation, applica-

tions, and evaluation. Fundam. Inform., 113(3-4):399-435, 2011.

Mathias Weske. Business Process Management: Concepts, Languages,
Architectures. Springer Publishing Company, Incorporated, 1st edition,
2010.

R. Yager. On ordered weighted averaging aggregation operators in
multi-criteria decision making. IEEFE Transactions on System, Man,

and Cybernetics, 18:183-190, 1988.

R. Yager. Applications and extensions of OWA aggregations. Interna-
tional Journal Man-Machine Studies, 37:103-122, 1992.

Zhigiang Yan, Remco M. Dijkman, and Paul W. P. J. Grefen. Fast
business process similarity search. Distributed and Parallel Databases,

30(2):105-144, 2012.

O.F. Zaidan and C. Callison-Burch. Crowdsourcing Translation: Pro-

fessional Quality from Non-Professionals. In Proceedings of the 49th

BIBLIOGRAPHY 277

Annual Meeting of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1220-1229, Portland, Oregon, USA,
June 2011.

