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Drug	Delivery	Systems	(DDS)	are	engineered	technologies	for	the	

targeted	delivery	and	controlled	release	of	therapeutic	agents.	This	way	

DDS	can	control	the	rate	and	location	in	where	the	drug	is	released	in	the	

body	in	order	to	avoid	side	effects.	

In	 this	 chapter	 a	 general	 introduction	 to	 drug	 delivery	 systems	

will	be	presented.	Historical	approaches	to	drug	delivery	using	different	

administration	routes	are	explained	with	 the	goal	of	guiding	 the	reader	

across	 the	 nanotechnology	 possibilities,	 and	 more	 concretely	 to	

nanotechnology	applied	to	drug	delivery	systems.	
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1.1.	Motivation	and	Background	
Tracing	the	evolution	of	controlled	drug	delivery,	we	can	see	that	

it	had	its	origins	in	the	1960s	when	numerous	macroscopic	“controlled”	

drug	 delivery	 devices	 and	 implants	 were	 designed	 for	 delivery	 as	

mucosal	 inserts	 (in	 the	 eye),	 as	 implants	 (sub-cutaneous	 or	

intramuscular),	 as	 ingestible	 capsules	 (using	 the	 gastrointestinal	 tract),	

as	 topical	 patches	 (on	 the	 skin),	 and	were	 approved	 for	 clinical	 use.	 In	

1980s	the	microscopic	degradable	polymer	era	started	and	nowadays	we	

are	immersed	in	the	very	active	and	exiting	nanoscopic	era	[1].	

	

The	latest	growth	of	scientific	methods	for	structuring	materials	

at	the	nanoscale	has	attracted	much	interest	in	the	scientific	community.	

The	capability	to	transform	matter	at	 the	nanometer	 level	has	unlocked	

the	 chance	 to	 develop	 and	 study	 materials	 that,	 due	 to	 their	

nanostructural	 features,	display	new	and	exotic	effects	[2].	Biomaterials	

are	being	 increasingly	 required	 for	 a	huge	variety	of	 applications.	They	

can	 be	 used	 for	 short	 time	 purposes	 such	 as	 surgical	 operations,	 or	

implanted	 for	 days	 to	 decades	 in	 long-term	 applications.	 In	 the	

pharmaceutical	 industry	 there	 is	 also	 a	 raising	 interest	 in	 developing	

drug	 delivery	 systems	 that	 are	 efficient	 for	 treatments	 of	 multiple	

diseases	with	minor	side	effects.	To	be	able	to	understand	correctly	how	

drug	 administration	 is	 working	 it	 is	 needed	 to	 comprehend	 the	

procedures	that	are	 leading	the	evolution	of	 the	drugs	 in	the	body	after	

being	 administered	under	determinate	 conditions	 and	using	 an	 specific	

administration	route	[3].		
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First	we	are	exposing	the	different	administration	routes	that	can	

be	used	with	their	advantages	and	drawbacks.	One	method	of	classifying	

the	 administration	 routes	 is	 first	 discerning	 between	 enteral	 and	

parenteral	 [4].	 The	 enteral	 routes	 are	 those	 ones	 that	 involve	 the	

gastrointestinal	 tract	 and	 have	 a	 systemic	 effect.	 Includes:	 oral,	 buccal,	

sublingual,	rectal…	Parenteral	means	not	enteral	and	includes	any	route	

that	is	not	using	oral	or	rectal	intake.	The	parenteral	routes	are	injections	

that	 includes	 subcutaneous,	 intramuscular,	 intravenous	 or	

intraperitoneal	and	can	also	include	topical	intake	and	inhalation	[5].	

	

We	can	also	differentiate	the	intravenous	route	from	the	others,	

as	 it	 is	 the	only	one	 in	which	any	body	membrane	should	be	crossed	to	

achieve	the	blood	circulation.	Consequently	any	absorption	process	is	not	

involved.		

	

There	are	 five	different	processes	or	stages	that	 the	drug	has	to	

pass	 through	 [6].	 The	 acronym	LADME	 is	 formed	 by	 the	 initials	 of	 this	

five	 stages	 that	 are	 usually	 characterizing	 the	 temporal	 and	 spatial	

evolution	 of	 a	 drug	 after	 being	 administered	 to	 an	 organism	 in	 a	

determined	 conditions	 and	 specific	 administration	 route.	 Those	 stages	

are:	Liberation	(Drug	release),	Absorption,	Distribution,	Metabolism	and	

Excretion.	In	this	work	we	are	going	to	focus	the	studies	in	the	first	stage:	

liberation,	 since	we	are	doing	 in	vitro	 studies	and	we	are	 interested	on	

the	 release	 differences	 using	 diverse	 materials	 and	 singular	 structures	

[7].	
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The	new	drug	administration	 systems	are	hunting	 the	objective	

of	making	the	drug	reach	a	concrete	part	of	the	body	in	a	desired	velocity.	

It	is	also	needed	to	keep	the	right	concentration	for	a	desired	time	in	the	

right	 site.	 This	 site	 can	 be	 inside	 a	 tissue	 (intratisular),	 it	 can	 even	 be	

inside	a	cell	(intracellular),	or	it	can	be	outside	a	tissue	(extratisular)	like	

the	intestinal	lumen.	

	

We	can	distinguish	between	two	drug	delivery	possibilities:	The	

ones	that	control	the	drug	release	in	terms	of	velocity,	and	the	ones	that	

facilitate	the	distribution	in	a	concrete	area	of	the	organism.		

	

The	systems	that	control	the	release	has	a	fundamental	objective	

to	improve	the	drug	administration,	reducing	side	effects	and	extending	

the	 therapeutic	 effect	 maintaining	 the	 plasmatic	 concentrations	 in	 the	

organism	 between	 the	maximum	 safe	 and	 the	minimum	 effective.	 It	 is	

possible	to	maintain	the	drug	concentration	between	those	two	limits	for	

a	 long	 period	 of	 time	 with	 one	 only	 dose	 using	 controlled	 release	

systems.	 In	 this	work	we	 are	 going	 to	 focus	most	 of	 our	 efforts	 in	 this	

type	of	controlled	release	system.	

	

The	other	option	 is	 vectorization,	 that	means	 that	 the	drug	will	

be	 distributed	 specifically	 in	 the	 organ	 or	 area	 where	 it	 should	 act,	

maintaining	 it	 isolated	 from	 the	 rest	 of	 the	 organism.	 This	 option	 is	

related	with	the	distribution	stage.	It	has	to	be	taken	into	account	that	to	

be	 able	 to	 accomplish	 its	 action,	 drugs	 have	 to	 pass	 through	 several	

membranes	 and	 hostile	 environments,	 some	 times	 it	 develops	 on	

inefficient	molecules	or	toxicity.	Those	vectors	have	improved	this	trip		
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inside	 the	 organism	 due	 to	 protection	 of	 the	 effective	 molecule	

(encapsulation)	using	carriers	and	by	the	increased	affinity	for	the	target	

tissues.	This	increased	affinity	can	be	achieved	using	active	targeting	by	

conjugating	 cell	 membrane	 receptor	 antibodies,	 peptides	 or	 small	

molecule	 cell	 ligands	 to	 the	 carrier,	 or	 passive	 targeting,	 in	 the	 case	 of	

cancer,	using	the	enhanced	permeation	and	retention	effect	(EPR)	[8,	9].	

The	EPR	effect	was	discovered	by	Hiroshi	Maeda	[10].	In	this	effect	nano-

scale	carriers	are	entrapped	within	solid	tumors	due	to	leaky	vasculature	

of	 the	 fast-growing	 tumor.	 As	 tumors	 grow	 and	 begin	 to	 outstrip	 the	

available	 supply	 of	 oxygen	 and	 nutrients,	 they	 release	 cytokines	 and	

other	signaling	molecules	that	recruit	new	blood	vessels	to	the	tumor,	in	

a	process	called	angiogenesis.	Angiogenic	blood	vessels,	unlike	the	tight	

blood	vessels	 in	most	normal	 tissues,	 have	 gaps	 as	 large	 as	600	 to	800	

nm	between	 adjacent	 endothelial	 cells.	 Carriers	 can	 extravasate	 though	

these	gaps	into	the	tumor	interstitial	space,	in	a	size-dependent	manner.	

Because	 tumors	 have	weakened	 lymphatic	 drainage,	 the	 carriers	 (drug	

formulation)	 can	 concentrate	 in	 the	 tumor,	 and	 large	 increases	 of	 drug	

concentrations	 can	 be	 achieved	 relative	 to	 administration	 of	 the	 same	

dose	of	free	drug	[11,	12].	

	

It	 is	 also	 important	 to	mention	 that	 nanotechnology	 has	 driven	

the	development	of	Nanosystems	that	are	able	to	circulate	easily	all	over	

the	body.	Some	of	them	can	act	in	smart	way,	being	stimully-responsive	

systems	 [13–15].	 They	 can	 react	 to	 the	 environment	 signals	 like	 pH,	

temperature,	radiofrequency	or	other	indicators.	

	

In	 sum,	 using	 this	 systems	 we	 can	 improve	 the	 drug	 usage	 in	

several	 ways:	 pharmacokinetic	 aspects	 (protecting	 the	 drug	 from	 the	
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presystemic	 and	 systemic	 degradation,	 metabolization	 or	 unnecessary	

elimination,	 selective	 and	 massive	 release	 of	 the	 drug,	 absorption	

velocity	 control,	 obtaining	 sustained	 and	 therapeutic	 plasmatic	 and	

tissular	 levels,	 selective	 distribution),	 pharmacodynamics	 (dose	

decrease,	 constant	 tissular	 levels),	 therapeutic	 (better	 control	 of	 the	

dosage	in	narrow	therapeutic	range,	less	side	effects)	and	others	related	

to	 the	 patient	 (better	 comfort	 due	 to	 the	 decrease	 of	 the	 drug	

administrations).	 The	 already	 mentioned	 benefits	 have	 a	 special	

importance	 in	 the	 treatment	 diseases,	 especially	 to	 those	 that	 require	

continuous	treatment.		

	

1.2.	Systems	that	Modulates	the	Drug	Release	
In	 this	 part	we	 are	 going	 to	 explain	 the	different	 strategies	 and	

systems	 for	 drug	 delivery	 that	 already	 exist,	 classified	 by	 the	

administration	route.	

	

	 1.2.1.	Enteral	Administration	
	 Those	systems	pretend	to	release	the	active	substance	in	a	

concrete	 area	 of	 absorption	 inside	 the	 gastric	 tract	 with	 an	 already	

known	 and	 predetermined	 velocity.	 The	 main	 troubles	 to	 achieve	 this	

purpose	are	 the	difficulty	 to	place	and	maintain	 the	drug	 in	 the	desired	

gastrointestinal	 area,	 the	 damage	 that	 the	 gastric	 fluid	 and	 other	

digestive	 liquids	 can	 produce	 to	 the	 active	 form	 of	 the	 drug,	 and	 the	

incapability	to	control	the	interpersonal	variability	of	the	process	of	the	

gastric	 emptying.	 Even	 that	 there	 are	 some	 existing	 strategies	 and	

devices;	some	of	 them	already	patented,	 that	allow	controlling	 the	drug	

release:		

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF NANOPOROUS ANODIC ALUMINA TECHNOLOGIES FOR DRUG DELIVERY 
Maria Porta Batalla 
 



Introduction	
________________________________________________________________________________________	

________________________________________________________________________________________
15	

Matrix	Systems:	are	made	by	a	mixture	of	the	active	ingredient	

and	the	excipient,	both	compressed.	

Systems	 with	 Release	 Controlled	 by	 Layers:	 in	 this	 case	 the	

drug	release	 is	done	when	the	coverture	(layer)	 is	dissolved	or	become	

permeable	 in	 contact	 with	 the	 medium.	 This	 layer/coverture	 can	 be	

applied	on	drug	particles	or	on	a	complete	dosage	form	like	a	pill.		

Osmotic	 Systems:	 in	 this	case	 the	drug	release	 is	controlled	by	

the	osmotic	pressure	that	is	originated	inside	the	device.	These	systems	

are	 composed	 by	 a	 nucleus	 formed	 by	 the	 active	 substance	 and	 the	

osmotic	agent	both	covered	by	a	semipermeable	membrane	 that	allows	

only	the	passage	of	water	and	presents	an	orifice.	When	the	system	is	in	

contact	with	the	biologic	fluids,	those	can	penetrate	inside	the	membrane	

and	 the	 active	 substance	 is	 released	 by	 means	 of	 the	 hole	 due	 to	 the	

inside	increasing	presure.	

Chemical	 Controlled	 Systems:	 the	 release	 of	 the	 active	

ingredient	is	controlled	by	a	chemical	reaction	that	produces	the	erosion	

of	the	encapsulating	material.	

Floating	 Systems:	 those	 systems	have	 a	 lower	density	 that	 the	

gastric	fluids,	for	this	reason	they	are	maintained	in	the	stomach	during	

all	over	the	gastric	emptying.	

Bioadhesive	 Systems:	 those	 systems	 contain	 the	 drug	

interposed	in	a	polymer.	After	the	administration	this	polymer	is	fixed	in	

a	determined	area	which	leads	to	the	active	ingredient	release	there.	

Systems	 for	Colon	Release:	The	colon	is	a	 less	hostile	medium	

compared	 with	 the	 small	 intestine	 and	 stomach	 due	 to	 its	 enzymatic	

activity	 and	 pH.	 In	 addition,	 the	 administration	 device,	 like	 the	 food	

bolus,	will	 remain	 in	 the	 colon	 for	 a	 longer	 time.	 Those	 administration	

systems	 can	 use	 specific	 signals	 that	 allow	 them	 to	 recognize	 that	 they	
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have	reach	 the	colon,	 like	 the	change	 in	pH	or	 the	enzymatic	activity	of	

the	colonic	bacteria	[16].	

	

1.2.2.	Parenteral	Administration	
Those	 systems	 using	 the	 parenteral	 routes	 are	 looking	 for	

effective	 plasmatic	 drug	 levels	 during	 long	 time	 periods.	 This	 route	 is	

involving	 all	 the	 non-enteral	 routes,	 like	 intravenous,	 subcutaneous,	

intramuscular,	 intraperitoneal,	 intraspine,	 between	 others.	 For	 this	

reason	both	implants	and	particles	can	be	used.	

	

	 1.2.2.1.Implants	
Generally	 they	 can	 be	 defined	 as	 systems	 that	 are	 inserted	 by	

surgery.	They	need	 to	have	basic	 features	 like	biocompatibility.	Besides	

the	 components	 have	 to	 be	 inert,	 non	 carcinogenic,	 hypoallergenic	 and	

stable	 in	 the	 implanted	 area,	 and	 should	 not	 cause	 inflammatory	

response.	We	can	distinguish	between	biodegradable,	non-biodegradable	

implants.	

	

	 Biodegradable	 Systems:	 they	 are	 eliminated	 by	 the	

organism,	 it	 is	 not	 necessary	 to	 remove	 them	 from	 the	 body	 once	 the	

treatment	 is	 finished.	 Silicon	 implants	 can	 be	 included	 in	 this	 section	

since	they	present	degradation	in	contact	with	body	fluids.	

	

	 Non-biodegradable	 Systems:	 they	 are	 not	 eliminate	 by	

the	organism	in	a	natural	way,	 that	mean	that	 they	have	to	be	removed	

from	the	body	otherwise	they	will	remain	in	it.	Alumina	implants	can	be	

included	 in	 this	 section	 since	 they	 degradation	 in	 contact	 with	 body	

fluids	is	negligible.	
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1.2.2.2.	Intravenous	Administration	
Using	this	route	of	administration	the	drug	formulation	does	not	

need	to	cross	any	membrane	in	the	body	since	it	is	reaching	the	systemic	

circulation	 immediately.	 Even	 that,	 it	 requires	 trained	 personnel,	 it	 is	

uncomfortable	for	the	patient,	and	sterility	is	needed.	Using	this	route	we	

can	take	advantage	of	the	already	mentioned	EPR	effect,	so	nanoparticles	

are	good	candidates	for	this	administration	route.	

	

1.2.2.3.	Transdermic	Administration	
This	 route	 is	 used	 to	 administrate	 active	 ingredients	 to	 the	

systemic	 distribution	 across	 the	 skin.	 Transdermal	 patches	 are	 devices	

formed	by	several	layers	that	allow	the	release	of	the	active	substance	in	

variable	periods	of	time.		

	

The	 fundamental	 principle	 that	 this	 system	 requires	 is	 that	 the	

velocity	of	the	release	has	to	be	lower	than	the	velocity	of	the	penetration	

across	 the	 skin.	 This	 way	 the	 release	 is	 the	 limiting	 factor	 of	 the	 drug	

administration.		

	

But	 more	 related	 to	 nanotechnology,	 Microneedles	 are	

constructing	the	base	for	a	new	thechnique	for	delivering	little	amounts	

of	drug	across	the	skin	without	any	pain.	They	are	composed	by	a	great	

amount	 of	 structures	 with	 a	 smaller	 diameter	 than	 a	 human	 hair.	 The	

microneedles	 do	 not	 cause	 any	 pain	 to	 the	 patient	 because	 they	 are	

penetrating	the	external	layer	of	the	skin	(epidermis)	where	there	are	no	

nerve	 endings.	 Once	 the	 drug	 is	 released	 it	 can	 reach	 the	 systemic	

circulation	using	small	capillaries.	
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1.2.2.4.	Ophthalmic	Administration	
Frequently	it	is	impossible	to	obtain	effective	levels	of	the	active	

ingredient	in	the	eye	using	the	systemic	administration.	For	this	reason	a	

local	administration	is	needed.	In	order	to	avoid	frequent	dosage	a	drug	

delivery	 system	 is	 really	 helpful.	 In	 addition,	 microparticles	 and	

nanoparticles	are	presenting	a	good	size	to	be	administered	by	a	needle	

without	surgery	[17,	18].	

	

1.4.	Objectives	and	Structure	of	this	PhD	Thesis	
The	objectives	of	this	PhD	thesis	are	the	following:	

Design	 and	 fabricate	 different	 nanoporous	 anodic	 alumina	

structures.	

Design	drug	delivery	systems	using	nanoporous	anodic	alumina	

structures	by	different	strategies.	

Measure	 and	 optimize	 the	 drug	 release	 for	 every	 alumina	

structure.	

Optimize	 the	 porosity	 and	 the	 size	 of	 silicon	 nanoparticles	 for	

drug	delivery	systems.	

	

After	 a	 brief	 introduction	 about	 drug	 delivery	 systems,	 the	

motivation	of	 this	PhD	thesis	 is	explained	 in	chapter	1.	 In	chapter	2	the	

fundamentals	of	nanostructured	anodic	alumina	are	described,	including	

the	 history	 of	 nanostructured	 Anodic	 Alumina	 and	 the	 basis	 of	 the	

alumina	 formation.	 Chapter	3	deals	with	 the	 fabrication	of	Nanoporous	

Anodic	Alumina	detailing	 the	electrochemical	cells	 that	have	been	used.	

Chapter	4	focuses	on	Nanoporous	Anodic	Alumina	for	stimuli-responsive	

drug	release.	Drug	release	profiles	using	different	pore	architectures	are	
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presented	 in	 chapter	 5.	 Chapter	 6	 is	 presenting	 some	 background,	

fabrication	and	particle	size	optimization	for	drug	delivery	using	porous	

silicon.	Chapter	7	summarizes	and	presents	 the	conclusions	obtained	 in	

this	PhD	dissertation.	
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In	 this	 chapter	 the	 origins	 and	 state	 of	 the	 art	 of	 Nanoporous	

Anodic	Alumina	 (NAA)	are	presented.	 	Also	 the	basis	of	NAA	 formation	

like	 the	 electrochemical	 reactions,	 pore	 ordering	 methods	 and	

anodization	parameters	 are	 accurately	 explained.	We	have	 exposed	 the	

anodization	 parameters	 and	 the	 structural	 NAA	 characteristics	

separately	although	the	NAA	characteristics	are	caused	by	the	anodizing	

parameters.	They	are	deeply	related	as	it	can	be	seen	in	the	last	table	in	

this	chapter.	
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2.1.	History	of	Nanostructured	Anodic	Alumina	
The	 History	 of	 the	 electrochemical	 oxidation	 of	 the	 aluminium	

dates	back	in	1920.	By	those	dates	they	were	looking	for	techniques	for	

producing	 protective	 or	 decorative	 layers	 in	 the	 metal	 for	 commercial	

purposes.	Aluminium	pieces	exposed	to	the	atmospheric	air	are	creating	

a	 natural	 protective	 layer	 of	 aluminium	 oxide	 (alumina).	 This	

observation	 triggers	 some	 ideas	 to	 change	 the	 material	 properties.	 In	

1923	Bengough-Stuart	used	chromic	acid	 for	 the	anodization	 to	protect	

aluminium	pieces	used.	They	patented	this	procedure	used	for	protecting	

the	aluminium	alloys	from	corrosion	by	means	of	this	anodic	procedure.		

	

More	recently,	applications	of	porous	alumina	with	huge	surface	

area	and	relatively	narrow	pore	size	have	been	exploited.	In	1927	Glower	

and	 O’Brien	 patented	 the	 first	 sulphuric	 acid	 anodization.	 Afterwards	

Carboni	 developed	 a	 coloring	 method	 consisting	 of	 anodization	 in	

sulphuric	acid	 followed	by	the	application	of	an	alternating	current	 in	a	

metal	salt	solution	in	1936.	

	

Thanks	to	the	electron	microscopy	development	porous	alumina	

structures	 could	 be	 better	 understood.	 Keller	 et	 al.	 published	 a	 great	

description	of	the	porous	alumina	structure	in	1953.	They	descrived	the	

porous	 alumina	 as	 an	 hexagonally	 close-packed	 duplex	 structure	

consisting	 of	 pores	 and	 a	 barrier	 layer.	 They	 also	 demonstrated	 the	

relationship	 of	 an	 applied	 potential	 and	 the	 geometric	 qualities	 of	 the	

pores	such	as	the	interpore	distance.	
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In	 1969	 Diggle	 et	 al.	 published	 a	 review	 about	 Anodic	 Oxide	

Aluminum	 [1].	 In	 this	 paper	 structural	 topographies	 regarding	 water	

content	 and	anion	 incorporation	 in	 the	oxide	 and	 theoretical	models	 of	

formation	 mechanisms	 of	 both	 the	 barrier-type	 oxide	 and	 the	 porous-

type	 oxide	 were	 described.	 On	 late	 80s	 and	 early	 90s	 	 Thompson	 and	

Wood	 published	 an	 article	 about	 deep	 understanding	 in	 the	 growth	

mechanisms	of	alumina	oxide	 layers	and	provide	a	better	knowledge	of	

the	 grown	mechanism	of	 the	 anion	 incorporation	 in	 the	NAA	 structure.	

Masuda	 and	 Fukuda	 published	 an	 article	 about	 self-ordered	 porous	

alumina	membrane	based	on	a	two-step	replicating	process	on	1995	[2].	

	

2.2.	Basis	of	Nanoporous	Anodic	Alumina	Formation	
Anodic	Aluminum	oxide	can	be	formed	in	two	kind	of	typologies:		

without	 pores	 and	 with	 pores.	 The	 anodization	 in	 neutral	 electrolytes	

(pH	5-7),	like	borate	or	oxalate	gives	nonporous	membranes.	Meanwhile	

anodizations	 in	 acidic	 electrolytes	 as	 sulphuric,	 oxalic	 or	 phosphoric	

gives	porous	membranes.	 In	 these	thesis	we	have	centred	our	attention	

on	the	porous	ones.	

	

2.2.1.	Electrochemistry	of	Nanoporous	Anodic	

Alumina	

2.2.1.1.	Thermodynamics	
Regarding	thermodynamics,	when	aluminium	is	exposed	to	air	or	

water,	due	to	the	presence	of	oxygen,	they	react	spontaneously	and	a	thin	

film	 of	 aluminium	 oxide	 is	 formed.	 This	 phenomenon	 is	

thermodynamically	 favoured	 by	 the	 big	 negative	 Gibb’s	 free	 energy	

change.	[3]	
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2𝐴𝑙 + 3 2𝑂! = 𝐴𝑙!𝑂!			ΔGº=-1582kJ/mol																		(2.1)	

2𝐴𝑙 + 3𝐻!𝑂 = 𝐴𝐿!𝑂! + 3𝐻!			ΔGº=-871kJ/mol												(2.2)	

	

In	 terms	of	 the	electrochemistry,	 the	anodization	process	of	 the	

aluminium	 for	 fabricating	 Nanoporous	 Anodic	 Alumina	 is	 usually	

prepared	 using	 an	 electrolyte	 consisting	 of	 an	 aqueous	 solution	 of	

sulphuric,	 oxalic	 or	 phosphoric	 acid	where	 the	 anode	 (aluminium)	 and	

cathode	 (platinum	 wire)	 are	 partly	 immerserd.	 Once	 the	 anoditzation	

voltage	(U),	that	will	be	different	for	every	electrolyte,	is	applied	between	

the	 anode	 and	 the	 cathode,	 pores	 nucleate	 and	 grow	 deep	 into	 the	

aluminium	surface.	Under	a	constant	U,	 the	anodization	current	density	

(J)	versus	time	(t)	curve	can	be	divided	into	four	regions	(Figure	2.1):	

	
Figure	 2.1.	 Current	 density	 vs.	 Time	 curve	 for	 the	 first	 600	 seconds	

during	 the	 anodization	 of	 a	 high-purity	 aluminium	 foil	 under	

potentiostatic	conditions	in	0.3M	oxalic	acid	at	40V	and	5ºC.	Regions	I,	II,	

III	and	IV	represent	the	different	stages	of	the	NAA	formation.	
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In	 region	 I,	 current	 density	 (J)	 will	 reach	 a	 high	 value	 really	

quickly	which	can	be	attributed	to	the	existence	of	electrolytic	process	of	

water.	As	the	thin	and	compact	barrier	layer	of	aluminium	oxide	is	being	

created	 onto	 the	 aluminium	 that	 is	 in	 contact	 with	 the	 electrolyte,	 the	

current	 density	 decreases	 abruptly.	 Is	 during	 this	 region	 when	 the	

barrier	 layer	 is	 growing	 faster,	 and	 the	 total	 resistance	 is	 rising	

consistently.	Finally	the	current	density	(J)	decrease	sharply	to	reach	the	

lowest	 value	 under	 the	 potentiostatic	 mode,	 when	 the	 barrier	 layer	

thickness	increases	[4–6].		

	

At	 this	 point	 the	 region	 II	 begins.	 Parkhutik	 et	 al.	 proposed	 a	

theory	 in	which	 localized	 paths	 can	 be	 created	 in	 the	 abovementioned	

oxide	 barrier	 layer	 to	 create	 real	 pores.	 This	 pore	 construction	

mechanism	has	 been	 broadly	 discussed:	 O’Sullivan	 et	 al.	 have	 reported	

that	 the	 anodization	 current	 density	 (J)	 is	 concentrated	 on	 the	

weaknesses	parts	or	defects	of	the	barrier	layer	that	gives	differences	on	

the	 layer	settlement	 [7].	Moreover,	according	 to	 the	 theory	of	Thomson	

et	al.	the	pathways	may	be	initiated	from	the	cracking	areas	of	the	initial	

oxide	barrier	layer	because	of	the	cumulative	tension	stress	[1,	8,	9].		

	

Then	some	of	the	pores	will	continue	growing	creating	real	pores	

but	 some	 will	 stop.	 Thanks	 to	 this	 the	 J	 will	 increase	 to	 a	 regional	

maximum	value	because	of	the	total	decreasing	resistance,	now	starts	the	

region	III.		
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During	 this	 region	 III,	 pores	 nucleate	 on	 the	 oxide	 thin	 film.	

Some	pores	will	combine	with	others	so	 the	pore	density	will	decrease.		

Then	an	equilibrium	between	the	forming	and	the	dissolving	aluminium	

oxide	is	reached	and	the	region	IV	starts	[4,	6,	10].		

	

The	process	 can	be	explained	by	 the	 following	 redox	equations,	

and	by	figure	2.2:	

	

At	the	anode:	

Formation	of	 the	 alumina	 (aluminium-alumina	 interface)	where	

the	oxide	is	growing:	

	

2𝐴𝑙 + 3𝐻!𝑂 = 𝐴𝑙!𝑂! + 6𝐻! + 6𝑒!																											(2.3)	

	

Dissolution	of	the	alumina	(alumina-electrolyte	interface)	

	

𝐴𝑙!𝑂! + 6𝐻! = 2𝐴𝑙!! + 3𝐻!𝑂																																		(2.4)	

	

Diffusion	of	aluminium	cations	(within	oxide	barrier	layer)	

	

2𝐴𝑙 = 2𝐴𝑙! + 6𝑒!																																									(2.5)	

	

At	the	cathode:	

Hydrogen	evolution	(electrolyte-cathode	interface):	

	

6𝐻! + 6𝑒! = 3𝐻!																																												(2.6)	
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Figure	2.2.	Schematics	for	the	alumina	pore	formation.	A)	Formation	of	a	

thin	compact	layer	of	Al2O3	is	formed	corresponding	to	Region	I	in	Figure	

2.1.	 B)	 Instabilities	 in	 the	 electric	 field	 across	 the	 oxide	 film	 dissolve	

partially	 the	 oxide	 at	 certain	 sites;	 it	 corresponds	 to	 the	 Region	 II	 in	

Figure	2.1.	C)	Pore	 formation	at	 the	nucleation	points	 corresponding	 to	

Region	III	and	IV	in	Figure	2.1.	D)	Detail	of	the	transport	of	the	main	ionic	

species	though	the	oxide	barrier	layer.	

	

	

2.2.1.2.Kinetics	
At	 the	 same	 time	 the	 current	 density	 (J)	 of	 the	 anodization	

process	 under	 potentiostatic	 conditions	 is	 a	 result	 of	 combining	 the	

anion	(Ja),	cation	(Jc)	and	electron	(Je)	current	densities.	

	

𝐽 = 𝐽𝑎 + 𝐽𝑐 + 𝐽𝑒																																							(2.7)	
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But,	as	 the	electric	conductivity	of	 the	aluminium	oxide	 is	really	

low	(resistivity	of	alumina	ρalumina=	1014	Ω/cm),	the	current	density	of	the	

electrons	 becomes	 negligible,	 and	 the	 current	 density	 expression	 stays	

like:	

𝐽 ≈ 𝐽𝑎 + 𝐽𝑐																																														(2.8)	

	

For	 this	 reason	 the	 anoditzaton	 procedure	 of	 aluminium	 is	

mainly	limited	by	the	ionic	transport	of	the	main	ionic	species	(Al3+	and	

O2-).	

	

2.2.2.	Pore	Ordering	
The	 pore	 ordering	 can	 be	 accomplished	 by	 two	 different	

methods:	the	Nano	imprinting	Lithography	and	the	two-step	anodization.	

	

2.2.2.1.	Nanoimprint	Lithography	(NIL)	
This	methodology	 produces	 a	 perfect	 pore	 ordering	 due	 to	 the	

fact	that	the	pores	nucleate	at	the	defect	sites	in	the	aluminium	substrate.	

Taking	 advantage	 of	 this	 above-mentioned	 process	 the	 Nanoimprint	

Lithography	 (NIL)	 is	 generating	 an	 ordered	 array	 of	 defects	 just	 to	

stimulate	 the	 pore	 nucleation	 at	 those	 specific	 locations	 (figure	 2.3).	

This	 results	 in	 an	 ordered	 array	 of	 nanopores	 [11–13].	 The	 major	

advantage	 of	 these	 process	 is	 the	 short	 time	 needed	 to	 fabricate	 the	

ordered	NAA	and	the	possibility	of	the	fabrication	of	nanoporous	anodic	

arrays	of	other	lattices	than	hexagonal.	Nevertheless	this	methodology	is	

limited	by	the	micro	fabrication	techniques	available,	as	there	is	the	need	

to	 create	 the	 master.	 An	 other	 methodology	 using	 laser	 interference	

lithography	(LIL)	has	been	also	developed	[14].	
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Figure	 2.3.	 is	 showing	 the	 Nano	 imprinting	 Lithography	method.	 A-B)	

using	 a	 master	 an	 specific	 pattern	 of	 defects	 are	 created	 on	 the	

aluminium	 substrate.	 C)	 The	 aluminium	 substrate	 is	 used	 for	 the	

electrochemical	 anodization.	D)	The	defects	 in	 the	aluminium	will	 arise	

the	 nucleation	 points	 where	 the	 pores	 will	 grow.	 E-F)	 It	 results	 in	 a	

perfectly	ordered	nanoporous	array.	

	

2.2.2.2.	Two	Step	Anodization	
The	 two	 step	 anodization	 allow	 the	 self	 ordering	 fabrication	 of	

porous	 NAA	 membranes	 [7,	 14–20].	 These	 method	 for	 obtaining	 self-

ordered	NAA	 by	means	 of	 two-step	 anodization	was	 first	 published	 by	

Masuda	 and	 Fukuda	 back	 in	 1995	 [2].	 They	 observed	 that	 after	 long	

anodization	 the	 pores	 at	 the	 bottom	 of	 the	 samples	 were	 ordered	 in	

hexagonal	 arrays,	 giving	 perfect	 ordered	 pores.	 This	 way,	 a	 first	

anodization	 can	 give	 an	 ordered	 pattern	 once	 the	 alumina	 is	 removed.	

Then	a	second	anodization	will	provide	ordered	pores.	It	 is	represented	

in	figure	2.4.	
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Figure	2.4.	A)	The	two-step	anodization	starts	with	a	flawless	aluminium	

sheed.	B)	A	first	anodization	(first	step)	is	performed	in	which	the	pores	

are	gaining	order	as	they	are	growing	deep	in	the	aluminium	bulk.	C)	The	

aluminium	 oxide	 is	 removed	 leaving	 a	 perfect	 ordered	 semi-spherical	

defects	 in	 the	 aluminium	 sheed.	 D)	 A	 second	 step	 is	 performed	 with	

perfectly	ordered	pores	as	a	result.	

	

2.2.2.3.	The	Mechanical	Stress	Model	
The	self-ordering	phenomenon	in	NAA	has	been	attributed	to	the	

mechanical	 stress	 at	 the	 metal/oxide	 interface.	 As	 the	 density	 of	 the	

Al2O3	 is	 lower	 than	 the	 aluminium	 substrate,	 the	 volume	 of	 this	 Al2O3	

expands	 twice	 the	 original	 volume	 of	 the	 aluminium	 substrate.	 This	

change	 in	 volume	 provokes	 repulsive	 forces	 that	 lead	 to	 pore	 ordering	

[17,	21].	
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2.2.3.	NAA	Pore	Structure	

2.2.3.1.The	Unit	Cell	
Nanoporous	 Anodic	 Alumina	 (NAA)	 membranes	 are	 made	 of	

hexagonal	 unit	 cells.	 Each	 unit	 cell	 contains	 three	 different	 parts:	 The	

skeleton,	an	hexagonal	inner	layer	which	is	made	of	the	common	internal	

walls	between	the	unit	cells,	an	outer	layer	between	the	central	pore	and	

the	inner	layer	and	an	interstitial	rod	inside	the	inner	layer	at	the	triple	

cell	junction.		

	

The	 pore	 structural	 parameters	 are:	 interpore	 distance	 (Dint),	

pore	diameter	(Dp),	barrier	layer	thickness	(Tb),	pore	wall	thickness	(Tw),	

pore	density	(ρp)	and	porosity	(P)	as	it	can	be	checked	in	figure	2.5.	

	

These	 parameters	 are	 dependent	 on	 the	 electrolyte	 type,	

anodization	voltage,	anodization	current	density	and	temperature	as	it	is	

exposed	afterwards	[7,	16–18].	

	

2.2.3.2.Chemical	Composition	
Chemically,	two	main	areas	can	be	recognised	in	the	structure	of	

the	 NAA.	 One	 that	 is	 an	 inner	 layer	 close	 to	 the	 aluminium-alumina	

interfaces	that	is	basically	composed	of	pure	alumina.	And	the	other	is	an	

outer	 layer	 located	between	the	 inner	 layer	and	the	alumina-electrolyte	

interface,	 which	 is	 contaminated	 by	 anionic	 species	 from	 the	 acid	

electrolyte.		Moreover	it	has	been	discovered	by	Han	et	al.	[22]	that	there	

is	 a	 relationship	 between	 the	 	 anionic	 impurities	 incorporated	 and	 the	

anodization	time.		
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It	 was	 also	 revealed	 that	 the	 decrease	 of	 the	 electrolyte	

concentration	 causes	 a	 decrease	 of	 the	 relative	 thickness	 of	 the	 anion	

contaminated	outer	pore	wall	 to	the	pure	 inner	pore	wall.	This	way	the	

contaminated	area	will	be	thicker	to	the	top	of	the	pore,	meanwhile	this	

outer	 contaminated	 zone	 is	 thinner	 at	 the	 bottom	 of	 the	 pore,	 as	 the	

electrolyte	concentration	is	being	reduced.	It	 is	schematically	illustrated	

in	figure	2.6.	

	

	

	
Figure	 2.5.	 	A)	The	unit	 cell	 is	 formed	by	pores	equally	distanced	ones	

from	others,	this	distance	is	named	interpore	distance	(Dint).	Other	parts	

of	the	unit	cell	are:	Interstitial	rod,	outer	layer	and	inner	layer.	B)	Other	

parameters	are,	 the	barrier	 layer	thickness	(Tb),	 the	wall	 thickness	(Tw)	

and	the	pore	diameter	(Dp).	
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Figure	2.6.	Cross	section	and	top	view	schematics	of	nanoporous	anodic	

alumina	pores	showing	the	anion	contaminated	area	(in	pink)	inside	the	

pore	wall.	

	

In	 addition	 those	 layer	 differences	 is	 that	 the	 outer	 layer	 (the	

contaminated	one)	is	less	resistant	to	the	chemical	etching	than	the	inner	

one.	This	 inner	property	prevents	 the	structure	 from	collapsing	even	at	

high	porosity	[19,	23,	24].	

	

2.2.4.	Anodization	Parameters	
The	structural	characteristics	of	the	NAA	can	be	controlled	by	the	

anodization	 parameters.	 Those	 parameters	 are:	 anodization	 type,	

anodization	 voltage,	 anodization	 time,	 electrolyte	 characteristics,	 and	
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aluminium	substrate.	Remember	that	the	structural	characteristics	of	the	

NAA	 are:	 pore	 diameter,	 interpore	 distance,	 porosity,	 degree	 of	

hexagonal	 pore	 arrangement,	 and	 barrier	 layer	 thickness.	 It	 has	 to	 be	

also	taken	in	consideration	that	the	acid	electrolyte	needs	to	be	stirred	at	

the	same	rate	during	all	the	etching	procedure	in	order	to	ensure	that	the	

diffusion	 of	 the	 ionic	 species	 and	 temperature	 inside	 the	 pores	 is	

homogenous.	

	

2.2.4.1.	Anodization	Type	
Two	 kinds	 of	 Aluminum	 anodization	 can	 be	 produced:	 Mild	

Anodization	and	Hard	Anodization.	

	

2.2.4.1.1.	Mild	Anodization	
Mild	 anodization	 (MA)	 is	 based	 on	 anodization	 of	 aluminium	

under	potentiostatic	 conditions	 and	 small	 potentials.	 It	 is	 characterized	

by	 the	 slow	 linear	growth	of	 the	NAA	 film.	This	 anodization	 type	 is	 the	

one	mainly	used	 in	academic	research	due	to	 its	uniform	pore	size	(Dp)	

and	 interpore	 distance	 (Dint)	 that	 can	 be	 easily	 tuned	 by	 selection	 of	

appropriate	anodization	conditions	[4].	

	

2.2.4.1.2.	Hard	Anodization	
Hard	 anodization	 (HA)	 appeared	 as	 an	 alternative	 to	 Mild	

Anodization	 (MA)	 to	 produce	 NAA	 films	 faster	 and	 with	 higher	 pore	

ordering.	 This	 anodization	 type	 is	 using	 voltages	 over	 the	 breakdown	

potentials	 (breakdown	 potentials	 are	 27,	 50	 and	 197	 V	 for	 sulphuric,	

oxalic	 and	 phosphoric	 acids	 respectively)	 [4].	 Contrarily	 to	 MA	 the	

growth	 of	 the	 NAA	 is	 not	 linear.	 A	 stable	 anodization	 in	 a	 given	

electrolyte	 is	 difficult	 to	maintain	 over	 the	 breakdown	potential	 due	 to	
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the	 occurrence	 of	 burning	 or	 breakdown	 of	 the	 growing	 anodic	 oxide	

film.	 For	 this	 reasons	 HA	 processes	 are	 not	 being	 employed	 for	

nanotechnology	research.		

	

2.2.4.2.	Anodization	Voltage	
The	anodization	voltage	(U)	is	limited	for	a	given	acid	electrolyte	

and	concentration.	If	the	anodization	voltage	is	too	high	the	oxide	barrier	

layer	will	breakdown	(also	known	as	“burning”)	and	the	pore	growth	will	

not	 be	 homogeneous.	 This	 phenomenon	 occurs	 due	 to	 the	 conductivity	

increase	in	the	barrier	layer	at	the	pore	bottom.	That	will	produce	a	local	

heating,	the	ionitzation	of	the	atoms	that	generates	more	electrons	due	to	

the	energy	from	the	electric	field	and	the	breakdown	of	the	oxide	barrier	

layer	from	the	existing	cracks.	

	

The	conductivity	of	the	most	typical	acid	electrolytes	used	for	the	

aluminium	 anodization	 follows	 	 the	 sequence	 H2SO4	>	 H2C2O4	 >	 H3PO4.	

According	 to	 this,	 the	 values	 of	 the	 anodization	 voltages	 are	written	 in	

table	2.1.	

	

Table	 2.1.	 Voltage	 values	 for	 every	 electrolyte	 typology	 and	

anodization	type.	

	

Sulphuric	

Acid	

(H2SO4)	

Oxalic	

Acid	

(H2C2O4)	

Phosphoric	

Acid	

(H3PO4)	

Mild	

Anodization	
20	V	 40	V	 195	V	

Hard	

Anodization	
Over	27	V	 Over	50	V	 Over	197	V	
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2.2.4.3.	Anodization	Time	
	 Usually	 the	 NAA	 layer	 thickness	 (L)	 is	 controlled	 by	 the	

anodization	 time	 (t).	 Under	 galvanostatic	 conditions	 the	 relationship	

between	 layer	 thickness	 (L)	 and	 time	 (t)	 is	 linear.	 However	 under	

potentiostatic	conditions,	the	template	thickness	does	not	grow	linearly.	

So,	 to	 fabricate	 NAA	 with	 controlled	 thickness	 under	 such	 anodization	

conditions,	it	is	more	accurate	to	control	the	layer	thickness	(L)	using	the	

total	current	charge	(Q)	since	the	relationship	between	L	and	Q	is	linear	

under	potentiostatic	conditions	[25,	26].	

	

2.2.4.4.	Acid	Electrolyte	
	 Electrolyte	 composition	 is	 fundamental	 for	 the	 fabrication	

of	 excellent	 NAA	 films.	 As	 we	 have	 already	 mentioned,	 the	 usual	 acid	

electrolytes	used	 for	 fabricating	NAA	are	sulphuric	acid,	oxalic	acid	and	

phosphoric	 acid.	 Even	 though	 several	 exotic	 acids	 such	 as	 tartaric	 and	

formic	 have	 been	 tried.	 The	 type,	 concentration,	 temperature,	 pH	 and	

viscosity	 of	 the	 acid	 electrolyte	 is	 strongly	 affecting	 the	 structural	

characteristics	of	the	NAA.		

	

2.2.4.4.1.	Electrolyte	Temperature	 	
Temperature	of	the	electrolyte	is	affecting	the	pore	growth	rate.	

An	electrolyte	temperature	decrease	will	provoke	a	pore	grow	decrease.	

To	 avoid	 the	 nanoporous	 anodic	 alumina	 dissolving	 and	 oxide	

breakdown	(commonly	known	as	sample	burning)	during	the	anodizing	

process	the	temperature	of	the	acid	electrolyte	must	be	kept	colder	than	

the	 room	 temperature.	 The	 used	 temperature	 for	 sulphuric	 and	 oxalic	

acids	was	5ºC.	For	phosphoric	acid	we	used	temperatures	between	-3ºC	
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and	-10ºC	and	a	quantity	of	ethanol	was	added	to	the	solution	in	order	to	

avoid	from	freezing.	

	

2.2.4.4.2.	Electrolyte	pH	
The	 pH	 value	 is	 affecting	 basically	 the	 pore	 diameter.	 The	 pH	

value	is	given	by	the	type	and	concentration	of	the	acid	electrolyte.	Low	

pH	values	needs	 low	anodization	voltages.	That	 implies	a	reduced	field-

assisted	 dissolution	 of	 Al2O3	 and	 the	 pore	 diameter	 becomes	 smaller.	

This	is	the	reason	why	the	pores	are	wider	when	the	electrolyte	used	is	

H3PO4	and	narrower	when	the	electrolyte	is	H2SO4.	

	

2.2.4.4.3.	Electrolyte	Viscosity	
Viscosity	(υ)	of	the	electrolyte	has	a	direct	effect	on	the	resulting	

nanostructure.	 This	 effect	 is	 related	 with	 the	 reduction	 of	 the	

electrophoretic	velocity	of	the	ions	as	it	is	expressed	in	equation	2.9.	

	

𝑣 = !"#
!"
																																																			(2.9)	

	

Where	the	υ	is	the	electrolyte	viscosity,	ε	is	the	dielectric	coefficient,	ξ	is	

the	zeta	potential,	E	is	the	electric	field	and	η	is	the	viscosity	coefficient.	

	

This	reduction	of	the	viscosity	(υ)	decreases	the	current	density	

developed	during	the	anodization.	This	reduction	of	 the	current	density	

diminishes	 the	 growth	 rate	 of	 NAA	 but	 also	 reduces	 Joule’s	 effect	 and	

prevents	localized	heating	at	pore	tips.	This	is	the	reason	why	increasing	

the	viscosity	of	the	electrolyte	helps	to	avoid	oxide	breakdown,	especially	

at	high	electric	fields	[27].	
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The	 common	 additives	 used	 for	 adjusting	 the	 electrolyte	

viscosity	are	Ethyleneglycol	(EG),	Polyethileneglycol	(PEG)	and	glycerol.	

Those	 chemicals,	 apart	 from	 reducing	 the	 viscosity	 (υ),	 also	 prevent	

chemical	 dissolution	 of	 the	 porous	 structure	 by	 the	 electrolyte,	 thus	

reducing	the	porosity	of	the	resulting	NAA	film[28].	Viscosity,	a	part	from	

stabilizing	 the	anodization	at	high	potentials	and	reducing	 the	porosity,	

has	been	proved	to	have	a	direct	effect	on	the	interpore	distance	(Dint).		

	

Some	 research	 using	 0.3M	 of	 oxalic	 acid	 electrolyte	 was	

performed	 in	 order	 to	 prove	 the	 relation	 between	 the	 glycerol	

concentration	 and	 the	 interpore	 distances.	 They	 found	 that	 this	

dependence	 was	 linear	 to	 the	 logarithm	 of	 the	 resulting	 viscosity.	

Additionally,	 they	 found	 that	 for	 a	 glycerol-based	 electrolyte	 no	 pores	

were	generated	and	a	barrier-type	alumina	was	produced	[29].	

	

2.2.4.5.	Aluminium	Substrate	
High	 purity	 aluminium	 foils	 (99.9%)	 are	 needed	 to	 be	 able	 to	

obtain	 high-quality	NAA	 films.	 Otherwise	 the	 presence	 of	 impurities	 or	

contamination	 in	 the	 aluminium	 substrate	 provokes	 volume	 expansion	

and	disturbances	on	the	electric	field	that	led	to	defects	in	the	structure	

[30].	

	

2.2.5.	Structural	Characteristics	of	NAA	

2.2.5.1.	Pore	Diameter	
Pore	 diameter	 (Dp)	 can	 vary	 from	 10	 to	 400	 nm	 and	 it	 has	 a	

direct	 proportional	 relation	 with	 voltage,	 temperature,	 time	 and	

electrolyte	 pH.	 That	 means	 that,	 the	 larger	 these	 parameters	 are,	 the	

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF NANOPOROUS ANODIC ALUMINA TECHNOLOGIES FOR DRUG DELIVERY 
Maria Porta Batalla 
 



Fundamentals	of	Nanoporous	Anodic	Alumina	
________________________________________________________________________________________	

________________________________________________________________________________________
43	

bigger	the	pore	diameter	will	be.	 	We	can	find	the	pore	diameter	(Dp)	in	

the	following	equation:	

	

𝐷!"# = 𝐷! + 2𝑡!																																			(2.10)	

	

Where,	Dint	is	the	interpore	distance,	Dp	is	the	pore	diameter	and	tw	is	the	

wall	thickness.	

	

2.2.5.2.	Interpore	Distance	
The	interpore	distance	is	the	distance	between	the	centres	of	two	

contiguous	 pores.	 It	 can	 be	 calculated	 by	 the	 mean	 value	 of	 several	

interpore	 measurements.	 According	 to	 equation	 2.11.	 the	 interpore	

distance	(Dint)	 is	directly	proportional	to	the	anodization	voltage,	where	

K	depends	on	the	anodization	regime,	for	the	hard	anodization	its	value	

is	 2.0	 nm/V,	meanwhile	 for	 the	mild	 anodization	 is	 2,5-2,8	 nm/V	 [18].		

The	interpore	distance	can	also	be	calculated	by	the	equation	2.10.	

	

𝐷!"# = 𝐾𝑉																																														(2.11)	

	

Where	Dint	is	the	interpore	distance,	K	is	the	proportionally	constant	and	

V	is	the	applied	voltage.	

	

2.2.5.3.	Porosity	
The	 NAA	 porosity	 (P)	 can	 be	 estimated	 by	 the	 equation	 2.12.	

Under	 mild	 anodization	 conditions	 porosity	 follows	 the	 10%	 porosity	

rule	 [19].	 However	 under	 hard	 anodization	 conditions,	 it’s	 values	 are	

reduced	to	3,3%	[18].	
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𝑃 % = !
!√!

!!
!!"#

𝑥 100																															(2.12)	

	

Where	P	is	porosity	in	%,	Dp	is	the	pore	diameter	in	nanometers	and	Dint	

is	the	interpore	distance	in	nanometers.	

	

2.2.5.4.	Pore	Density	
From	the	practical	point	of	view,	it	is	sometimes	beneficial	to	give	

the	porosity	of	the	structure	defined	as	a	ratio	of	the	surface	occupied	by	

the	pores	to	the	total	surface	of	the	sample.	In	this	case	the	pore	density	

(ρp),	that	is	the	number	of	pores	that	can	be	found	on	an	specific	area,	can	

be	useful.	Pore	density	can	be	calculated	by	using	equation	2.13.	

	

	 𝜌! =
!

√!!!"#
!  𝑥 10!"																																(2.13)	

	

Where	ρp	is	the	pore	density	and	Dint	is	the	interpore	distance.	

	

2.2.5.5.	Hexagonal	Pore	Arrangement	
The	degree	of	the	hexagonal	pore	arrangement	can	be	disturbed	

for	 several	 reasons:	 the	grain	boundaries,	 the	 length	of	 the	anodization	

and	 the	 parallel	 trenches	 in	 the	 aluminium	 substrate	 caused	 by	 the	

industrial	 rolling.	 First,	 the	 grain	 boundaries	 are	 perturbing	 the	 pore	

arrangement,	 in	 order	 to	 reduce	 the	 number	 of	 grain	 boundaries	 and	

enlarge	 the	 polydomain	 areas	 (areas	 with	 the	 same	 pore	 lattice	

orientation)	 annealing	 processes	 at	 400ºC	 under	 N2	 atmosphere	 for	 3	

hours	 is	 recommended.	 Then	 as	 longer	 anodization	 times	 lead	 to	

ordering	the	deviations	due	to	the	changes	on	pH	values	inside	the	pores,	
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24h	first	step	anodization	are	recommended.	In	addition	electropolishing	

procedures	 are	 recommended	 to	 avoid	 the	 surface	 roughness	 (parallel	

trenches)	in	the	purchased	aluminium	sheeds.	

	

2.2.5.6.	Barrier	Layer	Thickness	
The	 oxide	 barrier	 layer	 thickness	 (Tb)	 at	 the	 pore	 bottom	 is	

directly	 proportional	 to	 the	 anodization	 voltage	 (equation	 2.14).	 The	

proportionally	 constant	 (K)	 depends	 on	 the	 anodization	 regime	 and	 it	

takes	 1,3	 and	 1,0	 nm/V	 values	 for	 mild	 and	 hard	 anodization	

respectively.	 In	 accordance	 with	 the	 high	 field	 conductivity	 theory,	

barrier	 layer	 thickness	 (Tb)	 is	 inversely	proportional	 to	 current	density	

(J)[18].	

𝑇! = 𝐾𝑉																																										(2.14)	

Where	Tb	is	the	barrier	layer	thickness	value,	K	is		the	proportionally	

constant	and	V	is	the	voltage.	

	

2.2.5.7.	Pore	Growth	Rate	
The	 pore	 growth	 rate	 (Rp)	 is	 affected	 by	 the	 acid	 electrolyte	

temperature	 (T).	 It	 is	 directly	 dependant,	 so	 Rp	 is	 decreasing	 as	 the	

temperature	 is	reduced.	 In	order	to	prevent	 the	NAA	from	dissolving	 in	

the	course	of	the	anodization	process,	the	temperature	needs	to	be	kept	

lower	than	room	temperature,	usually	at	5ºC	or	even	lower	than	0ºC	for	

some	hard	anodizations.	Another	parameter	that	has	an	effect	on	the	Rp	

is	the	stirring	rate	of	the	acid	electrolyte	since	this	mixing	is	ensuring	the	

diffusion	 of	 the	 ionic	 species	 and	 the	 homogeneity	 of	 the	 T	 inside	 the	

pores.	
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2.3.	Summary	
	 This	 chapter	 has	 introduced	 a	 general	 description	 of	 the	

history	 and	 the	 state	 of	 the	 art	 of	 the	 NAA.	 	 It	 also	 explained	 the	

fundamentals	 for	 NAA	 formation	 including	 the	 relation	 between	

anodization	 parameters	 and	 NAA	 structural	 characteristics,	 that	 are	

summarised	in	table	2.2.	

	

Table	 2.2.	 Qualitative	 relationship	 indicating	 the	 direct	 or	 inverse	

dependence	 between	 anodization	 parameters	 and	 structural	

characteristics	of	the	resulting	NAA.	
	 Structural	Characteristics	

Anodization	

parameters	
Dint	 Dp	 P	 Tb	 Rp	

U	
Directly	

proportional	

Directly	

proportional	

Inversely	

proportional	

Directly	

proportional	

Directly	

proportional	

t	 	
Directly	

proportional	

Directly	

proportional	
	

Inversely	

proportional	

T	 	
Directly	

proportional	

Inversely	

proportional	

Inversely	

proportional	

Directly	

proportional	

pH	
Directly	

proportional	

Directly	

proportional	

Directly	

proportional	

Directly	

proportional	

Inversely	

proportional	
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In	 this	 chapter,	 the	 experimental	 methods	 for	 fabricating	

nanostructures	 based	 on	 nanoporous	 anodic	 alumina	 are	 defined	 in	

detail.	

First	 the	 electrochemical	 cell	 in	 our	 facilities	 is	 presented	 and	

deeply	described.		

Secondly,	 the	 fabrication	 processes	 for	 typical	 Nanoporous	

Anodic	Alumina	(NAA)	are	presented	for	different	electrolyte	conditions.	

Thirdly,	the	fabrication	processes	for	funnel	shaped	Nanoporous	

Anodic	 Alumina	 and	 for	 inverted	 funnel	 shape	 Nanoporous	 Anodic	

Alumina	are	accurately	explained.	
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3.1.	Experimental	Setup	
The	experimental	setup	available	in	our	lab	facilities	consists	in	a	

power	supply	controlled	with	personal	computer,	another	power	supply	

for	 the	 electrolyte	 stirring	 and	 a	 cooling	 system	 to	 maintain	 the	

temperature	of	the	anodization	cell	below	room	temperature.			

	

Figure	3.1	shows	the	setup	displacement	in	our	facilities.	Part	of	

this	set	up	is	assembled	into	a	laboratory	hood.	

	

Our	 lab	has	been	dedicated	to	a	continuous	 improvement	of	 the	

electrochemical	 anodization	 cell	 system.	 The	 actual	 anodization	 cell	 is	

duplicated	in	order	to	acquire	more	productivity.		

	

The	anodization	cell	consists	of	a	cupper	plate	in	contact	with	the	

anode,	 where	 the	 aluminium	 sample	 will	 be	 displaced.	 The	 cathode	

consists	 in	 a	 platinum	 ring	 placed	 in	 a	 Teflon	 holder	 that	 will	 be	

immersed	in	the	electrolyte.	This	Teflon	holder	also	contains	a	stirrer	in	

order	 to	 maintain	 the	 electrolyte	 perfectly	 homogenous	 during	 all	 the	

anodization	process.	A	metal	plate	in	contact	with	a	thermal	insulator	is	

placed	 below	 the	 cupper	 plate	 in	 order	 to	 maintain	 the	 anodization	

temperature	under	room	temperature.	

	

The	 power	 supply	 used	 for	 the	 anodization	 process	 in	 our	

research	 facilities	 is	 controlled	 with	 a	 personal	 computer,	 there	 is	

another	power	supply	 for	 the	stirring	and	a	cooling	system	as	 it	 can	be	

seen	in	Figure	3.1.	
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Figure	3.1.	Experimental	equipment	required	for	the	fabrication	of	NAA	

films.	 a)	 Personal	 Computer	 b)	 Power	 supply	 for	 anodization	 c)	 Power	

supply	for	the	stirrer	d)	Cooling	system	e)	Anodization	cell	

	

3.1.1.	Electrochemical	Cell	
Fundamentally,	an	electrochemical	cell	needs	the	following	parts:	

1) Anode	

2) Cathode	

3) Electrolyte	

4) Power	supply	
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The	 anode	 and	 the	 cathode	 are	 in	 contact	 by	 means	 of	 the	

electrolyte	solution,	for	these	reason	they	have	to	be	immersed	in	it.	The	

electrolyte	is	the	medium	for	transporting	the	ionic	species	between	the	

anode	and	the	cathode	(H+,	Al3+,	O2-).	The	power	supply	gives	the	energy	

necessary	 to	 ionize	 the	 aluminium	 at	 the	 aluminium-alumina	 interface	

(anode)	 that	 produces	 electrons	 (e-).	 Once	 the	 anodization	 voltage	 is	

applied	 the	 pores	 start	 to	 nucleate	 and	 grow	 within	 the	 Aluminium	

substrate.	An	schematics	for	an	electrochemical	cell	can	be	seen	in	figure	

3.2.	

	

	
Figure	3.2.	Schematics	for	the	electrochemical	anodization	cell	showing	

the	anode,	cathode	and	the	power	supply.	
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Figure	 3.3.	 a)	 Different	 anodizing	 chambers	 available	 in	 our	 research	

facilities.	 b)	 Image	 showing	 the	 first	 step	 of	 the	 chamber	 assembling	

where	 the	 aluminium	 samples	 are	 displaced	 on	 the	 o-rings	 c)	 Image	

showing	 the	 second	 step	 of	 the	 chamber	 assembling	where	 the	 cupper	

base	is	displaced	covering	the	samples	and	directly	in	contact	with	them	

d)	the	chamber	is	turned	upside-down	to	be	able	to	see	the	holes	where	

the	screws	will	be	placed.	e-f)	 the	screws	are	assembled	screwing	them	

in	a	cross	shape	in	order	to	avoid	to	tight		too	much	in	one	side.	g)	Finally	

the	chamber	is	covered	with	the	cathode	and	with	an	isolation	hood.	

	

Different	 electrochemical	 anodization	 chambers	 are	 presented	

on	 Figure	 3.3.	 Depending	 on	 the	 dimension	 of	 the	 samples	 needed,	

different	 cell	 options	 are	 available	 in	 our	 research	 facilities.	 Images	 in	

figure	 3.3	also	show	the	cell	assembly	procedure.	All	 the	chambers	are	

armed	 with	 an	 o-ring	 that	 is	 a	 loop	 of	 elastomer	 with	 a	 round	 cross-

section	designed	to	be	seated	in	the	hole	where	the	sample	is	placed.	This	

o-ring	 will	 be	 compressed	 during	 the	 chamber	 assembly	 between	 the	

sample	and	the	chamber	 in	order	 to	avoid	the	 leaking	of	 the	electrolyte	

that	will	be	held	in	the	chamber.	
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The	 whole	 cell	 is	 thermo-isolated	 in	 order	 to	 keep	 the	 ideal	

temperature	 inside	the	chamber.	A	 thermometer	 is	held	 in	contact	with	

the	electrolyte	to	ensure	the	right	electrolyte	temperature.	(Figure	3.4)	

	

	
Figure	3.4.	a)	Image	of	the	electrochemical	cell	insulator	and	the	thermal	

cooling	 flux	 placed	 beneath	 the	 cell.	 b)	 Detail	 of	 the	 thermometer	 that	

report	the	electrolyte	temperature.	

	

3.1.2.	Software	
The	 control	 over	 the	 anodization	 of	 aluminium	 samples	 was	

performed	 with	 custom-made	 LabView-based	 programs.	 Figure	 3.5	

shows	a	 screen	capture	of	 a	programme	designed	 for	 the	 fabrication	of	

Nanoporous	 Anodic	 Alumina	 samples.	 Accurate	 control	 of	 the	 sample	

characteristics	 can	be	achieved	by	adjusting	 the	voltage	and	controlling	

either	 the	 anodization	 time	 or	 the	 total	 charge	 passing	 through	 the	

anodization	cell.	
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Figure	 3.5.	 Screen	capture	of	 the	Lab	View	based	software	used	 in	our	

lab	facilities	

	

3.1.3.Aluminium	Substrate	
In	 order	 to	 obtain	 high-quality	 NAA,	 high	 purity	 aluminium	

sheets	 are	 needed,	 since	 the	 presence	 of	 impurities	 in	 the	 aluminium	

substrate	 leads	 to	 defects	 in	 the	 NAA,	 as	 it	 was	 already	 mentioned	 in	

chapter	 2.	 For	 this	 reason,	 high	 purity	 Aluminium	 is	 generally	 used.	

Substrates	used	 in	our	 research	had	a	purity	of	99,9%	and	 thickness	of	

0,5	millimeters	and	were	obtained	from	Goodfellow	Cambridge	Ltd.		

	

3.2.	Pretreatments	
To	begin	with,	 the	aluminium	substrate	will	have	a	pre-existing	

oxide	layer	over	its	surface,	which	is	usuallly	produced	by	the	oxygen	in	
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the	atmosphere.	In	addition,	the	substrate	could	also	have	a	pre-existing	

surface	 structure	 produced	 by	 a	 mechanical,	 thermal,	 chemical	 and	

electrochemical	process.	All	of	 these	surface	 treatments	have	an	 impact	

on	the	self-ordering	of	the	pores	that	will	be	formed	on	the	surface	of	the	

substrate	 during	 the	 anodization	 process.	 This	 is	 because	 the	 pore	

nucleation	mechanism	 is	 a	 combination	of	both	 random	nucleation	and	

nucleation	 produced	 by	 the	 surface	 defects,	 such	 as	 scratches,	 pits,	

impurities	and	grain	boundaries.		

	

For	this	reason	a	typical	pre-treatment	of	an	Aluminium	band	is	

needed	 in	 order	 to	 eliminate	 the	 possible	 surface	 defects	 in	 the	

aluminium	sample.	The	pre-treatment	begins	by	first,	degreasing	the	foil	

using	 acetone	 or	 a	 similar	 solvent,	 then	 3	 different	 kinds	 of	 polishing	

have	 been	 used	 in	 our	 research	 group:	 Mechanical	 polishing,	 chemical	

polishing	and	electrochemical	polishing.	

	

3.2.1.Mechanical	Polishing	
This	technique	is	provably	the	one	that	have	the	lowest	cost.	The	

main	drawbacks	of	this	procedure	are	the	time	required	and	the	fact	that	

the	 surfaces	 can	 present	 a	 lot	 of	 scratches	 easily.	 So	 the	 control	 of	 the	

resulting	surface	is	low.	It	consists	of	using	an	abrasive	material	to	refine	

the	aluminium	surface.	

	

3.2.2.	Chemical	Polishing	
Chemical	polishing	of	aluminium	samples	is	an	alternative	to	the	

electrochemical	 polishing	 in	 order	 to	 avoid	 the	 requirement	 of	 the	

complex	 electrochemical	 cell.	 Additionally	 it	 eludes	 the	 hazards	 related	

with	perchloric	acid.	The	procedure	consist	of	immersing	the	aluminium	
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substrate	 in	a	mixture	of	15	parts	of	nitric	acid	68%	wt	and	85	parts	of	

phosphoric	 acid	 85%	wt	 for	 5	minutes.	 This	 immersion	 is	 followed	 by	

neutralization	 of	 the	 sample	 in	 1M	 sodium	 hydroxide	 for	 20	 minutes.	

This	 procedure	 results	 in	 a	 roughness	 comparable	 to	 that	 of	

electrochemical	 polishing	 without	 the	 need	 of	 power	 supplies	 or	 the	

dangerous	perchloric	acid.	

	

3.2.3.	Electrochemical	Polishing	
Electrochemically	polishing	(electropolishing)	is	the	most	known	

process	 for	 polishing	 aluminium	 foils.	 Between	 it’s	 advantages	 we	 can	

say	it	is	fast	and	really	effective.	The	result	is	a	mirror-like	finish.	Several	

electrolytes	 are	 available	 for	 electropolishing	 but	 the	 most	 popular	 an	

the	 one	 that	 we	 use	 in	 our	 research	 facilities	 is	 1:4	 v:v	 mixture	 of	

perchloric	 acid	 in	 ethanol.	 Even	 that	 this	 technique	 has	 a	 big	

disadvantage	 that	 is	 the	 hazardousness	 of	 the	 perchloric	 acid	 (HClO4).	

This	acid	is	stronger	than	sulphuric	or	nitric	and	is	an	strong	oxidant,	so	

it	 has	 to	 be	 handled	 with	 extreme	 caution.	 The	 preparation	 of	 the	

electropolishing	mixture	has	to	be	performed	under	0ºC	as	there	 is	risk	

of	explosion	due	to	the	heat	that	is	generated	during	the	mixture.	

	

3.3.Electrochemical	Anodization	
As	 it	 was	 already	 explained	 in	 chapter	 2	 we	 can	 distinguish	

between	 two	 kinds	 of	 anodization:	 Mild	 anodization	 and	 Hard	

anodization.	These	main	anodization	types	are	divided	depending	on	the	

anodization	regime	[1–3].	
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3.3.1.	Mild	Anodization	
Mild	anodizations	(MA)	are	based	on	anodizations	of	aluminium	

foils	 under	 potentiostatic	 conditions	 and	 small	 potentials,	 more	

concretely	 under	 the	 breakdown	 potentials	 (27,	 50	 and	 197	 V	 for	

sulphuric,	 oxalic	 and	phosphoric	 acids	 respectively)	This	 anodization	 is	

providing	 an	 uniform	 oxide	 layer	 grow	 and	 a	 good	 control	 of	 the	 pore	

size	and	 interpore	distance	by	means	of	anodizing	parameters.	The	two	

step	anodization	technique	is	used	for	obtaining	suitable	pore	ordering	in	

this	 case[4,	 5].	 The	 corresponding	 anodization	 voltages,	 electrolyte	

temperatures	 and	 concentrations	 are	 shown	 in	 Table	 3.1.	 There	 is	 a	

direct	 linear	relation	between	the	Anodizing	potential	(Voltage)	and	the	

interpore	 distance	 (distance	 between	 pores)	 shown	 in	Figure	 3.6.	 The	

first	 anodization	 step	 is	 usually	 performed	 for	 20-24	 h	 in	 order	 to	

achieve	 the	 maximum	 hexagonal	 pore	 arrangement.	 Once	 the	 first	

anodization	 is	 finished,	 the	 alumina	 (Al2O3)	 film	with	 disordered	 pores	

on	the	top	and	ordered	pores	at	the	bottom	is	dissolved	by	wet	chemical	

etching	 in	a	mixture	of	phosphoric	acid	 (H3PO4)	0,4M	and	chromic	acid	

(H2CrO7)	0,2M	in	a	volume	ratio	1:1	at	70ºC.	We	named	this	procedure	as	

“orange	solution	process”	due	to	the	characteristic	colour	of	the	described	

acid	 mixture.	 It	 last	 for	 two	 hours	 and	 it	 is	 possible	 to	 confirm	 the	

alumina	dissolution	visually	 or	by	using	 an	 electric	 tester.	At	 this	point	

hemispherical	patterns	are	produced	in	the	aluminium	surface.	Then	the	

second	anodization	can	be	performed.	This	second	anodization	time	will	

depend	on	 the	desired	 thickness	of	 the	alumina	 layer.	This	 second	 step	

anodization	is	controlled	by	total	charge	instead	of	time	because	this	way	

we	have	a	better	control	over	 the	 layer	 length	as	 it	will	be	explained	 in	

section	 3.3.3.	 MA	 is	 the	 anodizing	 typology	 that	 is	 used	 in	 academic	
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research	(also	 in	 this	work)	due	 to	 the	uniform	pore	size	and	 interpore	

distance.		

	

Table	3.1.		Anodization	parameters	of	the	commonly	used	acid	solutions	

(sulphuric,	 oxalic	 and	 phosphoric)	 in	 mild	 anodization	 processes:	

electrolyte	 concentration,	 anodization	 voltage,	 electrolyte	 temperature,	

interpore	distance	(Dint)	and	pore	diameter	(Dp).	

Acid	 Concentration	 Voltage	(V)	
Temperature	

(ºC)	

Interpore	

Distance	

(nm)	

Pore	

Distance	

(nm)	

H2SO4	 0,3M	 20	 5	 50	 10-15	

H2C2O4	 0,3M	 40	 5	 100	 20-30	

H3PO4	 1	wt	%	 195	 -5	 500	 100-130	

	

	
Figure	 3.6.	 	 Correlation	 between	 interpore	Distance	 and	 the	 anodizing	

Potential.	
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3.3.1.1.	Sulphuric	Acid	Electrolyte	
This	 anodization	 procedure	 is	 performed	 using	 0,3M	 sulphuric	

acid	 (H2SO4)	at	5ºC.	 the	 temperature	 is	needed	 to	keep	constant	during	

all	 the	 process.	 The	 voltage	 used	 for	 this	 electrolyte	 is	 20	 V.	 This	

anodization	 is	 performed	 using	 the	 two-step	 process.	 Then	 after	 the	

electropolishing	the	first	anodization	is	performed	for	minimum	20	to	24	

hours.	 After	 the	 first	 anodization	 the	 oxide	 layer	 is	 dissolved	 using	 the	

“orange	 solution”	 (explained	 in	 section	 3.3.1).	 The	 oxide	 removal	 I	

followed	by	the	second	step	anodization	that	is	controlled	by	total	charge	

instead	of	time	[6,	7].	

	

3.3.1.2.	Oxalic	Acid	Electrolyte	
This	process	is	performed	at	40	V	using	Oxalic	acid	(H2C2O4)	at	5	

ºC.	 The	 two	 step	 anodization	 procedure	 is	 used	 in	 order	 to	 achieve	 an	

ordered	 pore	 array.	 After	 the	 electropolishing	 pre-treatment	 the	 first	

step	 anodization	 is	 performed	 for	 minimum	 20	 to	 24	 hours.	 Then	 the	

orange	 solution	 (see	 section	 3.3.1)	 is	 used	 to	 remove	 the	 grown	 oxide.	

After	 that,	 the	 second	 step	 is	 performed	 using	 exactly	 the	 same	

parameters	than	the	first	step	but	it	is	controlled	by	total	charge[8,	9,	2].	

	

3.3.1.3.	Phosphoric	Acid	Electrolyte	
This	 Anodization	 has	 been	 also	 performed	 using	 the	 two	 step	

anodization	 procedure.	 The	 differential	 part	 of	 this	 anodization	 is	 that	

due	to	the	high	electric	field	(195	V),	near	the	breakdown	potential.	First	

a	protective	layer	anodized	in	a	lower	voltage	is	needed	in	order	to	avoid	

the	local	thickening,	burning	and	cracking	of	the	growing	alumina	layer.	

The	 phosphoric	 acid	 (H3PO4)	 concentration	 (electrolyte)	 used	 in	 this	
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anodization	 is	1%	wt	and	1:10	parts	of	ethanol	are	added	 to	be	able	 to	

kept	the	electrolyte	under	negative	temperature	values,	concretely	-5ºC.	

A	 first	 step	 anodization	 starting	 with	 a	 voltage	 of	 175	 V	 during	 180	

minutes	 is	 performed	 followed	 by	 a	 sequential	 increase	 of	 the	 voltage	

(also	 called	 ramp)	 for	 about	 0,05	 V/s	 until	 the	 voltage	 reaches	 the	 top	

potential	 limit	of	195	V.	All	 these	parameters	are	 summarized	 in	Table	

3.1.	 Then	 the	 anodization	 is	 kept	 in	 this	 value	 over	minimum	20	 to	24	

hours	to	obtain	ordered	pores	at	 the	bottom	of	 the	growing	 layer.	Once	

those	 ordered	 pores	 have	 been	 obtained,	 the	 grown	 layer	 is	 removed	

using	the	orange	solution	procedure	previously	mentioned,	and	a	second	

anodizing	 step	 is	 performed.	 The	 second	 step	 anodization	 is	 controlled	

by	total	charge	instead	of	time	as	it	is	better	to	control	the	layer	thickness	

by	this	parameter	and	is	performed	using	the	same	parameters	(voltage)	

as	we	have	used	in	the	first	step.	

	

3.3.2.	Hard	Anodization	
As	 it	has	been	already	explained	 in	chapter	2,	Hard	Anodization	

(HA)	 are	 the	 ones	 using	 voltages	 over	 the	 breakdown	 potentials.	 For	

every	 electrolyte	 (phosphoric,	 oxalic	 or	 sulphuric	 acids)	 there	 is	 a	

potential	 limit	 (named	 breakdown	 potential)	 above	 witch	 the	

anodization	 triggers	 to	 local	 thickening,	 burning	 and	 cracking	 of	 the	

growing	oxide.	These	potential	limits	are	27,	50	and	197	V	for	sulphuric,	

oxalic	and	phosphoric	acid	 respectively.	According	 to	 the	 literature	 this	

break	down	of	the	anodic	oxide	occurs	due	to	the	local	current	flow	and	

the	 resulting	 Joule	 heating	 [10–12].	 It	 has	 been	 also	 observed	 that	 the	

higher	 ordering	 is	 found	 using	 potentials	 just	 under	 the	 breakdown	

value.	The	current	density	(J)	in	Hard	Anodization	process	is	one	or	two	

orders	of	magnitude	higher	than	Mild	Anodization	(MA)	[13].	The	Joule’s	
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heat	is	two	to	four	orders	of	magnitude	bigger	than	the	MA.	That	means	

that	this	heat	have	to	be	appropriately	dissipated	otherwise	the	growing	

anodic	oxide	will	suffer	a	breakdown	[14].	

	

For	 all	 this	 reasons	 the	Nanoporous	Anodic	Alumina	 formed	by	

this	HA	 in	 industrial	 procedures	 is	 not	 suitable	 for	 research	due	 to	 the	

non-uniform	pores	and	local	brakdowns	in	the	anodic	oxide.	

	

3.3.3.	Calibration	Pore	Growth	
It	 has	 been	 mentioned,	 mild	 anodization	 is	 providing	 uniform	

layers	grow.	For	this	reason	it	can	be	thought	that	a	calibration	curve	can	

be	 elucidated	 using	 cross-section	 images	 and	 the	 time	 needed	 to	 grow	

them	(Figure	3.7).		

	

Actually,	 this	 calibration	 curve	 can	 show	 a	 good	 approximation	

but	it	has	several	drawbacks:		

The	 images	 of	 the	 sample	 cross-section	 need	 to	 be	 taken	

perpendicularly	and	without	defects	otherwise	error	measurements	can	

be	obtained.		

This	calibration	curve	will	only	be	reliable	when	the	anodization	

parameters	 (voltage,	 electrolyte	 composition	 and	 temperature)	 are	 the	

same	 and	 constant	 through	 all	 the	 experiments.	 That	 means	 that,	 it	 is	

needed	 a	 new	 calibration	 curve	 for	 every	 electrolyte	 specie	 or	

concentration.	 And	 a	 new	 calibration	 is	 required	 if	 the	 voltage	 or	

temperature	is	altered.		
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Figure	3.7.	Calibration	curve	relating	the	anodization	time	(t)	and	layer	

thickness	(L)	for	an	oxalic	acid	anodization.		

	

The	 equation	 relating	 the	 Anodization	 time	 and	 layer	 thickness	

(fitting)	 in	 the	 given	 example	 (figure	 3.7.)	 is	 the	 one	 presented	 in	

(equation	3.1):	

	

𝐿 = 0,075𝑡 − 0,49																																				(3.1)	

	

Where	L	 is	 the	Layer	Thickness	 in	nanometers	 and	 t	 is	 the	 anodization	

time	in	minutes.		

	

For	all	the	reasons	presented	a	total	electrical	current	charge	(Q)	

calibration	 have	 been	 performed	 to	 better	 estimate	 the	 growing	 layer	

thickness.	 This	 total	 charge	 calibration	 is	 based	 on	 the	 fact	 that	 the	

anodization	 of	 aluminium	 is	mainly	 governed	 by	 the	migration	 of	 ionic	

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF NANOPOROUS ANODIC ALUMINA TECHNOLOGIES FOR DRUG DELIVERY 
Maria Porta Batalla 
 



Nanoporous	Anodic	Alumina	Fabrication	
________________________________________________________________________________________	

________________________________________________________________________________________	
68	

species	to	the	respective	electrodes,	and	the	resulting	current	developed	

in	 the	 electrochemical	 cell	 during	 the	 anodization	 process	 is	 directly	

proportional	 to	 the	 amount	 of	 alumina	 generated.	 For	 that	 reason,	 the	

calibration	 using	 the	 total	 charge	 is	 independent	 of	 the	 voltage,	

electrolyte	 composition	 and	 temperature,	 because	 the	 total	 charge	

passed	 through	 the	 electrodes	 is	 telling	 the	 amount	 of	 Nanoporous	

Anodic	Alumina	created	regardless	the	anodization	parameters.	For	this	

reason	calibrations	using	the	total	charge	are	the	ones	used	to	control	the	

layer	 length	 of	 the	 growing	 oxide	 in	 our	 research	 facilities	 [2].	 A	

calibration	example	is	shown	in	figure	3.8.	

	
Figure	 3.8.	 Graph	 showing	 the	 calibration	 (linear	 relation)	 between	 Q	

(total	charge)	and	the	oxide	layer	thickness.	

	

The	 expression	 to	 relate	 the	 total	 electrical	 current	 charge	 (Q)	

and	the	layer	thickness	is	the	following	equation:	
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𝑄 = !!!",!""
!"#$%∗!

																																																		(3.2)	

	

Where	 Q	 is	 the	 total	 charge	 in	 Coulombs	 (C)	 or	 Amperes	 per	 second	

(A*s),	 L	 is	 the	 layer	 thickness	 in	 (nm)	 and	 Z	 is	 the	 area	 of	 the	 sample	

anodized	in	millimetres	squared	(mm2).	

	

Once	 the	 calibration	 is	 performed	 a	 system	 is	 used	 to	 calculate	

the	 total	 electrical	 current	 charge	 of	 the	 anodization	 process	 (current	

passed	through	the	system)	in	real	time.	Then	the	process	(anodization)	

is	stopped	when	the	target	value	of	Q	is	reached.	

	

3.4.Post-treatments	

3.4.1.	Pore	Widening	
The	 most	 common	 technique	 to	 achieve	 different	 porosities	 in	

the	 already	 anodized	 Nanoporous	 Anodic	 Alumina	 is	 by	 wet	 chemical	

etching	in	phosphoric	acid	[15].	This	post-treatment	allows	good	control	

over	pore	diameter	and	is	easily	calibrated	by	image	analysis	of	SEM	top	

images.	 In	 addition	 it	 allows	 the	 increase	 of	 the	 pore	 diameter	without	

interfering	 on	 the	 interpore	 distance.	 It	 consists	 on	 immersing	 the	

anodized	samples	into	a	phosphoric	acid	solution	of	5%	wt	concentration	

at	 35ºC	 during	 a	 controlled	 period	 of	 time.	 This	 acid	 will	 dissolve	 the	

pore	 aluminium	 oxide	 walls.	 Figure	 3.9	 is	 showing	 images	 took	 for	

different	 pore	 widening	 times	 in	 samples	 anodized	 using	 phosphoric	

acid.	

	

It	 has	 been	 proven	 that	 the	 voltage	 applied	 during	 the	

anodization	will	 affect	 the	 pore	 diameter.	 This	 is	 because	 low	 voltages	
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are	generating	 smaller	 interpore	distances	 and	 thinner	pore	walls	 [16].	

As	a	result	of	this	reduction,	the	porosity	will	be	rapidly	increased	by	the	

pore	 widening	 post-treatment,	 compared	 to	 pores	 with	 larger	 walls	

(higher	 voltages)	 [17].	 In	 addition,	 the	 anodization	 voltage	 also	 has	 a	

direct	relation	with	the	electrolyte	anions	(impurities)	added	in	the	oxide	

layer.	 It	was	 proven	 by	 comparing	 samples	 anodized	 in	Mild	 (MA)	 and	

Hard	 (HA)	 anodization	 conditions	 [13].	 Actually,	 the	 incorporation	 of	

acid	anions	occurs	via	inwards	migrations	under	an	electric	field	during	

the	 anodization.	 The	 amount	 of	 incorporated	 acid	 anions	 and	 their	

spatial	 distribution	 in	 the	 nanoporous	 anodic	 alumina	 depend	 on	 the	

type	 and	 concentration	 of	 electrolytes,	 anodizing	 potential,	 current	

density	and	temperature.	This	 incorporated	electrolyte	anions	 influence	

the	chemical,	optical	and	mechanical	properties	of	 the	aluminium	oxide	

[14].		

	

The	 pore	wall	 exhibits	 a	 duplex	 structure	 in	 terms	 of	 chemical	

composition	mentioned	 in	 chapter	 1.	 The	 outer	 oxide	 layer	 next	 to	 the	

pores	is	contaminated	with	electrolyte	anions	and	the	inner	oxide	is	pure	

with	 a	 anion	 gradient	 separating	 them.	 This	 duplex	 nature	 of	 the	 pore	

wall	 oxide	 can	 be	 evidenced	 by	 pore	 widening	 experiments:	 different	

pore-widening/dissolution	 rates	 can	 be	 found	 with	 an	 inflexion	 point	

(Figure	 3.10)	 showing	 where	 the	 composition	 of	 the	 pore	 wall	 is	

changing	[18].		

	

Hence,	the	electrolyte	concentration,	anodizing	potential,	current	

density	and	 temperature	have	a	direct	 relation	on	 the	 impurities	 in	 the	

oxide	and	 those	 impurities	on	 the	pore	widening	rate.	That	means,	 that	
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pore-widening	rate	depends	on	the	anodization	parameters,	for	example	

smaller	voltages	gives	bigger	dissolution	rates.		

	
Figure	 3.9.	 Pore	 widening	 sequence	 on	 samples	 produced	 by	

anodization	 using	 phosphoric	 acid.	 Time	 written	 in	 every	 photo	 is	

showing	the	pore	widening	times	for	every	sample.	

	

3.4.2.	Pore	Opening	
	 Once	 strait,	 uniform	 and	 parallel	 nanochanels	 can	 be	

appreciated	 the	 pore	 opening	 procedure	 can	 be	 performed.	 These	

nanochanels	are	 truncated	at	 the	end	by	an	hemispherical	 cap	of	dense	

non-porous	 alumina	 layer	 (the	 barrier	 layer).	 To	 obtain	 nanoporous	

anodic	alumina	membranes	(open	by	both	sides)	this	barrier	layer	can	be	

removed	by	several	techniques.	The	most	widely	used	method	to	remove	

the	oxide	barrier	layer	from	the	pore	bottom	tips	involves	the	dissolution	

of	 the	 Al	 substrate,	 that	 is	 remaining	 in	 the	 bottom	 of	 the	 sample,	 in	 a	
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mixture	of	CuCl2-HCl	(saturated)	and	68%	HNO3.	Once	the	Al2O3	(barrier	

layer)	 is	 reached,	 a	 phosphoric	 acid	 solution	 of	 5%	wt	 at	 35ºC	 can	 be	

used	 to	 dissolve	 the	 Al2O3.	 The	 NAA	 is	 settled	 on	 the	 top	 of	 the	 acid	

surface,	with	the	bottom	part	(barrier	layer)	facing	down	and	in	contact	

with	the	acid.	The	etching	time	will	depend	on	the	thickness	of	the	oxide	

barrier	layer	and	therefore	on	the	anodization	conditions	(see	chapter	2).	

This	 wet	 chemical	 etching	 tecknique	 is	 very	 irregular	 since	 the	 pore	

opening	 is	 non-uniform	 and	 the	 etching	 rate	 is	 difficult	 to	 control.	 In	

addition	 the	 pore	 diameter	 enlarges	 slightly	 because	 the	 acid	 solution	

penetrates	into	the	pores.	For	this	reason	other	methods	like	reactive-ion	

etching	(RIE)	are	useful	in	order	to	achieve	a	uniform	opened	membrane	

[19].	

	

	
Figure	 3.10.	Pore	widening	calibration	on	phosphoric	acid	samples.	An	

inflection	point	can	be	observed	after	2	hours.	
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3.4.3.	Annealing	
	 Aluminium	 oxide	 pore	walls	 prepared	 by	 electrochemical	

anodization	are	amorphous	and	contaminated	with	different	amounts	of	

anions	 derived	 from	 acid	 electrolyte.	 It	 has	 been	 proven	 that	

temperature	 treatment	 (annealing)	 can	 convert	 amorphous	 oxide	

membranes	to	polycrystalline	[10,	8].	This	crystallization	gives	resistance	

to	 the	 pore	 widening	 treatment.	 There	 is	 a	 relation	 between	 the	

temperature,	 the	 crystallization	 and	 the	 pore	 widening	 resistance.	 The	

higher	the	temperature	the	bigger	the	pore	widening	resistance.		

	

3.5.	New	Pore	Architectures	
	 New	pore	architectures	can	be	performed	using	both	post-

treatments	presented	in	the	last	section	and	acid	anodizations.	

	

3.5.1.	Normal	Funnels-like	Pores	
	 Those	samples	can	be	done	by	sequential	anodization	and	

pore	 widening	 treatments	 [15].	 An	 anodization	 for	 a	 determined	 layer	

length	 is	 done	 followed	 by	 pore	 widening	 procedure	 for	 a	 controlled	

time.	 Both	 processes	 should	 be	 calibrated	 before.	 Then	 another	

anodization	 can	 be	 performed	 resulting	 on	 samples	 with	 two	 different	

pore	diameters.	More	layers	with	different	pore	longitudes	can	be	made	

by	alternating	anodization	and	pore	widening	(Figure	3.11).	
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Figure	 3.11.	 Schematics	 showing	 the	 Normal	 Funnels	 fabrication	

procedure.	

	

	

	
Figure	 3.12.	 ESEM	 photo	 of	 Normal	 Funnel	 pores	 achieved	 using	 the	

described	method.	
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3.5.2.	Inverted	Funnels-like	Pores	
	 Inverted	nanoporous	anodic	alumina	funnels	are	fabricated	

by	an	electrochemical	approach	based	on	the	differential	dissolution	rate	

of	 nanoporous	 anodic	 alumina	with	 the	 annealing	 temperature	 [20,21].	

Then,	alternating	anodization	with	annealing	and	using	pore	widening	at	

the	end,	inverted	funnels	can	be	performed	(Figure	3.12).	

	

	
Figure	 3.13.	 Schematics	 showing	 the	 Inverted	 funnels	 fabrication	

procedure.	
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Figure	 3.14.	 ESEM	 photo	 of	 Inverted	 funnel-like	 pores	 achieved	 using	

the	already	mentioned	procedure.	

	

3.6.	Summary	
This	 chapter	 has	 described	 the	 laboratory	 equipment	 for	

fabricating	nanoporous	anodic	alumina	and	the	detailed	procedures	that	

we	use	for	this	achievement.	We	have	provided	a	complete	explanation	of	

the	 electrochemical	 cell,	 the	 software	 and	 the	 aluminium	substrate.	We	

also	have	reported	the	pre-treatments	that	can	be	performed	before	the	

electrochemical	 anodization.	 We	 also	 have	 exhaustively	 clarified	 the	

different	 typologies	of	anodizations	we	have	performed.	We	also	 talked	

about	the	possible	post-treatments	that	can	be	performed	in	the	NAA	in	

order	 to	 change	 its	 features.	 Finally	 we	 have	 carefully	 described	 the	
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funnels	 like	 pore	 architectures	 anodization	 method	 for	 both:	 normal	

funnels	and	inverted	funnels.	
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Chapter 4 

Drug Release based on  

Nanoporous Anodic Alumina with  

Layer-By-Layer Polyelectrolyte 
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Controlled	drug	delivery	systems	are	an	encouraging	solution	to	

some	 drug	 disadvantages	 such	 as	 reduced	 solubility,	 deprived	

biodistribution,	 tissue	damage,	 fast	breakdown	of	 the	drug,	 cytotoxicity	

or	side	effects.	Self-ordered	nanoporous	anodic	alumina	is	an	auspicious	

material	 for	 drug	 delivery	 due	 to	 its	 biocompatibility,	 stability	 and	

controllable	pore	geometry.	Its	use	in	drug	delivery	applications	has	been	

explored	 in	 several	 fields,	 including:	 therapeutic	 devices	 for	 bone	 and	

dental	 tissue	 engineering,	 coronary	 stent	 implants	 and	 carriers	 for	

transplanted	cells.		

	

In	 this	 chapter	 we	 are	 presenting	 and	 analysing	 a	 stimuli-

responsive	drug-delivery	system	based	on	Nanoporous	Anodic	Alumina	

coated	with	layer	by	layer	pH-responsive	polyelectrolyte.		
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4.1.Introduction	
Vast	majority	of	 the	existing	drugs	are	hydrophobic,	 that	means	

they	 cannot	 dissolve	 in	 a	 fluid	 like	 blood.	 This	 diminishes	 their	

pharmacological	 efficacy.	 In	 addition,	 some	 bioactive	 agents	 such	 as	

proteins,	 nucleic	 acids	 or	 enzymes	 administered	 though	 oral	 or	

intravenous	 routes	 can	 be	 easily	 corrupted	 by	 metabolism	 or	 by	

enzymatic	 conditions	 and	 are	 unable	 to	 reach	 the	 desired	 sites	 in	

optimum	 conditions	 [1–3].	 The	 expansion	 of	 the	 understanding	 about	

materials	 at	 the	 nanoscale	 may	 accelerate	 the	 development	 of	 drug	

delivery	systems,	especially	in	healing	life-threatening	conditions	such	as	

cancer	and	heart	disease.		

	

Nanoporous	and	nanotube	carriers	with	their	distinctive	features	

such	 as	 low	 cost	 fabrication,	 controllable	 pore/nanotube	 structure,	

tailored	 surface	 chemistry,	 high	 surface	 area,	 high	 loading	 capability,	

chemical	resistivity	and	mechanical	rigidity,	have	affianced	a	special	role	

in	 drug	 delivery	 technology.	 Drug	 release	 is	 a	 procedure	 in	 which	 a	

composite	 or	 a	 device	 releases	 a	 drug	 in	 a	 controlled	 way	 and	 is	

subjected	to	absorption,	distribution,	metabolism	and	excretion	(ADME),	

finally	becoming	available	for	pharmacological	action.	To	accomplish	and	

preserve	 therapeutically	 effective	 plasma	 concentrations,	 several	 doses	

can	be	needed	daily,	which	may	cause	substantial	oscillations	 in	plasma	

levels.	 Because	 of	 these	 oscillations	 in	 drug	 plasma	 levels,	 the	 drug	

concentration	 could	 fall	 below	 the	minimum	 effective	 concentration	 or	

exceed	 the	 minimum	 toxic	 concentration.	 Such	 fluctuations	 result	 in	

unwanted	side	effects	or	absence	of	therapeutic	profit	to	the	patient.		
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Sustained-release	 and	 controlled-release	 drug	 delivery	 systems	

can	 diminish	 the	 undesired	 oscillations	 of	 drug	 levels,	 consequently	

reducing	side	effects	while	improving	the	therapeutic	result	of	the	drug.	

The	terminologies	sustained-release	and	controlled-release	refer	 to	 two	

different	 kinds	 of	 drug	 delivery	 systems	 (DDS),	 although	 they	 are	

frequently	used	as	indistinct	terms:		

	

Sustained-release	 dosage	 forms	 are	 systems	 that	 extend	 the	

duration	 of	 the	 action	 by	 decreasing	 the	 release	 of	 the	 drug,	 and	 its	

pharmacological	action.		

	

Controlled-release	 drug	 systems	 are	 more	 complex	 than	 just	

merely	delaying	the	release	rate	and	are	designed	to	deliver	the	drug	at	

specific	release	rate	within	a	predetermined	time	period.		

	

Advantages	of	controlled-release	DDS	involve	delivery	of	a	drug	

to	 the	 required	 site,	preservation	of	drug	 levels	within	a	desired	 range,	

diminished	 side	 effects,	 less	 administrations,	 and	 improved	 patient	

compliance.		

	

The	 evolution	 of	 delivery	 systems	 leads	 to	 stimuli-responsive	

DDS.	Whose	 behaviour	 can	 be	 dependent	 on	 the	 environment	 features	

where	 it	 is	placed.	Recently	 the	pH-responsive	 controlled	drug	delivery	

systems	 have	 attracted	 significant	 attention,	 due	 to	 the	 acidic	 tumoral	

atmosphere	of	most	 cancers	and	 the	acidic	environment	of	wounds	 [4].	

In	 this	 chapter,	 we	 suggest	 a	 DDS	 that	 can	 be	 defined	 as	 sustained,	

controlled	 and	 stimuli-responsive	 release	 system	due	 to	 its	 capabilities	
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to	 release	 the	 drug	 in	 a	 required	 rate	 and	 responding	 to	 pH	 changing	

incentives.	

	
The	DDS	we	suggest	is	created	with	nanoporous	anodic	alumina	

(NAA).	 It	was	 not	 until	 1990s	 that	 investigators	 discovered	 that	 highly	

ordered	 nanoporous	 arrangements	 can	 be	 achieved	 by	 correctly	

modifying	anodization	conditions	 involving	electrolyte	composition	and	

concentration,	temperature,	as	well	as	anodization	voltage	[5].		

	

Several	reports	have	been	already	presented	in	the	drug	delivery	

framework	using	porous	materials	[6–8].	Nanoporous	anodic	alumina	is	

one	of	the	most	attractive	materials	for	drug	delivery	applications	since	it	

is	simple	and	low-cost	fabrication.	Regulating	the	anodizing	voltage,	time	

and	 electrolyte	 composition	 can	 easily	 control	 the	 pore	 size	 and	depth.	

Additional	outstanding	properties	of	 this	material	 are	 the	 chemical	 and	

thermal	 stability,	 hardness,	 high	 surface	 and	 highly	 ordered	 pore	

structure	[9,	10].		

	

Specific	 applications	 of	 NAA	 are	 to	 rebuild	 or	 regenerate	 living	

tissues,	deal	with	infections,	and	inflammation	as	consequence	of	surgical	

implantation	or	just	for	drug	continuous	administration	[11].		

	

Drug	 depots	 in	 human	 organism	 with	 controlled	 and	 retained	

release	are	capable	to	contribute	in	long-term	treatments	and,	this	way,	

improve	 quality	 of	 life.	 Moreover	 the	 development	 of	 those	 new	 and	

more	efficient	drug	delivery	systems	resolve	conventional	drug	 therapy	

troubles	 related	 to	 limited	 drug	 solubility,	 lack	 of	 selectivity	 and	

unfavourable	pharmacokinetics.		
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The	 organization	 of	 NAA	 can	 be	 defined	 at	 a	 close-packed	

hexagonal	 and	 perpendicular	 orientated	 array	 of	 columnar	 cells,	 each	

containing	 a	 central	 pore.	 Changing	 the	 anodization	 conditions	 we	 can	

control	the	size	and	interval	of	the	pores.	The	drug	discharge	or	release	

from	 porous	materials	 is	 based	 on	molecular	 diffusion	 from	 the	 pores,	

and	 it	 is	 mainly	 directed	 by	 the	 pore	 dimensions	 [12].	 Therefore,	

adjustment	of	pore	diameter	and	pore	depth	has	also	been	considered	a	

common	strategy	to	control	drug	release.			

	

In	this	chapter,	NAA	scaffolds	with	pore	diameters	about	130	nm	

and	pore	depth	of	15	µm	were	used	as	model	porous	material.	In	order	to	

perform	 a	 controlled	 drug	 release,	 a	 pH	 stimuli-responsive	

polyelectrolyte	LbL	assembly	has	been	used	to	coat	the	porous	scaffolds.	

Doxorubicin	 (DOX),	 a	 strong	 antineoplasic	 agent	 against	 a	 extensive	

range	of	human	tumors,	was	selected	as	a	model	drug	to	accomplish	the	

tests.	The	polyelectrolyte	multilayer	on	the	surface	avoids	the	premature	

release	of	the	drug	and	allows	the	use	of	the	total	enhanced	surface	in	the	

NAA	 samples.	 The	 effect	 of	 pH	 in	 the	 drug	 release	 kinetics	 has	 been	

reviewed	and	examined	as	well	as	the	effect	of	the	polyelectrolyte	bilayer	

number.	

	

4.2.	Methodology	

4.2.1.	Nanoporous	Alumina	Anodization		
Well-arranged	nanoporous	anodic	alumina	was	produced	by	the	

two-step	anodization	method	(Figure	4.1)	[13–15].		
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Aluminium	substrates	were	degreased	in	acetone	and	ethanol	to	

remove	organic	impurities.	They	were	then	subsequently	electropolished	

(Figure	4.1A)	in	a	mixed	solvent	of	perchloric	acid	and	ethanol	(1:3)	at	a	

constant	applied	voltage	of	20V	for	6	minutes.	Then	in	order	to	suppress	

breakdown	 effects	 and	 to	 enable	 uniform	 oxide	 film	 growth	 at	 high	

voltage	 (195V	 in	 phosphoric	 acid)	 a	 protective	 layer	 at	 lower	 voltages	

(175	V	 in	phosphoric	acid)	 for	180	minutes	was	performed.	 In	order	 to	

have	a	more	precise	control	of	the	anodization	process	in	this	work,	the	

voltage	 and	 current	 of	 the	 anodization	 process	 were	 monitored	 and	

recorded	 by	 DSM	 (SM	 300-5)	 SourceMeter,	 controlled	 by	 a	 home-built	

computer	program	based	on	LabView.		

	

Once	 this	 pre-anodization	 at	 175	 V	 was	 performed,	 a	 ramp	 of	

0,05	 V/s	 was	 used	 to	 reach	 the	 hard	 anodization	 voltage	 (195	 V)	

throughout	24	hours.	The	voltage	was	augmented	in	a	linear	manner,	so	

that	the	current	will	not	increase	too	fast	in	order	to	avoid	overheating	of	

the	electrolyte	and	the	subsequent	oxide	breakdown.		

	

After	 the	 ramping	 process	 is	 done,	 the	 program	 maintains	 the	

target	 voltage	 at	 the	 same	 time	 it	 is	 observed	 that	 the	 anodization	

current	 falls	 naturally	 down	 to	 a	 stable	 level,	which	 is	 an	 indication	 of	

inception	 of	 stable	 anodization.	 This	 first	 anodization	 produces	 an	

alumina	 scaffold	 that	 is	 ordered	 at	 the	 bottom	but	 presents	 disordered	

features	at	the	top	part	of	the	pores	(Figure	4.1B).	

	

Then,	 after	 this	 first	 step,	 the	 porous	 alumina	 grown	 on	 the	

aluminium	surface	was	removed	by	a	wet	chemical	etching	in	a	mixture	
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of	phosphoric	acid	(0,4	M)	and	chromic	acid	(0,2	M)	(1:1	volume	ratio)	at	

70ºC	 (Figure	 4.1C)	 leaving	 a	 highly	 periodic	 structure	 of	 nano-

concavities	which	forms	the	initiation	sites	for	the	formation	of	pores	in	

the	second	anodization	step	[16–19].		

	

At	that	time	a	second	anodization	was	performed	under	the	same	

experimental	 conditions	 (195	 V)	 as	 in	 the	 first	 step	 in	 order	 to	 obtain	

ordered	nanoporous	alumina.	The	 second	step	anodization	was	applied	

until	pores	with	15	μm	depth	were	obtained	(Figure	4.1D).		

	

	
Figure	 4.1.	 Schematic	 representation	 of	 the	 alumina	 pores	 formation	

during	the	anodization	process.	A)	The	electopolishing	procedure	creates	

a	plane	surface.	B)	The	first	anodization	produces	a	disordered	NAA	wall.	

C)	 Dissolution	 of	 the	 alumina	 wall	 creates	 an	 ordered	 pattern	 in	 the	

aluminium	sheet.	D)	The	second	anodization	on	the	patterned	aluminium	

creates	a	perfect	ordered	NAA.	

	

4.2.2.	Polyelectrolytes	Assembly		
For	 the	 purpose	 of	 covering	 the	 nanopore	 walls	 with	

polyelectrolyte	layers,	nanoporous	anodic	alumina	was	first	coated	with	

3-aminopropyl	 triethoxysilane	 (APTES).	 The	 positively	 charged	 APTES	

substrates	 would	 allow	 negatively	 charged	 polyelectrolytes	 to	 be	
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attached	 to	 the	 pore	walls	 (Figure	 4.2A).	 For	 LbL	 deposition,	 the	NAA	

substrates	were	dipped	 consecutively	 into	 negative	 charged	 solution	 of	

poly(styrenesulfonate)	(PSS,	1	mg/ml	in	5	mM	CaCl2	in	deionized	water)	

(Figure	 4.2B),	 and	 positive	 charged	 solution	 of	 poly(allylamine	

hydrocloride)	(PAH,	1	mg/ml	in	5	mM	CaCl2	in	deionized	water)(Figure	

4.2C),	alternating	rinsing	with	deionized	water	between	each	immersion.	

Dipping	 times	 in	 polyelectrolyte	 solutions	 were	 30	 minutes	 and	 the	

washing	 step	 in	 deionized	 water	 lasted	 for	 10	 min	 [20].	 All	 the	 steps	

were	repeated	for	2,	5	and	8	times	for	obtaining	2	bilayers,	5	bilayers	and	

8	bilayers	respectively.	

	

	
Figure	 4.2.	 Schematic	 representation	 of	 the	 polyelectrolyte	 layer-by-

layer	deposition	procedure.	B)	PSS	deposition	by	 immersing	 the	APTES	

treated	 surface.	 C)	 PAH	 deposition	 by	 immersing	 the	 PSS	 covered	

substrate.	 D)	 DOX	 loading	 in	 the	 swollen	 PEM	 film	 at	 pH	 2.0	 E)	 DOX	

confinement	due	to	the	PEM	layer	contraction	at	pH	8.0	F)	DOX	releases	

at	different	pH	media.	
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4.2.3.	Drug	Loading	
Positively	 charged	 doxorubicin	 (DOX)	 was	 chosen	 as	 a	 model	

drug.	DOX is a potent anti-tumoral agent that is widely employed 

for the purpose of the cancer therapy with good fluorescence 

characteristics [21]. 
	

	Layer	by	layer	(LbL)	NAA	samples	were	dipped	in	1	mg/ml	DOX	

solution	 at	 pH	 2	 in	 the	 dark	 at	 room	 temperature	 overnight	 (Figure	

4.2D).	Then	the	DOX	solution	was	adjusted	to	pH	8	and	the	samples	were	

stirred	 2	 hours	 in	 the	 dark	 (Figure	 4.2E).	 Subsequently,	 samples	were	

washed	with	deionized	water	adjusted	at	pH	8.		

	

At	 pH	 2,	 the	 increased	 permeability	 of	 the	 polyelectrolytes	 film	

facilitates	the	incorporation	of	DOX	inside	the	PSS/PAH	multilayers.	Then	

the	modification	of	pH	at	8	causes	the	contraction	of	the	polyelectrolytes	

and	 the	drug	molecule	becomes	 trapped	 inside	 the	polyelectrolyte	 film.	

The	following	washing	will	remove	any	nontrapped	DOX	molecule.	

	

4.2.4.	Drug	release	
Samples	 under	 analysis	 were	 immersed	 in	 phosphate	 buffered	

saline	(PBS)	at	pH	7.4	and	sodium	acetate	buffer	at	pH	5.2	(Figure	4.2F).	

Samples	were	immersed	in	0.5	ml	of	the	corresponding	medium	and	this	

medium	was	renewed	at	every	measurement.		
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Release	 characteristics	 depending	 on	 the	 number	 of	

polyelectrolyte	 layers	 and	 on	 the	 pH	 of	 the	 release	 medium	 were	

observed.		 	

	

Release	 trials	 consisted	 of	 monitoring	 the	 diffusion	 of	

doxorubicin	 (DOX)	 as	 a	 function	 of	 time	 after	 the	 encapsulation	within	

the	polyelectrolytes	 coating.	 For	 this	 reason	 fluorescence	of	 the	buffers	

solutions	were	measured	at	regular	time	intervals.		

	

We	 toked	 the	 photoluminescence	 measurements	 on	 a	

fluorescence	 spectrophotometer	 with	 a	 Xe	 lamp	 used	 as	 the	 excitation	

light	 source	 at	 room	 temperature	 and	with	 an	excitation	wavelength	of	

480	nm.	A	calibration	curve	to	relate	the	photoluminescence	values	and	

the	DOX	concentration	was	also	needed.	

	

Drug	 release	 was	 monitored	 by	 drug	 photoluminescence	 over	

7200	minutes	(120	hours)	in	2	different	pH	buffer	mediums:	pH	5.2	and	

pH	7.4.	Once	we	reached	2880	minutes	(48	hours)	samples	immersed	in	

pH	7.4	medium	were	changed	to	pH	5.2	medium.		

	

Intensities	 of	 the	 fluorescent	 peaks	 were	 converted	 to	 the	

corresponding	 concentrations	 using	 the	 already	 mentiones	 calibration	

curve.	Release	rates	are	reported	as	µg/cm2	vs.	time.		
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4.3.	Results	and	Discussion	
Figure	 4.3	 shows	Environmental	Scanning	Electron	Microscopy	

(ESEM)	images	of	one	of	the	fabricated	NAA	samples.	Figure	4.4	shows	

an	schematic	drawing	of	 the	porous	structure.	The	morphologies	of	 the	

NAA	substrates	were	characterized	by	Environmental	Scanning	Electron	

Microscopy	(ESEM	FEI	Quanta	600,	Hillsboro,	OR,	USA).		

	

The	top	surface	view	in	Figure	4.3A	reveals	a	good	ordering	in	a	

honeycomb	 structure	 of	 the	 pores	 in	 the	 short	 range,	 	 with	 good	 pore	

distribution.	 At	 the	 same	 time,	 the	 cross-section	 image	 in	Figure	 4.3B	

demonstrates	straight	and	parallel	growth	of	the	pores.		

	

Image	 examination	 results	 in	 estimated	 average	 pore	 diameter	

(Dp)	 value	of	130	nm,	 layer	 length	 (L)	of	15	µm	and	 interpore	distance	

(Dint)	 of	 480	 nm.	 The	 schematic	 drawing	 in	 Figure	 4.4	 illustrates	 the	

definition	of	these	magnitudes.	

	
Figure	 4.3.	 A)Top-view	 ESEM	 image	 of	 NAA.	 B)	 Cross-sectional	 SEM	

image	of	imprint	NAA		

	

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF NANOPOROUS ANODIC ALUMINA TECHNOLOGIES FOR DRUG DELIVERY 
Maria Porta Batalla 
 



Drug	Release	based	on	NAA	with	LBL	Polyelectrolyte	
________________________________________________________________________________________	

________________________________________________________________________________________	
94	

	

	
Figure	4.4.	Schematic	representation	of	the	alumina	pores	forming	a	

close-packed	 hexagonal	 and	 perpendicular	 orientated	 array	 of	

columnar	cells.	

	

Figure	 4.5	 shows	 ESEM	 images	 of	 the	 top	 surface	 of	 a	 NAA	

sample	 after	 different	 stages	 in	 the	 PSS/PAH	 deposition,	 in	 order	 to	

validate/check	 the	 successful	 deposition	 of	 the	 polyelectrolyte	

multilayer.		

	

Figure	4.5A	corresponds	to	an	as-produced	sample	(without	any	

polyelectrolyte	 layer).	 Figure	 4.5B	 corresponds	 to	 a	 sample	 after	 the	

deposition	 of	 two	 polyelectrolytes	 bilayer.	 And	 finally	 Figure	 4.5C	

corresponds	 to	 a	 sample	 after	 the	 deposition	 of	 8	 polyelectrolytes	
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bilayer.	A	statistical	estimation	of	pore	diameters	using	image-processing	

techniques	 was	 carried	 out.	 	 The	 images	 do	 not	 show	 a	 perceptible	

change	in	pore	diameter	

	

Figure	 4.6	 show	 the	 pore	 size	 distribution	 for	 non	 treated	

samples	(figure	4.6.A),	with	two	bilayers	deposition	(figure	4.6.B)	and	

with	eight	bilayers	deposition	(figure	4.6.C).	Mean	values	and	standard	

deviation	for	pore	measurements	are	shown	in	table	4.1.		

	

This	 statistical	 estimation	 results	 in	 an	 average	 pore	 radius	 of	

131-130	 nm	 for	 the	 samples	 without	 polyelectrolyte	 layers	 and	 the	

samples	with	polyelectrolyte	respectively	with	a	standard	deviation	of	12	

nm.	It	can	be	confirmed	in	Figures	4.6A-C.	

	

The	 only	 indication	 from	 the	 pictures	 that	 the	 surface	 is	 being	

appropriately	 modified	 is	 that	 the	 image	 contrast	 increases	 with	 the	

number	 of	 bilayers.	 Hence,	 it	 can	 be	 assumed	 that	 there	 is	 a	
polyelectrolyte	layer	recovering	the	sample	surface.		

	

In	 order	 to	 check	 satisfactory	 infiltration	 and	 polyelectrolyte	

coating	 in	 the	 inner	 pore	 surfaces,	 we	 imaged	 a	 cross-section	 of	 the	

nanopores	 before	 and	 after	 coating	 with	 polyelectrolytes	 and	 we	

obtained	the	Energy	Dispersive	X-ray	Spectroscopy	(EDX)	spectra	shown	

in	Figures	4.7A	and	4.7B.		
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Figure	 4.5.	 Environmental	 Scanning	 Electron	Microscope	 images	 of	

the	 top	 views,	 A)	 without	 polyelectrolyte	 coat	 B)	 whit	 2	

polyelectrolyte	bilayers	C)	with	8	polyelectrolyte	bilayers.		

	

	
Figure	4.6.	Shows	the	pore	diameter	distribution	for	different	number	of	

bilayers:	A)	0	bilayers	B)	2	bilayers	C)	8	bilayers	

	

Table	 4.1.	 shows	 mean	 pore	 diameter	 for	 samples	 without	

polyelectrolyte	 bilayers,	 with	 2	 polyelectrolyte	 bilayers	 and	 with	 8	

polyelectrolyte	bilayers.	

	

	

Mean	pore	

diameter	

(nm)	

Standard	

deviation	

0	bilayers	 131	 11,30	

2	bilayers	 130	 12,70	

8	bilayers	 130	 11,93	
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Figure	 4.7.	 Correspond	 to	 the	 EDX	measurements	 for	 cross-section	

samples	without	polyelectrolyte	coating	(A)	and	with	polyelectrolyte	

coating	(B).	

	

Thanks	 to	 this	 technique	 (EDX)	 we	 can	 assume	 that	 no	 pore	

obstruction	occurred	during	the	LbL	self-assembly.		

	

The	 use	 of	 multivalent	 salt	 such	 as	 CaCl2	 contributes	 to	 the	

construction	of	 the	polyelectrolyte	 coat	 inside	 the	nanopore	owing	 to	 a	

stronger	 polymer-chain	 contraction	 [22,	 23].	 The	 following	 Energy	

Dispersive	 X-ray	 Spectroscopy	 (EDX)	 analysis	 of	 those	 samples	 shows	

phosphoric	 and	 aluminum	 peaks	 due	 to	 the	 sample	 and	 electrolyte	

presence,	 and	 also	 an	 oxygen	 peak	 because	 of	 the	 presence	 of	 this	

element	 in	 the	 alumina	 sample	 (Al2O3).	 However	 a	 carbon	 peak	 only	

appeared	 on	 those	 samples	 with	 polyelectrolytes	 (Figure	 4.7B).	 That	
peak	could	not	be	found	in	the	alumina	samples	without	polyelectrolyte	

treatment	 (Figure	 4.7A).	 This	 statement	 confirms	 the	 successful	

deposition	and	 incorporation	of	both	polyelectrolytes	and	DOX	 into	 the	

pores.	
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Afterwards	 the	DOX	 loading,	 samples	were	exposed	 to	different	

pH	media	to	assess	the	pH	responsiveness	and		the	impact	of	the	number	

of	polyelectrolyte	bilayers.	For	 this	purpose	a	 calibration	curve	 relating	

the	 DOX	 concentration	 and	 the	 Photoluminescence	 obtained	 (PL)	 was	

firstly	performed		(Figure	4.8).	

	

When	 samples	 are	 in	 contact	 with	 the	 aqueous	 medium,	 the	

polyelectrolyte	 multilayer	 swells	 to	 a	 certain	 extent,	 increasing	 its	

permeability	and	allowing	the	diffusion	of	the	drug.		

	

This	 swelling	 phenomenon	 of	 PAH/PSS	 films	 is	 generally	

associated	 to	 the	 difference	 in	 charge	 density	 of	 polyelectrolyte	 chains	

stimulated	by	a	change	in	the	pH	medium.	PAH	is	a	weak	polyelectrolyte	

whose	 amino	 groups	 become	 charged	when	 the	 pH	decreases,	 creating	

an	 increase	 in	 the	 osmotic	 pressure.	 Consequently,	 water	 molecules	

diffuse	into	the	polyelectrolytes	and	the	multilayer	swells.		

	

This	 phenomenon,	 together	 with	 the	 electrostatic	 repulsion	

between	DOX	and	PAH/PSS	multilayer,	enables	the	diffusion	of	the	drug	

in	the	medium	[24].			
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Figure	 4.8.	 Calibration	 curve	 for	 different	 Doxorubicin	 concentrations	

and	their	Photoluminescence	values.	

	

Figure	4.9	compares	the	discharge	profile	of	DOX	from	samples	

with	different	number	of	 layers	at	pH	5.2	and	pH	7.4	during	a	period	of	

3000	minutes.	Two	clusters	of	curves	can	bee	seen:	one	group	at	pH	5.2	

and	another	group	at	pH	7.4.	Each	group	contains	three	different	curves:	

8	bilayers	samples	(circles),	5	bilayers	samples	(triangles)	and	2	bilayers	

samples	(squares).		

	

Overall	it	can	be	accepted	that	there	is	a	massive	burst	release	in	

all	curves	(framed	 in	 the	graph)	within	the	 first	minutes.	Once	this	 first	

stage	has	occurred	the	release	rate	decrease	causing	a	curve	flattening.	
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Figure	4.9.	Doxorubicin	(DOX)	release	profile	for	3000	minutes	at	pH	5.2	

and	 7.4	 for	 different	 numbers	 of	 polyelectrolyte	 bilayers	 and	 with	 the	

burst	releases	framed.	

	

	
Figure	 4.10	 A)	 Nonlinear	 fitting	 for	 the	 burst	 release	 at	 pH	 5.2.	 B)	

Nonlinear	fitting	for		burst	release	at	pH	7.4.	
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Figure	 4.10A	 and	 4.10B	 shows	 a	 nearer	 look	 for	 the	 burst	

releases	 at	pH	5.2	 and	7.4	 respectively.	The	data	display	 that,	 as	 it	was	

expected,	burst	release	at	pH	5.2	is	faster	than	burst	release	at	pH	7.4.		

	

The	results	at	pH	5.2	within	the	first	30	minutes	(Figure	4.10A)	

show	 that	 the	 samples	 with	 5	 and	 2	 bilayers	 release	 nearly	 the	 same	

amount	of	drug,	while	 for	 the	8	bilayer	samples	 the	release	 is	1.4	 times	

bigger.	 After	 stabilization,	 at	 pH	 5.2,	 the	 amount	 of	 released	 drug	 is	

bigger	 for	 bigger	 number	 of	 bilayers:	 samples	 with	 8	 bilayers	 release	

1,32	times	more	drug	than	5	bilayer	samples	and	1,63	times	more	than	2	

bilayer	samples.		

	

Instead,	at	pH	7.4	the	release	dynamics	is	different:	there	is	not	a	

clear	 correspondence	 between	 the	 amount	 of	 released	 drug	 and	 the	

number	of	bilayers	(Figure	4.10B),	both	in	the	burst	and	in	the	sustained	

release	 periods.	 These	 observed	 differences	 may	 occur	 due	 to	 the	

inhibition	caused	by	the	polyelectrolyte	contraction.	

	

Contemplating	relative	values,	 taking	 into	account	 that	100%	of	

the	drug	is	the	total	amount	of	drug	discharged	at	infinite	time,	the	DOX	

released	after	30	minutes	for	samples	at	pH	5.2	is	between	4	and	5	times	

bigger	 than	 that	 at	 pH	7.4	 (Figure	 4.11A).	 This	 result	 is	 in	 accordance	

with	the	result	in	figure	4.9.		

	

Besides	 the	relative	amount	of	released	drug	are	not	depending	

on	bilayer	number:	90%	of	the	drug	has	been	released	during	the	first	24	
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hours	at	pH	5.2	while	only	30-40%	of	the	drug	is	released	within	first	24	

hours	at	pH	7.4	(Figure	4.11B).		

	

After	 that,	 release	rate	 is	reduced	progressively	until	 it	shows	a	

stabilized	profile.	 It	 can	be	observed	 that	at	 longer	 times	 the	difference	

between	relative	released	DOX	at	pH	7.4	and	pH	5.2	 is	becoming	 lower.	

Since	the	release	of	the	drug	at	pH	7.4	is	slower,	it	is	also	more	sustained	

during	 time.	This	 is	 the	 reason	why	 total	 amount	of	drug	discharged	at	

pH	5.2	and	7.4	are	becoming	nearer.	 Figure	4.11C	shows	a	comparison	

between	 the	 total	 amounts	 of	 DOX	 at	 the	 finished	 release	 time	 for	 the	

different	samples.	

	
Figure	 4.11.	 A)	 Percentage	 of	 the	 DOX	 released	 within	 the	 first	 30	

minutes	 at	 different	 pH	 and	 bilayer	 number.	 B)	 Percentage	 of	 the	 DOX	

released	 after	 24	 hours	 for	 different	 pH	 and	 bilayer	 number.	 C)	 Total	

DOX	amount	released	for	every	different	sample	during	the	monitoring.	

	

To	 continue	with	 the	 experimentation,	 at	minute	 3000	 samples	

immersed	with	medium	at	pH	7.4	were	changed	to	pH	5.2	medium.	This	

change	 in	 pH	 triggers	 another	 burst	 release	 really	 similar	 to	 the	 first	

burst	 release	 in	 samples	 at	 pH	 5.2,	 which	 demonstrates	 that	 the	 DDS	

responds	to	pH	modification.	In	Figure	4.12	a	general	profile	of	the	DOX	

release	is	shown	in	order	to	prove	the	responsiveness	of	the	DDS	to	pH	

variation.	
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The	quantity	of	drug	released	after	the	stabilization	in	the	second	

burst	release	at	pH	5.2	correlates	with	the	number	of	bilayers.	However,	

the	absolute	amount	of	DOX	released	in	this	second	burst	release	 is	not	

reaching	the	same	values	of	the	first	burst	release	at	the	same	pH	for	all	

the	samples.	

	

Precisely	for	2	bilayers,	the	second	burst	release	(at	pH	5.2)	the	

DOX	amount	reaches	the	same	value	as	for	the	previous	release	at	pH	5.2.	

Contrarily,	for	5	bilayers	the	total	amount	only	reaches	up	to	a	87,5%	of	

the	 drug	 discharged	 in	 the	 previous	 experiment	 at	 pH	 5.2.	 And	 for	 8	

bilayers	this	percentage	is	even	lower	(72,7%).	These	results	can	also	be	

distinctively	seen	in	Figure	4.11C.	

	
Figure	 4.12.	 Complete	 release	 profiles	 of	 DOX	 from	 NAA	 coated	 with	

different	 polyelectrolyte	 bilayer	 numbers	 at	 pH	 5.2	 and	 7.4.	 with	 the	

second	burst	release	at	pH	5.2	framed.	

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF NANOPOROUS ANODIC ALUMINA TECHNOLOGIES FOR DRUG DELIVERY 
Maria Porta Batalla 
 



Drug	Release	based	on	NAA	with	LBL	Polyelectrolyte	
________________________________________________________________________________________	

________________________________________________________________________________________	
104	

	
Figure	4.13.	Nonlinear	fitting	for	the	second	burst	release	at	pH	5.2.	

	

	

Figure	 4.13	 shows	 a	 exhaustive	 fitting	 for	 the	 second	 burst	

release	at	pH	5.2.	In	addition	total	amount	of	encapsulated	DOX	was	also	

studied	concluding	that	there	is	a	proportionally	direct	relation	between	

the	 polyelectrolyte	 number	 of	 bilayers	 and	 the	 amount	 of	 DOX	
loaded/released	(Figure	4.11C).		

	

This	relation	can	be	observed	in	both	pH	mediums,	but	becomes	
more	 obvious	 at	 pH	 5.2	 when	 DOX	 molecules	 can	 diffuse	 with	 fewer	

obstacles.	
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In	order	 to	present	a	quantitative	analysis	of	 the	 results	during	

the	 early	 stage	 (burst	 release)	 we	 accomplished	 fitting	 studies	 of	 the	

curves	by	a	adaptation	of	Higuchi	and	Ritger-Peppas	models:	

	

Higuchi	model	 is	 an	 empirical	 model	 frequently	 used	 to	 define	

the	release	kinetics	of	drugs	from	insoluble	porous	materials	[25,	26]		It	

is	well	established	and	commonly	used	for	modelling	drug	release	 from	

matrix	systems	[27,	28].	The	Higuchi	model	is	based	on	a	square	root	of	

time-dependent	 process	 of	 Fickian	 diffusion	 [29,	 30].	 Fick’s	 law	 of	

diffusion	 postulates	 the	 fundamentals	 for	 the	 description	 of	 solute	

transport	from	matrices	[31].		

	

Ritger-Peppas	model	(also	known	as	Korsmeyer-Peppas)	is	used	

for	 fitting	 drug	 discharge	 from	 polymeric	 thin	 films,	 cylinders	 and	

spheres	[32].		

	

	

The	equation	we	finally	used	is	(equation	4.1):	

	

𝑀! = 𝑀!!
!
!!

!
																																											(4.1)	

	

Where	Mt	 is	 the	proportion	of	DOX	released	at	a	given	time	t,	Mt0	 is	 the	

amount	of	released	drug	at	 the	reference	time	t0	 (1	minute)	 t	 is	 time	 in	

minutes	and	n	is	a	fitting	parameter	related	to	the	release	rate.		
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The	adjustment	process	using	a	least	squares	method	minimizes	

the	differences	between	the	experimental	and	theoretical	values	[33–35].		

	

Several	fittings	using	different	time	intervals	were	performed	in	

order	 to	 be	 able	 to	 know	 the	 best	 option.	Table	 4.2	 is	 showing	 the	 R-

squared	values	that	were	used	to	make	the	time	selection.	In	this	case	30	

minutes	 was	 selected	 because	 the	 highest	 R-squared	 values	 were	

achieved	within	this	interval.		

	

The	best	fitting	values	for	the	equation	parameters	are	shown	in	

Table	4.3.		

	

	

Table	4.2.	shows	different	R-square	for	different	fittings	using	different	

times.	

	
30	

minutes	

45	

minutes	

60	

minutes	

90	

minutes	

120	

minutes	

First	Burst	

Release	

pH5.2	

8	bilayers	 0,99744	 0,99351	 0,99063	 0,97674	 0,97143	

5	bilayers	 0,99716	 0,99259	 0,98948	 0,97801	 0,97505	

2	bilayers	 0,99616	 0,98601	 0,97956	 0,96166	 0,95337	
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Table	 4.3.	Nonlinear	 fitting	parameters	 for	 the	different	 burst	 releases	

using	the	equation	M! = M!!
!
!!

!
	

	 𝑀!! 	 n	 Release	rate	

First	Burst	

Release	

pH5.2	

8	bilayers	 1,84	±	0,05	 0,36	±	0,01	 0,67	

5	bilayers	 1,29	±	0,04	 0,37	±	0,01	 0,48	

2	bilayers	 1,47	±	0,05	 0,32	±	0,01	 0,47	

Burst	

Release	

pH7.4	

8	bilayers	 0,23	±	0,04	 0,45	±	0,05	 0,11	

5	bilayers	 0,10	±	0,01	 0,57	±	0,03	 0,06	

2	bilayers	 0,16	±	0,01	 0,52	±	0,02	 0,08	

Second	

Burst	

Release	

pH5.2	

8	bilayers	 0,24	±	0,03	 0,47	±	0,03	 0,11	

5	bilayers	 0,25	±	0,03	 0,48	±	0,03	 0,12	

2	bilayers	 0,17	±	0,02	 0,49	±	0,03	 0,08	

	
Data	on	Table	 4.3	 is	 showing	M!! ,	 n	 and	 release	 rate	witch	has	

been	obtained	as	the	first	derivative	of	the	equation	at	time	t0	(𝑀!!× 𝑛).		

	

Note	 that	 values	 of	𝑀!! 	for	 the	 first	 release	 at	 pH	 5.2	 are	 one	

order	 of	 magnitude	 higher	 that	 for	 the	 first	 release	 at	 pH	 7.4,	 in	 good	

agreement	with	the	behavior	observed	in	Figure	5.		

	

Furthermore,	 for	pH	5.2,	 there	 is	a	clear	difference	between	𝑀!! 	

for	8	bilayers	on	one	hand,	and	𝑀!! 	for	5	and	2	bilayers	on	the	other.	This	

result	implies	that	the	main	contribution	to	the	drug	release	at	pH	5.2	is	

coming	from	the	outer	layers.		
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Instead,	 for	 pH	 7.4,	 the	 difference	 between	 the	𝑀!! 	is	 much	

smaller,	what	leads	to	the	conclusion	that	only	the	drug	in	the	outermost	

layer	is	contributing	to	the	release.	These	results	are	in	good	agreement	

with	 the	 influence	 of	 pH	 on	 the	 amount	 of	 released	 drug	 observed	 in	

Figure	5.		

	

Regarding	the	value	of	n,	 it	can	be	seen	that	 the	values	 for	each	

pH	 are	 similar	 for	 the	 different	 number	 of	 bilayers.	 This	 indicates,	 that	

the	 release	 dynamics	 is	 influenced	 by	 pH	 but	 not	 by	 the	 number	 of	

polyelectrolyte	bilayers.			

	

It	is	also	interesting	to	note	that,	for	the	second	release	at	pH	5.2,	

the	𝑀!! 	and	the	release	rate	are	wisely	smaller	than	for	the	first	release	at	

pH	 5.2.	 With	 this	 data,	 it	 can	 be	 concluded	 that,	 although	 the	 DDS	 is	

sensitive	 to	 pH	 variation,	 the	 first	 release	 at	 pH	 7.4	 modifies	 the	

dynamics	 of	 further	 release	 events	 triggered	 by	 such	 pH	 variation.	We	

attribute	 this	 fact	 to	 the	 availability	 of	 DOX	 within	 the	 polyelectrolyte	

layers.	 As	 part	 of	 the	 drug,	mainly	 from	 the	 outermost	 layer,	 has	 been	

already	released	at	pH	7.4,	the	remaining	drug	from	deeper	layers	finds	it	

more	difficult	to	diffuse	into	the	medium.	

	

4.4.	Summary	and	Conclusions	
Cylindrical	NAA	membranes	covered	with	polyelectrolyte	 layers	

are	 presented	 as	 a	 stimuli-responsive	 pH-dependent	 drug	 delivery	

system	(DDS).		
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The	 NAA	 structures	 were	 achieved	 using	 two-step	 anodization	

process	 that	 resulted	 in	 a	 highly	 uniform	 pore	 size	 and	 distribution.	

These	 structures	 are	 coated	 with	 a	 pH-responsive	 polyelectrolyte	 and	

successfully	 loaded	with	DOX	to	estimate	the	 influence	of	pH	and	of	 the	

quantity	of	polyelectrolyte	bilayers	on	the	discharge	dynamics.		

	

Greater	 total	 amounts	 of	 released	 DOX	 were	 found	 in	 samples	

immersed	 in	 acidic	 medium,	 supporting	 the	 pH	 responsiveness	 of	 the	

DDS.	The	 amount	 of	 discharged	DOX	 in	 acidic	medium	 is	 in	 correlation	

with	 the	 number	 of	 polyelectrolyte	 bilayers,	 although	 the	 increase	 in	

released	drug	does	not	scale	linearly	with	the	number	of	polyelectrolyte	

bilayers.	 This	 fact	 suggests	 that	 only	 the	 outer	 bilayers	 in	 the	

polyelectrolyte	structure	contribute	to	the	release	at	this	pH.		

	

Contrarily,	when	release	 is	accomplished	at	pH	7.4,	 the	quantity	

of	 released	 drug	 does	 not	 depend	 on	 the	 number	 of	 polyelectrolyte	

layers,	 what	 leads	 to	 the	 conclusion	 that	 only	 the	 drug	 nearest	 to	 the	

medium	is	discharged.		

	

The	 quantitative	 evaluation	 of	 the	 release	 curves	 also	 exposed	

that	 the	 release	 dynamics	 (related	 with	 the	 exponent	 n	 in	 the	 Ritger-

Peppas	 model)	 depends	 strongly	 of	 the	 pH,	 but	 the	 number	 of	

polyelectrolyte	layers	has	no	impact	in	it.		

	

If	an	abrupt	change	 in	pH	is	applied	to	the	DDS,	 from	neutral	 to	

acidic	 medium,	 a	 second	 burst	 release	 is	 triggered.	 This	 second	 burst	

release	shows	a	different	dynamics	than	the	first	release	at	pH	5.2.	This	
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can	 be	 attributed	 to	 the	 reduced	 availability	 of	 drug	 in	 the	 outermost	

layers,	after	the	first	release	at	pH	7.4.		

	

As	 a	 conclusion,	 results	 show	 that	Nanoporous	Anodic	Alumina	

coated	with	Layer-by-Layer	pH-responsive	polyelectrolyte	has	potential	

applications	in	local	drug	delivery.	
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In	this	chapter	we	are	trying	to	solve	a	society	necessity	using	the	

Nanoporous	 Anodic	 Alumina	 (NAA)	 as	 a	 drug	 reservoir	 and	 retained	

release	 system.	 To	 place	 the	 reader	 in	 context	 we	 have	 to	 say	 that	

manufacture	 of	 three	 dimensional	 (3D)	 structures	 can	 be	 economically	

costly	 and	 complex;	 however,	 electrochemistry	 has	 become	 a	 key	

discipline	 for	 nanotechnology	 due	 to	 its	 inexpensive	 fabrication	 of	

nanostructured	materials.	Porous	alumina	fabricated	by	anodization	is	a	

well-known	 example.	 Due	 to	 their	 simplicity,	 low-cost	 and	 attractive	

properties,	 nanoporous	 anodic	 alumina	 is	 one	 of	 the	most	widely	 used	

nanomaterial	 for	 numerous	 Nano-technological	 applications.	 In	 this	

chapter	 we	 have	 used	 NAA	 as	 a	 drug	 reservoir	 with	 different	 release	

kinetics	depending	on	the	pore	shape.	
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5.1.	Introduction	
Lately	 in	 our	 days	 NAA	 has	 attracted	 substantial	 attention	 for	

several	 applications	 like:	 template	 synthesis,	 molecular	 filtration,	

catalysis,	 sensing,	 electronics,	 photonics,	 energy	 storage	 and	 drug	

delivery.	 We	 are	 going	 to	 focus	 our	 attention	 in	 this	 last	 function.	 We	

know	 that	 some	 studies	 have	 been	 already	 performed	 in	 the	 drug	

delivery	framework	using	porous	materials	[1–10].		

	

Nanoporous	anodic	alumina	(NAA)	 is	one	of	 the	most	attractive	

material	 for	 drug	 delivery	 applications	 since	 it’s	 simple	 and	 low-cost	

fabrication,	the	pore	size	and	depth	can	easily	be	controlled	by	regulating	

the	 anodizing	 voltage,	 time	 and	 electrolyte	 composite	 as	 it	 has	 been	

explained	in	chapter	2	[11].	Other	remarkable	properties	of	this	material	

are	the	chemical	and	thermal	stability,	hardness,	high	surface	and	highly	

ordered	pore	structure.		

	

Although	 drug	 release	 from	 nanoporous	 coatings	 has	 been	

studied,	 there	 is	 a	 lack	 of	 understanding	 of	 the	 release	 kinetics	 from	

these	platforms	and	 the	dynamics	governing	 them	 [12,	13].	Herein,	our	

aim	 is	 to	 explain	 the	 release	 kinetics	 from	 nanoporous	 surfaces	 by	 a	

model.	 This	model	will	 be	 elucidated	 by	mean	 of	 a	 systematic	 study	 of	

release	profiles.		

	

Drug	depots	in	human	body	with	controlled	and	retained	release	

are	 able	 to	 improve	 quality	 of	 life	 and	 assist	 long-term	 treatments;	 in	

addition	the	development	of	those	new	and	more	efficient	drug	delivery	

systems	 solve	 conventional	 drug	 therapy	 problems	 related	 to	 limited	
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drug	solubility,	 lack	of	selectivity	and	unfavourable	pharmacokinetics[9,	

14].		

	

The	 structure	 of	 NAA	 can	 be	 described	 as	 a	 close-packed	

hexagonal	 and	 perpendicular	 orientated	 array	 of	 columnar	 cells,	 each	

containing	 a	 central	 pore.	 These	 pores	 are	 aimed	 to	 locate	 organic	

molecules	 like	 drugs	 (drug	 depots).	 The	 drug	 release	 from	 porous	

materials	is	based	on	molecular	diffusion	from	the	pores,	and	it	is	mainly	

governed	 by	 the	 pore	 dimensions.	 Therefore,	 adjustment	 of	 pore	

diameter	(Dp)	and	pore	depth	has	been	considered	an	essential	strategy	

to	control	drug	release	kinetics[15].	

	

5.2.	Experimental	Section	
	

5.2.1.	Nanoporous	Alumina	Anodization	
Ordered	nanoporous	anodic	alumina	(NAA)	was	prepared	by	the	

two-step	 anodization	method.	 High	 purity	 (99.999%)	 aluminum	 plates	

were	purchased	from	Goodfellow	(Huntingdon,	UK).		

	

Perchloric	 acid	 was	 used	 for	 electropolishing	 and	 phosphoric	

acid	was	used	for	anoditzation.	Both	acids	were	purchased	from	Sigma-

Aldrich	Corporation	(St	Louis,	USA).		

	

Aluminum	 plates	 were	 degreased	 in	 acetone	 and	 ethanol	 to	

eliminate	 organic	 impurities.	 They	 were	 then	 subsequently	

electropolished	in	a	mixed	solvent	of	perchloric	acid	and	ethanol	(1	 :	3)	

at	a	constant	applied	voltage	of	20	V	for	6	minutes.		

	

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF NANOPOROUS ANODIC ALUMINA TECHNOLOGIES FOR DRUG DELIVERY 
Maria Porta Batalla 
 



3D	structures	on	NAA	for	a	retained	drug	release	
________________________________________________________________________________________	

________________________________________________________________________________________	
122	

	

To	suppress	breakdown	effects	and	to	enable	uniform	oxide	film	

growth	at	high	voltage	 (195	V	 in	phosphoric	 acid)	 a	protective	 layer	 at	

lower	 voltage	 (174	 V	 also	 in	 phosphoric	 acid)	 was	 performed	 for	 180	

min.	After	this	pre-anodization,	a	ramp	of	0,05V/s	was	used	to	reach	the	

hard	voltage	(195V)	during	20	hours	[2,	16].	

	

The	 two-step	 anodization	 procedure	 was	 used	 in	 order	 to	

achieve	suitable	pore	ordering.	For	this	reason,	after	the	first	anodization	

(first	 step),	 the	 disordered	 porous	 alumina	 grown	 on	 the	 aluminum	

surface	 was	 removed	 by	 a	 wet	 chemical	 etching	 in	 a	 mixture	 of	

phosphoric	 acid	 (0,4M)	 and	 chromic	 acid	 (0,2M)	 (1:1	 volume	 ratio)	 at	

70ºC	 [17].	The	second	anodization	step	was	performed	under	 the	same	

experimental	 conditions	 (194V)	 as	 they	 were	 used	 in	 the	 first	 step	 in	

order	to	obtain	ordered	nanoporous	alumina.		

	

The	layer	length	or	pore	depth	was	controlled	by	the	total	charge	

that	is	going	through	the	electrodes	because	it	has	a	direct	relation	with	

the	amount	of	Nanoporous	Anodic	Alumina	created.	
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Figure	5.1.	Schematic	illustration	of	the	different	pore	shapes.	The	name	

of	every	pore	shape	is	written	in	the	upper	part.	

	

5.2.1.1.	Nanoporous	Anodic	Alumina	Funnels	
Normal	 Funnels	 (NF)	 samples	 are	 performed	 alternating	

anodization	process	and	pore	widening	process	 [18].	Depending	on	 the	

number	 of	 layers	 the	 samples	 were	 named	 NF2	 (Normal	 Funnels	 of	 2	

layers)	or	NF3	(Normal	Funnels	of	3	layers)	(Figure	5.1).		

	

NF2	were	 performed	with	 a	 second	 anodization	 (after	 the	 first	

step	 that	 is	 removed	using	 the	wet	chemical	etching)	 for	15µm	of	 layer	

length.	 After	 that,	 a	 pore	widening	 for	 90	minutes	was	 performed,	 and	

finally	 another	 anodization	 for	 15µm	was	 done.	 This	way	NF2	 samples	

has	 a	 first	 layer	 with	 a	 larger	 diameter	 due	 to	 the	 pore	 widening	

procedure	[19],	and	a	second	layer	with	the	natural	electrochemical	pore	

diameter.	

	

NF3	samples	were	achieved	with	a	second	anodization	(after	the	

first	 step	 anodization	 already	 dissolved)	 for	 10µm	 layer	 length,	 then	 a	
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pore	widening	 for	45	minutes,	another	anodization	 for	10µm	(the	 third	

one),	another	pore	widening	for	45	minutes,	and	a	final	anodization	(the	

fourth)	for	10µm	(Figures	5.2,	5.3A).		NF3	samples	has	a	first	layer	of	10	

µm	 length	 with	 90	 minutes	 of	 pore	 widening	 process	 (45+45	 min),	 a	

second	 layer	 of	 10	 µm	with	 45	minutes	 of	 pore	 widening,	 and	 a	 third	

layer	of	10	µm	with	no	pore	widening	procedure.	

	

	
Figure	 5.2.	 Cross	 section	 ESEM	 images	 of	 Normal	 Funnels	 A)	 NF2	 at	

30000	magnifications	B)	NF2	at	50000	magnifications	

	

	
Figure	 5.3.	 Schematics	 of	 the	 funnels	procedures.	A)	 Schematics	 of	 the	

normal	 funnels	 procedure.	 B)	 Schematics	 of	 the	 inverted	 funnels	

procedure.	
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In	 order	 to	 achieve	 the	 Inverted	 Funnels	 (IF)	 structures,	 a	

thermal	 treatment	 to	 change	 the	 amorphous	 crystallographic	 phase	 of	

the	 alumina	 to	 gamma	 crystallographic	 phase	 was	 used.	 The		

temperatures	treatments	were	250ºC	and	500ºC	(Figure	5.3B).		Actually,	

other	temperatures	can	be	used.	We	chose	those	temperatures	arbitrary.	

	

As	 normal	 funnels,	 inverted	 funnels	 were	 named	 IF2	 (Inverted	

Funnels	 2	 layers)	 or	 IF3	 (Inverted	 Funnels	 3	 layers)	 depending	 on	 the	

number	of	layers	(Figure	5.1).		

	

IF2	were	 performed	 starting	with	 a	 pore	 anodization	 using	 the	

two	 step	 process.	 Once	 we	 had	 15	 µm	 of	 layer	 length	 anodized	 a	

temperature	 treatment	 at	 500ºC	 was	 realized.	 After	 that,	 another	

anodization	 about	 15µm	whas	 performed.	 And	 finally	 a	 pore	widening	

for	2	hours	was	realised	(Figure	5.4).		

	

This	 whole	 methodology	 produced	 samples	 with	 two	 different	

layers.	 The	 upper	 layer	 had	narrower	 pores	 thanks	 to	 the	 temperature	

treatment	 that	 reduces	 the	 pore	widening	 rate.	 The	 layer	 in	 the	 lower	

part	 (next	 to	 the	 aluminium)	 had	widener	 pores	 because	 there	was	 no	

temperature	treatment	in	this	region.	

	

IF3	 were	 performed	 with	 a	 second	 anodization	 (after	 the	 first	

step	 a	 removed)	 for	 10µm.	 After	 that,	 a	 500ºC	 temperature	 treatment	

was	 realized.	 Another	 anodization	 (the	 third	 one)	 for	 10µm	 was	

completed.	Then	another	temperature	treatment,	this	time	at	250ºC	was	

done.	 And	 finally	 a	 last	 anodization	 (the	 fourth)	 for	 10µm	 was	 made.		
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After	 all	 that	 procedure,	 we	 did	 pore	 widening	 etching	 for	 2	 hours	

(Figure	5.5).		

	

This	way,	IF3	had	3	different	layers	of	10	µm	each:	an	upper	one	

that	was	treated	with	500ºC,	and	for	that	reason	had	the	narrower	pores,	

a	 middle	 one,	 that	 received	 a	 250ºC	 treatment	 causing	 a	 middle	 pore	

diameter.	 And	 the	 layer	 in	 the	 bottom	 that	 did	 not	 received	 any	

temperature	treatment	reason	why	had	the	wider	pores.	

	

	

	
Figure	 5.4.	 Cross	 section	 ESEM	 image	 of	 the	 two	 layered	 inverted	

funnels	sample	at	different	magnifications	for	IF2	samples.	A)	capture	of	

the	entire	bilayer	at	4000	magnifications.	B)	Capture	of	the	IF2	samples	

at	 15000	 magnifications.	 C)	 Detail	 of	 the	 pore	 transition	 at	 40000	

magnifications.	
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Figure	 5.5.	 Cross	 section	 ESEM	 image	 of	 the	 three	 layered	 inverted	

funnels	samples	(IF3).	B-D)	Correspond	to	magnifications	of	 the	framed	

areas	in	image	A	from	the	top	to	the	bottom.	

	

Samples	were	characterized	by	Environmental	Scanning	Electron	

Microscopy	(ESEM).	Furthermore	a	calibration	study	for	the	wet	etching	

pore	 opening	 process	 was	 performed	 both	 with	 500ºC	 of	 temperature	

treatment	 and	 without	 temperature	 treatment.	 For	 this	 reason	 ESEM	

images	of	samples	etched	at	different	times	were	performed.	The	interval	

chosen	 between	 the	 images	 was	 15	 minutes	 (Figure	 5.6).	 Pores	 were	

measured	 using	 Image-J	 software	 (freely	 available	 at	

http://www.nih.gov).	
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Figure	5.6.	Time	lapse	for	pore	widening	samples	at	different	times	with	

temperature	treatment	and	without	treatment.	

	

5.2.2.	Drug	Loading	and	Release	Studies	
Doxorubicin	(DOX)	which	is	a	self-fluorescent	drug	was	selected	

as	a	model	drug.	DOX	solution	at	1mg/ml	concentration	was	loaded	into	

the	 templates	 for	 the	 release	 studies.	 The	 suspension	was	 stirred	 over	

night	 in	 the	dark	with	 the	samples	 immersed.	The	 release	 studies	were	

performed	 in	 vitro	 using	 phosphate-buffered	 saline	 (PBS),	 which	 is	

commonly	employed	to	simulate	in	vivo	conditions	for	drug	release.	Dox	

was	measured	 directly	 in	 the	 release	medium.	 This	 design	 is	 critical	 to	

understand	the	release	kinetics,	since	it	allows	the	collection	of	fast	and	
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frequent	 data	 over	 time.	 One	 of	 the	 advantages	 of	 the	 in	 situ	

measurement	 setup	 used	 in	 these	 experiments	 is	 that	 it	 is	 possible	 to	

collect	 release	data	 frequently,	which	helps	 in	understanding	 the	short-

term	burst	effect.	

	

Drug	 release	 was	 measured	 by	 drug	 photoluminescence.	 The	

photoluminescence	 measurements	 were	 taken	 on	 a	 fluorescence	

spectrophotometer	 from	 Photon	 Technology	 International	 Inc.	

(Birmingham,	NJ,	USA)	with	a	Xe	lamp	used	as	the	excitation	light	source	

at	room	temperature	and	an	excitation	wavelength	(λex)	of	480	nm	and	

emission	wavelength	of	590	nm.	

	

5.3.	Results	and	Discussion	
Regular	 or	 Normal	 Funnels	 (NF)	 were	 successfully	 achieved.	

Figure	5.2	shows	ESEM	cross-section	pictures	of	the	sample	NF2,	at	two	

different	 magnifications.	 Figure	 5.2A	 shows	 the	 transition	 from	 an	

etched	region	(top)	 to	a	non-etched	region	(bottom),	while	 figure	 5.2B	

shows	 a	 close-up	photo.	The	pictures	demonstrate	 a	 straight	 growth	of	

the	 pores,	 without	 discontinuities	 (occluded	 pores)	 despite	 the	

interruption	 in	 the	 anodization	 process	 between	 the	 two	 regions.	 The	

transition	between	the	two	regions	is	smooth	and	shows	a	conical	shape.		

	

Inverted	 Funnels	 (IF)	 were	 also	 successfully	 achieved.	 Figure	

5.4A	shows	a	general	image	of	IF2	samples.	In	this	image	we	can	observe	

a	 linear	disposition	of	 the	pores,	 as	well	 as	 a	 clear	 transition	 from	 thin	

pores	 to	 thick	 pores.	 Figures	 5.4B	 and	 5.4C	 shows	 magnifications	 of	

sample	IF2	where	the	conic	structure	of	the	transition	from	thin	to	thick	

can	be	observed.	At	the	same	time	looking	at	those	images	we	can		
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assume	 that	 the	 crystallization	 of	 the	 aluminum	 oxide	 by	 the	

temperature	treatment	at	500ºC	was	correctly	performed.	

	

Figure	5.5A	shows	a	general	image	of	IF3	samples.	In	this	image	

we	 can	 observe	 a	 linear	 disposition	 of	 the	 pores,	 as	 well	 as	 a	 clear	

transition	 from	 thin	 pores	 to	 thick	 pores.	 The	 different	 layers	 length	

could	also	be	measured	by	this	image.	Figures	5.5B,C	and	D	shows	the	

magnified	 zones	 squared	 in	 the	general	photo.	As	mentioned	above	 the	

same	conic	structure	could	be	observed	in	IF3	samples.	With	this	result,	

we	 demonstrate	 that	 the	 annealing	 at	 the	 intermediate	 temperature	 of	

250º	results	in	an	intermediate	etching	rate.	

	

Samples	 treated	by	pore	opening	etching	during	different	 times	

spaced	15	minutes	between	 them	where	 investigated	using	ESEM.	Two	

different	 groups	 (without	 temperature	 treatment	 and	 500ºC)	 were	

performed	in	order	to	calibrate	the	different	pore	opening	rates	on	both	

groups.		

	

On	 figure	 5.6	 it	 can	 be	 observed	 that	 the	 samples	 with	

temperature	 treatment	 have	 a	 lower	 pore	 opening	 rate	 than	 those	

without	 the	 treatment.	 Moreover,	 it	 is	 noticeable	 that	 for	 samples	

without	temperature	treatment	the	alumina	matrix	becomes	completely	

destroyed	 due	 to	 the	 dissolution	 of	 the	 pore	 walls	 at	 3	 hours	 of	 pore	

widening	process.		
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Figure	5.7.	Calibration	curve	for	the	pore	widening	treatment	where	the	

pore	 diameter	 is	 related	 with	 the	 etching	 time	 for	 samples	 without	

temperature	 treatment	 (black	 squares)	 and	 samples	 with	 500ºC	 of	

temperature	treatment	(red	circles).	The	dissolution	rate	in	nm/min	has	

been	calculated	by	lineal	fitting	of	the	graphs.	

	

Variations	 of	 pore	 diameter	 (Dp)	measurements	 can	 be	 seen	 in	

figure	 5.7	where	differences	between	 the	non-treated	samples	and	 the	

temperature	 treated	 ones	 are	 revealed.	 This	 phenomenon	 is	 driven	 by	

the	change	in	the	crystallographic	phase	of	the	alumina	and	consequently	

the	stability.	More	concretely,	 the	annealing	 is	what	 induces	 the	change	

in	the	crystallographic	phase	in	the	alumina.		

	

Pore	diameters	for	non-treated	samples	etched	for	3	hours	have	

reached	the	Interpore	Distance	(Dint).	That	means	that	the	whole	NAA	is	

dissolved	 for	 the	 wet	 chemical	 pore	 opening	 procedure	 in	 this	 time.	
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Nevertheless	we	could	observe	that	the	oxide	matrix	structure	started	to	

become	 damaged	 in	 some	 little	 areas	 after	 2	 hours	 and	 30	minutes	 of	

pore	 widening	 process.	 For	 this	 reason	 2	 hours	 was	 chosen	 as	 the	

maximum	etching	time,	for	being	sure	that	the	matrix	is	not	damaged.		

	

Looking	 to	 the	 evolution	of	pore	diameter	 as	 a	 function	of	 time	

upon	wet-chemical	etching	of	porous	NAA	(figure	5.7),	it	was	found	that	

the	wet	etching	pore	opening	rate	 is	decreasing	 in	time	on	both	treated	

and	 non-treated	 samples.	 In	 accordance	with	 the	 literature	 [18,	 19]	 an	

inflection	point	can	be	found.	This	inflection	corresponds	to	an	interface	

separating	 two	 different	 compositions	 of	 the	 oxide	 matrix:	 an	 outer	

(closer	to	the	pore)	 layer	with	a	given	concentration	of	anions	from	the	

electrolyte,	 and	 a	 relatively	 more	 pure	 inner	 layer	 (see	 chemical	

composition	section	in	chapter	2)	.	The	anion	contaminated	layer	is	easily	

removed	by	the	etching	treatment	meanwhile	the	more	pure	alumina	is	

more	 resistant	 to	 the	pore	widening	procedure.	Those	 inflection	points	

have	 been	 found	 in	 120	minutes	 for	 the	 non-treated	 samples	 and	 150	

minutes	for	those	samples	with	temperature	treatment.	

	

	
Figure	 5.8.	 A)	 Graph	 showing	 the	 top	 pore	 diameter	 for	 every	 sample	

shape.	B)	Graph	displaying	the	effective	surface	for	every	sample	shape.	

C)	 Graph	 presenting	 the	 total	 volume	 of	 the	 sample	 for	 every	 different	

sample	shape.	
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Table	5.1.	Shows	the	measurements	for	different	pore	typologies	

Sample	

Pore	

Widening	

Time	

(minutes)	

Top	

pore	

diameter	

(nm)	

Middle	

pore	

diameter	

(nm)	

Bottom	

pore	

diameter	

(nm)	

Top	

height	

(µm)	

Middle	

height	

(µm)	

Bottom	

height	

(µm)	

P1	 0	 102	 -	 -	 30	 -	 -	

P2	 45	 201	 -	 -	 30	 -	 -	

P3	 90	 324	 -	 -	 30	 -	 -	

P4	 120	 387	 -	 -	 30	 -	 -	

NF2	 90	 308	 -	 137	 15	 -	 15	

NF3	 45+45	 304	 198	 105	 11	 12	 12	

IF2	 120	 211	 -	 358	 15	 -	 16	

IF3	 120	 200	 260	 317	 9	 9	 9	

	

Table	 5.2.	 Show	calculations	 for	 sample	 surface	 and	 total	 pore	 volume	

for	every	pore	structure	typology.	

Sample	 Effective	surface	(nm2)	 Total	volume	(nm3)	

P1	 1,914E+15	 4,9071E+16	

P2	 3,766E+15	 1,8991E+17	

P3	 6,063E+15	 4,9184E+17	

P4	 7,247E+15	 7,0229E+17	

NF2	 4,163E+15	 2,6614E+17	

NF3	 4,4859E+15	 2,6025E+17	

IF2	 5,769E+15	 4,4012E+17	

IF3	 4,7296E+15	 3,1742E+17	
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Table	 5.1	 shows	 the	 average	 measurements	 of	 top	 pore	

diameters,	middle	pore	diameters,	bottom	pore	diameters,	 layer	 length,	

the	 effective	 surface	 and	 the	 total	 volume,	 for	 every	 type	 of	 sample.	

Notice	 that	 the	 top	 pore	 diameter	 is	 directly	 related	 to	 pore	 widening	

time.	This	way,	as	samples	SP1,	SP2,	SP3	and	SP4	were	exposed	to	pore	

widening	 treatment	 in	 increasing	 intervals	 of	 time,	 the	 pore	 diameters	

(directly	related	to	the	etching	time)	are	also	showing	growing	lengths	as	

it	can	be	clearly	observed	in	Figure	5.8A.		

	

It	can	be	also	observed	that	Normal	Funnels	structures	(NF2	and	

NF3)	show	similar	top	pore	diameter	than	P3	samples	(around	300	nm),	

and	 the	 same	 occurs	 between	 Inverted	 Funnels	 (IF2	 and	 IF3)	 and	 P2	

(their	top	pore	diameter	measures	around	200	nm).		

	

The	 total	 layer	 length	of	 the	 samples	 (in	 sum	 in	 the	 case	of	 the	

layered	 samples)	 is	 30	 µm	 to	 be	 able	 to	 compare	 the	 results	 between	

them.	The	effective	surface	area	is	clearly	related	with	the	pore	diameter	

(Dp)	 in	 the	 case	 of	 straight	 pores,	 but	 is	 not	 so	 in	 the	 case	 of	 layered	

samples	(Figure	5.8B	and	5.9A).	

	

The	total	volumes	for	every	sample	type	are	presented	in	Table	

5.2	and	also	represented	in	Figure	5.8C	and	5.9B.	When	those	samples	

are	presented	in	terms	of	total	amout	of	drug	versus	the	surface	area	or	

volume,	samples	are	ordered	in	a	linear	way	as	it	can	be	seen	in	Figure	

5.9.	
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Figure	 5.9.	 A)	 Graph	 relating	 the	 total	 amount	 of	 drug	 and	 the	 total	

sample	 area.	 B)	 Graph	 relating	 the	 total	 amount	 of	 drug	 and	 the	 total	

volume	calculated	for	every	sample	shape.	

	

	

	
Figure	 5.10.	 Graphs	 showing	 the	 cumulative	 drug	 release	 of	 different	

sample	 shapes	 in	 minutes.	 A)	 Release	 from	 regular	 pores.	 B)	 Release	

from	 Normal	 Funnels	 (NF2,	 NF3)	 in	 pink	 and	 release	 from	 Inverted	

Funnels	(IF2,	IF3)	in	orange.	
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In	 figure	 5.10	 a	 general	 release	 profile	 is	 shown	 for	 straight	

pores	 (Figure	 5.10A)	 and	 for	 the	 funnels	 (Figure	 5.10B).	 We	 can	

observe	a	burst	release	within	the	first	minutes,	and	then	the	release	rate	

is	 decreasing	 slowly.	 Figure	 5.10A	 shows	 the	 complete	 release	 for	

straight	 pore	 samples,	where	 it	 can	be	 clearly	 observe	 a	direct	 relation	

between	 the	pore	diameter	 (Dp),	 the	DOX	 total	amount	and	 the	 release	

tax.	 In	 figure	5.10B	we	can	observe	Normal	Funnels	(NF)	and	Inverted	

Funnels	 (IF)	 complete	 release.	On	 this	 case	 it	 can	 be	 clearly	 appreciate	

that	the	release	rate	of	the	Inverted	Funnels	is	maintained	for	longer	time	

than	Normal	Funnels	samples.	

In	order	to	identify	the	release	constant	we	used	Origin	software	

to	find	the	equation	witch	best	describes	the	drug	liberation.	A	variation	

of	the	Higuchi	equation	follows:	

	

𝑀! = 𝑀! + 𝐾√𝑡																																									(5.1)	

	

Were	 Mt	 is	 the	 cumulative	 release	 at	 time	 t,	 M0	 is	 the	 intercept	 value	

when	time	is	zero	and	k	is	the	release	constant	[20,	13,	15,	21–23].		

	

To	 identify	 the	 release	 rate	 mechanism	 and	 model	 the	 drug	

transport	 in	 the	 NAA	 nanotube	 systems	 for	 the	 first	 480	 minutes	 (8	

hours),	we	made	the	hypothesis	that	the	release	data	obtained	could	be	

fitted	using	equation	5.1	and	the	results	are	given	in	Figure	5.11	where	

the	 cumulative	DOX	 release	was	plotted	 versus	 the	 square	 root	 of	 time	

during	 the	burst	 release	 [24-26].	A	near	perfect	 linear	 fit	was	observed	

for	 every	 different	 pore	 shape,	 demonstrating	 that	 the	 drug	 kinetics	

approximately	follow	the	square	root	of	time	relationship.		
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Figure	 5.11.	 Fitting	 of	 the	 release	 data	within	 the	 first	minutes	 (Burst	

release)	using	Higuchi	equation	(equation	5.1).	

	

Table	 5.3	 shows	 the	 different	 fitting	 parameters	 for	 every	

different	pore	shape.	It	can	be	also	observed	that	the	release	rate	or	slope	

in	 the	 linear	 fittings	 (K)	 is	 directly	 correlated	 with	 the	 pore	 diameter	

Figure	5.12.	This	way	a	linear	relation	has	been	found	to	relate	the	pore	

diameter	 and	 the	 release	 rate	 for	 the	 first	 minutes	 (burst	 release)	

following	the	next	equation:	

	

𝐾 = 0,168 + 6,46 ∗ 10!! ∗ 𝐷!																						(5.2)	

	

Were	 K	 is	 the	 release	 constant	 in	 (µg/ml)/minute	 and	 Dp	 is	 the	 pore	

diameter	in	nanometers.	
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Table	5.3.	Data	from	the	Higuchi	equation	fitting	within	the	first	minutes	

Sample	name	 Intercept	(M0)	 Slope	(k)	

P1	 2,34	±	0,26	 0,24	±	0,02	

P2	 2,75	±	0,29	 0,30	±	0,02	

P3	 3,38	±	0,29	 0,35	±	0,02	

P4	 2,01	±	0,43	 0,44	±	0,02	

NF2	 2,45	±	0,21	 0,28	±	0,01	

NF3	 2,31	±	0,25	 0,31	±	0,01	

IF2	 2,28	±	0,25	 0,32	±	0,01	

IF3	 1,89	±	0,20	 0,27	±	0,01	

	

	
Figure	 5.12.	 Fitting	 graph	 showing	 the	 relation	 between	 the	 slope	 or	

release	constant	and	the	top	pore	diameter,	also	expressed	in	equation	

5.2.	
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To	 continue	 with	 the	 identification	 of	 the	 release	 mechanism	

model	we	used	the	Korsmeyer-Peppas	(equation	5.3)	 for	the	 long	time	

release	 (from	 day	 2	 to	 day	 63).	 Figure	 5.13	 shows	 the	 data	 from	 the	

complete	release	fitted	from	24	hours	

	

𝑀! =  𝑀!!
!
!!

!
																																													(5.3)	

	

Where	Mt	 is	 the	 proportion	 of	 drug	 released	 at	 given	 time	 t,	Mt0	 is	 the	

amount	of	drug	released	at	the	reference	time	t0	(1day),	t	is	time	in	days	

and	n	is	the	release	parameter	related	to	the	release	rate.	

	

Data	in	Table	5.4	 is	showing	Mt0,	n	and	the	release	rate	that	has	

been	 obtained	 as	 the	 first	 derivative	 of	 the	 equation	 (equation	 5.3)	 at	

time	t0	(1day).		

	

It	 can	 also	 be	 observed	 a	 relation	 of	 the	 release	 rates	 and	 the	

pore	 diameter	 on	 the	 regular	 pores	 (Figure	 5.14).	 The	 release	 rate	

values	 from	the	 Inverted	Funnels	 (IF)	 is	over	 the	 linear	 fitting	 from	the	

Regular	 Funnels	 meanwhile	 the	 Normal	 Funnels	 values	 are	 under	 the	

linear	fittings.	
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Figure	 5.13.	 Graph	 showing	 the	 fitting	 using	 the	 Korsmeyer-Peppas	

equation	5.3	and	the	data	from	the	late	release.		

	

Table	 5.4.	 Data	 extracted	 from	 the	 Korsmeyer-Peppas	 fitting	

(Mt=Mto*(t/to)n)	

Sample	

name	
Mto	 n	

Release	

Rate	

Adj.	

R-Square	

P1	 8,43	±	0,14	 0,27	±	0,01	 2,31	 0,99	

P2	 9,93	±	0,21	 0,30	±	0,001	 2,94	 0,99	

P3	 12,49	±	0,17	 0,26	±	0,00	 3,27	 0,99	

P4	 12,55	±	0,22	 0,28	±	0,01	 3,60	 0,99	

NF2	 9,70	±	0,16	 0,29	±	0,00	 2,78	 0,99	

NF3	 10,14	±	0,15	 0,27	±	0,00	 2,69	 0,99	

IF2	 9,00	±	0,33	 0,35	±	0,01	 3,16	 0,98	

IF3	 8,91	±	0,18	 0,35	±	0,01	 3,13	 0,99	
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Figure	 5.14.	 Graph	 showing	 the	 relation	 between	 the	 Release	 rate	

obtained	 in	 the	 late	 release	 using	 the	 Korsmeyer-Peppas	equation	 5.3	

and	the	top	pore	diameter.	

	

We	 also	 calculated	 the	 release	 rate	 of	 this	 samples	 through	 the	

first	derivative	of	the	equation	5.3,	they	are	shown	in	Table	5.4.	Those	

release	rates	were	also	related	with	the	top	pore	diameter	for	the	regular	

pore	 shape	 (Figure	 5.14)	 but	 in	 this	 case	 Inverted	 Funnels	 samples	

release	rates	are	above	the	linear	fitting	meanwhile	the	Normal	Funnels	

values	are	under	the	Regular	 tendency.	We	also	calculated	the	equation	

for	 the	 regular	 pore	 shape	 tendencies	 relating	 the	 release	 rate	 and	 the	

top	pore	diameter	for	long	release	data	(Equation	5.4)	

	

𝑅𝑒𝑙𝑒𝑎𝑠𝑒 𝑟𝑎𝑡𝑒 = 1,95 + 0,004𝐷!																								(5.4)	

	

Were	Dp	is	the	top	pore	diameter.	
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5.4.	Summary	and	Conclusions	
The	effect	of	the	alumina	solubility	due	to	different	temperature	

crystallization	was	 investigated	 using	 ESEM.	NAA	 samples	 treated	with	

temperature	presented	lower	solubility	rate.	On	the	basis	of	this	referred	

difference	 of	 the	 pore	 opening	 rate	 due	 to	 different	 crystallization,	

different	 porous	 shapes	 were	 performed	 in	 order	 to	 study	 the	 best	

structure	for	drug	release.		

	

The	quantitative	dynamics	of	the	release	has	been	studied	in	two	

different	regimes:	A	short-term	release	and	a	long-term	release.	 	During	

the	 short-term	 release	 (8	 hours)	 regular	 pores	 samples	 keep	 a	 direct	

linear	relation	between	the	pore	diameter	and	the	release	constant	(K).	

This	relation	has	been	described	by	the	Higuchi	model	(equation	5.1).	At	

the	same	time	both	Normal	and	Inverted	Funnels	samples	show	a	lower	

release	 constant	 (K)	 during	 the	 bust	 release	 than	 the	 regular	 pores	

(Figure	5.12).			

	

For	 the	 long-term	 release,	 the	 data	 has	 been	 fitted	 by	 the	

Korsmeyer-Peppas	 model	 (equation	 5.3).	 In	 this	 case	 we	 used	 the	

release	rate	in	order	to	compare	the	different	behaviours.	We	also	found	

a	linear	relation	with	the	top	pore	diameter	in	the	case	of	regular	pores,	

but	release	rates	in	Inverted	funnels	where	higher	than	the	tendency,	and	

the	Normal	Funnels	values	were	lower	than	the	tendency.	Those	results	

reveal	 that	 the	 Inverted	 Funnels	 structures	 retain	 inside	 the	 pores	 a	

higher	 quantity	 of	 drug	 than	 the	 Normal	 Funnels	 or	 the	 regular	 pores	

with	the	same	volume,	area	or	top	pore	diameter.	This	retention	allows	

this	pore	structure	to	release	the	active	molecule	in	a	sustained	way.	
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The	 results	 obtained	 demonstrate	 that	 this	 3D	 pore	 structures	

satisfy	all	the	requirements	that	ensures	an	efficient	drug	therapy.	
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Porous	 silicon	 is	 an	 strong	 competitor	 for	 Nanoporous	 anodic	

alumina	and	a	good	alternative	for	aplications	 in	which	the	degradation	

of	the	biomaterial	presents	an	advantage.	Porous	silicon	has	emerged	as	

a	 very	 powerful	 material	 in	 terms	 of	 medical	 applications	 due	 to	 its	

demonstrated	biocompatibility.	Its	unique	features	like	controllable	pore	

size	 and	 malleable	 surface	 chemistry	 make	 porous	 silicon	 a	 really	

promising	material.	

This	chapter	presents	a	 fundamental	overview	of	porous	silicon	

focusing	to	mesoporous	silicon	for	drug	delivery	applications	and	also	a	

sol-gel	mesoporous	nanoparticles	achievement.	
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6.1.	Fundamentals	for	Silicon	Nanotechnology	
The	 marriage	 between	 Uhlir	 and	 Turner	 were	 working	 in	 Bell	

laboratories	when	they	accidentally	discovered	porous	Silicon	in	the	mid	

1950s	[1].	They	found	out	that	the	silicon	wafer	didn’t	dissolve	uniformly	

under	certain	conditions,	but	 it	presented	really	 small	holes	 instead.	As	

this	was	not	a	desired	result	they	report	the	result	and	forgot	about	it.		

	

Twenty	 years	 later	 the	 discovery	 took	 importance	 due	 to	 it’s	

applicability	 to	 spectroscopic	 studies.	 The	 surface	 area	 is	 increased	

which	was	thought	to	be	useful	as	a	model	of	the	crystalline	silicon	used	

for	 infrared	spectroscopy,	as	a	precursor	to	produce	thick	silicon	 layers	

and	as	an	electrical	 insulator	 in	capacitance-based	chemical	sensors	[2–

5].		

	

In	 1990s	 Ulrich	 Goesele	 at	 Duke	 University	 found	 quantum	

confinement	 effects	 in	 the	 absorption	 spectrum	 of	 porous	 silicon,	 and	

Leigh	 Canham	 at	 the	 Defense	 Research	 Agency	 in	 England	 reported	

efficient	 bright	 red-orange	 photoluminescence	 from	 the	material	 [6,	 7].	

At	 the	 same	 time	 phase,	 the	 singularity	 of	 the	 features	 of	 the	material:	

large	 surface	 area,	 controllable	 pore	 size	 and	 compatibility	 with	

conventional	silicon	microfabrication	technologies	inspired	research	into	

applications	far	outside	optoelectronics	such	as:	sensing	or	biomedicine	

[8–11].	

	

Overwhelming	 majority	 of	 published	 research	 articles	 about	

porous	silicon	is	based	on	the	porosification	of	silicon	by	electrochemical	

etching.	This	porous	silicon	is	generated	by	etching	crystalline	silicon	in	
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aqueous	 or	 non-aqueous	 electrolytes	 containing	 hydrofluoric	 acid.	 The	

final	pore	morphology,	thickness,	density	and	specific	area	vary	in	a	wide	

range	depending	on	the	anodization	conditions	(electrolyte	composition,	

current	 density	 and	 time	 of	 current	 applied)	 and	 the	 properties	 of	 the	

silicon	 (doping,	 resistivity	 and	 orientation).	 Hence,	 varying	 these	

parameters	the	structural	features	can	be	modified	[12].	But	porous	sol-

gel	silicon	can	be	also	achieved	using	chemical	precursors.	

	

6.2.	Electrochemical	Etching	
In	 the	 electrochemical	 reaction	 of	 silicon,	 two	 electrodes	 are	

needed	 like	 in	 the	 aluminium	 one.	 The	 first	 supplies	 electrons	 to	 the	

silicon	(the	cathode)	and	the	other	removes	electrons	from	the	solution	

(the	anode).	In	the	case	of	porous	silicon	formation,	the	silicon	wafer	acts	

as	the	anode,	and	the	chemical	being	oxidized	is	the	silicon	itself.	This	is	

the	 reaction	 we	 are	 interested	 on,	 electrochemists	 refer	 to	 the	 silicon	

electrode	 as	 the	 “working	 electrode”.	 The	 cathode	 is	 constructed	 by	 a	

hydrofluoric	 acid	 resistant	 platinum	wire,	 and	 it	 is	 called	 the	 “counter-

electrode”.	 The	 reaction	 that	 is	 happening	 in	 the	 cathode	 is	 essentially	

the	 reduction	 of	 photons	 to	 hydrogen	 gas.	 Once	 the	 current	 is	 flowing	

between	the	cathode	and	the	anode	the	pores	are	growing	in	the	top	part	

of	the	wafer.	See	Figure	6.1.	The	cathode	and	the	anode	are	separated	by	

few	millimetres	to	several	centimetres	inside	the	electrolyte	solution.	
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Figure	6.1.	Schemeatics	of	the	cell	anodization	used	for	the	fabrication	of	

porous	silicon	layers.	

	

Silicon	is	thermodynamically	unstable	in	air	or	water,	therefore	it	

reacts	 spontaneously	 to	 form	 an	 oxide	 layer.	 The	 oxide	 can	 be	

nonstoichiometric	 and	 hydrated	 to	 various	 degrees,	 though	 the	 simple	

empirical	 formula	 is	 silicon	dioxide	 (SiO2).	 Thus,	 preparation	 of	 porous	

silicon	require	an	additive	in	the	solution	to	dissolve	the	oxide	and	allow	

electrochemical	 oxidation	 to	 continue.	 The	 Si-F	 bond	 is	 the	 only	 bond	

stronger	 than	 Si-O,	 so	 in	 presence	 of	 aqueous	 HF,	 SiO2	 spontaneously	

dissolves	(equation	6.1).	

	

𝑆𝑖𝑂! + 6𝐻𝐹 → 𝑆𝑖𝐹!!! + 2𝐻! + 2𝐻!𝑂																									(6.1)	
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6.2.1.	Electrochemical	Reactions	 in	the	Silicon	

Etching	System	
	

Figure	6.2	is	showing	the	current-potential	curve	for	silicon	in	HF	

electrolyte.	There	 is	an	 initial	 increase	 in	 the	 current	where	 the	porous	

silicon	 formation	 is	 performed,	 a	 transition	 region	 and	 finally	 the	

electropolishing	regime.	

	

	
Figure	6.2.	Graph	showing	current	density	versus	potential	generalities	

for	 electrochemical	 etching	 of	 silicon.	 Different	 regimes	 can	 be	

differentiated	 for	 porous	 silicon	 formation	 and	 electropolishing	

procedure.	This	figure	have	been	adapted	from	reference	[12].	
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To	 bring	 the	 corrosion	 to	 the	 silicon,	 positive	 current	 have	 to	 go	

through	 the	 silicon	 electrode.	 The	 simplest	 reaction	 happening	 in	 the	

anodic	 dissolution	 of	 silicon	 in	 fluoridic	 solutions	 is	 the	 4-electron	

oxidation,	 presented	 in	equation	 6.2.	 Here	we	 use	 holes	 in	 the	 silicon	

valence	band	as	 the	oxidizing	equivalents.	This	equation	 is	written	as	a	

half-reaction.	The	electrons	given	by	the	Si	at	the	anode	must	be	balanced	

by	 a	 reduction	 (half-reaction)	 that	 consumes	 electrons	 at	 the	 cathode,	

usually	water	to	hydrogen	gas.	This	reaction	produce	silicon	hexafluoride	

ions	that	are	really	stable	dianions	and	are	highly	soluble	in	water.	

	

Anode	(working	electrode)	

	𝑆𝑖 + 6𝐹! + 4ℎ! → 𝑆𝑖𝐹!!!																																	(6.2)	

	

This	 reaction	 is	 predominant	 when	 the	 dissolution	 of	 silicon	 is	

occurring	 under	 electropolishing	 conditions	 and	 no	 porous	 silicon	 is	

being	 formed.	 It	 takes	place	 at	more	positive	 electron	potentials,	 in	 the	

right	part	in	figure	6.2.	

	

First	 time	 Uhlirs	 prepared	 porous	 silicon	 [1],	 they	 saw	 bubbles	

rising	from	the	silicon	wafer	(Figure	6.3).	The	bubbles	coming	from	the	

platinum	 wire	 (cathode)	 are	 hydrogen	 coming	 from	 the	 water	

electrolysis	reaction.		
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Figure	6.3.	Image	of	an	electrochemical	etching	of	silicon	in	the	current	

regime	 where	 porous	 silicon	 is	 formed.	 Hidrogen	 gas	 bubbles	 can	 be	

observed	 in	 the	 solution.	 This	 image	 was	 taken	 in	 Sailor’s	 lab	 in	

University	of	California	San	Diego.	

	

The	reaction	occurring	at	 low	applied	potentials	 is	 the	2-electron	

process.	The	2-electron	oxidation	equations	are	presented	 in	 two	steps:	

equation	 6.3	 and	equation	 6.4.	 The	pore	 formation	 is	 directed	by	 the	

half-reaction	 presented	 in	 equation	 6.5.	 Holes	 in	 the	 silicon	 valence	

band	are	used	as	the	oxidizing	equivalents.	

	

Electrochemical	step:	𝑆𝑖 + 2𝐹! + 2ℎ! → 𝑆𝑖𝐹! 																(6.3)	

Chemical	step:	 𝑆𝑖𝐹! + 4𝐹! + 2𝐻! → 𝑆𝑖𝐹!!! + 𝐻!														(6.4)	

Net:	𝑆𝑖 + 6𝐹! + 2𝐻! + 2ℎ! → 𝑆𝑖𝐹!!! + 𝐻!																			(6.5)	

		

Actually,	 the	 resulting	pore	morphology	does	depend	on	 the	 type	

of	silicon	electrode,	its	doping	level,	and	process	conditions.		
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6.2.2	Mechanisms	of	Pore	Formation	
Although	many	details	of	the	porous	silicon	construction	still	stay	

unclear,	 some	 statements	 can	 be	 made.	 In	 the	 pore	 formation,	 Si	

dissolution	 competes	with	 oxidation	 and	 subsequent	 dissolution	 of	 the	

oxide.	That	means	 that	 the	electrolyte	has	 to	be	able	 to	dissolve	 silicon	

dioxide	 (SiO2).	 Another	 requirement	 for	 the	 pore	 formation	 are	 the	

electric	 holes	 since	 the	 reaction	 is	 started	 by	 hole	 capture	 at	 the	

surface[13].	 In	addition	the	current	must	be	kept	between	zero	and	the	

electropolishing	current.	

	

As	 well	 as	 the	 alumina	 porosification,	 the	 initiation	 of	 the	 pore	

grow	 in	 silicon	dioxide	 could	begin	at	micro-cavities,	 structural	defects,	

mechanically	 strained	 areas,	 or	 local	 perturbations	 [14,	 15].	 Then	 the	

dissolution	 is	 happening	 preferentially	 at	 the	 pore	 bottoms,	 where	 the	

curvature	 of	 the	 surface	 is	 largest,	 the	 intensity	 of	 the	 electric	 field	 is	

higher	and	enough	holes	are	available.	Therefore,	 the	etching	of	porous	

silicon	proceeds	in	depth	to	all	directions	that	follow	the	anodic	current	

paths	inside	silicon.	The	pore	walls	become	passivated,	so	the	dissolution	

only	occurs	at	the	porous	silicon/crystalline	silicon	interface.	

	

In	addition,	when	pores	encounter	each	other	 the	 current	 flow	 is	

redirected,	 this	 way	 further	 etching	 is	 obstructed.	 So,	 the	 porosity	

remains	 constant	 and	 what	 that	 is	 constantly	 growing	 is	 the	 layer	

thickness	 of	 the	 porous	 silicon.	 A	 wide	 range	 of	 pore	 geometries	 and	

morphologies	are	available	by	modifying	the	electrochemical	parameters	

and	 the	 characteristics	 of	 the	 silicon	 wafers.	 Like	 in	 the	 alumina,	

according	to	IUPAC	nomenclature	for	porous	materials,	pores	under	2		

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF NANOPOROUS ANODIC ALUMINA TECHNOLOGIES FOR DRUG DELIVERY 
Maria Porta Batalla 
 



Silicon	particles	for	drug	delivery	
________________________________________________________________________________________	

________________________________________________________________________________________	
157	

nanometers	 are	 called	 microporous.	 The	 pores	 between	 2	 and	 50	

nanometers	are	called	mesoporous.	And	we	use	macroporous	 for	pores	

larger	than	50	nanometers	[16].	

	

In	 table	 6.1	 different	 pore	 category,	 type	 of	 silicon,	 size	 of	 the	

pores,	morphology	of	the	pores	and	the	pore	formation	mechanisms	are	

shown.	

	

Table	 6.1.	 Relation	 between	 pore	 category,	 silicon	 type,	 size	 of	 pores	

range,	morphology	and	the	pore	formation	mechanism.	

	

When	 a	 silicon	 wafer	 is	 immersed	 in	 a	 HF	 solution,	 the	 oxide	

dissolves	and	the	surface	becomes	terminated	with	hydrogen	[17].	

	

Pore	

category	

Silicon		

type	

Pore	

Size	range	
Morphology	 Mechanism	

Microporous	 p	 2	nm	 Sponge	

Crystallographic	

face	selectivity/	

Enhanced	

electric	field/	

quantum	

confinement	

Mesoporous	 p+,	p++,	n+	 2-50nm	 Branchy	
Enhanced	

electric	field	

Macroporous	 n+,	p+,	n,	p	 50nm-100μm	 Tubular	

Space-charge	

limited/	

Minority	 carrier	

collection/	

Thermionic	

effect	
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Figure	 6.4.	 Two	 different	 reaction	 pathways	 for	 the	 dissolution	

mechanism	 of	 crystalline	 silicon	 in	 hydrofluoric	 acid	 solutions.	 Scheme	

adapted	from	reference	[18].	

	

The	dissolution	of	the	Si	atoms	involves	first	the	replacement	of	a	

surface	 hydrogen	 atom	 with	 a	 fluoride	 ion	 F-	 with	 a	 result	 of	 a	

neutralized	Si-F	bonding.	Once	the	Si-F	bond	is	established	another	F-	ion	

can	 attack	 and	 bond	 generating	 H2	 and	 injecting	 1	 electron	 into	 the	

electrode.	 Then	 the	 silicon	 bonds	 between	 the	 silicon	 atoms	 are	 weak	

due	 to	 the	 high	 electronegativity	 of	 fluorine,	 so	 those	 bones	 can	 be	

broken	 by	 reacting	 with	 HF	 in	 a	 2-electron	 oxidation	 process	 (Figure	

6.4).	 The	 reaction	 product	 is	 SiF4.	 The	 remaining	 surface	 silicon	 atoms	

are	again	hydrogenated	[18].	

	

Weak	 bonds	 between	 silicon	 atoms,	 once	 the	 F-	 ions	 have	 been	

incorporated,	can	also	be	broken	by	H2O.	The	resulting	Si-O-Si	bonds	are	

not	stable	in	HF.	Si-O	bonds	are	dissolved	by	F-	and	Si-O	are	only	formed	

when	the	diffusion	of	F-	to	the	silicon	surface	is	slower	than	the	delivery	
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rate	 of	 valence	 band	 holes.	 This	 is	 the	 case	 of	 the	 electropolishing	

conditions,	which	occurs	when	large	current	density	 is	applied	or	when	

the	concentration	of	HF	is	low.	

	

6.3.	Biocompatibility	of	SiO2	
Biomaterials	 have	 been	 a	 research	 topic	 in	 expansion	 for	 several	

decades.	For	this	reason	the	term	biocompatibility	has	evolved	with	this	

research.	 By	 1970s	 the	 idea	 of	 biocompatibility	 was	 that	 nothing	 toxic	

could	 leach	 out	 of	 these	 materials.	 By	 1980s	 this	 definition	 started	 to	

shift	and	in	1986	in	a	U.K	conference	the	term	biocompatibility	was	given	

a	definition:	“the	ability	of	a	material	to	perform	with	an	appropriate	host	

response	in	a	specific	situation”	[19,	20].		

	

Silicon	 dioxide	 have	 been	 accepted	 as	 “Generally	 Recognized	 as	

safe”	 (GRAS)	by	 the	Food	and	Drug	Administration	(FDA)	 [21].	Actually	

Silicates	 have	 been	 employed	 as	 dietary	 supplements,	 dental	 fillers,	

implants	 and	 contact	 lenses	 [22,	 23].	 The	 biocompatibility	 of	 SiO2	 for	

biomedical	 applications	 is	 definitely	 a	 consequence	 of	 the	 ability	 to	

eliminate	 the	 products	 of	 the	 material	 dissolution.	 Orthosilicic	 acid	

Si(OH)4	is	the	most	common	soluble	form	of	silicon	acid	compounds	[24,	

25].	 Orthosilicic	 acid	 is	 a	 small	 molecule	 that	 is	 not	 presenting	 any	

toxicity,	 and	 this	 is	 also	 the	 usual	 form	 of	 silicon	 in	 the	 body.	 Some	

studies	have	demonstrated	that	silicon	acids	does	not	accumulate	in	the	

human	body,	but	it	is	a	nutrient	for	optimum	bone	health	[26].	However	

these	silicon	oxides	can	be	toxic	 in	high	doses	because	the	precipitation	

of	the	silicate	ion	in	the	kidneys	that	lead	to	renal	failure.	
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6.4.	 Optimization	 of	 Protein	 Loading	 and	 Release	

Based	on	Porous	Silicon	Particle	Size	and	Porosity	for	Oral	

Administration.	

6.4.1.	Introduction	
Oral	 administration	 is	 considered	 to	 be	 the	 most	 suitable	 and	

comfortable	 method	 of	 delivering	 drugs	 because	 it	 removes	 the	

drawbacks	 of	 frequent	 injections,	 physical	 stress,	 and	 troubles	 in	

handling	proteins.	Oral	administration	of	proteins	and	peptides	is	limited	

due	to	their	propensity	to	degrade	in	the	harsh	conditions	present	in	the	

stomach	(low	pH,	presence	of	photolytic	enzymes).		

	

Proteins	 and	peptides	have	been	employed	as	 therapeutic	 agents	

for	 a	 long	 time.	 In	 recent	 times,	 the	 popularity	 of	 protein	 and	 peptide	

based	 therapeutic	 agents	 has	 increased	 due	 to	 recent	 advances	 in	

genomics	 and	 proteomics	 technology	 [27,	 28].	 However,	 efficient	 and	

site-specific	delivery	of	these	biological	payloads	is	still	a	major	challenge	

due	 to	 short	 half-lives,	 poor	 stability	 and	 immunogenicity.	 One	 of	 the	

main	strategies	to	overcome	it	is	loading	the	protein	in	a	protective	drug	

carrier.	

	

	Porous	silicon	is	relevant	as	a	drug	delivery	material	because	of	its	

biocompatibility,	 biodegradability,	 high	 loading	 efficiency,	 and	

controllable	 drug	 release	 characteristic	 (hours	 to	 months)	 [29–31].	

Porous	 silicon	 particles	 are	 proven	 to	 protect	 the	 sensitive	 cargo	 from	

degrading	 under	 areas	 with	 hostile	 conditions	 such	 as	 the	 stomach.	

Porous	silicon	particles	are	prepared	by	electrochemical	etching	of	single	

crystal	 silicon	 wafer	 in	 hydrofluoric	 acid	 based	 electrolyte.	 This	
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preparation	 process	 allows	 precise	 control	 over	 the	 pore	 morphology,	

porosity	and	size	of	particles	[12].	

	
Figure	 6.5.	 Schematics	showing	 the	pH	changes	 that	 the	drug	will	pass	

trough	in	the	oral	uptake.	

	

6.4.2.	Materials	and	Methods	
The	 Porous	 Silicon	 (pSi)	 used	 in	 this	 study	 were	 prepared	 by	

electrochemical	etch	of	single-crystal	silicon	wafers.	The	electrochemical	

method	used	to	prepare	pSi	provides	good	control	over	particle	size	and	

pore	 size.	 Porous	 silicon	 particles	 with	 three	 different	 porosities	 and	

particles	sizes	have	been	prepared	by	changing	the	Hydrofluoric	content	

of	 the	 electrolyte	 and	 the	 etching	 time	 detailed	 in	 Table	 6.2	 in	 a	

perforation	etch.	A	perforation	etch	consists	of	a	low	current	etching	with	

a	 periodic	 high	 current	 pulse	 resulting	 on	 porous	 film	 spaced	 by	 high	

porosity	 layers	 corresponding	 to	 the	 high	 current	 pulse	 [32].	 This	

perforated	layers	lead	to	particles	of	controlled	size	due	to	the	ultrasonic	

fracture	 of	 the	 porous	 silicon	 film	 by	 the	 high	 porosity	 area.	 Then,	 the	

duration	of	the	normal	etch	will	control	the	particle	size.	
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Table	 6.2.	 Summary	 of	 the	 electrolyte	 and	 etch	 conditions	 to	 obtain	

particles	with	desired	pore	diameter	and	particle	size.	

	

	

Once	the	etching	of	the	silicon	porous	layers	have	been	performed	

different	sonication	times	have	been	used	for	every	particle	size	in	order	

to	break	the	films	by	the	high	porosity	areas.	Then	the	physical	size	and	

the	 distribution	 of	 sizes	 of	 the	 particles	 were	 determined	 by	 dynamic	

light	 scattering	 (DLS)	 for	 the	 small	 particles	 (500nm)	 and	microscopic	

images	for	particles	between	2-10µm.	

Sample	

name	

Electrolyte	

(HF:EtOH,	

(v:v)	

Current	

density	for	

etching	

(mA/cm2)	

Current	

density	for	

perforation	

(mA/cm2)	

Duration	

of	etch	

(seconds)	

Duration	of	

perforation	

(seconds)	

Repeats	

A	

3:1	 50	 200	

1,85	

0,315	

500	

B	 20	 50	

C	 50	 10	

D	

3:2	 80	 300	

7,2	

0,5	

50	

E	 72	 10	

F	 180	 5	

G	

1:1	 50	 200	

10	

0,5	

50	

H	 100	 10	

I	 240	 5	
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Figure	 6.6.	 Scheme	 showing	 the	 steps	 for	 the	 experimental	 procedure	

followed.	

	

To	 improve	 biocompatibility	 and	 protein	 loading	 the	 particles	

were	oxidized	by	immersion	in	Tris	Buffer	Solution	(TBS)	for	30	minutes.	

Lysozyme	 (14KDa,	 isoelectric	 point	 =	 pH11)	 was	 selected	 as	 a	 test	

protein	 for	 this	 study.	 Lysozyme	 loading	 was	 performed	 onto	 pSi	

particles	already	sized	by	overnight	incubation	using	TBS	as	the	loading	

medium	and	setting	them	in	a	tube	rotator	(Figure	6.6).		

	

The	 Lysozyme	 release	 was	 performed	 by	 exposing	 the	 loaded	

particles	to	harsh	conditions	such	as	Gastric	fluid	for	the	first	2	hours	and	

PBS	 from	 the	 third	 hour	 up	 to	 24	 hours.	 All	 the	 experiments	 were	

performed	by	triplicate.	

	

6.4.3.	Results	and	Conclusions	
Particle	sizes	and	porosities	desired	(table	6.3)	were	successfully	

achieved	using	parameters	in	table	6.2.	
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Table	 6.3.	 Summary	 of	 porosities	 and	 particles	 sizes	 values	

corresponding	to	every	particle	type.	

Sample	Name	 Porosity	 Particle	Size	

A	

35%	

500	nm	

B	 2	µm	

C	 10	µm	

D	

40%	

500	nm	

E	 2	µm	

F	 10	µm	

G	

45%	

500	nm	

H	 2	µm	

I	 10	µm	

	

	

Release	solutions	were	processed	using	a	Micro	BCA	protein	Assay	

Kit	for	the	colorimetric	detection	and	quantification	of	total	protein.	The	

resulting	 colourful	 solutions	 were	 read	 by	 absorbance.	 A	 calibration	

curve	 was	 also	 performed	 in	 order	 to	 relate	 known	 concentrations	 of	

Lysozyme	protein	and	the	absorbance	value.	
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Figure	 6.7.	 Graphs	 showing	 the	 release	 profile	 for	 every	 particle	

typology.	A)	Graph	showing	the	lysozyme	release	for	samples	A,B	and	C.	

B)	 Graph	 showing	 release	 from	 samples	 D,E	 and	 F.	 C)	 Graph	 showing	

Lysozyme	release	from	G,H	and	I.	

	
Figure	6.8.	Graph	showing	the	final	release	value	for	every	particle	type.	

	

Particle	sizes	were	successfully	achieved	and	characterized	by	DLS	

and	SEM.	Results	show	differences	between	both	porosities	and	particle	

sizes.	 In	 all	 cases	 small	 particles	 are	 able	 to	 carry	 and	 release	 more	

protein	than	the	bigger	ones.	This	phenomenon	can	be	explained	because	
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the	 smaller	 particles	 present	 more	 surface	 to	 absorve-desorve	 the	

protein.	There	are	not	very	large	differences	regarding	the	porosity,	even	

though	 bigger	 differences	 between	 particle	 sizes	 can	 be	 observed	 at	

lower	porosities.	

	

6.5.	 Sol-gel	 Hollow	 Mesoporous	 Nanoparticles	 for	

Drug	Delivery	

6.5.1.	Introduction	
	In	the	past	decade,	mesoporous	silica	nanoparticles	(MSNs)	have	

attracted	a	lot	of	interest	due	to	their	excellent	properties	including	high	

surface	 areas,	 large	 pore	 volumes,	 tuneable	 pore	 sizes	 and	 good	

biocompatibility	[33–36].	

	

Nowadays	 MSN	 are	 considered	 ideal	 drug	 delivery	 candidates	

because	 they	 could	 effectively	 deliver	 drugs	 to	 targeted	 sites	 in	 a	

controlled	manner	[37].	Compared	with	conventional	MSN,	hollow	MSN	

(HMSN)	exhibit	unique	advantages	in	mass	diffusion	and	transportation	

thanks	 to	 their	 carrying	 capacity	 and	 mesoporous	 shell	 [38,	 39].	 In	

addition	 it	 has	 been	 reported	 that	 particles	 about	 300	nm	are	 retained	

inside	tumoral	tissue	due	to	enhanced	permeability	and	retention	(EPR)	

effect.	 The	 aim	 of	 this	 study	 is	 to	 create	 hollow	 mesoporous	 silica	

nanoparticles	(HMSNs)	about	300	nm	of	diameter.	

	

6.5.2.	Materials	and	Methods	
All	 the	 chemical	 reagents	used	 in	 the	experiments	were	obtained	

from	 commercial	 sources	 as	 guaranteed-grade	 reagents	 and	 used	

without	 further	 purification.	 Tetradecyltrimethyl-ammonium	 bromide	

(TTAB)	 (99%),	 triethanolamine	 (TEA)	 (99%)	 and	 tetraethoxysilane	
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(TEOS)	 (99%).	 TTAB	 was	 used	 as	 the	 structure-directing	 agent	 (SDA).	

Firstly	1.92g	of	TEOS	and	14.3g	of	TEA	were	firstly	mixed	and	heated	in	a	

sand	bath	at	90ºC	for	1h	under	stirring	conditions,	it	was	named	solution	

A.	At	the	same	time	0.7384g	of	TTAB	was	added	into	21.7mL	of	distilled	

water	by	ultrasonication	for	30	minutes	at	room	temperature	named	as	

solution	 B.	 Subsequently,	 the	 solution	 B	 was	 rapidly	 added	 into	 the	

solution	 A.	 Then	 the	 mixture	 was	 stirred	 for	 3h	 at	 room	 temperature.	

Afterwards,	 the	products	were	collected	by	centrifugation,	washed	with	

water	 and	 ethanol	 several	 times,	 and	 dried	 overnight	 at	 120ºC.	 Finally	

the	TTAB	and	other	organic	components	were	removed	by	calcination	in	

air	at	550ºC	for	5h	to	obtain	the	HMSNs.		

	

6.5.3.	Results	and	Conclusions	
Hollow	 mesoporous	 nanoparticles	 formation	 has	 been	 achieved.	

Due	 to	 nanoparticles	 measurements	 using	 Transmission	 Electron	

Microscopy	 (TEM)	 imaging	we	are	 able	 to	 confirm	 that	 the	diameter	of	

the	particles	is	about	300	nm.	

	
Figure	 6.9.	TEM	 images	 from	hollow	nanoparticles	obtained	by	 sol-

gel	procedure.	
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6.6.	Summary	
In	this	Chapter	the	history	of	nanoporous	anodic	alumina	has	been	

described.	 In	 addition	 an	 extensive	 silicon	 porous	 formation	 has	 been	

explained.	 	 Biocompatibility	 of	 Silicon	 dioxide	 has	 been	 treated.	

Optimization	of	protein	 loading	on	different	porosities	and	sizes	porous	

silicon	 particles	 has	 been	 	 also	 exposed	 with	 the	 conclusions	 already	

mentioned.	 Sol-gel	 hollow	mesoporous	 hollow	 particles	 have	 also	 been	

achieved	

	

6.7.	References	
	

1.		 Uhlir	A	(1956)	Electrolytic	Shaping	of	Germanium	and	Silicon.	Bell	

Syst	 Tech	 J	 35:333–347.	 doi:	 10.1002/j.1538-

7305.1956.tb02385.x	

2.		 Gupta	P,	Dillon	AC,	Bracker	AS,	George	SM	(1991)	FTIR	studies	of	

l-I	,	0	and	I	&	O	decomposition	silicon	surfaces.	Surf	Sci	245:360–

372.	

3.		 Dillon	AC,	Robinson	MB,	Han	MY,	George	SM	(1992)	Diethylsilane	

Decomposition	 on	 Silicon	 Surfaces	 Studied	 Using	 Transmission	

FTIR	Spectroscopy.	J	Electrochem	Soc	139:537–543.	

4.		 Imai	 K	 (1981)	 A	 NEW	DIELECTRIC	 ISOLATION	METHOD	USING	

POROUS	SILICON.	Solid	State	Electron	24:4–9.	

5.		 Anderson	 RC,	 Muller	 RS,	 Tobias	 CW	 (1990)	 Investigations	 of	

Porous	Silicon	for	Vapor	Sensing.	Sensors	and	Actuators	23:835–

839.	

	

	

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF NANOPOROUS ANODIC ALUMINA TECHNOLOGIES FOR DRUG DELIVERY 
Maria Porta Batalla 
 



Silicon	particles	for	drug	delivery	
________________________________________________________________________________________	

________________________________________________________________________________________	
169	

	

6.		 Lehmann	 V,	 Gösele	 U	 (2013)	 Porous	 silicon	 formation :	 A	

quantum	wire	 effect	 Porous	 silicon	 formation :	 A	 quantum.	Appl	

Phys	Lett.	doi:	10.1063/1.104512	

7.		 Canham	 LT	 (1990)	 Silicon	 quantum	 wire	 array	 fabrication	 by	

electrochemical	 and	 chemical	 dissolution	 of	 wafers	 Silicon	

quantum	wire	array	 fabrication	by	electrochemical	and	chemical	

dissolution	 of	 wafers.	 Appl	 Phys	 Lett	 57:1046–1048.	 doi:	

10.1063/1.103561	

8.		 Lin	VS,	Lin	VS,	Motesharei	K,	et	al.	(1997)	A	Porous	Silicon-Based	

Optical	 Interferometric	 Biosensor.	 Science	 (80-	 )	 278:840–843.	

doi:	10.1126/science.278.5339.840	

9.		 Arrand	HF,	Benson	TM,	Sewell	P,	et	al.	(1998)	The	Application	of	

Porous	Silicon	to	Optical	Waveguiding	Technology.	IEEE	J	4:975–

982.	

10.		 Coffer	JL,	Whitehead	MA,	Nagesha	DK,	et	al.	(2005)	Porous	silicon-

based	 scaffolds	 for	 tissue	 engineering	 and	 other	 biomedical	

applications.	 Phys	 Status	 Solidi	 1455:1451–1455.	 doi:	

10.1002/pssa.200461134	

11.		 Letant	 SE,	Content	 S,	Tan	TT,	 et	 al.	 (2000)	 Integration	of	porous	

silicon	chips	in	an	electronic	artificial	nose.	Sensors	and	Actuators	

69:193–198.	

12.		 Sailor	 MJ	 (2012)	 Porous	 Silicon	 in	 Practice:	 preparation,	

characterization	and	applications.	John	Wiley	&	Sons	

13.		 Taylor	 P,	 Korotcenkov	 G,	 Cho	 BK,	 et	 al.	 (2010)	 Porosification :	

State	of	the	Art.	Crit	Rev	Solid	State	Mater	Sci	Silicon	35:153–260.	

doi:	10.1080/10408436.2010.495446	

	

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF NANOPOROUS ANODIC ALUMINA TECHNOLOGIES FOR DRUG DELIVERY 
Maria Porta Batalla 
 



Silicon	particles	for	drug	delivery	
________________________________________________________________________________________	

________________________________________________________________________________________	
170	 	

	

14.		 Zhang	 XG,	 Soc	 JE	 (1991)	 Mechanism	 of	 Pore	 Formation	 on	 n	 −	

Type	 Silicon	 Mechanism	 of	 Pore	 Formation	 on	 n-Type	 Silicon.	 J	

Electrochem	Soc	138:3750–3756.	doi:	10.1149/1.2085494	

15.		 Corbett	 J	w.,	Shereshevskii	DI,	Verner	 I	V.	 (1995)	Changes	 in	 the	

Creation	 of	 Point	 Defects	 Related	 to	 the	 Formation	 of	 Porous	

Silicon.	Phisica	Status	Solidi	147:81–89.	

16.		 Rouquerol	 J,	Avnir	D,	Everett	DH,	et	al.	 (1994)	Guidelines	for	the	

Characterization	of	Porous	Solids.	Stud	Surf	Sci	Catal	87:1–9.	

17.		 Chabal	 YJ,	 Higashi	 GS,	 Raghavachari	 K,	 Burrows	 VA	 (1989)	

Infrared	spectroscopy	of	Si	(	111	)	and	Si	(	100	)	surfaces	after	HF	

treatment :	Hydrogen	termination	and	surface	morphology.	 J	Vac	

Sci	Technol	A	7:2104–2109.	doi:	10.1116/1.575980	

18.		 Zhang	 XG,	 Soc	 JE,	 C-c	 P,	 Zhang	 XG	 (2004)	 Morphology	 and	

Formation	 Mechanisms	 of	 Porous	 Silicon	 service.	 J	 Electrochem	

Soc	151:69–80.	doi:	10.1149/1.1632477	

19.		 Mertz	BL	(2013)	What	Is	Biocompatibility	IEEE	Pulse	14–15.	

20.		 Williams	DF	 (1989)	 A	model	 for	 biocompatibility.	 J	 Biomed	 Eng	

11:185–191.	

21.		 Select	 Committee	 on	 GRAS	 Substances	 (	 SCOGS	 )	 Opinion :	

Silicates.	Food	Drug	Adm	3–5.	

22.		 Dyck	 K	 Van,	 Cauwenbergh	 R	 Van,	 Robberecht	 H,	 Deelstra	 H	

(1999)	Bioavailability	of	silicon	from	food	and	food	supplements.	

Fresenius	J	363:541–544.	

23.		 Braley	 S	 (1970)	 The	 Chemistry	 and	 Properties	 of	 the	 Medical-	

Grade	 Silicones.	 J	 Macromol	 Sci	 Part	 A	 -	 Chem	 Pure	 Appl	 Chem	

4:529–544.	

	

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF NANOPOROUS ANODIC ALUMINA TECHNOLOGIES FOR DRUG DELIVERY 
Maria Porta Batalla 
 



Silicon	particles	for	drug	delivery	
________________________________________________________________________________________	

________________________________________________________________________________________	
171	

	

24.		 Chiappini	C,	Tasciotti	E,	Fakhoury	JR,	et	al.	(2011)	Tailored	porous	

silicon	microparticles:	fabrication	and	properties.	ChemPhisChem	

11:1029–1035.	doi:	10.1002/cphc.200900914.Tailored	

25.		 Anderson	 SHC,	 Elliott	 H,	 Wallis	 DJ,	 et	 al.	 (2003)	 Dissolution	 of	

different	forms	of	partially	porous	silicon	wafers	under	simulated	

physiological	conditions.	Phisica	Status	Solidi	335:331–335.	

26.		 Henstock	 JR,	 Canham	 LT,	 Anderson	 SI	 (2014)	 Silicon:	 the	

evolution	of	its	use	in	biomaterials.	ACTA	Biomater	11:17–26.	doi:	

10.1016/j.actbio.2014.09.025	

27.		 Lu	Y,	Yang	J,	Sega	E	(2006)	Issues	Related	to	Targeted	Delivery	of	

Proteins	and	Peptides.	AAPS	J	8:466–478.	

28.		 Pisal	 DS,	 Kosloski	 MP,	 Balu-Iyer	 S	 V.	 (2011)	 DELIVERY	 OF	

THERAPEUTIC	 PROTEINS.	 J	 Pharm	 Sci	 99:2557–2575.	 doi:	

10.1002/jps.22054.DELIVERY	

29.		 Wu	 C,	 Hu	 Y,	 Miller	 M,	 et	 al.	 (2015)	 Protection	 and	 Delivery	 of	

Anthelmintic	 Protein	 Cry5B	 to	 Nematodes	 Using	 Mesoporous	

Silicon	Particles.	ACS	Nano	9:6158–6167.	

30.		 Andrew	 JS,	 Wu	 EC,	 Chen	 MY	 (2010)	 Sustained	 Release	 of	 a	

Monoclonal	 Antibody	 from	 Electrochemically	 Prepared	

Mesoporous	 Silicon	 Oxide.	 Adv	 Funct	 Mater	 20:4168–4174.	 doi:	

10.1002/adfm.201000907.Sustained	

31.		 Schwartz	 MP,	 Yu	 C,	 Alvarez	 SD,	 et	 al.	 (2007)	 Using	 an	 oxidized	

porous	 silicon	 interferometer	 for	 determination	 of	 relative	

protein	 binding	 affinity	 through	 non-covalent	 capture	 probe	

immobilization.	 Phisica	 Status	 Solidi	 204:1444–1448.	 doi:	

10.1002/pssa.200674380	

	

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF NANOPOROUS ANODIC ALUMINA TECHNOLOGIES FOR DRUG DELIVERY 
Maria Porta Batalla 
 



Silicon	particles	for	drug	delivery	
________________________________________________________________________________________	

________________________________________________________________________________________	
172	 	

	

32.		 Qin	Z,	 Joo	J,	Gu	L,	Sailor	MJ	(2014)	Size	Control	of	Porous	Silicon	

Nanoparticles	 by	 Electrochemical	 Perforation	 Etching.	 Part	 Part	

Syst	Charact	31:252–256.	doi:	10.1002/ppsc.201300244	

33.		 Slowing	 II,	 Trewyn	 BG,	 Lin	 VS	 (2007)	 Mesoporous	 Silica	

Nanoparticles	 for	 Intracellular	 Delivery	 of	 Membrane-

Impermeable	Proteins.	J	Am	Chem	Soc	8845–8849.	

34.		 Liu	 J,	 Jiang	 X,	 Ashley	 C,	 Brinker	 CJ	 (2009)	 Electrostatically	

Mediated	 Liposome	 Fusion	 and	 Lipid	 Exchange	 with	 a	

Nanoparticle-Supported	 Bilayer	 for	 Control	 of	 Surface	 Charge	 ,	

Drug	 Containment	 ,	 and	 Delivery.	 JAm	 Chem	 Soc	 Comun	

131:7567–7569.	

35.		 Andersson	J,	Rosenholm	J,	Areva	S,	Lindén	M	(2004)	Influences	of	

material	characteristics	on	ibuprofen	drug	loading	and		

release	 profiles	 from	 ordered	 micro-	 and	 mesoporous	 silica	

matrices.	Chem	Mater	16:4160–4167.	doi:	10.1021/cm0401490	

36.		 Liu	 J,	 Stace-naughton	 A,	 Jiang	 X,	 Brinker	 CJ	 (2009)	 Porous	

Nanoparticle	 Supported	 Lipid	 Bilayers	 (	 Protocells	 )	 as	 Delivery	

Vehicles.	JAm	Chem	Soc	Comun	131:1354–1355.	

37.		 Xu	 L,	 He	 J	 (2012)	 Antifogging	 and	 Antire	 fl	 ection	 Coatings	

Fabricated	 by	 Integrating	 Solid	 and	 Mesoporous	 Silica	

Nanoparticles	 without	 Any	 Post-	 Treatments.	 Appl	 Mater	

Interfaces	4:3293–3299.	

38.		 Carta	D,	Casula	MF,	Bullita	S,	et	al.	(2014)	Direct	sol	–	gel	synthesis	

of	 doped	 cubic	 mesoporous	 SBA-16	 monoliths.	 MICROPOROUS	

MESOPOROUS	 Mater	 194:157–166.	 doi:	

10.1016/j.micromeso.2014.03.032	

	

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF NANOPOROUS ANODIC ALUMINA TECHNOLOGIES FOR DRUG DELIVERY 
Maria Porta Batalla 
 



Silicon	particles	for	drug	delivery	
________________________________________________________________________________________	

________________________________________________________________________________________	
173	

39.		 Li	 P,	 Cao	 C,	 Chen	 Z,	 et	 al.	 (2012)	 Core	 –	 shell	 structured	

mesoporous	 silica	 as	 acid	 –	 base	 bifunctional	 catalyst	 with	

designated	diffusion	path	for	cascade	reaction	sequences	w.	Chem	

Commun	(Camb)	48:10541–10543.	doi:	10.1039/c2cc35718f	

	

	

	

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF NANOPOROUS ANODIC ALUMINA TECHNOLOGIES FOR DRUG DELIVERY 
Maria Porta Batalla 
 



	

	

	

	

	

	

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF NANOPOROUS ANODIC ALUMINA TECHNOLOGIES FOR DRUG DELIVERY 
Maria Porta Batalla 
 



	

	

	

	

	

	

	

	

	

	

	

	

Chapter 7 

Summary and Conclusions 

	

	

	

	

	

	

	

	

	

	

	

	

	

	

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF NANOPOROUS ANODIC ALUMINA TECHNOLOGIES FOR DRUG DELIVERY 
Maria Porta Batalla 
 



	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF NANOPOROUS ANODIC ALUMINA TECHNOLOGIES FOR DRUG DELIVERY 
Maria Porta Batalla 
 



Summary	and	Conclusions	
________________________________________________________________________________________	

________________________________________________________________________________________	
177	

	

In	 this	 Ph.D.	 thesis	 it	 has	 been	 presented	 the	 possibility	 to	 use	

Nanostructured	 semiconductors	 like	 aluminium	 oxide	 or	 silicon	 as	 a	

nanostructured	material	for	the	development	of	drug	delivery	systems.		

	

Chapter	 2	 is	 presenting	 fundamentals	 for	 Nanoporous	 Anodic	

Alumina	 passing	 through	 history,	 basis	 of	 nanoporous	 anodic	 alumina	

formation	and	the	anodizing	parameters.	

	

Chapter	3	has	presented	 the	set	up	 for	NAA	 fabrication.	Several	

techniques	 have	 been	 discussed	 such	 as	 two-step	 anodization	 using	

different	electrolites.	The	calibration	curves	for	the	precise	manufacture	

of	 NAA	 layer	 thickness	 and	 pore	 widening	 in	 phosphoric	 acid	 were	

shown.	 Finally	 characterization	 has	 been	 presented	 showing	 the	 basic	

effects	of	structural	parameters	such	as	thickness	and	porosity.	

	

Chapter	4	has	shown	all	 the	work	made	with	NAA	covered	with	

Layer-by-layer	polyelectrolyte	with	pH	stimuli-responsive	features.	After	

a	brief	 introduction	of	the	state	of	the	art,	the	methodology	for	the	NAA	

fabrication	 and	 layer-by-layer	 polyelectrolyte	 deposition	 is	 presented.	

Moreover	 pore	 sizes	 are	 presented	 and	 samples	 characterized.	 Drug	

release	 measurements	 were	 taken	 for	 different	 pH	 release	 medium,	

showing	 pH-dependent	 differenecies.	 Fittings	 for	 these	 release	 curves	

are	 presented	 showing	quantitative	 analysis	 according	 to	mathematical	

models.	 The	 conclusions	 from	 this	 analysis	 showed	 that	 the	 release	

dynamics	 strongly	 depends	 on	 the	 pH	 of	 the	medium.	 	 Moreover	 if	 an	

abrupt	change	 in	pH	 is	applied	 from	neutral	 to	acidic	medium	a	second	

burst	 release	 is	 trigged.	 This	 Nanoporous	 Anodic	 Alumina	 coated	 with	
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layer-by-layer	 polyelectrolyte	 has	 potential	 applications	 as	 a	 drug	

delivery	device.	

	

In	chapter	5	an	innovative	NAA	is	presented	as	a	controlled	drug	

release	system.	Funnel-like	structure	and	inverted	funnel-like	structures	

were	obtained	using	 the	 two-step	anodization	 technique	and	 they	were	

compared	with	 regular	pores.	 This	 study	 takes	profit	 of	 the	differences	

on	pore	widening	rates	after	temperature	treatment	of	the	NAA	to	create	

the	 different	 structures.	With	 this	 technology	 the	 purpose	 of	 the	 study	

was	to	find	the	best	structure	for	drug	release.	The	quantitative	dynamics	

of	 the	 release	 has	 been	 studied	 using	 two	 different	 regimes:	 a	 bust	

release	 and	 a	 late	 release.	 The	 release	dynamics	have	been	 fitted	using	

mathematical	 models	 in	 order	 to	 compare	 them	 objectively.	 As	 a	

conclusion	we	found	a	linear	relation	between	the	top	pore	diameters	in	

the	case	of	regular	pores.	 In	 the	case	of	 the	 funnels	 the	release	rate	are	

pore-volume	dependant.	

	

Chapter	 6	 introduces	 Silicon	 technology	 for	 drug	 delivery	

systems.	 Fundamentals	 for	 Porous	 Silicon	 Nanotechnology	 have	 been	

presented	 for	 both	 electrochemical	 etching	 and	 sol-gel	 methodology.	

Particles	 using	 both	methods	were	 achieved	 and	 characterized.	 Finally,	

particles	of	different	size	and	porosity	were	used	for	engineering	a	drug	

delivery	 system	 for	 the	 colon	 administration,	 using	 a	 protein	 as	 a	 drug	

that	should	be	protected	from	the	harmful	gastrointestinal	environment.	

As	 conclusions	 smaller	 particles	 are	 able	 to	 carry	 and	 release	 higher	

amounts	 of	 protein	 compared	 to	 the	 bigger	 ones,	 due	 to	 the	 enhanced	

surface	to	absorb	and	desorb	the	protein.	
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All	 the	data	presented	 in	 this	work	has	 the	potential	 to	develop	

drug	delivery	devices.	By	appropriately	applying	the	suggestions	arising	

from	the	results	presented,	long,	controlled	and	stimuli-responsive	drug	

release	 can	 be	 achieved.	 However	 this	 work	 just	 focused	 on	 the	 drug	

release	 of	 the	 drugs	 using	 model	 drugs	 in	 order	 to	 perform	 prove	 of	

concept.	 The	 methods	 herein	 presented	 open	 the	 door	 for	 the	

improvement	of	a	sort	of	drug	delivery	systems.	Altogether,	 technology,	

characterization	 and	 applications	 presented	 in	 this	 thesis	 are	 rather	

encouraging	and	will	provide	a	starting	point	 for	developing	 innovative	

smart	systems	that	will	find	application	in	the	industry.										
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