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SUMMARY 

In the last decade, there has been an increasing prevalence of obesity and metabolic-

associated diseases. In view of this fact, finding preventive therapies, as well as 

treatments for these diseases is of great interest for public health. Gut hormones 

secreted from enteroendocrine cells (EECs) play a key role in the regulation of food 

intake and glucose homeostasis. In this context, the research of this thesis has focused 

on the role of natural bioactive compounds on the enteroendocrine system.  
Our research group reported in previous studies that grape seed proanthocyanidin 

extract (GSPE) increased GLP-1 plasma levels in rats. In this thesis, we elucidated that 

such increase might be in part explained by the direct action of GSPE on 

enteroendocrine cells. Moreover, we demonstrate that GSPE also modulates the 

secretion of the main gut hormones by directly acting on EECs, inducing an increase of 

GIP and PYY release, while reducing CCK release. 

The results obtained in this thesis using organoids culture demonstrated that GSPE up-

regulate the main markers of L-cell and modulate transcription factors involved in L-

cell differentiation, and thereby point out that the promotion of L-cell differentiation is 

a mechanism by which GSPE act in prolonged treatments. Moreover, our findings in 

mid-term treatments revealed that gut microbiota composition is modulated by GSPE 

and such microbial composition profile correlates with host metabolic parameters, and 

remarkably with increased active GLP-1 plasma levels. 

Furthermore, we found a new source of natural bioactive compounds from chicken feet 

protein, chicken feet hydrolyzate, and demonstrated that it acts as antihyperglycemic 

agent in disrupted-glucose homeostasis animals due to the capacity of inhibiting DPP-

IV activity and enhancing endogenous GLP-1 release . 

In conclusion, the findings obtained in this thesis show that natural bioactive 

compounds act through different mechanisms on the enteroendocrine system, and 

thereby could be good therapeutic agents to treat obesity and glucose homeostasis 

disruption. 
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RESUM 

En els últims anys ha augmentat la presència de l’obesitat i de malalties associades a 

aquesta. En vista d’aquest fet, la cerca de teràpies preventives així com tractaments per 

aquestes malalties esdevé de gran interès per la salut pública. Les hormones intestinals 

secretades per les cèl·lules enteroendocrines juguen un paper clau en la regulació de la 

ingesta i la homeòstasis de la glucosa. En aquest marc, la recerca d’aquesta tesi 

doctoral s’ha centrat en l’acció dels compostos naturals bioactius sobre el sistema 

enteroendocrí.  

En estudis previs, el nostre grup de recerca va observar que un extracte de 

proantocianidines del pinyol del raïm (GSPE) augmentava els nivells plasmàtics de 

GLP-1 en rates. En aquesta tesi doctoral, s’ha esbrinat  que aquest augment podria ser 

en part explicat per l’acció directa del GSPE sobre les cèl·lules enteroendocrines. 

D’altra banda, s’ha demostrat que l’acció directa del GSPE també modula la secreció de 

les principals hormones intestinals, induint un augment de la secreció de GIP i PYY, així 

com una reducció de la secreció de CCK. 

Els resultats obtinguts en el cultiu d’organoids han demostrat que el GSPE incrementa 

els principals marcadors de les cèl·lules L i modula els factors de transcripció 

involucrats en la diferenciació d’aquestes cèl·lules. Conseqüentment, aquests resultats 

senyalen que promoure la diferenciació de les cèl·lules L és un mecanisme d’acció del 

GSPE en tractament prolongats. D’altra banda, la recerca realitzada en tractaments 

subcrònics ha revelat que el GSPE modifica la composició de la biota intestinal i que el 

perfil microbià correlaciona amb els paràmetres metabòlics de l’hoste,  del qual 

destaca la correlació amb els nivells plasmàtics incrementats de la hormona GLP-1 

activa. 

Altrament, s’ha trobat una nova font de compostos naturals bioactius procedents de la 

pota de pollastre, l’hidrolitzat de pota de pollastre, la qual s’ha demostrat que actua 

com un agent antihiperglicèmic en rates que presenten una homeòstasis de la glucosa 

alterada, degut a la capacitat d’inhibir l’activitat de DPP-IV i d’augmentar la secreció 

endògena de GLP-1. 

En conclusió, els resultats obtinguts en aquesta tesi doctoral mostren que els 

compostos naturals bioactius actuen en el sistema enteroendocrí per mitjà de diferents 

mecanismes, i per tant aquests podrien ser uns agents terapèutics adequats per al 

tractament de la obesitat i la homeòstasis de glucosa alterada. 
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ABBREVIATIONS 

2-OG 2-oleoylglycerol 

Arx Aristaless related homeobox factor 

bHLH Basic helix-loop-helix 

BMP Bone morphogenetic protein 

BP Bioactive peptides 

CaSR Calcium-sensing receptor 

CBC Crypt base columnar 

CCK Cholecystokinin 

ChgA Chomogranin A 

CNS Central neuronal system 

DPP-IV Dipeptidyl peptidase IV enzyme  

EEC Enteroencodrine cells  

EGC  (-)-epigallocatechin 

EGCg (-)-epigallocatechin gallate 

EGF Epidermal growth factor 

Elf3 E47-like factor 3 

FFA Fatty acid 

FFAR Fatty acid receptor 

Foxa ½ Forkhead box A2, transcript variant 1  

Gcg Proglucagon 

GI Gastrointestinal  

GIP Gastric inhibitory polypeptide  

GLP-1 Glucagon-like peptide-1 

GLP-1R Glucagon-like peptide-1receptor 

GPCR G-protein-coupled receptors  
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GSPE Grape seed proanthocyanidin extract 

HES1  hairy/enhancer of split genes 

Insm-1 Insulinoma-associated 1, IA-1  

Klf4 Kruppel-like factor 4 

LCFA  Long-chain fatty acids 

LPS Lipopolysaccharides 

Math1 Mouse atonal homologue 1 (transcription factor) 

MCFA Medium- chain fatty acids  

Muc2 Mucin 2 

NCID Notch intracellular domain 

NeuroD1 Neurogenic differentiation 1 

Ngn3 Neurogenin 3 

NPY Neuropeptide Y 

OGTT Oral glucose tolerance test 

Pax4 Paired box 4 

Pax6 Paired box 6 

Pdx1 Pancreas/duodenum homeobox gene-1 

PP Pancreatic polypeptide  

Ptk6 Protein tyrosine kinase 6 

PYY Peptide YY 

SCFA Short-chain fatty acid 

SLGT-1 Sodium-dependent glucose transporter 1  

T2DM Type 2 diabetes mellitus 

TA Transit-amplifying  

Tgf-βRII Growth factor β type II receptor  
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1. Gastrointestinal tract 

The gastrointestinal (GI) tract is an open-ended tube that extends through the body 

from the mouth to the anus. The lumen, the inside space of this tubular structure, can 

be defined as a tunnel environment through the body, and the wall of the GI tract as the 

physical interface between the external environment and the circulation. The main 

functions of the GI tract are to digest and absorb nutrients and other substances, as 

well as the propulsion of material through the digestive tract [1]. 

Food enters the mouth, which is the entrance of the GI tract, and continues through the 

pharynx and oesophagus to the stomach and intestines and finally into the rectum and 

anus. The small intestine, the relevant site for absorption, is divided into unequally 

sized sections: the duodenum, the jejunum and the ileum. The large intestine has two 

main sections: the cecum (whose size and functions differ between species) and the 

colon [2].  

The intestinal lumen is lined with a single layer of specialized epithelial cells that carry 

out the main functions of the GI tract, i.e. digestion and absorption of nutrients. It also 

forms a barrier against luminal pathogens. Moreover, the GI-tract cooperates in 

controlling the metabolism through hormones secreted from enteroendocrine cells 

(EEC), which are the largest endocrine organ of the body. 

The intestinal surface has an uneven architecture composed of villus and crypt 

structures. Proliferative cells, stem cells and transit-amplifying (TA) cells reside in the 

crypts and are triggered to differentiate into one of the four main specialized cells: 

entrocytes, paneth cells, goblet cells, and EEC [3]. A complex network of molecular 

signals and pathways regulate the differentiating process of the gut cells in the adult 

intestine, which will be described in the following sections.  

1.1. Differentiation in the intestinal epithelium 

The adult intestinal epithelium undergoes rapid renewal to maintain optimal 

functioning. Regeneration relies on the crypt base, where adult stem cells continually 

divide to produce highly proliferative progenitors known as TA cells. The nascent TA 

cells migrate upwards from the depths of the crypt onto the surface of the villi and 

divide 4-5 times before they commit to the absorptive and secretory cell lineages. Cell 

proliferation terminates when differentiated cells leave the crypt, where they are 

exposed to the gut contents and finally sloughed from the villus trips. This renewal 

cycle operates continually and the cells take 2-7 days to make the journey [4].  

1.1.1. Proliferating intestinal cells: Stem cells  

Intestinal epithelial homeostasis is based on the balance between self-renewal and 

differentiation, which is maintained by a complex interplay of multiple regulatory 
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mechanisms. The intestinal stem cells are cycling, long-lived and multipotent cells. 

They play an important role in the self-renewal process. Over the past four decades, 

two models of intestinal stem cell identity have been proposed. The ‘stem cell zone 

model’, by Leblond, Cheng and Bjerknes [5], suggests that the slender crypt base 

columnar (CBC) cells at the crypt bottom and intercalated between Paneth cells are the 

resident stem cells. The Wnt target gene Lgr5 has been identified as an excellent 

marker for CBC cells. The Lgr5-CBC cells generally undergo symmetrical division, after 

which individual daughter cells stochastically adopt a stem cell or TA cell fate, 

depending on the available niche space [6, 7]. The second model describes an 

alternative stem cell population that has been postulated to reside at position +4 

relative to the crypt bottom, above the Paneth cells [8]. These +4 cells are considered 

to be relatively quiescent and resistant to acute injury [9]. Therefore, this stem cell 

pool does indeed play a role in intestinal homeostasis, but can restore the LGR5+ CBC 

stem cell compartment following injury [10]. 

The Wnt pathway is the first primary force implicated in controlling the maintenance 

of the crypt cell population in the proliferative state. The central player in the 

canonical Wnt cascade is β-catenin, which is regulated by a degradation complex 

consisting of caseine kinase-1 and GSK3-β, both residing in the adenomatous polyposis 

coli (APC) tumour suppressor. When Wnt ligands are not engaged with their Frizzled 

and low-density lipoprotein receptor-related protein (LRP) receptor, β-catenin is 

targeted for ubiquitination and proteasomal degradation. In contrast, the Wnt-Fz-LRP 

complex transduces a signal into the cell, resulting in unphosphorylated β-catenin 

translocation into the nucleus and subsequent activation of the T-cell 

factor/lymphocyte enhancer factor (TCF/LEF) family (Fig.1), thus activating a genetic 

program that supports stemness [11, 12]. 

Other molecular pathways that play important roles during embryogenesis are 

involved in the regulation of intestinal epithelium homeostasis in adult organisms. 

These include the hedgehog pathway, which is required for the formation of villi [13] 

and the repair phase after the injury[14]. Bone morphogenetic protein (BMP) 

signalling mediates the action of the hedgehog pathway, blocking ectopic crypt 

formation, and the expression of BMP antagonist noggin in the neighbourhood crypts, 

enabling a crypt-permissive environment[15]. BMP receptors by BMP, which is 

expressed in the intravillus and intercrypt mesenchymal cells, lead to complexes 

between Smad1/5/8 and Smad 4 blocking stemness genes in the nucleos (Fig.1). 

Moreover, the BMP pathway antagonizes the Wnt pathway within the differentiated 

compartment, thereby positioning TA cells in the crypt pockets [16]. Epidermal 

growth factor (EGF) signals induce mitogenic effects in stem cells and TA cells. When 

EGF is bound to their receptor, the Ras/Raf/Mek/Erk signalling axis is active in crypt 

epithelium; whereas the inhibition of Mek ablates intestinal stem cells [17] (Fig.1). The 

main protein of the Hippo pathway is the Yes-associated protein (YAP), which is 

found in the crypts and has Wnt antagonizing effects, thereby contributing to the 

prevention of proliferation. Although under normal conditions the YAP does not 
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contribute to proliferation, it regulates tissue regeneration caused by injury and 

tumorigenesis [18, 19]. The Notch pathway is also needed to maintain the crypt 

compartment in its undifferentiated and proliferative state, and is involved in the 

intestinal cell fate decision. This pathway will be discussed further in the following 

section. 

 

 

Figure 1. Histological location and biological interaction of intestinal stem cells and their niche, adapted 
from [20]. 

1.1.2. Cell lineage specification: Secretory Lineages versus Absorptive 
Lineage 

As mentioned above, TA cells terminally differentiate into the four main epithelial cell 

linages of the GI tract; that is, the absorptive enterocytes and three other cell types that 

belong to the secretory lineages: the goblet cells, the Paneth cells, and the 

enteroendocrine cells. Apart from these four main cell types, there are also some lesser-

known cell types, such as M-cells and Tuft cells [21, 22]. 

The Notch pathway plays a central function in the fate decision and differentiation 

process of the intestinal epithelial cells. The key players of the Notch pathway in 

mammals are the Notch receptor (Notch 1 though 4) and its ligands of the Delta and 

Serrate/Jagged subfamilies. These are transmembrane proteins that mediate 

communication between cells that are in contact (Fig.1). Interaction of one of the four 

Notch receptors with any of five Notch ligands results in activation of proteolytic 

cleavage and the Notch intracellular domain (NCID) is released from the cell surface 

[23]. The NICD translocates into the nucleous and binds to the transcription factor 

RBP-Jk to activate target gene transcriptors [24].  

The Wnt and Notch signals cooperate to keep the crypt in the stemness state. 

Moreover, the Notch pathway in the transit-amplifying compartment controls 

absorptive versus secretory fate decisions in the intestinal epithelium. Increased Notch 
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signalling activity through constitutive expression of NICD in the gut epithelium results 

in a severe reduction of all three secretory cell types [25]. In contrast, inhibition of 

Notch signalling through pharmacological gamma secretase inhibitors has the opposite 

effect on intestinal differentiation and results in complete conversion of all epithelial 

cells into goblet cells [26]. The cells that become secretory are those that escape Notch 

activation and are also the ones that express Delta proteins, enabling them to activate 

Notch signalling in their neighbours. Therefore, the Notch pathway controls intestinal 

fate decisions to mediate lateral inhibition between adjacent cells, preventing 

neighbouring cells from adopting the same fate [27]. 

The active Notch pathway results in transcription of the hairy/enhancer of split genes 

(HES) family, which encodes transcriptional repressors. Hes1 represses the 

transcription of the basic helix-loop-helix (bHLH) transcription factor Math1 (mouse 

atonal homologue 1)[28] (Fig.2). Lineage tracing studies have shown that all the 

secretory cell lineages are derived from Math1-expressing precursor cells [29]. While 

Math1 is required for all three secretory cell lineages, downstream lineage-specific 

transcription factors, such as Sox9 for Paneth cells [30], Klf4 (Kruppel-like factor 4) for 

goblet cells [31] and Ngn3/NeuroD1 for EEC  [32] (Fig.2) are needed for the correct 

differentiation of these secretory cell lineages. 

1.1.2.1. Enterocytes:  

The most populous cell on the intestinal villus is the absorptive enterocyte, which 

represents more than 80 % of all intestinal epithelial cells. Absorptive cells are highly 

polarized cells joined together by a tight junction. Adequate protein sorting and 

addressing are necessary for establishing and maintaining cell polarity to maintain the 

integrity of the epithelial barrier [33]. Their apical surfaces have characteristic 

microvilli that comprise an elaborate brush border responsible for absorbing and 

transporting the nutrients across the epithelium. Enterocytes express a high number of 

genes related to the carbohydrate metabolism (i.e. Phosphofructokinase, Aldolase, 

Fructose-Bisphosphate B, Glyoxalase), and fatty acid metabolism (i.e. Apolipoprotein 

A1, Apolipoprotein A4, fatty acid Coenzyme A ligase 5), as well as the dipeptidyl 

peptidase IV enzyme (DPP-IV), which plays an important role in enterohormone 

regulation, especially GLP-1[34]. 

Although the Notch pathway was thought to be needed for absorptive cell 

specification, recent studies have reported that it is not required, while, in contrast, the 

repression of Math1 expression and thus secretory cell fate is required [35, 36]. 

Therefore, deletion of Hes1 results in a decreased number of enterocytes and an 

increased number of all secretory lineages [28]. Downstream of Hes1, diverse 

transcription factors are involved in the enterocyte differentiation process, such as 

Elf3 (E47-like factor 3), Tgf-βRII (growth factor β type II receptor), and Ptk6 (protein 

tyrosine kinase 6) (Fig. 2).  
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1.1.2.2. Paneth cells:  

Paneth cells have a function in innate immunity and contain extensive apical secretory 

granules that are filled with a variety of antimicrobial proteins, including lysozymes 

and cryptdins [37]. They are renewed every 3-6 weeks, so they are the exception to the 

rapid self-renewal in the epithelium intestine [38]. Paneth cells represent the only 

differentiated cells that escape the upward migration, so they localize to the base of the 

crypt, where canonical Wnt signalling is active. The Fizzled-5 receptor plays a role in 

the transduction of Wnt signals in the Paneth cells, which interpret these signals for 

their specification, differentiation and maturation. The conditional deletion of this 

receptor results in mispositioned Paneth cells scattered along the villus, due to the lack 

of expression of the Tcf4 target gene EphB3. Thus, this receptor allows the correct 

positioning of epithelial cells to be achieved in a Wnt gradient along the crypt-villus 

axis [39]. Moreover, studies suggest that FGFR-3 (fibroblast growth factor receptor-3) 

is essential for Paneth cell emergence and lineage allocation [40]. The Wnt 

transcriptional factor target Sox9, which is expressed in all cells at the crypt bottom, 

was identified as an essential factor for Paneth cell differentiation [30] (Fig.2). 

Moreover, Paneth cells have a determinant role in the stem cell niche homeostasis. 

They are the Wnt source that induces the formation of a new stem cell as well as 

Paneth cells, and there is a Wnt-driven positive-feedback loop that could lead to ever-

expanding crypts [41]. 

1.1.2.3. Goblet cells: 

The goblet cell population is the most abundant secretory lineage among all types of 

epithelial cells and increases between the duodenum (~4%) and colon (~16%). These 

cells secrete protective mucus and trefoil proteins that are needed for the effective 

expulsion of gut contents, and protect against shear stress and chemical damage [42]. 

As discussed above, Hes1 is expressed in proliferative crypt cells, while Math1 is only 

expressed in secretory cells. Inhibition of Notch signalling results in a lack of Hes1 

expression and the consequent induction of Math1 expression, leading to the 

conversion of all proliferative cells into goblet cells [26]. Goblet cell differentiation also 

depends on a zinger-finger transcription factor Kfl4, whose deletion results in the loss 

of goblet cells [31] (Fig.2). Likewise, the inactivation of the goblet cell marker, 

gastrointestinal mucin 2 (Muc2), leads to the development of adenomas in the small 

intestine. However, goblet cells of Muc2 -/- mice still express the intestinal trefoil 

factor, which suggests that some aspects of the differentiation program persist [43]. 

1.1.2.4. Enteroendocrine cells: 

EECs comprise the largest population of hormone-producing cells in the body [44]. 

They represent approximately 1% of the cells lining the small and large intestinal 

lumen. Unlike many endocrine glands, gastrointestinal endocrine cells are scattered as 

individual cells throughout the mucosa and surrounded by non-endocrine cells [5]. 
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Enteroendocrine cells regulate gut functioning through specific hormone secretion. 

There are more than 15 subtypes of enteroendocrine cells defined according to their 

morphology and the hormones that they produce. 

Three proendocrine bHLH transcription factors (Math1, Neurogenin 3 (Ngn3) and 

Neurogenic differentiation 1 (NeuroD1)) all target Notch signalling. They function in 

cascade, which means one factor activates later factors to control both the initial 

specification of the enteroendocrine cells and their final differentiation. Ngn3 over-

expression in the developing intestinal epithelium results in increased numbers of 

enteroendocrine cells at the expense of goblet cells [45], which demonstrates the 

importance of Ngn3. The requirement of Ngn3 differs between intestine and stomach. 

While all intestinal enteroendocrine cells are Ngn3-dependent, its role in the stomach 

is more limited, where deletion of Ngn3 expression reduces the number of glucagon-, 

somatostatin- and gastric- secreting cells, but serotonin-, histamine-, and ghrelin-

expressing cells are still present [32].  

 

Figure 2. Schematic overview of the genetic hierarchy of epithelial cell lineage commitment in the 

intestine. Adapted from [42].  

A set of transcription factors downstream of Ngn3 have also been shown to play a 

critical role in the specification of the various subsets of enteroendocrine cells, 

similarly to pancreatic differentiation. NeuroD1, which acts directly downstream of 

Ngn3, has been shown to control terminal differentiation of the secretin and 
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cholecystokinin (CCK) producing subset of enteroendocrine cells [46]. Other factors 

that have been implicated in enteroendocrine cell fate specification include the zinc-

finger transcription factors and homodominan transcription factors, such as Insm-1, 

Pdx1, Nkx2.2, ARX, Foxa ½, Pax4 and Pax6 [47–51]. Among these, it has been reported 

that gastric inhibitory polypeptide (GIP) secreting cells are Pax6-dependent [47], while 

other studies indicate that Pax6 acts together with Foxa1/2 to regulate the 

transcription of the preglucagon gene [50]. Besides the deletion of Pax4 expression in 

mice, an increase in glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) transcripts 

has also been shown, suggesting an increase in the number of L cells. However, 

deletion of Arx expression resulted in an almost complete loss of GLP1-, GIP- and CCK-

expressing cells [51]. Mechanisms for generating the diversity and regional specificity 

of enteroendocrine cells rely on a complex network of transcription factors and further 

studies are needed to elucidate the pathways involved in enteroendocrine cell 

specification. 

1.2. Enterohormones: synthesis by EE cells, secretion and 

function 

As mentioned above, the GI tract is the largest endocrine organ of the body. At least 15 

types of EECs have been described, which secrete more than 20 different regulatory 

hormones that are involved in the regulation of a number of physiological processes 

and exert their effect on tissues including exocrine glands, smooth muscle and the 

peripheral nervous system [52].  

It was generally accepted that EECs could be classified into discrete classes of cells 

with specific secretory profiles, mainly secreting peptides derived from a single 

peptide precursor. In this traditional classification, EECs were located in certain 

segments of the GI tract. Examples of previously described cell family groups include 

CCK-secreting I-cells located in the duodenum, GLP-1- and PYY-secreting L-cells 

located in the ileum and colon, among others [53]. However, recent studies have 

revealed that there are a wide range of EEC types that are capable of expressing a huge 

combination of different hormone precursors [54]. Based on this knowledge, 

Engelstoft et al. suggest organising the enteroendocrine system in pan-GI tract 

enteroendocrine cell types, gastro-selective cell types and a joint multi-capable 

intestinal-selective cell lineage, which in certain segments of the intestine is divided 

into specialized cell types that express a range of hormones as previously described in 

the classical classification [55](Fig.3). 

The individual hormone gene could be expressed in multiple forms because of tandem 

genes encoding different hormonal peptides, alternative splicing or differential 

processing [44, 56]. Some of the gastrointestinal hormones are synthesized from 

precursor proteins called prehormones, which undergo post-translational processes to 

produce mature hormones prior to secretion. The post-translational modifications 

consist in proteolytic cleavage by endopeptidases and exopeptidases and are followed 
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by the amidation process. The variety of these hormones is derived from a single 

prehormone that may exhibit different activities like gastrin peptides do (gastrin-6, 

gastrin-14, gastrin_17, gastrin-34, and gastrin-71) [57].  

 

Figure 3. EEC type classification: for each of the cell types the main secretory product and the original 

Wiesbaden nomenclature (W-type) are indicated. In intestinal EE cell types, the six defined cell types 

could be considered to be one cell type specialized in various segments or at least one cell lineage, which is 

indicated by the common maroon colour and the lighter maroon colour indicates that the peptides are less 

expressed in these segments. The gastric ghrelin cells are significantly different from the ghrelin-motilin 

cells of the small intestine. Extracted from [55]. 

EECs are capable of responding to luminal content because their apical side has 

chemosensing machinery, including taste receptors (TASR), G protein-coupled 

receptors (GPCR), plus specific transporters and channels, among others. Their 

secretory products are stored in characterized secretory vesicles, which are the large 

dense-core type or the smaller synaptic-like type, prior to their secretion through the 

basolateral membrane by exocytosis [56, 58]. This model is especially appropriate for 

the open type EECs that reach the luminal surface, whereas the closed type EECs, 

which do not reach the lumen, can be indirectly regulated by content through neural 

and humoral mechanisms [59].  

When luminal content move through the GI tract, specific macronutrients stimulate the 

chemosensors machinery. That stimulation leads the modulation of gut hormones 

release. These hormones, which mainly are GLP-1, CCK, PYY, GIP, and ghrelin, influence 

the functioning of digestive tract, but also modulate insulin secretion of liver, energy 

storage of adipose tissue and influence neuronal signaling in appetite centers in the 

brain to mediate the regulation of food intake, such as the termination of hunger and 

the induction of satiety. The gut hormones exert their effect via vagal nerve or 

endocrine signalling, through the interaction of specific receptor expressed in different 

tissues of the body. In the next section, we focus on describing main gut hormones and 

their actions. 

1.2.1. Glucagon-like peptide 1 

Proglucagon is expressed in L-cells of the intestine, pancreatic α-cells and various 

areas of the central neuronal system (CNS), mainly in the brainstem and 

hypothalamus. Although a single gene encodes this precursor in all tissue types, 
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different sets of hormones are synthesized in each tissue due to tissue-specific 

posttranslational processing. This posttranslational processing produces a number of 

biologically active peptides, including glucagon, glicentin-related polypeptide (GRPP), 

intervening peptide-1 (IP-1), GLP-1, and GLP-2, among others. In L-cells, GLP-1 is 

produced as an inactive 37-amino acid peptide (GLP-11-37), which is further cleaved to 

form active GLP-17-37. Both forms can be amidated at the C-terminal residue, resulting 

in GLP-11-37amide and GLP-17-37amide. Although GLP-1 exists in several forms, the most 

secreted form is GLP-17-37amide. Both GLP-11-37amide and GLP-17-37amide are truncated by 

DPPIV, forming inactive forms [60–62]. 

DPP-IV is a ubiquitous aminodipeptidase that exists essentially as a membrane-

anchored cell-surface enzyme [63]. Its expression is widely distributed along the body 

tissues, such as kidneys, the GI tract, liver, and pancreas, among others. But DPP-IV is 

also expressed on endothelial and epithelial cells along the vascular bed. Its soluble 

form is found in plasma and therefore it is in close proximity with hormones 

circulating in the blood [64, 65]. The main activity of DPP-IV is to remove N-terminal 

dipeptides from polypeptides [66], which preferably have a proline or alanine in their 

second position from the N-terminal. The main DPP-IV substrates include GLP-1, and 

the other incretin hormone GIP, which are peptides with N-terminal Tyr–Ala and His–

Ala respectively [67]. The intact GLP-1 is rapidly hydrolysed by DPP-IV into a shorter 

and inactive form. Once it reaches the plasma, with a half-life of 1-2 minutes [66]. Only 

25% of the active GLP-1 reaches the portal circulation and subsequently the liver, 

where a further 40-50% is digested by DPP-IV present on hepatocytes. This means that 

only 15% enters the systemic circulation and may reach other tissues, such as the 

pancreas or the brain [60]. Therefore, DPP-IV is responsible for inactivating more than 

80 % of the secreted GLP-1 [66]. 

Nutrient ingestion is the primary physiological stimulus for inducing GLP-1 secretion 

by L-cells. GLP-1 secretion occurs in a biphasic pattern, which consists in a rapid 

release in 15-30 min after a meal, followed by a second minor peak that occurs in 60-

120 min. Both glucose and fat have been reported to be a strong GLP-1-secretagoge 

after their ingestion [68], after direct administration into intestine [69, 70][69, 70] or 

into perfused ileal segments [71]. In the murine model, glucose-stimulated GLP-1 

release is blocked using sodium-dependent glucose transporter 1 (SLGT-1) knockout 

mice and SLGT-1 inhibitor [72, 73] , suggesting that glucose metabolism involves 

glucose transport via SGLT-1 to induce GLP-1 secretion. It has also been proposed that 

the sweet taste receptors (T1R2, T1R3) are involved in the glucose-sensing 

mechanism, but there is still controversy about this [74, 75]. On the other hand, G-

protein-coupled receptors (GPCRs) have been reported to be activated by dietary fat to 

stimulate GLP-1 release, including GPR40 and GPR120 by medium- chain fatty acids 

(MCFAs), long-chain fatty acids (LCFAs) and long-chain unsaturated FAs; and GPR41 

and GPR43 by short-chain fatty acids (SCFAs) (reviewed in [76, 77]). Finally, proteins 

are the macronutrient commonly considered the least effective for stimulating GLP-1 

secretion (this will be discussed further in Section 2 (2.2.2.2)).  
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Although EECs in duodenum can release GLP-1, several authors have suggested that 

the initial rapid rise in the GLP-1 secretion pattern can also be mediated indirectly by 

neuro/endocrine pathways (reviewed in [78, 79]). A proximal-distal loop has been 

described to be GLP-1-release signalling. It has been reported in rats that after a 

duodenal fat treatment, GIP plasma release is followed by GLP-1 plasma release, and 

this effect is mediated by the vagus nerve [69, 70]. Some neurotransmitters, including 

acetylcholine, glycine, GABA and epinephrine, as well as the adrenergic activation of L-

cells have been described to be involved in GLP-1 secretion [80–82]. 

The biological activity of GLP-1 is mediated by its interaction with GLP-1 receptors 

(GLP-1R), which are expressed in several tissues, including pancreatic islets, kidneys, 

and lungs, among others and in different sections of the peripheral and central nervous 

system [78, 83, 84]. GLP-1 together with GIP is responsible for the incretin effect, so it 

binds to GLP-1R in β-cells in the pancreas leading to an increase in intra-cellular 

calcium and a subsequent insulin secretion in response to glucose [85]. Moreover, it 

has been shown that GLP-1 enhances markers of proliferation and differentiation, and 

decreases markers of apoptosis in the pancreas of Zucker diabetic rats [86, 87]. GLP-1 

also improves the glycemic profile by inhibiting glucagon secretion and may also 

improve glucosal disposal in peripheral tissues [88]. Moreover, like PYY, exogenous 

GLP-1 administration decreases gastric emptying as well as the speed of intestinal 

transit (reviewed in [89]). On the other hand, the effects of anoretic GLP-1 on food 

intake could be mediated via the arcuate nucleus, where proopiomelanocortin (POMC) 

neurons express the GLP-1R. However, there is a physiological debate about whether 

GLP-1 can reach central GLP-1R in the hypothalamus through systemic regulation due 

to their short half-life [90]. Interestingly, Rüttimann et al.  [91] reported that 

intraperitoneal administration of GLP-1 reduces the sensitivity to the anoretic effects 

of GLP-1 in rats that undergo subdiaphragmatic vagal deafferation, while these effects 

were not affected when GLP-1 was administered in the vena cava and hepatic portal 

vein. This suggests that the role of the vagus system in intraperitoneally GLP-1, which 

acts similarly to endogenous GLP-1 secreted from L-cells, whereas exogenous 

circulating GLP-1 could bind directly at central receptors. 

1.2.2. Cholecystokinin 

The I-like cells in mammals and humans are the main CCK-secreting cells, and are 

located in the upper intestinal tract. Multiple molecular forms have been identified as 

CCK58 (the most abundant molecular form), CCK33, CCK22, and CCK8 (the most 

potent molecular form), all of which share the same carboxyl domain and are derived 

from a 115 amino acid prepropeptide. This carboxyl domain, which has an amidated 

carboxyl-terminal, is the biologically active portion of the hormone and full potency is 

not achieved unless the tyrosine residue at position 7 from the carboxyl terminus is 

sulphated. The CCK length depends on the CCK producing-cell synthesized, EEC of the 

small intestine and neurons in the GI tract and central nervous system [92, 93]. 



INTRODUCTION 

 

21 
 

CCK is secreted from the small intestine in response to the presence of luminal 

nutrients. Several protein hydrolystates and individual amino acids (phenylalanine, 

leucine and glutamic acid) have been reported as stimulators of CCK release [94, 95], 

as well as a LCFA, which also promotes CCK release through LCFA receptors [96, 97]. 

CCK has different physiological GI functions, including the stimulation of pancreatic 

secretion, gallbladder contraction, intestinal motility, and inhibition of gastric 

emptying [98]. These CCK functions are mediated by endocrine, paracrine and/or 

neurocrine modes of action [99]. Another function attributed to the CCK is the 

regulation of food intake, which could be mediated by the cholecystokinin 1 (CCK1) 

receptor on the vagal nerve. It has been described that Otsuka Long-Evans Tokushima 

Fatty rats, which do not have a CCK1 receptor, are hyperphagic and obese rats and 

present a lack of normal satiating response to intestinal nutrients [100, 101]. In this 

line, the administration CCK1 receptor antagonist increase food intake in rodents 

[102]. However, the CCK satiating property remained unclear for a considerable period 

of time. 

1.2.3. Gastric inhibitory polypeptide 

GIP is released from K-like cells that are located in the duodenum. GIP is a 42-residue 

peptide that is derived by proteolytic processing of a 153-amino acid precursor in 

humans and 144-aminoacid precursor in rodents [103]. This hormone belongs to the 

glucagon superfamily that includes secretin, glucagon and the vasoactive intestinal 

peptide (VIP) [104]. 

GIP secretion is primarily in response to direct interaction with ingested carbohydrate 

or fat, and is proportional to the amount of calories ingested and to the glucose 

absorption rate [105, 106]. The SGLT1 and KATP channels are involved in glucose-

triggered GIP release, while facilitative glucose transporter GLUT5 is involved in 

fructose-induced GIP release [107, 108]. It has been reported that GIP release depends 

on the nature of the fatty acid and the monounsaturated FFAs seem to induce a higher 

GIP secretion than saturated FFAs [109]. Lipids may exert their effect on GIP secretion 

by activating the G-protein-coupled receptors GPR40, GPR119 and GPR120 [108, 110].  

The first physiological role of GIP described was its ability to inhibit gastric acid 

secretion. Subsequent studies reported that GIP promotes glucose-induced insulin 

release from β-cells through the activation of adenylyl cyclase and mitogen-activated 

protein kinase [111, 112]. Following glucose ingestion, GIP and GLP-1 are responsible 

for 50% of the insulin released, a phenomenon called, as above mentioned, the incretin 

effect [113]. The two incretin hormones transduce their action by binding G-protein-

coupled receptors expressed in pancreatic cells and in peripheral tissues, such as the 

central nervous system, GI tract, heart, lungs, kidneys, bones and adipose tissue. The 

two incretin hormones are rapidly cleaved and inactivated by the DPP-IV enzyme. In 

the pancreas, the incretin engagement also enhances proliferative pathways and has 
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anti-apoptotic beneficial effects on pancreatic islets cells in both rodents and humans 

[114, 115].   

Moreover, GIP is involved in regulating the lipid metabolism and, unexpectedly, the 

inhibition of the GIP axis may function as therapeutic treatment against the 

development of obesity [116]. Miyawaki et al. showed that GIP receptor-deficient mice 

did not develop insulin resistance or obesity in high-fat-fed and ob/ob models, 

suggesting that GIP stimulated fat deposition into adipocytes [117]. Similar effects 

were observed in the chronic inhibition of the GIP pathway, including beneficial effects 

on body weight, insulin sensitivity and glucose tolerance in different obesity models 

[118–120]. 

1.2.4. Peptide YY 

PYY is secreted by L-like cells that are found along the gut, especially in more distal 

parts. The structure of PYY has a significant sequence homology with neuropeptide Y 

(NPY) and pancreatic polypeptide (PP); that is, all peptides have the PP fold structural 

motif [121–123]. Two endogenous forms, PYY (PYY1-36) and PYY3-36, are released into 

the circulation. The full-length PYY1-36 is derived by proteolytic processing of a large 

molecule precursor, and PYY3-36 is further produced by the digestion of PYY1-36 by DPP-

IV [124].  

PYY is secreted into the circulation after food intake and is reduced by fasting. Like GIP, 

the magnitude of PYY release is proportional to the calories ingested, and is stimulated 

by a high fat diet [125]. It has been reported that propionate enhances PYY secretion 

from rodents in vivo and in vitro through the FFAR2 receptor [126]. Also in rodents, 

colonic infusion of SCFAs increases PYY levels in vivo [127]. Besides fatty diets, PYY is 

secreted in response to glucose in humans [128, 129] and Mace et al. showed that PYY 

is secreted by L-amino acids phenylalanine, tryptophan, asparagine, arginine and 

glutamine through CaSR activation [130]. 

PYY, PP and NPY bind to G-protein coupled receptors Y1, Y2, Y4, Y5 and Y6 due to their 

shared PP motif structure [89]. The affinity between ligand and receptor, and the 

specific tissue expression of Y receptors determine the different biological activities of 

each hormone. The Y1 and Y5 receptors are expressed in the hypothalamus and have 

affinity with NPY and PYY1-36. On the other hand, PYY3-36 binds selectively to the Y2 

receptor and PP is selective to Y4 [52, 131].  

PYY may be involved in the regulation of glucose homeostasis through the 

coordination of pancreatic islets functions. Peripheral administration of exogenous 

PYY3-36, together with food or glucose, stimulates insulin secretion in mice through Y2 

receptor activation. However, the activation of Y1 receptor by PYY1-36 in murine islets 

inhibits glucose-stimulated insulin secretion [132, 133]. Moreover, both forms of PYY 

decrease gastric emptying, and PYY3-36 is mainly responsible [134]. 
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In addition to pancreatic regulation, PYY also regulates the appetite via a direct central 

effect and via its effects on gut motility. PYY is involved in the ‘ileal brake’, decreased 

gastric emptying and also the speed of intestinal transit (reviewed in [89]). The two 

PYY forms play opposite roles in the regulation of food intake. The central 

administration of PYY1-36 results in stimulation of feeding, while peripheral 

administration does not seem to influence appetite, which suggests that the effects are 

mediated by Y1R located in the hypothalamus (reviewed in [52]). In addition, PYY3-36 

plays a role as anoretic peptide and the effect of peripheral PYY3-36 seems to be 

mediated by Y2 receptor because the effect is absent when Y2R knockout mice are 

used and attenuated by Y2 receptor antagonists. Although it has been suggested that 

peripheral PYY3-36 could act through Y2 receptor expressed in vagal afferents of rats, 

conflicting evidence has been reported about whether PYY3-36 induce anorexigenic 

effects via vagal stimulation [135, 136].  

1.2.5. Ghrelin 

The X/A-like cells in mammals or D1 cells in humans are the main ghrelin-secreting 

cells. However, the highest content of ghrelin is in the gastric fundus. Ghrelin-

containing cells have also been found in the EEC of rats and humans throughout the GI 

tract, from duodenum to the colon. They can be classified into open-type cells, which 

are located in the stomach, and closed-type cells, which gradually increase along the GI 

tract [137]. 

Preproghrelin is composed of 117 amino acid peptides in humans and rodents, and 

after a post-translational process there is a 28-amino acid sequence, which is uniquely 

modified by the addition of an octanoyl group in third serine residue by O-

acyltransferase (GOAT) [138]. This modification is required for ghrelin to bind to the 

growth-hormone-secretagogue receptor (GHS-R) and to cross the blood-brain barrier 

[139], where ghrelin can act on growth hormone-releasing hormone (GHRH) neurons 

and others [140]. 

The patterns of ghrelin release show that circulating ghrelin levels increase during 

fasting periods and before meals, and fall after eating. For this reason ghrelin is often 

defined as the ‘hunger hormone’. It has been shown that both the feeling of hunger and 

food intake increase in humans after intravenous infusion or subcutaneous injection of 

ghrelin. Different regulatory molecular mechanisms of ghrelin secretion have been 

described, including, agents released by sympathetic neurons during fasting periods 

acting directly on β-receptors on the ghrelin-secreting cells of the stomach [141], 

circadian regulation mechanisms [142], several chemosensory receptors expressed by 

ghrelin-secreting cells that interact with luminal content [143], and the regulation by 

other enterohormones (GIP, secretin, somatostatin, and insulin) [144]. Controversial 

results have been found for nutrient sensing, such as glucose, SCFA and LCFA decrease 

ghrelin secretion, while tryptophan, peptones and the artificial sweetener sucralose 

increase ghrelin secretion [143, 145]. 
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Administering peripheral ghrelin results in weight gain by attenuating fat utilization, 

and chronic central ghrelin infusion enhances the expression of enzymes that promote 

fat storage in adipose tissue [146]. Therefore, using GHS-R antagonists to block ghrelin 

signalling is an interesting idea for preventing obesity. Moreover, ghrelin is also 

involved in regulating gastric motility and the neuronal orexigenic pathway [147, 148]. 

1.3. The role of gut microbiota in intestinal epithelial cell 

function 

Gut microbiota is described as the microbial community that inhabits the length of the 

GI tract, and particularly the distal gut. The human intestinal gut hosts trillions of 

microorganisms, including more than 1014 bacteria, which belong to 1000 different 

bacterial species classified in the bacterial taxonomy, a rank-based classification 

system [149, 150]. The genome size of the microbiome is 100- to 150-fold more 

numerous than the human genomes, providing the organisms with additional 

biological and metabolic functions for maintaining homeostasis in the body [151]. 

Therefore, the gut microbiota can be considered as an organ that plays a role in 

controlling energy homeostasis, regulating the immune system, and also in vitamin 

synthesis and digestion [152–156]. 

The main taxonomic bacteria in human gut microbiota belong to three major groups: 

Firmicutes (including Clostridium, Enterococcus, Lactobacillus, Ruminococcus, and 

Faecalibacterium genera), Bacteroidetes (including Bacteroides and Prevotella genera) 

and Actinobacteria. These are the dominant bacterial phyla that together represent 

>95% of the total microbiota. The composition of gut microbiota is modulated during a 

person’s lifespan from infancy to old-age by several environmental factors, including 

life style, use of antibiotics, and dietary pattern [157–159]. Due to several direct and 

indirect interactions with the host organism, the gut microbiota and the modulation of 

its composition are closely linked to the health of the host. Hereafter, we focus on the 

interactions between intestinal microbiome and the GI tract. 

There are different mechanisms through which gut microbiota can interact with the GI 

tract. One of these mechanisms is the fundamental role of the gut microbiota in the 

fermentation of non-digestible dietary polysaccharides into SCFA. SCFAs produced by 

gut microbiota fermentation are mainly acetate, propionate and butyrate [160]. SCFAs 

can act as host signalling molecules by binding to GPR41 and GPR43, expressed by 

enteroendocrine cells [161]. The activation of GPCR41 by SCFA promotes the secretion 

of PYY, whereas the activation of the two receptors (GPR41 and GPR43) by SCFA 

promotes GLP-1 secretion [162, 163]. Moreover, the fermentation of non-digestible 

carbohydrates can promote differentiation in the proximal colon and consequently 

increase the number of L-cells in rats [164]. The endocannabinoid-like compound, 2-

oleoylglycerol (2-OG), also acts as a key compound linking gut microbiota and the 

intestine. The 2-OG can bind to GPR119 receptors and trigger GLP-1 secretion. Everard 

et al.[165] have demonstrated that gut microbiota modulates the tone of the intestinal 
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endocannabinoid system and that a specific species of bacteria, Akkermansia 

muciniphila, is able to regulate intestine endocannabinoid-like compounds such as 2-

OG. Bile acids, which are produced in the liver and are secreted into the duodenum 

upon ingestion of a meal, also act as molecules linking the intestine and microbiota. 

TGR5, a bile acid receptor, is expressed by L-cells and its activation increases GLP-1 

secretion. Interestingly, the gut microbiota is an important regulator of bile acid 

metabolism, including the regulation of synthesis and the production of secondary bile 

acids. Consequently, variations in the composition of microbiota could modulate 

specific bile acid profiles, thereby their capacity to activate TGR5 and GLP-1 secretion 

(reviewed in [166]). 

Besides mechanisms involving GLP-1 secretion, there are other mechanisms involved 

in the crosstalk between microbes and host cells. Gut microbiota can increase the 

absorption of monosaccharides from the gut by facilitating the extraction of calories 

from ingested dietary substances [167]. In this sense, the carbohydrate response 

element-binding protein (ChREBP) has been demonstrated to be implicated in the 

absorption of monosaccharides in the intestine induced by gut microbiota [168]. The 

intestinal gluconeogenesis (IGN) may be another link between gut microbiota and the 

intestine. DeVadder et al.[169] reported that the SCFAs butyrate and propionate, which 

are generated by the fermentation of soluble fibre by gut microbiota, stimulate the 

expression of the IGN gene via the cAMP-dependent mechanism and gut-brain axis 

respectively. Finally, another mechanism that has been proposed to link gut microbiota 

and the intestine is lipopolysaccharides (LPS) of gram-negative bacteria. LPS, together 

with other molecules, such as peptidoglycan and lipoteichoic acid, originate from gut 

microbiota and can cause alterations in intestine permeability, immune system 

activation and related metabolic disorders [170]. 

Numerous putative mechanisms linking gut microbiota and the GI tract have now been 

discovered. However, more mechanisms involved in this interaction are still under 

investigation.  

1.4. The enteroendocrine system in disease: obesity and 

diabetes mellitus 

Obesity is a primary risk factor for the most prevalent diseases affecting the worldwide 

population, including cardiovascular disease, type 2 diabetes mellitus (T2DM) and 

inflammation [171]. Obesity is regulated by a complex biochemical process, and its 

pathological mechanisms have been studied widely in adipose tissue, the liver, and 

muscle [172, 173]. However, the intestine also plays an important role in the pathology 

of obesity because energy intake from food is involved in the regulation of body 

weight, and over-nutrition is considered to be the main cause for becoming obese over 

other environmental factors [174, 175]. 
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The increase in these life-style diseases highlights the need to search for new 

therapeutic strategies. The GI tract plays a role in controlling the metabolism through 

peptide hormones secreted from enteroendocrine cells. These hormones from the gut 

play a central role in nutrient intake signalling, regulating appetite and energy 

expenditure. As mentioned above, all gut hormones have anoretic effects, they 

promote satiation (causing the meal to end) and/or satiety (postponing the initiation 

of the next meal), while ghrelin is the only one that stimulates appetite and food intake. 

There is evidence that specific enterohormone administered at physiological 

concentrations can influence the appetite of rodents and humans (reviewed in [174]). 

Likewise, the effects of gut hormones on food intake and body weight have been 

observed in bariatric surgery (such as Roux-en-Y gastric bypass), which induces a huge 

increase in GLP-1 and PYY secretion, and is used to treat obesity. Therefore, the 

modulation of enterhormone signalling may represent an important target for 

preventing obesity and related/associated pathologies. Moreover, endogenous gut 

hormones regulate appetite physiologically, unlike the drugs that are currently 

available, which are mainly based on influencing the central neurotransmitter systems 

to reduce appetite. Therefore, gut hormone-based therapies might lead to fewer side 

effects [174].  

Furthermore, the incretin hormones (GLP-1 and GIP) could represent an interesting 

strategy in the prevention and/or management of T2DM. T2DM is the most common 

endocrine disorder, characterised by impaired insulin secretion and insulin resistance, 

and one of the fastest growing non-communicable diseases in the world [176]. The 

main goal in the treatment of T2DM is to keep blood glucose levels within the normal 

physiological range. In this sense, GLP-1 and GIP are therapeutically interesting 

peptides because they are important mediators of glycemic homeostasis, as they are 

responsible for approximately 50-70% of the total insulin secreted following glucose 

intake [113]. However, the strategy is mainly focused on increasing GLP-1 levels rather 

than stimulating the GIP because in patients with T2DM there is a decreased 

responsiveness of β-cells to GIP action [177]. Accordingly, many incretin-based 

therapies are focused on using GLP-1 analogues, promoting endogenous GLP-1 

secretion or using DPP-IV inhibitors. As mentioned before, DPP-IV is responsible for 

inactivating more than 80 % of the secreted GLP-1; therefore, DPP-IV inhibitors 

provide an alternative approach to enhance GLP-1-mediated glucose control and 

consequently to preventing T2DM.  

The response to nutrients differs between obese and non-obese individuals, with 

changes in digestion, absorption and hormone release. These changes may be a 

consequence of differences in the intestinal epithelial morphology and function caused 

by types of diets that leads to obesity. Some studies on diets associated with obesity 

suggest that these diets might modulate intestinal cell differentiation. A recent study 

shows that over-nutrition in animals and high glucose or FFA in cultured intestinal 

epithelial cells prevents β-catenin degradation and thereby intestinal cell proliferation. 

In contrast, food restriction in db/db mice decreased intestinal cell proliferation and 
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absorption, suggesting that increased food intake induces activation of Wnt signalling 

and could contribute to enhancing the intestinal absorptive capacity and the 

development of obesity [178]. While there are a few studies that suggest the EECs 

number can be changed by nutrient stimulation. Controversial results have recently 

been reported between high-fat diet and L-cell differentiation. Duca et al. [179] 

reported that a high-fat diet decreases the L-cell population and GLP-1 secretion 

through up-regulation of HES gene expression and downregulation of Math1 

expression. Similarly, it has been reported that the density of cells staining for 

chomogranin A (ChgA) and GLP-1 is reduced in high-fat diet fed rodents, together with 

a reduction of proglucagon (Gcg) and PYY expressions [179–181]. On the contrary, 

Aranias et al. [182] showed that the GLP-1 cell density increased after high fat 

consumption in humans.  Furthermore, high fiber diet enhances the number of L-cells 

in rodent [183] and increased L-cell has been observed in intestinal organoids culture 

after the exposition of SCFA [184]. These findings indicate a potential link between 

diets that lead to obesity and intestinal differentiation/metabolism. Concomitantly, the 

results suggest a new strategy in obesity prevention, the possibility to increase L-cell 

number in order to increase enterohormone release, and thereby improve glucose 

homeostasis and satiety. 

Recent evidence in mice and humans has described that gut microbiota is linked to the 

development of metabolic diseases, such as obesity and T2DM [185–187]. Studies 

using germ-free mice demonstrated that gut microbiota plays a causal role in the 

development of obesity, because germ-free mice transplanted with the microbiome of 

obese donors gained significantly more weight than germ-free mice transplanted with 

the microbiome of lean donors [167]. Similarly, gut microbiota from obese mice 

transplanted to germ-free mice leads to a significant increase in body fat content and 

insulin resistance in recipient mice [167, 188]. These changes were associated with 

dysbiosis (alteration in the types and numbers of bacteria in the gut). However, 

controversial patterns in these alterations have been reported. In obese mice and in 

T2DM patients, an increase in Firmicutes and a reduction in Bacteroidetes have been 

observed [189–191]. Similarly, some human studies have documented a reduced 

representation of Bacteroidetes accompanied by a rise in Lactobacillus species 

belonging to the Firmicutes phylum in obese subjects [190, 191]. However, some 

studies have reported other results, such as an increase in species of both Firmicutes 

and Bacteroidetes in overweight women or a decrease in Bacteroidetes with no 

differences in Firmicutes phylum in obese individuals [192, 193]. Although the 

alteration of the gut microbiota composition has been associated with obesity and 

T2DM, further studies are needed to establish specific compositions. Nevertheless, the 

association between the composition of gut microbiota and the development of 

metabolic disease has been taken into consideration as a possible novel strategy for 

preventing and/or managing obesity and T2DM. 

The health benefits of dietary components have recently attached interest to disease 

prevention and health maintenance. Although studies are being carried out on 
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pharmacological compounds, natural compounds could be used to prevent the 

development of overweight and obesity-related problems from early preclinical stages. 

As mentioned above, dietary compounds can modulate enterhormone secretion; for 

example, glutamine is reported to increase GLP-1 and GIP secretion in humans [194, 

195], proanthocyanids are reported to enhance GLP-1 secretion in rats [196], and pea 

proteins are shown to increase CCK, GLP-1 and PYY levels in humans [197], among 

others. On the other hand, as mentioned above, SCFAs have been reported to stimulate 

GLP-1 secretion by promoting L-cell differentiation and increasing the L-cell 

population, and thus this is a novel strategy for enhancing enterhormone secretion. 

Moreover, recent studies have shown that specific nutrients could play a potential role 

in controlling obesity by modulating gut microbiota [198]. For these reasons, screening 

natural compounds to find new therapies could be useful, and it is also recommended 

to study their action mechanisms to prevent disease in a target population.  

Hereafter, we focus on the action of specific bioactive food compounds, polyphenols 

and peptides, on different elements of GI tract involved in the modulation of the 

enteroendocrine system and that could have beneficial health implications.  

2. Natural compounds with bioactivity in the GI 

tract 

2.1. Polyphenols 

Polyphenols are plant secondary metabolites and are generally involved in defence 

against UV radiation, herbivores, aggression by pathogens, etc. Unlike traditional 

nutrients, these plant-derived compounds are not essential dietary molecules for 

short-term animal well-being, but they may exert a positive long-term impact on 

health through their capacity to modify enzymatic and chemical reactions in animal 

systems [199, 200]. 

2.1.1. Structure, classification and bioavailability 

These bioactive compounds are present in a wide range of fruits and vegetables, as 

well as in processed foods and beverages, such as black tea, matured red wine, coffee, 

and cocoa. Based on their chemical structure [201], they are classified into two main 

groups: flavonoids and non-flavonoids [199]. 
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Flavonoids are characterized as containing two aromatic rings (A and B) connected by 

three-carbon atoms that form an oxygenated heterocycle (C). The basic flavonoid 

skeleton is comprised of 15 carbons 

and can have numerous substitution 

patterns resulting in several 

subgroups. Depending on the 

hydroxylation pattern, the 

distribution of the C6-C3-C6 

structures, their index of hydrogen 

deficiency (IHD), and/or their no-

hydroxylated functional groups, 

flavonoids are classified into 

flavones, flavonols, flavanols, 

isoflavones, flavanones, and 

anthocyanidins [202]. 

Figure 4. Basic structure of flavonoids and their different type 
molecules depending on their hydroxylation pattern [203]. 
 

Flavanols, also known as flavan-3-ols, are the most structurally complex subclass of 

flavonoids and represent one of the main phenolic components of the human diet. 

They can be found in beans, nuts, apples, grapes, cocoa, tea and wine. Unlike other 

classes of flavonoids, which are usually found in nature in glycoside forms, flavanols 

are usually present in the aglycone form or esterified with Gallic acid, the commonest 

non-flavonoid structure [204]. Flavanols exist in the monomer form and the oligomer 

and polymer form (proanthocyanidins). The two chiral centres, C2 and C3, of flavan-3-

ol monomers produce 4 isomers, and the most common structures are (+)-catechin 

and (-)-epicatechin [201]. Flavan-3-ols monomers can also be found in the gallated 

form, such as (+)-gallocatechin, (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECg) 

and (-)-epigallocatechin gallate (EGCg). Conversely, proanthocyanidins (also known as 

condensed tannins) are oligomeric and polymeric structures of flavanols, which 

include an additional chiral centre at C4 in the upper and lower units. Dimer (B-type) 

and trimer (C-type) proanthocyanidins are formed by oxidative coupling between C-4 

of the flavan-3-ol upper unit and C-6 or C-8 of the lower unit [201]. Type A 

proanthocyanidins have an additional ether bond [C-2 (upper unit)–O–C-7 (lower 

unit)] [199]. 

Over the years, in vitro, ex vivo and in vivo studies as well as clinical trials have 

provided ever increasing evidence of the role polyphenols play as potential health 

compounds [199, 205]. However, the scientific evidence shows that the beneficial 

effects on health of polyphenols are directly linked to their absorption, distribution, 

metabolism and excretion. Therefore, considerable attention has been paid to their 
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bioavailability, as an essential factor for understanding their biological activity, and has 

been a topic of increasing research in recent years [12, 199, 206].  

Polyphenols are recognized as xenobiotics by the organism and are metabolised 

following the typical detoxification pathway. After ingestion, the small intestine is the 

first organ relevantly involved in the metabolism and absorption of the polyphenols. It 

is estimated that only 5%-10% of the total intake of polyphenols, especially those with 

a low degree of polymerization (monomeric flavan-3-ols and dimer 

proanthocyanidins), can be absorbed in the small intestine by both passive and 

facilitated diffusion [207]. Once absorbed, they are extensively metabolized by the 

action of phase II enzymes (uridine 5′-diphospho-glucuronosyltransferases, 

sulphotransferases, and catechol-O-methyltransferase), producing their 

glucuronidated, sulfated, and/or methylated conjugates respectively [206]. This 

conjugation step first takes place in the small intestine and subsequently occurs in the 

liver. Next, the conjugates can be returned to the lumen via bile (enterohepatic 

circulation) or can reach the systemic circulation to be distributed to tissues or 

excreted by urine [208]. 

The 90-95% of unmodified polyphenols, mainly oligomers and polymers, are not 

absorbed by the small intestine and proceed through the gastrointestinal tract. 

Together with the conjugated metabolites they return through the enteropatic 

circulation, reach the colon where they are accumulated at high concentrations (up to 

the mM range) and are exposed to the microbial metabolism [209]. In the colon, 

favanols can be biotranformed via three metabolic pathways: the production of valeric 

acid by meta-substitution of the flavanol A ring, the formation of valerolactone 

compounds by the microbial cleavage of flavanol C- and A- rings, and the breakdown of 

polymeric flavan-3-ols into their monomers by microbial cleavage of the interflavanic 

bond C4–C8 [210]. It has been described that gallated flavanols can also reach the 

colon and are metabolised to the respective flavanol form (monomer or even dimers) 

and the respective Gallic acid residue by the cleavage of the gallated moiety [211]. In 

addition, microbial dehydroxylation transforms monomeric forms to propan-2-ol 

metabolites, which may become valerolactones by microbial A-ring cleavage [210]. The 

valerolactones can be converted by acidic hydrolysis into valeric acids, which are 

rapidly transformed into phenylpropionic, phenylacetic, and benzoic acids. Then, 

microbial metabolites are absorbed and can be metabolized by phase II enzymes, to 

finally enter the circulation or be eliminated in urine [206]. 

It has been reported that polyphenol absorption, metabolism and their fate in the 

organism are affected by external factors, such as polyphenol structure, source, food 

processing, and the quantity, as well as by internal factors, such as age, sex and health 

status of the host [212]. Therefore, their bioactivity could be modulated under 

different situations. 
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Figure 5. The fate of dietary polyphenols after their ingestion. Extracted from [206]. 

2.1.2. Flavonoids and the enteroendocrine system 

As mentioned before, polyphenols and especially flavonoids have been described as 

potential bioactive compounds that exhibit a wide array of beneficial effects on health. 

They can act as antigenotoxic [213], antimicrobial [214], antioxidant [215], 

antiinflamatori [216, 217] and anti-cancer/anti-proliferative [218, 219] molecules. 

Among their effects, polyphenols have been reported to have antihypertensive effects 

[220] and also improve lipid metabolism [221]. 

Furthermore, flavonoids have been shown to improve glucose homeostasis. However, 

controversial results have been reported in different glucose-disrupted animal models, 

because their antihyperglicemic effect seems to be exerted by different mechanisms 

depending on the molecular origin of the glucose homeostasis disruption. Apart from 

their insulin mimetic effect on liver and peripheral tissues, some mechanisms used by 

flavonoids are exerted in the intestine, such as the inhibition of the enzymes that 

participate in carbohydrate digestion and the reduction of glucose absorption by 

inhibiting the transporters involved in glucose uptake (reviewed in [222]). Moreover, 

flavonoids have also been reported to have effects on the incretin system, which could 

be another mechanism for improving glucose homeostasis (reviewed in [223]). Our 

research group has previously shown that grape seed proanthocyanidin extract (GSPE) 

(1 mg/kg BW) increases GLP-1 plasma levels in rats, partly due to inhibition of DPP-IV 

but also due to enhanced secretion [196]. However, the mechanism of action on L-cells 

of flavonoids, especially GSPE, and whether they could modulate other 

enterohormones are not yet determined (review [224]). 
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2.1.2.1. Effects of flavonoids on enterohormone secretion and on EE cells 

differentiation 

It is well known that the secretion of gut hormones is strongly influenced by dietary 

compounds. Macronutrients are the most marked example, but polyphenols and other 

micronutrients have also described as important regulators of enterhormones 

secretion. There are few studies suggesting that flavonoids might modulate 

enterohormone secretion, some of them reviewed in [224]. 

Ghrelin is the only enterhormone that exhibits orexigenic effects, inducing the 

stimulation of appetite and food intake. The effect of isoflavones on ghrelin has been 

described, whereas there are a few studies using other types of flavonoids. In healthy 

postmenopausal women, the administration of isoflavones did not modify fasting 

ghrelin plasma levels, body weight and food intake [225, 226]. In a smaller study, the 

supplementation of 114 mg/day of isolated isoflavonoids for three months resulted in 

the inhibition of the age-dependent rise of the fasting plasma ghrelin levels in 

postmenopausal women with a history of breast cancer [227]. However in that study 

the lipid profile or insulin sensitivity was not modified, and the body composition and 

food intake were not assessed. Thus, in human studies clear results are not observed. 

Instead, animal studies suggest that the isoflavones supplementation can modify the 

levels of ghrelin and that such modification results in changes of body weight. In 

ovariectomized rats under a high-fat diet, the administration of different doses (26, 74, 

206 mg/kg bw) of soy isoflavones for 4 weeks decreased plasma ghrelin, increased 

CCK and tended to increase PYY levels. These findings were accompanied with a 

reduction of body weight and food intake at the higher doses, but with an increased 

body weight at the lower dose [228]. Similarly, plasma ghrelin levels were reduced by 

the daily administration of isoflavone genistein (8 mg/kg) for 8 weeks in female mice, 

but not in males. In this study, the treatment decreased the relative food consumption 

in female at 1 and 5 weeks and in male at 5 weeks [229]. In studies with other families 

of flavonoids, an extract rich in naringenin (Citrus grandis) was administered during 

12 weeks at different doses (300, 600, 1200 mg/kg bw) in obese zucker rats under a 

high fat/high cholesterol diet. The results showed that the extract counteracted the 

reduction of ghrelin induced by the diet. Moreover, the high dose of extract decreased 

the GLP-1 plasma levels (which were not modified by the diet), while any dose did not 

change PYY secretion [230]. Finally, a diet supplemented with tea extract rich in 

monomeric flavanols did not modify fasting ghrelin levels and body weight in T2DM 

and/or obese humans studies [231–233]. However, Chen et al. increased the dose of 

phenolic compounds (856.8 mg ECGC) and observed that green tea extract reduced 

body weight and ghrelin levels in obese women after 12 weeks [234]. 

There are a few studies that evaluate the action of flavonoids on CCK secretion. As 

mentioned above, increased CCK levels were observed after the administration of soy 

isoflavones for 4 weeks in ovariectomized rats [228]. In vitro assays have shown that 

hesperetin and naringenin stimulate CCK release in STC-1 cell line, and that the effect 
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is mediated via the activation of transient receptor potential channels  (TRP channels) 

including TRPA1 and the increase of intracellular calcium levels [235, 236]. Similarly, 

Al Shukor et al. showed that quercetin, kaempferol and apigenin enhance CCK 

secretion in STC-1 cell line, but no effect is observed by rutin and baicalein [237].  

There are limited studies about the effect of flavonoids on PYY and GIP secretion. The 

scarce studies in animals (mentioned above) do not show clear effects on PYY 

secretion. However, Weickert et al. [226] observed that plasma PYY levels increased 

after 8 weeks of isoflavonoid treatment in healthy postmenopausal women. The effect 

of red, white and brown-grained sorghum (which contain anthocyanins, condensed 

tannins and phenolic acids, apart from fiber) was determined in healthy adult 

volunteers (men and women). The area under the plasma concentration-time curve of 

postprandial GLP-1 and GIP in both genders and PYY in men was significantly higher in 

sorghum biscuits groups as compared to the control. The biscuits prepared from red 

sorghum, which contained the highest polypenol content, exerted the strongest 

changes on hormone secretion. These results were accompanied by lower satiety 

ratings after its consumption, although energy intake at a subsequent meal did not 

differ between treatments [238]. Another research group reported that the ingestion 

of bilberry extract (36% w/w anthocynins) did not modify GLP-1 and GIP levels in 

T2DM subjects; although a significant decrease of glucose plasma levels was observed 

in bilberry extract group [239]. On the other hand, the daily administration of 

flavonoid glycosides extract from seabuckthorn leaves (SLG) counteracted the 

increased GIP levels induced by high fat diet in C57BL/6J mice [240]. Our research 

group have reported that an acute dose of GSPE decreased GIP release after oral 

glucose load in rats [196].  

The GLP-1 hormone play an important role in glucose homeostasis enhancing insulin 

secretion; although the incretin effects is its principal action, GLP-1 is also involved in 

the regulation of food intake. There are some in vivo studies that evaluate the action of 

flavonoids on GLP1 secretion, some of them have been mentioned above. The 

consumption of green tea extract (1.5 g/day, 856.8 mg EGCg) significantly increased 

GLP-1 plasma levels after 16 weeks in T2DM subjects [241]. The consumption of berry 

meal (800 mg polyphenols including bilberries, blackcurrants, cranberries, and 

strawberries) with 35 g sucrose in healthy subjects tended to increase GLP-1 and 

decreased glucose concentration, compared with the control meal [242]. Similarly, α-

glycosyl-isoquercitrin also enhance GLP-1 secretion when it is simultaneously 

administered with fructooligosaccharides, but not alone [243]. In the same sense, our 

research group found that the acute dose of GSPE extract (1g/kg BW) increased GLP-1 

plasma levels after an oral glucose load in rats [196]. Also in animal studies, an acute 

dose of 10 µg/kg BW of cinnamtannin A2 (procyanidin tetramer) increased active GLP-

1 and insulin levels in fasted mice [244]. Berberine has been reported to increment 

portal active GLP-1 levels in healthy and STZ mice and to increase GLP-1 secretion 

from human enteroendocrine cell line NCI-H716 cells [245, 246]. In vitro assays using 

the same cell line have shown that genistein and daidzen isoflavonoids (derived from 
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soy fermentation), and glyceollins and phytoalexins (derived from daidzen in soybean 

with a fung infection) can increase GLP-1 release [247, 248]. Although the direct effect 

of isoflavonoid family has been reported, such effect of flavanols has not been reported 

yet. Some studies have shown that flavanols can activate bitter receptors, increase 

intracellular calcium levels and modulate cellular membrane potential [249–252], but 

the enterhormone secretion was not assessed in these studies. Regarding bitter 

receptors, a recent study has reported that Qing-Hua Granule, which is rich in 

flavonoids, enhance GLP-1 secretion via activation of bitter taste receptor (TAS2R) 

pathway in the gastrointestinal tract of db/db mice [253]. 

The increased active GLP-1 levels induced by bioactive compounds can be attributed to 

several mechanisms. As mentioned above, our research group found that GLP-1 plasma 

levels are increased by acute dose of GSPE, and such effect might be partly explained 

for its capacity to inhibit DPP-IV. Gonzalez et al. reported that chronic GSPE treatment 

decreased DPP-IV activity and gene expression in Caco-2 cell line, and decreased 

intestinal gene expression in healthy and diet-induced obese rats [254]. Moreover, 

they assessed that the principal molecules of this extract catechin, epicatechin, B2 

dimer and gallic acid, which are absorbed by intestinal CaCo-2 cells, inhibit  DPP-IV 

activity in endothelial HUVEC cells [196]. Cocoa and products derived from it, which 

contain flavanols, have been shown to inhibit DPP-IV activity in vitro [255]. 

In addition to stimulate secretion and inhibit inactivation, a new strategy to enhance 

endogenous enterohormone levels might be the promotion of endocrine cell 

differentiation and thereby the increase of endocrine cell number. Despite there have 

been no reports of flavonoids and L-cell differentiation, our research group found that 

chronic GSPE treatment increased ChgA, GLP-1 and PYY, and counteracting the effects 

induced by cafeteria diet in rats, and suggesting a possible alteration of intestinal 

differentiation [256]. Moreover, similar extracts have been reported to enhance Muc2 

expression together with an increment of the goblet cell density in mice [257]. Besides, 

flavonoids have been reported to modulate differentiation of other cell lines, such as 

PC12 nerve cell line [258, 259], Treg cells [260], 3T3-L1 cell line [261], bone marrow 

stromal cells [262] and calvarial osteoblast-like (ROB) cells [263]. Although these 

results point that flavonoids could be a good candidate to modulate L-cell 

differentiation, further studies are required. 

2.1.2.2. Effects of flavonoids on gut microbiota 

As mentioned above, gut microbiota might be a potential exteriorised organ that can 

contribute to developing metabolic dysregulation, leading to inflammation in intestinal 

and peripheral tissues, and alteration of glucose and energy homeostasis [154, 198, 

264, 265]. Moreover, gut microbiota might influence directly GI tract trough several 

mechanisms, the principal mechanism is SCFA produced by gut mircobiota, which 

enhance the secretion of GLP-1 and PYY. Studies have indicated that the microbiota 

composition can be influenced by several external disturbances, but dietary changes 

are one of the most important factors and can lead to 57% of the total structural 
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variation in gut microbiota [266]. There are some dietary strategies for modulating the 

composition and metabolic/immunological activity of the gut microbiota: probiotics, 

which are live microorganisms that its administration in adequate amounts confers a 

health benefits on the host, and prebiotics, which are an ingredient that fermentation 

results in specific changes in the composition and/or activity of gut microbiota [267]. 

In the past few years, dietary polyphenols have been suggested to be potential gut 

microbial modulators, as they induce oscillations in the composition of the microbiota 

populations, such as red wine [268, 269], cocoa [270] and promograde polyphenols 

[271]. It is well known that flavonoids have an antimicrobial effect against pathogenic 

microorganisms. For example, it has been reported that components of tea 

(epigallocatechin gallate, epicatechin gallate, epigallocatechin, gallocatechin, 

epicatechin and catechin) can inhibit the growth of many pathogens, including 

Helicobacter pylori [272], Staphylococcus aureus, E. coli O157:H7 [273, 274], Salmonella 

typhimurium DT104, Listeria monocytogenes, methicillin-resistant S. aureus [275, 276], 

and Pseudomonas aeruginosa [277], among others. Despite their antimicrobial effect, 

there are considerably few studies that evaluate the influence of flavonoids on the 

composition and activity of the non-pathogenic gut microbial community. 

Some in vitro studies have evaluated the effect of flavonoids on the growth pattern of 

intestinal bacteria. It was demonstrated that flavonoid aglycone, but not their 

glycosides, may inhibit the growth of some intestinal bacteria [278]. Similarly, 

naringenin and hesperetin inhibited the growth of almost all bacteria analysed in the 

study, whereas their glycoside forms (naringin and hesperidin) had no impact. In the 

same study, catechin repressed the growth of Clostridium histolyticum and increased 

the growth of Clostridium coccoides–Eubacterium rectale group, Bifidobacterium spp. 

and E. Coli [279]. Lee et al.[280] evaluated the impact of the phenolic compounds of a 

tea extract, rich in catechin and epicatechin, and their fecal bacterial metabolites, 

resulting in a repression in the growth of Clostridium perfringens, Clostridium difficile 

and Bacteroides spp.. Moreover, flavanoids can also influence the gut microbiota by 

affecting the adhesion gut bacteria on intestinal cells [281, 282]. 

The effect of flavonoids on the gut microbiota composition has also been observed in in 

vivo studies, which are summarised in Table 1. In human studies, it has been reported 

that wine polyphenols, cocoa-derived flavanols and isoflavones can modulate the gut 

microbiota after 4-week treatments [283–285]. The daily consumption of 272 ml of 

red wine in adult men decreased the plasma levels, TAG, HDL-cholesterol and the C-

reactive protein, which is considered to be a blood marker of inflammation. These 

significant reductions could be linked to changes in the bifidobacteria number [283]. 

Tzounis et al. [284], who evaluated the effect of cocoa flavonoid in a randomised, 

double-blind, cross-over intervention study, also observed a reduction in plasma C-

reactive protein and TAG, together with an increase in Lactobacillus and 

Bifidobacterium populations. These effects on gut microbiota in the dominant bacterial 

communities were similar to those observed by Clavel et al [285]. 
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Table 1. Summary of studies that evaluate flavonoid effects on gut microbiota composition (adapted from [217]). 

Flavonoid Specie Dose/Time Diet Effects in the microbiota 
composition 

Ref. 

Human studies      

Red wine  
(flavanols, 
anthocyanins, 
flavonols, etc) 

Adult men 272 ml/  

4 weeks 

- Increase the number of 
Enterococcus, Prevotella, 
Bacteroides, Bifidobacterium, 
Bacteroides uniformis, 
Eggerthella lenta, and 
Blautiacoccoides–Eubacterium 
rectal 

[283] 

Cocoa flavonols Human 494mg/ 
4weeks 

- Increase the bifidobacterial and 
lactobacilli and decreased 
clostridia populations 

[284] 

Isoflavones Postmeno
pausal 
women 

100 mg/ 30 
days and 60 

days 

- Increase microorganisms of 
Lactobacillus-Enterococcus 
group, Faecalibacterium 
prausnitzii subgroup, and 
Bifidobacterium genus 

[285] 

Animal studies      

Apple 
procyanidins 
(highly polymeric 
procyanidins (PP)) 

C57Bl/6J 

male mice 
0.5% PP/ 
20weeks 

high fat 
sucrose 

diet 

Decrease the 
Firmicutes/Bacteroidetes ratio 
and increase Akkermansia 
genera. 

[286] 

Cranberry extract 
(flavanols, 
phenolic acids, 
anthocyanins, etc) 

C57Bl/6J 

male mice 
 200mg/kg 

BW/8 weeks 
high 

fat/high 
sucrose 

diet 

Increase the proportion of 
Akkermansia genera. 

[287] 

Green tea leaves 
(flavanols) 

C57BL/6J 
female 
mice 

4 % (w/w)/             
22 weeks 

high-fat 
diet 

Increase the proportion of 
Akkermansia genera. 

[288] 

Grape polyphenols 
(GP) (flavanols, 
anthocyanins, etc) 

C57Bl/6J 

male mice 
1% GP/ 12-

13weeks 
high-fat 

diet 

Increase the growth of 
Akkermansia muciniphila and 
decrease the ratio of 
Firmicutes/Bacteroidetes. 

[289] 

Grape seed 
proanthocyanidin 
extract 

C57Bl/6J 

male mice 
300mg/kg 

BW/7weeks      
high-fat 

diet 

Increase the growth of 
Clostridium XIVa, Roseburia, and 
Prevotella. 

[290] 

Quercetin Wistar 
rats 

30 mg/kg 
BW/6 weeks                   

high fat 
sucrose 

diet 

Decrease Firmicutes 
populations, Erysipelotrichia 
class and Bacillus genus.                                             
Down-regulation of 
Erysipelotrichaceae, Bacillus and 
Eubacterium cylindroides 
species. 

[291] 

Red wine 
polyphenols  

F344  
male rats 

50 mg/kg 
BW/ 

16weeks                     

- Increase Bifidobacterium and 
reduce Clostridium. 

[292] 
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Concerning animal studies, most of the studies evaluate the potential effect of 

flavonoids in animals that have a high fat sucrose diet. In order to evaluate whether 

flavonoids reverse alterations of gut microbial composition associated with diet-

induced obesity, Matsomoto et al. [286] assessed, in C57BL/6J mice, the effect of non-

absorbable apple procyanidins (PP) during 20 weeks and observed a reduction in 

endogenous metabolite levels associated with insulin resistance, in weight gain and in 

inflammatory effects (LPS levels and gut permeability). The administration of PP also 

decreased the Firmicutes/Bacteroidetes ratio and increased the Akkermansia 

population. Similarly, the daily administration of cranberry extract (200mg/kg) for 8 

weeks in mice also increases the proportion of Akkermansia [287]. This change in 

microbial composition was observed in another study, in which the high-fat diet of 

mice was supplemented with powered green tea and Lactobacillus plantarum DSM 

15313 [288]. Likewise, the administration of grape polyphenols (GP) during 13 weeks 

also increased the growth of the Akkermansia population and decreased the 

proportion of Firmicutes to Bacteroidetes in C57BL/6J mice with a high-fat diet. In the 

same study, Roopchand et al. [289] observed that grape polyphenols (GP) 

administration increased intestinal gene expression of proglucagon and decreased a 

gene for glucose absorption (Glut2).  Altogether, GP attenuated several effects of a 

high-fat diet, including weight gain, adiposity, the serum inflammatory markers and 

glucose intolerance, and the authors suggest that the gut microbiota provides the link 

in the mechanisms of action in poorly absorbed dietary polyphenols. The 

administration of a similar extract, grape seed proanthocyanidin extract, during 7 

weeks also modulates the gut microbial composition, including Clostridium XIVa, 

Roseburia and Prevotella in mice with a high-fat diet [290]. 

In summary, the results of these studies suggest that flavonoids can act as prebiotic 

and thereby modulate the gut microbiota composition, inducing the growth of 

beneficial bacteria and reducing the pathogen species population. However, there are 

few studies in this research field and more studies are needed to confirm the results. 

Moreover, nowadays the studies that have reported mechanisms driving the crosstalk 

between gut microbiota and host metabolism in flavonoids field have been focused on 

intestinal permeability and endotoxemia. Although some prebiotics (i.e inulin, 

oligofructosa) has been shown to influence the production of gut hormones through 

the alteration of gut microbial composition (reviewed in [293]), there are scarce 

studies which evaluate that link after flavonoids administration. 

2.2. Bioactive peptides from natural sources 

Over the past few decades, there has been a large increase in scientific research into 

bioactive peptides (BPs) derived from food. These are fragments that are encrypted 

within the primary protein sequence and must be cleaved to exert their function [294]. 

These BPs, or cryptides [295], have a broad range of functions, such as inhibiting 

metabolic enzymes, regulating gene expression and hormonal secretion, and 
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maintaining physiological homeostasis through physical interaction and direct 

removal of metabolites. Several in vitro studies have demonstrated that BPs can 

beneficially modulate health markers [296, 297], and some of these BPs have been 

evaluated in vivo in rodents [298–300] and humans [301–303]. Although their effects 

are less potent than synthetic pharmaceutical drugs, these bioactive peptides are well 

metabolised and confer less side effects. Furthermore, there is a wide range of 

available and inexpensive food, processing by-products and under-utilized resources, 

which can be used as sources to generate these value-added products. These 

characteristics could potentially lead to their category being expanded in the 

nutraceutical food sector [294]. 

The function of bioactive peptides depends substantially on their structure, which in 

turn depends on the nature of their protein precursor and their production conditions.  

Therefore, the selection of the parent proteins and the process to liberate the peptide 

are important. As illustrated in Figure 6, the first step in the classical empirical 

approach involves identifying a suitable protein source, and then releasing bioactive 

peptide fragments through protein hydrolysis by proteolytic enzymes or via bacterial 

fermentation under specific process conditions (such as pH, temperature, time) [304]. 

Subsequent fractionation is necessary to yield enriched bioactive peptide preparation 

and purification steps to isolate peptides with particular bioactivity. For reference for 

the research community, the identified peptides can be deposited in web-based open-

access databases of bioactive peptides, such as BIOPEP and PepBank. 

Recently, in silico approaches have been applied to discover bioactive peptides. 

Examples include computational methods based on knowledge about the structure and 

activity of the peptides reported in the databases (BIOPEP) to determine the potential 

biological activity of the protein and the occurrence frequency of bioactive fragments 

in the protein [305]. Other bioinformatic tools can be used to envisage release of these 

fragments by specific enzymatic cleavage (such as, ExPASy PeptideCutter, PoPS) [295], 

while molecular docking has been used to virtually screen peptide sequences [306, 

307] or to propose the putative mechanisms of action [308, 309]. Predictive models 

can also be generated by PeptideRanker server, which is used to identify structural 

features in large proteins that have previously been associated with known 

bioactivities [310], or by the quantitative structure activity relationship (QSAR) [311, 

312]. These bioinformatics tools could be employed together with the classical 

approach to improve the generation, discovery and validation of bioactive peptides; 

however, there are several limitations in the approach to obtain them. Nevertheless, 

different targeted approaches have attempted to develop alternative strategies to 

overcome these limitations (such as making the method for identifying peptides more 

accurate, and improving in silico tools) [305, 313]. 
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Figure 6. Classical and bioinformatics approaches for the discovery of bioactive peptides in food proteins 

(adapted from [295, 305]) 

2.2.1. Bioactive peptides and GLP-1 enterohormone 

As mentioned in the section ‘GI tract in disease: obesity and diabetes mellitus’, dietary 

compounds are well recognized to play an important role in the prevention and 

management of T2DM. Many of their effects are involved in the incretin effect, mainly 

the increase in GLP-1 plasma levels. Accordingly, one of the therapeutic strategies of 

dietary compounds to enhance insulin secretion is to inhibit DPP-IV in order to 

increase active GLP-1 levels [314]. It is well known that bioactive peptides act as 

modulators of enzyme activity, such Angiotensin-converting enzyme inhibitors that 

have antihypertensive effects [315]. Over the past few years, bioactive peptides have 

shown their potential to act as DPP-IV inhibitors, which is a research area that is 

currently expanding. 

On the other hand, another point of action to enhance insulin secretion by dietary 

compounds is the stimulation of endogenous GLP-1 secretion. Some studies have 

reported that specific amino acids and hydrolysates enhance GLP-1 release [194, 316, 

317]. However, the role played by proteins or individual amino acids in triggering 

incretin secretion remains an area of controversy. Altogether, a few studies have 
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evaluated the two properties, bioactive peptides as DPP-IV inhibitors and as GLP-1 

stimulators, to increase active GLP-1 plasma levels and consequently improve glucose 

homeostasis. 

2.2.1.1. Bioactive peptides as DPP-IV inhibitors 

During the past few years, proteins from a variety of food sources have shown their 

potential to act as DPP-IV inhibitors. As shown in Table 2, a variety of food 

commodities from both animal (such as milk, eggs, fish, meat, etc.) and vegetal (such as 

oats, quinoa, amaranth, etc.) sources have been studied and shown to be promising 

sources of DPP-IV inhibitory peptides. As mentioned before, the process to liberate BPs 

is as important as the protein source. In a hydrolysis process, a range of enzymes are 

employed, including enzymes obtained from both animal (e.g. pepsin [318], trypsin 

[319], Corolase PP [320]) and vegetal (e.g. papain [317], protease from pumpkin 

[321]) sources, as well as food-grade proteinases, such as Alcalase, Flavourzyme, and 

Protamex derived from microorganisms [322, 323]. Moreover, in vitro simulated 

gastrointestinal digestion has also been reported to produce protein hydrolysates, 

suggesting that DPP-IV inhibitory peptides could originate during digestion [324, 325]. 

The effect of DPP-IV-inhibiting protein hydrolysates has been evaluated in numerous 

in vitro studies, which have shown that the half-maximal inhibitory concentration 

(IC50) values vary widely and range from 0.075 mg/ml to 5.71 mg/ml (Table 2). Some 

studies have reported that the inhibitory activity varies depending on the specificity of 

the enzyme used, showing differences in the IC50 values between 5.0 and 2.7 mg/ml in 

sodium casein hydrolysates [326], and between 3.71 and 2.21 in barbel hydrolysates 

[327]. A limited number of studies have identified the responsible DPP-IV inhibitory 

BPs through fractionation and/or peptide enrichment techniques (based on 

physicochemical properties such as molecular mass, hydrophobicity or charge), and 

analysis of the most potent fractions by mass spectrometry. As shown in Table 2, these 

peptides have a wide spectrum of potencies (IC50), ranging from 5 µM to >20,000 µM, 

amino acids and length compositions (2-17 amino acids long). In addition to these BPs 

isolated from protein hydrolysates, many other BPs have been identified by in silico 

approaches. Many of the peptides reported are dipeptides and show similar IC50 values 

(4 µM to >20,000 µM) [307, 328–330] to BPs that have been identified in protein 

hydrolysates (Table 2). Although, these BPs have been identified in the sequence of 

dietary proteins, it is unknown whether BPs could in fact be released from dietary 

proteins during digestion or enzymatic treatment.  

Research has shown that the amino acid sequence plays a predominant role in the 

DPP-IV inhibitory activity compared to other physicochemical parameters, including 

length, isoelectric point, hydrophobicity and net charge [307, 331]. DPP-IV 

preferentially cleaves substrates that bear proline or alanine at their P1 position (Xaa-

Pro and Xaa-Ala; where Xaa represents any amino acid) and also acts on substrates 

that bear other residues, such as glycine, serine, valina and leucine [332]. Hydrophobic 
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and basic residues at the P2 position enhance the affinity for cleavage compared with 

acidic residues. A recent analysis revealed that the presence of tryptophan residue at 

the N-terminal position increases the susceptibility to cleavage [330]. Although the 

residues at the N-terminal position may have a major impact by inhibiting DPP-IV, the 

authors pointed out that the C-terminal amino acid also affects the potency of DPP-IV 

because it is implicated in the interaction with the enzyme. 

To date, a few studies have been carried out on the in vivo DPP-IV inhibitory effects of 

the hydrolysates and peptides from dietary proteins. Peptides derived from milk and 

bean proteins, which have been shown to inhibit the activity of DPP-IV in vitro, were 

also found to have glycemic effects on mice [333, 334] as plasma glucose levels were 

found to decrease after an oral glucose tolerance test (OGTT). A β-casein-derived 

peptide LPQNIPPL found in gouda-type cheese with in vitro DPP-IV inhibitory effects 

has also been tested with animal models. Oral administration of this octapeptide 

resulted in lower postpandrial glucose under the curve compared to those that did not 

receive the peptide; however, insulin plasma levels did not differ [335]. In these 

studies, the authors did not measure plasma DPP-IV activity; therefore, it is unknown 

whether the effect of lowering the blood glucose observed was caused by inhibition of 

DPP-IV activity. 

As well as hydrolysates from milk and bean protein, hydrolysate produced by Alcalase 

treatment of the egg protein lysosyme has also been evaluated in in vivo models, 

showing a 25% reduction of blood serum DPP-IV activity and a trend towards higher 

serum GLP-1 levels after 90 min in diabetic rats undergoing a chronic treatment [336]. 

The Streptozotocin-induced rats were used to evaluate the effects of hydrolysates of 

porcine skin gelatin [299], Atlantic salmon skin gelatin [298], and halibut and tilapia 

skin gelatin [300]. In all studies, diabetic animals showed reduced blood glucose levels 

during OGTT, increased plasma insulin and active GLP-1 levels, and reduced plasma 

DPP-IV activity after chronic treatment (42 days with a daily dose of 300 mg/kg of 

porcine skin gelatin [299]; 35 days with a daily dose of 300 mg/kg of Atlantic salmon 

skin gelatin hydrolysate [298]; 30 days with a daily dose of 750 mg/kg of halibut and 

tilapia skin gelatin hydrolysate [300]. Moreover, rodents receiving halibut and tilapia 

skin gelatin hydrolysates also showed increased total GLP-1 levels. Therefore, the 

findings of this study suggest that these hydrolysates exert their anti-hyperglycemic 

effect via dual actions of DPP-IV inhibition and GLP-1 secretion enhancement. 

Similarly, the ileal administration of zein protein hydrolysate to rats was found to 

potentiate the incretin effect when administered prior to an intraperitoneal glucose 

tolerance test, resulting in decreased glucose concentration, increased insulin levels, 

decreased plasma DPP-IV activity, and increased total and active GLP-1 secretion 

[337]. Rice-derived peptides were likewise found to act via dual action. The oral 

administration caused increased plasma GLP-1 levels during intraperitoneal glucose 

tolerance test, together with reduced plasma DPP-IV activity and higher ratio of active 

GLP-1 to total GLP-1 following ileal administration [317]. 
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Protein source   IC50 (mg/ml)           DPPIV inhibitory peptide identified                                Ref. 

      Sequence IC50 (μM)   

Amaranth    1.1 - - [308] 

Beans  Cowpea 0.58 - - [338] 

  Navy; Black; 
Great 
Northern; 
Pinto; Red  

0.093; ~0.1;   
~0.15;  ~0.2;  
~1 

- - [325] 

       

Bovine haemoglobin   3.40-0.74 VAAA 141 [339, 340] 

Brewers’ spent grain    3.57 ILDL; ILLPGAQDGL 1121.1; 145.5 [323] 

Camel milk   1.26-0.52 WK; LPVPQ  [341–343] 

Cow's milk   1.59-0.68 INNQFLPYPY* 40 [342, 344] 

 α-Lactalbumin 0.74 - - [345] 

    0.036 WLAHKALCSEKLDQ; LAHKALCSEKL; 
LCSEKLDQ; TKCEVFRE; 
IVQNNDSTEYGLF; ILDKVGINY; 
LKPTPEGDL 

141; 165; 186; 166; 337; 263; 45 [318, 331] 

        

  β-Lactoglobulin 210 µM VAGTWY 174 [334] 

    
    1.7 - - [345] 

    1.28 - - [318] 

  Lactoferrin 0.38 - - [331] 

    1.088 - - [346] 

  Bovine serum  
albumin 

0.51 - - [318] 

      ER 4480 [347] 

  Sodium casein 1.10; 0.88 - - [346] 

Table 2.  Summary of protein hydrolysates, and peptides isolated from them, reported to have in vitro DPP-IV inhibitory activity (adapted from [376]). 
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    - APFPEVF; APFPE; HPIK; GPFPIIV; 
LPLP; EMPFPK;  LPVP; PFP; PQSVLS; 
YVPEPF; MPLW; LPQYL; LPVPQ; 
GPFP; PLLQ; VPYPQ; VPLGTQ; 
LPVPQK; KVLP; LPL; IPI 

6%; 6%; 9%; 9%; 11%; 12%; 15%; 
20%; 20%; 20%; 23%; 26%; 28%; 
34%; 37%; 51%; 55%; 63%; 98%; 
100%; 100%a 

[322] 

        

        

    5.0-2.7 - - [326] 

  Whey protein 
concentrate or 
isolate 

1.51 VAGTWY; TPEVDDEALEK; IPAVF; 
IPAVFK; VLVLDTDYK 

174.0; 319.5; 44.7; 143.0; 424.4 [319] 

  0.075 WLAHKAL; WLAHKALCSEKLDQ; 
LAHKALCSEKL; TKCEVFRE; 
LKPTPEGDL; LKPTPEGDLEIL; 
IPAVFKIDA 

286; 141; 165; 166; 45; 57; 191 [324, 331] 

          

    0.25; 0.27 IQKVAGTW; LKPTPEGDLEIL; 
LKPTPEGDLE; VLDTDY; LKALPMH; 
LKGYGGVSLPE; WLAHKAL 

329; 57; 42; 471; 193; 486; 286 [348] 

          

    1.43; 0.99 - - [346] 

    1.5; 1.1 - - [349] 

    1.54-0.72 - - [350] 

Cuttlefish  (Sepia 
officinalis) viscera 

  1.03 - - [351] 

        

Goat's milk  Casein - MHQPPQPL; SPTVMFPPQSVL; 
INNQFLPYPY 

350.41; 676.31; 40.08 [344] 

Gouda-type cheese   - VPITPT; LPQNIPP; PQNIPPL; 
VPITPTL; FPGPIPN; PGPIHNS; 
IPPLTQTPV; VPPFIQPE; YPFPGPIPN; 
LPQNIPPL; LPQ 

130; 160; 1500; 110; 260; 1000; 1300; 
2500; 670; 46; 82 

[335] 

        

Hemp   5.71-2.10 - - [352] 

Palmaria palmata   1.47 ILAP; LLAP; MAGVDHI 43.40; 53.67; 159.37 [353] 

Pea    1.08-0.73 - - [352] 
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aValues from [322] are reported in percent relative potency, with 100% and 6% relative potency corresponding to IC50 ~ 5 mM and ~ 120 mM, respectively.

Protein source   IC50 (mg/ml)           DPPIV inhibitory peptide identified                                Ref. 

      Sequence IC50 (μM)   

Lysosyme    1.5-0.4 - - [326] 

Quinoa   0.98; 0.88 - - [354] 

Rice  Bran 2.3 IP; LP 410; 2370 [355] 

  Brown 1.55-0.91 - - [352] 

Skin or scale  Alaska pollock 2.59; 1.53 - - [356] 

collagen/gelatin Atlantic salmon - GPAE; GPGA 49.6; 41.9 [357] 

  Barbel fish 3.71-2.21 - - [327] 

  Deer - GPGSPGGPL; GPVGXAGPPGK; 
GPM(O)GPXGVK; GPVGPSGPXGK; 
GPAGPXGVXGL1 

1638.8; 83.3; 226.9; 93.7; 318.1 [358] 

  Halibut, hake,  - SPGSSGPQGFTG; 
GPVGPAGNPGANGLN; 
PPGPTGPRGQPGNIGF; 
IPGDPGPPGPPGP; LPGERGRPGAPGP; 
GPKGDRGLPGPPGRDGM 

101.6; 81.3; 146.7; 65.4; 76.8; 89.6 [300] 

  tilapia, milkfish       

  Pork-skin, 
cattle-skin,  
fish-scale, 
chicken-feet 

1.61; 1.65;  GAX; GPA; GPX >20000; 5030; 2510 [359] 

  3.50; 3.57       

  Pork 1.5 - - [360] 

Soy   2.21-0.91 - - [352] 

Spanish dry-cured ham   0.69 AAAAG; AAATP; ALGGA; LVSGM 8130; 6470; >10000; >10000 [361] 

Tuna cooking juice   - PGVGGPLGPIGPCYE; 
CAYQWQRPVDRIR; PACGGFWISGRPG 

116.1; 78.0; 96.4 [362] 
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Studies also demonstrate the effect of hydrolysates on GLP-1 action via two different 

mechanisms in in vitro models. The cuttlefish (Sepia officinalis) viscera protein 

hydrolysate and bovine haemoglobin hydrolysate have been reported to enhance CCK 

and GLP-1 secretion from STC-1, together with an inhibition of DPP-IV activity [339, 

351]. Power-Grant et al. [349] demonstrated that whey proteins hydrolysate inhibit 

DPP-IV activity in vitro and induce an insulin secretion from BRIN BD11β-cells, but 

only intact whey proteins enhance GLP-1 secretion from STC-1. The action of 

hydrolysates or peptides on GLP-1 secretion will be detailed in the following section. 

Another glucoregulatory function of hydrolysates has been reported as the dual action 

of α-glucosidase and DPP-IV inhibition [318, 321, 323].  

2.2.1.2. Biopeptides as GLP-1 stimulators 

Although aminoacids, protein and protein hydrolysates have already demonstrated 

their stimulating effect on gut hormone secretion in in vitro and in vivo experiments, 

there is still controversy about their role in triggering incretin secretion. 

Peptones have been shown to induce GLP-1 secretion; for instance, they stimulate GLP-

1 release and increase proglucagon gene expression from native L-cells in isolated 

vascularly perfused rat jejuno-ileum, as well as in STC-1 and GLUTag cell lines [71]. 

Similarly, GLP-1 secretion was triggered by peptones, and less efficiently by di-

/tripeptides and non-hydrolysable Gly-Sar in colonic primary cultures. In this study, 

the authors demonstrated that oligopeptides stimulate GLP-1 secretion through 

PEPT1-dependent electrogenic uptake and activation of CaSR [316]. Furthermore, Pais 

et al. [363] reported that GLP-1 secretion from primary L cells was also associated with 

calcium influx through voltage gate calcium channels (VGCC). They also pointed out 

that different signalling pathways may be involved in GLP-1 secretion by complex 

peptide mixtures. Meanwhile, peptones and mixtures of essential amino acids have 

been reported to activate the ERK1/2 MAPK and p38 MAPK pathway in NCI-H716, and 

might provide a link to GLP-1 release [364]. 

Otherwise, various in vitro [197, 365–367] and in vivo [94, 368, 369] studies have 

reported controversial responses to GLP-1 secretion, involving different protein 

sources and hydrolysis rates. In humans, whey protein induces a major increase in 

postpandrial GLP-1 levels compared to casein protein [368]. In contrast, whey protein 

and another source, pea protein, were ineffective in altering GLP-1 and PYY secretion 

in male Wistar rats [369]. In in vitro studies, intact proteins and egg-hydrolysates are 

more potent than other protein hydrolysates (casein, pea and wheat hydrolysates) for 

increasing GLP-1 and CCK secretion in STC-1 cell line [197]. In contrast, intestinal 

digests of bovine haemoglobin protein exhibited stronger action on GLP-1 release than 

partially digested protein (saliva and gastric digest) [340]. Although a low-molecular 

fraction of wheat protein hydrolysate (LWP) enhances GLP-1 secretion in GLUTag 

cells, a high-molecular fraction did not. Moreover, the authors found that the LWP-

triggered GLP-1 secretion involved activation of the Ca2+/calmodulin-dependent 

kinase II pathway mediated by G protein-coupled receptor family C group 6 subtype A 
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(GPRC6A) [367]. Generally, basic L-amino acids (such as L-lysine, L-arginine and L-

ornithine) are known to be ligands of GPRC6A [370, 371].  

Recently, three peptide sequences, ANVST, TKAVEH and KAAT, were reported to have 

a GLP-1 enhancing secretion capacity [339]. It seems that the incretin effect of proteins 

is associated with the amino acid profile, but the specific amino acid motif that triggers 

GLP-1 secretion stimulation has not yet been determined. In the literature, several 

studies have reported free amino acids as GLP-1 secretion stimulators, such as L-

Phenylalanine, L-alanine and L-glutamine [363], L-asparagine [130], and glutamine 

[372]. The effect of glutamine was confirmed in healthy, obese and diabetic humans 

[194, 195]. Tolhust et al. [373] demonstrated this effect in isolated mouse L cells and 

reported that the mechanisms were associated with an increase in cAMP and cytosolic 

Ca2+ levels. Moreover, they found evidence to suggest that electrogenic sodium coupled 

amino acid uptake is responsible for initiating membrane depolarisation and voltage 

gated Ca2+, while a second pathway involves increasing intracellular cAMP levels. 

Young et al. [374] also reported similar results with L-proline, L-serine, L-alanine, L-

glycine, L-histidine, L-cysteine and L-methionine in STC-1. A tetra-glycine peptide also 

led to an increase in intracellular Ca2+ levels in NCI-H716, resulting in an increase in 

GLP-1 release. In contrast to other studies [373, 375], they observed no changes in 

cAMP.  Therefore, the GLP-1 secretion by amino acids, protein and protein 

hydrolysates and the intracellular signalling pathways underlying stimulus-secretion 

coupling remain uncertain, but a range of potential signalling pathways have been 

postulated.  

Altogether, these results reveal that bioactive peptides could be a potential therapeutic 

dietary compound for the prevention and management of T2DM, as they regulate 

glycemia homeostasis by increasing GLP-1 secretion and inhibiting DPP-IV activity. 

Since there are few studies that have evaluated the dual action of bioactive peptides, 

the screening of new hydrolysates for regulating glucose homeostasis is an area that 

needs to be considered.  
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Hypothesis and objectives 

The gastrointestinal tract represents the physical interface between the external 

environment and the circulation. Consequently, it is the first interaction between 

dietary components and the host. The interactions of dietary components with 

receptors and transporters located on the enteroendocrine cells of the intestinal tract 

can induce the secretion of hormones, which are profoundly involved in the control of 

metabolism, especially in the control of satiety and glucose homeostasis. Therefore, 

identifying natural bioactive compounds and the mechanism by which these modulate 

the secretion of hormones from entereoendocrine cells could lead to the development 

therapeutic agents for the treatment of obesity and glucose homeostasis disorders. 

Flavanols and phenolic acids are considered the most abundant phenolic compounds 

in the human diet due to their wide distribution in plants and fruits. Their 

consumption has been associated with beneficial effects in health, and it has been 

reported to target different tissues of the body. Previous studies performed in our 

research group reported that grape seed proanthocyanidin extract (GSPE) induces 

changes at intestinal level, specifically modulating production and cleavage of the 

anorectic gut hormone glucagon like peptide 1 (GLP-1). These results were linked with 

glucose homeostasis improvements and thereby indicated that the enteroendocrine 

system could be an important GSPE target. Therefore, due to its role in body metabolic 

homeostasis, understanding the potential mechanisms by which GSPE modulates the 

enteroendocine system is important. Actually, as above mentioned, the 

enteroendocrine system is not only important in regulation of glucose homeostasis but 

also in the control of food intake. This thesis has been performed in parallel to another 

one in which the influence of GSPE on food intake has been studied.  

While the beneficial effects of food phenolic compounds have been largely studied, 

bioactive peptides (BPs) are still a novel field of research. BPs encrypted within dietary 

protein sequence have been associated to health promoting effects. Different methods 

have been described to obtain the BPs, which may act upon different parts of the body. 

Therefore, dietary protein hydrolyzates are a promising source of potential BPs that 

might interact with the enteroendocrine system at the gastrointestinal level. However 

few studies have described an effect of BPs on GLP-1 secretion or on the enzyme 

responsible for GLP-1 inactivation, DPP-IV. Furthermore, very few in vivo studies 

associated the administration of BPs with glucose homeostasis improvement. 
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On the basis of the information described above, we hypothesized that bioactive 

natural compounds might act at different intestinal levels to modulate the 

amount of the main active enterohormones related to satiety and glucose 

homeostasis. Therefore, the main objective of thesis is to elucidate whether bioactive 

natural compounds, particularly GSPE and bioactive peptides derived from chicken 

feet, can modulate the levels of the main enterohormones by modulating different 

intestinal mechanisms.  

The specific objectives proposed to fulfill the established hypothesis were: 

1. To determine whether grape-seed proanthocyanidin extract directly affects 

the release of the main enterohormones. 

Previous results reported that an acute dose of GSPE modulates GLP-1 plasma levels in 

vivo. One potential mechanism by which GSPE could exert this effect, in addition to the 

previously shown DPP-IV inhibition, is the direct activation of GLP-1 secretion. Hence, 

we aimed to elucidate if GSPE is able to directly stimulate the release of intestinal GLP-

1, and if such action is extended to other enterohormones. 

2. To study whether grape-seed proanthocyanidin extract affects intestinal 

differentiation.  

Previous results showed that chronic treatment of GSPE counteract the down-

regulation of Chga, GLP-1 and PYY gene expression induced by a cafeteria diet, 

suggesting that one possible mechanism by which GSPE could act in chronic treatment 

is the promotion of enteroendocrine cell differentiation. Therefore, we aimed to 

discover whether GSPE modulates enteroendocrine cell differentiation. 

3. To study whether grape-seed proanthocyanidin extract modulates the gut 

microbiota and if such modulation influences the enteroendocrine system.  

In the last few years, the composition of the gut microbiota and its modulation has 

become of growing interest due to its influence on host metabolism. Several studies 

reported that other extracts rich in phenolic compounds are able to modulate the 

composition of the gut microbiota, although none of them evaluated the crosstalk 

between such modulation and the enteroendocrine system. Therefore, we aimed to 

explore whether GSPE alters gut microbiota composition and whether such 

modulation might be linked to the modulation of the enteroendocrine system. 
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4. To evaluate whether bioactive peptides derived from chicken feet modulate 

the incretin system through affecting GLP-1 cleavage and secretion.  

Previous results showed that GSPE improved glucose homeostasis, in part, through 

modulating GLP-1 levels. In order to discover new bioactive compounds that could also 

exert their effects by modulating the incretin system at the intestinal level, we 

screened protein hydrolysates derived from chicken feet. We searched for bioactive 

peptides that influence the incretin system, specifically GLP-1, through different 

mechanisms, and therefore, ameliorate glucose homeostasis.  
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Hipòtesi i objectius 

La primera interacció entre els components de la dieta i l’hoste la confereix el tracte 

gastrointestinal, el qual representa la interfície física entre l’ambient extern i la 

circulació. Les interaccions dels components de la dieta amb els receptors i els 

transportadors localitzats en les cèl·lules entreoendocrines del tracte intestinal poden 

induir la secreció d’hormones, les quals estan profundament involucrades amb el 

control del metabolisme, especialment en el control de la sacietat i de la homeòstasi de 

glucosa. Per tant, identificar components bioactius alimentaris i els mecanismes pels 

quals aquests modulen la secreció d’hormones produïdes per les cèl·lules 

entreoendocrines podria derivar en el desenvolupament d’agents terapèutics per al 

tractament de l’obesitat i dels trastorns de l’homeòstasi de la glucosa. 

Flavanols i àcids fenòlics són considerats els compostos fenòlics més abundants en la 

dieta humana a causa de la seva àmplia distribució en plantes i fruites. La seva 

composició s’ha associat amb efectes beneficiosos per a la salut, sent diferents teixits 

del cos objectiu d’aquests efectes. Estudis previs fets en el nostre grup de recerca van 

mostrar que l’extracte de proantocianidines de pinyol de raïm (GSPE) indueix canvis a 

nivell intestinal, específicament modulant la producció i la escissió de la hormona 

intestinal anorètica, pèptid similar al glucagó tipus 1 (GLP-1). Aquests resultats es van 

relacionar amb millores en la homeòstasi de la glucosa i conseqüentment van indicar 

que el sistema entreoendocrí pot ser un objectiu d’acció estratègic per GSPE. Per tant, a 

causa del seu rol en la homeòstasi del metabolisme de l’organisme, és rellevant 

entendre els potencials mecanismes pels quals GSPE modula el sistema enteroendocrí. 

A més a més, tal com s’ha mencionat anteriorment, el sistema enteroendocrí no 

solament és important en la regulació de l’homeòstasi de la glucosa, sinó que també en 

el control de la ingesta. Aquesta tesi doctoral s’ha realitzat paral·lelament amb una 

altra en la que s’ha avaluat la influència del GSPE sobre la ingesta. 

Hi ha força estudis que han investigat els efectes beneficiosos dels compostos fenòlics 

alimentaris, en front això, els pèptids bioactius (BPs) són un camp innovador de 

recerca. Els BPs encriptats dins de les seqüències de proteïnes dietètiques s’han 

associat en efectes promotors de la salut. S’han descrit diferents mètodes per obtenir 

aquests BPs, els quals poden actuar sobre diferents parts de l’organisme. Els 

hidrolitzats de proteïnes dietètiques són per tant una font prometedora de potencials 

BPs els quals poden interactuar amb el sistema enteroendocrí a nivell intestinal. Tot i 

que pocs estudis han descrit l’efecte dels BPs sobre la secreció de GLP-1 o sobre 

l’enzim responsable de la inactivació de GLP-1. D’altra banda, molts pocs estudis in vivo 

han associat l’administració dels BPs  amb la millora de la homeòstasi de la glucosa.  
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D’acord amb l’explicat anteriorment, es va hipotetitzar que els compostos naturals 

bioactius poden actuar a diferents nivells intestinals modulant les quantitats de 

les principals enterohormones actives relacionades en la sacietat i en la 

homeòstasi de la glucosa. Així doncs, el principal objectiu d’aquesta tesi doctoral es 

determinar si els compostos naturals bioactius, particularment GSPE i els pèptids 

bioactius procedents de pota de pollastre, poden modular els nivells de les principals 

enterhormones mitjançant la modulació de diferents mecanismes intestinals. 

Els objectius específics proposats per resoldre la hipòtesi establerta són: 

1. Determinar si l’extracte de proantocianidines de pinyol de raïm afecta 

directament la secreció de les principals enterohormones. 

Resultats previs van descriure que una dosi aguda de GSPE modula els nivells 

plasmàtics de GLP-1 in vivo. Un mecanisme pel qual GSPE podria exercir aquest efecte, 

a més a més de la inhibició de DPP-IV que s’ha descrit anteriorment, és la directa 

activació de la secreció de GLP-1. Per tant, es va voler determinar si GSPE és capaç 

d’estimular directament la secreció de GLP-1 intestinal, i si aquesta acció s’estén a 

altres enterohormones.  

2. Estudiar si l’extracte de proantocianidines de pinyol de raïm afecta a la 

diferenciació intestinal. 

En estudis previs es van observar que els tractaments crònics de GSPE contrarestaven 

la disminució de l’expressió gènica de ChgA, GLP-1 i PYY induïda per una dieta de 

cafeteria, suggerint que un possible mecanisme pel qual GSPE podria actuar en els 

tractaments crònics és la promoció de la diferenciació de les cèl·lules 

enteroendocrines. A partir d’aquests resultats, es va voler descobrir si GSPE modifica 

la diferenciació de les cèl·lules enteroendocrines. 

3. Estudiar si l’extracte de proantocianidines de pinyol de raïm modifica la biota 

intestinal i si aquesta modulació influeix el sistema enteroendocrí. 

En els darrers anys, ha augmentat l’interès sobre la composició de la biota intestinal i 

la seva modulació degut a la seva influència en el metabolisme de l’hoste. Alguns 

estudis han descrit que altres extractes rics en compostos fenòlics tenen la capacitat de 

modular la composició de la biota intestinal, encara que cap d’aquests van avaluar la 

interferència entre aquesta modulació i el sistema enteroendocrí. Partint d’aquesta 

base, es va voler explorar si GSPE modifica la composició de la  biota intestinal i si 

aquesta modulació pot estar relacionada amb la modulació del sistema enteroendocrí. 
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4. Avaluar si els pèptids bioactius procedents de pota de pollastre modulen el 

sistema d’incretines afectant la secreció i escissió de GLP-1. 

Resultats previs van descriure que GSPE millora la homeòstasi de glucosa, en part, per 

mitjà de la modulació dels nivells de GLP-1. Per descobrir nous compostos bioactius els 

quals puguin també exercir els seus efectes mitjançant la modulació dels sistema 

d’incretines a nivell intestinal, es van examinar hidrolitzats proteics procedents de 

pota de pollastre. Es van buscar pèptids bioactius que influeixin  a l’hormona incretina 

GLP-1, mitjançant diferents mecanismes, i conseqüentment, que millorin la homeòstasi 

de la glucosa. 
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PREFACE 

In the first manuscript, we focused on studying the acute effect of grape-seed 

proanthocyanidin extract (GSPE) on the main enterohormones secretion (objective 

1).  

An ex vivo model was employed to elucidate if GSPE directly acts on 

enteroendocrine cells modulating the secretion of enterohormones. The ex vivo 

model enables us to study the specific hormone secretion patterns of different 

subtypes of enteroendocrine cells distributed along of the gastrointestinal tract. 

Moreover, to simulate the in vivo conditions, the intact extract was employed to 

treat upper-intestine sections, while GSPE metabolites obtained from caecum 

extraction after GSPE administration were employed to treat colon segments. 
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ABSTRACT  

Background: Intestinal enteroendocrine cells respond to food components by 

secreting an array of hormones that regulate several functions. We have previously 

shown that grape seed proanthocyanidins (GSPE) modulate plasma GLP-1 levels.  

Objective: This study aimed to deepen on the knowledge of the mechanisms used by 

GSPE to increase GLP-1, and extend it to its role at modulation of other 

enterohormones.  

Design: We used an ex vivo system to test direct modulation of enterohormones; STC-1 

cells to test pure phenolic compounds; and rats to test the effects in vivo at different 

gastrointestinal segments.  

Results: Our results show that GSPE compounds act at several locations along the 

gastrointestinal tract modulating enterohormone secretion depending on the feeding 

condition. GSPE directly promotes GLP-1 secretion in the ileum, while 

unabsorbed/metabolized forms do so in the colon. Such stimulation requires the 

presence of glucose. GSPE enhanced GIP and reduced CCK secretion, and gallic acid 

could be partly responsible for this effect.  

Conclusions: the activity of GSPE modulating enterohormone secretion along the 

gastrointestinal tract may help to explain its effects at regulation of food intake and 

glucose homeostasis. We show that GSPE acts through several mechanisms; 

compounds found in GSPE and their metabolites act as GLP-1 secretagogues in ileum 

and colon, respectively. In vivo GLP-1 secretion might also be mediated by indirect 

pathways involving modulation of other enterohormones that in turn regulate GLP-1 

release, such as enhancing GIP and reducing CCK secretion in the duodenum. 

Keywords: Phenolic compounds, ileum, colon, enterohormone, GLP-1 
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INTRODUCTION  

The intestinal endocrine cells are the largest organ in the human body. They are 

responsible for the secretion of enterohormones such as glucagon-like peptide-1 –

(GLP-1) and glucose-dependent insulinotropic peptide (GIP) (together called the 

incretins), peptide tyrosine tyrosine (PYY), cholecystokinin (CCK), and ghrelin, which 

are involved in the modulation of food intake, digestion, insulin secretion and 

metabolism. New functions for these hormones are still being studied. The modulation 

of intestinal enterohormone pathways has attracted increasing interest in the fight 

against wide spread pathologies such as obesity and type 2 diabetes. Incretin-based 

therapies have been established for type 2 diabetes and involve the use of GLP-1 

analogues to increase GLP-1 receptor agonist concentrations in the pharmacological 

range and dipeptidyl peptidase-4 (DPP-4) inhibitors to prevent the degradation of 

endogenous GLP-1 and GIP, which are both substrates for the DPP-4 enzyme, elevating 

their plasma levels (1). The most effective way to increase enterohormones, especially 

GLP-1 and PYY, is the bariatric bypass known as Roux-en-Y, which is used to treat 

obesity and also leads to normalization of glucose homeostasis in diabetic patients. 

GLP-1 secretagogues are therefore in the spotlight as promising therapies against type 

2 diabetes and for weight management. 

Although studies are being carried out on pharmacological compounds, there are also 

natural products with capabilities to enhance enterohormone levels, and these could 

be used as a complementary therapy or in the area of functional foods. They have been 

reviewed, and more recently (2,3). Even for these types of product, a complete 

description of their mechanisms of action is compulsory if their use is to be 

recommended for a target population. In this regard, grape seed proanthocyanidin 

extract (GSPE) has been shown to modulate glucose homeostasis and food intake, and 

this in part is mediated through increases in plasma GLP-1 levels (4,5). GSPE has DPP4 

inhibitory properties, but its effects on GLP-1 secretion need further analysis. In vivo 

studies revealed that increases in plasma GLP-1 levels are only observed after a 

glucose or meal load, which raises the question of whether GSPE compounds might 

directly stimulate secretion or modulate the interaction of nutrients with the 

enteroendocrine cells, for instance making it possible for them to reach more distal 

parts of the intestine. It has been suggested that the monomeric flavanols found in 

GSPE bind and activate bitter taste receptors, which, in turn, are regarded as 

interesting targets to modulate enterohormone secretion.  

In this study we aim to deepen on the knowledge of the mechanisms used by GSPE to 

increase GLP-1 levels, and to determine whether it also modulate other 

enterohormones. 
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MATERIALS AND METHODS 

Materials 

GSPE was obtained from Les Dérivés Résiniques et Terpéniques (Dax, France). The 

same batch (#124029) was used in all the studies. According to the manufacturer, the 

extract contains monomeric (21.3 %), dimeric (17.4 %), trimeric (16.3 %), tetrameric 

(13.3 %) and oligomeric (5–13 U; 31.7 %) proanthocyanidins. The small molecules 

were previously characterized by liquid chromatography-tandem mass spectrometry 

(6). A detailed phenolic composition of this GPSE is included in Supplemental Table 1. 

(-)-Epicatechin (EC) and gallic acid (GA) were obtained from Sigma (St. Louis, USA). (-)-

Epicatechin gallate (ECg) and procyanidin dimer B2 (B2) were obtained from 

Extrasynthese (Genay, France). The procyanidin dimer B2-gallate (B2g) was obtained 

from TransMTT (Gieβen, Germany). For all the studies, stocks were prepared in 

dimethylsulfoxide (DMSO) and further diluted in the specific buffer required for each 

experiment. 

Cell culture STC-1  

The STC-1 clonal cell line was accepted as a generous gift from Dr. B. Wice 

(Washington University of St. Louis) with the permission of Dr. D. Hanahan (University 

of California, San Francisco, CA). This enteroendocrine cell line was derived from a 

double-transgenic mouse tumor (7) and cultured in Dulbecco’s modified Eagle’s 

medium (DMEM) with GlutaMAX containing 4.5 g/l D-glucose, without sodium 

pyruvate (Thermo Fisher Scientific, Madrid, Spain), supplemented with 17.5% foetal 

bovine serum, 100 U/ml penicillin, and 100 mg/l streptomycin (BioWhittaker, 

Barcelona, Spain), and incubated in a 5% CO2-humidified atmosphere at 37 °C. Cells 

were used between passage numbers 30-50. 

Cellular membrane potential of STC-1 

To evaluate membrane potential, STC-1 cells were seeded in a 96-well culture plate at 

a density of 70,000 cells/well for 2 days until they reached 80-90% confluence. The 

cellular membrane potential (ΔΨcell) was determined in accordance with the method 

described by Gonzalez-Aubin et al. (8). Briefly, the ΔΨcell was evaluated using 

fluorescent probe DIBAC4 diluted in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic 

acid (HEPES) with 10 mM glucose, which was monitored with excitation and emission 

filters set at 493 nm and 516 nm- respectively. Labeled cells were stimulated with pure 

compounds and added to a final concentration of 1, 10, 100 and 200 μM. 

Enterohormone release from STC-1 

For secretion studies, 2.0 × 105 cells/well cells were seeded in 24-well culture plates 

for 2 days to enable 80-90% confluence to be reached. On the day of the experiment, 

the cells were washed twice with HEPES (20 mM HEPES, 140 mM NaCl, 4.5 mM KCl, 1.2 
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mM CaCl2, and 1.2 mM MgCl2 at pH 7.4). Pure phenolic compounds dissolved in HEPES 

buffer with 10 mM glucose were added to each well, using HEPES buffer 0.05% DMSO 

as vehicle. After an incubation period of 2h at 37ºC, supernatants were collected, 

centrifuged to remove remaining cells and stored at -80ºC until used to determinate 

hormone concentration.  

Enterohormone release from intestinal segments 

Rats were killed and their intestines dissected out. For hormone analysis, samples 

were collected from three different positions along the GI tract: proximal duodenum, 

distal ileum and ascending colon. The tissue was rinsed with ice-cold Hank’s balanced 

salt solution (HBSS; Thermo Fisher Scientific, Madrid, Spain) and dissected in 

segments of tissue (0.75 cm2). After a 10 min washing period, tissue segments were 

placed in prewarmed (37 ºC) Krebs buffer 0.1% DMSO containing the compounds to be 

tested with 10 mM glucose or without glucose and 0.1 mM Diprotin A (Enzo Life 

Sciences International, New York, USA)). Duodenal and ileum segments were treated 

with GSPE or GA and colonic segments were treated with phenolic metabolites from 

caecal content for 1h in a humidified incubator at 37ºC and 5% CO2. To obtain the 

phenolic metabolites, rats (n=7) were administered a GSPE dose of 500mg/kg BW by 

intragastric gavage 80 min before sacrifice and the caecal content was extracted, with 

the phenolic content of the caecum of non-treated rats being used as a control. The 

caecal mass (1 g) was dissolved in 10ml/g PBS (pH 2) and the phenolic compounds 

were extracted twice with 10ml/g ethyl acetate. The organic fraction was nitrogen-

dried overnight and reconstituted in 3ml Krebs buffer 0.1% DMSO for the treatments 

(9,10).  

Tissue viability was checked by the absence of the cytoplasmic marker lactate 

dehydrogenase (LDH) in the incubated solutions. LDH was analysed using an LDH kit 

(QCA (Tarragona, Spain)).  

Animals and experimental design. 

Two sets of female Wistar rats -weighing 180–200 g- were obtained from Harlan 

(Barcelona, Spain). The subjects were single housed at 22 °C under a 12 h light/dark 

cycle (lights on at 8 am) with access to standard chow pellets (Teklad Global Diets 

#2014, Harlan, Barcelona) and tap water ad libitum during a 1 week adaptation period. 

All procedures were approved by the Experimental Animal Ethics Committee of the 

Universitat Rovira i Virgili. 

For the acute treatment in fasting conditions, overnight fasted female rats (n=5) were 

treated with 1g/kg GSPE at the end of the dark period by an oral gavage 

administration. Vehicle (tap water)-treated rats (n=5) were used as a control group. 

The abdominal cavity was incised and the portal vein catheterized while body 

temperature was monitored. Portal blood was obtained at 60 minutes under sodium 
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pentobarbital anaesthesia before the rats were killed by exsanguinations of the aortal 

vein.   

To assess the effects of an acute dose of GSPE in feeding condition, female rats were 

treated as previously described  (11). In brief, animals were fasted from 15.00 h until 

18.00h and then treated with 1 g/kg GSPE (n=11) or vehicle (n=10) (tap water) by an 

oral gavage administration. The animals were then anaesthetized with 70 mg/kg BW 

i.p of sodium pentobarbital and the portal vein was catheterized and at 60 min after 

the dose, 5 ml mash containing 1.5 g of standard chow and 25 mg of xanthan gum as a 

stabilizer was punctured into the forestomach with an Abbocath-T 18G catheter 

(Hospira, Lake Forest, IL, USA) at a constant rate of 1 ml/min. Portal blood samples 

were obtained at 80 min from the beginning. After the 120 min procedure, the animals 

were sacrificed by exsanguination of the aortal vein.  

In both models, intestinal segments from the duodenum, jejunum, ileum and proximal 

colon were dissected, immediately frozen in liquid nitrogen and then stored at -80º C 

for further enzyme activity and gene expression analysis.  

Enterohormone and glucose quantification 

The active GLP-1 concentration from STC-1, intestinal segments and plasma samples 

was analysed with a GLP-1 3-37 amide ELISA kit (Millipore, Billerica, MA, USA). Total 

CCK from STC-1 and plasma samples were analysed with a CCK enzyme immunoassay 

(EIA) kit (Raybiotech, Norcross, GA, USA) and duodenal segments with a CCK8 

(desulfated) EIA Kit (Peninsula Laboratories, San Carlos, CA, USA). Total GIP levels 

from duodenal segments were analysed by a total GIP ELISA kit (Millipore, Billerica, 

MA, USA). PYY from intestinal segments and plasma samples were measured using a 

fluorescent immunoassay kit (Phoenix Pharmaceuticals, Burlingame, CA, USA). Glucose 

plasma levels were analysed with an enzymatic colorimetric kit (glucose oxidase-

peroxidase method; QCA, Tarragona, Spain). 

Measurement of glucose-6-phosphatase enzyme activity from liver and intestine 

Liver and intestinal mucosa activities were determined following a modified version of 

the previously described protocol (12). Tissues were homogenized in 0.1 M cacodylate 

buffer (pH 6.5) using a Qiagen Tissuelyser (Qiagen, Hilden, Germany). The suspension 

was centrifuged and the supernatant incubated in the buffer containing 10 mM 

glucose-6-phosphate at 37º for 20 min. The reaction was stopped at different times of 

point by adding 100 g/L trichloroacetic acid. Glucose-6-phosphatase (G6Pase) activity 

was determined by measuring the amount of glucose release from glucose-6-

phosphatase using a glucose oxidase/peroxidase coupling system. To assess G6Pase 

liver activity, the increase of glucose production was measured using an enzymatic 

colorimetric kit (glucose oxidase-peroxidase method; QCA, Tarragona, Spain). G6Pase 

intestinal activity was assayed following Petrolonis et al. (13), using an Amplex® Red 

Glucose/Glucose Oxidase Assay Kit (Thermo Fischer Scientific, Barcelona, Spain). Both 
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enzymatic activities were normalized with mg of protein, which was analysed with a 

BCA Protein Assay Kit (Thermo Fischer Scientific, Barcelona, Spain), using bovine 

serum albumin as standard. 

Quantitative real-time RT-PCR analysis 

Total RNA was extracted using Trizol (Thermo Fisher Scientific, Madrid, Spain) and 

trichloromethane-ethanol (Panreac, Barcelona, Spain), and purified using a Qiagen 

RNAeasy kit (Qiagen, Hilden, Germany). The complementary DNA (cDNA) was 

generated using the High Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems, Waltham, USA). Quantitave polymerase chain reaction amplification 

amplification was performed using specific TaqMan probes (Applied Biosystems, 

Waltham, USA) and the relative expression of each gene was calculated against the 

control group using the 2-ΔΔCt method, with cyclophilin A (PPIA) as reference. 

Statistical analysis 

Results are presented as mean ± SEM. Data were analysed with SPSS (IBM, Chicago, 

USA). Data from intestinal segments and STC-1 hormones, gene expression, enzyme 

activity and glucose plasma levels were analysed by Student t-tests. The dose-response 

effect of pure compounds on cellular membrane potential was analysed by one-way 

ANOVA. Significance was accepted over 5%. 

RESULTS  

GSPE stimulates enterohormone secretion ex vivo  

The effects of GSPE on enterohormone secretion were tested in an ex vivo intestine 

model. Bearing in mind that the enteroendocrine cell type is specialized in expressing 

different hormones throughout the intestinal tract, GIP and CCK were studied in 

duodenal segments and GLP-1 and PYY in ileum and colon segments (14). GSPE 

showed a selective effect at stimulating enterohormone secretion, since in duodenum 

explants 0.2 mg GSPE/ml (0.17 mg phenolics/ml) increased GIP but decreased CCK 

secretion (Table 1). In ileum explants the same GSPE dose significantly increased 

secretion of GLP-1 and, to a lower extent, that of PYY (Table 1). Lower concentrations 

of GSPE were also tested and showed no stimulation of GLP-1 secretion (values 

normalized to those of controls: 1.00 ± 0.08; 1.14 ± 0.12; 1.22 ± 0.32 for control, 0.1 mg 

GSPE /ml and 0.08 mg GSPE /mL, respectively).  
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Table 1 
Increase in enterohormone concentration in the medium due to GSPE or GA treatment in 

explants from different intestinal segments. 

 Duodenum Ileum 

 GIP CCK GLP1 PYY 

GSPE (0.2 mg/mL) 3.32 ± 2.0* - 0.46 ± 0.0* 2.37 ± 0.6* 1.10  ± 0.3* 

GA (31 μg/mL) 0.16 ± 0.2 -0.53 ± 0.1* 2.17 ± 1.2 - 

Results are expressed as relative units v. control. * statistically significant differences at p≤0.05, t-student. 

In the gastrointestinal tract GSPE is partially absorbed and metabolized, so digested 

GSPE was used to evaluate the effect at colon. Proximal colonic sections were 

incubated for 1 hour with non-absorbed phenolic metabolites obtained from the caecal 

content of animals treated with GSPE and the caecal content of non-treated rats as 

control. The phenolic concentrations of treated and control colon sections were 188.44 

± 7.02 mg phenolics/l and 88.76 ± 20.64 mg phenolics/l respectively. The caecal 

content of GSPE-treated rats enhanced GLP-1 secretion and tended to increase PYY 

levels (Table 2).  

 

Since GSPE is a complex mixture of several compounds, we aimed to identify those 

mainly responsible for the modulation of enteroendocrine secretions working with 

pure flavanol compounds. Given that some of these compounds could only be obtained 

in very small amounts, we had to use STC-1 cell line which secretes GLP-1 and CCK in a 

reproducible way (15,16). The in vitro results showed an inhibition of GLP-1 and CCK 

levels by 200 μM of ECG and B2 (Fig. 1). Similarly, the same concentration of B2g 

decreased GLP-1 secretion, respectively (Fig. 1). A lower concentration showed no 

differences among monomers in the CCK secretion, while a decrease was observed 

using 1 μM of dimer B2 (Fig. 1B). The inhibition of hormone secretion by high (200 

µM) doses of compounds was in agreement with a cell membrane hyperpolarization 

found when cell membrane potential was assessed  (Fig. 1). 

Gallic acid is a non-flavanol phenolic compound found in significant amounts in grape-

seed derived extracts (Supplemental Table 1). Its effects were assayed in the ex vivo 

explants and in STC-1 cells. In ex vivo explants, 6.2 µg/ml of GA caused no significant 

Table 2 
GLP1 and PYY secretion to the medium in colon explants 

after a 1-hour treatment with digested GSPE 

 
GLP1 PYY 

Control 1.00  ± 0.0 1.00  ± 0.0 

Digested GSPE 1.34  ± 0.1* 1.32  ± 0.2# 
Results are expressed as relative units v. control. * P<0.05 v. 
control; # P<0.05 v. control, t-student. 
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effect in stimulating enterohormone secretion and, this dose is within the range of 

concentration found in 0.2 mg GSPE/ml. A dose five times higher (31 µg/ml of GA) 

significantly decreased in vitro GLP-1 secretion (values normalized to those of the 

controls: 1.00 ± 0.10 and 0.72 ± 0.07 for control and 31 µg GA /ml, respectively, 

p<0.05). In ex vivo explants this dose caused no significant effect on PYY or GLP-1 

release, but it inhibited CCK release to the medium by around 50%, similarly to GSPE 

(Table 1).  

 

 

Fig. 1.  Effects of flavonols on enterohormone secretion and cellular membrane potential in STC-1 cells. 

STC-1 cells were treated for 2 hours with 200 µM and 1 µM of different flavanols found in GSPE. GLP-1 (A) 

and CCK (B) levels were measured in the culture medium. Effects of flavanols on cellular membrane 

potential after epicatechin stimulation expressed as % F/F0 and relative Δ(F/F0) (normalized to the 

control cells) (A), where F is fluorescence at 195 s and F0 is basal fluorescence at 180 s.  The data are 

displayed as the mean ± SEM. * statistically significant differences versus controls at P < 0.05. a,b,c,d, 

statistically significant differences at P < 0.05.  

2 0 0  M

R
e

la
ti

v
e

 a
c

ti
v

e
 G

L
P

-1
 r

e
le

a
s

e

c
o

n
tr

o
l 

E
C

g
B

2
g

B
2

0 .0

0 .5

1 .0

1 .5

*
  *

*

A .

R
e

la
ti

v
e

 C
C

K
1

 r
e

le
a

s
e

c
o

n
tr

o
l 

E
C

E
C

g
B

2
E

C
E

C
g

B
2

0 .0

0 .5

1 .0

1 .5

   *

*

B .

*

1  M 2 0 0  M

R
e

la
ti

ve
 a

ct
iv

e
 G

LP
-1

 r
el

ea
se

R
e

la
ti

ve
 C

C
K

1 
re

le
as

e

200 µM 1 µM 200 µM

*
*

* *
*

*

A. B.

T im e  (s e c )

%
 o

f 
 F

/F
o

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0

9 0

9 2

9 4

9 6

9 8

1 0 0

1 0 2

1 0 4

1 0 6

1 0 8

1 1 0

1 1 2

1 1 4

1 1 6

1 1 8

1 2 0

1 2 2

1 2 4

1 2 6

R
e

la
t

iv
e


 (

F
/

F
0

)

c o n tro l  1  M 1 0   M

-3

-2

-1

0

1

2

3

1 0 0  M 2 0 0  M

b
b

d

c

a

E p ic a te c h in K C l

C .

%
o

f 
F/

Fo

R
e

la
ti

ve
  Δ

( F
/F

o
)

Epicatechin KCl

Time (sec)

C.



Acute bioactivity of GSPE on enteroendocrine secretions 

 

97 
 

GSPE affects colonic enterohormone gene expression depending on the feeding 

condition 

In vivo we previously found that GSPE increases portal active GLP-1 only in the 

presence of glucose in the intestine (4). We next analysed how the feeding condition 

affected GSPE action throughout the intestinal tract by comparing overnight fasted 

animals to fed animals. Table 3 shows that 1g GSPE /kg bw load in fasted animals led 

to a reduced expression of GLP-1, PYY and CCK in the colon. Conversely, the plasma 

levels of these enterohormones were not significantly changed (Supplemental Table 

2). 

In animals that after a 1-hour treatment with GSPE were administered food for 1 more 

hour, we found no differences in enterohormone gene expression. In our experimental 

conditions, there were also no differences in the gene expression of these hormones 

between the fed and the fasted control animals. As previously published, these animals 

showed a modified enterohormone plasma profile (5). We also tested the effects of 

GSPE in a cell differentiation marker previously shown as a target for GSPE, 

chromogranin (CgA). Table 3 shows that a high acute dose, independently of assay 

conditions (fed or fasted), increases gene expression.  

Table 3 
Gene expression of the enterohormones from fasted and fed rats. 

  conditions 

 
 

fasted  fed 

GLP-1 colon Ctrl 1.06 ± 0.2 1.12 ± 0.2 

 1g GSPE/Kg bw 0.53 ± 0.0* 1.07 ± 0.2 

PYY colon Ctrl 1.05 ± 0.2 1.13 ± 0.2 

 1g GSPE/Kg bw 0.40  ± 0.0* 1.32 ± 0.3 

CCK colon Ctrl 1.01  ± 0.1  1.81 ± 0.8 

 1g GSPE/Kg bw 0.36  ± 0.2* 1.09 ± 0.3 

Cga colon Ctrl 1.11  ± 0.3 1.00 ± 0.0 

 1g GSPE/Kg bw 2.76  ± 0.5* 2,94 ± 0.5* 

Results are expressed as relative units v. control. * statistically significant differences at p≤0.05, t-student 

Role of glucose in the effect of GSPE’s stimulation of GLP-1 release  

Since GSPE increases GLP-1 levels only after feeding (Supplemental Table 2) or an oral 

glucose load, we next used our ex vivo model to analyse whether glucose was required 

for the direct GSPE stimulation of GLP-1 release. The stimulation of GLP-1 secretion 

achieved by GSPE in medium containing glucose 10 mM (shown in Table 1) was not 

observed in medium without glucose or with only glucose (1.00 ± 0.1, 1.21± 0.1 and 

1.17 ± 0.1 in 0 mM glucose, 10 mM glucose and 0.2 mg of GSPE/ml with 0 mM glucose,  

respectively; data normalized by 0 mM glucose). 
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In our explant system, glucose can reach the cells either from the apical or the 

basolateral side. To estimate the possible contribution of basolateral glucose presence, 

we measured portal glucose levels in the fed and fasted animals. Fig. 2 shows that 

portal levels of glucose in overnight-fasted animals treated with GSPE were around 10 

mM, while in animals that after 1 hour of GSPE treatment were administered a food 

load, 20 min after this load glucose levels were around 8 mM (significantly different 

from the fasted animals p≤0.05). In the fed model the glucose levels of GSPE-treated 

animals did not differ from the controls, while in the fasted animals GSPE significantly 

increased portal glucose (Fig. 2).  

 
 Fig. 2.  Effects of GSPE on portal glucose. In the fasted group, portal glucose levels of O/N fasted animals 

treated with GSPE for 1 hour. In the fed group, 4 hours-fasted animals were treated with GSPE for 1 hour, 

and then administered a food load. Portal glucose levels were measured 20 minutes after this food load. * 

statistically significant differences versus controls at P < 0.05 

Finally we analysed whether GSPE modulation of portal glucose levels involved 

modulation of intestinal gluconeogenesis. To do this, G6Pase activity was measured in 

the duodenum and jejunum sections of fasted and fed animals. Table 4 shows that 

GSPE inhibits G6Pase activity. In the fasted animals GSPE inhibited around 60% of 

intestinal activity (in both measured sections), and in the fed animals this inhibition 

was stronger, reaching 80% (also in both measured sections). We also measured it in 

the liver of fed animals and found that there was no change in this enzyme’s activity 

due to GSPE treatment (1.00 ± 0.1, 1.02 ± 0.1 in control and treated animals 

respectively, data normalized by controls).  

Table 4  
Glucose-6-phospatase intestine activity from fasted and fed rats. 

  conditions 

  fasted fed  

G6Pase duodenum Ctrl 1.00 ± 0.2 1.00 ± 0.2 

1g GSPE/Kg bw 0.31 ± 0.0* 0.24 ± 0.0* 

G6Pase jejunum Ctrl 1.00 ± 0.2 1.00 ± 0.2 

1g GSPE/Kg bw 0.45 ± 0.1* 0.21 ± 0.0* 
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DISCUSSION 

We have previously shown that GSPE increases plasma active GLP-1 levels, that this is 

in part due to inhibition of DPP4 but also to increased secretion, and that this leads to 

modulation of glucose homeostasis and satiety (4,5). In this paper, we describe for the 

first time how GSPE directly modulates enteroendocrine secretions and that it does so 

differently depending on the intestinal fragment. We also go further into the possible 

mechanisms for GSPE to exert such modulation of enterohormone secretion and 

production.  

In this study we have used an ex vivo system to show that GSPE directly stimulates 

GLP-1 release in the intestine. Direct stimulation could therefore contribute to the 

previously reported increase in GLP-1 levels (4). Concerning the mechanisms, we have 

described that this direct GLP-1 release by GSPE stimulation requires glucose. 

Furthermore, glucose must be sensed on the luminal side. This agrees with acute in 

vivo results in which, to observe GSPE effects on GLP-1 secretion, either glucose or 

meal must be added (4,5). Our results suggest that the effects of GSPE are not 

secondary effects on glucose absorption and/or metabolism, but direct effects on 

enteroendocrine cells. A possible explanation for the requirement of glucose could 

involve a ‘priming’ effect by GSPE of the L-cell in preparation for the subsequent oral 

glucose-stimulated GLP-1 secretion. This ‘priming effect’ has previously been shown 

for ghrelin (17) and insulin (18). Ghrelin pretreatment of GLUTag and NCI-H716 cell 

lines stimulates GLP-1 release only in a medium containing glucose, similarly to what 

we observe in GSPE treatments. Furthermore, in vivo ghrelin induces GLP-1 release 

only when an oral glucose load is performed, which is also in concordance with our 

previous in vivo results (4). Unfortunately, these priming events are still not fully 

described at the molecular level. Light has only been shed on the requirement of the 

mitogenactivated protein kinase (MAPK) pathway and MEK-ERK1/2 (17,18), which is 

a pathway previously shown to be a target for grape seed proanthocyanidins (19).  

An unexpected increase in portal glucose levels by GSPE was observed in fasted 

animals, and we wanted to analyse the role of intestinal gluconeogenesis in this 

increase. Intestinal gluconeogenesis has been shown as a mechanism used by different 

food agents to modulate feeding behaviour (20). Our results suggest an inhibition of 

intestinal gluconeogenesis by acute GSPE treatment. The increased portal glucose may 

therefore be due to reduced glucose uptake by the liver and pancreas, since 

polyphenols have been previously shown to inhibit the glucose transporter Glut-2 

(21,22) and GSPE down-regulates the glucose transporter Glut-2 and glucokinase 

expression in liver and pancreas (23). Certainly, considering that glucose may control 

hunger sensation from the portal vein via signalling to the peripheral neural system 

(24), increasing portal glucose levels during fasting could, at least in part, contribute to 

the previously reported (5) satiating effects of GSPE. 



CHAPTER 1 

 

100 
 

GSPE is composed of several different molecules with different bioavailability (25). 

Polyphenol absorption in the small intestine is in fact relatively low (5%–10%) in 

comparison to other macronutrients or micronutrients, mainly those with monomeric 

and dimeric structures (26). The remaining  90%–95% of polyphenols, mainly the 

polymeric and oligomeric forms, pass through the large intestinal lumen and 

accumulate in a millimolar range, reaching the colon where they are subjected to 

microbial catabolism(27). As shown in rats treated with the same extract as ours, some 

final products of colonic metabolites such as 3-O-methylgallic acid and benzoic acids 

could be detected in the kidneys and liver after 2 hours (25), showing that some GSPE 

compounds, most likely polymeric forms, circulate through the GI tract and reach the 

colon. Our results show that GSPE treatment decreased CCK levels in duodenum 

segments. We had previously shown that in vivo GSPE impaired CCK release after food 

intake (5). Inhibition of CCK ex vivo is reproduced by gallic acid, a compound found in 

the extract mixture. The effects of mainly monomeric and dimeric structures of GSPE 

were also tested in STC-1 cells, and our data show an inhibition of CCK levels. This 

suggests that molecules that are well absorbed in the upper intestine could be 

responsible for this direct inhibition. We also found that this inhibition does not lead to 

a modulation of CCK basal plasma levels in fasted animals (where CCK release is not 

stimulated). Regarding GLP-1 secretion, which as previously mentioned, was increased 

by GSPE in ileum segments, our in vitro results in STC-1 cells show that GLP-1 levels 

are also decreased by a low degree of polymerization structures. Our results also show 

that metabolites of digested GSPE promote colonic GLP-1 release. In contrast to CCK 

secretion, these findings could suggest that unabsorbed polyphenols (high degree of 

polymerization) and microbiota-metabolized polyphenols of GSPE act on endocrine 

cells to promote GLP-1 secretion. In agreement with this, a previous study 

demonstrated that a tetrameric procyanidin increases GLP-1 levels in mice and is more 

effective to insulin stimulation than smaller procyanidins (28). Montagut et al. also 

demonstrated that oligomers can activate insulin signalling and stimulate glucose 

uptake (19). Our findings suggest that the absorption and bioavailability of GSPE 

polyphenols could be involved in enteroendocrine secretion, although further study is 

needed to understand procyanidin’s effects on enterohormone secretion in more 

detail. 

Another function that might be modulated by GSPE is the inhibition of G6Pase activity, 

since the levels of inhibition are the same in the different parts of the intestine where it 

has been measured (i.e. duodenum and jejunum). The inhibition of G6Pase was 

dependent on the feeding condition. We analysed two animal models that received 1h 

GSPE treatment, one sacrificed in an overnight fasting condition and the other fasted 

for 3 hours and then administered a food load in the stomach 60 min after the GSPE 

dose to determine the effect of feeding. Our results show that inhibition of G6Pase was 

much stronger in the fed animals. In addition, the feeding condition also determined 

the effects of GSPE at gene expression level. We found a down-regulation of GLP-1, PYY 

and CCK at colon level in fasted animals treated for 1 hour with GSPE. Modulation of 
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gene expression of enterohormones has been studied at the level of intestinal stem cell 

differentiation (29,30). Some studies show that the messenger RNA (mRNA) of 

enterohormones can also be acutely regulated. In rodents, refeeding after a fasting 

period (31) or feeding a specific nutrient such as palmitoleic acid (32) modulates the 

mRNA levels of enterohormones within a short time (1-2 hours). In vitro models have 

also shown acute modulation of enterohormone gene expression by hormones such as 

insulin (33,34) and nesfatin (35,36). In addition, our results show that when a food 

load was administered after the GSPE, there were no differences between GSPE and 

controls. This suggests that the effects of nutrients (either directly or mediated by 

changes in hormones) counteract the down-regulation of GSPE. It should be noted that 

the fed study was performed after a shorter (3 hours) fasting period, so we cannot be 

sure that GSPE had the same effects on gene expression as in our fasting (overnight) 

experiment. Certainly, the fasted animals where down-regulation was observed 

showed no differences in GLP-1 and CCK plasma levels. At present we do not know 

whether such down-regulation at colonic levels might influence enterohormone 

secretion or if it is involved in the previously mentioned “priming”effect. We also 

observed that a previously described target of GSPE (37), chromogranin A (CgA), was 

up-regulated in both conditions. CgA is a marker for enteroendocrine cells (38), but it 

is unlikely that such short periods of treatment would already affect the number of 

enteroendocrine cells in the colon. There is a lack of information regarding acute 

regulation of CgA expression in the intestine. However, future work will focus on the 

effects of GSPE on the differentiation of enteroendocrine cells. GSPE treatment 

produced a significant induction of other enterohormone secretion in different parts of 

the intestine. In the duodenum, GSPE directly enhances GIP secretion, which could 

contribute to in vivo GLP-1 secretion due to the enteroendocrine loop between the 

duodenal GIP and the ileal GLP-1 (39). In the ileum, GSPE also promotes PYY secretion, 

to a lesser extent than that of GLP-1, while a trend data was observed in the colon. It 

was shown that soy isoflavones enhance PYY secretion in humans (40), although there 

are few data on the effects of polyphenols on PYY secretion. Altogether, these results 

reinforce the idea that GSPE has effects throughout the gastrointestinal tract, and that 

a feeding condition modulates the effects. Further studies are needed to go into greater 

detail regarding the GSPE effects on gastrointestinal tract. 

In conclusion, the compounds of GSPE act at several points of the gastrointestinal tract 

modulating enterohormone secretion, which leads to regulation of food intake and 

glucose homeostasis. The present results suggest that compounds found in GSPE 

directly promote GLP-1 secretion in the ileum, and its metabolites do so in the colon. 

Such direct stimulation requires activation of glucose-induced GLP-1 releasing 

pathways. In vivo GLP-1 secretion may also be mediated by indirect pathways 

involving modulation of other enterohormones that, in turn, regulate GLP-1 release, 

such as enhancing GIP and reducing CCK secretion in the duodenum (the latter effect 

being mediated, at least in part, by gallic acid).  
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SUPPLEMENTARY MATERIAL  

Table 1 
Main phenolic compounds of the grape seed phenolic extract (GSPE) used in this study, adapted 
from (Margalef et al., 2015). 
 

Compound Concentration (μmol/g) 

Gallic acid 182.64 ±0.47 

Protocatechuic acid 8.69 ±0.13 

Vanillic acid 4.58 ±0.24 

(+)-Catechin 417.96 ±11.75 

(-)-Epicatechin 321.91 ±14.71 

Epicatechin gallate 47.57 ±2.44 

Epigallocatechin 0.88 ±0.10 

Epigallocatechin gallate 0.07 ±0.00 

Procyanidin dimer B1 153.50 ±5.98 

Procyanidin dimer B2 57.46 ±2.40 

Procyanidin dimer B3 209.71 ±5.89 

Gallated dimers 12.13 ±0.19 

Trimers 6.65 ±0.54 

 
 
 
 
 
Table 2. 
 Portal hormone levels 60 min after the GSPE gavage 
 

hormone Control 1g GSPE/Kg bw 

GLP-1 (pmol/L) 1.80 ± 0.33 2.72 ± 0.77 

PYY (μg/L) 0.14 ± 0.07 0.09 ± 0.04 

CCK (μg/L) 0.52 ± 0.05 0.53 ± 0.07 

No significant differences, assessed by t-test (p < 0.05) were found between control and GSPE. 

 
 
References: 

Margalef, M., Pons, Z., Iglesias-Carres, L., Bravo, F. I., Muguerza, B., & Arola-Arnal, A. 
(2015). Lack of Tissue Accumulation of Grape Seed Flavanols after Daily Long-
Term Administration in Healthy and Cafeteria-Diet Obese Rats. Journal of 
Agricultural and Food Chemistry, 63(45), 9996–10003.  
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PREFACE 

The second manuscript aimed to evaluate whether GSPE affects the enteroendocrine 

system modulating intestinal differentiation (objective 2). 

In the recent years, a three-dimensional intestinal culture model has been developed.  

In this system, single Lgr5+ stem cells generate spherical structures, so-called 

organoids, which contain all cell types of the intestinal epithelium comprising multiple 

crypts and villus structures. Therefore, organoids culture has become a powerful tool 

to study the intestinal cell differentiation because of their self-renewing capacity and 

intestinal physiological structure. 

Consequently, organoids culture was employed to elucidate the second objective, 

studying GSPE’s effect on gene expression of the main L-cell differentiation markers 

and transcription factors involves in such differentiation, as well as evaluating the 

secretion of GLP-1 and PYY in mid-term treatments.  
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PREFACE 

The third manuscript was aimed to determine the effect of grape-seed 

proanthocyanidin extract (GSPE) on the gut microbiota composition and to explore 

whether such effect might be linked to host metabolism and especially to the 

enteroendocrine system (objective 3). 

An in vivo model was employed because it enabled us to analyze the gut microbiota 

composition in physiological environment and the crosstalk between host metabolism 

and the gut microbiota profile. To reach the goal proposed, the gut microbiota 

composition of different experimental groups was evaluated, as well as different 

metabolic and physiological parameters. Moreover, correlation analysis was employed 

to compare metabolic/physiological parameters with the gut microbiota profile. 
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ABSTRACT  

Grape seed proanthocyanidin extract (GSPE) modulates several parameters involved 

in metabolic syndrome. GSPE is a mixture of compounds, some which are rapidly 

absorbed, while others remain in the lumen where they might have effects that are 

translated to the whole organism. Our aim was to decipher if the 8-day treatment of 

GSPE, previously shown to reduce food intake, induces changes in the microbiota and 

enterohormone secretion. The ratio of Firmicutes:Bacteroidetes was lower in the 

microbiota of GSPE-treated rats compared to controls, and  differences in several 

taxonomic families and genera were observed. Such modulation led to a reduction in 

cecal butyrate content. GSPE also increased plasma glucagon-like-peptide-1 (GLP-1). 

Gallic acid did not induce major changes in the microbiota profile nor in GLP-1 

secretion.  Correlations between several microbiota taxa and plasma triacylglycerol, 

adiposity, and enterohormones were observed. Modulation of microbiota may be one 

of the mechanism by which GSPE impacts metabolic health. 

 

Keywords: Proanthocyanidins, microbiota, gastrointestinal tract, enterohormone, 

GLP-1 
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INTRODUCTION  

Grape seed proanthocyanidins (GSPE) have been shown to possess several beneficial 

health properties in animals and human studies 1–4. Some of the effects could directly 

be mediated by the phenolic compounds of the extract or their metabolites, since 

derived structural components  have been found in several tissues 5 . However, other 

effects might be mediated through interactions with the gastrointestinal tract where 

they act by inhibiting enzymes 6, modulating inflammation and/or gut barrier 

properties 7, or modulating enteroendocrine secretion 8,9. The effects of flavonoids on 

gut microbiota have been recently reviewed 7; but there are few studies analyzing the 

role of proanthocyanidins on gut microbiota which could also mediate their 

physiological effects. 

Satiety-related enterohormones such as glucagon-like-peptide-1 (GLP-1), peptide YY 

(PYY), Cholecystokinin (CCK) and ghrelin are signaling molecules that could act 

through the vagus nerve to signal to the brain. GSPE acutely increases plasma GLP-1 10, 

and this has been linked to an amelioration of glucose tolerance 10 and an induction of 

satiety 11. Satiating effects have been shown to be maintained during 8 days of 

treatment with GSPE 0.5 g/kg BW in rats. Interestingly this treatment also increased 

energy expenditure, which together with reduced food intake led to a lower body 

weight gain 8. The increased satiety has been linked to ghrelin secretion modulation, 

but whether other enterohomones are regulated in this specific treatment has not been 

shown. These results point out GSPE as an interesting candidate for ameliorating 

obesity and diabetes. Some authors postulate a key role of microbiota-derived short 

chain fatty acids (SCFA) 12 on satiety-related mechanisms. In this sense, an emerging 

role for microbiota and therefore of food that modulate its composition in the control 

of metabolic homeostasis is being acknowledged. In this context polyphenols, and 

more specifically flavonoids, have been suggested to act as prebiotic components. In a 

small human study moderate red wine consumption for 4 weeks increased the phylum 

Bacteroidetes in humans, and this was correlated with a decrease in plasma 

triacylglycerol (TAG) and high density lipoprotein (HDL)-cholesterol 13. In mice, 

cranberry extract, which is rich in proanthocyanidins and flavanols, modulated gut 

microbiota by increasing the proportion of the mucin-degrading bacterium 

Akkermansia when administered to mice for 8 weeks undergoing a high-fat sucrose 

diet 14.  

 

Therefore, in the present study we explore the mechanisms that could help to explain 

GSPE effects on at the level of the gastrointestinal tract. We hypothesized that 

modulation of gut microbiota could also be a mechanism for grape seed 

proanthocyanidins to exert their effects on host metabolic health. 

 



GSPE influence gut microbiota and enteroendocrine secretion 

 

139 
 

MATERIALS AND METHODS 

Materials 

GSPE was obtained from Les Dérivés Résiniques et Terpéniques (Dax, France). The 

same batch (#124029) was used in all studies. According to the manufacturer, the 

extract contains monomeric (21.3 %), dimeric (17.4 %), trimeric (16.3 %), tetrameric 

(13.3 %) and oligomeric (5–13 U; 31.7 %) proanthocyanidins. The small molecules 

were previously characterized by liquid chromatography-tandem mass spectrometry 
15. Gallic acid (GA) was obtained from Sigma (St. Louis, USA).  

Animals and experimental design. 

Female Wistar rats weighing 180–200 g were obtained from Harlan (Barcelona, Spain). 

The subjects were single housed at 22°C under a 12 h light/dark cycle (lights on at 8 

am) with access to standard chow pellets (Teklad Global Diets #2014, Harlan, 

Barcelona) and tap water ad libitum during a 1 week adaptation period. All procedures 

were approved by the Experimental Animal Ethics Committee of the Universitat Rovira 

i Virgili. 

Rats were introduced (1 week) to a daily 4 h fasting and chow was replaced in the 

dark-onset. After the adaptation, rats were daily treated during 8 days with GSPE or 

gallic acid 1 h prior to chow replacement by gavage, using tap water as vehicle. A 

control group (vehicle treated) was performed in parallel. Rats (n = 9 for each group) 

were sacrificed 80 min after the last dose. Animals were sacrificed by aortal 

exsanguination under pentobarbital anesthesia, and the heparinized and acidified 

plasma (0.1 M HCl) was stored at −80ºC. Cecal content together with intestinal 

segments from the duodenum, jejunum, ileum and proximal colon were immediately 

frozen in liquid nitrogen and then stored at -80º C for further enzyme activity and gene 

expression analysis.  

Microbiota composition analysis  

gDNA from cecal content of rats was extracted using a Fast DNA Stool Mini Kit (Qiagen) 

according to the manufacturer’s instructions with minor variations. 180-220 mg 

aliquots of cecal content were placed in sterile tubes filled with glass beads and one mL 

of Inhibitex buffer (Qiagen). Samples were homogenized in a beadbeater for 2 

successive rounds for 1 min with intermittent cooling on ice. Samples were then 

heated to 95°C for 10 min and DNA extraction was carried out according to the 

manufacturer’s standard protocol. Samples were amplified in triplicate via PCR using 

primers (S-D-Bact-0563-a-S-15 / S-D-Bact-0907-b-A-20) that target the V4-V5 variable 

regions of the 16S rDNA 16. Triplicate reactions consisted of final concentrations of 

Buffer HF (1X), dNTPs (0.11 µM), primers (0.29 µM each) and Taq Phusion High 

Fidelity (0.007 U/µL) in final volumes of 35 µL. Cycling conditions consisted of 98°C for 
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3 min, followed by 25 cycles of 95°C for 20 s, 55°C for 20 s, and 72°C for 20 s, followed 

by a final extension step of 72°C for 5 min. Each sample was tagged with a barcode to 

allow multiplexing during the sequencing process. Triplicate sample amplicons were 

combined and purified using the Illustra GFX PCR DNA and Gel Band Purification Kit 

(GE Healthcare) according to the manufacturer’s instructions and combined in 

equimolar concentrations before carrying out sequencing on a MiSeq instrument 

(Illumina).  All raw sequence data has been submitted to ENA-EMBL (Accession 

number: PRJEB21445). 

Bioinformatic processing of data was carried out using the software QIIME 17. Using 

QIIME, paired-end forward and reverse Illumina reads were joined into contigs, 

barcodes were extracted, reads were demultiplexed, and then primers were removed 

using Mothur 18. Using the UPARSE pipeline for MiSeq amplicon data 19, reads were 

clustered into OTUs, chimeras were removed and an OTU abundance table was created 

by remapping reads to representative sequences from OTUs. QIIME was then used for 

all downstream processing. All samples from the OTU abundance table were rarefied 

to the sample with the lowest number of reads and singletons were removed. 

Taxonomy was assigned to representative OTUs using UCLUST 20 against the 

Greengenes database (version 13.8) 21. 

In order to carry out alpha and beta diversity analysis, representative OTU sequences 

were aligned using PYNAST 22 against the Greengenes’ core set alignment. The 

alignment was filtered using QIIME’s default settings and a phylogenetic tree was 

constructed. Alpha diversity metrics and richness estimators (Shannon’s, Simpson’s 

reciprocal, Chao1, Simpson’s evenness, Observed OTUs) were then calculated. In order 

to examine β diversity, distance matrices (using weighted and unweighted UniFrac 

distances) and Principal Coordinates Analyses (PCoA) were performed using QIIME 

and PCoAs were visualized using the R package PhyloSeq 23. A heatplot of correlation 

analysis was constructed using heatmap2() function in the R package gplots using 

default parameters.  

Short chain fatty acid quantification   

Cecal content (~500 mg) was added to 2 ml tubes containing 900 µl QH2O and H3PO4 

(0.5% final concentration) and homogenized vigorously followed by centrifugation 

(15,000 x g, 10 min at 4°C). 350 µl of supernatant was used for the derivatization of 

SCFAs according to the methods used in Kristensen et al. 24. Derivatized SCFAs were 

analyzed using a gas chromatograph-mass spectrometer (Agilent Technologies 5977A 

MSD) with a low-resolution quadrupole analyzer and gas chromatograph (Agilent 

7890B) equipped with an apolar capillary column (30 m, 0.25 mm ID; 0.25 µm film). 

The carrier gas used was helium. A constant flow mode was used (Split 30: 1; 30 ml / 

min split flow), with an initial flow of 1 ml/min, initial temperature of 90°C for 2 min, 

5°C / min to 222°C for 5 min, followed by 20°C / min to 280°C for 2 minutes, and an 
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interphase temperature of 280°C. Three ethyl acetate washings were performed prior 

to injection of samples. 

Enterohormone and plasmatic parameters quantification 

Enterohormones were analysed using commercial ELISA kits for insulin (Mercodia, 

Uppsala, Sweden), GLP-1 7-37 amide (Millipore, Billerica, MA, USA), total CCK 

(Peninsula Laboratories, San Carlos, CA, USA), PYY (Phoenix Pharmaceuticals, 

Burlingame, CA, USA) and specific octanoyl ghrelin (Phoenix Pharmaceuticals, 

Burlingame, CA, USA). Glucose and TAG plasma levels were analysed with an 

enzymatic colorimetric kit (Glucose Oxidase-Peroxidase method from QCA, Tarragona, 

Spain). 

Measurement of DPP-IV activity. 

DPP-IV was extracted from rat intestine segments as previously described 6. Briefly, 

intestine segments were homogenized using lysis buffer (PBS containing 100 KIU/mL 

aprotinin and 1% Triton X-100). Then, the obtained samples were centrifuged at 1000 

x g at 4ºC for 10 min to eliminate the cellular debris, then centrifuged twice at 20000 x 

g at 4ºC for 10 min. Supernatants were stored at -80ºC until analysis. 

To determine DPP-IV activity, intestinal lysates were incubated with 0.2 mM - 

chromogenic substrate Gly-Pro-pNA (Bachem, Bubendorf, Switzerland) in Tris−HCl 

buffer at 37°C. The mixture was measured at 405 nm at 37°C for 30 min in a microplate 

reader. 

Quantitative real-time RT-PCR analysis. 

Total RNA was extracted using Trizol (Ambion, USA) and trichloromethane-ethanol 

(Panreac, Barcelona, Spain), and purified using a Qiagen RNAeasy kit (Qiagen, Hilden, 

Germany). The cDNA was generated using the High Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems, Waltham, USA). Quantitative PCR amplification 

was performed using specific TaqMan probes (Applied Biosystems, Waltham, USA): 

Rn00563215_m1 for CCK, and Rn00562293_m1 for proglucagon. The relative 

expression of each gene was calculated against the control group using the 2-ΔΔCt 

method, with cyclophilin A, PPIA (Rn00690933_m1), as reference. 

Statistical analysis 

Morphometric, plasmatic, food intake parameters, together with enterhormone 

parameters and SCFAs are presented as mean ± SEM and were analysed with SPSS 

(IBM, Chicago, USA). These data were analysed by Student t-tests. Differences between 

means were considered significant when P<0.05.  

All statistics and data visualization for microbiota data were carried out using the R 

statistical software and related R packages or QIIME. Comparison of relative 
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abundances of each phylogenetic group between treatments was carried out for each 

phylotype (dependent variable) by Kruskal-Wallis tests followed by Wilcoxon rank 

sum tests to identify significant differences between treatments. Comparison of alpha 

diversity among dietary treatments was also performed by Kruskal-Wallis and 

Wilcoxon rank sum tests. To compare bacterial community structure, PERMANOVAs 

were carried out using the QIIME script compare_categories.py and the adonis method 

using weighted and unweighted UniFrac distance matrices. Correlation analysis was 

conducted in order to compare physiological/metabolic parameters with relative 

abundances of taxonomic groups using cor.test in R.  Significance values were 

corrected for multiple comparisons using false discovery rate (FDR) and a q-value 

<0.05 was selected as significant. 

RESULTS  

Enterohormone profile is differentially modulated by GSPE and gallic acid 

A GSPE treatment (500 mg GSPE/kg bw for 8 days), previously shown to be effective at 

inhibiting food intake in male rats 8, was reproduced in female rats in this study. To 

discriminate between the effect of GSPE versus one of its monomeric components, for 

which satiating properties have been described 25, we included a group treated with 

gallic acid at an equivalent amount to that present in the GSPE. Since we aimed to 

analyze whether there was a modulation of enterohormone secretion, we sacrificed 

the animals in a condition where anorexigenic hormone secretion is stimulated, by 

allowing the animals to eat for 20 minutes after a fasting period. At sacrifice, plasma 

levels of enterohormones were measured. GSPE-treated rats had higher active GLP-1 

and active ghrelin levels, while treatment with gallic acid did not significantly change 

such parameters (Table 1). Instead, gallic acid increased CCK levels.  

GLP-1 and CCK gene expression was assessed in the ileum and colon of the animals. 

GSPE caused a significant up-regulation of CCK gene expression in the ileum, while the 

monomer gallic acid did not induce any change in gene expression compared to the 

control animals (Table 2). In the colon there was no modification either by GSPE or the 

GA treatment (Table 2).  

The amount of GLP-1 protein was also measured in intestinal tissue of GSPE-treated 

and control animals. GSPE did not significantly modify GLP-1 protein either in the 

ileum or in the colon (Table 2).  

We previously showed that an increase in GLP-1 secretion by an acute GSPE treatment 

was in part due to inhibition of DPP-IV activity. Therefore we measured this activity in 

different intestinal segments. Our results showed no difference in any of the segments 

due to GSPE treatment. Curiously, gallic acid increased DPP-IV activity in the 

duodenum (Table S1).   
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Table 1 

Enterohormone levels in plasma, morphometric, plasmatic, food intake and SCFA parameters at 

the sacrifice day for rats in the control, gallic acid and GSPE treatments.  Values are represented 

as mean ± SEM. * P ≤ 0.05 vs. control, # P ≤ 0.1 vs. control, T test. OWAT: ovarian WAT; RWAT: 

retroperitoneal WAT; MWAT: mesenteric WAT; BAT: Brown adipose tissue. 

  Control Gallic acid GSPE 

Enterohormones active GLP-1 (pM)   0.59 ± 0.0 0.72 ± 0.1      0.95 ± 0.1 * 

PYY (pg/ml) 105.48 ± 22.9 149.4 ± 28.2 162.75 ± 46.9 

CCK (ng/ml)   1.31 ± 0.2 7.1 ± 1.69 *      6.45 ± 2.89  

active Ghrelin 
(pg/ml) 

303.92 ± 29.8 236.1 ± 29.41  465.61 ± 47.5 * 

Plasma 
parameters 

Glucose (mM) 9.86 ± 0.74 9.61 ± 0.83 8.33 ± 0.84  

TAG (mM) 0.21 ± 0.08 0.31 ± 0.08  0.07 ± 0.03 

Insulin (ug/L) 2.31 ± 0.43 2.59 ± 0.36  2.57 ± 0.34 

Morphometric 
parameters 

Final weight (g) 263.11 ± 3.40 266.56 ± 5.80 253.44 ± 4.30 # 

MWAT (g) 2.82 ± 0.23 3.65± 0.39 3.33 ± 0.28 

OWAT (g) 3.34 ± 0.35 3.77 ± 0.42 2.67 ± 0.18 # 

RWAT (g) 6.39 ± 0.59 8.76 ± 0.89 * 6.56 ± 0.89 

BAT (g) 0.41 ± 0.03 0.51 ± 0.05 0.36 ± 0.04 

Sum WAT (g) 12.55 ± 0.81 15.77 ± 1.25 * 12.55 ± 1.18 

Food intake kcal (sum total intake) 373.62 ± 6.10 378.15 ± 10.30 342.28 ± 10.90 * 

Short chain fatty 
acids (µmol/g 
wet intestine 
content) 

Acetic acid  17.639 ± 1.87 17.491 ± 0.97 15.568 ± 1.88 

Propionic  2.815 ± 0.24 2.464 ± 0.08 3.346 ± 0.3 

Butyric acid  9.867 ± 1.02 10.018 ± 0.94 5.595 ± 0.98 * 

Valeric acid  0.149 ± 0.04 0.202 ±0.01 0.143 ± 0.03 

 

In the conditions in which the animals were sacrificed, neither GSPE nor gallic acid 

significantly changed other biochemical plasmatic parameters, i.e. glucose, insulin and 

triglycerides (Table 1). It was also found that in this model, GSPE but not gallic acid 

reduced food intake. Actually, gallic acid-treated animals had higher white adipose 

tissue (sum of different fractions except subcutaneous). Specifically, retroperitoneal 

white adipose tissue weight was significantly different than the controls. Ovarian WAT 

of GSPE-treated rats tended to be lower (p≤0.1) than in the controls, and was 

significantly lower (p≤0.05) than that in the gallic acid-treated rats. 

GSPE reduces butyrate in cecal content 

Short chain fatty acids were measured in the cecal content of treated animals. GSPE led 

to a reduction in butyrate concentration (Table 1), while no differences were observed 

for acetic, propionic nor valeric acid. This led to significant differences (p≤0.05, 

Student T-test) in the ratio of acetate:propionate:butyrate, which was 58.0 ± 2: 9.4 ± 0: 

32.6 ± 2 for controls and   63.7 ± 1: 14.4 ± 1: 21.9 ± 2 for GSPE. Gallic acid (GA) did not 
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induce any change compared to controls in SCFA cecal content (Table 1) nor in the 

ratio acetate:propionate:butyrate (58.6 ± 2: 8.4 ± 1: 32.9 ± 2).  

Table 2 

Enterohormone gene and protein expression in ileum and colon. Gene expression values are 

represented as 2-ΔΔCt vs. control rats. * P ≤ 0.05 vs. control, T test. NA: not analyzed. 

  ileum colon 

  Control GA GSPE Control GA GSPE 
      

mRNA GLP-1 1.12 ± 0.2 0.96 ± 0.2  1.24 ± 0.1 1.11 ± 0.2 0.65 ± 0.2  0.96 ± 0.2 

CCK 0.87 ± 0.1 1.15 ± 0.3  2.25 ± 0.2 
* 

1.63 ± 0.5 3.03 ± 1.1  0.61 ± 0.1 

protein GLP-1  
(pmol/g 
tissue) 

355.36 ± 
18.8 

NA 365.95 ± 
47.6 

186.08 ± 
59.1 

NA 234.64 ± 
17.4 

 

GSPE changes microbiota profile, while gallic acid does not 

Several diversity indices (Shannon's, Simpson's, Simpson's Reciprocal, Simpson’s 

evenness) and richness estimators (Chao1, observed OTUs) were significantly lower in 

the GSPE group compared to both Control and Gallic groups, whereas no differences 

were detected between the control and Gallic groups (Fig. 1). 

 

Fig. 1. Alpha diversity indices (Shannon’s, Simpson’s, Simpson’s Reciprocal index, Simpson’s evenness) 

and richness estimators (Chao1 index, observed OTUs) of the gut microbiota from different treated rats, 

grouped as control, gallic and GSPE, after 8 days of treatment. Different superscripts indicate significant 

differences (P < 0.05) calculated by Wilcoxon rank sum tests. 
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Bacterial composition in cecal content as revealed by PCoA was significantly different 

in the GSPE group compared to both Control and Gallic groups using both unweighted 

(P<0.001) and weighted (P<0.001) UniFrac distances (Fig. 2 A, B).  

Concerning taxonomic phyla, Firmicutes was significantly higher in the control and 

Gallic groups compared to the GSPE group, while Bacteroidetes and Proteobacteria 

were higher in the GSPE group (Fig. 3). Primarily, bacteria from the classes Clostridia, 

Bacteroidia and Alphaproteobacteria and Betaproteobacteria were responsible for 

these observed patterns (Fig. 3). The families S24-7, Bacteroidaceae and 

Porphyromonadaceae were the notable groups from the class Bacteroidia that were 

larger in the GSPE treatment compared to the other two treatment groups, while 

Alcaligenaceae (Betaproteobacteria) and Veillonellaceae (Clostridia) had similar trends 

(Fig. 3). In contrast, Ruminococcacea and Dehalobacteriaceae were larger in the Control 

and Gallic group compared to the GSPE (Fig. 3). Prominent bacterial genera that were 

significantly higher in the GSPE treatment compared to the Control and Gallic groups 

include Bacteroides, Parabacteroides, Sutterella and Phascolarctobacterium, while 

Bilophila was significantly higher in the GSPE group compared to only the control. 

[Ruminococcus] was significantly lower in the GSPE compared to the other 2 groups 

and Oscillospira, Coprococcus and Dehalobacterium were significantly lower in the 

GSPE treatment compared to the Gallic treatment (Fig. 3). 

 

 

Fig. 2. Principal coordinate analysis (PCoA) illustrating the treatment groups of control gallic acid, and 

GSPE based on unweighted (A) and weighted (B) UniFrac distances.  
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Fig. 3. Abundances of microbiota taxonomic groups which were significantly different among treatments 

control, gallic acid, GSPE. Different superscripts indicate significant differences (P < 0.05) calculated by 

Wilcoxon rank sum tests. 

Correlations between microbiota and morphometric and metabolic variables 

To identify whether bacterial taxa are associated with metabolic and morphometric 

variables, or with the different parameters that were measured in the intestine, we 

calculated the Spearman's rank correlation coefficient or Spearman's rho for these 

parameters. Significant correlations are shown in Fig. 4.  

We found significant correlations between the levels of short chain fatty acids and 

multiple bacterial taxa. Acetic acid positively correlated with some families that belong 

to the Firmicutes phyla, that is the Clostridiaceae (and more specifically with the 

Clostridium genera) and the Turicibacteraceae (and more specifically with the 

Turicibacter genera). Positive correlations for acetic acid were also found for the phyla 

Actinobacteria, and within it for the Bifidobacteriales. Butyric acid correlated positively 

with several genera of the families Dehalobacteriaceae and Ruminococcaaceae within 

the Firmicutes phylum, as well as with the Rikenellaceae family of the Bacteroidetes 

phylum. In contrast, butyrate levels negatively correlated with the families 

Veillonellaceae (Firmicutes) and Porphyromonadaceae and Bacteroidaceae 
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(Bacteroidetes). Valeric acid also negatively correlated with this last family, and 

specifically with the Bacteroides genera. 

 

Fig. 4.  Heatplot of correlations between the abundance of selected bacterial taxonomic groups with 

observed concentrations of metabolites, enterohormones and plasmatic parameters. The relative color 

indicates the value of Spearman's rho. P-values were adjusted with the false discovery rate method for 

multiple comparisons. *: adjusted P-value < 0.05.  Only taxonomic groups that displayed significant 

correlations with selected parameters are shown.  

Fig. 4 also shows significant correlations between some enterohormones and bacterial 

taxa. Plasma levels of CCK were positively associated with the genera Oscillospira 

(family Ruminococcaceae) and the genera rc4-4 (family Peptococcaceae) within the 

Firmicutes phylum. Instead, negative correlations were found between active GLP-1 
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levels in plasma and the genera Lactobacillus, Ruminococcus, and the unclassified 

Peptococcaceae, all of them belonging to the Firmicutes phylum. 

We also found negative correlations between DPP-IV activity in the colon and the 

phylum Verrucomicrobia, as well as with the genera Blautia (phylum Firmicutes). 

Ovarian WAT also positively correlated with the genera Clostridium, [Ruminococcus] 

and Dehalobacterium (Firmicutes phylum), and negatively correlated with the S24-7 

family (within Bacteroidetes phyla). In contrast, retroperitoneal WAT positively 

correlated with the Veillonella genera (Firmicutes). 

Finally, the only metabolic parameter that significantly correlated with bacterial taxa 

was the plasma triglycerides, which showed a strong positive association with the 

genus Clostridium, and also correlated with Veillonella, and Dehalobacterium (from the 

Firmicutes phylum), and the family Rikenellaceae (from the Bacteroidetes phylum). 

DISCUSSION 

Grape seed proanthocyanidins have several demonstrated beneficial effects including a 

potential to alleviate metabolic syndrome parameters. They modulate body weight 

gain and lipidemia through several different mechanisms 26. In fact, an 8-day treatment 

with 500 mg/kg bw of GSPE was demonstrated to reduce body weight gain through 

inhibition of food intake and activation of energy expenditure 27. Provided the 

emerging acknowledged role of microbiota in obesity and the few studies showing that 

phenolic compounds might have some effect on its composition, in the present paper 

we analysed whether such GSPE treatment (500 mg/kg bw) during 8 days could 

modulate microbiota. Concomitantly we investigated other effects at the intestinal 

level, i.e. regulation of enterohormones, which could help to explain the effects of the 

GSPE treatment on food intake and body weight gain. We also compared the effects of 

the whole extract with that of one of its compounds, gallic acid, which is rapidly 

absorbed in upper intestine to identify the active components in the gut ecosystem. 

We found that GSPE changes the microbiota profile, and our results are in agreement 

with the general view that polyphenols increase Bacteroidetes and decrease 

Firmicutes phyla 7. Although there is controversy in regard to whether the 

Firmicutes/Bacteroidetes ratio is a microbiome-marker of  obesity, this ratio has been 

shown to have some health implications, in particular, higher values of this fraction 

have been associated with obesity and type 2 diabetes in different human and animal 

studies 28–30. The few studies concerning flavanols and microbiota modulation suggest 

that acting on intestinal flora could be a mechanism for flavonoids to exert beneficial 

effects, as suggested for red wine 31,32 or by cocoa flavanols 33. Conclusions of these 

reviews agree that more evidence is required to define the relationship between 

flavanols, microbiota and health effects. Our results clearly support the hypothesis that 



GSPE influence gut microbiota and enteroendocrine secretion 

 

149 
 

flavanols act at least partly by modulating  gut microbiota composition, and such 

modulation might contribute to explain the previously shown beneficial effects that 

exert a similar GSPE treatment  27.  

In mice fed a high-fat-sucrose diet, highly polymeric procyanidins (PP) from apple 

increased the Firmicutes/Bacteroidetes ratio to the level observed in the standard-fed 

mice after 20 weeks of treatment 34. In that study, PP increased proportions of 

sequences assigned to the Adlerceitzia, Roseburia, S24-7, Bacteroides, Anaerovorax, rc4-

4, and Akkermansia taxa. In contrast, the proportion of reads assigned to Clostridium, 

Lachnospiraceae, and Bifidobacterium were reduced by PP administration 34. Another 

study showed that grape polyphenols dramatically increased the relative abundance of 

A. muciniphila within the Verrucomicrobia phylum, in mice under a high fat diet after 

13-week treatment 35. Accordingly, in mice under a high-fat-sucrose diet, cranberry 

extract, rich in the flavanols group including procyanidins, increased the proportion of 

the mucin-degrading bacterium Akkermansia when administered to mice for 8 weeks 
14. Recently, it has been shown that a grape seed proanthocyanidin extract 

administered for 7 weeks together with a high fat diet increased Clostridium XIVa, 

Roseburia and Prevotella 36. All of these studies analyzed the effects of treatments that 

were several-weeks long together with a high fat or high-fat-sucrose diet. Instead, we 

describe that GSPE changed the microbiota composition after only one week of 

treatment and in animals fed a standard diet. Indeed the study of Ahne et al. showed 

that pretreatment with cranberry extract 1 week before high-fat-sucrose feeding was 

not associated with specific changes in the baseline metagenome 14. Differences with 

our results might be attributed to the different compounds of the extract (i.e. A-type 

procyanidin in cranberry versus B-type in grapes), dose (200 mg cranberry extract/kg 

bw versus 500 mg GSPE/kg bw) and animal model (mice versus rat). Furthermore, the 

specific taxonomic families and genera that we find significantly modified by GSPE are 

mostly different from the above mentioned, with the exception of the S24-7 family and 

the Bacteroides genera, that were previously described as a targets for polyphenols 34. 

Thus, we define several new target taxonomic groups, described at the genera level, 

influenced by proanthocyanidins, including Sutterella, Pharscolarctobacterium, 

Parabacteroides, Bilophila, and Ruminococcus. 

The study of Anhe et al. on cranberry extract, suggested that the related increase in 

Akkermansia population might be sufficient to prevent the negative metabolic 

phenotype associated with obesity-driven dysbiosis without major modifications in the 

proportions of Firmicutes and Bacteroidetes 14. To try to discern whether changes in 

microbiota were related to modulation of morphometric and metabolic parameters, 

we performed correlation tests. Our results showed positive correlations between the 

genera Clostridium, and Dehalobacterium (both Firmicutes), and negative correlation 

for S24-7 with ovarian WAT. Changes in these specific taxa by GSPE could be linked to 

an impairment of adipose weight increase, despite that in the present conditions 

(standard diet, 8–day treatment) we do not find significant modulation of total visceral 
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WAT as expected from this experimental model. Actually, the same GSPE treatment 

(500 mg/kg bw, 8 days) has previously been shown to increase energy expenditure 

through increased lipid oxidation in adipose tissue 27. Furthermore, we found a 

positive correlation of circulating plasma TAG with Clostridium, Dehalobacterium and 

Veillonella. GSPE has previously been shown to reduce plasma triglycerides (reviewed 

in Salvadó et al., 2015) despite that in the present study we do not find statistically 

significant differences, again probably due to the short-term treatment and standard 

diet used in the study. Administration of a putative probiotic Lactobacillus rhamnosus 

for 28 days in diet-induced hyperlipidemic rats led to a positive correlation between 

Clostridium leptum and serum triglycerides, which were reduced by the treatment 37. 

For other types of putative prebiotics, reduction in Clostridium has been observed 

together with reduction in blood lipids 38. In our experiment, reduction by GSPE of 

several taxa that belong to Firmicutes is accompanied with a reduction in butyrate, an 

energy source for colonocytes. Our results in fact show a positive correlation between 

butyric acid and several genera, that are reduced by GSPE (e.g. Dehalobacterium, 

Ruminococcus), but also negative correlation with other genera within the 

Bacteroidetes phylum, that are increased by GSPE. In this sense, proanthocyanidins’ 

modulation of the microbiota profile is associated with a reduction of butyrate, that is, 

of energy harvest from the diet. These results led us to hypothesize that it could be a 

mechanism to protect from increased  TAG accumulation in cases of diet induced-

obesity, at least complementary to other well described mechanisms 26. Further studies 

on GSPE treatments in high fat diet-fed animals are required to discern whether the 

genera that we describe as new targets for being modulated by GSPE, are also involved 

in the beneficial metabolic effects of GSPE.  In humans, consumption of red wine 

polyphenols for 4 weeks significantly increased the number of Enterococcus, Prevotella, 

Bacteroides, Bifidobacterium, Bacteroides uniformis, Eggerthella lenta, and Blautia 

coccoides–Eubacterium rectale groups 13, suggesting that the possible prebiotic effect of 

proanthocyanidins could be extended to humans. 

In the present study, we found increased active GLP-1 in plasma after an 8-day GSPE 

treatment. Our results of intestinal GLP-1 gene and protein expression suggest that the 

effect on circulating GLP-1 levels is not due to a modification of GLP-1 production, but 

of its secretion. Since the last GSPE dose was administered 80 minutes before sacrifice, 

it could be that the previously shown acute GLP-1-stimulatory GSPE effects 8,10 are 

maintained after 8 days of treatment, as has been described for ghrelin 27. In humans, 

the intake of a specific strain of Lactobacillus (i.e. L. reuteri) has been shown to 

increase GLP-1 secretion 39. However, we found that the levels of active GLP-1 

negatively correlated with three genera (Lactobacillus, Ruminococcus and Unclassified 

Peptococcaceaea) within the Firmicutes phylum. Although the Lactobacillus genus 

identified in our study was not further classified to the species level, it appears that not 

all strains of Lactobacillus demonstrate the same GLP-1 secretion patterns in the host. 

It has been shown that the gut microbiota fermentation of specific prebiotics or other 

non-digestible carbohydrates is associated with the secretion of enteroendocrine 
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peptides produced by L-cells 40. One possible mechanism is that SCFAs produced by the 

fermentation of dietary fibers bind to the G-protein-coupled receptors (GPCRs) GPR41 

and GPR43, thereby triggering GLP-1 secretion by the L-cells 40. Our results show that 

GSPE significantly reduced cecal butyrate content, and modulated the ratio of acetate: 

propionate: butyrate, although whether these changes could signal to enhance GLP-1 

secretion should be further assessed. Alternatively, a direct link between gut 

microbiota and intestinal bioactive lipids related to the endocannabinoids and 

involved in enteroendocrine peptide secretion has been suggested as another 

mechanism for enhanced GLP-1 secretion observed with prebiotics 40. To our 

knowledge, there is no information concerning the possible relationship between these 

three genera and endocannabinoids, thus future studies will reveal whether this may 

be a mechanism for GSPE. 

GSPE is a mixture of different compounds. Matsumoto et al. demonstrated that 

modification in the proportion of Akkermansia in the gut microbiota is due to non-

absorbable PPs and that the degree of PP polymerization is an important factor 34. In 

the present paper we show that gallic acid, one of the main acids found in the extract 

does not induce significant modification of microflora or short chain fatty acids, at least 

in the concentration assayed, which is equivalent to that found in 500 mg GSPE/kg. 

Moreover we show that gallic acid does not mimic the changes in enterohormone 

profile induced by GSPE. Furthermore, in this model it does not reduce food intake, and 

concerning adiposity, it leads to a significant increase in visceral adipose tissue, due to 

the increased retroperitoneal fraction.  

We had previously shown that gallic acid reduced CCK secretion after an acute 

treatment in a rat duodenum ex vivo model 9. Now we found that an 8-day treatment 

with gallic acid increased CCK plasma levels. These differences might be due to the 

different length of time of each treatment (acute vs 8 days). Despite our results 

showing no significant modulation of CCK gene expression in ileal and colonic tissue of 

gallic acid-treated rats, suggesting that the effect is not due to an increased production, 

we also observed a correlation between plasma CCK levels and some microbiota taxa. 

Plasma CCK positively correlated with the Oscillospira genus and the corresponding 

Ruminococcae family. The mechanism and whether there is a relation with CCK 

secretion remain unresolved, but results confirm that gallic acid is not the main active 

molecule in the GSPE extract to explain its effects at the gastrointestinal tract.   

CONCLUSION 

In conclusion, our results show for the first time a clear short-term effectiveness of 

GSPE at modifying microbiota, increasing the amount of Bacteroidetes and reducing 

that of Firmicutes, and altering specific genera within these phyla. Modifications in the 

microbiota led to changes in the short chain fatty acid profile from the cecal content. 

Our correlation analysis suggests that these changes in the microbiota may be linked to 
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the modulation of plasma TAG, adiposity, and enterohormone secretion induced by 

GSPE. 
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SUPPLEMENTARY MATERIAL 

 
Table 1S. DPP-IV activity/mg protein in different intestinal segments for rats in the 

control, GSPE and gallic acid treatments. Values are represented as normalized by each 

control. * P ≤ 0.05 versus control, T test. 

  Control Gallic acid GSPE 

Duodenum 1.00 ± 0,1 1.63 ± 0.3 *  0.91 ± 0.1 
Jejunum 1.00 ± 0,1 0.99 ± 0.1  0.97 ± 0.1 
Ileum 1.00 ± 0,1 1.21 ± 0.1  1.15 ± 0.1 
Distal colon 1.00 ± 0,1 1,01 ± 0.1  0,93 ± 0.05 
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PREFACE 

In the last manuscript, we aimed to discover a new source of natural bioactive 

compounds that could act at intestinal level. Specifically we analyzed whether 

chicken feet hydrolyzate modulates the incretin system (objective 4). 

The in vitro evaluation of DPP-IV inhibition enabled us to screen different chicken 

feet hydrolyzates obtained by enzymatic hydrolysis. Moreover, we used in vitro 

and ex vivo models to show that the selected hydrolyzate (with the higher DPP-IV 

inhibitory activity) was able to modulate the incretin system by another 

complementary mechanism, the direct effect on enteroendocrine cells, and 

thereby on GLP-1 secretion.  

Finally, we checked whether the selected hydrolyzate had in vivo effect improving 

glucose homeostasis in disrupted- glucose homeostasis rat models. 

Results detailed in the manuscript, as well as subsequent studies that have led us 

also to define the main peptide sequence responsible of DPP-IV inhibition are 

reported in related patent. 
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ABSTRACT  

The incretin therapies provide a novel approach to be used in the treatment of type 2 

diabetes. In the present study, the potential as natural dipeptidyl-peptidase IV (DPP-

IV) inhibitor of 12 hydrolyzates generated from hydrolysis of chicken feet proteins 

with Neutrase® and Protamex® were investigated. Three hydrolyzates were selected 

due to their high DPP-IV inhibitory capacity (>80%), showing IC50 values around 300 

µg/mL. The hydrolyzate obtained from chicken feet proteins treated with a 

pretreatment (50°C, pH3, 1.5h), followed by a hydrolysis with Neutrase® (25°C, pH7.0, 

24h) (which was named p38H) was selected for posterior analysis. Glucose tolerance 

test was performed on healthy and two types of glucose-intolerance (diet-induced and 

age-induced) rat models to study the antihyperglycemic effect of the p38H. The dose of 

300 mg protein/kg body weight (BW) p38H improves the plasma glucose profile in 

both glucose-intolerance models. The p38H had no significant effect in rats with 

normal glycemia. In addition, p38H induced a strong stimulation of active GLP-1 

release in enteroendocrine STC-1 cells and in rat ileum tissue. In conclusion, our 

results point out that proteins of chicken feet treated by Neutrase® and Protamex® are 

a good source of bioactive peptides as DPP-IV inhibitors. Moreover, our results also 

highlight the potential of the selected hydrolyzate (p38H) for the management of type 

2 diabetes due to the dual function of inhibiting DPP-IV activity and inducing GLP-1 

release.   

http://www.sciencedirect.com/science/article/pii/S0955286315003411
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CHAPTER 4 

 

164 
 

INTRODUCTION 

The prevalence of lifestyle-related diseases such as obesity and type 2 diabetes 

mellitus (T2DM) has become a healthcare problem in developed societies. Therefore, 

effective strategies are needed to prevent the development of T2DM and the associated 

pathologies. A recent focus has pointed out to the biology of incretin hormones such as 

GIP and GLP-1 for glycemic regulation [1].   

GLP-1 is an incretin hormone that is released from intestinal L-cells in response to 

nutrient ingestion that exerts glucoregulatory action through the stimulation of insulin 

secretion and inhibition of glucagon secretion [2, 3]. In addition to its insulinotropic 

actions, GLP-1 also improves beta-cell mass, delays gastric emptying, enhances satiety 

and reduces food intake [4, 5].  Due to their physiological effects, a number of 

antidiabetic agents targeted towards the so-called incretin therapies have emerged. 

These therapies are mainly based on the use of GLP-1 mimetics and dipeptidyl 

peptidase IV (DPP-IV) inhibitors, which protect cleavage of active GLP-1 by DPP-IV [6]. 

DPP-IV is a serine protease which is widely distributed among many tissues in the 

body and it is expressed as both membrane and soluble form in a variety of cell types. 

This enzyme principally cleaves proline or alanine containing dipeptides from the N-

terminus of a polypeptide; thereby GLP-1 and GIP are potential DPP-IV targets. The 

concentration of GLP-1 in plasma rises rapidly after food intake and it is immediately 

degraded by DPP-IV because of the presence of the enzyme at their site of production. 

In recent years, DPP-IV inhibitors have been reported to prevent the cleavage of 

incretins by DPP-IV and to increase the half-life of the active hormones, and hence are 

available for management of glucose homeostasis [2]. Recently, another potential 

approach has been postulated, the stimulation of the endogenous secretion of GLP-1 

stored in L-cells to improve glycemia [7]. 

The development of food protein-derived peptides has become a novel strategy for the 

prevention and management of T2DM.  The hydrolyzates rich in bioactive peptides are 

well metabolized and confer fewer side effects than synthetic pharmaceutical drugs. 

Furthermore, there is a wide range of available under-utilized resources of the food 

industry, which could be potential sources of bioactive peptides. Altogether, these 

characteristics could lead to expand the use of bioactive peptides in the nutraceutical 

food section [8]. Recent in silico analysis revealed that sequences are contained within 

dietary proteins that present structural features which make them natural precursors 

for generation of potent inhibitors of DPP-IV [9, 10]. Previous studies have described 

that hydrolyzates obtained from milk proteins [11, 12], as well as other animal and 

vegetal sources [13–15] exhibit DPP-IV inhibitory activity in vitro. However, only a few 

studies have evaluated the effects of biopeptides as DPP-IV inhibitors in vivo. Acute 

studies show that biopeptides can decrease plasma glucose concentration relative to 

the control in an oral glucose tolerance test (OGTT) in rodents [16, 17]. While Mochida 
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et al. showed that ZeinH (a hydrolyzate prepared from corn zein) administration into 

the ileal loop produces an inhibition of DPP-IV activity in the ileal vein in rodents [18].  

Regarding GLP-1 secretion by dietary proteins, it has been reported that meat 

hydrolyzates stimulate GLP-1 release in the enteroendocrine cell lines NCI-H716 [19], 

STC-1 [20], and GLUTag [21] as well as it is a potent secretor of GLP-1 in rodents [22]. 

Moreover, GLP-1 secretion triggered in response to whey protein has been observed in 

humans [23]. Even though, human studies have shown that this incretin secretion 

highly depends on the origin of the protein and its level of digestion [24, 25], as it was 

also observed in STC-1 cells [26]. It is also interesting the fact that a dual bioactive role 

has been suggested for protein hydrolyzates, such as DPP-IV inhibitor and α-

glucosidase inhibitor [27], or stimulator of GLP-1 secretion [18, 28], highlighting their 

promising action in the prevention and management of glucose-intolerance 

pathologies. 

Therefore, the aim of this study was to obtain bioactive hydrolyzates that are able to 

inhibit DPP-IV activity in vitro from proteins of chicken feet using in vitro enzymatic 

treatment. Furthermore, we selected a hydrolyzate with high capacity to inhibit DPP-IV 

activity in vitro and evaluated the effect of this hydrolysate on the secretion of GLP-1 in 

in vitro and ex vivo models. Finally, we aimed to demonstrate whether this could lead 

to antihyperglycemic properties in rats. 

MATERIALS AND METHODS 

Chemicals 

Dipeptidyl peptidase IV (from porcine kidney) was purchased from Sigma-Aldrich, Co. 

(St. Louis, Mo., USA). Gly-Pro-7-amido-4-methylcoumarin hydrobromide (Gly-Pro-

AMC) and Pro-p-nitroanilide (Ala-Pro-pNA) were obtained from Bachem AG. Diprotin 

A (Ile-Pro-Ile) was from Enzo Life Sciences International (New York, USA) and 

Vildagliptin was form Axon Medchem (Groningen, The Netherlands). Neutrase® 0.8L 

and Protamex® was received as a kind gift from Novozyme (Copenhagen, Denamark). 

Hydrolysis of chicken feet proteins 

Chicken feet hydrolyzates were made from chicken feet from Gallus gallus domesticus 

as previously described [29]. Chicken feet were washed, triturated, lyophilized and 

sieved using 2mm pore size sieve to obtain a powder. This powder was heated in water 

at different pH (3.0 and 7.5) and temperature (25, 50 and 100°C) for 1.5 hours. After 

pretreatment, the mixture was hydrolyzed at pH 7.0 and different temperature (25 or 

50°C) for 2 hours or 24 hours, and using two different commercial mixes of proteases 

from Bacillus amyloliquefaciens (E.C. 3.4.24),  and Bacillus licheniformis and Bacillus 

amyloliquefaciens (E.C. 3.4.21.62 and EC 3.4.24.28) so-called as Neutrase® and 

Protamex®, respectively.  In all hydrolysis treatment, the ratio of enzyme:substrate 
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used was 0.4 Anson Units (AU)/g.  To stop the hydrolysis reaction, enzymes were 

inactivated by heating at 80°C for 10 min in a water bath. Solutions were centrifuged at 

10000 x g for 24 min at 4°C. The supernatant was collected and was kept at -20°C until 

further analysis.  

Determination of DPP-IV Inhibitory Activity 

The inhibition assay was performed using 96-well microplates. The DPP-IV enzyme 

(diluted with 100 mM Tris HCl buffer ph 8.0 to 0.26 mU per well) and 10 µl of different 

concentration of test sample was pre-incubated for 10 min at 37°C. The enzymatic 

assay was initiated by adding the chromogenic substrate Gly-Pro-pNA (final 

concentration 0.2mM). The mixture was measured at 405 nm at 37°C for 30 min in a 

microplate reader. DPP-IV inhibition is expressed as a percentage which is the 

difference of the activity in presence of test peptides versus total activity of the 

enzyme. The IC50 values were calculated for hydrolyzates that achieved the selection 

criteria: inhibition activity of 80%. Diprotin A (Ile-Pro-Ile), a well-known DPP-IV 

inhibitor, was used as reference inhibitor and positive control. The protein 

concentration of the hydrolyzates was assayed by the Kjeldahl method [30]. 

Animal studies 

Female Wistar rats weighing 180-200g and male Wistar rats weighing 450-500g were 

obtained from Harlan (Barcelona, Spain). The studies in male groups occurred at the 

facilities of the Technological Center of Nutrition and Health (www.ctns.cat).  Upon 

arrival, the animals were housed singly in animal quarters at 22ºC with a 12-h 

light/12-h dark cycle and with free access to food and water. After an adaptation 

period of one week, the animals were used for the experiments. 

On the experimental day, the animals were randomized into different groups 

depending on the treatment received. To study the effect of the selected hydrolyzate 

p38 (p38H) on a healthy model, female rats were divided into two groups (n=7): the 

control group, treated with the vehicle (tap water), and the group receiving p38H, at 

300 mg protein/kg of body weight (BW). To study the effect of the p38H on an obesity 

model, the rats followed a washing period and then they were fed a cafeteria diet 

(carrots, bacon, and milk with sugar) plus the standard laboratory chow, as previously 

described [31, 32]. After ten weeks, the animals were distributed into a cross-over 

experimental design with two groups (n=7), the control group and the p38H group 

(300 mg protein/kg BW). Finally, p38H was also tested in a model of glucose-

intolerance due to age (7-month) [33]. Male Wistar rats were divided into three 

experimental groups (n=6 rats/group): control group, treated with the vehicle (tap 

water); p38H group, treated with 300 mg protein/kg BW; and a positive control group, 

treated with the commercial DPP-IV inhibitor vildagliptin (1 mg /kg BW). 

For all the studies, the animals were fasted overnight before experimental treatment. 

At 9 a.m. on the experimental day, the treatment was administered by intragastric 
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gavage (i.g). After 40 minutes of treatment, animals underwent an intragastric glucose 

load (2 g of glucose/kg of BW). Tail blood samples were collected into a heparinized 

capillary tube immediately before and at 15, 30, 60, and 120 minutes after glucose 

administration. The plasma was immediately separated from the blood by 

centrifugation (2500 x g, 4ºC, 15 min) and stored at -80°C until analysis. 

The Animal Ethics Committee of the University Rovira i Virgili (Tarragona, Spain) 

approved all of the procedures. 

Plasma analysis 

The glucose plasma levels were assayed using an enzymatic colorimetric kit (Glucose 

Oxidase-Peroxidase method from QCA, Tarragona, Spain) and DPP-IV plasma activity 

was measured by a fluorimetric assay following the method as previously described, 

with some modification based on the fluorimetric substrate and the DPP-IV 

concentration of the plasma samples. 

Cell culture 

The STC-1 clonal cell line was received as a kind gift from Dr. B. Wice (Washington 

University, St. Louis, USA) with the permission of Dr. D. Hanahan (University of 

California, San Francisco, USA). This enteroendocrine cell line was originated from a 

double-transgenic mouse tumor [34]. Cells were cultured in DMEM with GlutaMAX 

containing 4.5 g/l D-glucose, without sodium pyruvate (GIBCO), supplemented with 

17.5% fetal bovine serum, 100 U/ml penicillin, and 100 mg/l streptomycin 

(BioWhittaker) and incubated in a 5% CO2-humidified atmosphere at 37°C. At least 

three replicates using different cell passage numbers were performed for each 

experiment, including at least three wells of each condition in every replicate. Cells 

were used between passage numbers 30 –50. 

Ex vivo explants 

Intestinal tissue was obtained from healthy female Wistar rats (n=6). Animals were 

sacrificed and their intestines were dissected out. To acquire the distal ileum segment, 

an incision was made in the ileocecal junction and the distal 8 cm of intestine from the 

ileocecal junction was excised. The ileum was rinsed with ice-cold Hank’s balanced salt 

solution (HBSS; Thermo Fisher Scientific, Madrid, Spain) and was dissected in 

segments of tissue (0.75 cm2), which were placed on a 24-well plate and kept on ice 

until the start of secretion studies. 

GLP-1 secretion studies 

STC-1 cells were seeded in 24-well culture plate at a density of 2.0 × 105 cells/well for 

2 days until they reached 80-90% confluency. On the day of the experiment, cells were 

washed twice with HEPES (20 mM HEPES, 140 mM NaCl, 4.5 mM KCl, 1.2 mM CaCl2, 

and 1.2 mM MgCl2 at pH 7.4), and p38H dissolved in HEPES buffer with 10 mM glucose 
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(5 mg/mL) was added to each well. After an incubation period of 2 hours at 37°C, 

supernatants were collected, centrifuged to remove remaining cells and stored at -80°C 

until it was used for determination of active GLP-1 concentration. 

For the ex vivo explant experiments, tissue segments of ileum were placed in 

prewarmed (37ºC) KRBS buffer (containing 4.5 mmol/L KCl, 138 mmol/L NaCl, 4.2 

mmol/L NaHCO3, 1.2 mmol/L NaH2PO4, 2.6 mmol/L CaCl2, 1.2 mmol/L MgCl2 and 10 

mmol/L HEPES (adjusted to pH 7.4 with NaOH)) with 10 mM glucose, 0.1 mM diprotin 

A and supplemented with 15mg/mL p38H. Tissue segments were incubated for 1 hour 

in a humidified incubator at 37°C and 5% CO2. After the incubation, the solutions were 

collected, centrifuged to remove remaining cells and stored at -80°C until it was used 

for determination of active GLP-1 concentration.  

Tissue viability was checked by an absence of the cytoplasmic marker lactate 

dehydrogenase (LDH) in the incubated solutions. LDH was analyzed using an LDH kit 

(QCA; Tarragona, Spain).  

Active GLP-1 concentration was measured with a GLP-1 7-37 amide ELISA kit 

(Millipore; Billerica, MA, USA). 

Data analyses 

The results are expressed as the mean±SEM. The repeated measurements of glucose 

were performed using a two-way ANOVA test and significant differences among mean 

values were determined by post hoc Bonferroni. Differences in the glucose area under 

the curve (AUC) between groups were determined by using one-way ANOVA, followed 

by a Bonferroni test. GLP-1 measurement was analyzed using a Student’s t-test. All 

calculations were performed using SPSS software (SPSS, Chicago, USA). P-values < 0.05 

were considered significant in all cases. 

RESULTS 

DPP-IV inhibitory activity of chicken feet hydrolyzates 

Chicken feet were subjected to different conditions (pretreatments at different 

temperature and pH followed by treatments with different enzymes, temperature and 

time) to obtain a panel of different hydrolyzates. Then the DPP-IV inhibitory activity of 

these hydrolyzates was assayed. Table 1 shows that 3 hydrolyzates out of the 12 

tested achieved the selected threshold of 80% inhibition. The hydrolysis treatment 

was essential to obtain hydrolyzates with DPP-IV inhibition property since the chicken 

feet powder that was not subjected to hydrolysis (named p86H, Table 1) did not show 

inhibitory activity. DPP-IV inhibitory activity was dependent on the conditions of 

pretreatment and hydrolysis treatment. The results showed that the hydrolysis of 

protein solution subjected a pretreatment in basal conditions (25°C and pH 7.5) led to 

samples with DPP-IV inhibitory capacity, achieving the threshold of around 40%, in all 
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the hydrolysis treatment conditions (p103H, p115H, p111H). Modification of 

pretreatment conditions, by reducing the pH to 3 and increasing temperature (50°C 

and 100°C) (samples p38H, p16H, p68H in Table 1) exhibit a higher DPP-IV inhibitory 

activity (80-100%) than the hydrolyzates subjected at pH 7.5 and lower temperatures 

in the pretreatment.  

TABLE 1  

Chicken feed hydrolyzates with dipeptidyl peptidase IV inhibitory activity. 

Hydrolyzate 

Pretreatment 

(1.5 h) 
Treatment (pH 7) 

DPP-IV 

Inhibition (%)a Temp 

(°C) 

pH Enzyme Temp 

(°C) 

Time 

(h) 

p86H 25 7.5 No 0 

p103H 25 7.5 Neutrase® 25 24 48.39 

p39H 50 7.5 Neutrase® 25 24 44.40 

p102H 25 3 Neutrase® 25 24 60.48 

p38H 50 3 Neutrase® 25 24 83.22 

p115H 25 7.5 Neutrase® 50 24 40.22 

p19H 100 7.5 Neutrase® 50 24 77.19 

p114H 25 3 Neutrase® 50 24 55.24 

p16H 100 3 Neutrase® 50 24 100 

p111H 25 7.5 Protamex® 50 2 44.05 

p70H 100 7.5 Protamex® 50 2 60.49 

p110H 25 3 Protamex® 50 2 53.30 

p68H 100 3 Protamex® 50 2 93.30 

a Dipeptidyl peptidase IV inhibitory activity of 100% sample fraction under assay conditions 
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The IC50 of the three selected was calculated and expressed in volume (µL) and protein 

concentration (µg/mL). The IC50 given in microlitres measure the hydrolyzate 

pharmacological potency since this value signifies the volume required to inhibit the 

enzyme by 50% under the assay condition. The expression of IC50 in protein 

concentration means the specificity of peptide pool mixture against DPP-IV, hence it is 

an indicator of the pharmacological specificity [35, 36]. All of them showed similar 

values between 4.03 and 4.82 μL or 297.4 and 302.9 µg protein/mL (Table 2). Since 

the temperature of pretreatment and hydrolysis were lower to obtain p38H, which 

could imply an industrial production less expensive, this hydrolyzate was selected for 

posterior experiments.  

TABLE 2 

Comparison between protein content and DPP-IV Inhibitory Activity of hydrolyzates of chicken 

feet produced by enzymatic treatments. 

hydrolyzate Protein content 
(mg/mL) a 

IC50  
(μL)b 

IC50  
(µg/mL)b 

p16H 6.83 4.42 297.4 

p38H 6.24 4.82 302.9 

p68H 6.62 4.45 300.1 
a Protein was measured by Kjeldahl method. 

b IC50 values are reported as the mean from duplicate assays. 

 

Effects of chicken feet hydrolyzate on plasma glucose 

The effect of an acute administration of p38H was tested in two different models of 

rats with glucose intolerance: diet-induced and age-induced.  

In a cafeteria-induced obese rat model, the administration of 300 mg/kg BW p38H 

together with a glucose load reduced the peak of glucose and tended to normalize the 

glucose values (Fig. 1.A.) Concomitantly, the glucose AUC values after an OGTT was 

lower in the p38H-treated animals than in the cafeteria group (Fig. 1.B). Similarly, 

aged rats had glucose intolerance (in non-treated animals, values at 120 min did not 

return to initial levels) and a p38H treatment ameliorated the plasma glucose profile 

similarly to what the positive control vildagliptin did (Fig. 2).  

The effects of the hydrolyzate in rats with normal glycemia were also tested. Actually, 

this was performed in the same group of rats that were subjected to a cafeteria diet, 

but previously to the cafeteria treatment. In this case, the p38H had no significant 

effect (Δ Glucose AUC (arbitrary units): 2658.50 ± 902.25 and 3201.28 ± 504.41, 

control and p38H-treated group, respectively).  
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Fig 1. Plasma glucose levels during OGTT after gavage administration of water or p38H (300mg 

protein/kg BW) (A) and evaluation of the post-prandial areas under the plasma glucose curves (B) in the 

standard group (solid square or open bar), cafeteria group (solid circles or grey bar) and p38H-treated 

cafeteria group (solid triangle or solid and points bar). The data are given as the mean±s.e.m (n=5-7). 

Mean values with unlike letters were significantly different among groups (A, two-way ANOVA and 

Bonferroni post hoc comparison and B, one-way ANOVA and Bonferroni post hoc comparison, p < 0.05). 
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Fig. 2. Plasma glucose levels during OGTT after gavage administration of water, vildagliptin (1 mg /kg 

BW) or p38H (300mg of protein/kg BW) (A) and evaluation of the post-prandial areas under the plasma 

glucose curves (B) in the standard group (white circles or open bar), p38H-treated group (solid triangle or 

solid and points bar) and vildagliptin-treated group (white squares or grey bar). The data are given as the 

mean±s.e.m (n=5-7). Mean values with unlike letters were significantly different among groups (A, two-

way ANOVA and Bonferroni post hoc comparison and B, one-way ANOVA and Bonferroni post hoc 

comparison, p < 0.05). 
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GLP-1 release was stimulated by Chicken hydrolyzate  

Finally, we tested in vitro and ex vivo the capacity of the p38H to stimulate GLP-1 

release. In STC-1 enteroendocrine cells, treatments with 5 mg/mL p38H for 2 hours led 

to a strong (7-fold) increase in GLP-1 levels in the media compared to controls (Fig. 

3.A). Similarly, GLP-1 secretion from ileum tissue segments was stimulated in 

response to the 15 mg/mL p38H (Fig. 3.B).  

 

FIG 3. Selected hydrolyzate (p38H) effect on active Glucagon-like peptide-1 (GLP-1) secretion 

from STC-1 cells (A) and ileum tissue segment (B).  The data are displayed as the means±s.e.m. 

Stadistically significant difference at p < 0.05 calculated using Student t-test. 

DISCUSSION 

In this paper, we focused on finding natural peptides that act as DPP-IV inhibitors and 

inductors of the endogenous secretion of GLP-1, which could be a useful strategy 

against Type 2 diabetes, pathology with a great incidence in developed countries [1, 7]. 

We define for the first time that chicken feet protein hydrolyzates are able to inhibit 

DPP-IV activity. Other food proteins had previously been shown to be sources of DPP-

IV inhibitors, such as whey [37], milk [38], salmon skin [39] and quinoa [40]. We 

performed a screening in which chicken feet were subjected to different hydrolysis 

protocols. Our results show that not all treatments functioned equally, indicating the 

importance of the treatment conditions in the hydrolyzates behaviour. Three protocols 

leading to hydrolyzates with DPP-IV inhibitory activity were found. The pretreatment 

for 1.5 hours at 50°C or 100°C and pH value of 3 was crucial to achieving hydrolyzates 

with high DPP-IV inhibitory capacity (p38H, p16H, and p68H). In fact, the three 

selected hydrolyzates presented similar pharmacological potency, since IC50 values 

expressed as microliter are similar (around 4 μL), and also similar pharmacological 

specificity, shown by similar IC50 values expressed as micrograms protein per millilitre 

(around 300 µg/mL). The IC50 that we obtained is 10-fold lower than that found in a 

previous study which used collagen obtained from chicken-feet and hydrolyzed using 

Streptomyces collagenase (45°C, pH 7.5, 17 hours) [41]. Thus working with the whole 
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chicken feet source, and using the appropriate conditions (here defined) can lead to 

solutions with much more DPP-IV inhibitory potency. 

The obtained IC50 values are within the range of that observed by other food 

hydrolyzates [13, 42, 43]. Lower IC50 values of the hydrolyzates compared to purified 

peptides have been found in other studies [38]. Hence, those results suggest that the 

concentration of bioactive peptide in the hydrolyzate is low and different bioactive 

peptides or a different combination of them might be involved in DPP-IV inhibitory 

activities. Although a further identification of the bioactive peptide would be of 

interest, we here present important clues to prepare hydrolyzates from chicken feet 

for a use as antihyperglycemic.  

We next selected one of the chicken feet hydrolyzate, p38H, to demonstrate its 

bioactivity in vivo. It must be taken into account that high DPP-IV inhibitory activity in 

vitro could not correspond with high antihyperglycemic effect in vivo. This could be 

because the bioactive peptides contained in the hydrolyzates can be hydrolyzed and 

transformed into inactive peptides during the gastrointestinal digestion. For this 

reason, it is essential to validate the hydrolyzate bioactivity in vivo. We tested the p38H 

effects at reducing glycemia in a model of rats fed a cafeteria diet. Our results show 

that the p38H treatment led to a lower glucose initial peak and a lower glucose curve, 

with a tendency to reach levels of standard-fed animals. Instead in the healthy rats 

(assayed previously to the cafeteria treatment), p38H did not modify the AUC of the 

glucose load. This could be related to the fact that in the cafeteria-fed rats the initial 

glucose peak was greater (an increase of around 80 mg/dL at 15 min) than before the 

cafeteria treatment (glucose increase of around 50 mg/dL) because of their disorder in 

glucose homeostasis. This disorder induced by diet underscored in 120 min after the 

OGTT when the cafeteria-fed animals glycemia did not return to basal levels, while 

previously to the cafeteria treatment these rats showed normal OGTT curves. The 

p38H effects were tested in another model that showed glucose-intolerance, aged rats. 

In this model, p38H also lowered the plasmatic glucose curve. This is the first trail that 

acute dose of peptide hydrolyzates influence glucose homeostasis in rat models that 

present glucose intolerance, while only a few potential DPP-IV inhibitor-peptides have 

previously been tested in vivo for their glucose lowering capacity in healthy models. 

Uchida et al. tested a ß-lactoglobulin hydrolyzate in mice and observed that glucose 

levels were reduced at 15 min after an OGTT. It worth mentioning that the glucose 

dose administered was 10 g/Kg BW, much higher than the one we have tested (2 g/kg 

BW) and that in agreement led to a great (around 3-fold) increase in glucose peak at 

this time point [16], reinforcing that the effects are dependent on the amount of 

circulating glucose. This might be linked to the modest potency of the hydrolyzates 

compared to commercial purified DPP-IV inhibitors, which we and others [16] 

observed. Interestingly in aged control animals, the comparison of p38H-treated and 

vildagliptin-treated animals showed a different glucose pattern: the p38H was not as 

effective as vildagliptin at reducing the initial glucose peak but normalized its glycemia 
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at 120 min in a similar way. These results suggest that p38H might act through 

different mechanisms to ameliorate hyperglycemia. 

It must be stated that we measured DPP-IV activity in plasma from the tail and found 

no effect of p38H in any of the animal experiments (results not shown). However, it has 

been shown that the main GLP-1 degradation occurs immediately at the site of 

secretion, and its short half-life generates that only 10-15% active GLP-1 levels remain 

in the systemic circulation [3, 44]. Although various hydrolyzates have been reported 

to reduce plasma DPP-IV activity after chronic treatments [45–47], few studies have 

shown that effect in acute treatments. Actually, whey protein has been reported to 

attenuate hyperglycemia in part by inhibition of DPP-IV activity in the small intestinal 

tissue, but not in orbital vein [48]. It has also been shown that ileal administration of 

Zein and rice protein hydrolyzates decreased plasma DPP-IV activity in ileal vein [18, 

28]. And in fact, none of the other papers describing in vivo antihyperglycemic effects 

of protein hydrolyzates shows DPP-IV activity in peripheral blood [16, 17]. Therefore,  

it cannot be excluded that, despite the lack of DPP-IV inhibition in peripheral blood, 

p38H lead to an amelioration of glucose profile due to the inhibition of local intestinal 

DPP-IV. 

Previously, it has been shown that Zein and rice protein hydrolyzates have 

antihyperglycemic effects by a dual mechanism of action, both inhibiting DPP-IV 

activity as well as increasing GLP-1 release [18, 28]. Actually, Mochida et al. showed 

that Meat hydrolyzate (acquired from Sigma, no description of the meat origin) was 

also tested and shown to induce intestinal GLP-1 secretion after ileal administration, 

but it has not the dual effect. Other protein hydrolyzates have been tested as GLP-1 

stimulator in vivo, in situ and in vitro models [19, 23, 49, 26]. We reproduced this 

approach and tested whether chicken feet hydrolyzate could also modulate GLP-1 

release in in vitro and ex vivo model. Our results show a strong significant increase in 

GLP-1 levels after p38H treatment in both models. Despite the form in which the 

hydrolyzate might reach the enteroendocrine L-cells in vivo might differ from that used 

in in vitro or ex vivo, these results suggest that this might also be a mechanism that 

helps to reduce glycemia in animals. This additional mechanism could help to explain 

the differences found between the DPP-IV inhibitor vildagliptin and the p38H in the 

aged-rats experiment, since it could be that after 120 minutes the p38H reached the 

intestinal regions where GLP-1 secreting cells are located (mainly ileum and/or colon) 

and a stimulation of GLP-1 would explain the reduced glucose levels. Further 

experiments will be required to confirm this hypothesis.  

In conclusion, we here report that chicken feet hydrolyzates obtained by Neutrase® 

treatment reduced glycemia in glucose-intolerant rats and that this might be mediated 

through their DPP-IV inhibitory capacity. In addition, a stimulation of endogenous GLP-

1 secretion could also be involved in the antihyperglycemic effects of the p38H.   
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1. Thesis summary and general discussion 

The increased prevalence of overweight and obese individuals, in both developing and 

developed societies, highlights the need to find preventative therapies, as well as 

treatments for obesity and its metabolic-associated diseases. The gastrointestinal tract 

is the largest endocrine organ in the body producing hormones that act as important 

mediators of glucose homeostasis and food intake. The focus of type 2 diabetes 

mellitus (T2DM) treatments is keeping blood glucose levels within the normal 

physiological range [1]. With regards to body weight management, focusing on the 

regulation of food intake is one potential strategy as it is well known that the main 

causes of obesity is increased food intake coupled with decreases energy expenditure 

[2].  

In the last decade, scientific advances have aided the investigation of natural bioactive 

compounds to reduce obesity and related pathologies, such as cardiovascular disease, 

T2DM, osteoarthritis and some cancers (colon, endometrial and breast cancers) [3–5]. 

The use of natural bioactive compounds to modulate gut hormone secretion, and 

consequently appetite and glucose homeostasis, might be a potential strategy to 

prevent or/and treat obesity and one of the most associated disease, T2DM. In the field 

of natural bioactive compounds, the scientific evidence of their action has to be 

approved as a health claim [6]. Additionally, the complete description of their 

mechanisms is important if they are to be recommended for the reduction of disease 

risk in a target population. Thus, this thesis was focused on defining the mechanisms of 

a known bioactive compound at the intestinal level, i.e. grape seed proanthocyanidin 

extract (GSPE), specifically on the different mechanisms involved in enteroendocrine 

system modulation, as well as finding new ones, i.e. bioactive peptides derived from 

chicken feet, that might act through modulation of these intestinal mechanisms. To 

achieve our objective different models of study, including in vitro, ex vivo and in vivo 

models, were used.  

The in vivo release of enterohormones occurs through direct sensing of luminal 

components, and also indirectly by vagal and humoral stimulation [7]. Therefore, one 

important mechanism to understand plasma intestinal hormone levels is the direct 

interaction of the luminal content with enteroendocine cells (EECs). In vitro and ex vivo 

models were used to study the direct effect of compounds on hormone release. In ex 

vivo model, our results showed that GSPE (170 mg phenolics/L) and metabolites of 

GSPE (~188 mg phenolics/L) increased active GLP-1 levels in ileum and colon 

segments, respectively. Previous studies done in our research group described that 

GSPE has antihyperglicemic properties that were attributed to the proanthocyanidins 

insulin-like effect in adipose tissue [8] and also the proanthocyanidins modulation of 

insulin secretion and production [9, 10]. However, antihyperglicemic properties are 

also associated with the incretin effect. Previous studies of our group reported that 

acute dose of 1g/Kg BW grape seed proanthocyanidin extract (GSPE) increases active 
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GLP-1 plasma levels after an oral glucose load in healthy rats. Such increase could, in 

part, explain the increased plasma insulin levels and the decreased plasma glucose 

levels which were also reported in the same study [11]. Therefore, the increased active 

GLP-1 plasma levels could be derived, in part, due to the direct effect of GSPE on 

hormone secretion. In contrast to the results that we observed ex vivo, previous results 

done in our research group reported that 50 mg/L of GSPE decreased active GLP-1 

secretion in the STC-1 cell line [12]. Different results when using different models were 

also reported in studies of short chain fatty acids. Valeric acid induced PYY secretion in 

STC-1 [13], but no changes were observed in ileum and colon intestinal segment after 

incubation with valeric acid [14]. These controversial results could possibly be 

explained by the different features that the models used exhibit. The study of the local 

effect of the compounds on the intestine is a complicated issue due to the complexity of 

the intestinal architecture. In the intestinal cell line model, the limitations that warrant 

consideration are the lack of interaction between EEC and other epithelial cells, and 

the lack of polarity of the cell. On the contrary, the ex vivo model, enables us to study 

the hormone release from enteroendocrine cells that are situated in their normal 

epithelial environment. Due to their advantages over in vitro cell lines, the ex vivo 

model has been optimized at our laboratory to study enterohormone secretion, and 

the results found are in agreement with previous in vivo observations. At this point, it 

should also be stated that both models present a disadvantage, lack of discrimination 

between apical and basolateral sides. There are other study models using ex vivo 

samples that overcome this limitation, such as ussing chambers or InTESTineTM [15], 

but their viability to allow the study of enteroendocrine secretions has not been fully 

demonstrated yet. 

The results obtained in vitro (STC-1 cell line) and using ex vivo models also elucidated 

to the direct effect of a selected chicken feet hydrolyzate that is a source of bioactive 

peptides, on GLP-1 release. It has been suggested that the capacity of protein 

hydrolysates to enhance GLP-1 secretion depends on the nature of their source 

precursor [16], their hydrolysis rate [17] and their amino acid profile [18]. Although 

the specific amino acid motif that triggers GLP-1 secretion stimulation has not yet been 

determined, it has been reported that peptide transporter-1 (PEPT1) and the calcium-

sensing receptor (CaSR) are involved in GLP-1 secretion of di-, tri and oligopeptides 

[19]. Moreover, the apical localisation of PEPT1 emphasises its possible role in the 

direct effect of bioactive peptide sequence from chicken feet hydrolyzate on GLP-1 

release. 

While the direct interaction of bioactive compounds with EECs is a possible 

mechanism to modulate GLP-1 plasma levels, acting on GLP-1 cleavage through 

inhibiting DPP-IV enzyme is also an important strategy to enhance active GLP-1 plasma 

levels. Previous studies reported that GSPE inhibits DPP-IV activity in vitro assays. In 

this thesis, we hypothesized that hydrolysates from chicken feet could also be potential 

DPP-IV inhibitors, due to the structural characteristics of peptides, which can mimetic 



DISCUSSION 

 

187 
 

the sequence of DPP-IV substrates. The potential capacity of chicken feet as natural 

source of DPP-IV inhibitor was employed to screen an array of different chicken feet 

hydrolyzates obtained by different enzymatic treatments. The different hydrolysates 

were analysed and the most potent was selected. The in vitro results determined that 

chicken feet hydrolyzates inhibit DPP-IV, but not all treatments functioned equally, 

indicating the importance of production conditions to liberate the bioactive peptides 

sequence. In the DPP-IV inhibitors classified in peptide-derived peptidomimetic 

inhibitors, the hydrolysis treatment and the source of the natural precursor used to 

obtain the hydrolysate are important factors (reviewed in [20]). Given that GLP-1 is an 

important mediator of glycemic homeostasis, the inhibitory DPP-IV action of chicken 

feet hydrolyzate as well as the capacity to enhance active GLP-1 secretion, explain the 

in vivo results obtained that show an improvement of glucose levels in disrupted-

glucose homeostasis animals. Thus in this thesis we define a novel source of bioactive 

natural compounds, a novel method to obtain the hydrolysate, and its novel 

antihyperglicemic property. Actually subsequent studies have led us also to define the 

main peptide sequence responsible of DPP-IV inhibition (manuscript in preparation). 

The ex vivo model also confers the possibility to study the region-specific architecture 

and specific hormone release patterns of different subtypes of EECs, and thereby 

investigate other enterohormones related with glucose homeostasis and food intake. 

Our results showed that GSPE treatment directly decreased CCK release in duodenal 

segments, in agreement with previously observed changes in plasma levels of acute in 

vivo study [21]. GSPE also directly acted on GIP secretion in duodenum segment, 

inducing an increase of GIP release. This is in contrast with the previously observed 

reduction in GIP plasma levels in an acute in vivo study [11].  The distinct results could 

be given to other elements of the metabolism, which are not monitored in study 

models based on local intestinal hormone release, such as ex vivo model. These 

elements could also contribute to gut hormone secretion in vivo and thereby the 

enterohormone levels measured in plasma. Specifically, the feedback regulation 

between insulin and GIP secretions could be this other signal element [22]. Finally, our 

results also indicated that GSPE and metabolites of GSPE directly increase PYY 

secretion in ileum and colon segments, respectively. Only few studies reported the 

effect of flavonoids on PYY release and all of these studies performed were chronic 

treatments [23, 24]. Therefore, this is the first time that an acute effect of flavonoids on 

PYY secretion is reported. Recently, it has been described that ghrelin release was also 

modulated by GSPE treatment in ex vivo and in vitro (ghrelinoma cell line) models [25]. 

The same study reported that monomeric flavanols present in GSPE composition 

stimulate ghrelin release via activation of bitter taste receptors. Given that monomeric 

flavanols are reported as agonists of the bitter receptors hTAS2R14 and hTAS2R39 

[26–28] and these receptors have been shown to be involved in CCK and ghrelin 

secretion [25, 29], it is reasonable to postulate that these receptors could be involved 

in direct effect of GSPE on enterohormone release. However, the heterogenous 

structural composition of GSPE needs to be considered. For example, it has been 
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reported that monomeric flavanols enhance ghrelin secretion whereas oligomeric 

structures inhibited its secretion [25]. Therefore, others receptors and others signals 

could also be involved in regulating gut hormone release by GSPE. 

Once we determined the direct modulation of enterohormone release by an acute dose 

of bioactive compounds, we wanted to determine which mechanisms could be involved 

in regulating enterohormone release in mid-term GSPE treatments. In this context, a 

three dimensional organoids model was used to elucidate whether GSPE affect 

intestinal differentiation. The organoids model is a self-renewing in vitro culture in 

which single intestinal stem cells generate villus-like epithelial domains in which all 

differentiated intestinal cell types are present [30, 31]. Therefore, organoids, unlike 

cell line and ex vivo model, enabled us to investigate intestinal cell development in real 

time and whether GSPE modulates their differentiation in the normal epithelial 

environment. Moreover, the evaluation of enterohormone secretion in mid-term 

treatments can also be studied. In addition, we also analyzed the mid-term effects of 

GSPE on the endocrine system in an 8-day study using healthy rats.  The in vivo model 

enabled us to analyse the gut microbiota, which is an important element of the 

intestinal environment and could be subject to alterations by diet components in a mid 

or long-term consumption. Furthermore, the crosstalk between the changes in gut 

microbiota and host metabolism can also be studied in the in vivo model. 

Chromogranin A (ChgA) is a member of the granin family of acidic secretory 

glycoproteins that are expressed in endocrine cells and neurons. Chga plays a role in 

the biogenesis of secretory granules and influences peptide hormone transport into 

secretory granules [32]. Therefore, the expression of this gene is associated with 

endocrine cells and it is commonly used as marker of endocrine intestinal cells. 

Previous results reported that 25 mg/kg BW of GSPE during chronic treatment (12 

weeks) counteracts down-regulation of Chga gene levels induced by a cafeteria diet in 

rats, suggesting a role of GSPE in enteroendocrine cell differentiation [33]. In mid-term 

treatments, our results showed that 5 mg/L of GSPE up-regulate Chga gene expression 

in ileum organoids culture. Accordingly, Chga gene expression was also increased by 

0.5 g/kg BW of GSPE administered during 8 days in ileum rats. Our results also showed 

that colonic Chga gene expression is increased after an acute dose of GSPE in in vivo 

studies. Such increase observed in acute treatments could be related with the function 

of Chga in the biogenesis of secretory granules rather than the promotion of EEC 

differentation. To further explore the differential effects of GSPE, transcription factors 

associated with EECs development were studied in ileum organoid culture. Our results 

suggested that the modulation of the early-transcription factor (Ngn3) and late-

transcription factors (Pax4, Pax6, Foxa1/2, Arx) by GSPE leads to L-cell differentiation. 

Moreover, we analysed the effect of GSPE on L-cell gene expression markers: GLP-1 

and PYY. In accordance with Chga gene expression, an up-regulation of ileal PYY 

expression was observed in organoids culture and healthy rats. Ileal GLP-1 expression 



DISCUSSION 

 

189 
 

was also increased during GSPE treatment in organoid culture, but no changes were 

observed in GLP-1 expression in rats after 8 days of GSPE treatment. It must be 

considered that the evaluation of intestinal differentiation was mainly performed in an 

in vitro model, and thus extrapolation to in vivo effects must be performed carefully. 

Actually, the organoid cells are constantly interacting with GSPE molecules for the 

duration of the 72 hours, instead, in vivo the molecules of GSPE pass through the GI 

tract each day when the dose is administered and thereby there is not a constant 

interaction. Therefore, the length and dose used in the studies may play a main role in 

the modulation of gene expression. In fact, our results in organoids culture showed 

that lower doses of GSPE show different effects on the modulation of enteroendocrine 

cell differentiation depending on the dose.  Given that it is difficult to estimate the dose 

in vivo that would be equivalent to the assayed in vitro, more studies will be required 

to fine tune the optimal range of dose-time that reflects in vivo conditions. However, 

the results obtained in organoids culture suggesting an effect on EE cell differentiation 

agree with the previous results done in our research group that showed that the down-

regulation of Chga, GLP-1 and PYY gene levels, induced by a cafeteria diet, are 

neutralized by a chronic dose of GSPE [33].   

Furthermore, recent studies refute the classical concept of separate cells for separate 

hormones [34–36]. These studies showed that L-cells from the upper small intestine 

resemble upper intestine K-cells or I-cells more than colonic L-cells, judging from 

hormone expression profiling. Therefore, the EECs express an overlap of gut hormones 

along the gastrointestinal tract. It has been reported that most L-cell populations in the 

upper small intestine contained CCK, and 10-20 % contained GIP and PYY, together 

with GLP-1. In the same study, the authors also observed that L-cells of the lower small 

intestine also co-express GLP-1 together with GIP and CCK genes, but the levels 

expression are lower compared with proximal small intestine. Moreover, the number 

of L-cells that co-express PYY are increased progressively between proximal and distal 

intestine [36]. Altogether, this might be correlated with our findings regarding the ileal 

GLP-1, CCK and PYY gene expression in rats.  However, pools of PYY-, GIP-, or CCK 

positive cells that do not also express proglucagon have not been reported yet. 

Therefore, further studies using immunohistochemistry or flow cytometry would be 

interesting to study the array of hormones that EECs modulated by GSPE express. 

GSPE could also affect the entroendocrine system in mid-term treatments through the 

gut micobiota. Several studies reported that flavanols unabsorbed by the upper 

intestine pass through the large intestinal lumen reaching the colon where they 

accumulate at high concentrations and are metabolised by the gut microbiota [37]. 

There is evidence that the gut microbiota act on flavanols, however, little research has 

been published about the inverse relation the effect of flavanols on gut microbiota. The 

results obtained in this thesis revealed that the dose of 0.5g/kg BW of GSPE changed 

the gut microbial composition after 8-days of treatment in animals fed a standard diet. 

Only few studies reported the modulation of gut microbiota by flavonoids [38]. 
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Moreover, all of these studies analyse the effects of chronic polyphenol treatment in 

combination with an energy-dense diet, on the other hand, this thesis found GSPE was 

able to modulate gut microbiota in only 8 days in rats fed a standard diet. We 

demonstrated that 0.5g/kg BW of GSPE decreases the ratio of 

Firmicutes/Bacteroidetes in agreement with the general results obtained with 

polyphenols [38]. Moreover, our results indicated that GSPE acts on lower levels of 

microbiome classification, altering specific genera. In this study, new target taxonomic 

groups influenced by proanthocyanidins were defined, including Sutterella, 

Pharscolarctobacterium, Parabacteroides, Bilophila, and Ruminococcus.  In parallel to 

studying the modulation of gut microbiota, we analysed the crosstalk between the 

modulation of gut microbiota and host metabolism using correlation analysis. The 

study of the alteration of the gut microbiota and its relationship with the host 

represents a real challenge, due to its heterogeneous composition and the complexity 

in understanding the gut microbiota-host interactions. However, we described some 

interaction where alterations in gut microbiota induced by GSPE are correlated with 

some metabolism parameters, especially with the increased active GLP-1 plasma 

levels. It has been reported that the intake of Lactobacillus reuteri results in an increase 

GLP-1 secretion in humans. It has also been shown that the administration of VSL#3 

probiotic promotes GLP-1 secretion through changes in the gut microbiota which were 

associated to increased levels of short chain fatty acids (SCFA) [39]. SCFAs can bind to 

GPCR41 and GPR43 receptors expressed by enteroendocrine cells and induce GLP-1 

secretion [40, 41]. Our results showed a decrease of butyrate content, although other 

pathways link gut microbiota and GLP-1 secretion, such as the endocannabinoid 

system [42] or bile acid metabolism [43]. However, further studies are needed to 

elucidate whether increased active GLP-1 levels in mid-term treatment is a causal 

effect of gut microbiota alterations by GSPE. 

Recent studies described the gut microbiota’s direct influence on the expression of 

genes involved in intestinal epithelial proliferation and differentiation [44, 45]. 

Moreover, it has also been shown that the fermentation of non-digestible 

carbohydrates can promote differentiation in the proximal colon and consequently 

increase the number of L-cells in rats, suggesting that the fermentation end-products 

of SCFA could be responsible [46]. This points towards the gut microbiota playing an 

important role in the regulation of colonic differentiation either directly or indirectly 

through SCFA. Therefore, in addition to a possible direct effect of GSPE on intestinal 

differentiation, GSPE could also affect intestinal differentiation through the modulation 

of microbiota. It must be mentioned that no changes in colonic gene expression were 

observed after 8-days of treatment in rats, suggesting that further work is required to 

determine whether GSPE modulates differentiation through changes in the microbiota. 

Whether this could explain the previously mentioned GSPE effects in long-term 

treatments, that is counteraction of the down-regulation of Chga, GLP-1 and PYY gene 

levels induced by a cafeteria diet after 12 weeks, should be further assessed. Moreover, 

the effects of metabolites of GSPE produced by the microbiota should be considered in 
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colon tissue. Therefore, further studies are needed to determine the effects of GSPE on 

colon sections and the mechanisms underlying these effects. 

Recent studies done in our group showed that the acute increase of active GLP-1 

plasma levels induced by 1g/Kg BW of GSPE is also an effective satiety signal in rats 

[21]. Importantly, the loss of 0.5 g/Kg BW GSPE’s satiating effect following GLP-1 

receptor blockade using exendin, suggests that  GSPE’s satiating effects are mediated 

by an enhancement in GLP-1 signalling [47]. As above mentioned, such increase in 

GLP-1 plasma levels is due to a direct effect of GSPE on hormone secretion and also due 

to the inhibition of DPP-IV enzyme [48]. Moreover, the satiating effect was also 

observed in rats treated with 0.5 g/Kg BW GSPE for 8 days. These animals also gained 

less weight and had an increased energy expenditure [49]. An equivalent dose of gallic 

acid that contains 0.5 g/Kg BW GSPE also showed an acute satiating effect. However, 

the satiety effect of gallic acid was not extended after 8-day treatment, like with GSPE 

[47]. As above mentioned, we observed that 0.5 g/Kg BW GSPE modulates the gut 

microbiota after 8 days, and such modulation correlated with increased active GLP-1 

levels. However, our results showed that an equivalent dose of gallic acid doesn’t 

modulate the microbiota composition nor the GLP-1 secretion. Considering these 

results, we hypothesized that the modulation of the gut microbiota might be a 

mechanism by which mid-term GSPE treatments have a satiety effect. 

Like gallic acid used in in vivo treatment, other pure compounds contained in GSPE 

were also evaluated in an attempt to identify molecules responsible for the acute and 

mid-term local effect of GSPE on intestinal tissue. Our results showed that monomeric 

and dimeric structures (epicatechin gallate, dimer B2, dimer B2 gallate, gallic acid) 

could contribute to the acute CCK secretion induced by GSPE. In mid-term treatments 

using organoids model, our results showed that epicatechin and gallic acid are not the 

responsible for all the effects produced by GSPE. However these molecules showed 

some bioactivity, such as the modulation of the expression of some transcription 

factors; Pax4 gene expression by gallic acid and FOXA ½ by epicatechin and the modest 

increase of total GLP-1 secretion after mid-term treatment. These results suggest that 

gallic acid and epicatechin might be, in part, responsible for the increased GLP-1 

secretion observed in mid-term GSPE treatments. The results are obtained using only 

part of the molecules that form GSPE because some of the other components could 

only be obtained in very small amounts. However, we conclude that the effects of GSPE 

are attributed to the complex mixture of compounds present in this extract. In 

consequence, treatments using pure molecules alone present few effects compared to 

the effects generated by the whole GSPE. Previous results done in our research group 

showed that catechin, gallic acid and B2 dimer molecules of GSPE inhibit DPP-IV 

activity in vitro, but no effect was observed in epicatechin treatment. The combination 

of them potently inhibit DPP-IV [11], suggesting a synergic effect of these molecules. 

On the other hand, GSPE has been reported to inhibit octanoyl ghrelin in ghrelinoma 

cell line; in accordance oligomeric molecules also inhibit ghrelin release. In contrast, 
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monomeric molecules of GSPE enhanced ghrelin secretion, suggesting antagonistic 

effects of pure molecules on ghrelin secretion [25]. Therefore, each bioactive molecule 

of GSPE could present different effects and thereby GSPE action could be a result of 

additive, synergic or antagonistic effects of each molecule on different targets.  In 

accordance, it has been reported that vitamin C in apples contributed to only 0.4% of 

the total antioxidant activity of the whole apple; most of the antioxidant activity comes 

from phytochemicals presents in apple skin. Therefore, the whole fruit is more potent 

than the administration of one pure compound (reviewed in [50]). Moreover, it has 

been described that the combination of bioactivity of different sources of natural 

compounds potentiates the effect of each sources administered individually, such as 

the combination of omega-3 polyunsaturated fatty acids and GSPE [51–54]. Therefore, 

treatments using mixture of bioactive compounds are more effective than a treatment 

with one pure molecule. 

Taking into account the effects of GSPE and chicken feet hidrolyzates on GLP-1 

enterohormone levels and thereby on glucose homeostasis, the study of the effect of 

the combination of these two natural sources on enteroendocrine system would be 

interesting. Different studies have reported the use of proteins as carriers of 

flavonoids, without impairing their bioavailability (milk and catechins) [55], to reduce 

the bitter taste induced by flavonoids [56, 57]. Therefore, the combination of chicken 

feet hydrolyzates with GSPE could be a good approach to develop a functional food. 

However, future studies should evaluate the interaction between proanthocyanidins 

from GSPE and proteins from chicken feet hydrolyzates and whether such interaction 

affects the direct action of GSPE on the enteroendocrine system. 

Furthermore, the promising results obtained in acute treatment of chicken feet 

hydrolyzate related with glycemic homeostasis open a new line of research which 

could be further studied concerning the effect of chicken feet hydrolyzate on other 

enterohormones related with glucose homeostasis and food intake. It has been 

reported that pea protein increased fullness and decreased food intake in an ad libitum 

meal in humans [16], and whey protein is also associated to increased GLP-1 plasma 

levels and reduced energy intake in humans [58]. Hence, future experiments studying 

the action of chicken feet hydrolyzate on food intake in vivo would be interesting, as 

well as, evaluating the mid-term and long-term effects of chicken feet hydrolyzate on 

enteroendocrine system related with glucose homeostasis and food intake.  
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SUMMING UP: MAIN CONCLUSIONS 

The main conclusions obtained from this thesis are: 

1. GSPE modulates gut hormone secretion by directly acting on 

enteroendocrine cells in acute treatments.  

 

 An acute dose of GSPE and GSPE metabolites increases active GLP-1 

secretion in ex vivo ileum and colon segments, respectively. 

 The direct release of GLP-1 following GSPE stimulation requires 

glucose. 

 GSPE’s effect on gut hormone secretion varies along the gastrointestinal 

tract 

- GSPE increase GIP and decrease CCK release in ex vivo duodenum 

segments. 

- GSPE and GSPE metabolites increase PYY release in ex vivo ileum 

and colon segments, respectively. 

 The reduction of CCK secretion, following GSPE administration, is partly 

mediated by GA. 

 

2. The modulation of intestinal differentiation is a mid-term effect of GSPE. 

 

 GSPE enhances the gene expression of L-cell differentiation markers 

Chga, Gcg, and PYY in organoids. 

 GSPE modulates early-transcription factors (Ngn3) and late-

transcription factors (Pax4, Pax6, Foxa1/2, Arx) involved in EEC 

differentiation. 

 GSPE does not only enhance differentiations markers for L-cell, it also 

up-regulates markers for enterocyte and goblet cells, while reducing 

the marker for stem cells. 

 

3. GSPE modulates the composition of the gut microbiota and such 

modulation is related to host metabolism in rats. 

 

 GSPE decrease the ratio of Firmicutes:Bacteroidetes. 

 New target of microbial taxonomic groups influenced by 

proanthocyanidins are defined: Sutterella, Pharscolarctobacterium, 

Parabacteroides, Bilophila, and Ruminococcus. 
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 The GSPE-induced changes of the gut microbiota led to a modulation of 

the acetate:propionate:butyrate ratio.  

 The gut microbiota profile, following GPSE treatment, correlates with 

host metabolic parameters, and notably with increased active GLP-1 

plasma levels. 

 

4. Chicken feet hydrolyzate modulates the incretin system through different 

mechanisms. 

 

 An acute dose of chicken feet hydrolyzate stimulates GLP-1 release in ex 

vivo and in vitro model. 

 DPP-IV activity is inhibited by chicken feet hydrolyzate in vitro. 

 Chicken feet hydrolyzate improves glucose plasma levels in disrupted-

glucose homeostasis rat models. 
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CONCLUSIONS GENERALS 

Les principals conclusions obtingudes en aquesta tesi són: 

1. GSPE modula la secreció de les hormones intestinals mitjançant un efecte 

directe sobre les cèl·lules enteroendocrines en tractaments aguts. 

 

 Una dosi aguda de GSPE i dels seus metabòlits augmenta la secreció de 

GLP-1 actiu en segments ex vivo d’ili i de colon, respectivament. 

 La secreció de GLP-1 produïda per una directa estimulació de GSPE 

requereix glucosa. 

 L’efecte de GSPE sobre la secreció d’hormones intestinals varia a través 

del tracte gastrointestinal. 

- GSPE augmenta la secreció de GIP i disminueix la secreció de 

CCK en segments ex vivo de duodè.  

- GSPE i els seus metabòlits augmenten la secreció de PYY en 

segments ex vivo d’ili i de colon, respectivament. 

 La disminució de la secreció de CCK, després de l’administració de 

GSPE, és causada, en part, per GA. 

2. La modulació de la diferenciació intestinal és un efecte subcrònic del 

GSPE. 

 

 GSPE promou la expressió de gènica dels marcadors de la diferenciació 

cel·lular de les cèl·lules L en organoids: Chga, Gcg i PYY. 

 GSPE modula els factors de transcripció primerencs (Ngn3) i els factors 

de transcripció tardans, involucrats en la diferenciació de les EEC. 

 GSPE no solament augmenta els marcadors de diferenciació de les 

cèl·lules L, sinó que també promou l’increment dels marcadors dels 

enteròcits i de les cèl·lules calciformes, així com la disminució del 

marcador de les cèl·lules mare. 

3. GSPE modula la composició de la biota intestinal i aquesta modulació està 

relacionada amb el metabolisme de l’hoste en rates. 

 

 GSPE disminueix el rati Firmicutes:Bacteroidetes. 

 Es defineixen nous grups taxonòmics microbians com objectiu de 

l’acció de les procianidines: Sutterella, Pharscolarctobacterium, 

Parabacteroides, Bilophila i  Ruminococcus. 

 Els canvis de la biota intestinal induïts per GSPE deriven en la 

modulació del rati acetat:propionat:butirat.  
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 El perfil de la biota intestinal, posterior al tractament amb GSPE, 

correlaciona amb paràmetres metabòlics de  l’hoste, del qual destaca la 

correlació amb l’augment dels nivells de GLP-1 en plasma. 

4. L’hidrolitzat de pota de pollastre modula el sistema d’incretines 

mitjançant diferents mecanismes.  

 

 Una dosi aguda d’hidrolitzat de pota de pollastre estimula la secreció de 

GLP-1 en els models ex vivo i in vitro. 

 L’activitat de DPP-IV és inhibida per l’hidrolitzat de pota de pollastre in 

vitro. 

 L’hidrolitzat de pota de pollastre millora els nivells de glucosa en 

plasma en models de rates que presenten una homeòstasis de la 

glucosa alterada. 
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In the last decade, there has been an increasing prevalence of obesity and me-
tabolic-associated diseases. In view of this fact, önding preventive therapies, 
as well as treatments for these diseases is of great interest for public health. 
Gut hormones secreted from enteroendocrine cells (EECs) play a key role in 
the regulation of food intake and glucose homeostasis. In this context, the re-
search of this thesis has focused on the role of natural bioactive compounds 
on the enteroendocrine system.
 
Our research group reported in previous studies that grape seed proanthoc-
yanidin extract (GSPE) increased GLP-1 plasma levels in rats. In this thesis, we 
elucidated that such increase might be in part explained by the direct action 
of GSPE on EECs. Moreover, we demonstrate that GSPE also modulates the se-
cretion of the main gut hormones by directly acting on EECs, inducing an in-
crease of GIP and PYY release, while reducing CCK release.

The results obtained in this thesis using organoids culture demonstrated that 
GSPE up-regulate the main markers of L-cell and modulate transcription fac-
tors involved in L-cell differentiation, and thereby point out that the promo-
tion of L-cell differentiation is a mechanism by which GSPE act in prolonged 
treatments. Moreover, our öndings in mid-term treatments revealed that gut 
microbiota composition is modulated by GSPE and such composition proöle 
correlates with host metabolic parameters, and remarkably with increased 
aactive GLP-1 plasma levels.

Furthermore, we found a new source of natural bioactive compounds, chicken 
leg hydrolyzate, and demonstrated that it acts as antihyperglycemic agent in 
disrupted-glucose homeostasis animals due to the capacity of inhibiting 
DPP-IV activity and enhancing endogenous GLP-1 release.

In conclusion, the öndings obtained in this thesis show that natural bioactive 
compounds act through different mechanisms on the enteroendocrine 
system, and thereby could be good therapeutic agents to treat obesity and 
glucose homeostasis disruption.


