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Preface

... The work presented in this thesis is the result of a series of research projects
conducted during the period 2013-2017 within several scientific collaborations. These
projects culminated in a series of publications[1–5] focused on the topics of applied
holography, field theory and heavy ion physics.

The thesis is organized as follows:

• Chapter 1 serves as an introduction and motivation for the research presented
in the next chapters. It contains a literature review covering the basics of heavy
ion physics, hydrodynamics, applied holography and the numerical techniques
we use throughout the thesis.

• Chapter 2 is a self-contained chapter in where we present the first holographic
collision simulations with baryon charge and discuss the results obtained.

• In chapters 3, 4 and 5 we present a family of non-conformal models with a holo-
graphic dual and study it. In chapter 3 we examine its thermodynamics, transport
properties and near-equilibrium properties. In chapters 4 and 5 we explore its far
from equilibrium dynamics through shock-wave collision simulations and instabil-
ity triggering.

• Chapters 6 and 7 contain the summary and conclusions, in English and Catalan
respectively.



...



Acknowledgements

First and foremost I wish to express my gratitude to my thesis director David Mateos, under
whose supervision the research presented in this thesis was conducted. During these years
he has gone far beyond his duties as a thesis director becoming a true mentor. He has taken
active part in my scientific training and career by devoting his time, and has often given me
valuable advise at professional and personal levels. He has also funded – from his ERC
grant – my travelling expenses to schools and conferences allowing me to learn, network and
promote my research. In addition, as a principal investigator, he proved to be an excellent
team manager: he has always been fair, trusting, and has given me the freedom and space
to learn and work. From David I learned not only physics, but also scientific wisdom and
professional attitudes that will sure be extremely useful in the future.

I also want to thank all the excellent people with whom I shared research projects: without
them, this thesis as it stands would not have been possible. I thank very much Wilke van
der Schee for his help during my first years in research and for his beautiful Mathematica
scripts, from which I learned so much. I also want to thank Jorge, Miguel, Daniel, Pau, Yago,
Maximilian, Carlos and Yiannis for the hard work and the perseverance, it was a pleasure to
collaborate with you all.

I thank also all the people with whom I shared a workplace, and more importantly, the
passion for physics. Thanks Roberto and Tomeu for your interest and comments. Thanks
Genís, Marina, David, Markus, Blai, Raimon, and Adriana for the engaging physics discus-
sions. Thanks Ivan, Albert, Vicente, Carla, Isa, Mirian, Javi, and David for your company at
the faculty and the lunch times together. I want to thank also the administration people in the
department and in the ICCUB: Kayla, Bea, Cristina, Elena and Olga, thanks for your help and
efficiency.

Finally, I want to thank Michal Heller, my once master’s thesis supervisor. To him I have to
thank the start of my scientific career and many of the insights I have today.



Arribar a escriure aquesta tesi no hauria estat possible de cap de les maneres sense el
recolzament constant dels meus pares. De vosaltres en vaig aprendre la passió per aprendre,
la constància i el gust pel coneixement. Gràcies a vosaltres he pogut dedicar-me sempre a
allò que m’agrada.



Contents

1 Strongly coupled phases, heavy ion physics and applied holography 1
1.1 Why strong coupling? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Quantum chromodynamics and heavy ion collisions . . . . . . . . . . . 2

1.2.1 The experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Equilibration process and theoretical efforts . . . . . . . . . . . . 6

1.3 The gauge/gravity correspondence . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 How to use it . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Linear dynamics and quasi-normal modes . . . . . . . . . . . . . . . . . 12
1.5 Full numerical evolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5.1 The characteristic formulation . . . . . . . . . . . . . . . . . . . . 15
1.5.2 Discretisation and spectral methods . . . . . . . . . . . . . . . . 16
1.5.3 Homogeneous isotropization . . . . . . . . . . . . . . . . . . . . 17
1.5.4 Shock-wave collisions . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Shock-wave collisions with baryon charge 23
2.1 The set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Thermodynamics and hydrodynamics . . . . . . . . . . . . . . . . . . . 26
2.3 Dynamic equations and algorithm . . . . . . . . . . . . . . . . . . . . . . 29
2.4 The probe approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.1 Hydrodynamization . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.2 Rapidity profiles and charge deposition . . . . . . . . . . . . . . . 36

2.5 Charge backreaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Transport and linear dynamics in non-conformal theories 45
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 An additional channel towards equilibrium . . . . . . . . . . . . . 46



Contents

3.2 The non-conformal holographic model . . . . . . . . . . . . . . . . . . . 48
3.2.1 A potential leading to two fixed points . . . . . . . . . . . . . . . . 49
3.2.2 Vacuum solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Thermodynamics and transport . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.1 Equations and numerical methods . . . . . . . . . . . . . . . . . 54
3.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Quasi-normal modes and relaxation . . . . . . . . . . . . . . . . . . . . 62
3.4.1 Fluctuations and channels of dissipation . . . . . . . . . . . . . . 62
3.4.2 Equations and eigenvalue problem . . . . . . . . . . . . . . . . . 64
3.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Shock-wave collisions in non-conformal theories 77
4.1 The set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1.1 Model and vacuum solution . . . . . . . . . . . . . . . . . . . . . 78
4.1.2 Gauge theory quantities . . . . . . . . . . . . . . . . . . . . . . . 80
4.1.3 Shockwave metric . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Numerical procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.1 Evolution equations . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.2 Expectation values from evolution variables . . . . . . . . . . . . 85
4.2.3 Gauge fixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2.4 Field redefinitions and evolution algorithm . . . . . . . . . . . . . 86
4.2.5 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2.6 Initial data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 Code tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3.1 Quasi-normal modes . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3.2 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Phase transitions and instabilities 103
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.1.1 Transitions and critical point . . . . . . . . . . . . . . . . . . . . . 103
5.1.2 Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 A twist to the non-conformal model . . . . . . . . . . . . . . . . . . . . . 106
5.2.1 Extension of the parameter space . . . . . . . . . . . . . . . . . 106
5.2.2 The φM = 2.3i case . . . . . . . . . . . . . . . . . . . . . . . . . . 107



Contents

5.3 Inhomogeneous horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.4 Hydrostatic final sate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.5 Hydrodynamic evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6 Summary and conclusions 117

7 Resum en Català 121
7.1 Què ens ha dut fins aquí . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.2 Contingut de la tesi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.2.1 Col·lisions amb càrrega bariònica . . . . . . . . . . . . . . . . . . 122
7.2.2 Estudi prop de l’equilibri per a models no conformes . . . . . . . 122
7.2.3 Col·lisions en models no conformes . . . . . . . . . . . . . . . . 123
7.2.4 Transicions de fase i inestabilitats . . . . . . . . . . . . . . . . . . 123

Bibliography 125



Contents



Chapter 1

Strongly coupled phases, heavy ion
physics and applied holography

1.1 Why strong coupling?

The development of Quantum Field Theory (QFT) has been one of the biggest achieve-
ments in physics during the past century – both in the theoretical and the experimental
front. The predictions provided by QFT and its realization in our world, the standard
model, have met the experimental results with a precision unprecedented in science.
Although nowadays the standard model is regarded as an effective theory in need of a
UV completion, a comprehensive understanding of it remains crucial in order to answer
some of the fundamental questions of nature.

Nevertheless, and despite its success, the understanding and the predictive power
of QFT is still partial and limited to a set of regimes and phenomena. The traditional
approach to a particular QFT consists in a perturbative analysis of its generating
functional in order to obtain scattering amplitudes of its degrees of freedom. This
approach requires the presence of a small parameter, which for the most of cases is the
coupling constant. For strongly coupled phases, ubiquitous in nature, the perturbative
approach simply fails and alternative techniques are needed. A complete description of
phenomena such as confinement, the presence of a mass gap in certain theories, or the
dynamics in strongly coupled regimes will certainly require of new ideas.

The quest for the understanding of strongly coupled systems is driven by both
theoretical and “practical” motivations. When it comes to QFT, the motto “more is
different” is particularly relevant; a reductionist approach on the degrees of freedom

1



2 Strongly coupled phases, heavy ion physics and applied holography

around the vacuum cannot describe many of the states contained in a field theory, like
soliton solutions or strongly coupled phases. A true comprehension of QFT at all regimes
is also indispensable for the progress of several branches of physics. Disciplines like
nuclear physics, cosmology, astrophysics or condensed matter theory consider complex
systems for which there is no complete description so far.

1.2 Quantum chromodynamics and heavy ion

collisions

A compelling example of a QFT with strongly coupled phases is Quantum Chromodynam-
ics (QCD), the gauge theory responsible for the strong interaction between quarks and
gluons or, equivalently, between hadrons. QCD has several ingredients that make it both
difficult to model and rich in behaviour. Namely, it is a non-abelian theory, and it shows
a running coupling constant that is large at low energies. As a result of these properties
the vacuum of the theory has a non-trivial structure: at low temperatures and moderate
densities the degrees of freedom rearrange to form bound states. At higher temperatures,
however, the physics of the theory changes radically and it shows anti-screening becoming
asymptotically free [6]. Far from being solved, nowadays QCD is still a very active field
of research involving many communities that span from ion and nuclear physics to string
theory, cosmology or even math.

1.2.1 The experiments

The discovery of asymptotic freedom motivated the existence of a deconfined phase called
Quark-Gluon Plasma (QGP). In order to create and study this new state of matter,
the heavy ion collision program was started in the 70s decade. Using existing hadron
accelerators (synchrotrons like Bevatron, AGS and SPS), the nucleus of some heavy atoms
were accelerated to relativistic velocities and made collide. In these first experiments
there were indications of the presence of a deconfined phase, although it would not be
until the RHIC started its operation that the creation of the QGP would be confirmed
in year 2000 [7]. The creation of the QGP in heavy ion colliders opened the possibility
of studying a wide range of phenomena not present in nuclear matter. Phase transitions,
symmetry breaking and restoration, equilibration, and many other effects became all the
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Figure 1.1: STAR detector at RHIC, Brookhaven. The diagrams depict the tracks of the
produced particles, final outcome of the collision. Figures taken from RHIC website
(www.bnl.gov/rhic) under creative commons licence.

sudden at the experimentalists range, giving a new tool for a deeper understanding of
QCD and gauge theories in general.

Assessing the dynamics of a heavy ion collision from the debris collected in the
detectors is a challenging endeavour. The detectors used in heavy ion colliders are
typically a size of order ∼ 10− 102 meters. At this scale, the “fireball” produced in the
collision has certainly expanded and cooled down enough for its matter to hadronize
again, and the dynamics of its particles have decoupled or “freezed-out” (see fig. 1.2).
An observable proposed in order to determine the presence of a collective deconfined state
– the QGP – was the degree of azimuthal asymmetry in the momentum distribution of
the produced particles [8]. This magnitude is known as the elliptic flow and corresponds
to the second coefficient in the harmonic expansion of the final distribution of particles
(v2). Flows can also be obtained for specific species of particles, which are used to extract
the net baryon momenta distributions (see fig 1.3) and provide additional information
from the far from equilibrium dynamics of the collision.

Other important probes for the matter created in the experiments are the jets. When
a very energetic particle crosses a medium it creates a cascade of particles, a jet. Studying
the jets created in collisions provides extra and complementary information about the
QGP. Although jets constitute a very significant part of the study of QGP, they are not
part of the work presented in this thesis and will not be discussed any further.

https://www.bnl.gov/rhic/
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Freeze-out

Hadronization

Hydrodynamics
applies

Hadron gas

QGP

z

t

Figure 1.2: Cartoon picture of the stages of a heavy ion collision in terms of the longitudinal
direction z and the laboratory time t. After a very short pre-equilibrium period
the system becomes a fluid. Eventually it cools down enough to hadronize and
freeze-out. The regions closer to the light-cone (dashed lines) suffer from Lorentz
delay.

Figure 1.3: Net proton rapidity distribution (proton minus antiproton densities) obtained in
different experiments at different energies. To obtain the net baryon distribution
one needs to estimate the other hadron densities from the proton ones. Figure
taken from [9] (BRAHMS collaboration at RHIC).
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1.2.2 Hydrodynamics

The rationale behind the presence of the elliptic flow is rooted in the hydrodynamic
behaviour of collective states near equilibrium. Hydrodynamics is a coarse grained
effective description for field theories that works provided certain assumptions hold. The
starting point for this description are the conservation equations for quantities like the
stress-energy tensor or other conserved currents,

∂µT
µν = 0 and ∂µJ

µ = 0 (1.1)

Typically, the conservation equations are not enough to determine the dynamics of the
system. As a consequence, the first necessary assumption of hydro is the reduction of the
number of variables on which T µν and Jµ depend to meet the number of equations. The
new hydrodynamic variables will be local notions of the temperature (or energy density)
and the fluid velocity, and for the case of a conserved current, the chemical potential. The
next assumption that hydro uses is the “local equilibrium” or the consideration of only
long wavelength excitations. The long wavelength premise allows a gradient expansion of
the expressions for T µν and Jµ, which to the first order and following the notation of [10]
reads,

T µν = εuµuν + p∆µν + η∆µα∆µβ

(
∂αuβ + ∂βuα −

2

d
ηαβ∂µu

µ

)
− ζ∆µν∂λu

λ (1.2)

Jµ = nuµ − σT∆µν∂ν(µ/T ) (1.3)

Where ∆µν is a projection tensor, and η, ζ and σ are the viscosities and conductivity
respectively.

If the system produced after a heavy ion collision is big enough and has nearly
equilibrated, its evolution might be described by hydrodynamics. When the heavy ions
collide most of them do with a certain parameter of impact, producing some prolate
ellipsoidal fireballs (see fig. 1.4). In case hydrodynamics is a good description for the
system, the fireball will explode faster towards where it is narrower (and the pressure
gradients are bigger), and hence it will produce elliptic flow. The elliptic flow was indeed
observed in RHIC (and later in the LHC) and the data collected in the detectors could
be reproduced with a good agreement using ideal hydrodynamic simulations after a very
short pre-equilibrium stage (t∼ 1 fm/c) [11].
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Figure 1.4: Diagram of an off-central collision where the circles represent the heavy ions seen
from the longitudinal direction. The overlaping region corresponds to an “almond
shaped” droplet of plasma produced in the collision. A hydrodynamical expansion
of this droplet generates an angular dependence in the final distribution of particles.

The fact that ideal hydro is a good description for the QGP created in collisions
awarded to it the title of “the most perfect liquid in nature”. Nevertheless, improved
hydrodynamic simulations including viscosity showed that in fact the QGP is best
described with a very small, but non-vanishing, shear viscosity [12]. Although computing
viscosities from first principles is very far from trivial, simple arguments can be used
to show that a weak coupling between the degrees of freedom typically leads to big
viscosities (see [13, 14] for viscosity reviews in the context of holography).

In a happy coincidence, by the same time RHIC announced the finding of the QGP,
the gauge/gravity correspondence was discovered and offered a novel way to perform
calculations at strong coupling. In particular, the computation of the shear viscosity
for a large class of QFTs at strong coupling made a deep impression in the way we see
the QGP nowadays (see [15] for the first calculation, and [16] for a generalization of it).
The result given by holography was in agreement with the small viscosity seen at the
experiments and, although it was obtained in theories different from QCD, it pointed
that the QGP after a first equilibration could be in an strongly coupled regime.

1.2.3 Equilibration process and theoretical efforts

Regardless of the many inputs coming from thermodynamic and hydrodynamic calcu-
lations, at the current time the physics of heavy ion collisions remains far from being
completely understood. The reason for this is that heavy ion collisions are very violent
events for which important parts of their dynamics happen very far from equilibrium. In
addition, one has to bear in mind that the collision and equilibration physics probe a wide
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range of energy scales. The kinetic energy per nucleon before the collisions at RHIC and
LHC is of the order ∼ 102−103 GeV, energy at which the interaction strength is certainly
small. On the other hand, the crossover temperature has been computed using lattice
QCD obtaining a value range of T = (185− 195) MeV[17]. Even if after the equilibration
the system might be well described by strongly coupled dynamics, the equilibration
process itself necessarily involves a mixture of weakly and strongly interacting physics.

The approaches used to model the pre-equilibrium stage are complementary as they
consider opposite regimes; this is, the weak and the strong coupling limits. The reason
for using such limits is that the computations required, despite challenging, become
feasible. Although neither of the descriptions holds the complete picture for the collisions,
the hope is that a proper understanding of them will shed light on the real dynamics
observed in the experiments. Remarkably, so far both approaches have been successful in
reproducing some features of the real QGP, like the fast hydrodynamization (see [18] for
a comparative analysis of both approaches).

The techniques used to compute dynamics for the two opposite regimes are completely
different. In the weakly interacting limit one might use a perturbative calculation on
QCD (refs. [19, 20] contain some recent developments). For strongly coupled dynamics,
however, there is no other option than using toy models instead of actual QCD. Theories
like N = 4 super Yang-Mills share important features with QCD and might capture part
of its dynamics. In addition, some of these toy model theories can be described in terms of
a dual gravitational theory reducing the problem to the solution of differential equations
like the Einstein’s equations (we refer the interested reader to [21] for a comprehensive
review of heavy ion collisions in the context of holography). It is worth to mention that
there already are efforts in a hybrid approach to the problem using both frameworks
patched together (ref. [22] contains first numerical calculations for a semi-holographic
set-up).

In the next sections we introduce the gauge/gravity duality and summarize the recent
developments in the study strongly coupled gauge theories and the QGP.
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1.3 The gauge/gravity correspondence

1.3.1 Formulation

The gauge/gravity duality, loosely called holography, is a correspondence between some
quantum gravity theories –ultimately string theories– and their gauge theory counterparts.
The ideas enclosed in the holographic principle can be traced back as early as the black
hole thermodynamics [23,24] and the ’t Hooft planar limit [25]. Nevertheless, a very
concrete realization of it would be given in the seminal paper by Juan Maldacena in
1997 ([26], followed by [27] and [28] by other authors). At the time, the best understood
example of the correspondence was the one relating type IIB string theory in AdS5×S5

and the gauge theory N = 4 Super Yang-Mills (SYM). Nowadays there are several other
examples of the correspondence, but perhaps the aforementioned one remains amongst
the most explored and widely used.

The arguments given by Maldacena to stablish the gauge/gravity duality rely on the
D-branes and the existing equivalent descriptions for their dynamics. The D-branes are
some extended objects described by string theory in which open strings can end. The
strings attached to the D-branes have a fluctuation spectrum that gives raise to some
dynamics associated with the branes.

Figure 1.5: Alternative descriptions for the dynamics of strings attached to a stack of D3-
branes (red strings). The strings attached to the branes can be modelled as open
strings ending on the D3-branes (left panel), or as closed strings moving in the
curvature generated by the branes (right panel).



Strongly coupled phases, heavy ion physics and applied holography 9

When a stack of Nc D3-branes in type IIB string theory is considered, the dynamics
of its low-energy excitations is described by N = 4 super Yang-Mills theory. The same
dynamics admits as well an equivalent description. As massive objects, the D-branes
generate curvature around them. If one sits closely to the D3-branes, the geometry can
be written as AdS5×S5, and the strings attached to it can be modelled as closed strings
trapped and moving in the curved space generated (depicted in fig. 1.5). At the limit
where α′ → 0 (the low energy limit), the strings attached to the branes decouple from the
ones outside of it and the two systems become non-interacting. Thus, the descriptions for
the dynamics of the attached strings in terms of N = 4 SYM theory and closed strings
in AdS5×S5 can be identified in a correspondence.

The gauge/gravity duality is strongly motivated at the regime at which string theory is
well described by supergravity. This is at the large ’t Hooft coupling (g2

YMNc = λ→∞)
and large number of colours for the dual field theory. However, there are several
computations at both sides of the duality showing that corrections in λ and Nc (or
equivalently gs and α

′) agree and, thus, nowadays the duality is believed to be true at
any values of λ and Nc (see ref. [29] for a review on holography and a discussion on the
regime of validity). This way, the correspondence provides an alternative manner to
answer questions regarding a particular theory, which is by means of its holographic dual.

Despite finite λ and Nc would be the appropriate set-up in order to model QCD, the
gravitational dual for such gauge theory would be a full non-perturbative string theory
for which our knowledge is very limited. Consequently, the large λ and Nc limit is used
to model the dynamics of the QGP and in most of the field of “applied holography”.

1.3.2 How to use it

In order to perform calculations in a gauge theory using holography one needs first
a particular realisation of it that captures the desired features of the system of study
(dimension, symmetries etc.). In the ideal case, it is optimal to use a realization given
from a brane construction as the ones introduced by Maldacena. This is known as the
“top-down” approach and has several advantages. In top-down cases the field theories
are typically well known, including their field content and gauge group. In addition,
knowing the brane construction provides a better control of the gravity solution and its
stability. Unfortunately, the set of known realisations of the duality is very limited and
they cannot describe a good share of the physics of hot QCD. This is the case of N = 4

SYM, which is a conformal theory and therefore is unable to show any RG flow and
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confinement. Thus, this theory should only be used to model heavy ion collisions at the
stages where the QGP is near-conformality and far-away from the cross-over.

To overcome the lack of toy models derived from a brane construction, one might use
the “bottom-up” approach. The starting point in this case is an ad-hoc asymptotically
AdS (super)gravity model that will be dual to a gauge theory with the desired properties.
Although the string theory embedding for the gravitational model is not known, sometimes
it can be argued that it exists and therefore provides a construction that raises a duality.
An obvious disadvantage of it is that the dual field theory is only known partially through
some of its operators and symmetries. The bottom-up approach gives holography more
flexibility and the possibility to make the toy models closer to real QCD.

The prescription that relates operators in the gauge theory with the fields on the
gravity side of the duality was given by Witten in [27],∫

D[fields]e−S+
∫
Oφ0 = ZO[φ0]CFT ≈ Zclassical[φ0]SUGRA ≈ eSSUGRA[φ[φ0]] (1.4)

This prescription equates the euclidean generating functional of the gauge theory to the
classical partition function of the supergravity when the boundary conditions of the fields
are set to the value of the sources in the gauge theory. In addition, the old notions of
black hole thermodynamics provide the gravitational prescriptions for the temperature
and the entropy density when the system of study is a thermal state. These correspond
to the surface gravity and the surface density at the horizon of the black hole representing
this thermal state. In conclusion, a solution of the gravity theory will represent a state
in the gauge theory, and an evolving geometry will give a real time evolution.

From the generating functional and Witten’s prescription one can obtain all the
gauge theory n-point functions in terms of the gravity dual fields (or the “bulk” fields).
Amongst these, the easiest to compute and perhaps the most useful for collision dynamics
are the 1-point functions or expectation values, which give the energies, pressures, and
charge densities of the system. The starting step for the extraction of the VEV of
an operator of interest is to identify to which bulk field does it “couple”. In case we
are using a brane construction, this can give us the precise relation between the fields
and operators. Conversely, when a “bottom-up” approach is used one needs to rely on
symmetry arguments. Very common examples of this are the coupling of the metric field
gµν to the stress-energy operator of the gauge theory Tµν , or the relation between gauge
fields in the bulk Aaµ and conserved currents Jµ.
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With the field-operator relation in hand and eq. (1.4), the expression for the VEV is

〈O(x)〉 =
δ

δφ0(x)
ZO[φ0]|φ0=0 . (1.5)

It is important to note that the actions for the theories at each side of the duality suffer
from divergences. To successfully use eq. (1.5) to extract finite values for the VEVs,
one needs first to renormalise the bulk action at the UV through a procedure known as
“holographic renormalization” presented in [30].

The appropriate coordinate system to extract the gauge theory quantities and con-
duct the holographic renormalization computation is the one introduced by Fefferman
and Graham. This coordinate system foliates the asymptotically AdS geometries in
surfaces diffeomorphic to the conformal boundary, allowing the rewriting of (1.5) in
terms of the bulk fields and a cut-off (refs. [31, 32] contain detailed discussions about
geometrical aspects of holographic renormalization). The Fefferman-Graham ansatz for
an asymptotically (d+1)-dimensional AdS geometry in the Poincaré patch reads,

ds2 =
L2

u2

(
du2 + gµν(t,x, u)dxµdxν

)
(1.6)

where L is the radius of the AdS and u the holographic coordinate, and

gµν(t,x, u) = g(0) + g(2)u
2 + · · ·+ g(d)u

d + h(d)u
(d)log(u2) +O(ud+1) (1.7)

In this coordinates the conformal boundary is located at u → 0. Very often in the
literature the coordinate r is used for the inverse coordinate r = 1/u, with the conformal
boundary at r →∞.

The process of extracting the gauge theory quantities is often called “reading off at
the boundary”. The reason for this is that the RHS of eq. (1.5) is ultimately expressed in
terms of the near-AdS-boundary expansion coefficients for the bulk fields. When a bulk
field is solved near the boundary, one realizes that typically there are two independent
modes: a normalizable and a non-normalizable mode. The non-normalizable mode is
fully constrained by the boundary conditions and is associated with the source for the
dual operators. The normalizable mode, on the other hand, is unconstrained and depends
on the whole space-time geometry. This mode is also the one carrying the non-trivial
information of the 1-point functions. For the d = 4 pure gravity case dual to N = 4 SYM
the VEV of the stress-energy tensor, without including the scheme dependent terms, is



12 Strongly coupled phases, heavy ion physics and applied holography

given by

〈
Tµν
〉

=
N2
c

2π2

[
g(4)µν −

1

8
g(0)µν

[
(Trg(2))

2 − Trg2
(2)

]
− 1

2
(g2

(2))µν +
1

2
g(2)µνTrg(2)

]
(1.8)

where we used the relation between the gravitational constant and the degrees of freedom
L3/κ2

5 = N2
c /4π

2 specific to this theory. The coefficient g(2) can actually be written in
terms of the boundary metric g(0) and derivatives of it, and is 0 for g(0)µν = ηµν . Note
that in this case the whole expression reduces to

〈
Tµν
〉

= N2
c /(2π

2)g(4)µν .

1.4 Linear dynamics and quasi-normal modes

Short after its discovery, holography started offering quantitative results and new insights
for strongly coupled field theories. The first advances were done on linear dynamics, linear
response, and close to equilibrium situations – which correspond through holography to
thermal dissipation and hydrodynamics. This was possible because the linear approxima-
tion involves a major simplification of the dynamic equations of the bulk, allowing the
calculation of solutions with modest computational resources, or even analytically.

When a close-to-thermal system is modelled, the fluctuations on top the dual equilib-
rium black hole (BH) can be expressed in terms of solutions of the linearized equations over
a background. The gauge invariant combinations of these are known as the Quasi-Normal
Modes (QNMs) and have the form,

Φ(t,x, u) = AΨ(u)e−iωt+k ·x (1.9)

where x are the boundary coordinates, u the holographic coordinate, and ω and k are
the complex frequency and the wave number of the mode. As a result of the boundary
conditions at the BH horizon and the AdS boundary, the set of solutions is discrete in
ω, and this takes complex values giving raise to oscillating and decaying behaviour (see
fig. 1.6). The gauge invariant fluctuations Φ can be constituted by components of the
dynamic fields in the bulk theory or combinations of them.

The QNMs were long known in the context of black hole physics, and could be quickly
applied to holography and thermal dissipation studies (see [33] for a first calculation in
AdS to extract dissipation times). Soon after, they would be interpreted more precisely
as the spectra of poles of the retarded Green function of the field theory [34], opening
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Figure 1.6: First quasi-normal frequencies for the k = 0 fluctuations of ∆ = 4 operators
in N = 4 SYM. This includes the spin 0 fluctuations of the metric in the bulk,
corresponding to the sound channel of the stress-energy tensor in the boundary
theory. Frequencies computed with the spectral decomposition eigenvalue method.

a new way to study systems close to equilibrium. The study of QNM also provided an
explanation for the long life of the hydrodynamic regime in a strongly coupled phase.
Hydrodynamic modes appear naturally in the calculations as the lowest of the non-
homogeneous QNMs. Their dissipation rate tipically goes to 0 as k → 0, i.e. long
wave-lengths, which is precisely one of the assumptions of the hydrodynamic descriptions.
Other uses of the QNMs include the study of the different channels of dissipation of a
system [35], instabilities and transitions [36], and the effects of non-conformality in the
dissipation process [1, 37] or the ’t Hooft coupling λ corrections [38].

The methods used to solve the eigenvalue problems involved in the QNMs computation
are diverse and adapted to the specific cases. The first calculations were performed
using the Frobenius method, consisting in approximating the solutions of the equations
using series with a large but finite number of terms [34,35]. One then can solve the
equations order by order close the horizon with the appropriate boundary conditions,
and impose normalizability at the boundary. More involved cases might require the use
of shooting-like methods, which is the case of the theory N = 2∗ SYM theory studied
in [39]. Finally, there is an extremely efficient method (used in [1, 36, 37]) that works
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provided the fluctuation equations can be expressed in the form,

L̂1Ψ(u) = ωL̂2Ψ(u) (1.10)

where L̂1 and L̂2 are linear operators, and Ψ is the spatial profile of the modes. In this
case, one might discretise the equation using spectral functions and solve the matricial
eigenvalue problem using existing libraries.

As a final remark, it is interesting to note that the range of validity of the linear
approximation sometimes also extends to far-from-equilibrium states. Studies like [40]
show that the linearized equations can succesfully describe phenomena such as far-from-
equilibrium homogeneous isotropization of a plasma within a 20% precision (see fig.
1.7).

1.5 Full numerical evolutions

With hindsight, the computation of full dynamics in the bulk appears to be the next
logical step in the holographic plasma program. This would allow the extraction of
far-from-equilibrium real time dynamics in a strongly coupled phase. However, non-linar
computations in the bulk amount to the solution of a very non-trivial set of differential
equations containing the Einstein’s equations plus the ones for other fields. Solving this
kind of systems is usually a very challenging problem extensively studied in the past. As
a result, a whole branch of physics – numerical general relativity (GR) – is dedicated to
the techniques involved in it.

The numerical evolution of space-times, with or without matter, has been attempted
since the 1960s. Technical difficulties, however, have made the progress in the field
both hard and slow for decades. It is very illustrative to note that, although the first
axis-symmetrical black hole collisions where simulated in 1976, it would take 30 years
until Frans Pretorius succesfully computed the collision of inspiralling black holes in 2005
[41]. Recent new techniques and computational resources have spurred a revolution in
the field, allowing the evolution of many different systems that had remained intractable
for a long time.
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1.5.1 The characteristic formulation

There exist several formalisms in order to attempt the solution of a particular problem,
among them we can find the Cauchy-based and the characteristic approaches. The latter
is the one commonly used for evolutions in the Poincaré patch of AdS, and it poses three
main advantages when applied to these set-ups. Namely:

• The initial data is free and one only needs to specify some of the dynamic functions.
The constraints are automatically fulfilled.

• Only first time derivatives appear in the evolution equations, resulting in a smaller
number of variables.

• The set of equations simplifies significantly. It adopts a hierarchical nested structure
(partially or completely) and effectively decouples. It also linearizes (again, totally
or partially) and becomes fully ultra-local, i.e. the system of partial differential
equations (PDEs) reduces to ordinary differential equations (ODEs) with some
coordinates as parameters.

The major drawback present in this formalism, the formation of caustics along the
coordinates, is typically non present in Poincaré-AdS evolutions as the possible caustics
form behind the black brane horizons (see [42] for a discussion about this point).

The characteristic formalism was originally introduced by Bondi [43] and Sachs [44] in
1960s for the study of gravitational waves. Although nowadays it is not very popular
in the numerical GR community, the characteristic approach had some successes in the
field; the first stable simulation of a black hole in 3D in 1998 is a good example of it (see
[45] for a comprehensive review on the formalism).

The starting point for a characteristic evolution is the Bondi-Sachs metric ansatz
which is a generalised form of the Eddington-Finkelstein metric. Following the notation
of [42], a version of this metric ansatz particularly suited for holographic computations
reads,

ds2 = Gij(t,x, r)dx
idxj + 2dt

[
dr + A(t,x, r)dt+ Fi(t,x, r)dx

i
]
, (1.11)

where r is the holographic coordinate, xi the spatial coordinates of the boundary theory,
and t is the “time” coordinate coinciding at the boundary with the gauge theory time.
The fundamental feature of this metric is that uses ingoing null geodesics as the integral
curves that generate one of the coordinates, r. With this, the constant t slices are null
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hypersurfaces, although ∂t itself is not null. Then, the step that dramatically simplifies
the dynamic equations is expressing them using the outgoing null derivative

d+ ≡ ∂t + A(X)∂r . (1.12)

Nevertheless, the “time” integration itself is performed on the coordinate t.

1.5.2 Discretisation and spectral methods

The numerical resolution of the differential equations involved in GR necessarily requires
a discretisation of the domain of integration. There exist a big number of methods
to attempt such discretisation and resolution depending on the particular features of
the equation of study. For generic unbound ODE problems, Euler-like methods as the
Runge-Kutta or the Adams-Bashford show both robustness and reasonable speeds. This
is the case of time integrations and coordinate transformations, usually solved using
Euler-like methods. However, when the domain of integration is well defined and the
equations are linear, more efficient and precise methods can be used.

The equations appearing in the nested scheme within every time step of a characteristic
evolution are generally linear and can be written as,

L̂(x)f(x) = S(x) . (1.13)

Where L̂(x) is a generic linear operator built with derivatives and linear functions, f(x)

is the function we solve for, and S(x) is a known independent term. Thanks to linearity,
the equation can be discretised and rewritten in a matricial form as,

N∑
j=0

Lij f̃j = s̃i for ∀i ≤ N . (1.14)

Finding the solution for the discretised version of f(x) amounts then to the inversion
of the matrix Lij. However, due to the multiplicity of solutions depending on the
boundary conditions of the equation, this matrix is usually non-invertible. This problem
can be solved by substituting some rows in equation (1.14) by a representation of the
boundary conditions in the selected basis. The inversion of the matrix or, equivalently,
the resolution of the linear system can be achieved by using existing routines in almost
every programming environment.
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Given a number of points or functions in the basis, the discretisation procedure is
far from unique. These procedures can be classified in two big groups: the spectral
methods and finite differencing. The spectral methods are arguably the most precise and
challenging method of the two, and rely on a spectral decomposition of the functions and
operators in a orthogonal basis. Among the most used functions for the decomposition we
can find the Chebyshev polynomials or the Fourier basis (the latter being specially suited
for periodic boundary conditions). As the number of functions used in the decomposition
is finite, there is some error associated with the discretization procedure, which is again
non-unique. The discretisation method used in the work presented in this thesis is the
so-called “collocation points” method (see [46,47] for extensive guides on spectral methods
and collocation points). The finite differencing method shares important features with
the spectral methods. In this case, however, the discretization is done through a point
by point interpolation of the functions in m-th order polynomials. The interpolation grid
can be set to any N point grid.

Spectral methods and finite differencing are also useful for other kind of problems.
For two-boundary non-linear ODE problems – such as the apparent horizon equation
in 2+1 simulations – one might use a relaxation Newton’s method. In this method one
iteratively modifies a seed solution by linear corrections. The linear corrections are found
by solving the linerised equation using spectral methods or finite differencing.

1.5.3 Homogeneous isotropization

In pioneering work by Chesler and Yaffe, the characteristic approach was first applied
in holography in order to study the relaxation of far-from-equilibrium plasmas in a
homogeneous four dimensionsional set-up [48]. The gravitational model used for this
study was the simplest possible: pure Einstein gravity on an asymptotically AdS5×S5

space, which is a consistent truncation of the type IIB supergravity. The gauge theory
evolved then would be N = 4 SYM, a conformal theory sharing important features
with QCD. This choice of set-up is motivated by simplicity and requires the further
assumption of conformality for the system modelled. As we will argue chapter 3, this
might be justified in extremely hot plasmas but not at temperatures close to critical
temperature of QCD.
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The action describing the pure gravity set-up is the Einstein-Hilbert with a cosmolog-
ical constant,

S = − 1

16πG

∫
d5x
√
−g
(
R+

12

L2

)
, (1.15)

which results in the Einstein’s equations

Rmn +
4

L2 gmn = 0 . (1.16)

By constraining the ansatz (1.11) to have dependence only on coordinates r and t and
setting the fluxes Fi = 0, one can impose homogeneity on the dual plasma. Decreasing
the number of dynamic directions results in a drastic computational time reduction and
a simplification of several technical aspects. This simulations are popularly known as
“1 + 1”, as they consider dynamics in one spatial direction plus the time. In this case the
simplified metric reads,

ds2 = Σ2
[
eBdx2

⊥ + e−2Bdx2
‖

]
+ 2dt [dr + Adt] , (1.17)

where it is necessary to allow for anisotropy in the x⊥ and x‖ directions to obtain an
evolving metric free of divergences [49]. It is precisely this anisotropy in the metric the
one giving raise to pressure anisotropy in the dual plasma.

The homogeneous simulations cannot capture any kind of flow by construction.
However, the results obtained in this first simulations in [48] and [40] were successful in
reproducing a fast “equilibration” in the plasma of study, which in this simple set-up
amounts to a fast isotropization. The time the system spends in isotropying was found
to be of order the inverse of the temperature (see fig. 1.7), which is in line with the
observations in the experiments.

Subsequent works have studied homogeneous relaxation using other gravitational
theories. In ref. [50] the model considered is Einstein-Maxwell in order to capture the
equilibration process in presence of external magnetic fields and conserved charges. In
[36] a scalar field is added in the dynamics to add non-conformality and instabilities
in the dual gauge theory. One can also consider higher derivative gravity models, like
Gauss-Bonet gravity, to study the effects of the coupling λ corrections [51].



Strongly coupled phases, heavy ion physics and applied holography 19

Figure 1.7: in ref. [40] ∼ 2000 initial far from equilibrium states were evolved, both linearly
and with a full dynamic code. The results depicted in the histograms show how
the isotropisation time (tiso) is always of order the temperature (T ) and that the
linear approximation gives for most of cases a good prediction for tiso up to a 20%
error. Figure originally appearing in [40].

1.5.4 Shock-wave collisions

In order to study the onset of hydrodynamics and make contact with the experiments,
one needs to allow for inhomogeneities in the set-up. The metric ansatz in this case
considers the presence of “flux” metric coefficient F,

ds2 = Σ2
[
eBdx2

⊥ + e−2Bdx2
‖

]
+ 2dt

[
dr + Adt+ Fdx‖

]
, (1.18)

and the dynamics is now allowed in the coordinates r and x‖; this is, “2 + 1” simulations.

The next step is to provide an initial state that can reproduce some of the characteris-
tics of the real collisions in experiments. The desired state needs to feature two long-lived
initial projectiles, travelling at speeds close to c in a collision course. For a “2 + 1” evolu-
tion this projectiles are two infinite sheets of energy with translational symmetry in the
transverse plane known as the shock-waves. A proposal of a holographic implementation
of them is introduced in [52], and used in [53] for studying the infinitely thin shock-wave
limit. However, the first full-fledged dynamic evolution would be performed by Chesler
and Yaffe, again in pure gravity, in [54]. In the original notation of Chesler and Yaffe the
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shock-wave metric in Fefferman-Graham coordinates reads,

ds2 =
L

r2

(
dr2 + h(x± )dx2

± + r4
[
− dx+dx− + dx2

⊥ ]) . (1.19)

where x± = t± z, and h(x± ) is a free function that characterizes the waveform. Using
eq. (1.8) we can immediately obtain the VEV for the stress energy tensor of the initial
state,

〈
Tµν
〉

=
N2
c

2π2


h(t± z) ±h(t± z) 0 0

±h(t± z) h(t± z) 0 0

0 0 0 0

0 0 0 0

 (1.20)

which corresponds to a pressure and density wave of a fluid travelling in vacuum. After
transforming the shock-wave metric from the Fefferman-Graham to the Bondi-Sachs form,
one can evolve the configuration to simulate a collision and its subsequent equilibration.
The outcome of the computation is a dynamic geometry that, through holography, is
equivalent the evolution of the

〈
Tµν
〉
of the dual plasma (see fig. 1.8). With the stress-

energy tensor one might study the longitudinal flow and the rapidity profiles of the debris,
and with them the onset onset of hydrodynamics in the plasma after the collision.

An effective way to test whether hydrodynamics is a good description of the system
is to verify that the stress-energy tensor can be approximately written in the form of
equation (1.2). To do so, one needs to extract the local energy and velocities of the
fluid by diagonalizing

〈
Tµν
〉
, and plug them in the hydrodynamic constitutive expression

(1.2). Along the information extracted from the dynamics, it is also necessary to provide
an “equation of state” relating the pressure and the energy in equilibrium (ε = 1/3p for
a conformal fluid), and the transport coefficients for the theory studied (η/s = 1/4π

and ζ = 0 for N = 4 SYM). Then, if the predicted “hydrodynamic stress-energy tensor”
agrees with

〈
Tµν
〉
up to a certain tolerance, one might declare that the plasma has

“hydrodynamized” (see fig. 1.9). One of the main results found in [54] is indeed the fast
hydrodynamization time, that gives a result of order the temperature of the plasma, again
in line with the data from the experiments. After the plasma has hydrodynamized, the
evolution can be continued using a fully fledged hydrodynamic simulation and attempt a
more quantitative comparison with the experimental data, as it is done in [56].
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Figure 1.8: Rescaled energy density defined as E = (2π2/N2
c )Ttt in units of the maximum

initial energy density on the shock-wave (ρ), in terms of t and x‖. In the plot
one can see the incoming projectiles, the collision, and the expanding debris in a
typical pure gravity shock-wave collision. The waveform for the initial states is a
gaussian with a with “1/2” in the language of [55].
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Figure 1.9: Plots for the longitudinal and transverse presures at mid rapidity over time
(in units of ρ), and their hydrodynamic predictions. Short after the collision,
hydrodynamics becomes a good description for the system’s stress-energy tensor.
Plots corresponding to the same pure gravity collision of fig. 1.8.
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The first simulation by Chesler and Yaffe was quickly followed by other works that
started exploring the potential of holographic collisions. For example, In refs. [55, 57], still
in a pure gravity set-up, strong effects were observed in the resulting plasma depending
on the waveform for the initial initial shock-waves (width and multiplicity of projectiles).
Other studies of shock-waves include the exploration of different observables such as the
entanglement entropy and 2-point functions [58], the study of coupling corrections as
in [59], or the works appearing in this thesis where one considers set-ups beyond pure
gravity.

In the following chapters we will present a set of works [1–5] focused on exploring
the physics of holographic plasmas and shock-waves collisions in set-ups including more
fields than the metric. A gauge field is added to the set-up in chapter 2 in order to add a
conserved current in the dual plasma and capture the behaviour of the baryon current
and its rapidity profile, experimentally accessible in the heavy ion colliders. The rest
of the thesis is devoted to the study of non-conformal models and their dynamics. In
chapter 3 a new model containing a scalar field is introduced to explore the physics of
non-conformal systems, first for the homogeneous linear dynamics, and afterwards in
chapter 4 to explore full dynamic shock-wave collisions. Finally, in chapter 5, we explore
a model showing phase transitions and study the spinoidal instabilities present in it.



Chapter 2

Shock-wave collisions with baryon
charge

Pure gravity simulations have provided valuable insights into the dynamics of strongly
coupled gauge theories – presumably relevant to the QGP created in heavy ion collisions.
Unfortunately, the amount of observables accessible in this kind of set-ups is very limited.
The gravitational field in AdS encodes only the dynamics of the stress-energy tensor in
dual gauge theory and, therefore, the dynamics of any additional conserved current are
out of the reach of such set-ups. As a consequence, the collisions in pure gravity result
in the formation of a baryon neutral plasma. Conversely, the plasma created in heavy
ion collisions certainly carries some non-zero baryon charge. This charge increases in
importance as the energy of the collision decreases (see fig. 1.3), making a case for a
shock-wave simulation that includes it. There are, in addition, other motivations for such
study. The baryonic chemical potential is a crucial ingredient for the critical phenomena
of QCD and the extension of its phase diagram. Understanding its dynamics in the
conformal case will certainly help in more complicated and realistic set-ups.

The goal of the work presented in this chapter is therefore to provide the first
simulation of charged shock-wave collisions in AdS in order to model the formation and
hydrodynamization of a QGP with a non-zero baryon charge. The conserved baryon
current is dual on the gravity side to a Maxwell field, so we consider collisions in
Einstein-Maxwell theory.

The numeric code used for the evolution of the shock-wave collisions presented in
this chapter it is written in Wolfram Mathematica and is built upon the code used in
[55,57] for pure gravity collisions. The code uses the characteristic formulation, outlined
in section 1.5.

23
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2.1 The set-up

We start with the Einstein-Maxwell action with a negative cosmological constant by
adding the term describing the electromagnetic field to (1.15),

S = − 1

16πG

∫
d5x
√
−g
(
R+

12

L2 −
1

4
e2L2FmnFmn

)
. (2.1)

Where G is Newton’s constant, R is the Ricci scalar, L is the asymptotic AdS radius,
e is a parameter controlling the backreaction of the Maxwell field on the metric, and
Fmn ≡ ∂[mAn] is the electromagnetic field strength with Am the vector potential. The
metric and the gauge field are respectively dual on the gauge theory side to the stress
tensor Tµν and to a conserved U(1) current Jµ whose time component one is free to
think of as the baryon number density. In the case in which the action (2.1) is viewed
as a consistent truncation of the dimensional reduction of type IIB supergravity on S5

the dual gauge theory is N = 4 Super Yang-Mills and the U(1) current arises from
the R-symmetry of this theory.1 When we need to be concrete (for example to fix
normalization factors) we will adopt this viewpoint. However, we emphasize that for
most purposes the specific origin of the Maxwell field is unimportant and one could think
of (2.1) simply as a bottom-up model that incorporates the minimal set of ingredients
to describe the dynamics of the stress tensor and a conserved U(1) current in the dual
gauge theory.

The equations of motion following from (2.1) are

Rmn +
4

L2 gmn =e2L2Tmn , (2.2)

∂m
(√
−gFmn

)
=0, (2.3)

where

Tmn =
1

2
FmpF p

n −
1

12
gmnF2 (2.4)

is the stress tensor sourced by the electromagnetic field. These equations admit the
following analytic solution – in Fefferman-Graham coordinates – describing a charged

1The full five-dimensional action for this truncation would include a Chern-Simons term (see e.g. [60]),
but this will play no role in our analysis and we have therefore omitted it.
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shock wave moving at the speed of light:

ds2 =
L2

u2

(
− dx+dx− + dx2

⊥ +
[
u4h(x+)− 1

3
e2u6a(x+)2

]
dx2

+ + du2
)
, (2.5)

A =
u2

L2 a(x+) dx+ , (2.6)

where x± = t± z and h(x+) and a(x+) are arbitrary functions of x+. This solution is
reminiscent of the pure gravity shock-wave metric, as only amounts to the addition of
the −1

3
e2u6a(x+)2 term in (1.19). Also, as in the pure gravity case, this metric ansatz

is not suitable for starting a characteristic evolution, and will have to be numerically
transformed to the Bondi-Sachs form.

In the case in which the dual theory is N = 4 SYM the metric functions are related
to the expectation values of the corresponding dual operators through [30]

〈T++〉 =
N2
c

2π2h(x+) , (2.7)

〈J+〉 =
N2
c e

π2 a(x+) . (2.8)

The fact that J scales as N2
c reflects its R-symmetry origin, namely that microscopically

it is built out of adjoint degrees of freedom. An analogous solution describing a wave
moving in the opposite direction is obtained by replacing x+→x− in the expressions
above.

We will adopt the following choices for the functions h and a describing our incoming
projectiles:

h(x± ) =
m3

√
2πw2

exp

(
− x

2
±

2w2

)
, a(x± ) = h(x± )/2m (2.9)

The energy and charge densities per unit area of the shock are 2π2m3/N2
c and 2π2m2/N2

c ,
respectively. Note that we choose the centers and the widths of the Gaussian profiles for
h and a to be the same, as corresponds to the fact that we want to model the collision of
projectiles that carry both energy and charge.

We see from Eq. (2.2) that the parameter e controls the magnitude of the backreaction
of the Maxwell field on the dynamics of the spacetime metric. It is clear from the action
(2.1) that this parameter could be absorbed in the normalization of the Maxwell field,
at the expense of including an explicit factor of e multiplying the gauge field amplitude
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a(x+) in Eq. (2.6). In other words, one can either think of the backreaction as being
controlled by e for a fixed incoming amplitude a(x+), or as it being controlled by the
incoming amplitude for a fixed e. We find it convenient to adopt the first viewpoint.

The limit e→ 0 on the gravity side corresponds to an approximation in which the
Maxwell field is treated as a probe field that propagates in a fixed background without
affecting it. In the gauge theory this means that the charge density is treated in a
quenched approximation in which it has a negligible effect on the dynamics of the gluons.
This limit is physically interesting since it describes the situation in which the energy
density dominates over the charge density, and also as a benchmark against which the
backreacted results can be compared. In Sec. 2.4 we will consider the collision in the
probe approximation, and in Sec. 2.5 we will consider the backreacted case.

2.2 Thermodynamics and hydrodynamics

We begin by reviewing the thermodynamics and transport properties of the plasma in
the theory described by the action (2.1). This will be necessary later in sections 2.4 and
2.5 when we analyse the outcome of the collisions and the hydrodynamization process.
We will work with a rescaled stress tensor and current

Tµν =
2π2

N2
c

〈
Tµν
〉
, J µ =

2π2

N2
c

〈Jµ〉 , (2.10)

and set

E = −T 0
0 , ρ = J 0 . (2.11)

The relation between these quantities and the temperature (T ) and chemical potential
(µ) can be obtained by studying the analytic solutions corresponding to homogeneous
and static black branes in the set-up of study. This equilibrium solutions are known as
the AdS-Reissner-Nordstrom black holes, and in Eddington-Finkelstein coordinates are
given by the metric,

ds2 = 2dtdr −

(
a(4)

r2 +
2A2

(2)te
2

3r4 + r2

)
dt2 + r2dxidxj . (2.12)
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In these coordinates, a(4) and A(2)t are constants that parametrize the family of static
solutions, and coincide with the fall-off coefficients that will give the energy and charge
densities of the dual theory. To obtain the temperatures and chemical potential cor-
responding to a particular solution one should follow the black hole thermodynamics
prescriptions; the surface gravity for the temperature, and the integral of the electric
field along a null geodesic for the chemical potential. For the one point functions of the
stress-energy tensor and the conserved current we use the holographic renormalization
prescriptions,

Tµν = g(4)µν , J µ = eF rµ(3) (2.13)

where g(4)µν is the fourth term in the Fefferman-Graham expansion of the metric (as
defined in (1.7)), and F rµ(3) is the third term in the electromagnetic tensor expansion.

Working out the black hole surface gravity, the thermodynamics is given by the
following expressions (see e.g. [61]):

E =
3

4
x4

(
1 +

√
1 +

1

6
y2

)3(
3

√
1 +

1

6
y2 − 1

)
, (2.14)

ρ =
1

2
x3 y

(
1 +

√
1 +

1

6
y2

)2

, (2.15)

where

x =
πT

2
, y = µ/x . (2.16)

Using these expressions one can show that, for a small charge density, the chemical
potential is given by

µ '
√

3ρ√
E

[
1 +

√
3

4

(
ρ

E3/4

)2

+ · · ·

]
. (2.17)

We see that, for fixed energy density, µ and ρ are linear in one another with a 1% (10%)
accuracy if ρ/E3/4 is no larger than 0.15 (0.48). In the opposite limit, when the chemical
potential is high compared to the temperature, y � 1, we have that

E ' π4

28 µ
4 , ρ ' π3

3 · 25 µ
3 , (2.18)
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Figure 2.1: Temperature and chemical potential as a function of the charge density, all
normalized by the energy density.

and the ratio of charge to energy density approaches the value

ρmax

E3/4
=

2

3
. (2.19)

The subindex ‘max’ indicates that this is the maximum value of ρ for a fixed energy
density. At this value the black brane becomes extremal and the temperature approaches
zero compared to any other scale. Above this value a naked singularity appears. These
features are illustrated in Fig. 2.1.

Charged hydrodynamics for N = 4 SYM has been studied extensively [61,62]. In the
case of a 1+1 dimensional flow, as is of interest here, the constitutive relations take the
form

Tµν = E uµuν + P (E)∆µν − η σµν , (2.20)

Jµ = ρ uµ − κ∆ ν
µ∂ν

(µ
T

)
, (2.21)

where

∆µν = gµν + uµuν , (2.22)

σµν = ∆µα∆µβ
(
∇αuβ +∇βuα

)
− 2

3
∆µν∆αβ∇αuβ , (2.23)
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and the transport coefficients (rescaled by 2π2/N2
c ) are

η =
1

4
x3

(
1 +

√
1 +

1

6
y2

)3

, (2.24)

κ =
2

π
x2

(
1 +

√
1 +

1

6
y2

)(
3

√
1 +

1

6
y2 − 1

)−1

. (2.25)

We note that, although the ratio η/s remains constant at the pure gravity value (1/4π),
η itself will depend on the temperature and chemical potential in a non-trivial fashion.

2.3 Dynamic equations and algorithm

As it is done in the pure gravity case, to obtain the dynamic equations for the system in
a characteristic form, one needs to plug the Bondi-Sachs ansatz for the metric (1.18) into
the dynamic equations (2.2)-(2.3). Additionally, one also needs to provide an ansatz for
the gauge field. The most general electromagnetic tensor preserving the 2 + 1 symmetry
is simply,

F = Frtdr ∧ dt+ Frzdr ∧ dz + Ftzdt ∧ dz , (2.26)

where r is the holographic coordinate, t the null time, and z = x‖ the direction of the
collision.

To start a characteristic evolution it is only necessary to specify the initial state for
some of the dynamic variables. Unfortunately, the shock-wave solution (2.5) is only
known analytically in the Fefferman-Graham frame, so a coordinate change is needed.
There are several equivalent ways to compute the coordinate change. In particular we
use the fact that the u = 1/r coordinate in the Eddington-Finkelstein frame generates
ingoing null geodesics, so one can use the geodesic equations to find them. This method
has been previously used in the literature, and is more extensively explained in chapter 4,
where shock-waves in non-conformal models are discussed.

Thanks to the Bondi-Sachs coordinates, the resulting equations are ultra-local in the
longitudinal direction. Unfortunately, the inclusion of a gauge field partially spoils the
linearity and nestedness of the system when e 6= 0. These features are recovered at the
probe limit, where the equations for the metric evolution smoothly connect with the ones
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of the pure gravity set-up. The Einstein-Maxwell equations with backreaction read,

3SS ′′ =e2B
(
−e2

)
F2
rz −

3

2
S2
(
B′
)2 (2.27a)

S2F ′′ =S
(

6S̃B′ + 4S̃ ′ + 3F ′S ′
)

+ S2
(

3B̃B′ + 2B̃′
)
− 4S̃S ′

− 2e2FrtFrzS2 (2.27b)

S3F ′rt =− e2B
(
Frz

(
S
(

2B̃ − F ′
)

+ S̃
)

+ SF̃rz
)
− 3FrtS2S ′ (2.27c)

12S3Ṡ ′ =e2B
(
S2
(

4B̃F ′ − 7B̃2 − 4 ˜̃B + 2F̃ ′ +
(
F ′
)2
)

+ 2S
(
S̃
(
F ′ − 8B̃

)
− 4 ˜̃S

)
+4S̃2

)
+ S4

(
24− 2e2F2

rt

)
− 24ṠS2S ′ (2.27d)

6S4Ḃ′ =e2B
(
−S2B̃F ′ + S2B̃2 + S2 ˜̃B + SB̃S̃ + 4SS̃F ′ − 2S2F̃ ′ + 2S ˜̃S − 4S̃2

−S2
(
F ′
)2

+ 2Ae2F2
rzS

2 + 4e2FFrtFrzS2 + 4e2FrzFtzS2
)

− 9S3
(
ṠB′ + ḂS ′

)
(2.27e)

6S4A′′ =e2B
(

21S2B̃2 + 12S2 ˜̃B + 48SB̃S̃ + 24S ˜̃S − 12S̃2 − 2Ae2F2
rzS

2

−4e2FFrtFrzS2 − 4e2FrzFtzS2 − 3S2
(
F ′
)2
)

+ 72ṠS2S ′

+ 2S4
(
−9ḂB′ + 7e2F2

rt − 12
)

(2.27f)

4S3F ′tz =S2
(
−2S

(
F̃rt + Frz

(
A′ + AB′ + 2Ḃ

)
+ AF ′rz + 2B′(FFrt + Ftz) + FrtF ′

)
+ S ′(−AFrz + 10FFrt − 2Ftz)− 2FrzṠ

)
+ 4e2BF

(
Frz

(
S
(

2B̃ − F ′
)

+ S̃
)

+ SF̃rz
)

(2.27g)

4ḞrzS =− 2S
(
−F̃rt + Frz

(
A′ + AB′ + 2Ḃ

)
+ 2B′(FFrt + Ftz) + FrtF ′

)
− S ′(AFrz + 2FFrt + 2Ftz)− 2FrzṠ (2.27h)

where f = f [r, t, z], f̃ = ∂zf − F∂rf , ḟ = ∂tf + (A/2)∂rf , and f
′ = ∂rf .

Analogously to the pure gravity case, one only needs to specify B and now Frz at the
initial time slice to start integrating the semi-nested scheme (2.27). The outcome of this
scheme are precisely the time derivatives ∂tB and ∂tFrz with which one can evolve the
geometry to following time step. Additionally to the equations, one also needs to provide
boundary conditions at the AdS boundary. These are formally given by the order by
order solution of the dynamic equations close to the boundary in terms of the fall-off
coefficients, which are evolved independently using the conservation equations. Overall,
the algorithm used to evolve the Einstein-Maxwell equations is very similar to the ones
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used for other shock-wave collisions. In the present case we used a Chebyshev spectral
grid in the u direction and a periodic Fourier grid in the z direction. In the latter the
derivatives can be performed using the full spectral matrix or, alternatively, an n-point
finite differencing one.

In order to solve the equations using the spectral methods, one needs a compact
domain between the AdS boundary and the apparent horizon. To obtain it, it is convenient
to use the coordinate u = 1/r as a holographic coordinate. Additionally, one needs to
regularize the dynamic functions, as these diverge in a known fashion close to u = 0.
From the order by order solution we obtain the finite functions,

Bf [u, t, z] =
B[u, t, z]

u4 (2.28a)

Fryf [u, t, z] =
Fry[u, t, z]

u3 (2.28b)

Sf [u, t, z] =
uS[u, t, z]− uξ[t, z]− 1

u5 (2.28c)

Ff [u, t, z] =
F [u, t, z]− ∂zξ[t, z]

u2 (2.28d)

Frtf [u, t, z] =
Frt[u, t, z]

u3 (2.28e)

Ṡf [u, t, z] = −(uξ[t, z] + 1)2 − 2u2Ṡ[u, t, z]

2u4 (2.28f)

Ḃf [u, t, z] =
Ḃ[u, t, z]

u3 (2.28g)

Af [u, t, z] =
u2A[u, t, z] + 2u2∂tξ[t, z]− (uξ[t, z] + 1)2

u4 (2.28h)

Ftyf [u, t, z] =
Fty[u, t, z]

u2 (2.28i)

Ḟryf [u, t, z] =
Ḟry[u, t, z]

u2 (2.28j)

Ḟ f [u, t, z] =
Ḟ [u, t, z]− ∂t∂zξ[t, z]

u
(2.28k)

Where we have set the AdS radius L = 1 for convenience. The equations for the redefined
fields can be trivially obtained by substituting the full functions in (2.27) by their
expressions in terms of the finite ones.
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2.4 The probe approximation

With the initial conditions (2.9) for the collision we can solve the Einstein-Maxwell
equations, as outlined in[42,63]. In this section we work in the strict probe approximation
for the Maxwell field, where the Einstein’s and Maxwell’s equations completely decouple
and all them are linear. We are therefore computing the evolution of a Maxwell field
on top of the dynamical shock wave collisions studied earlier in [42,54,55,57,63,64].
Computationally it is however convenient to evolve both the metric and the Maxwell
field at the same time, thereby recomputing the gravitational shock wave background.
This is equivalent to setting e = 0 in (2.27) and reordering the equations to solve first for
the metric coefficients and then for the electromagnetic tensor components.

We performed simulations for mw = 0.1 (1/4 -shocks in the language of [55]) and
mw = 1.9 (2 -shocks in the language of [55]), which we will refer to as thin and thick
shock collisions, respectively. The resulting charge density ρ is plotted in Fig. 2.2 for
both cases, whereby we included the energy density E for comparison (also found in [55]).
Clearly in the thin regime the shocks gradually lose their charge into a charged plasma
between the shocks, much like the energy density. For the thick shocks the energy density
already hydrodynamizes during the collision regime [55] and, as we will see below, the
same is true for the charge density. The shape of the charge and energy densities is
different, a feature which we will later analyze in the local rest frame as well. One
interesting feature is the decay of the original shocks in the thin regime. Indeed, we see
that on the attenuating maxima the charge density exactly follows the energy density,
despite the fact that the charge and the energy are distributed differently in between
the shocks. This agreement on the attenuating maxima is remarkable in view of the
fact that the energy and the charge are governed by in principle completely different
dynamics, i.e. the Einstein equations and the Maxwell equations on a fixed background,
respectively. This suggests that on the light cone a simplified picture may be possible
(perhaps along the lines of [65]).

2.4.1 Hydrodynamization

Having the complete stress-tensor we are able to extract the energy and charge density
in the local rest frame, defined through

T νµuν = −Eloc uµ , (2.29)
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Figure 2.2: Snapshots of the charge density (solid curves) and energy density (dotted curves)
for thin (top) and thick (bottom) collisions. The grey curves indicate the charge
density of the unperturbed original shocks.

from which we find

Eloc =
1

2

(√
(T zz + T tt)2 − 4(T tz)2 − T zz + T tt

)
,

vloc ≡
uz
ut

=
T zz + T tt −

√
(T zz + T tt)2 − 4(T tz)2

2T tz
, (2.30)

where uµ is the (timelike) fluid velocity. For the charge density we have

ρloc = Jµu
µ . (2.31)

This allows us to study the approach to charged hydrodynamics. We read off from
our simulations the fluid velocity and the energy and charge densities. We then use
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the constitutive relations (2.20)-(2.21) to obtain the hydrodynamic prediction for the
transverse and longitudinal pressures, P hyd

L and P hyd
T , and for the time component of the

current, Jhydt . We define the hydrodynamization time for the stress tensor, thyd, as the
time beyond which

3
∣∣∣PL − P hyd

L

∣∣∣
E

< 0.1 . (2.32)

Similarly, we define the hydrodynamization for the current, tJhyd, as the time beyond
which ∣∣∣Jt − Jhydt

∣∣∣
ρ

< 0.1 . (2.33)

A crucial difference between the hydrodynamization of the stress tensor versus the charge
current is that the pressures at z = 0 can deviate from their hydrodynamic values due
to the gradients of the velocity field. In contrast, parity symmetry implies that u has
no spatial component at z = 0 and that Jz vanishes identically. As a consequence, the
(ideal) hydrodynamic prediction for the current is always exact at mid-rapidity. In order
to asses the validity of the hydrodynamic description for J we will therefore look at
non-zero rapidity.

The hydrodynamization times for the stress tensor in the case of a neutral fluid were
determined in Refs. [54,55,64]. The result is

mthyd = {2.0, 2.4, 3.6} at mz = {0, 1.5, 3.0} for thin shocks , (2.34)

mthyd = {2.1, 4.7, 16} at mz = {0, 5, 15} for thick shocks . (2.35)

Since in this section we are working in the probe approximation, these times agree with
our hydrodynamization times. With our new simulations we can now also study the hydro-
dynamization of the charge current, whose evolution and hydrodynamic approximations
are shown in Fig. 2.3. The hydrodynamization times are

mthydJ = {2.0, 3.5} at mz = {1.5, 3.0} for thin shocks , (2.36)

mthydJ = {0, 0} at mz = {5, 15} for thick shocks . (2.37)

In the case of thick shocks we have listed the value tJhyd = 0 to indicate that the current
is always well predicted by hydrodynamics. In contrast, for thin shocks we see that
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Figure 2.3: Time component of the current Jt (black, solid curve) and its approximations
based on ideal (blue, solid curve) and viscous (blue, dashed curve) hydrodynamics,
for thin (top row) and thick (bottom row) shocks. The hydro curves start at
a time after which a local rest frame can be defined (as in [66]). The insets
show that even though ideal hydrodynamics gives a better overall fit in the range
plotted, viscous hydrodynamics gives a better description of the final approach
to hydrodynamics. Thick shocks (bottom) are always well described by charged
hydrodynamics, whereby viscous hydrodynamics gives a significant improvement.
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the hydrodynamization times for the current away from mid-rapidity are very similar
to those for the stress tensor. In both cases, after tJhyd there is a small but significant
difference between ideal and viscous hydrodynamics, which shows that the fluid velocity
of the charge differs from the velocity of the energy-momentum flow.

2.4.2 Rapidity profiles and charge deposition

Fig. 2.4 shows the spacetime rapidity profile of the local charge density. This is compared

Figure 2.4: Local charge density as a function of proper time τ and rapidity y. The left plot
shows the rapidity distribution for thin shocks, where regions without a rest frame
are drawn black [66], and the hydrodynamic region is indicated by the dashed line
(according to (2.32)). The upper white regions are outside our numerical grid.
The right plot is for thick shocks, which is always in the hydrodynamic regime for
τ > 2. The black lines are stream lines of the fluid velocity, which are similar to
the charge velocity.

with the local energy density rapidity profile for several different proper times in Fig. 2.5.
Especially striking in Fig. 2.5 is the development of maxima at non-zero rapidity for the
charge profile; we will come back to this in the Discussion section. This happens fast in
the case of thin shocks, whereas it takes longer for thick shocks. Furthermore, we see
that for thin shocks the evolution of the charged rapidity profile is expanding much faster
than the equivalent profile for the local energy density. For thick shocks both profiles
expand at a similar rate.

To characterize the charge deposition after the collision, we compare the charge
density in the local rest frame, ρloc, to the local energy density, Eloc. More precisely, at
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Figure 2.5: Rapidity profile of the local charge (solid curves) and the local energy (dashed
curves) densities at different proper times τ as a function of rapidity y and
normalized at mid-rapidity (see also [55,63,64] for similar plots of the energy
density). For thin shocks the energy density does not evolve much on the times
shown, whereas the profile for the charge density widens significantly. For thick
shocks the charge and energy profiles widen in a similar fashion, though the profile
of the charge is always wider.

Figure 2.6: Chemical potential for thin (left) and thick (right) shock collisions.

all points in spacetime at which a local rest frame exists, we define the ratio

µeff ≡
√

3ρloc/E
1/2
loc . (2.38)

The significance of this ratio, which we plot in figure 2.6, is that, in equilibrium, µeff
coincides with the small-charge limit of chemical potential of the plasma, eq. (2.17). We
will come back to figure 2.6 in the Discussion section.

When colliding shocks with symmetric energy and charge distributions it is impossible
to determine which part of the energy and charge in the final plasma comes from the
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Figure 2.7: We present the charge density ρ for amw = 0.1 collision where only the left-moving
shock is charged, with a 3D plot (top-left), snapshots with dashed lines showing a
reflection (bottom) and with the fraction of the charge ending up at z > 0 as a
function of time (top-right). Interestingly, even though the initial charge moves
towards negative z at the speed of light the collision causes about 41% ends up at
positive z, indicating very strong interactions.

left- or right-moving shock. In our current set-up, however, it is possible to charge only
the left-moving shock, leaving the right-moving shock neutral. This results in a charge
distribution as shown in Fig. 2.7.2 Clearly most of the charge ends up at z < 0, but at
later times a surprisingly large fraction of about 41% ends up at z > 0, indicating that
the strong interactions of the collision can indeed let the charge density bounce back,
reflecting the direction of 41% of the charge.

Quite interestingly, the right-moving charge contains a bump moving close to the
speed of light, though not as fast as the left-moving shock moving at the speed of light.
This bump, however, does not come with a minimum with negative charge density,
indicating that the negative charge density has to be associated to the presence of the
original shock on the light cone. We verified that the profile away from the original

2Note that without backreaction the charge of the colliding shocks does not interact with itself; the
charge profile of the symmetric collision is hence equal to the sum of the dashed and solid lines in
Fig. 2.7.
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shock is independent of the width of the charge, in agreement with the findings in [57].
Experimentally, these simulations have potential consequences when it is possible to vary
the baryon charge while leaving the energy constant. This can for instance be done by
comparing proton with antiproton collisions, or deuteron collisions with proton collisions
of double the energy (preferably selected such that the deuteron is aligned along the
beam direction).

2.5 Charge backreaction

We move away from the probe limit and include the full back-reaction of the charge
density. In the e 6= 0 case the computation becomes somewhat more challenging: the
first equation of the scheme (2.27) is now non-linear and one needs to implement a
Newton relaxation on the spectral grid in order to solve it. A useful trick to speed up the
computation is to use the solution obtained in the previous time step as a seed for the
relaxation. In most of cases, a single iteration of the Newton method will be enough to
find the solution with the desired tolerance. A second drawback arisen from the inclusion
of backreaction is the non-nestedness of the rest of the equations: the equations appear in
two groups of two and three coupled equation systems. Although coupled, the equations
remain linear and therefore can be solved using (larger) spectral matrices. As the matrix
inversion algorithm does not scale with the number of points, the computation is slowed
down an overall 20%.

We find that, for a given width of the incoming shocks, there is a maximum value of e
that our code is able to evolve. One clear physical reason why there is such a maximum
value is that the charged plasma formed after the collision has to have a smaller charge
density than the maximum density set by Eq. (2.19), and indeed our simulations reach
as high as 80% of the maximum value according to the instantaneous energy density. On
the other hand, this maximum value is also sensitive to the performance of the numerical
code and furthermore depends sensitively on the initial separation of the shocks. The
latter may be an indication that single charged shock waves cannot be evolved in a stable
manner by themselves. Nevertheless, choosing initial conditions with the shocks close
enough to each other determines well-defined initial conditions, which shows us the effect
of the back reaction of the charge on the metric. In a nutshell, the conclusions from
these simulations are that (i) the effect of the charge on generic observables is relatively
small, and (ii) this effect scales approximately linearly with e2. We emphasize that these
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results are non-trivial since the charge density attains values well into what is expected
to be the non-linear regime based on Eq. (2.17).

To illustrate these results, in Fig. 2.8 we compare the energy density at mid-rapidity
as a function of time for collisions with identical initial conditions but different values
of e. The first row shows the energy density itself, whereas the second row shows the
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Figure 2.8: Backreaction of the charge as a function of time. The first row shows the energy
density at mid-rapidity as a function of time for collisions with different values of
e or, equivalently, different amounts of charge on the initial shocks, for thin (left)
and thick (right) shocks. The second row is the relative difference between a given
collision and a collision with the same initial energy density but zero charge. The
third row shows the charge density as function of time in units of 2E3/4/3 at that
time (see Eq. (2.19)).

relative difference between a given collision and the e = 0 collision, normalized by e2.
The maximum value of the curves on the second row tells us that the maximum effect of
the backreaction is about 0.12× 1.122 ' 15% for thin shocks and 0.0075× 2.852 ' 6% for
thick shocks. The fact that the curves on the second row fall almost on top of each other
for thin shocks (left) means that in this case the backreaction of the charge is almost
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exactly linear in e2. For thick shocks the deviations from linearity are slightly larger.
Note that in both cases the charge density as a function of time is not small. Indeed, for
thin shocks it initially exceeds 60% of the would-be maximum value according to the
instantaneous energy density and drops to around 30% at later times. For thick shocks
the maximum exceeds 80% and the curve drops to 70% at later times. Fig. 2.9 shows
the same information as Fig. 2.8 but as a function of z at a constant time t0. In the case
of thin shocks we have chosen t0 = thyd, whereas in the case of thick shocks t0 is the time
at which the green curve in the second row of Fig. 2.8 attains its maximum.
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Figure 2.9: Backreaction of the charge as a function of z. We show the energy density at
t = t0 as a function of z for collisions with different values of e or, equivalently,
different amounts of charge on the initial shocks, for thin (left) and thick (right)
shocks. The time t0 is equal to thyd for thin shocks and equal to the time at which
the green curve in the second row of Fig. 2.8 attains its maximum for thick shocks.

As expected from this discussion, the effect of the charge density on the hydrody-
namization time of the stress tensor is relatively small. For example, we find that for
collisions with mw = 0.1 the hydrodynamization time in the charged case, with e = 1.07,
is 3% shorter than in the neutral case. Instead, for collisions with mw = 0.75 the
hydrodynamization time in the charged case, with e = 1.7, is 6% longer than in the
neutral case.

2.6 Discussion

We have studied collisions of charged shocks in AdS5. Via the gauge/gravity duality, these
are dual in the gauge theory to collisions of lumps of energy carrying fixed amounts of
baryon charge (per unit area). As discussed in [55], the dynamics of the stress tensor show
qualitatively different features depending on the width of the colliding shocks. In this
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paper we have shown that similar qualitative differences also appear in the distribution
of baryon charge after the collision. One of the main observations of [55] was that, while
thick shocks lead to a complete stopping of the incident energy followed by a subsequent
hydrodynamic evolution, narrow shocks exhibit a transparent regime at early times
in which the initial shocks cross each other depositing their energy gradually as time
progresses. In this paper we have shown that the baryon charge deposition exhibits
identical behaviour, as illustrated in Fig. 2.2.

This transparent regime is transient, meaning that at a sufficiently late time the
receding shock fragments are completely absorbed by the plasma. Nevertheless, the
space-time rapidity distribution of baryon charge exhibits interesting diverse features
for the two cases we have explored, as shown in Fig. 2.4. At fixed proper times, both
for thick and thin shocks the charge distribution is wider in rapidity than the energy
distribution. This means that, as rapidity grows, the plasma becomes more baryon rich,
as illustrated by the increase in the chemical potential plotted in Fig. 2.6. However, for
thin shocks the deposition of charge is wider than for thick shocks and it evolves much
faster with time. Quite remarkably, for thin shocks the initial close-to-Gaussian charge
distribution at early times, prior to hydrodynamisation, changes quickly to an almost-flat
distribution in space-time rapidity which, within our limited numeric range, hints at the
formation of maxima at relatively large rapidity, y > 1. In the range of proper times and
rapidities covered by our simulations, see Fig. 2.5, these structures appear in regions in
which the evolution is well described by hydrodynamics. However, the formation of these
maxima may involve far-from-equilibrium dynamics that the hydrodynamic regions are
in causal contact with. For thin shocks at very late times, the large rapidity region also
develops local minima close to the edge of the rapidity coverage, which arise solely from
the hydrodynamic evolution of the plasma.

The space-time rapidity profile of the charge distribution hence indicates that collisions
of shock waves lead to a significant stopping of the baryon charge of the incident projectiles.
To best illustrate this point it is instructive to determine the fraction of the total charge
(per unit area) of the incident shocks that is deposited between momentum rapidity
yp = −1 and yp = 1, with yp = arctanh(vz) and vz the velocity field in the collision
direction. This is determined by integrating the charge between the two points where
the fluid velocity reaches vz = tanh(1) ≈ 0.76, divided by the total charge. We show this
quantity as a function of time in Fig. 2.10 for both thin and thick shocks.

For thick shocks, the mid-rapidity charge fraction is bigger than for the thin shocks,
which implies that the charge distribution is narrower in rapidity, as also illustrated in
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Figure 2.10: We show the fraction of the charge (given in Eq. (2.11)) in the plasma that has
momentum rapidity yp = tanh−1(vloc) smaller than 1.0 for thin (left) and thick
(right) shocks. The plots start at the time that a fluid cell attains momentum
rapidity 1.0. Clearly, a large fraction of the charge ends up at relatively small
rapidities. Due to the hydrodynamic expansion this charge ends up at larger
rapidity later on, which explains why the fraction decreases as a function of time.

the right panel of Fig. 2.4. If the expansion of the system were exactly boost invariant,
this quantity would remain constant in the hydrodynamic regime; therefore, the decrease
of this fraction at later times is a consequence of non-boost invariant dynamics. Despite
this decrease, this computation shows that more than 50% of the charge carried by the
initial shocks is deposited within two units of rapidity at early times.3

This strong baryon stopping is reminiscent of the behaviour of the net proton number
in low-energy heavy ion collisions at

√
s < 20 GeV. Indeed, heavy ion experiments

performed at AGS [67] and SPS [68] found a large stopping of the baryon charge, with
most of the net protons concentrated in the mid-rapidity region. As the energy of the
beams increases, the rapidity width of the charge distribution increases, reducing the
fraction of the total charge at mid-rapidity. Taking the width of our shocks as a proxy
for the energy of the incident nuclei [55], this trend is in qualitative agreement with
the behaviour of the charge distribution in our simulations. This qualitative agreement
indicates that shock wave collisions may provide a good framework to understand the

3This quantity does not directly correspond to experimental measurements, as this requires a longer and
more advanced hydrodynamic evolution and freeze-out. Nevertheless, for comparison, experimentally
the fraction of baryon charge between rapidity -1.0 and 1.0 is approximately 37% and 8.4% for heavy
ion collisions at √sNN = 17 and 200 GeV respectively [9].
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hydrodynamisation of low- and moderate-energy heavy ion collisions, as those studied in
the RHIC energy scan.

In contrast, the dynamics of our simple holographic model does not seem to agree
qualitatively with the distribution of net baryon number in heavy ion collisions at full
RHIC or LHC energies. For those energies, the amount of net baryon number at mid-
rapidity represents a small fraction of the total baryon number, and the distribution
of baryon charge peaks a few units of rapidity away from the beam rapidity. Quite
remarkably, as we have discussed, our thin shock simulations hint at the development
of maxima at moderately large rapidity, which may be interpreted as the onset of this
non-monotonous behaviour. However, unlike in heavy ion collisions, most of the baryon
charge is initially concentrated within a few units of rapidity.

The discrepancy above is consistent with the difficulties in reproducing the LHC
multiplicity rapidity profiles at high energies, as noted in [56]. It may be due to the
extreme simplicity of our model, which just evolves in the simplest holographic setting
with the simplest Maxwell field possible, and for instance does not contain any matter
in AdS. We are also working in a model that only describes the very first moments of a
high energy collision, without treating a long hydrodynamic phase or freeze-out, and our
model restricts to homogeneity in the transverse plane. Naturally, the discrepancy may
also point to a deeper difference between our holographic setup and the dynamics of QCD.
Indeed, most of the baryonic charge of hadrons are carried by valence quarks, which also
carry a large fraction of the full hadron momentum. In contrast, the shock waves posses
structure functions concentrated at small Bjorken x [69]. Since processes able to reduce
the rapidity of valence quarks by a significant amount involve large momentum transfers,
large rapidity shifts at high energies are suppressed as a consequence of asymptotic
freedom. The qualitative disagreement in the rapidity distribution of the charge is
perhaps not surprising given the absence of this perturbative physics on the gravity side.
Nevertheless, since the matter produced at mid-rapidities in a ultra-relativistic collision
is soft, the interactions and generation of this matter may still be dominated by strong
coupling processes. It would be interesting to develop hybrid approaches able to address
these two separated regimes within the duality, perhaps along the lines of [70,71].



Chapter 3

Transport and linear dynamics in
non-conformal theories

3.1 Background

Driven by its relative simplicity, most of the studies of strongly coupled dynamics
using holography have been performed in conformal field theories. Alas, the conformal
symmetry prevents many interesting phenomena present in generic gauge theories. Phase
transitions, critical behaviour, and diverse mechanisms to reach equilibrium are left out
in such set-ups, making a strong case for studies including non-conformality. Turning
to more specific motivations for examining non-conformal theories, we also find the
connection with hot quantum chromodynamics and heavy ion collisions. As is well
known, QCD is a non-conformal theory even in the limit of vanishing quark masses.
State of the art determinations of the QCD equation of state via lattice QCD [17,72]
show that, in equilibrium, the trace of the stress tensor normalised by the enthalpy
attains values of order one close to the QCD transition. At high temperature this ratio
quickly approaches zero, indicating that QCD behaves as an almost-conformal theory
in this regime. However, the experimental exploration of the QCD phase diagram via
high-energy heavy ion collisions can only reach temperatures a few times larger than the
critical temperature. Even though most central, top-energy LHC collisions lead to initial
temperatures well into the quasi-conformal regime, the subsequent evolution and cooling
of the QGP after production spans all temperature regimes, including those in which
non-conformal effects are maximal. In fact, recent attempts for high-precision extraction
of the shear viscosity of the QGP have highlighted the need to include the bulk viscosity
of the plasma, which is a purely non-conformal effect [73]. Furthermore, off-central

45
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collisions both at the LHC and RHIC, as well as lower-energy collisions as those explored
at the RHIC energy scan, produce a QGP with a smaller initial temperature. Similarly
the apparent success of hydrodynamics in smaller systems such as p-Pb [74] and p-p
[75,76] collisions indicate the need to study the properties of deconfined but cooler QCD
plasma, where non-conformal effects become significant (see [77] and references therein
for a recent review on the hydrodynamic modelling of heavy ion collisions).

3.1.1 An additional channel towards equilibrium

The study of the off-equlibrium dynamics of conformal field theories by means of hologra-
phy has shown that hydrodynamics is a much better approximation to the evolution of this
type of matter than ever thought before. Indeed, examples based in flow motions imposed
by symmetries [78,79] or by explicit simulations of the collision dynamics [42,55,57,80]
have shown that hydrodynamics provides a good approximation to the complete evolution
of the system at time and distance scales as small as a fraction of the (local) inverse
temperature of the system. This occurs even in situations in which gradient corrections
to the hydrodynamic stress tensor are large, extending the applicability beyond a simple
gradient expansion (see also [81]). This observation has led to the coining of the term
“hydrodynamisation” to refer to the process by which a system comes to be well described
by hydrodynamics, in order to differentiate this process from (local) thermalisation.

In a CFT the vanishing of the trace of the stress tensor implies that the equation of
state, namely

p̄ =
1

3
e , (3.1)

where

p̄ =
1

3

(
px + py + pz

)
(3.2)

is the average pressure, is fixed by symmetry. As a consequence, the equation of state is
always obeyed both in and out of equilibrium. We emphasize that the equation of state
fixes only the average pressure in terms of the energy density, but not the individual
pressures. For this reason the relaxation towards equilibrium in a CFT typically involves
“isotropization”, namely the process by which the different pressures become approximately
equal to one another.
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The applicability of the gauge/string duality is not restricted to CFTs. By now
infinite families of non-conformal examples are known. One of the main new features in
these theories as compared to their conformal cousins is that new channels exist for the
relaxation of the out-of-equilibrium matter. In particular, in non-conformal theories the
equation of state is not fixed by symmetry. As a consequence, out of equilibrium the
energy density and the average pressure may fluctuate independently. The relaxation
towards equilibrium in these theories therefore involves the evolution of the energy density
and the average pressure towards asymptotic values related to one another by the equation
of state (EoS). When this happens we will say that the system has “EoSized” and we will
refer to this process as “EoSization”. In this chapter we will show the appearance of an
additional channel in a particular non-conformal theory and study its near equilibrium
properties. We keep for chapter 4 the study of the interplay between the EoSization and
hydrodynamization in the context of shock-wave collisions.

In order to study non-conformal theories in a holographic setup we will consider a
five-dimensional bottom-up model that nevertheless shares many qualitative features
with top-down string models. Specifically, our model is dual to a four-dimensional gauge
theory that, at zero temperature, flows from an ultraviolet (UV) fixed point to an infrared
(IR) fixed point. This renormalisation group (RG) flow is dual on the gravity side to a
domain-wall geometry that interpolates between two AdS spaces. The reason why we
require that the flow approaches a fixed point in the UV is that this is the situation in
which the holographic duality is best understood. The reason for the IR fixed point is
that this guarantees that the zero-temperature solution is smooth in the deep IR. The
flow is triggered by a source Λ for a relevant, dimension-three operator in the UV. We
will see that this simple model exhibits a rich phenomenology. In particular, we will
study the relaxation of small-amplitude, homogenous perturbations by computing the
spectrum of quasi-normal modes with zero spatial momentum. We will see that the
dominant channel for relaxation in this approximation depends on the value of the ratio
T/Λ, with T the temperature of the system. At small T/Λ the system first EoSizes and
subsequently isotropises. In contrast, at large T/Λ the order in which these two processes
take place is reversed. Although our calculation is done at zero spatial momentum we
will argue that, actually, the ordering above is still valid for long-wave-length fluctuations
with k � T . Previous analysis addressing the near-equilibrium properties of strongly
coupled non-abelian plasmas include [37,39,40,82–87].

This chapter is organised as follows. In Sec. 3.2 we introduce the holographic model
and discuss its vacuum properties. In Sec. 3.3 we study black brane solutions and extract
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from them the equation of state and the viscosities of the model. In Sec. 3.4 we study
the relaxation of small excitations of the system by computing the QNM spectrum of the
black branes at different temperatures and zero spatial momentum. Finally, in Sec. 3.5
we discuss our main findings and place them in the context of the hydrodynamisation of
non-abelian plasmas.

3.2 The non-conformal holographic model

The holographic model that we will consider consists of five-dimensional Einstein gravity
coupled to a scalar field with a non-trivial potential:

S =
2

κ2
5

∫
d5x
√
−g
[

1

4
R− 1

2
(∇φ)2 − V (φ)

]
, (3.3)

where κ5 is the five-dimensional Newton constant. For specific forms of V (φ), this action
may be viewed as a consistent truncation of five-dimensional N = 8 supergravity. The
dynamic equations following from this action are,

Rµν −
R
2
gµν = 8πTµν , (3.4)

�φ =
∂V

∂φ
, (3.5)

where

8πTµν = 2∂µφ∂νφ− gµν
(
gαβ∂αφ∂βφ+ 2V (φ)

)
, (3.6)

In this chapter we will consider a bottom-up model by choosing a potential that is
particularly simple and yet shares some of the qualitative properties of these top-down
potentials. In particular, we will choose V (φ) to be negative and to possess a maximum
at φ = 0 and a minimum at φ = φM > 0. Each of these extrema yields an AdS solution
of the equations of motion with constant φ and radius L2 = −3/V . In the gauge theory
each of these solutions is dual to a fixed point of the RG with a number of degrees of
freedom N2 proportional to L3/κ2

5.
1

We will be interested in domain-wall solutions interpolating between these two AdS
solutions. In the gauge theory, these are dual to RG flows from the UV fixed point

1In the case of N = 4 SYM the precise relation would be L3/κ25 = N2/4π2.
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at φ = 0 to the IR fixed point at φ = φM . The problem of finding those solutions is
significantly simplified if the potential can be written globally in terms of a superpotential,
W , as

V (φ) = −4

3
W (φ)2 +

1

2
W ′ (φ)2 . (3.7)

In this case, vacuum solutions to the Einstein equations can be easily found. Parametrizing
the metric as

ds2 = e2A(r)
(
−dt2 + dx2

)
+ dr2 , (3.8)

the solution of the back-reacted gravitational problem is reduced to the first-order
equations [88]

dA

dr
= −2

3
W ,

dφ

dr
=
dW

dφ
. (3.9)

3.2.1 A potential leading to two fixed points

We will choose a simple superpotential characterised by a single parameter, φM ,

LW (φ) = −3

2
− φ2

2
+

φ4

4φ2
M

, (3.10)

which together with equation (3.7) yields the potential

L2V = −3− 3

2
φ2 − 1

3
φ4 +

(
1

3φ2
M

+
1

2φ4
M

)
φ6 − 1

12φ4
M

φ8 . (3.11)

Note that both the superpotential and the potential have a maximum at φ = 0 and a
minimum at φ = φM . This choice leads to three important properties of the associated
vacuum solution. First, the resulting geometry is asymptotically AdS5 in the UV with
radius L, since V (0) = −3/L2. Second, the second derivative of the potential at φ = 0

implies that, in this asymptotic region, the scalar field has mass m2 = −3/L2. Following
the standard quantisation analysis, this means that, in the UV, this field is dual to an
operator in the gauge theory, O, with dimension ∆UV = 3. Third, the solution near
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φ = φM is again AdS5 with a different radius

LIR =

√
− 3

V (φM)
=

1

1 + 1
6
φ2
M

L . (3.12)

In this region the effective mass of the scalar field differs from its UV value and it is
given by

m2
IR =

12

L2

(
1 +

1

9
φ2
M

)
=

12

L2
IR

(
1 + 1

9
φ2
M

)(
1 + 1

6
φ2
M

)2 . (3.13)

As a consequence, the operator O at the IR fixed point has dimension

∆IR = 2 + 2

√
1 +

m2
IRL

2
IR

4
= 6

(
1 +

φ2
M

9

)(
1 +

φ2
M

6

)−1

. (3.14)

To summarize, the vacuum solution describes a RG flow from an UV to an IR fixed
point with a smaller number of degrees of freedom, as indicated by the fact that LIR < L.
We see that changing φM has two main effects. First, as φM increases the difference
in degrees of freedom between the UV and the IR fixed points increases. Second, the
dimension of the scalar operator at the IR fixed point decreases with increasing φM ,
reaching the marginal dimension ∆IR = 4 at φM→∞. However, in this limiting case the
IR fixed point disappears and the background solution becomes singular, as is evident
from the fact that the effective AdS radius goes to zero as φM→∞.

3.2.2 Vacuum solution

Our simple choice of the superpotential allows us to determine analytically the vacuum
solution for arbitrary φM . Solving equations (3.9), we obtain

e2A =
Λ2L2

φ2

(
1− φ2

φ2
M

)φ
2
M
6

+1

e−
φ
2

6 (3.15)

φ(r) =
ΛLe−r/L√

1 + Λ
2
L
2

φ
2
M

e−2r/L

, (3.16)

where Λ is an arbitrary constant that controls the magnitude of the non-normalizable
mode of the scalar field. As we will see, in the dual gauge theory side, Λ is identified with
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the source of the dimension-3 operator O. The presence of this source breaks conformal
invariance explicitly.

Noticing that the small field behaviour of the superpotential (4.8) is identical to that
of the GPPZ flow [89], we can readily determine the vacuum expectation values (VEV)
of the stress tensor and the scalar operator. We begin by expanding the metric and the
scalar field in powers of u = Le−r/L in the u → 0 limit. Following [88], we write the
5-dimensional metric in the form

ds2 =
L2

u2

(
du2 + gµν dx

µdxν
)
, (3.17)

and we write the power expansion coefficients of the metric and the scalar field as

gµν = ηµν + g(2)
µν u

2 + g(4)
µν u

4 + ... , (3.18)

φ = Λu
(
1 + φ2u

2 + . . .
)
. (3.19)

The expectation values of the field theory operators are then given by

〈
Tµν
〉

=
2L3

κ2
5

[
g(4)
µν +

(
Λ2φ2 −

Λ4

18
+

Λ4

4φ2
M

)
ηµν

]
, (3.20)

〈O〉 = −2L3

κ2
5

(
2Λφ2 +

Λ3

φ2
M

)
. (3.21)

To arrive at these expressions we have chosen the superpotential as a counterterm to
regularise the on-shell action, which is possible because in our model the superpotential
corresponds to a deformation of the gauge theory as opposed to a VEV [90]. We
emphasize that these expressions are valid even if the metric gµν does not posses the
full Poincaré symmetry but only rotational and translational invariance along the gauge
theory directions, as will be the case for the black brane geometries that we will study in
the next section. As expected, eqs. (3.20) and (3.21) imply the Ward identity for the
trace of the stress tensor

〈
T µµ
〉

= −Λ 〈O〉 . (3.22)

Eqs. (4.10) and (4.11) determine the VEVs in the vacuum of the theory. Let us define
the energy density ε and the pressure p as the diagonal components of the expectation
value of the stress tensor, 〈T µν〉 = Diagonal {ε, p, p, p}. The near boundary behaviour of
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φ, (4.11), leads to

φ2 = − Λ2

2φ2
M

, (3.23)

which implies that in the vacuum

〈O〉 = 0, 〈T µν〉 = 0 . (3.24)

Note that the explicit breaking of scale invariance means that the trace of the stress tensor
is non-zero as an operator. However, the VEV of this operator vanishes in the vacuum
state, as implied by trace Ward identity (2.17) together with the fact that 〈O〉 = 0 in
the vacuum for our choice of renormalisation scheme. It should be emphasized that even
though the trace Ward identity (3.22) is scheme-independent, the individual vacuum
expectation values of the trace of the stress tensor and of the scalar operator do depend
on the renormalisation scheme. In the model we study here the only scheme ambiguity
corresponds to a term of the form Λ4 ηµν in the expectation value of the stress tensor,
accompanied by a term of the form Λ3 in the expectation value of O, with the relative
coefficient such that the identity (3.22) is preserved.

To estimate at which scale non-conformal effects become important, let us perform a
change of variables in the holographic direction, which explicitly exploits the relation
between the dynamics in the bulk with the physics at different scales in the field theory.
Denoting the coordinate by z, we write the metric as

ds2 =
Leff(z)2

z2

(
−dt2 + dx2 + dz2

)
, (3.25)

with Leff a non-trivial function of z such that Leff(0) = L and Leff(∞) = LIR. In this
set of coordinates, at least in the two asymptotic conformal regions, the coordinate z
is related to the energy scale, Q, in the gauge theory through z∼ 1/Q. The relation
between z and u is given by

z(u) =

∫ u

0

du
L

u
e−A , (3.26)

and the function Leff is given by

Leff(z) = z eA . (3.27)
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In Fig. 3.1 we show the ratio Leff/L as a function of z for several different values of the
parameter φM controlling the physics of the model. We see that the system behaves
approximately conformally up to scales of order z∼Λ. At this scale, the metric starts to
deviate significantly from that of AdS5, and Leff decreases as a function of z. Sufficiently
deep in the IR, Leff approaches LIR and the system behaves again as approximately
conformal. However, the scale at which this transition occurs depends significantly on
the model parameter φM ; as φM increases, the function Leff approaches its asymptotic
value more slowly. This different rates at which the IR fixed point is approached have
consequences for the finite-temperature behaviour of the dual gauge theory, as we will
see in the next section.
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Figure 3.1: Leff/L as a function for z for different values of φM . In all panels, the dashed
line shows the asymptotic infrared value of the effective AdS radius LIR. Note the
different scales of the horizontal axes in the different panels.
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3.3 Thermodynamics and transport

3.3.1 Equations and numerical methods

We will now explore the thermal physics of the gauge theory dual to the gravitational
model described in the previous section.2 To do so, we will search for black brane solutions
of the action (4.1). Finding the thermodynamics of a particular model amounts to finding
the family of homogeneous black brane solutions parametrized by the temperature or,
equivalently, by the value of the scalar field at the horizon φH . We will follow the method
of the master function, introduced in ref. [94], to which we refer the reader for details.3

Since for the background solution (4.11) the scalar field is a monotonic function of u, we
may use the scalar field as a coordinate and express the metric as

ds2 = e2A
(
−h(φ)dτ 2 + dx2

)
− 2eA+BLdτdφ , (3.28)

with h(φ) vanishing at φ = φH , the value of the scalar field at the horizon, i.e. h(φH) = 0.
The region outside the horizon corresponds to 0 < φ < φH . For later convenience, we
have expressed the metric in Eddington-Finkelstein form. With this ansatz, Einstein’s
equations take the form

A′′(φ)− A′(φ)B′(φ) +
2

3
= 0 ,

4A′(φ)h′(φ)−B′(φ)h′(φ) + h′′(φ) = 0 , (3.29)
3

2
A′(φ)h′(φ) + h(φ)

(
6A′(φ)2 − 1

)
+ 2e2B(φ)L2V (φ) = 0 ,

4A′(φ)−B′(φ)− e2B(φ)L2V ′(φ)

h(φ)
+
h′(φ)

h(φ)
= 0 .

A solution to these equations may be found in terms of a master function G(φ) defined as

G(φ) =
d

dφ
A(φ) . (3.30)

2Previous studies of the thermodynamics of Einstein+scalar gravity include [91–93].
3Note that our normalisations of the scalar field and of the potential differ from those in [94].
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Manipulating the set of equations (3.29), a non-linear equation for G was found in [94]:

G′(φ)

G(φ) + 4V (φ)

3V
′
(φ)

=
d

dφ
log

 1

3G(φ)
− 2G(φ) +

G′(φ)

2G(φ)
− G′(φ)

2
(
G(φ) + 4V (φ)

3V
′
(φ)

)
 . (3.31)

Close to the boundary, φ→ 0, the solution of this equation behaves as

G(φ) =
1

∆− 4

1

φ
+ · · · , (3.32)

with ∆ the scaling dimension of the dual operator. With our choice of potential (5.1) we
have ∆ = 3. Using (3.29), the different metric coefficients are given by

A(φ) = − log

(
φ

Λ

)
+

∫ φ

0

dφ̃

(
G(φ̃) +

1

φ̃

)
, (3.33)

B(φ) = log (|G(φ)|) +

∫ φ

0

dφ̃
2

3G(φ̃)
, (3.34)

h(φ) = −
e2B(φ)L2

(
4V (φ) + 3G(φ)V ′(φ)

)
3G′(φ)

. (3.35)

In these expressions, the constants of integration are fixed by requiring that, close to the
boundary, the metric and scalar field may be expressed as in the expansions (3.18) and
(3.19).

At the horizon, the condition h(φH) = 0 together with the last two equations in (3.29)
fix the value of G(φH). Starting from this fixed value, a power series solution close to
the horizon may be found as

G(φ) = − 4V (φH)

3V ′(φH)
+

2

3
(φ− φH)

(
V (φH)V ′′(φH)

V ′(φH)2 − 1

)
+O

(
(φ− φH)2) . (3.36)

One can easily find an arbitrary number of terms in the series expansion using an iterative
automated Mathematica script that solves (3.31) order by order. This series will be used
to set boundary conditions close to the horizon for the numerical resolution of (3.31),
solved using NDSolve[] from Mathematica. For the thermodynamics computation it is
enough with 10 terms in the near horizon expansion to obtain precise integrations of the
master function G(φ). However, the computation of the QNM will require a substantially
more precise background solution and we will use 45 orders. In this case, it is necessary
to specify the potential and the value of φH to speed up the order by order solution.
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From the metric coefficients, we can extract the Hawking temperature T and the
entropy density s for every solution of the black brane:

LT =
A(φH)−B(φH)

4π
, s =

2π

κ2
5

e3A(φH) . (3.37)

The relation of the different metric coefficients with the master function leads to the
following form for the temperature and entropy of the thermal state:

T = −Λ
L2V (φH)

3πφH
exp

{∫ φH

0

dφ

(
G(φ) +

1

φ
+

2

3G(φ)

)}
, (3.38)

s =
2π

κ2
5

Λ3

φH
3 exp

{
3

∫ φH

0

dφ

(
G(φ) +

1

φ

)}
. (3.39)

These expressions are well suited for the determination of the two quantities from the
numerical evaluation of the master equation (3.31). With them, we can find a couple of
values {T, s} for every solution labelled by φH , and build interpolation functions s(T )

that will be used to find the rest of thermodynamic variables like ε or p and the transport
coefficients.

3.3.2 Results

In this section we review the results of the thermodynamics and transport properties
of the plasmas obtained for several values of ΦM . In Fig. 3.2 we plot the dimensionless
quantity

sR =
κ2

5

2π4L3

s

T 3 , (3.40)

as a function of the inverse temperature for two different values of φM . Since the theory
is conformal both at the UV and at the IR, the high and low temperature behaviour
of the entropy density must coincide with that of a relativistic conformal theory and
scale as T 3. In particular, for a relativistic CFT, s/T 3 is proportional to the number of
degrees of freedom in the theory, which for an SU(N) gauge theory with matter in the
adjoint representation scales as N2. For example, for N = 4 SYM

s

T 3 =
π2

2
N2, (3.41)
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Figure 3.2: Ratio of entropy density to temperature for φM = 3 (left) and φM = 10 (right)

as a function of the inverse temperature. The dashed line shows LIR/L.

but the precise coefficient depends on the specific theory. In terms of the parameters of
the dual gravity description this quantity becomes

s

T 3 =
2π4L3

κ2
5

. (3.42)

In our bottom-up setup, the above argument allows us to define the number of degrees
of freedom at the fixed points holographically in terms of the effective AdS radius. In
particular, the quantity sR should approach 1 at high temperature and (LIR/L)3 at low
temperature, which is confirmed by the plots in figure 3.2.

Using standard thermodynamic relations and the fact that in our renormalisation
scheme the vacuum pressure is zero we can determine the pressure and the energy density
of the thermal system through. As expected, the results show the conformal behaviour
for high and low temperatures (this is, p = ε/3) and an intermediate region affected by
the non-conformality (see fig. 3.3)

p =

∫ T

0

dT̃ s(T̃ ) , ε+ p = Ts . (3.43)

Since the theory is not conformal, the trace of the stress tensor in the thermal ensemble
does not vanish. Using the Ward identity (3.22), the energy density, the pressure and
the scalar condensate at non-zero temperature are related through

ε− 3p = Λ 〈O〉T . (3.44)
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Figure 3.3: Equilibrium pressure as a function of energy density for φM = 2 , 3 , 5 , 20. The
non-conformality effects are stronger for larger values of φM .

The thermal expectation value 〈O〉T may be determined from the normalisable mode of
the scalar field in the thermal background via equation (3.19). Since at T = 0 the scalar
VEV vanishes (see (3.24)) this relation implies that ε = 3p, as expected from the fact
that the IR theory is conformal. At T > 0, however, 〈O〉T 6= 0, as shown in Fig. 3.4, and
the expectation value of the trace of the stress tensor does not vanish. Note that, unlike
at low temperatures, at which 〈O〉T depends on φM , at high temperatures 〈O〉T becomes
independent of φM . This is easy to understand from the gravitational computation. At
high temperatures the value of the scalar field at the horizon is small and, therefore,
the physics is sensitive only to the small-field behaviour of the scalar potential, which
is independent of φM . In this limit, the plots in Fig. 3.4 show that the VEV scales as
〈O〉T ∼ΛT 2.

Despite the fact that the trace of the stress tensor at high temperature does not
vanish, the theory does behave as a conformal theory. From the gauge theory viewpoint
this may be understood from the relative magnitude of the trace of the stress tensor
compared to the energy density or the pressure: while at large T the latter quantities
scale as T 4, the trace only grows as T 2. In Fig. 3.5 we show the temperature dependence
of the ratio of the stress tensor to the enthalpy,

I =
ε− 3p

ε+ p
, (3.45)
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Figure 3.5: Ratio of the trace of the stress tensor to the enthalpy, I, as a function of T for
different values of φM .

which in the thermal-QCD literature is sometimes referred to as the interaction measure.
As anticipated, both at low and high temperatures this ratio vanishes, indicating that
the theory becomes effectively conformal in these limits. At intermediate temperatures,
the value of I is non-zero and depends on φM . As inferred from the behaviour of the
entropy, the larger φM the larger the deviations from conformality in the thermodynamic
properties of the theory. Because of this behaviour we may use I as a measure of the
non-conformality of the theory.
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Figure 3.6: Inverse speed of sound square as a function of T for different values of φM .

Another way to quantify the non-conformal behaviour of the thermodynamics of the
dual theory is the value of the speed of sound. Using thermodynamic identities, the
square of the speed of sound may be determined from the inverse of the logarithmic
derivative of the entropy,

1

c2
s

=
d log s

d log T
. (3.46)

In Fig. 3.6 we show the temperature behaviour of the deviation of cs from its conformal
value, cs = 1/

√
3, for different values of φM . The qualitative behaviour of this quantity

is very similar to that of I. Both at high and low temperatures, the speed of sound
approaches its conformal value. At intermediate temperatures we have c2

s < 1/3 and the
deviation from the conformal value grows with φM .

The non-conformal behaviour already observed in the equation of state of the system
is also reflected in the transport properties of the dual gauge theory plasma. Since this is
isotropic, at leading order in gradients transport phenomena are controlled by only two
coefficients, the shear viscosity η and the bulk viscosity ζ. Because of the universality of
the shear viscosity to entropy ratio [16] in all theories with a two-derivative gravity dual,
we have that this ratio in our model takes the same value as in the conformal N = 4

theory, i.e. η/s = 1/4π. In contrast, the bulk viscosity, which would vanish identically
in a CFT, is non-zero in our model. Following4 [95] we determine the bulk viscosity by

4Note that our normalisation of the scalar field differs from that in [95].
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studying the dependence of the entropy on the value of the scalar field at the horizon,5

ζ

η
= 4

(
d log s

dφH

)−2

. (3.47)

The temperature dependence of this ratio is shown in Fig. 3.7 for different values of
φM . The behaviour of this ratio is very similar to that of the interaction measure and
the speed of sound: both at low and high temperatures the ratio of the two viscosities
vanishes, while at intermediate temperatures T ∼Λ it attains φM -dependent values that
grow with φM . As in the case of ε− 3p and the interaction measure, the fact that the
ratio of viscosities vanishes at high temperatures does not imply that the bulk viscosity
itself vanishes. In fact, we have checked numerically that at high temperatures the
bulk viscosity scales as ζ ∼Λ2T . Nevertheless, the fact that the ratio of viscosities
approaches zero shows that transport is effectively conformal, since the contribution to
the hydrodynamic stress tensor of the bulk tensor is suppressed with respect to the shear
one.6

ϕM=1

ϕM=3

ϕM=10

ϕM=100

0 1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

0.5

πT/Λ

ζ
/η

Figure 3.7: Ratio of bulk to shear viscosity as a function of temperature for different values
of φM .

5We have cross-checked the result of this computation with a two-point function computation as in [96].
See also [97] for a general analysis of the bulk viscosity for Dp-brane solutions.

6Here we are implicitly assuming that the magnitude of the shear tensor is not parametrically suppressed
with respect to the bulk one. Should the flow of the system be prepared such that the shear tensor
identically vanishes, then transport would be dominated by the bulk tensor.
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Figure 3.8: Violation of Buchel’s bound at low temperatures.

It is interesting to note that the ratio of viscosities at low temperatures violates
Buchel’s bound

ζ

η
≥ 2

(
1

3
− c2

s

)
, (3.48)

as illustrated in Fig. 3.8. Violations of this bound have been previously encountered in
other models such as [94,96,98].

3.4 Quasi-normal modes and relaxation

3.4.1 Fluctuations and channels of dissipation

We now turn to the description of the off-equilibrium dynamics of our holographic model.
We study the reaction of the system to small perturbations which drive it away from local
equilibrium. On the gravity side this problem translates into the study of the relaxation
of the black brane solutions constructed above when the different background fields are
perturbed. As is well known, this relaxation process is controlled by an infinite set of
discrete, damped modes known as QNMs. In this section we will determine the QNM
frequencies of the system as a function of the temperature.

Since in our holographic model the scalar field backreacts on the geometry, metric
fluctuations couple to fluctuations of the scalar field and they must all be considered
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simultaneously. Denoting by G(T) the black brane metric in Eddington-Finkelstein
coordinates (3.28), we will study fluctuations of the form

G(T)
MN → G(T)

MN + hMN , φ→ φ+ ϕ . (3.49)

The dynamics of hMN and ϕ is governed by the linearised Einstein and scalar field
equations on the background spacetime G(T)

MN . We will use the value of the unperturbed
scalar field φ as a coordinate in the holographic direction.

As is well known (see e.g. [35]) not all fluctuations are physical, since reparametrisation
invariance leads to a gauge symmetry in the linearised equations of motion. In the presence
of a scalar field, the linearised equations of motion are invariant under the transformation

hMN → hMN +∇MχN +∇MχN , ϕ→ ϕ+ χM∇Mφ , (3.50)

with χM a spacetime-dependent vector field and ∇M the covariant derivative in the
background metric G(T)

MN . Because of this symmetry, not all fluctuations are physical
and the relaxation dynamics of the black brane is encoded in the spectrum of gauge
invariant combinations of fields.7

Due to the nature of the linearized equations, the solutions considered in the QNM
analysis have the form

hMN(φ, t,x) = hMN(φ)e−iω+k ·x (3.51)

ϕ(φ, t,x) = ϕ(φ)e−iω+k ·x . (3.52)

When plugged into the linerized equations along with the background solution, one
obtains the equations that pose the eigenvalue problem for ω at each value of k. In this
chapter, however, we will restrict the study to the relaxation of homogeneous disturbances
of the plasma. This is equivalent to setting k = 0 in the fluctuation equations, and allows
the use of the spectral method introduced in [37].

We will consider both isotropic and anisotropic perturbations and we will denote
by z the direction of anisotropy. On the gravity side, these perturbations will depend
on time and on the holographic radial coordinate. Under these conditions, there are
only two independent sets of gauge invariant excitations of the plasma, which may be

7See [99] for a detailed classification of these fluctuations in the context of non-conformal theories.
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parametrized by the following combination of fields8

Zaniso = e−2A (hzz − haa) , (3.53)

Zbulk = ϕ− e−2A(φ)

2A′(φ)
haa , (3.54)

where haa = (hxx+hyy)/2. The first fluctuation, Zaniso, controls anisotropic perturbations
that leave unaffected the expectation value of the scalar operator, the average pressure
and the trace of the stress tensor. The non-conformal mode Zbulk controls fluctuations
that change the three pressures in an isotropic way and at the same time modify the
expectation value of the scalar operator and the trace of the stress tensor. At non-zero
spatial momentum these excitations would be coupled to one another and they would
include the hydrodynamic modes. Our restriction to the space-independent sector implies
that the energy density of the plasma is unchanged by the fluctuations (3.53)-(3.54),
since in a homogeneous plasma conservation of the stress tensor reduces to ∂tε = 0.

3.4.2 Equations and eigenvalue problem

Manipulating the linearised Einstein and Klein-Gordon equations and after a Fourier
transform in time, the dynamics of the Zaniso and Zbulk modes are given by the equations

−iωLbulkZbulk = RbulkZbulk , (3.55)

−iωLanisoZaniso = RanisoZaniso , (3.56)

where Lbulk, Lbulk, Raniso, Raniso are linear operators in the holographic direction given
by

Laniso = Lbulk =
LeB−A

h(φ)

(
3A′ + 2

d

dφ

)
, (3.57)

Raniso =
L2e2BV ′

h

d

dφ
+

d2

dφ2 , (3.58)

Rbulk = Raniso +

[
8h
(

6
(
A′
)2 − 1

)
− 3A′

(
L2e2B

(
3A′V ′′ + 8V ′

)
− 4h′

)]
9h
(
A′
)2 , (3.59)

8Anisotropic fluctuations induced by Z0 = hxy are also possible and independent of the two modes
listed in equations (3.53)-(3.54). However, we will not consider these fluctuations here because at
zero spatial momentum the dynamics of Z0 is identical to that of Zaniso.
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with A, B and h the numerically computed functions which determine the background,
given by (3.33)-(3.35). The equation for the anisotropic fluctuation, Zaniso, is that of a
massless probe scalar field, while the equation for the bulk fluctuations Zbulk includes
an explicit dependence on the potential. The discrete set of normalizable, in-falling
solutions of this system of equations are the QNMs. The fact that the equations are
linear in the frequency is a consequence of the Eddington-Finkelstein form of the thermal
metric (3.28).

Following [37] we determine the QNMs and their associated frequencies using a
spectral decomposition, which allows us to reduce the problem of finding the complex-
valued spectrum of excitations to a generalised eigenvalue problem. When using the
pseudo-spectral collocation points method, one can compute with very high precision the
background functions only on grid points, and express the equations (3.56) in a matricial
form like in (1.14). At this point one also needs to impose boundary conditions to obtain
the desired QNM solutions. These are normalizability at the boundary (the value of
the mode needs to go to zero) and “ingoingness” at the horizon, which is guaranteed by
demanding regular functions in an Eddington-Finkelstein frame. To impose the condition
at the boundary we simply substitute the first row of the operators R by a row of zeros,
and the first row of L by a row of zeros with a one at the last slot. This way we will
ensure that all modes fulfil Z[0] = 0. For the Zbulk equation we actually solve for φZbulk
to be able to set the non-normalizable mode to 0.

Using Wolfram Mathematica we can easily solve generalized eigenvalue problems
through the functions Eigenvalues[] and Eigenvectors[]. The outcome of the compu-
tation is a list of eigenvalues (QNM frequencies) for each gauge invariant combination and
their respective radial profiles (eigenvectors). An added advantage to this method is that
one only needs to compute the background metric coefficients (numerical integrations of
G) in a set of points, which can be done with very high precision at small computational
cost. For these particular computations we used a grids ranging from 100 to 120 points
and a precision of at least 120 digits (to ensure no round off errors in the near to boundary
points).

We have also double-checked the results for some representative frequencies with a
direct integration of the fluctuation equations from the horizon. The fluctuations take
values consistent with zero at the boundary for frequencies for which the spectral methods
give eigenvalues see figure 3.9.
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Figure 3.9: Heat-map on the parameter space of frequencies for the value at the boundary of
the radial profiles of the gauge-invariant fluctuations, obtained by integrating the
equations from the horizon. The top panels correspond to the theroy with φM = 1,
and the bottom ones to φM = 3. At the same time, the left panels correspond to
the Zaniso and the right ones to Zbulk. The red dots indicate the values obtained
with the spectral decomposition method and their residual at the boundary, which
are zero up to 10 digits.
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3.4.3 Results

The QNM frequencies depend on the temperature of the plasma. As the temperature
changes, each of these complex frequencies follows some trajectory in the complex plane.
In Fig. 3.10 we show these trajectories for the four lowest QNMs of the anisotropic
perturbations Zaniso for different values of φM . Each of the points on a given trajectory
corresponds to a different value of the temperature. Note that in all panels these
trajectories begin and end at the same value, indicated by the crosses, “+”. The reason
for this is that the Zaniso fluctuations correspond in the gauge theory to fluctuations
exclusively of the stress tensor (i.e. with no contribution of the scalar operator). Since the
stress tensor is conserved, its dimension is exactly 4 both at the UV and at the IR fixed
points regardless of the value of φM . In a CFT, this information of an operator alone
would determine the spectrum of the dual QNMs. Since our theory approaches a CFT in
the UV and in the IR, the QNMs associated to the pure-stress-tensor fluctuations Zaniso

approach the same limiting conformal values at high and low temperatures. In contrast,
at intermediate temperatures all the QNM frequencies possess a smaller imaginary part
than their conformal counterparts. The magnitude of this deviation depends on the
non-conformality of the theory. For φM = 1, when the non-conformal parameter I,
defined in (3.45), is small at all temperatures, the complex plane trajectories of all modes
remain close to the conformal value. As φM increases the excursion of all modes in the
complex plane deviates more from the conformal values. Note, however, that these paths
seem to saturate at very high value of the parameter φM . In particular, even though the
change in the number of IR degrees of freedom differs by more than 3 orders of magnitude,
the excursion in the complex plane of the simulations with φM = 10 and φM = 100 are
very similar. This is in accordance with the small change in non-conformality observed
in Fig. 3.5.

In Fig. 3.11 we show the complex-plane trajectories of the four lowest QNMs of the
bulk mode Zbulk as a function of temperature for different values of φM . In all panels, the
blue “+” crosses show the QNMs of a probe scalar field in an AdS black brane background
dual to a CFT scalar operator of dimension 3 [100]. Similarly, the red “�” squares show
the QNMs of a probe scalar field in an AdS black brane background dual to an operator
of dimension ∆IR given by (3.14). Since this dimension depends on φM , the position of
the red “�” squares changes from panel to panel. Based on our discussion of the Zaniso

QNMs above, one may expect that in the case of Zbulk the trajectories begin at the blue
crosses at high temperature and end at the red crosses at low temperature. However,



68 Transport and linear dynamics in non-conformal theories

φM = 1●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●
●●●●●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

++

++

++

++

0 1 2 3 4 5 6

-5

-4

-3

-2

-1

0

Re[ω/2π T]

Im
[ω

/2
π
T
]

ϕM=1

φM = 3●●●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●
●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

●●

●●●
●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

●●

++

++

++

++

0 1 2 3 4 5 6

-5

-4

-3

-2

-1

0

Re[ω/2π T]

Im
[ω

/2
π
T
]

ϕM=3

φM = 10●●
●

●

●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●

●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●

●
●

●●

●

●

●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●

●

●

●●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●

●

●

●
●

●

●

++

++

++

++

0 1 2 3 4 5 6

-5

-4

-3

-2

-1

0

Re[ω/2π T]

Im
[ω

/2
π
T
]

ϕM=10

φM = 100●●
●

●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●●●●

●●

●

●

●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●●
●●

●●

●

●

●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●
●
●
●

●●

●

●

●
●

●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●
●

●
●

++

++

++

++

0 1 2 3 4 5 6

-5

-4

-3

-2

-1

0

Re[ω/2π T]

Im
[ω

/2
π
T
]

ϕM=100

Figure 3.10: Complex plane trajectories of the four lowest QNMs of the Zaniso-channel for
different values of φM . The “+” crosses mark the position of the QNM of thermal
AdS5 in this channel. We only show the QNMs with positive real part of the
frequency.
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as we can see from Fig. 3.11, the trajectories in this case possess a more interesting
structure.

In the upper left panel of Fig. 3.11 we show the trajectories for the φM = 1 potential.
For this value, the effective IR mass of the scalar is such that the first two QNMs of the
ultraviolet probe scalar are closer to the real axis than the first QNM of the infrared
probe scalar. This ordering determines the trajectories of the QNMs as a function of
temperature. As shown in the plot, starting from the IR, the lowest QNM flows towards
the closest UV mode in the complex plane, which in this case is the second UV mode. All
IR modes follow similar trajectories in such a way that (at least as far as our numerics
can resolve) the n-th IR mode flows to the (n+1)-th ultraviolet mode.9 As a consequence,
there are no available IR modes to which the lowest UV mode can flow into. Therefore,
this mode decouples at low temperature, flowing deep intro the complex imaginary plane.

For the other values of φM displayed in Fig. 3.11, the positions of the IR and the
UV modes alternate in the complex plane, but this does not mean that the flow induced
by the temperature is a direct map between these two sets of modes. Even though for
the remaining three panels the lowest QNM flows between the lowest modes of the IR
and UV theories, in all panels there is always a mode that decouples from the spectrum,
although that mode is different for each of the displayed values of φM . The origin of this
decoupling is that, after a certain mode, the n-th IR mode flows to the (n+ 1)-th UV
mode, interrupting the trajectory of the n-th UV mode. When this happens, we observe
a phenomenon similar to level anti-crossing in quantum mechanics. We have checked
that for φM = 1000 (not shown) the complex-plane trajectories are almost identical to
the φM = 100 trajectories displayed in the bottom-right panel of Fig. 3.11. This suggests
that the observed structure saturates at large φM and is captured by the φM = 100 plot.

In Fig. 3.12 we show the temperature dependence of the imaginary (left) and real
(right) parts of the first four quasi-normal frequencies for different values of φM . Each plot
shows the QNM of the anisotropic (blue) and bulk (red) channels. As already discussed,
both of these two sets of modes flow from their values in the UV fixed point to their
values in the IR fixed point. As shown in the plots, the effective conformal behaviour
of the QNMs at high temperature stops when the temperature becomes of order the
source Λ. At higher temperatures, the temperature dependence of both the real and
imaginary part of the modes is non-trivial, and it reflects the intricate trajectories in

9We have tested this behaviour for the first 8 QNMs.
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Figure 3.11: Complex-plane trajectories of the four lowest QNMs of the Zbulk-channel for
different values of φM . The “+” crosses (“�” squares) mark the position of the
QNM of a probe scalar in an AdS black brane background dual to an operator
of dimension ∆ = 3 (∆ = ∆IR). We only show the QNMs with positive real part
of the frequency.
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the complex plane displayed in Fig. 3.11 and Fig. 3.10. These plots also show explicitly
how the disappearance of one bulk QNM occurs at low temperature. The fact that
this disappearance seems to be linear in all plots in Fig. 3.12 clarifies the temperature
dependence of this mode. The observed constant slope implies that this quasi-normal
frequency becomes temperature-independent at low temperature (we have explicitly
checked this) and therefore it decouples from the IR theory.

As a final remark, we note that the numerical results displayed in Fig. 3.12 allow
us to compare the magnitude of the different modes at the same temperature. As we
will discuss in more detail in the next section, the imaginary part of the quasi-normal
frequencies is related to the relaxation back to equilibrium of small plasma perturbations.
It is interesting to note that the ordering of the imaginary parts of the anisotropic and
bulk modes changes with temperature: while at high temperatures the imaginary part of
the lowest bulk mode is smaller than that of the anisotropic mode, at low temperatures
this order is reversed. This crossing of the imaginary parts of the lowest modes is present
for all values of φM . Nevertheless, at φM = 1 this effect is much more prominent, since
for this φM the disappearing QNM is the lowest bulk mode at high temperature. In the
next section we will discuss the consequences of this behaviour.

3.5 Discussion

The behaviour of the QNM with smallest imaginary part, dubbed the lowest QNM, is
particularly relevant for understanding the off-equilibrium dynamics of theories with a
gravity dual. At non-zero spatial momentum, the lowest QNM of metric perturbations
is dual to hydrodynamic excitations of the dual theory. However, in the zero-spatial
momentum limit we have considered, the residues of the hydrodynamic poles vanish.
In this limit the relaxation back to equilibrium is controlled by the QNM frequencies,
with the longest-lived excitation corresponding to the lowest QNM. We will refer to the
inverses of the imaginary parts of the frequencies of the lowest QNMs in the different
channels as relaxation times. In the non-conformal theory that we have studied, these
important time scales have a very interesting behaviour.

As shown in Fig. 3.12, the relaxation time associated to the anisotropic and bulk
channels have a non-trivial temperature dependence, as a consequence of non-conformality.
To best understand the origin of this temperature dependence, following[37,83] in Fig. 3.13
we show the imaginary part of the lowest QNM as a function of δ = 1/3 − c2

s for the
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Figure 3.12: Temperature dependence of the real part (right) and the imaginary part (left)
of the four lowest QNMs of the Zbulk-channel (red, closed symbols) and Zaniso-
channel (open, blue symbols).
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Figure 3.13: Dependence of the imaginary part of the lowest quasi-normal anisotropic (left)
and bulk (right) modes on the speed of sound for different potentials. δ = 1/3−c2

s.

anisotropic channel (left) and the bulk channel (right) for different values of φM . For the
anisotropic channel, most of this dependence may be understood as a consequence of
the change of the speed of sound, similarly to the holographic constructions analysed in
[37,83]. Although the inverse relaxation time is not just a common function of cs for all
models, up to small corrections a simple linear dependence of the imaginary part of the
lowest anisotropic mode on δ = 1/3− c2

s provides a good estimate for the relaxation time
in this channel. This simple approximate scaling does not work in the bulk channel, as
shown in the right panel of Fig. 3.13. Unlike the anisotropic channel, the relaxation time
is influenced significantly by the change in the scaling dimension of the scalar operator in
the high and low temperature phases, which enters only indirectly into thermodynamic
properties such as cs. Therefore, the relaxation of strongly coupled gauge theories is, in
general, not just controlled by thermodynamic properties, but additional microscopic
dynamics of the theory may also be important to understand this complicated process.

The different behaviour of these time scales reflects the fact that the way in which the
system relaxes depends on the way it is excited. To focus the discussion, we will restrict
ourselves to generic excitations of the stress tensor of the system. Since in a CFT the
trace of the stress tensor vanishes by symmetry, in a CFT this trace cannot be affected
by fluctuations of the bulk mode. Since in addition the bulk mode is isotropic, it follows
that the stress tensor itself in a CFT cannot be affected by the bulk mode. Because of
this decoupling, the relaxation of small excitations of the stress tensor is controlled solely
by the lowest mode of the anisotropic channel, given by the δ = 0 intercept of Fig. 3.13
(left). In a non-conformal theory, however, this decoupling does not occur. Because of
non-conformality, the fluctuations of the stress tensor and of the operator O mix. As
an example, note that small isotropic variations of the pressure of the system, which at
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finite momentum are part of the sound channel, excite the bulk mode, as it can be easily
inferred from the Ward identity (3.44). More generally, the variation of the stress tensor
associated to the two fluctuating channels (3.53)-(3.54) is given by

∆ε = 0, (3.60)

∆pz =
1

3
Λ4
(
Z(3)

bulk + 4Z(4)
aniso

)
, (3.61)

∆p⊥ =
1

3
Λ4
(
Z(3)

bulk − 2Z(4)
aniso

)
, (3.62)

∆ 〈O〉 = Λ3Z(3)
bulk , (3.63)

where ∆pz and ∆p⊥ are the diagonal components of the stress tensor along the direction
of the anisotropic perturbation and perpendicular to it, and Z(3)

bulk and Z(4)
aniso are the

normalisable modes of the perturbations. These expressions show explicitly how both
channels affect the dynamics of the pressure, while only the bulk channel affects the
expectation value of the scalar operator. As a consequence, the relaxation of the stress
tensor of the system will be dominated by the mode with the smallest imaginary part
of the two sets of towers displayed in Fig. 3.12. As it can be seen in this plot, for all
values of φM , relaxation is dominated by different modes at high and low temperatures.
The competition between these two channels implies that the relaxation dynamics in our
family of holographic models follows different paths at high and low temperatures.

The contributions of the anisotropic and the bulk modes to the stress tensor codify
two different physical processes. As explained above, the anisotropic mode controls
anisotropic perturbations of the pressure that leave unaffected the energy density, the
expectation value of the scalar operator, the average pressure and the trace of the stress
tensor. The bulk mode controls fluctuations that change the three pressures in an
isotropic way and at the same time modify the expectation value of the scalar operator
and the relation between the energy density and pressure given by the equation of state.
The relaxation of a generic small stress tensor disturbance therefore requires two distinct
process: the “isotropisation” of the system, which amounts to equating the diagonal
spatial components of the stress tensor (pressures); and the “EoSization” of the system,
with which we only refer to the process by which the trace of the stress tensor attains
its equilibrium value. We have carefully defined these two terms to avoid any possible
confusion with “thermalization”, namely the process by which a system reaches perfect
thermal equilibrium.
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Consider first the case in which the bulk mode dominates the relaxation process,
meaning that its associated lowest QNM decays faster than that associated to the
anisotropic mode. In this case the system first relaxes the trace of the stress tensor, such
that the pressures of the system no longer fluctuate independently, and only later equates
the value of all the pressures to one another. In other words, the system first EoSizes
and subsequently isotropizes. This is the behaviour of the holographic models at small
values of φM , such as φM = 1, 3, at low temperatures. Since in CFTs the trace of the
stress tensor is fixed, this relaxation path is very similar to that in CFTs.

In contrast, consider now the opposite case in which relaxation is dominated by
the anisotropic mode, meaning that its associated lowest QNM decays faster than that
associated to the bulk mode. In this case the pressure of the system is first isotropized
to a value that is not related to the energy density through the equation of state, and
only later the subsequent dynamics of this isotropic stress tensor relaxes this value of the
pressure to that dictated by the equation of state. At high temperatures, this is the path
to equilibration followed by our models, which differs qualitatively from the conformal
case.10

Finally, when the two relaxation times are comparable, as it is the case in the low
temperature regime for large values of φM = 10, 100, both of these processes occur
simultaneously.

Our calculations are done at zero spatial momentum. At non-zero k the analysis is
more complicated because the anisotropic mode splits into the shear, the tensor and the
sound modes, and the latter mixes with the bulk mode. Nevertheless, in the coupled
bulk-sound system it is still possible to distinguish between those excitations that change
the trace of the stress tensor and those that do not. These coupled dynamics will of course
modify the EoSization and the isotropization times that we have computed. However, by
continuity this modification must be small for small k. Since the QNM frequencies are
parametrically of order T , we therefore expect that their ordering will remain the same
provided k � T .

Although the analysis of QNMs can only provide definite answers for the fate of
small perturbations off-equilibrium, the rich structure exhibited in this relaxation process
has implications for the dynamics of initial configurations that are far off-equilibrium.
As we mentioned above, the numerical analyses of collisions in N = 4 SYM yield
10Note that the right-hand side of (3.22) may suggest that Λ 〈O〉 must be large in order to cause a

significant violation of the equation of state, thus in possible conflict with the linear approximation.
It would be interesting to explore this in a non-linear calculation.
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hydrodynamisation times that are comparable to the relaxation times obtained via a
QNM analysis. While the microscopic explanation of this observation is not understood,
this experience has led the authors of [39] to suggest that the hydrodynamisation of
non-conformal theories is basically controlled by the temperature of hydrodynamisation,
with small (non-parametric) differences with respect to the conformal case. Following this
reasoning, we may estimate how much longer the hydrodynamisation can be in the family
of theories that we have studied. Given the mixing of the bulk and anisotropic modes,
this longest relaxation is given by the absolute minimum of the (negative) imaginary part
of the QNM sets which, as shown in Fig. 3.12, is always controlled by the bulk mode.
Comparing with the relaxation of conformal theories τconf = 0.73/2πT , this maximal
relaxation is τmax/τconf = 2.1, 2.5, 3.0, 3.15 for φM = 1, 3, 10, 100. These maxima occur
at T/Λ = 0.33, 0.19, 0.16, 0.16 for each model respectively. It would be interesting to test
explicitly whether the connection with the linearised analysis persists in full numerical
simulations of shock collisions in our non-conformal backgrounds. In particular, this
would allow the study of the impact of the different relaxation channels on the on-set of
hydrodynamic behaviour.



Chapter 4

Shock-wave collisions in
non-conformal theories

In order to make closer contact with the QGP at heavy ion colliders, it is important to
understand the far from equilibrium dynamics and the relaxation process in non-conformal
field theories. Recent hydrodynamic simulations showed that, indeed, one needs to take
into account non-conformal effects to best match the data collected in the experiments[73].
Nevertheless, all far from equilibrium holographic studies of hydrodynamization until the
publication this work (see e.g. [54,55,57,80,101,102]) have been performed in conformal
field theories. In this chapter we present the first holographic shock-wave collision
simulation in a non-conformal set-up and study the subsequent hydrodynamization
process.

As we discussed in chapter 3, one crucial difference between the two cases is that in
non-conformal theories the equation of state, the relation between the energy density
and the average pressure, is not fixed by symmetry, and hence it needs not be obeyed
out of equilibrium. The relaxation process therefore involves an additional channel,
namely the evolution of the energy density and the average pressure towards asymptotic
values related by the equation of state. One of the purposes of of this work is to show
that hydrodynamization can occur before EoSization. Additionally, this first example of
holographic shock-wave collisions in a non-conformal will pave the way for future studies
considering phase transitions and critical behaviour.

We will consider gravitational shock-wave collisions in the five-dimensional bottom-up
model presented in chapter 3, consisting of gravity coupled to a scalar field with a
non-trivial potential. The dual gravity solution describes a domain-wall geometry that
interpolates between two AdS spaces. We emphasize that our choice of model is not

77
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guided by the desire to mimic detailed properties of quantum chromodynamics but by
simplicity. The UV fixed point guarantees that holography is on its firmest footing, since
the bulk metric is asymptotically AdS; the IR fixed point guarantees that the solutions
are regular in the interior; and turning on a source for a relevant operator is the simplest
way to break conformal invariance.

The numeric code used for the evolutions presented in this chapter is written in C,
and it was elaborated in a collective effort by the members of the collaboration.

4.1 The set-up

4.1.1 Model and vacuum solution

We recall the action for our Einstein-scalar model,

S =
2

κ2
5

∫
d5x
√
−g
[

1

4
R− 1

2
(∇φ)2 − V (φ)

]
. (4.1)

The dynamic equations resulting from it read

Rµν −
R
2
gµν = 8πTµν , (4.2)

�φ =
∂V

∂φ
, (4.3)

where

8πTµν = 2∂µφ∂νφ− gµν
(
gαβ∂αφ∂βφ+ 2V (φ)

)
, (4.4)

and κ5 is the five-dimensional Newton constant. The potential V (φ) sets the details of
the dual gauge theory; we choose the same simple potential as in chapter 3 characterised
by a single parameter, φM , which reads

L2V (φ) = −3− 3

2
φ2 − 1

3
φ4 +

(
1

2φ4
M

+
1

3φ2
M

)
φ6 − 1

12φ4
M

φ8 . (4.5)

Note that V (φ) is negative, possesses a maximum at φ = 0 and a minimum at φ = φM > 0.
We will set L = 1 throughout, but we will sometimes write L explicitly in some expressions
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and plots to prevent ambiguity. The dynamic equations (4.4) are the ones we will solve
in a characteristic formulation to simulate the shock-wave collisions.

The gravitational waves we will collide propagate in the vacuum solution of the theory.
To compute this vacuum state one needs to first set an ansatz for the solution, in the same
way we did in chapter 3. In this case, however, it is convenient to use the holographic
coordinate uFG = 1/rFG for computational purposes. In Fefferman-Graham coordinates,
the solution with translation invariance and no horizon can be written in the following
form,

ds2 =
du2

FG

u2
FG

+ e2AFG(uFG)ηµν dx
µdxν , (4.6)

being AFG(uFG) and φ(uFG) the non-trivial fields characterising the solution. The
computation of the vacuum state can be simplified when the potential is derived from a
super-potential as

V (φ) = −4

3
W (φ)2 +

1

2
W ′ (φ)2 , (4.7)

which for the potential selected (4.5) will be

LW (φ) = −3

2
− φ2

2
+

φ4

4φ2
M

. (4.8)

Using the coordinate uFG, the scalar profile φ(uFG) and the metric coefficient AFG(uFG)

can be obtained from the first order equations

−u2
FG

dAFG
duFG

= −2

3
W, −u2

FG

d φ

duFG
=
∂W

∂φ
, (4.9)

and normalizability boundary conditions. Luckily enough, the equations have an analytic
solution for the super-potential chosen,

e2AFG =
φ2

0

φ2

(
1− φ2

φ2
M

)φ
2
M
6

+1

e−
φ
2

6 , (4.10)

φ =
φ0 uFG√

1 + φ
2
0

φ
2
M

u2
FG

, (4.11)
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where φ0 is an arbitrary constant that controls the magnitude of the non-normalizable
mode of the scalar field, and is equal to Λ of chapter 3. In this chapter, we use a different
name for this constant to emphasize the gravitational description and make contact with
the code details explained in the following section. We recall that the presence of this
source breaks conformal invariance explicitly.

4.1.2 Gauge theory quantities

Henceforth we will omit the expectation value signs and work with the rescaled quantities
following the usual conventions used in the literature,

(E , JE , Pxi ,V) = κ
2
5

2L
3 (−T tt , T zt , T x

i

x
i ,O) . (4.12)

In these variables the Ward identity takes the form

E − 3P̄ = ΛV , (4.13)

where

P̄ =
1

3

∑
i

P
x
i (4.14)

is the average pressure. Out of equilibrium the average pressure is not determined by
the energy density because the scalar expectation value V fluctuates independently. In
contrast, in equilibrium V is determined by the energy density and the Ward identity
becomes the equation of state

P̄ = Peq(E) , (4.15)

with

Peq(E) = 1
3

[
E − ΛVeq(E)

]
. (4.16)

4.1.3 Shockwave metric

In the Fefferman-Graham frame it is possible to find a quasi-analytic solution for a single
travelling shockwave on a vacuum background. The metric form will simply correspond
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to the vacuum metric (4.6) plus the addition of the term f(uFG)h(x± )dx2
± ,

ds2 =
du2

FG

u2
FG

+ f(uFG)h(x± )dx2
± + e2AFG(uFG)

(
−dx+dx− + dx2

⊥
)
, (4.17)

where x± = z± t, z is the direction of propagation of the shock-wave, and x⊥ are
the perpendicular directions to it. The function h(x± ) is an arbitrary function for the
waveform.

The propagation of the shockwave at the speed of light will not alter the vacuum
profiles of AFG(uFG) and φ(uFG), and thus the only remaining function to be fully
determine the solution will be f(uFG). Unfortunately, the equation for f(uFG) is a
not-so-simple second order differential equation (an ODE) coming from the Einstein’s
equations which solution can only be obtained numerically,

−f

[
2

(
u2
FG

∂2AFG

∂u2
FG

+ uFG
∂AFG
∂uFG

)
+ 4

(
−uFG

∂AFG
∂uFG

)2
]

+ u2
FG

∂2f

∂u2
FG

+ uFG
∂f

∂uFG
= 0.

(4.18)

From the differential equation one can derive an equivalent integral expression, equally
unable to give an analytic form for f(uFG),

f(uFG) = 4 e2AFG(uFG)

∫ uFG

0

dũ

ũ
e−4AFG(ũ). (4.19)

An additional difficulty for the computation of the function f(uFG) is that it grows
exponentially with uFG. However, this can be solved by computing the redefined
function g(uFG) = e2AFG(uFG)f(uFG)—deduced from inspecting (4.19)—which takes
values between 0 and 1. In this case, we have chosen a simple Runge-Kutta 4 method to
solve the equation.

As a final remark, we note that when solving equation (4.19) order by order close to
the boundary, we see that f(uFG) behaves as

f(uFG) = u2
FG +

u4
FGφ

2
0

9
+O

(
u6
FG

)
. (4.20)

With this expression, the metric (4.17), and the vacuum profile of the scalar field (4.11),
one obtains from (3.20)-(3.21) the dual gauge theory quantities of such a shockwave,
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namely

E = PL = ± JE = h(x± ) , PT = 0 , V = 0 , (4.21)

where PL is the longitudinal pressure (along the z-direction), and PT the transverse
pressure (along the transverse directions x⊥).

4.2 Numerical procedure

In this section we detail the formalism and the numerical procedure used to evolve the
shock-wave collisions in this set-up. This procedure shares many features with the pure
gravity simulations and the baryon charged collisions, although there are important
differences we will stress in the text.

4.2.1 Evolution equations

We follow the notation of [54] and begin by recalling the 5D Bondi-Sachs metric (1.18)
(also dubbed as Eddington-Finkelstein)

ds2 = −Adt2 + Σ2
(
eBdx2

⊥ + e−2Bdz2
)

+ 2dt(dr + Fdz) , (4.22)

where A, B, Σ, and F are functions of the radial coordinate r, time t and z. The shocks
will be propagating along z, and x⊥ denotes the two perpendicular directions x⊥ = x1, x2.
Note that t is a null time coordinate (usually called v in EF coordinates): t = const
surfaces are null, and not spacelike.

Written in this form, the metric is invariant under the following transformation

r→ r̄ = r + ξ(t, z)

Σ→ Σ̄ = Σ

B→ B̄ = B

A→ Ā = A+ 2∂tξ(t, z)

F → F̄ = F − ∂zξ(t, z)

. (4.23)
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Upon plugging the metric (4.22) in (4.2) the resulting system conveniently obeys a
particular nested structure, comprising of a sequence of radial ODEs at each t = const
null slice that can be solved in order, see e.g. [45] and references therein.

The equations of motion for our present case are given by

Σ′′ = −1

6
Σ
(

3
(
B′
)2

+ 4
(
φ′
)2
)
, (4.24a)

Σ2F ′′ = Σ
(

6Σ̃B′ + 4Σ̃′ + 3F ′Σ′
)

+ Σ2
(

3B̃B′ + 2B̃′ + 4φ̃φ′
)
− 4Σ̃Σ′ , (4.24b)

12Σ3Σ̇′ = e2B
[
Σ2
(

4B̃F ′ − 4
(

˜̃B + φ̃2
)
− 7B̃2 + 2F̃ ′ +

(
F ′
)2
)

+ 2Σ
(

Σ̃
(
F ′ − 8B̃

)
− 4˜̃Σ

)
+ 4Σ̃2

]
− 8Σ2

(
Σ2V (φ) + 3Σ̇Σ′

)
,

(4.24c)

6Σ4Ḃ′ = e2B
[
Σ2
(
−B̃F ′ + B̃2 + ˜̃B − 2F̃ ′ + 4φ̃2 −

(
F ′
)2
)

+ Σ
(

Σ̃
(
B̃ + 4F ′

)
+ 2˜̃Σ

)
− 4Σ̃2

]
− 9Σ3

(
Σ̇B′ + ḂΣ′

)
, (4.24d)

3Σ′Σ2φ̇ = −e2BΣ
(

2B̃φ̃− φ̃F ′ + ˜̃φ
)

+ e2BΣ̃φ̃+ Σ3
(
−
(
V ′(φ)− 2φ̇′

))
+ 3Σ̇Σ2φ′ ,

(4.24e)

6Σ4A′′ = 3e2B
(

Σ2
(

4
(

˜̃B + φ̃2
)

+ 7B̃2 −
(
F ′
)2
)

+ 8Σ
(

2B̃Σ̃ + ˜̃Σ
)
− 4Σ̃2

)
+ 2Σ4

(
−9ḂB′ + 4V (φ)− 12φ̇φ′

)
+ 72Σ̇Σ2Σ′ , (4.24f)

2Σ2Ḟ ′ = −Σ2
(

2B′
(
Ã+ 2Ḟ

)
+ 2Ã′ + 6ḂB̃ + 4 ˜̇B + 8φ̇φ̃+ A′F ′

)
+ 2Σ

(
Σ′
(
Ã+ 2Ḟ

)
− 6ḂΣ̃− 4˜̇Σ− 3Σ̇F ′

)
+ 8Σ̇Σ̃ , (4.24g)

6Σ2Σ̈ = e2B
(

Σ
(

2B̃
(
Ã+ 2Ḟ

)
+ ˜̃A+ 2 ˜̇F

)
+ Σ̃

(
Ã+ 2Ḟ

))
+ Σ2

(
3Σ̇A′ − Σ

(
3Ḃ2 + 4φ̇2

))
, (4.24h)

where, for any function g, g̃ ≡ (∂z − F∂r) g, g′ ≡ ∂rg, and

d+g ≡ ġ ≡
(
∂t +

A

2
∂r

)
g . (4.25)

Note that these are all of the general form

[
αg(r, t, z)∂rr + βg(r, t, z)∂r + γg(r, t, z)

]
g(r, t, z) = −Sg(r, t, z) , (4.26)
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where g = Σ, F, d+Σ, d+B, d+φ, A, d+F . These are solved imposing reflecting
boundary conditions at the AdS boundary u = 1/r = 0, which take the form

A(u, t, z) =
1

u2 +
2ξ(t, z)

u
− 2∂tξ(t, z) + ξ(t, z)2 − 2φ2

0

3
+ φ0∂tφ2(t, z) + u2a4(t, z)

− 2

3
u3(3a4(t, z)ξ(t, z) + ∂zf2(t, z)) +O(u4) (4.27a)

B(u, t, z) = u4b4(t, z) +O(u5) (4.27b)

Σ(u, t, z) =
1

u
+ ξ(t, z)− φ2

0u

3
+

1

3
φ2

0u
2ξ(t, z)

+
1

54
φ0u

3
(
−18φ0ξ(t, z)

2 − 18φ2(t, z) + φ3
0

)
+O(u4) (4.27c)

F (u, t, z) = ∂zξ(t, z) + u2f2(t, z)

+ u3

(
4

15
(φ0∂zφ2(t, z)− 6∂zb4(t, z))− 2f2(t, z)ξ(t, z)

)
+O(u4) (4.27d)

φ(u, t, z) = φ0u− φ0u
2ξ(t, z) + u3

(
φ0ξ(t, z)

2 + φ2(t, z)
)

+ u4
(
−φ0ξ(t, z)

3 − 3ξ(t, z)φ2(t, z) + ∂tφ2(t, z)
)

+O(u5) (4.27e)

d+B(u, t, z) = −2u3b4(t, z) +O(u4) (4.27f)

d+Σ(u, t, z) =
1

2u2 +
ξ(t, z)

u
+

1

2
ξ(t, z)2 − φ2

0

6

+
1

36
u2
(
18a4(t, z) + 18φ0φ2(t, z)− 5φ4

0

)
+O(u3) (4.27g)

d+φ(u, t, z) = −φ0

2
+ u2

(
φ3

0

3
− 3

2
φ2(t, z)

)
+O(u3) (4.27h)

d+F (u, t, z) = ∂tzξ(t, z)− uf2(t, z) +O(u2) (4.27i)

The function ξ(t, z) encodes our residual gauge freedom, whereas functions a4(t, z) and
f2(t, z) are constrained to obey

∂ta4 = −4

3
(∂zf2 + φ0∂tφ2) , (4.28a)

∂tf2 =
1

4

(
−∂za4 − 8∂zb4 +

4

3
φ0∂zφ2

)
, (4.28b)

with b4 read from B through (4.27b) and both φ2 and ∂tφ2 read from φ through (4.27e).
At this point is worth to recall that the fall-off coefficients for the dynamic variables in
EF coordinates are not the same as the ones in FG, but related through simple relations.
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In particular

φ0φ2FG = φ2EF −
1

6
φ3

0 (4.29)

To solve the resulting system we follow the general approach of [42,54], with some
important differences that we will outline in the following sections.

4.2.2 Expectation values from evolution variables

With the near-boundary behaviours above, together with the Fefferman-Graham ex-
pansions (3.18) and (3.19), one finds the coordinate transformation relating the falloff
coefficients in each frame. With these, and the expectation values (3.20) and (3.21), one
can write the expressions for the gauge theory values in terms of our evolution variables
(b4, a4, f2, φ2) as

E = −
(

3

4
a4 + φ0φ2 +

9− 7φ2
M

36φ2
M

φ4
0

)
, (4.30)

PL = −a4

4
− 2b4 +

φ0φ2

3
+

(
− 5

108
+

1

4φ2
M

)
φ4

0 , (4.31)

PT = −a4

4
+ b4 +

φ0φ2

3
+

(
− 5

108
+

1

4φ2
M

)
φ4

0 , (4.32)

JE = f2 , (4.33)

V = −2φ2 +
φ3

0

3
− φ3

0

φ2
M

, (4.34)

where PL and PT are the longitudinal and transverse pressures.

4.2.3 Gauge fixing

We start with the procedure to fix the residual gauge freedom (4.23). A convenient
choice is treating ξ(t, z) as another evolved variable and choosing its evolution equation
by requiring that the apparent horizon position lie at some constant radial coordinate
r = rh. We thus want to impose

Θ|r=rh = 0 , ∂tΘ|r=rh = 0 , (4.35)
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at all times, where Θ is the expansion of outgoing null geodesics for metric (4.22). At
surfaces r = const, Θ is given by

Θ = −1

2
e2BF (3F∂rΣ− 2∂zΣ) + e2BΣ (2F∂zB + ∂zF )− 3Σ2d+Σ . (4.36)

A simple way to impose conditions (4.35) numerically is the following

(∂tΘ + κΘ) |r=rh = 0 , (4.37)

where κ is a positive parameter typically chosen to be 1. The advantage of imposing such
a condition is that it’s constructed to drive the Θ = 0 surface back to r = rh whenever
numerical errors accumulate. This turns out to work very well in practice.

Equation (4.37), when expanded, gives us an equation for ∂tξ of the form[
αξ(t, z)∂zz + βξ(t, z)∂z + γξ(t, z)

]
∂tξ(t, z) = −Sξ(t, z) , (4.38)

to be evaluated at r = rh. This is a second order linear ODE in the coordinate z, which
we solve imposing periodicity in z.

4.2.4 Field redefinitions and evolution algorithm

To integrate the resulting system subject to the boundary conditions (4.27), it is very
convenient to introduce u = 1/r as our radial coordinate and redefine the evolved
variables so that the divergent pieces at u = 0 are absent.

Motivated by (4.27), we make the following definitions

B(u, t, z) ≡ u4Bg1
(u, t, z) (4.39a)

≡ Bg2
(u, t, z) (4.39b)

Σ(u, t, z) ≡ 1

u
+ ξ(t, z)− uφ

2
0

3
+ u2φ

2
0

3
ξ(t, z) + u3Σg1

(u, t, z) (4.39c)

≡ 1

u
+ ξ(t, z) + Σg2

(u, t, z) (4.39d)

F (u, t, z) ≡ ∂zξ(t, z) + u2Fg1(u, t, z) (4.39e)

≡ ∂zξ(t, z) + Fg2(u, t, z) (4.39f)

A(u, t, z) ≡ 1

u2 +
2ξ(t, z)

u
− 2∂tξ(t, z) + ξ(t, z)2 − 2φ2

0

3
+ u2Ag1(u, t, z) (4.39g)
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≡ 1

u2 +
2ξ(t, z)

u
− 2∂tξ(t, z) + ξ(t, z)2 − 2φ2

0

3
+ Ag2(u, t, z) (4.39h)

φ(u, t, z) ≡ uφ0 − u2φ0ξ(t, z) + u3φ3
0φg1(u, t, z) (4.39i)

≡ φ0φg2(u, t, z) (4.39j)

d+Σ(u, t, z) ≡ 1

2u2 +
ξ(t, z)

u
+
ξ(t, z)2

2
− φ2

0

6
+ u2Σ̇g1

(u, t, z) (4.39k)

≡ 1

2u2 +
ξ(t, z)

u
+
ξ(t, z)2

2
− φ2

0

6
+ Σ̇g2

(u, t, z) (4.39l)

d+B(u, t, z) ≡ u3Ḃg1
(u, t, z) (4.39m)

≡ Ḃg2
(u, t, z) (4.39n)

d+φ(u, t, z) ≡ −φ0

2
+ u2φ3

0φ̇g1(u, t, z) (4.39o)

≡ −φ0

2
+ φ̇g2(u, t, z) (4.39p)

d+F (u, t, z) ≡ ∂tzξ(t, z) + uḞg1(u, t, z) (4.39q)

≡ ∂tzξ(t, z) + Ḟg2(u, t, z) (4.39r)

Our equations are then rewritten in terms of the “g1” and “g2” variables above. g1

variables are adapted to the AdS boundary u = 0. The corresponding resulting equations,
however, are extremely long and carry terms with large powers of the coordinate u. Upon
trying to solve this system in the whole grid, numerical errors were pilling up very early
on in the evolution, quickly spoiling convergence of the solution. We then decided to
make use of the system g1 only in the vicinity of u∼ 0 (grid1, spanning u ∈ [0, u0]) —
where a much simpler series expanded version of the aforementioned equations was used
— and another grid (grid2, spanning u ∈ [u0, uh]) was introduced where the much simpler
system of equations g2 was used instead.

Our numerical grid thus consists of a double grid in the u direction u ∈ [0, u0]∪ [u0, uh],
where u0 is typically chosen to be 0.1, and uh = 1/rh is typically chosen to be 2 or 3.
We integrate the g1 equations with boundary conditions given by (4.27) in grid1; we
then read off the integrated values at u = u0 and use these as boundary conditions for
integrating the g2 equations in grid2. Note, however, that we also need to deal with the
junction point u0 in our u-dependent hyperbolic equations ∂tB(u, t, z) and ∂tφ(u, t, z),
given by equation (4.25).

We are now in possession of all the necessary equations for the evolution procedure.
The evolution algorithm is then as follows:
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1. at any given time tn (which can be the initial time after having performed the
transformation (4.23) that puts the apparent horizon at constant u) we know
B(u, tn, z), φ(u, tn, z), ξ(tn, z), a4(tn, z) and f2(tn, z);

2. successively solve the elliptic equations (4.24) (or rather, the corresponding system
obtained in terms of the redefined “g1” and “g2” functions) in the order Σg1,2

, Fg1,2 ,
Σ̇g1,2

, Ḃg1,2
, φ̇g1,2 , Ag1,2 , which are a sequence of radial ODEs subjected to the

boundary conditions (4.27);

3. equation (4.38) is solved to get ∂tξ(tn, z) and afterwards ∂tBg1,2
(tn, u, z) and ∂tφg1,2(tn, u, z)

can be obtained through equation (4.25) with (4.39g) and (4.39h);

4. obtain ∂ta4(tn, z) and ∂tf2(tn, z) through (4.28) and, together with the already
obtained ∂tξ(tn, z), ∂tBg1,2

(u, tn, z), ∂tφg1,2(u, tn, z), advance all these quantities to
time tn+1 with a Runge-Kutta procedure or equivalent.

5. GOTO 1.

4.2.5 Discretization

Equations (4.24) are written in a form that decouples the coordinates u and z (the
collision axis) and can therefore be solved as ODEs in the u direction for each point
in z. For this reason, both coordinates can be treated separately. The z direction is
discretized on a uniform grid where periodic boundary conditions are imposed, while
along the u direction we make use of two grids, grid1 spanning [0, u0] and grid2 spanning
[u0, uh]. Both u grids are Lobatto-Chebyshev grids with Nu + 1 points, the collocation
points are given by

Xi = − cos

(
π i

Nu

)
(i = 0, 1, . . . , Nu) , (4.40)

are defined in the range [−1 : +1], and can be mapped to our physical grid by

ui =
uR + uL

2
+
uR − uL

2
Xi (i = 0, 1, . . . , Nu) , (4.41)

where uL and uR are the limits of each of the grids.

As the differential equations are solved in u for each z point, the only important
operation performed in the z direction are the partial derivatives present in the equa-
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tions (4.24). To evaluate these we use a fourth-order accurate (central) finite difference
approximation. Also in this direction, we find spurious high-frequency noise common to
any finite differencing schemes. In order to remove it we add numerical dissipation to
damp these modes. We have therefore implemented N = 3 Kreiss-Oliger dissipation [103]
whereby, after each time step, all our evolved quantities f ∈ {Bg1,2

, φg1,2 , a4, f2, ξ} are
added a term of the form

DKOfi ≡
σ

64
(fi−3 − 6fi−2 + 15fi−1 − 20fi + 15fi+1 − 6fi+2 + fi+3) , (4.42)

where i labels the grid point in the z direction and σ is a tuneable dissipation parameter
which must be smaller than 1 for stability, and which we have typically fixed to be 0.2.
This procedure effectively works as a low-pass filter.

In the radial direction u, the use of the Chebyshev-Lobatto grid allow us to use pseudo-
spectral collocation methods (PSC) [104]. These methods are based in the approximation
of our solutions in a basis of known functions, Chebyshev polynomials Tn(X) in our
case, but, in addition to the spectral basis, we have an additional physical representation
and therefore we can performed operations in one basis or the other depending of our
necessities. Thanks to the trigonometric representation of the Chebyshev polynomials,
we can use the Fast Fourier Algorithm (FFT) for changing from one basis to the other.
One of the uses of these method is high accuracy interpolation of any function f to
values of u not present in our grid. This can be computed using the standard spectral
representation of the function

f(u) =
N∑
k=0

f̂k Tk(X(u)) , (4.43)

where f̂k are the coefficients of the spectral basis that are computed from the values of
the function in the collocation points through the FFT.

As we mentioned previously, the radial equations for solving the metric coefficients
can be written in the form

[
αg(u, t, z)∂uu + βg(u, t, z)∂u + γg(u, t, z)

]
g(u, t, z) = −Sg(u, t, z) ,

where, again, g represents the metric coefficients previously mentioned. Once our
coordinate is discretized, the differential operator becomes an algebraic one acting over
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the values of the functions in the collocation points taking the form

[
αig(t, z)Dijuu + βig(t, z)Diju + γig(u, t, z)

]
gj(t, z) = −Sjg(t, z) ,

where Duu, Du represent the derivative operator for a Lobatto-Chebyshev grid in the
physical representation and i, j indices in the u coordinate. We now construct the
operator defined inside the brackets and then invert it to solve the function g. Boundary
conditions are imposed by replacing full rows in this operator by the values we need to
fix. In the general case, for a second order operator we replace the lines j = 0, j = N

by the value of the function and its derivative at u = 0 in the case of the grid1 and at
u = u0 in the case of grid2. At grid1, we obtain the boundary conditions from (4.27); at
grid2 these are read off from the obtained values at grid1.

Another useful feature of the spectral methods is the possibility of filtering. As we did
with the dissipation in the direction z, we can damp high order modes but in this case
directly in the spectral representation. After each time step, we apply an exponential
filter to the spectral coefficients of our u-dependent evolved quantities f̂ ∈ {B̂g1,2

, φ̂g1,2}.
The complete scheme is

{fi }
FFT−→

{
f̂k

}
−→

{
f̂k e

−α(k/Nu)
γNu
}

FFT−→ {fi} (4.44)

where α and γ are tuneable parameters which we typically fix to α = 36.0437, γ = 8.
This effectively dampens the coefficients of the higher order Chebyshev polynomials.

4.2.6 Initial data

Our chosen formulation of Einstein’s equations, known as the characteristic formulation,
allows one to specify the initial data needed for an evolution through freely setting the
functions B(u, z), φ(u, z), ξ(z), a4(z) and f2(z). For our intended applications, we wish
to have initial data resembling an ultra-relativistic projectile, such as the shockwave
metric in AdS. The starting point to construct such initial data is thus the shockwave
metric in FG coordinates (4.17). Once the function f(uFG) therein is computed, one
can proceed to transform the metric to the EF frame (4.22) in which the numerical
integration is performed. Owing to the fact that both the FG and the EF metrics have an
explicit Killing vector, one can use the following ansatz for the coordinate transformation
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between the two frames

xFG
⊥ = xEF

⊥ , uFG = u+ λ1(u, t+ z) ,

x+ = t+ z + λ2(u, t+ z) , x− = t− z + λ3(u, t+ z) ,
(4.45)

for a left-moving shock [42]. The differential equations for the transformation functions
λ1(u, z), λ2(u, z), and λ3(u, z) are obtained by simply taking the slots guu, gut, and guz
from the equation

gEF = ΛgFGΛT . (4.46)

Equivalently, one might use the fact that the EF coordinate u is a non-affine parameter
for ingoing null geodesics

∂2
uk

µ(u) + Γµαβ∂uk
α(u)∂uk

β(u) = F (u)∂uk
µ , (4.47)

where kµ(u) is the parametrized geodesic, and F (u) = −2
25u

is a non-affinity function set
to meet the desired EF frame with gtr = 1. The geodesic equations have the advantage
of being explicitly depending on t+ z and therefore its solution reduces to a set of ODEs
parametrised by the boundary point z for t = 0. We thus write our initial data for a
left-moving shock with width ω and height µ

3

√
2πω

as

h(z) =
µ3

√
2πω

e
− (z−z0)

2

2ω
2 , (4.48)

E(z) = E0 + h(z) , (4.49)

f2(z) = h(z) , (4.50)

φ(u, z) =
φ0uFG√

1 + u
2
FG

3φ0

(
φ3

0 − 6φ2

) , (4.51)

e3B(u,z) =
e2AFG(uFG)

∂zλ
2
1

u
2
FG

− (∂zλ2 + 1) (∂zλ3 − 1) e2AFG(uFG) + (∂zλ2 + 1)2 f(uFG)h(z)
, (4.52)

where uFG, λ1,2,3 are functions of u and z obtained from (4.45). E is the energy density
of the boundary field theory and E0 the corresponding background value (which we
typically set to E0 = 0.02 µ

3

√
2πω

). Having chosen Eo, we know the solution in the absence
of shocks (with B = 0), and its corresponding z-independent φ2 value, the equilibrium
value for the specified energy density. With the above construction, we set φ2 to its
equilibrium value (for the given background energy density E0), and set a4 trivially set
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from (4.30) and (4.49). Function ξ(z) is then set by imposing that the apparent horizon
lie at constant u coordinate, and we are ready to start the evolution.

4.3 Code tests

We implement the above construction in a standalone C code, where we use the GSL
library to solve the linear system (4.24), and use a fourth-order Adams-Bashforth method
to integrate the functions B(u, z), φ(u, z), a4(z), f2(z) and ξ(z) forward in time, using
the procedure outlined in section 4.2.4. The code is trivially parallelised with OpenMP.
The resulting code is remarkably fast, being able to evolve an standard configuration
with 12 + 48 u-points and ∆z = L/20 (400 z-points) from t/L = 0 to t/L = 1 in 3
minutes using two cores Intel i7-4820K CPU @ 3.70GHz.

4.3.1 Quasi-normal modes

As a first test to the code and our numerical implementation we have recovered some
quasi-normal frequencies reported chapter 3. For these tests, we evolved a φM = 10

z-independent configuration where the energy density was set to E/φ4
0 = 0.379686. a4

and φ2 were initialised to their corresponding equilibrium values, whereas B and φ were
set to

B = 0.1u8 , (4.53)

φ = φ0u+ φ2u
3 , (4.54)

Since this configuration is not in equilibrium, b4 and φ2 will oscillate and relax, allowing
us to compute the quasi-normal modes (QNM) of the system.

Gravitational set-ups containing a single scalar field will typically show two scalar,
independent and gauge invariant types of perturbations, each one with its own tower of
modes. Hence, the system will have two independent channels to relax to equilibrium. In
the model studied in this work, the two channels control independently the fluctuations
of the anisotropy and the trace of the stress-energy tensor of the dual plasma respectively.
Since b4 only contributes to the anisotropy and φ2 only to the trace, their fluctuations
will be governed by different towers of modes. Therefore, the frequencies extracted from
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b4 should match the anisotropy tower frequencies’ and the ones from φ2 should match
the trace, or “bulk”, tower.
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Figure 4.1: φ2 and b4 as functions of time for a z-independent configuration with φM = 10,
E/L4 = 0.379686, with initial data as specified in (4.53). Blue full line corresponds
to data from the code, green dash-dotted line correspond to a fit to the data using
one QNM, red dashed line corresponds to a fit using two QNMs as explained in
the text.
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In figure 4.1, we have fitted numerical data with damped sinusoidals of the form

f(t) = C + A1e
−ω(1)

i t cos
(
ω(1)
r t+ ϕ1

)
+ A2e

−ω(2)
i t cos

(
ω(2)
r t+ ϕ2

)
. (4.55)

In order to recover the frequencies we employed the following strategy. First, we look
for the lowest frequency mode; for that, we set A2 = 0 in equation (4.55) and fit this
function to our numerical data. We perform a series of fits to the data, each fit starting
at a later time: we start by using the whole signal, then use only the portion t ∈ [1,∞[

(say) of the signal, then only the portion t ∈ [2,∞[ and so on. The frequencies ω(1) thus
obtained in each fit eventually convergence to some value, the longest lived mode, which
we are able to isolate through this process. We then fix the C, A1, ω

(1)
r , ω(1)

i , ϕ1 fitting
parameters obtained; the corresponding fit is labelled “fit1” in figure 4.1. Having fixed
these parameters we then repeat the process using equation (4.55), where this time we
only allow for the A2, ω

(2)
r , ω(2)

i , ϕ2 parameters to vary. We thus obtain the frequencies
ω(2); the final resulting fit is labelled “fit2” in figure 4.1.

The results obtained with this procedure are displayed in figure 4.1. For the non-
conformal mode (left panel) we have obtained

Lω(1)
r = 2.31305 , Lω

(1)
i = 1.26432 , (4.56)

Lω(2)
r = 4.03 , Lω

(2)
i = 2.93 , (4.57)

which are to be compared with Lω(1) = 2.313106 + 1.264367i, Lω(2) = 4.108 + 2.93141i

obtained in [1]. For the anisotropic mode (right panel), we have obtained

Lω(1)
r = 3.03932 , Lω

(1)
i = 2.12048 , (4.58)

Lω(2)
r = 4.9 , Lω

(2)
i = 3.6 , (4.59)

which are to be compared with Lω(1) = 3.03944 + 2.120404i, Lω(2) = 4.934 + 3.7393i

obtained in [1].

We emphasise that the numbers from [1] and those of this section were obtained in a
completely independent way, and the excellent agreement between them (of up to 0.004%

for the lowest frequency) validates both the code presented herein as well as the method
of [1].
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Figure 4.2: Energy density at t = 10L (top panel) and correspondent convergence analysis
(bottom panel) for the configuration a typical configuration. We plot the absolute
differences between the coarse and medium resolution (blue solid line) and the
medium and fine (red dashed line) resolution run. The latter has been re-scaled
by the factor Q = 5.94 expected for fourth order convergence.
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4.3.2 Convergence analysis

Numerical simulations using finite differencing techniques typically approximate the
continuum solution of the problem with an error that depends polynomially on the grid
spacing h,

f = fh +O(hn) . (4.60)

Different numerical implementations will give different convergence orders n. In our case,
since we make use of fourth order finite difference stencils, we expect to see n = 4. One
simple way to check for consistency of a code is evolving the same configuration with
coarse, medium and fine resolution, hc, hm and hf . One can then compute a convergence
factor given by

Q ≡
fhc − fhm
fhm − fhf

=
hnc − hnm
hnm − hnf

, (4.61)

where fh is a chosen evolved variable obtained with numerical resolution h. Since in the
radial direction we make use of pseudo-spectral methods, our error will be dominated
by the resolution used in z direction, to which the grid spacing h alludes to. For the
analysis done in this section we therefore always make use of the same resolution in the
radial direction.

We have correspondingly evolved the configuration with hc = L/20, hm = L/30 and
hf = L/40; the expected convergence factor expected for fourth order convergence would
therefore be Q ≈ 5.94. The results obtained for the energy density at t = 10L can be seen
in figure 4.2, where the differences |fhm−fhf | have been amplified byQ = 5.94. The results
show fourth-order convergence. We have further verified that the values obtained for our
medium resolution run are within ∼ 0.4% of the fourth-order Richardson-extrapolated
ones, giving us an estimate of the error incurred in the simulation.

4.4 Results

Using the code detailed in section 4.2 one can simulate shock-wave collisions and explore
the parameter space of theories, temperatures for the final plasma, and the projectile
features. Unlike in the conformal case, in which the physics only depends on the
dimensionless “thickness” µω [55], in the present models the physics depends also on
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the initial transverse energy density in units of the source, µ/Λ. We simulate collisions
of 1/2 -shocks and 1/4 -shocks in the terminology of [55] (µω = 0.30 and µω = 0.12,
respectively) for several different values of µ/Λ. We then extract the boundary stress
tensor and we focus on its value at mid-rapidity, z = 0, as a function of time.1 We choose
t = 0 as the time at which the two shocks would have exactly overlapped in the absence
of interactions [55].

We define the hydrodynamization time, thyd, as the time beyond which both pressures
are correctly predicted by the constitutive relations of first-order viscous hydrodynamics,

P hyd
L = Peq + Pη + Pζ , (4.62)

P hyd
T = Peq −

1

2
Pη + Pζ , (4.63)

with a 10% accuracy, so that ∣∣∣PL,T − P hyd
L,T

∣∣∣
P̄

< 0.1 . (4.64)

In (4.62) we have denoted by Pη and Pζ the shear and the bulk contributions to the
hydrodynamic pressures, respectively, which are proportional to the corresponding
viscosities. The different coefficients in front of Pη in these two equations reflect the
tracelessness of the shear tensor. We define the EoSization time, tEoS, as the time beyond
which the average pressure coincides with the equilibrium pressure with a 10% accuracy,
meaning that ∣∣P̄ − Peq∣∣

P̄
< 0.1 . (4.65)

We expect on physical grounds that increasing the initial energy in the shocks increases
the energy deposited in, and hence the hydrodynamization temperature of, the resulting
plasma. We have confirmed that, indeed, Thyd/Λ increases monotonically with µ/Λ. On
the gravity side this means that, for sufficiently large (small) µ/Λ, the horizon forms
in the UV (IR) region of the solution, where the geometry is approximately AdS. As a
consequence, in these two limits the plasma formation and subsequent relaxation proceed
approximately as in a CFT. In contrast, for µ∼Λ the relaxation of the plasma takes

1We employ as a regulator a background thermal bath with an energy density between 0.8% and 2.5%
of that at the centre of the initial shocks. We simulate each collisions with several different regulators
and extrapolate to zero regulator.
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place in the most non-conformal region where the bulk viscosity effects are largest. In
this intermediate region we see several effects that are absent in a CFT.

First, hydrodynamization times are longer than in a CFT. This is illustrated by the
dashed, red curve in Fig. 4.3 (bottom) whose maximum, indicated by the first vertical line
from the left, is 2.5 times larger than the conformal result, which is indicated by the hori-
zontal line.2 As expected, at high Thyd/Λ we see that thydThyd asymptotically approaches
its conformal value (we have checked that at Thyd/Λ = 4.8 the difference is 0.5%). We
expect the same to be true at low Thyd/Λ.

3 The increase in the hydrodynamization
time is qualitatively consistent with the increase in the lifetime of non-hydrodynamic
quasi-normal modes found in [1, 37,39,83–86,105]. A heuristic explanation on the gravity
side comes from realizing that the larger the non-conformality, the steeper the scalar
potential becomes. As the plasma expands and cools down, the horizon “rolls down
the potential”. It is therefore intuitive that steeper potentials make it harder for the
non-hydrodynamic perturbations of the horizon to decay.

Second, the equation of state is not obeyed out of equilibrium. This is illustrated
in Fig. 4.4 (bottom) for a collision of 1/4 -shocks with µ/Λ = 0.94, for which the
hydrodynamization temperature is Thyd/Λ = 0.24. We see that the equilibrium and the
average pressures are not within 10% of one another until a time tEoS = 9.6/Λ = 2.4/Thyd.
This is further illustrated in Fig. 4.3 (bottom), which shows the dependence of the
EoSization time on the hydrodynamization temperature for 1/2 -collisions. We see that
for sufficiently large µ/Λ the EoSization time becomes negative, meaning that the average
and the equilibrium pressures differ by less than 10% even before the shocks collide. The
reason is simply that in these cases the energy density in the Gaussian tails in front of
the shocks, which start to overlap at negative times, becomes much higher than Λ. At
these energy densities the physics becomes approximately conformal and the equation of
state becomes approximately valid as a consequence of this symmetry. An analogous
argument implies that tEoS should also become negative for collisions with sufficiently
small µ/Λ.3

Third, hydrodynamization can take place before EoSization. Indeed, we see in Fig. 4.3
(bottom) that thyd < tEoS for collisions for which the hydrodynamization temperature is
between the first and the fourth vertical line. Comparing with Fig. 4.3 (top) we see that
at these two temperatures the viscosity-to-entropy ratios are ζ/s = 0.025 and ζ/s = 0.017,

2This value differs from that in [55] because [55] used a 20% criterion to define thyd.
3Although we have not been able to verify this explicitly because simulations in this regime become
increasingly challenging, Fig. 4.3(bottom) is consistent with this expectation.
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Figure 4.3: (Top panel) Bulk viscosity over entropy density as a function of temperature.
(Bottom panel) Hydrodynamization and EoSization times as a function of the
hydrodynamization temperature for collisions of 1/2 -shocks. The vertical grid
lines lie at T/Λ = {0.15, 0.19, 0.31, 0.38} and mark, respectively, the lowest value
of Thyd/Λ that we have simulated, the maximum of thydThyd, the point with the
largest ratio of tEoS/thyd, and the intersection between the two curves. The bulk
viscosity at these temperatures is ζ/s = {0.025, 0.028, 0.023, 0.017}. The top
horizontal line indicates the result in a CFT, thydThyd = 0.56.2
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Figure 4.4: Longitudinal, transverse and average pressures, their hydrodynamic approxima-
tions, and the equilibrium pressure extracted from the equation of state, all in
units of Λ4, for a collision of 1/4 -shocks with µ/Λ = 0.94. The hydrodynamization
temperature is Thyd/Λ = 0.24. Because the transverse pressure hydrodynamizes
much faster than the longitudinal one, PT and P hydT are virtually on top of one
another for the times shown. Hydrodynamization and EoSization take place at
thydΛ = 4.2 and tEoSΛ = 9.6, respectively, as indicated by the vertical lines. At
thyd the difference between P̄ and is 18%, whereas the difference between P̄ and
P̄hyd is 2%. At tEoS the difference between PL and P hydL is 3%. The PT /PL ratio
is 4.4 at thyd and 1.9 at tEoS .
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respectively. Note that the first value of ζ/s would decrease if we were to consider the
lower temperature at which we expect that the two curves in Fig. 4.3 (bottom) will have a
second crossing. Also, note that the ordering of thyd and tEoS depends on the accumulated
effect of the bulk viscosity along the entire history of the collision. Notwithstanding these
caveats, we will take the value ζ/s = 0.025 as a conservative estimate of the minimum
bulk viscosity needed to have thyd < tEoS for 1/2 -collisions. The maximum value of the
ratio tEoS/thyd for 1/2 -collisions is tEoS/thyd = 2.56.

Regardless of the ordering of tEoS and thyd, these times are always shorter than the
isotropization time beyond which PL and PT differ from one another by less than 10%.
This is apparent in Fig. 4.4.

4.5 Discussion

Eqs. hydro imply that the hydrodynamic viscous correction to the equilibrium pressure
is controlled by the bulk viscosity alone, since

P̄hyd = Peq + Pζ , (4.66)

whereas the viscous deviation from isotropy is controlled by the shear viscosity alone,
since

P hyd
L − P hyd

T = 3
2
Pη . (4.67)

We see from bulk that the reason why hydrodynamization can take place before EoSization
is because hydrodynamics becomes applicable at a time when bulk-viscosity corrections
are still sizeable. This is illustrated in Fig. 4.4 by the fact that hydrodynamics provides an
excellent prediction (within 2%) for P̄ at thyd, whereas at this time P̄ and Peq still differ
by 18%. The above statement is the analog of the fact that hydrodynamization can take
place before isotropization because hydrodynamics becomes applicable at a time when
shear-viscosity corrections are still sizeable [54]. In our model the bulk viscosity is rather
small compared to the shear viscosity, since ζ/η = 4πζ/s ' 0.35 at the temperature at
which ζ attains its maximum value. Presumably this is the reason why the difference
between PL and PT at thyd in Fig. 4.4 is much larger than that between P̄ and Peq.

Our results indicate that relaxation in non-conformal theories follows two qualitatively
different paths depending on the bulk viscosity. If ζ/s . (ζ/s)cross then EoSization
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precedes hydrodynamization, whereas for ζ/s & (ζ/s)cross the order is reversed. Although
we may take the cross-over value (ζ/s)cross∼ 0.025 obtained from 1/2 -collisions as repre-
sentative, we emphasize that this depends not just on the model but on the specific
flow under consideration. For example, we expect (ζ/s)cross to take a smaller value for
1/4 -collisions since in this case the gradients are larger than for 1/2 -collisions [55]. Note
that along either of these paths, correlation functions, such as two point functions, may
still differ from their thermal values, as explicitly demonstrated in [106,107].

Heavy ion collisions provide an excellent laboratory in which to study experimentally
these two paths to relaxation. Indeed, although at very high temperatures the deconfined
phase of QCD is approximately conformal, with very small values of ζ/s, estimates of this
ratio indicate that, in the vicinity of the critical temperature, Tc, a fast rise takes place to
values as large as ζ/s ' 0.3 [108]. Despite the fact that ζ/s is only sizeable in a relatively
narrow region around Tc, it has been shown to have an important effect on the late-time
hydrodynamic description of the QGP created at RHIC and the LHC [73,109–117]. Our
results suggest that the value of ζ/s may also have an impact on the early-time process of
hydrodynamization. This may be investigated by comparing collisions of different systems
with varying energies. For most central collisions at top RHIC or LHC energies, the
initial temperature is well above Tc and hydrodynamization proceeds as in a conformal
theory. However, in peripheral collisions or in central collisions at lower energies, such
as those at the RHIC energy scan, the hydrodynamization temperature is reduced and
the corresponding bulk viscosity may be sufficiently large to delay EoSization until
after hydrodynamization. Another exciting possibility is to consider collisions of smaller
systems, such as p− Pb, d− Au, 3He− Au or p− p collisions. As it has been recently
discovered, these systems also show strong collective behaviour [118–122,122,123] that is
well described by hydrodynamic simulations [74–76,124–128] that include non-zero values
of the bulk viscosity (see [129] for a review of collective effects in this type of collisions).
As stressed in [126], the temperature range explored by these smaller systems is narrowly
concentrated around Tc. These makes them ideal candidates with which to explore
the effect of transport coefficients, in particular of the bulk viscosity. The comparison
between the early-time dynamics of these small systems and heavy ion collision is an
excellent framework in which to explore the different relaxation paths uncovered here.



Chapter 5

Phase transitions and instabilities

5.1 Background

5.1.1 Transitions and critical point

When considering physics at zero baryonic density, the phase structure of QCD is limited
to a confining region and an asymptotic free plasma separated by a rapid cross-over
(with the first evidence of it coming from the lattice [130]). However, upon adding the
baryonic chemical potential (µb) into the phase diagram, the diversity of phases and
transitions accessible increases dramatically (see [131,132] for recent reviews on the topic).
Although the nature of the phase diagram is only conjectured for most of its parameter
space, there are some regions in where calculations are possible. For instance, lattice
QCD and chiral effective theories can give information of the nature of the transitions at
the axes of the phase diagram; thanks to them we know there is a cross-over in the T
axis, and a first order phase transition on the µb one (see fig. 5.1). The presence of this
two kinds of transition motivates the existence of a critical point at a high T but also
high µb. Unfortunately, the existing heavy ion colliders have long been unable to access
high enough densities necessary to observe the critical point and its exotic properties. It
is because of this, that the construction – or reconditioning – of synchrotrons able to
achieve such densities started already some years ago, and the first preliminary results
have been given by RHIC [133].

Due to the strong interactions and the large chemical potential, the traditional
techniques used for QCD calculations find insurmountable difficulties around the critical
point. Once again, the gauge/gravity correspondence can provide computational tools
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Figure 5.1: Schematic QCD phase diagram for the lower baryonic density region.

at regimes other approaches fail. It is important to keep in mind that holography
does offer toy models that are not QCD, and that these are only probed at very large
coupling. Following the bottom-up approach, holography has already been used to provide
gravitational duals to gauge theories with a critical point [134,135]. The recreation of a
critical point requires both a non-trivial RG flow and the presence of a conserved current,
which can be achieved by combining models such as the ones presented in chapters 2 and
3. One of the ultimate goals of this program would be to provide realistic shock-wave
collisions close to the critical point, and make contact with the future experiments.
Nevertheless, a previous step necessary to understand the effects of transitions in the
dynamics will be using simpler models with no conserved currents, but showing phase
transitions.

In this chapter we will show that the model presented in chapter 3 can indeed contain
first and second order phase transitions, added to the cross-over already described. To
observe such transitions one needs to consider imaginary values for the parameter present
in the potential, φM . In addition, we will explore the spinoidal instabilities present in
these models, which can be seen in the gravity side of the duality as Gregory-Laflamme
instabilities. Finally, and perhaps is the most surprising result, we will show that the
final end-point of these instabilities are inhomogeneous states well described with second
order hydrodynamics.
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5.1.2 Hydrodynamics

Hydrodynamics is one of the most successful theories in physics, capable of describing the
dynamics of very different systems over an enormous range of length scales. Traditionally,
it is thought of as an effective theory for the conserved charges of a system, constructed
as a derivative expansion around local thermal equilibrium. From this perspective
hydrodynamics is only expected to be valid when these gradient corrections are small
compared to all the microscopic scales. However, in recent years it has been discovered
that the regime of validity is actually much broader.

From an experimental viewpoint, hydrodynamics has been extremely successful at
describing the post-collision dynamics of the drops of matter produced in ultra-relativistic
collisions of large nuclei at RHIC[136–138] and the LHC[139–141,141]. Although the size
of these drops is just a few times larger than the relevant microscopic scale, multi-particle
correlations in these collisions are well described by hydrodynamics [11,12,142–146],
provided one assumes that the latter is valid in the presence of large gradients [147].
Also, the recent finding of similar correlations in even smaller proton-proton collisions
[123,148,149] provides a strong indication that hydrodynamics is applicable even at a
baryonic scale [74,75,125,150]. From a theoretical viewpoint, studies of non-abelian
gauge theories have shown that hydrodynamics is valid for systems with large gradients
both at strong [2, 54,55,78,102] and weak coupling [20,151].

In this chapter we use the gauge/string duality to test the validity of hydrodynamics
in a theory with a first-order thermal phase transition. We place the theory on a cylinder
in a variety of homogeneous, unstable initial states. We use the gravity description to
follow their evolution until they settle down to some static, inhomogeneous final state.
We then compare the time evolution and the final configurations to the hydrodynamic
prediction. Recent related work includes [36,82,152].

The formalism and numeric code used for the evolution in this chapter are the exact
same as the ones used in chapter 4.
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Figure 5.2: Example of multivaluation for the T function in terms of the scalar φH for the
model φM = 2.3i. Also depicting the speed of sound.

5.2 A twist to the non-conformal model

5.2.1 Extension of the parameter space

We begin by recalling the one-parameter family of potentials used in the two previous
chapters,

L2V = −3− 3

2
φ2 − 1

3
φ4 +

1

3φ2
M

φ6 +
1

2φ4
M

φ6 − 1

12φ4
M

φ8 . (5.1)

with L the asymptotic curvature radius, and now φM taking purely imaginary values
(note that it only appears in even powers). This is exactly the potential of chapter 3
and 4 except for the effective sign reversal of the fourth term in V . This difference has
dramatic implications for the thermodynamics of the gauge theory, which we extract
from the homogeneous black brane solutions of the gravity model using the same method
as in chapter 3. In particular, the gauge theory can now possess a phase transition,
as signalled by the multiplicity of black brane solutions with a particular temperature
(see fig. 5.2, where the temperature is depicted in function of the black brane labelling
variable φH). The thermodynamics of imaginary φM models connects smoothly with
the ones of the models explored in chapter 3. In fact, the parameter that manifests this
continuity in the model family is 1/φ2

M rather than φM . The models with very large φM
smoothly connect with the ones with imaginary φM and very large |φM |. Taking 1/φ2

M
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Figure 5.3: Left panel: S/T 3 in terms of the temperature. For models with Im[φM ] < 2.512
the system encounters a phase transition instead of a cross-over. Right panel: bulk
viscosity over shear viscosity, a proxy for the non-conformality of the system. The
maximum of this function increases with Im[φM ]

increasingly negative increases the steepness of the cross-over and the non-conformality
effects until the models encounter a (second order) phase transition at φM = 2.521i (see
fig 5.3). For models with Im[φM ] < 2.512, the phase transition is first order.

5.2.2 The φM = 2.3i case

In this chapter we will focus on the model given by φM = 2.3i, a model with a first
order phase transition in where the different phases are not separated by many orders of
magnitude. The phase structure of this model is concisely captured in fig. 5.4. States
on the dashed red curve are locally thermodynamically unstable since the specific heat
is negative, cv = dE/dT < 0. In this region the speed of sound, c2

s = s/cv, becomes
imaginary. The global stability of the states is given by the free energy; the states with
lowest F are the ultimately stable ones (see fig. 5.5). The existence of a locally unstable
range of energies leads to a dynamical, spinodal instability (see e.g. [153]) whereby the
amplitude of small sound excitations grows exponentially with a momentum-dependent
growth rate dictated by the sound dispersion relation:

Γ(k) ' |cs| k −
1

2T

(
4

3

η

s
+
ζ

s

)
k2 , (5.2)

where η and ζ are the shear and bulk viscosities. In our model η/s = 1/4π [16] and we
compute ζ numerically following [95].
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Figure 5.4: Energy density versus temperature for the gauge theory dual to (4.1). At high
and low T there is only one phase shown in dashed-dotted blue. The preferred
phase in the multivalued region is shown in solid purple. The dotted green curve
is metastable. The dashed red curve is locally unstable. The black vertical line
indicates Tc = 0.247Λ. The top (bottom) dashed, grey horizontal line indicates
the highest (lowest) average energy density that we have considered. The top
(bottom) dotted, grey horizontal line indicates the maximum (minimum) value of
the energy in the corresponding final states. The solid, black horizontal line is the
state for which we show specific results.
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presense of an instability in the range of temperatures for φM = 2.3i. Top right
panel: free energy in terms of T for the same model. In red dashed it is depicted
the locally unstable branch in both plots. Bottom panel: bulk viscosity, proxy for
non-conformality.
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5.3 Inhomogeneous horizon

To investigate the fate of the spinodal instability we compactify the gauge theory direction
z on a circle of length L ' 57/Λ. This infrared cut-off reduces the number of unstable
sound modes to a finite number. We then consider a set of homogeneous, unstable initial
states with energy densities in the range E/Λ4 ' (0.002, 0.016), as indicated by the
grey, dashed horizontal lines in Fig. 5.4. For concreteness we will show results for the
state with E/Λ4 ' 0.0096, whose temperature and entropy density are Ti ' 0.251Λ and
si = 0.037Λ3. To trigger the instability, we introduce a small z-dependent perturbation in
the energy density corresponding to a specific Fourier mode on the circle. For concreteness
we will show results for the case with k = 3(2π/L) ' 1.3Ti. This mode is unstable with
positive growth rate Γ = 0.0247 Λ according to (5.2). For numerical simplicity we impose
homogeneity along the transverse directions.

On the gravity side the sound-mode instability may be viewed [154–156] as a Gregory-
Laflamme instability [157]. To initiate the evolution we choose to introduce, on top
of a thermal homogeneous solution, a sinusoidal perturbation in the a4 coefficient of
amplitude 10−4 times the equilibrium value. We follow it by numerically evolving the
Einstein-plus-scalar equations – using the same code as in chapter 4 – until the system
settles down to a state with an inhomogeneous Killing horizon with constant temperature
Tf = 0.250Λ. Note that this is close but not identical to Ti or Tc. From the dynamical

tΛ

zΛ

Figure 5.6: Energy density in units of Λ4/10−2 for the initial state indicated by the solid,
black horizontal line in Fig. 5.4, perturbed by the third Fourier mode. The color
coding on the final-time slice is the same as in Fig. 5.4.
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Figure 5.7: Time evolution of some Fourier modes of the energy density E . The dashed
horizontal line is the average energy density.

metric we extract the boundary stress tensor. The result for the energy density is shown
in Fig. 5.6. The time dependence of the amplitudes of several modes of the energy density
is shown in Fig. 5.7. The n = 3 mode grows with a rate that agrees with (5.2) within
4%. Resonant behavior makes the modes with n = 6, 9, . . . grow at a rate that is roughly
the corresponding multiple of the n = 3 rate. Numerical noise makes some non-multiples
of the n = 3 mode (of which only three are shown in the figure) grow too. At late times
the non-linear dynamics stops the growth of all these modes and the system settles down
to a static, inhomogeneous configuration consisting of three identical domains. The fact
that their size is comparable to the inverse temperature, ∆z = L/3 ' 0.4/Tf , is our first
indication that spatial gradients are large.

In Fig. 5.8 we show the final entropy density as extracted from the area of the horizon.
The fact that s is not constant proves that the horizon itself (not just the boundary
energy density) is inhomogeneous. We see in the figure that s is very well estimated by
a point-wise application of the equation of state to the final energy density of Fig. 5.6,
suggesting that the evolution is quasi-adiabatic. This is confirmed by the fact the final
average entropy density is only 1% larger than the initial one.
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Figure 5.8: Top: final entropy density extracted from the area of the horizon (continuous,
blue curve) and estimated from the equation of state (dashed, black curve), in
units of Λ3/100. Bottom: energy profile of the final state.

5.4 Hydrostatic final sate

Previous holographic studies have established that hydrodynamics can describe the
evolution of the stress tensor in the presence of large gradients. Here we investigate
whether it can also describe the static inhomogeneous configuration at the endpoint of
the spinodal instability.

In the hydrodynamic approximation the stress tensor is expanded in spatial gradients
in the local fluid rest frame. Up to second order, the constitutive relations are

T hyd
µν = T ideal

µν − η σµν − ζ Π ∆µν + Π(2)
µν (5.3)

where, in the fluid rest frame, T ideal
µν = Diag{E , Peq(E)}, Peq(E) is the equilibrium pressure

of the homogeneous states shown in Fig. 5.4, σµν and Π are the sheer and bulk stresses,
and ∆µν is the projector onto the spatial directions. The tensor Π(2)

µν contains all the
second-order terms. In a non-conformal theory this tensor contains thirteen E-dependent
second-order transport coefficients and its explicit expression may be found in [158]. A
subset of these coefficients for the model of [1] has been computed in [159].
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In a static configuration the fluid three-velocity field is identically zero, the stress
tensor is diagonal, both σµν and Π vanish, and the leading gradient corrections are those
in Π(2)

µν . This tensor also simplifies since only two independent second-order terms survive
in this limit. In the Landau frame, the constitutive relations reduce to

P hyd
L = Peq(E) + cL(E)(∂zE)2 + fL(E)(∂2

zE) , (5.4)

P hyd
T = Peq(E) + cT(E)(∂zE)2 + fT(E)(∂2

zE) . (5.5)

The statement that hydrodynamics describes the final states is the statement that
the corresponding pressures are given by these equations with second-order transport
coefficients cL,T(E) and fL,T(E) that depend on the local energy density but not on any
other details of the final states. We have verified this state independence by varying both
the average energy densities within the range shown in Fig. 5.4 and the length of the
circle L.

Equivalently, a hydrodynamic description of the final states means that, once cL,T(E)

and fL,T(E) have been extracted from a given state (or computed microscopically ),
they can be used to predict the pressures of a different state given its energy density
profile. This is illustrated in Fig. 5.9, where we compare the true pressures obtained from
the gravity side for the end state of Fig. 5.6 with the hydrodynamic predictions (5.4)
and (5.5) based on coefficients extracted from a different state. It is remarkable that
hydrodynamics works despite the fact that the second-order terms in these equations
are as large as the equilibrium pressure, as can be seen in the figure from the difference
between the continuous gray curve and the true pressures. This is particularly dramatic
for the longitudinal pressure, PL, which must be z-independent since, in a static state,
conservation of the stress tensor reduces to ∂zT

zz = 0. While the equilibrium contribution
to PL inherits z dependence from the energy density, this modulation is precisely com-
pensated by the second-order contribution. We conclude that the second-order gradients
sustain the inhomogeneous state.

Taking the applicability of hydrodynamics one step further, we can use it to predict all
other static, inhomogeneous configurations. Time independence implies that PL must be
constant, which in the hydrodynamic approximation reduces to a second-order, non-linear
differential equation for E(z) via (5.4). This depends on two integration constants that
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Figure 5.9: Pressures of the end state of Fig. 5.6, in units of Λ4/104. The true pressures deviate

significantly from the Peq but are in excellent agreement with the hydrodynamic
predictions (5.4)-(5.5).

can be traded for the length of the circle (more precisely, the size of the domains) and
the average energy density. Once E(z) is known PT is predicted by (5.5).

5.5 Hydrodynamic evolution

The second-order coefficients that we have extracted also control the dynamical evolution
of the instability. However, unlike in the static final configuration, during the dynamical
evolution there are non-zero momentum fluxes, leading to a small but non-vanishing
three-velocity field. To approximate the full time evolution by hydrodynamics it is
thus necessary to include the first-order shear and bulk tensor contributions in (5.3).
Similarly, while the systems evolves there are additional second-order gradients beyond
those considered in Eqs. (5.4) and (5.5). However, these additional second-order terms
are quadratic in the velocity field and can be consistently neglected.

In Fig. 5.10 we show the time evolution of the pressures at z Λ = 0. The very
early time behavior is the exponential decay of the quasi-normal modes (QNM) that
are excited by the perturbation that we introduce to trigger the instability. After this
short time, the predictions of second-order hydrodynamics match the true pressures.
Second-order terms become increasingly important as the instability saturates, where
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the first-order approximation, let alone the equilibrium pressure, fails to predict the
true pressures while the second-order approximation continues to do so accurately. We
conclude that hydrodynamics with large second-order gradients describes the evolution
and the saturation of the spinodal instability.

PeqPL PT

PL
hyd

PT
hyd

PL
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-4
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t Λ
Figure 5.10: Time evolution of the pressures at Λz = 0, in units of Λ4/104. P hyd(1) denotes

the hydrodynamic pressure with only first-order terms included, whereas P hyd

includes these plus the second-order terms of Eqs. (5.4) and (5.5).

5.6 Discussion

We have uncovered a new example of the applicability of hydrodynamics to systems with
large gradients. As in other known examples, part of the reason behind this success is the
relaxation of the non-hydrodynamic QNMs at the relevant time scales of the evolution,
as in the early transient behaviour observed in Fig. 5.10. The analysis of the exponential
decay of these modes reveals that this process occurs over a time ΓQNM∼ c πT with
c ' 3.4, consistent with [39]. In contrast, for the unstable hydrodynamic mode, assuming
ζ/η∼ 1 and η/s = 1/4π, (5.2) yields the typical growth rate Γ∼ |cs|

2 πT , which in our
case is suppressed with respect to ΓQNM by the small value of |cs| ' 0.03. Although this
argument may explain why hydrodynamics provides a good description at intermediate
times, once the QNMs have decayed, it remains surprising that it also describes the
late-time evolution and the final state, where the spatial gradients are large. Moreover,
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it suggests that it would be interesting to explore other values of the parameter φM for
which the first-order transition becomes stronger and |cs| can become of order unity.

Our static inhomogeneous configurations do not describe the separation of the system
into two stable phases. For example, the maxima of the end state of Fig. 5.6 do not lie in
the green stable branch but in the red unstable branch of Fig. 5.4. Presumably, the reason
is that, if the available average energy density is small, the cost of the necessary gradients
for the peaks to reach the green stable branch makes the corresponding configuration
disfavored. Similar considerations seem to be responsible for the fact that the final state
of Fig. 5.6 exhibits three identical domains. More generally, our studies indicate that the
number of domains in the final state is correlated with, but not exclusively determined
by, the Fourier mode that is used to trigger the initial instability. In particular, entropy
considerations may play a role, since final states on circles of equal length with the same
average energy density but different number of domains have different entropies. It would
be interesting to perform an exhaustive analysis to determine all the possible static,
inhomogeneous states of the system by means of the gravitational and/or the hydrostatic
descriptions.



Chapter 6

Summary and conclusions

The gauge/gravity duality has proven to be a very useful tool in the understanding of
quantum field theories outside the perturbative regime. In particular, holography has
been able to shed light not only on generic mechanisms of strongly coupled theories, but
also on processes potentially occurring in experimental set-ups, such as the heavy ion
collisions. Experimental observations as small viscosities or fast hydrodynamization find
a natural explanation when the problem is expressed in terms of gravity and black holes.
Despite the successes, however, it is important to bear in mind that holography provides
computational tools for toy models rather than for QCD itself, and that these models are
usable only under certain assumptions. Nature is very often far more nuanced than the
models physicists use to describe it. In the case of heavy ion experiments and QCD there
are many features that are commonly coarse grained in the holographic computations.
For instance, non-trivial RG flows or baryon currents have not been included in the
holographic models until very recently, although these are very relevant to experiments,
and fundamental in critical phenomena.

In this thesis we present a series of works on the topics field theory and heavy ion
collisions that use applied holography and numeric GR as computational tools. The
unifying factor among them is that they consider gravitational set-ups beyond pure
gravity to describe the physics of conserved currents, non-trivial RG flows and phase
transitions.

• In chapter 2 we use an Einstein-Maxwell set-up to compute the collision of two
shock-waves with a conserved current and the hydrodynamization of the subsequent
plasma. This conserved current is used to model the baryonic charge deposition by
rapidity, observed in the experiments. The simulations are done with and without
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including the backreaction of the Maxwell field into the metric, which corresponds
to the quenched approximation for the effects of the baryon charge on the gluons.

The results for the rapidity profiles of the charge deposition show that there is a
strong dependence on the features of the initial projectiles, as it was already seen
previously for the energy profiles in [55]. The distributions of the charge follow
closely the ones for the energy, which implies a significant stopping of the baryon
fraction in this holographic collisions. The outcome from the simulations agrees
qualitatively with the experiments trend for low and moderate energy collisions,
but seems to fail to recover the data of high energy experiments. The mismatch
might be explained by the simplicity of the set-up used, with no fine structure in the
projectiles, or the very large coupling assumption, which for the very initial states
might not be correct. Regarding the effects of backreacting the charge into the
metric, the results show that they are small and linear in the value of the coupling
constant

• In chapter 3 we present a one parameter family of holographic non-conformal models.
By adding a scalar field with a polynomial potential to the pure gravity set-up we
can achieve a non-trivial RG flow between two fixed points in the dual field theory.
In this work we compute the thermodynamics and the quasi-normal modes spectra
for the homogeneous states, being the latter of the main results of the chapter.

The inclusion of the scalar field in the gravitational set-up adds an extra channel
by which the system can thermalize back to equilibrium. The other main result
presented in this chapter is the changing in the preferred channel of equilibration
depending on the temperature. The reason for this is the switch in the ordering
of the imaginary part of the lowest quasi-normal modes with the temperature. At
very high temperatures, the equilibration process is dominated by the “bulk” mode,
consisting of fluctuations of the operator dual to the scalar field. Conversely, at low
temperatures the last mode to thermalize is the pressure anisotropy mode.

• In chapter 4 we present the first holographic shock-wave collisions in a non-conformal
model. To do so, we use the model introduced in chapter 3. In non-conformal
models the average pressure in equilibrium is not fixed by symmetry, but by the
equation of state. Out of equilibrium the average pressure might take any value,
giving a new probe for the equilibration of the system. When the plasma’s average
pressure is well approximated by the equation of state value, we say that the system
has “EoSized”.
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The main result of this work is the realization that the hydrodynamization might
happen before the system has EoSized. This means that the system’s stress-energy
tensor is well described by hydrodynamics well before the average pressure is by
the equation of state. This result is even more remarkable when noticing that the
equation of state is an ingredient of the hydrodynamic constitutive expression.

• Finally, in chapter 5 we explore a holographic model that can contain phase transi-
tions. This model is the same as the one presented in chapter 3, but now taking
pure imaginary numbers for the controlling parameter.

In an effort to understand the instabilities present in models with phase transitions,
we trigger and evolve a spinoidal instability to its inhomogeneous end state. This is
done by adding a small perturbation to a uniform black brane in the locally unstable
branch, triggering a Gregory-Laflamme type instability in the gravity side. The
most remarkable result found in the simulation is that both the evolution and the
final result are well described by second order hydrodynamics.
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Capítol 7

Resum en Català

7.1 Què ens ha dut fins aquí

La teoria quàntica de camps (QFT n’és l’acrònim en anglès) és a la vegada un gran èxit
i un problema obert de la física contemporània. Gràcies a ella, s’han pogut entendre
l’estructura i interaccions que regeixen el món subatòmic, i d’aquesta manera predir amb
precisió un gran nombre de fenòmens fonamentals. Malauradament, però, el control que
tenim sobre les QFTs es restringeix genèricament al règim en el qual hom pot utilitzar
expansions pertorbatives. Fora d’aquest règim hi trobem multitud de casos pels que no
se’n té una comprensió completa, com son el sistemes fortament interactuants. En aquesta
categoria s’hi troben els nuclis atòmics, els superconductors, els super-fluids i el plasma
de quarks i gluons (QGP), sistemes per als quals només en tenim un enteniment limitat
a situacions en equilibri, o amb un alt grau de simetria. Per tal de poder comprendre
aquests sistemes, així com també per assolir una comprensió vertadera de les teories
quàntiques de camps, seran necessaris noves tècniques i formalismes.

Un cas paradigmàtic de teoria quàntica de camps amb fases fortament acoblades és
la cromodinàmica quàntica (QCD), la teoria que descriu la força nuclear forta. Amb
l’objectiu d’entendre en profunditat la QCD i la seva dinàmica, és va iniciar a la dècada
de 1970 el programa de col·lisions de ions pesants. Aquest programa experimental té
com a objectiu crear, mitjançant acceleradors de partícules, fases de QCD de-confinades i
estudiar-ne les seves propietats. Paral·lelament als experiments, s’han anat desenvolupant
marcs teòrics per poder explicar els resultats experimentals com son QCD al “lattice”,
la hidrodinàmica o l’holografia. Malgrat tot, encara s’està molt lluny d’obtenir una
explicació completa de la dinàmica fora de l’equilibri observada en les col·lisions.
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Entre els nous formalismes utilitzats per a descriure sistemes fortament acoblats,
com les col·lisions d’ions pesants, hi ha la dualitat “gauge/string” , que fou descoberta
l’any 1997 i és coneguda popularment com a holografia. La dualitat “gauge/string” és
una correspondència entre dues teories – una teoria gauge i una teoria de cordes – que
permet fer càlculs en una de les dues teories per mitjà de la seva dual. Tot i el gran
potencial de l’holografia, és important no oblidar que no es coneix el dual gravitatori de
QCD i que un s’ha de conformar en fer fer càlculs per a teories similars a aquesta. La
correspondència es pot fer servir per relacionar un plasma fortament acoblat i el seu dual,
forats negres en un espai asimptòticament anti-de-Sitter (AdS), on els càlculs resulten
factibles. Així, per simular la col·lisió d’ions pesants s’evoluciona numèricament la col·lisió
d’ones gravitatòries en AdS, i la subseqüent relaxació del seu horitzó d’esdeveniments.

7.2 Contingut de la tesi

En aquesta tesi s’hi presenten un seguit de treballs emmarcats en el camp de l’holografia
aplicada, on s’hi considera dinàmica en models més enllà de gravetat pura.

7.2.1 Col·lisions amb càrrega bariònica

Per facilitar els càlculs que comporta l’evolució numèrica, en la majoria dels casos es
treballa amb el model hologràfic més simple possible: gravetat pura. Aquesta elecció
comporta, però, limitacions importants. L’únic observable accessible en una col·lisió
en gravetat pura és el tensor energia-moment. La física de corrents conservats, com el
corrent bariònic, queda fora de l’abast d’aquestes simulacions.

En el capítol 2 s’hi mostra la primera simulació de col·lisions fent servir l’acció
d’Einstein-Maxwell per al dual gravitatori. Això ens permet estudiar la dinàmica d’un
corrent conservat i modelar el comportament de la càrrega bariònica en les col·lisions
d’ions reals, observable en els experiments.

7.2.2 Estudi prop de l’equilibri per a models no conformes

La teoria gauge dual a gravetat pura no és QCD sinó N = 4 Super Yang-Mills, una
teoria conforme que té similituds importants amb QCD i que s’utilitza com a “toy model”
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d’aquesta. Tanmateix, el poder predictiu d’aquest model està limitat a molt altes energies,
on QCD és quasi conforme. A temperatures més baixes QCD mostra el seu caràcter no
conforme en fenòmens com els canvis de fase i el confinament, i N = 4 SYM deixa de
ser-ne una bona aproximació.

Una manera de trencar la simetria conforme en la teoria gauge és afegir un camp
escalar en el seu dual gravitatori. En el capítol 3 s’hi presenta i estudia un model de
gravetat i camp escalar amb un potencial que fa que la teoria gauge dual tingui un punt
fix a l’ultraviolat i un altre a l’infraroig. Entre els dos punts fixos s’hi situa un rang de
temperatures on es trenca la simetria conforme i s’hi poden observar En aquest capítol
també s’hi presenta el calcul dels modes quasi-normals sobre branes negres estàtiques,
que corresponen a les fluctuacions al voltant d’estats termals en equilibri per al plasma
dual. Una de les conclusions extreta d’aquest càlcul és que el sistema canvia de canal de
dissipació preferit depenent de la temperatura.

7.2.3 Col·lisions en models no conformes

En el capítol 4 es fa servir la família de models no conformes presentada en el capítol 3
per computar col·lisions d’ones de xoc. Aquestes simulacions resulten en un model més
aproximat als experiments de col·lisions d’ions reals, on la dinàmica succeïx en presència
de viscositat de volum.

En aquest model el valor de la traça del tensor energia moment és proporcional al
valor esperat de l’operador dual al camp escalar, que no està fixat per simetria. Això ens
proporciona un observable que mesura l’equilibri local i que s’afegeix a la isotropia de
pressions i la hidrodinamització pròpiament dita. Un dels resultats més sorprenents de
les simulacions és que la hidrodinamització pot succeir molt abans de l’equilibració de la
traça.

7.2.4 Transicions de fase i inestabilitats

En l’últim capítol de la tesi s’hi presenta una extensió en l’espai de paràmetres per a la
família de models no conformes presentada en el capítol 3. Si hom pren valors imaginaris
per al paràmetre que controla la no-conformalitat del model, aquest mostra un cross-over
cada cop més pronunciat fins arribar a una transició de fase. Motivat per l’espai de
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fases de QCD, en aquest capítol s’hi estudia la dinàmica del model amb presència d’una
transició de fase.

En les transicions de fase de primer ordre hi ha una interval d’energies per al qual els
estats d’equilibri no són estables. Fent servir el codi numèric presentat en el capítol 4,
evolucionem l’inestabilitat present en aquestes fases i constatem que tant l’estat final
com l’evolució en sí està ben descrita per hidrodinàmica de segon ordre.
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