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Abstract

The ability to fly has greatly expanded the possibilities for robots to perform surveillance,
inspection or map generation tasks. Yet it was only in recent years that research in aerial robotics
was mature enough to allow active interactions with the environment. The robots responsible
for these interactions are called aerial manipulators and usually combine a multirotor platform
and one or more robotic arms.

The main objective of this thesis is to formalize the concept of aerial manipulator and present
guidance methods, using visual information, to provide them with autonomous functionalities.

A key competence to control an aerial manipulator is the ability to localize it in the environ-
ment. Traditionally, this localization has required external infrastructure of sensors (e.g., GPS or
IR cameras), restricting the real applications. Furthermore, localization methods with on-board
sensors, exported from other robotics fields such as simultaneous localization and mapping
(SLAM), require large computational units becoming a handicap in vehicles where size, load,
and power consumption are important restrictions. In this regard, this thesis proposes a method
to estimate the state of the vehicle (i.e., position, orientation, velocity and acceleration) by
means of on-board, low-cost, light-weight and high-rate sensors.

With the physical complexity of these robots, it is required to use advanced control tech-
niques during navigation. Thanks to their redundancy on degrees-of-freedom, they offer the
possibility to accomplish not only with mobility requirements but with other tasks simultane-
ously and hierarchically, prioritizing them depending on their impact to the overall mission
success. In this work we present such control laws and define a number of these tasks to drive
the vehicle using visual information, guarantee the robot integrity during flight, and improve
the platform stability or increase arm operability.

The main contributions of this research work are threefold: (1) Present a localization tech-
nique to allow autonomous navigation, this method is specifically designed for aerial platforms
with size, load and computational burden restrictions. (2) Obtain control commands to drive
the vehicle using visual information (visual servo). (3) Integrate the visual servo commands into
a hierarchical control law by exploiting the redundancy of the robot to accomplish secondary
tasks during flight. These tasks are specific for aerial manipulators and they are also provided.

All the techniques presented in this document have been validated throughout extensive
experimentation with real robotic platforms.
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Resum

La capacitat de volar ha incrementat molt les possibilitats dels robots per a realitzar tasques
de vigilancia, inspeccié o generacié de mapes. Tot i aix0, no és fins fa pocs anys que la recerca
en robotica aeria ha estat prou madura com per comencar a permetre interaccions amb I'entorn
d’'una manera activa. Els robots per a fer-ho s’anomenen manipuladors aeris i habitualment
combinen una plataforma multirotor i un brag robotic.

L’objectiu d’aquesta tesi és formalitzar el concepte de manipulador aeri i presentar métodes
de guiatge, utilitzant informacié visual, per dotar d’autonomia aquest tipus de vehicles.

Una competencia clau per controlar un manipulador aeri és la capacitat de localitzar-se en
I'entorn. Tradicionalment aquesta localitzacié ha requerit d’infraestructura sensorial externa
(GPS, cameres IR, etc.), limitant aixi les aplicacions reals. Pel contrari, sistemes de localitzacié
exportats d’altres camps de la robotica basats en sensors a bord, com per exemple metodes de lo-
calitzacid i mapejat simultanis (SLAM), requereixen de gran capacitat de comput, caracteristica
que penalitza molt en vehicles on la mida, pes i consum eléctric son grans restriccions. En aquest
sentit, aquesta tesi proposa un metode d’estimacié d’estat del robot (posicio, velocitat, orientacid
i acceleracid) a partir de sensors instal-lats a bord, de baix cost, baix consum computacional i
que proporcionen mesures a alta freqiiencia.

Degut a la complexitat fisica d’aquests robots, és necessari I'is de técniques de control
avancades. Gracies a la seva redundancia de graus de llibertat, aquests robots ens ofereixen
la possibilitat de complir amb els requeriments de mobilitat i, simultaniament, realitzar tasques
de manera jerarquica, ordenant-les segons I'impacte en 'acompliment de la missid. En aquest
treball es presenten aquestes lleis de control, juntament amb la descripci6 de tasques per tal de
guiar visualment el vehicle, garantir 'integritat del robot durant el vol, millorar de l'estabilitat
del vehicle o augmentar la manipulabilitat del brac.

Aquesta tesi es centra en tres aspectes fonamentals: (1) Presentar una técnica de localitzacié
per dotar d’autonomia el robot. Aquest metode esta especialment dissenyat per a plataformes
amb restriccions de capacitat computacional, mida i pes. (2) Obtenir les comandes de control
necessaries per guiar el vehicle a partir d’informacio visual. (3) Integrar aquestes accions dins
una estructura de control jerarquica utilitzant la redundancia del robot per complir altres tasques
durant el vol. Aquestes tasques son especifiques per a manipuladors aeris i també es defineixen
en aquest document.

Totes les tecniques presentades en aquesta tesi han estat evaluades de manera experimental
amb plataformes robotiques reals.
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Introduction

Human beings have always tried to surpass their own capabilities. This overcoming instinct
and the continuous evolution of technology have led, at the beginning of the last century,
to important advances in the fields of robotics and aeronautics, to such a degree that the
ability to fly became not only a skill reserved to the animal kingdom, but a feasible, reliable
and even needed type of transport in modern societies. While commercial planes became
part of daily life, the development of other types of aerial vehicles also experienced important
boosts, e.g. multirotors. However, all these apparatus had an important restriction: their control
required complicated abilities, thus in all designs human pilots were required to operate from
aboard. It was not until the end of the twentieth century that technology offered the possibility
to substitute the human pilot by automatic control systems, leading to the first Unmanned Aerial
Vehicles (UAV) without the need to carry the load of human pilots. These UAVs were more
economical, small and light-weight than manned aerial vehicles, and provided the opportunity
to perform a new bunch of tasks without compromising pilot lives.

UAVs, and in particular multirotor systems, have substantially gained popularity in recent
years, motivated by their significant increase in maneuverability, together with a decrease in
weight and cost [Blosch et al., 2010; Tomi¢ et al., 2012]. UAVs are not usually required to
interact physically with the environment, but only to perform tracking, surveillance or inspection
tasks. Applications however are now appearing for cases in which physical interaction is needed.
Some examples are ARCAS!, AEROARMS' and AEROWORKS! EU funded projects with the aim
to develop UAV systems with advanced manipulation capabilities for autonomous industrial
inspection and repair tasks. This new type of aerial vehicles are named Unmanned Aerial
Manipulators (UAM) and consist of a multirotor platform (able to navigate, hover in position or
take-off and land vertically) with one or more robotic manipulators, usually endowed below, to

interact with the environment.

This thesis is focused on the navigation of UAMs by means of visual information, entailing

Lwvw arcas—-project.eu, www.aeroarms—-project.eu, www.aeroworks2020.eu
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methods for robot state estimation (i.e., to obtain its position, orientation, velocity and acceler-
ation), and task oriented control. The motivation leading to this type of research is presented
next, followed by the specific objectives and scope of the thesis, and an outline of the approach

taken to meet such objectives, concluding with the scientific publications product of the work.

1.1 Motivation

There exist a number of situations where humans must but cannot operate. Dangerous or
hazardous environments (e.g., zones contaminated with radiation) are clear examples because
human lives are at risk. In some other tasks, like inspection and maintenance in the industry,
human operations are with acceptable risks but carry large economic costs (e.g., repair of high
and inaccessible machinery parts). In most of those cases, deploying an autonomous UAM with
the ability to fly and manipulate is a reasonable solution.

UAMs are expected to navigate and move efficiently on different 3D scenarios depending on
their assigned tasks. With this purpose, several perception techniques have been developed in
recent years, such as those relying on external infrastructure, e.g. motion capture systems [Liu
et al., 2007], GPS [Nemra and Aouf, 2010] or RF beacons [Mueller et al., 2015], which may not
always be practical for UAM operations, specially outdoors. Alternatively, there exist a number
of methods embarking all hardware and software for self-localization, e.g. [Blosch et al., 2010],
however they generally require powerful computers. Regarding UAMs, where restrictions like
size, payload or computational burden are challenging, it is interesting the use of onboard,
small, and light-weight sensors such as cameras or inertial measurement units (IMU) to drive
autonomously the robot. The first part of this thesis is focused in solving such perception
challenges for accurate localization and guidance of UAMs in GPS-denied environments, dis-
tinguishing between navigation operations where a coarse localization (i.e., state estimation)
suffices to drive the vehicle, and manipulation tasks where visual servoing techniques must be
applied to reach the required localization precision.

The use of multirotors, specifically small-sized models called Micro Aerial Vehicles (MAVs),
have substantially gained popularity in the research community in recent years as UAM flying
platforms, motivated by the significant increase in maneuverability, together with a decrease in
weight and cost. The ability for MAVs to manipulate or carry objects greatly expanded the
types of missions achievable by such unmanned systems. High performance arms typically
weigh more than 10kg and cannot be supported by most commercially available small-sized
multirotors. However, recent developments suggest a trend change with platform payload
capabilities increasing and arm weights getting smaller [Korpela et al., 2011; Orsag et al.,
2013a].
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Flying with a suspended load is a challenging task since the vehicle is characterized by unsta-
ble dynamics in which the presence of the object causes nontrivial coupling effects and the load
significantly changes the flight characteristics. Given that the stability of the vehicle-load system
must be preserved, it is essential for the flying robot to have the ability to minimize the effects
of the arm in the flying system during the assigned maneuvers [Palunko et al., 2012]. Moreover,
multirotors are usually equipped with four, six or eight aligned coplanar propellers and, due
to their symmetric design, motion control is achieved by altering the rotation rate of one or
more of these propellers, thereby changing its torque load and thrust lift characteristics. With
these actuation techniques, multirotors become under-actuated vehicles with only 4 degrees-of-
freedom (DoF) at a high-level of control (e.g., one for the thrust and three torques), a restriction
that affects the manipulator base movements and thus must be considered during flight. In the
second part of this thesis we explore and present techniques to reduce such platform control

restrictions while reducing the coupling effects of endowing a light-weight serial arm.

1.2 Objectives and scope

During UAM missions we can distinguish two main navigation phases. First, the approaching
and exiting maneuvers were the vehicle is expected to navigate to, or from, a point where the
manipulation target is close enough to start interaction, or at least at sight. In a first instance,
this navigation requires the knowledge of our own position and orientation in the environment.
Hence, vehicle’s state estimation is one of the keys in this work. State estimation for small-sized
and light-weight platforms is a challenging task, due to the limited computing capacity that these
vehicles can carry, greatly reducing the admissible complexity of the onboard algorithms, and
the limited payload, greatly restricting both the weight and the physical dimensions of onboard
sensors. Our objective is to develop a state estimation method to compute the odometry of the
flying vehicle by means of light-weight sensors which can work at a high rate requiring low
computational burden.

A second navigation phase is determined for those situations where the robot should be
driven precisely to perform manipulation tasks. Physical interaction with the environment calls
for positioning accuracy at the centimeter level, which in GPS denied environments is often
difficult to achieve. In this regard, the use of vision (i.e., visual servo) is a widely adopted
solution to cope with unknown environments. The development of such visual servo techniques
is another purpose of this thesis.

In both navigation phases, flying with a suspended load is a challenging operation due to
undesired dynamic effects of the coupled bodies. But, as shown in this work, the attachment
of a manipulator arm to the base of the flying platform can be seen as a strategy to alleviate
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these effects. The arm lets us exploit the redundancy on DoFs of the overall system not only
to achieve the desired guidance tasks, but to do so whilst attaining also other tasks during the
mission, compensating for changes in weight distribution during arm operation and driving the
arm to a desired configuration with high manipulability, thus improving overall flight behavior.

In summary, the main goal of this thesis is to provide UAMs with autonomous navigation

capabilities. The necessary objectives are listed as follows:

Define UAM systems and characteristics regarding navigation and control tasks.

- Study odometry estimation methods, in terms of simple and light algorithms, using light-

weight, high-rate and low power-consuming sensors.
- Define visual servo techniques to be used within UAM settings.

- Integrate visual guidance operations in a control law considering a hierarchical task com-
position.

- Define specific tasks to alleviate undesired dynamic effects of the coupled bodies.

- Explore how the non-controllable DoFs of the platform must be considered in the task
designs and the hierarchical control law.

- Validate the presented techniques with simulation case studies and exhaustive experimen-

tation.

1.3 Thesis overview and reading guide

This thesis is organized in five Chapters. We want to mention that their order of appearance
does not exactly correspond to the chronological development of those topics, as happens in
many thesis. However, they follow an intuitive order regarding three main parts:

After this introductory chapter, we present the analysis and development of a state estimation
method specifically designed for MAVs or UAMs with restrictions in terms of payload and size
(Chapter 2). This state estimation technique allows us to close a control loop to drive the aerial
vehicle during the approaching or exiting phases, to or from the manipulation zone.

Secondly, classical visual servo approaches are studied and a method using uncalibrated
monocular cameras is presented (Chapter 3). These methods allow us to control the robot
during close interaction maneuvers by using local target detections.

Finally, the previous visual servo techniques are integrated within task control laws that
consider task stack priorization by taking advantage of the redundancy of the robot in terms of
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extra DoFs. Other tasks are also presented here to improve platform safety and flight behavior
(Chapter 4).
The next paragraphs outline the content of each Chapter with the related scientific publica-

tions of the thesis author.

- Chapter 1: We have presented so far the challenges and motivations to carry out this
thesis and the original objectives that we established at the beginning of this research.

- Chapter 2: We introduce the topic of state estimation for aerial vehicles and overview
current state-of-art methods suited for them. We define a fast and low-cost state estimation
method for small-sized UAVs (MAVs) which uses exclusively low-cost sensors and low-
complexity algorithms. In order to propose a simple algorithmic solution we investigate
the use of several variants of Kalman filters. Validation of the proposed method is shown
within simulations and real experiments. Two publications are related with this Chapter,

[Santamaria-Navarro et al., 2015a; Santamaria-Navarro et al., 2017b].

- Chapter 3: The concepts of visual guidance of aerial vehicles are here detailed. We
define the classical position-based and image-based visual servo approaches and develop
an image-based visual servo strategy to work with uncalibrated cameras. The techniques
are here compared using simulations (evaluations with real experiments are provided in
Chapter 4). Two publications are related with this Chapter, [Santamaria-Navarro and
Andrade-Cetto, 2013; Santamaria-Navarro et al., 2017a].

- Chapter 4: We present two flavors of a hierarchical control law to achieve not only the
visual servo but also other tasks taking into account specific priorities. Moreover, we
describe an optimization solution through a quadratic programming approach defined in
the acceleration domain. All tasks are also defined here and research results are presented
both in simulations and real experiments. Four publications are related with this Chapter,
[Santamaria-Navarro et al., 2014; Lippiello et al., 2016; Santamaria-Navarro et al., 2017a;
Rossi et al., 2017].

- Chapter 5: This Chapter summarizes and discusses all our contributions and closing

remarks. Future research lines arising from this work are also presented.

During the course of the development of this thesis, the author participated in other research
works, [Santamaria-Navarro et al., 2015b; Amor-Martinez et al., 2016]. Although those works
contributed to acquire acknowledge and develop techniques that indirectly benefited the final
result of the thesis, these are not included in this monograph not to diverge in scope and content.
Nonetheless, a comprehensive list of all scholarly publications produced in the course of this
thesis is provided in Section 5.2.
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2.1 Introduction

Micro aerial vehicles have gained significant attention in the last decade both in academia
and industry, mostly due to their potential use in a wide range of applications such as ex-
ploration [Tomi¢ et al., 2012], inspection [Ozaslan et al., 2015], mapping, interaction with
the environment [Forte et al., 2012; Thomas et al., 2014], search and rescue [Michael et al.,
2010b], and to their significant mechanical simplicity and ease of control. Moreover, their ability
to operate in confined spaces, hover in space and even perch, together with a decrease in cost
make them very attractive with tremendous potential as UAM flying platforms.

MAVs are in general nonlinear and highly unstable systems and a clever combination of
sensors and controllers must be devised to fly them autonomously in a robust and efficient way.
Most of the approaches model the aerial platform as two connected ideal subsystems and use a

nested control structure:

- A low-level attitude controller, usually running at 1 kHz and using the IMU readings as an

inclinometer to estimate the platform tilt.

- A high-level controller for global 3D positioning of the vehicle, usually running below

50 Hz and requiring more complex sensor suites.

With this nested scheme, the attitude controller has to be faster than the position controller
because of the vehicle’s high dynamics. To close these control loops and enable autonomous
missions with MAVs, a robust, accurate and high update rate state estimation pipeline is crucial.

In this chapter we present a fast and low-cost state estimation method for small-sized mul-
tirotors. We use exclusively low-cost and high-rate sensors together with low-complexity algo-
rithms to allow its use on board in computational units with low processing capacity.

As software, we have developed two Kalman filters, in the extended (EKF) and error-state
(ESKF) forms [Ravindra et al., 2012], together with a wide range of variations in the inner
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details, for the sake of performance evaluation and comparison. To show the feasibility of the
proposed estimation pipeline, a non-linear control law is also presented to drive autonomously
aerial platforms using the estimated state. This controller is fed with trajectories generated with
a planning approach also defined here.

To the knowledge of the authors, the papers related to this chapter, [Santamaria-Navarro
et al.,, 2015a; Santamaria-Navarro et al., 2017b], were the first examples of usage of such a
low-cost flow-range-inertial sensor setup for 6 DoF motion estimation, using also low complex-
ity algorithms without sophisticated features. This sensor setup has the advantage of being
simple, light-weight, low-cost and requiring low power-consumption, and it is already included,
with minor variations, in several commercial multirotors as their basic instrumentation, being
typically used as a means for automatic hovering.

This chapter is organized as follows. The next Section gives an overview of the state-of-
art on MAV localization systems. Basic concepts and notations are provided in Section 2.3.
Section 2.4 presents the sensor suite with the corresponding observation models. The system
kinematics are defined in Sections 2.5. Section 2.6 and 2.7 reveal the main filtering details. A
non-linear control law and a dynamically feasible trajectory planning approaches are presented
in Section 2.9. Section 2.10 contains simulations and experimental results that validate the
proposed methods. Finally, Section 2.11 concludes the work and provides a summary of main

contributions.

2.2 Related work

Low-cost, low complexity solutions for MAV state estimation are not very common. A first
family of localization systems relies on external infrastructure using GPS, RF beacons, visual
tags or infrared cameras, e.g. [Liu et al., 2007], which may not always be practical. When using
low-cost setups, these systems usually lack precision, dynamics, or both. A second family of
methods embark all hardware and software for self-localization, thus not relying on any external
setup. Assuming that a map is not available in advance, e.g. [Wendel et al., 2011] or [Lim
et al., 2012], the self-localization approaches include any kind of simultaneous localization and
mapping (SLAM) or odometry systems drawn from other robotics fields [Engel et al., 2012].
Good results have been obtained using stereo camera configurations [Kelly and Sukhatme, 2007;
Tomic et al., 2012; Shen et al., 2013], and RGB-D sensor systems [Shen et al., 2012; Michael
et al., 2012; Valenti et al., 2014; Loianno et al., 2015b]. However, these algorithms generally
require powerful computers to produce and deal with fairly dense point clouds. Moreover, RGB-
D sensors have low quality cameras and suffer during exposure to direct sunlight.

State estimation for small-sized and light-weight platforms is a challenging task, due to
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the limited computing capacity that these vehicles can carry, greatly reducing the admissible
complexity of the on-board algorithms, and the limited payload, restricting both the weight
and physical dimensions of the on-board sensors. Thus, solutions requiring bulky sensors like
RADARS or LIDARS are not yet an option.

Not surprisingly, combinations of IMU and monocular visual sensors are becoming very
popular, thanks to their low weight, power consumption and cost, and their ease of installation.
This constitutes a minimalist yet powerful sensor suite for autonomous localization, as it allows
recovering both the high motion dynamics and the localization with respect to the environment,
including scale and, most important for MAV navigation, the direction of gravity [Jones and
Soatto, 2011; Martinelli, 2013].

The processes of estimating the vehicle state using such sensors are known as visual-inertial
odometry (VIO, with no absolute localization) [Roumeliotis et al., 2002; Hesch et al., 2013; Li
and Mourikis, 2013; Shen et al., 2015], and visual-inertial SLAM (VI-SLAM, enabling absolute
localization by revisiting previously mapped areas) [Kelly and Sukhatme, 2011; Blosch et al.,
2010; Roussillon et al., 2011; Weiss et al., 2011; Fraundorfer et al., 2012]. The focus of our
work is not at building maps, and we concentrate on VIO.

There exist a multitude of VIO approaches. [Roumeliotis et al., 2002] obtain relative pose
measurements of a vehicle using two-frame feature based motion estimation and then augment
the information with IMU measurements. More recent approaches, [Mourikis and Roumeliotis,
2007; Li and Mourikis, 2013], implement the Multi-State Kalman Filter (MSKF), which estimates
a sliding window of camera poses in the filter state and uses feature measurements to impose

probabilistic constraints on the camera poses.

In [Konolige et al., 2011] a system is developed using a bundle adjustment technique where
each sensory system produces a pose estimate which gets fused with other pose estimates in
an EKF formulation. The pose estimate is sub-optimal since the existing cross-correlations
between internal states of the different devices are unused. Iterative minimization on a window
of poses within a filter using graphical models is presented in [Lupton and Sukkarieh, 2012].
As new poses are added and past observations are removed, the current window of states being
estimated is independent from the previous estimates with the advantage that errors are isolated

to the region where they occur.

The high precision outcome in most of the above-mentioned VIO methods is attained by
jointly estimating a subset of past camera poses and a number of landmarks in the environment,
which are tracked in the image over relatively long periods and require the estimation of a very
large state vector. These tracks are exploited either through the explicit representation of 3D
points in the form of landmarks in the map, or through the proper exploitation of the induced
epipolar constraints, creating a graph of constraints between vehicle states and landmarks,
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which is incrementally solved by nonlinear optimization. These VIO solutions are computation-
ally intensive, and require carefully optimized code to compensate for the limited computing
resources typical of MAVs.

To reduce the computational burden and to increase the update rate, several authors opt
to exploit the image information only locally and in 2D. [Weiss et al., 2012] proposes a speed-
estimation module, which converts the camera-IMU pair into a metric body-speed sensor at a
40 Hz update rate, using optical flow information of at least 2 image features, within an EKF
framework. A parallel tracking and mapping (PTAM) pipeline is tailored to the system, which
therefore requires on-board image processing. In [Omari and Ducard, 2013], flow information
is fused with inertial measurements. However, only simulation results are provided. A similar
approach [Blosch et al., 2014] presents a novel visual error term and uses a visual-inertial sensor
consisting on a synchronized global-shutter camera and IMU [Nikolic et al., 2014] to obtain
flow information, though running at 20 Hz. In this Chapter we present a similar method to fuse
IMU and flow readings but using a smart camera. This smart camera computes internally all
image processing required to obtain the optical flow, thus allowing a fast and simple algorithmic
solution for vehicle state estimation running on the main on-board computational unit.

We consider this combination of IMU and monocular visual sensors a minimal sensor suite
for autonomous localization because not all dimensions in the state are observable, e.g. [Mar-
tinelli, 2012; Martinelli, 2013; Hesch et al., 2013; Li and Mourikis, 2013]. The observability
analysis proves the theoretical observability of roll and pitch of the vehicle, and intrinsic sensor
calibration states (IMU biases). The extrinsic calibration (camera-to-IMU transformation) and
the map scale are observable in the system if tracking of image features are done over time. As
we exploit the image information only locally and in 2D we take advantage of a range sensor to
obtain the scale, and therefore, the speed of the vehicle. We aim at tracking position, velocity
and orientation using an IMU, a smart camera and a range sensor (either a sonar or an infrared
time-of-flight sensors). As stated later in Section 2.8 x, y, and yaw will not be observable and

thus subject to drift over time.

2.3 Basic concepts and notation

We consider a quadrotor, equipped with an IMU, a flow smart camera and a range sensor, moving
with respect to a global coordinate frame assumed inertial. All sensors are rigidly attached
together below the aerial platform, with the smart camera and range sensor both pointing
downwards. Their models and characteristics are specified in the following sections. The
platform or body frame is defined at the IMU frame, and the other sensor frames are calibrated
off-line with respect to it. All the image processing to obtain the flow is done by the smart
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Figure 2.1: Overview of the architecture pipeline for state estimation and control of the aerial vehicle.

camera.

We aim at tracking the vehicle’s state by integrating IMU measurements, and to correct these
estimates with velocity (i.e., either 2D planar velocities or image flow) and range readings,
observing in turn the IMU biases for their proper compensation. We then use the estimated state
to perform closed-loop control of the aerial platform. An overview of the architecture is depicted
in Figure 2.1.

The overall estimation system acts as an odometer that provides absolute altitude, velocity,
orientation, angular rate and acceleration, with respect to a precise gravity reference, at a rate
of 100Hz. The z and y positions and the yaw angle are not observable, and their output is
the result of an incremental estimation subject to drift —these modes can be observed with a
lower update rate by a higher level task, such as a visual servoing [Santamaria-Navarro and
Andrade-Cetto, 2013], explained in the following chapters.

When compared to other visual-inertial approaches, the optical-flow nature of the smart
camera, with a very narrow field of view (FoV) of only 64 x 64 pixels or 1.6° (compared to the
90° typical of VIO), represents an important limitation, in the sense that visual features are
only exploited locally both in space and time (i.e., there is no notion of multiple features being
tracked over long periods of time). The number and length of the feature tracks are key to
the high precision attained by the more sophisticated VIO methods, and in consequence, we
cannot expect equivalent performances. By contrast, the number and length of these feature
tracks are the ones responsible for the algorithmic complexity and CPU consumption. In our
case, the high filter update rate, made possible by the smart camera and range sensor, and by
our light algorithm, contributes to decrease the sensitivity to linearization errors, reducing the
accumulation of drift and thus enabling much simpler methods for an acceptable performance.

In this scenario, one key objective of this Chapter is to show that, given a sensor setup with
such capabilities, we are able to derive motion estimates that are useful in the mid term (a
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Filter type ‘ Quat. error ‘ Quat. integration ‘ Trans. Mat. Trunc.
ESKF GE, LE QOF, QO0B, Q1 F,Fy F;
EKF - QOF, QO0B, Q1 Fi,Fy F5

Table 2.1: Kalman filters and algorithm variations

few minutes, i.e., the typical flight times of a full battery recharge) to drive autonomously the
vehicle, without the need to implement complex algorithms. In order to defend the simplest
estimation solution, we benchmark a large number of algorithm improvements and variations
described in the literature, and show that their impact on system performance is minimal. This
should not be surprising given the high frequency of the measurements, but we believe that our
benchmarking provides valuable results for establishing good estimation practices.

The algorithm variations that we investigate are shown in Table 2.1, and are properly defined
later in the text. They are summarized hereafter, together with the key works that defended
them. First, we implement error-state (ESKF) and extended (EKF) Kalman filters [Madyastha
et al., 2011]. Second, we express the orientation errors of ESKF both in local (LE) and global
(GE) frames [Li and Mourikis, 2012]. Notice how in EKF the orientation error is additive and this
distinction is irrelevant. Third, we compare different schemes for rotational motion integration
of the quaternion [Trawny and Roumeliotis, 2005], including forward zeroth-order (QOF),
backward zeroth-order (QOB), and first-order (Q1). Fourth, we compare different integration
forms and approximations of the system’s transition matrix (F'i, F'5, F'3) [Li and Mourikis,
2013].

In order to describe the state estimation formulation for the ESKF and the EKF in subsequent
sections, we present here the following definitions.

In ESKF formulations, we speak of true-, nominal- and error-state, where the error-state
values represent the discrepancy between the nominal- and the true-state values. We denote
true states with a ¢’ subindex, x;; nominals with the plain symbol, x; and errors with a ‘¢’

prefix, dx. These are defined respectively as,

.
Ty = [pt Vi q; Qpt wbt} ERM, (2.1a)
T
T = [p v q ap wb} € R, (2.1b)
T 15
Sz = [5p sv 60 bay 5%} R (2.10)

where p, v, q are position, velocity and quaternion orientation (refer to Section 2.3.1 for
quaternion conventions), all expressed in the global world (inertial) frame, 6 are Euler angles,
and a; and wy, are accelerometer and gyrometer biases respectively. The error-state is modeled
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as a Gaussian distribution 6z ~ A (dx, P). In the following chapters the notation @ is adopted
to express a variable mean and similarly @ its estimated value.

These states are related by the composition
T, =x Do, (2.2)

where @ wraps the error dx onto the manifold of x. It corresponds to the trivial addition for all
state variables (e.g., p, = p + dp) except for the orientation. We use a minimal orientation error
80 € s0(3) C R3 living in the space tangent to the special orthogonal group SO(3) manifold
(i.e., in its Lie algebra so(3)). We contemplate orientation error definitions in the global frame
(GE) or in the local frame (LE); their composition is computed respectively with a product on
the left or right hand sides of the nominal quaternion,

global error (GE): q, =dq®gq, (2.3a)
local error (LE): g, = q® dq, (2.3b)

where 6q = q(66) = exp(560/2) is the orientation error in SO(3) expressed as a unit quaternion
—see Section 2.3.1 for details.

In EKF formulations, we directly estimate the true-state, which is modeled as a Gaussian
distribution x; ~ N (%, P).

2.3.1 Quaternion conventions and properties

We use, as in [Sola, 2012], the Hamilton convention for quaternions, which resumes to defining
the three imaginary numbers i, j and k so that ijk = —1. If we denote a quaternion “q;
representing the orientation of a local frame L with respect to a global frame G, then a generic

composition of two quaternions is defined as

“ge = “qL " qc (2.4a)

=9Qt Lq. (2.4b)
=1Q;%,, (2.40)
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-
where, for a quaternion q = |q,, ¢, ¢y qz] , we define Q" and Q™ respectively as the left-

and right- quaternion product matrices,

Qv —Yz _Qy —qz Qv —qz _Qy —qz

Q+ _ 9r  quw —qz Qy Q= 9z  qu qz —Qy . (2.52)
Qy qz qu —qx Qy —qz qQu qx
9> —qy (Qx qu 9z 4dy —4z Quw

Note that, in the quaternion product (2.4a), the right-hand quaternion is defined locally in the
frame L, which is specified by the left-hand quaternion.

A vector transformation from a local frame L to the global G is performed by the double

product

“o=C%,®"0® (“q)" (2.62)
=% o"0®"qq, (2.6b)

where we use the shortcut g ® ¢ = ¢® [0, o] for convenience of notation, and the notation (-)*

to indicate the conjugate of a quaternion.

Throughout this document, we note g(o) the quaternion and R(o0) the rotation matrix equiv-
alents to a generic orientation o. A rotation 8 = fu, of 6 radians around the unit axis u, can be

expressed in quaternion and matrix forms using the exponential maps

q(8) = 072 (2.7a)
- [ cos(6/2) ] (2.7b)
usin(f/2)
1
R(9) = 0 (2.7d)
= I +sin O[u]y +(1—cos 0) [u]% (2.7e)
VY I+[0]«, 2.79)

with I the identity matrix, and the notation [-|« representing the skew-symmetric matrix

0 —a. ay
[a]X - azz 0 _ar . (2.8)
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We also write R = R(q), according to

G+ e—a—0¢ 20ty — i) 2009 + quwiy)
R(q) = | 2(quqy + qw:) G —C+ai—a2  2(qyq: — Guda) (2.9)
Q(l]qu - Qwa) Q(Qy(h + Qw(].r) q/121; *quc 7(]54"13

Finally, the time-derivative of the quaternion is

1
q=5w)q (2.10)
_ %q@)w, (2.11)

with w the angular velocity in body frame, and €2 a skew-symmetric matrix defined as

0 —w'
Qw)2Q (w) = [ ] : (2.12)

2.4 Observation models

The observation models described hereafter are used in the filter propagation (IMU) and correc-

tion (smart camera and range sensor) steps.

2.4.1 Inertial measurement unit (IMU)

The IMU is composed of a 3-axis accelerometer and a 3-axis gyrometer providing, in body frame,
acceleration and angular velocity measurements respectively. The accelerometer measures ac-
celeration a; and gravity g (considered known and constant) together. The gyrometer measures
angular rates w;, which are already in body frame. These measurements are affected by additive
biases, a;; and wy;, and noises a,, and w,,. The IMU model reads,

as = R/ (a; — g) + ay +a, €R3, (2.13a)
W = Wi + Wy + wp e R3, (2.13b)

where R; £ R(q,) is the rotation matrix equivalent to the quaternion q,. The noises are modeled
by Gaussian distributions a,, ~ N (0, A,,) and w,, ~ N (0,,,).
2.4.2 Smart camera: sonar range with 2D linear velocity

The smart camera (PX4-Flow) integrates a monocular camera, an ultrasound range sensor
aligned with the optical axis, and a triaxial gyrometer. It provides raw optical flow (from now on
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referred to as just flow) at the principal point, a sonar range to a reflective surface, and 3-axial
angular rates (for the angular rates, in this Chapter we use the quadrotor’s IMU gyrometers
because they are of higher quality and already aligned with the vehicle frame). In addition, the
smart camera delivers horizontal velocities in metric scale, computed from all the input data. In
order to perform correctly, scene lighting must be adequate and the ground is required to have
good visual texture.

In a first sensor set we use the IMU together with sonar range readings and 2D linear
velocities from the smart camera. With the IMU model shown in Section 2.4.1, the observation
model of the smart camera for these measurements can be expressed in compact form as

R!p, +p,

hy(xy, ) = S
R} (R v + [wi]xP,)

+ 1y, (2.14)

where R/ = R(q,)" and n, ~ N(0, N,) is the measurement noise assumed to be Gaussian.
The true angular velocity w; (IMU frame) is obtained using (2.13b). p,, p., R, and R, are the
calibrated position and orientation of the sonar and camera respectively, calibrated off-line and
all expressed in IMU frame. As both sonar range and 2D linear velocities are computed by the
same sensor, we can consider p, = p. and R, = R, but they are here detailed for the sake of
completeness. S is a 3 x 6 matrix to select the required rows defined as

S = [03x2 I3.3 03><1} . (2.15)

The 2D planar velocity measurement, namely v,¢, is computed directly by the PX4 from its
own optical flow ¢, angular rates w,r, and altitude h,; measurements, according to

vo = L+ 8 (wof <[00 hofD , 2.16)
where f is the focal length of the PX4’s camera, expressed in pixels, and S’ = [ I, 02,1] is also
a selection matrix.

Although using the sonar range and the internally computed linear velocities allows us to
present a first simple and usable approach, we also want to explore the use of 2D raw flow and
add an external infrared (IR) range sensor, for the following reasons:

- The use of internally computed metric velocities has some implications hard to model in
the filter because the platform altitude and angular velocities play a role in their computa-
tion and some cross correlations arise. In contrast to these linear velocities, the raw flow is

not dependent on the filter state thus the process and measurement noises are decoupled.

- The sonar measurements have shown to contain important outliers [Santamaria-Navarro
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Figure 2.2: Field of view (FoV) and echo directions using sonar (left) and IR (right) rangers, compared
to the camera FoV of 1.6° (dashed). Due to the coarse directivity of the sonar, the strongest echoes are
likely to come from a direction perpendicular to the terrain surface, which may fall out of the FoV of
the camera, creating false visual-range associations on tilt maneuvers. This is avoided with the excellent
directivity of the IR ranger.

et al., 2015a; Ruffo et al., 2014] and we replace the sonar by an IR time-of-flight ranger [Ruffo
et al., 2014], which has higher precision and directivity. Compared to a sonar implemen-
tation (Figure 2.2-left), the IR ranger (Figure 2.2-right) has less outliers and ensures that
the range echo corresponds to the region observed by the camera (1.6° FoV), deriving in a
more predictable behavior that better fits the observation model.

The observation models of both 2D raw flow and IR range sensors are provided in the following.

2.4.3 Smart camera: 2D flow

Here we take advantage of the raw flow to define an observation function directly in the flow
space. The observation model of the flow and the required background are described in the

following.
.
Let w, 7 and ¢ denote respectively the world, IMU, and camera frames. Let “p = [C:c y Cz}
be a static 3D point in the ground (*z = 0), expressed in the camera reference frame ¢ as shown
in Figure 2.3. This point is projected onto the image according to the pin-hole model,
C
=P, (2.17)
with Py the projection matrix defined in (2.22) and “z the distance, measured along the optical
axis, from the optical center to the ground. Taking its time derivative we obtain the optical flow,

cpcz _ cpcz

- (2.18)

=P —
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Figure 2.3: World (w), IMU (i) and camera (c) frames and their relative transformations (curved arrows).
The IMU and camera are attached together forming a rigid body, with a twist {v;,w;} at the IMU, which
induces a twist {v.,w.} at the camera. A point p on the ground is defined along the camera’s optical axis
(its Z axis).

The smart camera computes the mean flow in a 64 x 64 pixels patch centered at the principal
T
point, giving a FoV of 1.6° around the optical axis. At the optical axis, we have “p = [0 0 Cz}
and (2.18) reduces to

c

p
Considering the smart camera in motion with a twist {v., “w.} defined in its own frame, the
velocity of the point in the camera frame is
p=—"v— “wc xp. (2.20)
Injecting this in (2.19) leads, after minor rearrangements, to

4P, Cw,, (2.21)

c
v
b

where the matrices P; and P, can be expressed in terms of the camera’s focal distances f,, and

[y, measured in horizontal and vertical pixels, respectively, with

Pf:[f“’f 0 0], PX:[O fo 0]. (2.22)
0 fy O —fy 0 0

To obtain the observation model in terms of our system variables, we can expand “v,, ‘w.
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and “z with
c _ipT T )
ve= "R, (R, vi +w: X 'p.), (2.23a)
‘we= "R} wy, (2.23b)
c wZC wp (3

c(3)
= 2.2
T osa “R.(3,3)’ (2.23¢)

where the true angular velocity w; is obtained using (2.13b), the pair {ip., ‘R, } is the calibrated
camera pose expressed in the IMU frame, « is the angle between the Z axes of the world and
the camera frames (Figure 2.3), and

“p, =p, + R, 'p,, (2.24a)
YR.=R,'R,. (2.24b)

The final observation model considers noisy flow measurements, defined as

ho(zi,ny) = p(xy) + 1, € R?, (2.25)

with a noise n, ~ N (0, N,,) assumed to be zero mean Gaussian.

2.4.4 Infrared (IR) range sensor

The infrared time-of-flight sensor provides the distance to the surface that bounces its signal
(Figure 2.2-right). When mounted under a quadrotor, facing down and assuming there is no
object below the platform, the sensor model is similar to the range presented in (2.23c), but
using the ranger frame instead of the camera frame,

wp (3
ho (1, 1y) = wp’é;) +n, €R, (2.26)
with
“p,=p,+R'p,, (2.27a)
YR, = R:'R,, (2.27b)

with noise n, ~ A(0,N,), and where the pair {*p,,'R,} is the calibrated pose of the range
sensor with respect to the IMU frame. Notice the model difference with respect to the first row
of (2.14) which directly retrieves the platform height.
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2.5 System kinematics

As it is common practice in the literature of IMU navigation, e.g. [Roussillon et al., 2011], we

can define the continuous system kinematic equations @; = f(x;, u, w) as

Py = U, (2.28a)
vy = Ry(as —ap—an) +9g, (2.28b)
q; = %Qt ® (ws — Wit — Wn) (2.28c¢)
apt = Ay, (2.28d)
Wht = Wy - (2.28e)

where we use the shortcut g®@ w = q®[0,w] " for convenience of notation. This system involves
the true-state x; from (2.1a), is governed by IMU noisy readings » (2.13), and is perturbed by
Gaussian noise w, the two defined as

-
u= [as ws} ) (2.29a)
T
w = [aw ww} , (2.29b)
with a,, ~ NV (0, A,,) and w,, ~ N(0, Q).

In the ESKF, we distinguish between nominal- and error-state kinematics. The nominal
kinematics correspond to the modeled system without noises or perturbations

p=wv, (2.30a)
v = R(as—ap) +g, (2.30b)
q = %q ® (ws —ws), (2.300)
a, =0, (2.30d)
wy, =0. (2.30e)

To obtain the error kinematics we write each true-state equation in (2.28) as its composition of
nominal- and error-states in (2.2) and (2.3), solve for the error-state, and simplify all second-
order infinitesimals. For the sake of clarity, the details of this process are presented in Appendix A
but are here summarized with the following. The result for the linear velocity and orientation
elements (dv and 00) depend on the orientation error representation (GE or LE). With GE we
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have
op = v, (2.31a)
0v = —[R(as — ap)|x 00 — Rda, — Ra,,, (2.31b)
60 = —Réw, — Rw,, (2.31¢)
Say, = ay, (2.31d)
SWp = Wy s (2.31e)

whereas with LE we need to replace (2.31b) and (2.31c) above with

00 = —R[as — ap|x 60 — Réap — Ra,,, (2.310)
50 = —|ws — wp]x 00 — dwp — w, . (2.31g)

2.5.1 System kinematics in discrete time

One of the aims of this Chapter is to analyze the impact of using different integration approx-
imations of the previous equations. Integrating continuous differential equations of the type
& = f(x,u) from time (k — 1)At to kAt can be done in a number of ways. A common technique
is to integrate the linearized system, € = Ax + Bwu, with A = Jf/0x, B = 0f/0u, into the
discrete-time x;, ~ F x;_1 + BuAt, with F = eAAt, and to truncate the exponential Taylor

AAt

series e = > A"At"/n! at different orders, obtaining the different approximations Fy of

the filter transition matrix,
N<oo 1

A n n __ 1 2 2 1 N N
Fy 2 Z EA At —I+AAt+§A At +...+ﬁA AV (2.32)

n=0

We provide extensive details in Section 2.5.2.

For the quaternion, it is possible and convenient, through the exponential maps, to obtain
closed-form expressions of the infinite Taylor series [Trawny and Roumeliotis, 2005; Sola,
2012]. For this reason, we contemplate here the zero-th forward, zero-th backward and first

order integrators of (2.28c), that we name QOF, QOB and Q1 respectively,

QOB: g, ~ qj,_1 ® q(wiAt), (2.33b)

0 D (2.33¢)
WE—1 XWg

with wy, £ We ks — Wht k> Wtk = Wt k—1 and @ 2 (wr_1 +wy)/2, and q(-) as defined in (2.7c).

2

B At
Ql: gy =g, ® <Q(WA’5)+24
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Notice that QOF and QOB are proper SO(3) integrators: they integrate the angular rates in
50(3) using forward or backward Euler, producing an angular step A8 = wAt € so(3), and
construct the quaternion step Ag = q(Af) = exp(A6/2) using the exponential map (2.7¢),
which is then composed in the SO(3) group locally (i.e., at the right side of the product). Q1
accounts for second-order terms appearing only when the rotation axis changes direction within

the integration interval (i.e., wj_1 Xwy # 0).

Integrations for the ESKF and the EKF are detailed in the following paragraphs. For the
sake of clarity, in this section we integrate the kinematic equations using only F'; (also known
as backward Euler integration) for all variables except the quaternion. For the quaternion,
we use QOB. This choice is pertinent: as will be revealed in the benchmarking, improving the
approximations of the transition matrix and the quaternion beyond the forms presented in this

section has only minimal effect on the overall performance.

Error-state Kalman filter kinematics

For the ESKF we need to integrate the nominal- and the error-state equations. The integration

of the nominal-state equations (2.30) results in

p < p+vAt, (2.34a)
v v+ (R(as—ap) +g) At (2.34b)
q < q®q((ws —wp)At), (2.340)
a, < ayp, (2.34d)
wp — wp (2.34e)

where “+" stands for “gets updated with", i.e. x + f(x,-) is equivalent to zx = f(xg_1, ).
Similarly, the integration of the error-state equations (2.31) produces, for a globally-defined
error (GE),

op < 6p + v At, (2.35a)
v < 0v — ([R(as—ap)]xd0 + Riay) At + v, , (2.35b)
90 <+ 60 — Réw,At + 0, (2.35¢)
day < dap + a;, (2.35d)

dwyp  dwp + w; , (2.35¢e)
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whereas for LE,

v + 6v — (R[(as — ap)|x 90 + Rday) At + v, , (2.351)
00 <+ 00 — (Jws — wp|x 00 + owp)At +0; . (2.35g)

Here, v;, 0;, a; and w; are random impulses applied to the velocity, orientation and bias
estimates, modeled with Gaussian processes. Their mean is zero, and their covariances matrices
are obtained by integrating the variances of the IMU measurement noises, a,,, w,, and the IMU

bias random walks, a,,, w,,, over the time step At,

Vi=A, A =0 AT [m?/s%], (2.36a)
0, =0, At =02 AT [rad?], (2.36b)
A=Ay At = agw At [m?/s%], (2.36¢)
Q,=Q, At = O'iw AtT [rad®/s?], (2.36d)

where o, [m/s?], 0, [rad/s], ca,[m/s*/s] and o, [rad/s /5] are to be determined from the
information in the IMU datasheet, from real measurements, or —preferably as a last resort— via

filter tuning.

Extended Kalman filter kinematics

In this case, we simply integrate the true-state kinematic equations (2.28). Notice that the result
is equivalent to the nominal integration in ESKF, but incorporating the noises v;, 8;, and random

walk biases a;, w;,

Dy < Py + v At (2.37a)
vy v+ (R (as — ap) + g) At + v;, (2.37b)
q; < q; @ q{(ws — wi) AL + 0;}, (2.37¢)
ap < ap + a;, (2.37d)
Wyt — Wi + w; - (2.37e)

2.5.2 Filter transition matrices

We detail the construction of the filter transition matrix for the three involved integrals: ESKF
nominal- (2.34), ESKF error- (2.35), and EKF true- (2.37) kinematics. For each case, we need
to define the matrix A as the Jacobian of the respective continuous-time system, and build the
transition matrix Fy as the truncated Taylor series (2.32). In the following paragraphs, we
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detail the matrices A for each case, and some examples of their first powers up to n = 3. The

reader should find no difficulties in building the powers of A that have not been detailed, and

the transition matrices Fy using the Taylor series from (2.32).

ESKF transition matrix

The Jacobian A = 0f(x, 0z, -)/Jdx of the ESKF’s continuous time error-state system f(-) (2.31)

using GE is, ) _
0O I O 0
0 0V —-R
A=10 0 0 0 -R|, (2.38)
0 0 O 0
0 0 O 0
with
V =—[R(as — ap)]x - (2.39)
Its powers are,
0 0V —-R 0 0 0 00 —-VR
0 0 O 0 -VR 0 0 0 O 0
A’=10 0 0 O 0o |,A*=loo0oo0 o0 o |,
0O 0 O 0 0 0 0 O 0
0 0 O 0 0 0 0 O 0
and A™ =0 forn > 3.
For LE we have
0O I O 0 0 00 V -—-R 0
0O 0V -R 0 0 0 VO 0 -V
A=10 0 © 0 -I|.,A*=|o00 © 0 -©|, -,
0O 0 O 0 0 0 0 0 0 0
0O 0 O 0 0 0 0 0 0 0
with
= —Rlas; — ap)x, (2.40a)

O = —[w, — wy)x. (2.40b)
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EKF transition matrix

The Jacobians A = 9f(x,-)/0x of the continuous-time EKF true- (2.28) and ESKF nominal-

(2.30) systems are equal to each other, having

0I 0 0 0 00 V —-R 0
00 V -R 0 00 VW 0 VvQ
A=10 0 W 0 Q|.,A*=|0 0 wW? 0o wWQ|,- -,
00 0 0 0 00 0 0 0
00 0 0 0 00 0 0 0

V= B , (2.41a)
o1 ,

w = 2299 g‘; ws) (2.41b)
ol )

Q- 224 ®§Zb ) (2.41¢)

and are developed hereafter. For the first Jacobian V it is convenient to recall the derivative of a
"= [w,p]"

rotation of a vector a by a quaternion q = [w, z,y, 2] = [w, p] ', with respect to the quaternion,

s OR{g}la 0(q®a®q")

VvV = 2.42
= 2[wa—i—p><a | paT—apT+anIg—w[a]X} , (2.43)
having therefore
V =V(q, as —ap) . (2.44)
For the Jacobian W we have from (2.10)
1
W = iﬂ(ws —wp) , (2.45)

with Q(w) the skew-symmetric matrix defined in (2.12). Finally, for the Jacobian @ we use
(2.4), (2.5) and (2.7¢) to obtain

—-r -y —z

Q=-- ) (2.46)
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2.6 Error-state Kalman filter

We are interested in estimating the true-state x;, which we do as follows. High-frequency IMU
data is integrated into the nominal-state «, which does not take into account noise terms or
other possible model imperfections and, as a consequence, it accumulates errors. These errors
are collected in the error-state, defined as the multivariate Gaussian

sz ~ N (sz, P), (2.47)

this time incorporating all the noise and perturbations. In parallel with integration of the
nominal-state, the ESKF predicts a prior estimate of this error-state, and uses the other sensor
readings (sonar range and 2D velocity, or flow and IR range) in a correction phase to provide a
posterior. After each correction, the error-state’s estimate Sz is injected into the nominal-state,
and then reset to zero. Because of this reset, at each time the nominal state x is the best estimate
of the true state x;, and the estimated uncertainty is described by the error covariances matrix
P.

ESKEF: Filter prediction

Apart from the true-, nominal- and error-state vectors, it is convenient here to consider our
kinematic models in a generic form x; < f(x;,u,?) that we will identify with the appropriate
equation numbers. The input vector u (IMU readings) and the perturbation impulses vector 2

are defined as follows

v;

u = [%] Ca= Y7 (2.48)
Wy a;
w;

At the arrival of a new IMU measurement, we propagate the nominal-state « according to a

version of (2.34) using the selected Fy,
x <« f(x,u,0), (2.49)
and the error-state Gaussian with the filter using (2.35),

ox « Fyox, (2.50a)
P+ FyPFy +FQ,F/, (2.50b)

where F)y is the transition matrix (i.e., the Jacobian of (2.35) with respect to the error-state dx
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—see Section 2.5.2 for details), F; is the Jacobian of (2.35) with respect to the perturbations
vector ¢, obtained by simple inspection, and @, is the covariances matrix of the perturbation
impulses, given by

V, 0 0 0
0 ©® 0 0
= 2.51
@ 0 0 A, O (2.51)
0 0 0

Notice how the equation (2.50a) for dx can be neglected, thus the error estimate ox starts
at zero (right element) due to the reset operation performed in the previous time step, after

injecting the error estimate into the nominal state.

2.6.1 ESKEF: Filter innovation and correction

We consider the arrival of sensor data other than IMU, with a model
y = hj(x, ny), (2.52)

with j = v for the sonar and 2D velocity observation model (2.14), j = ¢ for the flow sensor
observation model (2.21,2.25), and j = r for the range sensor model (2.26). Since ox = 0, we

have z; = =, and the innovation z and its covariance Z read

z=1vy — hj(x,0), (2.53a)
Z=H;PH; + Nj, (2.53b)

with H; = 0h;/0éx being the observation Jacobian of sonar range with 2D linear velocity
(2.14), flow (2.21) or IR range (2.26), defined with respect to the error-state dx. These
derivations follow standard procedures and are here avoided, instead we include in Appendix

B.2 some useful partial derivatives to compute them.

In order to be robust to possible measurement outliers, we perform a X?-test based on the
Mahalanobis distance of the innovation [Bar-Shalom et al., 2004]. Inliers are validated by
checking the condition

2'Z7 2 <X}, (2.54)

with X%, equal to the 0.95 probability quantile of the X? distribution. If we pass the test, we
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proceed by computing the Kalman gain K and observing the filter error,

K=PH'Z ", (2.55a)
oz Kz, (2.55b)
P+~P-KZK". (2.55¢)

Note how symmetry can be enforced in (2.55c¢), e.g.using the Joseph form

P+ (I-KH)PI-KH)' +KZK". (2.56)

2.6.2 ESKEF: Injection of the observed error into the nominal-state

After an ESKF update, we update the nominal-state with the observed error using the appropri-
ate compositions x < x @ sz introduced in (2.2). This operation is a simple addition for most
variables except for the orientation, which depends on the error representation. Hence, for a
global definition (GE) we have

g+ q(69)®q, (2.57a)

whereas for a LE,
q+ q®q(56). (2.57b)

Notice that these operations constitute proper updates in the SO(3) manifold represented by

unit quaternions.

2.6.3 ESKF: Reset operation

In ESKF, after injecting the error into the nominal-state, the error-state estimate Sz gets reset
to zero. This is especially relevant for the orientation part, as the new orientation error will
be expressed locally with respect to the orientation frame of the new nominal-state. To make
the ESKF update complete, the covariance of the error needs to be updated according to this

modification.

Let us call the error reset function g(-) written as follows,
5z « g(6x) = dx © o, (2.58)

where the generic operation & stands for the inverse composition of ¢. The ESKF reset operation
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is
5z 0, (2.592)

P(#) — GP(0)G', (2.59b)

where P(0) is the orientation block of the covariance matrix P, and G is the Jacobian matrix
of g(-) for the orientation term, with respect to the error-state. If the orientation error is defined

globally (GE), this Jacobian corresponds to

G-1+|%50| . (2.60)
_2 4 X
whereas with LE o
G-1-|06| | (2.61)
_2 4 X

The details of this derivation are shown in the following.

ESKF: Reset Jacobian

We want to obtain the expression of the new angular error 66" with respect to the old error 50
and the observed error §6. To proceed we have to consider the following:

(a) The true orientation does not change on error reset, i.e. ;7 = gq;, thus depending on how

the orientation error is expressed:

GE:5q" @q" =6q®q, (2.62a)
LE:q"®éqg" =q®iq. (2.62b)

(b) The observed error mean has been injected into the nominal state and depending on the

orientation error expression:

GE:q " =dq®q, (2.63a)
LE:q" =q®9dq. (2.63b)
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- ESKEF reset Jacobian with GE

Combining the previous statements we obtain an expression of the new orientation error as

5qt =8q®éq (2.64a)
—Q (59 )éq. (2.64b)

. _qT
Considering dq =~ {1 —150} , and removing all quadratic terms, the identity above can be

expanded as
1 1 160 [ 1 ]
= _ P ) (2.65)
[;w] —300 I+ [306] | |L06

—~T
The first row verifies the orthogonality principle (i.e., 66 §0@ = 0), which is a necessary and
sufficient condition for the optimality of a Bayesian estimator [Bar-Shalom et al., 2004]. From

the rest of the elements we can extract
—~ 1~
50T = 50 + (I + [250] > 40, (2.66)
X
where by simple inspection the Jacobian is

G=T1+ [;@} . (2.67)

X

- ESKEF reset Jacobian with LE

Similarly to GE, we can combine the previous statements to obtain an expression for 60+.

Then, we have

ig" = (¢")" ®q®iq (2.68a)
=(q®q)" ® q®iq (2.68b)
=3q ©0q (2.68¢)
= Q" (5q )iq. (2.68d)

. _qT
Considering 6q =~ {1 —%60} , and removing all quadratic terms, the identity above can be

expanded as

—~T

1 1 366 1
- = _ . 2.69
[;am] ~156 I—[%ML [159] (269
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A for the case of the ESKF reset Jacobian with GE, the first row verifies the orthogonality
principle. From the rest of the elements we can extract

50T = —50 + (I - [;@] ) 50, (2.70)
X
where by simple inspection the Jacobian becomes

G=1- B@] . (2.71)

X

Notice how the reset operation from (2.66) and (2.70) involves quadratic terms (i.e., in-
finitesimal values), thus its impact on the overall result is minimal and its computation can be
neglected similarly to some developments described in previous Sections (e.g., when truncating
the Taylor series expansion (2.32) with n = 1), however it is here described for the sake of
completeness.

2.7 Extended Kalman filter (EKF)

2.7.1 EKEF: prediction

In this case, the function f(-) and its Jacobians F and F'; are drawn from (2.37). The forms
of f(-) and Fy depend on the truncation grade we choose —see Section 2.5.2 for details. The

prediction step is standard EKF,

it — f(it, u, 0) s (2723)
P« FyPFy +FQ,F. (2.72b)

The covariance matrix of the perturbation impulses Q, is defined as in (2.51). The Jacobian
of f(-) with respect to the perturbation vector F; maps these covariances to the state covariance.
It can be obtained by first discretizing the system kinematics from (2.28) without removing the
noise terms and not considering At (At is already considered in Q; and F; only maps the
noise to the corresponding state covariances). The resulting system must be integrated using a
truncated Taylor serie expansion in order to compute the Jacobian. For example, with a 1rst-
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order integration, this perturbation Jacobian is

The term 0 fg /0w, is derived from

0O O
I 0
Fi=10 aau];i
0O o0
0O O

©O N © © O

N © ©O © O

fq = q®q(ws_wb_wn)7

2
Q
+
S

D=

which combined with (2.5), we get

—qx
qu i _1 quw

—qy
—qz
quw
Az

(ws —wp — wy)

—qz
Ay
—dx
qu

(2.73)

(2.74a)

(2.74b)

(2.75)

In our EKF, the system covariance matrix P must be initialized with certain values in the

diagonal, corresponding to the initial filter standard deviations o. However the quaternion

block P(q) requires a mapping from 3 x 3 to 4 x 3 matrix (the orientation standard deviation is

specified with 3 angular values). This mapping is done as follows

P(q) + QyP(q)Qj ,

(2.76)

where @, is the Jacobian of the initial state quaternion g, with respect to initial standard

deviations (corresponding to the three angles),

a0 < q®q(0r) = Q1 (qy) q(0l,),

~
~

(2.77a)

(2.77b)
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where combining with (2.5) becomes

—qx —qy —q
1 _
Q9 _ 5 qQu 9z Qy . (2.78)
qz qw —Qz
—qy 4z Qu

2.7.2 EKEF: Innovation and correction

The innovation is obtained as in the ESKF (2.53), with sonar range and 2D velocities, flow
or IR range observation Jacobians H; = 0h;/0x;, i € {v,p,r}. This time differentiating with
stardard procedures (2.21) and (2.26) with respect to the true-state x; instead of the error-state.
Appendix B.1 includes some usfeul derivatives to obtain these Jacobians. We perform the same
X2-test outlier rejection explained for the ESKF and the filter correction follows the standard

EKF formulation,

K=PH'Z!, (2.79a)
T 1+ Kz , (2.79b)
P+—P-KZK'. (2.79¢)

Notice that, unlike the ESKF updates (2.57), the sum in (2.79b) implies that the orientation
escapes the SO(3) manifold, and thus that quaternion re-normalization is required, as explained

in the following.

2.7.3 EKF: Reset operation

When using the EKF, the state quaternion needs to be normalized after the correction step.
Then, the respective block of the covariance matrix P(q), should be mapped accordingly by the
Jacobian of the normalization operation G,,, with

P(q) + G, P(q)G, . (2.80a)

The Jacobian of this normalization operation G, is detailed in the following.

EKF: Reset Jacobian

After a filter correction in EKF the quaternion needs to be normalized, and so the system covari-
ance matrix reset accordingly to the Jacobian of this operation. The quaternion normalization
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operation consists on

q
q, = —, (2.81)
Il
Then its partial derivative with respect to the quaternion elements is
(a2 +ap+  quas _ Qudy _ qwge ]
gl g1 llqir llqiP?
2 2
_ qu% Qw""ql/;_Qz _ quy3 _ qzng
G, = llql] lqll lqll lql] 2.82
n _ quay _ Gxqy qi+qg+q§  @yq ' ( )
liql® liql® lql® q1P°
2 2
_ qwQz __ 929-= _ 9y9- Qa2 14q;
L llqIP liql® lql® gl

which for the sake of clarity and simplicity its development has been avoided.

2.8 Observability analysis

The observability analysis of the system needs the evaluation of the rank and continuous symme-
tries of the observability matrix defined from the Lie derivatives [Martinelli, 2012]. Following
this work, we detect three continuous symmetries, corresponding to the non-observable modes
of zy translation, and rotation around the direction of gravity (i.e., the yaw angle),

wi - [1>050507”' 70]7
wg = [O>150507”' 70]7
wg = [_py7p$707 _,Uyavmvov_qi _ql’%’qﬂ’O"._]’

27 27272

where {p., py, Vs, Uy, Gz, @y, 4z, G } are position, velocity and quaternion components. All other
modes, including all biases, are observable as long as the maneuvers performed span the ob-
servable directions. The limitations on maneuverability imposed by the MAV dynamics have a
negative impact on the observability of certain modes, in particular on the accelerometer bias
in the zy axes, and the gyrometer bias in the z axis. These biases are observable only when the
MAV escapes the hovering attitude, and their convergence increases the further we deviate from
hovering, as shown in the experiments section —see Section 2.10. Therefore, it is beneficial
to drive the MAV in aggressive maneuvers. This requires a flight controller with good stability
conditions away from the hovering situation, such as the one we present hereafter.
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Figure 2.4: Quadrotor scheme with reference frames, thrust vectors and propeller rotation directions.

2.9 Control and planning

We validate the previous state estimation methods with a quadrotor, given its mechanical sim-
plicity [Michael et al., 2010b] and ease of control. This section describes its dynamical model

and the chosen control scheme.

2.9.1 Dynamic model

Quadrotors are typically equipped with four aligned coplanar propellers. Motion control is
achieved by altering the rotation speed of these propellers, thereby changing its torque load and
thrust lift characteristics —see Figure 2.4.

Let us consider a global coordinate frame w, assumed inertial and defined by unitary column
vectors [“x, "y, 2], and a body reference frame b, defined also by [’z, %y, 2] and centered in

the center of mass of the vehicle. The dynamic model of the vehicle can be expressed as

p=uv, (2.83a)
ma=—-fR"z+mg, (2.83b)
R = R[w],, (2.830)
T=Zw+ wxTw, (2.83d)

where m € R is the mass, Z € R3*3 is the inertia matrix with respect to the body frame, and

T
vy & [O 0 1} . The control inputs of the plant are the total thrust f € R, and the total

-
moment 7 = [7-1 Ty 7-3} € R3 along all axes of the body-fixed frame. The dynamics of rotors

and propellers are neglected and it is assumed that the force f; of each propeller is directly
controlled. The total thrust, f = E?:l fj, acts in the direction of the z axis of the body-fixed
frame, which is orthogonal to the plane defined by the centers of the four propellers. The
relationship between the single motor forces f;, the total thrust f, and the total moment 7, can
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be written as

f 1 1 1 1] [Aa
0 —-d 0 d
N - 2| (2.84)
T d 0 —=d 0f |fs
T3 —c ¢ —c c| |[fa

where c is a constant value and d is the distance from the center of mass (b) to a rotor axis,
considering all rotors equidistant. For non-zero values of d, (2.84) can be inverted, therefore

our assumption that f and 7 are the inputs of the plant is valid.

2.9.2 Position and attitude controllers

We want to control the quadrotor with desired positions, heading, linear velocities and accelera-
tions (i.e., p,, ¥4, vq and a4) with a controller design based on the nonlinear tracking controller
developed on the special Euclidean group S€(3) [Lee et al., 2013]. For this, the quadrotor
control inputs f, 7 from (2.84) (see Figure 2.1) are chosen as

f == (=kpp, — kyve —mg+may) R"z, (2.85a)
T = — koo — kowe +w x Tw — T ([w}XRTRCwC - RTRCwC) , (2.85b)

with k,, k,, kg, k., positive definite gains to be tuned. p,, v., 8. and w, are the position, velocity,

orientation and angular rate errors, defined by

P =D — Pa> (2863)
’ve:’v—’vd7 (2.86b)
0, — % R'R-R'R], (2.860)
we=w— R'Row,. (2.86d)

R, and w, are the internally controlled orientation and angular velocity, as produced by the
position controller, refer to [Lee et al., 2013] for more details on their definitions. The symbol

[]* represents the map so0(3) — R3, which is the inverse operation of [-].

Using this controller, if the initial attitude error is less than 90°, the zero equilibrium of the
tracking errors is exponentially stable, i.e. |p, v. 6. we] — 0. Furthermore, if the initial
attitude error is between 90° and 180°, then the zero equilibrium of the tracking errors is almost
globally exponentially attractive. The reader can refer to [Lee et al., 2013] for convergence and
stability analysis and to [Mellinger and Kumar, 2011] for experimental results.
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2.9.3 Trajectory planning

With the planning module (see Fig 2.1) we generate trajectories in Cartesian space. These
trajectories consist of the desired values fed to the controller above, p,, 14, v4 and a4. Our
planner design is based on [Mellinger and Kumar, 2011] which guarantees dynamically feasible
trajectories by proving that our dynamic system (2.83) is differential flat [Fliess et al., 1995].
This means that our dynamic system can be formulated as an algebraic function of the flat
outputs, which are

n= [pT w] , (2.87)

or their derivatives. These algebraic relations involve the fourth derivative of the position p,
called snap, and the second derivative of the heading ¢ [Mellinger and Kumar, 2011]. Therefore,
to generate smooth and feasible 3D trajectories, it is convenient and sufficient to minimize this

snap using the following cost functional

tf
min / Ip
to

where /1, and 11, are tuning parameters, subject to the desired boundary conditions on the flat

I*p(t)
ot

2
9*Y(t)

2
) dt, (2.88)

outputs and their concerned derivatives. This minimization problem can be formulated as a
quadratic program [Mellinger and Kumar, 2011], also including intermediate waypoints.

2.10 Validation and experimental results

In order to study the performances and limitations of the proposed state estimation setup, we

first present experiments with synthetic data under realistic flight conditions.

2.10.1 Simulation results

We generate ground truth trajectories that account for quadrotor motion constraints (i.e., under-
actuated vehicle with only 4 DoF). We subsequently generate corrupted sensor measurements,
with noise and bias characteristics similar to those of the real units, delivering data synchronously
at 100Hz, and taking advantage of a MATLAB toolbox (checkout the on-line software? for more
details on quadrotor dynamic values and sensor parameters). For the benefit of the community,
we also make the MATLAB odometry estimation code® public. The optimized high-rate C+ +
implementation is available upon request.

nttps://gitlab.iri.upc.edu/asantamaria/QuadSim
3https://gitlab.iri.upc.edu/asantamaria/QuadOdom


https://gitlab.iri.upc.edu/asantamaria/QuadSim
https://gitlab.iri.upc.edu/asantamaria/QuadOdom
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Figure 2.5: Trajectories of all the estimated states, with their +3 ¢ bounds, for a simulation experiment
using IMU, and 2D linear velocities and sonar readings from the smart camera. The vertical sections
indicate the hovering (A), forward (B), backward (C), left (D) and right (E) maneuvers.

We validate our method comparing the produced estimates with respect to precise ground
truth measurements. Notice that we do not compare our performances against the more sophis-
ticated VIO algorithms for the reasons exposed in the introduction of this chapter, namely the

lack of key-frames and lengthy feature tracks in our estimation pipeline.

In a first set of validations we simulate smart camera sonar readings and 2D linear velocities
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Figure 2.6: Evolution of the estimated error of the accelerometer bias in the x (y) axis for different pitch
(roll) angles.

—see Section 2.4.2. Figure 2.5 shows the results using an ESKF with GE, QOB and F';. The
60s trajectory encompasses an initial phase of hovering (phase A); a forward movement along
the x axis (B); a backward movement (C) to the initial position; a second hovering phase (A);
and finally left (D) and then right (E) movements along the y axis. The true trajectory finishes
precisely at the starting position. x-y-z magnitudes are colored R-G-B, and +3c0 error bounds
are also plotted.

The zy position is not observable, and its estimated error increases with time (top frame in
Figure 2.5). However, the drift is small, a few centimeters after the whole one-minute flight.
Altitude and velocity estimates converge quickly thanks to the smart camera measurements.
Notice the transient increase of the position and velocity errors (phases B and D). This is due to
the uncertainty in yaw (blue track of third plot in Figure 2.5, not observable) which produces
position errors perpendicular to the displacement vector. These errors decrease as the MAV
returns to the origin (C and E).

One of the most interesting aspects is the marginal observability of some of the biases. On
one hand, an acceleration bias becomes observable when the quadrotor orientation produces
a non-null projection of the gravity vector over its axis. This makes the accelerometer’s z-bias
readily observable, but z- and y-biases require tilting the rotor plane. This is observable in
Figure 2.5, plot Acc. Bias’. This is a critical issue due to the quadrotor’s restricted dynamics,
seeking always horizontality and thus making these observations difficult. To further investigate
this effect, the impact of a rotation over y (with respect to ) on the observability of a;(x) (with
respect to a,(y)) is illustrated in Figure 2.6. A quadrotor can easily tilt to 20°, but holding this
tilt for a period of seconds represents a sustained high acceleration that is usually not desirable.
Otherwise, this bias should be estimated beforehand and set up in the filter.

On the other hand, The gyroscope’s pitch and roll biases are well observable thanks to the
gravity vector. The yaw bias w;(z) (blue in ‘Ang. Vel.” plot) becomes observable only after a very
long period, by taking small profit of transient inclinations that bring the gravity vector away
from the local z axis. To achieve a better performance in yaw-bias, it is advisable to use extra
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heading measurements such as a compass or other stable external references.

In a second set of validations we benchmark all filter types using the same scenario but
with the simulated quadrotor equipped with an IMU, a smart camera producing flow data and
a range sensor with measurements as those of an IR time-of-flight ranger, —see Sections 2.4.3
and 2.4.4.

Position RMSE and orientation error evaluation

To analyze the resulting filter estimations we perform N trajectory simulations. We evaluate the
Root Mean Square Error (RMSE) between each component 7 of the estimated vehicle positions

(z,y,z) with respect to ground truth, for all time steps &

N s
1 .
R 5 )2
6=\ s 2 2 Pik — Pie)? (2.89)

j=1k=1
where s is the number of time samples of each experiment, p; j is the i-th component of the true
vehicle position at time k, and ﬁg , 18 its estimate, computed by the filter, corresponding to the
j-th among N simulated trajectories.

To analyze the orientation error we use as in [Loianno et al., 2015a], which in turn is based

on [Bullo and Lewis, 2004], the orientation error metric defined as
]. T -
¢ = itr(I —R R) €R, (2.90)

where R and R are respectively the ground truth and estimated vehicle orientations.

Table 2.2 shows both position RMSE and the abovementioned orientation error metric (no
units) achieved at the end of N = 20 simulated flights of almost 10 min and 500 m each,
performing representative movements (e.g., up/down, forward/backward, left/right). For the
sake of simplicity only some of the filter variants are reported, and to ease the comparison
some filter characteristics are colored. The results in Table 2.2 show that there is no significant

performance difference between filter designs.

Average NEES evaluation

A recursive estimator is consistent when the estimation errors are zero-mean and have covari-
ance matrix equal to that reported by the estimator. To evaluate the consistency of the filters we
use, as in [Sola et al., 2012] which in turn is based in [Bar-Shalom et al., 2004], the Average
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Filter Variant

EKF | EKF | EKF | EKF | EKF | ESKF | ESKF | ESKF | ESKF | ESKF | ESKF
: F, Fy F F, F3 F,

QOF | QOB | Q1 Q1 Q1 QOF QOB Q1 Q1 Q1 QOF

LE LE LE LE LE GE GE GE GE GE LE

Error
Component
€
=
o
=
>
o

x [m] |[10.54]10.48|10.30|10.26 |10.26 | 10.58 | 10.37 | 10.13 | 10.12 | 10.12 | 10.38

y [m] |[11.13]11.07{10.85|10.81|10.81| 11.00 | 10.82 | 10.55 | 10.58 | 10.58 | 10.91

z [mm] 7 6 7 6 6 7 7 7 7 7 7

s (1073 | 2 2 2 2 2 2 2 2 2 2 2

Table 2.2: Estimation error statistics after 10 min flights of 500 m in straight line. Root Mean Squared
Error (RMSE) over 20 experiments for Cartesian position elements (x, y, z) and rotation error index ¢
at the end of the trajectory. Color in the filter variant names are added for comparison purposes (those
variants with the same color only differ from the colored characteristic).

Normalized Estimation Error Squared (ANEES) for N Monte Carlo runs, defined as

==

N

N T 1 s
- (Bk - Bi) Pl (Bk - Bi) , (2.91)
j=1
where By, is the 6 DoF true body pose at time k (i.e., ground truth) and N (Ej,P{C) is its
Gaussian estimate, obtained by filtering, corresponding to the j-th among the N Monte Carlo
runs. Each run is done with a different seed for the random generator affecting the process

noises and the measurement noises. We now can compute the double-sided 95% probability

concentration region, which, for 6 DoF and N = 25 runs, has the upper and lower bounds given
by

Xose) (1 — 0.975)

= o= =7.432, (2.92a)
2
_X(25X(5)(1 —0.025) B
n= 55 =4.719. (2.92b)

If n, < n for a significant amount of time (more than 2.5% of the time), the filter is considered
conservative. Similarly, if n;, > 7 (also by more than 2.5% of the time), the filter is considered
optimistic and therefore inconsistent. Figure 2.7 shows an example of the ANEES for the 6 DoF
body frame pose [x y z ¢ 0 1 ! over 25 runs of the same experiment (N = 25). We
estimated the pose using the two extreme filter variants in terms of simplicity, an EKF with F';
and QOB options; and an ESKF with GE, F's and Q1 options. The gray horizontal band between
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Figure 2.7: Average Normalized Estimation Error (ANEES) of the 6 DoF body frame pose [z y z ¢ 6 9] "
over 25 runs of the same experiment. The filter variants are: A) EKF with F'; and QOB; and B) ESKF with
GE, F'3 and Q1 options. Note how the ANEES is normalized and does not need to differentiate between
position and orientation. The gray horizontal band between abscissas 7 = 4.719 and n= 7.432 mark the
95% consistency region. Both filter propagation and updates are running at 100Hz.

abscissas mark the 95% consistency region with 77 = 4.719 and n = 7.432. Both filter variants

are shown to be neither conservative nor inconsistent —see the on-line software simulator for

all involved parameters during simulation and estimation.

2.10.2 Experimental results

We divided the experiments in two sets depending on the hardware setting used:

- Setting A: ASCTEC Pelican* research platform shown in Figure 2.8(a), equipped with

a MicroStrain 3dm-gx3-25 IMU running at 100Hz and a PX4-OpticalFlow smart cam-
era [Honegger et al., 2013] with a rate of 200 Hz. We associate each PX4 measurement
with the closest IMU measurement. The sensors are attached below the platform using
silicon damping links to reduce motor vibrations. In these experiments the IMU accelerom-
eters and gyroscopes, the sonar range and the 2D linear velocities are used in the filtering
process. Here, the vehicle is driven manually only to validate the method by comparing
the estimated state with the one obtained from an Optitrack® motion capture system.
Moreover, we show results for state estimation driving the vehicle in a GPS denied zone.

Experiments using setting A are presented in Video 1, referenced in Appendix C.

Setting B: ASCTEC Hummingbird® research platform shown in Figure 2.8(b). This plat-
form has an off-the-shell built-in IMU (i.e., 3-axis accelerometer and 3-axis gyroscope)
running at 100 Hz, and we equipped it with a PX4-OpticalFlow smart camera with a rate
of 200Hz and a TeraRangeOne IR range sensor [Ruffo et al., 2014] with a frequency up
to 800 Hz. All algorithms for both odometry estimation and control are running on board

*www.asctec.de/en/uav-uas—drones-rpas-roav/asctec—pelican
5 .
www.optitrack.com
Swww.asctec. de/en/uav-uas—-drones—-rpas—roav/asctec—hummingbird


www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-pelican
www.optitrack.com
www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-hummingbird
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(a) ASCTEC Pelican quadrotor equipped with a Micros- (b) Bottom view of an ASCTEC Hum-

train 3dm-gx3-25 IMU and a PX4 optical flow smart mingbird quadrotor equipped with a

camera (setting A). built-in IMU, a PX4 optical flow smart
camera and an IR time-of-flight range
sensor (setting B).

Figure 2.8: Quadrotors used in the experiments to test the odometry estimation approach.

within an Odroid XU3 board running Ubuntu 14.04LTS and ROS Indigo. Although the
Odroid XU3 board has a Cortex"™-A7 quad core CPU, all algorithms are using less than
half the cores. Finally, a Qualisys” motion capture system running at 100 Hz has been
used for ground-truth comparison. Experiments using setting B are presented in Video 2,
referenced in Appendix C.

Experiments with setting A

This set of experiments consists on manually flying several times the platform setting A at the
Institut de Robotica i Informatica Industrial (IRI) testbed. Table 2.3 shows all non-null sigma
values for the filter tuning using hardware setting A. All filter variants use the same parameters.
For the IMU noises, we followed the datasheet to obtain o,, = 5.3mm/s* and o, = 3.67ad/s.
However, empirical IMU data has revealed that the mechanical damping is not sufficient, and
propeller vibrations inject much higher noises to the acceleration measurements. For this reason,
the value of o, is significantly increased as shown in the table. We assume null bias random
walks, as our flights are short enough. Initial uncertainties are mostly null, except for altitude

052, initial roll 54 and pitch o5, accelerometer bias o5, , and gyrometer roll and pitch bias o5, .

The PX4 sensor has two key limitations that need to be addressed algorithmically in order
to improve its robustness and usability. The first one is its inability to measure altitudes below

T . qualisys.com


www.qualisys.com
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Sensor noises Initial std. dev.

(07% Wn Zof Vof oz 5(;5, 60 5(11, 5wb
[m/s?] | [rad/s] | [m] | [m/s] | [m] | [rad] | [m/s?] | [rad/s]
0.4 | 0.005 {0.05| 0.1 [0.05| 0.05 | 0.02 | 0.004

Table 2.3: Filter tuning parameters (std; o symbols omitted) using setting A (IMU accelerometers and
gyroscopes, and PX4 sonar range and 2D linear velocities).
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Figure 2.9: Sonar range outlier detection and correction of PX4 2D velocity measurements. Top-left: full
500 s altitude sequence with numerous outliers. Other plots: zoom of the arrowed outliers in top plot,
showing original and corrected altitude and velocity measurements.

30cm. For this, we divide each experiment in 4 phases depending on the robot state: landed
(A), taking-off (B), flying (C) or landing (D). Thus during A, B and D intervals, the PX4 output
is not reliable. We address this problem by reading status data of the robot to acknowledge
whether it is in flying mode or not (e.g., motors on/off). Before take-off (phase A), we overwrite
the optical flow measurements by assuming that the MAV is on zero position, with zero velocity,
and we set a small observation covariance. Thus, the bias uncertainties on the z acceleration
and = and y angular velocities are reduced. If the robot is flying below the minimum altitude
of 0.3m (phases B and D), detected with PX4 readings, we set high PX4 covariances because
the measures are not trustable. Hence the filter is propagating the nominal state with the IMU
dynamical model, and practically does not correct with the PX4 sensor. During regular flight
(phase C) the observation covariances are set to those in Table 2.3, thus allowing the PX4 to
correct the estimations properly.

A last feature of our algorithm deals with the second PX4 data integrity issue. In some
occasions, tilts over 20 degrees produce wrong sonar echoes, deriving in aberrant PX4 out-
puts. We detect altitude outliers using the modified Thompson Tau method [Thompson, 1985].
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(a) Calibrated outdoor flying arena for real robot ~ (b) Trajectory estimations for 15 different flights (2 minutes,

testings. The quadrotor takes off and lands at the 70 m each) using setting A. A sample trajectory is shown in blue.

same point in the middle of the field (base). The orange ellipse corresponds to the 95% confidence region for
the landing point.

Figure 2.10: Experiments using setting A in an outdoor GPS-denied scenario.

Once an outlier is detected, the filter correction can be accomplished by using the optical flow
measurement as a function of the IMU’s gyrometer measurement w, and the state variables,
substituted in (2.25), with n, a one-pixel Gaussian noise. For simplicity, we however re-
used the observation model (2.14) by computing the velocity v,; with (2.16) substituting
hof < p(z) and w,¢ <+ w,. In this case, to compensate for the correlation between the state
and the measurement, we increased the sensor covariances NN, slightly. Figure 2.9 shows the
reconstructed v,y in front of typical outliers. With this improvement of PX4 usability we perform
the manual flights in an outdoor scenario corresponding to a GPS-denied zone in which ground
truth from external positioning systems is not available. Instead, we drive the platform around
some fixed obstacles, taking-off and landing on the same base point.

Figure 2.10(a) shows the calibrated outdoor scenario with the take-off and landing platform
in the center, surrounded by vertical cylindric obstacles. Figure 2.10(b) shows the estimated
trajectories of 15 flights of approximately two minutes and 70 m each (using an ESKF with GE,
Q1 and F'3). The quadrotor is driven manually around the obstacles, which results in different
flight paths. In almost all results, the estimated trajectory does not touch any obstacles or walls.
The final estimated land points have a standard deviation of o = [0.50 0.53 0.01] m from the
center of the landing base. The orange ellipse in Figure 2.10(b) corresponds to the zone of
confidence of 95% probability of this landing point distribution. All true landings were done
inside the base area which measures 0.4 x 0.4 m. The orange ellipse is thus the composition of
the landing error and the estimation error. The blue line corresponds to a sample flight whose
specific results are shown in Figure 2.11. Notice in the zoomed details of position and velocity
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Figure 2.11: Trajectories of all the estimated states, with their £3 ¢ bounds, for the outdoors experiment
using setting A. The vertical sections indicate the landed states (A), and the take-off (B), flight (C) and
landing (D) maneuvers. Zooms are provided to appreciate the transition between phases B—C.

plots how the estimation errors increase during take-off and landing periods due to the PX4
limitations explained above. The transition to observability B—C once the PX4 data is recovered

is also visible.

Experiments with setting B

This set of experiments consists on executing autonomously several trajectories (i.e., the control
part uses only the state estimation as input and including take-off and landing maneuvers) in
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Sensor noises Initial std. dev.

z 0] 6z 100,00 day dwyp
[m/s?] | [rad/s] | [m] | [pix/s]| [m] | [rad] | [m/s?]|[rad/s]
0.4 0.005 {0.02| 10 ]0.05| 0.05 | 0.02 | 0.004

an Wn

Table 2.4: Filter tuning parameters (std; o symbols omitted) using setting B (IMU accelerometers and
gyroscopes, IR ranger and PX4 flow).

(a) Position (b) Orientation

Figure 2.12: Comparison between the estimation of a sample trajectory (using an ESKF with GE, F'3
and Q1) and ground-truth (Qualisys motion capture system). The corresponding position RMSE is
[0.130,0.051,0.094] and the error STD is [0.087,0.050, 0.032].

the PERCH lab (Penn Engineering Research Collaborative Hub) at the University of Pennsylvania
indoor testbed.

Table 2.4 shows all non-null sigma values for the filter tuning using hardware setting B. All
filter variants use the same parameters.

Figure 2.12(a) and 2.12(b) show the on board state estimates compared to measurements
from a Qualisys motion capture system, for both positioning and orientation in a sample experi-
ment. As detailed in previous sections, the height of the platform (i.e., z axis in Figure 2.12(a))
is observable thanks to the range measurement, thus its error is low. Similarly, roll and pitch
estimation errors are low due to the observability of the gravity direction provided by the fused
IMU data. Finally, the xy errors grow with time, partly because of the integration of noisy zy
velocities, but mostly due to the effect that an unobserved yaw angle « has on translation errors.

Figure 2.13 shows experiments for two different trajectories, 2.13(a) and 2.13(b). We
launched 25 autonomous runs for each trajectory with a desired height of 1 m and maximum
cruise velocity around 1 m/s (notice the superposition of the estimated and ground-truth trajec-
tories in blue and gray respectively). The error statistics for all runs in terms of RMSE are shown
in Figure 2.13(c). Using similar trajectories we also pushed the smart camera to its limits, by
increasing the maximum cruise velocity, and we reached 2.5 m/s flying at 1.5 m height without
significant increase in the resulting estimation and control performance.

In order to show the viability of the proposed methods to drive autonomously the vehicle

during realistic flight durations, we performed long experiments consisting on continuous trajec-
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Figure 2.13: Error analysis of two trajectories with 25 runs each. All runs are executed fully autonomously
with a maximum cruise velocity of 1 m/s (best seen in color).

tory loops during almost 10 min (i.e., a full battery discharge). Figure 2.14 shows a comparison
between the estimated (p) and ground-truth (p,, obtained with a Qualisys motion capture
system) trajectories for one of these experiments with a position RMSE of [0.47, 0.67, 0.035] m,
and standard deviation [0.29, 0.48, 0.003] m. The maximum position error at the end of the flight
is [0.73, 1.65, 0.028] m. Note that the estimated state (blue in Figure 2.14) is used to control
the vehicle, thus the estimation errors are reflected in the plot of the ground-truth trajectory
(gray in Figure 2.14). Although the presented approaches are sufficient to drive autonomously
the platform during some minutes without big trajectory errors, as stated before, the = and y
positions and yaw angle are not observable (i.e., the method is an odometer) and their output
is the result of an incremental estimation subject to drift.
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Figure 2.14: Position estimation results for a long experiment (almost 10 min of continuous flight and a
full battery discharge). Note that in full autonomous mode the vehicle is controlled using the estimation,
thus the drift of the platform can be seen in the ground-truth trajectory (Qualisys motion capture system).

2.11 Summary and main contributions

In this chapter, we presented a state estimator design for MAVs that combines low-cost and high-
rate visual-inertial-range sensors. We investigated a wide range of algorithm variations with
different computing and implementation complexities. We have shown the feasibility of using
such low-cost sensor setup with light algorithms to achieve not only hovering maneuvers but also
fully autonomous navigation. This research work has been partially published in [Santamaria—
Navarro et al., 2015a] and [Santamaria-Navarro et al., 2017b]. All the technical details have
been provided, facilitating the use of the proposed methods by other groups in the community.
The result of our experimentation shows that the effects of all the variations in the estimator
design are minimal. In particular, the refinements on the transition matrices F} --- F3 have
no conclusive effect, meaning that the classical Euler approximation F} is sufficiently good. A
similar conclusion can be drawn for the quaternion integrators QOB, QOF and Q1, and even
for the error compositions LE and GE. We conclude that the final choices can be driven more
by a criterion of convenience rather than performance. This is due to the high frequency
of the measurements and filter updates, which renders all integration schemes close to the
continuous-time case, and therefore equivalent in practice. Regarding the filter type, EKF vs.
ESKF, we also found equivalent performances. We can base our choice on different criteria. For
example, EKF is more widely known, and it is also simpler, both conceptually and in terms of
implementation complexity. However, ESKF is very close to it, and constitutes a more proper
and elegant solution, from a theoretical viewpoint, because of its operation in the rotations
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manifold SO(3). This implies, for example, that in ESKF there is no need to perform quaternion
re-normalization. Our recommendations are the classical EKF with F}, QOB and quaternion re-
normalization; or the more proper ESKF with F}, QOB, and either GE or LE. Both have essentially
the same computational cost.

Using these filters, in terms of overall precision, our state estimates are usable during flight
times of several minutes, enabling the MAV to perform a number of tasks that require navigation
without the aid on any external positioning system. With a MAV as a UAM aerial platform,
these localization and control modules provide autonomy to the robot during navigation phases
where precise manipulation is not required (e.g., approaching phase where the target is not yet
on sight).

The estimated state is richer than just odometry, and includes higher derivatives such as
velocities and accelerations, all precisely referenced to the gravity direction. These are exploited
by a non-linear controller to drive the vehicle in 3D space, showing that the employed sensors are
more than sufficient to provide autonomy to an aerial platform. This is the first time that such

inexpensive sensors enable precise localization and autonomous navigation of aerial vehicles.



Visual Servo

3.1 Introduction

UAMs require more precise localization capabilities than traditional UAVs, specially during ma-
nipulation phases (i.e., mission stages where the vehicle operates close to the target). Physical
interaction with the environment calls for positioning accuracy at the centimeter level, which
is often difficult to achieve. For indoor UAMs, accurate localization is usually obtained from
infrared multi-camera systems, like Optitrack® or Vicon®. However, these devices are not suited
for outdoor environments and require external infrastructure, as in the case of using GPS, which
may not be practical.

To get rid of the external infrastructure dependency it is preferable to embark all perception
hardware onboard, thus not relying on any external setup. This hardware must allow for target
detection (i.e., using exteroceptive sensors) in order to achieve the desired mission interaction.
Moreover, to choose the correct sensor suite, we must considering UAM restrictions in terms of
payload, size and power consumption. Similarly to Chapter 2, a reasonable choice is to drive
the vehicle using information provided by onboard cameras.

Visual servo (VS), also known as vision-based robot control, is a technique which uses
feedback information extracted from one or multiple cameras to control the motion of a robot.
The study and application of VS techniques include from image processing and sensor fusion, to
control theory.

Regarding the VS algorithm, vision-based robot control systems are usually classified in three
groups [Chaumette and Hutchinson, 2006; Janabi-Sharifi et al., 2011]:

8yww.vicon.com
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Figure 3.1: Visual servo schemes.

- Pose-based visual servo (PBVS)
- Image-based visual servo (IBVS)
- Hybrid control systems (HVS)

In PBVS, the geometric model of the target is used in conjunction with image features to
estimate the pose of the target with respect to the camera frame. The control law is designed
to reduce such pose error. However, it has the disadvantage that features could easily be lost in
the image during the servo loop. In IBVS on the other hand, both the control objective and the
control law are directly expressed in the image space, minimizing the error between observed
and desired image feature coordinates. As a consequence, IBVS schemes do not need any a
priori knowledge of the 3D structure of the observed scene. In addition, IBVS is more robust
than PBVS with respect to uncertainties and disturbances affecting the model of the robot, as
well as the calibration of the camera [Hutchinson et al., 1996]. However, the convergence of
IBVS methods is theoretically ensured only in a region around a desired position. To deal with
PBVS and IBVS shortcomings, Hybrid methods, also called 2-1/2-D visual servo [Malis et al.,
1999], combine IBVS and PBVS to estimate partial camera displacements at each iteration of
the control law, minimizing a functional of both the pose error and the image feature error.
These visual-control schemes are summarized in Figure 3.1.

In this chapter we derive an uncalibrated image-based visual servo method (UIBVS) to drive
the UAM. The proposed technique has the advantage that it contains mild assumptions about
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the principal point and skew values of the camera, and it does not require prior knowledge of
the focal length, in contrast to traditional IBVS. Instead, the camera focal length is iteratively
estimated within the control loop. Independence of focal length true value makes the system
robust to noise and to unexpected large variations of this parameter (e.g., poor initialization or
an unaccounted zoom change).

In this chapter we address the case where no constraints are placed on the camera motion,
thus the system exhibits 6 DoF, and Section 3.7 shows its validations throughout simulation case
studies. Further on, the UIBVS and HVS (which includes parts of PBVS) are also considered in
Chapter 4 with real robot experiments.

This chapter is organized as follows. An overview of the state-of-art on visual servoing is
given in the next section. For the sake of completeness, PBVS is briefly described in Section 3.4.
IBVS details are presented in Section 3.5, and the UIBVS method is introduced in Section 3.6.
Validation and simulations of the proposed method for UIBVS are provided in Section 3.7.

Finally Section 3.8 concludes the chapter and provides a summary of main contributions.

3.2 Related work

In 1980, [Sanderson and Weiss, 1980] introduced a taxonomy of visual servo systems, into
which the visual servo architectures can be categorized —see Figure 3.1. Visual servoing con-
cepts and notations were summarized afterward by [Chaumette and Hutchinson, 2006; Chaumette
and Hutchinson, 2007; Janabi-Sharifi et al., 2011].

The first group described, consists on PBVS approaches. [Westmore and Wilson, 1991]
introduced a strategy to estimate the 3D camera pose but considering only planar motion in
the visual control design. That work was extended in [Wilson et al., 1996] to a unified approach
for, the relative 3D pose estimation problem and, also for the full 3D visual servo control. A
PBVS method using a nonlinear approach was presented in [Martinet and Gallice, 1999] by
introducing 3D visual features in the closed robot control loop. A more recent work on PBVS
is [Lippiello et al., 2007], where a suitable selection algorithm is adopted, at each sampling time,
to allow the selection of an optimal set of visual data to be used for pose estimation. However,
the dependency on 3D model information and well calibrated cameras makes this approach, and
in general all PBVS methods, less atractive than image-based architectures.

The use of image-based approaches to control robots has been quite fruitful during the last
decade. Some examples are [Hashimoto et al., 1991; Corke and Hutchinson, 2001; Bourquardez
et al., 2009]. Most of those methods follow the concepts introduced in [Espiau et al., 1992],
which sets the basis of error computation in the image plane and the formulation of the image
Jacobian to translate those errors to Cartesian camera velocities. As an example, [Mebarki et al.,
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2015] proposes an IBVS together with a nonlinear observer for quadrotor velocity estimation,
both using the same image information with the advantage that no extra sensor is required to
measure translational velocities. Nevertheless, in most IBVS methods, error convergence to zero
can typically be guaranteed only in a neighborhood of the desired configuration [Chaumette,
1998].

Error convergence to zero for the whole task can be obtained via a hybrid approach com-
bining IBVS and PBVS, called 2-1/2-D visual servo, and introduced in [Malis et al., 1999]. This
strategy estimates partial camera displacements at each iteration of the control law minimizing
a functional of both, the error measures in image space typical from image-based servo and a
log depth ratio accounting for the rate at which the camera moves to the target. [Thuilot et al.,
2002] present a method to position the camera while keeping the target in its FoV with an
IBVS approach. They first present kinematic modeling of the pose features with the objective
of following a mobile target. Next, they define a control law adapted to ensure that the object
remains in the camera FoV while achieving positioning tasks. A similar behavior is achieved
in [Lippiello et al., 2016], but this time the PBVS and IBVS techniques are set in a hierarchical
task composition and applied to UAM. In contrast, [Wang et al., 2012] presented a PBVS used
to control the camera orientation, whereas an IBVS control law is used for the positioning.
First, they construct an explicit solution for the rotational motion such that the translational
kinematics is translated into equality constraints. Then, a convex optimization problem for the
translational motion is formulated, where the visibility constraints are incorporated as inequality

constraints.

In all image-based and hybrid approaches however, the resulting image Jacobian or inter-
action matrix, which relates the camera velocity to the image feature velocities, depends on a
priori knowledge of the intrinsic camera parameters. To avoid that, [Mezouar and Chaumette,
2003] presents a model-free approach for the uncalibrated case. However, they use an additional
path planner to introduce constraints in the desired trajectory in order to get a feasible path.
As an alternative, the method presented in [Viéville et al., 1996] to determine the motion and
structure of a planar region can be used even if the camera parameters are unknown, however

some knowledge about the scene must be available.

To do away with the depth dependence, one could optimize for the parameters in the image
Jacobian whilst the error in the image plane is being minimized. This is done for instance, using
Gauss-Newton to minimize the squared image error and non-linear least squares optimization
for the image Jacobian [Piepmeier et al., 2004]; using weighted recursive least squares (RLS),
not to obtain the true parameters, but instead an approximation that still guarantees asymptotic
stability of the control law in the sense of Lyapunov [Hosoda and Asada, 1994]; or using k-

nearest neighbor regression to store previously estimated local models or previous movements,
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and estimating the Jacobian using local least squares (LLS) [Farahmand et al., 2007]. To provide
robustness to outliers in the computation of the Jacobian, [Shademan et al., 2010] proposes the
use of an M-estimator.

We present a new approach to image-based visual servo in which the computation of the
image Jacobian makes mild assumptions about the camera parameters. In particular, it assumes
squared pixel size, centered principal point, and unknown focal length. Independence of focal
length true value makes the system robust to noise and to unexpected large variations of this
parameter (e.g., poor initialization or an unaccounted zoom change).

3.3 Control law

The aim of all visual servo schemes is to drive the camera to a desired pose or point of view.
In this section we present generic formulations to describe the basics of visual servoing control.
Specific contents for PBVS, IBVS and UIBVS are provided in Sections 3.4, 3.5 and 3.6 respec-
tively. The description of hybrid approaches is not provided because it can be straightforwardly
derived from PBVS and IBVS.

Let us consider s a generic variable, which can be a camera pose for PBVS or a set of features
in the image plane for IBVS, depending on the visual servo approach used. In all visual servoing
techniques we are interested in minimizing the error

e(t) = s(t) — s, (3.1

where s(t) and s? are the generic variables for its current and desired values respectively.

In pose-based methods s(t) corresponds to the camera pose. Computing this pose from a set
of measurements in one image is a classical computer vision problem called the 3D localization
problem, and requires the camera intrinsic parameters and the 3D model of the observed object
to be known. Many solutions have been presented in the literature (e.g., [Lepetit et al., 2009])
to solve it, thus we consider this problem out of the scope of this chapter.

In image-based approaches s(t) are the current image coordinates of our set of target fea-
tures, and s? are their final desired position in the image plane.

To control the camera, the most straightforward approach is to design a velocity controller.
To do this, we require the relationship between the time variation of the error e(t¢), and the
camera velocity, which is defined as

e=35=J%%, (3.2)

-
with the camera velocity expressed in the current camera frame ‘9 = |:C’UT CwT} and J the
6 x 6 so-called interaction Jacobian or image Jacobian in image-based methods. The Jacobians
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for each particular visual servo scheme are described in the following sections.
Assuming a holonomic system with 6 DoF, the camera velocities “9 can be used to command

the robot with an exponential decoupled decrease of the error (i.e., &€ = —Ae), such as
‘9=-NJ"e, (3.3)
where J* is chosen as the Moore-Penrose pseudo-inverse of J (i.e., a 6 x 6 matrix), defined as
Jr=Jtn gt (3.4)

This choice allows ||& — A\JJ"e|| and ||°9|| to be minimal.

3.3.1 Stability analysis

To analyze the stability of this closed loop visual servo system, we will use Lyapunov analysis.
Let £ = 1 |e(t)||* be a candidate Lyapunov function, whose derivative is given by [Chaumette
and Hutchinson, 2006]

L—¢'e (3.5a)
=-)le' JJTe. (3.5b)

Our system is globally asymptotic stable when the following sufficient condition holds
JJt>o0. (3.6)

If the number of features used to computed s is, at least, equal to the number of camera DoF
(i.e., 6), and if these features are chosen and the control scheme designed so that J and J ' are
of full rank 6, then condition (3.6) is ensured. With J non singular, we obtain from (3.6) the
global asymptotic stability of the system since J J* = I.

More details on stability analysis with particularizations for PBVS and IBVS can be found in
many references (e.g., [Chaumette and Hutchinson, 2006]).

3.4 Position-based visual servo (PBVS)

In PBVS, also called 3D visual servo, the controller uses as input (i.e., the generic variable s
in (3.1)) an estimation of the 3D pose of the camera with regard to a target object, obtained
from an embedded camera and a reconstruction algorithm. PBVS computes the control error in
3D pose space and converts this error to camera velocities with the interaction Jacobian (3.2),
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Figure 3.2: Camera displacement for PBVS. The translation and orientation of a frame b expressed in a
frame a is noted by the pair {*p,, “R;}. The involved coordinate frames are c and ¢? corresponding to
the current and desired camera poses, and o to the target object.

defined in the following.

3.4.1 PBVS interaction Jacobian

Considering the desired camera pose without movement (i.e., without linear or angular veloci-
ties), and following the frame definitions shown in Figure 3.2, we can describe the current and
desired poses, s and s? respectively, and their error (3.1) with the pairs

s ={“p,, "R} (3.7a)
s? = {0,135} (3.7b)
e={eyes} =s, (3.70)

where Cdpc and “R, are the camera position and its orientation respectively, both expressed in
the desired camera frame ¢¢. Notice how the orientation error is here expressed as the rotation
matrix “R,, but it can also be represented by the corresponding Euler angles that form this
matrix, the angle-axis representation (i.e., ) or in quaternion form. In the latter, we can
obtain the orientation error only computing the vector part of the relative quaternion rotation

existing between frames, with
d d d
€y = C7706 € —° 770660 - \_C GOJX “€o ) (3.8)

wehere {“n,, “€,} and {Cdno, Cdeo} are the quaternions representing the orientations of frames ¢
and c?, respectively.

To obtain the derivatives of the error (3.7c), thus obtain the interaction Jacobian from (3.2),
we have to solve separately for the translational (é,) and angular (é4) parts. We can generically
describe the Jacobian with
J, 0
0 J,

) (3.9

Notice how the decoupling between linear and angular parts is possible thanks to the error
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definition in (3.7¢) (refer to [Chaumette and Hutchinson, 2006] for more details).
To obtain the linear term we have to describe the velocity vector conversion from one frame
to an other, thus having

d d

ep="v="R.Sv, (3.10a)

where by simple inspection we obtain

d

J,=“R.. (3.11)

This operation can be defined using other rotation representations, but its development is here
avoided for simplicity.

On the contrary, as the operations involving derivatives in SO(3) are not trivial, we show
hereafter the expression of the angular error derivative depending on which representation do
we choose (i.e., rotation matrices, quaternions or angle-axis).

Firstly, we use rotation matrices in the following way. From the Rodrigues formula, it can be

shown that
1/ .a4._T d
les) =5 ( R, —CRC> . (3.12)

Deriving (3.12) together with the following relationship

. T
les). = “R,. “R. (3.13a)
d_ T d-
=R, “R,, (3.13b)
we obtain
ha 1 C Cd T Cd C
2ol = (1wl R+ Rl ) (314)

where, after some computation (see [Martinet and Gallice, 1999]), we end up with
. 1 e T od c
€ =5 <tmce( R.)I - RC> w. (3.15)

By simple inspection of (3.15) we obtain the orientation Jacobian using rotation matrices,

corresponding to
1 d T d
Jy= 3 (trace(c R )I-° RC> : (3.16)

Using quaternions, as in (3.8), we can take advantage of the relationship presented in (2.10),
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here summarized with
0

w

“Qui = B ® Qe (3.17)

Cc

with ® the quaternion product. Notice how the angular velocity is here composed globally in the
camera frame (i.e., left quaternion product). Then, the derivative of the rotation part becomes

(“neals — [“€ual, ) “w, (3.18)

DN =

ey =

where by simple inspection we get the orientation Jacobian using quaternion expressions, de-
fined as
1

J¢ = 5 (Cncdfg — LCECdJX) . (3.19)

If we express the orientation error using the angle-axis notation, J, would correspond to

the commonly used formulation presented in [Chaumette and Hutchinson, 2006]

6 sinc(6) 9
=I5~ 1——— 7 . 2
To=Ta- gl + (1- o) Lol (320

Although in both (3.16) and (3.20), J, becomes singular when 6 = 7 + k, the interaction
Jacobian (3.9) is full rank when 6 # 7 + km and we can reach global asymptotic stability (see
Section 3.3.1) under the strong hypothesis that all the pose parameters are perfect.

3.5 Image-based visual servo (IBVS)

In IBVS, the controller uses as input (i.e., the generic variable s in (3.1)) the 2D image coordi-
nates of our set of target features detected in the image. IBVS computes the control error in 2D
pose space and converts this error to camera velocities with the image Jacobian (3.2), defined
in the following.

This 2D error computation for IBVS methods allows them to be remarkably more robust
to errors in calibration and image noise than in PBVS schemes (i.e., less than 10% of error
in camera intrinsic parameters [Malis and Rives, 2003]). In contrast to IBVS, PBVS methods
require camera pose estimations in 3D, which in turn depend also on feature detections.

3.5.1 Image Jacobian

-
Let us consider p = [ac Yy z] be a static 3D point, expressed in the camera reference frame c.

The projection of p onto the image plane, according to the pin-hole model, is defined as in
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(2.17) by

= H -pr,2, (3.21)
1% z

with P the projection matrix described in (2.22) and = the distance, measured along the camera

optical axis, from the center to p.

In camera coordinates, the motion of the target can be described by a translational velocity
v and an angular velocity w. Then, the velocity of each feature in the camera frame is given by

the expression

P=—-UV—wWXpP (3.22)
which corresponds to
T —Up —Wy 2+ WY
gl = |—vy —w.r+wyz| - (3.23)
z —Vy — WY FwyT

Combining (3.23) with the time derivative of =, (2.18), we obtain

u:—v—x—kuvz+uvwx—(1+u2)wy+vwz (3.24a)

A z
D:—v—y%—&—i—(l—i—y%wx—uywy—uwz. (3.24b)

z z

where, for a feature j, can be written as
éj = Jjﬂc (3.25)

T T
with §; = [uj z)j] , the image velocities of the feature j, and ¥, = [’UT wT} , the camera

velocities. J; is the image Jacobian for the j-th feature, and takes the form

1 u 2
- 0 % —(1
P o) ov (3.26)
0 -1 2 (1+.7) —uv —u
Stacking these together, we get the image Jacobian for all n features
J1
J=1|:1. (3.27)
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3.6 Uncalibrated image-based visual servo (UIBVS)

In all classical visual servo approaches (i.e., PBVS, IBVS and hybrid methods) the resulting
interaction matrix or image Jacobian depends on a priori knowledge of the intrinsic camera
parameters. Although image-based methods, and in extension some hybrid approaches, have
shown more robustness in these parameters than pose-based approaches (as stated in the previ-
ous Section), they usually break down at error levels larger than 10% [Malis and Rives, 2003].
In the following, we present a method that indirectly estimates the focal length online which, as
shown in the experiments section, allows to withstand much larger calibration errors. To do so,

first we show some background formulation.

3.6.1 Background

Drawing inspiration on the EPnP [Lepetit et al., 2009] and UPnP [Penate-Sanchez et al., 2013]
algorithms, we can formulate the focal length in terms of the relation between the camera and
target frames. To this end, we set a reference system attached to the target object, and define
a set of four control points as a basis for this reference system. Then, one can express the 3D
coordinates of each target feature as a weighted sum of the elements of this basis. Computing
the pose of the object with respect to the camera resorts to computing the location of these
control points with respect to the camera frame. A least squares solution for the control point
coordinates albeit scale, is given by the null eigenvector of a linear system made up of all 2D
to 3D perspective projection relations between the target points. Given the fact that distances
between control points must be preserved, these distance constraints can be used in a second

least squares computation to solve for scale and focal length.

More explicitly, the perspective projection equations for each target feature, already de-

scribed in (2.17), can now be expressed with

4
2
> (az‘j%‘ +aij(uo — ui)i) =0, (3.28)
i=1 @
4 .
> (az‘jyj +ai(vo — Vi)i> =0, (3.29)
=1 @
where s; = [u;,v;]" are the image coordinates of the target feature i, and ¢; = [z,y;,2;] "

are the 3D coordinates of the j-th control point in the camera frame. The terms a;; are the
barycentric coordinates of the i-th target feature which are constant regardless of the location

of the camera reference frame, and « is our unknown focal length.
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These equations can be jointly expressed for all 2D-3D correspondences as a linear system
Mz =0, (3.30)

where M is a 2nx12 matrix made of the coefficients a;;, the 2D points s; and the principal point;
and « is our vector of 12 unknowns containing both the 3D coordinates of the control points in

the camera reference frame and the camera focal length, dividing the = terms:
T = [T1,Y1,21/, .., Ta, Ya, 22/ ] . (3.31)

Its solution lies in the null space of M, and can be computed as a scaled product of the null
eigenvector of M ' M via Singular Value Decomposition

x=fu, (3.32)

the scale g becoming a new unknown.

Notice how in the noise-free case, M ' M is only rank deficient by one, but when image
noise is severe M " M might loose rank, and a more accurate solution can be found as a linear
combination of the basis of its null space. In this work, we consider only the least squares
approximation. That is, only the eigenvector associated to the smallest eigenvalue.

To solve for 5 we add constraints that preserve the distance between control points of the
form

2 _ 2
HC]' — Cj/H = djj’ y (333)
where d;; is the known distance between control points ¢; and c¢j in the world coordinate

system. Substituting « in the six distance constraints of (3.33), we obtain a system of the form
Lb=d, (3.34)

where b = [3%,0%3%]", L is a 6 x 2 matrix built from the known elements of u, and d is the 6-
vector of squared distances between the control points. We solve this overdetermined linearized

system using least squares and estimate the magnitudes of 3 and « by back substitution

B =vbr, (3.35a)

o :,/Ilb)j:. (3.35b)

For a more exhaustive explanation of this method for pose and focal length estimation we
refer the reader to the above-mentioned papers.
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3.6.2 Uncalibrated image Jacobian

We want to minimize the error shown in (3.1), where in this case we can select s to be
the projection of the control points ¢, and s? their final desired position in the image plane,
computed with our initial value for «.

Then, injecting (3.32) in the equations of the target motion (3.23), we obtain

.fj —Ug _wyaﬁﬂz + w; 6:”3/
Yi| = | vy — wz Ble FweaBu| (3.36)
zj —Vy — Wy /B,Uy + wy Bz

where p,, 1y, and p, are the z, y, and z components of eigenvector p related to the control
point ¢; (3.32), and whose image projection is given by

. Zj
ui| | T (3.37)
Vj a% + 1
J
and its time derivative by
. i xiZ5
[“J] —a|® A (3.38)
o Ui _ iz
J z; 2]2.
Substituting (3.32) and (3.36) in (3.38) we obtain
. Tz — O‘ﬂﬂzwy + ﬂﬂywz . Nm(*")z - Bﬂywx + ﬂﬂmwy)
U = B, B2 (3.39)
S Ty — aBpwy + Bew, . ,U/y(_'Uz - 6,”1/‘*% + B/Jaawy)
e B afp? ’ (3.40)
which can be rewritten as
Sj = Jj Ve, (3.41)

.
with ; = [1;,7;]", the image velocities of control point j, and 9. = [’UT wT} , the camera
velocities. J; is our seeked calibration-free image Jacobian for the j-th control point, and takes

the form
6—1 0 ng iy —ui—gﬂui By
Ji= | aPHz M, Hz s 3.42
J 0 -1 Hy py oty “Haby —la ( )
Buz  apu? ap? ap? Bz

Stacking these together, we get the image Jacobian for all control points

J1
J=1:1. (3.43)
Jy
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Notice how, the terms of p in our Jacobian are the coordinates, albeit scale of our control
points, which in turn form a basis of the original features. They are by construction linearly
independent and it can be shown that with such selection of control points, J has full rank 6
and thus, Ineq. 3.6 holds and thus asymptotic stability is guaranteed.

3.7 Validation

In this section, we show the advantages and limitations of the presented visual servo methods.
Specifically we show the performance of the UIBVS approach by comparing it with the classical
schemes (i.e., PBVS and IBVS) through simulation case studies, assuming a holonomic system
with 6 DoFs. The following simulations were done in Matlab-Simulink using as template the
Visual Servoing Toolbox®, and their implementations are available online!®. Some of these
simulations are reported in Video 3, referenced in Appendix C.

These visual-based servo methods were designed with a particular application in mind, that
of maneuvering a UAM to a desired location for robotic manipulation tasks. As common UAM
platforms are underactuated vehicles (i.e., 4 DoFs), we require extra DoFs to drive the camera
with the visual servo velocities, e.g. attaching a serial arm of at least 2 DoFs. This kinematically
augmented platforms are detailed in Chapter 4, and thus real experiments with the application
of these visual servo methods are provided in Section 4.8.

Given a random set of target features, an initial camera position, and a desired final position
with respect to the target, we want to compare the performance of the PBVS, IBVS and UIBVS
algorithms with the same setup, except for the unknown camera calibration parameters in the
uncalibrated case. For these comparisons we show simulation runs for 50 sec with time steps
of 0.1 sec where the camera is assumed to be fully controllable (i.e., 6 DoF), and the controller
used is a simple proportional controller with gain A = 0.125. The value was chosen empirically
to be able to compare the time both algorithms take to reduce both image and Cartesian errors.

Figure 3.3 shows the obtained 3D camera trajectories using all presented methods, as well
as the corresponding control points. The camera is indicated with a yellow tetrahedron in the
initial and final locations, and the camera trajectories are shown as a concatenation of camera
frames, with their axes depicted in red, green, and blue colors. The original features and the
control points are depicted with blue circles and red crosses, respectively.

Analizing their performances in 3D space, PBVS is the approach which performs better (i.e.,
with a trajectory close to a straight line) because its error is directly computed in 3D cartesian
space. Although IBVS and UIBVS reach the target with a bit larger trajectories than PBVS, both

‘http://vstoolbox.sourceforge.net/
Ohttps://gitlab.iri.upc.edu/asantamaria/VisualServo
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Figure 3.3: Camera trajectory comparison between a) classical PBVS, b) classical IBVS and c) uncalibrated
IBVS, under noise-free conditions.

methods are sufficient to accomplish the task. On the other hand, if we analize how the methods
perform with the target tracking, it is expected to have better performances using image-based
methods. This behavior is clearly seen in the corresponding image trajectories of the control
points, shown in Figure 3.4(a), where the method with a shorter trajectory corresponds to the
IBVS, whereas PBVS takes large image plane paths to align the control points. As all methods
are based on an underlying features detector, using PBVS methods may imply a trajectory
where these features lay outside the image plane, thus the target is lost and the task cannot
be accomplished. For these reason, in the experiments section of Chapter 4 the PBVS scheme is
only used inside a hybrid architecture where also an IBVS is applied.

The time evolution of errors in Cartesian coordinates and in the image plane of the control
points is plotted in Figure 3.5. Under equal noise-free simulation conditions, all methods have
similar asymptotic convergence and compare adequately with respect to each other, reaching
the goal at the desired pose with similar but not identical trajectories.
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Figure 3.4: Comparison of control point trajectories in the image plane
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Figure 3.5: Comparison of control point errors for noise-free conditions, (a-c) as reprojections in the
image plane, and (d-f) as Cartesian coordinates in the camera reference frame.

The presented UIBVS method is globally asymptotically stable when the sufficient condition
in (3.6) holds. Our Jacobian is built from the coordinates, albeit scale, of our control points
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Figure 3.6: Values of the Lyapunov candidate function £ and its derivative £.

(3.43), which in turn form a basis of the original features. They are by construction linearly
independent and it can be shown that with such selection of control points, J has full rank
of dimension 6 and thus the inequality (3.6) holds. To show experimentally that our UIBVS
scheme is globally asymptotically stable, we plot in Figure 3.6 the value of the candidate function
L = 1lle(t)|? and its derivative £ = —~\e' JJ " e.

Now that our control scheme has been validated, we compare the method again versus the
classical visual-based servo schemes, but now subject to noise, both in the image reprojections
and in the internal camera parameters. IBVS and UIBVS methods turned out to be robust to
noise levels of 1 to 3 pixels in the image coordinates but the interesting results were obtained
when noise was added to the focal length, which can be caused by mechanical vibrations of the
optics, bad initial calibration values, or unaccounted changes in zoom.

Noise in focal length

An unaccounted variation of focal length is assumed by the classical image-based servo ap-
proaches mainly as camera motion along the z axis. However, in the case of position-based
methods, the focal length plays a role in the optimization process to obtain the camera pose
from image feature detections and its impact is stronger. The major effect lies with the estima-
tion of the camera orientation, because a small orientation error translates to large Cartesian
positioning errors.

To recover from existing noise in the focal length, in all calibrated visual servo methods
(i.e., PBVS, IBVS and HVS), the control law induces undesirable changes in the robot velocity
commands. This is shown in Figure 3.7, in which we plot the camera velocities for a servoing
task with a focal length of 10mm, and subject to white noise variations of 1 mm standard
deviation. Plot 3.7(a) shows the computed camera velocities for the classical position-based
method which is not able to drive the camera efficiently. The IBVS in plot 3.7(b) uses the focal-
length dependent Jacobian. As stated in previous sections, image-based methods show more
robustness to error in the camera intrinsic parameters than pose-based approaches [Malis and
Rives, 2003]. Plot 3.7(c) corresponds to our proposed calibration-free scheme. Even when the
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Figure 3.7: Camera velocities during a servo task subject to white noise of 1 mm in the focal length.

servo task can be successfully completed in both image-based cases in approximately the same
amount of time, the proposed method provides a much smoother tracking of the camera to such

variations in focal length.

Wrong initialization or unaccounted focal length

The robustness of the UIBVS approach becomes more evident with large errors in the camera
focal length, due to either a wrong calibration or for an unaccounted change. As shown
previously, under equal noise-free simulation conditions all methods have comparable asymp-
totic convergence. But, for an unaccounted change in the focal length of 20% (e.g., a wrong
initialization value), the classical PBVS and IBVS approaches are unable to reach the desired
configuration, in contrast to the proposed approach in which the servoing task is completed
without trouble. This behavior is show in Figure 3.4(b). Figure 3.8 shows the control point
error trajectories, in the image plane (a-c), and in camera centered Cartesian coordinates (d-f).

3.8 Summary and main contributions

In this chapter we described the principles of position- and image-based visual servo, together
with a new method for uncalibrated cameras. As expected, image-based methods show more
robustness to unaccounted changes in camera intrinsic parameters. However, if these errors are
large (e.g., more than 10%) the classical image-based approach is not able to drive the camera to
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Figure 3.8: Comparison of control point errors for an unaccounted error of 20% in camera focal length,

(a-c) as reprojections in the image plane, and (d-f) as Cartesian coordinates in the camera reference
frame.

the target. Such errors are transfered to the control law, producing camera displacements along
the optical axis. To overcome this situation, an uncalibrated visual servo method is presented,
which shows robustness to such large errors in camera focal length because this distance is
optimized on-line, thus allowing us to get rid of its dependency in the formulation of the image
Jacobian.

In our uncalibrated image-based visual servo, target features are parametrized with their
barycentric coordinates, and the basis of these coordinates is used to define a set of control
points. A method is given to recover the coordinates of these control points and also of the
camera focal length. With these, a new image Jacobian is derived which is guaranteed by
construction to be of full rank. This guarantees asymptotic stability of the control law regardless
of the target point selection, as long as planar configurations are avoided.

This research work has been partially published in [Santamaria-Navarro and Andrade-Cetto,
2013] and [Santamaria-Navarro et al., 2017a]. All the technical details have been provided,

facilitating the use of the proposed methods by other groups in the community. The techniques
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are here demonstrated in Matlab-Simulink and all our code is available for download!!. A video
of the method at work is also referenced in the same page and as Video 3 in Appendix C.

We defined these visual servo tasks with a particular application in mind, that of driving a
UAM for a realistic manipulation mission. Until now, in this chapter we assumed a holonomic
system with 6DoF (i.e., the camera can move freely in space). In order to use these methods in
a real UAM, we need to kinematically augment the multirotor platform with at least two DoFs
due to its underactuation. In the next chapter we define such UAM, consisting on a multirotor
platform with a serial arm attached below, and present experiments using the described visual
servo approaches with real robot case studies.

Uhttps://gitlab.iri.upc.edu/asantamaria/VisualServo
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Task Control

4.1 Introducion

Multirotors, and in particular quadrotors such as the ones used in this thesis, are underactuated
platforms. That is, they can change their torque load and thrust/lift by altering the velocity of
the propellers, with only four DoFs (e.g., one for the thrust and three torques). But, as shown
in this Chapter, the attachment of a manipulator arm to the base of the robot can be seen as a
strategy to alleviate underactuation allowing UAMs to perform complex tasks.

In this work, we attach a light-weight serial arm to a multirotor and use a camera, together
with the visual servo methods presented in Chapter 3, to drive the UAM towards a desired
target. The arm lets us exploit the redundancy in DoFs of the overall system not only to achieve
the desired visual servo task, but to do so whilst attaining also other tasks during the mission,
e.g. avoiding obstacles or self collisions, compensating for changes in weight distribution during
arm operation, or driving the arm to a desired configuration with high manipulability, thus
improving overall flight behavior.

Redundancy in DoFs is exploited by combining the tasks hierarchically so as to tackle addi-
tional objectives expressed as constraints. In this Chapter we define two hierarchical methods.
A first approach, presented in [Lippiello et al., 2016], addresses a full least squares secondary
task solution by suitably assigning an order of priority to the given tasks and then satisfying the
lower-priority task only in the null space of the higher-priority task. A second method, presented
in [Santamaria-Navarro et al., 2014; Santamaria-Navarro et al., 2017a], combines tasks hier-
archically in a less restrictive manner than [Lippiello et al., 2016], minimizing secondary task
reconstruction only for those components not in conflict with the primary task. This strategy is
known to achieve possibly less accurate secondary task reconstruction but with the advantage
of decoupling algorithmic singularities between tasks [Siciliano and Khatib, 2008]. Although
hierarchical task composition techniques are well known for redundant manipulators, its use on
aerial manipulation is novel. In both cases, we address the problem of coupling two different

71
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systems, an aerial platform with a serial arm, where the underactuation of the flying vehicle
has critical effects on mission achievement. Therefore, we show how the non-controllable DoFs
must be considered in the task designs.

An optimization based approach can also be used to exploit redundancy. We also present
in this Chapter a quadratic programming method to compute joint trajectories for UAMs [Rossi
et al., 2017]. In order to alleviate the optimization procedure, the relative importance of tasks
is set using a weighting strategy, leading to an on-board and real-time method. In this case, the
definition of the problem is in the acceleration domain, which allows us not only to integrate
and perform a large set of tasks, but also to obtain smooth motion of the joints.

In this Chapter we also provide the definitions of the previously mentioned tasks, specially
designed for UAMs. Specifically, we define a safety task intended for obstacle and self-collision
avoidance. Then, to minimize undesired effects of the arm onto the platform, we describe a
task to vertically align the arm center of gravity with that of the platform, and another one to
limit the forces exerted by the robotic arm on the quadrotor horizontal plane. To improve arm
motion, we define two well known tasks consisting on maximizing the arm manipulability and
to reach desired arm joint positions. We also present a task to limit the quadrotor accelerations
and, to assure the convexity of the problem in the case of using the optimization technique, we
describe a velocity minimization cost function.

We validate the use of the proposed hierarchical control laws and the optimization technique
in simulation case studies and in extensive real experiments.

The remainder of this Chapter is structured as follows. The next section overviews the state
of the art in aerial manipulation with special attention to UAM control. Section 4.3 describes
the kinematics of two UAM configurations. Then we describe the task control in Section 4.4,
with the proposed hierarchical formulation defined in Section 4.5, and the quadratic program-
ming solution in Section 4.6. Section 4.7 defines the tasks designed for UAMs. Simulations
and experimental results are presented in Section 4.8. Finally, conclusions and a summary of
contributions are given in Section 4.9.

4.2 Related work

The modeling and control of a UAV able of interacting with the environment to accomplish sim-
ple robotic-manipulation tasks have been proposed in [Marconi and Naldi, 2012], which is based
on a force-position control law designed through a feedback linearizing technique. In [Gentili
et al., 2008] an analogous issue has been investigated by further considering a safe take-off from
forbidding terrains for vertical take-off and landing (VToL) UAV. With the improvement of the
batteries and the miniaturization of motors and servos, new high-performance UAV prototypes
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endowed with a robot arm have been designed (i.e., a UAM).

The ability for small UAVs to manipulate or carry objects could greatly expand the types
of missions achievable by such unmanned systems. High performance arms with end effectors
typically weigh more than 10kg, which cannot be supported by most commercially available
small-sized UAVs. In contrast, aerial manipulation tasks executed with a UAM endowed with
a simple light-weight robot arm with 2 DoFs is presented in [Kim et al., 2013], where an
adaptive sliding-mode controller has been adopted, leading to a 6 DoF positioning system
(without overactuation). Recent developments however suggest a trend change with UAV
payload capabilities increasing and arm weights getting smaller [Ollero and Kondak, 2012;
Korpela et al., 2011; Orsag et al., 2013a].

Flying with a suspended load is a challenging task since the vehicle is characterized by
unstable dynamics in which the presence of the object causes nontrivial coupling effects and the
load significantly changes the flight characteristics. Given that the stability of the vehicle-load
system must be preserved, it is essential for the flying robot to have the ability to minimize
the effects of the arm in the flying system during the assigned maneuvers [Palunko et al.,
2012]. [Kondak et al., 2014] and [Huber et al., 2013] show the effect of using independent
controllers for both the arm and the aerial platform. They take advantage of an industrial
manipulator attached to a main-tail-rotor helicopter (120kg of payload), and to improve the
kinematic coupling, they suggest to use the platform yaw axis as an extra arm DoF in order to

achieve simple manipulation tasks.

Among the undesired dynamic effects, there is the change of the center of mass during
flight, that can be solved designing a low-level attitude controller such as a Cartesian impedance
controller. In [Lippiello and Ruggiero, 2012a; Lippiello and Ruggiero, 2012b] the dynamic
model of a UAM and a Cartesian impedance control have been designed providing a desired
relationship between external wrench and the system motion. However, redundancy is exploited
in a rigid way. A different approach is [Palunko and Fierro, 2011], where an adaptive controller
is set based on output feedback linearization to compensate the unknown displacement of the

center of mass during aggressive maneuvers. However, only the case of a quadrotor is studied.

In contrast, [Bellicoso et al., 2015] address this problem designing a light-weight arm with
a differential joint at the base of the robotic arm and relocating the rest of the motors also in
the arm base to reduce the misalignment of the arm CoG. Moreover, a desired end effector pose
might require a non-horizontal robot configuration that the low level controller would try to
compensate, changing in turn the arm end effector position. In this way, [Orsag et al., 2013b]
design a controller exploiting the manipulator and quadrotor models. However flight stability
is preserved by restricting the arm movements to those not jeopardizing UAM integrity. The
dynamic stability of a UAM under the influence of grasped objects has been addressed in [Orsag
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et al., 2013a].

A control algorithm which is able to exploit all the DoFs of a UAM is proposed in [Forte
et al., 2014], where the execution of tasks with a physical interaction with the environment has
been achieved. The employed UAM is completely actuated only along one direction. A related
control solution considering valve turning with a dual-arm UAM was proposed in [Korpela et al.,
2014]. In a different approach, [Michael et al., 2010a; Bernard et al., 2011] consider the
coordination of UAVs transporting a payload via cables, where robot motions are generated
ensuring static equilibrium of the load. In all these works, vision is not employed for task
execution and there is no redundancy. The redundancy of the system in the form of extra DoFs
can be exploited to develop lower priority stabilizing tasks after the primary task, which can be
simultaneously performed within a hierarchical framework, by optimizing some given quality
indices, e.g. manipulability, joint limits, etc., [Chiaverini, 1997; Baerlocher and Boulic, 1998].

The use of vision for the execution of aerial robotic tasks is a widely adopted solution to
cope with unknown environments. In [Mebarki et al., 2013; Mebarki et al., 2014; Mebarki and
Lippiello, 2014a] new image-based control laws are presented to automatically position UAM
parts on target structures, where the system redundancy and underactuation of the vehicle
base are explicitly taken into account. The camera is attached on the aerial platform and the
positions of both the arm end effector and the target are projected onto the image plane in
order to perform an image-based error decrease. When projecting the end effector, both end
effector and vehicle velocities are required to be known, which for the second case creates a
dependency on the robot odometry estimator that rarely achieves the required precision for
aerial manipulation in a real scenario (e.g., without motion capture systems). Moreover, in
both [Mebarki and Lippiello, 2014a] and [Mebarki et al., 2014] the proposed control schemes
are only validated in simulation.

In [Kim et al., 2016] presents a vision-based method to guide a multirotor vehicle with a
three DoFs arm attached. A traditional image-based approach is used to retrieve desired camera
velocities, and to drive the whole system an adaptive controller is designed considering both
kinematic and dynamic models. Although the complete robot has an extra DoF (i.e., 4 DoFs
for the platform and 3 DoFs for the robot arm), this overactuation is not explicitly exploited. To
cope with underactuation of the aerial platform, roll and pitch motion compensation is moved to
the image processing part, requiring projective transformations and entailing some constraints.
The errors computing arm kinematics are to be coupled with the image-based control law (this
can be an important issue in case of realistic operations with aerial manipulators where the
robustness of the joints are restricted by their payload). Moreover, the scale (i.e., the distance
from the camera to the observed object) is strictly required and cannot be directly measured,
thus some assumptions must be made or other sensors are to be used.
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We presented in [Santamaria-Navarro et al., 2014] a task-oriented control law for aerial
surveillance, where a camera is attached to the end effector of the robot arm to perform visual
servoing towards a desired target. However in that paper we employed redundancy in a rigid

way and the interaction between dependent tasks was not considered.

In [Lippiello et al., 2016] we presented a hybrid position- and image-based servo scheme
with hierarchical task composition for unmanned aerial manipulation that addresses full least
squares secondary task solution. The corresponding control law is one of the contributions of
this Chapter and is described in Section 4.5. The presence of redundancy in a UAM system allows
combining a number of subtasks with a hierarchical-task formulation. Different subtasks can be
designed both in the Cartesian space (e.g., obstacle avoidance or manipulation tasks), in the
image space of the camera (e.g., IBVS or FoV constraints), as well as in the arm joint space (e.g.,
CoG balancing, joint-limits avoidance, manipulability, etc.). Moreover, the underactuation of the
aerial vehicle base was systematically taken into account within a new recursive formulation.
Although a close approach is [Buonocore et al., 2015], in [Lippiello et al., 2016] we derived
a new advanced formulation with the capability to guarantee decoupling of independent tasks
(not only orthogonal as in the previous work), the stability analysis of the new proposed control
law is discussed together with the derivation of all the task Jacobian matrices (in [Buonocore
et al., 2015] the Jacobian matrices of the uncontrollable variables are missing). Similarly, an-
other contribution of this Chapter is our work presented in [Santamaria-Navarro et al., 2017a],
described in Section 4.5, which formulates a similar control law but this time only requiring
independence of non-controllable DoFs in the tasks to guarantee stability.

Even when the state of the art in control algorithms for UAMs is extensive, solutions for
trajectory generation using optimal control in real-time are rare. These methods usually re-
quire powerful computational units due to their iterative nature. [Hehn and D’Andrea, 2011]
and [Mellinger and Kumar, 2011] describe methods for 3D optimal trajectory generation and
control, however their works are focused only on UAVs, thus considering few DoFs. In [Sreenath
et al., 2013], trajectory generation is optimized for a vehicle with a cable-suspended load com-
puting nominal trajectories with various constraints regarding the load swing. The application
of such optimal control for UAMs can be seen in [Garimella and Kobilarov, 2015], where a
nonlinear model predictive control scheme is proposed to achieve pick-and-place operations.
Another example is [Geisert and Mansard, 2016] where a linear model predictive control is
described using a direct multiple shooting method. However, results for UAMs are only shown

in a simulated environment.

Drawing inspiration from other robotic fields (e.g., [Escande et al., 2014; Kuindersma et al.,
2014]), in our work described in Section 4.6 (also presented in [Rossi et al., 2017]) we take
advantage of a quadratic programming technique to solve several UAM tasks in real time, on
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board and subject to constraints. Specifically we use the on-line active set strategy ( [Ferreau
et al., 2008; Potschka et al., 2010]) which analyses the constraints that are active at the current
evaluation point, and give us a subset of inequalities to watch while searching for the solution,
which reduces the complexity of the search and thus the computation time. A similar approach
is [Zanchettin and Rocco, 2015], where the common idea consists in dividing the problem in two
parts, firstly accounting for the trajectory generation and then implementing a reactive controller
guaranteeing bounds on velocities and accelerations and enforcing a hierarchical structure of
constraints. In contrast to [Zanchettin and Rocco, 2015], in which the experimental case study
is based on a 7 DoF serial arm, we present a similar technique with specific tasks, constraints
and bounds designed for UAMs. In this case, trajectory generation and redundancy exploitation
are integrated in the same framework. To our knowledge, this has been the first work applied to
such robots with all computations done in real time, and on board a limited computational unit.

4.3 Robot kinematics

Traditionally, when performing visual servoing techniques with grounded serial arms, the hard-
ware configurations of the arm end effector (hand) and the camera have been classified in two
fundamental groups [Chaumette and Hutchinson, 2007]:

- Eye-in-hand, or end-point closed-loop control, where the camera is attached to the moving

hand and observing the relative position of the target.

- Eye-to-hand, or end-point open-loop control, where the camera is fixed in the world and
observes both the target and the motion of the hand.

With the appearance of UAMs a new classification called onboard-eye-to-hand arose [Mebarki
et al., 2013] where the camera is mounted on board the aerial platform (onboard-eye) while
observing the robot manipulator (eye-to-hand). In this Chapter both onboard-eye-to-hand and
eye-in-hand taxonomies are used to drive the UAM end effector using visual information towards
a target in the scene. These hardware configurations are schematized in Figure 4.1 and their
coordinate frames and kinematic particularities are detailed in the following.

4.3.1 State vector and coordinate frames

Without loss of generality, we consider an inertial world frame w to be located at the target. Our
goal is to operate with the tool attached at the arm end effector and defined by the frame ¢. With
this, we define the camera frame ¢, whose pose with respect to the world frame w, expressed
as a homogeneous transform “T,, can be computed integrating the camera velocities obtained
from one of the visual servo approaches presented in Chapter 3.
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(a) Bonebreaker robot (1 : 20 scale). (b) Kinton robot (1 : 10 scale).

Figure 4.1: The UAMs from the ARCAS project used in the experiments are composed of a 4 DoFs
multirotor, commanded at a high-level by three translational and one angular velocities (v,,v,,v, and
w.), and a 6 DoFs robotic arm with joints ~,, x = 1...6; and world, camera, tool and body reference
frames indicated by the letters w, ¢, t and b, respectively. Frame (a) corresponds to the onboard-eye-in-
hand configuration while frame (b) is the eye-in-hand setting.

Let us define a complete system state vector « with

wz[pT o' VT]TZ[px py P b0 Y oo %nTa (4.1

where p € R? and ¢ € R? are the position and orientation of the body frame b expressed in
the inertial frame w, and ¥ € R™ are the arm joint angles, with m the number of arm DoFs.
Similarly, we can define a complete twist vector £ being

£=[19T ’YT}Tz[vm Vy UV Wg Wy Wy Y1 ... f’ym]T, 4.2)

-
where 9 = [vT wT} is the platform twist, with v € R? and w € R? the translational and
angular velocities of the body expressed in its own body frame b, and ¥ € R™ are the arm joint
angular velocities.

Notice how the twist vector (£) is not directly the time derivative of the system state vector
(&). This appreciation is important depending on which control references are considered when
globally controlling the multirotor. Individually, each rotation rate (i.e., ¢, 6 and ) give us the
respective angular velocity (e.g., w, = 1)), however they do not form an orthogonal set (i.e., a set
of Euler angles do not constitute a Lie group in SO(3)). When using Euler angles, the conversion
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of angular rates and angular velocities between two frames is defined by the so-called Wronskian

1 0 —Sp
W = I‘(ﬁ =10 Cop S¢pCh (,i) . (43)
0 —s4 ceco

with the notation s, = sin(z), ¢, = cos(z), t, = tan(z). Although the inverse matrix I'!
becomes singular with § = 7 +k, we consider that UAMs are not meant for acrobatic maneuvers
and these values will not be reached by the multirotor. In this Chapter, we provide high-level task
control laws using local information from a camera to control £, thus the use of this Wronskian
is considered included in the low-level attitude control and does not appear in the following
kinematics formulation.

We define the control velocities of the multirotor in the robot body frame b. A multirotor is at
the high level of control an underactuated vehicle with only 4 DoFs, namely the linear velocities
plus the yaw angular velocity (v;, vy, v, and w.) acting on the body frame. Then, we can define

a vector p containing only the controllable UAM DoFs with

.
p:[pz py P2 ¥ oM .. vm} ; (4.4)

and its derivative

.
bZ[vw vy Uz wr 1. f'ym} . (4.5)

The pose of the multirotor body with respect to the target is determined by the homogenous
transform “7T} = wTCchfl, with YT, the camera pose expressed in the world reference frame
and T, the transform between body and camera frames that will depend on which configuration
do we use (i.e., onboard-eye-in-hand or eye-in-hand), as explained in the following. To make it
clear to the reader, left superscripts indicate the reference frame.

With an onboard-eye-in-hand setting, the camera is rigidly attached to the platform and
decoupled from the arm motion. In this case, the arm configuration does not play a role when
translating camera velocities from the visual servo to platform commands. Instead, to operate
with the tool installed in the arm end effector the arm kinematics must be considered in the
specific end effector task (e.g., gripper positioning with respect to the target). Being *T;(7) the
arm kinematics, for an onboard-eye-in-hand configuration we have “T; = “T, b, by Notice
how the arm base frame is considered, without loss of generality, coincident with the multirotor
body frame.

Instead, with an eye-in-hand setting where the camera is rigidly attached at the arm end
effector (YT.), to translate the visual servo velocities to the multirotor body frame we have to
consider the relation 7. = T} !T.. In this configuration, the movement of the tool is directly
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expressed with “T} = “T,. (T.) .
Now, we can define a robot Jacobian that relates the local translational and angular velocities
of the platform and those of the m arm joints (£), to the desired camera velocities, namely “9,,,

computed from the visual servo, such as
e, = J. €. (4.6)

with J, the Jacobian matrix of the whole robot. To make it clear to the reader, capital letters in
subscripts indicate a referenced element with R, P, A, C and T resulting the whole UAM robot,
multirotor platform, robot arm, camera and tool respectively. The kinematic relationships for

both UAM configurations are explained in the following sections.

4.3.2 Onboard-eye-to-hand kinematics

Let us consider the multirotor-arm system equipped with a camera mounted on the multirotor
platform in Figure 4.1(a). With this robot setting, the arm motion does not influence the camera
motion, thus the arm kinematics are not involved in the formulation of J, when using local
information (i.e., camera detections). For this reason, and considering that a main task for
UAMs is to manipulate with its end effector, we present here not only the formulation of the
Jacobian J,, but also the kinematic relations to translate global end effector velocities to those
of the robot joints (4.5).

When the camera is subject to motion, its velocities defined in camera frame ¢ can be directly
expressed as a function of the platform translational and angular velocities in body coordinates
with
ey, = [CRb 03

0 ‘R

b . I b
otwxtp| o [I -lpl] 47
w 0 Ig

where °p, is the position of the camera, and °R;, encodes the rotation between body and camera
frames. Notice how in this formulation ¥ € RS, including the non controllable DoFs of the

platform. Then, the robot Jacobian for this configuration can be extracted by direct inspection

of (4.7), being
o) I3 - prcjx
‘R O6xom | - 4.8
b [0 Ig 6 X ( )

J =

R

Using this setting, the camera motion is only produced by platform movements —see the
O« element in (4.8). Hence, considering the underactuaction of multirotors, we cannot
completely satisfy 6 DoFs camera velocity references from a visual servo approach.

A possible solution is the use of an hybrid visual servo architecture as shown in Sections 4.7.2
and 4.7.3, combining a PBVS for end effector trajectory tracking and IBVS to keep the target in
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the FoV. Hence, the arm kinematics, in the form of the well known arm Jacobian J,, will only
appear in the definition of those tasks that pretend to specifically move the UAM end effector.
As an example, we describe in the following the kinematics involved in a global end effector
tracking task.

Let us consider an end effector velocity vector expressed in the world frame w, namely “4,..
We can define a robot Jacobian that relates the local translational and angular velocities of the
platform and those of the m arm joints, £, such as 9, = J,£. To do so, we can decompose 4,
in the contributions of the platform and those of the arm with

Yo =+, (4.9)

Following a similar procedure as in (4.7), it is easy to obtain

b
R [I?’ Pl | . (4.10)

0 I

The end effector velocities produced by the arm movement are described by
Yo, ="RyJ, 7, (4.11)

with J, the arm Jacobian. In summary, a global end effector velocity can be transformed to

platform and arm joint velocities with

(4.12)

4.3.3 Eye-in-hand kinematics

With a multirotor-arm system where the camera is mounted at the end effector’s arm as shown
in Figure 4.1(b), we can follow a similar procedure as in (4.12). The camera velocities can be

expressed as ‘9, = J, §, with

(4.13)
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4.4 Task control

Even though the multirotor itself is underactuated (4 DoFs), by attaching a robotic arm with
more than 2 DoFs we can attain over-actuation (n = 4 + m). In our case, m = 6. Exploiting
this redundancy, we can achieve additional tasks acting on the null space of the robot Jaco-
bian [Nakamura et al., 1987], while preserving the primary task. These tasks can be used to
reconfigure the robot structure without changing the position and orientation of the arm end
effector. This is usually referred to as internal motion of the arm. One possible way to specify
a secondary task is to choose its velocity vector as the gradient of a scalar objective function
to optimize [Chiaverini, 1997; Nakamura, 1990]. Multiple secondary tasks can be arranged
in hierarchy and, to avoid conservative stability conditions [Antonelli, 2009], the augmented
inverse-based projections method is here considered [Baerlocher and Boulic, 1998]. In this
method, lower priority tasks are not only projected onto the null space of the task up in the
hierarchy, but onto the null space of an augmented Jacobian with all higher priority tasks.

In a general sense, we can define any such primary task as a configuration dependent task
oo = fo(x), with x the complete system state vector from (4.1). Differentiating it with respect
to x, and separating the uncontrollable state variables (i.e., roll and pitch in the case of a
multirotor platform) we have
o9 = aj;;)a(:w):i::Jopo + Jow, (4.14)
T _
where w = [wx, wy} , Jo is the Jacobian formed by the columns of the robot Jacobian corre-
sponding to w, and w,, and Jy is the Jacobian formed by all other columns of J,,, corresponding
to the actuated variables p from (4.5).

By inverting (4.14) and considering a regulation problem of o to the desired value ¢,
hence by defining o = o — o as the main task error, the velocity command for the main task
becomes

po = J§(Aooo — Jow) = J e, (4.15)

where Ay is a square positive-definite gain matrix, and J = (J| Jo)~'J, is the left Moore-

Penrose pseudoinverse of J, which has been assumed to be full-rank.

By substituting (4.15) into (4.14), gives
60 = Agoy, (4.16)

which for a defined main task error o9 = ag — o9, with a-g = 0, ends up following an
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exponentially stable dynamics
d’o = —AQO'() . (417)

4.4.1 Motion distribution

In those tasks involving platform and arm movements (i.e., the task Jacobian J includes the
platform and arm Jacobians) we can penalize the motion of the multirotor against the arm to
account for their different motion capabilities. For example, this is the case of performing a
visual servo task with an eye-in-hand configuration (4.13). To do so, we can define as in [Tan
Fung Chan and Dubey, 1995] a weighted norm of the whole velocity vector with

lplly =/ PTWh, (4.18)
and use a weighted task Jacobian to solve for the weighted controls
b =W YV2(J WY T e = g#
P, = (Jo ye=Jle, (4.19)

with € as in (4.15) and
JE=wlg] (Jowgf)™! (4.20)

the weighted generalized Moore-Penrose pseudoinverse of the servo Jacobian. With this, large
movements should be achieved by the multirotor whereas the precise movements should be
devoted to the robotic arm due to its dexterity when the platform is close to the target. To
achieve this behavior, we define a time-varying diagonal weight-matrix, as proposed in [Lippiello
et al., 2013],

W (d) = diag((1 —2) I4,21,), (4.21)

with n = 4 + m the whole UAM DoFs (4 for the multirotor and m for the arm) and

1+2 1-—1 d— 0w
= = = h{27n —— — .22
(d) 5 T3 tan ( il e—— 77), (4.22)

where ¢ € [1,1], and dy and Ay, Ay > Oy, are the distance thresholds corresponding to » = 1
and ¢ = 1, respectively. The blocks of W weight differently the velocity components of the arm
and the multirotor by increasing the velocity of the multirotor when the distance to the target
d > Ay, while for distances d < dy the multirotor is slowed down and the arm is commanded

to accommodate for the precise movements.
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4.5 Hierarchical task priority control (HTPC)

In case of a redundant robotic arm (i.e., m > 2), we can define several tasks and prioritize
them depending on our objectives. One of the most used strategies to set a priority consist
on a weighted sum of subtasks as in [Lippiello et al., 2013]. However, this technique can be
problematic when the tasks are antagonistic. Instead, another solution is to adopt a hierarchical
control law to prioritize the tasks and force the accomplishment of those more critical. In this
section we present two similar approaches to hierarchical task composition. First, we describe
the work presented in [Lippiello et al., 2016] which consists on a full least squares task solution.
Then, we define a similar hierarchical control law, but in contrast to the previous solution, in
this case we only require independence of the non controllable DoFs between tasks. This last
control law was presented in [Santamaria-Navarro et al., 2017a].

4.5.1 HTPC using full least squares

Let us consider a secondary lower priority task o1 = f;(x) such that

0 _
dlzm.ﬁc:lel—lew, (4.23)
ox
with p; = J{ (A161 — J1w). We can define a task composition strategy that minimizes sec-
ondary task velocity reconstruction only for those components in (4.23) that do not conflict

with the primary task [Siciliano and Khatib, 2008], namely
b: J0+A05'0 + (J1N0)+A15'1 —70|1w, (4.24)

where Nog =1,,—J Sr J is the projector onto the null space of J, A is a square positive definite
gain matrix, J; the Jacobian matrix of the second subtask, which is assumed to be full-rank, and

Jop = (J1No) Ty + (I = (J1No)*J1) Top, (4.25)

where I is the identity matrix and Joo = J§ Jo.

The Jacobian matrix 70|1 allows the compensation of the variation of zo. Notice that the
matrix J1 Ny is full-rank only if the two tasks are orthogonal (i.e., J1J E{ = 0) or independent
(i.e., not orthogonal and rank(J{) + rank(J{) = rank ([J§ J{])). Refer to [Antonelli, 2009]
for more details. Substituting (4.24) into (4.14) and by noticing that N is idempotent and
Hermitian, hence (J1Ng)™ = Ng(J1Np)™', the dynamics of the main task (4.17) is again
achieved and so the exponential stability is proven.

To study the behavior of the secondary task o7 we can substitute (4.24) in (4.23), consider-
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ing the task errors o; = azd — o; with o-f =0 and ¢ = 0..1, and by assuming that the tasks are at
least independent, the following dynamics is achieved

é’l = — JlJaero'o *Jl(J1N0)+A10'1
+ (J1Jg o+ J1(J1No) " (J1 — J1J§Jo) — J1) @™ (4.26)
= — JlJaero'o —A10'1,

where we used the property J1(J1Ng)" = I.

Finally the dynamics of the system can be written as

-

that is characterized by a Hurwitz matrix, hence the exponential stability of the system is

—Ay 0

I JFAy —Ay| |0

U”] , (4.27)

guaranteed. Moreover, we can notice the term —J;J¢ Ao that couples the effect of the main
task on the secondary task. In case of orthogonal tasks J;J a“ = 0and 61 = —Aj01, and the
behavior of the main and that of the secondary tasks are decoupled.
By generalizing (4.24) to the case of 1 prioritized subtasks, we can formulate the general
case with .
p=J MG+ Y (JiNg. ji-1) T AT — Top. 1y, (4.28)
i=1

where the recursively-defined compensating matrix is
Jop.jn = (T Nojjy=1)"Tn + (I = (JyNop.jp—1)"Ty) Jo|... -1, (4.29)

with Ny, _|; the projector onto the null space of the augmented Jacobian Jy,.. |; of the ith subtask,
with i =0,...,n — 1, which are defined as

N
Joi=|J§ - J (4.30a)

No..ji= T —Jg

of...jiT0l.li)- (4.30Db)

The previous stability analysis can be straightforwardly extended to the general case of 7
subtasks.

The hierarchical formulation (4.28) guarantees that the execution of all the higher-priority
tasks from 0 (main task) to ¢ — 1 will not be affected by the ith subtask and by the variation of
the uncontrolled state variables. In other words, the execution of the ith task is subordinated to
the execution of the higher priority tasks present in the task stack, i.e., it will be fulfilled only if
suitable and enough DoFs are available, while the complete fulfillment of the main task, instead,
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is always guaranteed. However, with this new formulation for all reciprocally annihilating or

independent tasks, a fully decoupling of the error dynamics is guaranteed.

4.5.2 HTPC decoupling algorithmic task singularities

Considering again a secondary lower priority task o1 = f,(x) as in (4.23), we can define a
task composition strategy that minimizes secondary task velocity reconstruction only for those
components in (4.23) that do not conflict with the primary task. However, in this case we

formulate the hierarchical composition with
p=JiAooo+ NoJ{ Ao — T @, (4.31)
where N = (I,, — J§ Jy) is the null space projector of the primary task and
Jop = J§Jo+ NoJTJy (4.32)

is the Jacobian matrix that allows for the compensation of the variation of the uncontrollable
states to.

This strategy, in contrast to the more restrictive one we presented in (4.24) might achieve
larger constraint-task reconstruction errors than the full least squares secondary task solution of
the previous section but with the advantage that algorithmic singularities arising from conflicting
tasks are decoupled from the singularities of the secondary tasks.

It remains to show that this task composition strategy guarantees stability of the overall
system. Substituting (4.31) into (4.23), and considering a task error oy = o-‘f—o-l, the following

dynamics for the secondary task is achieved
o1 =—J1JiAooo — Aoy + (J1J§Jo)w, (4.33)

where we used the property JiNoJ{ = I. Notice how exponential stability of this last
expression can only be guaranteed when the tasks are independent for the uncontrollable states

w, i.e., J1J§Jo = 0, hence
oo B
o1

which is a less stringent condition than whole task orthogonality (J;J§ = 0) or independence

—Ag 0
~ I JEAe —Ay

o1

UO] , (4.34)

that was needed in (4.24) to compute the pseudo-inverse (J1Ng)™".
The addition of more tasks in cascade is possible as long as there exist remaining DoFs from
the concatenation of tasks higher up in the hierarchy. The generalization of (4.31) to the case
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of n prioritized subtasks is

n
p=JiAoo0+ Y N o1 AiGi — To|. 1y @ (4.35)

i=1

with the recursively-defined compensating matrix

jo|...|n = No\...\zfleji + (I - Ny

0\...\2'_1Jjji)jo\...\zf1 ) (4.36)

where N ; is the projector onto the null space of the augmented Jacobian Jy, _; for the i-th
subtask, with i = 0, ..., — 1, defined as in (4.30).

4.5.3 Dynamic change of task priorities

The task composition and priority can be modified at runtime as needed, i.e., by activating or
deactivating subtasks as well as by changing the priority order of the current active tasks already
present in the task stack. However, in order to avoid discontinuity of the control input, a smooth
transition between different task stacks has to be considered. This goal can be achieved by
adopting a time-vanishing smoothing term when a new task stack is activated, as explained in

the following.

Without loss of generality, we suppose that the transition phase starts at ¢ = 0, i.e., the rth
task stack has to be deactivated and substituted by the new one (r + 1)th. During the transition
the velocity command is computed with

p(t) = braa(t) + €7 (p,(0) — b1 (0)), (4.37)

where ¢. is a time constant determining the transition phase duration, and p,, is the velocity
command corresponding to the kth task stack. When ¢ becomes sufficiently greater than ¢,
the rth task stack is fully removed and a new transition can start. Notice that the smoothing
term e i (p,(0) — p,41(0)) is bounded and exponentially vanishing, hence it will not affect
the stability of the proposed control law (the assumptions of Lemma 9.1 in [Khalil and Grizzle,
1996] can be easily verified if all the Jacobian matrices are full rank, hence the system is globally
exponentially stable). The time constant ¢. has to be smaller than the inverse of the maximum
eigenvalue of the gain matrices A; to ensure a short transient time response in comparison with
the nullifying time of the task errors ;.
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4.6 Optimization-based trajectory generation

The goal of this Section is to describe an optimization method to generate feasible trajectories
for all the joints of a multirotor-arm system, which has been published in [Rossi et al., 2017].
In contrast to the hierarchical control laws presented in Section 4.5.1 and 4.5.2, here we take
advantage of a quadratic programming approach (QP) to optimize robot joint commands to
accomplish the tasks. Although in this case the task priorities are assigned using a weighting
strategy, the numerical optimization problem allows us to set bounds and constraints. Hence,
we can set the critical objectives (e.g., collision avoidance) as a constraint for all other tasks.

Let us consider a UAM model as in previous Sections, composed by a multirotor platform with
4 DoFs and an arm with m joints (i.e., any of the settings presented in Figure 4.1). Moreover,
we consider that UAMs are not meant for acrobatic maneuvers. Hence, we have not included
the platform tilt in the trajectory generation algorithm (roll and pitch angles will be assumed
negligible in our analysis). Thus, we use here the reduced system state vector p and the UAM
DoFs p from (4.4) and (4.5), respectively.

In the first part of this Section, we will assume that the inner control loop of the system
can perfectly track the computed references. However, this hypothesis will be removed in
Section 4.6.4 and its implications discussed.

4.6.1 Optimization principles

The goal of a trajectory generation algorithm is to command the robot DoFs to accomplish
some given tasks while satisfying the system constraints. These tasks and constraints can be

generically expressed by
minfi(pv pvt) and fj<p7 f"yt) <0, (4.38)

where min f;(p, p,t) represents the ith generic task and f;(p,p,t) < 0 stands for the jth
constraint. For example, a trajectory tracking task with the arm end effector can be expressed as
the minimization of the tracking error norm, f(p,t) = Hpj‘f (t) — p, (t) ||, where pj‘f (t) and p,. (t)
are the desired and actual end effector positions, respectively (the subscript 7" indicates the tool
attached to the end effector to ease the reading).

The key idea of this approach is to assign desired dynamics to f;(p, p,t) and f;(p, p,t). In
fact, by using the Gronwall inequality as in [Bellman and Cooke, 1963], a constraint expressed
as f < 0 is satisfied if

f<=Mf, (4.39)

where \; is a positive scalar gain. Notice that it is just a sufficient condition, since the inequality
of (4.39) is more restrictive than the original one.
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By applying iteratively the Gronwall inequality on f + A f < 0 from (4.39), we have
F<=e(f+nr) =N, (4.40)

where ), is a positive scalar gain. Parameters \; and )\, assign the maximum convergence
dynamics towards the constraint. Similarly to the constraints, a task expressed by min f, where

f >0, can be formulated as
min|[f + (A2 + A1) f + XA f|[ (4.41)

Notice that if the cost function in (4.41) is always kept at its lower bound, the function f
converges to 0 with a dynamics assigned by eigenvalues A; and \,.

This approach is useful to obtain constraints and cost functions (i.e., tasks) in the acceleration
domain, when the original ones are expressed in the position domain. In fact, considering the
constraint f;(p) < 0 depending only on robot joint values, and applying this approach, we end

up with
Ajp < uaj, (4.42)
where
af;
Aj = (‘37;’ (4.43a)
1 O0%f; afi\ .
UAj = —)\2>\1fj — <pT8p2j + ()\1 + >\2) 8;) p. (4.43b)

On the other hand, when a constraint also depends on joint velocities f;(p, p) < 0) the Gronwall
inequality should be applied only once. While the constraint expression is the same as in (4.42),

in this case the terms A; and u4; are computed with

of;
Aj - 87"‘)77

af; .

o (4.44)

ua; ==X fj —
Similarly to the linear formulation obtained for the constraints (4.42), the cost functions can

be defined as
min ||J;p — b;||?, (4.45)

where, similarly to the constraints, the computations of J; and b; are straightforward as in
(4.44).

Notice that, so far the analysis has been performed for scalar functions f;, such that J; results
in a row vector, however it can be easily extended to multidimensional tasks f, and Jacobian

matrices J;.
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4.6.2 Quadratic problem formulation

The formulation of the optimization problem is quite straightforward. The cost function in
(4.45) results in the quadratic form

min || J;a — b;||?> = min (aTJ;rJia — 2bl-TJia) , (4.46)
a a
where the regressor variable p has been replaced by a for simplicity.

As we want to minimize different objective functions (i.e., tasks), two different scenarios
are possible. In the case that a strict hierarchy between tasks is required, a hierarchical solver
has to be used (e.g., [Escande et al., 2014]). Alternatively, we can consider the case of partial
hierarchy setting critical tasks as constraints, and adopting a weighted sum of the other ny

objective functions with

m&nz o; = mm — (aTJ:Jia — 2b;rjl-a)
4.47)

_ w;
= min E — <aTHia+miTa) )
a “ 7 h;
1=

where w; and h; are weights and a normalization factor, respectively. When a weighted sum is
employed, it is very important to normalize the objective functions, in order to effectively set
the desired weights w;. Thus, we chose the factors h; equal to the spectral norm of H;, which is
equal to the square root of the largest eigenvalue of the product matrix H; H;. Notice that this
spectral norm of H; equals the square of the spectral norm of J; when the objective function
has the form as in (4.46). Moreover, in order to effectively use the normalization factor h;, it is
beneficial to split the tasks that are not dimensionally coherent. For instance, the end effector
error is composed of translational and rotational parts. Then, computing two different factors

h; improves the effectiveness of the normalization.

With this formulation, the norms of joint velocities and accelerations define two useful cost
functions. They assure the convexity of the problem and allow the distribution of the motion on
the different joints a priori, by assigning different weights to each joint. When these two cost
functions are used together, the weights on joint velocities should be larger by a factor 5 to 10

than the corresponding weights on joint accelerations, in order to obtain a coherent behavior.

Finally, the complete optimization system combines the cost functions and constraints, ob-
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taining a quadratic problem with linear constraints defined as

1
min o = min <aTHa + mTa>
a a 2
st. Lh<a<u (4.48)
Iy <Aa< ua,
. . —l— .
whereo =Y o, H=Y 3 H;,m =) %m;and A = [AlT . AZC} with n¢c the number

of constraints. I, uy, I 4 and w4 assign lower (I,) and upper (u,) bounds on acceleration and
constraints respectively.

Then, we obtain a solution ag of the system in (4.48) for every time step k, thus the position
and velocity references, (4.4) and (4.5), can be updated, for example, with an Euler integration

as

2
p (k) :p(k—1)+p(k—1)5t+ao% (4.49a)

p(k)=p(k—1)+aodt. (4.49b)

where §t is the time step differential.

It is important to remark that the trajectory generation algorithm can either be computed off-
line or on-line. As the quadratic optimization method can be efficiently solved by state of the art
algorithms, it is particularly suitable to be computed on-line even in limited computational units.
On-line iteration allows to dynamically change the optimization parameters during specific
phases of a mission. It can be particularly useful to implement different redundancy solution
strategies, by changing cost function weights, depending on the mission phase or external

triggers. This behavior is shown in the experiments Section for a specific UAM mission.

4.6.3 Position, velocity and acceleration bounds

Using numerical optimization techniques allows us to specify robot constraints and tasks, as the
ones presented in Section 4.7, specific for aerial manipulators. However, to reach an optimum
solution we have to include in the optimization problem the position, velocity and acceleration
limits of the UAM joints. For instance, the quadrotor DoF for height has an obvious lower
bound (i.e., the ground), while arm joint bounds are given by the physical arm structure. These
problem bounds have to be reported in acceleration form with the strategy presented in Section
4.6.1.

Given an upper bound on the i-th joint position, namely g;, the Gronwall inequality can be
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applied twice as in (4.40), obtaining the following position bound in acceleration form
Gi < — (M +X2) G — MA2 (g — ;) - (4.50)

On the other hand, when an upper bound g; is given on the i-th joint velocity, the Gronwall
inequality has to be applied just once as in (4.39), resulting in the following velocity bound

G <=M (di—q)- (4.51)

The vectors of lower and upper bounds, I, and u; in (4.48), are formed considering the most
stringent conditions between position (4.50), velocity (4.51) and acceleration bounds, for each

joint.

4.6.4 Interface with the control algorithm

So far in this Section 4.6 we have assumed a perfect tracking of the generated reference tra-
jectory by the inner controller. With a real system, the performance of this closed control loop
is not ideal and dynamics between desired (p?) and actual (p) values of the robot DoFs are
introduced. As a consequence, the parameters A; and A, should be set low enough with respect
the control bandwidth such that the time scale separation principle holds, and the reference can
be tracked. Alternatively, one can include a simplified model of the closed loop system in the
dynamics considered by the optimization. Such dynamics analysis is out of the thesis scope.

In addition, if the actual measures are fed into the optimization algorithm (feedback scheme),
feasibility and stability issues can arise. In fact, using this feedback requires techniques of robust
optimization, as in [Zanchettin and Rocco, 2016], to prevent unfeasible points. Moreover, the
closed loop control can affect the stability of the system. The nonlinearity of the optimization
method makes it really difficult to find stability bounds and conditions.

For the previous reasons, in the rest of the Section the trajectory generation algorithm, as
it is common in all robotic trajectory generation systems, is computed without any feedback of
joint measures, and parameters \; and \, are chosen according to the inner control bandwidth
and time step dt.

4.7 Tasks definitions

In this Section we present several elementary tasks to be carried out during UAM missions, in
order to accomplish a given objective or to preserve stability. Gripper operations like grasping
are not considered here. These tasks are formulated in order to be used either by the hierarchical
approaches presented in Section 4.5 or by the quadratic programing approach of Section 4.6.
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S PR

(a) Obstacle avoidance. (b) Self-collision avoidance.

Figure 4.2: Collision avoidance setting an inflation radius around a specific part of the UAM. In frame (a)
this radius is set to avoid avoid obstacles, whereas in frame (b) is set to avoid self-collisions.

For the latter, we do not mention here the weighting factors because they depend on particular
mission phases, as explained in Section 4.8.3. Moreover, the expressions of the task Jacobian
derivatives J ; and the terms b; are neither provided but can be obtained using (4.45), which in
turn is based on (4.44).

4.7.1 Collision avoidance

The most important task during a mission is to preserve flight safety. When a rotor operates
near an obstacle, different aerodynamic effects are revealed, such as the so called "ground" or
"ceiling" effects, that can lead to an accident. Hence, to avoid them, we propose a task with the
highest priority to maintain a certain distance to obstacles by defining a safety sphere around
the flying platform, as shown in Figure4.2(a), and comparing its radius (r,) with the Euclidean
distance to the obstacle (d,). This distance can also be computed with respect to a different
moving UAM elements. For example, if we set the center of the sphere at the arm end effector,
the same task formulation can be used to avoid self-collisions by computing the distance d, with

respect to own robot parts, e.g., legs in Figure 4.2(b).

Then, our task function to minimize becomes
0o =To— ||do]] s (4.52)

The desired task variable is 0% = 0 (i.e., 5, = —\,0, with )\, a suitable positive gain), while
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the corresponding task Jacobian is
Jo=—-2d} S,J,, . (4.53)

where S, = [I 3 03} is a matrix to select the first three rows of the Jacobian J, , which is a
6 x (m+4) Jacobian matrix transforming controllable UAM DoFs values to a velocity vector, and
it depends on where do we set the center of the sphere. In case of avoiding collisions with the
platform, and setting the sphere center in the platform body frame b, we have

I; O
g, = |2 T (4.54)
03 O3x(m+t1)

The Jacobian matrix of the uncontrolled state variables is J, = —2 dI SpTRO = 01x2.

If we set the task to avoid self-collisions with the arm end effector, the Jacobian J,  cor-
responds to the controllable part of the robot Jacobian presented in (4.13) (i.e., columns cor-
responding to controllable DoFs). Similarly we can formulate TRP with the non controllable
columns of (4.13). Notice how with an onboard-eye-to-hand configuration we have to change
the subscripts ¢ by ¢ in (4.13).

When using a hierarchical control law, if we define the collision avoidance task with the
highest priority we have to deactivate its effects if no potential collision is detected (i.e., invasion
of the sphere). As the hierarchy is based on the dimension of the null space of the higher priority
task Jacobians, we can define a generalized pseudoinverse similarly to (4.20) with a diagonal
activation matrix, thus

JF=H'J](J,H'J]). (4.55)

With this activation matrix, we can prevent potential collisions by cancelling the motion of
the element (e.g., the flying platform or the end effector) only in those directions susceptible to
collide. This is usually called joint clamping. The elements in H are

H = diag(ha, hy, hz, 015 (ms1)) » (4.56)
and will block only those multirotor DoFs where the inflation radius is not respected defining

1, ifdy < (ro—||dojl|) Vi # i.

hy = oi < (1o — [|dojl|) Vi # (4.57)
0, otherwise.

This control law clamps any motion that violates the minimum distance to the obstacle.

When using an optimization technique, such as the quadratic programming solution pre-
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sented in Section 4.6, this collision avoidance task can be set as a constraint for the optimization
problem, in order to prioritize it over the other tasks. As commonly done in numerical opti-
mization problems, we can define the task function using the square norm of the distance to
obstacles, becoming the inequality

d)d,>r?, (4.58)

resulting that A, = 2d, S, J,, in (4.42), where with the definition of the optimization technique
in Section 4.6, J, is the full Jacobian of the UAM depending once again on the place we set the

center of the sphere. For example, choosing it in the quadrotor body frame b, we have

I; 0
J, = [ 3 3X<m+3>] : (4.59)
03 O3x(m+3)

whereas for end effector self-collision avoidance it is directly (4.13).

4.7.2 Onboard-eye-to-hand: global end effector tracking

The main interaction task with UAMs, in general, will be executed by the arm end effector, thus
it is important to be able to track a desired end effector trajectory. To do so, here we present
an end effector tracking task (positioning and orientation) with respect to a global frame, and
considering the onboard-eye-to-hand configuration from Figure 4.1. Notice how in the case of
obtaining the current end effector pose by combining the visual information from the camera
mounted in the platform and the arm kinematics, this task corresponds to a pose-based visual
servo as seen in Section 3.4.

Considering a desired 3D position for the end effector expressed in the world frame w, we

can compute its positioning error e,, and define the task function as its square norm, yielding
— ol 6
op=e,ep, (4.60)

where the desired task variable is O'g =0 (i.e., 0 = — A0, With ), a positive definite gain).
The corresponding task Jacobian matrix is

J, =2e,J (4.61)

P “Rp’

where J,, | corresponds to the robot Jacobian, consisting on the first three rows and the columns
related to UAMs DoFs from J, in (4.12). Similarly, the task Jacobian matrix of the uncontrolled
state variables is

(4.62)

where TRP is the Jacobian considering the first three rows and columns of the non controllable
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DoFs of J,, in (4.12).

With the proposed choice of o, only one DoF is required to execute this subtask, because
only the norm of e, will be nullified, i.e., the motion of the gripper during the transient is
constrained on a sphere of radius | e,||. However, the corresponding task Jacobian J, becomes
singular when e, — 0. Nevertheless, in the task composition the generalized-inverse J; is
multiplied by o,. Hence, if J, is full-rank, its determinant goes to zero only linearly when
e, — 0, but 0, goes to zero squarely.

Regarding the end effector orientation error, we can use any of the error forms presented in
Section 3.4. For example with the error computed using quaternions from (3.8), namely e, we
can define the task function as

oy = e ey, (4.63)

with the desired task variable a(‘; =0 (i.e., 0y = —0, with Ay a positive definite gain), while the

corresponding task Jacobian matrix is
Jy=2e,dy,, (4.64)

where J, ¢ Is nOW obtained from (4.12) just as J, » but this time keeping the last three rows of

J, in (4.12). The Jacobian matrix of the uncontrolled state variables is

Ty = 2egTR¢ , (4.65)
with J, ; obtained as J,, but using the last three rows of .J;, in (4.12).

Remarks similar to the positioning case concerning the number of required DoFs, the singu-
larity of the task Jacobian matrix, and the direct visual measurement of the gripper orientation

can be repeated straightforwardly. Notice that these two subtasks are orthogonal.

4.7.3 Onboard-eye-to-hand: camera field of view

When performing pose-based visual servo (e.g., using the task in Section 4.7.2), the target can
be easily lost as the task error is computed in the pose space instead of the image plane. Hence,
a FoV constraint is essential because the loss of the observed object from the camera image
will determine the failure of the whole mission (depending on the available camera optics, this
problem could be less significant). We can execute this FoV task together with the positioning
task in 4.7.2 to obtain a hybrid visual servo scheme.

Similar to the image-based visual servo methods presented in Section3.5, let s = [u v]" € R?
be the image features vector of the projection of the observed target centroid. The camera FoV

task consists in constraining s within a maximum distance with respect to a desired position s¢
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in the normalized image plane (e.g., the center of the image) by moving the camera point of
view. Without loss of generality, any point of the observed target can be chosen to be controlled

in the image. To achieve this goal, we consider the task function defined by

of =ejey, (4.66)

d _ g is the visual servo error as in Sections (3.5) or (3.6), and the desired task

where ey = s
variable is ajf =0 (ie., of = —Apos with Ay a positive definite gain), while the corresponding
task Jacobian is

Jp=2efJ.J, . (4.67)

where J; is the image Jacobian for the image feature chosen, obtained from (3.26) or (3.42)
depending on the image-based visual servo method used, and JRf is the Jacobian of the robot
from (4.8). Both J, and JRf are formed only by those columns corresponding to the controllable
UAM DoFs.

The Jacobian of the uncontrolled state variables for this task is
Jr=2e;J.J, (4.68)

with 73 and TRf the visual servo and robot Jacobians as in (4.67), respectively, but this time
constructed with the columns of the non controllable DoFs.

Notice that only one DoF is required to accomplish this subtask. In fact, we control the
distance of the target centroid with respect to the desired optical ray corresponding to s.
However, the corresponding task Jacobian matrix J is singular when ey — 0, but as we do not
consider strictly required to move the camera as to have the target object in the precise desired
position of the image (i.e., the center), this subtask can be activated only when o; exceeds a
safety threshold. Also a double threshold with hysteresis could be considered in practice to avoid
the chattering phenomena when o is close to the threshold. Hence, from a practical point of
view the singularity of the task Jacobian is not a problem because this task is deactivated before
getting close to a singular configuration.

This subtask is not orthogonal with respect to the gripper positioning but it could be inde-
pendent if the robot arm is endowed of a sufficient number of joints (i.e., at least 3), with a

suitable kinematic configuration.

4.7.4 Eye-in-hand: End effector tracking using visual servo

When the UAM has the camera attached at the multirotor platform, to drive the gripper using
visual information we require a hybrid visual servo approach combining both tasks (4.7.2) and
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(4.7.3). Instead, with an eye-in-hand setting, all robot joints intervene in moving the camera.
If the arm has more than two DoFs, we can control the camera movements using any of the
presented pose-based or image-based visual servoing methods to move the gripper to a desired

position and orientation with respect to the object.

Similarly for the other tasks, we can set the task error as the squared norm of the visual servo
error, requiring only one DoF to achieve this task (nullifying only the visual servo error norm).
However, we prefer to control all camera velocities (i.e., 6 DoFs). Thus, the task error o, € R®
is directly the visual servo error, which depends on the approach used (refer to Section 3.3 for
all presented visual servo methods). The desired task variable is 6 = 0 (i.e., 7, = —\,0, With
A\, a positive definite gain), while the corresponding task Jacobian is

J, = J,J, (4.69)

where J, is the visual servo Jacobian, which depends on the approach (i.e., PBVS, IBVS or
UIBVS) and Iy, is the Jacobian of the robot from (4.13). Both J; and J,, are formed only by
those columns corresponding to the controllable UAM DoFs.

The Jacobian of the uncontrolled state variables for this task is

A (4.70)

with J, and JiRﬂ the visual servo and robot Jacobians as in (4.69), respectively, but this time
constructed with the columns of the non controllable DoFs.

Notice how in this case, the task function is expressed locally using camera velocities,
expressed in the camera frame, obtained from the visual servo approach, and how the task
Jacobian converts them to UAM DoFs references.

4.7.5 Center of gravity

If the arm CoG and the multirotor gravitational vector are not vertically aligned, the motion of
the arm produces an undesired torque on the platform base that perturbs the system attitude
and position. This effect can be mitigated by minimizing the distance between the arm CoG and
the vertical line described by the platform gravitational vector. The task function we introduce
is the square norm of this distance, which can be written as

og = d,, day, (4.71)
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with
1 00
dy, = wRy bp (4.72)
v [0 1 0] b P
where the desired task variable is o0 = 0 (i.e., 5, = —Ay0, with ), a suitable positive gain) and

bpg the position of the arm CoG expressed in the body frame b. This position bpg is a function of
the arm joint configuration defined with

!
1
"Dy = — Z i "Dy (4.73)
=1
where m is the total arm mass l
m= Z ™, 4.74)
i=1

and [ the number of arm links. m; is the mass of link 7 and bpm its CoG position, which
corresponds to the CoG for the sequence of links i to the end effector, computed with respect to
the body frame with
l b
i m;i°p, s
L= 7 Pag 7 97 (4.75)
Zj:i Mj

where °R; is the rotation of the link i with respect to the body frame. Notice that all these

b b
pg,i = RZ

quantities are a function of the current joint configuration 7.

Then, the differential relationship between the CoG and the arm joint configuration is
Dy ="T47, (4.76)
where °J, € R3*™ is the CoG Jacobian, expressed in the quadrotor body frame,

op
b
Jy= 2= [ng,1 Sy (4.77)

with ®J,; the individual joint i Jacobian
L
"gi= D 02 Py (4.78)
j=i

Notice how the resultant linear velocity is scaled by the mass of the partial CoG in (4.78) be-
cause the CoG is the average of the multi-mass system with the consequence that high velocities

on smaller masses play a smaller role on the total velocity of the CoG.

Finally, the corresponding task Jacobian from the derivative of (4.71), for the controllable
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DoFs, is defined as
0 0

1
J, =2d],
! y[o 10

] 054 "Ry (4.79)

whereas the Jacobian for the non controllable DoFs is J, = 01 2.

With this choice, the CoG of the arm is controlled to be aligned with the CoG of the vehicle
along the direction of the gravitational force. Notice that we are assuming that the quadrotor
is internally balanced. Otherwise, a different equilibrium point should be assigned for the arm
CoG.

4.7.6 Desired arm configuration

During flight it may be interesting to drive the arm joints towards a desired value 7¢ that
can be chosen far from an unrealizable configuration and/or close to one characterized by a
high manipulability index or suitable with respect to the assigned task. The sum of normalized
distances of the position of the i-th joint to its desired configuration is given by

S (71—7‘-1)2
> L) (4.80)

= \7i

)

- T T . . . . .
with 7 = [71, e ﬁm} and ¥ = b L lm} are the high and low joint-limit vectors respec-
tively.
So our task function is selected as the squared distance of the whole arm joint configuration
with respect to the desired one

o= -7)T A (v =79, (4.81)

where A; is a diagonal matrix whose diagonal elements are equal to the inverse of the squared

joint limit ranges

A, = diag ((71 - 11)72 U A lm)ﬂ) ) (4.82)

The desired task variable is a;i = 0 (i.e., 0, = —oy), while the corresponding task Jacobian
for controllable DoFs is

Ji= 00 2(A (=79, (4.83)

The uncontrolled state variables do not affect the accomplishment of this task, hence their
Jacobian is J; = 01xs.

One common choice of 7¢ for the joint limit avoidance is the middle of the joint limit ranges,
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if this configuration is far from kinematic singularities, with

%ﬁ —). (4.84)

7i=a+

When using a hierarchical control law, due to higher priority tasks, some joints could reach
positions far from its desired values. However, when a joint is approaching a dangerous config-
uration, the corresponding components of (4.81) and (4.83) can be extracted from this task to
form a new isolated task that can be activated on the top of the task stack, using the dynamic
change of task priorities presented in Section 4.5.3. With this policy, if mechanically viable,
the system will reconfigure its internal DoFs to achieve all the remaining subtasks until the
dangerous condition will disappear and the original priority will be restored but starting from a

different system configuration.

4.7.7 Manipulability

During a manipulation task, a useful objective function is represented by the arm manipulability

index presented in [Yoshikawa, 1985] and described by

\/det (RyJ, (RyJ,)T) = (4.85)

where p are the singular values of the symmetric square matrix ‘Ry,J, (‘R,J A)T, which has rank
r (i.e., number of non zero singular values). This measure is proportional to the volume of the

manipulability ellipsoid. Then, the manipulability index can be transformed to

1

——, (4.86)
\Y H’i:l i
which in fact, to simplify its computation, can be described as
! (4.87)
Om = =, .
[Tiey b

which has a different derivative behavior but preserves the same minimum. The desired task
variable is 0%, = 0 (i.e., G, = —Amom, with )\, a suitable positive gain). Notice that if we
consider the manipulability for a 6 DoFs end effector workspace, an arm with at least 6 joints is
required.

The Jacobian J,, of the controlled stated variables is defined by

In = [00s 7] - (4.88)



4.7 Tasks definitions 101

where J), is the Jacobian of (4.87) that can be computed by following the chain rule for
derivatives, and its description is here avoided for the sake of simplicity as it involves very large
terms. In fact, its analytical computation requires a huge work and it is usually implemented
with a numerical solver. The individual Jacobians of the eigenvalues p can be obtained as
in [Papadopoulo and Lourakis, 2000]. As the multirotor platform does not influence the arm
manipulability, the Jacobian of the non controllable DoFs is J,, = 01x2. An alternative formu-
lation of the cost function can be obtained by applying the gradient based method from [Zhang

et al., 2012] or the inverse condition number from [Togai, 1986].

4.7.8 Velocity minimization

We can apply different weights to the joint velocities in order to arbitrarily distribute the motion
on the UAM joints. To do so, we can define an individual task for each controllable DoFs (i.e.,

defining m + 4 diferent tasks), where generically the corresponding objective function is
op = €%, (4.89)

with é = ¢¢ — ¢, where ¢¢ is a desired joint velocity which can vary depending on the evaluated
DoF. The desired task variable is ag =0 (i.e., 0, = —\,0, With )\, a suitable positive gain, which
can be different for each joint task).

Then, the task Jacobians .J, correspond to a matrix of size 1 x (m + 4) where all terms are
null except for the column corresponding to the task DoF, that contains the value of 2¢. In all
task definitions the Jacobians of non controllable state variables are null (J, = 0;2).

These cost functions are useful to assure the convexity of the problem.

4.7.9 Quadratic programming specific tasks

The quadratic programming approach presented in Section 4.6 allows us to specify tasks not
only in task velocity space but also with accelerations. If we want to use these tasks with a
control law set in the velocity space as the hierarchical control laws presented in 4.5, we have
to integrate them, for example, with an Euler integration. We describe in the following some
examples of these type of tasks which can be useful for UAMs.

Limiting quadrotor accelerations

When rapid end effector motions are required, it is better to distribute the motion in the arm
joints instead of the platform. This goal is achieved by penalizing quadrotor accelerations with

0o ="py Dy . (4.90)
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In fact, quadrotor accelerations in the horizontal plane are obtained through platform tilting,
which can affect other tasks if it is not compensated by the inner control loop. In this case, H,
and my in (4.47) turns out to have an identity matrix in the 3 x 3 upper left block and to be

null, respectively.

Forces on quadrotor horizontal plane

Limiting the forces exerted by the robotic arm on the quadrotor horizontal plane is beneficial
because the vehicle cannot oppose them without tilting, due to its under-actuation. Thus, we

can consider the following objective function

obJ
b, (4.91)

2 0

R
O'hzprng ngp_prJg Z
i=1
In this case, we can compute the terms Hj and my, in (4.47) by direct inspection of (4.91). This
cost function penalizes the inertial forces exerted by the arm, by considering the acceleration of

its center of mass.

4.8 Validation and experimental results

In this Section validations of the presented task control techniques through simulation case stud-
ies and real UAM experiments are presented. It is divided in three subsections, corresponding
to the techniques shown in 4.5.1, 4.5.2 and 4.6, respectively.

For all cases, the overall mission consists on three phases: First the UAM is driven au-
tonomously (taking-off and following waypoints) to a point where a main target is in the camera
field of view. Secondly, the task control law is switched on to perform the servoing until a
certain error in camera pose is reached by the end effector. Finally when the servoing phase is
accomplished, the UAM is autonomously commanded to land close to the initial take-off zone.
From these phases, our focus is in the middle one, consisting on the vehicle navigation using
visual information and where the task control is active.

For the simulation case studies, we take advantage of ROS [Quigley et al., 2009] running on
top of the GAZEBO'2 physics engine. The vehicle dynamics is in all cases based on a modification
of the Hector quadrotor stack [Meyer et al., 2012] but with specific parameters set according to
the real platforms used in the experiments. These UAMSs consist on the two robots presented in

Figure 4.1.

Zhttp://gazebosim.org


http://gazebosim.org

4.8 Validation and experimental results 103

Figure 4.3: Bonebraker UAM employed during the simulations (left) and real experiments (middle), and
images from the on-board camera during the approaching phase (top-right) and at the plugging instant
(bottom-right).

4.8.1 HTPC using full least squares

The validation of this method has been performed with a particular application in mind, con-
sisting on the grasping of a small light-weight carbon fiber bar and its plugging into a structure
fixed to the ground. To do so, we take advantage of an onboard-eye-to-hand setting with the
UAM presented in Figure 4.1(a). In both simulations and real experiments, the UAM weighs
5kg and it is equipped with a downward looking camera at 25Hz and a 6-DoF robot arm plus a
gripper attached to the end effector. The camera is located 50cm ahead the vehicle base with
an inclination of 30deg with respect to the vertical axis in a way to observe the grasping and
plugging maneuvers without self-occlusion. The target object is a bar with two visual markers
at the ends, used to obtain the position and orientation of the target object with respect to
the camera. To drive the UAM, we employed a velocity control as in [Mebarki et al., 2014;
Mebarki and Lippiello, 2014b]. Video 4 in Appendix C reports real experiments with grasping
and pluggin maneuvers using this hierarchical control law.

Simulations

The proposed approach has been tested in a simulator developed in the ARCAS' project based
on Gazebo physics engine —see left frame in Figure 4.3.

To validate this method, the part of the mission where the task control law is switched on is
composed of two main sub-phases:

- Approaching — the UAM starts from a distance of about 125 cm and has to move the gripper
to a pre-grasping pose at 10 cm over the grasping pose;

- Grasping — once the intermediate pose has been reached with an error less than a suitable
threshold (2cm for the position and 2° for the orientation), the target pose is moved



104 Task Control

towards the final grasping pose in 10s; the closing of the gripper is then commanded
when the final pose has been reached with a good accuracy (1 cm for the position and 1°
for the orientation).

We defined four task-stack configurations for the simulation of this hierarchical control law:
(i) We use only the end effector tracking task (PBVS) presented in Section 4.7.2.

(ii) Apart from i), we add a secondary task to keep the target in the field of view (see
Section 4.7.3), converting the whole control law to an hybrid visual servo (HVS).

(iii) Together with i) and ii), we set the arm end effector alignment task from Section 4.7.5.

(iv) In addition to all of the above, we add the task presented in Section 4.7.6 to drive the arm
to a desired configuration during flight. Specifically, in this case the arm configuration is

set to reach the middle position for all joints, following (4.84).

The achieved results are shown in Figure 4.4 with different colors for the four considered
task-stack configurations. A dashed vertical line is employed to highlight the end of the ap-
proaching phase and the starting of the grasping phase. Notice that the approaching and the
grasping phases in all the considered case studies have different durations depending obviously
on the selected control behavior (i.e., the active tasks stack).

Figure 4.4(a) shows the time history of the position error norm during the task execution
for each case study. For all cases, a smooth nullification of the pose error is observed. In
particular, during the approaching phase the position error decreases almost linearly due to the
saturation of the maximum vehicle cruise velocity (10 cm/s in these case studies). Figure 4.4(b)
shows the time history of the norm of the orientation error. The initial orientation is only a
few degrees far from the final grasping pose, hence the error goes under the threshold in few
seconds in all the case studies. Notice how the behavior of both the position and orientation
errors are similar in all the cases coherently with the hierarchical task combination adopted in
the proposed formulation, i.e. the activation of subtasks cannot affect significantly the behavior
of the higher priority tasks.

Figure 4.4(c) shows the results achieved with the activation of the camera FoV subtask. In
detail, this subtask is dynamically activated and deactivated by comparing the error squared with
a double threshold, i.e. with a suitable hysteresis (20+2 cm) to avoid chattering phenomena. By
taking into account the camera pose with respect to B, the desired position of the image features
centroid has been chosen equal to s? = [0, —0.1} T. The achieved results show how except for
case 1), i.e. when this subtask is activated, the FoV error is improved without affecting the
movement of the gripper.
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Figure 4.4: Results of the simulated mission consisting on the approaching and grasping phases. The
colored lines in each plot correspond to the task-stacks (i) to (iv). The vertical lines indicate the
conclusion of the approaching phase, while the end of each trajectory indicates the grasping time.

Figure 4.4(e) shows the time histories of the error norm for the CoG subtask. For the chosen
initial arm configuration the distance of the CoG with respect to the vehicle gravitational axis is
7.6 cm. In cases 1) and 2) this distance remains almost constant, while when the CoG subtask is
active, i.e. for cases 3) and 4), the behavior is always improved without affecting the tasks with

a higher priority in the stack.

Finally, in the last case study 4) also the joint-limits avoidance constraint is activated. In
contrast to the other cases, as shown in Figure 4.4(d) the task is not completely fulfilled, even if
a clear increase of the distance with respect to the closest joint limit is guaranteed, zero indicates
the reaching of a joint limit, while 0.5 indicates that all joints are in the middle of the joint range.
This behavior is mainly due to the conflict with other subtasks that have a higher priority in the
tasks stack. As described before, it is possible to increase the priority of this task in the stack

when a joint limit is excessively close in a way to guarantee mechanical safety at the expense of
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L Vi d; ai—1 | oG—1
Mnkdl pad) | tm] | [m] | [rad]
1 " 0 0 | 0
2 o 0 |-0.007| 7/2

3 |y+n/2] 0 |0.2468] 0O

4 v 01105] 0 | w/2
5 Y5 0 0 |—m/2
6 v |0.1113] 0 | w/2

Table 4.1: Denavit-Hartenberg parameters for the Bonebreaker UAM arm shown in Figure 4.1(a) and
used in the experiments of Section 4.8.1.

other tasks.

Real robot experiments

The UAM employed for the experimental tests has been developed in the ARCAS! project. It is
a multirotor aircraft with eight rotors in coaxial configuration with a 105cm tip-to-tip wingspan,
height of 50 cm, 13-inches propellers, and a total mass of 8.2 kg including batteries and 6 DoFs
robotic arm —see Figure 4.3. The employed autopilot has been developed by FADA-CATEC!?
and allows also the control of the robot arm. A model-based design methodology established
on MATLAB/SIMULINK code generation tools has been adopted [Santamaria et al., 2012]. The
UAM has been equipped with an i7 ASCTEC MASTERMIND on board for costly computing code,
such as image processing. A motion capture system running at 100Hz has been used as the
positioning system, while the attitude is measured with the on-board IMU. A 6 DoFs manipulator
running at 50 Hz is attached below the vehicle base [Cano et al., 2013]. The robotic manipulator
direct kinematic model is obtained by using the well known Denavit-Hartenberg convention —
see Table 4.1.

A high-definition camera running at 14 Hz has been positioned as in the simulation case
study. The calibration of the vision system has been divided in two steps. First, the camera
intrinsic parameters are obtained with several views of a calibration pattern (i.e., a chessboard).
Secondly, the extrinsic parameters are obtained using the motion capture system to precisely
localize the platform body frame (b) and an object in the scene (which corresponds to a marker).
By knowing the pose of the camera attached to the quadrotor body frame, we can trivially
obtain the frame transformation between the camera and the object. However, the estimation
of the error between the camera and the optical frames is also required. The marker detector is
employed estimating the marker pose with respect to the optical frame. Then, a pose average
of the difference between the camera and the optical frames is computed with respect to the

Byww.catec.aero
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Figure 4.5: Norm of the object position errors with respect to the ground-truth during grasping and
plugging maneuvers.

object.

Figure 4.5 shows the error between the detected bar and the ground truth poses during
grasping and plugging tasks.

The experimental mission consists in plugging a bar with two clipping systems at the ends
into a fixed base, as shown in the bottom part of Figure 4.3. As for the simulated case studies,
the mission was decomposed into two steps: the approaching phase, to move the bar over the
plugging base at a distance of 5cm, and the final plugging phase. During this latter phase the
FoV task is turned off because the constraint is always satisfied by the system mechanical config-
uration and the adopted optics. The task requires high accuracy both in position and orientation
(i.e., about 1 cm for the position and 1° for the orientation), which has to be guaranteed stable
in time to avoid undesired collisions. To cope with this requirement, the bar has been equipped
with visual markers as for the plugging base. Hence, the positioning error has been computed
by using the measurement of the bar and of the base in a way to mitigate the effects of the
calibration errors.

The achieved results are shown in Figure 4.6. Plots (a) and (b) show the time history of the
norm of the position and orientation errors, respectively. The vertical dashed line indicates the
end of the approaching phase and the beginning of the plugging phase. The plugging instant
corresponds with the end time of the plots. One can observe how the initial errors are quite
high because the system starts from a distance of about 40cm from the goal position, and with a
significant orientation error too, however for both errors the target accuracy has been reached
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Figure 4.6: Experimental results of the plugging task. The vertical dotted lines indicate the time instant
when the approaching phase is concluded, while the each trajectory ends at the plugging time.

in a fast and stable way.

The time history of the FoV error o is shown in Figure 4.6(c), from which one can observe
how this subtask is suitably executed, hence the system is able to prevent the loss of the visual
markers from the camera FoV.

The CoG subtask has been employed with an activation/deactivation threshold of 15 +
2cm. However, it is never activated because the high-priority FoV subtask determines arm
configurations already compatible with the CoG subtask. In fact, the alignment error of the
CoGs is lower than 4 cm.

Finally, Figure 4.6(e) shows the minimum distance computed over all the arm joints between
the desired and current positions (zero indicates the reaching of a desired joint position, while
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o Vi di | ai—1 | a1
Linkd | rad1 | tm] | [m] | [rad]
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2 |vw—m/2] O 0 |-m/2
3 |v3—m/2| O 0 |-m/2
4 " 0 [0.065| 0
5 |95+ 7/2]0.065|0.065| O
6 Y6 0 0 7T/2

Table 4.2: Denavit-Hartenberg parameters for the Kinton UAM arm shown in Figure 4.1(b) and used in
the experiments of Section 4.8.2.

0.5 indicates that all joints are in the middle of the joint range). Even if this is the lower
priority task, a safety distance of more than 20% of the joint ranges, in the worst case, is always

preserved.

4.8.2 HTPC decoupling algorithmic task singularities

The validation of this method has been done with a similar mission than in 4.8.1 but this
time, without loss of generality, we have not considered the particular grasping and plugging
operations. Here, we take advantage of an eye-in-hand setting with the UAM presented in
Figure 4.1(b). In both simulations and real experiments, the UAM weighs 1.5kg and it is
endowed with a 6 DoF robot arm plus a camera at 25 Hz attached to its end effector. Simulation
case studies and real experiments are descibed in the following and respectively included in
Video 5 and 6 in Appendix C.

We designed and built a light-weight robotic arm with a joint setting to compensate the pos-
sible noise existing in the quadrotor positioning, while the quadrotor is hovering in the desired
position. The arm was designed to occupy a minimal space in its initial configuration to avoid
collisions during take off and landing maneuvers. However its design was a trade-off between
accuracy and payload, leading to a weight of 200 g including batteries and approximately 0.2 rad
and 10 mm of precision error with the end effector in the worst case (e.g., with the arm at its
highest motor torque capacity). The arm is shown in Fig 4.1(b) and its Denavit-Hartenberg
parameters are given in Table 4.2. The camera is displaced 20 mm from the end effector along
the z axis (defining the transform ‘T}.).

Now, the target consists on a generic visual marker to easily obtain its position and orien-
tation with respect to the camera, and in the real experiments, we also show a target detected
directly using a motion capture system.

In order to maximize the chances for mission fulfillment while guaranteeing robot integrity,
in this Section we consider the following task-stack order strategy:
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- Robot integrity and safety tasks: stability, collisions, motor torque and velocity limits, etc.

- Mission task. We should ensure enough DoF for the mission in the majority of cases. In
case of lacking DoF, the robot integrity prevails.

- Comfort and secondary tasks. It is possible, even probable, that the robot lacks some DoF
for these tasks, but at least it tries to accomplish them.

To validate this hierarchical control law, we use the following ordered tasks: a primary
safety task (o), presented in Section 4.7.1, considering potential collisions (obstacle avoidance);
a secondary task, described in Section 4.7.4, performing an end effector tracking by using an
uncalibrated image-based visual servo (s); and lower in the hierarchy, the alignment of the
center of gravity of the UAM (g), shown in Section 4.7.5, and a technique to drive the robot arm
to desired joint configurations (/) presented in Section 4.7.6.

Simulations

Similarly to Section 4.8.1, we present now simulations in ROS [Quigley et al., 2009] and using
the Gazebo simulator, but this time the model parameters are according with an Asctec Pelican
quadrotor and those of the robotic arm presented in Table 4.2. The simulated UAM model is
shown in Figure 4.7 (top row).

The visual servoing scheme presented consists on two least squares minimizations. First
we solve for the control point coordinates in camera frame albeit scale in (3.30). Then we
use the inter-distance constraints to solve for scale and focal length in (3.35). As explained in
Section 3.6.1, we assume a set of randomly selected 3D feature points on the target and their
2D projections. Instead of developing a robust 3D feature detector and tracker, we us a planar
detector of a target of a known geometry to retrieve the target frame to which we add virtual
features and then compute the location of these points with respect to the target frame, as well
as their basis, i.e., the control points. At each iteration, the marker is detected in the scene
and the projection of the control points is computed. This is schematically shown in Figure 4.8
with the randomly selected feature points (orange dots), the four control points that constitute
the basis (violet points) and the respective 2D projections (yellow dots). Those 2D-3D feature
relationships represent the input to our visual servoing algorithm (3.30). Notice how our scheme
can be applied also to other sensory setups that can detect the object frame from other sources
and not just visual features. In the accompanying video we show real experiments using the
marker detector shown in Figure 4.7 (middle row), as well as with an Optitrack system to detect
the target frame shown in Figure 4.7 (bottom row).

Among all other tasks, here we choose the safety task to have the highest priority, not to
compromise the platform integrity. Figure 4.9 shows an example of how this task works. We
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Scenario End-effector camera

Marker det.

Marker det.

Optitrack

Figure 4.7: Views during three missions using different object detector techniques: marker detector in
simulation (first row), marker detection in a real scenario (second row), and Optitrack tracking (third
TOW).

Figure 4.8: Object detection scheme with the 3D control points ¢; (3.33) in violet, the 3D object features
in orange and their 2D projections in yellow.

start the servo in a point free of collisions. The inflation radius is set to 0.5 m and at the middle
of the expected trajectory we add an obstacle 0.2m to the left of the quadrotor. Notice how
in Figure 4.9 the safety task becomes active (vertical gray areas in all plots) on the quadrotor
y axis to move it away from collision. This DoF is used to keep the platform integrity and
cannot be used in other tasks with lower priorities including the main visual servo task. When
the obstacle does not violate the inflation radius, the safety task becomes deactivated and the
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Figure 4.9: Example of the safety task in action, with the inflation radius set to 0.5 m, when an obstacle
exists 0.2 m to the left of the expected trajectory (quadrotor y body axis). In grey are the zones where the
safety task is activated, thus deactivating the involved DoF for all other tasks, including the visual servo
mission task.

other subtasks can regain access to the previously blocked DoF. Figure 4.9(a) shows how the
servo task is elusive during the first 10s of the simulation when the obstacle is present, but is
accomplished afterwards when the obstacle is no longer an impediment to the secondary task.
The activation and deactivation of this task can induce some chattering phenomena. Although
this is not explicitly considered in the formulation, one can define a hysteresis scheme for the
desired task variable ¢¢ (4.52) or exchange the role of the safety measure to a lower priority
when the inflation radius is not violated and move it back to the highest priority when required.
In this last case also a smoothing procedure such as the one described in subsection 4.5.3 must
be considered to adequately switch priorities.

As with the visual servo task, we can also analyze the stability of the safety task by consid-
ering the candidate Lyapunov function of (3.6), whose derivative is given in this case by —see
(4.55)

L=ele=-NelJ,J7e. (4.92)

Then the global asymptotic stability requires the following sufficient condition
J,J# > 0. (4.93)

By construction, J, and J# have the same DoF signs and thus, the scalar Ineq. 4.93 holds.
We now compare the effect of using the remaining subtasks in the hierarchy by launching
several missions considering the following task stacks:

(i) We use only the 6 DoFs uncalibrated image-based visual servo presented in Section 4.7.4.
(i) Apart from i), we set the arm end effector alignment task from Section 4.7.5.

(iii) In addition to i) and ii), we add the task presented in Section 4.7.6 to drive the arm to a
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Time to target [s]
Task stack| 1 std(t)
i 42.143| 17.361
ii 29.973| 12.833
iii 29.036| 11.857

Table 4.3: Time to completion statistics for multiple realizations of an experiment considering different
subtask arrangements.

0.4 i Tit_aick | Tidick
. i i
E 0.2 1| i i
O 5 10 15 20 0 5 10 15 20
[s] [s]
(a) Linear RMSE. (b) Angular RMSE.

Figure 4.10: Root mean square error (RMSE) for multiple simulations considering different subtask
arrangements.

desired configuration during flight. Specifically, in this case the arm configuration is set to
reach the middle position for all joints, following (4.84).

The resulting statistics are presented in Table 4.3 and in Figure 4.10, which shows the root
mean square error (RMSE) between the current and desired camera poses w.r.t. to mission time
for the different task compositions.

When only the visual servo (i) is executed, the time to reach the target is significantly higher
than those cases in which the arm CoG is vertically aligned (ii and iii). This is due to the
undesired torque added to the quadrotor when the arm weight distribution is not aligned with
the quadrotor CoG. By the addition of the CoG alignment task, this torque is reduced during the
servo task. However, if only the CoG is aligned, the arm can still reach undesired configurations,
close to singularities or joint limits. The slight improvement in RMSE between ii) and iii) are
because the arm is fully extended in the ii) case, increasing the vertical distance between the
arm CoG and the platform base, leading to larger inertial effects than the iii) where a retracted
configuration was set as the last task in the hierarchy.

The control law proposed in [Lippiello et al., 2013] contains a unique secondary task corre-
sponding to a weighted sum of subtasks, which can be problematic when the tasks are antago-
nistic. Depending on the weights assigned, the resulting velocities could not satisfy accurately
some of the subtask requirements, e.g. when one task tries to reach a singular arm configuration
with the arm CoG vertically aligned with the quadrotor gravitational vector, whilst another task
is driving the robot away from such singularity and hence, from CoG alignment. The resultant
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Figure 4.11: Comparison between weighted sum and hierarchical task composition, considering the time
to reach the target (horizontal axis), with final linear and angular Euclidean distances lower than 5cm
and 0.026 rad respectively, and for randomly varying initial conditions (vertical axis).

Time to target [s]
Method Lt std(t)
Weighted sum | 85.3979 | 46.5853
Hierarchical |50.9624 | 21.4597

Table 4.4: Time to completion statistics for multiple realizations of the simulation under varying initial
conditions for the two methods: weighted sum, and hierarchical task composition.

velocity from the sum of the two would drive the camera to a pose that does not satisfy either of
the two tasks and still the weighted sum would be reduced to zero. In contrast, the control law
presented here takes into account the priority of each task. That is, the desired arm configuration
of the last task will be only fulfilled if it does not bring the arm and quadrotor CoGs away from
vertical alignment.

To show the advantage of hierarchical task composition against the weighted sum method
we performed extensive simulations with the two strategies for varying initial conditions and
final desired configurations. The results are shown in Figure 4.11 and in Table 4.4. In all
cases, simulations were ceased once a distance to the target smaller than 5cm was reached
with an orientation closer than 0.026 rad. The main observed result is that both strategies were
equally capable of reaching the target with the desired accuracy level, and that the hierarchical
task composition method consistently did so in about 50 seconds, independent of the initial
configuration; whereas the weighted sum method required on average 85 seconds to achieve
the task. We can conclude that the proposed method reaches task completion sooner than the
method presented in [Lippiello et al., 2013] mainly because it prioritizes quadrotor stability
through CoG alignment over the last task, thus avoiding antagonistic task behaviors.

Real robot experiments

We conducted a series of experiments with missions similar to those shown in the simulations,
i.e., autonomously taking off and flying to a location in which the target appears in the field of
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Figure 4.12: Camera pose error during 6 DoFs visual servoing. Comparison of using or not the hierarchical
task priority control law with all the subtasks proposed (i.e., task stack iii).

view of the camera, turning then on the hierarchical task controller to servo the system towards
a desired camera pose, and finally autonomously landing the system. Even when our simulator
runs a complete and robust physics engine, it does not account for the most elaborated physical
phenomena such as frictions, damping or inertias, raising the need for a real demonstration. One
significative difference between our simulated setup and the real setting was that in simulations,
the robot was able to finish the servo task even with the rest of the tasks in the hierarchy inactive
—see Table 4.3. In the real case however, task completion was elusive without making use of
the entire task hierarchy.

The real experiments were conducted with our robot Kinton (Figure 4.1(b)), based on an
Asctec Pelican quadrotor, and equipped with an on-board embedded PC (1.6 GHz CPU) and a
variety of sensors including an IMU and a barometer. All our algorithms are running on board
in real time with a camera frame rate at 20 Hz.

Figure 4.12 shows a comparison of task execution with and without activation of the task
hierarchy. The top frames show linear and angular pose errors when only the servo task is active.
Interestingly enough one can observe how in this case the arm wrist rotation is compensated
with the quadrotor yaw. These movements are antagonistic and their subtraction cannot be
appreciated at the image level. If on the other hand more tasks are added in the hierarchy, such
as CoG alignment or joint limits, the hierarchical control law can make use of the floating DoFs
to achieve the extra tasks, as shown in the bottom frames in the figure.

In this experiment, task completion is considered to be reached at an Euclidean position
error of 0.15m and 0.2rad; otherwise task abortion is executed if after 3 min of flight time the
target is not reached. We are aware that better performance is possible with a more elaborate
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Figure 4.13: Effects in the quadrotor body frame of applying the arm CoG vertical alignment task.

tuning of the different control gains, however, this level of precision is good enough to show that
the task composition scheme allowed the system to quickly reach its target, whereas without the
hierarchical task composition in place, the task could not be accomplished.

Arm CoG alignment is crucial to improve flight behavior. With it the approaching maneuver
is softer allowing us not only to easily reach the desired servo error but also reducing aggressive
maneuvers to compensate the arm payload, thus reducing energy consumption which is a very
important issue for this type of aerial platforms. Figure 4.13 shows the effect of this alignment
with a comparison of CoG alignment versus overall arm torque.

The last task is designed to favor a desired arm configuration and it can be used to push
the joints away from singularities and potentially increase maneuverability. Figure 4.13(c)
shows the error between the current and desired joint positions when the task is included in
the hierarchy at the lowest priority level.

Finally, to evaluate the contribution of each control variable to the execution of the different
tasks we present plots of the whole set of velocity profiles applied to the UAM actuators (i.e.,
3 quadrotor linear velocities and 6 arm angular velocities plus quadrotor yaw velocity) in
Figure 4.14. Note how for the main mission task, the visual servo task, the quadrotor linear
velocities play an important role during the first 5 seconds of the experiment, when the UAM is
far from the target, with the arm joints accommodating later on for the fine positioning of the
camera thanks to the time-varying weighted motion distribution presented in Section4.4.1.

The fact that all tasks report velocity values for the control variables indicate the availability
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Figure 4.14: Actuator velocities applied in a real experiment corresponding to the individual contributions
of each subtask: 6 DoFs visual servoing, CoG alignment and desired arm configuration.

of DoFs for their execution from their higher priority tasks. Indeed, the dimension of the
associated space to each null space projector (i.e., the number of singular values different
from zero, which in the case of orthogonal projection matrices are always equal to 1) are
dim(N,) = 10, dim(N,,) = 4 and dim(N,,|,) = 3. These dimensions indicate how tasks
with lower priority than the inflation radius task can actuate on all 10 DoFs of the robot
when the inflation radius is not violated. The visual servo mission task requires 6 DoFs, and
the secondary and comfort tasks with lower priority can take advantage of the remaining 4
DoFs. The gravitational vector alignment task and the joint limits avoidance task require 1 DoF
each being scalar cost functions to minimize —see (4.71) and (4.81). These results have been
experimentally confirmed, computing the number of singular values associated to each of the

null space projectors in the task hierarchy.

Although the dimension of these associated spaces give an idea of the available DoFs for each
task in the hierarchy, it does not imply that the subtask can always be fulfilled. For instance, a
subtask requiring a specific non-available joint motion might not be possible even when other
decoupled DoFs are still free. An empirical study of this consideration led us to the task order
priority presented in the beginning of this Section 4.8.2, and a thorough analytical study of these
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spaces by means of their basis (i.e., singular vectors associated to the non-zero singular values)
and their implications to guarantee subtask completion is left as future work.

4.8.3 Optimization-based trajectory generation

The proposed trajectory generation algorithm is implemented on a real UAM, and the effective-
ness of the approach is demonstrated by performing an autonomous mission, by accomplishing
different tasks while enforcing system constraints.

In this Section only results from real experiments are presented. Although simulations using
Matlab, Gazebo and ROS have been performed, their results are here avoided for the sake of
conciseness. Notice that we do not compare our performance against other methods because, to
the authors knowledge, this is the first work using an optimization based approach to achieve
such trajectory generation for UAMs with all algorithms running on board in real time. Video 7
referenced in Appendix C shows Gazebo simulations together with real robot experiments using
the QP approach.

The quadrotor used in the experiments is, as in the previous Section 4.8.2, the UAM pre-
sented in Figure 4.1(b). This UAM is composed by an ASCTEC Pelican research platform
and the overall control architecture is shown in Figure 4.15. This platform has a position
controller in cascade with an off-the-shelf built-in autopilot for attitude estimation and control,
which are not the focus of this paper. As for the robotic arm, its Denavit-Hartenberg has been
already presented in Table 4.2. All algorithms are running on board in real time using an
Intel Atom CPU (@1.6GHz) with Ubuntu 14.04LTS and ROS Indigo. The optimized high-rate
C++ implementation takes advantage of QPoases as quadratic programming solver [Ferreau
et al., 2008] and is available upon request. All experiments have been performed at Institut de
Robotica i Informatica Industrial (IRI), CSIC-UPC, equipped with an Optitrack motion capture
system running at 120 Hz and used in the low-level quadrotor position control. Figure 4.16
show the experiment setup with the flying arena and the cylindrical pilar used as obstacle. In
all the experiments the quadrotor is autonomously taken off and landed, and both maneuvers
are considered out of the paper scope.

A subset of cost functions and constraints presented in Sections 4.7 has been implemented
in the real platform. In particular, the main task of the mission consists in the end effector
trajectory tracking from Section 4.7.2 (only considering a global end effector tracking without
camera particularities), while complementary tasks used to solve the system redundancy are the
alignment of arm CoG (4.7.5), the positioning of arm joints to a favorable configuration (4.7.6),
and the minimization of joints velocity (4.7.8). A constraint avoiding self-collision between
robot end effector and quadrotor legs is active for all the duration of the experiment (4.7.1). In
addition, the obstacle avoidance constraint is also tested. In particular, an experiment without



4.8 Validation and experimental results 119

N
E ¢7 97 1/]7 f Attltude f? T
; controller
. -
i| Trajectory |Pd>Vd,@d | Position
! Y
' Q4 Joints '
controllers :
- i
Control |
Optitrack
: @120Hz —
‘Robot Localization

Figure 4.15: Overview of the architecture pipeline for trajectory generation and UAM control with all
algorithms running on board.

(a) After taking off. (b) During navigation. (¢) Close interaction

Figure 4.16: Experiment setup with the flying arena and a cylinder pilar used as obstacle (the left frame
corresponds to the telemetry visualization), to test the task controller using the QP approach. The bottom
frames are samples of arm configurations depending on tasks weightings for different mission phases.

any obstacle in the path and another one with a cylindrical shape obstacle will be compared.
Finally, position, velocity and acceleration of all DoFs are subject to user selected bounds (4.6.3).

Therefore, we define a desired waypoint for the end effector positioning task (3D position
plus 3D orientation), which will drive the whole robot. The waypoint presents a displacement
of 2m in both z and y directions, and 0.2m in z direction. The mission is considered achieved
when the linear and angular positioning errors of the end effector are below certain thresholds.
These thresholds are selected considering the hardware characteristics previously mentioned in
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Tasks
MinVel
EE | CoG |Des. arm conf.
Quad. | Arm
Navigation | 1 | 10! 102 1075 | 1075
Interaction| 1 |10~2 1072 103 |[107°

Table 4.5: Tasks weightings depending on mission phases.

Section 4.8.2, which are 0.05m and 0.2 rad of linear and angular errors.

In order to show the effects of the different tasks and constraints, we split the part of
the mission where the trajectory generation algorithm is active in two sub-phases: navigation
and interaction. In the first phase, the navigation towards the waypoint has to be preferably
performed with quadrotor DoFs, while arm joints should assume a configuration in order to
maximize stability and minimize disturbances, e.g., torques produced by displacement of the
arm CoG. In the interaction phase, when the robot is close to the desired waypoint (i.e., almost
hovering for close manipulation), it is preferable to perform the motion with arm joints, because
more accurate movements are needed and a minimum safety distance with the interaction object
can be kept.

The easiness of the proposed method allows to distinguish the different phases by dynami-
cally changing the weights of the different tasks. The proposed normalization procedure allows
to effectively assign a relative priority to the tasks by means of weights, even with tasks of non
homogeneous dimensions. All these weights are summarized in Table 4.5. In the subsequent
figures, the transition between navigation and close interaction phases is shown with a black
vertical dashed line.

As presented in Section 4.6, the dynamics of the joints, tasks and the approach to constraints
is governed by parameters A\; and \. For the described system, they have been chosen equal to
0.8 1/s and 4 1/s, respectively, in accordance with lower-level control loop bandwidth.

In Figure 4.17 the behavior of all UAM joints during the complete experiment with the
obstacle is reported. Figure 4.17, frames (c) to (f), shows the task errors during the mission,
whereas in Fig 4.18 the quadrotor trajectories (x and y plot) are shown with and without an
obstacle lying in the middle of the shortest path. The different motion profiles are discussed in
the following.

Navigation phase

During the navigation, large weights are assigned to the cost functions of CoG alignment and
desired joint positions. Thus, long displacements are performed by the quadrotor and the
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(e) Arm center of gravity alignment error, o, (f) Error values for the arm joints positioning task, oy,
from (4.71). from (4.81).

Figure 4.17: Analisis of a real experiment using the QP approach. In this case, there exist an obstacle
inline between the initial and desired end effector positions. The gray regions in Figures (a) and (c)
corresponds to the activation of the obstacle avoidance constraint. Notice how the x axis is blocked
(continuous red line with star markers). The vertical dashed line indicates the point where the weights of
the arm joints positioning and arm CoG alignment tasks are reduced, and quadrotor motion is penalized.

arm is driven to a desired position while minimizing CoG misalignment. These profiles are
reported in Figure 4.17. The behavior of the end effector task error is reported in Figure 4.17(c)
and Figure 4.17(d), for the translational and rotational parts, respectively. In Figure 4.17(e)
and 4.17(f), the profiles of the CoG alignment and the arm joints positioning can be analyzed.
Notice that the CoG task is not completely accomplished, i.e., the task error is not reduced to
zero, because the latter has larger weight, and the equilibrium solution is a weighted average
between the two goals.

The arm configurations are shown in the bottom frames of Figure 4.16, where frame (a)
is just after the take off, and frame (b) represents the robot configuration during navigation
where the CoG alignment and arm joints positioning tasks prevail. Frame (c) represents the arm
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Figure 4.18: Comparison between two real trajectories with the same initial and final positions, but
without any obstacle (dashed blue line) and with an obstacle lying between the initial and desired end
effector positions (continuous brown line). The small red circle corresponds to the actual obstacle and
the yellow area (yellow circle with a dashed edge) includes the inflation radius applied to the obstacle.

configuration during the interaction phase, that will be described in the following.

To show the need for the collision avoidance constraint we added an obstacle in the middle
of the trajectory (i.e., shortest path). The QP solver generates a feasible trajectory, and the
UAM avoids the obstacle with the minimum assigned distance of 0.6 m (inflation radius around
the platform). To clearly see how the obstacle avoidance works, we show in Figure 4.18 a
comparison between two trajectories with the same parameters. A first trajectory is executed
without any obstacle (blue dashed line) and the computed path corresponds to the shortest path
as expected. When an obstacle appears (defined by the red circle) the trajectory is modified to
avoid it (brown continuous line), satisfying the inflation radius constraint (yellow area plotted,
in this case, around the obstacle). This behavior is evident in the gray area of Figure 4.17(a),
where the motion of the platform is prevented for the x axis (continuous blue line). Once the
obstacle has been avoided, the trajectory is resumed.

As it can be seen in Figure 4.17, the quadrotor motion is clearly performed with constant
velocity. In fact, for large end effector errors, the maximum velocity bound is saturated and
the quadrotor moves with constant velocity. Notice that the two curves of z and y quadrotor
positions have the same slope, because the same velocity bound has been assigned. On the other
hand, the z coordinate presents a smaller initial error, thus the velocity is not saturated and, as
a result, the behavior is exponential because its dynamics is governed by parameter \;. Notice
that the z position reference is reached after 6s and 7s, while the theoretical settling time 5/\;
is equal to 6.25s.
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Interaction phase

The second phase starts when the end effector is 15 cm far from the desired position. At this
point, weights are changed to the values of Table 4.5. Notice how the arm joints move towards
the goal, see Figure 4.16(c) that represents the robot configuration during the interaction phase,
and Figure 4.17, which reports the behavior of the joint variables. As a consequence, CoG and
joint positioning task errors are increasing, as reported in Fig 4.17(e) and Fig 4.17(f). The end
effector task is performed to a greater extent by robot arm joints, because the weights of the
cost functions corresponding to the joint velocity minimization are assigned such that quadrotor
motions are more heavily penalized than arm ones. Notice that the trajectory is computed using
the acceleration as a regressor and applying bounds to it. For this reason, the transition between
the two phases is smooth, without discontinuities.

As a conclusive remark, our UAM can effectively accomplish the mission in the two distinct

phases, avoiding an obstacle and self-collisions and respecting variable bounds.

4.9 Summary and main contributions

In this chapter we described several task control architectures suited for UAMs, which take
advantage of the high redundancy of these type of aerial robots. Specifically, we presented
two hierarchical control laws, together with a trajectory generation algorithm using quadratic
programming. Moreover, we defined several tasks specifically designed for UAMs to accomplish
during the navigation and close interaction phases in manipulation missions. These tasks were
designed with the following purposes: to safeguard the platform integrity by avoiding collisions;
to track trajectories with the arm end effector using visual information, with both onboard-
eye-to-hand and eye-in-hand configurations; to keep the target in the camera field of view;
to align the arm CoG with the platform gravitational vector; to drive the arm to a desired
configuration; to increase the arm manipulability; to force minimum joint velocities; to limit
quadrotor accelerations; and to reduce forces on the horizontal plane.

The first hierarchical approach presented, uses a full least squares solution and has been
partially published in [Lippiello et al., 2016]. The underactuation of the aerial platform has
been explicitly taken into account in a general formulation that also guarantees the decoupling
of independent tasks. In this case we have showed experiments using hybrid visual servoing to
reduce the error of the desired gripper position and orientation. The subtasks in the hierarchy in
this case include maintaining the target in the camera FoV; vertically aligning the arm CoG with
the quadrotor gravitational vector; and avoiding arm joint limits. Simulations and experiments
validated the proposed solution.

A second hierarchical control law was described, this time decoupling algorithmic task



124 Task Control

singularities. This work has been partially published in [Santamaria-Navarro et al., 2014]
and [Santamaria-Navarro et al., 2017a]. In this case, we presented results using a primary
task to avoid obstacles; a secondary task for the uncalibrated visual servo (end effector tracking
using an eye-in-hand configuration); and lower priority tasks designed to alleviate quadrotor
stabilization issues (arm CoG alignement and desired arm joint positions). This hierarchical
strategy might not achieve the optimum constraint-task reconstruction errors as in the first
control law presented, but instead the algorithmic singularities arising from conflicting tasks
are decoupled from the singularities of the secondary tasks. Moreover, the presented control
law only requires independent tasks for the uncontrollable variables to guarantee exponential
stability of the system.

The presented trajectory generation algorithm is based on a quadratic programming ap-
proach and was published in [Rossi et al., 2017]. The method uses an on-line active set
strategy to compute feasible joint acceleration references, in order to accomplish given tasks,
while enforcing constraints and variable bounds. A number of tasks and constraints specific
to unmanned aerial manipulators have been integrated in the algorithm. A weighting factor,
associated with a normalization procedure, allows to define the relative importance of tasks,
thus exploiting the redundancy of the system. This is important to effectively perform distinct
phases of a mission. In particular, the objective functions implemented in this case within the
real setup include end effector positioning, the alignment of the arm CoG with the platform
gravitational vector, and the positioning of arm joints to a favorable configuration. In addition,
we demonstrated that the robot can avoid collisions with known obstacles in the scene and
self-collision between end effector and quadrotor legs. To the authors knowledge, this was the
first work using an optimization-based approach to compute trajectories for aerial robots with a
large number of DOFs, working on board and in real time.

All described tasks and control laws are demonstrated using both simulations and a real
UAMs.



Closing remarks

In this final chapter we discuss the conclusions derived from each chapter of this thesis, gath-
ering them into an overall reflection to highlight the more important ideas and concepts. Next,
we present a summary of the thesis contributions with a list of the related publications. Finally,

we propose some future research lines.

5.1 Conclusions

We have addressed the problem of driving a UAM using visual information, including the robot
state estimation and high-level task control laws.

In Chapter 2 we presented a state estimation approach to compute the odometry of a
flying vehicle by means of light-weight sensors which can work at a high rate requiring low
computational burden. We investigated a wide range of algorithm variations with different
computing and implementation complexities. The result of our experimentation concludes that
the effects of all these variations in the estimator design are minimal. This state estimation
method allows small-sized multirotors to be driven autonomously and, in turn, enables UAM
platforms to navigate without requiring external infrastructure, such as a motion capture sys-
tem or GPS. To demonstrate this independence on offboard infraestructure, we designed an
SO(3) controller and presented simulation case studies together with real experiments with all
algorithms running on-line and on-board in a limited computational unit.

The localization precision achieved with this state estimation method is good enough to
enable autonomous navigation. However, UAMs require very precise positioning while perform-
ing close interaction or manipulation tasks. This positioning performance can be achieved by
means of local detection of the target object using visual information. In Chapter 3 we presented
several methods to perform visual control. Specifically we described the classical position-based
(PBVS) and image-based (IBVS) visual servo methods, together with an image-based approach
designed for poorly calibrated cameras (UIBVS). PBVS and IBVS show convergence problems
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with a wrong initialization of the camera focal length or when subject to noise. Such errors are
transfered to the control law, producing unrealistic camera displacements along the optical axis.
The proposed uncalibrated method shows robustness to such large errors in camera focal length
because this distance is optimized on-line, thus allowing us to get rid of its dependency in the
formulation of the image Jacobian. In all these visual control methods, we assumed a holonomic
system with 6DoF (i.e., the camera can move freely in space). Then, in order to use them in a
real UAM and considering its platform underactuation, we need to kinematically augment the
multirotor with at least two DoF (e.g., by means of a serial arm).

In Chapter 4 we presented two UAM configurations with regards to the camera mounting:
an onboard-eye-in-hand, where the camera is rigidly attached to the UAM platform, and an
eye-in-hand, where the camera is attached at the arm end effector. In both cases, the UAM
becomes a redundant robot and we defined three high-level control laws that take advantage
of this redundancy, not only to drive the robot using visual information but to do so whilst
accomplishing other secondary tasks. These control laws include two hierarchical formulations;
one using full least squares, which specifically considers the non controllable state variables
(i.e., the underactuation of the aerial platform), and a second hierarchical approach, which
might achieve larger constraint-task reconstruction errors than the full least squares solution
but with the advantage that algorithmic singularities arising from conflicting tasks are decoupled
from the singularities of the secondary tasks. The third control law is a trajectory generation
algorithm that uses quadratic programming. In this case the high priority tasks can be set as
problem constraints for the numerical optimization problem, and we can adopt a weighting
strategy for the rest of the tasks. These weights can be modified on-line to achive desired task
behaviours during the mission. The chapter also includes the formulation of cost functions
for several tasks specifically designed for UAM to accomplish navigation and close interaction

during manipulation missions. These task definitions include:

Collision avoidance (e.g., avoidance of obstacles and self-collisions).

End effector tracking with visual servoing (i.e., hybrid and uncalibrated approaches).

Platform stabilization (e.g., aligning the arm CoG with the platform gravitational vector,
driving the arm to a desired configuration, limiting the quadrotor accelerations, increasing
the arm manipulability or reducing the forces on the quadrotor horizontal plane).

Motion profiles (e.g., forcing minimum joint velocities).

For all control laws and most of the tasks presented, we have demonstrated their viability
through extensive simulations and real experiments with UAM robots. The main contributions
of this thesis are highlighted in the following.
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5.2 Summary of contributions

This thesis contributes with multiple developments to the aerial robotics field, and specifically
to navigation and control of unmanned aerial manipulators. Derived from the conclusions
presented above, a summary of the contributions obtained in this thesis is listed as follows:

1. Odometry estimation using low-cost, light-weight and high-rate visual-inertial-range
sensors (Chapter 2). We have presented and analyzed the use of these sensors within
a filtering scheme, obtaining an estimated state which is richer than just odometry, and
includes higher derivatives such as velocities and accelerations, all precisely referenced to
the gravity direction. These are exploited by a non-linear controller to drive the vehicle in
3D space, showing that the employed sensors are more than sufficient to provide positional
autonomy to an aerial platform. This is the first time that such inexpensive sensors enable

precise localization and autonomous navigation of aerial vehicles.

2. Odometry estimation using light algorithms (Chapter 2). We have shown the feasibility
of using such low-cost sensor setup with light algorithms to achieve not only hovering ma-
neuvers but also fully autonomous navigation. We investigated a wide range of algorithm
variations with different computing and implementation complexities, and the result of
our experimentation shows that the effects of all the variations in the estimator design are

minimal. In particular:

- We found equivalent performances for EKF and ESKEF filter types.

The refinements on the IMU transition matrices (F; - - - F'3) have no conclusive effect,

meaning that the classical Euler approximation (F;) is sufficiently good.
- The difference between quaternion integrators (QOB, QOF and Q1) is minimal.

- The error composition (LE or GE) has no implications on the estimation results.

3. The UIBVS (Chapter 3). We described the principles of position- and image-based visual
servoing, together with a new method for uncalibrated cameras. A new image Jacobian is
derived without the dependency on the camera focal length while guaranteeing asymptotic
stability of the control law regardless of the target point selection, as long as planar
configurations are avoided.

4. Task priority control using hierarchical control laws (Chapter 4). We presented two
different hierarchical control laws that take advantage of UAM DoF redundancy and con-
sider the underactuation of their platforms. A first formulation is based on a full least
squares solution, whereas a second one presents a similar approach but this time decou-
pling algorithmic singularities between tasks. In both cases, we can tackle additional
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objectives expressed as constraints (i.e., subtasks). Although hierarchical task composition
techniques are well known for redundant manipulators, its use on aerial manipulation is

novel.

5. Trajectory generation using quadratic programming (Chapter 4). We described an
optimization method to generate feasible trajectories for all the joints of a UAM, taking
advantage of a quadratic programming approach to optimize robot joint commands to
accomplish several tasks. The numerical optimization problem is designed to run on-line
and on board a limited computational unit, and allows us to set bounds and constraints.
Hence, we can set the critical objectives (e.g., collision avoidance) as a constraint for all
other tasks.

6. UAM task definitions (Chapter 4). We defined several tasks specifically designed for
UAM to accomplish navigation and close interaction phases during manipulation missions.
Moreover, we show how the platform non-controllable DoF must be considered in their

designs.

List of publications
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Journals

- (J5) Santamaria-Navarro, A., Loianno, G., Sola, J., Kumar, V., and Andrade-Cetto, J. (2017b).
Autonomous navigation of micro aerial vehicles: State estimation using fast and low-cost

sensors. Submitted to Autonomous Robots.

- (J4) Santamaria-Navarro, A., Grosch, P., Lippiello, V., Sola, J., and Andrade-Cetto, J.
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5.3 Future research directions

Finally, we discuss some of the future research lines that arise from the work and contributions
presented above.

Extension of the odometry estimation method: The sensors used in the state estimation ap-
proaches presented in Chapter 2 constitutes a minimal sensor suite to obtain the vehicle position,
velocity and acceleration. However, some of the states are not observable (i.e., the platform
xy position and yaw orientation). Although the drift of the estimated state is small (a few
centimeters after one-minute flight) we can think about adding measurement updates with other
sensors, such as a 3D compass (in case of a scenario with small earth magnetic field alterations)
or partial GPS pseudo-range measurements.

Relative positioning with respect to a target without a prioriy knowledge of it: The target
localization has not been the scope of this thesis, and thus its detection has been simplified
by using either an artificial marker or a motion capture system. However, in real applications
these methods could not be feasible, requiring a relative positioning with respect to an object
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without a priori knowledge of it. Hence, it could be interesting to explore methods to obtain
this positioning from unknown and unstructured scenarios.

Hierarchical control law improvement: The activation and deactivation of the safety task
as well as a dynamic exchange of task priority roles can induce some chattering phenomena,
which can be avoided by introducing a hysteresis scheme. Moreover, the dimensionality of the
subspace associated to each null space projector is a necessary condition to be considered when
designing subtasks, however it might not be sufficient to guarantee the fulfilment of the subtask
and a thorough analytical study of these spaces would be interesting.

New hierarchical formulation coupled with the platform attitude controller: All presented
control laws are acting in a high-level (i.e., their outputs are references to the arm joint and
platform attitude controllers). This decoupling can be done due to the different dynamics of
each control loop, however, it would be interesting to formulate a hierarchical control law with
both systems coupled.

Consider the vehicle and arm dynamics within the control law: The presented methods to
drive the UAM are based on the vehicle kinematics. In this thesis we have not accounted for the
platform and arm dynamics because we have considered only UAM navigation tasks, without
aggressive maneuvers. However, in case of requiring fast movements or carrying heavy loads
during transportation missions, a meticulous dynamics study must be introduced.

Focus on manipulation tasks: In most of the manipulation tasks to be done with a UAM,
contact during prolongued time with the arm end effector would be required. In that sense we
feel interesting to explore the addition of compliance to the arm actuation and to the control

law design, in order to perform contact tasks.



Error state kinematics (continous time)

To obtain the error-state kinematic equations we have to write each state equation in (2.28)
as its composition of nominal- and error-state, solve for the error-state and simplify all second-
order infinitesimals. For the terms 0p, da;, dw; this operation is trivial. In contrast, for the
terms involving rotation elements (dv and dq) require some non-trivial manipulations which
are detailed in the following depending the orientation error definition (GE or LE).

A.1 Globally-defined orientation error (GE)

A.1.1 GE: Linear velocity error

Considering the true acceleration as large- and small-signal accelerations in body frame ap; =
ap + dap with

ag £ as—ay, (A.1a)
dap = —day — a,, (A.1b)

and substituting in (2.28b) we have
vy = Ri(ap +dap)+g. (A.2)

Defining v; as the composition of the nominal- plus the error-state, and R; with its small signal
approximation (i.e., R; = (I +[60]«)R+ O(]|66||?)) ignoring the infinitesimal term O(||56]|?),
we end up with

v+ 00 =(I+[00]«)R(ap +dap)+g. (A.3)
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Substituting the nominal velocity © by (2.30b), then using (A.1a) and finally rearranging terms,

we have
0V = Réap + [59]XR(CLB + 50,3) . (A.4)
Reorganizing some cross-products (with [a]xb = —[b]xa), we get
00 = Réap — [Rap]xd0, (A.5)

which recalling (A.1a) and (A.1b), and rearranging leads to
00 = —[R(as — ap)|x00 — Roa, — Ra,, . (A.6)

Assuming accelerometers noise as white, uncorrelated and isotropic, we obtain the dynamics of
the linear velocity error
00 = —[R(as — ap)|x00 — Réay, — a, . (A.7)

A.1.2 GE: Orientation error

With the true quaternion g, as a composition of the nominal- and error-state rotations, and its

derivation from (2.10), we have

;= (69 @ q) (A.8a)
=0qRq+0iqg®q (A.8b)
1
=0q®q+50qRqdw. (A.8¢)
Similarly, we can define

) 1
9= 54 @ wy (A.9a)

1
= 5040 qOw;. (A.9b)

Matching (A.8c) with (A.9b), and having w; = w + dw, this reduces to

1
5(’1®q=§5q®q®5w. (A.10)
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Right-multiplying left and right terms by ¢*, and recalling that ¢ ® dw ® ¢* = Rdw, we can
further develop as follows

1

8q = 5<5q<§z>q®5w®q* (A.11a)
1

= 56q ® (Réw) (A.11b)
1

with wg = Rw the small-signal angular rate expressed in the global frame. Then,

20q = 6q ® dwg (A.12a)
= Q(dwa)iq (A.12b)
o T
_ |0 owe L (A.120)
dwe —[dwg]x | [66/2

Discarding the first row, which is not very useful, we can extract
. 1
00 = dwg — 5[5wg]x59, (A.13)
where also removing the second order infinitesimal terms
00 = dw = Réw, (A.14)
where recalling (A.27b) we obtain the linearized dynamics of the global angular error,

00 = —Réwy, — Réw,, . (A.15)

A.2 Locally-defined orientation error (LE)

A.2.1 LE: Linear velocity error

Starting from (A.2) and defining v; as the composition of the nominal- plus the error-state, and
R, with its small signal approximation (i.e., Ry = R (I + [60]x) + O(||60]|?)) ignoring the
infinitesimal term O(||00||?), we end up with

b+ 00 =R(I+1[60],)(ap+6ap) +g. (A.16)
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Substituting the nominal velocity © by (2.30b), then using (A.1a) and finally rearranging terms,

we have
00 = R[60]xap + Roap + R[00] dap . (A.17)
Reorganizing some cross-products (with [a]xb = —[b]xa), we get
v = R(dap — [ap]x00), (A.18)

which recalling (A.1a) and (A.1b), and rearranging leads to
00 = —R|as — ap]x00 — Roa, — Ra,, . (A.19)

Assuming accelerometers noise as white, uncorrelated and isotropic, we obtain the dynamics of
the linear velocity error
00 = —R|as — ap]«060 — Roay, — ay, . (A.20)

A.2.2 LE: Orientation error

With the true quaternion g, as a composition of the nominal- and error-state rotations, and the

quaternion derivative from (2.10), we have

q; = (q®dq) (A.21a)
=qRig+qRiq (A.21Db)
1
=§q®w®6q+q®5q. (A.21¢c)
Similarly, we can define

) 1
9= 5% ® wy (A.22a)

1
=54 ®6q @ wy . (A.22b)

Matching (A.21c) with (A.22b), simplifying the leading g and isolating dq, we get

20 = 6q @ wy — w R dq, (A.23)
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where substituting (2.4) and (2.7c), we end up with

26 =~ Q(w)dq — Q(w)dq (A.24a)
_ 1
= ((Q(wy) " Qw)) [50/2] (A.24b)
- [ Vo e [ 1 ] (A.240
(W —w) —[wi+w]x| |00/2
= [ o e [ ! ] . (A.24d)
dw —[2w+ dw]x| |00/2

Simplifying again with (2.7c) the derivative term, we obtain

Ll e | P
L , (A.25)
00 dw —[2w + dw|x | |60/2

Discarding the first row, which is not very useful, we can extract
. 1
00 = dw — [w]x 0 — 5[5w]X59, (A.26)

where also removing the second order infinitesimal terms and considering the true angular

velocities as a composition of its large- and small-signal elements w; = w + dw with

w2 w, —wy, (A.27a)

A_

dw = —dwp — wy, (A.27b)
we obtain the dynamics of the orientation error

60 = —|ws — wy) <00 — dwp — w,, . (A.28)






Rotation matrix partial derivatives

In order to differentiate the rotation of a vector, g¥q*, it is convenient to use the matrix form

R(q). Herein, we compute an example of the derivatives of the function
hiz)=R"9+n, (B.1)

with n the measurement noise assumed to be Gaussian with zero mean and covariance matrix
n. The corresponding derivatives are detailed in the following sections depending on whether
they are computed with respect to the quaternion value (used in EKF) or with the orientation

error with minimal representation (used in ESKF).

B.1 Partial derivative w.r.t. quaternion

To compute Oh(x)/0q (the subscripts ¢ is avoided here for clarity) is more convenient to express

the derivatives w.r.t. each component i of the quaternion g such as

0 (R'9) + 09  OR'
— B.2
dq; R dq; " dq; (-2)
With the definition of (2.9) we get
Gw qz —Qy
9 (R"v)
—92|_ B.
0qw 4> Qqu qz |9, (B.3a)
9y —qz Qu
qx _Qy —q
9 (R'9)
—9|_ _ 9 B.3b
a, dy dz  Qu ) ( )

=4z —Gquw Oz
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—qy —q9r —qu
0(RT9) | g |0 (B.30)
aqy dz Gy qz ) .
i qw —4z _Qy_
-4z Guw Gz
8<RT19) =2 |- — —qy | ® (B.3d)
8(12 - quw qz Qy . .
__%: —qy 4z ]

B.2 Partial derivative w.r.t. rotation error using minimal
representation

We now want to compute 0h(xz;)/950, which will depend on the orientation error representation
(GE or LE) as explained in the following.

B.2.1 Globally-defined orientation error (GE)

If we define the orientation error globally (i.e. ¢, = dq ® ¢) and with minimal representation /6

as shown in (2.7¢), we have

h(ZIZt) = Rt(et)Tﬂ

(B.4)
= R(6)"R(06) .

Taking advantage of the rotation matrix approximation R(60)" ~ (I — [06]«), we end up with

h(z¢) =~ R:(0)" (I —[60]x)v
~R(O) 9 — R(0)[06]v (B.5)
~ R(0) 9+ R(0) [9].00.
Thus, the derivative with respect to the orientation error is
M) _ pig) ), . (B.6)
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B.2.2 Locally-defined orientation error (LE)

Similarly to the previous derivation, if the orientation error is defined locally (i.e. g, = ¢ ® dq)

and with minimal representation, we have

h(mt) = Rt(Ot)Tﬁ

(B.7)
= R(60)"R(0)" .

Using the rotation matrix approximation R(60)" =~ (I — [66]«), we end up with

h(xy) ~ (I —[60]x)R(0)"»
(0)"9 — [66]« Ry(6) "0 (B.8)
(6)"9+[R(6) 9]0

Q

Q

R(O)"»
R(O)"»

So, the derivative with respect to the orientation error is

O (x)

550 [R(0) 9] . (B.9)







Videos

The contents of the videos referenced through the thesis are detailed in this appendix, enumer-
ated in the following list. All videos can be found on the Internet, at the multimedia page of the

author’s website: http://www.angelsantamaria.eu.

1. High-frequency MAV state estimation using inertial and optical flow measurement
units. This video accompanies Chapter 2 and demonstrates the odometry estimation
method through real MAV flights. First, experiments benchmarking all filter types against
ground-truth (i.e., a motion capture system) are presented. Second, the video shows the
technique with flights in a GPS-denied outdoor scenario. All flights are done using the
hardware setting A described in Section 2.10.2. This video is related to [Santamaria—
Navarro et al., 2015a].

2. Autonomous navigation of micro aerial vehicles using high-rate and low-cost sensors.
In contrast to Video 1, Video 2 shows results of using the odometry estimation technique
described in Chapter 2 using setting B —see 2.10.2). This video supports [Santamari-
a-Navarro et al., 2017b]. In this case, all algorithms are running on-line and on board
the MAV, and the estimated state is used to feed the nonlinear controller presented in
Section 2.9.

3. Uncalibrated image-based visual servoing. This video supports the uncalibrated visual
servo method described in Section 3.6 and accompanies the paper [Santamaria-Navarro
and Andrade-Cetto, 2013]. The technique outperforms calibrated visual servo schemes in
situations with noisy calibration parameters and for unexpected changes in the camera
zoom. The method’s performance is demonstrated both in simulations and in a ROS

implementation of a quadrotor servoing task.

4. Hybrid visual servoing with hierarchical task composition for aerial manipulation.
The video shows real experiments of the hybrid visual servoing technique presented in
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Section 4.8.1. A hierarchical control law is used to position the UAM end effector with a
PBVS while keeping the target in the camera FoV with an IBVS. Moreover, two subtasks
are active: A task to vertically align the arm CoG with the platform gravitational vector,
and an other task to reach desired arm joint positions. The video presents four main
maneuvers: two grasping and two plugging operations with bars. This video accompanies
the paper [Lippiello et al., 2016].

. Task priority control for aerial manipulation. The hierarchical task controller described

in Section 4.5.2 is validated in this video through simulation case studies as in the ex-
periments Section 4.8.2. The mission shown consists on servoing the UAM end effector
using visual information for an inspection and surveillance task. The related publication

is [Santamaria-Navarro et al., 2014].

. Uncalibrated visual servo for unmanned aerial manipulation. This video shows ex-

periments similar to those presented in Video 5, but this time with a real UAM —see
experiments Section 4.8.2. The effect of adding hierarchically subtasks (i.e., using the
control law presented in Section 4.5.2) is specifically shown. This material is related
with [Santamaria-Navarro et al., 2017a].

. Trajectory generation for unmanned aerial manipulators through quadratic program-

ming. In Section 4.6 we presented a technique which applies quadratic programming (i.e.,
the on-line active set strategy) to generate a feasible joint trajectory, in order to accomplish
a set of tasks with defined bounds and inequality constraint. This video accompanies the
Section 4.6 and shows a mission composed of two phases, navigation and interaction,
performed by an aerial manipulator. Weights of the cost functions are assigned in order
to perform the two phases with different strategies. During the navigation phase, arm
joints are guided towards a desired configuration for the sake of stability and motion is
performed mainly with quadrotor DoFs. On the other hand, during the interaction phase,
motion is performed by robot arm joints to obtain more accuracy. This video is related
with [Rossi et al., 2017].
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