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Abstract

Without fluid turbulence, life might have rather different look. The atmosphere
and oceans could nearly maintain a much larger temperature differences resulting in
ultimate heating or cooling to the earth surface. The water and air flow could rather
run much faster at rates of the speed of sound. Turbulence is a highly active nature
of chaotic, random and three-dimensionality of swirling fluid. Its nonlinear convec-
tive property transports the momentum and energy in a helical mechanism leading
eventually to an enriched fluid mixing and generating of small scale motions. These
scales chiefly rule the hairpin vorticity dynamics, the turbulence non-Gaussianity,
the strain/dissipation production and the cascade of kinetic energy mechanisms.
Therefore, the key feature in turbulence is around disclosing the small scale motions.
Studying the fine-scale dynamics gives us fundamental perspectives of flow topology
and thus, improves our knowledge of turbulence physics. The turbulence dynamo
becomes more complex when the active thermal gradient constitutes into the pure
generator of turbulence. This particularly happens in the so-called buoyancy-driven
Rayleigh-Bénard convection (RBC), when an infinite/bounded lying fluid is heated
from below and cooled from above in the field of gravity. The main goal of this thesis
is investigating the flow topology and small-scale dynamics in turbulent RBC, in order
to better understanding its thermal turbulence mechanism and improve/validate the
turbulence modeling for the foreseeable CFD' future.

To do so, a complete three-dimensional direct numerical simulation (DNS) of
turbulent RBC in a rectangular air-filled cavity of aspect ratio I' = 1 and 7t spanwise
open-ended distance, has been presented at Rayleigh numbers Ra = {108,101}, in
chapter 1. The chapter highlights only the new features relevant to the DNS studies
without repeating similar observations and facts extensively outlined in literature [F.
Chilla & J. Schumacher, Euro. Physics J. E 35 (2012) 58]. A global kinetic energy
conservation is inherited using a 4/"-order symmetry-preserving scheme [R. W. C.
P. Verstappen & A. E. P. Veldman, J. Comput. Physics 187 (2003) 343] for the spatial
discretization, and the flow dynamics is explored by analysis of kinetic and thermal
energy power spectra, probability density function (PDF) of viscous and thermal
dissipation rates, and identification of the wind in RBC.

In chapter 2, the DNS dataset is used to investigate several universal small-scale
features observed in various turbulent flows and recaptured here in turbulent RBC
through the bulk. For instance, the inclined “teardrop” shape of joint PDF veloc-
ity gradient tensor invariants (Qg, Rg), the preferential alignment of vorticity w
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with A, the intermediate eigenstrain vector, the asymmetric w alignment with the
vortex-stretching vector, and the spiralling degenerated behaviour of the average rates
invariants ((DQg/Dt), (DRg/Dt)) in (Qg, Rg) space. This last has indicated the typ-
ical varying of topology surrounding a fluid particle, from unstable focus/stretching,
unstable node saddle/saddle, stable node saddle/saddle to stable focus/compressing
structures. It is found that a self-amplification of viscous straining —Qg results at
Ra = 109, helps in contracting the vorticity worms and enhances slightly the linear
contributions of the vortex stretching mechanism. On the other hand, the evolution
of relevant small-scale thermals has been addressed by investigating the average rate
of invariants pertained to the traceless part of velocity-times-temperature gradient
tensor, i.e. ((DQGG/Dt>, <DRGG/Dt>) in (Qg,, Rg,) space. The new invariants are
shown to follow correctly the evolution and lifetime of thermal plumes in RBC and
hence disclose the deep interactions of bouyant production and viscous disspation.

In chapter 3, the DNS dataset is employed to understand the underlying physics
of the subgrid-scale (SGS) motions in turbulent RBC in the spirit of Large-eddy simu-
lation (LES) turbulence modeling. Firstly, the data is used to assess the performance
of well-known LES eddy-viscosity models such as, WALE, QR and the recent S3PQR-
models proposed by Trias et al.[PoF, 27, 065103 (2015)]. The outcomes have implied
a limitation and incapability of theses models to reproduce well the SGS heat flux
and the further dominant rotational enstrophy pertaining to the buoyant production.
On the other hand, the key ingredients of eddy-viscosity, v;, eddy-diffusivity, x; and
turbulent Prandtl number, Pr;, are calculated a priori and investigated in a topological
point-of-view. As a result, it has been suggested the restricted application of turbu-
lent diffusion paradigm and the hypothesis of a constant Pr; only in the large-scale
strain-dominated areas in the bulk. More arguments have been attained through a
priori investigation of the alignment trends imposed by existing parameterizations for
the SGS heat flux. It is shown that the models based linearly on the resolved thermal
gradient are invalid in RBC, and the tensorial-diffusivity approach is necessary. Fi-
nally, a new tensorial approach of modeling the SGS of thermal turbulence is sought
that opens new research trends in the future.

The thesis is a collection of two international journal papers (chapters 2 and 3),
either published or submitted. Therefore, all chapters are self-contained, which makes
a certain degree of redundancy inevitable. Also, the meaning of symbols may differ
per chapter. To my best perception, only the symbols «, § and < differ between
chapters 1 and 3. In chapter 1, a represents the thermal expansion coefficient while 8
and -y represent the scaling power laws of Nusselt Nu and Reynolds Re numbers in
function of Ra, respectively. However in chapter 3, («, B, ) are the resultant angles
in the space of the so-called mixed model span.
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Direct numerical
simulation of turbulent
Rayleigh-Bénard
convection

Main contents of this chapter have been published in:

F. Dabbagh, F. X. Trias A. Gorobets and A. Oliva, Spectrally-consistent regularization

of turbulent Rayleigh-Bénard convection, 6" European Conference on Computational
Fluid Dynamics, 7144-7155, 2014.

Abstract. A set of completed three-dimensional direct numerical simulation (DNS) of turbulent
Rayleigh-Bénard convection (RBC) in a rectangular air-filled cavity of aspect ratioI' = 1 and 7
spanwise open-ended distance, are presented. Two Rayleigh numbers, Ra = {108, 1010}, are
outlined and an appropriate selection of the DNS grids size that refines analytical relations of
the mean dissipative scales, is used. An overview of the numerical algorithms and discretization
schemes used is given where a 4"-order symmetry-preserving scheme, which ensures a global
kinetic energy conservation, is employed. The principal flow dynamics is explored within
analysis of kinetic and thermal energy power spectra, probability density function (PDF) of
viscous and thermal dissipation rates, thermal/kinetic correlation coefficient and identification
of the wind in RBC. The main results manifest on that the kinetic and thermal energy dissipation

17
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rates are tightly correlated and fluctuated at the pattern evolution of thermal plumes, both
in the bulk and boundary layers (BLs). The wind is identified as two helical coherent rolls
that imply a falling cold flow at the middle and a rising hot one at the open-ends, while the
fluctuated heat flux is sidewalls dominated.



§1.1. Introduction 19

1.1 Introduction

A fruitful knowledge that unravels the dynamics of Rayleigh-Bénard convection
(RBC), have been accomplished in the last years. This phenomenon identified as
a buoyancy-driven convection in a fluid layer heated from below and cooled from
above [1], has engrossed many researchers in its complex momentum/heat transport
mechanism. Despite its simple setup, it is a useful tool to understand many flows
occurring in environment and technology. It is an idealised description of the flow
in the outer layer of the sun, the coherent structures in the earth 's atmosphere and
oceans, a main ingredient for the dynamo model in the earth 's core and plate tectonics
via mantle convection, for the thermal comfort in aircraft cabins, the passive energy
storage, for the cooling mechanism of electronic components and even everyday life,
when cooking. Understanding this fundamental problem is, thus, not only utterly
important for geo- and astrophysics, but also in industry (see Figure 1.1).

It is useful to give a brief description about the historical mechanism of the prob-
lem. Le. under a continued conditions of large enough vertical temperature gradient
applied in a horizontal fluid layer, an arbitrary fluctuation takes place and a small
parcel of the hotter fluid than the neighboring fluid, experiencing a buoyancy force in
a gravitational field begins to rise. The parcel rises when buoyancy force overcomes
the viscous drag and thermal diffusion, and hotter fluid ascends from the underneath
to fill the void left by the rising part inducing an amplification of temperature fluc-
tuation. By drawing up more fluid from the hot region, higher thermal fluctuations
occur and formulate a rising plume that becomes stronger with time. The competition
between destabilizing effect of the buoyancy force and stabilizing effect of the viscous
force leads to an instability in the flow. In this frame, any initial variation of temper-
ature conditions or any trivial change of system aspect such as surface roughness,
yields to an essential difference in the developed system. Bénard [2], was the first
observer to the phenomenon in his experiments, where he found out that above a
critical temperature gradient, the convection sets in, and a regular pattern of hexagons
forms, when looking on the fluid layer from above. Rayleigh [3] laid the foundations
of the problem by identifying the ratio of buoyancy force to viscous and thermal
dissipation as the crucial control parameter for the onset of thermal instability. This
quantity was named afterwards by Rayleigh number Ra, and the phenomenon by
Rayleigh-Bénard convection, in honour of both scientists. By augmenting the strength
of thermal forcing, spoke patterns evolve at around Ra = 10*. These spokes tends to
be stable for lower Ra and appear chaotically when Ra passes 10°. Further increase
of Ra tears off these spokes to form more independent large-scale flow structures
which are the plumes. Thermal plumes are defined as fragments of the boundary
layer that detach permanently and move into the bulk. Their stems have relatively
high amplitude contributions of local heat flux, vertical velocity field and thermal
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dissipation rate.

Cooking Mixing
Bubbly convection .
_ . convection
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Figure 1.1: Diagram to visualise few examples, said to be describable by Rayleigh-
Bénard convection.

¢ Earth 's atmosphere [http://geografijazasvakoga.weebly.com/|

¢ Sun [https://www.emaze.com/@AWOZCOIW /Plasma-Research]

* Earth 's core [http:/ /www.sciencemag.org/news/2010/08/earths-moving-melting-core]

* Solar power plant [http://www.elakiri.com/forum/showthread.php?t=1601718]

* Cooking [https://www.shutterstock.com/search/boiling+water]

* Aircraft cabins [https://forum.lowyat.net/topic/4263919/all]

* Convection in electronic device [https://www.x20.0rg/scientific-analysis-flir-thermal-infrared-
imaging-cameras/]
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Classically, RBC has been studied with either infinite lateral extension or con-
fined within simple geometries, like rectangular or cylindrical samples with different
diameter-to-height (or width-to-height) aspect ratios (I'). The parameters range in
terms of the Rayleigh (Ra) and Prandtl (Pr) numbers, limited to, Ra < 10 and
Pr =~ O(10) (Recent reviews, e.g., Ahlers et al. [4]; Chilla & Schumacher [5]). The
Rayleigh number is the ratio of buoyancy to dissipation, hence, being a measure for
the thermal forcing and the grade of turbulence. The Prandtl number is the ratio of
the viscous to the thermal time scale and is characteristic for every fluid. Indeed,
extensive experimental, numerical and theoretical studies [5] are given in the scope
of RBC. The experimental researches provided to some extent, valuable references
for the numerical simulations and theories [6]. However, they have sustained un-
certainties and clashes, particularly in heat transfer scaling law of Nusselt-Rayleigh
relation, i.e., Nu ~ RaP. For example, measurements in cylindrical cells of Castiang et
al. [7] and Chavanne et al. [8], showed a scaling law p = 0.287 within a significant
portion of 10° < Ra < 10! (hard turbulence regime), however they started to con-
tradict at Ra > 10'2 with multi-stability and non-Boussinesq effects. Chavanne et
al. [8] and Roche et al. [9], observed a scaling law of B = 0.38 in the transition over
Ra = 7 x 10! that matches the Kraichnans asymptotic law with logarithmic correc-
tions included [10] and the Grossmann-Lohse model for turbulent boundary layer
(BL) [11]. However, Niemela & Sreenivasan [12], questioned that result by g = 0.323
for Ra > 10'2 and noticed a hysteresis scaling law in larger aspect ratio samples. In
these Helium experiments, the Pr number was found to be a function to the increas-
ing Ra. He et al. [13], using SF6 (Sulfur hexafluoride), showed a good agreement
with Niemela & Sreenivasan [12] in cases up to Ra = 1013, and a transition to the
ultimate region (Ra > 10'* [13]) with a scaling law 8 = 0.38 that consists very well
with Chavanne et al. [8], was declared. In summary, the experimental results pro-
vided a complicated picture with high dependence upon the confined nature, the
non-Oberbeck-Boussinesq effects and the uncontrollable real conditions such as, the
finite conductivity and roughness of the walls.

In order to elude the qualm of experiments, direct numerical simulation (DNS) [14]
is by far the most reliable tool. It allows a fully controlled picture that unravels
in details the dynamical and statistical aspects of the turbulent problem. It can
resolve many queries of turbulence physics by studying its characteristic struc-
tures, and enables investigations at the ultimate regime maintaining the Oberbeck-
Boussinesq approximation (constant fluid properties including thermal expansion
coefficient). Nowadays, DNS of turbulent RBC is covering a noteworthy portion of
turbulence dynamics in a vast variety of parameters. For instance, in the frame of a
rectangular convective cell, one can find the DNSs of Kaczorowski & Wagner [15]
(3.5 x10° < Ra < 3.5 x 107, Pr = 0.7,T = 5) in a longitudinally open-ended cav-
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ity, and within a confined cell in Kaczorowski & Xia [16] (3 x 10° < Ra <3 x 10°,
Pr =1{0.7,438},T = 1). They provided thereby, a useful analysis of thermal plumes
and small-scale properties concerning to the Obukhof-Bolgiano scale [17]. Moreover,
they showed that the geometrical confinement of the cell has an important influence
on the flow properties [18]. On the other hand, the cylindrical samples were a very
common choice in performing DNS of RBC, due to its easy comparison with the
experimental studies. In that setting, many works have been executed to investigate
the scaling behaviour and the robustness of grid resolution, such as Amati ef al. [19]
and Stevens et al. [20,21]. They outlined a DNS analysis in a cell of aspect ratio
I' = 1/2 covering a wide range, (2 x 10° < Ra < 2 x 10", pr = 0.7), where the finest
DNS ever performed, belongs to Stevens ef al. [21] at Ra = 2 X 10'2. Other stud-
ies cared about heat transport mechanisms, sheet-like thermal plumes and thermal
dissipation rate at large aspect ratio of cylindrical containers, as in Shishkina & Wag-
ner [22-24], under the varieties (I' — 10, Ra — 107, Pr = 0.7), and (Ra — 2 x 107,
I' =1, Pr = 5.4). Deep scrutinies on the high-order statistics of thermal turbulence
RBC were addressed by Emran & Schumacher [25,26], which accessed one of the
biggest fine DNS at (Ra = 3 x 10!, Pr = 0.7 and T = 1). The same authors have re-
cently tackled with the evolution of LSC at very large cylindrical slender atI' = 50 [27].

Few lines of study have handled with the deep coupling between the kinetic and
thermal energy dissipation rates in turbulent RBC. The central understanding of the
underlying physics of thermal turbulence and heat transport mechanism is strongly
related to the interacted role of velocity /temperature gradient fields. Following rigor-
ous analytical relations for the heat flux in RBC, the global averaging of kinetic and
thermal dissipation rates are directly dependent on the Nu number [1]. In this case,
DNS should resolve very well both dissipations not only on the average large scales
but also on the fluctuated local scales. Upon the fluid properties and the strength
of thermal-buoyancy forces, the fluctuated thermal/kinetic motion scales distribute
differentially and vary in size between the BL and the rest of the flow in the bulk [20].
The dissipative quantities are coupled tightly with the small-scale flow intermittency,
and they make the proper characterization of dynamics highly sensitive to the nu-
merical methods used in the DNS. This topic has been firstly outlined by Scheel et
al. [28], where a statistical analysis of viscous and thermal dissipation rates at different
grids, (106 <Ra<10°,T =1, Pr= 0.7), was presented. Nonetheless, the analysis
outlined was limited to give an individual description on each dissipation within the
different regions. In the present study, we focus on the crucial coupling between the
kinetic and thermal dissipation rates in turbulent RBC. In this case, we handle a DNS
study at bigger domain, than in [28], of an air (Pr = 0.7) filled rectangular cavity
of aspect ratio unity (I' = 1) and an open-ended (of periodic boundary conditions)
spanwise (= 7). These configurations reduce to significant extent the impact of the
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confinement geometries which pockets the turbulent wind and modifies the dynamics
in the bulk and BL. Two Rayleigh numbers Ra = {10%,10'°} that indicate different
structural turbulent regimes, are considered. The obtained Nu results were in very
good agreement with heat transfer theories, such as [29]. Moreover, the viscous and
thermal dissipations were found to be highly fluctuated and interacted at the patterns
of thermal plumes, both in the BL and the bulk.

The present chapter is organized as follows. In the next section the governing
equations and the numerical methods are described in details. Therein, the DNS reso-
lution requirements towards the proper lowest amount of computational demands
are outlined. In § 1.3, results of statistical analysis for viscous and thermal dissipations
rates, are presented. We explore the main flow dynamics by studying the kinetic and
thermal energy power spectra and the wind at this setting of turbulent RBC. Finally,
relevant results are summarized and conclusions are given in § 1.4.

1.2 Governing equations and numerical method

1.2.1 Governing equations

We restrict ourselves to a rectangular geometry of aspect ratio unity—squared cross
section—(I' = W/ H) and longitudinal spanwise open-ended distance L/H = 7 (see
sketch in Figure 1.2). L, W and H correspond to the physical real dimensions of the
cavity, identified as, the length, width and the height, respectively. The cavity is
filled with a Newtonian fluid of constant thermophysical properties, as the kinematic
viscosity v and thermal diffusivity x. The fluid is transparent to the radiation with a
density variations and compressibility effects are neglected. The only exception is the
density variation in the buoyancy forces where the so-called Oberbeck-Boussinesq
(OB) approximation, is used. Following theses assumptions, and in case of negligible
thermal radiation, the governing equations of continuity (mass conservation), Navier-
Stokes (NS) (momentum conservation), and thermal energy (energy conservation),
are given in non-dimensional form as

V-u = 0, (1.1)
au _ E 2
ﬁ—f—(wV)u = Vp—ﬂ/RaV u+f, (1.2)
a—T+(u-V)T = LI (1.3)

ot VRaPr

where u = (1, v, w) is the velocity vector in Cartesian coordinates x = (x,y,z), p is the
pressure field, f = (0,0, T) is the body force vector and T is the temperature. These
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Figure 1.2: Schematic representation of the studied Rayleigh-Bénard convective cell.

equations formulate the mathematical model that describes the flow dynamics in RBC.
All quantities therein (in Egs. 1.1, 1.2 and 1.3) are written in dimensionless form using
the height of the fluid layer H, the temperature difference between the upper and
the lower surfaces A® and the free-fall velocity U, = (agA@H )1/2, Namely, U,, s
pufe fr A® and H/U,, ¢ are used as the characteristic scales for u, p, T and the time ¢,

respectively, where « is the volumetric thermal expansion coefficient and g stands
for the gravitational acceleration. The cavity is subjected to horizontal bottom and
top constant dimensionless temperatures, Tj,; = 0.5 and T,,;; = —0.5, respectively,
while the vertical walls are thermally insulated (0T/dy = 0). No-slip boundary
conditions for the fluid (# = 0) are imposed at all the four solid walls, and periodic
boundary conditions are applied for all quantities in the longitudinal x-direction. The
characteristic parameters of the system are introduced within the numbers of Prandtl
Pr = v/x (here Pr = 0.7) and Rayleigh Ra = gaA@H?3/(vx), (10% and 10'°), and in
responding to that physics, the average Nusselt number Nu is given by

HT)a

Nu = v RaPr(wT) 4 — 5

(1.4)

where the angular brackets operator (-) indicates the temporal average (likewise it
denotes the ensemble average in the statistical analysis), and the subscript symbol A
refers to the average over (x-y) plane at position z.

1.2.2 Numerical method

Spatial discretization The governing equations (1.1, 1.2 and 1.3) are numerically
discretized in space on a Cartesian staggered grid using a finite-volume 4!"-order
symmetry-preserving scheme [30]. The main idea of these schemes is making the
discretization in such a manner that the discrete difference operators mimic the crucial
symmetry properties of the underlying differential operators. In this way, certain
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fundamental properties such as the inviscid invariants-kinetic energy, enstrophy (in
2D) and helicity (in 3D), are exactly preserved [30]. Following an operator-based
formulation, the discretized NS and continuity equations (Eq.1.1 and 1.2) are given by

Muh = Oh (15)
d
% —  —C(up)uy, + Duy, + f,, — QGpy, (1.6)

where 1, is the discrete velocity vector and Q) is a positive-definite diagonal matrix
which contains the sizes of control volumes. C(uy,) is the convective coefficient matrix
which is approached as a skew-symmetric matrix contributing to the mass fluxes.
D is the discrete diffusive operator defined as a symmetric negative-definite matrix.
£ is the discrete source vector and M,G are the discrete divergence and gradient
operators, respectively. In the same formulation the global kinetic energy equation
can be written as

d
gl 1> = —uj,(C(uy) + C' (wp,) yuy, + uj, (D + Dy, + 2uy f1, — w,QGpy, — pj,G' Q'wy
(1.7)
The convective operator is skew-symmetric, that means,

C(uh) = 7Ct(uh)/ (1-8)

and the negative conjugate transpose of the discrete gradient operator is exactly equal
to the divergence operator, i.c.,

—(QG) =M. (1.9)

This leads in consequence to canceling both the convective and pressure terms and
the global kinetic energy equation is given as,

d
EHuhHZ = ul,(D + D"y, + 2uy,f},. (1.10)

The diffusive term is negative and works as a dissipative factor to the kinetic energy,
whereas the source term is positive and works as a generator of energy. By this
way the kinetic energy is not systematically damped by discrete convective operator
and does not need to be damped explicitly to ensure the stability of the method.
Regarding the time evolution of the cell-centered temperature Ty, it is discretized
in the same way. For more details about symmetry-preserving scheme the reader is
referred to [30].



26 Chapter 1. Direct numerical simulation of turbulent RBC

Time integration method In order to simplify the notation, the equations of the
momentum (1.2) and energy (1.3), can be rewritten as

aa—': =R(u,f) — Vp, where R(u,f)=—(u-V)u+ (Pr/Ra)*>Vu+f, (1.11)
?‘Tf =R(u,T), where R(u,T) = —(u-V)T + (PrRa) %°V2T.  (1.12)

For the temporal discretization, a central difference scheme is used for the time
derivative terms, a fully explicit second-order one-leg scheme is used for R(u, f),
R(u, T). A first-order backward Euler scheme is used for the pressure-gradient term.
Incompressibility constraint is treated implicit. Thus, we obtain the semi-discretized
governing equations as

V-u'tt =0 (1.13)

(k+1/2)u™ —2ku" + (k —1/2)u" 1
At

_ (1 —l—k)R(M,f)n o kR(u’f)n—l . vpn-‘rl
(1.14)
n+1 n _ n—1
(k+1/2)T ZkAY; +(k—1/2)T — (14+Kk)R(u, T)" —kR(u,T)nil (1.15)

The parameter k is computed each time step (At) to adapt the linear stability domain
of the time-integration scheme to the instantaneous flow conditions in order to use the
maximum At possible. The main idea is bounding the eigenvalues of the dynamical
system analytically and compute k and At upon that better fits the linear stability
domain. For further details about the time-integration method the reader is referred
to [31].

It is well-known that due to stability reasons explicit temporal schemes introduce
severe restrictions on At, while implicit discretization would improve the overall
stability. However, for the use of implicit methods in DNS of turbulent flows the
computational costs are rather high compared to those of explicit methods. This
is because of the underlying restrictions to At that are required to fully resolve all
temporal scales in the NS equations. Therefore, only explicit methods are considered
in the view of the lower costs.

To solve the velocity-pressure coupling we use a classical Fractional step pro-
jection method [32], in these method solutions of the unsteady Navier-Stokes equa-
tions are obtained by first time-advancing the velocity field u without regard for its
solenoidality constraint (Eq. 1.13), then recovering the proper solenoidal velocity field,
u"t1 after applicate the continuity constraint in the Poisson equation. This projection
method is derived from the well-known Helmholtz-Hodge vector decomposition
theorem [32], whereby the predictor velocity #” can be uniquely decomposed into a
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n+1

divergence-free vector """, and the gradient of a scalar field V, as

uP ="l 4 Vp, (1.16)
where the predictor velocity u” is (from Eq. 1.14)

_ 2ku" — (k—1/2)u"! At

14
" k+1/2 trri2

((1+Kk)R(u, f)" —kR(u, f)" 1), (1.17)

and the pseudo-pressure is i = At/ (k +1/2)p"*+1. The time-advancing temperature
is also given from Eq. 1.15 as,

2T = (k12T A (4 R, TY — kR, T)1)  (118)

T?Z+1:
k+1/2 k+1/2

Taking the divergence of Eq. 1.16, yields to Poisson equation for j

Veu =V-u"' 4V (Vp)=> V=V ul (1.19)

n+1

Once the solution is obtained, u results from the correction

utt =P — Vp. (1.20)

Poisson equation is solved at each time step using the Fourier-based solver [33].
Briefly, it is a scalable parallel solver that uses diagonalization by means of a FFT in
the periodic direction to uncouple the original 3D system into a set of independent
2D systems. These 2D systems are solved using a preconditioned conjugate gradient
method except for the first lowest-frequency systems which are problematic for an
iterative solver. Hence, they are solved with a parallel direct Schur complement-based
method. The accuracy of the solution is automatically tuned during simulation in
order to provide the requested reduction of the divergence norm |MuZJrl |/ |Mu£| <
1073 on each time step. Finally, the absolute value of the resulting divergence norm
is attained to 10~!°. For more details about the numerical methods, algorithms and
verification of the code, the reader is referred to the work of Trias et al. [34].

1.2.3 Resolution requirements and validation

In turbulent Rayleigh-Bénard convection, the dissipative fine scales are essentially
controlled by the Prandtl number. The smallest scales follow the Kolmogorov length
1x that is directly related to the kinetic energy dissipation when Pr < 1, while when
Pr > 1, the Batchelor scales #p that relatively expose the (active) scalar concentration



28 Chapter 1. Direct numerical simulation of turbulent RBC

(thermal gradients), become the governor (smaller) lengths. Both mean scales are
defined as

3/8
o0 = (ge) 0 ana g = o

where € is the kinetic energy dissipation rate that is determined by

e(x,t) = \/E(Vu + Vul)2, (1.22)

The second substantial feature that demonstrates high sensitivity to fine scales and
thus to poor insufficient resolution, is the thermal dissipation rate. Its value indi-
cates the magnitude of thermal gradient vector through the flow, and translated as

following
1

eT(x, t) - v/ RaPr

The global averages of the two dissipations are analytically given in function of
(Ra,Pr,Nu) following an exact balance of the turbulent kinetic energy and scalar
variance equations [1]. They are consequently written as

(VT)2. (1.23)

Nu—1 Nu

and  (er)v;= (

(RaPr)172 (29

(e)vi= W
(where (-)y ; denotes the ensemble volume-time average). Using the relations (1.21)
and (1.24), Grotbach [35] estimated the minimum mean grid spacing #¢,s. required to

resolve the mean dissipation in RBC, where his criteria are given by

s < 7 L v for Pr<1 (1.25)
s = (Nu—1)Ra = )
1/4
1
< - .
NGro = n((Nu — 1)Ra) for Pr>1 (1.26)

Under these criteria, we construct Cartesian grids with a uniform grid spacing in
the periodic x-direction, while the wall-normal points are distributed following a
hyperbolic-tangent function with an equal number of nodes (N, = N), given in
z-direction (identical for y-direction) by

1 tanh{/;(2(i—1)/N, —1)} .
7= (1 n —— , i=1,...,Ny+1, (1.27)
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where 1, is the concentration factor in the z-direction. Several refinement ratios
of 116 criterion are tested first for the low Ra number. By introducing Az, as
the maximum grid spacing applied in the core where Azy;x = Ayax = Ax, the
refinement approaches are defined as Azyax/#Grs € [1.1 — 0.7]. The numerical tests
upon a posteriori comparisons of Nu values computed following: its BL-based”, global
averaged dissipation rates (Eq. 1.24) and the global heat flux, given as

Nuy =1+ (RaPr)Y2(wT)y,, (1.28)

are presented in Table 1.1 (top). Moreover, an investigation has been performed in
order to reduce the computational cost by maximizing the equidistant spacing in the
periodic x-direction (instead of setting it to Ax = Az;;4y), at the same Ra number. In
résumé, the results led to a refinement ratio of Azy,ax/%Grs = 0.9, and a coarsening
tolerance for the homogeneous cell spacing in the range Ax/Azyax € [1.25 — 1.5],
without losing accuracy. These results have later been used to choose the proper
estimated grid at Ra = 10'0 (see Table 1.1, bottom). On the other hand, the BLs are
resolved with Np; = 9 and 12 grid points for Ra = 108 and 10%°, respectively. This
exceeds the resolution requirements proposed by Shishkina et al. [36] and given, for
Pr~0.7,by

Nyp. ~ 0.35Ra%%, 10° < Ra < 1019, (1.29)
Nypr ~ 0.31Ra%1, 10° < Ra < 1019, (1.30)

where Ny, p; and N g are the minimum required number of nodes within the
thermal and viscous BLs, respectively.

Data for statistical analysis is collected after at least 500 non-dimensional time
units [TU] in order to be sure that the statistically steady state is reached and the flow
becomes out of the initial transient effects. Temporal integrations are then started and
continue during a sulfficiently long time, ¢ = 500[TU| and 200[T U], for the low and
high Ra numbers, respectively. They guarantee a statistically stable turbulent heat
transport unchanged due to the presence of large-scale circulations, which erratically
reverse their directions over many large eddy turnover times [37-39]. In this case,
the large eddy turnover lasts about 7,44, ~ 7[TU] (Ra = 10%) and 5[TU] (Ra = 10'°).

“The heat transport near the isothermal plates in the BL is basically by conduction and the Nusselt

number correlation (Eq. 1.4) is given as, Nu = — a<gz>““ |z=0
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Table 1.1: Results of refinement tests around Grétzbach criterion at Ra = 108 and Ax/Azpax = 1 (top table).
Summary of final simulation parameters with Nu results, where ypys = A>x>§~§bm§§vu\ 3 (bottom table).

B N xNyxN,  Nu M Qu(enUin (e (Rapt
1.1 256 x 150 x 150 31.44 0.997 0.966 0.983
10 288 x 158 x 158 31.10 0.997 0971 0.985
09 320x174x 174 31.00 0.999 0.976 0.988
0.8 342 x192x192 3093 0.999 0.982 0.991
07 400 x 208 x 208 30.86 1.001 0.984 0.993

Ra NGro R, A 1IDNS 1z=1y NxxXNyxN; Npp At[TU]  ¢[TU] W&?&mi Nu

NGrs  DZmax

108 1.09x 1072 070 1.0 7.70x1073 14 400x208x208 9 145x10~3 500 40 30.9

1010 246 x 1073 0.92 136 250x 1073 1.6 1024 x 768 x 768 12 4.14 x 10~* 200 10 128.1




§1.2. Governing equations and numerical method 31

It has been defined as Teddy = H/uyms, where s T the root mean square of the
bulk velocity. The instantaneous characteristics used in the statistical calculations are
collected typically over several large eddy turnover times, ¢s; (see Table 1.1, bottom),
which sufficiently ensure the statistics convergence.

The spanwise length in the periodic x-direction was set to 7 that is sufficiently
long to ensure the uncorrelation of turbulence fluctuations. This has been approved
in the two-point correlation analysis of the spanwise velocity component, given by

(W' (x,y,2)u' (x +1,y,2))
(u'?)

at two different locations, i.e., P;(y; = 0.5,z = 0.5) and P,(y, = 0.5,z = 0.015), in
the bulk and near the wall, as showed in Figure 1.3(b). It can be noted that the corre-
lation values fall to zero at separations lower than one-half period and the periodic
distance is adequate. The bulk region considered throughout the thesis is identified

Ru,u = ’ (1'31)

1 T T T
y1 =052, =05
Y2 = 0.5 2 = 0.015
08 | 08 \
4 0.6
0.6 \
N o 0.4
0.4
0.2
0.2 0 —
\_\ \/
0 —0.2 S N
0 0 0.2 0.4 0.6 0.8 1 1.2 1.4

(b)

Figure 1.3: (a)A posteriori temporal-x averaged vertical profiles of T;s extracted at the
midwidth y = 0.5. (b) Represents the two-point correlation of the spanwise velocity u,
taken at two monitoring locations (y-z) in the homogeneous x-direction at Ra = 10°.

far enough from the solid boundaries and the near-wall influences. Consequently,
a subvolume V,;x = {x = (x,1,2)[0.2 <y < 0.8;0.2 < z < 0.8}, has been chosen
as a representative domain of the bulk, which lays excessively out of the thermal
BLs. In order to verify our selection, the vertical midwidth profiles of the x-average

+urms = <UI2 +02 + W,Z>V,t
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root-mean-square temperatures are displayed in Figure 1.3(a) for both cases. The
profiles show maximum values at the outlets of the thermal BLs to determine their
thickness dt at the maximal thermal fluctuation [15]. The corresponding distances
read, z = 0.016 in the case of Ra = 108 and z = 0.0039 for Ra = 10!, which match
very well with the theoretical prediction of Grossmann and Lohse [29] that reads

St = 0.5H/Nu (68=10" = 0.0162, 68=10" = 0.0039032).

All simulation parameters and grid details are displayed in Table 1.1 (bottom)
together with the Nu number, which propose a scaling power equal to  ~ 0.309.
This value corresponds quite well to f = 0.29 proposed by Grossmann and Lohse
theory [29] for Pr ~ 1 and Ra up to 101, Moreover, it also agrees with the DNS results
of Scheel et al. [40] obtained at the same parameters (Pr = 0.7 and Ra € [3 X 10° —
10'9]), and its suggested correlation Nu = (0.15 4 0.01) x Rq?29+0:01,

1.3 Main results and discussion

1.3.1 Interactions between temperature and velocity fields

Snapshots of the isosurfaces temperature fields are displayed in Figure 1.4(a) at
Ra = 10® and Figure 1.4(b) at Ra = 10'. They illustrate the formation of the thermal
plumes in a (x-z) section, changing in regime from a fully developed turbulent flow
to very hard turbulence [15]. The large-scale circulations become hardly identified
in T field, and appear to be temporarily broken down and unstable, harder in the
case of Ra = 10'0. The plumes emanate as fragments of the thermal BLs under an
amplified coupling of kinetic/thermal turbulent fluctuations (see Figure 1.6 in ad-
vance). This amplified turbulence is mostly generated by a collusion of bulk dynamics
impingement in the BL and strain rotation, to eventually excites the formation of the
so-called sheet-like plumes or the roots in the BLs (see Figures 1.7(a) and 1.7(b)). At
the intersection points of the roots, the plumes convolute and swirl away by buoyancy
to arise into the bulk as the mushroom-like plumes (black and white fragments in
Figure 1.4). Under the buoyant acceleration and thermal diffusion, these last expand
away transforming their portable thermal energy into a kinetic one and feeding the
momentum [15]. This operation therefore leads to a decorrelation of the thermal and
kinetic behaviour between the bulk and the BL.

In order to show the previous mechanism we study the kinetic and thermal energy
spectra in the homogeneous x-direction. Namely, we plot the one-dimensional energy
spectra of T and the vertical velocity w along the periodic x-direction and averaged
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Figure 1.4: Snapshots of isosurfaces temperature fields in (x-z) plane at Ra = 108 (a)
and Ra = 1010 (b).

in time, in Figure 1.5. It is defined as

Epp (ke y,2) = (Px, (v, 2) i, (v,2)), (1.32)

where (-)* is the complex conjugate for a variable ¢ and ky is the wave number. The
data is taken at two different regions of the domain, one within the thermal BL (insets)
and the other in the core (z = 0.5), midway between the lateral walls (y = 0.5). Firstly,
and in agreement with many studies, e.g., Kaczorowski & Wagner [15], the velocity
and temperature spectra in the centre of the cell correctly match the Kolmogorov
5/3 and the Bolgiano 7/5 exponents, respectively, across the inertial subrange. This
implies that all the relevant turbulent scales are resolved by the grids used, and both
the inertial subrange and the dissipation range are clearly identified for both turbulent
cases in the main sets of Figures 1.5(a) and 1.5(b). The behaviour of the thermal and
kinetic energy spectra in the bulk is opposite to that in the BL. The kinetic energy is
placed higher than the thermal spectrum in the core, while it is lower in the BL, as
displayed in the insets. On the other hand, the horizontal walls tends to damp the
vertical kinetic energy in the near-wall vicinities, and makes the scaling exponents
in the BL, different (smaller) than in the bulk. Analysis of the spectra at different
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Figure 1.5: One-dimensional energy spectra in compensated formulae for the vertical

velocity k¥ Ey (k) and the temperature k7/°Erp(ky ), extracted along the midwidth
periodic x-direction in the core (z = 0.5) and inside the thermal BL (insets) at (a)
Ra =108 and (b) Ra = 10%°.

distances from the horizontal walls [15,41], shows that the level of the kinetic energy
is continuously increasing towards the cell centre, while the temperature spectrum
is slowly decreasing outside the BL towards the core. That mechanism is basically
related to the thermal plumes evolution (its generation and shedding cycle). Taking a
closer view, the thermal energy at Ra = 10 is higher than its counterpart at Ra = 10'°
for the lowest wave-number (k%/°Err(ky) > 10~%). This supports the idea that less
shedding (conversion into kinetic energy) on thermals takes place for Ra = 108. The
plumes (mushroom-like) are developing farther into the bulk and survive longer in
comparison with the case of Ra = 10'° (see Figure 1.4).

A clearer picture of that dynamics can be taken from computing the correlation
coefficient C,y7/, and the skewness of temperature fluctuation Sy, at various wall
distances z , in Figure 1.6. They are defined as,

<w/T/> B <T/3>
(W) (T72) ’ St = (1.33)

Cor = (T2)372"
and calculated at one (x,y) position (x = 1.57,y = 0.5,z = 0 — 1) midways. The
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resultant profiles are symmetrized over z = 0.5. Firstly, and as can be seen from
Figure 1.6(a), the correlation between the turbulent fluctuations of the temperature
and vertical velocity fields hold its maximum values near the walls inside the thermal
BLs, for both turbulent cases. They manifest, in this behaviour, on the strong coupling
between the thermal/kinetic turbulent fluctuations in the BL, as the origins of the
thermal plumes. Both fields then, start to decorrelate in the bulk with decreasing
values of C,v because of the mixing action and plumes scattering in the bulk. The
correlation in the core at Ra = 10'° becomes smaller than its counterpart at Ra = 105.
This justifies the above-mentioned facts, that the mushroom-like plumes are less
longer survived, smaller in size and high rapidly shedded at the harder turbulent case
Ra = 10'°. On the other hand, the skewness measures the temporal deviation of T’
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Figure 1.6: Correlation coefficient of turbulent fluctuations of the temperature T and
vertical velocity w fields (a) and the skewness of temperature fluctuation (b), given in
Egs. 1.33, and computed at a single position (x = 1.57,y = 0.5) and (z =0 — 1).

from asymmetry, where zero values indicate that the distribution of T’ is normal and
symmetric, while negative or positive values indicate that the distribution is skewed
right or left of its average. From Figure 1.6(b), the skewness shows high positive and
negative values around Jt to imply that rising and falling plumes are observed at
the edge of the bottom and top thermal BLs. Simultaneously the colder and hotter
pockets of temperature are generated in the vicinity of the thermal plumes that detach
from the BLs, and the skewness approaches its maximal negative and positive values,
which found to be higher (at further distance from the wall) at Ra = 10° in comparison
with Ra = 10'°. This again certifies the bigger sizes of the mushroom-like plumes at
Ra = 108, that develop longer in the bulk. Afterwards, and far from the walls, the
skewness tends to vanish reading a null value at the center in the core, where the
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plumes are well-mixed.

1.3.2 Thermal and kinetic energy dissipation rates

In order to disclose the underlying physics of the interacted kinetic/thermal turbulent
fluctuations, the kinetic € and thermal et dissipation rates are studied in this context.
Following its gradient-dependent definitions (Egs. 1.22 and 1.23), both dissipations
imply a high sensitivity to the small-scale dynamics and flow intermittency.

(@ (b) © (d)

Figure 1.7: Snapshots of temperature isosurfaces (sheet-like plumes) extracted along
the horizontal plane (x-y) at (a) zg,—1g10 = 0.002 and (b) zg,—10s = 0.005. (c) and (d)
display the instantaneous € and e, respectively, in the same plane at zg,_10s = 0.005.
The data of dissipations is presented in logarithmic scale ranging, from black to white,
as, log(e) € [—4.6, —1.0] (c) and log(er) € [—3.0, —0.53] (d).

They tightly interact with high amplitudes at the formation patterns of the sheet-
like thermal plumes in the BLs, as shown in Figure 1.7. The data is given in logarithmic
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Figure 1.8: PDFs of normalized thermal and viscous dissipation rates, {7 =
er/{er)v (black) and { = €/ (€)y ; (grey), plotted within the whole cavity (a) and
the bulk (Vj,x) (b), at Ra = 108. The solid blue lines in (b) indicate the fitted Gaussian
distributions.

scales for both instantaneous dissipations at Ra = 108 (Figures 1.7(c) and 1.7(d)), in
order to highlight the variation. They are displayed together with the instantaneous
temperature (Figures 1.7(a) and 1.7(b)), all extracted at the horizontal plane (x-y) for
(ZRa—108 = 0.005, z,_q010 = 0.002), inside the BLs. We can note the fine filamentary
structures of both dissipations highly correlated at the isothermal plate (BL), in corre-
sponding to the ongoing thermal roots. A clearer picture over the spatial distributions
of the viscous and thermal dissipation rates can be obtained through a statistical
analysis. To do so, we plot the local probability density function (PDF) of the two
terms, both across the entire volume of the cavity (Figure 1.8(a)) and the bulk, V;,«
(Figure 1.8(b)), at Ra = 108. The data is normalized by its temporal-volumetric aver-
aged magnitudes using the following notations, { = €/(€)y; and {1 = er/(€T)v +,
and represented in a logarithmic scale (exponential bin width divisions). In general,
both dissipation rates have revealed a non-Gaussian PDF distribution with stretched-
exponential tails exposing the small-scale intermittency in both the bulk and BL
regions. This behaviour consists very well with the statistical dissipation behaviour
reported in several previous studies such as, Scheel et al. [28] and Kaczorowski &
Wagner [15].
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Figure 1.9: PDFs of normalized thermal dissipation rate {7 = er/{er)v , plotted
across the whole domain.

Basically, the thermal dissipation rate represents a reliable visualizer that indicates
the evolution of thermal plumes following its thermal contrast and conductive heat
transfer. Using its PDF distribution, Kaczorowski & Wagner [15] had separated the
flow into three distinguished regions: (I) the bulk flow (turbulent background region),
(II) the plumes/mixing layers and (III) the conductive sublayers. Similar to Ref. [15],
our PDFs are displayed in Figure 1.9 and show the notable tendency of increasing
the turbulent background contribution on account of decreasing the plumes region
(steeper PDF), when the Ra number increases. The existence of the thermal BL
and plumes implies that the PDF of {1 across the whole domain, deviates from the
behaviour of a passive scalar convection (at {7 > 1) [15]. Nonetheless, in the bulk
region V1, the PDF of {1 (Figures 1.10(a) and 1.8(b)) shows a picture similar to the
results obtained in passive scalar convection [42]. The PDFs are neither symmetric nor
Gaussian and for {7 < 1 the Gaussian function falls below the PDFs, reflecting strong
intermittency of the small scales. The right tail is fitted with a stretched exponential
function for {r > 1073, given as

P(gr > 107%) = %GXP(AzC”%/Z), (139

which was analytically derived for passive scalar turbulence with a = 2/3 in hard
turbulent regime [43,44]. The coefficients obtained through least-squares fits in
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Figure 1.10: PDFs of normalized thermal dissipation rate {1t = et/ (€T)y , plotted
within the bulk (V},x) (a) and the thermal hot BL (b), with their respective least-
squares fits (dashed lines). The inset in (a) shows the same PDFs on a log — log scale
to illustrate the distribution of the small thermal dissipation rates.

Figure 1.10(a) read, A] = 3 x 1073, A, = 3.86 and a = 0.99, at Ra = 105, and
A1 =8x1072, A, =5.33and a = 0.71, at Ra = 1010, These findings in turn consist
with Kaczorowski & Wagner [15], who observed the decreasing magnitude of a once
the flow becomes fully turbulent with increasing Ra. Thus, there seems to be a tendency
for a to approach the theoretically predicted passive scalar scaling at high Ra [15].

Likewise the bulk, the PDFs of {7 are plotted inside the thermal BL (z = 0 — 1) in
Figure 1.10(b). They show a fat stretched tail with a broader range of {1 by increasing
the Ra. The vicinities of the conducting walls (BLs) hold the highest fluctuating
values of the thermal dissipation rates ({1 > 100) in relevant to the thermal plumes,
however, the smallest magnitudes of {7, ({1 < 20) are centralized in the bulk. The
distribution in Figure 1.10(b) follows an exponential scaling of the form,

P({r >> 1) = Brexp(—Balr1), (1.35)

where the fitting coefficients read, By = 1 X 1072, B, = 0.033, for Ra = 108 and
B; = 1.1 x 1072, B, = 0.006, for Ra = 1019, In consistency with [15], the exponent B;
becomes smaller with increasing the Ra to imply a broader {7 range of significant
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intermittent flow and increasing ratio of plumes emission at Ra = 10'°.
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Figure 1.11: (a) Vertically cut plane (y-z) of instantaneous {7 > 1and { > 1, at
Ra = 108. (b) Represents the joint statistics I1(, {T), given by Eq. 1.36, and plotted
within the bulk (V},x), at the same Ra. The dashed lines in (b) refer to the mean
dissipations.

Returning to Figure 1.8(a), the thermal dissipation rate seems to dominate the
viscous dissipation in the range beyond its mean quantities, in regions of thermal
plumes and conductive sublayers. Therein, the two dissipations tend to overlap
at the largest events to manifest its important correlation at the BLs. However, in
the bulk, ¢ and {r start to decorrelate because of the mixing action and conversely
the kinetic dissipation becomes the dominant with more Gaussian and sharper PDF
distribution (Figure 1.8(b)). The two dissipations tend again to overlap in the bulk at
the rare largest values beyond the means. They indicate therefore, a small correlation
associated with the expansion of plume chunks that travel far a way the BL through
the bulk. One can verify further in Figure 1.11(a), where the viscous and thermal
dissipative patterns that exceed the mean quantities i.e. {7 > 1 and { > 1, are shown.
It can be seen how the high-amplitude dissipative structures interact and follow the
mushroom-like plumes expanded in the bulk. These rare correlation events can also
be underlined by plotting the joint PDF of the two dissipations, defined as

I(Z,Zr) = JP(Z,Cr)/ (P(Q)P(Cr)), (1.36)
and represented in Figure 1.11(b) at Ra = 108. Similar to Scheel et al. [28] findings, the
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two dissipations are predominantly uncorrelated in the bulk unless at locations that
exceed the unity values where the peak joint is observed. Finally, we should report
that the essential behaviour of the kinetic and thermal energy dissipation rates in tur-
bulent RBC is intimately implicated the true kinetic/thermal interaction mechanisms
explained before in § 1.3.1. Moreover, these actions led in consistency, to the famous
theory of Grossmann & Lohse [11,29,45], and recently [6], that splits the viscous
dissipation rate into a bulk and BL contributions and the thermal dissipation rate into
a background and plumes contributions. For detailed theoretical background about
RBC and the scaling theories, the colloquium paper of Chilla and Schumacher [5],
provides an overall reference for the readers.

1.3.3 Heat transport and wind

All findings before have indicated the vital relevance of the thermal/kinetic coupling
mechanism with the thermal plumes advancement. Upon the type of flow (Pr)
and its turbulence strength (Ra) the evolution of plumes is changing, and thus, the
heat transfer mechanism, basically defined by Nu (Eq. 1.4). For example, when
Pr > 1, the temperature exists on finer scales than velocity field and the plumes
become narrower in less steep kinetic gradients [28]. While, at Pr < 1, as in liquid
metals, the local bulk turbulent dissipation becomes stronger, i.e., smaller dissipative
scales develop since 7z « Prl/? (Eq. 1.25), at the same time, an enhanced energy
ejection occurs at larger spatial scale due to the coarser thermal plumes [46] and
a decreasing scaling law f is found by Scheel & Schumacher [47]. Apart from the
plumes dependence, there are another features that constrain the heat transport
mechanism, such as the geometrical influence (confined nature dependent on I') and
the feedback bulk dynamics. They determine the formation of the wind or Large-scale
circulation (LSC) that fundamentally affects/controls the heat transport process in
RBC. Historically, there are two different opinions about the origin of the LSC. The
first one assumes, that the rolls that develop close to the onset of convection continue
to exist at even the highest Ra, but only in an averaged sense [48]. The second one,
proposed by Krishnamurti & Howard [49], considers the LSC as a high Rayleigh
number effect, where the plumes detaching from the boundary layers interact with
the mean shear. This results in tilted plumes generating a Reynolds stress to maintain
a shear against dissipation. This idea is tested in chapter 3 and shown that the wind
is driven by the mean buoyant forces at the sidewalls and no negative turbulent
energy production (energy transport from fluctuations to the mean flow) takes place
at the current setting. For large aspect ratio cells, Verdoold et al. [50] reported that
the wind induces oscillations on time-scales far exceeding the turnover time, and
these oscillations in turn, seem to be stronger as Ra increases. At high Ra, roughly
around 102, Amati et al. [19] showed that the wind is substantially weakened. In
the current study, we identify the LSC by performing an ensemble-averaging of flow
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Figure 1.12: Results of ensemble-averaging at Ra = 10® for (a) 3D isosurfaces tem-
perature, coloured by the turbulent kinetic energy (k), and (b) tubes of streamlines
coloured by (wT). The gray scale is ascendantly changing from white to black in (a),
and from maximum negative (black) to maximum positive (white), values in (b).

field in time. From Figure 1.12 (bottom), one can recognize the formation of two
circulation rolls along the homogeneous x-direction at Ra = 108 (similarly observed
at Ra = 10'). The confined nature with the presence of sidewalls and isothermal top
and bottom plates, seems to compact and enfold the two-cells wind. In Figure 1.12
(top), the 3D isosurfaces temperature, T = 0 — 0.5, are drawn and clearly revealed
the large scale organization. The isosurfaces are colored by the turbulent kinetic
energy, (k) = (u'u’) + (v'v') + (w'w’), where the highest values (black) indicate
the compression areas near the solid walls. Generally, these are the fingerprints of
the role-like behaviour of the wind structure. The strength of the wind is roughly
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Figure 1.13: (a) A vertical (y-z) plane of turbulent heat flux (w'T’) averaged in x-
direction, and colored by a gray scale ascendantly ranging from white to black, as
(w'T") € [0,0.00415], at Ra = 10%. (b) Displays the local Nu distribution at the hot
plate (dashed lines) together with its standard deviation (solid lines) for Ra = 108
(black) and Ra = 1010 (gray).

characterized by the Reynolds number, defined as, Re = H/(k)y (Ra/Pr. It relates
with the turbulence strength, Ra, by a scaling law function given by, Re ~ Ra?, and
reads here as, Re = 0.32Ra%%7>. In turn, this exponent matches very well the scaling
of Emran et al. [25] (v = 0.475) and (y = 0.45 in Emran et al. [26]), who dealt with a
cylindrical cell. In Figure 1.12 (bottom), the streamline tubes across the whole domain
are drawn and colored by the dominant heat transport, (wT), in correspondence to
positive (white) and negative (black) values. Therewith, the coherent wind is falling
at the midway distance in the longitudinal x-direction and rising at the periodic
open-ends. It conveys a cold fluid of negative heat flux, (wT) < 0, at the middle, and
a hot fluid at the adjoining rising flow of positive heat transfer (wT) > 0. The wind
stirs the bulk fluid inside the two helical LSCs and the turbulence bulk arises as a
consequence to transport the heat through the bulk. The turbulent heat flux measured
as the buoyant production, (w'T"), appears to obtain its maximum values in the
vicinities of the sidewalls, as shown in Figure 1.13(a). It indicates that the buoyant
sidewall-flow is mostly characterized by incorporating groups of thermal plumes.
The local Nu (averaged in x) at the heating plate in y positions, and its standard
deviation sdev(Nu), calculated as, sdev(Nu) = 9+/(T'?)/9z|,—, are plotted together
in Figure 1.13(b). It can be observed that a maximum global heat transport happens
in relation to the thermal plumes accumulating and traveling next to the sidewalls.
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The the boundary layer flow is laminar regime, obeying the Prandtl-Plasius scaling
theory of Grossmann & Lohse [45] (67 = 0.5H/Nu). The mean sidewall circulation
is essentially reduced/diminished in the higher turbulent case, where sdev(Nu) is
trivially modified.

1.4 Conclusions

A set of complete 3D direct numerical simulations of turbulent RBC in a rectangular
air-filled cavity of aspect ratio I' = 1 and 7t spanwise open-ended distance, have been
presented at two Ra = {10%,10'°}. Numerically, an explicit scheme has been used
for temporal integration and a 4-order symmetry preserving scheme for spatial
discretization. This scheme preserves the global kinetic energy balances even for very
coarse grids. The trustworthy DNS grids which are appropriate to resolve all relevant
turbulent scales, both in the bulk and near-wall areas, are constructed upon refinement
tests on the base of Grotzbach [35] criterion. They adopt the lowest computational
cost possible with the aid of a maximum coarsening approach in the homogeneous
x-direction, without losing accuracy. On the other hand, they satisfy and exceed the
current DNS resolution requirements for the BLs, proposed by Shishkina ef al. [36].
As a result, the Nu findings present a good consistency with literature [28,29].

The main findings read that an amplified coupling of kinetic and thermal turbu-
lent fluctuations takes place in the boundary layers next to the heating and cooling
isothermal plates. They induce the formation of patterns of sheet-like plumes leading
to important interaction/ correlation of viscous and thermal energy dissipation rates
in the BLs. Both dissipations therein, reveal a non-Gaussian PDF distribution with
stretched-exponential tails exposing the small-scale intermittency. They hold high
amplitude events exceeding its temporal and volumetric averaged values, and a
domination of the thermal dissipation over the viscous one occurs inside the BL. At
the intersection points of the roots the plumes convolute and swirl away by buoyancy
to arise into the bulk as mushroom-like plumes. As a result of the mixing action, the
plumes dissipate in the bulk transforming its portable thermal energy into kinetic one
and lead to a decorrelation action of the thermal and viscous dissipation rates. The
viscous dissipation therefore, is conversely dominating in the bulk and the two dissi-
pation are only correlated at the rare largest values beyond the means in association
with the plume chunks in the bulk.

The coherent large-scale circulation or the wind has been identified using an
ensemble-averaging of flow field in time. Two helical rolls are distinguished along
the homogeneous x-direction, and enfolded by the solid walls. The interaction
compression areas between the wind and the walls are found to be indicated by the
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largest magnitudes of the turbulent kinetic energy. Generally, the wind organization
is constituted into a cold falling down fluid of negative heat flux at the middle of
the 7t periodic distance, and two rising up hot fluid at the adjoining open-ended
sides with a positive heat flux. The turbulent heat flux is found to be maximal in the
vicinities of the sidewalls in relevant to the plumes traveling over there; and the mean
sidewall circulation is notably reduced/diminished at Ra = 10'°.
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Abstract. Small-scale dynamics is the spirit of turbulence physics. It implicates many attributes
of flow topology evolution, coherent structures, hairpin vorticity dynamics and mechanism
of the kinetic energy cascade. In this chapter, several dynamical aspects of the small scale
motions have been numerically studied in a framework of Rayleigh-Bénard convection (RBC).
To do so, results from the direct numerical simulations in chapter 1, have been used. As a
main feature, the average rate of the invariants of the velocity gradient tensor (Qg, Rg) have
displayed the so-called “teardrop” spiraling shape through the bulk region. Therein, the mean
trajectories are swirling inwards revealing a periodic spin around the converging origin, of

49



50 Chapter 2. flow topology in turbulent RBC

a constant period that is found to be proportional to the plumes lifetime. Supplementary
small-scale properties, which are widely common in many turbulent flows have been observed
in RBC. For example, the strong preferential alignment of vorticity with the intermediate
eigenstrain vector, and the asymmetric alignment between vorticity and the vortex-stretching
vector. It has been deduced that in a hard turbulent flow regime, local self-amplifications of
straining regions aid in contracting the vorticity worms, and enhance the local interactions
vorticity/strain to support the linear vortex-stretching contributions. On the other hand, the
evolution of invariants pertained to the traceless part of velocity-times-temperature gradient
tensor have also been considered in order to determine the role of thermals in the fine-scale
dynamics. By applying an identical approach, the rates of the new invariants have shown a
symmetric cycling behaviour decaying towards two skew-symmetric converging origins at
the lower Ra number. At the hard turbulent case, the spiraling trajectories travel in shorter
tracks to reveal the reduced lifetime of plumes under the dissipative and mixing effects. The
turbulent background kinetic derivatives get self amplified and the trajectories converge to
a zero-valued origin. These and other peculiar scrutinies on the small scale motions in RBC
have been enlightened, and may have a fruitful consequence on modelling approaches of
buoyancy-driven turbulence.
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2.1 Introduction

“Turbulent flow constitutes an unusual and difficult problem of statistical mechanics, char-
acterized by extreme statistical disequilibrium, by anomalous transport processes, by strong
dynamical nonlinearity, and by perplexing interplay of chaos and order” (Kraichnan [1]).
Nevertheless, understanding the qualitative contents of the governing equations of
turbulence can elucidate many physics therein. Namely, generic structural properties
of the mathematical governing objects, called (strange) attractors, which are invariants
in some sense, include many ingredients of turbulence physics (Tsinober [2]). Hence,
the key point is in the small scale motions, and their universal qualitative aspects com-
monly found in a wide variety of turbulent flows. They result from the subtle balance
between convective transport and diffusive dissipation to be definitely blameworthy
of generating the hairpin vorticity dynamics, non-Gaussianity, strain/dissipation pro-
duction and the cascade of kinetic energy mechanisms. Studying their evolution gives
us fundamental perspectives of flow topology and thus, many physics of turbulence
become intelligible.

Since the early 90s, a major attention has been given to the important role of veloc-
ity derivatives in the topological classification of fluid motions [3] and the small-scale
dynamics [4,5]. Thereby, several universal features of the small scale turbulence are
observed, e.g. the inclined “teardrop” shape of the joint probability density function
(PDF) of Qg (the second) and R (the third) invariants of the velocity gradient tensor,
and the essential preferential alignment of vorticity with the intermediate eigenvec-
tor of the rate-of-strain tensor. They have been observed in various turbulent flow
configurations such as isotropic turbulence [5], turbulent boundary layer [6], channel
flow [7], turbulent mixing layer [8] and turbulent jets [9]. However, their thermally
driven analogues, as in the developed natural convection flow heated from below and
cooled from above, namely Rayleigh-Bénard convection (RBC), are far from being
satisfactory.

Buoyancy-driven flow in RBC has always been an important subject of scientific
studies with numerous applications in environment and technology. Its resultant
dynamics is strongly featured by intrinsic instabilities, counter-gradient diffusion,
augmented pressure fluctuations and strong interactions between kinetics and ther-
mals diversely distributed over flow regions. This nature has inspired significant
inherent complexities in the view of turbulence models, and the proper reproduction
to the coherent large-scale circulations in RBC [10]. Therefore, understanding the
dynamics of small scale motions and their lifetime evolution can play a major role
in the scope of turbulence modeling. The small-scale properties were a focal point
for many authors, e.g. Lohse and Xia [11], who investigated the so-called Bolgiano-
Obukhov scaling existence within RBC. Moreover, the direct numerical simulation
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(DNS) of Schumacher [12] and experiments of Gasteuil ef al. [13] have monitored the
turbulent local evolution of the thermal plumes in a Lagrangian frame to explore
important statistical aspects of heat and momentum transport mechanisms. Some
authors focused on studying the substantial turbulent components of thermal and
kinetic energy dissipation rates [14,15], as we similarly performed in chapter 1. Only
Schumacher et al. [16] have recently shed light on the universality picture of small
scales in RBC regarding their scaling law performance. Even more recently, Park and
Lee [17] have addressed a new study of the coherent structures in RBC using the joint
PDF of the velocity gradient tensor. Their analysis [17] is limited to a soft turbulence
regime, and no descriptions on the universal features of the small scale motions, the
mechanisms of their dynamics and flow topology changes are given.

In this chapter, we provide an investigation on the dynamical universal features of
small scale motions in RBC, commonly observed in many turbulent flows. Basically,
the average evolution of Q¢ and Rg invariants (defined in § 2.2) of velocity gradient
tensor G = Vu, is studied within the bulk region to show the cyclical action of flow
topology change converging towards the origin. By doing so, we extend the averaging
dynamical approach applied to isotropic turbulence [4,5] and a turbulent boundary
layer (BL) [6], to include the topology dynamics of RBC through the bulk. Important
insights concerning the dynamics at hard turbulent regime, and the characteristic
lifetime of the coherent energy containing eddies are explored, where the universal
essential alignments of vorticity with straining and vortex-stretching geometries are
addressed. On the other hand, an identical approach is considered for the novel
invariants QGG and RGG (defined in § 2.3) of the traceless part of the velocity-times-

temperature gradient tensor Gy = V(uT) — 1/3tr(V (uT))l. The new invariants are
introduced as combinations of thermal and kinetic small-scale topology and related
predominantly with the dynamics of thermal plumes and turbulent heat flux. The
new dynamical equations are deduced and the material averaging procedure is ap-
plied in order to provide new aspects of the life cycle of the small scales pertained to
the thermals, which become worthwhile in turbulence modeling of RBC.

The remainder of this chapter is organized as follows. In § 2.2, the universal
features of fine-scale dynamics and flow topology are discussed by analysing the
averaged evolution of the classical velocity gradient tensor invariants. The pioneering
invariants of the new velocity-times-temperature gradient tensor are considered and
analysed identically in § 2.3. Finally, conclusions and future remarks are reported.
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2.2 Invariants of Vu tensor

Extensive background material concerning the crucial role of velocity gradients in
the topological classification of the flow and small-scale dynamics can be found in
many works, e.g. Chong et al. [3], Cantwell et al. [18], Blackburn et al. [7], Soria et al. [8],
Perry and Chong [19], Martin et al. [4], Ooi et al. [5] and others. A short review of the
definitions and the physical meaning of the invariants of the velocity gradient tensor
G = Vu are given here for incompressible flow. Namely,

P = —-tr(G)=-V-u=0, (2.1)
Q¢ = —%tr(Gz) = 411[“’2 — 2tr(52)} = Qq + Qs, (2.2)

Re = —det(G) = —%tr(G3) _ —% {tr(S“Q’) +3tr(§22$)} _ Rs — t(0%S), (2.3)

where Pg, Qg and R are the first, second and third invariant of G, respectively. It is
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Figure 2.1: Classification of local flow topology following (Qg, Rg) invariants of
velocity gradient tensor for incompressible flow [taken from Ooi et al. [5], with SF/S:
stable focus/stretching, SN/S/S: stable node/saddle/saddle, UN/S/S: unstable
node/saddle/saddle and UF/C: unstable focus/compressing.

useful to recall that G can be decomposed into its symmetric and antisymmetric parts,
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S =1/2(G+ G') and Q = 1/2(G — G!), respectively, where S denotes the rate-of-
strain tensor, and €2 is the rate-of-rotation tensor. Their invariants play an important
role in the identification of coherent structures [3,5,7,9], and the development of

new turbulence models [20]. For example, the second invariant Qq = —1/2tr(Q?) =
1/4|w|? is proportional to the enstrophy density. Therefore, it identifies tube-like
structures with high vorticity w = V x u. The invariant Qg = —1/ Ztr(Sz) =

—1/4(e/v) is proportional to the local rate of viscous dissipation, € = 2vS: S. Notice
that Qn > 0 and Qs < 0 and these two invariants are related to Q¢ with the
identity (2.2). Hence, positive values of Qg > 0 are related to areas of enstrophy
domination over viscous dissipative straining. Another important term is the third
invariant of S i.e. Rs = —1/3tr(S%). It constitutes a part of the straining production
(see Eq. 2.9), and Rg in the identity (2.3). Moreover, it correlates the three eigenvalues
of S as Rg = —0y0203, where 07 > 02 > 03 are arranged in a descending order.
Due to incompressibility, the sum o7 + 02 4+ 03 = 0, and the sign of Rg follows the
sign of the intermediate eigenvalue to categorise the structures shape to tube-like
Rs < 0 or sheet-like Rg > 0. Generally speaking, when Rg < O and Qg > 0, a
positive enstrophy production is prevalent, and stable tube-like vortex stretching
structures (the so-called worms) predominate the vorticity compression. However,
when Rg > 0 and Qg < 0, the straining production becomes the dominant one and
associates mostly with strong and unstable sheet-like viscous dissipative structures.
Figure 2.1 shows the four main classes of the possible flow topology in (Qg, Rg)
phase plane taken from Ooi et al. [5], where more details thereof can be found in the
above references.

2.2.1 Universal aspects of turbulence structures

Many turbulent flows have revealed an inclined “teardrop” shape of the joint PDF
(Qg, Rg), which has been speculated as a kind of universality in the space of in-
variants [2]. Despite the different global flow geometries created in many types of
turbulence, e.g. an isotropic turbulence [5], turbulent boundary layer [6], turbulent
channel flow [7] and others [8,9], all displayed the same feature of preferred (Qg, Rg)
statistical correlation in areas dominated by small-scale vortex stretching and viscous
dissipation structures. This behaviour as a common aspect of 3D turbulence and its
Gaussian-deviation property, is extended here to include the buoyancy-driven flows
in a Rayleigh-Bénard framework at hard turbulent regime.

To do so, the joint PDFs of Qg and Rg invariants through the bulk (V},x), have
been plotted in Figure 2.2. The invariants are normalized using (Qgq) (following Ooi et
al. [5]) to show the same “teardrop” shape as a universal feature of the small scale
motions in both turbulent cases. As can be seen, Figures 2.2(a) and 2.2(b) indicate that
most of the flow domain is occupied by coherent dynamics of small mean gradients
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Figure 2.2: Joint PDF of normalized Qg and Rg invariants on logarithmic scale at
(@) Ra = 108 and (b) Ra = 10'? through the bulk (V},;), where the solid black line
represents the null-discriminant curve Dg = (27/4)R% + Q% =

around the origin; while the rest of the flow i.e. fluctuations and small scales, obey
substantially stable tube-like focus/stretching structures (Qg > 0 and Rg < 0), and
unstable sheet-like node/saddle/saddle topologies (Qg < 0 and Rg > 0 the so-called
Vieillefosse tail).

In order to gain an understanding of the spatial structure of turbulence, an in-
stantaneous 3D visualization of Q¢ iso-surface at high positive values is plotted
in Figure 2.3. The structures take the shape of the so-called worms [2], which are
classified as stable tube-like focal stretching topology of intensive enstrophy values.
As can be seen in Figure 2.3(a), the worms are characterized by large fragmentations
with an elliptical cross-section in the case of Ra = 10%. They seem to be aligned in
many places with the evolution of the thermal plumes (hot 2D black contours), which
expand in the bulk to support the prevalence of the tube-like rotational topology.
Plotting the joint PDF map of Qg and —Qs invariants can provide significant phys-
ical information about the dominant flow topologies respect to the kinetic energy
dissipation. For example, points of high enstrophy (Qgq ), but very small dissipation
(—Qgs), indicate solid-body rotational structures (vortex tubes), while points of strong
dissipation but little enstrophy represent irrotational straining domination. Balanced
distribution of Qg = —Qg translates a vortex sheet topology that normally occurs in
the BLs. As shown in Figures 2.4(a) and 2.4(b), the flow topology is mainly tube-like
rotational in the bulk region, where the highest local value of —Qg is smaller than
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Figure 2.3: Structures of Qg positive values drawn in a portion of the domain for
(@) Ra = 108 (Qg > 14.29) and (b) Ra = 10'0 (Qg > 128.9) (See movies of their
dynamics [http:/ /dx.doi.org/10.1063/1.4967495.1]). The solid black contours in (a)
indicate the hot thermal plumes.
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Figure 2.4: Joint PDF of normalized Qg and —Qs invariants on logarithmic scale at
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the highest local value of Qq, and the joint PDF is skewed towards high Qg with
long-lived solid-body rotation.

When the flow becomes significantly turbulent at Ra = 1010, the turbulent back-
ground velocity derivatives as —Qs (the viscous strain and Qq in concomitant), get
self-amplified [2]. They often surpass the original large-scale forces generated here
by buoyancy, as reported by Tsinober [2]. This self-growing of turbulent dissipation
—Qs can be clearly identified in the (Qq, —Qs) map in Figure 2.4(b). It works on
contracting the worms to be composed in smaller and numerous fragments within
the bulk (see Figure 2.3(b)). Physically, the nonlinearities as the enstrophy production
(4tr(Q%S) = w - wS), become increased, and conduct the local growing of the strain-
dominated regions. While, an enhanced equilibrium between these nonlinearities
(e.g. the vortex-stretching vector wS), and its viscous destruction (Pr/Ra)'/?wV?w
take place mostly in regions of enstrophy concentrations (i.e. the worms) [2]. These
processes are explained and justified in detail by Tsinober [2]. They are essentially
interconnected in the frame of the enstrophy transport equation:

1D|w|*> [Pr _,
5 Dr =w- wS+ EwVaH—awaf, (2.4)

and the transport equation of the strain product $? /2 (Eq. 2.9). Following Tsinober [2],
these events are normally associated with (i) large strain (as outlined above), (i) high
alignment of vorticity with the most extensional eigenstrain A (observed below), and
(iii) strong tilting of worms (visible in Figure 2.3(b)).

Similarly to many turbulent flows we notice the preferential alignment between
w and A,, the intermediate eigenvector of the rate-of-strain tensor S, in both turbu-
lent cases. PDF charts of cos(w,A;) = (w - A;)/(|wl||A;]) have been plotted within
the bulk in Figure 2.5(a) to manifest the general common feature of the geometri-
cal structure in 3D turbulence. This alignment becomes of notable importance in
turbulent dynamics since it contributes to the enstrophy generation term given by
w - wS = w?0;cos?*(w, A;). One of the noteworthy remarks is the high probability
observed at cos(w, A1) = £1 for Ra = 10" in comparison with Ra = 108. It indicates
a slightly enhanced alignment between w and A; to follow the self-amplified —Qg
regions and, therefore, assists the linear contributions of vortex-stretching term. In
other words, these self and local strain growing regions at Ra = 10!, contribute
to local effects associated with (self) interactions of w and S [2]. However, we can-
not generalize these events (with Ra increment), as many issues, i.e. the increased
nonlinear enstrophy production, predominant nonlocality and interactions between
large and small scales, are essential in vortex-stretching origins. For example, within
a frame of forced, homogeneous, isotropic turbulence, Hamlington et al. [21] have
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reported a preferential alignment of vorticity with the most extensional eigenvector
of the nonlocal (background) strain. Namely, they decompose the strain rate into
its local part i.e. the self-induced strain field within the vicinity of a typical vortical
structure, and its nonlocal part, where the strain is essentially induced by all the sur-
rounding other vorticities outside the vortical structure. They found that the vorticity
is preferentially aligned with the most extensional background strain rate eigen-
vector to support the linear contribution to the vortex-stretching dynamics. Hence,
this may lead us to the assumption that when the flow is extremely turbulent, the
characteristic flow scales get smaller, and the vorticities lay closer and become corre-
lated. As a result, the background-strain (w, A1) alignment arises and combines with
the local-based one to eventually yield a general enhancement of local interaction w/S.

Another important alignment defined by,

cos(w, wS) = 0;cos?(w, A;) /{c? cos?(w, A;) }1/2, is outlined in this study, as a univer-
sal feature. Again, it emphasizes on the predominant vortex-stretching action through
the bulk, and the net enstrophy production is always positive i.e. (w - wS) > 0, in
the two turbulent cases. As shown in Figure 2.5(b), both distributions are identically
asymmetric and positively-skewed, which probably corresponds to the events associ-
ated with strong alignment between vorticity and the intermediate eigenstrain vector
As.

2.2.2 Dynamics of Q¢ and R¢ invariants

The joint PDFs of (Qg, Rg) invariants have provided a statistical picture of the most
prevalent distribution for the flow topology and structures, averaged in time and
volume. Nonetheless, studying the evolution of Q¢ and Rg invariants in a Lagrangian
frame allows a dynamical observation of the 3D small-scale turbulence mechanisms,
such as the vortex stretching and turbulent kinetic dissipation. Namely, in the frame
of a moving observer following a fluid particle, the local surrounding flow structures
are essentially described by G and its Galilean invariants, i.e. Qg and Rg. They change
in time throughout their lifetime to be finally destroyed in average and leave the
large scales of the coherent uniform flow. This change can be interpreted by the
Lagrangian dynamics of invariant quantities that were first studied by Cantwell [22].
He deduced the evolution equations for Q¢ and Rg and found an analytical solution,
but for the inviscid Euler equations. A procedure to investigate the average dynamical
behaviour of the invariants was proposed by Martin et al. [4] and Ooi et al. [5] who
used a conditional averaging technique of the invariant rates in DNS of isotropic
turbulence. Recalling the deduction by Cantwell [22], firstly, the evolution equation
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Figure 2.5: PDF of vorticity alignments with the eigenvectors of the rate-of-strain
tensor (a) and the vortex-stretching vector wS (b), through the bulk region (V).

of G can be obtained by taking the gradient of NS equations, yielding

DG 2 _ /& 2

where H(¢) = V'V ¢ is the Hessian of a scalar field ¢. Then, using the definitions of
the invariants (Eqgs.2.2 and 2.3), the evolution equations of Qg and R¢ read as follows:
DQ¢ DRg 2

= —3Rg — tr(GH —2 = -Qg —tr(G*H 2.
Dt 3 G 1’( G) ’ Dt 3QG 1"( G)/ ( 6)
where Hg is a second-order tensor which includes the resultant pressure Hessian,
diffusive and the buoyancy terms as follows:

Hg = — (H(p) - ZgGI> + \/gvzc + Vf, (27)

where | is the identity matrix.

The left-hand sides in Eqgs.(2.6), i.e. DQg /Dt and DRg/Dt, are analysed using an
averaging approach identical to Ooi et al. [5] and Elsinga and Marusic [6]. Namely,
the mean temporal rate of change in the invariants Q¢ and R¢ is computed from a
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set of instantaneous flow fields conditionally upon the invariants themselves. The
corresponding approach reads as follows:

DQ¢ _/DQg, 1_(Qe—-Q¢) 1 1
< Dt (Q%’R%)>_< Dt ' 2= AQg 2 2
DRG0 »0,\ _/DRg, 1 _(Qc—Q%) 1 1 _(Rg—Ry) 1
<Dt (QG'RG)>_<_2§AQG<2—2§< >

where (Q2, R%) are the center coordinates of the bin size (AQg, ARg) over which
the material derivative is averaged. An imposed bin size 0.05 x 0.1 in the range
—1 < Rg/{Qq)*? < 1and -2 < Qg/{(Qq) < 2, respectively in the area of inter-
est, is used. It fulfills a good converging of rates with a robust number of samples
(> 500 per bin). The averaged rates are expressed as vectors of two components
((DQg/Dt), (DRg/Dt)) and plotted together with their integrated mean trajectories
in Figure 2.6 for both Ra-number cases through the bulk.

Similarly to isotropic turbulence [4, 5], the trajectories are cyclically decaying
towards the origins, moving on average, from regions of higher velocity gradients
(small scale motions/fluctuations) to regions of smaller ones (large coherent scales)
near the origin. They intrinsically indicate a clockwise spiraling change of the local
flow topology around a fluid particle from unstable node saddle/saddle (UN/S/S),
stable node saddle/saddle (SN/S/S), stable focus/stretching (SF/S) to unstable
focus/compressing (UF/C). A scenario for the mean evolution of fluid particles
was given by Ooi et al. [5] from that behaviour of the conditional mean trajectories.
Namely, within the neighbourhood of coherent focal structure (SF/S), a fluid particle
that stands there, in location probably UN/S/S topology (Rg > 0, Dg < 0), will be
sucked rapidly into the core of that elongated (intensive enstrophy) structure where
the pressure is essentially low. The local topology around the particle changes from
UN/S/S via SN/S/S to SE/S. Due to the vortex expansion, the particle travels along
the core to regions where those focal structures lose their compact nature (at the ends
and bends) by contraction, and the topology becomes UF/C. The compressing actions
change the sign of DQ¢/ Dt, and reduce the magnitude of invariants to support the
decaying events. These events are rendered as an interplay of the non-local pressure
Hessian with the viscous diffusion and energy-injecting terms (recent insights about
these effects are available for the reader in Wilczek [23], and mainly in the references
therein). It attenuates the evolution speed (proportional to the vector length) across
the null-discriminant Dg = (27/ 4)RZG + Q3G = 0 curve at Rg > 0, and appears in op-
posite sign with damping effect to DQg /Dt and DRg/ Dt in Egs.(2.6). The developed
topology becomes nodal (UN/S/S) and under the dissipative actions, the trajectories
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Figure 2.6: Conditional mean vectors of (DQ¢/Dt) and (DRg/Dt) in (Qg, Rg) plane
together with their integral trajectories (black solid orbits) at (a) Ra = 108 and (b)
Ra = 1019, through the bulk (V},x), where the bold solid line indicates Dg = 0.

are twisted upwards converging to the origin instead of continuing towards higher
values of Rg > 0 asymptotic to Dg = 0 curve in the case of inviscid Eulerian model
(Hg = 0) [22]. Comparing the two scenarios in Figure 2.6, one can note the influence
of the local self-amplified velocity gradient (growing —(Qs), which is probably in-
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duced by the nonlinear advection [22,23]. It contracts the structures further, and bend
the trajectories inwards in the area of Dg > 0 and Rg > 0, at Ra = 109 (Figure 2.6(b)).

Analogously to the previous studies [4-6], the averaged trajectories have revealed
that possible periodic spiralling before converging to the origin. The period measure-
ments identified here regarded to one periodic orbit Ty, read 6.7[TU] and 4.8[TU],
correspondingly for Ra = 10® and 10'Y, which are suspected to be proportional to
the characteristic lifetimes of energy containing eddies released in the bulk. They are
found to be close to the periods of the estimated large eddy turnover time Ty ~ T,44y
indicating a shorter lifetime of the large coherent eddies in the bulk at the higher
Ra-number case. This is not surprising since the large-scale eddies break up under
the events associated with the self-amplification of G (—Qg and Qq) at Ra = 10'°.
Broadly speaking, the turbulence type in the core region of RBC is found to be compa-
rable, in statistical aspects, with the isotropic nature. For example, the joint PDF map
of (Qq, —Qs) invariants displayed in Figure 2.4(a) presents a similar distribution as
the forced isotropic turbulence investigated in Ooi et al. [5]. However, the present
proportionality Ty in respect to 7,44y, differs from that outlined by Ooi et al. [5], who
reported a factor of three times Ty ~ 37,44,. This discrepancy could be returned to
the confined configuration of our RBC (adiabatic sidewalls) as well as the mecha-
nism of the thermal plumes in injecting the kinetic energy to the large-scale eddies.
Indeed, the measured periods Tj can be compared to the average plume lifetime
T, with almost three times factor Ty ~ 37,,. Here, 7, ~ (5% RaPr is defined as the
plume lifetime through which it detaches with the thickness of the thermal BL 41, and
loses its temperature contrast by the thermal diffusivity 1/+/RaPr [24]. Following
this approach, the determined average plume lifetimes in the current configurations
read T, ~ 2.190[TU] and 1.276[TU] for Ra = 10°® and 10", respectively. These find-
ings accordingly suggest the participation of the thermal plumes in the large-scale
kinetic energy containing eddies and turbulent wind, especially when the plumes
(mushroom-like) elongate importantly in the bulk before scattering. However, in a
hard turbulent state at high Ra number such as 1019, the role of plumes is outstand-
ingly reduced due to the extreme fluctuations and the good mixing. Consequently,
the role of the self-amplified —Qsg in creating the large-scale eddies in the bulk is
enlarged. This could be the reason why the measured period Tj exceeds somewhat
the 37,,, which confirms the prevalence of the self-amplified velocity derivatives by
turbulence over the buoyant mechanisms.

2.2.3 Dynamics of Rg and tr(Q?S) nonlinearities

In order to elucidate the impact of the local self-amplification of G (at least at high
Ra numbers) more, the dynamics of the physically meaningful third-moment nonlin-
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earities described by the enstrophy production Rg — Rg = tr(Q2S), and the quantity
Rg (as a contribution of the straining production) have been studied. They both
constitute the production term of the strain product S?/2 ~ —Qg inside the transport
equation, which reads as follows:

DQs

p = “3Rs+ tr(Q%S) — tr(SHs), (2.9)

with
He = — <H(p) - 2§G|) + \/IIZVZS L 1/2(Vf + V. (2.10)

In the frame of an isotropic turbulence, statistical analysis of these nonlinearities, as
the joint PDF (Rg — Rg, Rs), was earlier performed by Kholmyansky et al. [25]. It
revealed that the two such nonlinearities, namely, enstrophy and strain productions,
are locally different and only weakly correlated. Others like Liithi et al. [26], again for
isotropic turbulence, have stressed on the importance of these nonlinearities by study-
ing the evolution of the small scale motions in a 3D phase space {Qg, Rs, Rs — Rg }.

In this work and in the bounds of Vj,, the joint PDFs of (Rs — Rg, Rg) are plotted
in Figure 2.7 for both turbulent cases. The two invariant-based terms are normalized
by <QQ>3/ 2, differently than in [25] where therein, the mean values (Rg — Rg) and
(Rs) are respectively used for Rg — Rg and Rs. In consistency with Kholmyansky et

-5

Rs/{(Qa)*?
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Figure 2.7: Joint PDF of normalized Rs — Rg and Rs invariants on logarithmic scale
at (@) Ra = 108 and (b) Ra = 10'? through the bulk (Vj,)-
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al. [25], the two plots have shown a similar weak correlation locally of the two
nonlinearities, but with different behaviour in the positive part of both. They reveal
the presence of many points with large positive values of both nonlinearities, slightly
shifted toward Rg > 0. Comparing the two charts in Figures 2.7(a) and 2.7(b), one can
note the enhanced tendency of the distribution at Ra = 10'° to be more linear with
balanced nonlinearities in regions of vortex stretching and positive strain production.
This can imply an enhanced localization to the nonlinearities in the regions dominated
by the self-amplified strain, which corresponds to the observations outlined in § 2.2.1.
Namely, at Ra = 10'?, a local self-amplification of G (—Qs and Qq in concomitant)
takes place and produces simultaneously an increase in the nonlinearity of vortex
stretching (in slots of S [2]) with enhanced local interactions of vorticity/strain.

Following an identical procedure to (DQg/Dt, DRg/Dt) in the previous Section,
the conditional mean trajectories of (D(Rs — Rg)/Dt, DRg/Dt) have been plotted
in Figure 2.8 for both turbulent cases in the bulk. As can be seen, the two mean
dynamics show a zero starting point since with no straining, no enstrophy will evolve
and vice versa [2]. The trajectories start moving towards negative values of enstrophy
production to emphasize always on the collaborated role between the vortex com-
pression structures and the strain generation. When Rg > 0 the vectors suddenly
change their signs to travel upwards with a notably enhanced linear evolution at
Ra = 100 (see Figure 2.8(b)). The directional change can be returned to the opposite
sign of these quantities in the production term of the strain rate —Qs, inside Eq.(2.9).
In agreement with the previous notes, the self-amplified viscous strain —Qsg at the
higher Ra number is apparently recognized through further contraction of vorticities
(Rs — Rg < 0) and growing strain regions (Rs > 0), which is revealed in higher
linear and organized act of trajectories in that zones. This confirms again the direct
and local assistance of vortex compression to the dissipative actions and energy
cascade [2] (in a hard turbulence case). Afterwards, once the evolution enters the
stretching area (Rs — Rg > 0), a sharp decay towards the small values of Rg takes
place at Ra = 108 (Figure 2.8(a)). This displacement could be returned to the nonlocal-
ity effect since we are in the centered vorticity tube-like filaments/worms. However,
at the higher Ra number the trajectories tend to move more softly indicating the
improved localization of nonlinearities in those areas. It is sustained by strong linear
interactions in regions of (Rg > 0 and Rg — Rg < 0), which in turn make a positive
contribution to the magnitude of the vortex-stretching vector wS [2]. Finally, the mean
trajectories spiral inwards converging in part towards the origin. They tend to either
return to the starting point close to the origin, or change their direction to higher
values across Rs < 0 and Rg — Rg > 0, again, with higher linearity at Ra = 1010, Tt is
important to note the positive end (origin) of ((D(Rs — Rg)/Dt), (DRs/Dt)), which
asserts the predominance of vortex stretching ((w - wS) > 0), and the concomitant
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Rs/(Qa)*?

Rs/(Qa)*?

Figure 2.8: Conditional mean vectors of (DRg/Dt) and (D(Rs — Rg)/Dt) in
(Rs,Rs — Rg) plane together with their integral trajectories (black solid lines) at
(a) Ra = 108 and (b) Ra = 1017, in the bulk (Vj,).

predominant self-amplification of viscous strain/dissipation production (Rg > 0),
generally happening in 3D turbulence [2].
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2.3 Invariants of V(uT) tensor

Hereafter we consider the gradient of velocity multiplied by temperature tensor
Gg = V(uT), which couples the kinetic and thermal small scales of motions. Notice
that # and T are defined in such a way that [, udQ) = 0 and [ (T)dQ) = 0. This
tensor contributes to the turbulent heat flux and buoyant production, given as (w'T"),
which is found to be directly associated with the evolution of thermal plumes [27].
On the other hand, its invariants (such as the magnitude |Gy| = (Gy: Gg)'/?) ad-
dress in some sense, strong interactions of kinetic and thermal dissipation rates.
Namely, Gy = TG+ u ® VT, when T is constant, yields to Gy ~ G and hence,
|Gg|? ~ |G|*> = |QJ2 + |S|>. The strain part therein, is proportional to the local
viscous dissipation €, as |S|?> = S: S = tr(S?) = 1/2(Pr/Ra)~/2¢. On the other
hand, when |u| = 1, the [?>-norm of Gy is proportional to the thermal dissipation rate
er, i.e. |Gg|> = |VT|? = (RaPr)'/2er. Moreover, the viscous and thermal dissipation
rates are found to be locally interacted in the regions of thermal plumes, in particular
when they exceed their mean values, as outlined in § 1.3.2. Consequently;, it seems
appropriate to utilize the tensor Gg in order to investigate that important mechanism
of turbulent heat transport (plumes) in a small scale point-of-view. To do so, we
analyse the fine-scale dynamics deeply coupled with the evolution of the thermal
plumes by considering a similar approach as for the classical tensor G, applied on the
basic invariants of the traceless part of the new tensor, meaning Gy = Gy — 1/3tr(Gg)!.
This can permit the analysing of the tensor characteristics identically to the G tensor.

As a starting point, we introduce the evolution equation for #T that follows from
the NS and the energy equations (Egs.1.2 and 1.3) through the formula D(uT)/Dt =
uDT /Dt + TDu/Dt, as:

D(uT) [Pr.._, 1 )
D =T(f—Vp)+ ETV u+muv T. (2.11)

At this point, the essential ideas behind this equation can be conveyed more easily by
assuming that Pr = 1. In this case, the evolution equation reads

Dg‘f) =T(f - Vp) + \/;7 (Vz(uT) —2Vu: VT)‘ 212)

Similarly to the kinetic energy transport equation |u|?/2, the evolution equation of
er = |uT|?/2is introduced as follows:

DeT .

B = uT?- (f —Vp) + (VZET —V(uT): V(uT) —2uT -Vu- VT). (2.13)

1
v Ra
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Notice that the I>-norm of Gy contributes to the diffusive term of er evolution equa-
tion, ie. V(uT): V(uT) = Gg: Gg = |Gy|?. This characterizes the action of thermal
plumes in dissipating the heat flux and feeding the momentum. In other words,

(b)

Figure 2.9: Visualization of the thermal plumes (black color) in (x, z) plane, indicated
by high values of |Gyl|, past specific thresholds read |Gg| > 0.214 for Ra = 108
in (a) and |Gy| > 0.154 for Ra = 10'0 in (b). (See movies of plumes separa-
tion [http:/ /dx.doi.org/10.1063/1.4967495.2]).

high values of |Gy| differentiate zones of high gradient heat flux from the rest of the
flow, which are deeply related with the presence of the thermal plumes. Following
a determined threshold of |G|, a separation criterion of the thermal plumes from
the turbulent background regions (rest of the flow), can be proposed. It corresponds
to the most probable heat flux dissipation, i.e. the value of |Gy| at which the PDF is
maximal, as a consequent value of the mixing activity (the most widespread). Larger
values beyond that threshold disclose deep thermal-kinetic interactions, and hence
the thermal plumes, while smaller values correspond to the turbulent background, as
visually clear in Figure 2.9.

The invariant Q¢ = —1/ 2tr(G3), has a similar meaning as |Gp| in describing the
intensity of gradient heat flux. It visualizes the (fine-scale) structures associated with
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high kinetic-thermal interactions. Its highest positive and negative values indicate
the relevant thermal structures, while the near zero ones correspond to the turbulent
background and well-mixing zones. As shown in Figure 2.10(a), one can observe how

T (Qg,/(Qq,)) A
0.8
(Fe,/(Qa, 1)
0.6 |
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0.2 AL |
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Figure 2.10: (a) structures of high positive and negative values of ch (—0.7143 >
Qg, > 0.7143) figured through a portion of the domain at Ra = 108, (See movies of
their dynamics [http://dx.doi.org/10.1063/1.4967495.3]) where the blue contours
indicate the hot and cold plumes. (b) represents the averaged temporal and spatial
(x-y) profiles of normalized invariants Qg, and Re, along the z distance, where the
solid red lines refer to 1

the Q¢ structurally features the evolution of thermal plumes beyond positive and

negative thresholds. Similarly Rg = —1/ 3tr(G3), is introduced as a third moment
of concentrated kinetic-thermal small scale interactions. It nearly obeys a similar
distribution to the skewness profile of the temperature fluctuation, showed before
in Figure 1.6(b), and similarly calculated by Emran and Schumacher [28], as shown
in Figure 2.10(b). Therein, the profiles of <Q(;9 / <QQG>>A and <R(~3(9 / <QQQ>3/2>A have
been plotted in the lower turbulent case, since the better determination of thermals
always belongs to Ra = 108 in this study. Briefly speaking from Figure 2.10(b), the two
profiles of invariants start from zero value at the isothermal walls towards negative
averaged values of Q¢ within the thermal BLs. However, R¢, tends to have negative
and positive values through the BLs in correspondence with the moving up and down
thermals (plumes). Afterwards, in the bulk both mean invariants hold a zero value
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due to the mixing action and plumes diffusion.

2.3.1 Joint PDF of invariants Q¢ and Rg,

Likewise in the classical tensor, the qualitative properties of the new invariants Q¢
and Rg, are investigated by means of plotting their joint PDF, as represented in Fig-
ure 2.11. The statistical analysis therein is similar to the classical-based one reported in
Figure 2.2, except that the studied regime is extended broadly to cover all the domain
in order to include the vicinities of emanating thermals. Interestingly, the general
aspect shown in Figures 2.11(a) and 2.11(b) tends to be symmetric respect to R¢; = 0.
Thereby, it seems to follow the statistical characteristics of the thermal plumes since
various studies have revealed the log-normal statistics as a universal distribution for
the thermal plumes geometries. For example, Zhou and Xia [29] showed that the sizes
of the mushroom-like plumes obey log-normal statistics. Likewise, the geometric
measures of the sheet-like plumes such as its normalized area, length and width,
its aspect ratio and the shape complexity [30], as well the heat content [31], are all
log-normally distributed.

From observing the statistics in Figure 2.11, one can note how the distributions
in both cases obey an arrangement similar to the isolines of discriminant D¢, =
(27/4)Ré9 + Q3~9, drawn in the (QG@' RGQ) space (Figure 2.11(c)). By definition, the
discriminant holds a similar significance as Q¢ and R¢, invariants, since it formu-
lates their combination to follow identically the regions tightly associated with the
thermal plumes. Particularly in the hard turbulent state (Figure 2.11(b)), when the
plumes are evolving in many scaled-down fragments, the statistics shows a clear
following to Dg, -isolines due to the extensive amount of plumes generated. In a
general description, both cases share the aspect that most of the flow is occupied
by well-mixed areas (turbulent background) of very low (Qg_, Rg,) values near the
origin, while the thermal plumes take high values (negative and positive) of invari-
ants far from the origin. The plumes at Ra = 108 are identified in relatively large
geometries, emanate few and elongate significantly into the bulk (mushroom-like)
before scattering. Therefore, the points in Figure 2.11(a) become more dispersed to
take relatively high values of (ch, Rg, ). They compose a joint PDF feature which
seems to be almost similar to the one based on a Gaussian flow field (see Tsinober [2]
Figure 9.1(f) as an example of joint PDF of (Qg, Rg) for a Gaussian velocity field).
However, in the hard turbulent state, the plumes are abundantly emitted in the BLs,
and rapidly destroyed in the bulk to make the points closely located next to the origin,
holding moderate values of (Qg, Rg) (Figure 2.11(b)). Since the mean profile of QGG'
displayed in Figure 2.10(b), appears to be negatively shifted inside the thermal BLs, it
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Figure 2.11: Joint PDF of normalized QGG and R(';g on logarithmic scale at (a) Ra = 108

and (b) Ra = 109, in the whole domain. (c) displays the representative isolines of
the discriminant Dg, = (27/ 4)Ré€ + Q%e in the invariants space, where the solid

tent-black line in (a), (b) and the red identical one in (c), is DGG =0.

suggests that most of the plumes (sheet-like) or the deep kinetic-thermal interactions
therein, are indicated by Q¢ < 0 values. Hence, many more points are placed down
under the line ch = 0in Figure 2.11(b) (than in 2.11(a)), to correspond probably with
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the abundant thermals/small-scale interactions emanating in the BLs at Ra = 101°.

2.3.2 Dynamics of Q¢ and R¢, invariants

An analysis of the dynamics of ch and RG9 invariants, similar to the classical-based
one, is considered hereafter. Firstly, the evolution equation of Gy can be obtained
easily by differentiating Eq.(2.12) (for such a simplified formulae considering Pr = 1)
as follows:
DS | 66y = —vTavp— TH(p) +2f @ VT + . (VZG —2VG VT—ZGH(T))
Dt 6 p p J/Ra 9
(2.14)

Afterwards, the mean temporal rates of change in invariants Qg, and R¢, have been
studied in the same manner as in § 2.2.2. They aid to elucidate the scenarios and
lifetimes of the kinetic-thermal small scale motions indicating mainly the presence
of the thermal plumes, their survival and their continuous mean changing under
the dissipative actions. To do so, the averaging approach described in Egs.(2.8) is
used pertaining the new invariants (DQG(9 /Dt), <DRG@ /Dt), and the resultant vec-
tors are presented together with their integral trajectories within the total domain in
Figure 2.12. The bin size is imposed identically to obtain a division of 40 x 40 for the
corresponding ranges of Rg, / (Qm)s/ 2 and QGG / <Q99>’ which sufficiently fulfills
the convergence of the rates.

According to Figure 2.12, our analysis starts from the fact that the trajectories are
born from zero valued (QGQ, Rce) at the isothermal walls, and move down towards
the negative values of Q¢ in correspondence with the generation of the sheet-like
plumes or the roots of the original mushroom-like plumes (see Figure 2.13(b)). These
roots are generated within the thermal BLs under the impact of the surrounding
interaction areas, i.e. the impingement of the mixed flow coming from the bulk and
the opposite-side plumes which reach to the BL and collide the wall therein. They
excite the creation of horizontal waves (also provoked by shear strain) that travel
in the BL, and interact with each other to compose the sheet-like plumes (roots).
These sheet-like rods convolute and swirl away by buoyancy to arise into the bulk
as the mushroom-like plumes. The areas of interactions around the roots are mostly
addressed by positive values of Qg, as can be seen in Figure 2.13(b). More evidence
of this can be taken from the behaviour of the mean trajectories within the thermal
BLs, represented in Figure 2.13(a). Therein, the averaged evolution starts from zero to
swirl downwards to QGG < 0 from RGQ > 0to RGG < 01in the hot BL, and conversely
in the cold one. This action accordingly validates the behaviour of Q¢ and R¢, mean
profiles showed in Figure 2.10(b) to emphasize correctly on their aforementioned
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Going back to Figure 2.12 and along the downward path, the mean rates of in-
variants are slowing down with directional change at crossing the null-discriminant
curve to later continue moving separately upwards away or downwards asymptot-
ically parallel to the null-discriminant curve. This slowdown could be returned to
the fact that no plumes formulation exists in that zone as D¢, analogously follows
the evolution of plumes. However, from a physical point of view, it can give us an
impression that the curve of null-discriminant can separate the sheet-like plumes
evolution that moves downwards, from the evolution of the arisen mushroom-like
plumes which moves upwards. The phenomenon of the directional change in the
harder turbulent state is so remarkable because of the extreme emanating plumes in
general, and many provoked sheet-like plumes attend to favourable fluctuations and
intermittency within the BL.

All the trajectories tend to move rapidly towards high positive and negative values

of <Q69/ RGQ ), to eventually address the fine-scale relevant dynamics of thermal
plumes. Above the curve D¢, = O, the trajectories reveal an upward spiraling
behaviour before converging towards two skew-symmetric origins in respect to
Rg, =0 (mostly referring to the hot and cold thermals) at Ra = 10® (see Figure 2.12(a)).
The trajectories near origins probably indicate the mean evolution and lifecycle of the
mushroom-like thermal plumes that elongate far from the thermal BLs and contribute
predominately to the coherent large scales of heat flux. By measuring the period of one
periodic orbit around the origin (the bigger orbits), we see that it follows the lifetime
of plumes Ty = 6.56 ~ 37,; = 6.58[TU], since the plumes travel mostly in groups
near the lateral sidewalls and organize to the large-scale circulation therebeside.
In the hard turbulent state addressed in Figure 2.12(b), the spiraling trajectories seem
to travel upwards in shorter tracks (than in Ra = 108) to show the reduced lifetime of
the mushroom-like plumes under the dissipative and mixing effects. The flow regime,
at Ra = 10, is essentially characterized by high perturbations and a noteworthy local
self-amplification of velocity derivatives —Qs. The plumes are abundantly emitted
in the BLs as scaled-down fragments. They scatter effectively under the impact of
the amplified mixing (—Qs) to eventually make the trajectories converging towards
a zero-valued origin (Figure 2.12(b)). This accordingly, suggests that the thermal
plumes, at the high Ra number, do not contribute to the mean large scales of heat flux,
and just give them a life. This in turn, is not so strange since experiments and DNS
indicate that the large scale circulation decreases with increasing the Ra which can be
attributed to the decreasing fragmentation of the plumes [27].

In order to give a broader picture, the mean rate trajectories of Qg and R¢,

invariants are plotted similarly, through the bulk region (Vj,x) in Figure 2.14(a).
Therein, all the trajectories obey generally an upward moving action decaying towards
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Figure 2.13: (a) represents the same approach as displayed in Figure 2.12, but calcu-
lated within the thermal hot (top) and cold (bottom) boundary layers at Ra = 1010, (b)
shows horizontal (x, ) planes of high positive (white) and negative (black) values of
Qg, extracted at the hot thermal BL levels z = 0.016 for Ra = 108 (left), and z = 0.004

for Ra = 1010 (right).

a zero-valued origins for both Ra numbers. Below the D = 0 curve, the mean rate
tracks are moving up indicating the extended parts of the original plumes in the bulk.
Likewise, above the null-discriminant curve the tracks are upwarded in spiraling
behaviour to address the elongating action of the mushroom-like plumes, and the
subsequent scattering by the dissipative mixing (see Figure 2.14(b)). It can be an
interesting point observing the upward direction behaviour of the tracks in region
of Qg, < 0 through the bulk, whereas they were downwarded in the whole domain
(Figure 2.12). This manifests the fact that two evolutions of plumes exist: the sheet-like
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Q¢,/{Qq,)
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Figure 2.14: (a) the same representations as Figure 2.12, but through the bulk region
(Viuir), for Ra = 108 (top) and Ra = 1019 (bottom). (b) displays vertical planes
(y,z) of Qg, coloured similarly to Figure 2.13(b), for Ra = 10® (top) and Ra = 101°
(bottom).

ones or the original roots that emanate in the BLs, and the the mushroom-like ones,
which travel and expand in the bulk. It is also worthwhile noting that the trajectories
swirl with longer and wider tracks above the D¢ = 0 curve in Figure 2.14 (bottom)
(than in Figure 2.14 (top)). This can be classified as a natural result of increasing the
rate of plumes production, injected forwards in the bulk, at Ra = 10'. Finally, in
both cases, all the trajectories seem to converge towards zero-value origins due to
the effective mixing activities in the bulk, keeping in mind that Vj,,j; is quite far of
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including the solid wall influences. The plumes are destroyed in mean, absolutely at a
constant averaged heat flux across the bulk, and yielding naturally to a zero-gradient
heat flux and null means for ch and Rég (see Figure 2.10(b)).

2.4 Conclusions

Several universal small-scale features observed in various turbulent flows have been
recaptured in buoyancy-driven turbulent RBC. The common inclined “teardrop”
shape of the joint PDF statistics of the classical invariants (Qg, Rg) through the bulk
region are observed. Furthermore, the mean temporal rate of invariants change
((DQg/Dt), (DRg/Dt)) is plotted in that region to reveal the common spiralling
clockwise behaviour of trajectories converging towards the origin. In consistency
with previous studies on the small-scale motions (Ooi et al. [5] and Elsinga and Maru-
sic [6]), the topology surrounding a fluid particle is varying in a cyclical aspect, in
the (Qg, Rg) space, from unstable focus, unstable node, stable node to stable focus
structures in the both cases. A local self-amplification of velocity derivatives (viscous
straining —Qs in the turbulent background) at Ra = 10, aids in contracting the
vorticity worms further which assists the decaying events (interplay of the non-local
pressure Hessian with the viscous diffusion and energy-injecting terms), and bends
the trajectories inwards above the null-discriminant curve. The one period of the
periodic spiral orbits near the origin is found to approach Ty ~ T4, an estimated
large eddy turnover time defined in the bulk. On the other hand, the measured
period has been compared with the average plume lifetime Ty ~ 37, to suggest
the participation of the thermal plumes in the large-scale kinetic energy containing
eddies and turbulent wind created in the bulk; particularly when the plumes elongate
significantly before scattering, at Ra = 10%. Other universal features of (small scale)
3D turbulence are observed through the bulk region. For example, the preferential
alignment between w and A, the intermediate eigenstrain vector, and the asymmetric
w alignment with the vortex-stretching vector. The local self-amplification of velocity
derivatives (—Qs/Qq) at Ra = 10'° has revealed enhanced local effects associated
with (self) interactions of vorticity/strain in the strain dominated regions and thus,
improve slightly the linear contributions of the vortex stretching mechanism.

On the other hand, the evolution of relevant thermals has been addressed in
small scale point-of-views. Namely, considering the invariants of the traceless part
of velocity-times-temperature gradient tensor (QGQ, Rg, ), an identical approach of
studying their mean temporal rate and joint PDF, has been applied. The new in-
variants have demonstrated a direct picture on the small-scale kinetic and thermal
interaction dynamics. They have expressed a correct following to the evolution of
thermal plumes in RBC. It is found that the conditional averaged trajectories travel
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downwards to expose the sheet-like plumes dynamics (roots) within the BLs, and
upwards to exhibit the mushroom-like plumes evolution that expand in the bulk. The
trajectories —through the total domain- spiral upwards before converging towards
two skew-symmetric origins with periodic orbits correspond in their period to approx-
imately 3 times the lifetime of plumes at Ra = 108. By that end, it was emphasized
on the predominant role of hot and cold plumes in contributing to the coherent large
scales of heat flux, in average, which roll near the lateral sidewalls. Shorter tracks of
the trajectories have been recorded at the higher Ra number (in the whole domain) to
show the reduced lifetime of mushroom-like plumes under the dissipative and mixing
effects. At that Ra, the flow regime is essentially characterized by high perturbations
and a noteworthy local self-amplification of velocity derivatives —Qs. It exceeds the
evolution of thermal plumes, which emanate abundantly in small-scale geometries,
in the BL. The plumes scatter strongly under the amplified turbulent background
mixing events to make the trajectories converging towards a zero-valued origin. This
accordingly has suggested that the thermal plumes at this high Ra number do not
contribute to the mean large scales of heat flux and just give them a life. Finally, and
due to the effective mixing activities, all the averaged trajectories through the bulk
have revealed an upwards movement (mushroom-like plumes) decaying towards
a zero-valued origins for both Ra numbers, since the heat flux is constant spatially
and temporally in mean and the plumes are completely destroyed with zero-valued
means of QGG and RGS'

In summary, these findings have extended the scope of small-scale turbulence
universality to include the turbulent buoyancy-driven flows. On the other hand, the
observations of QGG and RGQ invariants behaviour have demonstrated a successful
prediction to the mean evolution of the small scale motions associated intrinsically
with the thermal plumes, which can open many options in turbulence modeling
approaches of thermals.

References

[1] R. H. Kraichnan. Some modern developments in the statistical theory of turbu-
lence. Statistical mechanics: New concepts, New Problems, New Applications.
pages 201-228, 1972.

[2] A Tsinober. An Informal Introduction to Turbulence, volume 63. Fluid Mechanics
and its Applications, Kluwer Academic Publishers, 2001.

[3] M. S. Chong, A. E. Perry, and B. J. Cantwell. A general classification of three-
dimensional flow fields. Physics of Fluids A, 2:765, 1990.



78 References

[4] J. Martin, A. Ooi, M. S. Chong, and J. Soria. Dynamics of the velocity gradient
tensor invariants in isotropic turbulence. Physics of Fluids, 10:2336, 1998.

[5] A.Ooi, J. Martin, J. Soria, and M. S. Chong. A study of the evolution and charac-
teristics of the invariants of the velocity-gradient tensor in isotropic turbulence.
Journal of Fluid Mechanics, 381:141, 1999.

[6] G. E. Elsinga and I. Marusic. Evolution and lifetimes of flow topology in a
turbulent boundary layer. Physics of Fluids, 22(1):015102, 2010.

[7] H. M. Blackburn, N. N. Mansour, and B. J. Cantwell. Topology of fine-scale
motions in turbulent channel flow. Journal of Fluid Mechanics, 310:269-292, 1996.

[8] J. Soria, R. Sondergaard, B. J. Cantwell, M. S. Chong, and A. E. Perry. A study of
the fine-scale motions of incompressible time-developing mixing layers. Physics
of Fluids, 6(2):871-884, 1994.

[9] C. B. da Silva and J. C. E. Pereira. Invariants of the velocity-gradient, rate-of-
strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface
in jets. Physics of Fluids, 20(5):055101, 2008.

[10] K. Hanjali¢. One-point closure models for buoyancy-driven turbulent flows.
Annual Reviews of Fluid Mechanics, 34:321-347, 2002.

[11] D. Lohse and K. Xia. Small-scale properties of turbulent Rayleigh-Bénard con-
vection. Annual Reviews of Fluid Mechanics, 42:335-364, 2010.

[12] J. Schumacher. Lagrangian dispersion and heat transport in convective turbu-
lence. Physical Review Letters, 100:134502, 2008.

[13] Y. Gasteuil, WL. Shew, M. Gilber, F. Chilla, B. Castaing, and JF. Pinton. La-
grangian temperature, velocity, and local heat flux measurement in Rayleigh-
Bénard convection. Physical Review Letters, 99:234302, 2007.

[14] J. Scheel, M. S. Emran, and J. Schumacher. Resolving the fine-scale structure in
turbulent Rayleigh-Bénard convection. New Journal of Physics, 15:113063, 2013.

[15] M. Kaczorowski and K. Xia. Turbulent flow in the bulk of Rayleigh-Bénard
convection: small-scale properties in a cubic cell. Journal of Fluid Mechanics,
722:596-617, 2013.

[16] J. Schumacher, J. D. Scheel, D. Krasnov, D. A. Donzis, V. Yakhot, and K. R.
Sreenivasan. Small-scale universality in fluid turbulence. Proceedings of the
National Academy of Sciences of the USA, 111(30):10961-10965, 2014.



References 79

[17] S. Park and C. Lee. Analysis of coherent structures in Rayleigh-Bénard convec-
tion. Journal of Turbulence, 16(12):1162-1178, 2015.

[18] B.]. Cantwell. On the behavior of velocity gradient tensor invariants in direct
numerical simulations of turbulence. Physics of Fluids A, 5:2008, 1993.

[19] A.E. Perry and M. S. Chong. Topology of flow patterns in vortex motions and
turbulence. Applied Scientific Research, 53:357-374, 1994.

[20] F. X. Trias, D. Folch, A. Gorobets, and A. Oliva. Building proper invariants for
eddy-viscosity subgrid-scale models. Physics of Fluids, 27:065103, 2015.

[21] P. E. Hamlington, J. Schumacher, and W. J. A. Dahm. Direct assessment of
vorticity alignment with local and nonlocal strain rates in turbulent flows. Physics
of Fluids, 20:111703, 2008.

[22] B.]. Cantwell. Exact solution of the restricted Euler equation for the velocity
gradient tensor. Physics of Fluids A, 4:782, 1992.

[23] M. Wilczek. New insights into the fine-scale structure of turbulence. Journal of
Fluid Mechanics, 784:1-4, 2015.

[24] S. Grossmann and D. Lohse. Fluctuations in turbulent Rayleigh-Bénard convec-
tion: The role of plumes. Physics of Fluids, 1:4462—4472, 2004.

[25] M. Kholmyansky, A. Tsinober, and S. Yorish. Velocity derivatives in the atmo-
spheric surface layer at Re, = 10*. Physics of Fluids, 13:311-314, 2001.

[26] B. Liithi, M. Holzner, and A. Tsinober. Expanding the Q-R space to three dimen-
sions. Journal of Fluid Mechanics, 641:497-507, 2009.

[27] F. Chilla and ]. Schumacher. New perspectives in turbulent Rayleigh-Bénard
convection. The European Physics Journal E, 35:58, 2012.

[28] M. S. Emran and ]. Schumacher. Fine-scale statistics of temperature and its
derivatives in convective turbulence. Journal of Fluid Mechanics, 611:13-34, 2008.

[29] S. Q. Zhou and K. Q. Xia. Plume statistics in thermal turbulence: mixing of an
active scalar. Physical Review Letters, 89:184502, 2002.

[30] S. Q. Zhou and K. Q. Xia. Physical and geometrical properties of thermal plumes
in turbulent Rayleigh-Bénard convection. New Journal of Physics, 12:075006, 2010.

[31] S. Q. Zhou, C. Sun, and K. Q. Xia. Morphological evolution of thermal plumes in
turbulent Rayleigh-Bénard convection. Physical Review Letters, 98:074501, 2007 .



80

References



A priori study of
subgrid-scale features in
turbulent Rayleigh-Bénard
convection

Main contents of this chapter have been published in:

F. Dabbagh, E. X. Trias A. Gorobets and A. Oliva, A priori study of subgrid-scale
features in turbulent Rayleigh-Bénard convection , Physics of Fluids, 2017 (submitted).

F. Dabbagh, F. X. Trias A. Gorobets and A. Oliva, New subgrid-scale models for
large-eddy simulation of Rayleigh-Bénard convection, Journal of Physics: Conference
Series, 745, 032041, 2016.

Abstract. At the crossroad between flow topology analysis and turbulence modeling, a priori
studies are a reliable tool to understand the underlying physics of the subgrid-scale (SGS)
motions in turbulent flows. In this chapter, properties of the SGS features in the framework
of large-eddy simulation are studied for a turbulent Rayleigh-Bénard convection (RBC). To
do so, data from direct numerical simulation (DNS) in chapter 1, is employed. Firstly, DNS at
Ra = 108 is used to assess the performance of eddy-viscosity models such as, QR, WALE and
the recent S3PQR-models proposed by Trias et al.[PoF, 27, 065103 (2015)]. The outcomes imply
that the eddy-viscosity modeling smoothes the coarse-grained viscous straining and retrieves
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fairly well the effect of the kinetic unfiltered scales in order to reproduce the coherent large
scales. However, these models fail to approach the exact evolution of the SGS heat flux, and
are incapable to reproduce well the further dominant rotational enstrophy pertaining to the
buoyant production. Afterwards, the key ingredients of eddy-viscosity, v;, and eddy-diffusivity,
x; are calculated a priori and revealed a positive prevalent values to maintain a turbulent wind
essentially driven by the mean buoyant force at the sidewalls. The topological analysis suggests
that the effective turbulent diffusion paradigm and the hypothesis of constant turbulent Prandtl
number are only applicable in the large-scale strain-dominated areas in the bulk. It is shown
that the bulk-dominated rotational structures of vortex-stretching (in concomitant the viscous
dissipative structures) hold the highest positive values of v;, however the zones of backscatter
energy and countergradient heat transport are related to the areas of compressed focal vorticity.
More arguments have been attained through a priori investigation of the alignment trends
imposed by existing parameterizations for the SGS heat flux, tested here inside RBC. It is shown
that the parameterizations based linearly on the resolved thermal gradient are invalid in RBC.
Alternatively, the tensor-diffusivity approach becomes a crucial choise of modeling the SGS
heat flux, in particular the tensorial diffusivity that includes the SGS stress tensor. This and
other crucial scrutinies on a future modeling to the SGS heat flux in RBC are sought.
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3.1 Introduction

Buoyancy-driven flows have always been an important subject of scientific studies
with numerous applications in environment and technology. A famous example
thereof is the thermally driven flow developed in a fluid layer heated from below and
cooled from above, i.e. Rayleigh-Bénard convection (RBC) [1]. It approaches many
circulations in nature and industry, such as governing flows in nuclear reactors, solar
thermal power plants, electronic devices, and convection in atmosphere, oceans and
deep mantle. Most of these flows are ruled by turbulent regime purely sustained
by buoyancy, the reason that imparts a significant complexity into the flow system.
Mainly, the chief dynamics therein such as the vortical structures and thermal plumes
are essentially associated with immanent unsteadiness, energy nonequilibriums,
strong pressure fluctuations and hardly interacted different-size scales of motions [2].
Following the self-sustained cycle of the plumes, they produce alternative nonequilib-
riums between the buoyant production and the viscous dissipation, which are mainly
compensated by the pressure transport mechanisms [3]. As a consequence, predicting
the complex coherent dynamics in a turbulent RBC derives formidable challenges,
particularly within the scope of turbulence modeling.

Direct numerical simulation (DNS) has provided a fruitful knowledge about the
problem in the fields of coherent dynamics and turbulence physics [4,5]. Apart
from overcoming the uncertainties pertaining to the experimental studies, DNS has
allowed to investigate and resolve many queries in RBC at relatively high Rayleigh
(Ra) numbers [6,7]. However, the fully-resolution of every generated vortical fila-
ment in DNS requires increasing computational demands with Ra. Therefore, in the
foreseeable future the numerical simulations of hard turbulent RBC will have to resort
to turbulence modeling. An approach which has gained a considerable attention in
recent years is the Large-eddy simulation (LES). Therein, only the large-scale energy
containing flow is computed directly and the influence of the small scale motions,
which is assumed as isotropic and universal, is modeled. The key feature of LES
depends on how properly the unresolved subgrid-scale (SGS) of the Reynolds stress
and heat flux terms evolved in the filtered governing equations, are approximated.
Following the prominent assumption of eddy-viscosity, v;, modeling, Eidson [8] ex-
tended the well-known Smagorinsky model by including the buoyant production
contribution in evaluating v; for RBC. His results showed a good consistency with
experiments at low numbers of Ra, however for hard turbulent regimes, they start to
be occasionally erroneous with non-real behavior [9]. Peng and Davidson [9], later
modified the Eidson’s formula to remedy this problem. They applied the dynamic
procedure [10,11] to compute the model coefficients. Then, in Ref. [12], they employed
the dynamic Smagorinsky model in evaluating v; with the dynamic approach for the
turbulent Prandtl number, Pr;, used to calculate the eddy-diffusivity, x;, (gradient
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diffusion assumption). The dynamic procedure provided results that agree fairly well
with DNS, however this approach has multiple limitations. Namely, the averaging
procedure in the periodic-directions is necessary in order to prevent numerical insta-
bilities. This makes the dynamic approach less amenable for geometrically complex
flows. Another authors as Czarnota et al. [13] had performed a comparative study
using the dynamic Smagorinsky model and the dynamic scale similarity model for
the momentum equation in RBC. They used the model of Peng and Davidson [14]
for the SGS heat flux, and showed that the dynamic Smagorinsky model produces
occasionally unphysical temperature values. More recent, Foroozani et al. [15] has
applied the Lagrangian dynamic technique [16] in the Smagorinsky model. The
above-mentioned clipping of the dynamic procedure is overcome in the Lagrangian
averaging, however the procedure entails significant complexity and computational
cost. In a general perspective, most of the aforesaid strategies of thermal turbulence
modeling (LES) are restrained by such complexities, considerable cost and the neces-
sity to use a dynamic technique in order to precisely follow the interacted scales of
buoyant/strain production. Hence, a critical understanding of the problem dynamics
in the frame of turbulence modeling performance is necessary.

Based on the DNS results, the statistical analysis of the SGS features becomes of
great interest in verifying the assumptions of existing models. It can provide insights
on the underlying physics of the small scale dynamics in the spirit of turbulence
models. Hence, one can note how well the model matches the topological characteris-
tics, e.g. the alignment trends, of the modeled quantities with respect to the resolved
flow structures. In this chapter, we first investigate a posteriori, the performance of
LES eddy-viscosity models, such as WALE, QR and the novel S3PQR [17] modeling,
in RBC at Ra = 108. Therein, the SGS heat flux is modeled following the gradient
transport hypothesis where the assumption of constant-Pr;, is used. These mod-
els possess important properties, such as the simplicity and the ability to work in
complex geometries without limitations. Afterwards, the key ingredients in the LES
models of the eddy-viscosity v;, eddy-diffusivity «; and turbulent Prandtl number Pry,
are studied a priori. The analysis includes a statistical study of the underlying flow
topology associated to the SGS components. Moreover, we investigate a priori the
performance of SGS heat flux models defined in the frame of the gradient diffusion
assumption (the SGS heat flux in aligned against the thermal gradient). Namely, we
propose to judge the behavior of the most used SGS heat flux models such as Peng
and Davidson [14] and Daly and Harlow [18] in the mixed model space, similar to
Higgins et al. [19]. The data set used is based on our DNS results of an air turbulent
RBC at Ra = 108 and 10'°, performed in chapter 1.

The remainder of the chapter is organized as follows. A comparative test regard-
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Table 3.1: Summary of detailed parameters relevant to the DNS (Table 1.1) and LES,

providing the overall Nu results. 1 gg is identically defined as #7p s by, (AxAyAz)%%.

DNS LES (Pr; = 0.4)
Ra =108 Ra =101 Ra =108
Nx X Ny X Nz Ny x Ny x N; Mesh A Mesh B
Mesh 400 x 208 x 208 1024 x 768 x 768 Ny X Ny X Nz Ny x Ny x N;
120 x 80 x 80 168 x 110 x 110
ly =1z 14 1.6 —
ly =1z 2 2
At 256 x1073 146 x 1073
-3 —4
At 1.45 x 10 414 x 10 &Tu) =00 %00
NgL 6 8
N ? 2 NLES 262x1072  1.87 x 1072
Nu
-3 -3
'IDNs 7.7 x10 250 %10 No-model 39.2 356
S3QR 38.0 35.0
¢lru] 500 200 QR 38.6 35.4
WALE 35.6 33.3
Gt [Teddy] 40 10 FNo-model [ ] — 94
Nu 309 128.1 S caqr, |
ot [Teddy] — 94

ing the performance of such well-known eddy-viscosity models in LES is presented
in § 3.2. Afterwards, a priori study over the SGS components of the Pr; is included
in § 3.3. The statistical analysis of the SGS heat flux models is addressed in § 3.4, and
a new approach towards a future modeling of the SGS heat flux in RBC is proposed.
Finally, relevant results are summarized and conclusions are given.

3.2 Large-eddy simulation models and flow topology

The LES equations result from applying a spatial filtering to the governing equations
(Egs. 1.2 and 1.3), as following

d+(a-V)n = —Vp+(Pr/Ra)\?Va+f-v.1, V-u=0, (31
#T+ (@-V)T = (RaPr) V2V2T-V.g, (3.2)

where i1, T and j are respectively the filtered velocity, temperature and pressure.
The filtered large scales above a filter length A in the Kolmogorov equilibrium, and
which are more energetic and boundary conditions dependent, are resolved directly.
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However, the SGS turbulence that is assumed to be more isotropic in nature is
modeled. Hereafter, the overbar-terminology () refers to the filtered fields, while the
non-overlined terms refer to DNS fields. The SGS stress tensor T and the SGS heat
flux vector g, approximate the effect of the (small) under-resolved scales,

T ~ uQu—ua®i, (3.3)
g ~ uT-—uT, (3.4)

and they need to be modeled in order to close the system. The most popular ap-
proach is the eddy-viscosity assumption, where the SGS stress tensor is computed in
alignment with the local strain rate tensor, S = 1/2(Va + V'), i.e.,

T~ —2uS. (3.5)

In analogy to T, the SGS heat flux is approximated employing the gradient-diffusion
hypothesis, given as

g~ —x:VT, (3.6)
and the Reynolds analogy assumption is applied in evaluating x;. Namely, in a
turbulent system the heat flux is assumed to be analogous to the momentum flux and
its ratio therefore, is constant. In this case, the eddy-diffusivity, «;, is derived from
the eddy-viscosity, v;, by a constant turbulent Prandtl number Pr; independent of the
instantaneous flow conditions, as follows

Kt = Vt/PT't. (37)

An investigation of the underlying physics of the Pr; and its determined constant
value is presented in § 3.3. In this section, the value of Pr; is assigned to the most
used value in literature [8], i.e. Pr; = 0.4. The v; value is evaluated here within a
comparative examination of three eddy-viscosity models such as QR, WALE and
the novel S3PQR models [17] proposed by the authors. They all possess a list of
desirable properties based on physical, numerical and practical arguments. For
example, positiveness and locality (all three models), the proper cubic near-wall
behavior (WALE and S3PQR), automatically switching off (v; = 0) for 2D flows
(S3PQR and QR), they are well-conditioned and do not have any intrinsic limitation
for statistically inhomogeneous flows (all). In rely on a combination of invariants of
the resolved velocity gradient tensor G = Vi, the foregoing models can be described
in a unified framework [17]. Namely,

VtSSQR = (CSSqrA)zgaétRSG/Géu (3.8)
R_
veR = (Cq,A)2|_QSS, (3.9)
VZ/2+2Q%/3)%/2
yVALE  —  (CyA)? Ve %2 (3.10)

(—2Qs)3/2 + (V& /2 +2Q%/3)5/4
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where Qe = Vé + QZG and Rger = —Ré, are the second and the third invariants

of the GG! tensor, respectively. C.) is the model’s constant determined as Cs3qr =
0.762 [17], Cw = V0.5 [20] and Cyr = 1/71v/3/2 [21], and VZG is the L2-norm of the
vortex-stretching vector V2G = |@S|?.

3.2.1 A posteriori LES results

For the sake of low computational cost we restrict our a posteriori analysis to the lowest
turbulent case (Ra = 10%). We use two coarse meshes for LES (Mesh A and Mesh
B presented in Table 3.1). The meshes are constructed keeping the same grid points
distribution as for the DNS but with a coarser spatial resolution. The concentration
parameters used i, = 1, have been modified in order to increase the boundary layer
grid resolution. Regarding to the numerical discretisation and algorithms used, all
are adopted similarly to the DNS (§ 1.2.2), where the same trusty converging periods
(&) are employed. Table 3.1 shows detailed parameters relevant to LES, along with
the DNS parameters, where the overall Nu results given by each model are presented.
The performance of the eddy-viscosity models is assessed by a comparison with the
DNS profiles of turbulent statistics such as, the turbulent kinetic energy and heat
flux, averaged in time and homogeneous direction. The profiles are extracted at the
midwidth plane (z = 0.5) and represented in Figures 3.1 and 3.2, respectively, for
(k) and (@'T’), on the two grids used, i.e. Mesh A (left) and Mesh B (right). As it can
be seen in Figure 3.1, the turbulent kinetics are fairly well predicted with the S3QR
and WALE models, both in the bulk and the near-wall areas. They give an enhanced
capturing of the kinetics evolution in comparison with the case of not using any model
(the No-model case) at the coarser grid (Mesh A in Figure 3.1(a)). When the grid
spacing becomes refined (in Mesh B), the turbulent energy contained in the unfiltered
scales (SGS) is less. Hence, a subsequent grid refinement should asymptotically drive
a LES to DNS and Mesh B is appropriately resolving the turbulent kinetic quantities
in Figure 3.1(b). Regarding the turbulent heat flux, all the models fail in predicting the
fluctuated thermals, particularly in the near-wall areas. They seem to overestimate
the turbulent heat flux peak, as shown in Figure 3.2, which is essentially related to
the role of the thermal plumes in the bulk region (transitional area). As a result, the
obtained Nu values are overestimated (see Table 3.1) in all the models. Similar to
Figure 3.1(b), the modeling of turbulent heat flux performs better on the refined grid
(Mesh B in Figure 3.2(b)). The effect of the SGS modeling on the coarser grid (Mesh A
in Figure 3.2(a)) is more notable than on the refined grid (Mesh B), if we compare it
with the No-model case (particularly in the bulk). Moreover, the more refined grid,
the closer behavior between the LES modeling and the No-model, till approaching
the DNS mesh. Hence, in the case of hard turbulent regime, i.e. at Ra = 1019, the
trustworthy LES grid size is found to be of an excessive level. The structures at that
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Ra, have revealed a self-amplification of the (turbulent background) viscous straining

(—Qs), and simultaneously of enstrophy (Qq) § 2.2.1. As a result, both buoyant and
strain productions take place on scaled-down motions and require very refined grids.

T — T 0.5 T - T
S3QR —=— 3T S3QR —=—
! AR ; e
f WALE —e— b WALE —e—
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@

Figure 3.1: Vertical profiles of the turbulent kinetic energy (k), taken along the mid-

width z = 0.5 plane and averaged in time and homogeneous x-direction on two grids,
Mesh A (a) and Mesh B (b).

In order to explore the underlying influence of the SGS modeling, we conduct a
statistical analysis related to flow topology classification and dominant small-scale
physics for the cases of DNS, No-model and S3QR modeling. This last one is chosen
as a representative LES modeling since no important differences among different
models are observed. To do so, five joint probability density function (JPDF) spaces
of invariant pairs pertaining to the velocity gradient tensor, normalized using (Qq)
(following Ooi et al. [22]), have been considered in the bulk (V},x) at Ra = 10%. The in-
stantaneous data is gathered over adequate converging periods (Z°™°d¢! and §§f’ R

in Table 3.1). Firstly, the JPDF of (Qg, Rg) invariants plotted in Figures 3.3(a),3.3(b)
and 3.3(c), reveals the well-known inclined “teardrop” shape as a universal feature of
small-scale turbulence. Meaning that, the fine flow patterns obey substantially stable
tube-like vortex stretching structures and in concomitant, unstable sheet-like viscous
dissipative structures in the bulk of RBC, as showed in § 2.2.1. It can be seen from

Figure 3.3(c) that the S3QR model successfully reproduces the coherent large-scale

structures allocated normally near the origin. It retrieves the effect of the unfiltered
scales at the filter length A and relaxes the spatial resolution in the dominant struc-
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Figure 3.2: Vertical profiles of the turbulent heat flux (@'T’), taken along the mid-

width z = 0.5 plane and averaged in time and homogeneous x-direction on two grids,
Mesh A (a) and Mesh B (b).

tures of tube-like vortex-stretching and sheet-like viscous dissipation. In contrast,
Figure 3.3(b) displays highly dispersed distribution with excessive spatial viscous
dissipation in the case of No-model. It reveals the coarse-grained velocity gradient
distribution in the inertial range where the energy transfer is associated with the large
negative straining (Rg < 0) [23]. In this span, it occurs on the axisymmetric contracted
deformation aligned with the left null-discriminant tent-line (Dg = 0) in Figure 3.3(b),
or more evidently its counterpart Ds = 0 of (Qs, Rg) space in Figure 3.3(e). The
(Qs, Rs) map is particularly useful to analyze the geometry of the local straining of
the fluid elements. As a universal aspect of turbulent flows, a strong preference for the
zone Rg > 0, Qs < 0, indicating a predominance of sheet-like structures to the kinetic
energy dissipation, appears in Figures 3.3(d), 3.3(e) and 3.3(f). It can be seen the
well-smoothing of the small-scale effect retrieved to the large-scale shear by using the
model in comparison with the case of the No-model, notably near the left Dg = 0 line.
(—Qs, Qq) map provides physical information about the dominant flow topologies
with respect to the kinetic energy dissipation. The horizontal line Qg represents
points of high enstrophy but very small dissipation indicating the solid-body rota-
tional at the center of the vortex tubes, while the vertical line — Qg represents points
of strong dissipation but little enstrophy density to indicate the irrotational strain-
ing outside and away from the vortex tubes. Balanced distribution of Qg = —Qg
translates vortex sheet structures that normally occurs in the boundary layers. As
showed in § 2.2.1, the DNS in Figure 3.3(g), manifests that the flow topology is mainly
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Figure 3.3: JPDF of normalized invariants pair for the corresponding DNS (left),
No-model (middle) and S3QR-modeling (right). (Qg, Rg) in (ab,c), (Qs,Rs) in
(d,ef), (—Qs,Qq) in (gh,i). The data used are extracted from the bulk region at
Ra = 108. Coarse-grained simulations (No-model and S3QR) correspond to Mesh
B (see Table 3.1). The dashed tent-lines therein refer to the corresponding null-
discriminants.

tube-like rotational in the bulk region, where the highest local value of —Qg is smaller
than the highest local value of Qq, and the JPDF is horizontally shifted towards the
long-lived solid-body rotation. This grouping is reversed in the No-model case due to
the high viscous dissipation produced, as shown in Figure 3.3(h). However, the S3QR
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modeling displays a subtle balance between the rotational enstrophy and the strain
dissipation in Figure 3.3(i). It restrains the production of further enstrophy pertained
to the buoyancy and thermal plumes in the bulk, and hence it is unable to capture well
the subtle coupling of buoyant production and viscous straining. In fact, this can give
a trend for the eddy-viscosity modeling to work better at very hard turbulent regime
when the turbulent background dissipation is amplified enough (at much harder
turbulence, Ra > 10'°). However in this case, the modeling should keep in consid-
eration two issues: the good prediction to the orientation of the SGS thermals and
the high refined grid sufficient for the scaled-down straining. Finally, the invariants
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Figure 3.4: JPDF of normalized invariants pair for the corresponding DNS (left),
No-model (middle) and S3QR-modeling (right). (Qq, (Rs — Rg)/Qq) in (a,b,c), and
(—Qs, (Rs — Rg)/Qq) in (d,e,f). The data used are extracted from the bulk region at
Ra = 108. Coarse-grained simulations (No-model and S3QR) correspond to Mesh B
(see Table 3.1).

combination (Rg — Rg/Qq, Qq) and (Rs — Rg/Qq, —Qs) spaces in Figure 3.4, indi-
cate the underlying mechanisms of the vorticity magnitude to be amplified /reduced
by the positive (stretched vortex)/negative (contracted vortex) sign of the stretching
rate (Rs — Rg)/Qq, in relation to Qq (enstrophy) and — Qg (strain rate) quantities.
The DNS-based JPDF maps are displayed in Figures 3.4(a) and 3.4(d), and show a
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persistent consistency with the isotropic turbulence behavior studied by Ooi et al. [22].
As shown in both Figures, most of the points in the flow have a positive stretching
rate and the enstrophy production is positive on average § 2.2.1. In Figure 3.4(a),
the high stretching rate is associated with regions of small Qq implying that there
is little evidence of self-stretching by strong enstrophy structures, as interpreted by
Jiménez et al. [24]. On the contrary, Figure 3.4(d) shows a wider growing of stretching
rate with increasing strain —Qg up to a certain value. In general, the magnitude of
the stretching rate (stretching/compressing) is associated with regions of moderate
to high —Qg [22]. This in fact was also demonstrated before in § 2.2.3, where it was
emphasized on the local collaborating role of vortex compression (Rg — Rg < 0)
and strain generation (Rg > 0), that always result in a positive contribution to the
magnitude of the vortex-stretching vector. Regarding to the S3QR modeling, it gives
a refined and smoothed stretching rate alignment, reproducing the consistent DNS
large-scale topology (Figures 3.4(c) and 3.4(f)). However, the No-model case produces
coarse-grained higher magnitudes for all quantities, as displayed in Figures 3.4(b)
and 3.4(e).

3.3 Turbulent Prandtl number Pr;

Turbulent Prandtl number is defined as the ratio between v; and x;, (Pry = v¢/x¢)
indicating the balanced link between the subgrid-scale effects of thermals and ki-
netics in a turbulent system. It forms an extremely difficult quantity to measure in
experiments, and intimately depends on the molecular fluid properties and the flow
parameters [25]. For example, in the scope of the most used Reynolds analogy in
considering a constant value of Pr¢, Kim and Moin [26] gave a range of the turbulent
Prandtl number from 0.4 in the center to 1 near the walls of a forced convection heat
transfer air channel flow. Pallares and Davidson [27] clarified that just a simple value
Pr; = 0.4 agrees well with the DNS and experiments. However these results were
restricted to an air flow (Pr ~ 1). In RBC, Eidson [8] also suggested a value of 0.4
in his model that included the SGS buoyant production contribution in evaluating
v¢. In summary, different values can be found in the literature ranging from 0.1 to
1, according to Sagaut [28], in addition to the dynamic procedures (time and space
dependent) [29] and temperature dependent [30] Pr; models. The majority are sharing
the behavior of flat profile of Pr; in the bulk and increased maximum values near the
wall in stratified and buoyancy-driven flows. In the present work, the Pr; has been
evaluated a priori using our DNS database. To do so, the right-hand-sides of Egs. 3.3
and 3.4 have been approximated by the leading term of the Taylor series expansion,
ie. T~ (A%*/12)GG! and g ~ (A?/12)GVT. Then, the values of v; and «; are obtained
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using a least square minimization in Eqs. 3.5 and 3.6, as follows

GGt: S
25: S’

GVT-VT
VT-VT"

This can result into a dynamical model of Pr;, however with ill-conditioning prop-
erties. In this case, an ensemble temporal average procedure is necessary since it
can produce negative diffusion (or eddy-viscosity), which potentially may lead to a
blowup in the simulation [31,32]. Plotting the averaged temporal-(x, z) profiles of
these estimations, i.e., (V) 4, (ki) 4 and Pry = (v¢) o/ (k¢) 4 in Figure 3.5, various at-
tributes can be observed. Mainly and in consistency with the literature, the turbulent
Prandtl number reveals a similar behavior by taking a constant value through the bulk
Pr; =~ 0.55 that increases near the walls toward numbers larger than 1. Interestingly
the value of Pr; seems to be independent of Ra, and corresponds fairly well to the
most popular literature value (Pr; = 0.4). The profiles of the (v;) 4 and (k;) 4 are
positively skewed in average near the walls in agreement with the a priori analysis
results of Kimmel et al. [33] and the dynamic models of Peng and Davidson [9]. Its

v~ —(A%/12) ke ~ —(A%/12) (3.11)
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Figure 3.5: Vertical profiles of the averaged time and (x, z) plane of v; and «;, evalu-
ated from Eq. 3.11 and normalized by its maximals, and the consequent Pr;.

distribution shape is relatively close to that one found in Peng and Davidson [9],
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taking into account the difference of the laterally confined domain and the higher
turbulent regime considered here. Indeed, the findings of Burr et al. [34] also proposed
the average positive prevalence of the turbulent energy production, i.e., positive v;.
They claimed in consequence, that the mean flow is driven by the mean buoyant
forces and not by the Reynolds stresses associated with the turbulent fluctuations
(negative turbulent energy production and energy transport from fluctuations to the
mean flow) [34].

A clearer picture can be attained from the averaged temporal-x plane of (v;) and
(x¢), shown in Figure 3.6 at Ra = 108 (the case that is clearer characterized by long-
lived evolution of thermal plumes before getting shed in the bulk). Therein, both
terms reveal negative values limited in the corners of the lateral adiabatic sidewalls.
Note that negative values of (k;) correspond to countergradient heat transport es-
sentially generated by two mechanisms: one is due to the bulk dynamics and the
other is due to the competition between the corner-flow rolls and the large-scale
circulation [35]. The highest positive values of (k;) correspond to the tilted plumes
traveling in groups within the vicinities of the sidewalls where the (vt> values are
very small (almost zero). While, next to the thermal BLs, (v;) presents high positive
magnitudes in regions of the impinging bulk dynamics (mixing action or the opposite-
side plumes) to concentrate with four peaks of (v;) in the four corners (see Figure 3.6,
left). Such similar contours are observed in the case of Ra = 10'° with much finer

1 1 1
0.8 0.8 0.8
0.6
0.6 0.6
= 0.4
0.4 0.4
0.2
0.2 0.2
0 —02 0
0 02 04 06 08 1

z z

[e=}

o

-0.2

—-0.4

Figure 3.6: Averaged time and homogeneous x-direction planes of v; (left) and «;
(right), evaluated from Eq. 3.11 and normalized by its maximals.

patterns of high negative and positive values in the near-wall vicinities. In conclusion,
one can argue that the coherent mean mechanism in the current configurations obeys
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a positive SGS eddy-viscosity and a turbulent wind driven by the mean buoyant
forces at the sidewalls [34]. The buoyant sidewall-flow is mostly characterized by
incorporating groups of swept rising-hot and falling-cold thermal plumes that were
claimed to convey Reynolds stresses diverging [36]. These groups are eventually
combined and produce buoyancy-driven upward /hot and downward/cold mean
streams at one side and its opposite. This mean sidewall circulation becomes reduced
significantly in the higher turbulent case at Ra = 10'° (see § 2.3.2 and § 1.3.3).

In order to gain a quantitative understanding of the local underlying physics
relevant to the SGS turbulence, the dominant flow topology associated with the
positive and negative magnitudes of v; and «; has been investigated. Similarly to
many other turbulent flows [22,37,38] the small scale motions in turbulent RBC have
manifested the inclined “teardrop” shape of the JPDF of invariants (Qg, Rg), through
the bulk (see § 3.2.1). In condition on that “teardrop” distribution, the mean values
of the eddy-viscosity and eddy-diffusivity are plotted in Figures 3.7(a) and 3.7(b),
through the bulk at Ra = 10%. In other words, following the most probable JPDF of
Qg and R invariants the average magnitudes of v; and x4, i.e., (4/(Qg, Rg)) and
(x¢|(Qg, Rg)), are represented by a coloring in (Qg, Rg) space. The plots are obtained
on the base of sufficient statistical samples (> 150 per bin) in each pair of (Qg, Rg)
values. Furthermore, the invariants are normalized using (Qq) (following Ooi et
al. [22]), and the SGS magnitudes are normalized by its maximum values (likewise
Figures 3.5 and 3.6). From Figure 3.7(b), it is evident that the highest positive values of
k¢ hold unstable sheet-like strain-dominated areas (Qg < 0 and Rg > 0). This exactly
matches the observation of Chumakov [39], who performed a priori study of the SGS
flux of a passive scalar in isotropic homogeneous turbulence. He claimed that the
effective turbulent diffusion paradigm is only applicable in the strain-dominated areas, with
more frequency around the right null-discriminant line (Dg = 27/4R% + Q% = 0).
This explains the ability of the countergradient models (such as Eq. 3.6) to provide a
feasible, but crude, average approximation to the SGS scalar flux for large LES cell
sizes [39] (note the enhanced function of LES models on the coarser grid, i.e. Mesh A,
in § 3.2.1). The effective turbulent eddy-diffusivity allocate the viscous dissipative
structures, which are presumed to be the mean sheet-like parts of the mushroom-like
plumes elongated and scattered in the bulk (see Figure 3.7(c)). These sheets wrap
around the tube-like vortex-stretching structures (Figure 3.7(c)) where the value of the
turbulent diffusion «; is decreasing towards very small values in the stretching core
(Figure 3.7(b)). Alternatively, the highest positive values of v; obey the structures of fo-
cal concentrated enstrophy (Qg > 0, Rg < 0) and the concomitant strain-dominated
areas (Qg < 0,Rg > 0), as can be seen in Figure 3.7(a). The turbulent viscosity
appears to follow the small scale prevalent dynamics with positive value domination,
in harmony with the fact that the flow topology is mainly tube-like rotational in the
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Figure 3.7: (v;) (a) and (x¢) (b), conditioned on (Qg, Rg) invariants space and nor-
malized by its maximals. The results are obtained from the case of Ra = 108 through
the bulk (Vj,x), and the dashed tent-lines refer to the null-discriminant Dg = 0
in (a) and (b). (c) Displays structures of sheet-like straining (green) and tube-like
vortex-stretching (black), inside and outside the hot plumes (gray volumes). The
section is taken from instantaneous fields at Ra = 108.

bulk region, as revealed in § 3.2.1. Indeed, the association of negative eddy-viscosity
regions with an increased anisotropy in RBC, was outlined before by Liberzon et
al. [40]. This in turn supports our findings since the turbulence type in the core region
of RBC is always comparable, in statistical aspects, with the isotropic nature § ??. Note
that both SGS features maintain negative values in the areas of focal vortex contrac-
tion (Qg > 0, Rg > 0), which play an important role in the turbulence amplification
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(non-linear advection) and the kinetic cascade energy mechanism. This proposes the
sustainment of the backscatter kinetic energy [41] and the countergradient buoyancy
flux in the areas of compressed vortex tubes through the bulk. Finally, both v; and x;
are interestingly positive and hold an identical distribution in the large-scale strain-
dominated regions. This may lead us to the theory that the constant turbulent Prandt
number hypothesis (linear assumptions) is only applicable in that area.
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Figure 3.8: Pr; = (v;)/ (x;) conditioned on (Qs, Rs) invariants space. The results are
obtained from the case of Ra = 108 through the bulk (V},,;x), and the dashed tent-line
refer to the null-discriminant Dg = 0.

One can support this from the distribution of the turbulent Prandtl number condi-
tioned on (Qs, Rs) space, i.e., Pry = (14|(Qs, Rs))/ (x¢|(Qs, Rs)), in Figure 3.8. The
allocation of the most bulk-dominated value i.e., Pr; = 0.55, in the strain-dominated
areas, can be observed. It concentrates close to the axisymmetric expansion (right
tent-line of null-discriminant straining Dg = 27/ 4R% + Q% = 0) where the local
geometry of dissipation holds the sheet-like structures. Note also that Pr; = 0 when
Rg = 0, at which the flow is mostly identified as two-dimensional.

3.4 A priori study of the SGS heat flux models

Most of the parameterizations used in LES of RBC are based on the assumption that
the SGS heat flux is aligned against the spatial gradient of the resolved temperature
(Eq. 3.4). Typically these parameterizations are tested by implementing them in model
runs, and comparing the outcome of the simulations a posteriori, with the available
data. The modeled results will be of integrated nature including a limited accuracy
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of the temporal and spatial numerical discretisation used. Hence, the assessment of
models performance a posteriori, sometimes may not provide the needed insight into
the physical robustness of the parameterizations. A more direct approach, a priori
testing, can allow an excellent judgment on the validity of existing models. It can
provide valuable data to test the behavior of the models and eventually can help to
improve them. Such examples on testing the SGS scalar modelings can be found in
studying the alignment trends of the SGS passive scalar in isotropic turbulence [39],
and similarly in the atmospheric boundary layer [19]. In this context, we study the
geometric alignment trends of the SGS heat flux vector § derived from the Taylor
series expansion [31] in comparison with § parameterizations. This derivation is
generic for a wide class of symmetric filters defined in real space such as the Gaussian,
the tophat and (almost) all the discrete filters [42]. The spatial derivatives make the
SGS flux invariant under the change of sign of large-scale components, and which in
turn allows the reversibility dynamics [42]. Generally, using the first two terms of the
Taylor series expansion for a Gaussian filter [42], applied to our DNS database, we
obtain an accurate prediction of g, as follows

_ AZ A4 H(M): H(T) B
9~ VT + 568 ;'((;’% E'((?) (=q) (3.12)

where H(¢) = VV¢ is the Hessian of a scalar field ¢. Similarly, on the base of the
down temperature gradient closure, the classical parameterizations for § in LES, such
as the Smagorinsky eddy-diffusivity model [43], can be approximated as

g~ —vPr;'VT = —(CsA)?*Pr; HS|VT (= g®), (3.13)

where C; is the model’s constant, and the tensor diffusivity (or nonlinear) model [31],
is approached (taking the first term of Eq. 3.12) as

A2 !
g~ EGVT (= q"). (3.14)

Both Eq. 3.13 and 3.14, are combined linearly in the so-called mixed model [19], as

2 .
g~ %(GVT — A|S|VT) (= g™x), (3.15)

where A is the ratio of corresponding model coefficients.

Similarly to the approach proposed by Higgins et al. [19], we construct the same space
of the so-called “mixed model span” [19], defined as the plane containing the vectors
(g°™¥, g"), and the normal to the mixed span g/ x g"!. A sketch of the geometry
and definition of angles used is presented in Figure 3.9(b). In this framework, we
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consider g (derived in Eq. 3.12) as the actual SGS heat flux, evaluated from the DNS
database, and we study its alignments in that space. To do so, the JPDF of the angles
« and B, defined together with 7, as

edd nl edd edd nl
azcosl{(q % q )q, ﬁ:cosl[" v ] 72&51{4 Y-q }
g% x q"!]|q] |9°%%||q? | g% |q™|

(3.16)
is plotted on the unit sphere. g7 is the projection of the heat flux onto the plane
spanned by the mixed model, i.e. the portion of heat flux that can be expressed by the
mixed model. This JPDF quantifies the relative frequency of orientations of the SGS
heat flux vector in respect to the defined coordinates. In addition, a single probabil-
ity density function (PDF) of  is shown at the bottom of each plot to characterize
the alignment of the tensor diffusivity vector g with respect to the eddy-diffusion
vector q"ddy . The lower turbulent regime at Ra = 108 within the bulk (V},) has
been considered since no significant changes are observed respect to Ra = 10'°. We
firstly examine the influence of the characteristic length-scale, A, and the high-order
spatial derivatives, i.e. the second term in Eq. 3.12, in Figure 3.9. Two different length-
scale i.e. A = 2ypns and 8ypys, are chosen where 17pys is the maximum DNS grid
size defined in Table 3.1. One can clearly note the influence of A in reducing the
effect of the Hessian multiplication (Figures 3.9(a) and 3.9(c)). From Figure 3.9(d),
the high-order derivatives tend to diffuse the direction of the SGS heat flux towards
the normal to the span mixed model, but with a maintenance of maximal alignment
within that span. This coincides to some extent with the findings of Higgins et al. [19]
that reported the validity of the mixed-model span in describing the most likely
orientations of the measured SGS heat flux in the lower atmosphere. Similarly here,
the SGS heat flux points its nonlinear approach (Eq. 3.14) with shifted preferential
orientations towards the equatorial plane defined as a linear combination of 4" and
g™V (Figure 3.9(c)). Note that the JPDF is symmetric about the equator and just the
front part of the unit sphere which contains the peak of the PDF is shown. On the
other hand, our results are also in perfect harmony with the alignment outcomes of
the SGS passive scalar in isotropic homogeneous turbulence [39]. Therein, the SGS
flux is approached following Eq. 3.14 in a priori analysis, and found to be misaligned
with the vector of the resolved gradient (Eq. 3.13), similarly shown at the bottom of
each plot in Figure 3.9. In conclusion, one can corroborate the failure of the isotropic
eddy-diffusivity parameterization (¢°/®) in turbulent RBC. It can be argued that the
rotational geometries Qq are prevalent in the bulk over the strain slotsand 2 = G —S
is an antisymmetric tensor that thus rotates the thermal gradient vector to be almost
perpendicular to g (note also that «; is almost zero in regions of focal concentrated
enstrophy as shown in § 3.3). Apart from that, the physical nature of the problem
imposes a streamwise component of buoyant production as a SGS heat flux which
is separated and should not be vanished by the (mean) large-scale thermal gradient
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qeddy X qnl

Figure 3.9: JPDF of the angles («, ) defined in Egs. 3.16, and plotted on a half of
unit sphere to exhibit the orientation trends of g in the space of the mixed model. (a)
Shows the alignment trends when the length-scale A = 2y7pys, (c) represents the case
of A = 8ypns and (d) displays the case of {H(u): H(T),H(v): H(T),H(w): H(T)}.
The PDF of -y is shown along the bottom strip of each chart. A sketch of definitions the
angles used in the data analysis is presented in (b). For comparative and simplicity
reasons the JPDF and PDF magnitude are normalized by its maximals.
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components in the bulk [2].

In the same unified framework, we consider the constitutive relation of Daly
and Harlow [18] based on the averaged Reynolds stresses in modeling the SGS heat
flux within RANS method, and which has been justified as a reasonable assumption
for locally-averaged flows in Chumakov [39]. Namely, by employing the same
approximation as in § 3.3 for the filtered-scale stress, i.e. T ~ (A?/12)GG', Daly and
Harlow model [18] is approached in a priori test, as

2
g~ —TsgsTVT = —%|S|_1GGtVT (= qPH), (3.17)

where Tsgs = 1/|S| is an appropriate SGS timescale [39]. Moreover, the model
proposed by Peng and Davidson [14] that also invokes a tensorial eddy-diffusivity
as in [18]. Instead, T is estimated by the eddy-viscosity model, i.e., T ~ —21;S, and
Tscs « A? /vy, yielding to

g ~ CA’SVT (= 4"P), (3.18)

where C; is a model coefficient. The ability of the last two parameterizations is
investigated in the same mixed model coordinates. Namely, we replace g in Figure 3.9
by its estimated vectors and observe the dominant orientations resulted by the models
in relevant to the mixed model space. As shown in Figure 3.10, it seems that both
parameterizations are preferentially pointing in the span of the mixed model, similar
to the actual SGS heat flux g. This confirms the fairly good validity of the mixed
model in turbulent RBC. It is interesting to note that the assumption of Daly and
Harlow ,gPH, gives better prediction and closely approaches the direction of g™ In
contrast, the straining diffusivity assumption of Peng and Davidson model, ¢"°,
points towards the direction of the linear model, g°**, and thus it can be worse/less
applicable in RBC. This is not so strange and supports the collaborating sustain of the
streamwise SGS heat flux with the thermal gradient in the presence of dominant shear
stress. In order to give a clear explanation, the alignment of the thermal gradient
vector is studied in the space of rate-of-strain eigenframe, in Figure 3.11(a). The
three orthogonal eigendirections (s1, 7, s3) therein, represent the eigenvectors of S,
in correspondence to the three eigenvalues (A?, )\% , Ag) Since the velocity field is
divergence-free, Af + )\% + /\35, = 0, and the eigensystem can be ordered /\? > )L% > /\35’
with )\% > 0 (extensive eigendirection) and /\35" < 0 (compressive eigendirection), and
A3 is either positive or negative. It can be seen from Figure 3.11(a), that the VT vector
aligns very well with the most contracting (negative) eigendirection of the resolved
strain, i.e. s3, in consistency with the findings in [19,39]. P! gives somewhat an
“ideal” model [39] that accurately predicts the SGS heat flux direction in turbulent
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(a) (b)

Figure 3.10: The same JPDF charts represented in Figure 3.9, however g is replaced
by (a) Daly and Harlow relation [18] (gPH) and (b) Peng and Davidson model [14]

(4"P).

RBC (Figure 3.10(a)), similarly shown for passive scalar of isotropic turbulence [39].
This model gives good prediction in the inertial range of LES filters, both in terms of direction
and magnitude of the SGS flux vector. The time scale that adjusts the correct flux magnitude
is based on the resolved strain. The model has an advantage of not requiring any additional
transport equations or additional filtering, it does not have any user-adjustable constant [39].
In an identical manner to the passive scalar, Figure 3.11(b) displays the preferential
coincidence of " direction with the direction of the most extensive eigenvector

'rlGGt of the SGS stress approached as, T ~ (A2/12)GG! (corresponds to the highest

eigenvalue )L%Gt). This argues the essential connection between the SGS heat flux
and 7 in RBC, and the very well accurate prediction of T using the GG! tensor. Note
that the first invariant of GG’ tensor, i.e. Pogt = 2(Qq — Qs), identifies directly the
dominant rotational focal enstrophy over the dissipation in the bulk. Moreover, its
second invariant Qggr = V? + Qé also bears the L2-norm of the vortex-stretching
vector and the dominant focal tube-like structures in the bulk, in RBC. In consequence,
the assumption of g°* is highly sensitive to the subtle dominant topology, including
the rotation by buoyant production, which becomes tightly interacted with the viscous
straining. In conclusion, the tensor-diffusivity approach (derived from the tensor-
viscosity) is a crucial choice in the parameterization of the SGS heat flux in turbulent
RBC, and the quality of modeling the SGS stress T becomes the primary concern.
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Figure 3.11: (a) Alignment trends of the temperature gradient vector ,VT, in the
rate-of-strain eigenframe. (b) Displays the PDF of the cosine of the angles between the
SGS heat flux approached from the nonlinear model 4" and the three eigenvectors
T8¢ of the SGS stress T ~ (A?/12)GG'.

Another candidate for the SGS heat flux parameterization can be sought in the
light of the small-scale dynamics in turbulent RBC, studied in § 2.3. Therein, a novel
second-order tensor, Gy = V (uT) defined as the velocity-times-temperature gradient
tensor, was proposed. It directly discloses the small-scale kinetic-thermal interactions
and buoyant production of thermal plumes. It was also shown the relative ability of
|G| in identifying the intensive dissipation of heat flux which deeply characterizes
the action of thermal plumes. On the base of that outcome, we can consider the
second-order tensor Gg Cé (or its invariants and eigenvectors) as a possible candidate
in approaching the tensorial turbulent-diffusion in RBC. Firstly, it is useful to derive
the formulation of this tensor as a combination of various essential tensors, as

GGl = T?°GG! + GVT @ aT +aT @ GVT +a @ a| VT[> (3.19)
Upon this formulation, one can outline a set of important properties pertaining to
GyG}, as following: [P1] It depends on the resolved fields that provide the condition
of locality. [P2] Its trace contributes directly to the evolution of thermal plumes and
buoyant production since tr(GgGh) = Gg: Gg = |Gy|?, i.e. the L2-norm of Gy § 2.3. [P3]
It is a symmetric positive-definite second-order tensor with real positive eigenvalues
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and invariants. From a numerical point-of-view, this can support to some extent the
desirable guarantee of stability. [P4] It includes terms of accurate approximations
(leading terms of Taylor series expansion) to the filtered-scale stress, GG, the SGS
heat flux ,GV T, and the SGS temperature variance, |V T|?, embedding a combination
of chief terms, which compose into the implicit algebraic formulation of the SGS heat
flux [14]. This formulation is derived from the transport equation of g by considering
the production term as an actual representative term to the SGS heat flux dissipation,
and thus g is assumed to be proportionally invoked to that term. [P5] The compo-
nents of GyGl, impose paramount interactions between the subgrid and supergrid
(large-scale) features, such as the turbulent heat flux ,GV T, with the local large-scale
heat transport ,i T, that in turn are not trivial in RBC. Indeed, many studies such as
Togni et al. [3], have displayed the inherent multi-scale mechanical energy and temper-
ature variance budgets that occur in RBC. They gave a compound description on the
inter-scale energy transfer of production/dissipation, by means of the mechanisms of
buoyancy, pressure and inertial transport, between the bulk and the near-wall regions.

In order to test the validity of GG}, tensor, let us investigate the alignment trends
in relevant to the mixed model coordinates, just identically to the other models. To do
50, we propose a possible parameterization of the SGS heat flux, given as follows

g~ —N|VT| %S| 1GyGH VT (= g%%), (3.20)

and plot its properties, similarly done in Figures 3.10(a) and 3.11(b). The new parame-

terization g% Gé, seems to roughly follow the behavior of gP! (Figure 3.10(a)). As
can be seen in Figure 3.12(b), the model preferentially points towards ¢", identically
to gPH; however, it additionally implicates higher diffusive orientation perpendicular
to the span mixed model, just similar to the effect of the higher-order Hessian term
in g (Figure 3.9(d)). This may be a result of the misalignment between VT and GVT
persistent in RBC, under the interactions between the large and small scales of mo-
tions. Meaning that, the multiplications of the two terms, GVT @ uT and uT @ GVT
(in GyGl, formulation) by VT, as a part of the new model, qG9G§ formulation, can play
a major role in diverging the model’s orientation from GVT direction (misaligned
with the thermal gradient). Therefore, the tensor GyGl, standalone may give better
effectiveness using its invariants and eigenvectors. Figure 3.12(a) shows the very
good alignment between ¢" and the highest positive (most extensive) eigenvector

GyG . . c . . . . .
7,7, This manifests the good prediction of the buoyant production direction using

a positive amplification of |Gy|, i.e., the highest eigenvalue /\ng{,' At the end, one
can suggest in fairly good argument that the tensor GG, which takes into account
various essential terms, including GG/ (contribution to Daly and Harlow assumption),
to be the key ingredient of modeling the SGS thermal turbulence in RBC.
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Gy G},
cos(g™, 7,0

(@)

Figure 3.12: (a) Displays the PDF of the cosine of the angles between the SGS heat
t

flux approached from the nonlinear model g" and the three eigenvectors TiGSG‘* of

GyG}, tensor, and (b) is the JPDF representation identical to Figure 3.10 with the

GG

parameterization g , instead.

3.5 Conclusions

Using the DNS database in chapter 1, a priori study of the underlying topological
properties of the SGS features and alignment trends of existing turbulent heat flux
parameterizations in LES, have been performed for turbulent Rayleigh-Bénard con-
vection (RBC). Two Rayleigh numbers have been studied, Ra = {108, 1010}, however
regarding to the similarity, the low turbulent regime has been the most considered
case. Generally, the main conclusions are threefold.

Firstly, a limitation in using LES eddy-viscosity models, such as WALE, QR and
the recent S3QR [17] is found in turbulent RBC. It is based on a posteriori assessment
and topological analysis of the models performance applying the assumption of
constant turbulent Prandtl number Pr; = 0.4. The v;-models have shown a fairly
well prediction of turbulent kinetics on coarse grids. They retrieve the effect of the
unfiltered scales to relax the spatial resolution in the dominant structures of vortex-
stretching and viscous dissipation. Particularly, they smooth well the coarse-grained
viscous dissipation associated with the energy transfer which occurs on the large
negative contracting deformation in the inertial subrange. However, these models fail
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in capturing the subtle coupling between buoyant production and viscous straining.
They restrain the production of further enstrophy pertained to the buoyancy and ther-
mal plumes in the bulk and hence they overestimate the SGS heat flux and the overall
Nu. The topological analysis, on the other hand, has corroborated the consistency of
the bulk topologies in RBC with an isotropic turbulence [22].

Secondly, a priori investigations on the underlying physics of the SGS key ingredi-
ents i.e. V4, k; and Pry have revealed that the mean values of v; and «; are intrinsically
positive in turbulent RBC at the current configurations. Upon that, it is claimed that
the turbulent wind is mostly driven by the mean buoyant forces at the sidewalls
(hot ascending and cold descending streams) and not by the turbulent fluctuations
(Reynolds stress and negative turbulent energy production). The obtained turbulent
Prandtl number, (Pr¢) = (v¢) / (x¢) has displayed a nearly constant value of 0.55 across
the bulk, independently of the Ra magnitude. The highest positive values of turbulent
diffusion are found to hold the sheet-like strain-dominated areas. They contribute
to the mean expanded parts of the thermal plumes in the bulk wrapped around the
vortex tubes. Instead, the highest positive values of v; obey the focal concentrated
enstrophy in accompaniment to the strain-dominated regions. They follow in this
positiveness the behavior of the small-scale dynamics and the domination of the tube-
like rotation in the bulk, similarly to an isotropic turbulence. Both SGS features are
found to maintain negative values corresponding to the energy backscatter (v < 0)
and countergradient heat transport (x; < 0) in the compressed vortical structures
through the bulk. Upon these observations, it has been suggested that the effective
turbulent diffusion paradigm and eddy-viscosity approach (linear assumption of
constant Pr;) are only applicable in the strain-dominated areas in turbulent RBC.

Thirdly, a priori testing on the validity of existing SGS heat flux models has been
performed newly in RBC. The study has involved the investigation on the geomet-
ric alignment trends of the most likely relative orientation imposed by the models.
Firstly, it is found that the actual SGS heat flux (derived using the first two terms
of the Taylor series expansion) points inside the span of the mixed model. That
span is defined as the plane containing linear combination of the tensor-diffusivity
vector, 4" (Eq. 3.14), and the eddy-diffusion vector, g°*¥ (Eq. 3.13). This in turn
has certified the validity of the mixed model in RBC, similarly as in the atmospheric
boundary layer [19]. The nonlinear tensor-diffusivity model, g, is very likely to be
misaligned with the thermal gradient, g°/#. Tt has been argued that the rotational
geometries Qq are prevalent in the bulk over the strain slots, and the rate-of-rotation
tensor Q is a skew-symmetric tensor that rotates the thermal gradient vector to be
always normal to g’. This has eventually led to that the parameterizations linearly
aligned against the spatial thermal gradient, °/®, are invalid in RBC. Instead, the
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tensorial eddy-diffusivity approach is a crucial choice in modeling the SGS heat flux.
In this framework, the most used models of Daly and Harlow [18] parameterization,
gP™ (Eq. 3.17), and the straining diffusivity Peng and Davidson [14], 4"P (Eq. 3.18),
parameterization, have been tested a priori. Both models are found to be preferentially
pointed in its orientation inside the span mixed model. The thermal gradient vector
tends to align fairly well with the contracting eigendirection of the rate-of-strain
tensor and hence the parameterization g"" is shown to be less applicable in RBC. In
contrast, the g closely approaches the direction of g™ in the mixed model coordi-
nates and the SGS heat flux is found to coincide preferentially the direction of the
most extensive eigenvector of GG’ tensor.

Finally, a new approach of using GG, tensor in modeling the SGS thermal tur-
bulence in RBC, has been suggested. It contains a combination of chief components,
including the GG tensor, owning properties similar to the implicit algebraic for-
mulation of the SGS heat flux. Following a priori examination of one candidate
g~ —A?|VT|72|S|71GyGL VT, it is found that the new model performs almost simi-
lar to gPH, that in turn encourages its application.
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Concluding remarks and
future research

Abstract. As this thesis is composed of papers, conclusions and perspectives were given at the
end of each chapter. This chapter focuses on general results, conclusions and future research.
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4.1 Summary and concluding remarks

The direct numerical simulation (DNS) is the most reliable tool that allows a fully
controlled picture to unravel in detail the dynamical and statistical aspects of turbu-
lence. It can resolve many queries of turbulence physics by studying its characteristic
structures, and provide indispensable data for the future progress and validation of
turbulence modeling. In the light of that significance, a complete DNS study of turbu-
lent Rayleigh-Bénard convection (RBC) in a rectangular air-filled cavity of aspect ratio
I' = 1 and 7t spanwise open-ended distance, was performed at Ra = {10%,10'°}. Nu-
merically, the trustworthy DNS grids were constructed in an appropriate way, where
refinements of analytical relations pertaining to the mean dissipative scales [1,2] were
adopted, in correspondence to the lowest computational amount, without losing
accuracy. Numerically, a conservation of the global kinetic energy was inherited
within the spatial discretization using a 4""-order symmetry-preserving scheme [3],
and an explicit time integration scheme which guarantees linear stability, was used.
The DNS dataset was processed by a statistical analysis to the underlying physics
properties of turbulence, employing the tools of probability density function (PDF)
and joint PDF (JPDEF), in RBC. As a conclusions it was outlined,

4.1.1 Viscous and thermal dissipation rates

Thermal and kinetic energy dissipation rates expose the underlying small-scale inter-
mittency of flow both in the bulk and the thermal BLs. They tightly couple/correlate
in the vicinities next to the heating and cooling isothermal plates following the am-
plified thermal/kinetic turbulent fluctuations coupling at the formation patterns of
sheet-like thermal plumes (Figure 1.7). In the bulk, where the mushroom-like plumes
expand and dissipate transforming its portable energy into kinetic one, the two dissi-
pations start to decorrelate to be only interacted at the plumes chunks, with the rare
largest magnitudes of dissipations beyond the means (Figure 1.11).

4.1.2 The coherent large-scale circulation or the wind

The wind at the current setting is constituted into two helical rolls along the homo-
geneous x-direction, enfolded by the solid walls. It carries a cold falling fluid of
negative heat flux at the middle of domain and rises two hot fluid of positive heat
flux at the adjoining open-ended sides. The turbulent wind holds its maximum at
the contracting areas near the solid walls (Figure 1.12). It is mostly driven by the
mean buoyant forces at the sidewalls where groups of plumes are incorporated and
combined to organize buoyancy-driven upward/hot and downward/cold mean
streams, of maximum buoyant production (w'T"), at one lateral side and its opposite
(Figures 1.13(a) and 3.6). By increasing the Ra, the plumes do not contribute to these
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mean turbulent heat flux streams where the sidewalls-flow becomes significantly
reduced (§ 2.3.2).

4.1.3 Kinetic flow topology and small-scale dynamics

Topological structures in the bulk region share several universal aspects of 3D tur-
bulence similarly observed in a wide variety of turbulent flows. For instance, the
inclined “teardrop” shape of the joint PDF statistics of invariants (Qg, Rg) (Fig-
ure 2.2), the preferential alignment between w and A, the intermediate eigenstrain
vector (Figure 2.5(a)), and the asymmetric w alignment with the vortex-stretching vec-
tor (Figure 2.5(b)). Hence, the small-scale topology in the bulk obeys stable tube-like
focus/stretching and unstable sheet-like node/saddle/saddle structures, in preva-
lence, and the net enstrophy production is always positive. Physically, the long-lived
solid-body rotation structures (vortex tubes Qq) are dominated over the viscous dissi-
pation —Qsg, and the bulk flow is statistically compared to an isotropic turbulence [4].
The topology surrounding a fluid particle is varying upon a decaying cyclical spi-
ralling behaviour of ((DQg/Dt), (DRg/Dt)) in (Qg, Rg) space, from unstable focus,
unstable node, stable node to stable focus structures, in both turbulent cases studied
(Figure 2.6). A local self-amplification of velocity derivatives (viscous straining —Qg
in the turbulent background) at Ra = 10'°, aids in contracting the vorticity worms
further which assists the decaying events (interplay of the non-local pressure Hessian
with the viscous diffusion and energy-injecting terms), and bends the trajectories of
((DQg/Dt), (DRg/Dt)) further inwards above the null-discriminant curve Dg = 0.
The plumes elongate significantly before scattering in the bulk at Ra = 10%, and
participate in the large-scale kinetic energy containing eddies and turbulent wind
created in the bulk. However, at Ra = 10, the role of the self-amplified —Qg in
creating the large-scale eddies in the bulk is enlarged. The local self-amplification
of velocity derivatives (—Qs/Qq) at Ra = 10'0 enhances the local effects associated
with (self) interactions of vorticity/strain in the strain dominated regions and thus,
improve slightly the linear contributions of the vortex stretching mechanism ( § 2.2.3).

4.1.4 Thermal flow topology and small-scale dynamics

Invariants of the traceless part of velocity-times-temperature gradient tensor (QQ'

RGQ) demonstrate a direct picture on the small-scale kinetic and thermal interaction
dynamics and express a correct following to the evolution of thermal plumes (Fig-
ures 2.9 and 2.11). The Thermal topology is varying upon a spiralling behaviour of
({DQg,/Dt), (DRg,/Dt)) in (Qg,, Rg,) space, to a downwards trajectories (Qg, <
0) of sheet-like plumes evolution and an upwards spiralling of mushroom-like plumes
evolution (Figure 2.12). At Ra = 10® the hot and cold plumes are importantly con-
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tributing to the coherent large scales of heat flux, in average, which roll near the
lateral sidewalls, and the trajectories spiral upwards before converging towards two
skew-symmetric origins (Figure 2.12(a)). However, at Ra = 10%0, the lifetime of
mushroom-like plumes is reduced under the amplified turbulent background mixing
events to make the trajectories shorter-tracking converging towards a zero-valued
origin (Figure 2.12(b)). Hence, the thermal plumes at this high Ra number do not
contribute to the mean large scales of heat flux and just give them a life. Due to the
effective mixing activities in the bulk, the heat flux is constant spatially and tempo-
rally in mean and the plumes are completely destroyed with decaying upwarded
trajectories towards zero-valued origins (Figure 2.14), in both turbulent cases, and

(Qe,) =0, (Rg,) =0.

4.1.5 Limitation of use LES eddy-viscosity models

Upon a posteriori assessment and topological analysis of well-known LES v;-models
such as, QR, WALE and the recent S3QR [5], with the assumption of turbulent Prandtl
number Pr; = 0.4, the models predict fairly well the turbulent kinetics on coarse grids.
They smooth well the coarse-grained viscous dissipation occurs on the large negative
contracting deformation (Figure 3.3(f)). However, they fail in capturing the subtle
coupling between buoyant production and viscous straining, where they restrain the
production of further enstrophy pertained to the buoyancy and thermal plumes in
the bulk (Figure 3.3(i)).

4.1.6 Eddy-viscosity v;, eddy-diffusivity x;, and turbulent Prandtl
number Pr;

Eddy-viscosity v; and eddy-diffusivity «;, are intrinsically positive for the two turbu-
lent cases and the turbulent wind is not driven by the turbulent fluctuations (Reynolds
stress and negative turbulent energy production), at the current setting (see profiles
in Figure 3.5). The turbulent Prandtl number, (Pr;) = (v¢)/(k¢), is nearly constant
of value 0.55 across the bulk, independently of Ra. The largest positive value of «;
hold the sheet-like strain-dominated areas in correspondence to the mean expanded
parts of the thermal plumes in the bulk wrapped around the vortex tubes. Instead,
the highest positive values of v; obey the focal concentrated enstrophy and the strain-
dominated regions. Both SGS features maintain negative values corresponding to
the energy backscatter (1 < 0) and countergradient heat transport (x; < 0) in the
compressed vortical structures through the bulk (Figure 3.7). Upon that, the effective
turbulent diffusion paradigm and vy approach (linear assumption of constant Pr;) is
only applicable in the strain-dominated areas in turbulent RBC.
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4.1.7 Validity of existing SGS heat flux parameterizations

Upon a priori investigation on the geometric alignment trends of the most likely
relative orientation imposed by the models, the actual SGS heat flux (derived using
the first two terms of the Taylor series expansion) points inside the span of the
mixed model 4"%; and the mixed model is fairly well valid in RBC (Figure 3.9).
The nonlinear tensor-diffusivity model, g™, is very likely to be misaligned with
the thermal gradient, VT, because of the domination of the rotational geometries
Qq, in the bulk over the strain slots. Since the rate-of-rotation tensor € is a skew-
symmetric tensor hence it rotates the thermal gradient vector to be always normal to
g", and the parameterizations linearly aligned against the spatial thermal gradient,
g™, are invalid in RBC. Instead, the tensorial eddy-diffusivity approach is a crucial
choice in modeling the SGS heat flux. Namely, the stress diffusivity, i.e., Daly and
Harlow [6] model, 4P, and the straining diffusivity, i.e., Peng and Davidson [7]
parameterization, g"'?, are preferentially pointing in its orientation inside the span
mixed model (Figure 3.10). However, the thermal gradient vector tends to align fairly
well with the contracting eigendirection of the rate-of-strain tensor (Figure 3.11(a)),
and the parameterization g"'P is less applicable in RBC. In contrast, the 4P closely
approaches the direction of g and the turbulent heat flux coincides preferentially
the direction of the most extensive eigenvector of the subgrid-stress, GG! tensor
(Figure 3.11(b)).

4.1.8 New tensorial approach of modeling the SGS thermal turbu-
lence

Using GoG}, tensor (Eq. 3.19), a new approach of modeling the SGS heat flux in RBC,
is suggested. The tensor contains a combination of chief components, including the
GG' tensor and owning properties similar to the implicit algebraic formulation of the
SGS heat flux (Eq. 3.19). A one candidate can be, § ~ —A%[VT|2(S|"1G,GLVT, that

is found to perform almost similar to g7, and encourages its application.

4.2 Future research

Future works can be sought in the light of

4.2.1 A posteriori investigation on an appropriate use of GyG} in
modeling the SGS heat flux

A throughout assessment of using qG"Gé, as a SGS heat flux parameterization in
turbulent RBC will be of significant importance. Thereby, it can be justified to be
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the key ingredient of modeling the SGS thermal turbulence widely occurred in the
environment and technology. On the other hand, an optimization to the performance

of qu’G@ by reducing its slight divergence orientation from GV T direction, is of great
interest in the upcoming concerns. Moreover, an alternative option of employing
the GyG}, tensor standalone or its invariants and eigenvectors, in the SGS heat flux
modeling for turbulent RBC, can give better candidate and open an important research
trend in the future.

4.2.2 Exploring new frontiers in RBC

Many circulations in nature and industry such as, convection in the external layer
of the Sun, the coherent structures in the earth 's atmosphere and oceans, mantle
convection in the earth 's core, and circulations in nuclear reactors and solar thermal
power plants, are ruled by very hard turbulent regime of RBC. The dynamics therein
is still complex and far from reaching our knowledge in thermal turbulence. To our
best knowledge, important issues of the problem have been explored by DNS in
regimes Ra > 10'°. For instance, the stability of the boundary layers obeying the
Prandtl-Blasius scaling at Ra = 2 x 102 [8] and a recent study of the thermal plumes
statistics at Ra = 10'? [9]. However, many questions regarding the coherent dynamics
therein are still open. For example, studying the flow topology and the small-scale
dynamics which are crucial in constructing the turbulent wind and energy budgets,
are still unsatisfied. Following the findings (§ 4.1.3), a local self-amplified straining
in the bulk turbulence is developing with increasing the Ra number (Ra = 10'0). It
enhances the local interactions w/S and supports the linear vortex-stretching contri-
butions. In this regard, the following queries can be sought: How will the nonlinearities
as the production terms of enstrophy and the strain/dissipation behave in harder turbulent
regime at Ra = 10M? How will the flow topology/small-scale structures change at that Ra?
Furthermore, how will the small-scale dynamics deeply associated with the evolution of
thermal plumes behave at Ra = 10, as it is differently changing with increasing the Ra
(§ 4.1.4)? All these questions are essential to disclose the small scale motions which
are the key feature of turbulence physics.

To do so, we propose to extend our range of Ra of turbulent RBC by performing a
fully-resolved DNS study at Ra = 10! and Pr = 0.7, in the same configurations. The
mesh estimation is similarly decided as the DNS of Ra = 109, carried out on MareNos-
trum3 supercomputing using a mesh with 604M grid points. Based on this experience,
the estimated grid size for Ra = 10! is about 5600M grid points (1997 x 1677 x 1677),
initialized by mesh-interpolated instantaneous fields from the DNS at Ra = 10'°, and
run a period of 300[TU] on 8192 CPUs.
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Apart from providing new insights of the small-scale physics, the planned DNS
will be the first ever performed so far in such configurations that reduce to some
extent, the impact of the confined nature in [8,9] in turbulent RBC. Moreover, it will
render an indispensable data for the improvement/validation of the LES thermal
turbulence modeling proposed, at Ra = 10'!. Altogether, this potential improvement
in the modelization of the SGS should be a key element to explore new frontiers (in
the ultimate regime) in RBC where DNSs are not possible yet.
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