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Abstract

Arguably, drug research has contributed more to the progress of medicine

during the past decades than any other scientific factor. One of the main areas of

drug research is related to the analysis of proteins. The world of pharmacology

is becoming increasingly dependent on the advances in the fields of genomics

and proteomics. This dependency brings about the challenge of finding robust

methods to analyze the complex data they generate. Such challenge invites us to

go one step further than traditional statistics and resort to approaches under the

conceptual umbrella of artificial intelligence, including machine learning (ML),

statistical pattern recognition and soft computing methods. Sound statistical

principles are essential to trust the evidence base built through the use of such

approaches. Statistical ML methods are thus at the core of the current thesis.

More than 50 % of drugs currently available target only four key protein

families, from which almost a 30 % correspond to the G Protein-Coupled Re-

ceptors (GPCR) superfamily. This superfamily regulates the function of most

cells in living organisms and is at the centre of the investigations reported in the

current thesis. No much is known about the 3D structure of these proteins. For-

tunately, plenty of information regarding their amino acid sequences is readily

available. The automatic grouping and classification of GPCRs into families and

these into subtypes based on sequence analysis may significantly contribute to
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ascertain the pharmaceutically relevant properties of this protein superfamily.

There is no biologically-relevant manner of representing the symbolic se-

quences describing proteins using real-valued vectors. This does not preclude

the possibility of analyzing them using principled methods. These may come,

amongst others, from the field of statistical ML. Particularly, kernel methods can

be used to this purpose. Moreover, the visualization of high-dimensional protein

sequence data can be a key exploratory tool for finding meaningful information

that might be obscured by their intrinsic complexity.

That is why the objective of the research described in this thesis is twofold:

first, the design of adequate visualization-oriented artificial intelligence-based

methods for the analysis of GPCR sequential data, and second, the application of

the developed methods in relevant pharmacoproteomic problems such as GPCR

subtyping and protein alignment-free analysis.
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Resumen

Se podría decir que la investigación farmacológica ha desempeñado un papel

predominante en el avance de la medicina a lo largo de las últimas décadas. Una

de las áreas principales de investigación farmacológica es la relacionada con el

estudio de proteínas. La farmacología depende cada vez más de los avances en

genómica y proteómica, lo que conlleva el reto de diseñar métodos robustos para

el análisis de los datos complejos que generan. Tal reto nos incita a ir más allá

de la estadística tradicional para recurrir a enfoques dentro del campo de la

inteligencia artificial, incluyendo el aprendizaje automático y el reconocimien-

to de patrones estadístico, entre otros. El uso de principios sólidos de teoría

estadística es esencial para confiar en la base de evidencia obtenida mediante

estos enfoques. Los métodos de aprendizaje automático estadístico son uno de

los fundamentos de esta tesis.

Más del 50 % de los fármacos en uso hoy en día tienen como “diana” ape-

nas cuatro familias clave de proteínas, de las que un 30 % corresponden a la

super-familia de los G-Protein Coupled Receptors (GPCR). Los GPCR regulan

la funcionalidad de la mayoría de las células y son el objetivo central de la tesis.

Se desconoce la estructura 3D de la mayoría de estas proteínas, pero, en cambio,

hay mucha información disponible de sus secuencias de amino ácidos. El agrupa-

miento y clasificación automáticos de los GPCR en familias, y de éstas a su vez
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en subtipos, en base a sus secuencias, pueden contribuir de forma significativa

a dilucidar aquellas de sus propiedades de interés farmacológico.

No hay forma biológicamente relevante de representar las secuencias simbó-

licas de las proteínas mediante vectores reales. Esto no impide que se puedan

analizar con métodos adecuados. Entre estos se cuentan las técnicas provenientes

del aprendizaje automático estadístico y, en particular, los métodos kernel. Por

otro lado, la visualización de secuencias de proteínas de alta dimensionalidad

puede ser una herramienta clave para la exploración y análisis de las mismas.

Es por ello que el objetivo central de la investigación descrita en esta tesis

se puede desdoblar en dos grandes líneas: primero, el diseño de métodos centra-

dos en la visualización y basados en la inteligencia artificial para el análisis de

los datos secuenciales correspondientes a los GPCRs y, segundo, la aplicación

de los métodos desarrollados a problemas de farmacoproteómica tales como la

subtipificación de GPCRs y el análisis de proteinas no-alineadas.

Esta tesis se ha desarrollado como parte integral del proyecto de investi-

gación “Adquisición de conocimiento en farmacoproteomica mediante métodos

avanzados de inteligencia artificial” (KAPPA AIM) [TIN2012-31377], financiado

públicamente a través del MINECO.
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Resum

Es podria dir que la recerca en fàrmacs ha tingut un paper predominant

en l’avanç de la medicina durant les últimes dècades. Una de les àrees princi-

pals de recerca farmacològica és la relacionada amb l’estudi de proteïnes. La

farmacologia depèn cada vegada més dels avanços en genòmica i proteòmica, la

qual cosa implica el repte de trobar mètodes robusts per a l’anàlisi de les dades

complexes que generen. Tal repte ens incita a anar més enllà de l’estadística

tradicional per recórrer a enfocaments del camp de la intel·ligència artificial, in-

cloent l’aprenentatge automàtic i el reconeixement de patrons estadístic, entre

uns altres. L’ús de principis sòlids de teoria estadística és essencial per confiar

a la base d’evidència obtinguda mitjançant aquests enfocaments. Els mètodes

d’aprenentatge automátic estadístic seran un dels fonaments d’aquesta tesi.

Més del 50 % dels fàrmacs tenen com a “diana” amb prou feines quatre fa-

mílies clau de proteïnes, de les quals un 30 % corresponen a la superfamilia dels

G-Protein Coupled Receptors (GPCR). Els GPCR regulen la funcionalitat de

la majoria de les cèl·lules i seran l’objectiu central del projecte. Es desconeix

l’estructura 3D de la majoria d’aquestes proteïnes, però en canvi hi ha molta

informació disponible de les seves seqüències d’amino àcids. L’agrupament i clas-

sificació automàtics de les GPCR en famílies i aquestes al seu torn en subtipos

sobre la base de les seves seqüències, poden contribuir de forma significativa a

vii



dilucidar aquelles de les seves propietats farmacològicament rellevants.

No hi ha forma biològicament rellevant de representar les seqüències simbò-

liques de les proteïnes mitjançant vectors reals. Això no impedeix que es puguin

analitzar amb mètodes adequats. Entre aquests s’expliquen tècniques provinents

de l’aprenentatge automàtic estadístic i, en particular, mètodes kernel. D’altra

banda, la visualització de seqüències de proteïnes d’alta dimensionalidad pot

ser una eina clau per a l’exploració i anàlisi de les mateixes.

L’objectiu central del projecte será doncs dual: D’una banda, el disseny de

mètodes basats en la intel·ligència artificial orientats a la visualització per a

l’anàlisi de dades seqüencials corresponents a GPCRs. D’altra banda, i atès

que aquesta recerca té la fi última de ser útil en el disseny de fàrmacs i en la

comprensió dels processos moleculars involucrats, pretenem aplicar els mètodes

desenvolupats a problemes de farmacoproteòmica tals com la subtipificació de

GPCRs i l’anàlisi de proteïnes no-alineades.
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Preface

This Dissertation describes research carried out in the context of the Ph.D.

program in Artificial Intelligence of Universitat Politècnica de Catalunya (UPC

BarcelonaTECH), where the author is part of the Soft Computing (SOCO) re-

search group at the Department of Computer Science (www.cs.upc.edu). This

research also involved collaboration with the Systems Pharmacology and Bioin-

formatics research group at Universitat Autònoma de Barcelona (UAB).

The main goals of the Thesis are, on the one hand, the exploration of the po-

tential relationships between receptors of different subfamilies in order to help to

identify the multiple roles for individual GPCRs and, on the other hand, GPCR

classification analyses based on the physico-chemical properties of the consti-

tuent sequence amino acids (AAs) and the contribution of various parameters

to the understanding of the mechanisms of specific coupling between GPCRs.

The reported research has been organized in two main parts: Materials and

Methods (Part I) and Experiments: Settings, Results and Discussion

(Part II). Its detailed graphical structure is described in figure 1.

Chapter 1 introduces the context of the research, its motivation, and some

general concepts that might ease the understanding of the work. This Chap-

ter also presents the main research hypotheses, goals, methodology, the state
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of the art, the state of research in related areas and a summary of research

contributions.

The Materials and Methods part in structured in Chapters 2 and 3:

Chapter 2 describes the analyzed GPCR data and all the data transforma-

tions applied in the analyses.

Chapter 3 presents the state of the art of the Computational Intelligen-

ce Analysis of GPCRs for pharmacoproteomic applications. In this Chapter,

a detailed description of GPCRs and the Machine Learning (ML) techniques

proposed for data visualization are provided.

Chapters 4, 5 and 6 describe the Experiments: Settings, Results and Discus-

sion part, where a compilation of the experimental results is provided together

with their discussion and corresponding conclusions.

Chapter 4 involves the grouping and visualization of Class C GPCRs family

types, resulting in publications number 3, 4, 5, 6, 8 and 9 as listed in Table

1.3. Chapter 5 shows the Grouping and Visualization of mGlu Class C subtypes

applied in publications 4 and 7, listed in the same table. Chapter 6 presents an

analysis and visualization of error classifications of Class C GPCRs family types,

described in publications 4 and 9. All these publications are further commented

in section 1.6 from Chapter 1.

Chapter 7 concludes the Dissertation with a commented summary of the

results and ideas for further research directions. Finally, the work described

throughout the Thesis is matched with the objectives defined in Chapter 1.
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Chapter 1

Introduction

The gap between data generation and data comprehension is widening in

all fields of human activity. In medicine and pharmacology, the ambits of this

Thesis, the amount of data available for analysis and knowledge extraction is

increasing exponentially. The surge in novel techniques for the non-invasive

measurement and acquisition of biologically and medically relevant data, in

various modalities, is behind this situation. In no other field this is a more

pressing challenge than in bioinformatics, where the vast amount of available

omics information undoubtedly becomes a huge management issue. At the

same time, this data bonanza should also be understood as a valuable asset for

knowledge discovery.

Such gap between data and knowledge must be overcome in order to ensure

the advance of biological research and the success of data-based medical deci-

sion making support, both key elements of the promised future of personalized

medicine.
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1.1. Motivation

Arguably, drug research has contributed more to the progress of medicine

during the past decades than any other scientific factor. One of the main areas

of drug research is related to the analysis of proteins. Pharmacoproteomics

is the subfield of proteomic research involved in drug discovery and develop-

ment. It has been argued that it is bound to play an important role in the

development of personalized medicine in different ways, including molecular di-

agnostics [88], [173]. This is because different types of disease, at the level of

individual patients and subpopulations, have their own development paths and

mechanisms, requiring personalized prevention and treatment. Besides, pro-

teomics can enable the discovery and development of drugs, in a way that is

suitable for personalized therapy. Advances in pharmacoproteomics are meant

to accelerate the drug development process, and their aims include, amongst

others, the verification and identification of drug targets and the elucidation of

molecular mechanisms of drug action including efficacy and toxicity [212].

The world of pharmacology is thus becoming increasingly dependent on the

advances in the fields of genomics and proteomics, as they should allow us under-

standing the mechanism of action of a drug. Most modern drug development

efforts tend to design compounds that act directly against specific biochemi-

cal targets, a task that involves molecular diagnostics, a basis of personalized

medicine (PM) [88]. This is an R+D-intensive field with a great potential for

knowledge-based economies.

This dependency brings about the challenge of finding robust methods to

analyze the complex data they generate. As previously sketched, medicine has

become, over the last decade, a data-intensive endeavour. One in which new

data-acquisition technologies and a wider variety of investigative goals coalesce

to make it one of the most important challenges for multivariate data analysis.
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The challenge of managing the complexity of these types of data invites us to

go one step further than traditional statistics and resort to approaches under

the conceptual umbrella of artificial intelligence, including, amongst others, ML,

statistical pattern recognition and soft computing methods, all of which bear

the potential to both to scale appropriately to large databases and to deal with

non-trivial types of data [122]. In the pursue of this challenge, sound statistical

principles are essential to trust the evidence base built through the use of any

computational data analysis technique. Statistical ML methods are already

establishing themselves in the more general field of bioinformatics [11]. Their

use in the area of proteomics have only been reported over the last few years

and, as stated in [126], “proteomics is a much less developed area of research,

with data still scarce and fewer computational approaches available for analysis”,

thus, they are at the core of this research work.

At this point, it is worth presenting an historical overview of Spain’s phar-

maceutical industries. According to Moya-Angeler’s report about the Spanish

pharmaceutical industry, published in 2008 [137], this industry, 6th in Europe

by volume of production (2008 figures) and employing directly over 40,000 peo-

ple (2006 figures), invested 844 million euros in research in 2006, out of which

a 17% was invested in basic research. The sector employs almost 2,500 re-

searchers (as in 2006). These apparently positive figures hide a not so favorable

fact: In Europe, the pharmaceutical sector leads the reinvestment of sales into

research with a 15.3% (2007 data), surpassing even the IT sector. In Spain, this

reinvestment percentage falls to a meager 6.6%. This is mostly due to the com-

paratively small size and atomization of the Spanish pharmaceutical industry in

a global economy context that also leads to the relocation of many R+D centers

to emerging economies. Although, according to the study of Industrial Produc-

tion Index (IPI) of the National Statistics Institute (INE), in 2015 the Spanish

pharmaceutical industry grew by 4%, increasing its investment in Spain in 1,000
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million euros. In this context, external Spanish research centers, including uni-

versities, should play a key complementary role on pharmaceutical investigation

at a local level. The lack of enough public-private partnership tradition is in

fact another of the barriers limiting this dynamization, as acknowledged in [137].

Breaking this barrier would require the implementation of a national “Strate-

gic Plan for Pharmaceutical R+D+i”, similar to others already in place across

Europe, such as the seminal “Pharmaceutical Industry Competitiveness Task

Force” [158] implemented in the United Kingdom as early as 2000.

More recently, according to the Cotec 2016 report: Technology and Innova-

tion in Spain (Fundación Cotec, 2016), the Spanish pharmaceutical industry is

at the forefront of the investment in R+D. This sector invested more than 586M

e in R+D in 2012 (plus 400M e in external research), and more than 655M

e in R+D both in 2013 and 2014, always, more than either the automotive

and aeronautics sectors. Only a small percentage of that money (4.1 %) was

invested in basic research. In this context, external research centers, including

universities, should be able to play a key complementary role, because, as the

Cotec 2016 Report also reflects, innovation in the pharmaceutic sector strongly

depends on investigation carried out in public institutions. Currently, accord-

ing to 2015 Global Bussiness Reports publication, Spain is considered as

one of the world’s most mature pharmaceutical markets, and is scientifically

equipped to be an innovative economy. While it has experienced a severe eco-

nomic crisis-resulting in a decline of the country’s pharmaceutical industries,

Spain continues to harbor unique potential in terms of its research capabilities

and talented pool of human capital, increasing a 30% the relationship between

innovating companies, local universities and research centers. [15].

This Thesis is meant to contribute to this basic research with pharmacology

as an ultimate target. It focuses on the analysis of a specific type of protein re-

ceptors of interest in the field as drug targets. At the cellular level of the central
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nervous system (CNS), information signal transmission from the extra-cellular

to the intra-cellular domain is triggered by receptors. In biochemistry, a receptor

can be defined as a protein to which signaling molecules may attach. They are

the first step in the process of external signalling, allowing the initiation of intra-

cellular signalling cascades after specific ligand binding. Receptors thus play an

important role in physiological functions such as cognitive functions: attention,

learning, and memory. These functions decline in the course of natural aging

and accelerated deficit of cognitive functions is a typical symptom of neurode-

generative diseases such as Parkinson’s, Alzheimer’s or other pathologies such

as anxiety, stress or depression, which are key topics in pharmacoproteomics

and the neurosciences.

G Protein-Coupled Receptors (GPCR) are a particular set of membrane-

bound receptors and essential components of signal transduction processes in

cells. These receptors regulate many cell functions and account for approxi-

mately 3% of the human genes. GPCRs act as antennas with decoders that

allow the cell to understand the signals like a well-tuned radio. If this signal

is excessive, inadequate or the receiver is defective, neurological diseases may

occur. [167].

The analysis of the gene-family distribution of targets by drug substance

reveals that more than 50% of drugs target only four key protein families, from

which almost a 30% correspond to the GPCR superfamily. This superfamily

regulates the function of most cells in living organisms. Crystal structures are

now available for all of the human GPCR classes. They have been reported for

more than 60 ligands and 20 receptors, including examples from GPCR classes

A, B, C and F. The new structures show previously unobtainable details of

interactions between GPCRs and ligands. By June 2014, X-ray structures of

20 different class A, two class B, one class C, and one frizzled GPCR, were

available, together with access to their amino acid sequences [31], [189].
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These receptors have been the subject of a vast research effort in the phar-

maceutical industry due to their ubiquity and involvement in a broad spectrum

of physiological functions. Examples of therapeutic indications for drugs acting

on GPCRs include: antihistamines, anaesthetics, antidepressants, heart failure,

Parkinson’s, schizophrenia, migraines and cancer. The design of adequate ar-

tificial intelligence-based methods for the analysis of GPCRs will therefore be

the focus of this Thesis.

Their automatic grouping and classification into families or classes and these

into types and subtypes based on sequence analysis may significantly contribute

to ascertain their pharmaceutically relevant properties. There is no biologically-

relevant manner of representing the symbolic sequences describing proteins using

real-valued vectors. This does not preclude the possibility of analyzing them

using appropriate and principled methods. These may come, amongst others,

from the field of statistical ML.

Special attention will be paid to the definition of kernels and kernel-based

methods, which have become invaluable tools in various fields of data analysis

and especially in ML. We aim to obtain specific instances of kernels capable of

dealing with sequential structures such as GPCR sequences. The definition of

these kernels will open the door to a sensible use of a wealth of well-established

and powerful unsupervised learning methods, for the analysis of this kind of

data.

Probabilistic modelling and, specifically, probabilistic ML models have only

recently begun to be applied to the analysis of GPCRs, although their applica-

tion is expected to generate new insights in this field. Statistical ML techniques

are specially suited to deal with some of the common challenges of molecu-

lar modelling in proteins, and should be of special interest at present although

some three-dimensional structures of GPCRs have been recently published. The
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motivation of this research can thus be summarized as the quest for robust prob-

abilistic methods that are capable of grouping and visualizing symbolic protein

sequences, on the basis of their structural and functional properties.

1.2. Research Approach

1.2.1. Hypotheses

The research challenges outlined in the previous section motivate us to resort

to approaches under the conceptual umbrella of artificial intelligence, including,

amongst others, ML, statistical pattern recognition and soft computing meth-

ods, for the analysis of GPCR sequences. For the analyses reported in the

current study, we resorted to the curated GPCRdbi database. In it, GPCRs

are divided into five main families, namely Class A, Class B (Secretin), Class

C (Glutamate), Adhesion and Frizzled [2]. Recently, there has been a reclassi-

fication of receptors into six classes plus the class Other : Class A (Rhodopsin),

Class B (B1-Secretin and B2-Adhesion), Class C (Glutamate), Class F (Friz-

zled), Class T (Taste 2) and Class O (Other GPCRs) [138], [83].

In this thesis, we have paid special attention to the GPCR mGluR from

the Class C that has generated a wealth of publications over the last few years

(a search of the mGluR receptor string in PubMed on December 10th, 2016

produced 164 references only for the year 2016), which is an indication of how

attractive they result as pharmacological target for innovative drugs in neuro-

logical and psychiatric disorders.

The basic hypotheses of this research can be described hierarchically:

iurl: http://gpcrdb.org
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H0: In the absence of total knowledge about the tertiary and quaternary

(3-D models) structure of Class C GPCRs, the overarching working hypothesis

is that new knowledge and insights about the structure, subtype characteriza-

tion and functionality of these receptors can be extracted from the quantitative

analysis of both unaligned and aligned primary structure. From this:

H1: Knowledge and insights about the structure, subtype characterization

and functionality of Class C GPCRs can be extracted from the analysis of their

amino acid sequences directly, that is, analyzing the symbolic sequences, where

the symbols belong to amino acid alphabet, and:

H2: Knowledge and insights about Class C GPCRs can be extracted from

the analysis of different amino acid sequence transformations, on the basis of

either the physico-chemical properties of the amino acids (AAs) or the frequency

of repetition of their constituting subsequences.

Again, from these:

H1.1: The direct analysis of Class C GPCR unaligned symbolic sequences

will require the development of tailored variations of existing advanced ML

methods.

H2.1: The use of probabilistic clustering techniques for the exploratory

grouping and visualization, at different characterization levels of the transformed

sequences, could reveal interesting insights about receptor subtype structure.

H2.2: The subdivision of the full sequence into biologically meaningful sub-

parts, according to their relative position with respect to the cell membrane,

could lead to a better and more applicable receptor subtype structure charac-

terization.

H2.3: The results of Class C GPCR subtype discrimination, as seen from
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the natural structure of the primary sequence data transformations revealed by

unsupervised DR techniques, should differ depending on whether we used the

complete primary sequence of these membrane proteins or, instead, we used

only the extracellular N-terminus or the 7TM domain.

H2.4: The use of the N-terminus on its own, given the particularities of this

domain, should yield comparable results to the complete sequence in terms of

subtype discrimination.

and finally,

H3: Protein similarity measures and receptor subtype structure character-

izations can be used for transferring the knowledge of structure-activity rela-

tionships with small molecules from one Class C GPCR to others.

1.2.2. Objectives

Overall, thus, the central objective of this research work is dual: on one

side, the definition, design and implementation of visualization-oriented artifi-

cial intelligence-based methods, with sound foundations on statistical theory,

for the exploration and analysis of GPCR sequential data. On the other side,

and given that this research has the ultimate goal of being useful in helping

drug design and in achieving a better understanding of the molecular processes

involved in receptor signalling both in normal and pathological conditions, we

aim to apply the developed methods for investigating relevant pharmacopro-

teomic problems such as GPCR subtyping, the exploration of the phenomena

of receptor heteromerization and deorphanization, and protein alignment-free

analysis.

Based on the hypotheses listed above, two main objectives are outlined:
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1. Grouping and visualization of GPCRs.

The goal of GPCR grouping, where the availability of accurate knowledge

of its crystal 3D is limited and, therefore, proteins are specified by their

aligned amino acid primary sequences, aims to find biologically meaningful

partitions. This might help the analyst to make inferences about key

protein regions and residues both in the obtained groups and for the whole

family.

1.1. Grouping and visualization of GPCRs using kernel manifold learning.

In order to group GPCR sequences, we need a measure of similarity

between them. ML techniques can help us in this task. Unsuper-

vised data analysis using clustering algorithms provides a useful tool

to explore data structures. Over the last few years, several kernel

methods for visualization and clustering of non-standard multivari-

ate data have been proposed. In this Thesis we aim to define ap-

propriate kernels for sequence similarity analysis and to embed them

in statistical ML methods of the manifold learning family capable of

simultaneous clustering and visualization.

1.2. Matching of GPCR subtypes and phylogenetic trees.

A phylogenetic tree is a dendrogram-like graphical representation of

the evolutionary relationship between groups of proteins which may

share a set of homologous characters. This is a common tool for

protein subtyping on the basis of sequences. We have aimed to match

the subtyping cluster structure obtained with the methods described

in the previous point with that yielded by standard phylogenetic

trees.

2. Further pharmacoproteomic challenges.

Kernel manifold learning methods is used to help in the exploration of
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receptors with very heterogeneous grouping structure. This heterogeneity

might be an indication of their susceptibility towards heterodimerization,

which could be useful in the quest of more potent and safer drugs.

2.1. Family subtype exploratory sequence visualization from their con-

stituent sub-parts.

Analysis of the different roles of extra-cellular / transmembrane parts

of the receptor on subtype characterization at different levels of de-

tail, helping to find GPCRs susceptible of heterodimerization. We

investigate whether the separated analysis of two of the three differ-

entiated receptor domains yields any advantage in terms of reducing

the level of overlapping between the apparently more difficult to dis-

criminate subtypes.

2.2. Visual discrimination assessment measures.

The results of unsupervised techniques applied to the visualization

and clustering of available Class C GPCR data must be assessed for

quality. In order to complement the qualitative exploratory visu-

alization of the Class C GPCR sequences, we describe here several

measures for the quantitative assessment of subfamily overlapping

that are suitable for discrete clustering visualizations such as those

provided by the unsupervised models applied in the thesis.

1.2.3. Limitations

Given that our analyses are based on receptor primary sequences, a first

problem for visualization obviously arises: the transformation of varying-length

sequential symbolic data into formats that are suitable for multivariate data

analysis. Roughly speaking, those transformations might use the complete se-

quences in unaligned form or might instead apply methods of multiple sequence
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alignment (MSA). Both are used in our experiments. Although, these trans-

formations lead to a second problem: that of the high dimensionality of the

transformed data, making direct data visualization impossible. In this scenario,

dimensionality reduction (DR) methods are necessary [117]; out of the many

DR families of techniques available to the analyst, our work focuses here on

manifold learning methods.

1.3. Methodology

The definition of a methodology allows the explicit enumeration of the steps

that need to be followed by the researcher to address a particular problem. In

this case, with the hypotheses defined above as a reference and the objectives

set as goals, I now explain the methodology of the main tasks:

Grouping and visualization of aligned GPCRs using manifold

learning.

As already mentioned, in absence of total knowledge about their 3-D phys-

ical structure, the proteins are specified by their amino acid sequences. In

order to get a better understanding of the functional role of the members

of a protein family in biochemical processes, it is important to know the

internal organization of the family and the detection of key regions where

interactions with other molecules may take place or which are essential to

inform the 3D structure of the protein.

This internal organization can be explored using grouping or clustering

procedures. In order to group GPCR sequences, we need a measure of

similarity between them. In this thesis we will depart from some exist-

ing kernel models to a GPCR-specific kernel, as part of a kernel-based

statistical ML model of the manifold learning family, namely the Kernel

13
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Generative Topographic Mapping (KGTM). This model describes multi-

variate data in terms of low dimensional representations, so as to achieve

the visualization of high dimensional data that would otherwise be difficult

to visualize. The visualization of the high-dimensional GPCR sequences

would considerably help understanding their global grouping structure.

We use the probabilistic properties of KGTM to explore GPCRs subclasses

in more detail. For that we resort to the explicit calculation of the prob-

ability of each of the available sequences belonging to each of the model

groupings. This provides us with a map of probability that can qual-

ify the differences between sequences of either clear or dubious subclass

ascription.

Matching the hierarchy of GPCR subtypes and phylogenetic

trees

The evolutionary relationship between groups within each of the families

in the GPCR super-family remains unknown at large. They may have

diverged from a common ancestor, or perhaps be the result of convergent

evolution, in which functional constraints push unrelated proteins from

different organisms towards the same design. The sequences of different

GPCR families are highly diverged from each other, except that they share

one common structural feature, namely, they all have seven hydrophobic

transmembrane regions.

Generally speaking, a phylogenetic tree is a dendrogram-like graphical rep-

resentation of the evolutionary relationship between taxonomic groups. It

can also be seen as a specific type of cladogram where the branch lengths

are proportional to the predicted or hypothetical evolutionary time be-

tween groups. They are not meant to be understood as completely true

and accurate descriptions of the evolutionary paths they represent, be-

cause in any of them there are a number of possible evolutionary pathways
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that could produce the pattern of relatedness they represent. In the case of

GPCR sequences, they only illustrate the probability that two sequences

are more closely related to each other than to a third one.

There are standard phylogenetic tree visualization tools, such as, for in-

stance Jalview 2.6.1, which uses the standard Blocks of Amino Acid Sub-

stitution Matrix 62 (BLOSUM62) [74] as a basis.

Further pharmacoproteomic challenges: finding GPCRs suscep-

tible of heterodimerization

Kernel manifold learning methods could be used to help in the exploration

of receptors with very heterogeneous grouping structure. This heterogene-

ity might be an indication of their susceptibility towards heterodimeriza-

tion, which could be useful in the quest of more potent and safer drugs.

No that much is yet known about the ability of the receptors to interact to

form new functional structures. The concept of GPCR heterodimerization,

or the physical association of two different types of GPCRs, presents an

unexpected mechanism for GPCR regulation and function, and provides

a novel target for pharmaceuticals [71].

Specifically, the heterodimerization of GPCRs is a function-modulating

mechanism. We hypothesize that the assignment of GPCR sequences to

class-overlapping spaces by either unsupervised or supervised methods can

be an indication of their propensity to heterodimerize.

1.4. State of the art: GPCRs

The convergence between proteomics and AI is providing new tools and

methods for the discovery and knowledge extraction from the complex data

generated in the biology field. Here, we first provide the biological context for
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the current Thesis, introducing the bioinformatics domain of our work.

The section starts with a brief introduction of the GPCR superfamily, com-

monly divided into five main families, namely Class A, Class B (Secretin), Class

C (Glutamate), Adhesion and Frizzled. Then, the emphasis is placed on our

specific area of study, which is the class C of GPCRs.

The idea of receptors has fascinated scientists for more than a century and

today the G-protein coupled receptors (GPCRs), also known as seven trans-

membrane receptors, represent by far the largest, most versatile and most ubiq-

uitous of the several families of plasma membrane receptors. In fact, the ability

of cells to communicate with each other using chemical messengers in the form

of hormones and neurotransmitters, is in essence, an information encoded using

GPCRs located in the plasma membrane.

Despite the very central role that the study of receptors plays in biomedical

research today, it is only in the last thirty years that there has been any general

acceptance they even exist. Therefore, Dr. Lefkowitz and Dr. Kobilka, awarded

with the 2012 Nobel Prize in Chemistry, and pioneers of the biochemical tech-

niques on GPCRs in the early 70s, allowed researchers to study the regulation

of the receptors by numerous factors, to discover previously unsuspected recep-

tor subtypes, and to develop theories concerning the mechanisms of receptor

action [118], [101]. The following sections describe the main characteristics of

the GPCRs and its classification.

1.4.1. GPCRs: structure, function and classification

In biochemistry, a receptor is a protein molecule that receives chemical

signals from outside a cell, located either on a cell’s surface, that binds to a

specific ligand (typically an ion or a molecule), initiating signal transduction and
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a change in cellular activity. Receptors play an important role in physiological

functions. This Thesis focuses on G-Protein Coupled Receptors (GPCRs),

which are membrane receptors that modulate biochemical functions by coupling

to and activating G proteins. The name is derived from their association with

heterotrimeric G proteins, which have GTPase activity and act as intermediary

components, activating or inhibiting several intracellular effectors.

These receptors are very attractive drug targets in the quest for new medicines.

They are the largest, most important and best-validated class of pharmaceutical

target proteins and here we focus in the class C GPCR family, which is involved

in several major CNS disorders [160]. The GPCRs usually share a 7TM helix

topology with an extracellular N-terminus and an intracellular C-terminus.

This structural complexity has prevented the crystallization of full-length

class C GPCRs, and was not till 2014 that the 7TM domains of two members

of this family were crystallized [205], [42]. Because of this, the investigation of

class C GPCR structure and function on the basis of their primary amino acid

(AA) sequences is of special relevance.

The extracellular signal is invariably transduced to a cytosolic heterotrimeric

G protein complex. GPCRs can be divided into families with a striking lack of

common sequence motifs [23],[56]. This is reflected by the vast number of extra-

cellular ligands that activate the receptors, which range from neurotransmitters,

hormones and peptides to external stimuli such as light, taste and odors [203].

The human GPCRs can be classified into six classes, and as many unique

(other) receptors (Table 1). Two overlapping classification systems have denoted

the classes A-F (Kolakowski, 1994) or by their GRAFS members (Glutamate

Rhodopsin Adhesion Frizzled/Taste2 Secretin), based on sequence homology

and phylogenetic analysis (Fredriksson et al., 2003) respectively [84] (See ta-

ble 1.1). The taste type 2 receptors were recently placed as a separate sixth
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Figure 1.1: GPCR illustrative representation.

class having evolved from class A (Nordstrom et al., 2011). The classes are

further grouped into receptor families by pharmacological classification of their

endogenous ligands that span ions, neurotransmitters, lipids, carbohydrates,

nucleotides, amino acids (AAs), peptides and proteins (Southan et al., 2016).

The pharmacological receptor families mirror the evolutionary subfamilies, with

a few exceptions. Recently, there has been a reclassification (not yet stan-

dard) of receptors according to the GRAFS (Glutamate Rhodopsin Adhesion

Frizzled/Taste2 Secretin) system which, as the acronym indicates, includes the

following groups: glutamate, rhodopsin, adhesion, frizzled/taste2, and secretin

[84]. This research uses the GPCRdb classification, which is based on the

GRAFS classification system (See table 1.1).

The assumption that similar molecules bind to similar receptors [100] and

that small molecules bind within the upper part of the transmembrane helices,

gives rise to the application of pattern recognition analysis on multiple sequence

alignments of those helices or parts thereof to identify ligand binding residues

[172].

The problem of the pairwise sequence alignment is that gaps have been
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inserted in both the top and the bottom sequence in order to slide the sequences

along so that the regions of similarity between them become apparent. There

are two possibilities for the alignment: the mutation from a letter to another

or vice-verse and the deletion or insertion. In that sense, we are looking for the

alignment that we think is most likely to have occurred during evolution.

With the aim of obtaining the best alignment, a scoring system is required.

The sequences to be aligned can be represented as letters from a symbolic alpha-

bet of allowed characters. In our case, for proteins, it is the 20-letter alphabet

corresponding to the same number of AAs. A useful scoring system for proteins

needs to reflect the fact that some AAs are similar to one another whereas others

are different.

With that purpose, a high positive score will be assigned to two identical

AAs, a slightly positive score to two similar AAs (e.g. D and E) and a slightly

negative score to a pair of very different AAs [73]. In the scoring matrix process,

the optimal alignment produced by the algorithm will depend on the scoring

system. Figure 1.2 gives an example of the BLOSUM62 scoring system.

Figure 1.2: An example of commonly used scoring system: BLOSUM 62.
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Table 1.1: G-protein coupled receptor families according to GPCRDdb, based
on the GRAFS classification system.

Superfamily Description
Family A Receptors related to Rhodopsin-like Receptors
Family B Receptors related to the Calcitonin and PTH/PTHrP Receptors
Family C Receptors related to the Metabotropic Glutamate Receptors
Family D Receptors related to the pheromone Receptors
Family E Receptors related to the cAMP Receptors

The second part of the scoring system is the penalty for gaps. The likeli-

hood of a single event that creates a gap of residues depends on the underlying

mutational process involved according to the divergence of the corresponding

amino acid sequences. It also depends on the selection process. Many insertions

or deletions may lead to non-functional sequences which may be eliminated by

selection. Moreover, there are certain regions of sequences where it is easier to

find gaps. For example, unstructured loop regions in proteins tend to be much

more variable that well-defined structured regions, such as helices in membrane

proteins. [76]

It worth to mention that along the evolutionary history of GPCRs, different

classification have been given to the GPCR superfamily, depending of specific

criteria. For example, receptors have been grouped by how their ligand binds,

or by comparing physiological and structural aspects given their considerable

complexity. Fredriksson and colleagues [56], did a great phylogenetic study of

the entire superfamily, while Takeda and colleagues [187], determined that over

800 GPCR genes in the human genome fall into three major families (termed

rhodopsin, secretin, and metabotropic glutamate receptor-like), which are popu-

lated by more than 50 receptor types and 350 subtypes.

In order to manage the heterogeneity of proteomic databases, it is necessary

to standardize them for quality assessment, storage and also to ensure accu-

racy and reproducibility of the data, that is, data curation processes must be
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implemented.[45]

Despite the diversity of the superfamily, certain commonalties remain within

all GPCRs. All proteins within the GPCR superfamily contain seven highly

conserved transmembrane segments which are highly hydrophobic. Sequences

can therefore be divided into the regions (see figure 1.3 and figure 1.4 for a top

view of the previous one) described in Table 1.2.

Table 1.2: Representation of the regions of a GPCR sequence: three extracel-
lular loops (EL1,EL2,EL3), three intracellular loops (IL1,IL2,IL3), seven trans-
membrane regions (TM1 → TM7) and the protein termini (N-terminus (NT)
and C-terminus (CT)). The arrangement of the connected GPCR regions is
conserved across the three domains starting with the NT and ending with the
CT.

GPCR Regions Arrangement
NT-TM1-IL1-TM2-EL1-TM3-IL2-TM4-EL2-TM5-IL3-TM6-EL3-TM7-CT

Moreover, the identification of the transmembrane regions (TM1, TM2,

TM3, TM4, TM5, TM6, TM7) also informs the remaining structure of the

GPCR.

The considerable complexity accumulated along the evolutionary history of

GPCRs implies that members of different families share almost no recognizable

sequence similarity, despite being linked by a similar 7TM architecture. The

receptors are activated by different ligands (ions and small and large molecules

such as proteins), some of binding sites are located in the external loop regions

and some in the internal 7TM. The activated receptors then interact with differ-

ent G proteins or other intracellular molecules to effect their diverse biological

responses.

The difficulties of understanding and analyzing computationally the richness

of their evolutionary relationships and the complexity of their interactions with

other molecules are well reported. Many tools have been used to reduce the
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Figure 1.3: GPCR common structure: The transmembrane segments form seven
α-helices in a flattened two-layer cell membrane. The transmembrane regions
are: TM1, TM2, TM3, TM4, TM5, TM6 and TM7.

complex problem of sequence relationship analysis. Unfortunately, identifying

relationships between sequences is clearly not the same as identifying their func-

tions. In that sense and as an example, computational approaches can be useful

for receptor deorphanization, that is, for the characterization ex novo of those

receptors whose endogenous ligand is unknown [66],[8].
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Figure 1.4: Schematic top-view of a GPCR where is visualized the spatial dis-
position in spiral of the seven transmembranes, the three intracellular loops and
the three extracellular loops along the cell membrane.

1.4.2. GPCR sequences homology and heterodimerization

The concept of homology leads to a specific classification of the evolution-

ary relationships between members of protein families. Sequences or structures

are homologous if they are related by evolutionary divergence from a common

ancestor [76]. It means that homology cannot be directly observed, but can be

inferred from calculated levels of sequence or structural similarity. In effect, reli-

able threshold values of similarity are dependent on the mathematical methods

used for analysis. Homologous proteins can be recognized by sequence com-

parison because strong selective constraints prevent amino acid substitutions in
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particular positions from being accepted. The methods developed for comparing

protein sequences seek to infer homology on the basis of the correct alignment of

the residues between proteins attempting to determine all the equivalent residue

positions.

The concept of GPCR heterodimerization was initially proposed in the early

1980’s [1]. Heterodimerization seems to be selective, so that GPCRs will interact

with one type of receptors, but not with others. GPCRs have traditionally been

thought to act as monomers, but this idea has been challenged over the past few

years by accumulating pharmacological and biochemical data [109]. However,

many investigations has evidenced that GPCRs may physically interact with

each other and that oligomeric forms of the same receptor (homodimers) or

different receptors (heterodimers) may be functionally active [24], [132],[3], [124],

[168], [97].

In that sense and focusing in class C of GPCRs, many researchers provided

general results about the heterodimerization in some receptors. Gama and Col-

leagues [60], investigated how the Calcium Sensing receptors (CaR) and the

group I methabotropic glutamate receptors (mGluR1 and mGluR5) can form

heterodimers and also reported their functional positive interaction.

GPCR heterodimerization can in some cases alter the pharmacological prop-

erties of the associated receptors, such that novel pharmacological entities are

created. Since GPCRs are important drug targets in the treatment of many

different diseases, understanding the specificity and physiological significance of

GPCR heterodimerization may lead to insights that will fundamentally impact

the development of future therapeutics, having a great importance since GPCRs

are the molecular targets for numerous therapeutic drugs [161].
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1.4.3. Functional GPCR relationships

One of the recent findings in GPCR research is the clarification of the mech-

anisms of GPCR oligomerization at a molecular level. Many studies have sug-

gested the importance of transmembrane α -helices for GPCR oligomerization.

The common elements of their structural and functional features are responsi-

ble for the presence of detectable patterns of motifs and correlated mutations

that may be revealed from the alignment of the sequences of these complex

biological systems. The decoding of these patterns in terms of structural and

functional determinants can provide indications about the most likely interfaces

of dimerization/oligomerization of GPCRs [51].

The most widely used strategy to link sequence or structure to function,

namely homology-based function prediction, relies on the fundamental assump-

tion that sequence or structural similarity implies functional similarity [6]. To

address this, the application of sequence similarity networks for visualizing func-

tional trends across protein superfamilies from the context of sequence similarity,

can be used. Figure 1.5 shows an example of a GPCR network visualization:

Cytoscape software [36] can be used for bringing data together under a graph-

ical network paradigm. Cytoscape provides an in silico approach to examine and

display protein interaction networks based on available protein-protein interac-

tions characterized from previous biological studies [81], [178]. These networks

contain the proteins of a family with distances calculated from the family align-

ments. For all proteins, the protein family information, species names and the

amino acid types for all the residues annotated with a general residue number

are available as attributes. This allows for complex analyses, such as coloring

proteins by AAs at a certain residue position to compare species or sub-type

specific differences.
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Figure 1.5: Sequence similarity network including the including Amine-binding
and Class A GPCRs. With Cytoscape software, nodes and edges can have
attributes associated with them and subnetworks can be extracted and scored.

1.4.4. Class C GPCRs: the focus of our research

Class C of the GPCR superfamily has become an increasingly important

target for new therapies, particularly in areas such as pain, anxiety, neurodegen-

erative disorders and as antispasmodics, but also potentially for the treatment

of hyperthyroidism and osteoporosis [68].

This class represents a distinct group of the GPCR superfamily, having a

specific extracellular domain known as the Venus flytrap (VFT), which is re-

sponsible for ligand recognition and binding (see figure 1.6). Its conserved 7TM

domain is characterized by intracellular loops and a C-terminal domain. Inter-

estingly, although the ligand binding site is located in the N-terminal domain,

the receptors can be modulated by allosteric modulators (positive allosteric

modulators (PAMs) and negative allosteric modulators (NAMs)) binding to the

7TM domain. [65]

The research in this thesis will pay special attention to metabotropic gluta-
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Figure 1.6: GPCR class C: the 7 loops representing the 7 transmembrane re-
gions; VFT is the Venus Fly Trap and COOH is the C terminus.

mate (mGlu) receptors. The mGlu receptors, which belong to the first group

of GPCR class C, are activated by glutamate, the major excitatory neurotrans-

mitter in the central nervous system, and play important roles in regulating

cell excitability and synaptic transmission. The mGlu receptors are widely dis-

tributed throughout the CNS, and a whole range of neurological and psychiatric

disorders might be treated using drugs that act directly on these receptors.

The wide diversity and heterogeneous distribution of mGlu subtypes provides

an opportunity for selectively targeting individual mGlu subtypes involved in

only one or a limited number of CNS functions for the development of novel

treatment strategies for psychiatric and neurological disorders.
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Class C GPCRs have a rich and deep taxonomy of subtypes. As an ex-

ample, one of class C subtypes (according to GPCRdb), namely Metabotropic

Glutamate Receptors, is further subdivided into eight types (type 1 to type 8),

where type 3, for instance, is in turn subdivided into 6 subtypes (1 to 6). As a

result of this rich characterization, the automatic discriminatory classification

of their subtypes becomes a non-trivial problem that often requires the use of

multivariate data analysis tools.

Note though that this rich characterization is not limited to class C. As Gao

and colleagues [63] demonstrated, GPCR subtyping can be performed at up

to seven increasingly specific levels of detail, from the general level of GPCRs

vs. non-GPCR proteins all the way down to the most specific characterized

subgroups. These results built on previous GPCR hierarchical classification

attempts in [39, 62, 155]. All these studies provide general results at each level

of GPCR representation, but no specific results for class C subtyping, so that

they cannot be directly compared to those obtained in the current study.

The problem of primary sequence-based GPCR classification has been in-

vestigated from the last decade of the 20th century [104], [39]. Computational

intelligence and machine learning approaches have become popular in this do-

main and Support Vector Machines (SVM), in particular, are the method of

choice in many studies [39, 63, 186, 166, 107, 82], including some in which the

type of alignment-free data transformation is not too different from those used

in this study [123, 90]. They are also the analytical building block of GPCR

classification software tools such as PRED-GPCR [70], GPCRPred [17] and of

software tools for the related problem of homology detection from sequences

such as, amongst others, SVM-I-sites [78], SVM-BALSA [201], SVM-n-peptide

[145] and SVM-HUSTLE [177].

Few studies have been devoted to unsupervised approaches to the analysis
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of GPCRs from the point of view of subtype discrimination. Some interesting

examples can be found in [114, 148]. In the work by Lapinsh and colleagues

[114], Principal Component Analysis was applied by calculating principal com-

ponents of physicochemical properties of the amino acids in the sequences. In

[148], Self-Organizing Maps (SOM: a type of unsupervised artificial neural net-

works) were used to cluster and visualize unaligned sequences, aiming to dis-

criminate between subtypes. This last approach is specially relevant to our

research, given that the methods described in Chapter Data Visualization

are functionally-similar probabilistic alternatives to SOM. Both of these studies

analyzed sequences from class A of GPCRs.

Comparatively, little research has specifically been devoted to the sequence-

based classification of class C GPCR subtypes. An advanced variant of Hidden

Markov Models was used in [185] to discriminate subtypes of different GPCR

families including some of those in class C, using data also analyzed in [90].

Despite the data in both studies were extracted from the GPCRdb repository

(described in section 2.1), unfortunately, results are not directly comparable for

two reasons: the data in [185, 90] were acquired from the 2000 database version

(more than a decade older than the one we analyzed) and the evaluation metrics

are completely different. A fast Fourier transformation of classes B, C, D and F

sequences was used in [96] to classify GPCR subtypes using Nearest Neighbor

classifiers. Data were acquired from a 2006 version of the GPCRdb. Only

403 sequences from all classes were available. Semi-supervised classification

of unaligned sequences was performed in [34] with the goal of sequence de-

orphanization.
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1.5. State of research in related areas

Focusing this description in Spain, there exist few groups in the area of

AI with bioinformatics as the main acknowledged application area (an area in

which pharmacoproteomics would be inscribed). Some of the main ones include

Profs. Bielza’s and Larrañaga’s Computational Intelligence Group (CIG) at

Universidad Politécnica de Madrid, whose research includes proteomics [64],

[129]; Dr. J.S. Aguilar-Ruiz’s Bioinformatics Research Group at Universidad

Pablo de Olavide, Sevilla, working mostly in gene expression data analysis and

protein contact prediction [128]; Dr. Lozano’s Intelligent Systems Group in

collaboration with the Biomics Research Group at the Universidad del País

Vasco [14]; and the M4MLab, part of Prof. F. Herrera’s Soft Computing and

Intelligent Information Systems (SCI2S) research group at the Universidad de

Granada [32].

To the best of our knowledge, no Spanish research group in the field of AI

has pharmacoproteomics as a main application area, with exceptions such as

Dr. García Rodríguez’s work [26] at the I2RC research group of Universidad de

Alicante. We should add to this the sporadic forays of groups associated to the

Instituto Nacional de Bioinformática (www.inab.org)

Now broadening the scope, diverse approaches for classifying GPCRs that

resort to ML techniques have been proposed. One from which we could draw

inspiration for some of our developments [209] has recently been proposed by

researchers from the Division of Medical Chemistry at Leiden University and

the Department of Computer Science at Vrije Universiteit, in The Netherlands.

Receptor classification has been studied with SVMs by Strope and Moriyama

at the University of Nebraska-Lincoln, USA [25].

Other applications of ML in the field, mostly related to the analysis of
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GPCRs, include prediction of receptor binding sites and virtual screening at

the Structural Chemogenomics Group, Université de Strasbourg, France [202];

multiplicity and selectivity of GPCR-G protein interaction at the Computational

Biology Research Center, National Institute of Advanced Industrial Science and

Technology in Tokyo, Japan [207], prediction of receptor residues involved in

protein interactions, at the University of Toronto, in Canada (Hui et al 2013)

and at the Korea Research Institute of Bioscience and Biotechnology [46]; or

analysis of multiplicity and selectivity of GPCR-G protein interaction at AIST

in Tokyo, Japan.

Spanish research groups working on GPCRs from bioinformatics (even if

not CI-related) perspective, include two groups working at UAB: the Labora-

tory of Molecular Neuropharmacology and Bioinformatics and the Laboratori

de Medicina Computational. Others include the Grup de Recerca en Bioinfor-

màtica i Estadística Mèdica, at Universitat de Vic; the Computer-Assisted Drug

Design Lab [25] at Universitat Pompeu Fabra (UPF), led by Dr. Pastor, and

more indirectly, Dr. Ismel Brito’s work at IIIA-CSIC, in collaboration with

Dr. Borroto-Escuela at the Karolinska Institutet in Sweden. Internationally, CI

and ML have become a standard for data analysis in bioinformatics [120], but

their application to GPCR analysis is still limited. A brief selection of recent

approaches are listed next: Analysis of specificity determining residues from

MSA [48]; receptor classification using SVM has, for instance, been investigated

in [70]; [186]; [177] and more recently in [89]; [135], for instance. A review on

classification methods for the analysis of GPCRs can be found in [206].
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1.6. Contributions

Over the completion of this Thesis, some of the reported research was pub-

lished. Part of it became the M.Sc Thesis that preceded the current document:

Kernel-based manifold visualization of GPCR sequences. The author

contributed in the publications listed below:

VCORG2011

Year: 2011

Title: A probabilistic approach to the visual exploration of G

Protein-Coupled Receptor sequences.

Authors: Alfredo Vellido, Martha Ivón Cárdenas, Ivan Olier, Xavier Rovira

and Jesús Giraldo.

Type publication: Congress - In Proceedings of the 19th European Sym-

posium on Artificial Neural Networks (ESANN), pp.233-238.

CVORG2012

Year: 2012

Title: Complementing Kernel-Based Visualization of Protein Se-

quences with Their Phylogenetic Tree.

Authors: Martha Ivón Cárdenas, Alfredo Vellido, Ivan Olier, Xavier Rovira

and Jesús Giraldo.

Type publication: Congress - LNCS/LNBI 7548, pp.136-149.

CVORG2012a

Year: 2012

Title: Kernel Generative Topographic Mapping of Protein Se-

quences Authors: Martha Ivón Cárdenas, Alfredo Vellido, Ivan Olier,
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Xavier Rovira and Jesús Giraldo.

Type publication: Book Chapter - Medical Applications of Intelligent Data

Analysis: Research Advancements. In: R. Magdalena-Benedito, E. Soria,

J. Guerrero Martínez, J. Gómez-Sanchis and A.J. Serrano-López (eds.)

IGI Global, pp.194-207, doi: 10.4018/978-1-4666-1803-9.

CVKAG2014

Year: 2014

Title: Exploratory visualization of misclassified GPCRs from their

transformed unaligned sequences using manifold learning tech-

niques

Authors: Martha Ivón Cárdenas, Alfredo Vellido, Caroline König, Rene

Alquézar and Jesús Giraldo.

Type publication: Congress - Proceedings of the 2nd International Work-

Conference on Bioinformatics and Biomedical Engineering (IWBBIO 2014)

pp.623-630.

CVG2014

Year: 2014

Title: Visual interpretation of class C GPCR subtype overlapping

from the nonlinear mapping of transformed primary sequences.

Authors: Martha Ivón Cárdenas, Alfredo Vellido and Jesús Giraldo.

Type publication: Congress - In Proceedings. of the 2nd International

Conference on Biomedical and Health Informatics (IEEE BHI) pp.764-

767.

CVG2014a

Year: 2014
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Title: Exploratory visualization of Metabotropic Glutamate Re-

ceptor subgroups through manifold learning.

Authors: Martha Ivón Cárdenas, Alfredo Vellido and Jesús Giraldo.

Type publication: Congress - 17th International Conference of the Catalan

Association of Artificial Intelligence (CCIA) In L. Museros et al. (Eds.)

Artificial Intelligence Research and Development, IOS Press, pp.269-272.

CVKAG2015

Year: 2015

Title: Visual Characterization of Misclassified Class C GPCRs

through Manifold-based Machine Learning Methods.

Authors: Martha Ivón Cárdenas, Alfredo Vellido, Caroline König, Rene

Alquézar and Jesús Giraldo.

Type publication: Journal - Genomics and Computational Biology, 1(1)

e19 .

KCGAV2015

Year: 2015

Title: Label noise in subtype discrimination of class C G-protein

coupled receptors: A systematic approach to the analysis of clas-

sification errors.

Authors: Caroline König, Martha Ivón Cárdenas, Jesús Giraldo, Rene

Alquézar and Alfredo Vellido.

Type publication: Journal - BMC Bioinformatics, 16(1):314.

CVG2016

Year: 2016

Title: Visual exploratory assessment of class C GPCR extracel-

lular domains discrimination capabilities.

Authors: Martha Ivón Cárdenas, Alfredo Vellido, Jesús Giraldo.

Type publication: Congress - The 10th International Conference on Prac-
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tical Applications of Computational Biology & Bioinformatics (PACBB)

Advances in Intelligent Systems and Computing 477, pp.31-40.

Table 1.3: Summary of Contributions according to Application Tasks (A), Pro-
cessed Data (D), Data Transformation (T) and Applied Methods (M).

Num Publication A D T M

1 VCORG2011 C232 Full-Seq MSA KGTM
mGluR

2 CVORG2012 C232 Full-Seq MSA KGTM
PT

3 CVORG2012a C232 Full-Seq MSA KGTM
mGluR

4 CVKAG2014 C1,510 Full-Seq MSA GTM
Error AAC PT

5 CVG2014 C1,510 Full-Seq AAC GTM
MSA KGTM,EBM

6 CVG2014a C1,510 Full-Seq AAC,DI GTM,
mGluR MSA KGTM,EBM

7 CVKAG2015 C1,510 Full-Seq AAC GTM
Error MSA PT

8 KCVAG2015 C1,510 Full-Seq AAC GTM
Error MSA KGTM,PT

9 CVG2016 C1,510 Full-Seq AAC GTM
EC-Dom MSA KGTM,EBM

The description of A, D, T and M in the previous table is as follows:

1. Application Tasks (A):

Grouping and Visualization of Class C GPCRs family types 232/1,510

sequences (C)

Grouping and Visualization of mGlu Class C subtypes (mGluR)

Analysis and Visualization of error classification (Error)

2. Processed Data (D):
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Full sequence (Full-Seq)

Extracellular domain (EC-Dom)

Transmembrane domain (TM-Dom)

3. Data Transformations (T):

MSA

AAC

ACC

Digram (DI)

4. Applied Methods (M):

GTM

KGTM

PT

Entropy-Based Measures (EBM)

Distribution Consistency (DC)

DSC (Distance Consistency)

1.7. Research Projects and Partners

Much of the work developed in this Thesis has been possible through the

participation in several publicly-funded research projects, which are listed below:

Title: Knowledge Acquisition in Pharmacoproteomics using Advanced

Artificial Intelligence Methods (KAPPA AIM)

Programme: Ministerio de Economía y Competitividad

Project Reference: TIN2012-31377
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Partners: Universitat Politècnica de Catalunya (UPC)

Main researcher: Alfredo Vellido (UPC)

Title: Modelización matemática de las interacciones alostéricas complejas

de los receptores acoplados a proteinas G: aproximaciones mecanísticas y

probabilísticas.

Programme: Ministerio de Economia, Industria y Competitividad - Área

de gestión de Biomedicina

Project Reference: SAF2010-19257

Partners: Universitat Autònoma de Barcelona (UAB)

Main researcher: Jesús Giraldo (UAB)

Title: Validación de mGlu4 como diana terapéutica para el tratamiento

multipotencial de las lesiones medulares.

Programme: Fundació La Marató de TV3

Project Reference: 110230

Partners: Universitat Autònoma de Barcelona (UAB), Institut de Química

Avançada de Catalunya (IQAC-CSIC), Institut de Génomique Fonction-

nelle (IGF), Universitat de Montpellier

Main researcher: Jesús Giraldo (UAB)

Title: Integrated mathematical, computational and biochemical investi-

gation of the crosstalk between metabotropic glutamate receptor 5 and

dopamine D2 receptor: Relevance for the treatment of schizofrenia.

Programme: Ministerio de Economia y Competitividad

Project Reference: SAF2014-58396-R

Partners: Universitat Autònoma de Barcelona (UAB)

Main researcher: Jesús Giraldo (UAB)
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Title: Deciphering the role of peripheral and central nervous system

metabotropic glutamate receptors in neuropathic pain with photoactivable

ligands.

Programme: ERA-NET NEURON Call for transnational research projects

2012

Project Reference: PCIN-2013-018-C03-02. Includes 5 subprojects.

Partners: Universitat Autònoma de Barcelona (UAB), Institut de Química

Avançada de Catalunya (IQAC-CSIC), Institut de Génomique Fonction-

nelle (IGF), CNRS, Universitat de Montpellier, INSERM, Montpellier,

Universitat de Barcelona (UB), IRCCS Neuromed, University La Sapienza,

Rome.

Main researcher: Jesús Giraldo (UAB), from subproject 2 (SP2)
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Chapter 2

GPCR Data Collection and

Transformation Methods

This Chapter summarily describes the materials employed in this Thesis,

that is, the GPCR dataset acquired for our experiments. It also describes the

several sequence transformations that were used to accommodate the symbolic

sequences to the analytical methods.

2.1. Data Collection

The analyzed data were acquired from a GPCR-specific curated informa-

tion repository, the GPCRdb i, an enterprise started in 1993, which is part of

the GLISTEN EU COST Action for the creation of a pan-European multidisci-

plinary research network [199], [83], [138].

ihttp://gpcrdb.org
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The database divides the GPCR superfamily into five major families (A to

E) based on the ligand types, functions, and sequence similarities (summarized

in table 1.1). Within the families, proteins are further divided into groups

(types and subtypes) which bind common agents on the extracellular side of the

membrane.

The acquired set consists of non-redundant primary data: amino acid se-

quences in FASTA [121] format. Each position in a sequence is called a residue,

which in turn, and as mentioned in previous Chapters, may be one of 20 pos-

sible AAs in a symbolic alphabet represented by a standard one-letter code. A

sequence is therefore represented by an ordered combination of these letters.

Table 2.1 shows the nomenclature for each amino acid and also two examples

of sequences are shown in table 2.2.

Table 2.1: List of the 20 possible amino acids (AAs) in the GPCR sequence.

Amino acid name Letter Amino acid name Letter
Alanine A Leucine L
Arginine R Lysine K
Asparagine N Methionine M
Aspartate D Phenylalanine F
Cysteine C Proline P
Glutamate E Serine S
Glutamine Q Threonine T
Glycine G Tryptophan W
Histidine H Tyrosine Y
Isoleucine I Valine V
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Table 2.2: Two sequences from the dataset, shown for illustration. The first
column represents the ID or header of the sequence and the second one represents
the inner sequence. The gaps are represented by ’−’.

Header Sequence
ts1r3−mouse RPKFLAWGEPVVLSLLLLLCLVLGLALAALGLSLVQA

SGGSQFCFGLICLGLFCLSVLFPGRPSSASCLAQQPM
AHLPLTGCLSTLFLQAAETFVESELPLSWNWLCSYLR
GLWAWLVVLLATFVEAALCAWYLIAFPPEVVTDWSLP
TEVLEHCHVRSLGLVHITNAMLAFLCFLGTFLVQSQP
YNRARGLTFAMLAYFITWVSFVPLLANVQVAYCALGI
LVTFHLPKCYVLLWLPKLNTQEFFLGRNAKK

q7pfp4−anoga −FAFYTVVILSLIGIGISVLFLGLNLRF− −−−−ST
ITVCGCMLVYTATILLGLDHSTL− −−−−−STICMRIY
FLSAGFSLAFGSMFAKTFRVYRIFTH− −−−−LISVIG
ALLLVDAFVVSFWMAAD− −−−−−−−−−−
−− −−−−−−−−−−−−−−−C−−−WLG
MLYAYKGLLLLVGVYMAWQTRNVK−−NDSQ
YIGISVYSV VITSASVVVLANLLYERIITAG
FVLISTTATLCLLFLPKI− −−−−−−−−−−−−

This Thesis focuses on class C GPCRs. Seven types of sequences belonging

to this class, summarized in table 2.3, were investigated, namely: Metabotropic

glutamate, Calcium sensing, GABA-B, Vomeronasal, Pheromone, Odorant and

Taste.

Table 2.3: GPCR class C types.

GPCR Family C Description
Type 1 Metabotropic glutamate
Type 2 Calcium sensing
Type 4 GABA-B
Type 5 Vomeronasal
Type 6 Pheromone
Type 7 Odorant
Type 8 Taste

Moreover, were investigated eight types of mGluRs, which belong to the first

group of the GPCR family C (Type 1), namely mGluR1, mGluR2, mGluR3,

mGluR4, mGluR5, mGluR6, mGluR7 and mGluR8. They are grouped into
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three groups summarized in table 2.4, based on their sequence, localization and

signaling pathways.

Table 2.4: GPCR mGluR types.

GPCR mGluR Groups Types
Group I mGluR1, mGluR5
Group II mGluR2, mGluR3
Group III mGluR4, mGluR6, mGluR7, mGluR8

All in all, 5 data sets obtained from GPCRdb were analyzed at different

stages in this Thesis:

Data set 1 consists of 232 GPCRs sequences belonging to class C, which

are further subdivided into 7 types: Metabotropic glutamate, Calcium

sensing, GABA-B, Vomeronasal, Pheromone, Odorant and Taste. Type 3

was excluded from analysis of family C as it was not available in GPCRdb

for the extracted data set. It consists of 76 mGlu, 9 CS, 45 GB, 8 VN,

42 Ph, 12 Od and 40 Ta receptors. The lengths of these sequences varied

from 250 to 1,995 AAs.

Data set 2 consists of 1,510 GPCRs sequences belonging to the previously

listed 7 subtypes of class C. It consists of 351 mGlu, 48 CS, 208 GB, 344

VN, 392 Ph, 102 Od and 65 Ta receptors. The lengths of these sequences

varied from 250 to 1,995 AAs.

Data set 3 consists of 76 mGluR sequences included in data set 1, in turn

sub-divided into 8 subtypes (mGluR1 to mGluR8) plus a group of mGluR-

like sequences. They are distributed as 8 cases of mGluR1, 8 mGluR2, 11

mGluR3, 8 mGluR4, 11 mGluR5, 5 mGluR6, 10 mGluR8 and 15 mGluR-

like. This 8 subtypes can also be grouped into 3 categories according to

sequence homology, pharmacology and transduction mechanism: group I
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mGluRs include mGluR1 and mGluR5; group II includes mGluR2 and

mGluR3; whereas group III includes mGluR4, 6, 7 and 8.

Data set 4 consists of 351 mGluR sequences included in data set 2, in

turn sub-divided into 8 subtypes (mGluR1 to mGluR8) plus a group of

mGluR-like sequences. They are distributed as 33 cases of mGluR1, 26

mGluR2, 44 mGluR3, 23 mGluR4, 32 mGluR5, 15 mGluR6, 4 mGluR7,

98 mGluR8 and 76 mGluR-like. This 8 subtypes can again be grouped

into 3 categories: group I, group II and group III.

Data set 5 consists of a subset of 1,252 GPCRs sequences from the original

1,510 that belong to class C and which includes an extracellular N-terminal

domain description. These are further subdivided into the already de-

scribed 7 subtypes. It consists of 282 mGlu, 45 CS, 156 GB, 293 VN, 333

Ph, 80 Od and 63 Ta receptors. The lengths of these sequences varied

from 250 to 1,995 AAs.

2.2. Data Transformations

There is no biologically-relevant manner of representing the symbolic se-

quences describing proteins using real-valued vectors directly, but there are

many principled sequence-transformation methods that make sequence anal-

ysis possible. In that sense, ML-based techniques require fixed-length vectors

for training. However, protein sequences often have different lengths.

In this thesis, GPCR primary sequences have been transformed for their

subsequent visualization analysis using DR methods. Three existing alignment-

free transformations were used to limit the loss of information, the amino acid

composition transformation (AAC), the auto cross covariance transformation

(ACC) and the digram transformation (2-gram), which are described below.
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Alternatively, the MSA method was applied to allow the application of con-

ventional quantitative analysis techniques, but at the price of risking the loss of

relevant information.

2.2.1. Alignment-free transformations

The amino acid composition (AAC) transformation [171] uses the full-

lenght of unaligned sequences. It consists on calculating the frequencies

of the 20 amino acids of the sequence alphabet (i.e., a N x 20 matrix is

obtained, where N is the number of items in the data set). As such, it

ignores the sequential information itself (i.e., the relative position of the

amino acids). Despite this, its use has previously yielded surprisingly solid

results [171, 27].

The Auto Cross Covariance (ACC) transformation [123], [41] is intro-

duced to transform protein sequences into fixed-length vectors. Since each

residue has many physical-chemical properties, such as hydrophobicity,

hydrophilicity, normalized van der Waals volume, polarity, polarizability,

sequence profile, etc., a sequence can be represented as a numeric matrix.

For this, each sequence is first translated into physico-chemical descrip-

tions by representing each amino acid with the five z-scales derived in

[171], then the Auto Covariance (AC) and Cross Covariance (CC) vari-

ables are computed on the transformed sequences. The AC measures the

correlation of the same descriptor, d, between two residues separated by

a lag, l, along the sequence. The CC variable measures the correlation of

two different descriptors between two residues separated by a lag along the

sequence. From these, the ACC fixed lenght vectors can be obtained. This

transformation generates an N x (z2) matrix, where z = 5 is the number

of descriptors. The maximal lag that was used for the ACC transforma-
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tion is l = 13, which was found in previous studies to provide the best

accuracy for this data set [33], [114].

The digram-frequency transformation (2-gram) is a particular instance of

the more general n-gram transformations. These transformations partially

disregard sequential information to reflect only the relative frequency of

appearance of AA subsequences (i.e., AAC is 1-gram). In the case of the

Digram (2-gram) method, we calculate the frequencies of occurrence of

each of the 400 possible AA pair combinations from the AA alphabet.

Thus, this particular transformation generated an N x 400 matrix.

2.2.2. Sequences Alignment Transformation

Multiple Sequence Alignment transformation (MSA), is generally defined as

the alignment of (usually) many biological sequences (protein or nucleic acid) of

differing lengths. This method encodes structural information in similar protein

sequences and reveals information about the GPCR structure. Then, structural

similarity scores of the aligned sequences can be used in dimensionality reduction

methods.

Many sophisticated MSA algorithms have been described in the literature.

However, choosing the most suitable one for each dataset is by no means a

trivial task. The characteristics of the sequences to be aligned, such as the

shared identity, as well as their number and length, are aspects that have to be

assessed in every MSA-based analysis.

Clustal Omega was the algorithm applied in our study because it is suitable

to the analyzed dataset, which consists of sequences with a large N-Terminal

domain. There are indeed alternative algorithms which could be applied for the

alignment of the analyzed GPCRs that are worth mentioning, such as TCoffee
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[143] and MAFFT with L-INS-i (iterative refinement with consistency from

local pairwise alignment) [92], [93]. Both are recommended for their accuracy

in progressive MSA applied to large datasets. Both have the drawback, though,

that once errors are introduced at an early step of the alignment, they cannot

be removed later [152], [87]. The T-Coffee algorithm uses a tree-based consis-

tency objective function for alignment evaluation and produces an alignment by

combining the output of several alignment methods. The MAFFT algorithm,

in turn, introduces the fast Fourier tranformation (FFT) in sequence alignment

in which an amino acid sequence is transformed into a sequence composed of

volume and polarity values for each residue. Note, in any case, that this thesis

is more focused on the use of unaligned data transformations and that we have

consciously limited our research on alternative MSA methods.

The similarity between two sequences is evaluated by first aligning the se-

quences (or parts of them) and then deciding whether their alignment is more

likely to have occurred because the sequences are related or just by chance.

When two sequences are compared, the basic mutational processes under con-

sideration are substitutions, which change residues in a sequence, and insertions

and deletions, which add or remove amino acids in the sequence. Insertions and

deletions are together referred to as gaps. Then, the score, used to judge the

correctness of the alignment, is modified accordingly to allow the number of

gaps to be limited.

The total similarity score assigned to an alignment will be a sum of terms

for each aligned pair of residues, plus terms for each gap. In a probabilistic

interpretation, this corresponds to the logarithm of the relative likelihood that

the sequences are related, compared to being unrelated. Thus, all the scores

are arranged in a 20 x 20 matrix known as score matrix or substitution matrix,

consisting on arrays of symbols from the 20 amino acid alphabet [43].
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Methods

This Chapter provides, first, an overview of different machine learning tech-

niques of the manifold learning family that are used as methods for simultaneous

data visualization and grouping. This is followed by a brief description of the

phylogenetic trees used for GPCR grouping structure investigation, in the pur-

suit of better interpretability of the results.

3.1. Dimensionality Reduction Techniques for Ex-

ploratory Data Visualization

Visualization is used in this Thesis as an exploratory Data Mining tool,

facilitating us to veer from a strictly deductive mode of research towards an

inductive approach to knowledge discovery. That is, we aim to generate a faith-

ful visualization of the available Multivariate Data (MVD) in the hope that it

will provide us with non-trivial clues regarding data structure that might lead
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to hypothesis generation [94], [196]. By means of ML approaches, visualization

can proof to be extremely informative in domains in which data structure is not

fully known or is uncertain.

The visualization of MVD involves, in one way or another, a process of data

dimensionality reduction. This is a very general problem in pattern recognition

at large and ML in particular for whose solution a broad palette of approaches

and methods have been proposed. Covering them is of course beyond the scope

of this Thesis and, therefore, we will focus on techniques of the manifold learning

family and associated kernel-based methods.

3.1.1. The basic GTM

Generative Topographic Mapping (GTM) [19] is a non-linear latent variable

model of the manifold learning family, with sound foundations in probability

theory. It performs simultaneous clustering and visualization of the observed

MVD through a topology-preserving mapping from a latent space in R
L (with L

being usually 1 or 2 for data visualization purposes) onto the R
D space in which

the observed MVD reside. The mapping that generates the embedded manifold

is functionally described as:

y =Wφ(u), (3.1)

where u is an L-dimensional point in latent space, W is the matrix that gen-

erates the mapping, and φ consists of S basis functions φs(radially symmetric

Gaussians in the standard model for continuous data). To achieve computa-

tional tractability, the prior distribution of u in latent space is constrained to

form a uniform discrete grid of M centres in the form of a sum of delta functions:
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p (u) =
1

M

M
∑

m=1

δ (u− um) , (3.2)

where M is the number of nodes in the grid.

This way defined, the GTM can also be understood as a special case of a

Gaussian mixture model that is adapted to provide MVD visualization. Each

component m in the mixture defines the probability of an observable data point

x given a latent point um and model:

p(x | um,Θ) =

(

β

2π

)
D
2

exp

{

−
β

2
‖x− ym‖2

}

(3.3)

where D is the dimensionality of the data space, and ym =Wφ (um).

The adaptive parameters Θ include W and the common inverse variance β.

A density model in data space is therefore generated for each component m of

the mixture, which, assuming that the observed MVD X consists of N indepen-

dent, identically distributed (i.i.d.) data points xn, leads to the definition of a

likelihood in the form:

L (W,β) =
N
∏

n=1

1

M

M
∑

m=1

p (xn | um,W, β) (3.4)

However, it is more convenient to work with the log-likelihood function:

L (W,β) =

N
∑

n=1

ln

{

1

M

M
∑

m=1

p (xn | um,W, β)

}

(3.5)

The adaptive parameters of the model are usually optimized by Maximum

Likelihood (M-L) using the Expectation-Maximization (EM) algorithm [40]. In

the E-step, the current values of the parameters W and β are used to evaluate
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the posterior probability, or responsibility, that each component m takes for

every data point xn, which, using Bayes’ theorem, is given by

Rnm ≡ p (m | xn) =
p (xn | m)
∑

j p (xn | j)
, (3.6)

in which the prior probabilities P (m) = 1
K have cancelled between numerator

and denominator. Using 3.3, we can rewrite this in the form

Rnm =
exp

{

−β
2 ‖ xn − ym ‖2

}

∑

m exp
{

−β
2 ‖ xn − ym ‖2

} (3.7)

In the M-step of the algorithm we then use these responsibilities to re-estimate

the weight matrix W by solving the following system of linear equations:

(

ΦTGΦ
)

WT
new = ΦTRX, (3.8)

which follow by maximization of the expected complete-data log likelihood. In

3.8, Φ is a K × M matrix with elements Φmj = Φj (um), X is an N × D

matrix with elements xnk, R is a K ×N matrix with elements Rnm, and G is a

K ×K diagonal matrix with elements. The inverse variance parameter is also

re-estimated in the M-step:

1

βnew
=

1

ND

N
∑

n=1

M
∑

m=1

Rnm ‖Wnewφ (um)− xn ‖2 (3.9)

We can initialize the parameters W so that the GTM model approximates

a PCA projection. To do this, we first evaluate the data covariance matrix and

obtain the eigenvectors corresponding to the q largest eigenvalues, and then we

determine W by minimizing the sum-of-squares error between the projections
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of the latent points into data space by the GTM model and the corresponding

projections obtained from PCA. The value of β−1 is initialized to be the larger

of either the q + 1 eigenvalue from PCA (representing the variance of the data

away from the PCA sub-space) or the square of half of the grid spacing of the

PCA-projected latent points in data space.

The main advantage of the GTM over the functionally similar Self-Organizing

Map (SOM) algorithm (described below in some detail)is that the former gen-

erates a density distribution in the input data space so that the model can be

described and developed within a principled probabilistic framework. An exam-

ple of development of the GTM is the use of a Bayesian approach to automatic

regularization and smoothing of the resulting mapping. As part of this process,

the GTM learning parameters calculation is grounded in a sound theoretical

basis. The GTM also provides the well-defined objective function of equation

3.5, whereas the SOM training does not involve the minimisation of any error

function; its maximisation using either standard techniques for non-linear opti-

misation or the EM-algorithm has been proved to converge, unlike in the case

of the SOM.

3.1.2. Foundations of Kernel Dimensionality Reduction

Models

Generally speaking and as applied to our research, the purpose of using an

unsupervised kernel learning method for the analysis of protein sequence data is

finding a group of GPCRs such that similar sequences belong to the same group,

in a way that we are able to find a group of sequences such that similarities are

much greater than the similarities among sequences from different groups.

Unsupervised methods that were capable of providing simultaneous grouping
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and visualization of sequence data would be especially adequate for this type

of problems, as visualization can help us to intuitively interpret the grouping

and classification results by providing intuitive insights about the relationships

between groups. The visualization of the high-dimensional GPCR sequences

would considerably help to understand their global grouping structure.

Most DR strategies, though, have been designed for real-valued data. Need-

less to say, protein symbolic sequences of amino acids do not fit into this descrip-

tion, and alternative strategies are thus required. Over the last few years, several

kernel methods for the visualization (and eventually clustering) of non-standard

multivariate data have been proposed. The use of kernels allows mapping data

implicitly into a high-dimensional space called feature space, in such a way that

computing a linear partitioning in this feature space results in a corresponding

non-linear partitioning in the observed data space.

In this section, we describe the basis of some methods that we consider to

be representative of the current available choices in the field and which should

help to lay the conceptual foundations of the kernel manifold learning models

used in the Thesis.

Kernel Principal Component Analysis

Principal Component Analysis (PCA) [154] is an orthogonal transformation

of the coordinate system in which we describe the observed MVD. The central

idea of PCA is to achieve dimensionality reduction while retaining as much

of the variation present in the data set as possible. Dimensionality reduction

is achieved because a small number of principal components often suffices to

account for most of the variance (structure) in the data.

Data are effectively transformed by projecting them into the subspace spanned
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by the first k eigenvectors of the covariance matrix of the analyzed data set. The

new coordinates are known as the principal coordinates with the eigenvectors re-

ferred to as the principal axes. Details of this technique can be found elsewhere

[86].

Kernel PCA [175], or KPCA, is the application of PCA in a kernel-defined

feature space making use of the dual representation. This method makes possi-

ble to detect non-linear relations between variables in the data by embedding the

data into a kernel-induced feature space, where linear relations can be found by

means of PCA. Also, KPCA can be seen as a way of inferring a low-dimensional

explicit geometric feature space that best captures the structure of the data.

The projection of a new data point φ (x) onto the direction uj in the feature

space, is given by

Puj
(φ (x)) = u

′

jφ (x) =

〈

l
∑

i=1

αj
iφ (xi) , φ (x)

〉

(3.10)

=

l
∑

i=1

αj
i 〈φ (xi) , φ (x)〉 =

l
∑

i=1

αj
iK (xi, x) (3.11)

Hence, we will be able to project new data onto the eigenvectors in the feature

space by performing an eigen-decomposition of the kernel matrix.

Let be Uk the subspace spanned by the first k eigenvectors in the feature

space. Then, we can compute the k-dimensional vector projection of new data

into this subspace as

PUk
(φ (x)) =

(

u′jφj (x)
)k

j=1
=

(

l
∑

i=1

αj
iK (xi, x)

)k

j=1

(3.12)
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where αj = λ
− 1

2

j vj is given in terms of the corresponding eigenvector λj and

eigenvalue vj of the kernel matrix. Equation 3.12 forms the basis of KPCA.

The critical question for assessing the performance of KPCA is the extent to

which the projection captures new data drawn according to the same distribu-

tion as the training data. Therefore, we assess the stability of KPCA through

the pattern function:

f(x) =‖ P⊥
Uk

(φ (x)) ‖2=‖ φ (x)− PUk
(φ (x)) ‖2=

‖ φ (x) ‖2 − ‖ PUk
(φ (x)) ‖2

That is, the squared norm of the orthogonal (residual) projection for the sub-

space Uk spanned by the first k eigenvectors. As always we wish the expected

value of the pattern function to be small

EX [f (x)] = EX

[

‖ P⊥
Uk

(φ (x)) ‖2
]

≈ 0

Thus, capturing a high proportion of the data variance in an small number

of dimensions is an indication that a reliable set of features has been detected

and that the corresponding subspace will capture most of the variance of yet

unobserved test data.

Kernel Self-Organizing Maps

KPCA provides a method according to which we can visualize GPCR se-

quences in a representation space (e.g. spanning only two PCs). Unfortunately,

this visualization through projection is not accompanied by a grouping or clus-
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tering of the sequences. The Self Organising Maps (SOM), also popularly re-

ferred to as Kohonen network [103], [102] is a computational intelligence (CI)

method for the visualization of high-dimensional data that also provides vector

quantization and, in doing so, allows the partition of the data into clusters.

The SOM defines a topologically-ordered mapping that generates the projec-

tion of observed multivariate data items onto a regular, usually two-dimensional

map. This map consists of a regular lattice of processing units, also called neu-

rons (due to the original description of SOM as a bio-plausible model of cognitive

processes). Each of these units is associated to a prototype vector in the ob-

served data space, which can be considered as a representative example of a

given subset of data cases. The map attempts to represent all the available

data cases with optimal accuracy using a restricted set of prototypes. Each

prototype could therefore be understood as a cluster representative.

The resulting map is meant to retain the topological order of the observed

space, so that similar prototypes in the observed space are also close to each

other in the visualization map.

In its standard form, the SOM algorithm distinguishes two stages: the com-

petitive stage and the cooperative stage. In the former, the SOM neuron best

matching a given data case is selected, while, in the latter, the coefficients (or

weights) of the best-matching prototype (and to a lesser extent, those of its

immediate lattice neighbors) are changed to become fractionally closer to that

data case.

More formally, let X = [x1, x2, ...xd]
T

∈ Rd be the input vector. Assume

a discrete lattice of units indexed with a index i. Each unit is associated to a

corresponding weight vector (prototype) W = [w1, w2, ...wd]
T
∈ Rd. Data case

Xn is mapped to that unit whose weight vector is its nearest neighbour, from

among all the weight vectors. This is called the best-matching unit (BMU) and
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is found as: BMUn = argmini‖Xn −Wi‖

Thus, the training process of the SOM algorithm can be summarized as

follows:

For each observed data case, find out the nearest-neighbour (winner) from

among the weight vectors associated to the map.

Update the weights of the winner and all its neighbours according to some

updating criterion.

Iterate the process for all data cases (in an online or batch procedure)

until some convergence criterion is met.

The SOM model, though, has some limitations due to its heuristic nature.

In summary:

Different runs of the SOM algorithm with different initializations yield

different results.

The selection of its parameters (e.g., learning rate, or neighbourhood func-

tion type or size) has no theoretical basis.

There is no guarantee of error convergence for the training procedure.

Neighbourhood preservation is not guaranteed either.

There is no theoretical basis for complexity control (regularization and

overfitting)

Furthermore, the Euclidean distance used to describe similarity in the stan-

dard SOM model is not adequate for the analysis of non-real-valued data such

as symbolic protein sequences.
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A kernel version of the SOM, namely the Kernel Self-Organizing Map, or

KSOM, was proposed by MacDonald and Fyfe [125]. It can be understood as

a kernelization of the k-means clustering algorithm, but with added neighbour-

hood learning. More precisely, a kernel function is applied to transform the

input (observed data) into a high-dimensional feature space, thus transform-

ing the distance metric to nonlinear and adding more flexibility in the vector-

quantization process in order to better capture the data structure [115]. Each

data case x is mapped to the feature space via a nonlinear function φ (x). In

principle each mean can be described as a weighted sum of the observations in

the feature space,

mi =
∑

n

γi,nφ (xn)

where {γi,n} are the constructing coefficients. The algorithm then selects a

mean or assigns a data case with the minimum distance between the mapped

point and the mean,

‖φ (x)−mi‖
2 =‖ φ (x)−

∑

n

γi,nφ (xn) ‖
2= (3.13)

K (x, x)− 2
∑

γi,nK (x, xn) +
∑

n,m

γm,nK (xn, xm) (3.14)

The update of the mean is based on an update expression similar to that of

the SOM:

mi (t+ 1) = mi (t) + Λ [φ (x)−mi (t)] (3.15)

where Λ is the normalized winning frequency of the i-th mean, defined as:
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Λ =
ξi(x),j

∑t+1
n=1 ξi,n

(3.16)

and ξ is the winning counter and is often defined as a Gaussian function between

the indexes of the two neurons. As the mapping function φ is not known, the

updating rule 3.15 is further elaborated and leads to the following updating

rules for the constructing coefficients of the means [125]:

γi,n (t+ 1) =











γi,n (t) (1− ξ) , for n 6= t+ 1

ξ, for n = t+ 1

Note that these constructing coefficients, γi,n, together with the kernel func-

tion, effectively define the kernel SOM in the feature space. The winner selec-

tion, i.e. 3.13, operates on these coefficients and the kernel function. No explicit

mapping function φ is required. The exact means or neuron weights mi, are not

required [211].

There is an alternative direct way to kernelize the SOM by mapping the data

points and neuron weights, both defined in the input space, to a feature space;

this is followed by applying standard SOM in the mapped dot-product space.

The winning rules of this second type of KSOM have been proposed as follows,

either in the input space [153], v = argmin
i
‖x−mi‖ or in the feature space [5],

v = argmin
i
‖φ (x) − φ (mi) ‖

These two rules are equivalent for certain kernels, such as the Gaussian. The

weight update rule proposed in [5] is:

mi (t+ 1) = mi (t) + α (t) η (v (x) , i)∇J (x,mi) (3.17)

where ∇J (x,mi) = ‖φ (x) − φ (mi) ‖
2 is the distance function in the feature
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space or the proposed instantaneous or sample objective function. Also, α (t)

and η (v (x) , i) are, in turn, the learning rate and neighbourhood function.

Note that

J (x,mi) = ‖φ (x)− φ (mi) ‖
2 = K (x, x) +K (mi,mi)− 2K (x,mi)

and,

∇J (x,mi) =
∂K (mi,mi)

∂mi
− 2

∂K (x,mi)

∂mi

Therefore this kernel SOM can also be operated entirely in the feature space

with the kernel function. As the weights of the neurons are defined in the input

space, they can be explicitly resolved.

The standard SOM minimizes the following energy function [113], [75]:

E =
∑

i

∫

Vi

∑

j

η (i, j) ‖ x−mj‖
2p (x) dx

where Vi is the Voronoi region of neuron i.

The extension of this energy function in the feature space is:

EF =
∑

i

∫

Vi

∑

j

η (i, j) ‖ φ (x) − φ (mj) ‖
2p (x) dx

The KSOM can be seen as a result of directly minimizing this transformed

energy. Using the sample gradient on η (v (x) , j) ‖ φ (x)− φ (mj) ‖
2, we obtain:
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∂ÊF

∂mi
=

∂

∂mj

∑

j

η (v (x) , j) ‖ φ (x)− φ (mj) ‖
2 = −2η (v (x) , i)∇J (x,mj) ,

which leads to the same weight update expression for the KSOM as in equation

3.17.

Although KSOM makes the standard Kohonen map much more flexible, it

still inherits the limitations of SOM outlined above. The analysis of GPCR

sequences would benefit from a model with solid grounds on probability theory

that might benefit from the automatic optimization of all its parameters. One

such kernel model of the manifold learning family is proposed and applied to

the analysis of GPCR sequences in the following Chapter.

3.2. Kernel GTM

Kernelization of the GTM

Kernelization is a method originally defined for Support Vector Machines

(SVM) that could be used to develop generalizations of any algorithm that

could be cast in terms of a mathematical dot product. The basic premise is

that a method formulated in terms of kernels can use the one that best suits

the problem and data type at hand. With this purpose, we here define kernel-

GTM (KGTM). It takes advantage of the original GTM functionalities and,

in particular, to achieve a simultaneous clustering and visualization of a wide

variety of data types [146]. The rationale for this extension is that the original

standard GTM lacks the ability to handle more structured data, such as the

strings of symbols of the protein primary sequences.
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The KGTM model as applied to sequence analysis

Let us consider the problem of embedding GPCR sequences in a high-

dimensional space in such a way that their relative position in that space reflects

their similarity and that the inner product between their images in that space

can be computed efficiently. The first decision to be made is what notion of sim-

ilarity should be reflected in the embedding, or, in other words, what features

of the symbolic sequences are informative for such a task.

The meaning of similarity in biological applications can be related to both

functional similarity and symbolic sequence similarity, the latter being measured

by the number of insertions, deletions and symbol replacements in the sequence.

Measuring sequence similarity should therefore provide us with a good indicator

of the functional similarity that we would like to capture.

The similarity between two sequences is usually evaluated by first aligning

the sequences (or parts of them) and then deciding whether their alignment is

more likely to have occurred either because the sequences are related, or just

by chance.

When two sequences are compared, the basic mutational processes under

consideration are substitutions, which change residues (amino acids) in a se-

quence, and insertions and deletions, which add or remove amino acids in the

sequence. Insertions and deletions are together referred to as gaps. Natural

selection has an effect on this process by screening the mutations, so that some

types of changes remain throughout evolution and appear more often than oth-

ers [43].

In order to have some control over the number of gaps, their size, position,

etc., gap penalties are usually introduced. The score, used to judge the correct-

ness of the alignment, is then modified accordingly to allow the number of gaps
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to be limited.

The total similarity score assigned to an alignment will be a sum of terms

for each aligned pair of residues, plus terms for each gap. In a probabilistic

interpretation, this corresponds to the logarithm of the relative likelihood that

the sequences are related, compared to being unrelated. Informally, identities

and conservative substitutions are expected to be more likely in alignments

than appearing by chance and, therefore, contribute positively to the similarity

score. On the contrary, non-conservative changes are expected to be observed

less frequently in real alignments than expected to happen by chance, and so

they contribute negatively to the score.

In order to gauge similarity for each aligned residue pair, we will derive

substitution scores from our probabilistic model. The scores can be arranged

in a matrix. For the protein sequences analyzed in our research, consisting

on arrays of symbols from a 20 amino acid alphabet, a 20 × 20 matrix can be

calculated, known as score matrix or substitution matrix.

A kernel function can be thought of as a measure of similarity between

sequences. Different kernels correspond to different notions of similarity, and can

lead to discriminative functions with different performance. The kernel function

designed to analyze GPCRs with KGTM is a variation on that described in [146],

based on the mutations and gaps between sequences:

K (x, x′) = exp

{

ν
π (x, x′)

√

π (x, x) π (x′, x′)

}

(3.18)

where x and x′ are two sequences and ν is a prefixed parameter; π (.) is a

score function commonly used in bioinformatics and expressed as: π (x, x′) =
∑

r s (xr, x
′
r) − γ, where xr and x′r are the rth residue in the sequences. The
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value of s (xr , x′r) can be found in a mutation matrix [43] and γ is a gap penalty

(usually the number of gaps in sequences). As a contribution, a normalization

factor, defined as the geometric mean of the maximum scores for each of the

sequences, is used in the kernel function instead of the sum used in [146].

The KGTM algorithm

The kernel trick allows the observed data X to be implicitly mapped onto

a high-dimensional feature space H via a nonlinear function: x 7−→ ψ (x). A

similarity measure can then be defined from the dot product in space H as

follows:

K
(

x, x
′

)

=
〈

ψ (x) , ψ
(

x
′

)〉

(3.19)

K is a kernel function that should satisfy Mercer’s condition [176]. It allows

us to deal with learning algorithms using linear algebra and analytic geometry.

In general, this method deals with data in the high-dimensional dot product

space H , usually known as feature space.

The use of kernel trick avoids the explicit estimation of ψ, whose dimension

is usually unknown (or even infinite).

The kernelization of GTM can be implemented by redefining equation 3.3 in

feature space as:

p (ψ (x) | um,Θ) =

(

β

2π

)
D
2

exp

{

−
β

2
‖ψ (x)− ym‖2

}

(3.20)

Note that the prototypes ym are now defined in the feature space and not

in data space, as originally. In most cases, the term ‖ψ (x) − ym‖2 cannot be
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Figure 3.1: Example of kernel function as similarity measure between input
objects, which computes the inner product into a feature space. It shows that
data not linear separable in input space map into some feature space where data
is linear separable.

directly evaluated, given that the function ψ (·) is usually unknown. However,

this term can be also expressed as follows:

‖ψ (x)− ym‖2 = 〈ψ (x) , ψ (x)〉+ 〈ym, ym〉 − 2 〈ψ (x) , ym〉 (3.21)

Here, we assume that, as in KPCA, ym can be expanded on the training

data in the feature space. That is, ym = Ψwm , where Ψ is a D × N -matrix

of vector columns Ψ (xn), n = 1..N , and wm a weight vector. With the aim

of preserving the topology, we correlate the weight vector to the latent space

by wm = Λφm, where Λ is an adaptive weight matrix and φm = φ (um) is the

set of radial basis functions typically used by GTM. Therefore, equation 3.21

becomes:

‖ψ (x)− ym‖2 = Jmn = Knn + (Λφm)
T
KΛφm − 2knΛφm, (3.22)

where K is a kernel matrix with elements Knn′ = 〈ψ (xn) , ψ (xn′ )〉, and row

vectors kn . Thereby Jmn is expressed in terms of the kernel matrix, making the
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definition of function ψ (·) unnecessary. The adaptive parameters of the model

are now Λ and β , which can be optimized by ML using EM, as in GTM. The

likelihood of the model is formulated as follows:

L (Λ, β) =

N
∏

n=1

1

M

M
∑

m=1

p (ψ (xn) | um,Λ, β) . (3.23)

Following the usual EM algorithm, we are specially interested in one of the

results of the expectation step of EM, namely the estimation of the posterior

distribution Rmn = p (um | ψ (xn) ,Λ, β) , defined as:

Rmn =
p (ψ (xn) | um,Λ, β)

∑M
m′=1 p (ψ (xn) | um′ ,Λ, β)

(3.24)

Rmn measures the degree of responsibility (probability) of a point um in the

latent space for the generation of a ψ (xn) GPCR data subsequence. In turn,

each Rmn is an element of a M ×N responsibility matrix R.

In the maximization step we use equation 3.23 as the optimization function

to determine the parameters Λ and β, which results in the following expressions:

ΛT =
(

ΦTGΦ
)−1

ΦTR (3.25)

1

β
=

1

ND

N
∑

n=1

M
∑

m=1

RmnJmn (3.26)

The initial values for the parameters of KGTM are selected using KPCA (a

procedure which is inspired in the PCA-based initialization of parameters for

the standard GTM).
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3.3. Phylogenetic Trees for Hierarchical Data Vi-

sualization

As mentioned in section 1.2, a phylogenetic tree (PT) is a dendrogram-like

graphical representation of the evolutionary relationship between taxonomic

groups. In biology, the term phylogeny refers to the evolution or historical

development of a plant or animal species. Taxonomy is the system of classify-

ing species by grouping them into categories according to their similarities in

their physical or genetic characteristics. Phylogenies are useful for organizing

knowledge of biological diversity, for structuring classifications, and for provid-

ing insight into events that occurred during evolution. Most Pts are rooted,

meaning that one branch (which is usually unlabeled) corresponds to the com-

mon ancestor of all the species included in the tree. However, a tree can be

drawn in any orientation [13]. PTs are not meant to be understood as com-

pletely true and accurate descriptions of the evolutionary paths they represent,

because in any of them there are a number of possible evolutionary pathways

that could produce the pattern of relatedness illustrated. More precisely, and

in the case of protein sequences, they only illustrate the probability that two

sequences are more closely related to each other than to a third one.

In this Thesis, PTs were visualised using two software tools for tree visu-

alization, namely Jalview and Treevolution. Jalview 2.6.1, with the Blocks of

Amino Acid Substitution Matrix 62 (BLOSUM62) [74], [44], which is the stan-

dard for most programs that use this type of matrices. In this application,

sequences are introduced in FASTA format [121] and the trees are calculated

on the basis of a measure of similarity between each pair of sequences in the

alignment. Treevolution i [174] is a software developed in Java that integrates

ihttp://vis.usal.es/treevolution
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the Processing package ii. This tool supports visual and exploratory analysis of

PTs in either Newick or PhyloXML formats as radial dendrograms, with high-

level user-controlled data interaction. The color-guided highlighting of protein

families helps the user to focus on sequence groupings of interest. The PT

visualized in Treevolution is obtained using the software Clustal Omega [181].

This application, in which sequences data are introduced in FASTA format, per-

forms the MSA [50] with the distance-based PT reconstruction method called

neighbor-joining (NJ) [169]. The NJ method provides both the topology and

the branch lengths of the final tree, which is again calculated on the basis of the

BLOSUM62 scoring matrix. Then, a similarity measure based on the aligned

data is given in the PT visualization.

For the experiments in Chapter 4, the MSA-based clustering method named

Unweighted Pair-Group Method with Arithmetic Mean (UPGMA) [183], which

also generates a standard PT, was applied to data set 1. Both distance based

algorithms differ from each other. While UPGMA assumes the very rare con-

dition that the molecular clock is perfect, using a rooted tree which means no

variation in evolution rates across GPCRs, the NJ algorithm does not assume

a perfect molecular clock, uses an unrooted tree and ensures that the clusters

that are merged in the course of tree reconstruction are not only close to each

other (as in UPGMA) but also far apart from the rest. Note, in any case, that

we used PTs in this thesis as a counterpart for the data grouping algorithms

we propose. For this reason, we are mostly interested in their behaviour as

hierarchical grouping techniques, represented in the form of dendograms.

In summary, the PTs and the visualization approaches previously described

in section 3.1 differ from each other. On the one hand, PTs adopts a hierarchical

clustering approach from aligned versions of the sequences and only reflects

relative similarity, whereas the latter do not reflect hierarchy but implicitly,

iihttp://processing.org
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while reflecting similarity in projective form. These approaches, though, nicely

complement each other.
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Chapter 4

Grouping and visualization of

Class C GPCRs family types

In this Chapter, we report our first set of experimental results, which concern

the exploratory visualization and grouping of the different GPCR class C types

using a kernel manifold learning technique, namely KGTM, as well as PTs.

4.1. Results and discussion

The visualization of the class C GPCR sequences is carried out here for data

set 1 as described in section 2.1. These data were transformed using the MSA

method described in section 2.2.2 and then fed to the KGTM model using the

kernel defined by Eq. 3.18 and to the standard PT to generate exploratory

visualizations.
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4.1.1. Visualization of data set 1 using KGTM

The visualization results obtained using KGTM are shown in Fig.4.1. There

is quite clear separation between many of the GPCR class C subtypes, which

are shown in the latent space of the model using the mode-projection, defined

as:

mmode = argmax
m

Rmn, (4.1)

where Rmn is defined in Eq. 3.24.

Many of these subtypes occupy a rather differentiated area on the map,

showing little overlapping. A few of them, though, have clearly overlapping

representations. Both cases could be the source of insight on the peculiarities

of subtype structure. Metabotropic glutamate (subtype 1), GABA-B (3), and

Taste (7) are clearly differentiated from the rest of subtypes, which, in turn,

show significant overlapping between them.

The mode-projection is an intuitive form of visualization that sacrifices detail

in favour of clarity. By using only the maximum of the responsibilities in R,

though, it disposes of much of the rich information that might be contained in

this matrix of probabilities.

There are different ways of visually representing this information. One of

them is the display of maps of probability Ri, for a given sequence i. Sequences

clearly ascribed to a subtype are likely to have their responsibilities concentrated

in only a few modes (latent points), whereas the probabilities of sequences with-
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Figure 4.1: Data visualization on a 10 × 10 KGTM representation map, using
the mode-projection as described in the text. Left) Each of the pie charts corre-
sponds to a latent point, and their size is proportional to the ratio of sequences
assigned to them. Each portion of a chart corresponds to the percentage of
sequences belonging to each subclass, coded in different colours. Right) The
same map is provided without sequence ratio-based size scaling, to ease the
interpretation of the visualization. Labels as described in the text tags.

out clear subtype ascription may be more evenly spread across the map.

We may be also interested in the responsibilities of all sequences of a given

subtype at once. In this case, we would aim to assess if each subtype has its

responsibilities located in a well-defined area of the map or not. For this, we

can use the cumulative responsibility of the sequences that belong to a given

type c, which is defined as a vector CRc =
∑

{n∈c}Rmn, for m = {1, ..,M}.
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Figure 4.2: Visualization of the global CR (on the vertical axis) of the data set
on the representation map. For better appreciation, several viewpoints of the
map are provided.
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This takes us to the possibility of displaying the cumulative responsibility

of all sequences in the data set. With this map of probability, the existence of
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CR peaks and valleys can be explored. The latter are likely to define the model

estimated boundaries between subtypes.

The global CR is displayed in figure 4.2, whereas figure 4.3 provides the vi-

sualization of the CRc for the seven analysed subtypes of the class C. Consistent

with the subtype specific representations in figure 4.3, several local maxima are

shown to correspond to each type, which could be an indication of heterogeneity

within the types. Some deep valleys of probability can be seen in the central

parts of the map in Fig. 4.2, drawing clear boundaries between the types repre-

sented in the periphery of the map and those around its center. Some amongst

the latter are the ones with a higher level of mixing.
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Figure 4.3: CRc representation maps for all GPCR family C types. Labels:
1: Metabotropic glutamate, 2: Calcium sensing, 4: GABA-B, 5: Vomeronasal,
6: Pheromone, 7: Odorant, 8: Taste. Type 1 (Metabotropic glutamate), the
most populated, is well-defined on the top-right corner of the map; type 4
(GABA-B), also isolated and unmixed in the left hand-side of the map; type
6 (Pheromone), strongly focused on the bottom right corner of the map, but
partially overlapping with right: type 7 (Odorant). The layout corresponds to
that of figure 4.1, although with its viewpoint slightly displaced to the left, to
provide some perspective.
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Our results are consistent with early classification studies using other tech-

niques such as Hidden Markov Models [164], thereby validating the present

methodology. Importantly, the proposed method reveals mixing between some

receptor subtypes, suggesting its possible applicability to the study of het-

erodimerization between receptors. Receptor heterodimerization has been con-

firmed experimentally for a number of receptors [12]. KGTM is shown to help

in the exploration of receptors susceptible of heterodimerization and thus be

useful in the quest of more potent and safer drugs.

Similarly to CR representation maps, we are also interested in the visualiza-

tion of the mode projections corresponding to individual subtypes of family C.

This representation also lets us explore the same data in different mappings of

KGTM:
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Figure 4.4: Subtype 1 data visualization on a 10 × 10 KGTM representation
map, using the mode projection.
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Figure 4.5: Subtype data visualization on a 10×10 KGTM representation map,
using the mode projection.
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Figure 4.6: Subtype 4 data visualization on a 10 × 10 KGTM representation
map, using the mode projection.
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Figure 4.7: Subtype 5 data visualization on a 10 × 10 KGTM representation
map, using the mode projection.
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Figure 4.8: Subtype 6 data visualization on a 10 × 10 KGTM representation
map, using the mode projection.
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Figure 4.9: Subtype 7 data visualization on a 10 × 10 KGTM representation
map, using the mode projection.
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Figure 4.10: Subtype 8 data visualization on a 10 × 10 KGTM representation
map, using the mode projection.

4.1.2. Visualization of data set 1 using a standard PT

Before applying the method to construct the PT, data processing was carried

out in order to verify the correct location of the clusters once the tree had

been created. With that purpose, sequences were labelled as well as the final

cluster disposition in KGTM, adding the number of the cluster at the end of

the sequence.

The distance method applied to the referred distance matrix BLOSUM62

was the Unweighted Pair-Group Method with Arithmetic Mean (UPGMA)
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[183], which examines the structure present in a pairwise distance matrix (or

a similarity matrix) and then builds the PT. UPGMA works by progressively

clustering the most similar sequences until all the sequences form a rooted tree.

Ultimately, UPGMA yields a distance-based sequence clustering solution in

the same sense that KGTM provides one. There are radical differences between

them, though. UPGMA is strictly hierarchical in nature and proceeds agglom-

eratively. It means that once agglomerated, clusters cannot be partitioned any

longer throughout the procedure. This introduces a directional bias in the so-

lution. Also importantly, cluster assignments at each level of the tree hierarchy

are completely symmetrical; that is, the relative position of a sequence within

each cluster is arbitrary, which makes the direct interpretation of proximity not

too straightforward, specially for big trees.

On the other hand, KGTM is not hierarchical or agglomerative in nature,

which avoids any directional bias. Also, its visualization map makes the as-

sessment of proximity far more intuitive and devoid of any symmetry-related

artifacts.

In the following figures, we display the KGTM visualization of each of the

GPCR subtypes together with the portion of the PT they correspond to. A

visual comparison of both reveals striking similarities.

GPCR subtype 4 (GABA-B) is neatly separated from the rest of types in the

KGTM representation (See figure 4.11). The PT reproduces this isolation not

only globally (all subtype 4 sequences occupy contiguous tree branch locations)

but even to the detail of individual KGTM clusters (each of the 6 clusters

allocated by KGTM correspond, quite accurately, to contiguous subregions of

the tree).
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Figure 4.11: Data visualization of subtype 4 (GABA-B), using the mode pro-
jection of Eq. 4.1 (left; top: Pie charts with size proportional to the ratio of
sequences assigned to them; bottom: without that proportionality); right: its
corresponding PT.
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Figure 4.12: Data visualization of subtype 8 (Taste), as in previous figure.

Subtype 8 is also clearly isolated from the rest in the KGTM map, with no

mixing in its composition. However, the PT separates it in two clearly differ-

entiated branches. This separation corresponds to two clear cluster locations:

one group of clusters located at the top of the KGTM map and the other at the

bottom (See Fig. 4.12).
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Figure 4.13: Data visualization of subtype 1 (Metabotropic glutamate), as in
previous figure.
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Figure 4.14: Data visualization of subtype 2 (Calcium sensing), as in previous
figure.

A clear neighbourhood relationship between class C GPCR subtype 8 and

subtypes 4, 1 and 6 is also revealed in both KGTM and the PT. A single

sequence belonging to subtype 8 provides us with a very illustrative example:

the PT locates it in a very differentiated tree branch, at the top of the tree in

Fig. 4.12. By itself, it forms KGTM cluster 24, which is clearly isolated from

the rest of subtype 8.

The GPCR subtype 1 also has a very compact phylogenetic representation

that matches overall with the grouping provided by the KGTM model (See

figure 4.13). In particular, we find some isolated subtype 1 sequences in the PT,

located between subtype 6 and subtype 7 sequences, which are assigned to the

isolated location of clusters 80 and 98 in the KGTM map.

Finally, we have subtype 2,5,6 and 7 which show a far more heterogeneous

structure both in the PT and in the KGTM map, although they still preserve

neighbouring relations in both representations (See figures 4.14,4.15,4.16 and
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Figure 4.15: Data visualization of subtype 5 (Vomeronasal), as in previous
figure.

4.17).

Figure 4.18 shows the complete PT representation of the class C GPCR data

analysed in this thesis. The colors in the tree are automatically generated by

the software. Same color is assigned to close leaves (sequences) and branches

(groups of sequences) of the tree, according to the evolutive distance between

sequences. These distances are the numbers attached to the branches. The

software also automatically plots a red line which establishes the depth from

which the color grouping starts. Individual sequences in the leaves of the tree

are labelled according to three items: their ID , the family and the type (e.g.,
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Figure 4.16: Data visualization of subtype 6 (Pheromone), as in previous figure.

Figure 4.17: Data visualization of subtype 7 (Odorant), as in previous figure.
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sequence ts1r3_mouse_003_001 indicates ID: ts1r3_mouse; family: 003 (C);

and subtype: 001).

90



Chapter 4. Grouping and visualization of Class C GPCRs family types

Figure 4.18: The figure has been split due to space limitations. - continues on
the next page -
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- continues on the next page -
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- continues on the next page -
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- continues on the next page -
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- continues on the next page -
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4.2. Measures for Quantitative Assessment of the

Data Grouping Procedure

In order to complement the so far mostly qualitative exploratory visualiza-

tion of the class C GPCR sequences, we describe here several measures for a

quantitative assessment of subtype overlapping: Entropy, Distribution Consis-

tency (DC) and Distance Consistency (DSC).

Entropy: In our experiments, entropy should be understood as a measure

of class C heterogeneity. When (K)GTM map areas are completely subtype-

specific (that is, when no two sequences of different subtypes are assigned to the

same (K)GTM latent point), the corresponding entropy will be zero, whereas

high entropies will characterize highly overlapping subtypes (with sequences of

different subtypes very mixed in the same (K)GTM latent point).

Generally speaking, entropy depends on the probability that the model at-

tributes to the source. In the case of (K)GTM, the total entropy for a given

latent point k in the visualization space will be expressed as

Sk = −

C
∑

j=1

pkj lnpkj, (4.2)

where j is one of the seven GPCR Class C subtypes and pkj =
mkj

mk
, where

mk is the number of sequences assigned to cluster k and mkj is the total number

of sequences assigned to cluster k that belong to subtype j.

Then, the Weighted-Average Entropy assigned to each subtype j, for all

units in the visualization map could similarly be defined as
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Ej
wa = −

∑

k/mkj>0

Sk
mk

Nj
, (4.3)

where Nj is the number of sequences from a subtype j. Finally, the total

Weighted-Average Entropy is defined as

Ewa =
∑

k

Sk
mk

N
, (4.4)

where N is the total number of sequences in the data set under analysis.

Distribution Consistency (DC): The DC measure [10] quantitatively re-

produces a visual assessment method based on a weighted average of the latent

point entropies and is normalized in order to give a score between 0 and 100,

where the highest score means the higher separation. It is definition contains

the Ewa:

DC = 100− 100
Ewa

log(C)
, (4.5)

where C is the number of classes in the dataset. Note that this is an overall

discrimination measure (and therefore does not provide individual measures per

subtype) to be compared to Ewa. Unlike Ewa, the higher the result, the better

the discrimination capabilities it reveals.

Distance Consistency (DSC): The DSC measure [180] is the proportion of

data points xn whose nearest class-center-of-mass belongs to the same class as

xn.

Let us define the centroid distance (CD). It describes the property of class

members that the distance d(x, centr(Ci)) to its class centroid should be always
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minimal in comparison to the distance to all other centroids.

Then, DSC is defined as:

DSC = 100− 100
MCNC

N
, (4.6)

where MCNC = |x′n ∈ ℜ2 : CD(x′n, centr(C(x
′
n)) 6= true| are the misclassi-

fied examples of the nearest centroids and centr(C(x′n)) =
1

|C(x′

n)|

∑

x′∈C(x′

n)
x′,

where x′n = argmax{kn} rkn are the projections of xn in latent space mode

projection.

Again, this is an overall discrimination measure to be compared to Ewa. Like

DC, the higher the result, the better the discrimination capabilities it reveals.

4.2.1. Results and discussion

In the next section, are reported the results of a quantitative estimation of

subtype overlapping using the visual discrimination assessment measures previ-

ously defined. This estimation allows us to focus the analysis not on subtype

discriminability but, instead, on subtype overlapping and its hypothetical con-

sistency over different sequence transformations. We go beyond the previous

experiments reported for data set 1, as we compare the visualizations provided

by GTM and KGTM.

Visualization of data set 2 with GTM and KGTM

The standard GTM is used here to model and visualize the AAC-transformed

unaligned sequences, while KGTM is used here to model and visualize the MSA-

transformed sequences (this is, thus, an unaligned vs. aligned sequences exper-
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imental setting).

Figure 4.19 visualizes the class C GPCR AAC-transformed data set us-

ing the posterior mode projection representation for the standard GTM in a

15 × 15 (K = 225) latent grid. Figure 4.19 (left) reveals the heterogeneity

of the GPCR groupings, with some areas of the mapping concentrating most

sequences, whereas Figure 4.19 (right), with the relative map unit-size effect

removed, suggests that some subtypes are more clearly mixed than others.

Figure 4.20 similarly visualizes the MSA-transformed data set using KGTM.

This time, the level of overlapping seemingly diminishes and subtypes appear

more clearly separated. This is neatly reflected by the mapping of the cumulative

responsibilities CRk =
∑N

n=1 rkn in Figure 4.21, where the probabilities of data

assignment are concentrated in limited spaces of the nonlinear mapping that

correspond to the biggest clusters in Figure 4.19 (left).

Quantifying data set 2 overlapping with Visual Discrimination As-

sessment Measures

For the exploratory visualization of the Class C GPCR sequences, is applied

here an entropy-based measure that is suitable for discrete clustering visualiza-

tions such as those provided by the GTM variants. The entropy is a measure

of Class C heterogeneity. Table 4.3 summarizes the entropies per subfamily Ej

and the Ewa for each of the transformed data sets in our study.

The entropy results reported in Table 4.1 only partially corroborate our start-

ing hypothesis. The overall entropy of the KGTM representation of the MSA-

transformed sequences is lower than the corresponding entropy of the GTM

representation of the AAC transformation, both for the complete sequences and

for the N-terminus. In all cases, the complete sequences yield lower entropies
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Figure 4.19: Visual map of the standard GTM-based posterior mode projec-
tion of the GPCR unaligned data, transformed using AAC. Each pie chart is
a partition by subtype (colour-coded as described in the legend) of the GPCR
sequences mapped onto a given latent space point uk of the 15× 15 grid. Left)
Size of pie charts is scaled in proportion to the ratio of sequences mapped onto
them. Right) the same map without scale to visualize emphasize the partition
of small pie charts.

than the N-terminus; this means that the N-terminus only partially retains the

subtype discrimination capabilities of the complete sequence. The inspection

of the entropies per subtype reveals a less clear-cut picture. For the GTM

with AAC, the use of the N-terminus increases the entropy for the easier-to-

discriminate subtypes (mGlu, CS, GB, Ta), while it decreases the entropy for

the most overlapping ones (VN, Ph, Od). For the KGTM with MSA is precisely

the other way around: the use of the N-terminus decreases the entropy for the

easier-to-discriminate subtypes and increases the entropy for the most overlap-

ping ones. In any case, MSA keeps the entropies of the overlapping subtypes at

rather low values.
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Figure 4.20: Visual map of the KGTM-based posterior mode projection of the
Class C GPCR data, transformed using MSA. Representation as in Fig.4.19

Figure 4.21: Colour-coded visual representation of the cumulative responsibility
for KGTM. Dark red areas correspond to the highest probability of sequence
assignment and, therefore, to dense concentrations of GPCR sequences, whereas
deep blue areas correspond to the lowest probability (data empty spaces).

Visualization of data sets 2 and 5 with GTM and KGTM

As data set 5 is a subset of data set 2, we hypothesize that the results of

class C GPCR subtype discrimination should differ depending on whether we
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Table 4.1: Entropies for each of the 7 subtypes for N-terminal Domain and
Complete GPCR.

GPCR Complete

MGlu CS GB VN Ph Od Ta Ewa

AAC 3.65 0 2.75 15.05 15.90 4.36 0.43 0.37
MSA 3.43 1.89 3.56 2.34 3.63 2.99 0.91 0.18

N-terminal Domain

MGlu CS GB VN Ph Od Ta Ewa

AAC 5.91 0.35 3.40 9.52 12.23 4.20 2.38 0.46
MSA 2.98 1.42 1.42 8.10 9.07 4.7 0 0.26

use the complete primary sequence or, instead, we use only the extracellular

N-terminus domain of the receptor. Related to this, we also hypothesize that

the N-terminus should be almost as good as the complete sequence in terms of

subtype discrimination. The reason for this lies on VFT including the site where

endogenous ligands for class C GPCRs bind and, as a consequence, a diversity

in AA sequence is expected. A secondary hypothesis is that these differences

should intuitively be observed through manifold learning-based visualization.

Our experiments are organized according to two different dimensions. First,

we analyzed the available sequences according to two different transformations

using two different methods: unaligned sequences are transformed according to

the AAC method and analyzed using the standard GTM, while KGTM is used

to analyze sequences transformed by MSA. Second, we use two approaches to

assess the results: exploratory visualization for a qualitative interpretation of the

global (sub)structure of subtypes, complemented by a quantitative assessment

of the level of subtype discrimination, based on an entropy measure.

The mode projection of the AAC-transformed data on the standard GTM vi-

sualization map is shown in Fig.4.22a for the complete Class C GPCR sequences
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and in Fig.4.22b for the extra-cellular N-terminus of the same sequences.

Correspondingly, the mode projection of the MSA-transformed data on the

KGTM visualization map is shown in Fig.4.22c for the complete class C GPCR

sequences and in Fig.4.22d for the extra-cellular N-terminus of the same se-

quences.

In order to visually assess the level of subtype mixing in each of (K)GTM

latent points, modes are again represented as pie charts. These mode projections

are, in the end, a simplified representation in which each sequence is mapped

to the latent point of highest responsibility rkn. We also again use the richer

probabilistic information provided by the model to inspect the responsibility

maps of individual sequences through visualization of the distribution of rkn

values on the (K)GTM maps. Some examples are shown in Fig. 4.24.

The mode projections for all data sets in Figure 4.22 reveal some strik-

ing differences. Overall, the GTM representation of the AAC-transformed se-

quence projections is far more distributed than that of the KGTM of the MSA-

transformed sequence projections, with many latent points taking responsibility

for only a few sequences. Interestingly, and specially for the GTM, the N-

terminus projection is much more compact than that of the complete sequence,

involving far fewer latent points. In all cases, a limited number of latent points

concentrates a relatively large number of sequences; this is particularly the case

in the KGTM MSA-transformed representation.

The examples of individual rkn in Figure 4.24 correspond to cases from dif-

ferent sub-families in which the probability of assignment of sequences to latent

points is clearly multi-modal. This illustrates the way the models handle un-

certainty. Multi-modal cases with lower maxima are most frequent in subtypes

with high levels of overlapping, such as VN, Ph and Od.
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MAP with "unit size" scale MAP without "unit size" scale

(a) GTM visualization map for AAC-transformed complete sequences

MAP with "unit size" scale MAP without "unit size" scale

(b) GTM visualization map for AAC-transformed N-terminals

MAP with "unit size" scale MAP without "unit size" scale

(c) KGTM visualization map for MSA-transformed complete sequences

(d) KGTM visualization map for MSA-transformed N-terminals (left and centre).

Figure 4.22: Visualization maps of the different data mode projections. The
left and right columns display the same data representation; their difference
is that, in the maps on the left, the size of the pie chart encodes the ratio of
sequences assigned to a given latent point, therefore providing visual clues about
the spatial distribution of relative data density. Subfamily labels for all maps
are shown in the bottom-right legend.
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(a) GTM Complete
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(d) KGTM N-terminal

Figure 4.23: Map of the CR (vertical axis) over the (K)GTM latent visualization
space for all datasets.

Table 4.2: The Ewa, DC and DSC overall measures for the complete GPCR,
the N-terminal domain and the 7TM domain.

GPCR Complete N-terminal Domain 7TM Domain

Ewa DC DSC Ewa DC DSC Ewa DC DSC

AAC 0.37 80.86 39.21 0.46 76.17 36.98 0.58 70.41 28.99
MSA 0.18 90.54 52.32 0.26 86.65 48.40 - - -

Quantifying data set 2 overlapping with Visual Discrimination As-

sessment Measures

Table 4.2 summarizes the overall Ewa, the DC and DSC measures for the

complete GPCR, the N-terminal extra-cellular domain and the 7TM domain,

for some of the data transformations and GTM variants.
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(a) XP002942445, complete sequence
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(b) XP002942445, N-terminus sub-
sequence
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(c) XP002940939, complete sequence
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(d) XP002940939, N-terminus sub-
sequence

Figure 4.24: Visualization of the GTM responsibility rkn for some example
AAC-transformed sequences (standard database names included) from subfam-
ilies VN (a and b) and Ph (c and d).

In more detail, Table 4.3 summarizes the entropies Ej , the DC and the

DSC per subtype, for some of the transformed datasets in our study. Statistical

tests to assess the significance of the differences between results are reported

in Table 4.4. They include tests comparing results obtained with KGTM and

MSA against those obtained with GTM and AAC, and also comparing results

obtained using the complete sequence and specific domains. T-tests were used

for Ewa and DC, while Fisher’s test was used for DSC.

The results reported in Table 4.2 indicate that the use of KGTM with the

MSA transformation provides better discrimination results than the use of GTM

with the AAC sequence transformation, in terms of both the Ewa and DC
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Table 4.3: Subtype entropies, DC and DSC measures for the complete GPCR,
the N-terminal domain and the 7TM domain.

GPCR Complete - AAC

MGlu CS GB VN Ph Od Ta

Ej
wa 0.36 0.59 0.42 0.56 0.58 0.67 0.51

DC 81.31 69.88 78.45 71.28 70.41 65.56 73.70
DSC 44.73 85.41 31.25 36.91 33.67 15.68 83.07

GPCR Complete - MSA

MGlu CS GB VN Ph Od Ta

Ej
wa 0.21 0.51 0.34 0.33 0.21 0.37 0.31

DC 89.36 73.84 82.48 82.84 89.07 81.10 84.04
DSC 26.49 79.16 67.78 36.62 76.78 39.21 78.46

GPCR NT Domain - AAC

MGlu CS GB VN Ph Od Ta

Ej
wa 0.53 0.74 0.35 0.63 0.65 0.84 0.89

DC 72.80 62.11 81.94 67.53 66.43 56.63 54.02
DSC 51.42 48.89 25 45.73 17.41 30 65.07

GPCR NT Domain - MSA

MGlu CS GB VN Ph Od Ta

Ej
wa 0.36 0.64 0.24 0.46 0.47 0.87 0

DC 81.27 67.17 87.73 76.12 75.87 55.01 100
DSC 90.07 75.55 94.87 8.53 23.12 8.75 96.83

GPCR 7TM Domain - AAC

MGlu CS GB VN Ph Od Ta

Ej
wa 0.65 0.76 0.73 0.79 0.81 0.89 0.84

DC 66.78 61.18 62.50 59.23 58.17 53.97 56.99
DSC 43.62 80 38.46 2.73 27.02 5 66.67

measures. These differences are statistically very significant according to the

t-tests compiled in Table 4.4 (first two rows). They are still very significant

in terms of Fisher’s test with DSC for NT and somehow less significant for

the complete sequence. The use of KGTM with MSA is therefore validated.

Note that this conclusion is consistent with the qualitative visual assessment

previously discussed.

Results also provide support to the first of the working hypotheses H2.3 and

H2.4 stated at section 1.2.1, which stated that the results of Class C GPCR

subtype discrimination, as seen from the natural structure of the primary se-

quence data transformations revealed by unsupervised DR techniques, should
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Table 4.4: Results of statistical tests applied to the comparison of results: both
to the comparison of DR methods with data transformation and to the com-
parison of the use of different domains or the whole sequence. The use of p*
indicates that the test of differences is moderately significant. The use of p**,
in turn, indicates that the differences are not statistically significant according
to the test.

STATISTICAL TESTS

Comparison EwaT-Test DC T-Test DSC Fisher’s -Test
Methods/Domains p-value p-value p-value

MSA-Complete vs. p < 0.0001 p < 0.0001 p* = 0.0390
AAC-Complete

MSA-NT vs. p < 0.0001 p < 0.0001 p < 0.0001
AAC-NT

MSA-Complete vs. p < 0.0001 p < 0.0001 p < 0.0001
MSA-NT

AAC-Complete vs. p < 0.0001 p < 0.0001 p** = 0.2381
AAC-NT

AAC-NT vs. p < 0.0001 p < 0.0001 p < 0.0001
AAC-7TM

AAC-Complete vs. p < 0.0001 p < 0.0001 p < 0.0001
AAC-7TM

differ depending on whether we used the complete primary sequence of these

membrane proteins or, instead, we used only the extracellular N-Terminus or

the 7TM domain.

The results in Table 4.2, corroborated by the t-tests for the Ewa and DC

measures and Fisher’s test for DSC in Table 4.4 (third to fifth rows), indicate

significant discrimination capabilities, with the complete sequence providing

significantly better discrimination than the N-terminal domain and N-Terminus,

in turn, better discrimination than the 7TM domain. This is the case both for

KGTM with MSA for all measures and for GTM with AAC for all measures

but DSC, for which the difference is not deemed to be significant.

These very same results mostly disqualify hypothesis H2.4, which stated that

the use of the N-Terminus on its own, given the particularities of this domain,
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should yield comparable results to the complete sequence in terms of subtype

discrimination. Discrimination appears to be significantly better when using

the complete sequence, although this statistical significance is lost according to

DSC when using the AAC transformation. Supervised analysis using SVMs in

[108] with AAC transformed data also yielded a slight advantage for the use of

the whole sequence (94% accuracy) over the use of the N-Terminus (93%).

A more nuanced interpretation can be made when exploring the entropy, DC

and DSC values per class C subtype, as reported in Table 4.3. KGTM with

MSA yields better results in most subtypes than GTM with AAC for Ewa and

DC, but results for DSC are mixed: for the complete sequence, KGTM with

MSA yields better results for subtypes that are comparatively more difficult

to discriminate such as GB, Ph and Od, whereas for the N-Terminus, it yields

better results only for the easier to discriminate, such as MGlu, CS and Ta.

A similarly inconsistent pattern occurs for DSC when comparing results

obtained using the complete sequence with results obtained using only the N-

Terminus, both for KGTM and GTM. This is overall an indication that DSC

is not an adequate metric for this particular problem.

The results reported in Table 4.3 are also overall consistent with those ob-

tained in previous studies using supervised methods to analyze the same class C

GPCR database, applying SVM with feature selection [107], where the following

Matthew’s Correlation Coefficient (MCC) values (maximum value 1) were ob-

tained per subtype: MGluR (0.95), CS (0.93), GB (0.98), VN (0.89), Ph (0.86),

Od (0.79) and Ta (0.99). This is a clear indication that, beyond potential se-

quence mislabelings in the database, each class C subtype has an inherently

different level of discriminability according to the sequence characteristics.
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Grouping and visualization of

mGlu subtype sequences

In this Chapter, we specifically focus on one of the most interesting and

richly structured of class C subtypes, namely the mGlu receptors.

As described in section 2.1 from Chapter 2, the mGlu receptors, widely

distributed throughout the CNS, play a relevant role in the regulation of cell

excitability and synaptic transmission. They are divided into three groups (I,

II, III) including eight subtypes distributed as follows: Group-I: mGlu1, mGlu5;

Group-II: mGlu2, mGlu3; Group-III: mGlu4, mGlu6, mGlu7 and mGlu8.
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5.1. Results and discussion

5.1.1. Subtyping mGlu receptors

In this section, we report the visualizations of data sets 3 and 4, previously

described in section 2.1. Data set 3 is visualized using the MSA transformation

(see section 2.2.2), while data set 4 is visualized using AAC and Digram trans-

formations (see section 2.2.1). Firstly, data set 4 is visualized using the posterior

mode projection-based KGTM. Then, the several subtypes of the correspond-

ing mGlu receptors are displayed in figure 5.1. It reveals the distribution of the

eight different subtypes extracted from the GPCRdb database.

It must be noted that in the primary data set, the mGlu7 subtype was

absent. Instead, a new subtype denoted as mGluLike was present. It may be

assumed that the mGluLike subtype includes receptors that are classified as

mGlu receptors by GPCRdb, but without a fully true genetic adscription.

Strikingly, KGTM separates quite well each of the eight subtypes of mGlu

receptors. Further detail of the mapped location of each subtype can be appre-

ciated in the display of Fig. 5.1.

It is worth mentioning that the plot of mGlu subtypes displayed in Fig. 5.1

has been accomplished by the KGTM model previously obtained for class C.

In other words, the KGTM model was not trained again on the mGlu subset;

instead, the other types were made “silent” and sequences were labelled accord-

ingly with their mGlu receptor subtype identity.
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Figure 5.1: Mode projection of the mGlu receptor subtypes. Labels: 1: mGlu1,
2: mGlu2, 3: mGlu3, 4: mGlu4, 5: mGlu5, 6: mGlu6, 8: mGlu8, 9: mGluLike.
The analysed data set has no mGlu7 subtype cases. There is a visible separation
of the subtypes in three main groups, according to the amino acid sequence
similarity, agonist pharmacology and the signal transduction pathways to which
they couple: group I (mGlu1, mGlu5), group II (mGlu2, mGlu3, mGluLike) and
group III (mGlu4, mGlu6, mGlu8)

According to this visualization, the mGlu receptor sequences of subtype

9 corresponding to mGluLike, assigned to cluster 83 are very homogeneous.

They include the subtypes mGluLike2 and mGluLike3 and are well-located

between mGlu2 and mGlu3. On the other hand, the mGluLike groups assigned

to clusters 80 and 98 are quite far from subtype 1- mGlu receptors, but very

close to the subtypes 5 (Vomeronasal), 6 (Pheromone) and 7 (Odorant) (See

Fig. 5.2 for complete detail), taking into account their neighbourhood. This

suggests that some GPCRdb assignments of mGluLike receptors to the mGlu

group might be incorrect, and that they might in fact be smell sense receptors.

This is only a hypothesis and would require further testing.
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Figure 5.2: General hierarchical visualization of GPCR Family C types, includ-
ing detailed subtyping of mGlu receptors.
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Furthermore, data set 4 is visualized using the standard GTM-based poste-

rior mean projection, the KGTM mode projection and the Radial PT. All GTM

maps in the latent visualization space were created using a regular square grid

of 15 × 15 points. The standard GTM visualization of the AAC-transformed

mGluR sequences according to their posterior mean projection is shown in Fig.

5.3, whereas the similar visualization of the digram-transformed sequences is

shown in Fig. 5.4.

Figure 5.3: Visualization map of the standard GTM-based posterior mean pro-
jection of the mGluR AAC-transformed sequences. Different mGluR subtypes
are identified by colour.

Given that, for KGTM, all the conditional probabilities (responsibilities) rkn

are sharply peaked around the latent points uk, the visualization of the mGlu

receptors is better and more intuitively represented by their posterior mode

projections as shown in Fig. 5.5.

All GTM visualizations provide interesting insights about the inner grouping

structure of mGlu receptors. The first overall finding is that most subtypes show

a reasonable level of separation, but none of them avoids some level of subtype

overlapping. Interestingly, most subtypes show clear inner structure themselves,
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Figure 5.4: Visualization map of the standard GTM-based posterior mean pro-
jection of the mGluR digram-transformed sequences, as in previous figure.

which indicates that lower levels of sub-grouping might be worth investigating

(for instance, through hierarchical clustering strategies). As an example, in

Fig. 5.3, which corresponds to the AAC transformation, mGlu8 sequences are

separated in at least four clearly delimited sub-groups. mGlu1, in turn, show

at least one group around the center of the map and a second in its top-right

corner. mGlu2, instead, seems to be mostly concentrated in the bottom-right

corner.

The differences between the AAC sequence mapping and its digram coun-

terpart in Fig. 5.4 are noticeable, although there are also clear coincidences,

such as the neat separation of the rather heterogeneous mGluR-like sequences

in the bottom-left quadrants of both maps, with the mGlu3 subtype located

nearby. Overall, the differences indicate that the visual representation of these

data and, consequently, the type of knowledge that can be inferred from it is at

least partially dependent on the type of sequence transformation.

This is further corroborated by the KGTM visualization in Figure 5.5, using

the posterior mode projection. The mapping differs in many ways from the
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Figure 5.5: KGTM-based visualization of the mGlu receptor subtypes through
their posterior mode projection. Left) Individual pie charts represent sequences
assigned to a given latent point and their size is proportional to the ratio of
sequences assigned to them by the model. Each portion of a chart corresponds
to the percentage of sequences belonging to each mGlu. Right) The same map
without sequence ratio size scaling, for better visualization. Subtype colouring
as in Fig. 5.3

.

previous ones, although many characteristics remain consistent: the mGluR-

like and mGlu3 are again located nearby, whereas the mGlu1, mGlu8 and others

show evidence of inner sub-structure.

As stated in section 2.1, the eight main mGluR subtypes are commonly

grouped into three categories: type I, including mGlu1 and 5; type II, including

mGlu2 and 3; and type 3, including mGlu4, 6, 7 and 8. The visualizations in

Figures 5.3, 5.4 and 5.5 provide only partial support to these categories. Type

I seems quite coherent in all representations, regardless data transformation.

Type II, instead, is not clearly homogeneous according to any of them. Simi-

larly, limited homogeneity is observed in the four subtypes of Type III for all

transformations.

In order to quantify the level of subtype overlapping to support the prelim-

inary visual impressions, we again used the previously defined entropy-based

measures. The results for the standard GTM representation of the AAC- and

Digram-transformed sequences, as well as for the KGTM MSA-transformed se-
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quences are summarized in Table 5.1.

Table 5.1: Entropies per mGluR and mGluR-like subtype, together with total
entropy for each of the data transformations and GTM variants.

mGluR subtype GTM map entropy
GTM-AAC GTM-digram KGTM

mGluR1 0.35 0.77 0.50
mGluR2 0.41 0.55 0.65
mGluR3 0.69 0.53 0.51
mGluR4 0.65 0.59 0.47
mGluR5 0.55 0.50 0.53
mGluR6 0.19 0.80 0.57
mGluR7 0.41 0.69 0.64
mGluR8 0.33 0.48 0.27

Like 0.48 0.35 0.50
Total Entropy 0.31 0.37 0.33

Beyond the qualitative appreciation of similarities and dissimilarities be-

tween sequence sub-groups, the entropy measure can provide the analyst with

an at least overall measure of subtype location specificity, which should be a

clear clue about potential subtype discriminability in a classification setting.

The results summarized in Table 5.1 are quite telling. First, because the overall

entropy is not too dissimilar between sequence transformations; despite this, the

transformation yielding lowest entropy (and, therefore, highest level of subtype

discrimination) is, unexpectedly, the simplest one: AAC, which does not even

consider ordering in the receptor sequence. It is clear, in any case, that subtype

overlapping is substantial. Second, because the dependency of results on the

type of sequence transformation is clearly confirmed: the entropy levels of sev-

eral subtypes differ quite widely between transformations (although in subtypes

with a low number of sequences, such as mGluR6, these differences should be

considered with caution), while the entropy level ranking differs completely.

Complementary grouping-based visualization is provided by Treevolution

PTs. Figures 5.6, 5.7 and 5.8 illustrate their use. In Fig. 5.6, we see mGluRs
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in the context of the complete class C GPCR set (1,510 sequences). In Figures

5.7 and 5.8, we show the Type III subtypes (mGluR4, mGluR6, mGluR7 and

mGluR8) again in the context of the complete class C GPCR set. For the sake

of brevity, further subtypes are not reported.

Figure 5.6: PT of the mGluR sequences in the context of class C GPCRs. Each
terminal node in the exterior of the hierarchical radial display corresponds to
an individual sequence.

The visualization of the mGluR using a radial PT, in Fig. 5.6, is a good

complement for the GTM-based visualization. It shows how the mGluR sub-

types (in blue, top right) are neatly distributed in two differentiated sectors of

the tree, which is coloured according to its common ancestors and the depth

level. This implies that, in some cases, mGluR inter-subtype similarity is lower

than the similarity between mGluR and other class C GPCR subtypes.

Figures 5.7 and 5.8, which represent through PTs the mGluR subtypes cor-

responding to type III, provide some explanation for this: All type III sequences

reside in only one of this sectors. That is, the PT models them as having
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Figure 5.7: PT highlighting mGlu4 and mGlu6, part of Type III, in the context
of class C GPCRs.

Figure 5.8: PT highlighting mGlu7 and mGlu8, part of Type III, in the context
of class C GPCRs.

common ancestors with a high degree of dependency. Curiously, mGlu4 and

mGlu6, on one side, and mGlu7 and mGlu8, on the other, overlap extensively.

Note that this is partially in contradiction with the visualizations shown in

previous figures, in which overlapping between mGlu4 and mGlu6 is hardly ob-

served, whereas overlapping between mGlu7 and mGlu8 can be observed in the

standard GTM visualizations based on the AAC and Digram transformations.
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Analysis and Visualization of

Classification Errors in Class

C GPCRs

Previous research employing supervised and semi-supervised learning meth-

ods for the classification of the different subtypes of class C GPCRs has revealed

the existence of a soft upper boundary on the accuracy that can be achieved

in their discrimination from the unaligned transformation of their sequences

[33, 106].

Given that the target of this thesis is the exploration of data sequences us-

ing unsupervised learning methods oriented towards sequence visualization, we

investigate the characteristics of such boundary by focusing on those sequences

that were consistently misclassified using supervised methods.

These sequences are visualized, again, using nonlinear dimensionality reduc-
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tion and PTs, and then characterized against the rest of the data and, par-

ticularly, against the rest of cases of their own subtype. This should help to

discriminate between different types of misclassification and to build hypothe-

ses about database quality problems and the extent to which GPCR sequence

transformations limit subtype discriminability. The reported experiments pro-

vide the initial proof of concept for the proposed method.

Given the exploratory goal of this experiments, we perform them using the

very simple AA sequence transformation that considers only the relative fre-

quencies of appearance of the 20 AAs in the sequence (thus ignoring the se-

quential order). Recent analysis using semi-supervised classification of class

C GPCRs [33] with this type of transformation showed that accuracy reaches

an upper bound (between 80-85%) that it is not significantly increased when

more sophisticated physico-chemical transformations of the sequences are ap-

plied (never reaching 90%). Although the simplicity of this transformation also

risks losing relevant information, recent experiments using supervised Support

Vector Machine (SVM) classifiers [106] yielded best results in the area of 88%.

A detailed review about this type of classification can be found in [166].

To investigate this classification bound, we present in this Chapter a method

that combines GPCR classification with MVD visualization using the unaligned

transformed sequences as a starting point.

Firstly, we consider the classification of a class C GPCR sequence database

into each of the seven characteristic subtypes and focus on misclassified cases.

Secondly, the same sequences are visualized using GTM which is described in

section 3.1.1. The misclassified cases are then visually isolated and characterized

against the rest of the data and, particularly, against the rest of cases of their

own subtype. This should help us to differentiate between cases that are likely

to be misclassified due to their similarity to overlapping sequences belonging to
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Table 6.1: Number of class C misclassified sequences, listed by subtype.

Number of
Subtype misclassified

sequences
mGlu 16
CaS 5

GABA-B 8
VN 46
Ph 48
Od 35
Ta 5

Total 163

other subtypes (that is, borderline cases) from those which are misclassified due

to an apparently clear wrong subtype assignment. A further visual characteri-

zation of the misclassified cases is carried out using the PT technique detailed

in section 3.3.

6.1. Results and discussion

6.1.1. List of class C misclassified cases

Experiments were performed for data set 2, which corresponds to the class

C family subtypes listed in section 2.1. A batch of previous supervised classi-

fication experiments using SVMs were used as the starting point [106]. Such

experiments involved an iterative 5-fold cross-validation (CV) process, splitting

the data set into 5 randomly stratified folds where 4 folds were used for the

construction of the model and the remaining one to evaluate the classification

results. This process was repeated 100 times and, in these experiments, different

sequences from each of the seven GPCR subtypes were consistently misclassified

(see summary information in Table 6.1) in the sense that these sequences were

most often classified to the same wrong class.
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Table 6.2: Misclassified mGlu sequences. List of the 16 misclassified mGlu,
including their GPCRdb identifier (ID), their class as predicted by SVM and
their sequence name.

Sequence ID Predicted subtype Sequence name
39 Od a8dz71−danre
40 Od a8dz72−danre
45 Od q5i5d4−9tele
46 Od q5i5c3−9tele
58 Od a7rr90−nemve
60 GABA-B a7rrr9−nemve
105 GABA-B d1lx28−sacko
142 GABA-B XP−002735016
206 GABA-B XP−968952
59 VN a7rsa2−nemve
66 VN b3rud7−triad
140 VN XP−002161343
141 VN XP−002732197
244 VN a7s4n3−nemve
135 Ph a7ria2−nemve
259 Ph q62916−rat

Total mGlu 16 sequences

Table 6.3: Misclassified CaS sequences. List of the 5 misclassified CaS, includ-
ing their GPCRdb identifier (ID), their class as predicted by SVM and their
sequence name.

Sequence ID Predicted subtype Sequence name
372 mGlu XP−002123664
352 VN q5i5c8−9tele
353 VN a8e7u1−danre
370 Ph XP−001515899
399 Ph XP−002740613

Total CaS 5 sequences
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Table 6.4: Misclassified GABA-B sequences. List of the 8 misclassified GABA-
B, including their GPCRdb identifier (ID), their class as predicted by SVM and
their sequence name.

Sequence ID Predicted subtype Sequence name
521 mGlu XP−002123664
530 mGlu q5i5c8−9tele
542 VN a8e7u1−danre
414 mGlu a7rpp5−nemve
494 mGlu b3rj55−triad
486 mGlu b3rit4−triad
475 mGlu a7s6r9−nemve
535 mGlu XP−002738008

Total GABA-B 8 sequences

Table 6.5: Misclassified Ta sequences. List of the 5 misclassified Ta, includ-
ing their GPCRdb identifier (ID), their class as predicted by SVM and their
sequence name.

Sequence ID Predicted subtype Sequence name
1450 GABA-B q4rx46−tetng
1451 VN q4rx45−tetng
1462 VN a4phq8−danre
1471 Ph XP−425740
1505 Ph q4s833−tetng

Total Ta 5 sequences

Table 6.6: Misclassified VN, Ph and Od sequences. Summary list of the largest
groups of misclassifications.

Sequence ID Predicted subtype Sequence name
VN mGlu 7
VN CaS 2
VN Ph 30
VN Od 7
Ph mGlu 19
Ph GABA-B 4
Ph VN 22
Ph Od 3
Od mGlu 4
Od VN 14
Od Ph 17
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Tables 6.2 to 6.5 list all the misclassified sequences from mGlu, CaS, GABA-

B and Ta subtypes in detail. The characteristics of the far more abundant

misclassifications of VN, Ph and Od subtypes are summarily reported in Table

6.6 and reported in detail in tables 6.7, 6.8 and 6.9.

No Sequence ID Predicted subtype Sequence name

1 683 mGlu XP−002937102

2 749 mGlu XP−002941318

3 753 mGlu XP−002941322

4 756 mGlu XP−002941777

5 764 mGlu XP−002942628

6 784 mGlu XP−002943694

7 851 mGlu NP−001093066

8 691 CaS XP−002937455

9 738 CaS XP−002941226

10 676 Ph XP−002936197

11 677 Ph XP−002936218

12 681 Ph XP−002936334

13 686 Ph XP−002937448

14 699 Ph XP−002938198

15 723 Ph XP−002940457

16 724 Ph XP−002940458

17 725 Ph XP−002940476

18 729 Ph XP−002940322

19 736 Ph XP−002941221

20 740 Ph XP−002941228

21 769 Ph XP−002943507

22 772 Ph XP−002942710

23 778 Ph XP−002943137
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24 780 Ph XP−002943139

25 834 Ph XP−002721975

26 840 Ph NP−001093048

27 852 Ph NP−001093039

28 857 Ph a0t300−danre

29 860 Ph NP−001092974

30 867 Ph q501x9−danre

31 868 Ph a3kqh4−danre

32 869 Ph NP−001098650

33 875 Ph NP−001098007

34 876 Ph NP−001092975

35 892 Ph NP−001093005

36 909 Ph XP−001516454

37 927 Ph NP−001098528

38 944 Ph NP−001093129

39 951 Ph NP−001098526

40 621 Od q8bid7−mouse

41 747 Od XP−002941317

42 773 Od XP−002942711

43 884 Od o70411−rat

44 885 Od q8tdu1−human

45 886 Od o70413−rat

46 900 Od XP−917917

Total VN 46 sequences

Table 6.7: SVM misclassified sequences labeled as Vomeronasal (VN) in
GPCRdb. The second column provides the sequence ID, the third column is
the subtype predicted by SVM, while the fourth column is the sequence name.

No Sequence ID Predicted subtype Sequence name
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1 952 mGlu a7sdg9−nemve

2 953 mGlu a7s1x6−nemve

3 954 mGlu a7s0d2−nemve

4 956 mGlu b3s609−triad

5 957 mGlu XP−001494824

6 958 mGlu XP−002731604

7 959 mGlu XP−002732067

8 961 mGlu XP−002935674

9 1090 mGlu XP−002937659

10 1097 mGlu XP−002940462

11 1117 mGlu XP−002940343

12 1164 mGlu XP−002943384

13 1196 mGlu XP−001505324

14 1282 mGlu a8e7k1−danre

15 1310 mGlu XP−684341

16 1321 mGlu XP−001509767

17 1324 mGlu q9pwe1−ictpu

18 1325 mGlu b0uyj3−danre

19 1332 mGlu XP−001521075

20 955 GABA-B b3s157−triad

21 1055 GABA-B q4spr3−tetng

22 1104 GABA-B XP−002939765

23 1176 GABA-B XP−002942720

24 960 VN XP−002933303

25 1073 VN XP−002935803

26 1078 VN XP−002936336

27 1128 VN XP−002941492

28 1149 VN XP−002941355
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29 1151 VN XP−002941357

30 1155 VN XP−002942464

31 1158 VN XP−002941770

32 1171 VN XP−002942717

33 1182 VN XP−002943278

34 1191 VN XP−001368172

35 1266 VN XP−002723672

36 1270 VN NP−001093018

37 1272 VN NP−001093020

38 1273 VN NP−001093022

39 1274 VN NP−001093016

40 1275 VN NP−001093017

41 1291 VN o35272−rat

42 1299 VN XP−002723938

43 1302 VN XP−002936172

44 1328 VN NP−001093040

45 1334 VN XP−001516991

46 1329 Od XP−002944635

47 1330 Od XP−696754

48 1331 Od XP−001075542

Total Ph 48 sequences

Table 6.8: SVM misclassified sequences labeled as Pheromone (Ph) in GPCRdb.
The second column provides the sequence ID, the third column is the subtype
predicted by SVM, while the fourth column is the sequence name.
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Table 6.9: SVM misclassified sequences labeled as Odorant (Od) in GPCRdb.
The second column provides the sequence ID, the third column is the subtype
predicted by SVM, while the fourth column is the sequence name.

No Sequence ID Predicted subtype Sequence name
1 1405 mGlu XP−001520670
2 1409 mGlu b3rud8−triad
3 1414 mGlu XP−002936183
4 1427 mGlu XP−002941773
5 1399 VN gpc6a−human
6 1410 VN d1lwx7−sacko
7 1411 VN XP−002727501
8 1412 VN XP−002933716
9 1413 VN XP−002936177
10 1419 VN XP−002940566
11 1421 VN XP−002940324
12 1422 VN XP−002940329
13 1423 VN XP−002941570
14 1424 VN XP−002941571
15 1425 VN XP−002941572
16 1426 VN XP−002942058
17 1428 VN XP−002941794
18 1431 VN XP−002943912
19 1344 Ph b0s550−danre
20 1345 Ph q5i5c7−9tele
21 1346 Ph a3qjy1−danre
22 1347 Ph a0t301−danre
23 1348 Ph a3qjy3−danre
24 1350 Ph a8e7t9−danre
25 1351 Ph XP−001332644
26 1353 Ph XP−001332817
27 1356 Ph a3kql8−danre
28 1380 Ph XP−001332729
29 1386 Ph q6unx3−ictpu
30 1404 Ph XP−001518611
31 1416 Ph XP−002937663
32 1417 Ph XP−002939763
33 1418 Ph XP−002940477
34 1435 Ph XP−002944421
35 1445 Ph a3qjy2−danre

Total Od 35 sequences

130



Chapter 6. Analysis and Visualization of Classification Errors in Class C GPCRs

6.1.2. Visualization of misclassified sequences using GTM

The data set 2 from section 2.1 was preprocessed with the AAC transfor-

mation and then visualized using the posterior mean projection of GTM, as

described in previous Chapters. This global GTM visualization map is dis-

played in Fig. 6.1. Note that the axes in the representation space have no units

because each of them represents one of the dimensions of the latent space of the

GTM model.

Each of the subtypes is then represented in isolation in the GTM maps

of Figures 6.2 to 6.8. In each of these maps, the misclassified sequences are

individually identified using the sequence ID.
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Figure 6.1: GTM posterior mean projection of the data set and list of corre-
sponding labels. Visualization of all 1,510 sequences. Each color corresponds to
a GPCR class C subtype.

132



Chapter 6. Analysis and Visualization of Classification Errors in Class C GPCRs

370

352

399

372

353

Figure 6.3: CaS GTM posterior mean projection. Visualization of CaS se-
quences. Representation as in Figure 6.2. Cases labeled with their ID from
Table 6.3.
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259
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Figure 6.2: mGlu GTM posterior mean projection. Visualization of mGlu se-
quences. Cases incorrectly classified by SVM are represented with the colors of
their predicted subtypes. Cases labeled with their ID from Table 6.2.
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414

494

530

542

521
486

535

475

Figure 6.4: GABA-B GTM posterior mean projection. Visualization of GABA-
B sequences. Representation as in Figure 6.2. Cases labeled with their ID from
Table 6.4.

1462

1451

1450

1471

1505

Figure 6.5: Ta GTM posterior mean projection. Visualization of Ta sequences.
Representation as in Figure 6.2. Cases labeled with their ID from Table 6.5.
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Ph−30 cases
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747

749

683
764

753

784

756

851

738
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Figure 6.6: VN GTM posterior mean projection. Visualization of VN sequences.
Representation as in Figure 6.2. Cases labeled with their ID from Table 6.7.
Note that the 30 Ph misclassified cases are not individually labeled.

VN− 22 cases

mGluR− 19 cases

1331

1330

1329

955

1055

1176

1104

Figure 6.7: Ph GTM posterior mean projection. Visualization of Ph sequences.
Representation as in Figure 6.2. Note that the 22 VN and 19 mGlu misclassified
cases are not individually labeled.
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VN− 14 cases

Ph− 17 cases

1409

1427

1405

1414

Figure 6.8: Od GTM posterior mean projection. Visualization of Od sequences.
Representation as in Figure 6.2. Note that the 14 VN and 17 Ph misclassified
cases are not individually labeled.

It is clear from the GTM visualization of the complete set of transformed

class C GPCR sequences (Fig. 6.1) that there exists a reasonable level of subtype

differentiation, but also that some subtypes, such as GABA-B, are more clearly

separated from the rest than others such as Pheromone and Vomeronasal, which

strongly overlap. The overlapping (or its lack) of subtype data projections in

the GTM map should be a solid indication of subtype discriminability (or lack

of it).

Focusing first on the mGlu subtype, Figure 6.2 reveals quite clear patterns of

misclassification. See, for instance, sequences 40, 45 and 46. They are clustered

together and in a position of the GTM visualization map that fully overlaps

the most densely Odorant-populated region (as seen in Figure 6.8). These cases

could be understood as neat, strong misclassifications and, therefore, worth

investigating as potential cases of label noise. The same could be said of, at least,

sequences 59, 140, 141 and 142, which have been misclassified as either GABA-
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B or VN due to the fact that they are clearly positioned in their corresponding

regions.

Instead, sequences 39 and 58, misclassified as Od, are located quite close to

the densest cluster of mGlu cases, but nearby its boundaries and also close to

a number of actual Od sequences. This comes as no surprise, given the well-

documented sequential similarity between certain Odorant and mGlu receptors

[111]. These cases might therefore be considered as borderline misclassifications

of sequences that are close enough to mGlu, but not too different to at least

some Od.

A similar distinction between strong and borderline misclassifications can be

found for the remaining class C subtypes. In the case of CaS, which shows two

neatly differentiated subgroups that indicate (as in the case of mGlu) further

levels of sub-structure, all five of the misclassified sequences (as either mGlu,

VN, or Ph) seem to belong to the strong misclassification category, again merit-

ing further inspection as potential cases of label noise. The case of Ta is almost

the opposite: although, again, a clear two-subgroup structure can be found, it

could be argued that all but one of the five misclassified sequences (as VN, or

Ph) are, in fact, borderline cases. Instead, case 1450 is strongly misclassified as

a GABA-B, falling squarely within the domain area of this subtype. The situ-

ation for GABA-B is not too dissimilar. Most misclassifications are borderline

cases that get confused as mGlu given the partial overlap of both subtypes. The

only exception might be case 535, deep within the central mGlu map domain.

The remaining subtypes, namely VN, Ph and Od, experiment a very strong

level of overlapping with other subtypes and, as result, borderline misclassifi-

cations abound. In the case of Ph, there is a sizeable number of cases strongly

misclassified as mGlu and a few as GABA-B and Od. For VN, instead, only a

few cases are strongly misclassified as mGlu, but a few more as Od. Finally, Od,
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again a subtype evidencing further sub-structure, has quite a few cases strongly

misclassified as VN and Ph.

With the support of these visualization-based results, an expert in the field

(a database curator, for instance) could smoothly move from exploratory visu-

alization to the detailed inspection of the strongly misclassified class C GPCRs

as potential suspects of mislabeling in a case of label noise.

For the mGlu cases strongly misclassified as Od (see Table 6.2), for in-

stance, the pair a8dz71−danre and a8dz72−danre, according to the UniProt

i database, are uncharacterized proteins, derived from an Ensembl automatic

analysis pipeline and should be considered as preliminary data. In fact, Ensembl

characterizes them as class C olfactory receptors. According to UniProt and the

European Nucleotide Archive ii, q5i5d4−9tele and q5i5c3−9tele are, in turn, un-

reviewed putative pheromone receptors CPpr3 and CPpr14. Finally, and also

according to UniProt, a7rr90−nemve is a predicted protein, where “predicted”

qualifies entries without evidence at protein, transcript, or homology levels and

which are just one level over “uncertain”.

For the CaS cases, q5i5c89tele, misclassified as VN is, according to UniProt,

Putative pheromone receptor CPpr9 and its status is “unreviewed” (not manu-

ally annotated and reviewed by UniProt curators); a8e7u1−danre (again mis-

classified as VN) is both “unreviewed” and “uncharacterized”. XP−001515899

and XP−002740613 are misclassified as pheromones: the former has been pre-

dicted to be similar to a calcium-sensing receptor iii, whereas the latter was

“removed as a result of standard genome annotation processing” from NCBI

iv. Finally, XP−002123664, misclassified as an mGlu, was also “removed as a

ihttp://www.uniprot.org/uniprot/A8DZ72
iihttp://www.ebi.ac.uk/ena
iiihttp://www.ncbi.nlm.nih.gov/protein/XP_001515899.2
ivhttp://www.ncbi.nlm.nih.gov/protein/XP_002740613
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result of standard genome annotation processing” from NCBI v, despite being

previously predicted to be similar to a calcium-sensing receptor.

The Taste q4rx46−tetng, strongly misclassified as GABA-B, is identified by

UniProt as the unreviewed Chromosome 11 SCAF14979, whole genome shotgun

sequence. The GABA-B XP−002738008, misclassified as mGlu, is, interestingly,

predicted in NCBI vi to be an extracellular calcium-sensing receptor.

The remaining three subtypes have a strongly overlapping behavior that

suggests that the current AAC transformation does not suffice to discriminate

them properly and include too many strong misclassifications to individually

discuss in detail. Nevertheless the proposed visualization-based method would

provide the expert with guidance to inspect any of these cases as required.

Given that these results are based on the AAC transformation of the GPCR

sequences, the AA ratio profiles of each of the misclassified sequences could also

be directly inspected by experts to find possible discrepancies with the average

profiles of the labeled and predicted subtypes.

6.1.3. Visualization of misclassified cases with Radial PT

A PT of the complete set of 1,510 sequences was created using Treevolution

software. It is shown in Fig. 6.9 and it is used here to highlight the misclas-

sifications listed in the previous section. The Radial PT supports interactive

exploration according to the hierarchical structure it provides. At a given radial

distance, different colors represent the same family of descendant nodes in the

tree.
vhttp://www.ncbi.nlm.nih.gov/protein/XP_002123664
vihttp://www.ncbi.nlm.nih.gov/protein/XP_002738008
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Figure 6.9: Treevolution radial PT plot of the 1,510 GPCRs. Each branch corre-
sponds to one GPCR sequence. Two separated mGlu sections can be identified,
as well as three consecutive CaS sections; a single GABA-B section; three sep-
arate VN ones; two consecutive groups of Ph; two of Od and three consecutive
groups of Ta. At a given radial distance, the tree colors represent families of
descendant nodes. For example, the two different colors assigned to Odorant
provide quantitative evidence of the existence of two subtypes at a deeper level
in the hierarchy.
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Figure 6.10: Radial PT plot for mGlu misclassified cases.

Figure 6.11: Radial PT plot for CaS misclassified cases.
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Figure 6.12: Radial PT plot for GABA-B misclassified cases.

Figure 6.13: Radial PT plot for Ta misclassified cases.

Fig. 6.9 displays the complete radial PT for the 1,510 sequences and out-

lines the main domains of all seven class C subtypes in its external border. Even

though the original sequence transformations have very little in common with

those used in the GTM-based visualization (bear in mind that the PT is built
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from aligned sequences), the misclassification results reported in detail in Fig-

ures 6.10 to 6.13 for, in turn, subtypes mGlu, CaS, GABA-B and Ta are quite

consistent with those shown in GTM Figures 6.2 to 6.5. Although the results

are similar for VN, Ph and Od, they are again not included here due to the

large amount of misclassified cases involved.

Each individual misclassified sequence is identified with its corresponding

ID. In Fig. 6.10, for example, where mGlu sequences are highlighted, the five

sequences predicted as Odorants squarely fall in the tree area populated by this

subtype, which implies that these sequences are more similar to the latter than

to the mGlu subtype to which they are assumed to belong according to their

label in GPCRdb. Similarly, the four GABA-B, five VN and two Ph sequences

displayed in Fig. 6.10 are located in the corresponding areas of their predicted

subtypes.

The results visualized in Figures 6.11, 6.12 and 6.13 CaS, GABA-B and

Ta, respectively, fully agree with those discussed for mGlu, with misclassified

sequences located in the domains of the predicted subtypes, instead of in the

domains of their database label.

Note that it is far more difficult to distinguish between borderline and

strong misclassifications in the radial PTs due to the intrinsic symmetry of

their branches.

6.1.4. The effect of sequence size on class C GPCR sub-

type classification

The experiments applied to data set 2 use the AAC sequence transformation

and, therefore, the analyzed data consist of vectors of 1-gram frequencies of the

same length for every sequence, regardless its original length. We might expect
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this transformation to limit undesired effects due to the differences in length of

the original sequences on the classification of the sequences using SVMs (the

starting point of our study).

This section provides some evidence to support this expectation. For that,

we show in Fig. 6.14, next to each other, a histogram of the lengths of the

complete data set (1,510 sequences) and a histogram of the lengths of the 163

SVM-misclassified sequences. The vertical axis does not reflect absolute num-

bers but relative frequencies, so that both can straightforwardly be compared.

Note that both distributions of lengths have very similar shapes, with the

highest frequencies for misclassified sequences located at the same range of

lengths as the highest frequencies for the complete sample. There are differ-

ences between the frequencies of misclassification at certain lengths and the

corresponding frequencies of those lengths in the overall sequence population,

but never too substantial. Misclassification is somehow higher in sequences of

length lower than 700 AAs, but, interestingly, the frequency of misclassification

at the lowest lengths (under 300 AAs) is far lower than the frequency of those

lengths in the complete data set. Similarly, misclassification is somehow higher

in sequences of lengths over 1,700 AAs, but the frequency of misclassification

at lengths between 1,100 and 1,300 AAs is lower than the frequency of those

lengths in the complete data set. It could thus be safely stated that the sequence

length has, at most, a moderate overall effect on the misclassification process.

A quantitative measure of this effect can be calculated through an approxi-

mation of the conditional probability of misclassification, given the length of the

sequences. This conditional probability, following Bayes theorem, would take

the form:

P (mc|l) = P (l|mc)P (mc)/P (l) (6.1)
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Table 6.10: A group of 7 sequences of length over 1,500 AAs.

90 XP−002157920 mGlu 1712
234 q8nha9−human mGlu 1520
535 XP−002738008 GABA-B 1995
714 XP−002937835 VN 1656
756 XP−002941777 VN 1738
1108 XP−002940475 Ph 1768
1176 XP−002942720 Ph 1869

where P (l|mc) and P (l) could be approximated by the previously shown bar

charts and P (mc) = 163/1510 = 0.108.

A graphical representation of this measure, with as a horizontal line indicat-

ing no divergences between the distributions of misclassified sequences and the

total sample at a given interval of lengths, can be found in Figure 6.15.

Note that the values for sequences of lengths beyond 1,400 AAs have little

statistical significance. To understand this, you have to bear in mind that

the vector of absolute numbers of sequences from which the histogram of the

complete sample was built is: (16, 30, 20, 41, 86, 236, 708, 183, 53, 49, 45, 28,

8, 1, 1, 3, 1, 1), while the corresponding vector for the misclassifications is: (1,

8, 7, 8, 15, 25, 60, 16, 7, 4, 2, 4, 3, 0, 0, 1, 1, 1). That is, only 15 sequences (less

than 1% of the total) have lengths of more than 1,400 AAs. In particular, the

7 sequences of length over 1,500 AAs are detailed in Table 6.10.

Out of these, only the GABA-B and the two pheromones were misclassified.

This graphical representation corroborates the conclusions that were drawn from

the histograms.
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Figure 6.14: Comparison of sequence length for complete data set and for mis-
classified sequences.
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Figure 6.15: Comparison of sequence length for complete data set and for mis-
classified sequences.
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Chapter 7

Conclusions and Future Work

The use of Machine Learning (ML) methods for the analysis of multivari-

ate data (MVD) is a process of knowledge extraction. Acquiring knowledge is

not the same as obtaining results, though, regardless their quality. Knowledge

extraction from MVD requires results to be interpretable by the analyst [198].

Interpretability is a bottleneck particularly for nonlinear ML techniques, which

means that a trade-off between flexibility and performance, on one side, and

interpretability, on the other, must be achieved.

This bottleneck is important in computational biology [21], biomedicine [146]

and bioinformatics. The study carried out in this Thesis follows an exploratory

approach to knowledge extraction in which MVD visualization is the key compo-

nent. Visualization becomes relevant for the analysis of high-dimensional data,

as it opens a door to inductive reasoning [196] and, thus, interpretability.

We have addressed a bioinformatics problem: the analysis of a database of

G-protein-coupled receptors (GPCR) from their amino acid (AA) sequences.

This is part of an effort to investigate the extent to which their subtypes can be
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discriminated. Such discrimination has been attempted at great detail [63]. We

focused on the class C family of GPCRs, which is characterized, first, by the

fact that the full 3-D structure has not yet been solved completely for any of

its members (only partial domains 7TM, ECD and VFT were crystallized [112],

[193], [139], [42], [67], [213], [205]), restricting the investigation of their function-

ality on their primary structure, that is, their AA sequence, and, second, by its

great interest in pharmacology due to its increasing therapeutic prospects. The

visualization of the high-dimensional class C GPCR sequences was carried out

here using different versions of Generative Topographic Mapping (GTM [19]),

a model that has successfully been applied in biomedicine and bioinformatics

(Chapters 4, 5 and 6). These GTM versions have been applied, in turn, to dif-

ferent transformations of the sequences, with and without sequence alignment

(Chapter 3). The analysis focused not on subtype discriminability but, instead,

on subtype overlapping and its hypothetical consistency over different sequence

transformations. This could be a preliminary step for the future investigation

of heterodimerization in class C GPCR subtypes.

7.1. Overview of the main contributions and con-

clusions of the research

My research has resulted in the following general contributions to the com-

putational intelligence analysis of GPCRs:

I have described novel and improved existing CI-based methods, including

the definition of a adapted kernel method for proteomics. These methods

have been applied to solve a number of problems and the conclusions of

this research are summarized in the following subsections.
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I have published this applied and theoretical research in international jour-

nal and conferences, mainly targeting those at the interface between data

science and bioinformatics.

7.1.1. Visualization of Class C GPCR types

In Chapter 3, we have described a kernel method of the manifold learning

family that is capable of simultaneously revealing the grouping structure of

GPCRs while making the intuitive visualization of such structure possible.

Our results are consistent with early classification studies using other tech-

niques such as Hidden Markov Models, thereby validating the present method-

ology. Importantly, the method herein presented reveals mixing between some

receptor subclasses, suggesting its possible applicability to the study of het-

erodimerization between receptors. Receptor heterodimerization has been con-

firmed experimentally for a number of receptors. This finding paves the way

for new strategies in drug discovery research providing a conceptual framework

for the rational combination of drugs. KGTM may help in the exploration of

receptors susceptible of heterodimerization and thus be useful in the quest of

more potent and safer drugs.

Phylogenetic trees, detailed in Chapter 3, and applied to our data to com-

plement the visualization (Chapters 4, 5 and 6), are a widely used graphical tool

in the field of proteomics. They illustrate the probability that two sequences

are more closely evolutionary related to each other than to a third one. The re-

ported results show that the unsupervised mapping of GPCR sequences yielded

by KGTM closely resembles the corresponding phylogenetic trees to a great

deal of detail. This corroborates that KTGM could be used as a complement

to the phylogenetic tools, as it provides users with a very detailed while easy to
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interpret visual grouping of the sequences that is fully consistent with the more

complex PT representation.

In the absence of knowledge about their tertiary structure, class C GPCRs

do often have to be investigated according to the primary structure of their AA

sequence. Different techniques have been developed that either deal with the

complete unaligned sequence or its aligned transformation. We have analyzed,

helped by NLDR visualization techniques that handle the GPCR sequences as

MVD, the heterogeneous way in which the seven known subtypes of class C

overlap.

Overlapping indicates (partial) similarities between subtypes, whose rela-

tion with processes of GPCR heteromerization could be the matter of future

research. Considering that heteromerization involves physical interaction be-

tween some but not all of the 7 helices of the transmembrane domain of GPCRs,

a more detailed subtype overlapping analysis might be required. Results add

interpretability to an otherwise complex problem and show that the level and

quality of this overlapping depends on the data transformation and NLDR mod-

elling technique, although consistent enough to reach conclusions of interest to

the analyst.

7.1.2. Visualization of Class C GCPR mGluR subtypes

Metabotropic glutamate receptors are the target of intensive research due to

their impact on the design of drugs for a wide array of pathologies. They also

have been implicated in long-term potentiation and in learning and memory

formation. The discovery of metabotropic glutamate receptors (mGluRs) 10

years ago, allowed more thorough insights in their functions. Since then, much

effort has been centered on the cloning and characterization of the different
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mGluRs subtypes and the elucidation of their physiological function in multiple

regions of the brain. As detailed in section 2.1 from Chapter 2, eight subtypes

of mGluRs have been divided into three groups according to their sequence

homology, pharmacological characterization, and coupling to second messenger

pathways.

Group I mGluRs (mGluR1 and mGluR5), the only group which have par-

tially solved crystal structures ([205], [42]), are predominantly localized at the

membrane of the post-synaptic cells and regulate variety of physiological func-

tions. These receptors have been implicated in various forms of synaptic plas-

ticity including learning and memory as well as in various neuropsychiatric dis-

orders [156], [98]. The involvement of different mGluR groups and subtypes

in particular physiological circuits and functions such as hippocampal synaptic

plasticity and learning is still a matter of controversial debate. Thus, given the

lack of knowledge about their complete 3-D structure, their study focuses on

primary sequential information. The data sets 4 and 5, consisting of mGluRs,

were studied in Chapter 5 using a machine learning unsupervised approach based

on NLDR and bioinformatics methods for the exploratory analysis of mGluRs

through visualization. The experimental results provide evidence of the very

rich inner substructure of these class C GPCRs, which not always conforms to

their existing subtype labels. They also indicate that this substructure differs

considerably depending on the data transformation method applied. In any

case, such results caution that mGluR subtype classification is likely to be chal-

lenging and, importantly, that the own labelling of mGluR sequences, even if

from curated databases, should be carefully investigated.

Thus, our proposed future research is expanding the proposed approach to

the rest of class C GPCR subtypes to a deeper level of classification, as well as

to more elaborate transformations and to selected part of the sequences, such

as the extra-cellular domains.
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7.1.3. Visualization of Misclassified Class C GPCRs

In Chapter 6 of this Thesis, we analyzed and visualized classification er-

rors in Class C GPCR primary sequences. The study focuses on unsupervised

data visualization using GTM, starting from previous supervised classification

experiments reported in [106].

Prior research had revealed a limit on the ability to discriminate these trans-

formed sequences into their seven known subtypes, prompting suspicion that,

at least partially, this could be caused by sequence mislabeling, a type of label

noise [57], [28].

Then, we have proposed a method to investigate misclassified class C GPCRs

that is based on NLDR, manifold-based visualization, complemented by the use

of PTs. The method adresses an exploratory visualization, using nonlinear di-

mensionality reduction techniques, of GPCRs previously shown to be misclassi-

fied using supervised (SVM) techniques. This is meant to be a proof of concept

for a method that combines supervised classification and unsupervised group-

ing and visualization to assist in the task of GPCR database quality control.

They were subsequently characterized against the rest of the data and, particu-

larly, against the rest of cases of their own subtype. This method has revealed

that, for each of the analyzed subtypes, misclassified sequences are either bor-

derline cases, whose label might have been incorrectly predicted due to lack of

sensitivity of the classifier, or strong misclassifications that are truly similar to

sequences belonging to other subtypes.

The latter are of special interest for database quality assessment purposes

and our discussion of the reported results has shown that many of the cases sin-

gled out for further inspection were in fact unresolved or unclear subtype assign-

ments according to main protein database repositories such as UniProtKB/Swiss-

153



Chapter 7. Conclusions and Future Work

Prot and GenBank-NCBI.

At the heart of this investigation on the limitations of classifiers in the char-

acterization of labeled class C GPCRs, lies the fact that proteins in curated

databases are often assigned to families according to data-based models. An ex-

ample of this is the comprehensive Pfam database [53], built using HMMs and

MSA. This is, indeed, a perfectly adequate approach, but even in Pfam-defined

families, there are two levels of quality (A and B), where the A entries are de-

rived from the underlying sequence database built from the most recent release

of UniProtKB and the B entries are un-annotated and automatically generated,

built from sequence clusters not covered by Pfam-A entries. We reckon that

the lack of a gold-standard for class C GPCR labelling is what makes our in-

vestigation on potential labelling inconsistencies relevant. In addition, it could

be particularly useful given the absence of 3D crystal structures for the full

sequences of these receptors.

We argue that the exhaustive experimental setting used for the SVMs pro-

vides us not just with misclassifications, but also with solid evidence of mis-

classifications not just occurring due to specific quirks of the model, but due

to the specificities of the data. A PT instead, will only provide us with a

similarity-based grouping that does not necessarily reflect a functional relation-

ship between the sequences and their labels. In other words, in the setting of

our work we should only use PTs as a way to either confirm or challenge the

misclassifications as inferred by SVMs and visualized by GTM.

Moreover, even if PTs, in this case, confirm the results that we obtain with

the combination of SVMs and GTM, the latter model still provides us with

information that PTs do not provide us with: The relative locations and inter-

distances between sequences in a latent/visualization metric space. In compar-

ison, it also fair to say that GTMs lack the evolutionary hierarchical structure
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that PTs provide.

In short, PTs, on one side, and SVM+GTM, on the other, do not compete

to give the same answer to the same question; they “collaborate” by confirming

each other results from different perspectives and providing different elements of

knowledge. In conclusion, the reported experiments provide a proof of concept

for a support method for experts in GPCR (and proteins in general) database

quality control and curation.

7.1.4. Visualization of class C GPCRs parcial domains and

Discrimination measures

Class C GPCR subtype separability was investigated in section 4.2 both

through qualitative visual exploration using manifold learning methods and

through several quantitative measures. We were specifically interested in the

investigation of the different roles that might be played by the different domains

of the Class C GPCR sequences on the subtype discrimination capabilities. In

particular, the adequacy of the separate use of the extra-cellular N-Terminus

and the transmembrane 7TM domain for subtype discrimination purposes was

assessed. Results indicate that the use of KGTM with MSA provides the best

discrimination, and that overall discriminability significantly decreases when

only the N-Terminus or 7TM domains are used, but with partially mixed pat-

terns for different Class C subtypes depending on the data transformation and

manifold learning model used.
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7.2. An outlook of future research

Much effort is made in the creation and maintenance of international, publicly-

available curated databases for the bioinformatics domain. In protein databases,

one of the tasks this effort entails is the labeling of proteins according to a not-

fully standardized taxonomy of family and subtype assignments. This labeling

process, which is often model-based, falls within the remit of classification prob-

lems.

This Thesis has focused on the analysis of GPCR cell membrane proteins

of Class C, which have of late created great expectations in pharmacology as

targets of drug design. From a discriminatory classification viewpoint, they

have a heterogeneous subtype structure and, because of the absence of crystal

structures including all the domains of any of these receptors, the investigation

on their primary sequential structures can be of great help.

The classification of class C GPCRs from their transformed unaligned pri-

mary sequences seems to have a limiting classification threshold. Thus, in Chap-

ter 6, we have proposed a visualization method for the exploration of misclas-

sifications, based on manifold learning models and phylogenetic trees, aimed to

detect potential database labelling quality problems. The reported experiments

have exemplified, as a proof of concept, the core exploratory data-centered pro-

cess that should lay the foundations for a full decision support system that,

together with prior human expert knowledge, would become a tool for the de-

tailed analysis of those GPCRs that are consistently misclassified by sequence

discrimination methods. Therefore, future research should test the method us-

ing alternative unaligned transformations of the GPCR sequences. Furthermore,

and given that both the GTM and PT have visually revealed substructure within

the different class C GPCR subtypes, it should also be investigated at deeper

levels of subtyping [63].
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From the results provided in this study, future research could deal with the

following question: to what extent inter-subtype sequence similarity is related

to heterodimerization?

The concept of heterodimerization of two types of GPCRs was proposed in

the early 1980’s [1]. It represents an unexpected mechanism for GPCR regula-

tion and function because the functioning of a heterodimer can be very different

to that of each of its subunits, thereby providing a potentially novel target in

pharmacology. Heterodimerization seems to be selective, so that GPCRs will

interact with one type of receptors, but not with others [71, 133].

The Calcium Sensing receptors have mGluR1 and mGluR5 as heterodimer

partners. This functional positive interaction is reported in [60]. Furthermore,

class C Taste and GABA-B receptors are reported as canonical GPCR het-

erodimers whose selectivity lies in the Venus flytrap domain (VFD), where the

active site for ligand binding is located [71]. It would be interesting to analyze

the heterogeneous mGlu overlapping and the high Calcium Sensing entropy re-

ported in the previous section in the light of these recently reported results.

Since GPCRs are key drug targets in the treatment of different diseases, under-

standing the specificity and physiological significance of GPCR heteromerization

may lead to insights that will impact the development of future therapeutics

[161].
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