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A B S T R A C T

There has been an exponential surge of text data in the recent years.
As a consequence, unsupervised methods that make use of this data
have been steadily growing in the field of natural language processing
(NLP). Word embeddings are low-dimensional vectors obtained us-
ing unsupervised techniques on the large unlabelled corpora, where
words from the vocabulary are mapped to vectors of real numbers.
Word embeddings aim to capture syntactic and semantic properties
of words.

In NLP, many tasks involve computing the compatibility between
lexical items under some linguistic relation. We call this type of rela-
tion a bilexical relation. Our thesis defines statistical models for bilex-
ical relations that centrally make use of word embeddings. Our prin-
ciple aim is that the word embeddings will favor generalization to
words not seen during the training of the model.

The thesis is structured in four parts. In the first part of this thesis,
we present a bilinear model over word embeddings that leverages a
small supervised dataset for a binary linguistic relation. Our learn-
ing algorithm exploits low-rank bilinear forms and induces a low-
dimensional embedding tailored for a target linguistic relation. This
results in compressed task-specific embeddings.

In the second part of our thesis, we extend our bilinear model to a
ternary setting and propose a framework for resolving prepositional
phrase attachment ambiguity using word embeddings. Our models
perform competitively with state-of-the-art models. In addition, our
method obtains significant improvements on out-of-domain tests by
simply using word-embeddings induced from source and target do-
mains.

In the third part of this thesis, we further extend the bilinear models
for expanding vocabulary in the context of statistical phrase-based
machine translation. Our model obtains a probabilistic list of possible
translations of target language words, given a word in the source
language. We do this by projecting pre-trained embeddings into a
common subspace using a log-bilinear model. We empirically notice
a significant improvement on an out-of-domain test set.

In the final part of our thesis, we propose a non-linear model that
maps initial word embeddings to task-tuned word embeddings, in
the context of a neural network dependency parser. We demonstrate
its use for improved dependency parsing, especially for sentences
with unseen words. We also show downstream improvements on a
sentiment analysis task.
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1
I N T R O D U C T I O N

1.1 context

There has been an abundance of unstructured data generated over
the web as text and other multimedia content. Most of these unstruc-
tured data contains information that could potentially help standard
Natural Language Processing tasks (NLP). Unfortunately, it is often
very difficult to analyze unstructured data and search for statistical
cues that can be directly used for NLP models.

On the other end, state-of-the-art NLP models are usually super-
vised systems that are dependent on annotated data and rely on engi-
neered features. The annotated data is often constrained over a single
domain or a limited set of domains. NLP systems are increasingly
being applied to domains such as web-based data, personal commu-
nications that include email, tweets, among many other domains. De-
signing features that result in a better overall performance of the sys-
tem is usually an expensive task. One of the most important features
commonly used in traditional NLP tasks is lexical features. However,
the lexical statistics are often sparse as a significant portion of lexical
entities is not observed in training data, limiting the generalization
capabilities of the model.

Small birds make clamorous tweets

ROOT

amod nsubj

dobj

amod

Figure 1.1: A sample sentence with unseen lexical items.

Let us consider a task of using a simple dependency parser that
uses lexical information for the example sentence in Figure 1.1. To pre-
dict the correct dependency tree structure of the sentence, the parsing
model would have to make several decisions using the lexical infor-
mation. Now, let us assume that both clamorous and tweets are not
seen in the corpus used to train the parser. It would have to accu-
rately predict the dependency relation between both unseen words
and their connection with other words in the sentence. However, in
the absence of the correct lexical features the parser does not have
enough information. These poor features result in uncertainty dur-

1



2 introduction

ing prediction of the correct dependency parse relations eventually
leading to a wrong parse tree.

Also, change in domain leads to other problems including lexi-
cal sparsity and feature incompatibility among others. Strictly super-
vised models are unable to generalize to unseen lexical items, and this
adds to the overall uncertainty of the system. Previous research [John
et al., 2006; Huang and Yates, 2009; McClosky et al., 2010] has shown
that the performance of the model falls significantly when the learned
models are tested on different domains.

It is against this backdrop that we propose our thesis. As the vol-
ume of unstructured data is rapidly growing, various methods have
been suggested in the literature that makes use of the abundant data
by utilizing unsupervised machine learning techniques. One of the
most significant contributions has been in the field of learning of un-
supervised lexical representations (or embeddings)1 [Turney and Pan-
tel, 2010; Mnih et al., 2009; Collobert et al., 2011a; Turian et al., 2010a;
Mikolov et al., 2013d; Pennington et al., 2014a]. The embeddings are
commonly learned by exploiting the distributional property of words
in a large corpus. The distributional hypothesis states that words ap-
pearing in similar contexts have similar meanings and properties.

In this thesis, we study the problem of using lexical embeddings in
various NLP tasks by tailoring and manipulating embeddings for a
given task. This is related to the application of semi-supervised learn-
ing to the task of NLP where unlabelled data is used to obtain in-
formation (such as word representations, etc..) and then use labelled
data to learn a model for the task [Koo et al., 2008; Miller et al., 2004b].
This also follows parallel research in the field of NLP that uses lexi-
cal embeddings and has produced state-of-the-art results in many of
the NLP tasks [Collobert et al., 2011a; Weiss et al., 2015; Chen and
Manning, 2014a].

1.2 thesis contributions

Our primary goal in this thesis is to explore and study techniques that
make use of pre-trained word representations in different Natural
Language Processing tasks. Specifically, our contributions are:

1.2.1 Tailoring Word Embeddings for Bilexical Operators

We address the task of learning functions that compute compatibility
scores between pairs of lexical items under some linguistic relation.
We call these functions as bilexical operators.

motivation. Word representations are usually generic lexical rep-
resentations obtained on a large dataset. We study the problem of tai-

1 In this thesis we alternatively refer to embeddings as representations and vice-versa.



1.2 thesis contributions 3

loring and compressing word representations for a task, given some
supervised data.

specific contributions :

- We propose a learning algorithm that takes an existing lexical
vector space and compresses it such that the resulting word
embeddings (or re-embedded representations) are good predic-
tors for a target bilexical relation. Our proposed algorithm is
formulated as learning a low-rank bilinear form and inducing
low-dimensional embeddings of the lexical space tuned for the
specific task.

- The low-rank constraint on the bilinear form results in compu-
tational advantages as the prediction now is expressed as the
inner-product between low-dimensional embeddings.

- In experiments, we show that task-specific embeddings can ben-
efit both the quality and efficiency of several lexical prediction
tasks.

1.2.2 Prepositional Phrase Attachment over Word Embedding Products

We investigate the problem of resolving prepositional phrase attach-
ment ambiguity using a binary and ternary prediction model.

motivation. The prepositional phrase attachment problem is a
classic linguistic ambiguity problem that is still one of the main sources
of errors for syntactic parsers. Classical approaches to resolving the
ambiguity have used lexical, syntactic and semantic features amongst
other features. Inspired by the implicit syntacto-semantic properties
of word embeddings, we investigate the resolution of the ambiguity
using word embeddings.

specific contributions :

- We present a low-rank multi-linear model for the task of solving
prepositional phrase attachment ambiguity.

- Our model exploits tensor products of word embeddings, cap-
turing all possible conjunctions of the embeddings.

- Our results show that tensor products, compared to commonly
used compositional methods (i.e., summing and concatenating),
are better in performance and that a relatively simple multi-
linear model that uses word embeddings of lexical features can
outperform more complex non-linear architectures that exploit
the same information.
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- Our method also obtains significant improvements on out-of-
domain tests by simply using word-embeddings induced from
source and target domains.

1.2.3 Vocabulary Expansion for Machine Translation by Mapping Embed-
dings

We study the problem of resolving out-of-vocabulary words in the
context of machine translation using a bilinear model that projects
embeddings in two languages into a common subspace.

motivation. The presence of unseen words in either source or
target side in Machine Translation systems can significantly affect the
performance of the system. This might severely magnify erroneous
translations. Several ways have been proposed that use lexical re-
sources (dictionaries, morphological analyses, etc.) in the context of
resolving poverty of lexical content.

specific contributions :

- We introduce a method to obtain a probabilistic distribution of
words in the target language for a given source word using a bi-
linear model that takes embeddings of words in both languages.

- Our model is relatively low-resource and generic and exploits
only small source-to-target word dictionaries as supervision to
map the embeddings in two different languages into a common
subspace. This makes it extendable to other domains relatively
with ease.

- In our experiments, we obtain consistent improvements in the
translation quality especially on out-of-domain settings.

1.2.4 Mapping Representations

We consider the setting in which we train a supervised model neu-
ral network that learns task-specific word representations by back-
propagating the errors.

motivation. We assume that we have access to some initial word
representations (e.g., unsupervised embeddings), and that the super-
vised learning procedure updates them to task-specific representa-
tions for words contained in the training data. But what about words
not contained in the supervised training data? When such unseen
words are encountered at test time, they are typically represented by
either their initial vectors or a single unknown vector, which often
leads to errors.
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specific contributions :

- We address this issue by learning to map unseen words from
initial representations to task-specific ones.

- We present a general technique that uses a neural network map-
per with a weighted multiple-loss criterion.

- We consider the task of dependency parsing and report im-
provements in performance (and reductions in out-of-vocabulary
rates) across multiple domains such as news, web-based data,
and speech corpora.

1.3 thesis outline

The structure of the thesis is as follows: Chapter 2 describes the
background and previous approaches that use word embeddings. In
Chapter 3, we describe our Low-Rank bilinear model. In Chapter 4,
we discuss our work on resolving prepositional phrase attachment
problem. We then describe our work on expanding vocabulary in the
context of Machine Translation systems in Chapter 5. In Chapter 6, we
describe our work on mapping word representations to task-specific
representations. Finally, in Chapter 7, we conclude our work and de-
scribe current and future directions of research.

1.4 publications

This dissertation summarizes several contributions to understanding
and using word-embeddings in the field of NLP. Publications that are
a direct result of this work include:

- Madhyastha et al. [2014] Learning Task-specific Bilexical Em-
beddings. P. Madhyastha, X. Carreras, A. Quattoni; In proceed-
ings of International Conference on Computational Linguistics
(COLING) 2014.

- Madhyastha et al. [2015] Tailoring Word Embeddings for Bilex-
ical Predictions: An Experimental Comparison. P. Madhyastha,
X. Carreras, A. Quattoni; In Proceedings of International Confer-
ence on Learning Representations (ICLR) 2015, workshop Track

- Madhyastha et al. [2016] Mapping Unseen Words to Task-Trained
Embedding Spaces. P. Madhyastha, M Bansal, K Gimpel and K
Livescu; In of the Workshop of Learning Representations for
Natural Language Processing (RepL4NLP) 2016;

In submission articles include:
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- Madhyastha and España-Bonet [2016] Vocabulary Expansion
for Machine Translation by Mapping Embeddings. P. Madhyastha,
C. España-Bonet; Under Reivew;

- Prepositional Phrase Attachment over Word Embedding Prod-
ucts. P. Madhyastha, X. Carreras, A. Quattoni; Under Review;

During the course of this thesis, other collaborations have resulted
in the following publications. These, however, are not detailed in this
thesis summary:

- Quattoni et al. [2016] Structured Prediction with Output Em-
beddings for Semantic Image Annotation. A. Quattoni, A. Ramisa,
P. Madhyastha, E. Simo-Serra, F. Moreno-Noguer. In Proceed-
ings of the 15th Annual Conference of the North American
Chapter of Association for Computational Linguistics: Human
Language Technologies (NAACL:HLT) 2016

- Ellebracht et al. [2015] Semantic Tuples for Evaluation of Im-
age to Sentence Generation. L. D. Ellebracht, A. Ramisa, P. Mad-
hyastha, J. Cordero-Rama, F. Moreno-Noguer and A. Quattoni.
In Vision and Language Workshop; In Proceedings of Empirical
Methods on Natural Language Processing (EMNLP) 2015

- Costa-jussà et al. [2016] The TALP-UPC Spanish-English WMT
Biomedical Task: Bilingual Embeddings and Char-based Neural
Language Model Rescoring in a Phrase-based System. M. Costa-
jussà, C. España-Bonet, P. Madhyastha, C. Escolano, J. Fonollosa.
In First Conference on Machine Translation (WMT) 2016



2
B A C K G R O U N D A N D R E L AT E D W O R K

In this chapter, we briefly describe previous work on lexical embed-
dings. The chapter begins with a small introduction on representation
learning in the field of NLP. We then survey word embeddings and
a few of the most common unsupervised learning methods for ob-
taining word embeddings. We then discuss some methods, proposed
in the literature, that compare word embeddings and some of the
popular applications of word representations. We finally wrap the
chapter with a discussion on challenges of using word embeddings
and some of the recently proposed techniques and approaches that
resolve these challenges.

2.1 a brief overview of representation learning in the

field of natural language processing

The performance of machine learning algorithms is directly propor-
tional to the quality of features or data representation. An ideal rep-
resentation should be capable of distilling all necessary and relevant
information about the data such that, the machine learning algorithm
is able to achieve state-of-the-art performance on a given task. Obtain-
ing good representations is a challenging task, especially in the field
of NLP. This is also sometimes referred to as the task of feature engi-
neering. In general, a significant part of the effort is spent on feature
engineering; usually, this involves data pre-processing, transforma-
tion of data and feature combination. Most of the state-of-the-art NLP
systems depend on a combination of lexical features. Sometimes, ob-
taining expressive features for a particular task involve experience,
prior knowledge and heuristics. Consider the task of part of speech
tagging for English, some of the features used include knowledge
about the capitalization of words, morphological information about
words and lexical combinations of prior and posterior words among
many more.

An increasingly growing literature of theoretical and empirical work
suggests that traditional techniques for feature engineering in NLP
are sometimes inefficient [Huang et al., 2013; Turian et al., 2010a].
This is especially true with the large set of domains in NLP, making
features incompatible with a change in domain. One of the main rea-
sons for this is because the lexical items follow a Zipfian distribution,
this implies that there is always little training data for a substantial
fraction of lexical items resulting in heavily sparse feature representa-
tions [Huang and Yates, 2010; Bikel, 2004]. This effectively hurts the

7
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machine learning algorithm’s ability to generalize to unseen lexical
items and in turn affecting the performance of the system.

The area of representation learning, to an extent, tries to solve the
problem by automatically learning necessary and relevant representa-
tion of the data. In turn, this makes it possible to extract relevant and
useful information about the data when building predictors for dif-
ferent tasks. Bengio et al. [2013] give a thorough survey of recent rep-
resentational learning frameworks. According to Bengio et al. [2013],
an ideal representation should possess following properties among
others:

(a) Expressiveness: A good representation should be able to distil
all necessary task related properties. A carefully engineered fea-
ture representation is often specific and mostly contains task
specific properties. While the unsupervised representations pre-
serve many properties, however, they may not be the best per-
forming for all kinds of tasks.

(b) Compactness: An ideal representation should be able to contain
all task-relevant properties in a compact low-dimensional vec-
tor. In particular for NLP tasks, there is a possibility of having
a large number of lexical units, having low dimensional repre-
sentations will be useful.

(c) Abstraction: The representation should be able to capture ab-
stract properties such that any change in the domain or data
would resist changes in properties of the representations in a
way that the representations become less efficient or less power-
ful. However, the abstraction is a two-edged sword. Heavy ab-
straction may prove to be unusable for many tasks, while heavy
specification might make stubborn to changes in the domain.

An ideal representation, in general, reduces the computational bur-
den of performing classification or prediction related steps. It has
been observed that good representations seem to generalize better to
features that co-vary the most with respect to the outcomes of the
task.

More specifically, the goal of representation learning is to learn
some underlying structure of the data. However, one of the biggest
challenges of representation learning is that it’s hard to establish a
clear objective or target for training such that the representations are
useful over a general set of tasks.

2.2 learning word embeddings

Vector representation of words (also referred alternatively as word
vectors, word embeddings, word representations in the literature) is
based on capturing some relationships between words broadly based
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on co-occurrence properties of the words in a language. They espouse
the unifying philosophy that the words that occur in similar contexts
tend to have similar properties. For example, the words ‘good’ and
‘nice’ have similar meanings as they are, in many cases, replaceable
by one another when used in the same context. Word vectors try to
capture the distributional properties by using the co-occurrence pat-
terns. In general, all of the word vector based models can be approx-
imated to be built on some notion of semantic similarity. There are
many different ways of producing a computational model of seman-
tic similarity; however, the underlying theory and the assumptions
are similar. The neologisms in this field might create confusion even
if the underlying ideas are mostly the same. In the following sections,
we will try to review basic concepts related to word embeddings.

Formulation

Suppose that we are given a sufficiently large corpus of unannotated
text in a particular language. Let V be a vocabulary, and let w ∈ V

denote a word. We want to find a function φ, such that:

φ : V→ Rn (2.1)

where φ(w) is the n-dimensional representation of word w. In this
chapter we use φ(w)[i] to refer to the i-th coordinate of the vector.

In the field of NLP, the data is structured, consisting of trees, se-
quences, phrases, etc.. Ideally, a feature representation should be able
to distill regularities in such structured data and model some form
of similarities between the latent structures. Lexical representations
have some of these properties, which make them suitable for use in
statistical models.

Typically, in previous literature [Sahlgren, 2006; Turney and Pantel,
2010] similarity has been discussed in the context of

- Substitutional or Paradigmatic similarity -two words are similar
if in they are replaceable in some context. Eg., make and create.

- Syntagmatic Similarity — two words are similar if they occur
together in some text. Eg. eat and pizza

2.2.1 Geometric Interpretation

To briefly understand the geometric interpretation of lexical repre-
sentations we here take a simplistic example of vectors in a two-
dimensional euclidean space. We illustrate the geometric interpreta-
tion of Euclidean distance correlating with the concept of similarity
using Figure 2.1. In Figure 2.1 we are given words sun, moon and
dog with contexts as shadow and shine. We notice that the Euclidean
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Text Corpus

...curtains open and the moon shine...

...in barely on, cold shadow on moon...

...rough night with the moon shining...

...made in the light of the moon...

...surely under a crescent moon...

...sun, the seasons of the moon...

...m is dazzling snow, moon risen full...

...un and the temple of the moon...

...in the dark and now the moon ...

...bird on the shape of the moon...

...rning, with a sliver of moon hanging...

...they love the sun, the moon and...

...they love the sun, the moon,...

Figure 2.1: Geometric Interpretation of Word Vectors (based on Baroni
[2012]): Here axes shine and shadow are the context words and
the three target words are sun, moon and dog. The vectors are
formed using by using context words in the corpus as shown in
the left.

distance of sun and moon is much smaller than the Euclidean dis-
tance between either of the words and dog. This closeness in the Eu-
clidean distance, in the given space, can help us in inferring words
with similar properties. In the example, moon is similar to sun under
the specified distribution (here the context as shine and shadow — a
two-dimensional space).

In the following subsections, we will refer to similarity mostly in
the context of substitutional aspects. We will now survey some meth-
ods of producing word representations. There are many ways of fac-
toring the representations based on the way they are learned. In this
thesis, we base this loosely on the structure followed by Baroni et al.
[2014].

We first describe count-based models. Some of the ideas from count-
based models are the recurring themes in several modeling techniques.
We discuss some of the popular methods that implement the princi-
ples of count-based models. We then briefly review previous work
on clustering based approaches and some of the popular prediction
based modeling techniques.

2.2.2 Count-Based Models

The principle idea behind count-based models is utilizing the statis-
tics of word occurrences in a certain context. They are loosely based
on the distributional hypothesis [Turney and Pantel, 2010], which
states that statistics of word usage can be used to obtain measures
of meaning. The models built under the hypothesis typically make
use of the word co-occurrence in the form of matrices hence, exploit-
ing the latent structure of the co-occurrence matrix. Let us begin with
some notations. Let the matrix of word co-occurrence counts be de-
noted by X, the entries Xij of which mean the number of times word
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j is seen in the context i (or vice versa, the choice should ideally not
change any representational aspects). We will expand on the defini-
tion of context below. X is mostly a sparse matrix. Typically, there are
many ways of associating contexts in count-based models, we survey
some of the popular methods:

- Word-Document Matrix: In a Word-Document matrix, typically
we have the contexts as the documents. So we effectively use
the count of occurrence of a word in a document. Words are
rows and the documents are columns of these matrices. This
gave rise to Bag-of-Words Hypothesis, that is, the frequency of
a set of query words in a document indicates the relevance of
the document to a query [Salton and Buckley, 1988]. Here, X:j

corresponds to the bag-of-words for a document. Further, Deer-
wester et al. [1990] observed that by looking at the word vectors,
here row-vectors i.e., Xi:, we can measure word-similarity.

- Word-Context Matrix: This method was originally inspired by
the distributional hypothesis, from classical linguistics, which states
that words that occur in similar contexts have similar similarity
measures [Harris; Firth, 1957; Deerwester et al., 1990]. A word
context matrix is similar to the word document matrix in many
respects. The most distinguishing factor is mostly the context,
here the context is some form of a lexical item. Some of the
popular contexts used in literature include:

Windows of words: For a target word, a window of k-
words before and after the words is used [Lund and Burgess,
1996]. This is also sometimes referred to as Continuous
Bag-of-Words model as the left and right contexts can be
considered as a set of words in a bag of window k. One
of the drawbacks of such a method is that it loses any
positional information about the context words with re-
spect to the target word. The two most popular techniques
for extracting the context commonly uses n-gram based
technique where the context is considered over the bag-of-
words in a given window. The other common technique is
skip-gram [Guthrie et al., 2006] where words are consid-
ered with l-skips over n-grams, where l < n.

Grammatical Contexts: Here, contexts are defined as some
notion of grammatical property given a target word [Lin,
1998; Lin and Pantel, 2001; Pado and Lapata, 2007; Grefen-
stette, 1994]. Usually, these methods make use of syntacti-
cally parsed data to build contexts that reflect properties
such as dependency relations between the words. These
are sometimes referred to as structural contexts as they in-
volve the use of some structural information. Hindle [1990]
used predicate-arguments as the structural context. Schütze
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and Pedersen [1995] used directional information i.e., ex-
plicit directional information with words as contexts. Sahlgren
[2006]; Wiemer-Hastings and Zipitria [2001] use parts of
speech information along with words as contexts.

- Pair Pattern Matrix: Lin [1998] describe pair-pattern matrix as a
matrix where the rows refer to pairs of words that are related
by some relation. For example, mason:stone and the columns are
patterns where the pair occurs, for example, mason makes use
of stone to . . . — in this case, the pattern ‘makes use of’ is the
pattern for the pair ‘mason’ and ‘stone’.

One of the well-known problems of using count-based repre-
sentations is the issue of the ideal word context. There is no
single best way of defining the word context matrix [Pado and
Lapata, 2005]. In many cases, some preprocessing is performed
on the corpus that includes lemmatization, stemming, etc. Some
preprocessing techniques, in particular for methods that involve
linguistic information are non-trivial and sometimes may need
extra-linguistic resources.

Now, we shall focus on some of the very popular methods in which
these word-contexts are used to get suitable word embeddings.

2.2.2.1 Hyperspace Analogue to Language (HAL)

HAL [Lund and Burgess, 1996] uses word co-occurrence matrix with
a window of size k such that there are k-words to the left and k-
words to the right. The co-occurrences are weighted by the distance
between the target word and the contexts. The resultant matrix is
a semi-directional co-occurrence matrix. This produces a very high-
dimensional context vector. The HAL typically reduces the dimen-
sionality by discarding columns with the lowest variance, thereby,
considering only the top-d most variant vectors. This, however, may
not be essential, but it has been observed that the most variant columns
tend to dominate in the computation of the Euclidean distance be-
tween two vectors. The Euclidean distance ranks vectors with increas-
ing measure but decreasing semantic similarity (i.e., the more sim-
ilar the two vectors are, smaller the distance between the two vec-
tors). One of the main problems with HAL is that the contribution
from most frequent words is higher than other words: for example,
co-occurrence with stop words such as ‘the’, ‘is’, etc., will have a
large effect on their similarity in spite of contributing very little to
semantic relatedness. COALS method is one of the techniques [Ro-
hde et al., 2006], where the co-occurrence matrix is transformed by a
correlation-based normalization. This results in an even distribution
of the counts.
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2.2.2.2 Latent Semantic Analysis (LSA)

LSA [Deerwester et al., 1990; Landauer et al., 1998] was originally
based on the word-document matrix, but the principle can equally be
applied to word-context matrices and pair-pattern matrices. The basic
approach is building a word co-occurrence matrix X followed by nor-
malization of the counts. This is followed by computation of singular
value decomposition (SVD) of the normalized co-occurrence matrix.
The SVD is a product of three matrices, U containing orthonormal
columns known as the left singular vectors, S — a diagonal matrix
containing the singular values and V> containing orthonormal rows
referred to as the right singular vectors. The left and the right sin-
gular vectors are also usually seen as eigenvectors and the singular
values as eigenvalues. The singular vectors reflect principal compo-
nents or axes of greatest variance in the data. Typically the matrices
comprising the SVD are permuted such that the singular values in S
are in decreasing order, they then can be truncated to a much lower
rank,r. The product of these truncated-matrices is the rank-r approxi-
mation of the X. The similarity between two words in LSA is usually
computed using the cosine of their reduced dimensionality vectors.
A truncated SVD applied to word-document matrix is referred to as
Latent Semantic Indexing (LSI). It has been observed in Deerwester
et al. [1990] that dimensionality reduction improves the quality of
word embeddings for various tasks. Also, it has been observed that
taking a square root [Rohde et al., 2006] or logarithm [Church and
Hanks, 1990] before SVD can improve the quality of the representa-
tion.

It has been observed that the truncated SVD results in capturing la-
tent interactions of the word representations. Although, in hindsight,
dimensionality reduction is expected to induce some noise and hence
the quality of the word vectors is supposed to reduce; however, it has
been observed that in most of the cases the quality of the vectors have
improved. In a recent work by Arora et al. [2016] they prove that the
noise for a semantic vector space is reduced by about

√
(r/n) by do-

ing dimensionality reduction (here r is the reduced dimension and
n is the original dimension). Also, Arora et al. [2016] argue that di-
mensionality reduction improves the quality of word embeddings for
various tasks is because of the directionless property of word vectors.
This has a purification effect.

Bullinaria and Levy [2007, 2012] discuss different set of factors
to extract proper semantic representations from word co-occurrence
statistics from large text corpora.

2.2.2.3 Non Negative Sparse Embedding (NNSE)

NNSE is a technique proposed by Murphy et al. [2012] where given
an input word context matrix, the method produces a latent sparse
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representation using matrix factorization technique. NNSE solves this
objective function:

arg min
w∑
i=1

‖Xi: −Ai: ×D‖2 + λ‖A|1

such that: Di:D>i: 6 1;Aij > 0. This will find A ∈ Rv×d that is sparse
and non-negative and D ∈ Rd×n contains the corpus statistics in la-
tent space. Non-negative representations have often been shown to
have better interpretability. Similar methods have been recently ex-
plored [Yogatama et al., 2015; Yogatama and Smith, 2014] that explic-
itly produce sparse representations given a dense word vector.

2.2.2.4 Helinger PCA

Lebret and Collobert [2014] introduce a way of learning embeddings
that is related to Latent Semantic Analysis. They use similar kinds
of word-context matrices as described in previous section. However,
here instead of counts, they consider co-occurrence probabilities, i.e.,:

Pr(w|c) =
n(w, c)∑
c n(c,w)

where: w is the target word and c is the context word. In essence
they obtain the word co-occurrence probability matrix. This is then
followed by a square root operation resembling Hellinger distance
for discrete probability distributions. Further, dimensionality is re-
duced by considering a principal component analysis over the resul-
tant square rooted word co-occurrence probability matrix. They also
mention that increasing the context window helps to capture better
syntactic and semantic information about the words.

2.2.2.5 Muti-View Learning Based Approaches

Dhillon et al. [2015] introduce a method that is based on canonical
correlation analysis (CCA) for learning word embeddings. First, they
construct two matrices — one for left word co-occurrence matrix that
considers left contexts and another right word co-occurrence matrix
that considers right contexts. They initialize a matrix A that is v× k
(where v is the vocabulary of the corpus and k is the required dimen-
sionality). They project the left and right context matrices and recur-
sively compute the CCA by using reduced rank left and right context
matrices to compute the matrix A bounded by certain error. This es-
sentially maps each word to a reduced rank k-dimensional state vec-
tor. Further, they use CCA between the hidden states and the token
matrix to induce context specific embeddings for the tokens. Dhillon
et al. [2015]’s method basically exploits the left and right similarity by
alternatively estimating word state by using CCA and averaging over
the states with all occurrences of the word. Another related approach
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by Stratos et al. [2014] uses CCA by using one-hot representations of
words and one-hot representations of contexts and projecting these
word and context matrices to a low-dimensional space in which they
would be maximally correlated. The projected word matrix is consid-
ered as a new word representation.

2.2.2.6 Pointwise Mutual Information Based Models

Pointwise mutual information is an information theoretic approach
to finding collocations. Basically, it is a measure of how much infor-
mation is conveyed by some word given another word. Pointwise
Mutual Information (PMI) based models have been extensively used
in the literature [Turney and Pantel, 2010; Lapesa and Evert, 2014; Tur-
ney, 2001; Baroni and Lenci, 2010]. However, PMI might be a problem
when the count of (w, c) = 0 and hence most of the early work in lit-
erature circumvent this problem by considering a Positive PMI (or
PPMI). For a given corpus with vocabulary v, PPMI for word w given
a context word c is given as:

PPMI(w, c) = max

(
log
(

Pr(w, c)
Pr(w)Pr(c)

)
, 0

)

= max

(
log
( ∑

(w, c)×‖v‖∑
ć(w, ć)×

∑
ẃ(ẃ, c)

)
, 0

)

This is then used to make a co-occurrence matrix whose compo-
nents are PMI(w, c)∀c. Complicated models consider asymmetric PMI
matrices with context words with term re-weighting.

Levy and Goldberg [2014a] define special cases of PMI — a. shifted
PMI as SPMI(w, c) = PMI(w, c) − log(k) for some k ∈ R and b.
shifted positive PMI as max(SPMI(w, c), 0). Usually, a method sim-
ilar to LSA is applied on PMI based co-occurrence based matrices to
reduce the dimensionality.

2.2.3 Clustering Based Approaches

Clustering-based approaches typically induce clustering over words.
These approaches partition sets of words into clusters or subsets of
similar words. The number of unique clusters is always lesser than
the vocabulary in any dataset. In most cases, the clustering based ap-
proaches that use unlabeled data are based on the syntagmatic simi-
larity.

2.2.3.1 Brown Clustering

The brown clustering algorithm [Brown et al., 1992] is a popular algo-
rithm and has been widely used in NLP in Miller et al. [2004a]; Liang
[2005]; Koo et al. [2008]. It is an agglomerative clustering algorithm
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that generates hard clustering. Broadly the algorithm is based on co-
occurrence of the words. Given a corpus of text, initially, each word
is in its own cluster. In the following steps, the algorithm iteratively
merges the pairs of clusters that minimize the likelihood of the text
corpus based on class-based bigram language model defined on word
clusters. This recursive operation gives rise to hierarchical clustering
of words. The hierarchy of words is useful as word classes are chosen
at different levels of hierarchy.

Ushioda and Kawasaki [1996] present an extension to the brown
clustering algorithm by learning hierarchical clustering of phrases.
Further, Martin et al. [1998] present extensions of the brown cluster-
ing algorithm that considers bigram and trigram statistics. Uszkoreit
and Brants [2008] present predictive exchange algorithm, which is an
extension to the brown clustering algorithm, in that, they consider
class conditioned words, instead of classes conditioned on classes.
The authors mention that word-to-class transitions statistics can di-
rectly be obtained while clustering large data sets.

2.2.3.2 Distributional Clustering

Pereira et al. [1993] use a word co-occurrence matrix initially and
then transform the matrix using clustering approaches. They pre-
process the data to collect two categories of words — verbs and nouns.
They cluster nouns according to their conditional verb distributions.
The basic idea is focused on minimizing the average similarity (as
Kullback-Leibler divergence) between Pr(verb|noun) and noun cen-
troid distributions. Baker and McCallum [1998] apply the distribu-
tional clustering scheme of Pereira et al. [1993] for clustering words
represented as distributions over categories of the document entries
where they appear. Given a set of c categories and a distribution of
word given the categories Pr(w|c), the words are clustered by an ag-
glomerative clustering algorithm.

2.2.4 Prediction Based Models

In the last few years, there has been a large exploration of prediction
based models. Essentially, prediction based models formulate the task
of learning word representation as a pseudo-supervised task, i.e., es-
sentially the models maximize the probability of the word-context
occurrence in the corpus. This, in principle, can be seen as the reverse
of count-based models. In the case of prediction based models, the
vectors are learned such that it optimally predicts the correct word-
context association, whereas in the count-based models the counts are
collected before and then reweighted. In essence, these models repre-
sent words as dense, low-dimensional vectors of real numbers. These
models are also known widely as distributed representations in liter-
ature. The idea of distributed representations could be traced back
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to Hinton [1986]. Typically, a training algorithm tries to push words
that are functionally similar to be replaceable. This makes the train-
ing algorithm learn word features that relate to a form of semantic or
syntactic similarity. The supervision in most of the cases is based on
negative sampling or contrastive estimation [Smith and Eisner, 2005],
i.e., exploiting implicit negative evidence. This technique is compu-
tationally efficient and is robust. Prediction based models that use
neural network architecture are also referred to as neural word em-
beddings.

In the following subsections we survey some of the popular tech-
niques in the literature:

2.2.4.1 Language Model based Embeddings

Representing words as dense vectors, first introduced by Bengio et al.
[2003], had the goal of improving standard n-gram language models
on statistical language modeling tasks by using distributed represen-
tations. The log-bilinear model by Mnih et al. [2009] follows the idea
and proposes a model such that, when given a corpus, it takes n-
gram sequence and linearly combines the representations of the n− 1

words. It then learns a log-bilinear model to predict the embedding
of the correct last word. That is, let each word be represented by a
d-dimensional vector v, then:

vwc(w)
=

n−1∑
i=1

Hivwi

where, Hi is a parameter matrix (the weights) and vwi are real
valued d-dimensional vectors.

The distribution for the next word then is computed based on the
similarity between the predicted representation and the representa-
tions of all words in the vocabulary:

Pr(vwn |vwc(w)
) =

exp(v>wc(w)
vwn)∑

j∈v exp(v>wc(w)
vwj)

Mnih et al. [2009] speed up model evaluation during training and
testing by using a hierarchy to exponentially filter down the num-
ber of computations that are performed. This hierarchical technique
was first proposed by Morin and Bengio [2005]. The technique ex-
ploits ‘hierarchical’ binary trees where words are associated with leaf
nodes with each leaf node as one word. If the tree is balanced then
each n-way decision can be replaced by O(n logn) binary decisions
for predicting next word, thereby achieving an exponential speed-up.
This model, combined with the optimization technique, is called the
hierarchical log-bilinear HLBL model.
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2.2.4.2 SENNA Embeddings

Collobert et al. [2011a] presented a neural network based approach to
learn lexical representation called senna, which is discriminative and
non-probabilistic. At each training step, it reads n-grams of words
from a given corpus. We can represent each word as a d-dimensional
vector representation vw. As in HLBL, they concatenate the all word
vectors for the n-gram representation:

vwc(w)
=

n∑
i=1

Hivwi

They then propose to have negative examples by corrupting one of
the word in the n-gram. The corrupted word is chosen uniformly
from the vocabulary and the vectors are linearly added in a similar
way to get vw̃c(w)

It is essentially a single layer neural network —
so both vwc(w)

and vw̃c(w)
are passed through the neural network to

obtain s(vw) and s(ṽw). The model uses margin-based loss such that:

arg max(0, 1− s(vw) + s(ṽw))

That is, to have the score of the correct n-gram score to be higher
than the corrupted n-gram score. The model uses stochastic gradi-
ent descent to minimize the loss over n-grams in the corpus. Bengio
[2009] use a similar approach, with the difference of the corrupted
word. The corrupted word is different — in Collobert et al. [2011a]
the middle word in the n-gram is corrupted, while Bengio [2009] cor-
rupt the last word.

2.2.4.3 Skip-gram based word vectors using Negative Sampling

Skip-gram embeddings, introduced by Mikolov et al. [2013d], are
computationally efficient models for obtaining distributed representa-
tions from a large amount of text. Given a corpus of vocabulary v, for
a target word w and a context word c ∈ C, all words are represented
with a d-dimensional vector representation v ∈ Rd. They describe the
probability of context given the target word as:

Pr(vC|vw, θ) =
∏

c∈C(w)

Pr(vc|vw, θ)

That is, the model is trying to seek parameters θ such that the dot
product v>c vw for every ‘correct’ word-context pair is maximized.
They do it in two ways, by contrastive estimation or negative sam-
pling, the model collects samples where w and c co-occur as word
contexts in the data (also known as ‘correct’ samples) and generates
a sample where w and c do not co-occur as contexts by randomly
sampling all the contexts or by using a standard maximum entropy
loss. The distribution is modeled as:

Pr(vc|vw, θ) =
exp(v>wvc)∑

c‘∈C(w) exp(v>c v‘
w)
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The objective is to maximize the log-probability of the observed cor-
rect pairs:

arg max
θ

∏
vw∈Corpus

∏
c∈C(w)

Pr(vc|vw, θ)

The objective is trained using stochastic gradient descent over all v
in the corpus. Maximizing the objective results in observed word-
context pairs to have similar word vectors. The words could be as-
sumed to be replaceable in similar contexts [Mikolov et al., 2013d].
The contexts in skip-gram based model are chosen based on l-skips
in the n-gram bag-of-context-words.

Mikolov et al. [2013d] also introduce a related model called Con-
tinuous Bag of Words model that uses bag-of-words based contexts
to model Pr(vw|vC). However, in this case, the model maximizes the
probability of occurrence of the word for some ‘correct’ context word
c. The model uses a similar machinery as before, but it uses bag-of-
words for extracting contexts.

The authors mention that the skip-gram based model being effec-
tive for a relatively smaller corpus and the continuous bag-of-words
model obtain better results for a sufficiently large corpus.

2.2.4.4 GloVe Embeddings

GloVe [Pennington et al., 2014a] is another unsupervised learning
algorithm which is trained, based on a PMI based matrix. This al-
gorithm, unlike others that have been described here, starts by first
building a matrix that resembles positive pointwise mutual informa-
tion and uses a log-bilinear model of word and context by minimizing
a least square objective constrained by the PMI based matrix. Arora
et al. [2016] shows that, under some circumstances, GloVe produces
similar vectors as skip-gram based vectors as seen in the previous
subsection.

2.2.5 Association between Prediction and Count-Based Methods

It has been shown that some of the neural embeddings based meth-
ods are closely related to the count-based PMI models in recent explo-
ration by Levy and Goldberg [2014a] and Arora et al. [2016]. Levy and
Goldberg [2014a] show that by accumulating data over co-occurrences
of words w and contexts c, the objective function of skip-gram with
negative sampling can be written as shifted point-wise mutual infor-
mation and show that under some conditions, the skip-gram with
negative sampling objective is factorizing a count-based shifted PMI
word-context matrix. Further, Arora et al. [2016] describe a probabilis-
tic model of text generation that augments the log-linear predictive
models with random-walk over a latent discourse space. They show
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the relation between the count-based models and negative sampling
based skip-gram models.

2.3 comparisons and application of word representa-
tions

We have discussed various ways of creating word vector representa-
tions. In this section, we begin by discussing challenges of comparing
word vectors. One of the substantial problems with word vectors is
that there is no standard method for evaluating the quality of the
word vectors. This is attributed to the difficulty in interpreting the
word vectors, that is, there is no standard way to interpret each di-
mension in a word vector and compare with different representations.
Also, it is not completely clear how the representations can be used in
various NLP tasks for best returns. We then discuss some of the appli-
cations of these word representations in some of the state-of-the-art
methods.

2.3.1 Comparison of Lexical Representations

In this subsection, we list the most frequently used techniques to com-
pare various word representations.

2.3.1.1 Lexical Similarity Based Metrics

Word-similarity metrics are used to measure how well the representa-
tions capture word-similarity in the form of ‘replaceability’. These
datasets include WordSim353 [Finkelstein et al., 2001], rare words
dataset [Luong et al., 2013a], WordSim203 [Agirre et al., 2009], Wor-
dRel252 [Agirre et al., 2009], semantic similarity datasets [Miller and
Charles, 1991], noun dataset [Rubenstein and Goodenough, 1965], fre-
quent words dataset [Bruni et al., 2014], MTurk287 [Radinsky et al.,
2011], Mturk-771 [Halawi et al., 2012], Verbs dataset [Yang and Pow-
ers, 2006] and Sim-lex99 [Hill et al., 2015]. The standard procedure
to compute similarity is to compute cosine distances between word
pairs and rank these. This is followed by computing the Spearman’s
rank correlation [Hauke and Kossowski, 2011] between the model
calculated ranking and the human ranking. However, most of these
datasets have problems related to low inter-annotator agreement and
sometimes many dissimilar words receive high agreement, etc.. These
cause some of the word representations to surpass the inter-annotator
agreement ceiling. A more comprehensive analysis of the datasets
can be found in Hill et al. [2015]. It has been observed that in gen-
eral, the larger the initial corpora used for obtaining word represen-
tations, the better is the performance of the representations on these
datasets. We also observe that the LSA-based and PMI based mod-
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els and the Neural Embeddings are equally competitive in some of
these datasets. Baroni et al. [2014] perform an extensive evaluation
on some of the previously mentioned datasets. They perform exper-
iments with count-based models and prediction based models and
find that more recent prediction based models in most cases, out-
performed the count-based models. However, Hill et al. [2015] also
perform extended experiments using concept based datasets, part of
speech based fine-grained similarity datasets and similarity versus
association based datasets and conclude that count and prediction
based models are equally competitive.

There have been other work that evaluates the count-based word
vectors with other approaches, this includes, the comparison between
count-based word vectors and wordnet-based approaches [Agirre et al.,
2009]. Some work also evaluates the effect of window sizes on word
vector representations on these tasks [Levy and Goldberg, 2014a; Hill
et al., 2015; Chen et al., 2015; Bansal et al., 2014a; Bansal, 2015].

2.3.1.2 Lexical Analogies

This task was specifically introduced in Mikolov et al. [2013d] to eval-
uate syntactic and semantic relations between words. In each task,
one of the words is missing and the task is to predict the correct miss-
ing word given the relation between another pair of words. In Baroni
et al. [2014] it is observed that the prediction based models are better
at performing these tasks.

2.3.1.3 Performance of Embeddings in Tasks

One of the ways of comparing the representations is by evaluating
their utility in downstream applications. Towards this effort, there
have been some recent works that use different types of word embed-
dings for evaluation. Turian et al. [2010a] performed extensive exper-
iments with word embeddings on word chunking and named entity
recognition tasks. They observe that concatenating different types of
representations help improve the performance of the algorithms on
both of these tasks. This is because count-based representations, clus-
tering based representations, and prediction based representations
inherently produce different kinds of errors.

Andreas and Klein [2014] study the performance of embeddings
on the task of constituency parsing. They explicitly add word em-
bedding based information to the features of the constituency parser
especially in the context of out-of-vocabulary words. They note that
given adequate training data to the parser, the embeddings do not
add a lot of information, and the improvements are minimal to mod-
est.

Schnabel et al. [2015] perform experiments with different kinds of
word embeddings on a set of tasks including word relatedness, co-
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herence, and downstream performance. They show that embeddings
behave differently on various tasks.

In general, we notice an inconclusive trend with respect to the eval-
uation of the word embeddings.

2.3.2 Application of Word Representations

In the recent years, natural language processing and related fields
have made use of word representations in a variety of tasks. Word
vectors have been ubiquitously used for word-similarity based tasks
ever since Deerwester et al. [1990]’s work, which showed that sim-
ilarity could be measured by using word vectors. A great amount
of literature follows this work by using different types of word vec-
tors on lexical similarity based tasks [Landauer et al., 1998; Lund and
Burgess, 1996; Schütze and Pedersen, 1995; Lin and Pantel, 2001] that
includes discovering synonyms, antonyms, plurality, etc.

In areas of research involving information extraction or question
answering, etc., identifying the existence of relations is an important
challenge. Previous work [Turney, 2006; Jurgens et al., 2012] use word
vectors to measure relational similarity and it has been seen as a flex-
ible and straightforward solution that is competitive and most often
performs better than using an exclusive relational classifier for a pre-
defined set of relations. Turney [2006] use word vectors based on
pair-pattern matrices on multiple-choice analogy questions from SAT
college entrance test and achieve human-level performance.

Word Sense Disambiguation (WSD) is another important task where
word vectors are successfully utilized. The oldest Application of word
vectors to the task was shown in Leacock et al. [1993] where they use
word-context frequency matrix directly for the task of WSD. Here,
instead of using a word directly, a word with a sense tag was used.
Further word vectors have been used to enhance a state-of-the-art
WSD methods [Yuret and Yatbaz, 2010]. New methods tailor word
vectors to contain sense specific information [Cheng and Kartsaklis,
2015; Tian et al., 2014; Huang et al., 2012a]

Word embeddings have been used for the task of named entity
recognition both as additional features as well as main features [Lin
and Wu, 2009; Turian et al., 2010a]. Collobert et al. [2011a] use word
embeddings in a multi-task learning framework. Collobert and We-
ston [2008] propose a joint task of chunking, named entity recognition
and part of speech tagging jointly and use similar representational in-
formation.

Syntactic Parsing is another key area using different types of word
representations. Koo et al. [2008] use brown clusters along with the
standard linear features to get a boost in the parsing accuracy. They
also conclude that clustering information gives a significant perfor-
mance improvement when we have limited supervision. Cirik and
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Sensoy [2013] explore the usage of word representations for multilin-
gual parsing. Bansal et al. [2014a]; Bansal [2015] convert distributed
representations to link embedding or binary clustering information
and feed it to the dependency parser and achieve very competitive re-
sults. Further, Chen and Manning [2014a]; Lei et al. [2014]; Weiss et al.
[2015] use direct word embeddings as lexical features and achieve
state-of-the-art results in parsing.

Maas et al. [2011]; Socher et al. [2013c]; Tai et al. [2015] use word
vectors for sentiment analysis tasks and achieve state-of-the-art re-
sults. Sutskever et al. [2014]; Bahdanau et al. [2015]; Gao et al. [2013];
Devlin et al. [2014] use word embeddings for the task of machine
translation and achieve competitive scores. Köhn et al. [2014] use
word embeddings in the context of morphological prediction.

Word representations have also been used extensively in related
fields that combine NLP and image processing. One of the most
prominent approaches is by using word representations for zero-shot
learning. Zero-shot learning consists of learning to recognize new
concepts by just having a description of them. Frome et al. [2013]
introduced a method that uses word representations to get a visual-
semantic model. Socher et al. [2013a] employ a linguistic model as an
intermediate semantic representation using word representations.

2.4 challenges and extensions

In this section, we will explore some of the major limitations and
some proposed techniques to overcome these limitations.

2.4.1 Polysemy, Lexical Substitution, Lexical Entailment

Some words have more than one sense. These words are known as
polysemous words. The most word embeddings assume a single vec-
tor per word type thus ignoring polysemy, which might be adding to
the noise in the downstream task. That is, say a word such as ‘work’
as a noun and as a verb have same word vectors. In high dimensional
spaces it could be argued that a vector is close to multiple regions,
this still results in words that are synonyms with different senses to
be clustered close together.

Another major limitation of the unsupervised methods is that the
words are represented as a single point in space. This results in rigid
vectors that do not exhibit properties of entailment. For example,
‘Music’ and ‘Rhythm’, in some cases, ‘Music’ entails the concept of
‘Rhythm’. This entailment is difficult to capture in the traditional
word embedding methods.
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2.4.1.1 Extensions to the Existing Vector Representations

Previous work tries to engineer senses into embedding methods. Pre-
vious work by Reisinger and Mooney [2010] pre-cluster contexts of
word tokens into discriminated senses and then use these clusters
to re-label the tokens according to word sense. They then use the
sense tagged corpora to learn embeddings. Huang et al. [2012a] im-
prove the method by using an earlier version of single type-level word
embeddings as contexts. Both these methods include fixed number
of sense per word type. There have been extensions to these meth-
ods [Weston et al., 2013; Neelakantan et al., 2014], however, their cov-
erage of senses is limited to only those senses that are covered in the
underlying corpus.

Most previous related research uses multiple points in space to
represent the different senses of words. But, the relations between
words are not explicitly captured. Vilnis and McCallum [2015] de-
scribe a novel model that uses Gaussian distribution as a represen-
tation and obtain density based distributed word embeddings. They
report many interesting advantages, which include better-capturing
uncertainty about a word and its relationship with other words and
modeling asymmetric similarities among others.

2.4.2 Task Specific Embeddings

Word representations learned using both parametric and non-parametric
methods, while powerful, are not learned exclusively for a single task.
These embeddings are highly abstract representations and mostly are
learned to maximize the similarity (Euclidean or otherwise) under a
certain context. In general, to be effective in NLP tasks, they should
capture semantics relevant to the NLP task.

2.4.2.1 Extensions to Existing Vector Representations

Most word embedding methods are fast to train and can be read-
ily downloaded. There has been a variety of recent work in the field
of representation learning that try to task-specify word embeddings.
Labutov and Lipson [2013] propose a technique that takes input rep-
resentations with some labeled data and outputs an embedding in the
same space but with properties that cater better for the task at hand.
Astudillo et al. [2015]; Rothe and Schütze [2015] extend the technique
for various tasks. Lebret and Collobert [2014] initialize neural net-
works with word representations and specify for a task with some
labeled data by back propagating the errors for the task loss, thereby
task specifying the representations. They note that the task specified
representations perform better on a variety of tasks.

Some methods learn embeddings for a task jointly with the unla-
beled data as a multi-task learning approach. Collobert et al. [2011a]
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have successfully applied this approach that learns task-specific em-
beddings in this fashion. However, this is hard and takes a long time
for the embeddings to be learned and specified and is computation-
ally expensive. Also, it has a downside of overfitting or underspeci-
fying words that are rarely seen in the supervised corpus, in many
cases substituting a default word embedding for any rare word. This
usually results in noise. Related methods such as Tang et al. [2014];
Maas et al. [2011] use a similar approach for the task of sentiment
analysis.

Recent work also tries to replace the linear context within a sen-
tence with a syntactic one [Bansal et al., 2014a; Levy and Goldberg,
2014b] for the task of dependency parsing. They use skip-gram with
negative sampling based technique to learn the word embeddings.
Here, a huge corpus is first parsed using a state-of-the-art depen-
dency parser and the context of a word is taken to be the words that
are in its proximity in the parse tree, together with the syntactic rela-
tion by which they are connected. These are then used as additional
features for the task of dependency parsing, but here the word em-
beddings are further clustered, and cluster labels are used as features.

Another related line of work [Gouws and Søgaard, 2015] uses sim-
ple dictionary based technique to learn task-specific bilingual word
embeddings that can be useful for cross-language knowledge transfer.
Faruqui et al. [2015a] propose a method that refines word represen-
tations using relational information obtained from lexicons. They try
to optimize the linked words in the lexicon to have similar represen-
tations.

2.4.3 Representational Space and Models

Another key challenge with using word representations in NLP mod-
els is the compatibility of word representation space with the existing
state-of-the-art machinery. Most of the representations cannot be di-
rectly used as features for supervised linear models. While, this is not
a big concern for neural network based models, as they update using
error back propagation, they may not be portable easily to the linear
models.

2.4.3.1 Extensions

Brown-clusters have been effectively used for different tasks includ-
ing named entity resolution [Miller et al., 2004a; Liang, 2005] and syn-
tactic parsing [Koo et al., 2008] and have produced state-of-the-art re-
sults. Qu et al. [2015a] perform a battery of NLP tasks with different
word representations that include neural word embeddings, brown
clustering, etc., they observe that brown-clusters perform as good as
state-of-the-art or better. Brown clusters, by virtue of the sparse low
dimensional binary vectors can be easily included along with the tra-
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ditional features to achieve better performance. They generally add
no computational bulk and are very portable. They perform equally
with both neural network based models and standard log-linear mod-
els.

Bansal et al. [2014a]; Bansal [2015] describe methods where they use
clustering on top of the learned word representations so that these
representations can be used in the context of syntactic parsing. In
spirit, these representations have similar properties as brown-clusters.
The secondary clustering of word representations, while simple, may
not be ideal as clustering could lose a lot of information that could
have been better used if the representations were directly used.

In a related work, Faruqui et al. [2015b] propose a technique for
transforming a set of word vectors to make them more interpretable.
They do this by projecting the vectors into a higher-dimensional space,
where the vectors are all sparse. Words that are semantically related
share nonzero components of these vectors. However, they only test
these embeddings on a battery of simple tasks — especially related
to word-similarity.

2.5 summary

We have reviewed the relevant background for lexical representation
learning in the field of NLP. We surveyed various techniques of learn-
ing word representations and applications of these representations in
many NLP tasks.

In Section 2.4, we list some of the challenges in utilizing these word
representations, especially for different NLP tasks.

In this context, we propose learning task-specific representations
as described in Chapter 3, where we introduce a method that uses a
bilinear model to task-specify representations for bilexical prediction
tasks. We expand on applications of lexical representations and focus
on prepositional phrase attachment ambiguity problem in Chapter
4. We investigate the use of word representations for vocabulary ex-
pansion in Chapter 5, and finally, we present techniques for mapping
representational spaces in Chapter 6.
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TA I L O R I N G W O R D E M B E D D I N G S F O R B I L E X I C A L
P R E D I C T I O N S

In this chapter, we investigate the problem of inducing lexical embed-
dings that are tailored for a particular bilexical relation. We present
an approach that takes an existing lexical representation and com-
presses it such that the resulting word embeddings are good predic-
tors for a target bilexical relation. We study the efficacy of the word
embeddings on a battery of tasks on multiple linguistic bilexical re-
lations. We observe that the task-specific embeddings can benefit the
quality of the representations, i.e., it learns the necessary task-specific
properties. We also show that compressed embeddings can be com-
putationally efficient in lexical prediction tasks.

The chapter starts with the introduction of bilexical operators. In
the following section we describe the low-rank bilinear embeddings.
We conduct extensive experiments with different word embeddings
to show the efficacy of our method.

This work is a part of our published work Madhyastha et al. [2014]
and Madhyastha et al. [2015].

3.1 bilexical operators

Consider learning a model that predicts the probability that an ad-
jective modifies a noun in a sentence. In this case, we would like the
bilexical operator to capture the fact that some adjectives are more
compatible with some nouns than others. For example, a bilexical
operator should predict that the adjective electronic has a high proba-
bility of modifying the noun device but little probability of modifying
the noun case.

Bilexical operators can be useful for multiple NLP applications. For
example, they can be used to reduce ambiguity in a parsing task.
Consider the following sentence extracted from a weblog: Vinyl can
be applied to electronic devices and cases as shown in Figure 3.1. If we

Vinyl can be applied to electronic devices and cases

NMOD?

NMOD?

Figure 3.1: The sentence illustrates the ambiguity in deciding the correct
attachment of the bilexical relation.

27
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want to predict the dependency structure of this sentence we need to
make several decisions. In particular, the parser would need to decide
(1) Does electronic modify devices? (2) Does electronic modify cases? (3)
Does electronic modify both devices and cases? Now imagine that in
the corpus used to train the parser none of these nouns have been
observed, then it is unlikely that these attachments can be resolved
correctly. However, if an accurate noun-adjective bilexical operator
were available most of the uncertainty could be resolved. This is be-
cause a good bilexical operator would give high probability to the
pairs electronic-device and low probability to the pair electronic-case.

The simplest way of inducing a bilexical operator is to learn it from
a training corpus. That is, assuming that we are given some data
annotated with a linguistic relation between a modifier and a head
(e.g., adjective and noun) we can simply build a maximum likelihood
estimator for Pr(m|h) by counting the occurrences of modifiers and
heads under the target relation. For example, we could consider learn-
ing bilexical operators from sentences annotated with dependency
structures. Clearly, this model can not generalize to head words not
present in the training data.

The main limitation of this approach is that the learned bilexical
operator can only be evaluated over heads that are present in the
supervised corpus but it can not provide information about unknown
heads.

To mitigate this we could consider bilexical operators that can ex-
ploit lexical embeddings, such as a distributional vector-space repre-
sentation of words. In this case, we assume that for every word we can
compute an n-dimensional vector space representation φ(w) → Rn

as we have presented in Chapter 2. This representation, as we have
seen earlier, typically captures distributional features of the context
in which the lexical item can occur. The key point is that we do not
need a supervised corpus to compute the representation. All we need
is a large textual corpus to compute the relevant statistics. Once we
have the representation we can exploit operations in the induced vec-
tor space to define lexical compatibility operators. For example, we
could define a bilexical operator as:

Pr(m | h) =
exp
{
〈φ(m),φ(h)〉

}∑
m ′ exp

{
〈φ(m ′),φ(h)〉

} (3.1)

where 〈φ(x),φ(y)〉 denotes the inner-product. Alternatively, given an
initial high-dimensional distributional representation computed from
a large textual corpus we could first induce a projection to a lower k
dimensional space by performing truncated singular value decompo-
sition. The idea is that the lower dimensional representation will be
more efficient and it will better capture the relevant dimensions of
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the distributional representation. The bilexical operator would then
take the form of:

Pr(m|h) =
exp
{
〈Uφ(m),Uφ(h)〉

}∑
m ′ exp

{
〈Uφ(m ′),Uφ(h)〉

} (3.2)

where U ∈ Rk×n is the projection matrix obtained via SVD.
The advantage of this approach is that as long as we can estimate

the distribution of contexts of words we can compute the value of
the bilexical operator. However, this approach has a clear limitation:
to design a bilexical operator for a target linguistic relation we must
design the appropriate distributional representation. Moreover, there
is no clear way of exploiting a supervised training corpus.

An ideal lexical representation should compress the space of lexi-
cal words while retaining the essential properties of words in order to
make predictions that correctly generalize across words. The typical
approach is to first induce a lexical representation in a task-agnostic
setting and then use it in different tasks as features. A different ap-
proach is to learn a lexical representation tailored for a certain task.
In this chapter, we explore the second approach, and employ a formu-
lation to induce task-specific word embeddings. This method departs
from a given lexical vector space, and compresses it such that the
resulting word embeddings are good predictors for a given lexical
relation.

Given the complexity of lexical relations, one expects that the prop-
erties of words that are relevant for some lexical relation are different
for another relation. This might affect the quality of an embedding,
both in terms of its predictive power and the compression it obtains.
If we employ a task agnostic low-dimensional embedding, will it re-
tain all the important lexical properties for any relation? And, given
a fixed relation, can we further compress an existing word represen-
tation?

In this work, we present experiments along these lines that confirm
that task-specific embeddings can benefit both quality and computa-
tional efficiency of lexicalized predictive models.We test the proposed
algorithm on several linguistic relations and show that it can predict
modifiers for unknown words more accurately than the unsupervised
approach. Furthermore, we compare different types of regularizers
for the bilexical operator W, and observe that indeed the low-rank
regularizer results in the most efficient technique at prediction time.

3.2 bilinear models for bilexical predictions

In this section, we describe our formulation of bilinear models for
bilexical relation. In essence, we combine both the supervised and dis-
tributional approaches and present a learning algorithm for inducing
bilexical operators from a combination of supervised and unsuper-
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vised training data. The main idea is to define bilexical operators us-
ing bilinear forms over distributional representations: φ(x)>Wφ(y),
where W ∈ Rn×n is a matrix of parameters. We can then train our
model on the supervised training corpus via conditional maximum-
likelihood estimation. To induce a low-dimensional representation,
we first observe that the implicit dimensionality of the bilinear form
is given by the rank of W. In practice controlling the rank of W can
result in important computational savings in cases where one evalu-
ates a target word x against a large number of candidate words y: this
is because we can project the representations φ(x) and φ(y) down to
the low-dimensional space where evaluating the function is simply
an inner-product. This setting is in fact usual, for example for lexical
retrieval applications (e.g., given a noun, sort all adjectives in the vo-
cabulary according to their compatibility), or for parsing (where one
typically evaluates the compatibility between all pairs of words in a
sentence).

Consequently, with these ideas, we propose to regularize the maximum-
likelihood estimation using a nuclear norm regularizer that serves as
a convex relaxation to the rank function. To minimize the regularized
objective we make use of an efficient iterative proximal method that
involves computing the gradient of the function and performing sin-
gular value decompositions.

We first proceed with the definition and some necessary notations.
And then describe the formulation of the problem. Lastly, we describe
the learning setting.

3.2.1 Definitions

Let V be a vocabulary, and let x ∈ V denote a word. Let H ⊆ V be
a set of head words, and M ⊆ V be a set of modifier words. In the
noun-adjective relation example, H is the set of nouns and M is the
set of adjectives.

3.2.2 Task

The task is as follows:
We are given a training set of l tuples D = {(m,h)1, . . . , (m,h)l},

where m ∈M and h ∈ H and we want to learn a model of the condi-
tional distribution Pr(m | h). We want this model to perform well on
all head-modifier pairs. In particular, we will test the performance of
the model on heads that do not appear in D.

We assume that we are given access to a distributional representa-
tion function φ : V → Rn, where φ(x) is the n-dimensional repre-
sentation of x. Typically, as we have seen in Chapter 2, this function
is computed from an unsupervised corpus [Turney and Pantel, 2010;
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Mikolov et al., 2013d; Collobert et al., 2011b]. We use φ(x)[i] to refer
to the i-th coordinate of the vector.

3.2.3 Bilinear Model

Our model makes use of the bilinear form W : Rn ×Rn → R, where
W ∈ Rn×n, and evaluates as φ(m)>Wφ(h). We formulate the bilin-
ear model that, given a query word q, computes a conditional distri-
bution over candidate words c.The models take the following form:

Pr (m | h) =
exp
{
φ(m)>Wφ(h)

}
∑
m ′∈M exp

{
φ(m ′)>Wφ(h)

} (3.3)

The learning problem essentially is to obtain φ and W from data,
and we approach it in a semi-supervised fashion. We expand on the
learning problem in future sections. There exist many approaches to
learn φ from unlabeled data, we experiment with two approaches: (a)
a simple distributional approach where we represent words with a
bag-of-words of contextual words; and (b) the skip-gram model by
[Mikolov et al., 2013d].

To learn W we assume access to labeled data in the form pairs of
compatible examples, i.e. D = {(q, c)1, . . . , (q, c)l}, where q ∈ H and
c ∈ M. The goal is to be able to predict query-candidate pairs that
are unseen during training. Recall that we model relations between
words without context. Thus the lexical representation φ is essential
to generalize to pairs involving unseen words.

Before moving to the next section, let us note that the unsupervised
SVD model in Eq. (3.2) is also a bilinear model as defined here. This
can be seen if we set W = UU>, which is a bilinear form of rank k.
The key difference is in the way W is learned using supervision.

3.2.4 Relation to Linear Models

Note that the above model is nothing more than a conditional log-
linear model defined over n2 features as:

fi,j(m,h) = φ(m)[i]φ(h)[j] (3.4)

Using this as features, we can now write the probabilistic formula-
tion as:

Pr(m|h) =

n∑
i=1

n∑
j=1

fi,j(m,h)wi,j (3.5)

where, f and w are n-dimensional feature vector for (m,h) in an ex-
tended feature space and weight vector respectively.
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This shows that bilinear models are basically linear models with an
extended features space. This allows us, theoretically, to re-utilize all
the machinery designed for linear models.

The reason why it is useful to regard W as a matrix will become
evident in the next section.

3.2.5 Learning Low-rank Bilexical Operators

motivation : In this section, we begin by motivating bilinear mod-
els with low-rank constraint. We can observe that the bilinear form
computes a weighted inner product in some space, this is written as:

φ(m)>Wφ(h)

Rewriting in vectorial notation, we get:

[
m1 m2 · · · · · · · · · mn

]
︸ ︷︷ ︸

φ(m)>



w11 w12 · · · · · · · · · w1n
w21 w22 · · · · · · · · · w2n

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

wn1 wn2 · · · · · · · · · wnn





h1
h2
...
...
...

hn




φ(h)

Consider the singular value decomposition of W, in other words fac-
torizing W:

W = UΣV

This follows:

[
m1 m2 · · · · · · mn

]
︸ ︷︷ ︸

φ(m)>





u11 · · · u1k
u21 · · · w2k

...
...

...
...

...
...

un1 · · · unn


︸ ︷︷ ︸

U


σ1 · · · 0
...

. . .
...

0 · · · σk


︸ ︷︷ ︸

Σ


v11 · · · · · · v1n

...
...

...
...

vk1 · · · · · · vkn


︸ ︷︷ ︸

V>


︸ ︷︷ ︸

SVD(W) = UΣV>



h1
h2
...
...

hn




φ(h)

Notice, Σ matrix actually contains only non-zero values on the di-
agnonal. The rest of the matrix is zero. Now, we can write the bilinear
form as:

[φ(m)>U] Σ [Vφ(h)]
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Assuming, the matrix W has a rank k < n, then:

[
m1 m2 · · · · · · mn

]


u11 · · · u1k
u21 · · · w2k

...
...

...
...

...
...

un1 · · · unn




︸ ︷︷ ︸

φ(m)>U


σ1 · · · 0
...

. . .
...

0 · · · σk


︸ ︷︷ ︸

Σ




v11 · · · · · · v1n

...
...

...
...

vk1 · · · · · · vkn





h1
h2
...
...

hn




︸ ︷︷ ︸

V>φ(h)

Further, we can regard m̃ = φ(m)>U as a projection of m and
h̃ = Vφ(h) as a projection of h.

Then the bilinear form can be written as:

n∑
i=1

Σ[i,i] m̃[i] h̃[i]

This implies that we are essentially re-embedding the n−dimensional
vectors to a compact k−dimensional vector space, which is tailored
for a given task and the prediction essentially is computing the inner-
product in the k−dimensional space.

training : Given a training set D and a feature function φ(x) we
can do standard conditional max-likelihood optimization and mini-
mize the negative of the log-likelihood function, log Pr(D):∑

(m,h)∈D
φ(m)>Wφ(h) − log

∑
m ′∈M

exp
{
φ(m ′)>Wφ(h)

}
(3.6)

The rank of W defines the dimensionality of the induced space. It is
easy to see that if W has rank k it can be factorized as UΣV where
U ∈ Rn×k and V ∈ Rk×n.

Since the rank of W determines the dimensionality of the induced
space, it would be reasonable to add a rank minimization penalty in
the objective in (3.6). Unfortunately, this would lead to a non-convex
regularized objective. Instead, we propose to use as a regularizer a
convex relaxation of the rank function, the nuclear norm ‖W‖∗ (the
`1 norm of the singular values of W [Srebro et al., 2004]). Putting it
all together, the learning algorithm minimizes:∑

(m,h)∈D
− log Pr(m | h)) + λ‖W‖∗ (3.7)

Here λ is a constant that controls the trade-off between fitting the
data and the complexity of the model. This objective is clearly convex
since both the objective and the regularizer are convex. To minimize
it we use the proximal gradient algorithm which is described next.
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a proximal algorithm for bilexical operators We now
describe the learning algorithm that we use to induce the bilexical
operators from training data. We are interested in minimizing the ob-
jective (3.7), or in fact a more general version where we can replace
the regularizer ‖W‖∗ by standard `1 or `2 penalties. For any convex
regularizer r(W) (namely `1, `2 or the nuclear norm) the objective in
(3.7) is convex. Our learning algorithm is based on a simple optimiza-
tion scheme known as forward-backward splitting (FOBOS) [Duchi and
Singer, 2009].

This algorithm has convergence rates in the order of 1/ε2, which
we found sufficiently fast for our application. Many other optimiza-
tion approaches are possible, for example, one could express the regu-
larizer as a convex constraint and utilize a projected gradient method
which has a similar convergence rate. Proximal methods are slightly
more simple to implement and we chose the proximal approach.

while iteration < MaxIteration do
Wt+0.5 =Wt − ηtg(Wt); // gradient of neg

log-likelihood
/* adding regularization penalty: */
/* Wt+1 = argminW ||Wt+0.5 −W||22 + ηtλr(W) */
/* we use proximal operator */
if `1 regularizer then

Wt+1(i, j) = sign(Wt+0.5(i, j)) ·max(
∣∣Wt+0.5(i, j)

∣∣− ηtλ, 0);
// Basic thresholding operation

else if `2 regularizer then
Wt+1 =

1
1+ηtλ

Wt+0.5; // Basic scaling operation
else if `∗ regularizer then

Wt+0.5 = UΣV
>;

σ̄i = max(σi − ηtλ, 0); // σi = the i-th element on Σ
Wt+1 = UΣ̄V

> ;
end

Algorithmus 1 : Proximal Algorithm for Bilexical Operators

The FOBOS algorithm works as follows. In a series of iterations
t = 1 . . . T compute parameter matrices Wt as follows:

(a) Compute the gradient of the negative log-likelihood, and up-
date the parameters

Wt+0.5 =Wt − ηtg(Wt)

where ηt = c√
t

is a step size and g(Wt) is the gradient of the
loss at Wt.

(b) We now wish to update Wt+0.5 to take into account the regular-
ization penalty r(W). That is, we are interested in solving:

Wt+1 = argmin
W

||Wt+0.5 −W||22 + ηtλr(W)
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Principally, in FOBOS, given a particular regularizer, this step
is solved using the proximal operator associated with the regular-
izer. Specifically:

- For `1 it is a simple thresholding:

Wt+1(i, j) = sign(Wt+0.5(i, j)) ·max(
∣∣Wt+0.5(i, j)

∣∣−ηtλ, 0)

- For `2 it is a simple scaling:

Wt+1 =
1

1+ ηtλ
Wt+0.5

- For nuclear-norm, perform SVD thresholding. Compute
the SVD to write Wt+0.5 = USV> with S a diagonal ma-
trix and U,V orthogonal matrices. Denote by σi the i-th
element on the diagonal of S. Define a new matrix S̄ with
diagonal elements σ̄i = max(σi − ηtλ, 0). Then set

Wt+1 = US̄V
>

Optimizing a bilinear model using nuclear-norm regularization in-
volves an extra, relatively small, cost of performing SVD of W at each
iteration. The optimization parameters of the method are the regular-
ization constant λ, the step size constant c and the number of itera-
tions T . In our experiments we ran a range of λ and c values for 200

iterations, and used a validation set to pick the best configuration.

3.3 relevant related work

There have been many strands of related research in the past few
years that have a similar objective. Some of the earliest work espe-
cially in Blei and McAuliffe [2008] implement sLDA where they use
topic variables as the supervision to learn a log-linear model.

Bai et al. [2010] use a technique similar ours, using bilinear forms
with low-rank constraints. In their case, they explicitly look for a
low-rank factorization of the matrix, making their optimization non-
convex. As far as we know, ours is the first convex formulation. They
apply the method to document ranking and thus optimize a max-
margin ranking loss. In our application to bilexical models, we per-
form conditional max-likelihood estimation. Chechik et al. [2010] also
learned bilinear operators using max-margin techniques, with pair-
wise similarity as supervision, but they did not consider low-rank
constraints.

One related area where bilinear operators are used to inducing
embeddings is distance metric learning. Weinberger and Saul [2009]
used large-margin nearest neighbor methods to learn a non-sparse
embedding, but these are computationally intensive and might not
be suitable for large-scale tasks in NLP.
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3.4 experiments , analysis and results

3.4.1 Experiments on Syntactic Relations with Distributional Representa-
tion

We conducted a set of experiments to test the ability of our algorithm
to learn bilexical operators for several linguistic relations. As super-
vised training data we use the gold standard dependencies of the
WSJ training section of the Penn Treebank [Marcus et al., 1993b]. We
consider the following relations:

- Noun-Adjective: we model the distribution of adjectives given
a noun; and a separate distribution of nouns given an adjective.

- Verb-Object: we model the distribution of object nouns given a
verb; and a separate distribution of verbs given an object.

The distributional representation φ(x) was computed using the
BLLIP corpus [Charniak et al., 2000]. We compute a bag-of-words
representation for the context of each lexical item, that is φ(w)[i] cor-
responds to the frequency of word i appearning in the context of w.

We experiment with several settings while varying different pa-
rameters. We use a context window of size 10 and restrict our bag-
of-words vocabulary to contain only the 2,000 most frequent words
present in the corpus. Vectors were normalized.

To test the performance of our algorithm for each relation we parti-
tion the set of heads into a training and a test set, 60% of the heads are
used for training, 10% of the heads are used for validation and 30%
of the heads are used for testing. Then, we consider all observed mod-
ifiers in the data to form a vocabulary of modifier words. The goal of
this task is to learn conditional distribution over all these modifiers
given a head word without context. In our experiments, the number
of modifiers per relation ranges from 2,500 to 7,500 words. For each
head word, we create a list of compatible modifiers from the anno-
tated data, by taking all modifiers that occur at least once with the
head. Hence, for each head, the set of all modifiers is partitioned into
compatible and non-compatible. For testing, we measure a pairwise
accuracy, the percentage of compatible/non-compatible pairs of mod-
ifiers where the former obtains higher probability. We stress that none
of the test head words has been observed in training, while the list of
modifiers is the same for training, validation, and testing.

We compare the performance of the bilexical model trained with
nuclear norm regularization (`∗) with other regularization penalties
(`1 and `2). We also compare these supervised methods with an unsu-
pervised model: a low-dimensional SVD model as in Eq. (3.2), which
corresponds to an inner product as in Eq. (3.1) when all dimensions
are considered.
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To report performance, we measure pairwise accuracy with respect
to the capacity of the model in terms of the number of active param-
eters. To measure the capacity of a model we consider the number
of double operations that are needed to compute, given a head, the
scores for all modifiers in the vocabulary (we exclude the exponentia-
tions and normalization needed to compute the distribution of mod-
ifiers given a head, since this is a constant cost for all the models
we compare and is not needed if we only want to rank modifiers).
Recall that the dimension of φ(x) is n, and assume that there are m
total modifiers in the vocabulary. In our experiments n = 2, 000 and
m ranges from 2, 500 ,to 7, 500. The correspondences with operations
are:

- Assume that the `1 and `2 models have k non-zero weights in
W. Then the number of operations to compute a distribution is
km.

- Assume that the `∗ and the unsupervised models have rank
k. We assume that the modifier vectors are already projected
down to k dimensions. For a new head, one needs to project it
and perform m inner products, hence the number of operations
is kn+ km.

We note that if we set W to be the identity matrix our model scores
are inner products between the query-candidate embeddings, a com-
mon approach to evaluating semantic similarity in unsupervised dis-
tributional approaches.

In general, we can compute a low-dimensional projection of φ
down to k dimensions, using SVD, and perform the inner product
in the projected space. We refer to this as the unsupervised approach,
since the projected embeddings do not use the labeled dataset speci-
fying the target relation.

results and discussion : Figure 3.2 shows the performance of
models for noun-adjective and verb-object relations, while Figure 3.3
shows plots for prepositional relations.1 The first observation is that
supervised approaches outperform the unsupervised approach. In
cases such as noun-adjective relations, the unsupervised approach
performs close to the supervised approaches, suggesting that the pure
distributional approach can sometimes work. But in most relations,
the improvement obtained by using supervision is very large. When
comparing the type of regularizer, we see that if the capacity of the
model is unrestricted (right part of the curves), all models tend to per-
form similarly. However, when restricting the size, the nuclear-norm
model performs much better.

1 To obtain curves for each model type with respect to a range of the number of
operations, we first obtained the best model on validation data and then forced it to
have at most k non-zero features or rank k by projecting, for a range of k values.
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Figure 3.2: Pairwise accuracy with respect to the number of double opera-
tions required to compute the distribution over modifiers for a
head word. Figures for noun-adjective and verb-object relations,
in both directions.

Noun Predicted Adjectives

president executive, senior, chief, frank, former, international, marketing, assistant, annual, financial

wife former, executive, new, financial, own, senior, old, other, deputy, major

shares annual, due, net, convertible, average, new, high-yield, initial, tax-exempt, subordinated

mortgages annualized, annual, three-month, one-year, average, six-month, conventional, short-term, higher, lower

month last, next, fiscal, first, past, latest, early, previous, new, current

problem new, good, major, tough, bad, big, first, financial, long, federal

holiday new, major, special, fourth-quarter, joint, quarterly, third-quarter, small, strong, own

Table 3.1: 10 most likely adjectives for some test nouns.

Roughly, 20 hidden dimensions are enough to obtain the most ac-
curate performances (which result in ∼ 140, 000 operations for initial
representations of 2, 000 dimensions and 5, 000 modifier candidates).
As an example of the type of predictions, Table 3.1 shows the most
likely adjectives for some test nouns.



3.4 experiments , analysis and results 39

 50

 55

 60

 65

 70

 75

1e3 1e4 1e5 1e6 1e7 1e8

p
a
ir
w

is
e

 a
c
c
u

ra
c
y

number of operations

With

unsupervised
NN
L1
L2

 54

 56

 58

 60

 62

 64

 66

 68

 70

 72

1e3 1e4 1e5 1e6 1e7 1e8

p
a
ir
w

is
e

 a
c
c
u

ra
c
y

number of operations

For

unsupervised
NN
L1
L2

 46

 48

 50

 52

 54

 56

 58

1e3 1e4 1e5 1e6 1e7 1e8

p
a

ir
w

is
e

 a
c
c
u

ra
c
y

number of operations

In

unsupervised
NN
L1
L2

 60

 62

 64

 66

 68

 70

 72

 74

 76

 78

 80

1e3 1e4 1e5 1e6 1e7 1e8

p
a

ir
w

is
e

 a
c
c
u

ra
c
y

number of operations

On

unsupervised
NN
L1
L2

Figure 3.3: Pairwise accuracy with respect to the number of double opera-
tions required to compute the distribution over modifiers for a
head word. Figures for four prepositional relations: with, for, in,
on. The distributions are of verbs and objects above the preposi-
tion given the noun below the preposition.

3.4.2 Experiments with Distributional and Distributed Representations

We conducted a set of experiments to test the performance of the
learning algorithm with respect to the initial lexical representation φ,
for different configurations of the representation and the learner. We
again experiment with six bilexical syntactic relations using the Penn
Treebank corpus Marcus et al. [1993b], following the same experimen-
tal setting as in the previous section. For a relation between queries
and candidate words, such as noun-adjective, we partition the query
words into train, development and test queries, thus test pairs are
always unseen pairs.

As in the previous section, we measure pairwise accuracy with re-
spect to the efficiency of the model in terms of the number of active
parameters. To measure the efficiency of a model we consider the
number of double operations that are needed to compute, given a
query word, the scores for all candidates in the vocabulary.



40 tailoring word embeddings for bilexical predictions

We experiment with two types of initial representations φ. The
first is a simple high-dimensional distributional representation based
on contextual bag-of-words (BoW): each word is represented by the
bag of words that appear in contextual windows. In our experiments,
these were sparse 2,000-dimensional vectors. The second representa-
tion are the low-dimensional skip-gram embeddings (SKG) by [Mikolov
et al., 2013d], where we used 300 dimensions. In both cases, we in-
duced such representations using the BLIPP corpus Charniak et al.
[2000] and using a context window of size 10 for both. Thus the main
difference is that the bag-of-words are an uncompressed representa-
tion, while the skip-gram embeddings are a neural-net-style compres-
sion of the same contextual windows.

As for the bilexical model, we test it under three regularization
schemes, namely `2, `1, and `?. For the first two, the efficiency of com-
puting predictions is a function of the non-zero entries in W, while
for the latter it is the rank k of W, which defines the dimension of
the task-specific embeddings. We also test a baseline unsupervised
approach (UNS).

results and discussion : Figure 3.4 shows the performance of
models for noun-adjective, verb-object and verb-subject relations (in
both directions). In line with the results by observed in the previous
section, we observe that the supervised approach in all cases outper-
forms the unsupervised case, and that the nuclear norm scheme pro-
vides the best performance in terms of accuracy and speed: other reg-
ularizers can obtain similar accuracies, but low-rank constraints dur-
ing learning favor very low dimensional embeddings that are highly
predictive.

In terms of starting with bag-of-words vectors or skip-gram em-
beddings, in three relations the former is clearly better, while in the
other three relations the latter is clearly better. We conclude that task-
agnostic embeddings do identify useful relevant properties of words,
but at the same time, not all necessary properties are retained. In all
cases, the nuclear norm regularizer successfully compresses the ini-
tial representation, even for the embeddings which are already low-
dimensional.

Table 3.2 presents the best result for each relation, initial representa-
tion and regularization scheme. Plus, for the `? regularizer we present
results at three different ranks, namely 5, 10 or the rank that obtains
the best result for each relation. These highly compressed embed-
dings perform nearly as good as the best performing model for each
relation.

Table 3.3 shows a set of query nouns, and two sets of neighbor
query nouns, using the embeddings for two different relations to
compute the two sets. We can see that, by changing the target rela-
tion, the set of close words changes. This suggests that words have
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Figure 3.4: Pairwise accuracy v/s no. of double operations to compute the
distribution over candidate words for a query word. Plots are for
noun-adjective, verb-object and verb-subject relations, in both di-
rections. The red curves use distributional representation based
on bag-of-words (BoW) and the grey curves use the embeddings
of the skip-gram model (SKG).
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`?

Rel Type UNS best k k = 5 k = 10 `2 `1

Adj-Noun BoW 85.12 85.99 (80) 83.99 84.74 85.96 85.63

SKG 73.61 91.40 (300) 83.70 86.27 91.22 90.72

Obj-Verb BoW 63.85 78.11 (200) 73.17 73.64 74.08 73.95

SKG 64.15 79.98 (50) 75.45 78.37 80.30 79.89

Subj-Verb BoW 58.20 78.13 (2) 71.71 71.73 78.07 77.97

SKG 49.65 59.28 (90) 53.31 53.32 58.24 58.67

Noun-Adj BoW 78.09 78.11 (70) 77.48 77.85 78.48 78.85

SKG 49.65 59.28 (50) 56.42 57.19 58.24 58.67

Verb-Obj BoW 66.46 73.90 (40) 73.70 73.88 73.30 73.48

SKG 64.15 79.99 (30) 77.05 78.60 80.29 79.89

Verb-Subj BoW 49.32 71.97 (30) 71.71 71.23 72.85 71.95

SKG 32.34 53.75 (2) 53.32 53.32 53.47 53.68

Table 3.2: Pairwise accuracies for the six relations using the unsupervised,
`?, `2 and `1 models, using either a distributional bag-of-words
representation (BoW) or the skip-gram embeddings (SKG) as ini-
tial representation. For `? we show results for the rank that gives
best accuracy (with the optimal rank in parenthesis), as well as for
ranks k = 5 and 10.

a wide range of different behaviors, and different relations might ex-
ploit lexical properties that are specific to the relation.

3.5 summary

We have presented a model for learning bilexical operators that can
leverage both supervised and unsupervised data. The model is based
on exploiting bilinear forms over distributional representations. The
learning algorithm induces a low-dimensional representation of the
lexical space by imposing low-rank constraints on the parameters of
the bilinear form. By means of supervision, our model induces two
low-dimensional lexical embeddings, one on each side of the bilexical
linguistic relation, and computations can be expressed as an inner-
product between the two embeddings. This factorized form of the
model can have great computational advantages: in many applica-
tions, one needs to evaluate the function multiple times for a fixed set
of lexical items, for example in dependency parsing. Hence, one can
first project the lexical items to their embeddings, and then compute
all pairwise scores as inner-products. In experiments, we have shown
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Query noun-adjective object-verb

city province, area, island, township, freeways residents, towns, marchers, streets, mayor

securities bonds, mortgage, issuers, debt, loans bonds, memberships, equities, certificates, syndicate

board committee directors, commission, nominees, refusal slate, membership, committee, appointment, stockholder

debt loan, loans, debts, financing, mortgage reinvestment, indebtedness, expenditures, outlay, repayment

law laws, constitution, code, legislation, immigration laws, ordinance, decree, statutes, state

director assistant, editor, treasurer, postmaster, chairman firm, consultant, president, manager, leader

Table 3.3: Example query words and 5 highest-ranked candidate words for
two different bilexical relations: noun-adjective and object-verb.

that the embeddings we obtain in a number of linguistic relations can
be modeled with a few hidden dimensions.

As future work, we would like to apply the low-rank approach
to other model forms that can employ lexical embeddings, specially
when supervision is available. For example, dependency parsing mod-
els, or models of predicate-argument structures representing seman-
tic roles, exploit bilexical relations. In these applications, being able
to generalize to word pairs that are not observed during training is
essential.

We would also like to study how to combine low-rank bilexical
operators, which in essence induce a task-specific representation of
words, with other forms of features that capture class or contextual
information. One desires that such combinations can preserve the
computational advantages behind low-rank embeddings.

We have presented a set of experiments where we compute word
embeddings specific to target linguistic relations. We observe that
low-rank penalties favor embeddings that are good both in terms of
predictive accuracy and efficiency. For example, in certain cases, mod-
els using very low-dimensional embeddings perform nearly as good
as the best models.

In certain tasks, we have shown that we can refine low-dimensional
skip-gram embeddings, making them more compressed while retain-
ing their predictive properties. In other tasks, we have shown that
our method can improve over skip-gram models when starting from
uncompressed distributional representations. This suggests that skip-
gram embeddings do not retain all the necessary information of the
original words. This motivates future research that aims at general-
purpose embeddings that do retain all necessary properties and can
be further compressed in light of specific lexical relations.





4
R E S O LV I N G P R E P O S I T I O N A L P H R A S E A M B I G U I T Y
U S I N G W O R D - E M B E D D I N G S

Inspired from our previous results, we continue to explore our pro-
posal on one of the well defined task in the field of NLP — resolution
of Prepositional Phrase Ambiguity. This chapter is also a part of our
ongoing submission titled Prepositional Phrase Attachment over Word
Embedding Products and the germination of the idea is based on our
earlier work in Madhyastha et al. [2014].

We present a low-rank multi-linear model for the task of solving
prepositional phrase attachment ambiguity (PP task). Our model ex-
ploits tensor products of word embeddings, capturing all possible
conjunctions of latent embeddings. We conduct experiments for a
wide range of datasets, task settings and word embeddings. Our re-
sults show that tensor products are the best compositional operation
and that a relatively simple multi-linear model that uses only word
embeddings of lexical features can outperform more complex non-
linear architectures that exploit the same information. Furthermore,
its performance is close to that of models that use additional knowl-
edge sources for semantic information such as WordNet and VerbNet.
Finally, our model gives the current best reported performance on an
out-of-domain evaluation and also performs competitively with other
parsers in the context of PP task.

4.1 introduction

The Prepositional Phrase (PP) attachment problem [Ratnaparkhi et al.,
1994a] is a classic ambiguity problem that is still one of the main
sources of errors for syntactic parsers [Kummerfeld et al., 2012].

Consider the examples in Figure 4.1. For the first case, the correct
attachment is the prepositional phrase attaching to the restaurant, the
noun. Whereas, in the second case the attachment site is the verb went.
While the attachments are ambiguous, the ambiguity is more severe
when unseen or infrequent words like Hudson are encountered.

Classical approaches for the task exploit a wide range of lexical,
syntactic, and semantic features and make use of knowledge resources
like WordNet and VerbNet [Stetina and Nagao, 1997; Agirre et al.,
2008; Zhao and Lin, 2004].

In recent years, word embeddings have become a very popular rep-
resentation for lexical items [Mikolov et al., 2013a; Pennington et al.,
2014b]. The idea is that the dimensions of a word embedding cap-
ture lexical, syntactic, and semantic features of words –in essence, the
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I went to the restaurant by the Hudson

prep?

prep?

I went to the restaurant by bike

prep?

prep?

Figure 4.1: PP Attachment Ambiguity

type of information that is exploited in PP attachment systems. Re-
cent work in dependency parsing [Chen and Manning, 2014b; Lei
et al., 2014] suggests that these embeddings can also be useful to re-
solve PP attachment ambiguities.

We follow this last line of research and further investigate the use of
word embeddings for PP attachment. Different from previous works,
we consider several types of compositions for the vector embeddings
corresponding to the words involved in a PP attachment decision. In
particular, our model will define parameters for the tensor product
of these embeddings. We control the capacity of the model by im-
posing low-rank constraints on the corresponding tensor which we
formulate as a convex loss minimization.

We conduct experiments on several datasets and settings and show
that this relatively simple multi-linear model can give performances
comparable (and in some cases, even superior) than more complex
neural network models that use the same information. Our results
seem to suggest that for the PP attachment problem, exploring prod-
uct spaces of dense word representations produces improvements
in performance comparable to those obtained by incorporating non-
linearities via a neural network.

In summary, our contributions are:

- We present a simple multi-linear model for PP attachment that
makes use of tensor products of word embeddings, capturing
all possible conjunctions of latent embeddings.

- We conduct several experiments comparing the performance of
different word embeddings and composition operations for the
PP attachment task under different settings. Our results show
that tensor products are the best compositional operation and
that word embeddings that include syntactic information, such
as skip-dep [Bansal et al., 2014b], are significantly better for the
task than other popular embeddings.
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W

h p m

Unfolding

Figure 4.2: The tensor product of word embeddings. Here, h, p, and m are
the head, preposition and modifier of the PP attachment struc-
ture, represented by their word embeddings. The tensor product
forms a cube, which we unfold with respect to the head and the
prepositional phrase, resulting in a matrix W ∈ Rn×n

2
.

- When compared to the state-of-the-art models, our results show
that a relatively simple multi-linear model that uses only word
embeddings can outperform more complex non-linear architec-
tures that exploit the same information. Furthermore, its perfor-
mance is close to that of models that use additional knowledge
sources for semantic information such as WordNet and Verb-
Net. This seems to suggest that products of word embeddings
should be the core feature space of choice to resolve lexical at-
tachment ambiguities.

- For out-of-domain tests, we observe significant improvements
just by using word embeddings trained on unlabeled data from
the target domains. With these improvements, our tensor prod-
ucts outperform state-of-the-art dependency parsers on PP at-
tachment decisions.

4.2 pp attachment

Ratnaparkhi et al. [1994a] first proposed a formulation of PP attach-
ment as a binary prediction problem. The task is as follows: we are
given a four-way tuple 〈v,o,p,m〉 where v is a verb, o is a noun ob-
ject, p is a preposition, and m is a modifier noun; the goal is to decide
whether the prepositional phrase p−m attaches to the verb v or to
the noun object o.

More recently, Belinkov et al. [2014] proposed a generalization of
PP attachment that considers multiple attachment candidates. For-
mally, we are given a tuple 〈H,p,m〉, where H is a set of candidate
attachment tokens, and the goal is to decide what is the correct attach-
ment for the p−m prepositional phrase. The binary case corresponds
to H = {v,o}. This generalized setting directly captures the PP attach-
ment problem in the context of dependency parsing, where multiple
attachment candidates are considered (e.g., all verbs and nouns of a
sentence)
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In this paper, we use the generalized definition. Given a tuple
〈H,p,m〉, the models we present in this paper compute the follow-
ing prediction:

arg max
h∈H

f(h,p,m) , (4.1)

where f is a function that scores a candidate attachment h for the
p−m phrase. Next section discusses several definitions of f based on
tensor products of word embeddings.

4.3 tensor products for pp attachment

In this section, we present models for PP attachment based on tensor
products of word embeddings.

For any word w in the vocabulary, we denote as vx ∈ Rn the n-
dimensional vector for w, known as the word embedding of w. We
will assume access to existing word embeddings for all words in our
data.

Let a ∈ Rn1 and b ∈ Rn2 be two vectors. We denote as a⊗ b ∈
Rn1∗n2 the Kronecker product of the two vectors, which results in
vector that has one dimension for any two dimensions of the argu-
ment vectors: the product of the i-th coordinate of a times the j-th
coordinate of b results in the (i− 1) ∗n1 + j coordinate of a⊗b.

The tensor product model for PP attachment is as follows (see also
Figure 4.2):

f(h,p,m) = v>h W [vp ⊗ vm] , (4.2)

where W ∈ Rn×n
2

is a matrix of parameters, taking the embedding
of the attachment candidate h on the left, and the product of embed-
dings of the p−m phrase on the right.

This is a multi-linear function: it is a function that is non-linear
on each of the three argument vectors, but is linear in their prod-
uct. Thus, our model is exploiting all conjunctions of latent features
present in the word embeddings, resulting in a cubic number of pa-
rameters with respect to n. We note that if we pre-process the word
embeddings to have a special dimension fixed to 1, then our model
has parameters for each of the word embeddings alone, all binary
conjunctions between any two vectors, and all ternary conjunctions.

Equation (4.2) is a multi-linear tensor written as a bilinear form.
That is, we unfold the tensor into a matrix W that groups vectors
based on the nature of the attachment problem: the vector for the
head candidate is on the left side, while the vectors for the preposi-
tional phrase are on the right side. Without any constraints on the
parametersW, this grouping is irrelevant. 1 However, our learning al-

1 In fact, we could choose to write a standard linear model between a weight vector
and the tensor products of all vectors: w · [vh ⊗ vp ⊗ vm].
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gorithm imposes low-rank constraints onW (see Section 4.3.2 below),
for which the unfolding of the tensor becomes relevant.

4.3.1 Variations of the Tensor

We now discuss variations to the above model. In all cases we will
write our models as bilinear functions of the following form:

f(h,p,m) = α(h)>Wβ(p,m) (4.3)

where α is a representation vector of the attachment, and β is a rep-
resentation vector of the prepositional phrase. Setting α(h) = vh and
β(p,m) = vp ⊗ vm gives our basic tensor. These are the variations:

- Sum and Concatenation: Let us first consider variations of the
prepositional phrase representation. Instead of using the prod-
uct of embeddings, we can consider the sum β(p,m) = vp + vm,
or the concatenation β(p,m) = [vp; vm]. These cases drastically
reduce the expressiveness and dimension of the β vector, from
n2 for the product to n for the sum, or 2n for the concatena-
tion. Both sum, averaging and concatenation are common ways
to compose word embeddings, while it is rarer to find composi-
tions based on the product.

- Preposition Identities: Our basic model is defined essentially
over word embeddings, and ignores the actual identity of the
words in either sides. However, for PP attachment, it is com-
mon to have parameters for each preposition, and we can eas-
ily model this. Let P be the set of prepositions, and let ip ∈
R|P| be an indicator vector for preposition p. We can then set
β(p,m) = ip ⊗ vm. Our model is now equivalent to writing:

f(h,p,m) = v>hWpvm (4.4)

where we have one separate parameter matrix Wp ∈ Rn×n per
preposition p. This is the simplest model that we first explore.

- Positional Information: Positional information often improves
syntactic models in general, and PP attachment is no exception
as shown by Belinkov et al. [2014]. Following that work, we
consider H to be ordered with respect to the distance of each
candidate to the preposition, and we let δh be the position of
element h (thus δh is 1 if h is the closest candidate to p, 2 if it’s
the 2nd closest, . . . ). In vector form, let δh ∈ R|H| be a positional
indicator vector for h (i.e. the coordinate δh is 1). We can now
compose the word embedding of h with positional information
as α(h) = δh ⊗ vh, which is equivalent to writing:

f(h,p,m) = v>hWδhvm . (4.5)
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A neural network with a weight matrix for each position was
proposed by Belinkov et al. [2014].

In the experimental section, we present an empirical comparison of
these variations, essentially showing that making tensor products of
vector representations effectively results in more accurate attachment
models.

4.3.2 Low-rank Matrix Learning

Similar to our previous work, to learn the parameters we optimize
the logistic loss with nuclear norm regularization (`∗), an objective that
favors matrices W that have low-rank [Srebro et al., 2004]. This reg-
ularized objective has been used in previous work to learn low-rank
matrices, and has been shown to be very effective for feature-spaces
that are highly conjunctive [Primadhanty et al., 2015], such as those
that result from tensor products of word embeddings.

In our basic model, the number of parameters is n3 (where n is
the size of the individual embeddings). If W has rank k, then we can
rewrite W = UV> where U ∈ Rn×k and V ∈ Rn

2×k. Thus the score
function can we rewritten as a k-dimensional inner product between
the left and right vectors projected down to k dimensions. If k is low,
then the score is defined in terms of a few projected features, which
can benefit generalization.

Specifically, let T be the training set. We optimize this convex objec-
tive:

arg max
W

logistic(T,W) + λ‖W‖? (4.6)

which combines the logistic loss with the nuclear norm regularizer
(‖W‖?), weighted by the constant λ. To find the optimum, we fol-
low previous work and use a simple optimization scheme based on
Forward-Backward Splitting (FOBOS) [Duchi and Singer, 2009]. A de-
tailed explanation can be seen in 3.2.5

4.4 experiments

This section presents experiments using tensor models for PP attach-
ment. Our interest is to evaluate the accuracy of our models with
respect to the type and size of word embeddings, and with respect
to how these embeddings are composed. We start describing the data
and word embeddings, and then present results on two settings, bi-
nary and multiple attachments, comparing to the state-of-the-art in
each case.
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4.4.1 Data and Evaluation

We use standard datasets for PP attachment for two settings: binary
and multiple attachments. In both cases, the evaluation metric is the
attachment accuracy. The details are as follows.

rrr dataset. This is the classic English dataset for PP attachment
proposed by Ratnaparkhi et al. [1994a] (referred to as RRR dataset),
which is extracted from the Penn TreeBank (PTB). The dataset con-
tains 20,801 training samples of PP attachment tuples 〈v,o,p,m〉. We
pre-process the data as in previous work [Collins and Brooks, 1999]:
we lowercase all tokens, map numbers to a special token NUM and
symbols to SYM. We use the development set from PTB, with 4,039

samples, to compare various configurations of our model. For testing,
we consider several test sets proposed in the literature:

- The test set from the RRR dataset, with 3,097 samples from the
PTB.

- The New York Times test set (NYT) released by Nakashole and
Mitchell [2015]. It contains 293 test samples.

- Wikipedia test set (WIKI) by Nakashole and Mitchell [2015]. It
contains 381 test samples from Wikipedia. Because the texts are
not news articles, this is an out-of-domain test.

Belinkov et al . [2014] datasets . We use the datasets released
by Belinkov et al. [2014] for English and Arabic.2 These datasets fol-
low the generalized version of PP attachment, and each sample con-
sists of a preposition p, the noun below the preposition m, and a list
of possible attachment heads H (which contain candidate nouns and
verbs in the same sentence of the prepositional phrase). The English
dataset is extracted from PTB, and has 35,359 training samples and
1,951 test samples. The Arabic dataset is extracted from the SPRML
shared task data [Seddah et al., 2010], and consists of 40,121 training
samples and 3,647 test samples.

4.4.2 Word Embeddings

As our models exploit pre-trained word embeddings, we perform ex-
periments with a variety of types of word embeddings. We use two
word embedding methods and estimate vectors using different data
sources. The configurations are as follows:

(a) Bag-of-Words Representation: To explore the complementarity
in 4.4.3, we utilized the distributional representation computed
using the BLLIP corpus [Charniak et al., 2000]. We computed a

2 http://groups.csail.mit.edu/rbg/code/pp.
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bag-of-words representation for the context of each lexical item
restricting the bag-of-words vocabulary to contain only 2,000

most frequent words and the vectors were normalized.

(b) skip-gram [Mikolov et al., 2013a]: We use the skip-gram model
from word2vec, and induce embeddings of different dimension-
alities: 50, 100 and 300. In all cases, we use a window of size
5 during training.3 We train word embeddings for each of the
following data sources:

- BLLIP [Charniak et al., 2000], with ∼1.8 million sentences
and ∼ 43 million tokens of Wall Street Journal text (and
excludes PTB evaluation sets).

- English Wikipedia4, with ∼13.1 million sentences and ∼129

million tokens.

- The New York Times portion of the GigaWord corpus, with
∼52 million sentences and ∼1, 253 million tokens.

(c) skip-dep [Bansal et al., 2014b]: This is essentially a skip-gram
model that uses dependency trees to define the context words
during training, thus it captures syntactic correlations. We trained
50, 100 and 300 dimensional dependency-based embeddings,
using the BLLIP corpus in the same setting as described in Bansal
et al. [2014b], but using TurboParser [Martins et al., 2013] 5 to
obtain dependency trees for BLLIP. For Arabic, we used pre-
trained 100-dimensional word embeddings from the arTenTen
corpus that are distributed with the data.

We created a special unknown vector for unseen words by averag-
ing the word vectors of least frequent words (i.e., with frequency less
than 5). Further, we appended a fixed dimension set to 1 to all word
vectors. As explained in Section 4.3, when doing tensor compositions,
this special dimension has the effect of keeping all lower-order con-
junctions, including each elementary coefficient of the word embed-
dings and a bias term.6

4.4.3 Experiments on the Binary Attachment Setting

3 In preliminary experiments we tried a window of 2, which performed worse in our
setting. According to Bansal et al. [2014b] with larger context window, words that
is topically-related tend to get closer. While with small window size, close words
tend to share the same POS tag, which is less relevant for PP attachment because the
position in the attachment structure already indicates the POS tag.

4 The corpus and preprocessing script were sourced from http://mattmahoney.net/
dc/textdata.

5 http://www.cs.cmu.edu/~ark/TurboParser
6 Throughout this section, whenever we refer to vectors of dimension n, we actually

work with vectors of dimension n+ 1.



4.4 experiments 53

complementarity of linear and bilinear models This
section presents a series of experiments using the classic binary set-
ting by Ratnaparkhi et al. [1994a].

We first begin by exploring PP attachment ambiguity as a sim-
ple bilexical prediction task per preposition. We start from the for-
mulation of the task as a binary classification problem by Ratna-
parkhi et al. [1994b]: given a tuple x = 〈v,o,p,n〉 consisting of a verb
v, noun object o, preposition p and noun n, decide if the preposi-
tional phrase p-n attaches to v (y = v) or to o (y = o). Ratnaparkhi
et al. [1994b] define a linear maximum likelihood model of the form
Pr(y | x) = exp{〈w, f(x,y)〉} ∗Z(x)−1, where f(x,y) is a vector of d fea-
tures, w is a parameter vector in Rd, and Z(x) is the normalizer sum-
ming over y = {v, o}. Here we define a bilexical model of the form
that uses a distributional representation(φ) per preposition:

Pr(v|〈v,o,p,n〉) = exp{φ(v)>Wp
v φ(n)}

Z(x)

and

Pr(o|〈v,o,p,n〉) = exp{φ(o)>Wp
o φ(n)}

Z(x)

This setting is principally similar to our earlier proposal in Sec-
tion 4.3.1, where we use an indicator vector for the preposition. The bi-
linear model is parameterized by two matrices Wv and Wo per prepo-
sition, each of which captures the compatibility between nouns below
a certain preposition and heads of v or o prepositional relations, re-
spectively. Again Z(x) is the normalizer summing over y = {v, o}, but
now using the bilinear form.
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Figure 4.3: Attachment accuracies of linear, bilinear and interpolated models
for three prepositions.

We use exclusively the bag-of-words representation. We ran exper-
iments using the data by Ratnaparkhi et al. [1994b]. We trained sep-
arate models for different prepositions, focusing on the prepositions
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that are more ambiguous: for, from, with. We compare to a lin-
ear ‘maxent’ model following Ratnaparkhi et al. [1994b] that uses the
same feature set. Figure 4.3 shows the test results for the linear model,
and bilinear models trained with `1, `2, `∗ (in figure labelled as L1,
L2, NN respectively) regularization penalties. However, note that we
use sparse distributional embeddings for this specific setting. The re-
sults of the bilinear models are significantly below the accuracy of
the linear model, suggesting that some of the non-lexical features of
the linear model (such as prior weighting of the two classes) might be
difficult to capture by the bilinear model over lexical representations.
To check if the bilinear model might complement the linear model or
just be worse than it, we tested simple combinations based on linear
interpolations. For a constant λ ∈ [0, 1] we define:

Pr(y | x) = λ PrL(y | x) + (1− λ) PrB(y | x) . (4.7)

We search for the best λ on the validation set and report results of
combining the linear model with each of the three bilinear models.
Results are shown also in Figure 4.3. Interpolation models improve
over linear models, though only the improvement for for is signifi-
cant (2.6%). Future work should exploit finer combinations between
standard linear features and distributional bilinear forms.

comparing word embeddings . We start comparing word em-
beddings of different types (skip-gram and skip-dep) trained on dif-
ferent source data, for different dimensions. For this comparison, we
use the tensor product model of Eq. 4.2, that resolves the attachment
using only a product of word embeddings, and used `∗ regularization.
Table 4.1 presents the results on the RRR development set.

Looking at results using skip-gram, we observe two clear trends
that are expected: results improve whenever (1) we increase the di-
mensionality of the embeddings (n); and (2) we increase the size of
the corpus used to induce the embeddings (BLLIP is the smallest,
NYT is the largest).7 When looking at the performance of models us-
ing skip-dep vectors, which are induced using parse trees, then the
results are better than when using skip-gram. This is a signal that
syntactic-based word embeddings favor PP attachment, which after
all is a syntactic disambiguation task. We The peak performance is
for skip-dep using 100 dimensional vectors trained on BLLIP. 8 For
this test, we do not see a benefit from training on larger data.

comparing compositions . Our model composes word embed-
dings using tensor products. Section 4.3.1 presents variations that

7 For this experimental comparison, we also tried Glove [Pennington et al., 2014b],
another popular word embedding method, but the results were generally inferior.

8 Under the sign test, the difference between the best skip-dep and skip-gram models
was significant with p < 0.05, but other differences between skip-dep models were
not.
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Word Embedding Accuracy wrt. dimension (n)

Type Source Data n = 50 n = 100 n = 300

skip-gram BLLIP 83.23 83.77 83.84

skip-gram Wikipedia 83.74 84.25 84.22

skip-gram NYT 84.76 85.06 85.15

skip-dep BLLIP 85.52 86.33 85.97

skip-dep Wikipedia 84.23 84.39 84.32

skip-dep NYT 85.27 85.48 –

skip-gram & skip-dep BLLIP – 83.44 –

Table 4.1: Attachment accuracy on the RRR development set for tensor prod-
uct models using different word embeddings. We vary the type of
word embedding (skip-gram, skip-dep), the source data used to
induce vectors (BLLIP, Wikipedia, NYT) and the dimensionality
of the vectors (50, 100, 300). The last row “skip-gram & skip-dep”
corresponds to the concatenation of two 50-dimensional word em-
beddings, for a total of 100 dimensions.

compose the prepositional phrase (i.e. the preposition and modifier
vectors) in different ways. We now compare these variants empirically,
using skip-dep vectors with n = 50 as word embeddings. Table 4.2
summarizes the accuracy results on the development set, where we
compare: summing the two vectors; concatenating them; making the
product of embeddings; or using indicator vectors for the preposition,
which replicates the model by Madhyastha et al. [2014]. The table also
shows the size of the resulting tensor (we note that |P| is 66 for the
RRR data, thus using a 50-dimensional embedding for p results in
a more compact tensor than using p’s identity). The results clearly
show that the product model is the best of all, despite the fact that
the number of parameters is cubic in the dimension of the word em-
beddings. We observed the same trend for larger vectors.

Composition of p and m Tensor Size Acc.

Sum [vp + vm] n×n 84.42

Concatenation [vp; vm] n× 2n 84.94

p Indicator [ip ⊗ vm] n× |P| ∗n 84.36

Product [vp ⊗ vm] n×n ∗n 85.52

Table 4.2: Development accuracy for several ways of composing the word
embeddings of the prepositional phrase. ip ∈ R|P| denotes an in-
dicator vector for preposition p, where P is the set of prepositions.

comparison to the state of the art We now present results
on the test sets for the binary setting, and compare to the state-of-
the-art. The results are in Table 4.3, which lists representative and
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Test Accuracy

Method Word Embedding RRR WIKI NYT

Tensor product skip-gram, Wikipedia, n = 100 84.96 83.48 82.13

'' skip-gram, NYT, n = 100 85.11 83.52 82.65

'' skip-dep, BLLIP, n = 100 86.13 83.60 82.30

'' skip-dep, Wikipedia, n = 100 85.01 83.53 82.10

'' skip-dep, NYT, n = 100 85.49 83.64 83.47

Stetina and Nagao [1997] (*) 88.1 - -

Collins and Brooks [1999] 84.1 72.7 80.9

Belinkov et al. [2014] 85.6 - -

Nakashole and Mitchell [2015] (*) 84.3 79.3 84.3

Table 4.3: Accuracy results over the RRR, NYT and WIKI test sets. (*) indi-
cates that the system uses additional semantic features.

top-performing methods of the literature, as well as our tensor prod-
uct model running with three different word embeddings. Two of the
representative systems we list are the back-off model by Collins and
Brooks [1999], and the neural model by Belinkov et al. [2014], which
composes word embeddings in a neural fashion. These two systems
use no other information that the lexical items (i.e., explicit words
or word embeddings). The other two systems, by Stetina and Nagao
[1997] and Nakashole and Mitchell [2015], use additional features,
and most notably semantic information from WordNet or other on-
tologies, which has been shown to be beneficial for PP attachment. In
general, the results that our models obtained are remarkably good,
despite the fact that we only combine word embeddings in a straight-
forward way. On the RRR test, with the exception of the classic result
by Stetina and Nagao [1997], our method using skip-dep embeddings
clearly outperforms any other recent system. On the WIKI test, our
method is clearly the best, while on the NYT test, our system is be-
hind that of Nakashole and Mitchell [2015] but it is still competitive.

4.4.4 Experiments on the Multiple Attachment Setting

We now examine the performance of our models on the setting and
data by Belinkov et al. [2014], which deals with multiple head candi-
dates. We perform experiments on both English and Arabic datasets.
For this setting, following Belinkov et al. [2014], we found necessary
to use positional information of the head candidate, as described by
Eq. 4.5. Without it, the performance was much worse (possibly be-
cause in this data, a large number of samples attach to the first or
the second candidate in the list —about 93% of cases on the English
data).
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Test Accuracy

System Arabic English

Tensor product (n=50, `∗) - 88.3

Tensor product (n=50, `2) - 87.8

Tensor product (n=100, `∗) 81.1 88.4

Belinkov et al. [2014] (basic) 77.1 85.4

Belinkov et al. [2014] (syn) 79.1 87.1

Belinkov et al. [2014] (feat) 80.4 87.7

Belinkov et al. [2014] (full) 82.6 88.7

Yu et al. [2016] - 90.3

Table 4.4: Test accuracy for PP attachment with multiple head candidates.

Table 4.4 presents our results. For English, we present results for
models trained with nuclear-norm (`∗) and `2 regularization, using
50-dimensional embeddings. Imposing low-rank on the product ten-
sor yields some gains with respect to `2, however the improvements
are not drastic. This is probably because embeddings are already com-
pressed representations, and even products of them do not result in
overfitting to training. In any case, one characteristic of low-rank reg-
ularization is the inherent compression of the tensor. Figur 4.4 plots
accuracy versus rank for the tensor working with 50-dimensional em-
beddings composed with positional information (min dimension is
357): with rank 50 the model obtains 88% of accuracy. We obtain a
slight gain by using 100-dimensional embeddings, which results in
an accuracy of 88.4 for English and 81.1 for Arabic.

We compare our method to a series of results by Belinkov et al.
[2014]. Their “basic” model uses skip-gram, and like us, by moving
to syntactic vectors (noted “syn”) they observed a gain in accuracy.
However, in this comparable setting, our model outperforms theirs
by 1.3% in English and 2% in Arabic. They also explored adding stan-
dard features (from WordNet and VerbNet, noted “feat”), and com-
bining everything (noted “full”), which then surpasses our results.
Very recently, Yu et al. [2016] has used a tensor model that combines
standard feature templates (again using WordNet) with word embed-
dings, with significant improvements; however they do not report
results on combining word embeddings only, which is our focus.

comparison to dependency parsers . We now compare our
tensor models to state-of-the-art dependency parsers, specifically look-
ing at PP attachment decisions. For this comparison, we took the
English Web Treebank (WTB) [Petrov and McDonald, 2012a], which
has annotated evaluation sets for five domains, and extracted PP-
attachment tuples using the procedure described by Belinkov et al.
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Figure 4.4: Accuracy versus rank of the tensor model on the English data
by Belinkov et al. [2014]. The tensor model uses 50-dimensional
vectors composed with head position, and has size 357× 2, 500.

PTB Web Treebank Development Web Treebank Test

Test A E N R W Avg A E N R W Avg
(2523) (814) (1025) (969) (783) (1064) (4655) (868) (936) (839) (902) (788) (4333)

Tensor BLLIP 89.0 83.7 80.2 81.9 83.2 85.3 82.8 82.7 82.6 87.4 82.5 86.3 84.2

Tensor BLLIP+WTB 88.9 86.2 81.8 84.1 83.7 86.7 84.5 83.3 85.2 90.1 85.9 86.6 86.1

Stanford 87.3 80.3 79.7 84.5 81.5 84.9 82.3 79.3 79.7 85.7 82.2 83.8 82.0

Turbo 2nd 88.8 84.5 80.1 82.8 83.1 85.1 83.1 83.6 83.7 87.6 84.2 87.8 85.3

Turbo 3rd 88.9 85.1 80.4 83.3 83.3 84.8 83.3 84.2 84.5 87.6 84.4 87.6 85.6

Table 4.5: Comparison between tensor products and dependency parsers, on
PP attachment tuples in the Penn Treebank test (PTB) and in the
English Web Treebank (WTB) evaluation sets – with separate re-
sults for each domain: answers (A), emails (E), newsgroups (N),
reviews (R), and weblogs (W). The number of evaluation instances
in each set appears in parenthesis. The tensor products use embed-
dings trained on BLLIP and BLLIP+WTB, and for both n = 100.

[2014], resulting in 4,655 tuples on the development set and 4,333 tu-
ples on the test set. We also applied the same procedure to the Penn
Treebank test set, with 2.523 instances.9 We selected two state-of-the-
art dependency parsers which are publicly available. The first is the
Stanford transition-based neural parser [Chen and Manning, 2014b],
which uses word embeddings but not as products.10 The other is Tur-
boParser [Martins et al., 2013]11 which offers 2nd and 3rd order arc-
factored models, with grandchildren features that capture the con-
junction of the three words in a PP-attachment decision, even though
those models do not use word embeddings. We ran the parsers on
the evaluation sentences and extracted the PP-attachment decision

9 The evaluation test by [Belinkov et al., 2014] has 1,951 instances. Hence, the results
of our models are slightly different in this evaluation. We will release our extraction
script.

10 We used Stanford CoreNLP 3.7.0. We could not determine the characteristics of the
embeddings in the model.

11 We used version 2.3, available from http://www.cs.cmu.edu/~ark/TurboParser
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from the parse tree. 12 We also retrained Stanford parser with default
parameters using our skip-dep embeddings trained over both BLLIP
and the unlabelled data of the Web Treebank. However, there were
no noticeable change in the performance of the parser on the PP at-
tachments. We also evaluated two 100-dimensional skip-dep tensor
products, one using embeddings trained on BLLIP, and a second one
using embeddings trained on BLLIP and the unlabeled data from the
Web Treebank.13

Table 4.5 presents the results. Comparing the tensor products, us-
ing PTB+WTB embeddings gives an improvement of 1.7% in accuracy
on the WTB development test, for a slight decrease of 0.1% on the PTB
test. This confirms that tensor products over word embeddings are a
valid and simple approach to domain adaptation.

Comparing to parsers, our best tensor product performs better in
almost all domains, and on average it performs significantly better in
the WTB evaluation sets.14 First, this confirms that PP attachment
decisions are still an important source of errors of state-of-the-art
parsers. And we see that a specialized model for PP attachment, de-
spite its simplicity, can improve on these decisions.

error analysis . To further understand the performance of the
tensor products and parsers on WTB development set, we consider
PP attachment instances where the words are observed less than five
times in the training data (1,565 cases out of 4,655). The best tensor
product obtains an accuracy of 84.3% (vs. 84.5%), while the 3rd order
TurboParser gets 83.0% (vs. 83.3%) and the Stanford parser gets 81.3%
(vs. 82.3%). The parsers suffer a drop, while the tensor model does
not, suggesting that the tensor model is able to generalize better to
less frequent words.

Figure 4.5 shows two sample sentences from the Web Treebank that
illustrate two cases of ambiguities. Sentence (a) is an example of lexi-
cal paucity, because of the words of the attached phrase, disintegration
with LSD, are absent in the training set. The tensor model correctly
predicts the attachment, while the parsers do not. Sentence (b) is an
example of sense ambiguity: the tensor model incorrectly predicts ad-
dress as head of to Senators, which is plausible, but in this case, the
sentence is about the return address of the letter to Senators, which
the parsers correctly predict. There are clear complementary benefits

12 We ran all parsing models on correct PoS tags. Thus, these are optimistic perfor-
mances. This choice rules out cases where the parsers fail because of tagging errors,
which would be unfair because our models work on pre-selected head candidate
lists which depend on correct PoS tags.

13 We mixed the unlabeled data from all domains, for a total of ∼4.7 million sentences
and ∼75.5 million tokens.

14 Under the sign test, the differences on WTB evaluation sets between the tensor prod-
uct on BLLIP+WTB and other models were significant: TurboParser with p < 0.05,
the Stanford parser with p < 0.01, and the tensor product on BLLIP with p < 0.01.
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Came the disintegration of the Beatles ’ minds with LSD . . .

(a)

. . . the return address for the letters to the Senators . . .

(b)

Figure 4.5: Examples from the Web Treebank development set, with the at-
tachments predicted by the tensor product (solid green arc), the
Stanford neural parser (dashed red arc) and the 3rd order Tur-
boParser (dotted blue arc). Here, (a) The modifier and correct
head are unseen in training, and; (b) The correct head is ambigu-
ous.

between parsers and products of embeddings, and these examples
suggest combinations of both.

4.5 relevant related work

4.5.1 Resolving PP Attachment Ambiguity

Several approaches have been proposed for solving the prepositional
attachment problem, including maximum likelihood with back-off [Hin-
dle and Rooth, 1993; Collins and Brooks, 1999], and discriminative
training [Ratnaparkhi et al., 1994a; Olteanu and Moldovan, 2005],
among others. A key part of such systems is the representation they
use, in the form of lexical, syntactic and semantic features of the main
words involved in an attachment decision. Crucially, the best per-
forming models are obtained when exploring conjunctions of such
features. Some works have also explored using external knowledge
resources in the form of ontologies and syntactic information [Stetina
and Nagao, 1997; Zhao and Lin, 2004; Nakashole and Mitchell, 2015].

In our paper, we make use as word embeddings as the only source
of lexical information. Previous work has also explored word rep-
resentations as extra features [Zhao and Lin, 2004]. In our case, we
define a model that exploits all possible conjunctions of the vectors
involved in an attachment decision. Our model is, in fact, a generaliza-
tion of that of Madhyastha et al. [2014], as described in section 4.3.1.



4.5 relevant related work 61

From that work, our application to PP attachment mainly differs in
using compact word embeddings as opposed to sparse distributional
vectors.

Closely related to our work is the approach by Belinkov et al. [2014],
who use neural networks that compose the embeddings of the words
in the PP attachment structure. Their model composes word embed-
dings by first concatenating vectors and then projecting to a low-
dimensional vector using a non-linear hidden layer. This basic com-
position block is used to define several compositional models for PP
attachment. One difference is that we represent tensor products of
embeddings, which result in projected hidden conjunctions when the
tensor has low rank. In contrast, projecting concatenated embeddings
results in hidden disjunctions of the input coefficients.

More recently, Yu et al. [2016] have also explored tensor models for
PP attachment. Their focus is on representing standard feature tem-
plates (which are conjunctions of features of a variety of sources) as
tensors, and on using low-rank constraints to favor parameter shar-
ing among templates. One of their templates is the conjunction of
the head, preposition, and modifier (and word embeddings of these),
which is the focus case of our paper. While there are differences in the
way we learn a low-rank tensor (see below), they show superior per-
formance, probably due to the combination of different features. Our
experiments, in contrast, offer a controlled study of how different
types of word embeddings affect the performance of their product.

Beyond applications to PP attachment, word embeddings have been
used for a number of prediction tasks. In most cases, embeddings of
two or more words are composed by concatenation –see [Turian et al.,
2010b; Chen and Manning, 2014b; Dyer et al., 2015a] to name a few,
or averaging [Socher et al., 2011; Huang et al., 2012b]. Compositions
based on the product of embeddings have been explored in tensor
models, which we discuss next.

4.5.2 Low Rank Tensors in NLP

Using tensors to represent products of elementary vectors has been a
recent trend in NLP. Because most tasks in NLP benefit from exploit-
ing conjunctions of elementary features, tensor models offer the ap-
propriate framework for defining conjunctive feature spaces. A main
benefit of the tensor representation is that it allows controlling the
model capacity using low-rank constraints. There are several ways to
define the rank of a tensor, while for a matrix there is a unique defini-
tion. One natural and simple way to impose low-rank constraints on
a tensor is by first unfolding the tensor into a matrix, and let the rank
of the tensor be the rank the unfolded matrix. With this approach
one can apply low-rank constraints by regularization, using the nu-
clear norm (which is a convex relaxation for low-rank regularization).
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In practice, this leads to a simple convex optimization that uses an
SVD routine to solve the core part of the problem. This technique has
been used recently for several problems [Balle and Mohri, 2012; Quat-
toni et al., 2014; Madhyastha et al., 2014; Primadhanty et al., 2015].
There are 2d ways to unfold a tensor of d modes. In our case, we
have made the choice based on the application: we have grouped the
preposition and modifier together. This choice has a clear computa-
tional advantage for the task: at prediction time, we can first project
the prepositional phrase (which is fixed) to its low-dimensional repre-
sentation, and then do the inner product with the projection of each
head candidate. In general, one could try different unfoldings or use
multiple of them in a combination.

Another popular approach to low-rank tensor learning is directly
optimizing over a low-rank decomposition of the tensor, such as a
Tucker form [Lei et al., 2014; Yu et al., 2016]. In this case, for a tensor
of d modes, the Tucker form has one projection matrix for each of the
modes. Each projection matrix is a mapping from the original input
vector space to a low-dimensional one, i.e. an embedding of the fea-
ture of the corresponding mode. One advantage of this approach is
that there is no need to choose an unfolding. However, the optimiza-
tion is non-convex.

In the context of relation extraction, Singh et al. [2015] did an exper-
imental comparison of different forms of low-rank matrix and tensor
learning, showing that they have complementary benefits.

4.6 conclusion

We have described a simple PP attachment model based on tensor
products of the word vectors in a PP attachment decision. We have
established that the product of vectors improves over more simple
compositions (based on sum or concatenation), while it remains com-
putationally manageable due to the compact nature of word embed-
dings. In experiments on standard PP attachment datasets, our tensor
models perform better than other methods using the lexical infor-
mation only, and are close in performance to methods using richer
feature spaces. The accuracies we obtain are particularly good in out-
of-domain tests. Since our models only depend on word embeddings,
this is a clear signal that word embeddings are appropriate represen-
tations to generalize to unseen structures.

By using low-rank constraints during learning we have observed
small improvements over `2 regularization, but not drastic ones (com-
pared to, for example, tensor compositions of sparse vectors, in which
case low-rank constraints are generally much more beneficial). All in
all, low-rank constraints are essential tools to control the capacity of
tensor models. This framework is arguably more simple than neural
compositions because it avoids non-linearities and can be optimized
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with global routines like SVD. In our PP attachment experiments, we
have obtained some gains in accuracy over the neural models by Be-
linkov et al. [2014] that use comparable representations. We have also
obtain improvements over state-of-the-art dependency parsers.

In NLP, and in syntax in particular, there exist other paradigmatic
lexical attachment ambiguities that, like PP attachment, can be framed
within a particular scope of the dependency tree: adjectives, conjunc-
tions, raising and control verbs, etc.. The tensor product we have pre-
sented can serve as a building block to define dependency parsing
methods that make a central use of products of word embeddings.





5
V O C A B U L A RY E X PA N S I O N O V E R W O R D
E M B E D D I N G S

In this chapter, we extend our previous conclusions and propose to
use a simple log-bilinear softmax based model for vocabulary expan-
sion, such that, given an out of vocabulary source word the model
generates a probabilistic list of possible translations in the target lan-
guage. Our model uses only word-embeddings trained on a signifi-
cantly large unlabelled corpus and trains over a fairly small, word-
to-word bilingual dictionary. We input this probabilistic list into a
standard phrase based machine translation system and obtain con-
sistent improvements in translation quality on English-Spanish lan-
guage pair. Especially, we get an improvement of around 3.9 BLEU
points when tested over an out-of-domain testset. This work is a part
of our ongoing submission titled Vocabulary Expansion for Machine
Translation by Mapping Embeddings. The central idea of this work is
also used in our recent paper Costa-jussà et al. [2016].

5.1 introduction

Distributed word vector representations have been increasingly used
in a variety of tasks in the field of NLP and beyond. It has been proven
to be useful for many NLP tasks.

This encouraging performance has generated a fair amount of inter-
est in extending to bilingual and multilingual shared embedding ap-
proaches. It has also been shown that the quality of word embeddings
can be improved by sharing some attributes amongst the languages in
both syntactic and semantic tasks. Different kinds of strategies have
been proposed to induce bilingual or multilingual embeddings from
methods that make use of document level information to sentence
level information and word level information. It has been shown re-
cently that the embeddings have different properties with different
strategies of inducing information.

A standard approach of learning mappings or inducing cross-lingual
information is by using a form of linear regression based loss where
the objective is to optimize the euclidean distance. However, after
learning the mappings, to obtain similar words the models rely on
other similarity measures. This difference in measures may some-
times result in erroneous generalizations.

Also, usually to control the model properties, `1 and `2 regular-
izations are used. However, as the number of training observations
are limited and also since `1 and `2 regularizations do not necessar-

65
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ily generalize to unseen observations, the models might miss out on
generalizing to unseen examples and rare cases.

Bilingual embeddings have also been recently utilized for the task
of machine translation for better resolution of vocabulary related
problems. However, a model that is not very well generalized might
result in erroneous results in the context of machine translation.

In this chapter, we propose a novel technique that learns a bilinear
similarity measure by capturing the compatibility between two dif-
ferent vector spaces of the two languages. This allows us to model
the interactions in a probabilistic setting. We also apply the learned
probabilistic model in the context of machine translation and conduct
extensive experiments and observe a boost in the resolution of out of
vocabulary words and achieve a significant improvement of 3.9 points
on the BLEU scale.

Specifically, our contributions in this chapter are:

- We provide a novel model for learning bilingual projections that
in turn, learns a bilinear similarity measure by exploiting the
conjunctions and correlations in the vectors spaces effectively.

- We propose using low-rank regularization framework for our
log-bilinear softmax based model which results in compression
of bilingual embeddings.

- We apply the embeddings to the task of resolving out of vo-
cabulary words in the task of machine translation and achieve
significant improvements in the BLEU score.

5.2 background

Current research in inducing bilingual embeddings requires a par-
allel corpus [Kočiskỳ et al., 2014; Hermann and Blunsom, 2014; AP
et al., 2014; Shi et al., 2015; Gouws et al., 2015] or bilingual partially
sentence aligned data [Vulic and Moens, 2015; Klementiev et al., 2012;
Zou et al., 2013; Wu et al., 2014] or a word to word lexicons [Mikolov
et al., 2013c; Faruqui et al., 2015a; Xiao and Guo, 2014; Vulić and
Moens, 2016; Dinu et al., 2015; Lazaridou et al., 2015]. Our focus is
the latter models that use word lexicons.

To that extent, all the approaches are constrained by the amount of
supervision that is going to be available and have to make generaliza-
tions to the vast vocabulary in both languages.

In general, we are interested in a setting where we obtain monolin-
gual embeddings on large corpora and then use lexicons to incorpo-
rate cross lingual information, such that, given a word in a language,
we are able to generate similar words in a different language.
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5.3 mapping continuous word representations using a

bilinear model

5.3.1 Definitions

Let E and F be the vocabularies of the two languages, the source and
the target, and let e ∈ E and f ∈ F be the words in the languages
respectively. We are given with a relatively small set of source word
to target word e → f dictionary. We also assume that we have access
to some kind of distributed word embeddings in both languages. Let
φ(.) → Rn denote the n-dimensional distributed representation of
the words. We set the task such that we want to learn a model for
the conditional probability distribution Pr(f|e). That is, given a word
in a source language, say English (e), we want to get a conditional
probability distribution of all the words in a foreign language (f).

5.3.2 Bilinear Models

A common approach to obtaining bilingual embeddings using a bilin-
gual lexicon is as a linear regression based model [Mikolov et al.,
2013c; Dinu et al., 2015; Vulić and Moens, 2016] in which case, a lin-
ear mapping function is learned. After learning the mapping function,
the word vectors from E are projected on the mapping function. To
estimate Pr(f|e), an external similarity measure is used to obtain the
top-n similar words ∈ F given a word e. Usually, a similarity measure
like cosine similarity or euclidean distance measure is preferred.

We use our conclusions from previous chapters and propose to
use a bilinear formulation that learns a similarity metric by taking
into consideration the correlation between the two vector spaces. We
propose using a bilinear model as follows:

φ(e)>Wφ(f) (5.1)

here, W is the bilinear function, that is learned given a small super-
vision. In Equation 5.1 we are essentially getting a scalar similarity
score for the pair e and f. If W is an identity matrix then Equation 5.1
reduces to a standard dot product between the two vectors.

5.3.3 Log-Bilinear Softmax Model

We model the task as a bilinear prediction task as proposed by Mad-
hyastha et al. [2014] and extend it for the bilingual setting. The pro-
posed model makes use of word embeddings on both languages
with no additional features. The basic function is formulated as log-
bilinear softmax model and takes the following form:

Pr(f|e;W) =
exp{φs(e)

>Wφt(f)}∑
f ′∈F exp{φs(e)

>Wφt(f ′)}
(5.2)
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Essentially, our problem reduces to:

(a) Getting corresponding word embeddings of the vocabularies in
both the languages trained on a significantly large monolingual
corpus respectively, and

(b) Estimating W given a relatively small lexicon. That is, to learn
W we use the source word to target word dictionary as training
supervision.

Again, this is similar to our previous approach, i.e., the objective func-
tion in Equation 3.6, where we used it in the context of obtaining
compatibility scores between words under a relation.

We learn W by minimizing the negative log-likelihood of the dic-
tionary using a rank regularized objective as:

L(W) = −
∑
s,t

log(Pr(t|s;W)) + λ‖W‖∗

where, λ is the constant that controls the capacity of W.

5.3.4 Low-Rank Regularized Objective

Again, to recollect from Section 3.2.5, let us consider the singular
value decomposition of W = UΣV>, where U and V> are orthogo-
nal singular vectors and Σ is an array of singular values, then we can
consider [φ(e)>U] to be the bilingual projection of φ(e) and [V>φ(f)]
to be the bilingual projection of φ(f). If W has rank k, where k < n
then U ∈ Rn×k and V> ∈ Rk×n. That is if we penalize W such that
it is has a low rank, we obtain a low-dimensional compressed em-
beddings for languages on both sides. We make use of nuclear norm
regularization which is a convex relaxation for the low-rank regular-
ized objective [Bach, 2008; Madhyastha et al., 2014, 2015].

Note, that we have no constraints on the dimensionality for φ(e)
and φ(f). For illustration, we have used similar dimensionality vec-
tors, however, the model is capable of using arbitrary dimensional
vectors on both sides. In general, we empirically found that vectors
initialized with similar characteristics give better performance.

5.3.5 Motivation

Data-driven machine translation systems are able to translate words
that have been seen in the training corpora, however translating un-
seen words is still a major challenge for even the best performing
systems.

In general, the amount of parallel data is finite (and sometimes
scarce) which results in word types like named entities, domain spe-
cific content words, or infrequent terms to be absent in the training
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parallel corpora. This lack of lexical information can potentially result
in incomplete or erroneous translations.

There are several strands of related research that try to alleviate
the effect of unseen words in translation. Previous research suggests
that a significantly large number of named entities can be handled
by using simple pre or post-processing techniques, like translitera-
tion methods [Hermjakob et al., 2008; Al-Onaizan and Knight, 2002],
etc.. However, a change in domain results in a significant increase in
the number of unseen words. These unseen words might include a
significant proportion of regular domain-specific content words.

Our focus here is to resolve unseen content words by using our
proposed model. To this extent, our work is similar to Ishiwatari et al.
[2016] where the authors map distributional representations using a
linear regression method similar to Mikolov et al. [2013c] and insert a
new feature based on cosine similarity metric into the MT system. In
our work, we use a principled method to obtain a probabilistic condi-
tional distribution of words directly and these probabilities allow us
to expand the translation model for the new words.

There are other related works [Rapp, 1999; Daumé III and Jagarla-
mudi, 2011; Durrani and Koehn, 2014] that have explored approaches
based on extracting lexicons using corpus based methods to resolve
out of training vocabulary problems which are slightly constrained
on the data settings.

5.3.6 Vocabulary Expansion

A log-linear SMT model [Och and Ney, 2002], obtains a translation
fbest given a source sentence e and is modelled as:

log(Pr(f|e)) = Σiλi log(gi(e, f))

where, λi are the weights and gi are the feature functions. This allows
for the combination of several feature components.

Among the feature components, we insert the probabilistic scores
for unknown words’ translation options. This is weighted along with
other standard log-linear model components. We tune this over a de-
velopment set to obtain optimal weights.

5.4 experiments

We do the evaluation in two parts:

(a) We measure the quality of the obtained bilingual embeddings,
and

(b) We measure the performance of the log-bilinear model in a stan-
dard machine translation setup.
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5.4.1 Embedding Quality Experiments

We train bilingual embeddings for two language pairs: English-Spanish
(En-Es) and English-French (En-Fr). For both the pairs of languages,
we use the 2015 dump of wikipedia in the respected languages and
the Europarl v7 corpus [Koehn et al., 2007a]. We first obtain 300-
dimensional monolingual embeddings for each language. For dictio-
nary, we use Apertium’s publicly available dictionary.

external model We use Cross-lingual Correlation based em-
beddings 1, proposed by Faruqui and Dyer [2014] as it uses a set-
ting which is closest to our setting for inducing bilingual embed-
dings. Faruqui and Dyer [2014] project monolingual embeddings us-
ing canonical correlation analysis [Hotelling, 1936], such that the pro-
jected vectors are as close as possible for word pairs in the lexicon.
We use the same parametric settings as is followed in Upadhyay et al.
[2016]. However, after projection, the bilingual vectors are reduced
from an initial 300-dimensional vector to a 100-dimensional vector.

We will first evaluate the quality of word embeddings using word
similarity metric and test the performance of bilingual word embed-
dings in the context of a syntactic task.

word similarity for english This task basically evaluates the
word similarity in the embeddings space correlates with the human
evaluations. This is measured using Spearman’s rank correlation coef-
ficient. Following Upadhyay et al. [2016] we use SimLex dataset [Hill
and Korhonen, 2014] that captures word similarity notion exclusively.

We compress the embeddings by projecting the monolingual em-
beddings on to the top 50, top 100, top 200 and 300 singular vec-
tors respectively. Table 5.1 shows the performance of the bilingual
embeddings both on our bilinear model as well as using the cross-
lingual CCA based model. We notice that the projected embeddings
in some cases have better correlations than the monolingual embed-
dings, however, they are not much superior to the standard monolin-
gual embeddings.

We also notice that our compressed English embeddings in both
language pairs achieve almost comparative scores.

LangPair MonoLing 50-Bil 100-Bil 200-Bil 300-Bil CL-CCA

En-Fr 0.39 0.36 0.38 0.39 0.40 0.39

En-Es 0.37 0.34 0.37 0.39 0.38 0.37

Table 5.1: Word Similarity Score

1 We obtained the source code here: https://github.com/mfaruqui/crosslingual-cca
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cross lingual syntactic dependency parsing We want to
test the performance of the bilingual embeddings on the task of de-
pendency parsing, where we are interested in seeing if the bilingual
projected vectors perform better than the monolingual vectors. Again,
we follow Upadhyay et al. [2016] and perform the experiments in the
similar settings and we use the system by Gouws et al. [2015] 2. We
use the universal dependency treebank version 2.0 for the evaluation.

We notice a similar trend as before. The 50-dimensional compres-
sion is underperforming, while the others are competitive.

Lang Pair MonoLing 50 bilinear 100 bilinear 300 Bilinear CL-CCA∗

En-Fr 78.77 78.64 79.54 80.63 80.11

En-Es 80.12 79.37 80.08 81.17 81.57

Table 5.2: Labelled Attachment Score trained on English and tested on lan-
guage French and Spanish

5.4.2 Experiments with the model on SMT

We now focus on the application of our proposed log bilinear model
to resolve out of vocabulary words for machine translation.

data and system settings . For estimating the word embed-
dings we use the CBOW algorithm as implemented in the Word2Vec
package [Mikolov et al., 2013b]3 using a 5-token window. We obtain
300 dimension vectors for English and Spanish from a Wikipedia
dump of 2015

4, and the Quest data5 which includes subcorpora such
as United Nations and Europarl. The final corpus contains 2.27 bil-
lion tokens for English and 840 million tokens for Spanish. We obtain
a coverage of 97% of the words in our test sets. We also remove any
occurrence of sentences from the test set that are contained in our
corpus, and avoid any transduction based knowledge transfer.

To train the log-bilinear softmax based model, we use the dictio-
nary from the Apertium project6 [Forcada et al., 2011]. The dictio-
nary contains 37651 words, we used 70% of them for training the
log-bilinear model and 30% as a development set for model selection.
The average precision @1 was 85.66% for the best model over the dev
set.

We build a state-of-the-art phrase-based SMT system trained on
the standard Europarl corpus for the English-to-Spanish language
pair. We use a 5-gram language model that is estimated on the target

2 we obtain the system here: https://github.com/jiangfeng1124/acl15-clnndep
3 https://code.google.com/archive/p/word2vec/
4 Dumps downloaded in January 2015 from https://dumps.wikimedia.org.
5 http://goo.gl/72LLXN
6 The bilingual dictionary can be downloaded here: http://goo.gl/TjH31q.
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Table 5.3: OOVs on the dev and test sets.

Sent. Tokens OOVall OOVCW

NewsDev 3003 72988 1920 (2.6%) 378 (0.5%)

NewsTest 3000 64810 1590 (2.5%) 296 (0.5%)

WikiTest 500 11069 798 (7.2%) 201 (1.8%)

side of the corpus using interpolated Kneser-Ney discounting with
SRILM [Stolcke, 2002]. Additional monolingual data available within
Quest corpora are used to build a larger language model with the
same characteristics. Word alignment is done with GIZA++ [Och and
Ney, 2003] and both phrase extraction and decoding are done with
the Moses package [Koehn et al., 2007b].

At decoding time, Moses allows to include additional translation
pairs with their associated probabilities to selected words via XML
mark-up. We take advantage of this feature to add our probabilis-
tic estimations to each OOV. Since, by definition, OOV words do not
appear in the parallel training corpus, they are not present in the
translation model either and the new translation options only inter-
act with the language model.

The optimization of the weights of the model with the additional
translation options is trained with MERT [Och, 2003] against the
BLEU [Papineni et al., 2002] evaluation metric on the NewsCommen-
taries 2012

7 (NewsDev) set. We test our systems on the NewsCom-
mentaries 2013 set (NewsTest) for an in-domain evaluation and on a
test set extracted from Wikipedia by Smith et al. [2010] for an out-of-
domain evaluation (WikiTest).

The domainess of the test set is established with respect to the num-
ber of OOVs. Table 5.3 shows the exact numbers of these sets, paying
special attention to the OOVs in the basic SMT system. Less than a
3% of the tokens are OOVs for News data (OOVall), whereas it is
more than a 7% for Wikipedia’s. In our experiments, we distinguish
between OOVs that are named entities and the rest of content words
(OOVCW). Only about 0.5% (NewsTest) and 1.8% (WikiTest) of the to-
kens fall into this category, but we show that they are relevant for the
final performance.

evaluation. We consider two baseline systems, the first one does
not output any translation for OOVs (noOOV), it just ignores the to-
ken; the second one outputs a verbatim copy of the unseen word as a
translation (verbatimOOV). Table 5.4 shows the performance of these
systems under three widely used evaluation metrics TER [Snover
et al., 2006], BLEU and METEOR-paraphrase (MTR) [Banerjee and
Lavie, 2005]. Including the verbatim copy improves all the lexical

7 http://www.statmt.org/wmt13/translation-task.html



5.4 experiments 73

NewsTest WikiTest

TER BLEU MTR TER BLEU MTR

noOOV 58.21 21.94 45.79 61.26 16.24 38.76

verbatimOOV 57.90 22.89 47.06 58.55 21.90 45.77

BWE 58.33 22.23 45.76 58.38 21.96 44.84

BWECW50 57.66 23.09 47.14 56.19 24.16 48.49

BWECW10 57.85 23.06 47.11 55.64 24.71 49.05

BLM 55.37 25.83 49.19 52.60 30.63 51.04

BLM+BWE 55.89 24.92 47.84 51.02 32.20 52.09

BLM+BWE50 55.55 25.61 49.01 49.50 33.94 54.93

BLM+BWE10 55.31 25.86 49.04 49.12 34.58 55.52

Table 5.4: Automatic evaluation of the translation systems. The best system
is bold-faced.

evaluation metrics. Especially, we observe that for named entities and
acronyms (the 80% of OOVs in our sets), this is a hard baseline to beat.
This is because, in most cases the same word is the correct translation
(e.g. Messi, PHP, Sputnik,. . .).

We now enrich the systems with information gathered from the
large monolingual corpora in two ways, using a bigger language
model ( BLM), i.e., a language model trained on a very large corpora,
and using our newly proposed log-bilinear model that uses word em-
beddings ( BWE). BLMs are very important to improve the fluency
of the translations, however, they may not be helpful for resolving
out-of-vocabulary words. On the other hand, BWEs are important to
make available to the decoder new vocabulary on the topic of the
otherwise OOVs. Given the large percentage of named entities in the
test sets (Table 5.3), our models add the source word as an additional
option to the list of target words to mimic the verbatimOOV system.

Table 5.4 includes seven systems with the additional monolingual
information. Three of them add, at decoding time, the top-n trans-
lation options given by the BWE for an OOV. BWE system uses the
top-50 for all the OOVs, BWECW50 also uses the top-50 but only for
content words other than named entities8, and BWECW10 limits the
list to 10 elements. BLM is the same as the baseline system verbati-
mOOV but with the large language model. BLM+BWE, BLM+BWE50

and BLM+BWE10 combine the three BWE systems with the large lan-
guage model.

A large number of unseen words in the NewsTest are mostly named
entities, using BWEs to translate all the words, including named enti-

8 We consider a named entity any word that begins with a capital letter and is not
after a punctuation mark, and any fully capitalized word.
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Table 5.5: Top-n list of translations obtained with the bilingual embeddings.

galaxy nymphs Stuart folksong

galaxia ninfas William música

planeta ninfa Henry folclore

universo crías John literatura

planetas diosa Charles himno

galaxias dioses Thomas folklore

... ... Estuardo (#48) canción (#7)

ties, barely improves the translation. Also, the richness in vocabulary,
consisting of many names, adds noise to the decoder. We observe
that the improvements are moderate in the NewsTest (in-domain
dataset), this is mostly because, the differences in the probability
of the BWE translation options are very small owing to the candi-
dates being named entities. We also see that this affects the overall
integration of the scores into the decoder and also induces ambigu-
ity in the system. On the other hand, we observe that the decoder
benefits from the information on content words, especially for the
out-of-domain WikiTest set, given the constrained list of alternative
translations (BWECW10 achieves 2.75 BLEU points of improvement).

The addition of the large language model improves the results sig-
nificantly. When combined with the BWEs we observe that the BWEs
clearly help in the translation of WikiTest but do not seem as rele-
vant in the in-domain set. We also achieve a statistically significant
improvement of 3.9 points of BLEU with the BLM and BWE combo
system in WikiTest (p < 0.001). The number of translation options
in the list is also relevant, we see that for BWECW50 we have an im-
provement of 3.3 points on BLEU. We also observe that the results are
consistent among different metrics.

We have further manually evaluated the translation of WikiTest us-
ing BWECW50. We obtained an accuracy of a 68%, that is, the BWE
gives the correct translation option at least 68% of the times. The
other 32% of the time, it fails as the words in the translated language
happened to be either multiwords or named entities. In table 5.5 we
observe some of the these examples. In the first two examples, galaxy
and nymphs are nouns, where we obtain the first option as the correct
translation. The problem is harder for named entities. We observe in
the table, the name Stuart in English has William as most probable
translation in Spanish, the correct translation Estuardo, however ap-
pears as the 48th choice. Our model is also unable to generate multi-
word expressions, as shown in the table for the English word folksong,
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the correct translation being canción folk. This would need two words
in Spanish in order to be translated correctly, however, our model
does obtain words: canción and folclore as the most probable transla-
tion options.

5.5 conclusions

We have presented a method for resolving unseen words in SMT that
performs vocabulary expansion by using a simple log-bilinear soft-
max based model. The addition of translation options to a mere 1.8%
of the words has allowed the system to obtain a relative improvement
of a 13% in BLEU (3.9 points) for out-of-domain data. For in-domain
data, where the number of content words is small, improvements are
moderate. We would like to further study the repercussion of this sim-
ple method on diverse and more distant language pairs and how the
form of the bilinear loss function affects the quality of the bilingual
word embeddings.





6
M A P P I N G U N S E E N W O R D S T O TA S K - T R A I N E D
E M B E D D I N G S S PA C E

In this chapter, we describe our neural network-based mapping func-
tion that takes initial word embeddings (learned using unsupervised
techniques over a large unannotated dataset) and maps them to task-
specific embeddings that are trained for the given task, via a multi-
loss objective function. Moreover, due to the efficiency of training our
mapper, we can tune its hyperparameters to optimize performance
on each domain of interest, thereby achieving some of the benefits of
domain adaptation.

We start by describing our model for mapping unseen representa-
tions. In the subsequent section, we survey some related approaches.
We then show the effectiveness of our mapping approach on the task
of dependency parsing on a large set of diverse domains, e.g., news,
the Web, and speech. We also show the downstream effects of our
mapper on the task of sentiment classification, using the recently pro-
posed dependency parse-based tree long short-term memory (LSTM)
network of Tai et al. [2015]. In all domains and tasks, our method
significantly reduces the number of unseen words (i.e., words with-
out task-trained embeddings) and achieves significant performance
improvements over the unmapped baselines. Most of this work is
published in Madhyastha et al. [2016].

6.1 mapping unseen representations

In many NLP tasks, state-of-the-art systems achieve very good per-
formance, but only when restricted to standard and heavily edited
datasets [Petrov et al., 2010]. For example, while state-of-the-art ac-
curacies exceed 97 percent for part-of-speech tagging and 90 percent
for dependency parsing, performance on non-standard, real-world
datasets is substantially worse, dropping by nearly 10 percent abso-
lute [Foster, 2010; Petrov and McDonald, 2012b]. A major cause of
this drop is words that do not appear in the annotated training data
but appear in unseen test data, whether in the same domain or in
a new domain. We refer to such out-of-training-vocabulary (OOTV)
words as unseen words. Supervised NLP systems often make errors
on unseen words and, in structured tasks like dependency parsing,
this can lead to other cascading errors in the same sentence, produc-
ing nonsensical output structures.

As we have seen in Chapter 2, continuous vector word represen-
tations, or embeddings, have shown promise in a variety of NLP

77
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Figure 6.1: system pipeline

task [Turian et al., 2010a; Collobert et al., 2011b; Anderson et al.,
2013; Bansal et al., 2014a]. The typical assumption of word embed-
ding learning is that words with similar statistical properties in a
large dataset are similar in meaning. Using embeddings as features
in NLP systems can help counter the effects of data sparsity [Nec-
sulescu et al., 2015]. However, the quality of such embeddings has
been found to be heavily task-dependent [Bansal et al., 2014b].

There is a great deal of work on updating embeddings during su-
pervised training to make them more task-specific, whether through
back-propagation or other techniques [Kalchbrenner et al., 2014; Qu
et al., 2015b; Chen and Manning, 2014b]. These task-trained embed-
dings have shown encouraging results but raise some concerns, espe-
cially: (1) for infrequent words, the updated representations may be
prone to overfitting, and (2) many words in the test data are not con-
tained in the training data at all. In the latter case, at test time, most
trained systems either fall back to some generic, single representation
for all unknown words or use the initial representation (typically de-
rived from unlabeled data) [Søgaard and Johannsen, 2012; Collobert
et al., 2011b]. Neither of these choices is satisfactory: A single un-
known word vector may lump too many words together, while the
initial representations may be in a space which is not comparable to
the trained embedding space.

In this section, we present our approach, including an overview of
the pipeline, the mapper architecture, and the training/tuning com-
ponents (e.g., loss function, regularization, and thresholds).
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6.1.1 Pipeline Overview and Definitions

Let V = {w1, . . . ,wV } be the vocabulary of word types in a large,
unannotated corpus. Let eoi denote the initial (original) embedding
of word wi computed from this corpus. The initial embeddings are
typically learned in an unsupervised way, but for our purposes, they
can be any initial embeddings. We define unseen words as those in
the set V \ T. While our approach is general, for concreteness, we con-
sider the task of dependency parsing, so the annotated data consists
of sentences paired with dependency trees. We assume a dependency
parser that learns task-specific word embeddings eti for word wi ∈ T,
starting from the original embedding eoi . In this work, we use the
Stanford neural dependency parser [Chen and Manning, 2014b].

The goal of the mapper is as follows. We are given a training set of
N pairs of initial and task-trained embeddings
D =

{(
eo1 , et1

)
, . . . ,

(
eoN, etN

)}
, and we want to learn a function G that

maps each initial embedding eoi to be as close as possible to its corre-
sponding output embedding eti . We denote the mapped embedding
emi , i.e., emi = G

(
eoi
)
.

Figure 6.1a describes the training procedure of the mapper. We use
a supervised parser which is trained on an annotated dataset and ini-
tialized with pre-trained word embeddings eoi . The parser uses back-
propagation to update these embeddings during training, producing
task-trained embeddings eti for all wi ∈ T. After we train the parser,
the mapping function G is trained to map an initial word embedding
eoi to its parser-trained embedding eti . At test (or development) time,
we use the trained mapper G to transform the original embeddings of
unseen test words to the parser-trained space (see Figure 6.1b). When
parsing held-out data, we use the same parser model parameters (W)
as shown in Figure 6.1b. The only difference is that now some of the
word embeddings (i.e., for unseen words) have changed to mapped
ones.

6.1.2 Mapper Architecture

Our proposed mapper is a multi-layer that takes an initial word em-
bedding as input and outputs a mapped representation of the same
dimensionality. In particular, we use a single hidden layer

G(eoi ) =W2(hard tanh(W1eoi + b1)) + b2 (6.1)

where W1 and W2 are parameter matrices and b1 and b2 are bias
vectors.
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The ‘hardtanh’ non-linearity is the standard ‘hard’ version of hy-
perbolic tangent:

hard tanh(z) =

−1 if z < −1

1 if z > 1

In preliminary experiments, we compared with other non-linear
functions (sigmoid, tanh, and ReLU), as well as with zero and more
than one non-linear layer. We found that hard tanh is computationally
cheaper and performed better than the other non-linearities, and that
the fewer or more non-linear layers did not improve performance.

6.1.3 Loss Function

We use a weighted, multi-loss regression approach, optimizing a weighted
sum of mean squared error and mean absolute error:

loss(y, ŷ) =

α

n∑
j=1

|yj − ŷj|+ (1−α)

n∑
j=1

|yj − ŷj|
2 (6.2)

where y = eti (the ground truth) and ŷ = emi (the prediction) are
n-dimensional vectors. This multi-loss approach seeks to make both
the conditional mean of the predicted representation close to the task-
trained representation (via the squared loss) and the conditional me-
dian of the predicted representation close to the task-trained one (via
the mean absolute loss). A weighted multi-criterion objective allows
us to avoid making strong assumptions about the optimal transforma-
tion to be learned. We tune the hyperparameter α on domain-specific
held-out data.

For optimization, we use batch limited memory BFGS (L-BFGS) [Liu
and Nocedal, 1989]. In preliminary experiments comparing with stochas-
tic optimization, we found L-BFGS to be more stable to train and
easier to check for convergence (as has recently been found in other
settings as well [Ngiam et al., 2011]).

6.1.4 Regularization

We use elastic net regularization [Liu and Nocedal, 1989], which lin-
early combines `1 and `2 penalties on the parameters to control the
capacity of the mapper function. This equates to minimizing:

F(θ) = L(θ) + λ1‖θ‖1 +
λ2
2
‖θ‖22

where θ is the full set of mapper parameters and L(θ) is the loss func-
tion (Eq. 6.2 summed over mapper training examples). We tune the
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hyperparameters of the regularizer and the loss function separately
for each task, using a task-specific development set. This gives us
additional flexibility to map the embeddings for the domain of in-
terest, especially (e.g., newswire) and we want to use the parser on
a new domain (e.g., email). We also tried dropout-based regulariza-
tion [Srivastava et al., 2014] for the non-linear layer but did not see
any significant improvement.

6.1.5 Mapper-Parser Thresholds

Certain words in the parser training data T are very infrequent, which
may lead to inferior task-specific embeddings eti learned by the parser.
We want our mapper function to be learned on high-quality task-
trained embeddings. After learning a strong mapping function, we
can use it to remap the inferior task-trained embeddings.

We thus consider several frequency thresholds that control which
word embeddings to use to train the mapper and which to map at
test time. Below are the specific thresholds that we consider:

mapper-training threshold (τt ) The mapper is trained only
on embedding pairs for words seen at least τt times in the training
data T .

mapping threshold (τm ) For test-time inference, the mapper
will map any word whose count in T is less than τm. That is, we
discard parser-trained embeddings eti of these infrequent words and
use our mapper to map the initial embeddings eoi instead.

parser threshold (τp ) While training the parser, for words
that appear fewer than τp times in T , the parser replaces them with
the ‘unknown’ embedding. Thus, no parser-trained embeddings will
be learned for these words.

In our experiments, we explore a small set of values from this large
space of possible threshold combinations (detailed below). We con-
sider only relatively small values for the mapper-training (τt) and
parser thresholds (τp) because as we increase them, the number of
training examples for the mapper decreases, making it harder to learn
an accurate mapping function.

6.2 relevant related work

The most common approach to resolving unseen words is to replace
them with a special unknown word token [Søgaard and Johannsen,
2012; Chen and Manning, 2014b; Collobert et al., 2011b]. The rep-
resentation for the unknown token is either learned specifically or
computed from a selection of rare words, for example by averaging
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their embedding vectors. This approach could be problematic since
all unseen words are mapped to the same vector, irrespective of their
syntactic or semantic categories.

There are several threads of prior work using character-level infor-
mation for unseen word forms. Some combine unsupervised morpho-
logical analysis with compositional neural network architectures [Lu-
ong et al., 2013b; Botha and Blunsom, 2014]. Ling et al. [2015] and
Ballesteros et al. [2015] use long short-term memory recurrent neu-
ral networks to embed character sequences. Others use convolutional
neural networks on character streams [Labeau et al., 2015; Kim et al.,
2016; Zhang and LeCun, 2015]. Huang and Harper (2009; 2011) use a
heuristic based on emission probabilities of individual characters in
unknown words.

There is also a great deal of work using morphological information
for rare or unseen words [Candito and Crabbé, 2009; Habash, 2009;
Marton et al., 2010; Seddah et al., 2010; Attia et al., 2010]. Other work
has focused on using contextual information, such as using n-gram
based sequence models or web data [Bansal and Klein, 2011]. [Keller
and Lapata, 2003] use the web to obtain frequency information for
unseen words.

Dyer et al. [2015b] represent each word using an embedding learned
during parser training concatenated with a fixed embedding from a
neural language model, which provides a larger vocabulary. While
they still use an unknown word token for singletons, the pretrained
embeddings from the neural language model provide additional in-
formation about the unknown word. Other work has also found im-
provements by combining pretrained, fixed embeddings with task-
trained embeddings [Kim, 2014; Paulus et al., 2014]. Also relevant
are approaches developed specifically to handle large target vocab-
ularies (including many rare words) in neural machine translation
systems [Jean et al., 2015; Luong et al., 2015; Chitnis and DeNero,
2015].

Closely related to our approach is that of Tafforeau et al. [2015],
which also tries to map an initial, unsupervised word embedding
space to the word embedding space learned during supervised train-
ing. Their method generates updated embeddings for unseen words
by combining the embeddings of their k nearest neighbors. In Sec-
tion 6.4, we show that our approach outperforms this k-NN approach.
Another related technique proposed by Kiros et al. [2015] learns a
linear mapping from an initial embedding space to their encoder’s
vocabulary space by solving an unregularized linear regression prob-
lem. Our approach differs in that it can learn a non-linear mapping,
and we also learn separate mappings for each domain of interest,
tuning the mapper for each domain. We also empirically evaluate the
effect of performing this mapping, showing statistically significant
improvements. To our knowledge, these are the only approaches that
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handle unseen words by explicitly mapping initial representations to
a task-trained space.

Our work is also somewhat related to domain adaptation for depen-
dency parsing, which has been extensively studied in recent years [Mc-
Donald and Nivre, 2007; Nilsson et al., 2007]. The goal of this task is
to adapt an existing parser to a target domain with little or no an-
notated data. Previous work has used co-training [Cohen et al., 2012],
word distribution features [Koo et al., 2008; Bansal et al., 2014b; Weiss
et al., 2015], and self-training [McClosky et al., 2006].

Our simple approach learns to directly map initial word-level em-
beddings to the task-trained embedding space. No character-level
compositional model or morphological information is needed. Since
the initial embeddings are obtained from a large corpus in an unsu-
pervised manner, data sparseness issues can be mitigated by enlarg-
ing this corpus. Tuning the hyperparameters of our mapper on small
domain-specific development sets helps us to adapt the transforma-
tion to the target domain.

6.3 experimental setup

In this section, we describe our primary parsing setup, embeddings,
and datasets. We also describe the setup for a downstream task: sen-
timent analysis using a neural network model based on dependency
trees. Finally, we discuss the settings for the mapper.

6.3.1 Dependency Parser

We use the feed-forward neural network dependency parser of Chen
and Manning [2014b]. In all our experiments (unless stated other-
wise), we use the default arc-standard parsing configuration and hy-
perparameter settings. For evaluation, we compute the percentage of
words that get the correct head, reporting both unlabeled attachment
score (UAS) and labeled attachment score (LAS). LAS additionally
requires the predicted dependency label to be correct. To measure
statistical significance, we use a bootstrap test [Efron and Tibshirani,
1986] with 100K samples.

6.3.2 Pre-Trained Word Embeddings

We use the 100-dimensional GloVe word embeddings from Penning-
ton et al. [2014b]. These were trained on Wikipedia 2014 and the
Gigaword v5 corpus and have a vocabulary size of approximately
400,000.We have also experimented with the downloadable 50-dimensional
SENNA embeddings from [Collobert et al., 2011b] and with word2vec [Mikolov
et al., 2013a] embeddings that we trained ourselves; in preliminary ex-
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periments the GloVe embeddings performed best, so we use them for
all experiments below.

6.3.3 Datasets

We consider a number of datasets with varying rates of OOTV words.
We define the OOTV rate (or, equivalently, the unseen rate) of a
dataset as the percentage of the vocabulary (types) of words occur-
ring in the set that was not seen in training.

wall street journal (wsj) and ontonotes-wsj We con-
duct experiments on the Wall Street Journal portion of the English
Penn Treebank dataset [Marcus et al., 1993a]. We follow the standard
splits: sections 2-21 for training, section 22 for validation, and section
23 for testing. We convert the original phrase structure trees into de-
pendency trees using Stanford Basic Dependencies [De Marneffe and
Manning, 2008] in the Stanford Dependency Parser. The POS tags are
obtained using the Stanford POS tagger [Toutanova et al., 2003] in
a 10-fold jackknifing setup on the training data (achieving an accu-
racy of 96.96%). The OOTV rate in the development and test sets is
approximately 2-3%.

We also conduct experiments on the OntoNotes 4.0 dataset (which
we denote OntoNotes-WSJ). This dataset contains the same sentences
as the WSJ corpus (and we use the same data splits) but has sig-
nificantly different annotations. The OntoNotes-WSJ training data is
used for the Web Treebank test experiments. We perform the same
pre-processing steps as for the WSJ dataset.

web treebank We expect our mapper to be most effective when
parsing held-out data with many unseen words. This often happens
when the held-out data is drawn from a different distribution than the
training data. For example, when training a parser on the newswire
and testing on web data, many errors occur due to differing patterns
of syntactic usage and unseen words [Foster et al., 2011; Petrov and
McDonald, 2012b; Kong et al., 2014; Wang et al., 2014].

We explore this setting by training our parser on OntoNotes-WSJ
and testing on the Web Treebank [Petrov and McDonald, 2012b], which
includes five domains: answers, email, newsgroups, reviews, and we-
blogs. Each domain contains approximately 2000-4000 manually an-
notated syntactic parse trees in the OntoNotes 4.0 style. As before, we
convert the phrase structure trees to dependency trees using Stanford
Basic Dependencies. The parser and the mapper hyperparameters
were tuned separately on the development set for each domain. The
test and development sets for each domain contain approximately
1000-2500 sentences. We use our mapper to map unseen words in the
development and test sets in each domain. The unseen rate is typi-
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cally 6-10% in the domains of the Web Treebank. We train a separate
mapper for each domain, tuning mapper hyperparameters separately
for each domain using the development sets. In this way, we obtain
some of the benefits of domain adaptation for each target domain.

switchboard speech corpus The NXT Switchboard speech
corpus [Calhoun et al., 2010] contains annotated parses of spoken
telephone conversations. We obtain ground truth dependencies from
phrase structure trees using the Stanford converter as above, as also
done by Honnibal and Johnson [2014]. We perform their other prepro-
cessing steps of lowercasing the text, removing punctuation, and re-
moving partial utterances and one-token sentences. Since the current
version of the Stanford parser cannot perform non-monotonic pars-
ing,1 we also remove disfluent utterances in such a way that we get
a purely non-disfluent speech dataset. We use the standard train/de-
velopment/test splits of Charniak and Johnson [2001].

downstream task : sentiment analysis with dependency

tree lstms We also perform experiments to analyze the effects of
embedding mapping on a downstream task, in this case, sentiment
analysis using the Stanford Sentiment Treebank [Socher et al., 2013b].
We use the dependency tree long short-term memory network (Tree-
LSTM) proposed by Tai et al. [2015], simply replacing their default
dependency parser with our version that maps unseen words. The de-
pendency parser is trained on the WSJ corpus and mapped using the
WSJ development set. We use the same mapper that was optimized
for the WSJ development set, without further hyperparameter tuning
for the mapper. For the Tree-LSTM model, we use the same hyperpa-
rameter tuning as described in Tai et al. [2015]. We use the standard
train/development/test splits of 6820/872/1821 sentences for the bi-
nary classification task and 8544/1101/2210 for the fine-grained task.

6.3.4 Mapper Settings and Hyperparameters

The initial embeddings given to the mapper are the same as the ini-
tial embeddings given to the parser. These are the 100-dimensional
GloVe embeddings mentioned above. The output dimensionality of
the mapper is also fixed to 100. All model parameters of the mappers
are initialized to zero. We set the dimensionality of the non-linear
layer to 400 across all experiments. The model parameters are op-
timized by maximizing the weighted multiple-loss objective using
L-BFGS with elastic-net regularization (Section 6.1). The hyperpa-

1 The arc-standard algorithm, in the Stanford parser, is a monotonic parsing algorithm
where once an action has been performed, subsequent actions must be consistent
with it [Honnibal and Johnson, 2014]. This does not work well with disfluent utter-
ances.
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Lower OOTV word rate

WSJ OntoNotes Switchboard Avg.

UAS 91.85→92.21 90.17→90.49 89.12→89.41 90.38→90.70

LAS 89.49→89.73 87.68→87.92 86.58→86.77 87.92→88.14

OOTV % 2.72→1.45 2.72→1.4 2.1→0.98 −

OOTV subset 89.88→90.51 89.27→89.81 88.22→89.03 89.12→89.78

#Sents 337 329 437 −

Higher OOTV word rate

Answers Emails Newsgroups Reviews Weblogs Avg.

UAS 82.67→83.21 81.76→82.42 84.68→85.13 84.25→84.99 87.73→88.43 84.22→84.84

LAS 78.98→79.59 77.93→78.56 81.88→82.71 81.26→81.92 85.68→86.29 81.01→81.81

OOTV % 8.53→1.22 10.56→3.01 10.34→1.04 6.84→0.73 8.45→0.38 −

OOTV subset 80.88→81.75 79.29→81.02 82.54→83.71 81.17→82.22 86.43→87.31 82.06→83.20

#Sents 671 644 579 632 541 −

Table 6.1: Results of dependency parsing on various treebanks. Entries of
the form A→B give results for parsing without mapped embed-
dings (A) and with mapped embeddings (B). “OOTV %” entries
A→B indicate that A% of the test set vocabulary was unseen in
the parser training, and B% remain unknown after mapping the
embeddings. “OOTV subset” refers to UAS measured on the sub-
set of the test set sentences that contain at least one OOTV word,
and “#Sents” gives the number of sentences in this subset.

rameters include the relative weight of the two objective terms (α)
and the regularization constants (λ1, λ2). For α, we search over val-
ues in {0, 0.1, 0.2, . . . , 1}. For each of λ1 and λ2, we consider values
in {10−1, 10−2, . . . , 10−9, 0}. The hyperparameters are tuned via grid
search to maximize the UAS on the development set.

6.4 results and analysis

6.4.1 Results on WSJ, OntoNotes, and Switchboard

The upper half of Table 6.1 shows our main test results on WSJ,
OntoNotes, and Switchboard, the low-OOTV rate datasets. Due to
the small initial OOTV rates (<3%), we only see modest gains of 0.3-
0.4% in UAS, with statistical significance at p < 0.05 for WSJ and
OntoNotes and p < 0.07 for Switchboard. The initial OOTV rates
are cut in half by our mapper, with the remaining unknown words
largely being numerical strings and misspellings.2 When only consid-
ering test sentences containing OOTV words (the row labeled “OOTV
subset”), the gains are significantly larger (0.5-0.8% UAS at p < 0.05).

2 We could potentially train the initial embeddings on a larger corpus or use heuristics
to convert unknown numbers and misspellings to forms contained in our initial
embeddings.
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Wife and I attempted to adopt a dog and was nothing but frustrating
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conj
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Unseen Word

cc

(a) We obtain correct attachments and correct tree after the mapper maps the unseen
word ‘attempted’

Try google to find the title . . .

xcomp
aux

dobj

xcomp

aux

dobj
det

Unseen Word

(b) The mapper incorrectly maps ‘google’, resulting
in wrong attachments and wrong tree

Figure 6.2: Examples where the mapper helps and hurts: In the above exam-
ples the top arcs are before mapping and bottom ones are after
mapping; dotted lines refer to incorrect attachment.

6.4.2 Results on Web Treebank

The lower half of Table 6.1 shows our main test results on the Web
Treebank’s five domains, the high-OOTV rate datasets. As expected,
the mapper has a much larger impact when parsing these out-of-
domain datasets with high OOTV word rates.3

The OOTV rate reduction is much larger than for the WSJ-style
datasets, and the parsing improvements (UAS and LAS) are statisti-
cally significant at p < 0.05. On subsets containing at least one OOTV
word (that also has an initial embedding), we see an average gain
of 1.14% UAS (see row labeled “OOTV subset”). In this case, all im-
provements are statistically significant at p < 0.02. We observe that
the relative reduction in OOTV% for the Web Treebanks is larger than
for the WSJ, OntoNotes, or Switchboard datasets. In particular, we are
able to reduce the OOTV% by 71-95% relative. We also see the intu-
itive trend that larger relative reductions in OOTV rate correlate with
larger accuracy improvements.

3 As stated above, we train the parser on the OntoNotes dataset, but tune mapper
hyperparameters to maximize parsing performance on each development section of
the Web Treebank’s five domains. We then map the OOTV word vectors on each test
set domain using the learned mapper for that domain.
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Fine-Grained Binary

48.4→49.5 85.7→ 86.1

Table 6.2: Improvements on Stanford Sentiment Treebank test set using our
parser with the Dependency Tree-LSTM.

6.4.3 Downstream Results

We now report results using the Dependency Tree-LSTM of Tai et al.
[2015] for sentiment analysis on the Stanford Sentiment Treebank. We
consider both the binary (positive/negative) and fine-grained clas-
sification tasks ({very negative, negative, neutral, positive, and very
positive}). We use the implementation provided by Tai et al. [2015],
changing only the dependency parses that are fed to their model.
The sentiment dataset contains approximately 25% OOTV words in
the training set vocabulary, 5% in the development set vocabulary,
and 9% in the test set vocabulary. We map unseen words using the
mapper tuned on the WSJ development set. We use the same Depen-
dency Tree-LSTM experimental settings as Tai et al. Results are shown
in Table 6.2. We improve upon the original accuracies in both binary
and fine-grained classification. We also reduce the OOTV rate from
25% in the training set vocabulary to about 6%, and from 9% in the
test set vocabulary down to 4%.

6.4.4 Effect of Thresholds

We also experimented with different values for the thresholds de-
scribed in Section 6.1. For the mapping threshold τm, mapper-training
threshold τt, and parser threshold τp, we consider the following four
settings:

t1 : τm = τt = τp = 1

t3 : τm = τt = τp = 3

t5 : τm = τt = τp = 5

t∞ : τm =∞, τp = τt = 5

Using τm = ∞ corresponds to mapping all words at test time, even
words that we have seen many times in the training data and learned
task-specific embeddings for.

We report the average development set UAS over all Web Treebank
domains in Table 6.3. We see that t3 performs best, though settings
t1 and t5 also improve over the baseline. At threshold t3 we have ap-
proximately 20,000 examples for training the mapper, while at thresh-
old t5 we have only about 10,000 examples. We see a performance
drop at t∞, so it appears better to directly use the task-specific em-
beddings for words that appear frequently in the training data. In
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Baseline t1 t3 t5 t∞
84.11 84.89 84.97 84.81 84.14

Table 6.3: Average Web Treebank development UAS at different threshold
settings.

other results reported in this chapter, we used t3 for the Web Tree-
bank test sets and t1 for the rest.

6.4.5 Effect of Weighted Multi-Loss Objective

We analyzed the results when varying α, which balances between
the two components of the mapper’s multi-loss objective function.
We found that, for all domains except Answers, the best results are
obtained with some α between 0 and 1. The optimal values outper-
formed the cases with α = 0 and α = 1 by 0.1-0.3% UAS absolute. i.e.,
the mapper preferred mean squared error. For other domains, the
optimal α tended to be within the range [0.3, 0.7].

6.4.6 Comparison with Related Work

We compare to the approach presented by Tafforeau et al. [2015]. They
propose to refine embeddings for unseen words based on the relative
shifts of their k nearest neighbors in the original embeddings space.
Specifically, they define “artificial refinement” as:

φr(t) = φo(t) +

K∑
k=1

αk(φr(nk) −φo(nk)) (6.3)

where φr(.) is the vector in the refined embedding space and φo(.)
is the vector in the original embedding space. They define αk to be
proportional to the cosine similarity between the target unseen word
(t) and neighbor (nk):

αk = s(t,nk) =
φo(t).φo(nk)
|φ(t)||φo(nk)|

Avg. UAS Avg. LAS

Baseline 84.11 81.02

k-NN 84.54 81.38

Our Mapped 84.97 81.79

Table 6.4: Comparison to k-nearest neighbor matching of Tafforeau et al.
(2015).
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Table 6.4 shows the average performance of the models over the
development sets of the Web Treebank. On average, our mapper out-
performs the k-NN approach (k = 3).

6.4.7 Dependency Parsing Examples

In Figure 6.2, we show two sentences: an instance where the mapper
helps and another where the mapper hurts the parsing performance.4

In the first sentence (Figure 6.2a), the parsing model has not seen the
word ‘attempted’ during training. Note that the sentence contains 3

verbs: ‘attempted’, ‘adopt’, and ‘was’. Even with the POS tags, the
parser was unable to get the correct dependency attachment. After
mapping, the parser correctly makes ‘attempted’ the root and gets
the correct arcs and the correct tree. The 3 nearest neighbors of ‘at-
tempted’ in the mapped embedding space are ‘attempting’, ‘tried’,
and ‘attempt’. We also see here that a single unseen word can lead to
multiple errors in the parse.

In the second example (Figure 6.2b), the default model assigns the
correct arcs using the POS information even though it has not seen
the word ‘google’. However, using the mapped representation for
‘google’, the parser makes errors. The 3-nearest neighbors for ‘google’
in the mapped space are ‘damned’, ‘look’, and ‘hash’. We hypothe-
size that the mapper has mapped this noun instance of ‘google’ to be
closer to verbs instead of nouns, which would explain the incorrect
attachment.

6.4.8 Analyzing Mapped Representations

To understand the mapped embedding space, we use t-SNE [Van der
Maaten and Hinton, 2008] to visualize a small subset of embeddings.
In Figure 6.3, we plot the initial embeddings, the parser-trained em-
beddings, and finally the mapped embeddings. We include four un-
seen words (shown in caps): ‘horrible’, ‘poor’, ‘marvelous’, and ‘mag-
nificent’. In Figure 6.3a and Figure 6.3b, the embeddings for the un-
seen words are identical (even though t-SNE places them in different
places when producing its projection). In Figure 6.3c, we observe that
the mapper has placed the unseen words within appropriate areas of
the space with respect to similarity with the seen words. We contrast
this with Figure 6.3b, in which the unseen words appear to be within
a different region of the space from all seen words.

4 Sentences in Figure 6.2 are taken from the development portion of the Answers
domain from the Web Treebank.



6.4 results and analysis 91

(a) Initial Representational space

(b) Learned Representational Space

(c) Mapped Representational Space

Figure 6.3: t-SNE plots on initial, parser trained, and mapped representa-
tions.
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6.5 summary

We have described a simple method to resolve unseen words when
training supervised models that learn task-specific word embeddings:
a feed-forward neural network that maps initial embeddings to the
task-specific embedding space. We demonstrated significant improve-
ments in dependency parsing accuracy across several domains, as
well as improvements on a downstream task. Our approach is sim-
ple, effective, and applicable to many other settings, both inside and
outside NLP.



7
C O N C L U S I O N A N D F U T U R E D I R E C T I O N S

7.1 summary and conclusions

Our thesis focuses on defining methods that make use of lexical rep-
resentations, which are learned from large data sources. We observe
that our proposed methods are able to generalize to words that are
not seen during training.

Specifically, we describe methods to tailor word embeddings such
that they are used for specific tasks in NLP in an efficient manner. We
propose probabilistic methods that use the unsupervised representa-
tions as initial features for a downstream task, such as prepositional
phrase attachment, and show that these models complement the lin-
ear models. We expanded from using bilinear models to multilinear
models and observed that these simple yet effective models outper-
form neural network based models under the same setting.

Our framework also performs representational compression such
that the word embeddings are compressed in a low-dimensional space
by using nuclear-norm regularization. We obtain high-quality task
specified embeddings that are computationally efficient for down-
stream tasks. We also use a similar model setting to map embeddings
from two different languages to a common subspace and effectively
improve the performance on machine translation tasks, especially for
out of domain dataset. These empirical results encourage the appli-
cation of our modeling framework to interesting areas of research in
natural language parsing and related tasks.

One of the common themes in this thesis has been about the use of
nuclear-norm regularization that gives us low-rank models. We have
seen throughout our work that low-rank based models are amongst
the best performing models and have several advantages including a)
they lead to superior models with fewer parameters and exploit latent
interactions, especially in cases where the initial word representations
are sparse, and b) they lead to a relatively lean and simple way to
obtain task specific compressions over word embeddings.

Further, we describe a non-linear mapping function that maps ini-
tial representations to task-specified representations. We used a novel
weighted multi-loss function, which can further be tuned for domain
adaptation using a tiny amount of supervision. This method is espe-
cially useful when we have supervised data in one domain (such as
newswire), but we have to parse more real world domains (for exam-
ple emails, etc.,) where there is a large vocabulary mismatch.
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7.2 future directions

Some of the possible directions for future research include:

7.2.1 Other NLP Tasks and Languages

We would like to try our approaches in other advanced natural lan-
guage processing tasks that include structured prediction tasks. Typ-
ically, a structured prediction model in NLP uses some form of a
composition of lexical units, utilizing our proposed binary, ternary,
or n-ary compositions using low-rank regularization could likely be
a neat fit.

This thesis has mostly focussed on different tasks for English. An
immediate extension of the work presented in the thesis is an evalu-
ation on different languages. Our methods are especially useful for
low-resource languages. In some cases, where we perform experi-
ments on other languages, like Arabic and Spanish, we see similar
improvements as in English. We are also interested in experimenting
with transfer learning between languages. As some languages have
inter lingual syntacto-semantic similarity, it would be interesting to
study if bilinear model characteristics can be transferred between lan-
guages.

7.2.2 Multimodal Task Specific Representations

Multimodal tasks are tasks that are conditioned on two different
modalities eg., models conditioned on both vision based features and
text based features, models conditioned on both speech based fea-
tures and text based features, etc.. Recent work has shown that bi-
linear models are advantageous in the context of multimodal tasks.
Previous work [Fukui et al., 2016; Kim et al., 2017; Lin et al., 2015;
Pirsiavash et al., 2009] has demonstrated the utility of simple bilinear
models in the context of vision and language, especially some of the
these have achieved state-of-the-results in the tasks. We would like
to apply our bilinear low-rank models in the context of multimodal
tasks.

We have already approached this problem in the context of obtain-
ing semantic roles given an image [Quattoni et al., 2016]. With more
sophisticated model architectures, bilinear models that are able to
make use of end-to-end learning could yield interesting results and
insights.

7.2.3 Low-Rank plus Additive Matrices

With low-rank plus additive matrices regularization, the additive com-
ponents have complementary structures; for example, in the case of
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the sum of a low-rank matrix with a sparse matrix, the low-rank ma-
trices can be seen as the functions that compute the inner product in
the low-dimensional space and the sparse matrices learn task related
idiosyncrasies and exceptions.

Recent work [Hutchinson et al., 2013, 2015; Candès et al., 2011]
demonstrates the usefulness of low-rank plus additive matrices. Our
proposed models in the thesis can be naturally extended to have low-
rank plus sparse components.
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