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Abstract

The original idea of this project was to study the role of colour in the challenging task
of object recognition. We started by extending previous research on colour naming
showing that it is feasible to capture colour terms through parsimonious ellipsoids.
Although, the results of our model exceeded state-of-the-art in two benchmark
datasets, we realised that the two phenomena of metameric lights and colour con-
stancy must be addressed prior to any further colour processing. Our investigation
of metameric pairs reached the conclusion that they are infrequent in real world
scenarios. Contrary to that, the illumination of a scene often changes dramatically.
We addressed this issue by proposing a colour constancy model inspired by the
dynamical centre-surround adaptation of neurons in the visual cortex. This was
implemented through two overlapping asymmetric Gaussians whose variances and
heights are adjusted according to the local contrast of pixels. We complemented this
model with a generic contrast-variant pooling mechanism that inversely connect
the percentage of pooled signal to the local contrast of a region. The results of our
experiments on four benchmark datasets were indeed promising: the proposed
model, although simple, outperformed even learning-based approaches in many
cases. Encouraged by the success of our contrast-variant surround modulation,
we extended this approach to detect boundaries of objects. We proposed an edge
detection model based on the first derivative of the Gaussian kernel. We incorpo-
rated four types of surround: full, far, iso- and orthogonal-orientation. Furthermore,
we accounted for the pooling mechanism at higher cortical areas and the shape
feedback sent to lower areas. Our results in three benchmark datasets showed
significant improvement over non-learning algorithms.

To summarise, we demonstrated that biologically-inspired models offer promis-
ing solutions to computer vision problems, such as, colour naming, colour constancy
and edge detection. We believe that the greatest contribution of this Ph.D disser-
tation is modelling the concept of dynamic surround modulation that shows the
significance of contrast-variant surround integration. The models proposed here
are grounded on only a portion of what we know about the human visual system.
Therefore, it is only natural to complement them accordingly in future works.

Key words: visual perception, computer vision, visual neuroscience, colour, form,
contrast, surround modulation
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Resumen

La idea original de este proyecto fue estudiar la importancia del color en el reconoci-
miento de objetos. Comenzamos extendiendo la investigacion previa sobre nombrar
colores y demostrando la viabilidad de capturar términos de color a través de elip-
soides. Aunque nuestros resultados superaron el estado-del-arte en dos bases de
datos, vimos que los fendmenos de luces metaméricas y constancia de color debian
ser tratados antes de cualquier procesamiento de color. Nuestra investigacién de
pares metaméricas mostré que son infrecuentes en el mundo real. Contrariamente
a eso, la iluminacién de una escena a menudo cambia drasticamente. Abordamos
este problema proponiendo un modelo de constancia de color inspirado en la adap-
tacién dindmica del centro-envolvente de las neuronas en la corteza visual. Esto se
implementa a través de dos gaussianos asimétricos superpuestos, cuyas varianzas y
alturas se ajustan al contraste local. Complementamos este modelo con un meca-
nismo genérico de agrupacién variante por contraste que inversamente conecta
el porcentaje de sefial agrupada al contraste de una regién. Los resultados sobre
cuatro bases de datos fueron prometedores: nuestro modelo supero6 incluso los en-
foques basados en el aprendizaje en muchos casos. Alentados por el éxito obtenido,
ampliamos este enfoque para detectar los bordes de los objetos. Proponemos un
modelo de deteccion de bordes basado en la primera derivada del kernel gaussiano.
Incorporamos cuatro tipos de envolvente: completa, distante, orientacién isogo-
nal y ortogonal. Ademds, contamos con el mecanismo de agrupacion en las areas
corticales superiores y la retroalimentacion de la forma enviada a las zonas més
bajas. Nuestros resultados en tres bases de datos mejoraron el estado-del-arte en
los algoritmos sin aprendizaje.

En resumen, hemos demostrado que los modelos inspirados biologicamente
ofrecen soluciones para visién por computador, como nombrar colores, constancia
de color y deteccién de bordes. Creemos que la mayor contribucién de esta tesis
doctoral es el modelado del concepto de modulacion envolvente dindmica que
muestra la importancia de la integracion de envolvente variante por contraste. Los
modelos propuestos se basan en s6lo una parte de lo que sabemos sobre la visién
humana. Por lo tanto, es natural complementarlos en trabajos futuros.

Palabras clave: percepcion visual, visién por computador, visual neurociencia,
color, forma, contraste, modulacion envolvente






Resum

La idea original d’aquest projecte va ser estudiar la importancia del color al reconei-
xement d’'objectes. Comencem estenent la investigacio previa sobre I'anomenament
de colorsidemostrant la viabilitat de capturar termes de color a través d’el-lipsoides.
Tot i que els nostres resultats van superar I'estat de I'art utilitzant dues bases de
dades, vam veure que els fenomens de llums metameriques i constancia de color
havien de ser tractats abans de qualsevol processament de color. Sobre la nostra
investigacié de parells metameriques concloem que sén infreqiients en el mén
real. Contrariament a aixo, la il-luminaci6 d'una escena sovint canvia drasticament.
Abordem aquest problema proposant un model de constancia de color inspirat en
I’adaptacié dinamica del centre-envoltant de les neurones al cortex visual. Aixo
s'implementa a través de dues gaussianes asimétriques superposades, les variancies
iles alcades de les quals s’ajusten amb el contrast local dels pixels. Complementem
aquest model amb un mecanisme generic d’agrupacié variant per contrast que
connecta inversament el percentatge de senyal agrupada amb el contrast d'una
regi6. Els resultats sobre quatre bases de dades van ser prometedors: el model
proposat superava, en molts casos, els models basats en aprenentatge. Encoratjats
per I'exit obtingut, ampliem aquesta proposta per detectar les vores dels objectes.
Proposem un model de deteccio de vores basat en la primera derivada del nucli
gaussia. Incorporem quatre tipus de voltants: completa, distant, orientaci6 iso-
gonal i ortogonal. A més, comptem amb el mecanisme d’agrupacié en les arees
corticals superiors i la retroalimentaci6 de la forma, que és enviada a les zones més
baixes. Els nostres resultats en tres bases de dades van millorar I'estat de I'art en els
algoritmes sense aprenentatge.

En resum, hem demostrat que els models biologicament inspirats ofereixen
solucions per a visié per computador, com anomenament de colors, constancia de
color i deteccio de vores. Creiem que la major contribucié d’aquesta tesi doctoral
és el modelatge del concepte de modulacié envoltant dinamica que mostra la
importancia de la integraci6 de l'entorn que varia segons el contrast. Els models
proposats es basen en una part del que sabem sobre la visi6 humana. Per tant, és
natural complementar-los en treballs futurs.

Paraules clau: percepcié visual, visié per computador, visual neurociéncia, color,
forma, contrast, modulacié envoltant
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|8 Introduction

In our everyday experience, we see the world so naturally and perceive our sur-
roundings so effortlessly that we have little appreciation for all the astonishing
computations occurring in our brains. We are utterly unconscious of the complexity
of our visual system to the extent that in the sixties, pioneering scientists of artifi-
cial intelligence believed that functional machine vision could be accomplished
through a summer project [182]. Today, after more than half-century of exhaustive
theoretical and empirical research, we know how unrealistic this view has been.
Neurobiological studies suggest that more than sixty percent of our brain is involved
in vision-related tasks [69, 237], manifesting the great effort needed to process vi-
sual information. This is also evident in convolutional neural networks (CNN)
which require millions of tuned parameters to reach human-like performance in
just one specific task. Despite remarkable technological progress made in the field
of computer vision, the capabilities of human vision remain vastly superior to their
artificial counterparts [30, 79, 212], suggesting that machines can learn a great deal
from visual systems evolved over millions of years [106]. This has been the motiva-
tion behind the approach we followed in this research, namely, biologically-inspired
computer vision.

Biologically-inspired artificial intelligence and computer vision are among
those disciplines that have received a great amount of attention during the past
decade [114], thanks to the promising results achieved by CNNs that were originally
inspired by our very own cortical organisation [146]. CNN models have obtained
one of their greatest accomplishments in the field of computer vision and image
processing, owing it to their architecture that resembles the neural circuits of the
human brain. Consequently, many within the scientific community [53, 85] believe
that in order to comprehensively decipher the basis of visual intelligence, today
more than any other time, we require and should expect an amplification of the col-
laboration between the three distinct vision communities: neuroscientists (brain),
cognitive-scientists (mind), and computer-scientists (machine). It is thought that
only this collective work might allow us to understand the bigger picture.

This doctorate dissertation is an attempt towards this multidisciplinary ap-
proach. We intended to learn from the physiological and psychophysical literature
about the underlying mechanisms of visual perception. We were curious about
how neuronal spikes lead to perception and eventually to awareness. Subsequently,
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we developed models that aim to simulate those mechanisms closely enough to
be of interest to investigators who study visual perception, but also sufficiently
practical to be executed in standard computers. To be concrete, during this Ph.D
we implemented three biologically-inspired computer vision algorithms: (i) colour
constancy, (ii) colour naming, and (iii) edge detection.

1.1 The rationale to get inspired by the visual cortex

There are various motives to pursue a biologically-inspired approach towards
computer vision [114]. For us, the first and foremost reason is the large gap be-
tween the performance of the human visual system (HVS) and its artificial counter-
part [30, 79, 212]. This is due to a number of fundamental differences that can be
broadly divided into two groups according to their connection with the overall task:

1. Generic: those common operations that must be executed regardless of what
the eventual objective is. This group can be interpreted as low-level pre-
processing mechanisms that are task-irrelevant.

2. Specific: those certain actions that are only required for a particular goal, e.g.
detecting the colour of an object or recognising a scene. This group can be
interpreted as high-level visual information processing that are task-relevant.

1.1.1 Generic processing

Poor image quality has been reported to harm the performance of the best CNN
models [58]. At the same time those networks are easily deceived by playing with
the statistics of images [169, 174, 218] (e.g. labelling static white noise as an object
with a high certainty). There are multiple other examples that one can refer to
illustrate the fundamental differences between the abilities of human and machine
vision with respect to low-level visual information processing [150]. We restrict
those to two cases that are prerequisite of all other visual information processing:
scene illuminant and noise.

Scene illuminant

In our daily life, dramatic changes occur in the spectral composition of the light
reflected from a scene (e.g. the gamut of physical colours at sunset almost doubles in
comparison to the “flat” midday illumination [122]; set aside artificial illuminants).
There are also large intensity variations within a scene itself [81] (e.g. sunny versus
shadowy region, mutual inter-reflections, efc.). Despite this, we usually experience
a constant and robust perception of the surroundings and its composing objects.
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Contrary to that, insufficient illumination causes great challenges for machine
vision, an affect that most people have probably experienced, for example, while
capturing a picture with cameras of mobile phones in a dim evening,.

Although, in a number of aspects (e.g. resolution, angle of view, bit-depth,
dynamic range) the hardware capabilities of the modern camera sensor is arguably
comparable to human photoreceptors [211], our personal experience of a scene
is still vastly superior to the captured images. This hints at underlying efficient
processes that take place in our brain in order to “stabilise” the illuminant across
and within scenes. Naturally, in the case of computers, a similar procedure must
occur prior to any further higher-level visual processing. This is the subject of
study for a few computer vision lines of research [97] (e.g. colour constancy, high-
dynamic-range (HDR) imaging, colour stabilisation, etc.).

Noise

One of the puzzling features of our visual system is its extreme robustness to
noise [105]. For instance, our performance is much higher than that of CNN models
in distorted images [59]. People who are unlucky enough to require glasses expe-
rience many times a great surprise when cleaning their lenses. One starts asking
oneself “How could I have possibly seen anything with this amount of dirt?”. Despite
this, our visual system does not get hindered and works rather smoothly. A similar
scenario is experienced while driving in the rain or in fog. Although, a large portion
of the windshield is covered with water drops, most people still can manage to
continue driving. Similar conditions have caused accidents for autonomous driving
cars that in addition to cameras are equipped with a number of other sensors to
detect obstacles [66]. Currently, it is hard to imagine such autonomous vehicles to
function relying mostly on visual information, like humans do.

A large portion of our tolerance to noise in comparison to machine vision does
certainly not originate from the hardware (camera sensors versus retina photore-
ceptors). Overall, the superiority of the human visual system primarily stems from
the fact that our visual cortex with its complex processing (software) is able to intel-
ligently interpret the information from our eyes. It goes without saying that a “noise
removal” mechanism is an essential preprocessing stage and is required prior to
any other higher-level visual task processing [39].

1.1.2 Specific processing

Figure 1.1 illustrates two masterpieces by artist Coles Phillips. To our eyes the edges
between foreground and background are well defined in his paintings, despite the
fact that the physical colours (intensity in chromatic channels) of some objects
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and their backgrounds are identical. This is refereed to as volume completion, a
task in which the visual system determines the relationships between different
components in order to form meaningful entities [223]. Such cases are extremely
ambiguous for machine vision and they greatly disturb their routines to detect,
recognise or segment objects.
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Figure 1.1 - “Fadeaway” technique by Coles Phillips. Objects merge seamlessly with
the background, yet in the perception of viewers the edges remain well defined.

Similar to what we discussed above with respect to generic processing, below
we elaborate on some of the most important differences between human and
machine vision with two examples regarding efficiency of each system while facing
insufficient clues and information.

Occlusion

Although in everyday activities, our visual system continually operates among
occluded objects, in most cases we are not conscious of this issue and behave
as if occluded objects were present in their entirety. This capacity has also been
reported in infants and even many other animal species [123]. When we encounter
an occluded object, not only we are aware of its identity but also we estimate its
location and spatial extent correctly [105]. In fact, this hardly inhibits our functional
abilities regardless whether we consider a partial occlusion in an static image or
complete occlusions in video sequences. In contrast, occlusion handling is a great
challenge for machine vision and is the subject of study for a few computer vision
lines of research [212] (e.g. face recognition, object tracking, scene segmentation,
etc.).
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Silhouette

Humans, even at an early age, have almost no difficulties in recognising objects
merely by sketches of their outlines (i.e. a few high contrast lines) [213]. This is
evident in various simple cave arts, cartoons and comic books (despite the fact that
many times lines drawn do not even correspond accurately to luminance or colour
contrast edges [232]). Similar conditions can seriously challenge machine vision.
In a recent study [141], it has been reported that the accuracy of many modern
CNN approaches significantly lowers when the input image is the silhouette of
an object or its grey-scale version. This suggests that our visual system encodes
objects descriptions with a higher level of abstraction by considering physical and
perceptual attributes of objects.

1.2 Models inspired by biology

In the previous section, we discussed fundamental differences between human and
machine vision. In this section, we start by commenting on some mechanisms of
the human visual system. After that, in order to showcase the practical benefits to
computer vision from this line of research, we review two influential biologically-
inspired models (one of the retina and another of the cortex).

1.2.1 The human visual system

We will review the relevant parts of the visual system in the introductory section of
each chapter of this dissertation. Here, it is sufficient to remind our readers of a few
very important general properties (for a more comprehensive explanation, refer to
[68, 121, 184]). Our visual system consists of two functional components, the eye,
which is analogous to a camera, and the visual cortex in the brain, which does all of
the complex image processing (see Figure 1.2).

The photons that enter the eye are absorbed by millions of the photoreceptor
cells at the back of the retina [62]. The retina has two kinds of photoreceptors: (i)
rods that function in less intense light and are responsible for night vision, and
(i) cones that belong to three types - i.e. long-, medium-, and short-wavelength
(LMS) which can be interpreted as biological equivalent to RGB sensors — and are
responsible for colour vision. Cone cells are densely located in the fovea of the retina
while rods are in the peripheral regions. This in turn results into dramatic drop
of visual resolution with distance from the centre of vision. The signals produced
by cone cell are combined in an antagonistic manner in the retina to from the
opponent channels that convey information to the visual cortex through the lateral
geniculate nucleus (LGN).
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Visual cortex

Light
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Figure 1.2 — A schematic view of the human visual system adapted from [160].

Neurons in the retina connect to further neurons in the visual pathway in small
groups that are sensitive to local regions of the input image. These regions are called
receptive fields (RFs). The visual information that arrives to the brain is processed
by neurons of the primary visual cortex (V1) that have the smallest receptive field
size of any visual area [42]. Neurons in area V1 are tuned to respond to generic
low-level visual features (e.g. orientation, spatial frequency, phase, motion, efc.)
within each of their receptive fields. As we advance deeper inside cortical areas, our
knowledge of cerebral mechanisms involved becomes less clear. In higher visual
areas, neurons have complex properties which are the product of pooling relevant
information over several neighbouring spatial locations of the preceding areas [239].
This implies an increasing globality as we progress through the ventral stream (also
known as the “what pathway” which is involved in object recognition).

Neurons in the secondary visual cortex (V2) have been reported to respond to
extended lines and textural information in addition to sharing many properties
of V1 cells. Area V4 was originally labelled as the colour centre of cortex, however
many subsequent studies have shown that neurons in this region incorporate both
shape and colour visual characteristics [203]. The inferior temporal (IT) part of
cortex is considered to be the last stage in the ventral stream [108]. Large receptive
fields of this area receive strong inputs from V2 and V4 and it has been proposed
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that they play a crucial role in identifying visual objects (e.g. face recognition [112]).

1.2.2 Feature descriptors

The Fast Retina Keypoint (FREAK) is a local binary descriptor proposed by [12]
following a topological sampling grid of the retina. From physiological studies we
know that the size and density of retinal receptive fields increases as a function of
their radial distance to the fovea [72]. Correspondingly, in FREAK regions around
the centre of a pixel are modelled by narrow Gaussian kernels in order to replicate
the retinal pattern. This leads to a higher density of sampling points in the cen-
tral region, which decreases exponentially towards the periphery of the retina (i.e.
Gaussian with larger standard deviations). Furthermore, it has been reported that
receptive fields in the retina largely overlap [176]. A similar concept was incorpo-
rated in FREAK by overlapping Gaussian kernels resulting in higher discriminative
power. The last step in FREAK is thresholding between pairs of receptive fields that
are fed to a greedy learning mechanism in order to select a restricted number of
pairs. Interestingly, the clusters obtained by this approach appear to be in great
agreement with what we know about the human retina.

FREAK is one example of biologically-inspired feature descriptors (refer to [11]
for a more comprehensive review) that primarily differs from other methods in
its sampling strategy: using kernels of different size for each sampling point. This
simple idea borrowed from our retina resulted in a robust local binary descriptor.
The variability in receptive field sizes is also overwhelmingly present in the visual
cortex. Correspondingly, we will show the benefits of modelling different kernel
sizes in the phenomenon of colour constancy (discussed in the chapter 3).

1.2.3 Object recognition

In a series of articles [194, 200, 201, 202] a robust object recognition network (called
HMAX) that models some basic parts of the feedforward mechanisms of the visual
pathway was proposed. In the HMAX model, an image is first convolved with a set
of kernels that are responsive to specific features and spatial frequencies (similar to
simple neurons in the visual cortex) at each layer. Next, a non-linear max-operator
pools signals over a group of these simple units resembling the activity of complex
cells in the visual cortex. Higher layers (e.g. area V4) collect information from lower
ones (e.g. area V1) through linear summation of complex cells responses. Finally, a
concatenation of responses from higher level units results into feature descriptors
similar to those obtained at the area IT of cortex [57]. At the end of this pipeline,
these feature descriptors are fed into standard machine learning techniques to
recognise objects.
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In addition to its promising performance, this model possess a number of
fundamental merits: (i) the features used were simple, (ii) a decent accuracy was
obtained with a limited number of samples in the training procedure, and (iii) the
learned descriptors were generic enough to be tuned easily for other types of objects.
Architectures similar to the HMAX (for the benefit of space we do not discuss other
models here; interested readers are referred to [219]) demonstrate in practice that
the simple and complex cells discovered by Hubel & Wiesel [120] are indeed the
backbones of higher processing mechanisms.

Although, current learning solutions driven by CNN models outperform hand-
crafted models [140], we decided to use the HMAX model as an example due to
its easy-to-grasp features. Alternatively, one can elaborate in details (e.g. [236])
about the biologically-inspired components of current popular deep-learning mod-
els, such as its convolutional operators (local features) [86] or its backpropagation
architecture (feedback connections) [146].

1.3 Organisation of the dissertation

This doctorate dissertation is centred on three main subjects, which correspond to
its three main parts:

¢ Scene illuminant
¢ Colour names

e Object edges

In the first part (Scene Illuminant), we discuss the implications of changing the
source of light for human and artificial visual systems. We start by explaining the
phenomenon of metamerism and whether it can pose a serious challenge for colour
perception. After that we analyse how the colour of an object remains constant to
us across different illuminants. At the end, we propose a colour constancy model
grounded on the contrast-dependant surround modulation of neurons in the visual
cortex.

In the second part (Colour Names), we continue the discussion about the im-
portance of colours in scene understanding. We reflect on the handful of colour
categories (from an infinite set of combinations) that have become universal colour
names across different languages and cultures. After that, we examine low-level
visual mechanisms that might be responsible for those universal colour terms.
At the end, we propose an ellipsoidal colour naming model grounded on recent
physiological studies of the primary visual cortex.
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In the third part (Object Edges), we study some aspects of form and shape that
have been reported to be closely linked to colour processing in the visual cortex.
We start by describing the importance of surround modulation in the perception
of forms and boundaries. After that, we explain the related physiological and
psychophysical studies regarding the processing mechanisms involved. At the end,
we propose an edge detection model grounded in the different types of surrounding
regions.

Summary of published works

Parts of the materials presented in this doctorate dissertation have been published
in the following journals and conferences:

e Section 2 (Metamerism)
— Metameric mismatching in natural and artificial reflectances [2], Vision
Sciences Society (VSS), 2017.
— Metamers in real world scenarios [3], International Colour Vision Society
(ICVS), 2017.
e Section 3 (Colour Constancy)
— Colour constancy as a product of dynamic centre-surround adapta-
tion [185], Vision Sciences Society (VSS), 2016.

— Colour Constancy: Biologically-inspired Contrast Variant Pooling Mech-
anism [10], British Machine Vision Conference (BMVC), 2017.

- Colour Constancy Beyond the Classical Receptive Field [Under review] [8],
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
2017.

» Section 4 (Colour Categorisation)

- Biologically plausible colour naming model [6], European Conference
on Visual Perception (ECVP), 2015.
— NICE: A Computational Solution to Close the Gap from Colour Percep-
tion to Colour Categorization [186], Journal of PLoS ONE, 2016.
» Section 5 (Boundary Detection)

- Biologically plausible boundary detection [7], British Machine Vision
Conference (BMVC), 2016.
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- Dynamically adjusted surround contrast enhances boundary [4], Euro-
pean Conference on Visual Perception (ECVP), 2016.

— Feedback and Surround Modulated Boundary Detection [9], Interna-
tional Journal of Computer Vision (IJCV), 2017.

* Miscellaneous
- Can biological solutions help computers to detect symmetry? [5], Euro-
pean Conference on Visual Perception (ECVP), 2017.

— New biologically-inspired solutions to old computer vision problems,
Barcelona Computational, Cognitive and Systems Neuroscience (BARC-
SYN), 2016.

10



Scene Illuminant§¥:iya!

How do we account for the source of light?






yAd Metamerism

In this chapter, we analyse metameric surfaces in real world scenarios. Metamerism
is when two distinct reflectance spectra result into identical colours under certain
lighting conditions (see Figure 2.1). Because this phenomenon arises at sensory
level (colour absorption), which is the lowest level of any visual system, it can have
important implications for any high-level visual tasks. Here, we discuss whether
metameric pairs can challenge our visual system with the phenomenon of colour
constancy (the ability to preserve the perceived colour of objects under different
illuminations), which is the topic of the next chapter in this dissertation.

Figure 2.1 — What is metamerism? Two different reflectance spectra result into
identical tristimulus values under the illumination of natural daylight and therefore
they both appear as orange to us. However, the very same pair mismatch under the
Tungsten light and consequently we perceive one of them as more reddish.

2.1 Introduction

The human visual system (HVS) and most digital cameras sample the continuous
spectral power distribution of light through three classes of receptors — i.e. biologi-
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cal long, medium and short wavelength-sensitive cone cells (LMS) or artificial red,
green and blue imaging sensors (RGB). This implies that two distinct reflectance
spectra can result in identical tristimulus values under one illuminant and differ un-
der another (see Figure 2.1) — a phenomenon known as metamer mismatching [241].
This in turn can potentially become a serious challenge for our visual perception
or as a matter of fact for artificial perception as well. For instance, the surfaces of
two objects with an identical colour in daylight might appear very different under a
typical florescent lamp. The frequency, magnitude, and overall consequences of
this issue are still a matter of debate and subject to further research.

A large number of studies have addressed different aspects of the metamerism
phenomenon. Lennie [149] associated the sparse distribution of signals in the
primary visual cortex (V1) to seldom occurrences of metamers in natural scenes.
Finlayson & Morovic [76] mathematically formulated infinite sets of metamers for a
given CIE XYZ observation. Foster et al. [82] studied naturally occurring metamers
in hyper-spectral images under three different daylights and reached the conclusion
that their frequency is low. It still remains unclear how frequent metamers are in
other real world scenarios, for instance under commonly used artificial sources of
light (in particular florescent lamps which have a peaky and narrow-band spectral
power distribution).

The extent of metamer mismatching in the visual environment has been investi-
gated in a series of articles. Logvinenko et al. [153] theoretically demonstrated that
the metamer mismatch volume between two illuminants is rather large and conse-
quently the extent of colour mismatch is significant enough to question the colour
constancy paradigm [154]. Evidence supporting an important role of metamer
mismatches for perception came from Witzel et al. [240], who reported a strong
correlation between the size of these mismatch volumes and the degree of colour
constancy in an asymmetric matching task. However, in an empirical investigation
into the size of these volumes, Zhang et al. [251] came to the conclusion that in
practice their bodies are substantially smaller than the theoretical ones. There are
still a number of ambiguities about the perceptual magnitude of these mismatching
volumes in real world scenarios and whether the colour constancy phenomenon is
indeed hindered by them. In this chapter, we have investigated the metamerism
phenomenon from two viewpoints:

1. Frequency of metameric pairs among surfaces of natural and man-made
objects under real world scenarios, using naturally occurring reflectance
functions and common artificial lights.

2. Magnitude of perceptual colour shifts in metameric pairs under different
sources of light, that is to say how different metameric pairs appear when
they mismatch under one illuminant.
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In order to address these questions, we gathered a large set of reflectance spec-
tra and studied their colours under various types of illuminant. For each pair of
reflectance spectra, we estimated the perceived colour difference using the CIE
AE2000 [156] metric. We conducted our analysis by computing various degrees of
metamerism under different combinations of lower and higher thresholds repre-
senting perceptual discriminability. Correspondingly, if the colour difference of a
reflectance spectra pair is smaller than the lower threshold under one illuminant (i.e.
perceptually indiscriminable colours) and larger than the higher threshold under
another illuminant (i.e. perceptually discriminable colours), this pair is considered
to be metamer. This definition in some literature is referred to as paramer when
colours do not match perfectly but the difference is visually unnoticeable [224]. If
the colour difference of a reflectance spectra pair is smaller than the lower threshold
under both illuminants, this pair is considered by us as isomer, meaning the original
reflectance spectra of both surfaces are close to identical.

2.2 Method

In this section, we explain the configurational details of the conducted experiments
in order to simulate real world scenarios.

2.2.1 Reflectance spectra dataset

We gathered 11,302 reflectance spectra of various natural and man-made surfaces
from different sources. Details of the collected datasets are presented in Table 2.1.

The range of wavelengths sampled across all datasets was between 400 and 700
nm (corresponding to the sampling spectra of retinal cones) with distinct intervals
(i.e. 1,2, 4,5 and 10 nm). We unified all the reflectance spectra of the different
datasets to intervals of 1 nm through linear interpolation.

In Figure 2.2 we have plotted the angular hue histogram of each dataset con-
sidering D65 illumination. One can notice that in the majority of the datasets,
e.g. Cambridge, FReD and Lumber, the dominant hue is around green, yellow and
orange colours. This is due to the fact that the main components of these datasets
are natural objects. In a few datasets where artificial colour samples have been
measured, this distribution is more uniform across the hue circle, e.g. Munsell and
Agfa.

Each of the 11,302 reflectance spectrum is to be compared to all other re-
flectance spectra in order to investigate whether a metameric pair is formed. This
means the entire set of experimented spectra pairs contains 63,861,951 possible
entries (M).

15
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Name Samples | Main components
Cambridge  [190] | 3276 Fruits, leaves, and pelage
FReD [17] 2323 Flowers

Munsell [177] | 1600 Munsell chips

Lumber [129] | 1056 Tree logs and their leaves
Papers [109] | 803 Coloured papers
Barnard [20] 702 Miscellaneous objects
Westland [238] | 404 Plants and soil
Matsumoto  [166] | 339 Fruits and leaves

Agfa [164] | 289 Hues at regular intervals
Forest [116] | 272 Sawn timber and its branches
Natural [183] | 182 Colourful plants

Artist [26] 56 Artist paintings

Table 2.1 — Description of the collected reflectance spectra datasets.

Cambridge FReD Munsell Lumber Papers Barnard
500
200 50 500
0 0 0 0
-500 . -50 500
-500 0 500 -200 0 200 50 0 50 -500 0 500
Westland Matsumoto Agfa Forest Natural Artist
5
100
100
50 10
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-50
-100 100 &
50 0 50 -100 0 100 10 0 10 -100 0 100 -10 0 10 -5 0 5

Figure 2.2 — Histogram of hue angles in CIE L*a*b* colour space for each of the
collected datasets.

2.2.2 Tested illuminants

To represent a wide range of real world scenarios that our visual system experiences
in daily basis, we studied the phenomenon of metamerism under fourteen different
illuminants with distinct spectral shapes. Half of the analysed illuminants are
naturally occurring daylights while the others are commonly used artificial lamps.
In order to investigate the lower bound of our metameric sets, we studied a few
illuminants with relatively similar spectral power distributions. We further tried to
include illuminants with smooth curvatures as well as irregular narrow-band ones.
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Details of the tested illuminants are reported in Table 2.2 and their spectral power
distributions are illustrated in Figure 2.3.

X y CCT Description
D40 0.38 0.38 | 4001 Evening sunlight
D65 0.31 0.33 | 6504 | Noon daylight
D75 0.30 0.31 | 7504 | North sky daylight
D250 0.25 0.25 | 25235 | Clear blue poleward sky
C 0.31 0.32 | 6774 | Average north sky
Sky97 0.28 0.29 | 9666 | Half cloudy sky
Sky213 0.25 0.26 | 21283 | Bright snow sky
Prime 0.32 0.16 | 3676 High discriminatory [220]
Halo A19 0.46 0.42 | 2783 Domestic energy saver
Lorry Light | 0.44 0.41 | 2958 | Tungsten halogen light
FL36 0.41 0.41 | 3624 | Domestic white florescent
CFL27 0.46 0.42 | 2726 | White compact florescent
MH43 0.37 0.39 | 4260 | Industrial metal halide
Street Lamp | 0.51 0.44 | 2282 High pressure sodium

Table 2.2 — Description of the illuminants examined. The second and third columns
show the CIE chromaticity coordinates for the 2° field of view (1931). Correlated
colour temperatures (CCT) are given in the fourth column in Kelvin units.

2.2.3 Colour sensitivity function

We used the CIE 1931 standard colorimetric observer (2°) to compute tristimulus
CIE XYZ values [48]:

700
X:f ITARAMXxA)dA
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700
y:f TR § ) dA 2.1)
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400

where I(A) is the illuminant spectral power distribution at wavelength A nm; R(A) is
the reflectance spectra function; and x(1), (1) and z(A) are the CIE 1931 standard
colour matching functions. In our computations we normalised each illuminant
such that the luminance value of an ideal reflector is equal to unity (Y =1).
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Figure 2.3 — Spectral power distributions of the examined illuminants. For visualisa-
tion proposes each distribution is normalised by sum of all its power.

2.2.4 Colour difference function

We estimated the perceived colour difference between two reflectance spectra
using the CIE AE2000 metric [156] in CIE L*a*b* colour space that is known to
be perceptually uniform within a reasonable approximation [48]. Therefore, we
converted the tristimulus CIE XYZ values into CIE L*a*b* by computing the white
point for each illuminant under the assumption that the reflectance spectrum of a
white object is unity.

We decided to measure the phenomenon of metamerism through CIE AE2000
because: (i) in real world scenarios there are never two surfaces with reflectance
spectra resulting in numerically identical tristimulus values; and (ii) in this study
we are more interested in perceptual understating of colour vision and therefore



2.2. Method

two surfaces that are perceived indistinguishable meet our criteria.

2.2.5 Procedure of metamer analysis

We computed the colour differences (CIE AE2000) of all 63,861,951 reflectance
spectra pairs under each of the tested illuminants. We compared these AE2000s in
two different ways:

1. Iluminant pairs — since we tested fourteen distinct illuminants the entire set
of illuminant pairs contain 91 entries (142;13).

2. Multi illuminants — comparing all fourteen illuminants simultaneously and
therefore capturing all possible metamers across different illuminants.

We considered two surfaces as metameric if they produce perceptually discrim-
inable colours under one illuminant while resulting into indiscriminable colours
under another illuminant. Therefore, in order to decide whether a reflectance spec-
tra pair is metameric or not, we defined a set of nominal threshold values AEZT;Z

and AE }f i{‘g’h. If the colour difference of a reflectance spectra pair is smaller than

AE lTo }l’v’ under one illuminant (indiscriminable) and larger than AE ﬂgh under an-
other illuminant (discriminable), this pair is determined to be a metamer. In case of
multi illuminants comparison we considered a pair as metameric if at least under

one of the fourteen illuminants its colour difference is lower than AE 17; ’l’”r and in at

Thr
high*
We conducted our analysis under AEITO;I’J e{x|x=05+nx0.5n=10,---,9]}

(from 0.5 to 5.0 with intervals of 0.5), and AE;lfgh e{x|x=05+nx1.0;n=10,---,20]}
(from 0.5 to 20.5 with intervals of 1.0). We chose this large range of lower and higher

thresholds due to two reasons:

least one illuminant it is larger than AE

1. There are disputes about which value of AE2000 corresponds to one JND (just
noticeable difference). Although often 1 unit of AE is mentioned as 1 JND,
its uniformity throughout colour space is in question [34, 68]. We computed
AE2000 of points within the MacAdam ellipses [157], from centres to four
vertices along axes, under illuminant C that those ellipses were originally
studied. The average resulting AE2000 within an ellipse is about 0.50 with a
range from 0.23 to 0.89.

2. To study the perceptual magnitude of colour change for a metameric pair
when they mismatch under one illuminant, i.e. whether they produce dis-
similar colours within one category or they might result in colours that are
utterly different.
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2.2.6 Multidimensional scaling (MDS)

In order to better understand the relation between sources of light and degree
of metamerism, we employed the non-metric multidimensional scaling (MDS)
technique [197]. We can benefit from MDS to visualise the level of similarities
across all tested illuminants. We applied MDS with the dissimilarity metric defined
as the frequency of metamers for every combination of illuminant pairs. We chose
the metric scaling distance (stress) as normalised with the sum of squares of the
dissimilarities.

2.3 Results

2.3.1 Frequency of metameric pairs

In Table 2.3 we have reported absolute numbers of metameric pairs for different
values of nominal thresholds (AEL"" and AE }fi’;’h); averaged over all 91 illuminant
pairs we investigated. In general we can observe that although the absolute number
of metameric pairs can appear to be a large quantity their corresponding frequency
in the entire set of reflectance spectra pair is low. For instance for AE ITO ’;j’ =AE ﬂ;’h =
0.5, there are 12,027 metameric pairs, this means their frequency in the entire
set of 63,861,951 pairs is merely 1.9 x 107#(+1.2 x 10™%); or in simple words only
about two samples out of every ten thousands. As the higher threshold increases
(i.e. a more restrictive discriminability measure), incidents of metameric pairs

dramatically decrease. For instance for AE IT hr — 0.5 and AET"" = 1.5 there are just
ow high

502 metameric pairs making a frequency of 7.9 x 107%(+2.4 x 107%); or in simple
words only about eight samples out of every million. The frequencies we observe in
this study are in agreement with previously reported figures in the literature [82].
As the lower threshold increases (i.e. a less restrictive indiscriminability measure),

occurrences of metameric pairs increase as well. For instance for AEITO Z}’ = AEZ;'erh =

1.5 there are 53,072 metameric pairs making a frequency of 8.3 x 10™4(£5.2 x 107%);
or in simple words about eight samples out of every ten thousands.

Considering the multi illuminant analysis, we naturally observed a higher fre-
quency of metamers since all the metameric pairs under any of the 91 illuminant

pairs are accumulated in this analysis. For instance for AE ITO ’zur =AE Zlfg , = 0.5 there

are more than three times as many metameric pairs in the multi illuminant analysis
than in the illuminant pairs analysis (i.e. 38,904 instances meaning a frequency of
6.1 x 107%; or in simple words six samples out of every ten thousands). For larger
values of nominal thresholds the difference to the illuminant pair analysis is sub-
stantially larger; e.g. for AE ITO Z;r =0.5and AE ﬂgh = 1.5 there are 12,543 metameric
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20,5 2 14 43 106 210 372 588 876 1254 1749

19,5 2 16 50 122 242 427 673 1004 1440 2013

18,5 3 19 58 142 278 488 770 1151 1655 2322

17,5 3 21 65 159 314 553 876 1320 1907 2690

16,5 3 23 73 178 354 625 996 1510 2195 3119

15,5 4 27 82 203 406 719 1150 1750 2567 3695

14,5 4 31 95 234 467 830 1337 2058 3066 4495

13,5 5 36 110 269 541 965 1571 2466 3773 5618
% 12,5 5 43 129 316 637 1144 1906 3098 4840 7238
§ 11,5 7 51 153 377 762 1398 2432 4090 6425 9652
E 10,5 8 59 183 453 932 1805 3325 5610 8839 13225
3 9,5 9 71 222 554 1204 2553 4788 8022 12519 18499
T 85 11 84 276 713 1755 3904 7166 11793 18072 26717

7,5 13 107 361 1036 2886 6154 10987 17623 27033 40750

6,5 17 140 507 1811 4903 9917 17077 27511 43244 67286

5,5 23 196 888 3498 8557 16333 28278 46831 77210 128115

4,5 33 296 1998 6744 15064 29208 52793 94064 170756

3,5 48 707 4641 13504 31035 64646 129432

2,5 84 2394 11498 36029 91399

1,5 502 9536 53072

0,5 12027

0,5 1 1,5 2 2,5 3 3,5 4 4,5 5
Low Threshold

Table 2.3 — Average absolute numbers of metameric pairs under 91 illuminant pairs.
Cells are colour coded with higher incidents being red and lower ones green. For
cells where lower threshold is larger than higher threshold no metameric pairs are
computed.

pairs making a frequency of 2.0 x 10~%; or in simple words two samples out of every
thousand. This is about 25 times larger than its respective figure in the illuminant
pair analysis. We observe such a large increase due to the fact that one of the il-
luminants we have studied in this chapter is the Prime light [220] whose spectral
power distribution is zero everywhere except in three wavelengths: 430, 530 and 660
nm. This light is designed to produce highly discriminable colours and therefore
many reflectance spectra pairs that are of a similar colour under other illuminants
appear completely different under the illumination of Prime (refer to the depicted
examples in Figure 2.4).

Especially “problematic” are surface pairs that are perceptually within 1 JND

(AE ITO }L‘Ur = 1.0) under one illuminant and appear rather very different under another
illuminant (e.g. AE }{ ii’g’h = 4.5, which is about the AE of one Munsell chip to its
nearest neighbours). Such occurrences are rare in general, i.e. on average merely

296 incidents from the entire set of 63,861,951 pairs (see Table 2.3); or in simple
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words about five samples out of every million. In our analysis such large differences
are close to nonexistent under a combination of any natural daylights. Due to
the same reasons explained above, we can observe that the frequency of these
“problematic” cases for the multi-illuminant analysis is larger (more than 20 times),
i.e. 5,946 pairs; or in simple words nine samples out of every hundred thousands.

2.3.2 Magnitude of changes under different illuminants

In Figure 2.4 we have illustrated a few examples of reflectance spectra pairs that
are metameric at least under one illuminant and appear very different under some
other illuminants. For instance in the first row we can observe that two surfaces
with distinct reflectance spectra produce perceptually identical colours under the
illumination of Street Lamp, i.e. AE = 0.23. Illuminating the very same pair with
most other lights yields to two discriminable colours and in case of Prime light they
appear utterly different, i.e. AE = 80. These surfaces appear as metameric under
the illumination of Street Lamp since its spectral power distribution is concentrated
only around the wavelength range of 550-650 nm where these two surfaces overlap.

L, Bgeals  Prima  Stwetlamp CPLTwister _FLTE  MHHigh  HsloAtd  Lewylight D40 nes c ors Sky07 Sky213

AEwgS AE=10 AEwT

MO AE=15 Al

AE=T AEs04 AEsQS4 AEw83

AEss

Figure 2.4 — Metameric pairs under some illuminants that are utterly mismatching
under other illuminants. The first column illustrates the original reflectance spectra
of a pair. Columns two to the end are the colour of each surface under different
sources of light. Under each illuminant the left colour belongs to the spectrum
represented by the black line in column one and the right colour belongs to the red
signal. AEs are reported under each pair of reflectance spectra.
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In most rows of Figure 2.4 we can observe that two surfaces produce entirely
different colours under the illumination of Prime light. This is due to the design
of Prime light, which is to produce highly discriminable colours. Spectral power
distribution of this illuminant is very peaky and narrow-banded (zero everywhere
except in 430, 530 and 660 nm) and any small shifts in reflectance spectra of a
surface can result into large colour differences. In few seldom cases we can observe
an opposite phenomenon, for example in the third row the present surface pair is
metameric under the illumination of Prime (i.e. AE = 0.19), however they appear as
two completely different colours under any other source of light.

In a number of cases we observe that two surfaces appear as metameric under
florescent lamps (i.e. CFL27 and FL36) although the colour of same surfaces are
clearly distinguishable under other illuminants, e.g. the second row of Figure 2.4.
In many cases we can observe the opposite phenomenon where two surfaces are
metameric under natural illuminants although under florescent illumination their
colours appear as completely different, e.g. the seventh row. This is also due to the
relatively peaky and narrow-banded spectral power distribution of many florescent
lamps.

By comparing AEs under different 91 illuminant pairs we can analyse the mag-
nitude of colour change when metameric pairs mismatch. In Table 2.4 we have
compared incidents of metameric pairs when the source of light changes from
the standard CIE illuminant D65 to six other illuminants: three natural ones (D40,
D75 and D250) and three artificial ones (Street Lamp, FL36 and Prime). From this
table we can observe that large colour changes never occur under the illuminant
pair “D65 - D75, i.e. there are zero incidents when AE is lower than 0.5 under one
illuminant and larger than 1.5 under another (refer to upper triangle of Table 2.4).
Contrary to that, we can observe such large differences under the illuminant pair
“D65 - Prime”, for instance 623 pairs have a AE lower than 0.5 under one illuminant
and larger than 1.5 in another. For similar lower and higher thresholds, we can ob-
serve 239 incidents under the illuminant pair “D65 — Street Lamp”. Our experiments
further demonstrate that enormous differences can occur under the illuminant pair
“D65 - Prime”, although very rarely, e.g. in ten incidents AE considerably increases
from 0.5 to 20.5.

2.3.3 Illuminant pairs

In Table 2.5 we have reported the absolute number of metameric pairs under all
illuminant pairs for our lowest nominal threshold, i.e. AE["" = AE ﬂé’h =0.5. We
can observe that most metamers occur under combination of either Prime or Street
Lamp with one other illuminant and the maximum incident of metameric pairs

occur when these two illuminants are paired together, i.e. 36,691 occurrences
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D65 - D40 D65 - Street Lamp
- 45 0 15 210 2554 78700 | - 4,5 |42 1566 9862 63399 219697
g 35 0 76 1099 61675 g 35 63 2467 32089 167469
£ 25 5 392 45792 £ 25 08 (5392 122679
T 15 34 27963 C 15 239 76955
£ 05 6358 £ 05 19125
0,5 1,5 2,5 3,5 a5 0,5 1,5 2,5 3,5 4,5
Low Threshold Low Threshold
D65 - D75 D65 - FL36
- 45 |0 0 0 0 22024 | 5 45 5 439 3169 14112 94851
g 35 |0 0 1 17549 g 35 17 893 6665 66455
£ 25 [0 0 12799 £ 25 [46 1994 42001
15 0 7400 T 15 133 23050
£ 05 1624 £ 05 7003
0,5 1,5 2,5 3,5 4,5 0,5 1,5 2,5 3,5 4,5
Low Threshold Low Threshold
D65 - D250 D65 - Prime
- 45 |0 a4 651 13791 125480 | 5 4,5 129 3763 66588 178900 355658
235 205 2976 97491 2 35 161 15447 113021 265080
£ 25 |19 792 68757 £ 25 233 48240 178872
2 15 |63 39510 T 15 623 95015
£ 05 8183 £ 05 18256
0,5 1,5 2,5 3,5 4,5 0,5 1,5 2,5 3,5 4,5
Low Threshold Low Threshold

Table 2.4 — Absolute number of metameric pairs (from a set of 63,861,951 samples)
under illuminant change from D65 to six other sources of light. Cells are colour
coded with higher frequencies being red and lower ones green. For cells where
the lower threshold is larger than the higher threshold no metameric pairs are
computed.

with a frequency of 5.7 x 1074; or in simple words about six samples out of every
ten thousands. This is not surprising since spectral power distributions of both
lights are narrowly banded around certain colours: Prime light due to its design
to produce high colour discrimination and Street Lamp as a consequence of its
building material which is high pressure sodium.

In general it appears that metameric pairs are less common under combination
of any natural daylights (see the square on the bottom right corner of Table 2.5).
Lowest number of metameric pairs occur under the illuminant pairs “Sky213 —
D250” ans “C-D75” with 561 and 570 incidents, respectively. Highest metameric
pairs occur under the illuminant pair “D40 — D250” with 14,283 incidents. This is
expected as these two illuminants have a large difference in their correlated colour
temperature.
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g -
L] 3 » -
£ 3 <] z s 2 S 3 8 o 8 & & 8

Prime 36691 21126 19459 27989 29316 27951 | 23802 18256 16946 16828 14642 11588 11095
Street Lamp | 36691 17053 18410 9560 8727 9844 13625 19125 20435 20579 22821 26123 26576
CFL27 21126 17053 2585 9575 10318 9415 6526 7734 8494 8730 10440 13410 13637
FL36 19459 18410 2585 10602 11443 10424 7141 7003 7573 7747 9171 11947 12146
MH43 27989 9560 9575 10602 4843 4492 5211 10181 11465 11617 13871 17263 17718
Halo A19 29316 8727 10318 11443 4843 1467 5890 11720 13048 13248 15634 19184 19585
Lorry Light 27951 9844 9415 10424 4492 1467 4515 10403 11719 11939 14329 17903 18290
D40 23802 13625 6526 7141 5211 5890 4515 6358 7638 7914 10312 13938 14283
D65 18256 19125 7734 7003 10181 11720 10403 6358 1444 1624 4096 7810 8183
C 16946 20435 8494 7573 11465 13048 11719 7638 1444 570 2826 6522 6879
D75 16828 20579 8730 7747 11617 13248 11939 7914 1624 570 2492 6246 6617
Sky97 14642 22821 10440 9171 13871 15634 14329 | 10312 4096 2826 2492 3814 4183
Sky213 11588 = 26123 13410 11947 17263 19184 17903 | 13938 7810 6522 6246 3814 561
D250 11095 = 26576 13637 12146 17718 19585 18290 | 14283 8183 6879 6617 4183 561

Table 2.5 — Comparison of number of metameric pairs under all illuminant pairs
for AEITO}L’J =AE Zi’g ,, = 0.5. Cells are colour coded with higher frequencies being red
and lower ones green. Our entire set of samples contains 63,861,951 reflectance

spectra pairs.

This is also evident in Table 2.4 that in general frequency of metamerism is
smaller under natural illuminants. The lowest values are obtained under the illu-
minant pair “D65 —D75”. This is not surprising as both illuminants have a similar
spectral power distribution and correlated colour temperature. Occurrences of
metameric pairs are higher when illumination shifts from D65 to one artificial light.
The highest frequencies are observed under the illuminant pairs “D65 — Street Lamp”
and “D65 - Prime”. In general we can observe that frequency of metameric pairs
is increased by one order of magnitude when “D65 — D75” is compared to “D65
— Street Lamp” or “D65 — Prime” for any definition of metamerism where lower
and higher thresholds are equal to each other, i.e. AET"" = AEZl‘};rh =1{0.5,---,4.5}
(anti-diagonal cells in Table 2.4).

It is worth mentioning that it is not the case that natural pairs always yield a
lower degree of metamerism. For instance, frequency of metamerism is higher
under illuminant pairs “D65 — D250” in comparison to “D65 — FL36”. For AE " =

low —
AE }{ ii’g’h = 0.5 frequency of metamerism is 1.3 x 10~ in case of “D65 — D250” versus
1.1 x 107* of “D65 — FL36”; or for AEITD}Z = AEﬂ’g’h = 1.5 there are almost two times

more metameric pairs under the illuminant pair “D65 — D250”.
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2.3.4 What determines metamers

Prior to conducting the MDS analysis and in order to cover a larger set of conditions,
we extended the collection of illuminants with thirteen more sources of light that
are presented in Table 2.6. We conducted the MDS analysis by giving as input
the frequency of metameric pairs (AE ITO }L‘Ur =AE ;{Eh = 0.5, similar data shown in
Table 2.5 but with all newly added illuminants). We have illustrated the output of
MDS as configuration points in an arbitrary two dimensional space in Figure 2.5.
The Euclidean distances between points in this figure approximate a monotonic
transformation of the corresponding dissimilarities in frequency of metameric pairs
across different illuminant pairs. Prime light and Street Lamp that produced the
most number of metamers in our experiment, are located on both extrema of this

figure.

X y CCT | Description

D50 0.35 0.36 | 5001 | Horizon daylight
FL29 0.44 0.40 | 2937 | Standard FL4

LED29 | 0.47 0.46 | 2909 | Streetlight LED
MH34 | 0.41 0.40 | 3452 | Industrial metal halide
CFL38 | 0.39 0.39 | 3767 | Cool white CFL
LED38 | 0.39 0.38 | 3811 | Streetview LED
LED43 | 0.36 0.34 | 4258 | Outdoor LED

CFL44 | 0.36 0.37 | 4405 | Cool white CFL
MH45 | 0.37 0.39 | 4499 | Outdoor metal halide
FL45 0.35 0.36 | 4997 | Standard FL8

LED50 | 0.34 0.36 | 5011 | Cool white LED
CFL54 | 0.33 0.36 | 5417 | Daylight CFL

FL64 0.31 0.34 | 6427 | Standard FL1

Table 2.6 — Description of the thirteen extra illuminants we investigated. The second
and third columns show the CIE chromaticity coordinates for the 2° field of view
(1931). Correlated colour temperatures (CCT) are given in the fourth column in
Kelvin units.

In Figure 2.5 we can observe a clear pattern among natural illuminants (open
circles in Figure 2.5), i.e. they are orderly distributed from left to right as their
correlated colour temperature increases. This order is also true for other smooth
illuminants (i.e. Halo A19 and Lorry Light, which are similar to the illuminant A).
We have connected these illuminants with dashed lines in Figure 2.5. One can
observe a similar pattern for light-emitting diode (LED) illuminants. We believe this
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is a novel and useful way to represent illuminants with respect to their properties
related to metamerism.

-4
, #10

Halo A19
L

Lorry Light (Aj. Prime ®

°
LED29
0l

Dimension 2 (-)

Street Lamp MH43

Sky213

4 ! ! ! ! ! !
-2 -1 0 1 2 3
Dimension 1 (-) #1074

Figure 2.5 — Multidimensional scaling on frequency of metamers (i.e. AEITU}L’J =

AE ; i"’gr , = 0.5, similar data presented in Table 2.5 but with all newly added illumi-
nants in Table 2.6). Open circles represent natural illuminants. Filled circles are
artificial sources of light. Dashed line connects illuminants with a smooth spectral
power distribution that are ordered according to their correlated colour temperature

from left to right.

2.3.5 Variation of colour differences across illuminants

We computed variation of colour differences across all illuminants, i.e. how much
AE of a given reflectance spectra pair (both metameric and non-metameric) changes
under different illuminants. A variation of value 0 means AE stays constant for
the colour of two surfaces under different illuminants. On average the absolute
variation in the measure of AE for the colours of two surfaces across all of the 91
tested illuminant pairs is 3.19. Evidently, illuminants that shrink colour space like
monochromatic lights cause minimal colour difference between two surfaces. Con-
sequently AE under these illuminants is smaller in comparison to the other sources
of light. The contrary is also true. High discriminatory illuminants expand colour
space and produce larger quantities of AE. Therefore, the variation of colour differ-
ences across illuminants can be used as a measure to decide whether an illuminant
generates more colours in comparison to other illuminants.

In Figure 2.6 we have illustrated the distribution of these variations for each of
the fourteen examined illuminants in the form of a box plot. We can observe that
the largest positive variations occur for the Prime light (its first quartile, median and
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third quartile are all above zero). This is due to the previously explained narrow-
band shape of this light and its specific design to enhance discriminability of colours.
On the other side of the range, we can observe that the largest negative variations
occur under the illumination of Street Lamp (its first quartile, median and third
quartile are all below zero). This light is of high pressure sodium material and only
has spectral power between wavelengths 550-650 nm. Our observations suggest it
is most difficult to distinguish two colours under this Street Lamp and it is easiest
under the Prime illumination.
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Figure 2.6 - Distribution of variation of colour differences under the fourteen tested
illuminants. In other words changes of AE of a reflectance spectra pair from one
illuminant to another; value 0 means AE stays constant for two surfaces under
different illuminants. The bottom and top of the box are the first and third quartiles,
and the band inside the box is the second quartile (the median). Dashed lines
represent the minimum and maximum of all variations.

Among natural lights, D250 and Sky213 (sky at bright snow reflected by mirror)
encounter the largest variations of colour differences. However, their median value
is right on the zero line and their interquartile range is less polarised. This is in line
with the description of daylight as the ideal illuminant [31] and the fact that colour
rendering index (CRI) of natural lights is assumed to be 100%.

2.4 Discussion

Naturally, the interpretation of the results obtained in this study (and others) is
conditioned by a number of factors, such as the value used to estimate the just
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discriminable colour difference, the extent of similarity in the set of illuminants,
and the variation of the reflectance spectra in the dataset. In spite of this, the results
of our study are fairly consistent across these factors, suggesting that metamerism
is infrequent in real world scenarios, under different types of natural and artificial
illuminants. On average only two surface pairs out of every ten thousand samples

will be metameric (perceptually indiscriminable, i.e. AEITO}Z =AE ﬂ;rh =0.5). If we

consider a higher threshold for perceptual discrimination (i.e. AEITO Z}’ =A E}{lfg =
1.5) we still do not observe many metameric pairs: only about eight samples out of
every ten thousands. Refer to Table 2.3. This is in agreement with a previous study
by Foster et al. [82].

In our study we find that metameric pairs are less common among natural
illuminants. Frequency of metamers is the highest for two narrow-band illuminants:
Prime light and Street Lamp (refer to Table 2.5). Two surfaces that are metameric
under one illuminant can potentially yield to completely different colours under
other sources of light, however this is very unusual. In about five samples out of
every million pairs, two surfaces have a AE that is within 1 JND under one illuminant
and a AE that is larger than 4.5 (about the colour difference of one Munsell chip to
its neighbours) under another illuminant (refer to Table 2.3).

Although metameric pairs are not frequent in real world scenarios, their magni-
tude of perceptual colour difference can be enormous in certain cases, for example
under the illuminant pair “Prime — Street Lamp” in thirty incidents AE significantly
increases from a value smaller than 0.5 to one larger than 20. Such big changes
never occurred under natural daylights. For instance, under the illuminant pair
“D65 — D75” there are no incidents of two surfaces with a AE of smaller than 0.5
under one illuminant and a AE of larger than 1.5 under another.

Although at first our findings appear to be in contrast to the large size of those
theoretical metamer mismatching volumes [153], a more thorough consideration
suggests that the frequency reported by Foster et al. and us is not that very different
from the ratio of those metamer mismatching volumes to the entire colour space.
For instance, the average theoretical mismatching volume under illumination con-
dition of “D65 — A” is computed as 140 [251]. If we approximate the entire CIE XYZ
colour space as a cube of length 100 (in the study of Zhang et al. [251] CIE Y was
normalised to a value of 100 for the ideal reflector), and assume that all colours
are equally probable, this means that the theoretical mismatching volume covers
an area of about 1.4 x 10~ of the entire colour space, which is very close to the
frequency of metameric pairs found by Foster et al. and us.

Alternatively, another way to interpret these mismatching volumes would be in
comparison to the MacAdam ellipses. Let us assume these mismatching volumes
are in shape of a cube in CIE XYZ colour space. This means a volume of 140
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is emerged from a cube of approximately length 5.2. In this cube a cylinder of
radius 2.6 will be fit. This is larger than the average axis of MacAdam ellipses in
CIE XYZ which is about 2.0. However, average empirical mismatching volume
under illumination condition of “D65 — A” is computed as 18 [251]. With similar
computations we reach to a cylinder of radius 1.3 which is even smaller than the
average axis of MacAdam ellipses. This suggests that size of these mismatching
volumes are roughly comparable to the MacAdam ellipses. Therefore they might
not be substantial enough to interfere with colour constancy.

2.5 Conclusion

In order to answer whether metameric pairs could pose a major problem for our
visual perception, at least two factors must be taken into account: (i) how often they
occur, and (ii) how different they appear when they mismatch. We discussed the
former by arguing that results of our experiments suggest that metameric pairs are
rare in real world scenarios. We believe the later is neither a big issue due to the
following reasons:

1. The frequency of surface pairs that are metameric under one illuminant and
appear very different under another illuminant significantly drops as the
colour difference increases. For instance, across all the illuminant pairs we
studied there are merely 502 surface pairs out of a set of 63,861,951 elements
that have a AE that is smaller than 0.5 under one illuminant and a AE that
is larger than 1.5 (which is outside of the range of computed values for the
MacAdam ellipses) under another. This falls further to 84 pairs for those with
a AE larger than 2.5; or in simple words merely one pair out of every million
samples. Furthermore, such large differences are close to nonexistent under
natural daylights.

2. The variation of AEs for each reflectance spectra pair under different illu-
minant conditions (inter-variation) is smaller than the variation of colour
differences for one surface under different illuminations (intra-variation).
Our visual system overcomes the issue of intra-variation through local and
global adaptation among other mechanisms. Consequently the colour of
objects appear as constant to us under different sources of light [94]. Fur-
thermore, we perceive the colour of objects within their context and it is well
established that shape and form influence perception of colours, too [203].
We believe similar mechanisms can help our visual perception to mitigate
issues caused by rare metameric pairs. For instance, it is very unlikely that
a metameric pair is placed exactly in the same local surrounding, therefore
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this difference of surround influence might help our visual perception to
discriminate between a metameric pair.

Therefore, based on the results of this study, we can conclude that metameric
pairs do not pose a serious issue to our colour perception, specifically to the phe-
nomenon of colour constancy which is discussed in the next chapter.
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¥ Colour Constancy

In the previous chapter, we discussed the problem of metamerism and whether it
can cause complications for colour perception. Another crucial factor in recognis-
ing objects is to preserve their perceived colour under different illuminations which
occur in real world scenarios. This phenomenon is known as colour constancy
(see Figure 3.1). In this chapter, we start by introducing the importance of colour
constancy for visual information processing. After this, we explain the challenges
involved in estimating the scene’s source of light. Finally, we demonstrate computa-
tionally that contrast variation in the surrounding regions plays a crucial role for
the mechanisms involved in colour constancy.

blue yellow red blue yellow red

BTE EEN
TS

Figure 3.1 — What is colour constancy? A Rubik’s Cube under the illumination
of yellow and violet lights. Although the physical values of tiles are different,
we perceive them largely within the same colour category (a few examples are
illustrated on top of the figure). Picture is adapted from “HandPrint” website
(https://www.handprint.com/).

3.1 Introduction

Colour is an essential property of our visual world. Apart from its intrinsic aesthetic
and emotional value, it provides valuable information about the environment by
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breaking the luminance pattern of cast shadows, facilitating the segmentation
of objects from each other and the background [36]. Despite dramatic changes
in the spectral composition of the light reflected from a scene (e.g. the gamut
of physical colours at sunset almost doubles in comparison to the “flat” midday
illumination [122]), to our visual perception the colour of an object appears to be
largely the same across illuminants and throughout the day. This ability (termed
colour constancy), is more impressive if we consider the fact that mathematically, the
problem of separating illumination form reflectance is ill-posed. If we ignore angular
dependencies, the light captured by a camera sensor over the visible spectrum w is
represented as

/ RA)LA)SN)dA, (3.1)
w

where R(A) is the spectral reflectance of the objects present in the scene, L(A) is
the spectral power distribution of the illumination, and S(A) is the camera’s sensor
spectral sensitivity function. Even if we assume that S(A) is known — an assumption
easily violated in images acquired by commercial cameras — it is impossible to infer
R(A) and L(A) with only one equation. Thus, rectifying biased images has infinite
possible solutions. It is worth mentioning that in general computational models of
colour constancy do not consider the phenomenon of metamerism since they are
extremely rare in real world scenarios [2] as we discussed it in the previous chapter.

Although there is no agreement on the precise mechanisms and brain areas
responsible for colour constancy, most researchers group them according to the
neural level where they likely operate [125]:

1. Sensory level: modelled by simple linear transformations of the photoreceptor
responses, e.g. scaling responses by their mean activities over the image [158,
231].

2. Perceptual level: modelled by considering various perceptual “cues”, such
as, specular highlights [148], mutual reflections [90], and achromaticity of
edges [225].

3. Cognitive level: modelled by considering colour memory and/or the iden-
tification of objects to be able to compensate for the effects introduced by
familiar objects [110].

The relative contributions of each of these processing levels is still a matter for
debate. However, most researchers acknowledge that cognitive contributions are

likely to be small due to the fact that the colour constancy phenomenon can be
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largely explained by low level mechanisms present in the retina and areas V1 and
V4 of the visual cortex [81].

The significance of colour constancy to both human vision and computer vision
communities is demonstrated by the many studies in object detection, tracking,
feature extraction, etc. [19, 98, 99, 193] from visual perception [16, 81, 144, 162] and
computer vision [63, 80, 100, 117] perspectives, which have historically had different
objectives. Most visual perception and neuroscience work aims at understanding
the phenomenon while most computer vision work aims at predicting the effects of
colour constancy. However, one can assume there might be computational advan-
tages in incorporating the knowledge acquired by the brain’s neural machinery after
millions of years of evolution. To this end, the finely-tuned combination of low-level
(mostly hard-wired) and high-level (mostly cognitive) mechanisms that the primate
brain has achieved after millions of years of evolution might be understood in terms
of the bias/variance trade-off common in machine learning [96]. The choice of the
best bias will depend on the nature of the training data (e.g. how much is known in
advance about the problem) and the system’s noise.

Biological systems face similar choices. A simple organism living in a fix en-
vironment does not need a strong bias and all individuals can safely share the
same neural configuration. More complex organisms such as primates face vari-
able environments and need to dedicate part of their brains to learning during
their lifetime while leaving large scale neural structures like the sensory cortex
genetically specified. This particular combination of bias/variance in complex or-
ganisms allows them to adapt to different environments while still keeping crucial
survival skills. In the case of colour constancy, most of the brain computations are
arguably done at the sensory level [81] indicating that “bias” may perhaps plays a
larger role than “variance” (i.e. more of a normalisation problem than a learning
problem). This is perhaps the reason why current learning-based solutions have
considerable trouble to replicate their results in new (non-learned) datasets [81, 87],
using dataset-dependent parameters. Additionally, the majority of methods are
constrained to consider only one source of illumination, which in effect hinders
their applicability on real scenes [100].

3.1.1 Computational Solutions

From a mathematical point of view, retrieving the colour of a surface illuminated by
light of unknown spectral distribution is underdetermined, and to computationally
rectify biased images (in the same way colour constancy does) it is common to
impose several assumptions regarding the scene illuminant, the statistical distri-
bution of colours or edges, efc. [100]. In general, these algorithms can be divided
into two categories: (i) learning-based approaches and (ii) low-level features-driven
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methods.

Learning-based approaches, e.g. [1, 44, 89, 206], train machine learning tech-
niques on some relevant image features. One group of learning-based algorithms is
“gamut mapping”, which originated from the influential work of Forsyth [80], and
was extended by others [18, 73, 74, 102, 170], following the assumption that only
a finite set of colours is observable in real world images. Another large group of
algorithms considers reflectance as the random variable of a normal distribution
under a Bayesian framework [35, 95, 196]. Although learning-based approaches
can obtain accurate results, they rely heavily on training data, which is likely to be
cumbersome (i.e. their overall performance depends on the quality of their training
data) and slow [100].

The majority of low-level features-driven methods can be summarised by the
following Minkowski framework [77, 225]

1

Le(p) = ( f ff(x)dx)ﬁ = ke, (3.2)

where f(x) is the image intensity value at the spatial coordinate x; c represents one
of the three chromatic channels {R, G, B}; p corresponds to the Minkowski norm;
and k is a multiplicative constant chosen such that the illuminant colour, e, is a
unit vector.

Substituting p = 1 in Eq. 3.2 reproduces the well known Grey-World assumption,
in which the illuminant is estimated by presuming that all colours in the scene
average to grey [40]. Setting p = oo replicates the White-Patch algorithm, which
assumes that the brightest patch in the image corresponds to a specular reflection
containing all necessary information about the illuminant [144]. In general, it is
challenging to automatically tune p for every image and at the same time inaccurate
p values may corrupt the results noticeably [100].

The incorporation of high-order image statistics into the Minkowski framework
was proposed by van de Weijer et al. [225], under the assumption that the edges
carry important information about the source of light, thus their algorithm is called
“Grey-Edge”. The Minkowski framework can be generalised further by replacing the
f(x) in Eq. 3.2 with its derivative

ﬁ”fg(x)

S (3.3)

where |.| is the Frobenius norm; 7 is the order of the derivative; and o is the scale of
the Gaussian derivative filters convolved with the original image [84].
It has been noted [51, 143, 203, 214] that high-order derivatives have correspon-
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dences with the centre-surround mechanism as modelled in colour perception
research. This mechanism is activated when localised sensory regions of the retina
are stimulated by light. These sensory regions (also called “receptive fields”) are
characterised in terms of their contribution to cortical neurons’ stimulation as
“centre” and “surround” [184].

The interplay between centre and surround in receptive fields (RF) is typically
modelled by a Difference-of-Gaussians (DoG) [45, 91, 185, 215, 250]. Since, the
second order image derivative can be approximated by DoG, they can be a good
tool for modelling the sub-cortical mechanisms involved in colour constancy. This
simple model of the low-level properties of the mammalian visual system has a
long history starting with Enroth-Cugell and Robson in 1966 [65], continuing with
Marr in 1980 [163] and more recently applied to colour constancy by Gao et al. [91].
However, the efficiency of DoG in estimating the illuminant strongly depends on
finding an adequate width for the Gaussian kernel, o, and the optimal weight of the
broader Gaussian function, which are difficult to tune automatically. A solution to
this problem has already been found by the human visual system (HVS) in the form
of dynamic, contrast-based, centre-surround cortical interactions [14, 207] (see
below), which are not present in the classical formulations. Although the ultimate
purpose of these non-linear interactions is not known, we speculate here that they
might play a role in colour constancy and accordingly, we propose a fully automatic,
contrast-dependent colour constancy model that overcomes the need for hand-
crafted parameters. In our colour constancy model we incorporate three well known
properties of cortical (area V1) neurons:

1. The size of the minimum RF (also referred to as centre) varies according
to the local contrast of the present stimuli, i.e. enlarged when exposed to
low-contrast [207];

2. The influence of the surround on the centre varies depending on the local con-
trast of both centre and surround, with greater inhibition for higher contrast
stimuli [14];

3. Cortical RFs increase their diameters systematically by approximately a factor
of three from lower to higher areas [239], as they pool signals over a large
neighbourhood from the levels below.

The above formulation presents major differences with current DoG-based
models like that of Gao et al. [91], where the centre size is always constant and the
contributions of both centre and surround to the receptive field responses are fixed.
Also, the final estimation of luminance was previously based on a simple operation
(e.g. selecting the peak by max-pooling), whereas we model hypothetical neurons
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from a higher area (area V4 neurons) whose receptive fields are substantially larger
than those of V1 neurons, pooling signals from area V1 according to the contrast of
the corresponding stimulus. We show that this contrast-variant-pooling mechanism
can even enhance performance of other models driven by high-order derivatives.
To summarise, previous models adopt the classical receptive field approach while
we go beyond, including the latest physiological findings.

Figure 3.2 shows a flowchart of our colour constancy model. Although a step
forward in terms of plausibility, our functional approach still entails an oversim-
plification of the much more complex (and less well known) interactions between
the different neural layers and cortical feedback from higher regions. Following
the Occam’s razor principle we aimed for the most parsimonious solution that
can produce competitive results. It is wroth highlighting that we are not strictly
interested in out-competing learning-based solutions in each of the testing datasets.
Instead we want to produce an algorithm that works like the HVS does, i.e. pro-
duces the best possible results in all of the datasets at the same time and with
the same set of parameters. Equally, we want our solution to be computationally
efficient, that is, to incorporate the evolutionary knowledge accumulated by the
primate brain in an algorithm potentially implemented in small portable devices. A
more multidisciplinary objective of this work is to further understand the role of
dynamically-sensitive visual cortical neurons. Throughout this chapter we will refer
to our colour constancy model as Adaptive Surround Modulation (ASM).

In summary, the main contributions of this chapter are: (i) the modelling of
colour constancy based on more recent physiological findings, i.e. two overlapping
asymmetric Gaussian functions whose kernels and weights adapt according to
centre-surround contrast, (ii) the estimation of the chromaticity of the illuminant
by modelling higher visual cortical areas (i.e. neurons with large RFs pooling signals
from lower areas) according to their local contrast, and (iii) the dynamic generali-
sation of the colour constancy by using the same parameters to predict results in
different datasets with no need to “recalibrate”, mimicking what the HVS does.

3.2 Beyond the classical receptive field

In this section we review important physiological findings regarding surround
modulation in the visual cortex and describe how we modelled these properties.

3.2.1 Surround modulation in area V1

The concept of non-classical receptive field (RF) became established by the work of
Allman et al. [13] and today numerous studies show that most V1 cells in cat and



3.2. Beyond the classical receptive field

Input Image V1 Receptive Field V1 Output

—Surround Low Contrast
Surround High Contrast|
—Centre High Contrast

* —Centre Low Contrast ’

V4 Sparse Coding Pooling

Estimated Illuminant ‘
va \

Output Image

Figure 3.2 — The flowchart of our model. The input image is convolved with a
centre-surround contrast-dependent asymmetric difference-of-Gaussian envelope
(inspired by V1 neurons that have larger receptive fields at low contrast and are
suppressed further by high contrast surround). The output of V1 is pooled by V4
neurons according to the sparse-coding principle considering global contrast of
image.

macaque are suppressed by stimuli extending beyond a critical distance (for a full
review refer to [14]).

Quantitative results suggest that RFs in cortical area V1 of macaque change
their responses when measured at low contrast stimuli [207]. Figure 3.3 shows the
responses of a typical macaque neuron when its RFs are exposed to a vertically-
oriented sinusoidal grating of constant spatial frequency and varying size [14].
The dashed line at the bottom illustrates the average spontaneous firing rate of
the neuron (no stimulation). The black curve represents the neuron’s excitation
when stimulated by a high (70%) contrast grating of increasing size (increasing
grating radius). As the grating’s size increases, more of the neuron’s receptive
field becomes stimulated producing an increase in the neuron’s output, a process
known as “facilitation”. Its maximum output happens when the grating reaches a
radius equal to sRFy;gp. After that, increasing the size of the grating only decreases
the neuron’s output, i.e. neighbouring neurons start to “suppress” the neuron’s
activity until it becomes close to zero. Correspondingly, the grey curve in Figure 3.3
represents the same neuron’s activity as a function of grating size when stimulated
by alow (12%) contrast grating. The peak of the grey curve (maximum stimulation
radius or sRFj,;,,) has now shifted to the right of the plot. The area between the
two peaks (shaded in the plot) defines a “dual-role” region, i.e. gratings of radii
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between these two values can either suppress or stimulate the neuron according to
its contrast. The existence of this region implies a fundamental change in the way
these visual cortex neurons operate, and we have incorporated it at the core of our
colour constancy model. Now the receptive field of the neuron can be separated in
three regions, a “centre” with radius up to sRFy;gp, a “surround” with radius larger
than sRF;,, and a dual-role area in between which operates like the surround (i.e.
suppression) when contrast is high and operates like the centre (i.e. facilitation)
when the contrast is low (see right insert in Figure 3.3).

dual-role

sRF,.
_ high SRF|ow
g centre l surround
0120 ]
X
ra
~ ) SRFpigh
> supprgssion
2 80 ‘
pr]
] - facilitation ¢ d
o ual-role,
c Y
S 40 SRFyoq surround
o
=2 1 I s - z
= eTlg
0+ T
0.1 1 14

Grating radius (°)

»

Figure 3.3 — Size tuning curve of an example cell in macaque V1, adapted from [14].
Black and grey curves show responses to a grating of high and low contrast, respec-
tively. The dual-role area is suppressive for high contrast stimuli, whereas it acts
as a facilitator in the case of low contrast. The scheme on the right represents the
RFs of a V1 neuron. Arrow heads point to radii that determine sRFy;¢,(0.26°) and
SRF;yy (0.54°).

Physiological recordings [207] have shown that the radius of the surround in V1
can be about five to six times larger than the value of sRFyp; ¢y, and its effects on the
centre significantly more complex than those described above. Figure 3.4 illustrates
changes in a typical V1 neuron’s activity when the stimulation of the centre is fixed
and the surround is stimulated by an annuli that becomes increasingly thinner.
The plot shows results for three different cases (a) high-contrast is applied to both
the centre and the surround; (b) low-contrast is applied to the centre and high-
contrast to the surround and (c) low contrast is applied to both the centre and the
surround. In all cases, centre-only stimulation (right side of the plot) produces
higher neural activity than when both centre and surround are stimulated (left
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side of the plot). However, suppression is larger for high contrast stimuli (black
curve reaches zero when the whole of the surround is stimulated) and is minimal
when both centre and surround are stimulated by low contrast gratings (solid
grey curve) [134]. In all cases, suppression is strongest when the orientation of
centre stimuli is parallel to that of the surround, an effect known as iso-orientation
suppression. This effect can also turn into facilitation as the orientations of the
stimuli applied to centre and surround move towards perpendicular directions and
the contrast is low. In general, facilitation happens when centre and surround have
different characteristics (e.g. different spatial frequency, phase or orientation) and
it increases when these differences increase.

contrast
@® C:high S:high O C:low S:high
C:low S:low

Neuron activity (spikes/s)
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[¢] [
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Figure 3.4 — The influence of surround on the centre, adapted from [14]. Response
of a V1 cell in an anaesthetised macaque as a function of the inner radius of the

surround annular grating. The triangles are responses to centre-only stimulation.

The square indicates response to a surround stimulus of the smallest inner radius
presented alone.

Physiological studies [239] also revealed that cortical RFs systematically increase
their diameters by approximately a factor of three along the ventral stream, i.e. the
visual pathway specialised in high-level tasks such as object recognition and form
representation. This is due to the pooling mechanism of RFs from preceding areas,
which combines signals from the central region as well as neighbouring spatial
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locations. This suggests that local visual stimuli is processed in the lower cortical
areas and the scope becomes increasingly global as the signal progresses throughout
the pathway.

3.2.2 A model of contrast-dependent colour constancy

Surround modulation has been incorporated to biologically-inspired computer vi-
sion models with encouraging results, e.g. visual attention [128], saliency [172], tone
mapping [192], and boundary detection [9]. However, in the field of computational
colour constancy this important physiological finding seems to have been largely
overlooked. In this section we investigate the implications of contrast-dependent
centre-surround modulation on illuminant estimation by incorporating them into
a simple and fully automatic model.

Primary visual cortex (V1)

We recreated a typical RF and its surround using two overlapping asymmetric
Gaussian functions which have been reported to adequately fit neuronal responses,
e.g. [45, 126, 203]. These functions, referred in our modelling context as the
spatially “narrower” and “broader” Gaussians, represent the centre and surround
respectively. The width of the narrower Gaussian varies between [0,20] and is
inversely proportional to the centre contrast. This mimics the changes in size
that occur when the centre is exposed to high or low contrast and is similar to
incorporating the dual-role region of Figure 3.3. Therefore, prior to convolving an
image I with a Gaussian kernel, we compute local contrast C at every pixel through
the local standard deviation of I as

Cealx,y;0) = \/(Ic(x, P =106, Y) * 2a () * pa(0), (3.4)

where ¢ indexes each colour channel {R, G, B}; d is the spatial orientation {#, v, i}
(horizontal, vertical, and isotropic) over which contrast is measured; (x, y) are the
spatial coordinates of a pixel; u is the average kernel with size o in the direction d
and * is the convolution operator. In the case of horizontal contrast, y is a column
vector; in the case of vertical contrast, u is a row vector; and in the case of isotropic
contrast, y is a square matrix.

In our model, the receptive field’s centre response CR is computed by convolu-
tion of the original image I at every chromatic channel ¢ with the narrower Gaussian
as follows:

CRe(x,y) = 1c(x, ) * 8c(x, ¥; S, (X, ¥), Se,v (X, Y)). (3.5)
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In Eq. 3.5, g is the two-dimensional Gaussian kernel defined as

2

(x,v;0p,0,) = L ex 0.5 ad +y2 (3.6)
8\X,Y;0p,0yp _27[0}10'1; p . U%l 0_% ’ .

where o0 is the size of the Gaussian kernel in the direction d. The values of s ;(x, y)
and s.,(x,y) in Eq. 3.5 represent the vertical and horizontal dimensions of the
Gaussian kernel respectively. Since in our formulation the size of the RF’s centre is
inversely proportional to its local contrast (see Figure 3.3), we compute it from the
values obtained in Eq. 3.4:

Sea(x,y) o< Cy(x,y;0), 3.7)

inversely linking the size of the RF’s central kernel to its contrast. In theory, s 4
can be calculated for each individual pixel, however, in practice convolving an
image with a unique Gaussian kernel at every pixel is extremely expensive from
a computational point of view. For this reason, we approximated s. 4 through
its uniform quantisation into [ different levels, effectively limiting the number of
executed convolutions to . We computed this uniform quantisation by finding the
range of local contrasts through the difference between the two extrema of s. 4 and
dividing it into an arbitrary number of contrast levels. For example, let’s assume
that local contrasts are in the range [0, 1] and the arbitrary number of contrast levels
is 4: pixels with local contrast between [0.00,0.25] are convolved with a Gaussian
of 20; pixels in the range (0.25,0.50] with a Gaussian of 1.660; pixels in the range
(0.50,0.75] with a Gaussian of 1.330; and pixels in the range (0.75,1.00] with a
Gaussian of 0.

To summarise, we calculated the centre response CR by convolving low con-
trast image pixels with large Gaussians and high contrast image pixels with small
Gaussians. It is worth noting that o, and o, in Eq. 3.6 are not identical (a common
assumption in computer vision) due to the fact that the local interactions in V1 are
not always organised in a symmetric fashion [233].

The RF’s surround response, SR, was computed by convolution of the original
image in every {R, G, B} channel with the broader symmetric Gaussian kernel as
follows:

SRc(x,y) =1:(x,y) * g:(x,y;50,50), (3.8)

where kernel size is constant in both directions regardless of local contrast. The
decision of keeping the size of the SR kernel fixed was made after considering the
much smaller variations that occur in the surround RFs of neurons under different

43



Chapter 3. Colour Constancy

44

contrast levels [207].
The final RF response RR, was computed by combining centre and surround
modulations as follows:

RR:(x,y) = Ac(x, Y)CRe(x, ¥) + k¢ (x, Y)SR: (X, ), (3.9

where A and « are the weights of centre and surround in each spatial location.
These parameters model the fact that the strength of centre response and surround
suppression depend of the contrast and relative orientations of the centre and
surround stimuli (see Figure 3.4 and the work of Shushruth et al. [207]). We
modelled A and k as inversely proportional to the oriented contrast of centre and
surround respectively, which was computed as

Ae(x,y) o C1(x, y;0);
ny - Y (3.10)
Ke(x,y) ox C ; (x,y;50),

where i denotes the spatial direction. We modelled the fact that suppression can
turn into facilitation when the centre is exposed to low contrast or when centre and
surround stimuli are orthogonal from each other [14]. This can be done by allowing
the sign of x to change from minus (suppressive surround) to the occasional plus
(facilitatory surround) transforming our model from a DoG to Sum-of-Gaussians
(SoG). Although our proposed model allows the possibility of a positive k, we should
note that the boundary between suppression and facilitation is cell specific and
there is no universal contrast level or surround stimulus size that triggers facilita-
tion across the entire cell population [14]. Due to this, and the fact that numerical
surround suppression figures in macaque V1 neurons were reported to be all nega-
tive [207], the results we present in this chapter were all obtained with a negative x
value.

Area V4

Up to this point we implemented a model of RR based on well known properties
of V1 neurons. In the next processing stage, the visual signal is pooled and sent to
higher cortical areas whose exact location is unknown. A number of studies [51, 94]
have proposed area V4 as the most likely candidate for a colour constancy site. We
hypothesised the existence of V4 neurons that perform operations on the outputs of
those in V1. From the physiology, we know that cortical RFs increase their diameter
systematically by approximately a factor of three from lower to higher areas [239].
This means that V4 RFs are about nine times larger than those in V1 (which is 0.26°,
see Figure 3.3). Therefore, the centre and surround of a typical V4 RF subtend
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approximately to 2.3° and 11.7° of visual angle respectively, which are equivalent
to 117 and 585 pixels, respectively, on a standard monitor viewed from a 100cm
distance.

The exact pooling mechanism applied to these V1 signals is unknown, however
“winner-takes-all” and “sparse coding” kurtotical behaviour are common to large
groups of neurons all over the visual cortex [43, 175] and it is not infeasible to
assume that a small group of neurons with the largest activation dominate most
of the process. Some have modelled this “winner-takes-all” mechanism as a max-
pooling operation [91]. However, one important flaw of this simple approach is that
a single activated neuron can misrepresent the whole illuminant. Similar problem
has been reported in the traditional White-Patch algorithm that may fail in the
presence of noise or clipped pixels in the image due to the limitations of the max-
pooling operator [87]. One approach to address these issues is to account for a
larger set of “white” points by pooling a small percentage of the brightest pixels
(e.g. the top 1%) [63], an operation referred as top-x-percentage-pooling. In this
manner the pooling mechanism is collectively computed considering a group of
pixels rather than an single one. Within this formulation it is very cumbersome to
define a universal, optimally-fixed percentage of pixels to be be pooled [63] and
consequently the free variable x requires specific tuning for each image or dataset
individually. Naturally this limitation restricts the usability of the rop-x-percentage-
pooling operator.

We approximated this hypothetical behaviour of V4 neurons by selecting a
small percentage of “winner neurons” whose RFs are highly activated. To simulate
contrast adaptation behaviour in our hypothetical V4 neurons similar to those
in V1, we inversely linked the percentage of pooled signals to the variability of
the signal collected by their receptive field. In other words, when the “contrast”
applied to V4 RF is high, a smaller percentage of signals from V1 is pooled and
vice versa. As before, contrast was calculated as the local standard deviation of the
input. Figure 3.2 summarises the whole feedforward process in a flowchart. The first
stage of the model simulates the operation of the typical V1 neuron with contrast-
dependent RFs and the second stage simulates the V4 sparse-coding pooling of a
small percentage of highly activated V1 neurons.

Indeed such behaviour has been discovered across a population of cells in the
cat visual cortex [142] and interestingly the activation level of cells with max-like
behaviour was reported to vary depending on the contrast of visual stimuli. Results
reported by [142] hint to an inverse relationship between the contrast of a stimulus
and the percentage of the signal pooled. When pooling neurons were exposed to
low contrast stimuli their responses shifted slightly away from pure max-pooling
(selecting the highest activation response within a region) towards integrating over
a larger number of highly activated neurons. In the language of computer vision,
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this can be regarded as top-x-percentage-pooling, where x assumes a smaller value
in high contrast and a larger value in low contrast. It is important to point out that
the pooling of those neurons remained always much closer to max-pooling than
to the linear integration of all neurons (sum-pooling) [142]. Mathematically, this
can be interpreted as having a very small x value in the process of top-x-percentage-
pooling.

In practice RR — V1 output - is an image composed by three chromatic channels
(RR;). We implemented the above explained “winner-takes-all” behaviour via
a histogram-based clipping mechanism [63, 75] as follows. Let H. denotes the
histogram of RR, values obtained by applying Eq. 3.9 to each colour channel c of
the input image. In this histogram, the neural response of the cells contained in
an individual bin b is represented by RR.(b.). We estimate the scene illuminant by
computing:

Lc=RR:(b), (3.11)

with b, chosen such that only the most activated (“winner”) units contribute to the
pooling (sum). To calculate b, we started by estimating the average local contrast
of all inputs to V4 in a given colour channel ¢ using

1
pe=—) Fe(x,¥), (3.12)
n Xy

where F is the standard deviation of the pixels of RR, computed using the average
V4 neuron receptive field (nine times larger than that of a V1 neuron), i.e. F.(x,y) =
C.,i(x,y;90). Bear in mind that “contrast” is just a fraction in the range [0, 1]. Instead
of choosing a fix percentage of neurons with the largest activation for each colour
channel (as in [75]), we chose an adaptive activation level such that all neurons with
activations higher than the one chosen account for fraction p, of the total number
of pixels. In other words, we computed b, as the threshold activation level that
defines a number of highly activated neurons equal to the contrast value calculated
in Eq. 3.12 as follows:

np ny
pen< ) He(k) and penz= ) Hc(k), (3.13)
k=b. k=bc+1

where n is the total number of RR. response units; and nj, represents the total num-
ber of bins in histogram H,. This effectively links the number of highly activated
neurons in our scene’s illuminant estimation to the average contrast of the input to
area V4.

We illustrated this contrast-dependent mechanism of V4 pooling in Figure 3.5,
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where RR, is represented by the red, green and blue signals corresponding to each
chromatic channel. Dashed vertical lines show b, i.e. cells (bins) on the right side
of these lines are pooled by our hypothetical V4 neuron and their sum for each
colour channel is the estimated source of light. In this example we can observe that
contrast is higher for the red signal and therefore a smaller percentage of cells are
pooled in the red channel.
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Figure 3.5 — V4 “winner-takes-all” mechanism. Each colour depicts its chromatic
channel. Straight lines show which portion of V1 signals is pooled into V4. The
ordinates are shown as logarithms to base 10 due to the large variations in counts
of different bins.

Mathematically, there is a direct relation between the fraction of “winner” pixels,
p in Eq. 3.12, and value of the Minkowski norm in Eq. 3.2. When the fraction of
“winner” pixels is equal to unity (i.e. 100% pooling) our calculation in Eq. 3.11
includes the responses of all V1 neurons, resembling the Grey-World assumption.
Recalling from earlier, this happens when the exponential term of the Minkowski
sum in Eq. 3.2 is equal to unity. Correspondingly, when the percentage of “winner”
pixels tends to zero, only the most activated V1 response is pooled, resembling the
White-Patch algorithm.

3.3 Experiments and results

The issue of observer’s performance evaluation in colour constancy tasks using
naturalistic stimuli is still an open problem [81, 195]. In the case of algorithms,
popular measures consist of some kind of angular distance in chromatic space
between the estimated illuminant and that of the ground truth. Although intuitively
simple, psychophysical experiments have shown that these error measures do not
always correspond to observer preferences [229]. However, despite their shortcom-
ings, angular errors are a convenient way to compare results among algorithms
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and for this reason their use in the literature is widespread, being perhaps the most
common the recovery angular error defined as

E?ecovery (ee,eq) = cos™! (&) ) (3.14)
leell-llell

where e,.e; is the dot product of the estimated illuminant e, and the ground truth
e;, and ||| represents the Euclidean norm of a vector. This simple measure has
recently been the subject of criticism from Finlayson et al. [78] since it arguably
produces different recovery errors for identical scenes viewed under two different
coloured illuminants. For this reason, they proposed an improved version (termed
reproduction angular error):

o
ereproduction (ee,

lec/ee) w) (3.15)

ey = cos™? ( .
lle:/eell

where w = %\/gt is the true colour of the white reference.

In order to compare our results with those of state-of-the-art algorithms, we
present the mean, median and trimean of both recovery and reproduction angular
errors. The later two measures are considered to be more appropriate to assess
the performance of colour constancy algorithms, because of their robustness to
outliers [101, 118].

We evaluated our method on four benchmark datasets! without adjusting free
parameters since ASM is fully automatic (i.e. dataset-independent) in contrast to
most other algorithms whose results were acquired after adjusting their parameters
to the optimum value for each dataset. Additionally, in order to better understand
the contribution of the different components of our model, we conducted three
extra experiments, which are explained later in this section.

3.3.1 Single-illuminant scenes

We tested our colour constancy model on three single-illuminant benchmark
datasets, (i) SFU Lab [20], (ii) Colour Checker [205], and (iii) Grey Ball [49]. Our
results for single-illuminant scenes were obtained under four contrast levels, I =4,
with o = 1.5. This o is equivalent to 13 pixels or 0.26° of visual angle when viewed
from 100cm in a standard monitor, which is also the size of sRFy; gh (see Figure 3.3).
We set the range of surround suppression to x = —[0.67,0.77], considering the sur-
round suppression index of macaque V1 neurons reported at [207]. The centre
weight was retrieved directly from the contrast of pixels, A.(x,y) =1+ Cc‘l1 (x,y;0).

1All source code and experimental materials are available under this link https://goo.gl/nQUenN.
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3.3. Experiments and results

SFU Lab

The SFU Lab dataset [20] consists of 321 images of size 637 x 468 captured in a
controlled environment under eleven different sources of light. The scenes are par-
titioned into four categories: (a) minimal specularities, (b) non-negligible dielectric
specularities, (c) metallic specularities, and (d) at least one fluorescent surface. We
report the results of our method and several others on this dataset in Table 3.1. Our
model’s results show a clear improvement in the median and trimean angular errors
(both reproduction and recovery) compared to state-of-the-art for the SFU Lab
dataset.

Colour Checker

The Colour Checker dataset [95, 205] consists of 568 indoor and outdoor images of
size 2041 x 1359. Each image contains a MacBeth colour-checker as a reference to
retrieve the chromaticity of the actual source of light. We followed the best practices
and guidelines of this dataset by masking out MacBeth colour-checker boards prior
to processing an image with our model. The original images are non-linear due to
gamma and tone curve correction. Shi and Funt [205] reprocessed the raw data and
generated 12-bit images. We report the results of our method on this dataset along
with several others in Table 3.2. The results show that our model is in par with the
state-of-the-art for this dataset.

Grey Ball

The Grey Ball dataset [49] consists of 11,346 non-linear images of size 360 x 240
extracted from two hours of video recorded under a large variety of conditions in
both indoor and outdoor environments. In every image there is a grey sphere at
the bottom right corner from which the ambient illuminant can be estimated. We
followed the best practices and guidelines of this dataset by masking out the grey
spheres prior to processing an image with our model. We report the recovery and
reproduction angular errors of our method on this dataset along with several others
in Table 3.3. These results suggest that our model is in par with the learning-based
state-of-the-art for this dataset, while it outperforms all other low-level features-
driven methods.

3.3.2 Testing the role of each model component

We studied contribution of each component of our colour constancy model (i.e.
, adaptive centre, dynamic surround and p estimation) by conducting three ex-
periments and analysing their results in terms of median and trimean angular
errors, proposed by Hordley and Finlayson [118] and Gijsenij et al. [101] as robust
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Recovery Error
Method Mean Median | Trimean
Do Nothing 17.3 15.6 16.9
Inverse-Intensity Chromaticity Space[131] 15.5 8.2 10.7
Grey-World [40] 9.8 7.0 7.6
White-Patch [144] 9.1 6.5 7.5
£ | Shades of Grey [77) 6.4 3.7 4.6
z | General Grey-World [77] 5.4 3.3 3.8
% | First-order Grey-Edge [225]] 5.6 3.2 3.7
" | Second-order Grey-Edge [225] 5.2 2.7 3.3
Local Surface Reflectance Statistics [92] 5.7 2.4 -
Edge-based Grey Pixel [245] 5.3 2.3 -
Double-Opponency [91] 4.8 24 3.5
Pixel-based Gamut Mapping [80] 3.7 2.3 2.5
- | Edge-based Gamut Mapping [102] 3.9 2.3 2.7
fi Spectral Statistics [46] 5.6 3.5 4.3
£ | Weighted Grey-Edge [103]] 5.6 2.4 2.9
= Regression [89] - 2.2 -
Thin-plate Spline Interpolation [206] - 24 -
ASM 4.7 1.8 2.3

Reproduction Error

Method Mean Median | Trimean
Do Nothing 17.3 15.6 16.9
Inverse-Intensity Chromaticity Space[131] 15.1 9.3 11.5
Grey-World [40] 10.1 7.5 8.3
¢ | White-Patch (144] 97 74 8.2
< | Shades of Grey [77] 6.9 3.9 4.8
f General Grey-World [77] 6.0 3.9 4.3
" | First-order Grey-Edge [225]] 6.3 3.6 4.2
Second-order Grey-Edge [225] 5.8 3.0 3.8
% | Pixel-based Gamut Mapping [80] 4.2 2.8 3.0
E° Edge-based Gamut Mapping [102] 4.5 2.7 3.2
£ | Weighted Grey-Edge [103)| 6.1 3.6 4.3
ASM 5.2 2.3 2.7

Table 3.1 — Angular error of several methods on SFU Lab [20] benchmark dataset. Ta-
ble on top corresponds to the recovery angular errors. Table on bottom corresponds
to the reproduction angular error. Lower figures indicate better performance.
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Recovery Error
Method Mean Median | Trimean
Do Nothing 13.7 13.6 13.5
Grey-World (40] 6.4 6.3 6.3
White-Patch [144] 7.5 5.7 6.4
Shades of Grey [771 4.9 4.0 4.2
g General Grey-World [77] 4.7 3.5 3.8
3 | First-order Grey-Edge [225]] 5.3 4.5 4.7
% | Second-order Grey-Edge [225] 5.1 4.4 4.6
" | Random Sample Consensus (88] 3.2 2.3 -
Edge-based Grey Pixel [245] 4.6 3.1 -
Double-Opponency [91] 4.0 2.6 -
Pixel-based Gamut Mapping (80] 4.2 2.3 2.9
Edge-based Gamut Mapping (102] 6.5 5.0 5.4
- | Regression [89] 8.1 6.7 7.2
2 | Bayesian [95] | 48 3.5 3.9
£ | Natural Image Statistics (100]] 4.2 3.1 3.5
= | Exemplar-based method (131] 29 23 24
CNN Fine Tuned [29] 2.6 2.0 -
Deep Learning Colour Constancy  [155] 3.1 2.3 -
ASM 3.8 24 2.7
Reproduction Error
Method Mean Median | Trimean
Do Nothing 13.7 13.6 13.5
Grey-World (40] 7.0 6.8 6.9
g | White-Patch [144] 8.1 6.5 7.1
£ | Shades of Grey [77] 5.8 4.4 4.9
£ | General Grey-World [77] 5.3 4.0 4.4
5 | First-order Grey-Edge [225]] 6.4 4.9 5.3
Second-order Grey-Edge [225] 6.0 4.8 5.2
Pixel-based Gamut Mapping (80] 4.8 2.7 34
- | Edge-based Gamut Mapping [102] 8.0 5.9 6.6
£ | Regression (89] 8.8 7.4 7.9
£ | Bayesian [95] 5.6 3.9 4.4
= | Natural Image Statistics [100] 4.8 3.5 39
Exemplar-based method [131] 3.4 2.6 2.9
ASM 4.9 3.0 34

Table 3.2 — Angular error of several methods on Colour Checker [205] benchmark
dataset. Lower figures indicate better performance.
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Recovery Error
Method Mean Median | Trimean
Do Nothing 8.3 6.7 7.2
Inverse-Intensity Chromaticity Space[131] 6.6 5.6 5.8
Grey-World [40] 7.9 7.0 7.1
White-Patch [144] 6.8 5.3 5.8
¢ | Shades of Grey [77] 6.1 5.3 5.5
§ General Grey-World [77] 6.1 5.3 5.5
;;3 First-order Grey-Edge [225] 5.9 4.7 5.1
= | Second-order Grey-Edge [225] 6.1 4.8 53
Local Surface Reflectance Statistics [92] 6.0 5.1 -
Edge-based Grey Pixel [245] 6.1 4.6 -
Pixel-based Gamut Mapping [80] 7.1 5.8 6.1
. | Edge-based Gamut Mapping [102] 6.8 5.8 6.0
é Spectral Statistics [46] 10.3 8.9 9.1
£ | Natural Image Statistics [100] 5.2 3.9 4.3
* | Exemplar-based method 131] 4.4 3.4 3.7
Deep Learning Colour Constancy  [155] 4.8 3.7 -
ASM 4.7 3.8 4.0

Reproduction Error

Do Nothing 8.3 6.7 7.2
Inverse-Intensity Chromaticity Space[131] 7.0 6.0 6.2
Grey-World [40] 8.7 7.6 7.9
¢ | White-Patch (144] 7.1 5.5 6.0
| Shades of Grey [77] 6.5 5.6 5.8
": General Grey-World [77] 7.1 6.2 6.4
" | First-order Grey-Edge [225] 6.3 4.8 5.4
Second-order Grey-Edge [225] 6.5 5.0 5.6
- | Pixel-based Gamut Mapping [80] 7.5 5.9 6.3
é Edge-based Gamut Mapping [102] 7.3 5.8 6.3
£ | Natural Image Statistics [100] 5.5 4.3 4.7
= | Exemplar-based method [131] 4.8 3.7 4.0
ASM 5.0 4.1 4.3

Table 3.3 — Angular error of several methods on Grey Ball [49] benchmark dataset. Ta-
ble on top corresponds to the recovery angular errors. Table on bottom corresponds
to the reproduction angular error. Lower figures indicate better performance.
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measures to evaluate colour constancy algorithms.

Experiment 1 — constant vs. adaptive centre size

In order to measure contribution of the adaptive size of the narrower Gaussian, we
kept all other parameters fixed (i.e. the centre-surround influence, A = 1.00;k =
—0.77, and the percentage of pooled signal, p = co). We investigated two scenarios:
(a) all pixels were convolved with a constant Gaussian of width o (essentially the
Double-Opponency algorithm [91]), whereas, in (b) this width was varied in the
range of [0,20] and computed for each pixel. These two conditions were called
“Constant Gaussian Width” (CGW) and “Adaptive Gaussian Width” (AGW). Addition-
ally, since the Grey-Edge hypothesis captures high-order image features similar to
the DoG, we tested whether this centre adaptation can improve the first and second
order Grey-Edge algorithm with a Minkowski norm p = oco.

The results of experiment 1 (see Figure 3.6) show that both criteria of median
and trimean angular errors are always smaller in the adaptive case (AGW) in com-
parison to the constant one (CGW). This is true for both measures of recovery and
reproduction angular errors. The largest and smallest improvements are achieved
in the SFU Lab (about 19% on average) and Grey Ball (about 6% in average) datasets,
respectively.

Constant Gaussian Width (CGW) vs. Adaptive Gaussian Width (AGW) Constant Gaussian Width (CGW) vs. Adaptive Gaussian Width (AGW)

Median Recovery Angular Error

Median Reproduction Angular Error

w2 oo |

| ce1 |

mSFULab  Colour Checker = Grey Ball =SFULab 1 Colour Checker = Grey Ball

Constant Gaussian Width (CGW) vs. Adaptive Gaussian Width (AGW) Constant Gaussian Width (CGW) vs. Adaptive Gaussian Width (AGW)

59 56
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;; 57 55
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Trimean Recovery Angular Error
Trimean Reproduction Angular Error

GE2 Ge2
BSFULab M Colour Checker & Grey Ball mSFULab ® Colour Checker ® Grey Ball

Figure 3.6 — Influence of contrast-dependent RF size on illuminant estimation.
Panels on the left correspond to the recovery angular error while those on the right
are reproduction angular error. Panels on the top show median and those on the
bottom the trimean angular error.
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Experiment 2 — constant vs. adaptive surround

In order to measure contribution of the adaptive surround modulation, we kept
all other parameters fixed (i.e. the centre adaptation, [ = 1, and the percentage of
pooled signal, p = 00). We tested three scenarios, the first and second were com-
puted under a constant surround influence, x = —0.67 and x = —0.77, respectively
(both extrema of our adaptive ), as well as constant centre weight, A = 1.00. In the
third scenario, the centre-surround influence was adaptive, 1 =1+ C;ll (x,y;0) and
Kk = —[0.67,0.77], under four contrast levels / = 4.

Figure 3.7 shows the results for Experiment 2, where the median and trimean
errors (both recovery and reproduction) obtained with a dynamic surround sup-
pression, x = —[0.67,0.77], are always lower in comparison to the constant x. The
gain across datasets appear to be similar (around 3% for both error measures).

Constant vs. Adaptive Surround Suppression Constant vs. Adaptive Surround Suppression

[

Median Recovery Angular Error
Median Reproduction Angular Error

=067 k=077 =10.67,0.77] =067 k=077 =[0.67,0.77]

mSFULab 8 Colour Checker ™ Grey Ball HSFULab ® Colour Checker & Grey Ball

Constant vs. Adaptive Surround Suppression Constant vs. Adaptive Surround Suppression

54 4 53
49
Y 4
" “ l
=067

k0.7 =[0.67,0.77) =067 077 «(067,077]

Trimean Recovery Angular Error

Trimean Reproduction Angular Error

WSFULab ® Colour Checker 1 Grey Ball HSFULab B Colour Checker & Grey Ball

Figure 3.7 — Influence of contrast-dependent surround suppression on illuminant
estimation. Panels on the left correspond to the recovery angular error while those
on the right are reproduction angular error. Panels on the top show median and
those on the bottom the trimean angular error.

Experiment 3 — constant vs. adaptive “winners” percentage

In order to measure contribution of the adaptive clipping, we examined five different
scenarios. In the first four, histograms (see Eq. 3.13) were clipped with constant
percentages, p = {5,1,0.5,0.1}%, i.e. a fixed set of V1 cells were pooled into V4. In
the fifth case, value of p was adaptive and computed as the average contrast of RR
(see Eq. 3.12).
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The results of Experiment 3 (see Figure 3.8) show that using a contrast-adaptive
pooling mechanism reduces the recovery/reproduction angular errors in all cases
considered in the SFU Lab dataset (blue bar with p = ¢ is smaller than all the others).
In the Colour Checker and Grey Ball datasets (red and green bars respectively),
estimating p adaptively yields angular errors very close to the best constant p
values. Among the constant clipping percentages p = 0.5% performs best: moving
towards a Grey-World pooling deteriorates the results (p = 5% obtain the highest
angular errors) and moving towards a White-Patch solution also worsens angular
errors (p = 0.5% always performs better than p = 0.1%). This suggests the optimal
pooling mechanism is close to our proposal of pooling a set of highly activated
cells. A comparison of the best fixed p (= 0.5%) and adaptive p (= ¢) shows a 4%
improvement of median and trimean errors (average of all three datasets) in the
case of adaptive p.

Constant vs. Adaptive Clipping Percentage Constant vs. Adaptive Clipping Percentage
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Figure 3.8 — Influence of “winners” percentage p on illuminant estimation. Panels
on the left correspond to the recovery angular error while those on the right are
reproduction angular error. Panels on the top show median and those on the bottom
the trimean angular error.

3.3.3 Multi-illuminant scenes

We also tested the proposed model on one multi-illuminant benchmark dataset [22]
which consists of 78 images. Each image is captured under the illumination of
two different artificial sources of light. This dataset contain two set of images: (a)
laboratory (58 images of size 452 x 260) and (b) real-world images (20 images of size
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452 x 302).

The extension of our model to multi-illuminant scenes is straightforward by
modelling each region or pixel with a similar contrast-dependent pooling mech-
anism (Eq. 3.11, 3.12,3.13 will be region or pixel dependent). This solution is
biologically-plausible as different V4 neurons pool signals from different V1 neurons.
For this multi-illuminant dataset we used the exact parameters as single-illuminant
datasets (refer to Section 3.3.1). Here we defined four simple image regions (by
halving the image in both horizontal and vertical directions) and computed the
source of light in each region accordingly. These results are reported alongside
several others in Table 3.4. Since other methods have not reported their respec-
tive trimean and reproduction angular errors in this dataset, we only report the
mean and median recovery angular error. Our results are competitive with the
state-of-the-art.

Laboratory Real-world
Method Mean |Median |[Mean |Median
Do Nothing 10.6 10.5 8.9 8.8
Grey-World [40] (3.2 2.9 5.2 4.2
White-Patch [144]|7.8 7.6 6.8 5.6
First-order Grey-Edge [225](3.1 2.8 5.3 3.9
Second-order Grey-Edge [225] 3.2 2.9 6.0 4.7
Gijsenij et al. [104]|4.8 4.2 4.2 3.8
Double-Opponency [91] |4.6 4.4 7.8 4.9
STD-based Grey Pixel [245]|2.9 2.2 5.7 35
MI Random Field [22] |2.6 2.6 4.1 3.3
ASM 2.7 2.5 5.1 3.5

Table 3.4 — Recovery angular error of several methods on Multi-illuminant [22]
benchmark dataset. Lower figures indicate better performance.

3.4 Discussion

Figure 3.9 illustrates results of our Adaptive Surround Modulation (ASM) colour
constancy model alongside three other algorithms on four exemplary images (one
from each of the benchmark datasets considered) captured under different illumi-
nation sources: “synthetic indoor”, “natural daylight”, “dim evening”, and “multi-
illuminant”. The qualitative results demonstrate that ASM can efficiently estimate

the present source of light in synthetic and natural images, bright and dark environ-
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ments, and in both single- and multi-illuminant scenes. We believe that self-similar
dynamical properties of ASM, both at local and global level explain why our fully
automatic model, with no training required, can adapt itself to each environment
and therefore recover the illuminant in a wide range of scenarios and illumination
conditions.

--m
---4470-6310-4390-1690

Original

Figure 3.9 - Colour constancy results of several methods. The recovery angular error
is indicated on the right bottom corner. The first row shows results for a picture
from the SFU Lab dataset, the second row from the Grey Ball dataset, the third
row from the Colour Checker dataset, and the last row from the Multi-illuminant
dataset.

The quantitative results in Table 3.1 show that ASM outperforms all other state-
of-the-art algorithms in the SFU Lab dataset. In the Grey Ball dataset (Table 3.3),
ASM performs the best amid methods driven by low-level features and obtains
comparable results to the learning-based techniques. In the Colour Checker and
Multi-illuminant datasets (Tables 3.2 and 3.4 respectively), our results are highly
competitive with the best learning ones. Considering the fact that, unlike our
competitors, we are using a fix set of parameters for all four datasets, our results
look promising indeed.

A quick comparison among Tables 3.1-3.3 and Figure 3.6, shows that the colour
constancy methods driven by the higher-order image statistics (e.g. Grey-Edge
and Double-Opponency), are highly sensitive to their choice of parameters. For
example, in the SFU Lab dataset, the median recovery angular error of the second
order Grey-Edge (GE2) escalates from 2.7° (Table 3.1) to 7.8° (Figure 3.6) under the
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optimum (p = 7,0 = 4) and non-optimum parameters (p = 1,0 = 1) respectively.
This is not the case for our fully automatic method. The angular error of ASM across
datasets is less variable than that of most of its competitors. This is a yet another
sign of robustness and implies that ASM adapts based on the contrast of an image
independently of previous history, much in the same way as the HVS does.

The results of experiment 1 (see Figure 3.6) show that the performance of colour
constancy methods driven by the high-order image statistics (e.g. Grey-Edge and
Double-Opponency) can be improved, as much as 21%, by adapting their Gaussian
width o based on local contrast at pixel level. As discussed in the introduction,
this does not come as a surprise, given that the high-order derivatives are similar
to those of the centre-surround mechanism present in biological visual systems,
where the RF size expands in the presence of low contrast and shrinks in high
contrast. The improvement originated from the AGW appears to be largest for the
Grey-Edge (about 13% on average) than for the Double-Opponency (about 7% on
average). This could be explained by the fact that the centre-surround contrast
adaptation requires both dynamic centre and dynamic surround. In the Grey-Edge
centre-surround is modelled in one operation, whereas in the Double-Opponency
neither the surround size nor its contribution change according to the contrast
level.

The results of experiment 2 (see Figure 3.7) demonstrate that contrast-dependent
surround modulation can improve the angular errors up to 15%, however the av-
erage improvement is a more modest figure of about 3%. This is explained by the
fact that surround modulation depends on number of other parameters in addition
to the local contrast of stimuli, such as spatial frequency and orientation. In this
chapter, we limited our studies to the role of contrast on surround modulation
and therefore the range of surround suppression we could explore was rather lim-
ited to x = —[0.67,0.77]. However, we believe our results can be improved even
further by taking into account the orientation selectivity of surround suppression
and consequently allowing a larger range of k values. This way ASM can oscillate
between DoG to SoG to account for both surround inhibition and facilitation. This
can be achieved for example by wavelet decomposition, which we propose as fu-
ture work. Such pyramids of wavelets have been successfully used to model the
operation of neurons in the visual cortex in the case of contrast induction [179] and
saliency [172].

Interestingly, in both experiments 1 and 2, implementing a contrast-dependent
centre-surround never deteriorates the results and it always systematically re-
duces angular errors, even if this reduction is minimal. Conceptually, our contrast-
dependent centre-surround is intuitive: on homogeneous regions a larger window
must be applied to represent true surround variation, whereas on heterogeneous
regions a small neighbourhood suffices. Similar types of contrast-dependent mod-
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ulation have shown to boost true edges while suppressing undesired textural in-
formation [7]. Theoretically, our variations of the Gaussian kernel width, o, are
resemblant of processing an image through a Gaussian pyramid (although not
of fixed one-octave log increments in size, like those found in the cortex). Corre-
spondingly, our variations of the influence of surround, «, resembles a Laplacian
pyramid.

The results of experiment 3 (see Figure 3.8) also indicate that our “winner-takes-
all” hypothesis appears to be correct. The lowest angular errors are obtained when
only a small percentage of V1 signals are pooled into V4 and when this percentage
is high (5%) the results deteriorate significantly. However, there is no unique p to
minimise the angular errors across different datasets for both measures of median
and trimean. Determining the “winners” according to the average contrast of V1
RFs (p = ¢) produces the lowest angular errors across datasets. Conceptually, in
a low contrast image a few bright pixels can hint the source of light, whereas in
a high contrast image (i.e. with high variation of pixel values) more samples are
required to determine the scene illuminant. This is in line with the results of Joze et
al. [132], which indicate that bright pixels play a vital role in illuminant estimation.
A better estimation of p might be obtained by a more thorough modelling of V4
neurons (for example by calculating p in different image regions, rather than the
entire population of V1 neuron).

3.4.1 Contrast variant pooling colour constancy

Triggered by results of experiment 3 we further investigated the efficiency of the
proposed “winner-takes-all” hypothesis when applied to three different colour
constancy algorithms driven by the high-order image statistics: the first order Grey-
Edge [225], the second order Grey-Edge [225], and Double-Opponency [91]. We
simply replaced their max-pooling operator with our proposed contrast-variant-
pooling (CVP) mechanism at area V4. We are assuming that features maps of those
models can be interpreted as the V1 output.

For each free variable of investigated models we compared performance of max-
to contrast-variant-pooling. In Figure 3.10 we have reported the impact of different
os (receptive filed size) on the Double-Opponency algorithm for the best and the
worst results obtained by free variable k in each dataset. We can observe that almost
in all cases contrast-variant-pooling obtains lower angular errors in comparison to
max-pooling. The improvement is more tangible for the Colour Checker and Grey
Ball datasets and in low os.

Figure 3.11 illustrates the impact of different os (Gaussian size) on the first- and
second-order Grey-Edge algorithm. We can observe similar patterns as with Double-
Opponency (contrast-variant-pooling outperforms max-pooling practically in all
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median recovery angular error
median recovery angular error
median recovery angular error

o values

o values

SFU Lab [20] Colour Checker [205] Grey Ball [49]

Figure 3.10 — The best and the worst results obtained by max- and contrast-variant-
pooling mechanism for free variables of the Double-Opponency [91] algorithm (k
and o).

cases). This improvement is more significant for low os, for the Colour Checker
dataset and for the second-order derivative. It must be noted here that our objective
is to study the performance of max-pooling and CVP on top of the Grey-Edge
algorithm. In this respect, CVP Grey-Edge angular errors are on par with the best
reported results for max-pooling Grey-Edge using Minkowski norm optimisation
for each dataset [225], With the important caveat that CVP has no extra variables
to be tuned, whereas in the Minkowski norm optimisation the value of p must be
hand-picked for each dataset.

median recovery angular error
7z 7
/

median recovery angular error

median recovery angular error

o values o values o values

SFU Lab [20] Colour Checker [205] Grey Ball [49]

Figure 3.11 — Comparison of max- and contrast-variant-pooling mechanism for
free variable o of the Grey-Edge [225] algorithm (both first- and second-order
derivatives).

From Figures 3.10 and 3.11 we can observe that the greatest improvement
occurs in the Colour Checker dataset. We speculate that one of the reasons for
this is the larger range of intensity values in the Colour Checker dataset (16-bit)
in comparison to the other two datasets that contain 8-bit images, therefore, an
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inaccurate max-pooling is greatly penalised.

Physiological evidence besides, the better performance of CVP can be explained
intuitively by the fact that max-pooling relies merely on the peak of a function (or
aregion of interest), whereas in our model, pooling is defined collectively based
on a number of elements near the maximum. Consequently those peaks that are
outliers and likely caused by noise get normalised by other pooled elements. The
rationale within our model is to pool a larger percentage at low contrast since in
those conditions, peaks are not informative on their own, whereas at high contrast
peaks are likely to be more informative and other irrelevant details must be removed
(therefore a smaller percentage is pooled).

Although the importance of choosing an appropriate pooling type has been
demonstrated both experimentally [130, 243], and theoretically [32], current stan-
dard pooling mechanisms lack the desired generalisation [171]. We believe that
contrast-variant-pooling can address this problem by offering a more dynamic
and general solution. In this chapter, we evaluated the performance of CVP on the
colour constancy phenomenon as a proof-of-concept, however our formulation of
CVP is generic (and based on local contrast) and in principle can be applied to a
wider range of computer vision algorithms, such as deep-learning, where pooling is
a decisive factor [198].

3.4.2 Mondrian images

To mitigate the influence of higher-level visual cues, we tested our algorithm with
the exact same parameters on 1000 randomly generated Mondrian images under
randomly generated illuminants. Median reproduction angular error of adaptive
surround modulation (our full model) was 2.3; the same measure for our model
in its constant form (i.e. no contrast-dependent V1 and V4 neurons, similar to
Gao et al. [91]) was 3.8. In more than 77% of the images, adaptive surround
modulation obtains better results in comparison to the constant one. In order to
investigate whether level of cluttering in a scene is an important factor in our model,
we repeated this experiment with different number of Mondrians in each image.
We did not notice any correlation between number of Mondrians and performance
of our model.

In Figure 3.12 we have illustrated one example of conducted experiment with
Mondrian images. If we compare the pictures corresponding to “Constant V1” and
“Adaptive V1”, we can observe that in case of constant centre-surround modulation
the picture becomes blurrier at every pixels, whereas a contrast-dependent formu-
lation allows for sharper edges. Similarly, in case of “Constant V4” the estimated
illuminant is significantly greener than the actual illuminant and therefore the
corrected image appears reddish.
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Figure 3.12 — Constant versus adaptive V1 and V4 modules. Colour patches on the
right bottom corner of images in the first row depict the ground truth illuminant in
case of biased image and estimated illuminants in case of constant and adaptive
results.

3.4.3 Computational complexity

Computationally, the proposed colour constancy model is very efficient since no
training is required. Furthermore, the backbone of ASM is only simple convolutional
operators. The complexity of our algorithm is / (number of contrast levels, 4 in this
chapter) times more expensive than a simple DoG. However, each level is 100%
independent and their convolutions can easily run in parallel, as it is implemented
in our source code.

3.5 Conclusion

It has been demonstrated that global and local contrast greatly influences the
appearance of colours in a scene [81, 125]. In this chapter, we show that adopting
some of the computations that evolved in the human visual system after millions
of years of evolution into a simple, functional colour constancy model allows us to
obtain results on par to much more complex computational learning approaches.
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The mechanisms in question are three: (i) adaptation of receptive field size
depending on local contrast, (ii) influence of surround-on-centre also according
to local contrast, and (iii) computation of global contrast in higher visual areas
to produce the final illuminant estimation. Their particular contributions were
quantified by performing additional experiments. We compared our results to
current state-of-the-art algorithms in four benchmark datasets showing a significant
improvement regarding other low-level feature-driven methods, while still highly
competitive with respect to the best learning-based methods.

The significance of this performance is evident considering that our model is
(@) fully automatic and parameter-free (i.e. it does not require learning the prop-
erties of each dataset since all its initial variables are set at the beginning) (b)
parsimonious (it follows basic simplicity principles such as Occam’s razor) and (c)
biologically-inspired on well established findings within the neurophysiology and
visual perception communities. These properties make it an excellent choice to
be implemented in small image-gathering devices such as webcams and mobile
phones. Furthermore, ASM does not only provides a good solution to the engineer-
ing problem of removing the illuminant in images, but, because of its close links to
the properties of cortical neurons allows us to speculate on the scientific question
regarding the evolutionary role of these properties of the visual system, something
that other algorithms are unable to do.

As a final note, we would like to express our conviction that complex multi-
dimensional problems such as colour constancy cannot be solved by one-fits-all
solutions. In other words, the results of fully automatic solutions should not be
interpreted the same as those of learning-based solutions. Our view is that these
belong to different and sometimes orthogonal directions and should be considered
according to their own particular merits.
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Colour Categorisation

During the last two chapters, we discussed how a visual system perceives colours
of objects under different illuminants and the implications of this for higher-level
visual tasks. In this chapter, we focus on colour names. Although, there are no
discontinuities in the electromagnetic spectrum of the light reaching us from a rain-
bow, yet we see hues clearly separated by colour categories. Our brains categorise
colours into distinct semantic categories that are used not only to describe objects
but also to facilitate parts of the processing, e.g. in finding objects in cluttered con-
ditions, such as, car parks and bookshelves. Here, we investigate whether adding
knowledge from the other disciplines, such as, biology and psychophysics may help
us to improve algorithms that obtain colour names from coloured pixels.

4.1 Introduction

Colour vision contributes significantly to our perception of the world by providing
valuable information about properties of objects and facilitating their segmenta-
tion from each other and the background [36]. Its evolution might be guided by
ecologically important tasks such as collecting ripe fruits and leaves or spotting
predators. Besides that, our brains have further evolved to communicate the per-
ception of colour through natural language. As a consequence of that, colour terms
are extensively used in our day-to-day life in a wide range of scenarios. For instance,
we tend to describe objects by their colour names (e.g. pass me the blue book;
look at that orange house; efc.). Moreover, we explicitly benefit from colours to
facilitate various tasks (e.g. software programmers colour-code their source code to
aid interpretation; pedestrians and drivers rely on colour-coded city traffic lights to
avoid chaos; etc.).

Consequently, any computer application seeking to intuitively interact with
humans (e.g. visual searching, image labelling, content retrieval, efc.) may benefit
from incorporating colour naming in its routine [227]. Furthermore, numerous
computer vision algorithms (such as scene segmentation, high-dynamic-range
imaging (HDR), target tracking, object recognition, texture classification, etc.) can
greatly benefit from the segmentation of an image to its constituent colours: either
by improving their accuracy or lowering their computational complexity [227].
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Despite the omnipresence of colour in our lives and the prominent role played by
our perceptual machinery, only a handful of computational colour naming models
has been developed and even fewer of them attempt to incorporate our knowledge
of the perceptual system into them.

Colour naming (also referred here as “colour categorisation”) is a highly multidis-
ciplinary topic. A large-scale linguistic survey by anthropologists Berlin & Kay [25]
hinted at eleven basic colour terms - i.e. black, blue, brown, green, grey, orange,
pink, purple, red, white, and yellow — that are shared across most evolved languages
and cultures. Universality of these colour terms has been challenged by the role
of linguistic contexts [111]. Nevertheless, they have been reconfirmed in various
other studies [33, 137, 217] and to a certain extent explained by physiological ev-
idence that demonstrate low-level mechanisms contribute to colour categorical
perception prior to language acquisition [210]. Present general consensus favours
an intermediate free-from-language low-level colour perception stage supported
by non-verbal cognitive experiments [127].

Colour naming at first might appear to be fully deterministic (indeed a few
computational models have taken this approach [151, 222]). However, Kay & Mc-
Daniel [136] suggested that the determining perceptual input comes from the
language-processing part of the brain. Therefore the underlying visual mechanism
behind colour naming must be modelled by continuous mathematics, i.e. fuzzy
logic. This insight (also supported by psychophysics) implies that in practice every
pixel has a value of “belongingness” (from zero to hundred per cent) to each colour
category which is directly computed from the measured reflectance spectrum of a
surface at that point.

Initial works on fuzzy models started with Lammens [64], who fitted the data col-
lected by Berlin & Kay into some variations of Gaussian functions. Mojsilovic [168]
followed this approach with a new perceptual colour metric. Seaborn et al. [199]
clustered psychophysical colour points with a k-means algorithm while Benavente
et al. [24] tackled the problem by means of a triple-sigmoidal parametric model,
with a few lightness planes sliced into different colour categories and the rest ap-
proximated through interpolation. Contrary to previous algorithms that are based
on fitting colour categories to psychophysically obtained focal colours, van de Wei-
jer et al. [228] proposed a new procedure to learn colour names from real-world
images using probabilistic latent semantic indexing.

Our proposal in this dissertation to capture colour terms using simple geo-
metrical shapes is fundamentally different from current methods: (i) we benefit
from parametric modelling [24, 64] with the added advantage of partitioning the
colour space directly into three-dimensional shapes rather than interpolating from
two-dimensional planes; (ii) unlike some algorithms that learn every pixel inde-
pendently through histograms with no explicit constraints on colour regions [228],
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we impose ellipsoidal shapes that function as natural restrictions to such colour
regions.

Acknowledging the fact that concept of colour is a product of our brain, it nat-
urally follows that the best way to address colour naming is to model what we
know physiologically and psychophysically about the human cortical machinery.
For example, it is widely accepted that colour categorisation has been shaped by
evolution and neonatal adaptation to break down an extremely complex world into
cognitively tractable entities, reducing the nearly two million colours that can be
distinguished perceptually [187] to about thirty categories than can be recalled by
average subjects [55]. In particular, the elven universal colour categories [25] are
unlikely to be arbitrary and possibly reflect ideal divisions of an irregularly shaped
perceptual color space [191]. In our conducted psychophysical experiment [6, 186],
we observed that in chromatically opponent space categorical frontiers between
these eleven universal colours form ellipsoidal shapes in agreement with the ellip-
tical isorresponses of V1 neurons reported in a physiological study by Horwitz &
Hass [119].

Following this rationale, in this chapter we present a biologically-inspired colour
naming model based on an “ideal” partitioning of colour-opponent space (as sug-
gested by Regier et al. [191]) through parsimonious ellipsoidal shapes (as revealed
by psychophysics [186] and physiology [119]). We extend the work of [186] by: (i)
demonstrating that parameters of ellipsoids and growth ratio can be learnt more
ecologically from segmented images; (ii) accounting for rotation along each axis and
all ellipsoids; (iii) showing that it is straightforward to incorporate new colour terms
within the new framework; (iv) prototyping the means of ellipsoids adaptation to
the image contents in order to account for the phenomenon of colour constancy;
and (v) testing our model on real-world images.

4.2 Ellipsoidal colour categorisation model

In this section: (i) we review relevant physiological and psychophysical facts about
colour vision and colour naming; (ii) we detail theory of proposed model; and (iii)
we explain different means of obtaining parameters of our colour categorisation
model.

4.2.1 Colour perception

At present, we have a fairly rigorous understanding of cone photoreceptors that
initiate colour vision by absorbing light at the back of retina. Signals produced by
these cells are combined in an antagonistic manner to from the opponent channels
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that convey information to the visual cortex through the lateral geniculate nucleus
(LGN) [68, 184]. As we advance deeper inside cortical areas, our knowledge of cere-
bral mechanisms involved in colour vision becomes less clear. In the primary visual
cortex (V1), there is population of specialised neurons called single- and double-
opponent cells that respond non-linearly to chromatic stimulus [203]. A recent
study by Horwitz & Hass [119] analysed neurons in V1 in terms of their uniform
responses to three-dimensional shapes in colour-opponent space. A large subset
of these neurons (termed Neuron-3) responded best to ellipsoids whose major
and minor axes are aligned to perceptual cardinal directions (see the schematics
in Figure 4.1). These findings by [119] show how neurons of V1 can act jointly to
process colour.

0.05

L+M

-0.05

-05

Neuron-3

-0.05
S 0.5 0.05 -0.05 L+M -0.05 0.05

L-M L-M

Figure 4.1 — Two projections of Neurons-3 fitted to quadratic surfaces (green ellip-
soids) in colour-opponent space, adapted from [119]. Black lines represent the best
fitting planes.

Similar ellipsoidal shapes have also emerged in our psychophysical measures of
colour boundaries where subjects were asked to produce the intermediate colour
between two basic colour terms on a calibrated cathode ray tube (CRT) moni-
tor [186]. This does not appear as a great surprise since colour categories tend to
occupy connected regions of colour space [191]. However, these results could in
turn explain the organisation of universal colour terms around foci with perceptual
constraints governing their position and shape, i.e. supporting the hypothesis that
colour naming reflects optimal partitions of colour space [191].
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4.2.2 FEllipsoidal partitioning of colour space (EPCS)

We modelled each colour category as an ellipsoid in three-dimensional colour-
opponent space following these rationale:

1. The presence of neurons like Neuron-3 in V1 [119] shows the plausibility of
complex colour-opponent processing at low cortical levels, i.e. ellipsoids are
parsimonious shapes that can be implemented by low-level visual neurons.

2. Contours of ellipsoids provide an appropriate fit to the psychophysical exper-
iments we conducted in which colour categorical boundaries were measured
in a controlled environment [186].

3. In the context of colour categorisation, the centre of an ellipsoid can be
interpreted as the focal colour and its geometrical properties determine the
optimal partitioning [191].

An ellipsoid aligned to the axes of a Cartesian coordinate system is defined as:

(x—xo)2+(y—yo)2+(z—20)2ZL 4.1)

a b c
where (X, yo, z0) are the coordinates of the ellipsoid-centre; and (a, b, ¢) represent
the length of the semi-axes. To account for any rotations around the axes of the
coordinate system, we defined our complete set of ellipsoid parameters s with nine
parameters:

s = [(x0, ¥0, 20), (@, b, ¢), 0,$,7)], (4.2)

where (0, ¢,y) are the rotational angles around each of the colour-opponent axes.

A naive procedure to categorise pixels into different colour terms can be de-
scribed as a simple binary test: when a pixel is inside an ellipsoid, it belongs to
that category, otherwise it does not. However, there are two major flaws with this
approach: (i) pixels outside of all ellipsoids will be categorised with neither of the
colour terms; and (ii) the colour categorisation will lack the fuzziness proposed
by [136] as its underlying visual mechanism. Thus, to simulate the large variability
present in the categorisation decision we utilised the sigmoid curve that is a spacial
case of the logistic function, given as

S®) =10 4.3)

+e8’

where g is the steepness of the curve (also knows as the growth ratio). Larger values
of g results in a more binarised categorisation, whereas smaller values of g increase
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the fuzziness of our model.

There are various ways to model the steepness of each colour category. The sim-
plestis to set g as a constant number. Another strategy is to establish a relationship
between the steepness of each category and size of its ellipsoid. We favoured a more
flexible solution in which g is set as a free variable for each colour category. This
allows our model to vary its level of fuzziness for different colour names. Therefore,
in our model each colour term, ¢, consists of ten parameters:

t=[s gl (4.4)

We defined “belongingness” of a pixel to a colour category as:

1

Bi(x) = ——————,
1) 1+ e&Up—cil=h)

(4.5)
where B is the likelihood of pixel p belonging to colour term ¢; g; represents the
steepness; c; is the centre of its ellipsoid; & is the position of the half-height tran-
sition point, which in our model is defined as the distance from the centre of an
ellipsoid to its surface in the direction joining c¢; and p. It must be noted that in
order to obtain a probability distribution B; must be divided by the sum of all Bs.

Although trivial, it is worth mentioning that when a pixel falls inside an ellipsoid,
|p — c;| is smaller than £, as a result the input of the natural exponential function
becomes a negative value. Consequently, the entire natural exponential term be-
comes smaller than 1. The belongingness of a pixel to a colour category increases
as |p — c¢;| — h tends towards —oo and it reaches its maximum value at the centre of
an ellipsoid, where the exponential term drops to 0.

Deterministic colour naming requires a unique term for every pixel. This can
be achieved through different strategies of combining probabilities of all colour
categories, for instance considering the perceptually neighbouring colour (i.e. red
and orange, or pink and purple). However, this is beyond the scope of this chapter
and we adopted a simple maximum pooling mechanism: the highest probability
among all colour categories is assigned as the colour term C of that pixel:

C(x) = argmax B;(x) (4.6)
t

4.2.3 Acquiring model parameters

Colour space

The first prerequisite for modelling the processes that occur in the visual cortex
is to represent the chromatic signal in a colour-opponent space (resembling the
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signal arriving from the retina). We selected the CIE L*a*b* colour space because is
considered to be (approximately) perceptually uniform [48] and is widely used in
computer vision and visual sciences. Nevertheless, since in our model we employ
ellipsoids to partition a given colour space into different colour categories, our
model is not dependant on the CIE L*a*b* and should work equally well in other
colour-opponent spaces, such as CIE L*u*v*, IsY and DKL.

Parameters optimisation

The proposed colour ellipsoids are parsimonious geometrical shapes whose param-
eters can be determined by different procedures. The simplest option would be
to draw those ellipsoids manually and set the steepness to a constant value. Alter-
natively, the surface of each ellipsoid can be fitted into data points that represent
boundaries of a colour term; and the steepness of a category can be defined as
the average length of its ellipsoid semi-axes, g; = W, similar to [186]. The
most comprehensive solution would probably be to construct a ground truth for
every point in a canonical colour-opponent space by means of psychophysical
experiments. From this ground truth all the ten parameters of our model can
simultaneously be learnt in an optimisation framework.

However, in practice collecting such an exhaustive ground truth from a large set
of subjects is extremely time consuming. To overcome this issue we simulated the
ground truth from the validation set of the Ebay colour naming dataset presented
in [228] (8 images per each of the eleven basic colour names, making a total of 88).
Given pixel p, we counted the number of times it was categorised as each of the
eleven basic colour names. Dividing this by the total number of times pixel p was
categorised resulted in the degree of membership to each colour term.

We learnt the parameters of our model with a sequential quadratic programming
optimisation method (103 number of iterations and 1072 as tolerance constraint)
with the error function

N
argmin ) | B;(x) — G;(x), 4.7)

x=1

where N is number of pixels in the ground truth set; B; is defined in Eq. 4.5; and
G, (x) is the ground truth value of pixel x belonging to category ¢. We simply ini-
tialised each colour ellipsoid, i;, as follows

il‘ = [(IJL*L‘;Ha* trlJb*t)r (10, ]-O) ]-0)y (O, 0’0)7 ]-]r (48)

where (Ur«r, Haxt, bb«t) are the average coordinates (in CIE L*a*b* colour space) of
all the pixels whose ground truth value of category ¢ is non-zero. We did not set
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any constraints on the optimisation of ellipsoid centres. Naturally, we restricted the
length of semi-axes to positive values and the rotational angles to the range of [0, 7).
Steepness of sigmoidal function was limited to the range of (0, 1].

Figure 4.2 illustrates the eleven colour ellipsoids learnt from our simulated
ground truth. One can highlight a few aspects of the zenithal view that express high
congruence with our very own colour perception as follow:

¢ The achromatic categories, i.e. white, grey and black, are placed at the centre
of all other ellipsoids in line with the hue circle, which was first proposed by
Newton [173].

* The ellipsoids corresponding to opponent colours, i.e. red-green and yellow-
blue, do not overlap. This is in line with Hering’s colour theory which states
that these colour cannot be perceived together.
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Figure 4.2 — Zenithal view (the L = 0 plane) of the learnt colour ellipsoids corre-
sponding to each of the eleven basic colour terms in the CIE L*a*b* colour space.

4.3 Experiments and results

We learnt parameters of our model — termed Ellipsoidal Partitioning of Colour Space
(EPCS) - from two different ground truths:

e EPCS [Rw]-learnt only from real-world images by extracting the ground truth
from validation set of [228].
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e EPCS [Ps]-to account for colour naming experiments we averaged pixel prob-
abilities of real-world ground truth with the psychophysical results of [186].

We quantitatively evaluated the proposed model by conducting experiments
on two different kinds of datasets: (i) colour chips categorised by psychophysical
experiments; and (ii) colour segmented objects in real-world images.

4.3.1 Munsell colour chart

The left panel of Figure 4.3 shows the Munsell chart that contain 330 different colour
chips (i.e. eight chromatics rows, each consisting of 40 hues in increments of 2.5, and
one column of 10 achromatic lightness). A large number of colour naming studies
have compared their categorisation results to the psychophysical experiments of
Berlin & Kay [25] (i.e. 24 native speakers from 110 languages were asked to name
each Munsell chip) and Sturges & Whitfield [217] (i.e. 20 English speakers named
each Munsell sample twice). Our segmentation of the Munsell chart is illustrated
on the middle and right panels of Figure 4.3. Segmentation obtained by EPCS [Rw]
perfectly matches with the psychophysical experiment of Sturges & Whitfield and
only vary on five points (all caused by the white colour) comparing to the survey of
Berlin & Kay.

Munsell chart EPCS [Ps] Segmentation EPCS [Rw] Segmentation

e ... BNE.

Green Blue Purple Pink

-._--_l-ll_.

Orange Yellow Brown

Grey White Black

Figure 4.3 — Result of EPCS applied to the Munsell colour chart. Black crosses

indicate the mismatches to either Berlin & Kay [25] or Sturges & Whitfield [217] data.

Black and white images correspond to probability of each pixel to different colour
categories, illustrated in the form of heat map, brighter pixels represent higher
probabilities.
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Table 4.1 quantitatively compares the accuracy of our model to seven state-
of-the-art algorithms that have also reported theirs results on the Munsell chart.
In comparison to the colour naming survey of Berlin & Kay [25] EPCS practically
matches the best results reported in the literature (NICE), far ahead of the third
best colour naming models (SFKM, TSEM). With respect to the psychophysical
experiment of Sturges & Whitfield [217] our model along with SFKM, TSEM and
NICE obtains the perfect accuracy.

Berlin & Kay Sturges & Whitfield
LGM [64] 0.77 0.83
MES [159] 0.87 0.96
TSM  [23] 0.88 0.97
SFKM [199] 0.92 1.00
TSEM [24] 0.92 1.00
PLSA [228] 0.89 0.98
NICE [186] 0.98 1.00
EPCS [Ps] 0.98 1.00
EPCS [Rw] 0.87 0.98

Table 4.1 — The true positive ratio of several colour naming models on psychophys-
ical experiments of Berlin & Kay [25] and Sturges & Whitfield [217]. Lammens’s
Gaussian model (LGM) [64], MacLaury’s English speaker model (MES) [159], Be-
navente & Vanrell’s triple sigmoid model (TSM) [23], Seaborn’s fuzzy k-means model
(SFKM) [199], Benavente et al. ’s triple sigmoid elliptic model (TSEM) [24], van de
Weijer et al. ’s probabilistic latent semantic analysis (PLSA) [228], Parraga & Ak-
barinia’s neural isoresponsive colour ellipsoids (NICE), and the proposed ellipsoidal
partitioning of colour space (EPCS).

Referring to Table 4.1, we can observe a large difference between two variations
of our model mainly caused by white pixels. EPCS [Rw] (learnt only from real-world
images) categorises pixels with a faint colour as white, whereas EPCS [Ps] (learnt
by influence of colour naming experiments in controlled environment) categorise
those pixels into chromatic categories. This is an issue noted by [228] as well.

4.3.2 Real-world images

We evaluated the proposed model on two datasets of real-world images'. Along
with our model we tested three state-of-the-art methods (whose source codes are

IThe source code and all the experimental materials are available at https://github.com/
ArashAkbarinia/ColourCategorisation.
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publicly available) : Benavente et al. ’s triple sigmoid elliptic model (TSEM) [24], van
de Weijer et al. ’s probabilistic latent semantic analysis (PLSA) [228], and Parraga &
Akbarinia’s neural isoresponsive colour ellipsoids (NICE) [186]. We assessed each
algorithm based on their true positive ratio, i.e. %\,, where TP represents pixels
whose colour names are correctly labelled and FN are those that are mislabelled.
Due to the nature of the available ground truths, which primarily contain one colour
category per image, other evaluation metrics were inappropriate. Images of tested
datasets are of various size and in order to avoid the bias for smaller images, we first
computed the true positive ratio for each image and reported results are averaged
over all.

Ebay dataset

The Ebay dataset [228] consists of four sets of man-made objects, i.e. cars, dresses,
pottery and shoes. Every set contains 110 images, i.e. ten images for each of the
eleven basic colour terms. The ground truth masks are based on semi-automatic
segmentation algorithms. In order to compensate for absence of natural objects
(such as, fruits, vegetables, flowers, efc., that colour information arguably plays an
important role in their recognition) we extended this dataset by creating an extra set
of images containing natural objects following the same procedure as the original
authors.

We have reported true positive ratio of four methods on the Ebay dataset in
Table 4.2. Evidently EPCS [Rw] outperforms all other methods with a large margin.
We can also observe a large gap between performance of EPCS [Ps] and PLSA in
comparison to TSEM and NICE in all five subcategories. In three sets (dresses,
shoes and natural) EPCS [Ps] obtains higher true positive ratio compared to PLSA.
Advantage of EPCS [Ps] over PLSA becomes more tangible by considering their
respective performance on psychophysical data, where EPCS [Ps] performs notably
better (see Table 4.1).

Cars | Dresses| Pottery| Shoes| Natural
TSEM [24] 0.59 0.68 0.62 0.73 0.69
PLSA [228]| 0.60| 0.82 0.76 0.78 0.77
NICE [186]| 0.52| 0.69 0.54 0.67 0.67
EPCS [Ps] 0.60 0.84 0.76 0.79 0.80
EPCS [Rw] | 0.65| 0.86 0.80 0.80 0.80

Table 4.2 — True positive ratio of four colour naming models on Ebay dataset for
each subcategory.

77



Chapter 4. Colour Categorisation

78

Small objects dataset

The small objects dataset [248] contains 300 images (in 16-bit format) of various ma-
terials (e.g. paper, plastic, metal, wood, fruits, etc.) that are captured under different
types of illuminants. Each image is supplemented with a manual segmentation of
its constituting regions according to their colour names. However, it is important to
note that number of pixels for each of the eleven basic colour terms is not uniformly
distributed.

We have reported true positive ratio of four methods on the small objects dataset
in Table 4.3. We can observe comparable patterns similar to those in the Ebay
dataset. EPCS [Rw] performs best among all others with a 4% margin. Correspond-
ingly, both EPCS [Ps] and PLSA obtain better results in comparison to TSEM and
NICE.

Small Objects
TSEM  [24] 0.69
PLSA  [228] 0.73
NICE [186] 0.52
EPCS [Ps] 0.73
EPCS [Rw] 0.77

Table 4.3 — True positive ratio of four colour naming models on the small objects
dataset.

4.4 Discussion

In Figure 4.4 we have illustrated one exemplary image from the small object dataset.
We can observe that EPCS [Ps] mislabels the white part of the wall as pink. This
is the main reason that EPCS [Rw] clearly performs better than EPCS [Ps] in real-
world images (refer to Tables 4.2 and 4.3). However, we would like to emphasise
the results of the later one that in psychophysical data, where the environment is
controlled and no noise is present, obtains almost perfect true positive ratio (similar
to NICE), at the same time it does reasonably well on real-world images (contrary
to NICE). We believe high accuracy on psychophysical experiments is essential
because a colour naming model should first and foremost correctly categorise
individual pixels. Other challenging tasks for colour naming models have to do with
faint colours appearing as white in an image context. This is caused by different
phenomena such as colour constancy and induction. These challenges should be
solved by modelling colour naming in a dynamic fashion. In other words a model
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that can adapt itself to the image or pixel content.

Original

EPCS [Ps] EPCS [Rw]

Figure 4.4 — EPCS [Ps] versus [Rw] in a real-world image.

Figure 4.5 shows four examples from the real-world datasets. In each panel
the original image is displayed accompanied with its respective colour categorised
results from each of the algorithms considered: TSEM [24], PLSA [228], and EPCS.
We can observe in the first row that the blue flowers are largely misclassified as
purple by TSEM and PLSA. However, they are correctly assigned to the blue category
in our model. We detected a number of similar cases with other blue objects.

The brown pottery mug — present in the second row of Figure 4.5 — is almost
entirely miscategorised as red by TSEM and PLSA. On the contrary, EPCS accurately
labels it as brown. A closer inspection to the corresponding probability maps
reveals that TSEM assigns pixels of the mug to the red category with a very high
probability (almost 100%). PLSA labels them as red (with 60% probability) while
granting some likelihood to the perceptually neighbouring colours (about 20%
to orange and 10% to brown). However, this uncertainty spreads to the purple
category as well with about 5% probability. EPCS’s results show more consistency
with about 60% probability on the brownness of the mug, while acknowledging
that the neighbouring colour red is also probable (with about 40%). It is also worth
paying extra attention to the background of this picture, where TSEM misassigns a
great portion of it to the blue category. Contrary to this, PLSA and EPCS have no
difficulties to correctly label it as black.

The white car — depicted in the third row of Figure 4.5 - is a difficult case due to
the cast of green light over its body and surroundings. We can observe that all three
methods, in general, accurately label the car as white. Nonetheless, there are some
pixels near the back wheel and on the front door that are mistakenly categorised as
green. This issue is more noticeable for TSEM and its minimal in EPCS.

The orange dress — displayed in the forth row of Figure 4.5 — is also correctly
labelled by all three algorithms. However, the colour of dress is slightly ambiguous
and certain individuals might label it as red. A review of the probability maps shows
that TSEM considers the dress as orange with almost 100% probability, therefore
not satisfactorily capturing the observers’ opinion. In contrast to this, PLSA and
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Figure 4.5 - Detailed comparison of three different algorithms on real-world images.
Individual panels consists of the original image, its colour categorised version, and
elven probability maps corresponding to each basic colour term.
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EPCS assign equally high probability to the dress being red and being orange.

4.4.1 Model extension

There are a number of situations where one might want to add extra categories to
the eleven basic colour terms (e.g. , some languages contain two names for “blue”
like Russian, Italian and Spanish from the River Plate area). Alternatively, there
are many intermediate colour terms used in everyday language (such as, olive,
turquoise, cream, etc.) that arguably deserve their own category. Furthermore,
certain applications need more elaborated colour names (e.g. , those that are used
by artists and painters).

New colour names are usually learnt by humans (both adults and children)
after the presentation of a small handful of examples. Within our model we can
simulate this process straightforwardly. As an illustration, we learnt the colour term
“cream” from merely two images that are depicted in Figure 4.6. We followed the
same procedure explained in section 4.2.3 by manually labelling the cream part of
training images.

Figure 4.6 - Two images used in learning colour cream.

Figure 4.7 shows the impact of this newly introduced cream category on the
colour segmentation of a sample image from the Pascal Project Dataset [67]. We
can observe that by relying only on the eleven colour terms, EPCS incorrectly labels
the wall on the back of the image as pink (although with low probability that is on
average smaller than 20%). Colour segmentation with twelve categories allows our
model to accurately classify the wall as cream. The flexibility of our algorithm
can be further exploited to create a personalised colour naming model which
reflects the individual variability present in the psychophysical data. This is very
economical and can be achieved by segmenting a handful of images from a personal
digital assistant (PDA), for example. Furthermore, an interactive application can
allow subjects to manipulate the colour ellipsoids directly to achieve the colour
categorisation they desire.
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Original 11 Categories 12 Categories

Yellow

Figure 4.7 — Colour categorisation including an extra category for the cream colour.
The top row shows the original image with is respective segmentation considering
eleven or twelve colour categories.

4.4.2 Model adaptation

One important aspect of any colour naming model is its context adaptability. This
is feasible within our model by dynamically adjusting the ellipsoids to the image or
even the pixel being processed. One of the greatest challenges in colour naming
algorithms is the frontier between chromatic and achromatic colours as we experi-
enced in our experiments and mentioned by [228]. In a neutral background colours
appear more saturated comparing to a colourful environment [38]. As a proof-of-
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concept we attempted to address this issue by adapting achromatic ellipsoids to
the level of colourfulness of an image. We stretched the chromatic semi-axes (a*b*)
of achromatic ellipsoids on the direction that average pixels of an image differed
from neutral grey. The results of this experiment are reported in Table 4.4.

Cars | Dresses | Pottery | Shoes | Natural | Small objects
0.60 | 0.84 0.76 0.80 0.81 0.74

Table 4.4 — The true positive ratio of our adaptive ellipsoids for EPCS [Ps] on the
real-world datasets.

Our naive adaptation increases the true positive ratio by 1% on three sets of
real-world images (shoes and natural categories of Ebay dataset and small objects).
This by no means is a finished adaptable model, rather a demonstration that our
model is able capture a greater variation in image content with the addition of
simple extensions. This can be further explored by adapting chromatic ellipsoids to
the presence or absence of certain colour categories in the image, following reports
that link them to the phenomenon of colour constancy [230]. For instance when the
green signal is abundant one could shrink the green ellipsoid or translate its centre.
The adaptability of the ellipsoids in our model in turn could offer a framework in
which colour constancy and colour categorisation are addressed simultaneously.

4.5 Conclusion

In this chapter, we presented a biologically-inspired colour categorisation model
where each colour term is represented by an ellipsoid in colour-opponent space. To
capture the fuzzy nature of colour names and account for the non-linear operations
performed by visual cortex neurons, we computed the final degree of membership
to a category using a sigmoid curve. Theoretically, we justified our geometrical
framework by linking it to physiological and psychophysical evidence. In practice,
we showed that the parameters of our parsimonious model can be learnt from a
simple optimisation procedure and conducted two kinds of experiments to verify
its sanity. Results obtained on the Munsell chart are in excellent agreement with
the psychophysical results of colour naming. We also perform better than other
popular algorithms in real-world images. The advantage of the proposed model
is more tangible by realising that, unlike all other state-of-the-art algorithms, it
performs well on both types datasets. This shows that our model can both explain
psychophysically-based colour naming results and perform an accurate categorisa-
tion of real-world images.
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Biologically-inspired chromatic models have been successful in a wide range of
colour computational tasks as shown in this dissertation and also in the literature,
e.g. colour induction [180], colour constancy [7, 10, 185], saliency [172], colour
descriptor [250] and boundary detection [4]. This is not surprising since colour is
a sensation that originates from within our brains, which in turn is the product of
millions of years of evolution, adaptation and “learning” from the visual environ-
ment. From this point of view, we believe our approach to colour categorisation
can compete with other deterministic and learning-based approaches. In this line,
we demonstrated that our model can be easily extended to incorporate more colour
terms from few examples (as human infants do) and adapt itself to the content
of image. Implicitly demonstrating the potential of biologically-inspired colour
categorisation modelling for different applications such as image segmentation and
image retrieval. Naturally, our model (as any other colour naming model) is likely
to improve its accuracy in different environments when complemented with good
colour constancy and colour induction algorithms and fundamentally with larger
and better ground truths.

There are at this point a number of possible lines of investigation for the future.
To mention a few of those: (i) Improving the assignment of colour names by con-
sidering more sophisticated rules than a simple max-pooling. For example, by the
contrast-variant-pooling mechanism introduced by us in this dissertation can be
considered. (ii) Making the model dynamically responsive to context (either by rear-
ranging the ellipsoids according to image content, or alternatively, supplementing
the model with a centre-surround adaptation mechanism similar to those we im-
plemented for the colour constancy phenomenon). In this way we can account for
the well known colour phenomena of induction and constancy. (iii) Converting the
colour ellipsoids to three-dimensional Gaussian envelopes which are biologically
more plausible and also mathematically more tractable. This might allow an easier
adaptation of our model at pixel level.
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53 Boundary Detection

In the previous chapters, we discussed the perception of colours under different
illuminants and how our brain categorises them into meaningful colour terms. We
know that colour and form are linked inextricably by sharing the same cortical
areas for their respective processing, and there is abundant evidence suggesting

that contours and shapes contribute significantly to the appearance of colour [203].

Therefore, it is reasonable to speculate that a surround modulation mechanism
similar to the one we presented in section 3 can be involved in the process of
shape perception. Consequently in this chapter, we explore the role that surround
modulation plays in detecting the boundaries of objects.

5.1 Introduction

Our ability to recognise objects is completely entangled with our ability to perceive
contours [181, 234]. It has been shown that the primary and secondary visual
cortices — i.e. V1 and V2 - play a crucial role in the process of detecting lines,
edges, contours, and boundaries [152], to such extent that an injury to these areas
can impair a person’s ability to recognise objects [249]. Furthermore, edges (a
form of image gradient sometimes also referred to as “boundaries” or “contours”)
are indispensable components of computer vision algorithms in a wide range of
applications (such as, colour constancy [226], image segmentation [15], document
recognition [147], human detection [54], etc.).

Given their importance, many computational models have been proposed to
detect edges — for a comprehensive review refer to [181]. In its earliest form Pre-
witt [189] proposed a convolutional-based image gradient to capture local changes.
Marr [163] suggested a correspondence between edges and zero-crossing points.
Canny [41] improved on previous algorithms by incorporating non-maximum sup-
pression and hysteresis thresholding. The greatest challenge faced by these classical
methods is the distinction between authentic boundaries and undesired back-
ground textures. This issue was partially addressed by local smoothing techniques,
such as bilateral filtering [221] and mean shift [50]. Thereafter, graph-based mod-
els emerged, e.g. [52, 70], allowing for closure to be taken into account. More
recent frameworks extract relevant cues (e.g. colour, brightness, texture, efc.) feed-
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ing them to machine learning algorithms, such as probabilistic boosting tree [60],
gradient descent [15] and structured forest [61]. Currently, state-of-the-art algo-
rithms [27, 28, 138, 204, 242] rely heavily on deep-learning techniques.

Despite their success, learning methods suffer from three major drawbacks:
(a) their performance might be dataset dependant; (b) they are computationally
demanding since for every single pixel a decision must be made (in both training
and testing stages) on whether it corresponds to an edge or not; and (c) they require
extremely large amounts of data for an effective training procedure. In addition
to these, there is no biological or behavioural evidence that edge detection is the
result of such a laboriously supervised learning process. On the contrary, biological
systems compute edges in an unsupervised manner, starting from low-level features
that are modulated by feedback from higher-level visual areas, e.g. those responsible
for global shape [152].

In line with this, a number of biologically-inspired edge detection models have
been recently proposed with promising results. Spratling [216] proposed a predic-
tive coding and biased competition model based on the sparsity coding of neurons
in V1. Wei et al. [235] presented a butterfly-shaped inhibition model based on
non-classical receptive fields operating at multiple spatial scales. Further improve-
ment came from Yang et al. [247] who explored imbalanced colour opponency
to detect luminance boundaries. The same authors demonstrated employing the
spatial sparseness constraint, typical to V1 neurons, helps to reserve desired fine
boundaries while suppressing unwanted textures [244]. Another improvement in
contour detection originated from introducing multiple features to the classical
centre-surround inhibition common to most cortical neurons [246]. The intro-
duction of feedback connections has also been beneficial. Diaz-Pernas et al. [56]
extracted edges through oriented Gabor filters accompanied with top-down and
region enhancement feedback layers.

In this chapter, we propose a biologically-inspired edge detection model that
incorporates recent knowledge of the physiological properties of cortical neurons.
Our work is novel compared to the methods mentioned above in four main aspects:
(i) we incorporate a more sophisticated set of cortical interactions which includes
four types of surround, i.e. full, far, iso- and orthogonal-orientation; (ii) we account
for contrast variation of surround modulation; (iii) we model V2 neurons that pool
signals from V1 responses over a larger region corresponding to the centre and
neighbouring spatial locations; and (iv) we consider a fast-conducting feedback
connection from higher visual areas to the lower ones.

Figure 5.1 illustrates the flowchart of our framework, which follows the func-
tional structure of the human ventral pathway. Our processing starts in the retina,
where the input image is convolved by single opponent cells and sent though the
lateral geniculate nucleus (LGN) in the form of colour opponent channels [203].
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These channels are processed by double-opponent cells in V1 — known to be respon-
sive to colour edges [203] — whose receptive field (RF) are modelled through the first
derivative of a Gaussian function [41]. To consider the RF surround: we define a
short range circular (isotropic) region corresponding to full surround [152], long
range iso- and orthogonal-orientation surrounds along the primary and secondary
axes of the RF [71], and we model far surround via feedback connections to enhance
the saliency of edge features. All these interactions are inversely dependant on
the contrast of the RF centre [208]. The output signal from V1 is pooled at V2 by a
contrast-variant centre-surround mechanism applied orthogonally to the preferred
direction of the V1 RF [188]. Finally, to account for the impact of global shapes on
local contours [152], we feed the output of V2 layer back into V1.

5.2 Surround Modulation Edge Detection

5.2.1 Retina and lateral geniculate nucleus (LGN)

The retina is the starting point of visual processing in humans. Cone photoreceptor
cells located at the back of the retina absorb photons at every spatial location.
Their output is processed in an antagonistic manner by further layers of single-
opponent cells (ganglion cells) and sent to the cortex through the LGN in the form
of aluminance and two chromatically-opponent channels [203], usually modelled
as

SO, (x,y) = S;(x,¥) + Sg(x,y) + Sp(x, ¥),
SOrg(x,y) =8¢ (x,y) —kgSg(x, y),
Sr(x, ) +Sg(x,y)

S§Oyp(x, ) =xpSp(x, y) —Krg —

(5.1)

where SO represents the response of single-opponent cells, {{u, r g, yb} denotes the
luminance, red-green and yellow-blue opponent-channels, (x, y) are the spatial
coordinates, and {r, g, b} are the original red, green and blue cone signals. S is
the spectral response function of each cone and can be approximated by a two
dimensional Gaussian function as follows

Sp(x,y) =1I(x,y) * G(x,y,0), (5.2)

where [ is the input image, h € {r, g, b} is the index of colour channels, * denotes
the convolution operator and G is the circular two-dimensional Gaussian kernel,
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Figure 5.1 — The flowchart of our model. Balanced and imbalanced colour opponent
channels are created in the retina and sent through the LGN. Orientation infor-
mation is obtained in V1 by convolving the signal with a derivative of Gaussian at
twelve different angles. We model four types of orientation-specific surround: full,
far, iso- and orthogonal-orientation. In V2 the signal is further modified by input
from surrounding areas in a directional orthogonal to that of the original RE Shape
feedback is sent to V1 as an extra channel.

defined as

5 e_(%) (5.3)

G(x,y,0) =

with variance o. This Gaussian convolution is equivalent of a smoothing preprocess-
ing stage in computer vision which has been demonstrated to play an important
role in the successive edge detection [181].

When the chromatically-opponent input to single-opponent cells in Eq. 5.1
is in equilibrium, parameter « is equal to one for all channels. However, there is
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physiological evidence showing that some types of single-opponent cells combine
chromatic information in an imbalanced fashion [203]. The significance of these
cells has also been shown in practice through many computer vision algorithms,
e.g. edge detection [244, 247] and colour constancy [93, 185]. Following this insight,
we included two imbalanced chromatic opponent-channels: SO, ¢ with kg = 0.7
and SOy with kg =0.7.

5.2.2 Primary visual cortex (V1)

Once the visual signal is pre-processed in the retina and the LGN, it is sent for further
processing into the visual cortex. Early neurophysiological evidence established
that the feedforward arrays coming from the LGN interact dynamically in the visual
cortex, creating various gain control pools across all spatial orientations which can
be modelled as “divisive normalisation” [113]. In this configuration, each cortical
neuron computes a rectified combination of its inputs, followed by a normalisation
where the neuron’s response is divided by the pooled activity of its neighbours. The
overall effect of this gain normalisation is to both alter the contrast response of
neural units, making them more responsive to boundaries, and to narrow their
orientation bandwidths. Another mechanism contributing to orientation tuning
stems from the long-range connections between neurons with similar orientation
tuning (“collinear facilitation”) [161]. Both mechanisms are thought to enhance
contour continuity, altering the effective orientation tuning of cells.

Although divisive normalisation and collinear facilitation are powerful mecha-
nisms, recent studies have shown that they are likely to be oversimplifications, since
stimuli outside of the classical receptive field of a cortical neuron can also modulate
that neuron’s activity in various ways. The origin of this modulation is feedforward,
feedback and lateral, stemming from previous connections, later connections and
from neighbouring neurons in the visual pathway. However, it was not until the
mid-1980s that the concept of non-classical (surround-modulated) receptive field
became established and characterised using circular or annular gratings of varying
characteristics.

Now we understand that SO channels arriving at the cortex are processed by a
number of double-opponent cells in V1 that are responsive to boundaries [203], but
also modulated by regions beyond their RF centres, with facilitation predominantly
at low contrast and inhibition at high contrast [14, 135, 208].

As a consequence of the above, we defined the receptive field of our orientation-
tuned double-opponent cells DO as

DOC(x) J’, 9) = CRL‘(x» ,V, 6) +(L_‘l(xy y)SRC(xv J’,O), (54)
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where c is the index of SO channels, 6 is the preferred orientation of the RF (set
to twelve evenly distributed angles in the range [0,2r) [188]), CR and SR are the
centre and surround responses respectively, and ¢ is the contrast of the RF centre
approximated by the local standard deviation of its constituent pixels. Double-
opponent cells are typically modelled in biologically-inspired algorithms by Gabor
filters, [56, 216, 246], or the first derivative of a Gaussian function, [244, 247]. We
settled for the later one originally proposed by Canny [41], therefore, we defined
the DO centre response, CR, as

CR(x,y,0) =SO* (5.5)

‘ 9G(x, y,0) ‘

90 '
where o is the RF size (set to 1.5 in our model corresponding to the typical RF size of
foveally-connected neurons in V1 or 0.25° of visual angle [14], which is equivalent
to approximately 13 pixels when viewed from 100cm in a standard monitor).

Surround modulation

We defined the surround response, SR, as follows
SR(x,y,0) = LS(x,y,0) + IS(x,y,0) + OS(x,y,0) + FS(x,y,0), (5.6)

where LS is full surround referring to the isotropic region around the RF; IS denotes
iso-orientation surround along the RF preferred axis; OS is orthogonal-orientation
surround in the direction perpendicular to the RF preferred axis; and FS denotes
far surround.

Because the full surround is an isotropic region (i.e. stimulus occupying the en-
tire surrounding region rather than isolated flanking lines [152]) it can be modelled
as the average response of a circular window around the cell’s RF centre. This sur-
round is inhibitory when it shares the same orientation as the centre and strongly
facilitatory when its orientation is perpendicular to the centre [152]. Thus, we
defined the full surround LS as

LS(x,,0) = AL~ (6, ) (CREx, 1,00 + 1) {6, ) (CRO, 3, 0) ), (B7)

where 01 =60+ 7, uis the circular average kernel and 1 determines the strength of
orthogonal facilitation in comparison to the iso inhibition. The former facilitation
is reported to be stronger than the later inhibition [152], therefore A must be larger
than one.

The iso-orientation surround, IS, extends to a distance two to four times larger
than the RF size [71]. Within this region elements parallel to the RF preferred
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orientation are facilitatory while orthogonal ones are inhibitory [71, 152], therefore,
we modelled IS as
18(x,1,0) = (6,)(CR(x,,0)  E(@1,0)| ¢ (x, y) (CR(x, 1,0.1) % E(0.,0)),
(5.8)
where E is an elliptical Gaussian function elongated in the direction 6, defined as
follows:
E(x’ Y, 0x, UJ/r 6) = ei(aXZ72bxy+cy2) » with

B cos?0 sin%0 sin20 sin26 _ sin6? cosH?

202 20% 402 402’ ‘= 20% 203
We set gy, = 0.10 and o = 30 corresponding to physiological measurements [71].
The orthogonal-orientation surround, OS, projects to a distance half of the
iso-orientation surround [71]. In the orthogonal-surround elements parallel to the
RF preferred orientation are inhibitory while perpendicular ones are facilitatory [71,
152], thus, we modelled OS as

08(x,3,0) = (x,7)(CR(x,1,0.1) * E(04,0.1)) -
(5.9)
£, )(CR(x,7,0) * E(01,601))

The far surround could extend to regions up to 12.5° of visual angle [208] which
is approximately equivalent to 673 pixels when viewed from 100cm in a standard
monitor. Consequently the feedforward and horizontal connections in V1 that
mediate interactions between the RF and its near surround are too slow to account
for the fast onset of far surround. Due to this, it has been suggested that far surround
is operated through a different mechanism via inter-areal feedback connections [14,
209]. We speculate that parts of these inter-areal connections come from spatial
scale layers in V1 [115], and assume their influence to be facilitatory when image
elements in this region share the same orientation as the centre [126]. Therefore,
we defined FS as

4
FS(x,y,0)={"x, 0 Y CRS(+’%9) (5.10)
§=2

where s is the index of the corresponding spatial frequency scale. This processing
is analogous to the multi-scale processing common to both visual sciences and
computer vision, with the distinction that we account for both contrast and distance,
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since surround modulation has been reported to be stronger in the near than in the
far regions [14].

5.2.3 Visual area two (V2)

Visual processing becomes more global along the brain’s ventral pathway, where
neurons in each consecutive area seem to pool information from increasingly
larger spatial regions (i.e. exponentially larger receptive fields). This allow them to
process increasingly complex image features, such as curved arcs, angles, and line
intersections and eventually shapes and objects. The next interconnected adjacent
area to V1 is V2, where many neurons have been reported to respond to curvatures
and extended arcs [239]. It has been proposed that RFs in area V2 extract curvature
information by pooling signals from V1 using a centre-surround mechanism in
the direction orthogonal to the V1 orientations [188, 239]. In order to model this,
first, we defined the V1 response, V1R, as the most activated DO orientation. This
operation is assumed to be realised by complex cells pooling the maximum value of
DO cells [219], modelled as

V1R(x,y) = argmax (DO, (x, y,0)). (5.11)
0¢[0,27)

The V2 RFs show similar contrast-variant surround modulation as those of
V1 [208]. Therefore, we modelled the V2 response, V2R, through a Difference-of-
Gaussians (DoG) as

V2R (x,) = V1R g(x,y) * E(0x,01) —vc(x, ) V1R g(x,y) * E(50,01)
(5.12)

where v is the contrast of V1R computed by its local standard deviation, the index
0 at V1Ry shows the preferred orientation of that RE Cortical RFs increase their
diameters systematically by approximately a factor of three from lower to higher
areas [239]. Therefore, we set the size of V2 RE o4, to three times the size of a V1 RE
In Eq. 5.12 surround is five times larger than the centre according to physiological
findings [208].

5.2.4 Feedback connections

In the primate visual system there are generally massive feedback connections
from higher visual areas into lower ones [14]. For instance, the majority of the LGN
inputs are feedback connections from other areas of the brain, in particular the
visual cortex. The functional role of this cortical feedback in visual processing is
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still poorly understood, although new evidence shows that these projections are
organised into parallel streams and their effects include tune-sharpening, gain-
modulation and various adjustments to behavioural demands [37].

In our model we accounted for only a fraction of the feedback from V2 to V1
corresponding to the well established fact that global shape influences local con-
tours [152]. We simulated this global shape by averaging the V2 outputs of all
channels and sending it as feedback to V1. This feedback is processed only one time
same as all other inputs to V1. The final edge map is computed as a sum of all V2
output channels:

edge(x,y)=) V2R.(x,y), with ce{lu,rg,ybrg,yb,feedback}.
[
(5.13)

5.3 Experiments and results

We tested our model - termed Surround-modulation Edge Detection (SED)-on three
datasets!: (i) the Berkeley Segmentation Dataset and Benchmark (BSDS) [15, 165],
(ii) the Multi-cue Boundary Detection Dataset (MBDD) [167], and (iii) the Contour
Image Database (CID) [107]. Each image of all three datasets is supplemented with
a ground truth that is created from manually-drawn edges by number of human
subjects. We evaluated our algorithm in the standard precision-recall curve based
on its harmonic mean (referred to as F-measure) on three criteria: optimal scale for
the entire dataset (ODS) or per image (OIS) and average precision (AP). Naturally,
ODS is the most representative of all to measure the performance since it uses
a fixed threshold for all images in the dataset [15]. The results we report in this
chapter were obtained with a fixed set of parameters (see details in Section 5.2) for
all datasets much in the same way as the human visual system.

5.3.1 Berkeley Segmentation Dataset and Benchmark (BSDS)

The BSDS [15, 165] contains two sets of colour images BSDS300 (100 test images
and 200 training images) and BSDS500 (200 test images). This dataset contains a

wide range of natural and man-made objects. Size of each image is 481 x 321 pixels.

Arguably BSDS is considered as the benchmark dataset for boundary detection in
the field of computer vision.
Table 5.1 compares the results of our model to several other state-of-the-art

edge detection algorithms that have also reported theirs results on the BSDS dataset.

IThe source code and all the experimental materials are available at https://github.com/
ArashAkbarinia/BoundaryDetection.
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From this table we can observe that in BSDS500 our model improves the ODS of
methods driven by low-level and biological features by 4%. This improvement is 3%
in BSDS300. It must be noted that deep-learning methods often use BSDS300 as
the training set for their learning procedure and therefore they do not report their
results on this fragment of BSDS.

BSDS300 BSDS500
Method oDs | oIS | AP || ODS | OIS | AP
Human 0.79 | 0.79 - 0.80 | 0.80 -
Canny [41] | 058 | 0.62 | 0.58 || 0.60 | 0.63 | 0.58
.| Mean shift [50] | 0.63 | 0.66 | 0.54 || 0.64 | 0.68 | 0.56
£ | Felz-Hutt [70] | 0.58 | 0.62 | 0.53 || 0.61 | 0.64 | 0.56
g | Normalised [52] | 0.62 | 0.66 | 0.43 || 0.64 | 0.68 | 0.45

% Cuts
2 | PC/BC [216]| 061 | - - - - -
i g CcoO [247]| 0.64 | 0.66 | 0.65 || 0.64 | 0.68 | 0.64
2= | Ma 246]| 062 | - | - | o064 | - | -
& dPREEN [56] | 0.65 | - | - - - | -
SCO [244]| 0.66 | 0.68 | 0.70 || 0.67 | 0.71 | 0.71
o | BEL 60] | 0.65 | - - || 061 | - -
£ | gPb (15] | 0.70 | 0.72 | 0.66 || 0.71 | 0.74 | 0.65
%0 g DeepNets [138]| - - - 0.74 | 0.76 | 0.76
% g DeepEdge [27] - - - 0.75 | 0.75 | 0.80
g = | DeepContour [204] - - - 0.76 | 0.77 | 0.80
3 § HFL (28] | - - — || 077 | 0.79 | 0.80
o HED [242]| - - - |/ 0.78 | 0.80 | 0.83
SED (Proposed) 069 | 0.71 | 0.71 || 0.71 | 0.74 | 0.74

Table 5.1 — Results of several edge detection algorithms on the BSDS300 and
BSDS500 [15, 165].

In order to study the robustness of different edge detection algorithms in achro-
matic scenes, we conducted a further experiment on the grey-scale version of BSDS
images. The results of this experiment for our model along with five other algo-
rithms driven by low-level features (whose source code were publicly available) are
presented in Table 5.2. We can observe similar patterns as chromatic images: the
proposed model offers a 3% ODS enhancement in both BSDS300 and BSDS500. A
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similar improvement can be observed for measures of OIS and AP.

BSDS300 BSDS500
Method ODS | OIS | AP ODS | OIS | AP
Canny [41] | 0.58 | 0.62 | 0.53 || 0.60 | 0.63 | 0.54
PC/BC [216]| 0.61 | 0.63 | 0.40 || 0.64 | 0.65 | 0.41
CO [247]| 0.60 | 0.63 | 0.60 || 0.61 | 0.64 | 0.61
MCI [246]| 0.62 | 0.64 | 0.55 || 0.64 | 0.66 | 0.56
SCO [244]| 0.62 | 0.64 | 0.64 || 0.63 | 0.67 | 0.66
SED (Proposed) 0.65 | 0.67 | 0.68 || 0.67 | 0.70 | 0.70

Table 5.2 — Results of several edge detection algorithms on the grey-scale images of
BSDS300 and BSDS500 [15, 165].

5.3.2 Multi-cue Boundary Detection Dataset (MBDD)

The MBDD [167] is composed of short binocular video sequences in real world
environments. This dataset contains challenging scenes for boundary detection by

framing a few dominant objects in each shot under a large variety of appearances.

Size of each image is 1280 x 720 pixels. The dataset contains 100 scenes and offers
two sets of hand-annotations: one for object boundaries and another for lower-level
edges.

o

Original Image Object Boundaries Low-level Edges

Figure 5.2 — Comparison of object boundaries and low-level edges annotations of
MBDD [167].

We have reported the results of our proposed model along with five algorithms
driven by low-level features for both types of annotations in Table 5.3. We can
observe that SED offers a 3% ODS improvement in case of object boundaries and
2% for lower-level edges. We believe that the object boundaries annotation is more
relevant for the problem we are addressing in this chapter since the low-level edges
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annotation contains many uninformative line segments from small objects (e.g.
leaves and grass) as it can be observed from an exemplary image illustrated in

Figure 5.2.
Object Boundaries Low-level Edges
Method ODS | OIS | AP ODS | OIS | AP
Canny [41] | 0.61 | 0.65 | 0.54 0.75 | 0.78 | 0.76
PC/BC (216]| 0.69 | 0.70 | 0.43 || 0.80 | 0.81 | 0.70
CcO (247]| 0.64 | 0.67 | 0.66 0.77 | 0.80 | 0.83
MCI [246]| 0.69 | 0.70 | 0.70 0.77 | 0.77 | 0.66
SCO (244]| 0.68 | 0.71 | 0.72 || 0.79 | 0.82 | 0.86
SED (Proposed) 0.72 | 0.74 | 0.77 || 0.81 | 0.83 | 0.86

Table 5.3 — Results of several edge detection algorithms on the MBDD [167], for two
ground truth annotations of object boundaries and low level edges.

Similar to BSDS, in order to study the role of colour on each algorithm, we
performed an experiment on the grey-scale images of MBDD. Table 5.4 shows the
results of this experiment. SED still performs better that other algorithms by 1%
ODS improvement in both types of annotations. A surprising detail emerges when
the results of CO or SCO for colour images is compared to the grey-scale ones; both
algorithms perform slightly better in absence of colour (see Tables 5.3 and 5.4).
This suggests unbalanced colour opponency require more careful implementation.
We speculate this might also be the reason that our improvement in the grey-scale
images of MBDD falls to minimal. This issue can be addressed in future studies.

Object Boundaries Low-level Edges

Method ODS | OIS | AP || ODS | OIS | AP

Canny [41] | 0.60 | 0.65 | 0.53 0.74 | 0.78 | 0.76
PC/BC [216]| 0.68 | 0.69 | 0.43 || 0.79 | 0.82 | 0.69
CcO (247]| 0.65 | 0.67 | 0.67 0.77 | 0.80 | 0.83
MCI [246]| 0.69 | 0.70 | 0.67 0.73 | 0.73 | 0.59
SCO [244]]| 0.69 | 0.71 | 0.73 || 0.79 | 0.82 | 0.83
SED (Proposed) 0.70 | 0.71 | 0.74 || 0.80 | 0.82 | 0.86

Table 5.4 — Results of several edge detection algorithms on the grey-scale images of
MBDD [167], for two ground truths of object boundaries and low level edges.
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5.3.3 Contour Image Database (CID)

The CID [107] contains 40 grey-scale images of natural scenes and animal wildlife.
Size of each image is 512 x 512 pixels. Table 5.5 compares the results of SED to five
algorithms driven by low-level features on this dataset. We can observe that SED
exceeds other methods by 5% ODS improvement.

CID
Method ODS | OIS | AP
Canny [41] 0.56 | 0.64 | 0.57
PC/BC [216] 0.58 | 0.62 | 0.42
cO [247] 0.55 | 0.63 | 0.57
MCI [246] 0.60 | 0.63 | 0.53
SCO [244] 0.58 | 0.64 | 0.61
SED (Proposed) | 0.65 | 0.69 | 0.68

Table 5.5 — Results of six edge detection algorithms on the CID dataset [107].

5.3.4 Component analysis

In our algorithm we have modelled different areas and aspects of the visual cor-
tex. In order to investigate the contribution of each component of our model, we
conducted four additional experiments on the BSDS dataset:

* Gaussian Derivative - In this scenario, we accounted neither for the surround
modulation in V1, nor for the V2 pooling and feedback. Essentially only
convolving the single-opponent cells with the first derivative of Gaussian
function similar to CO [247].

* Only V1 Surround - In this case, we excluded V2 pooling and feedback. We
only included full, far, iso- and orthogonal-orientation surround modulation
for V1 RFs.

¢ No V2 Feedback - In this scenario, we excluded the shape feedback sent from
areaV2toVl, ie ce{lu,rg,yb,rg', yb'}inEq. 5.13.

¢ No Far surround — In this case, we did not account for far surround modula-
tion, i.e. FS=01in Eq. 5.6.

The precision-recall curves of these experiments for BSDS300 and BSDS500 are
shown in Figure 5.4. Edge outputs of different components of our algorithm along
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with the full model on a few exemplary images are illustrated in Figure 5.5.

0.63 0.62 0.76
0.71 0.74 0.78
0.57 0.60 0.70
0.64 0.66 0.73
0.61 0.72 0.79
0.77 0.80 0.86
0.68 0.69 0.75
Original Ground Truth CO [247] SCO [244] SED

Figure 5.3 — Edge detection results of three biologically-inspired methods. The F-
measure is indicated on the right bottom corner. The first two rows are images from
BSDS300, the third and forth from BSDS500, the sixth and seventh from MBDD, and
the last row from CID.
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5.4 Discussion

Results of conducted experiments on three benchmark datasets of edge detection,
i.e. BSDS, MBDD and CID, demonstrate a systematic quantitative improvement
(approximately 4%) for SED over state-of-the-art. Our proposed model outperforms
other methods driven by low-level features and biologically-inspired algorithms in
all three criteria of ODS, OIS and AP (see Tables 5.1, 5.3 and 5.5). This improvement
is also qualitatively pronounced in Figure 5.3. On the one hand, our model shows
greater robustness in textural areas in comparison to CO [247], on the other hand,
thanks to its surround modulation, SED performs better at detecting continuous
lines, compared to SCO [244]. For instance, in the first row of Figure 5.3, it is evident
that CO is strongly troubled with the textural information originating from the
background vegetation, however SED successfully suppresses a large amount of
them. At the same time, it is apparent that SCO blends the contours of the present
bird with the straws, however SED correctly extracts the boundaries of the bird from
the grassland. We can observe similar patterns in the rest of the pictures of the
Figure 5.3.

Our improvements over state-of-the-art originates from a combination of differ-
ent reasons corresponding to each component of the proposed model. Below, we
have discussed each of them separately.
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Figure 5.4 — Precision-recall curves of different components of our model on the
BSDS300 (left) and BSD500 (right). In the legends the ODS F-measures are indicated.
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5.4.1 Surround modulation

The precision-recall curves in Figure 5.4 shows that excluding surround modulation
and the V2 module all together drops the ODS F-measure to 0.63 (black curves in
both BSDS300 and BSDS500). This is in full agreement with the results of CO [247]
which is essentially the same as our model in the absence of both V1 surround mod-
ulation and the V2 module. Including surround modulation in its entirety (i.e. full,
far, iso- and orthogonal-orientation regions) contributes to a significant enhance-
ment of results by boosting the ODS F-measure to 0.66 and 0.67 in BSDS300 and
BSDS500, respectively (pink curves). This is clearly an indication that surrounding
regions play a crucial role in the process of edge detection. This is to be expected as
psychophysical experiments have demonstrated similar phenomenon in our visual
perception [152].

Qualitative comparison of the second and third columns of Figure 5.5 suggests
that although V1 surround modulation does not contribute to texture suppression,
it strengthens continues contours (we have marked a few examples by the red
and blue ovals, for instance the exterior borders of bricks in the last row are more
continuous in the “Only V1 Surround” column in comparison to the “Gaussian
Derivative” one, at the same time the intermedial borders are correctly suppressed
in “Only V1 Surround” as a result of accounting for iso- and orthogonal-orientation
surround modulation).

5.4.2 V2 module

Comparison of “Only V1 Surround” and “No V2 Feedback” pictures in Figure 5.5 re-
veals that the V2 module strongly assist the process of eliminating textural and noisy
patches. This is consistent with physiological findings that suggest texture statistics
might be encoded in V2 [83, 145]. The robustness of our model to noisy scenes and
undesired background textures could be explained by the fact that V2 RFs are large
and therefore suppress small discontinuities across neighbouring pixels. Although
V2 centre-surround suppression is beneficial in general with 1% (BSDS300) and 2%
(BSDS500) improvements in F-measures (the red curves versus the pink ones in
Figure 5.4), it causes occasional over-smoothing and consequently in high recalls
the precisions of the pink curves are higher than the red ones. We postulate that this
problem can partially be addressed by accounting for a mechanism similar to the
visual cortex where suppression can turn to facilitation at low contrast levels [14].
Modelling this phenomenon is onerous since the threshold between suppression
and facilitation is cell specific and there is no universal contrast level or surround
stimulus size that triggers facilitation across the entire cell population [14]. Further-
more, neural recordings of macaque demonstrates that the activation level of V2
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Original Image Gaussian Derivative Only V1 Surround No V2 Feedback No Far Surround Full Model

Figure 5.5 — Evaluation of the different components of SED. The images show the
result of our full model on one exemplary image along with the four experiments
we conducted. F-measures are on the right bottom corner of images.

neurons are higher when exposed to naturalistic texture in comparison to spectrally
matched noise [83]. This feature was not present among V1 neurons. This indicates
a more complex V2 model is required to treat noise and texture distinctively. We
propose this as a line of future work.

5.4.3 Shape feedback

Excluding the global shape feedback from our model lowers the ODS F-measure by
2% (compare the green and red curves in Figure 5.4). It is difficult to appreciate the
influence of this feedback connection qualitatively in Figure 5.5, however a close
comparison of the green ovals in the “No V2 Feedback” and “Full Model” columns
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suggests that shape feedback re-enforce the true edges (the intensity of pixels along
edges are higher in “Full Model” in comparison to their corresponding pairs in “No
V2 Feedback”). This is in line with previously stabilised neurophysiological findings
that show one of the functional roles of feedback connections is amplification and
focus of neuronal activities in subsequent lower areas [124].

5.4.4 Far surround

The precision-recall curves in Figure 5.4 shows that excluding far surround mod-
ulation reduces the ODS F-measure to 0.66 and 0.69 in BSDS300 and BSDS500
respectively (blue curves), which still is better than other non-learning state-of-the-
art algorithms. A qualitative comparison of “No Far Surround” and “Full Model”
results in Figure 5.5 reveals that far surround appears to contribute in enhancing
continuous edges while suppressing broken ones (e.g. the contours marked with
green ovals in “No Far Surround” contain more abrupt alternate right and left turns
in comparison to the “Full Model”, at the same time “No Far Surround” contains
larger number of line fragments). Quantitatively, we observe a similar issue in
far surround modulation to the V2 surround modulation: in high recalls “No Far
Surround” has a higher precision than “Full Model” (blue versus green curves in
Figure 5.4). Resolving this is a subject for further investigation.

5.4.5 Computational Complexity

In principle, our model ought to be computationally very low cost since its build-
ing blocks are simple Gaussian convolutions. With this in mind, we reported the
average computational time of six algorithms on the BSDS500 in Table 5.6 and
to our surprise, the Matlab implementation of SED is rather slow. After a careful
analysis of the different components of our model, we discovered that the imfilter
function of Matlab is substantially slower when an image is convolved with an
oriented elliptical Gaussian kernel across right angles. This is presumably due to the
fact that imfilter is optimised for separable two-dimensional kernels and behaves
significantly slower for non-separable ones. This turned out to be an important
issue for our V2 RF surround modulation which uses a kernel of size 157 x 157 pixels
computed for twelve orientations. Since OpenCV filter2D does not suffer from this
problem, the C++ implementation of our model offers real-time processing. It is
worth mentioning that we did not take advantage of any GPU programming in
the C++ implementation. We believe our model can greatly benefit from the GPU
parallel architecture due to the fact that its basic units are matrix operations.
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Canny| PC/BC| CO | MCI | SCO SED
[41] [216] [247]| [246] | [244] | (Proposed)
Time(s) | 0.54 | > 1800| 0.73 | 21.00| 2.27 | 7.45 (0.60)*

Table 5.6 — Average computational time (in seconds) of six edge detection algo-
rithms driven by low-level features on the BSDS500 under the Matlab framework
with Intel(R) Xeon(R) CPU E5-1620 v2 @ 3.70GHz. *C++ Implementation of our
algorithm.

5.5 Conclusion

In this chapter, we presented a biologically-inspired edge detection model grounded
on physiological findings of the visual cortex and psychophysical knowledge of
visual perception. Our main contributions can be summarised as follows: (i)
modelling a contrast-dependant surround modulation of V1 receptive fields by
accounting for full, far, iso- and orthogonal-orientation surround; (ii) introducing
a V2 centre-surround mechanism to pool V1 signals in their perpendicular orien-
tations; and (iii) accounting for shape feedback connections from V2 to V1. We
quantitatively compared the proposed model to current state-of-the-art algorithms
on three benchmark datasets (on both colour and grey scale images) and our re-
sults show a significant improvement compared to the other non-learning and
biologically-inspired models while being competitive to the learning ones. Detailed
analysis of different components of our model suggest that V1 surround modu-
lation strengthen edges and continues lines while V2 module contributes to the
suppression of undesired textural elements.

Within our framework we treat different surrounding regions disjointly as in-
dividual entities with no interactions between them. There are two limitations
with this simplification. Firstly, psychophysical studies show that the non-linear
interactions between surround and central regions depend on the configurations
of both inducers and targets [152]. Secondly, it is well established that perception
of shape is significantly influenced by points where multiple edges meet, e.g. cor-
ners [139]. Consequently, in a more comprehensive model these short and long
interactions must be unified under one mechanism by considering configurational
settings of full, far, iso- and orthogonal-orientation surrounds. The details of such
combinations are still to be investigated. In addition to this, we can further improve
our model by accounting for the complex shape processing occurring in V4, for
example, by concentric summation of V2 signals [239].
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Conclusions

Recalling from one of our computer vision master lectures, a teacher once said
half-jokingly “if you find a solution to the problem of thresholds, you have solved
computer vision”. Although, naturally this statement is exaggerated, however, we
believe that the core concept carries an important message. Most computer vision
and image processing algorithms (including those of convolutional neural networks)
consist of a list of parameters which tend to be hard-coded before runtime. The
values of these parameters are either established manually or learnt through an
optimisation process. At the same time, we are aware that it is rather cumbersome
(if not impossible) to set a parameter with a fix value that is optimum for all images
and scenarios. Therefore, within the community there is a general consensus [47]
that a greater amount of effort is required in order to dynamically adapt algorithms’
parameters to image or even pixel content. Correspondingly, in this dissertation, we
have strived to step towards this direction by proposing more dynamic procedures
through consideration of surrounding region and in particular according to its local
contrast. There is abundant evidence suggesting that contrast plays a crucial role in
biological vision to the extent that the human visual system is much more sensitive
to contrast than to absolute luminance [21]. Perhaps, it is reasonable to imagine
that a similar approach could be of benefit to machine vision as well.

6.1 Summary

We started this doctorate dissertation by discussing the importance of a scene’s
illuminant in visual perception and image processing. We conducted extensive
experiments on a large set of reflectance spectra (gathered from surfaces of real
world objects). We investigated their tristimulus values under the illumination of
many natural and artificial lights. Based on the results obtained, we reached the
conclusion that metameric pairs are infrequent in real world scenarios. Therefore, it
can be argued that they doe not pose any hindering issue to other high-level visual
tasks, such as, the phenomenon of colour constancy.

We continued with the topic of scene’s illuminant by proposing a biologically-
inspired colour constancy model grounded on known properties of neurons in the
visual cortex. The framework we developed is constructed over a simple Difference-
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of-Gaussians (DoG) kernel with subtle yet influential novelties in order to dynamise
the DoG computations: (i) the width of the narrower Gaussian (centre) varies
between ¢ and 20 according to the local contrast of the pixel; (ii) the height of the
broader Gaussian (surround) depends on the contrast of the region. Essentially, the
main idea is to adjust the band-pass DoG filter according to the local contrast of the
centre and surround. Intuitively, in our formulation, the convolutional kernel shifts
towards a high-pass filter when applied over specularities and edges resulting in
the enhancement of informative pixels, whereas it tends towards a low-pass filter in
homogeneous areas in order to represent surround variation.

The next stage of our proposed colour constancy model (and many other models
driven by low-level features) is to pool relevant information from the computed
feature map (in this case the output of DoG convolution). Once again, inspired
by the contrast variability of biological neurons, we proposed a contrast-variant-
pooling (CVP) mechanism in which a higher percentage of pixels are pooled at low
contrast and a smaller percentage at high contrast. This dynamic formulation allows
for more informative peaks to be pooled while normalising outliers and suppressing
irrelevant detail. We examined the efficiency of our proposed colour constancy
model on four benchmark datasets of single- and multi-illuminant scenes. Our
results significantly improved over methods driven by low-level features while being
competitive compared to the learning solutions.

We carried on with our study of our colour vision and specifically investigated
one of its most common applications, i.e. colour naming. We demonstrated that it
is possible to capture each colour term through an ellipsoid — a parsimonious geo-
metrical shape. The results of experiments conducted on two benchmark datasets
demonstrated that our model can explain colour names in both real world images
and psychophysical data. We further argued that the simplicity of the proposed
ellipsoids offers a number of benefits, such as: (i) a simple learning subroutine, (ii) a
straightforward procedure to add extra colour terms, and (iii) a feasible framework
to adapt those ellipsoids to image or pixel contents.

In the last part of this dissertation, we enquired into the impact of surround
modulation on edge detection because it is well recognised that perception of colour
and form are closely entangled. In our proposed model, four types of surrounds
are accounted for: (i) full-surround - an isotropical region around the receptive
field (pixel), (ii) iso-orientation-surround — an elongated narrow region along the
preferred orientation of a receptive field, (iii) orthogonal-orientation-surround —
an elongated narrow region perpendicular to the main axis, and (iv) far-surround
- corresponding to the inter-areal feedback connections. Similar to the model of
colour constancy we proposed, all surround modulations in our edge detection
model are also contrast-dependent, i.e. more facilitatory at low contrast. Intuitively,
the objective of these surround modulations is to enhance collinear edges in order
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to form continuous lines, while suppressing undesired textural and noisy areas.
We further showed the benefits of two different higher level operations: (i) pooling
edges over a large neighbourhood in a direction orthogonal to their preferred orien-
tation (similar to the receptive field of cells at area V2), and (ii) feeding the global
shape back to the area V1. We evaluated the proposed edge detection model on three
benchmark datasets and our results showed a significant overall improvement in
comparison to other non-learning methods.

6.2 Contribution

The contributions made by biologically-inspired solutions such as those presented
throughout this dissertation are twofold:. On the one hand, engineering vision
applications can boost their performance and push forward the state-of-the-art
by incorporating the large body of knowledge gathered in physiological and psy-
chophysical studies. On the other hand, theoretical models of human visual system
can be tested under controlled or realistic conditions, offering a feedback framework
for scientific advancements.

To make a concrete example, the proposed colour constancy model surpasses
state-of-the-art, including the the results obtains by machine learning solutions,
in one benchmark dataset, while at the same time computationally explaining
the perceptual findings of Brown et al. [38]. This suggests that colour constancy
does not depend merely on the average colour of the surround, but also on the
distribution of surround colours about the mean. Although further experiments
are required, this model potentially allow us to close the missing gap in the circle
of “brains”, “minds” and “machines” with respect to the role of contrast in the
phenomenon of colour constancy.

Broadly speaking, it is believed that the more we learn about the properties of the
human visual system the better we can explain visual behaviour and consequently
more efficiently transfer them into practical applications. Therefore, within current
limitations (both in knowledge and resources) we have tried to keep our modelling
decisions as close as possible to what we know about the physiology and psychology
of our visual system. This is achieved in three main respects:

1. The architecture of the proposed models reflect the low-level features that
are common to mammalian cortical architecture and emerged after millions
of years of evolution (i.e. are not ad-hoc or dataset-dependant).

2. The parameters of the proposed models are kept identical in all the experi-
ments we conducted across the different datasets, which is a feature of how
the human visual system operates.
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3. Our low-level models exclude supervised learning from large datasets, which
is also a feature of how biological systems operate (their low-level features
learning tends to be largely unsupervised).

6.3 Future work

There are plenty of research opportunities (besides those that we mentioned at
the end of each chapter) which can be pursued following this dissertation. The
models of surround modulation we have proposed only incorporate a small fraction
of what we know physiologically and psychophysically about the human visual
system. We concentrated primarily on the role of contrast and to a lesser extent
on the orientation selectivity of surround modulation. However, there are other
parameters (e.g. phase, spatial frequency, etc.) that must be accounted for in order
to achieve a complete surround modulation.

For instance, let us consider the envelope of receptive fields in the primary
visual cortex (V1). In our colour constancy algorithm we modelled a population of
double-opponent cells through DoG, which is an even symmetric function. In our
edge detection algorithm we modelled another population with the first derivative
of Gaussian, which is an odd symmetric function. There is physiological evidence
for either type, therefore, a framework must be constructed to combine both types
faithfully. In this way the phase sensitivity of the surround can be modelled more
appropriately. Furthermore, this might open the door for symmetry detection [178].

Gaetano Kanizsa, a prominent psychologist of the twentieth century, once
wrote [133]:

“... space and colour are not distinct elements but, rather, are interde-
pendent aspects of a unitary process of perceptual organisation.”

To the best of our knowledge, there is no work to computationally model this
strong coupling of colour and form. This is a testimony to the strenuous challenges
involved. In this dissertation, we addressed each separately and our models lack
the adjoining component. We believe an attempt towards this direction might
result in finding a common solution for the related phenomena known as “colour
appearance” (which includes colour induction, colour constancy, naming, efc.).
Last but not least, the essence of the proposed contrast-dependent surround
modulation is task irrelevant, and therefore its implications can be extended to a
substantially wider range of applications. This might appear as an extremely bold
claim, however, we believe it is worth examining contrast-dependent Gaussian en-
velopes for any arbitrary image processing algorithm that uses constant Gaussians.
Along the same line, our contrast-variant-pooling mechanism is a suitable candi-
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date to address the shortcomings of the typical max-pooling operator. Therefore,
it certainly is interesting to investigate whether our contrast-variant-pooling can
improve convolutional neural networks.
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