UNB

Universitat Autonoma de Barcelona

ON THE STRATIFICATION OF SMOOTH
PLANE CURVES BY AUTOMORPHISM
GROUPS

Eslam Essam Ebrahim Farag

ADVERTIMENT. L’accés als continguts d’aquesta tesi doctoral i la seva utilitzacié ha de respectar els drets de la
persona autora. Pot ser utilitzada per a consulta o estudi personal, aixi com en activitats 0 materials d’investigaci6 i
docencia en els termes establerts a I'art. 32 del Text Refos de la Llei de Propietat Intel-lectual (RDL 1/1996). Per altres
utilitzacions es requereix 'autoritzacié prévia i expressa de la persona autora. En qualsevol cas, en la utilitzacié dels
seus continguts caldra indicar de forma clara el nom i cognoms de la persona autora i el titol de la tesi doctoral. No
s’autoritza la seva reproduccio o altres formes d’explotacié efectuades amb finalitats de lucre ni la seva comunicacio
publica des d’un lloc alié al servei TDX. Tampoc s’autoritza la presentacio del seu contingut en una finestra o marc alie
a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i indexs.

ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilizacion debe respetar los derechos de la
persona autora. Puede ser utilizada para consulta o estudio personal, asi como en actividades o materiales de
investigacion y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad
Intelectual (RDL 1/1996). Para otros usos se requiere la autorizacidén previa y expresa de la persona autora. En
cualquier caso, en la utilizaciéon de sus contenidos se deberé indicar de forma clara el nombre y apellidos de la persona
autora y el titulo de la tesis doctoral. No se autoriza su reproduccion u otras formas de explotacion efectuadas con fines
lucrativos ni su comunicacién publica desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentacion de
su contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de
la tesis como a sus resimenes e indices.

WARNING. The access to the contents of this doctoral thesis and its use must respect the rights of the author. It can
be used for reference or private study, as well as research and learning activities or materials in the terms established
by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and previous authorization of the
author is required for any other uses. In any case, when using its content, full name of the author and title of the thesis
must be clearly indicated. Reproduction or other forms of for profit use or public communication from outside TDX
service is not allowed. Presentation of its content in a window or frame external to TDX (framing) is not authorized either.
These rights affect both the content of the thesis and its abstracts and indexes.




ON THE STRATIFICATION OF SMOOTH
PLANE CURVES BY AUTOMORPHISM
GROUPS

by
Eslam Essam Ebrahim Farag

(Eslam Badr)

Submitted to
Department of Mathematics

Universitat Autonoma de Barcelona

UNB

Universitat Autonoma
de Barcelona

In partial fulfillment of the requirements for the degree of Philosophiae

Doctor in Mathematics

Supervisor: Dr. Francesc Bars Cortina

Barcelona, Spain

2017






CERTIFICO que aquesta memoria ha estat realitzada per Eslam Essam Ebrahim Farag sota la
direcci6 del Dr. Francesc Bars Cortina.

Bellaterra, 12 Juliol 2017

Signature: Dr. Francesc Bars Cortina






iii

To my beloved ones,,,






CONTENTS

Introduction xiii
1 Automorphism groups of smooth plane curves: A Literature review 1
1.1 Linearity of isomorphism between smooth curves . . . . . ... ... ... .. 2
1.2 Finite subgroups of the 3-dimensional projective general linear group . . . . . 7
1.3 Galois points for smooth plane curves . . . . . . .. ... .. ... ...... 12
1.4 The classification for smooth plane curves: Harui’swork . . . ... ... ... 18
2 ES-Irreducibility vs “large” and “very large’” automorphisms groups 27
2.1 Cyclic automorphism subgroups of smooth plane curves . . . . . .. ... .. 29
2.2 Union decomposition of ME'(G) and “ES-irreducibility”. . . . . ... .. .. 38
2.3 Strata of smooth plane curves not ES-irreducible . . . . ... ... ... ... 45
2.4  On smooth plane curves, admitting “large” or “very large” automorphisms . . . 57
3 Fields of definition of non-singular plane models of smooth curves 83
3.1 Brauer-Severi varieties and Central simple algebras . . . . ... .. ... ... 85
3.2 The field of definition of a non-singular plane model . . . . .. .. ... ... 93
3.3 On twists of smooth plane curvesover k . . . . . . . ... ... ... ... .. 97
3.4 An explicit non-trivial Brauer-Severi variety . . . . . . .. ... ... ... .. 102
3.5 Twists of smooth plane curves with diagonal cyclic automorphism group . . . . 108
4 Arithmetic aspects of smooth plane curves of genus 6 113
4.1 Stratification by automorphism group of Mg . . . . ... L. 115
4.2 Final families: A canonical interpretation . . . . .. .. ... ... ...... 126
4.3 Complete and representative families . . . . . . . ... .. .. ... ...... 132
4.4 Twists of smooth plane curvesof genus 6 . . . . . . .. ... .. ... ..., 143



5 The field of moduli and fields of definition for smooth plane curves 157

5.1 The field of moduli and fields of definition . . . . . . ... ... ... ... .. 158
5.2 Débes-Emsalem: The canonical model for C/Aut(C) . . . . ... ... .. .. 164
5.3 On the field of moduli of smooth curves with odd signature . . . . . . ... .. 165
5.4 Smooth plane curves with diagonal automorphism group . . . ... ... ... 167
Appendices 191
A Types of cyclic groups of automorphisms for low degrees 193
B The algorithm on twist for smooth curves: Explicit examples 199
C Isomorphic geometric fibers for the stratum /QE Yz/5Z) 207

Bibliography 211

vi



NOTATIONS AND CONVENTIONS

By k we mean a fixed algebraic closure of the field k of characteristic p > 0. We use ¢, for a
fixed primitive n-th root of unity inside k& when the characteristic of k is coprime with 7.

A smooth curve C' over k is a projective, non-singular and geometrically irreducible curve
defined over k, and it will be denoted by C'/k or simply by C' when understood. As usual
C, Aut(C) and g denote C' ®;, k, the automorphism group of C, and its geometric genus,
respectively. We assume, once and for all, that g > 2.

The (coarse) moduli space of smooth curves over k of genus g is denoted by M,. For a
finite non-trivial group G, we set M, (G) for the stratum of k-isomorphism classes of smooth
curves C of genus g, where G is isomorphic to a subgroup of Aut(C'), and /f\;ng(G) for the
substratum of M, (G) representing smooth curves C such that G ~ Aut(C). In particular,
M,(G) € My(G) € M,

Let g > 3 be an integer. We use the symbol /\/lf ! for the substratum of M, representing

smooth plane curves over k of genus g. Similarly, we define the substrata
MPUG) == MP' 1 M, (G) and ME(G) = My(G) 0 MP.

Hence, MF'(G) C MPU(G) € M,y(G) C M,
The n — 1-dimensional projective space over an algebraically closed field L is denoted by
PZ’l, and its automorphism group is the projective general linear group PGL,,(L). A projective

linear transformation A = (a; ;) of P4 is often written as
[CLLlX + CLLQY -+ al,gZ . a2’1X + GQ’QY + (12’32 . (13’1X + a3,2Y + agng],

where {X,Y, Z} are the homogenous coordinates of P3.

Definition. By a smooth k-plane curve C over k we mean a smooth curve over k, that is

k-isomorphic to a non-singular plane model F(X,Y, Z) = 0 in PZ, where I5(X,Y, Z) is a
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homogenous polynomial of degree d > 4 with coefficients in k. In this case, we say that C'/k
admits a non-singular plane model of degree d over k.

We note that any other non-singular plane model for C' over k has the form
F,e(X,Y,Z) = 0 for some ¢ € PGL3(k), where F, 1o(X,Y,Z) := Fg(¢(X,Y,2)).
Moreover, the automorphism group Aut(F,_.15) of F,.z(X,Y, Z) = 0 is a finite subgroup of
PGL3(k), and it is equal to ¢ 'Aut(F5)¢. For ¢, € PGL3(k), the natural map of smooth

plane curves over k:

corresponds to
¢)—1 w—l
{Fa(X,Y, Z2) =0} — {Fy-15(X,Y, Z) =0} — {F(W),l@(X, Y,Z) =0}.

Given a smooth k-plane curve C over k, we say that C' admits a non-singular plane model
over L with k C L C k, if there exists ¢ € PGL3(k) with F,, .(X,Y, Z) € L[X,Y, Z], and
such that C' ®, L and F,_.5(X, Y, Z) = 0 are isomorphic over L.

If a smooth k-plane curve C' over k admits a non-singular plane model Fyw(X,Y,Z) =0

over k, then we call C' a smooth plane curve over k, and we identify, by an abuse of notation,

C with the plane model F,_.z(X,Y,Z) = 0 and Aut(C) with Aut(F, .5) as a fixed finite

subgroup of PGL3(k).

* The group of diagonal matrices in PGLj3(k) is denoted by D(k), and by T’x (), we mean
its subgroup of all 3 x 3 projective linear matrices of the shape [AX : Y : Z] for some

A € k. Symmetrically, one defines Ty (k) and T (k).

* The Hessian groups: The group Hessg of order 9 generated by 7' := [Y : Z : X| and
S = dlag(17 C37 C??)
The group Hess;g of order 18 generated by R := [X : Z : Y| and Hessy.

The group Hesssg of order 36 generated by Hess;g and



The group Hessy, of order 72 generated by Hesssg and UVU™!, where U :=
diag(1717<.3)'

The group Hessyi6 of order 216 generated by Hess7, and U.

Alternating groups: The group Aj of order 60 generated by E; := diag(1,¢2,(5), Fy :=

(X :Z:Y],and
1 1 1

Es:=11 G+¢G° G+&G!
L G+t G+
The group Ag of order 360 generated by F, E5, E3, and
1 141 1241
Ev=| 205 G+G* G+G |

2wy GG GG
where vy := (=14 +/=15) and 1 := (=1 — v/=15).

The Klein group: The group PSLy(F;) of order 168 generated by F; :=
diag(¢r, C2,¢), Fy:=[Y : Z : X], and

a v
v o od |,
d ad v

where @’ := (7 — (3, V' == — (7, and ¢ := (7 — (7.

The image of the natural inclusion GLy(k) < PGLs(k) given by

A ,

is denoted by GL; x (k). In the same way, we can define GLyy (k) and GLy, 4 (k).

Finally, the following subgroups of PGLs(k); Ss := ([X : Z : Y], [Z : X : Y]), Go3 :=
(X : Z:Y],[X : @Y : Z]),and Gos := ([Z : Y : X]|,[X : Y : (;Z]) are also

considered.
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We write Gal(L/k) for the Galois group of L/k, where L is an extension of k inside %,
and also we consider left actions. The Galois cohomology sets of a Gal(L/k)-group GG, where
L/k is Galois, are denoted by H'(Gal(L/k),G) with i € {0,1} respectively. For the partic-
ular case L = k and k is perfect, we use Gy, instead of Gal(k/k) and H'(k, G) instead of
H'(Gal(k/k),G).

We use the formal GAP library notations “GAP(n, m)” to refer the finite group of order n,
appearing in the mth position of the atlas for small finite groups [Gro].

The abbreviation “CSA” means a central simple algebra. The set of all Brauer equivalence
classes of CSAs over k is called the Brauer group of %k and is denoted by Br(k). The set of
all equivalence classes of CSAs of dimension n? over k modulo k-algebras isomorphisms is

denoted by Az". The n-torsion of Br(k) is Br(k)[n].
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INTRODUCTION

Smooth projective curves over a field £ with non-trivial automorphism group are always of
deep interest in the literature. For instance, in algebraic geometry, the structure of the auto-
morphism groups of smooth curves of genus g > 2 defined over an algebraically closed field
k is an old subject of research. One finds a lot of work trying to understand the different
strata M, (G) of the moduli space M, representing smooth curves C' of genus g which have
a finite non-trivial group G as a subgroup of automorphisms. We mention, for example, the
most famous universal bound, the so-called Hurwitz bound (see Theorem 1.1), given by Hur-
witz [Hur92] as an application of Riemann-Hurwitz formula, which turns out to be sharp for
infinitely many genera. Oikawa [Oik56, Theorem 1] and Arakawa [Ara0O, Theorem 3] gave
even better upper bounds when the automorphism group fixes (not necessarily pointwise) finite
subsets of points on the curve. These bounds become very useful in our study of smooth plane
curves. Also, we may ask about irreducibility of M (&) as a subset of the moduli space M,
or even about the existence of universal families to recover information on its points. In arith-
metic geometry, Fermat and Klein curves are quite well known examples of smooth curves
with non-trivial automorphism group, and so many interesting arithmetic properties, see for
example [CHW17, CM88, FGL16, HS13, JSW07, LMO08, MTO03, Sch86, Shi88] for Fermat
curves, and [BN10, Elk99, Far10, KFRO0O, Tze04] for Klein curves. On the other hand, the
term dessin d’enfant, which appears in a set of notes in Alexander Grothendieck’s Esquisse
d’un Programme written and circulated in 1984 but not published until 1997, received so much
attention from the mathematical community during the last 30 years. In this sense, complex
smooth curves (i.e. compact Riemann surfaces) with many automorphisms are also of arith-

metic interests, viewed as dessins over a number field, see [MR194, JW16].

Following the philosophy of Diophantine equations theory, the simplest case is to consider

smooth plane curves over a field £ of geometric genus g > 3. That is, smooth projective
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curves C' over k, which is k- isomorphic to the zero locus in P2 of a homogenous polynomial
F(X,Y,Z) € k[X,Y, Z] of degree d > 4 without singularities. In particular, the curve C' =
C ®y k has a g2-linear system that allows us to embed C <g—§> IP’%. By elementary algebraic
geometry (Riemann-Hurwitz formula, Bézout’s theorem,...etc), one can show that C' is non-
hyperelliptic of genus g = (d — 1)(d — 2)/2. Furthermore, the g2-linear system is unique up to
conjugation in Aut(IP’%) —= PGL;3(k), the 3-dimensional projective general linear group. Hence,
any two non-singular plane models (there are infinitely many) for C in IP’% are isomorphic via

a change of variables in PGL3(k), and the corresponding automorphism groups are conjugate.
That is to say Aut(C) can always be viewed as a finite subgroup of PGLj3(k), fixing a certain
non-singular plane model of C' in IP’%.

In the thesis, we study the stratification of smooth plane curves by their automorphism

groups, and we deal with both algebraic and arithmetic geometry aspects. We are going now to

detail a bit the study and the contributions resulted herein:

Automorphism groups and normal forms

The structure of the automorphism group is quite explicit for hyperelliptic curves ([BEMn87,
BGG93, Sha03, SSO7]). For non-hyperelliptic curves, it seems that we still have a lack of
knowledge about the structure, except for some special cases. For example, the cases of low
genus ([Bre0O, Hen76, KK86, KK90b, KK90a] and Hurwitz curves, i.e. smooth curves that
attains the Hurwitz bound. This in turns motivated us for more investigations in this direction,
and we restrict ourselves to the case of smooth plane curves of degree d > 4.

Consider the stratum /\/lf]D '(G) € M,, consisting of the k-isomorphism classes of smooth
plane curves C of genus g = 1(d — 1)(d — 2) > 3 such that Aut(C) contains a subgroup
isomorphic to GG. Similarly, we write ./T/l\_g/l (G) when Aut(C) is itself isomorphic to G, in
particular, W(G) c MI(G).

—_~—

The next two classical questions appears naturally for M (G);

Question A. Let G be a finite non-trivial group. Which are the genera g > 3 so that the strata

—_~—

MPUG) # 0, i.e. there exists a smooth plane curve C' over k of genus g with Aut(C) ~ G?
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For example, by the work of S. Crass in [Cra99, p.28], we know that J/\/l\gP/Z(Aﬁ) # () exactly for
g = 10, g = 55 and g = 406, where Ag is the alternating group of order 6.

Reversely, we might ask:

Question B. Fix an integer g > 3. How does it look like the stratification by non-trivial
automorphism groups of ML', representing the k-isomorphism classes of smooth plane curve
C of genus g? More precisely, to describe the possible list of the finite non-trivial groups G,
for which ./T/l\—gP/Z(G) # 0, and also to give families which helps to recover information on the

k-points of/T/l\g’/l(G) or even of MF(G).

P. Henn in [Hen76] and Komiya-Kuribayashi in [KK79], obtained the answer for Question B

when g = 3 (or equivalently, when d = 4) and k has zero characteristic, see Theorem 2.2.1.

Definition C. We define the associated normal forms to M (G) to be a finite set of homoge-
nous equations in X,Y,Z, such that any k-point C of /\/15 Y(G) is k-isomorphic to a non-

singular plane model Fs(X,Y,Z) = 0 through a specialization of the parameters in one of

these equations, and vice versa. Similarly, we define the associated normal forms to MF(G);
see Definition 2.4.
The recent work of Lercier-Ritzenthaler-Rovetta-Sisling in [LRRS14, §2] helps to under-

stand more (geometrically) the terminology of normal forms. In their language, the associated

normal forms to MF!(G) is a geometrically complete family over k for MF!(G).

In particular, for g = 3 the stratum MZE!(G) is always described by a single normal form,
whenever it is non-empty. In general, we have an obvious union decomposition for ./T/l\gp/l(G)
defined in the following way: Fix an injective representation GG < PGLs(k). Next, define
o(MPF(G)) to be the component of MZ*(G), consisting of all k-points C' € M} (G) such that
o(@) acting as a subgroup of automorphisms of some non-singular plane model F(X,Y, Z) =
0 for C' in P2. In the same way, one defines Q(W(G’)) when o(G) is the full automorphism

group; see Definition 2.2. It is easy to see that Q(K/TQP/Z(G)) is always given by a single normal

form, and moreover



where A denotes the set of all injective representations of G inside PGLs(k), modulo conju-
gation and [] is the equivalence class of p in A, see Lemma 2.2.4.

Using these notations, Henn, Komiya-Kuribayashi proved that any W(G} which is not
empty, coincides with Q(X/l\;{’/l (G)) for some o € Ag. By the work of Cornalba [Cor87] and
Catanese [Cat12], it becomes sensible to think about any non-empty stratum g(//\/l\?)P/l(G)) as a
subset of an irreducible set of smooth curves of genus ¢ = 3, admitting Galois covers with a
prescribed ramification data (see §2.2). Thus, it is probably an irreducible subset of the moduli
space M,.

In chapter 2, we aim to give a wide study for .X/l\—gP/Z(G ), where we restrict k to have charac-
teristic p = 0 or p > 2g + 1 to ensure that p does not divide the order of the full automorphism

group. For instance, we prove:

Theorem D. Fix an integer g = (d — 1)(d — 2)/2 with d > 4. We give a way to describe all
the pairs (0, G = Z/mZ), where Z.JmZ is the cyclic group of order m > 1 and Z./mZ <>
PGLs(k), such that o(MPN(G)) might be non-empty. Also, we associate a generic single
normal form for each pair (9, G = Z/mZ), where o(Z/mZ) acts on its members. In particular,

m should divide one of the integers: d(d — 1), d* — 3d + 3, (d — 1)? or d(d — 2).

Theorem E. Let C be a smooth plane curve of degree d > 5 over k. Suppose that there exists
an automorphism o € Aut(C) of exact order m = d(d — 1), d*> —3d+ 3, (d—1)? or d(d — 2).
Then, /\/lf]D YZ/mZ) is an irreducible set formed by a single point, such that one of the following

situations holds:

1. If 0 has order d(d — 1), then Aut(C) = (o) and C is k-isomorphic to
X' +yi+ X2z =0
Moreover,
ME(Z/d(d = VZ) = M (Z/d(d = DZ) = oM (Z/d(d = 1)D))

with o(Z/d(d — 1)Z) = (diag(1, (3" 1) Chan)-
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2. If o has order (d — 1)?, then Aut(C) = (o) and C is k-isomorphic to
X'+ Y™ Z+ X277 =0.
Moreover,
MPUZ)(d = 1)°Z) = ME(Z/(d - 1)*Z) = oM (Z/(d - 1)°Z)),
with o(Z/(d — 1)°Z) = (diag(1, G-y, ¢y 5" ).
3. If o has order d(d — 2), then C is k-isomorphic to
X' +Y"'Z+YZ =0
and when d # 6, we obtain
Aut(C) ~ Hy:= (0,7 : 72 = 0% =1 and o1 = o=@ Y),
Moreover,
My(Hy) = MJ(Z/d(d - 2)Z) = o( M (Z/d(d — 2)Z)),
with o(Z/d(d — 2)Z) = (diag(1, Caa—2), Gy ) )-
4. If o has order d*> — 3d + 3, then C is k-isomorphic to the Klein curve
Ki: XY 4+Y"'Z+ 27X =0

and

Aut(C) ~ Hyg, := (o, T|0d2_3d+3 = 7% =land ot = 7047V},
Moreover,
My(Hy,) = M (Z/(d* — 3d + 3)Z) = o(M}'(Z/(d* - 3d + 3)22)),
with o(Z/(d* — 3d + 3)Z) = (diag(1, Ce_sars: Cpanrs))-

We also studied in section §2.4.2 the cases when C has an automorphism o of exact order

ld, 0(d—1)4(d — 2) for some { > 2.
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In contrast to the degree d = 4 case, the stratum /T/I?(G) for g = 3(d — 1)(d — 2) with

d > 5 may decompose into more than one component of the form o(M[(G)). For example,

we show:

Theorem F. For any odd degree d > 5, the stratum ./T/l\gp/l(Z/(d — 1)Z) is a disjoint union

decomposition of at least two components o;(MIU(G)), for i = 1,2, where g; € Ag with

G =7/(d — 1)Z. The same is true when d = 6 and G = 7./37Z, that is for ./T/l\lfol(Z/?)Z).

We go further, in section §4.1, by turning our attention to the Question B when d = 5. In

particular, we get:

Theorem G. A complete determination of the pairs (o, G), such that MEYG) # 0, is given.

The associated normal forms to each non-empty stratum is also provided.

In our way to do this, we observed a new interesting phenomenon, which does not appear
for g = 3: Let F,c4(X,Y,Z) = 0 be a normal form that describes the stratum o(M}*(G)).
One could expect that by adding restrictions to its parameters, one get bigger automorphism
groups until obtaining a zero-dimensional stratum. This happens for all the families of degree
d = 5 except for one. For this family each restriction in the parameters providing a bigger
automorphism group yields a singular curve. If this is the case for some o(M}"(G)), then we
call it final. This phenomenon can be explained very well by using the family of the canonical

. -1 . . .
models in IP’% as we will see later in section §4.2. Moreover, we prove:

Theorem H. For any integer g = 3(d — 1)(d — 2) with d > 5 and d = 1(mod4),
the stratum o(M}'(Z/(d — 1)Z)) is non-zero dimensional final, where o(Z/(d — 1)Z) =

(diag(1, —1,(q-1))-

Plane-models fields of definition and Twists

Let k be a fixed algebraic closure of perfect field k. By a smooth k-plane curve C over k, we
mean a smooth projective curve C defined over k, such that C = C ®, k is a smooth plane

curve. We aim to study fields of definition for non-singular plane models of C' and also of its
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twists over k by considering the embedding Aut(C') < PGLs(k) instead of the one given by
the canonical model, see [LG14, Chp. 1] or Appendix B.

Recall that the set of all twists of a quasi-projective variety V' over k, denoted by Twist,(V'),
is in bijection with the first Galois cohomology set H'(Gal(k/k), Aut(V ® k)). Furthermore,
from the work of Roé-Xarles in [RX14] and since C has a (unique) gfl—linear system, then there
exists a Brauer-Severi surface D defined over k (i.e. a twist of P?), together with a k-morphism
g : C < D, such that g ®; k : C — P2 coincides with C <g—[2l> P2. Therefore, we have a natural

map of sets,
Y Twist, (C) = H (Gal(k/k), Aut(C)) — Twist,(D) = H'(Gal(k/k), Aut(Bx k) = PGL3(k)).
This approach leads to two natural questions:

Question I. The first one, given a smooth k-plane curve C defined over a perfect field k, is it a
smooth plane curve over k?; and secondly, if the answer is yes, is every twist of C' over k also

a smooth plane curve over k?,

For both questions the answer is no in general, it is not. The next result concerns the

negative general answer, where the full details can be found in chapter 3:

Theorem J. Let us consider Qy the splitting field of the irreducible polynomial f(t) = t* +
12t — 64 over Q, and denote the roots of f by a,b, c in a fixed algebraic closure of Q. The

smooth plane curve over Q;

b
C: 6475 + aby® + aX® + 8Y37% + %X3Y3 taZ3X® =0,

has Q as a field of definition, but it does not admit a non-singular plane model over Q.

Also, we obtain results for the curves for which the above questions always have an affir-

mative answer:

Theorem K. Let C' be a smooth k-plane curve of degree d > 4 defined over a perfect field k.

Then, C'is a smooth plane curve over k if one of the following conditions holds:

1. C has a k-rational point,
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2. the degree d is coprime with 3,

3. the 3-torsion Br(k)[3] of the Brauer group Br(k) of k is trivial.

Moreover; there always exists a field extension Lk inside k of index [L : k| dividing 3, such

that C ®y, L is a smooth plane curve over L.

We proceed with the second part of Question I:

Theorem L. Assume that the curve C, or any of its twists over a perfect field k, is a smooth
plane curve over k. Then, we have an embedding of Gal(k/k)-groups for its automorphisms
group into PGL3(k). In particular, >~ ([P?]) corresponds to the set of all twists of C, which
are smooth plane curves over k, where [Pi] denotes the class of the trivial twist of 4. This
allows us to construct in chapter 3 (explicit) twists of C that are not smooth plane curves over

k, and living inside a non-trivial Brauer-Severi surface.

Now, assume that C' is a smooth curve over k with a plane non-singular model over k such
that the image of Twist,,(C) = H'(Gal(k/k), Aut(C)) under the map . is trivial. In such case,
all the twist admits a non-singular plane model over k. Therefore, to compute equations for the
twists it is enough to look for isomorphisms in GL3(k) instead of GL,(k). As in [LG14, LG17]

the elements to reach for solutions in GL,(k) or GL3(k) is quite hard except that we have a

control of the matrix that could appear. In this direction, we prove:

Proposition M. Let C' : Fg(X,Y,Z) = 0 be a smooth plane curve over a perfect field k.
Assume that Aut(Fz) C PGLs3(k) is a non-trivial cyclic group of order n (relatively prime
with the characteristic of k), generated by an automorphism o = diag(1,¢?,¢?) for some
a,beN.

Then all the twists of C' are diagonal, i.e. the elements of Twisty(C) are given by non-
singular plane equations of the form Fp,..o(X,Y, Z) = 0 with F,_.(X,Y, Z) € k[X,Y, Z]

and D is a 3 x 3 projective linear matrix of diagonal shape.
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Complete and representative families

It is well known that the (coarse) moduli spaces M, are algebraic varieties whose geometric
points give a classification of isomorphism classes of smooth curves of genus g over k. The
existence of universal families for a moduli space helps to recover the information on its points
and allows to write down the attached objects to a point of this space. However, universal fam-
ilies do not exist for the moduli space M,,. Lercier-Ritzenthaler-Rovetta-Sisling in [LRRS14,
§2] introduced three good substitutes for the notion of universal family in our case: complete,
finite and representative families. Among the three substitutes, the representative families (if
exist) are the best. The authors of [LRRS14] give explicit representative families over a perfect
field k of characteristic p = 0 or p > 7 for all the different strata MZ£'(G) of smooth k-plane
curves over k, except for G = 7/27. For the remaining situation, when |G| = 2, they prove
that representative families for the stratum of Z /27 fail to exist even if k is a finite field.

In section 4.3, we start with the classification already obtained in section §4.1 for the differ-
ent strata of smooth k-plane curves of genus g = 6 of the form o(ME!(G)). After, we mimic
the techniques in [LRRS14] to give explicit descriptions (when possible) for representative

families over a perfect field k. In particular, we prove:

Theorem N. Let k be a perfect field of characteristic p = 0 or p > 13. Then, any non-empty
stratum o(ME'(Q)) has a representative family over k. Furthermore, these families are explicit

for all strata, except when G = 7./ 57.

The field of moduli versus fields of definition

Let C' be a smooth projective curve of genus g defined over a field k. The field of moduli of C,
denoted by k¢, is the intersection over all fields of definition of the base extension C ®;, k (see
Definition 5.1.2). There is another definition for the field of moduli, relative to a given field
extension L /k, which is commonly used (see Definition 5.1.3); Given a smooth curve C'/ L, the

field of moduli M, (C) of C relative to L/ is the fixed subfield of L by the subgroup

Ury(C) := {0 € Gal(L/k) | C isomorphic over L to “C'}.
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Due to S. Koizumi [Koi72, Proposition 2.3-(ii)] we know that, My ;. (C) is a purely inseparable
extension of k¢, where kg is the prime field of k.

In the case that C is a k-smooth plane curve of genus g > 3, where k is a perfect field k of
characteristic p # 2, B. Huggins in [Hug05] showed that the field of moduli Mz /k(C' ) for C,
relative to the Galois extension & /k, is a field of definition if Aut(C') is not PGLs(k)-conjugate
to a diagonal subgroup of PGL3(k), one of the Hessian groups Hess, with * € {18,36}, or
to a semidirect product of a finite diagonal subgroup of PGLs(k) and a non-trivial p-group
consisting entirely of elements of specific shapes. Moreover, an example of a smooth plane
curve over k that is not definable over its field of moduli is also given for each subcase, see
[HugO5, Chps. 6, 7].

Because of the above results, we were motivated in chapter 5 to answer the next question:

Question O. Let C be a smooth k-plane curve of genus g > 3, where k is a field of characteris-
ticp = 0orp > 2g+1, such that o(Aut(C)) < PGL3(k) is made exclusively of diagonal 3 x 3
projective matrices, for some injective representation p. When My /k(C) is a field of definition

for C'?

We introduce in chapter 5 further improvements of the work of B. Huggins in [HugO5],
relating to the particular situation in Question O. They can be used as a constructive source of
examples of smooth plane curves with diagonal automorphism groups, not definable over their
field of moduli.

Mainly, we show:

Theorem P. Let C' be a smooth k-plane curve of genus g = 1(d — 1)(d — 2) > 3, where k

is a field of characteristic p = 0 or p > 2g + 1, such that o(Aut(C)) < PGL3(k) is made

exclusively of diagonal 3 X 3 projective matrices, for some injective representation o. Then,

1. if Aut(C) contains a non-homology of order n > 1 (see Definition 1.2.6), then the field of
moduli M. /k(C’ ) is always a field of definition, unless n divides one of the integers d, d — 1
ord(d—2).

2. if Aut(C) does not contain a non-homology, then it is either cyclic of order dividing d or

d — 1, or it is isomorphic to 7./27 x 7./27. Moreover; if Aut(C) is cyclic of order dividing
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d with d odd or dividing d — 1, then again Mg/k(C') needs to be a field of definition for C.

We also provide a geometrically complete family in each subcase where the field of moduli
might not be a field of definition. Finally, we construct (explicit) examples of smooth plane
curves over the complex field C, whose field of moduli relative to the Galois extension C/R is

R, but it is not a field of definition.

Contents of the chapters

We aim in chapter 1 to survey the most well known results in the literature about the classifi-
cation of automorphism groups of smooth plane curves over algebraically closed fields, which
will be useful for our purposes for smooth plane curves. The structure of this chapter is as fol-
lows: In section 1.1, we recall a (scheme theoretic) proof of the fact Aut(IP%_l) = PGL,(k),
that is automorphisms of the n — 1-dimensional projective space P%’l are linear; Theorem
1.1.1. In particular, any isomorphism between two smooth plane curves of degree d > 4 over
k is induced by a 3 x 3 projective linear matrix; Theorem 1.1.5. Next, in section 1.2, we recall
the determination of the finite subgroups of PGLs(k), which is well understood in the subject.
We start with the classification made by H. Mitchell [Mitl1], based entirely on geometrical
methods; Theorem 1.2.1. A detailed study of this geometric classification would lead to an ex-
tended version, including a very good description of all possible finite subgroups of PGLs(k);
Theorem 1.2.4. The notion of Galois points for smooth plane curves is presented in section 1.3.
As far as we know, it was first introduced by H. Yoshihara in 1996, see [Fuk09, MY 00, Yos01].
Galois points (Definition 1.3.4) is a bit useful tool when one wants to compute the full automor-
phism group in some cases of smooth plane curves; Theorem 1.3.12. We end up this chapter
with section 1.4, where the classification of the automorphism groups of smooth plane curves
of degree d > 4 over algebraically closed fields of zero characteristic is given by T. Harui,
in his unpublished paper in arXiv [Harl3]; Theorem 1.4.4. The result still true for positive
characteristic p > (d — 1)(d — 2) + 1, as will be seen at the end of this section.

Dolgachev in [Dol12] determined the ¢'s and m’s for which o(MZLY(Z/mZ)) # 0. The

defining equation of each non-empty o(MZ(Z/mZ)) is also given. On the other hand, P.

Xxiii



Henn in [Hen76] and Komiya-Kuribayashi in [KK79], provided the list of ¢'s and G’s such

that o(MZLY(G)) and o(MZE'(G)) are non-empty. Moreover, the associated normal forms to

each non-empty MZ¥!(G) are determined (Theorem 2.2.1). See also E. Lorenzo Garcia’s PhD
thesis [LG14, § 2.1 and § 2.2] and Lercier-Ritzenthaler-Rovetta-Sisling [LRRS14], in order to
fix some minor details. In section 2.1, we follow the same technique as Dolgachev [Dol12]
to give the list of ¢'s and m's where o(M/*(Z/mZ)) # 0, for any g > 3; Theorem 2.1.3
and Corollary 2.1.6. We introduce in section 2.2 the concept of ES-irreducibility of 7\4\9137((;>’

motivated by the next observation occurred in Henn Table (Theorem 2.2.1): Given a finite non-

trivial group G such that ME'(G) # (), there exists a single normal form, that describes the
stratum //\/I?(G), up to PGLs(k)-conjugation. In this situation, we call the stratum /T/l:{;l(G)
to be ES-Irreducible and so is any W (G) satistying this property (see Definition 2.2.6 for a
precise statement). This would be a weaker concept than the irreducibility of .X/l\—gP/Z(G) inside
the moduli space M, in the sense that the number of ES-irreducible components is a lower
bound of the number of its irreducible components in M,. We will show, in section 2.3,
examples of strata of the form /T/l\v;lp/l (Z/mZ), which are not ES-Irreducible for infinitely many
genera g > 6. Section 2.4 characterizes the stratum /\/15 {(G) when G has elements of order
d*>—3d+3,(d—1)%d(d—2),d(d—1),md, or m(d — 1) with m > 2, to be always defined by

—_~—

a single normal form. In particular, MF!(G), in this case, is ES-Irreducible, if it is non-empty.

The structure of chapter 3 is as follows. In section 3.1, we collect the most necessary results,
known in the literature, about central simple algebras (CSAs), and the connection with Brauer-
Severi varieties, which will be used in this chapter. For more details, we refer, for example, to
[Jah, GS06]. Section 3.2 is devoted to the study of the minimal field L where there exists a non-
singular model over L for a smooth k-plane curve C' defined over k, i.e. that C' is L-isomorphic
to Fy1(X,Y, Z) = 0 for some Q € PGL3(k) with F, 1z € L[X,Y, Z]. We prove that if
the degree of a non-singular k-plane model of C' is coprime with 3, or C has a k-rational point
or the 3-torsion of the Brauer group of k is trivial (in particular, if k is a finite field), then the
curve C'is a smooth plane over £ (i.e. admits a k-model): Theorem 3.2.8 and Corollaries 3.2.1,

3.2.2. Moreover, we prove that a smooth plane model of C' always exists in a finite extension

of k of degree dividing 3, see Theorem 3.2.4. Section 3.2 ends with an explicit example of a
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smooth @—plane curve over Q which is not a smooth plane curve over (Q; however, we construct
a smooth plane model over a degree 3 extension of Q. In Section 3.3, we assume that C'is a
smooth plane curve over k. We obtain Theorem 3.3.2 characterizing the twists of C' which are
also smooth plane curves over k. Moreover, we construct a family of examples over k = Q
for which a twist of C' does not admit a non-singular plane model over Q. This construction is
not explicit because we do not provide equations of such twists. Section 3.4 details an explicit
example of a smooth M—plane curve over Q((3) having a twist that does not possess such
a model in the field Q((3), where (3 is a primitive 3rd root of unity. Interestingly, we find the
already mentioned explicit equations for a non-trivial Brauer-Severi variety. In Section 3.5, we

study the twists for smooth plane curve C' over k, such that Aut(C') is a cyclic group. We prove
that if Aut(Fp_.5) is represented in PGL3(k) by a diagonal matrix, (where Fp_.15(X,Y, Z) is
k-isomorphic to C) then all the twists are diagonal, i.e. of the form F{ PD)_@(X Y, Z) =0
with D a diagonal matrix, Theorem 3.5.2. We apply this result to some special families of

curves, see Corollary 3.5.4. We also construct an example of a curve C' that being Aut(F P_lg)

cyclic (but not diagonal) has all the twists not diagonal.

Chapter 4, section 4.1 is devoted to the study of the stratification by automorphism group
of smooth E—plane curves of genus 6, i.e. the different strata of M7 !, where k has characteristic
p=0orp>2g9g+1=13. A full description of the automorphism groups and the associated
normal forms is given in Theorem 4.1.12. The diagram in Figure 4.1 shows how looks like
the stratification by automorphism groups of non-singular plane quintic curves. In section 4.2,
we explain an interesting phenomenon, which appears in Figure 4.1; the existence of a final
stratum of plane curves whose dimension is not zero. By a final stratum we mean a stratum
not containing any other proper stratum. One could expect that by adding restrictions in the
parameters of a family defining a stratum with a given automorphisms group, one could get
bigger automorphism groups until obtaining a zero-dimensional stratum. This happens for all
the families except for one. For this family each restriction in the parameters providing a bigger
automorphism group yields a singular curve. We find an explanation for this fact: this family
can be embedded in a family of curves of genus 6 with the same automorphism group for which

we can carry out the previous operation without getting singular curves, the key point is they
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are not plane curves anymore: Proposition 4.2.1, Corollary 4.2.2. Moreover, we prove that
this may happen in general for higher genera: Theorem 4.2.4. In section 4.3, we refine the
classification given in Theorem 4.1.12, since it is not representative or even complete over k
(see Remark 4.3.4): Theorem 4.3.6. We end up this chapter with section 4.4, in which a full
description of the set Twist(C) of twists of a smooth k-plane curve of genus 6 defined over k
can be found.

In chapter 5, we fix a non-singular plane model F(X,Y, Z) = 0 over k for C in one of
the families mentioned in Theorem 2.1.3, and such that Aut(Fy) < PGL3(K) is diagonal,
that is made entirely of 3 X 3 projective matrices of diagonal shapes. We first show that if
Aut(Fg) contains a non-homology of order n > 1 (Definition 1.2.6), then M; /k(é) is always
a field of definition, unless n divides one of the integers d, d — 1 or d(d — 2). We also give a
geometrically complete family over k and describe the automorphism group in each subcase as
well: Theorem 5.4.4. Secondly, if Aut(F%) is made entirely of homologies, then it is either a
cyclic group of order dividing d or d — 1, or it is isomorphic to Z /27 x Z/27Z: Lemma 5.4.8.
In the case that Aut([F%) is cyclic generated by an homology of order n > 1, that divides d
with d odd or divides d — 1, then again M, «(C) needs to be a field of definition: Theorem
5.4.14 and Theorem 5.4.15. Otherwise, we construct explicit examples of smooth plane curves
over C, whose field of moduli relative to the Galois extension C/R is R, but it is not a field of
definition; Proposition 5.4.2, Theorem 5.4.6, Theorem 5.4.16 and Proposition 5.4.20.

Appendix A contains the tables of all cyclic subgroups of automorphisms and the associated
defining equations, obtained for low degrees through manipulating Theorem 2.1.3 in chapter 2.
In appendix B, we briefly explain the algorithm for computing Twist, (C') of a non-hyperelliptic
curve C' of genus g > 3 developed in [LG14, Chp.1] and [LG17]. Alternatively, we use the
modified algorithm resulted by chapter 3 to compute the twists over k& for the smooth plane
curves defined over k by X° +Y® 4+ XZ4 =0and X° +Y*Z + XZ* = 0, where k is a field
of zero characteristic or positive characteristic > (5 —1)(5 —2) + 1 = 13. Finally, we generate

in appendix C the full list of geometric fibers for the stratum of smooth plane curves of genus

g = 6 with automorphism group Z/5Z, which are isomorphic over k.
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CHAPTER

Automorphism groups of smooth plane

curves: A Literature review

It is classically well-known that the full automorphism group Aut(C) of a smooth curve C
of genus g > 2 defined over k is a finite group (Schmid (1938), Iwasawa-Tamagawa (1951),
Roquette (1952), Rosentlich (1955), Garcia (1993)). Moreover, if k has characteristic zero
characteristic, then it has order at most 84(¢g — 1). This bound is known as the Hurwitz bound

[Hur92] on Aut(C):

Theorem 1.1 (Hurwitz (1892), Roquette (1970)). Let G be a subgroup of automorphisms of a
smooth curve C of genus g > 2 over k of zero characteristic. Then |G| < 84(g — 1), more
precisely

G|

132
—— =84, 48, 40, 36, 30, —, or < 24.
g—1 5)

The same bound holds over positive characteristic p > g + 1, with one exception, namely

the hyperelliptic curve Y?ZP~2 = XP — X 7P~ which has p = 2g + 1 and 2p(p* — 1)

automorphisms.

Such a bound turns out to be sharp for infinitely many genera [Mac61]. The lowest genus
example is the Klein quartic curve given by the equation X?Y + Y37 + Z3X = 0, whose au-
tomorphism group is the unique simple group of order 168 namely, the Klein group PSLy(F5).

On the other hand, if p || Aut(C)|, then a much larger automorphism group compared to
g could happen as was first pointed out by P. Roquette in [Roq70]. For example, if C is
birational equivalent to a Hermitian curve H(g), i.e. to a smooth plane curve of the form

YiZ +YZ7 — X9t = 0 for some ¢ = p" > 3, then g = 3(¢* — ¢) and | Aut(H(q))| =
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¢*(¢*> + 1)(¢*> — 1). More precisely, Aut(H(q)) is isomorphic to the projective unitary group'
denoted by PGU(3, q). Furthermore, any smooth curve C' satisfying | Aut(C)| > 16¢* is
birational equivalent to a Hermitian curve H(q) as was proved by Stichtenoth [Sti73a, Sti73b].
A substantial improvement of the last bound to 16¢® + 24¢> + g was a consequence of Henn
classification in [Hen78] and later on to 3(2¢* + ¢)(3 + /8¢ + 1) for the case of smooth plane

curves by Anbar-Bartoli-Fanali-Giulietti in [ABFG13].

§1.1 Linearity of isomorphism between smooth curves

Given an invertible (n + 1) x (n + 1) matrix ¢ = (a;;) defined over k, the rule 2} := ; Qi
determines an automorphism of the polynomial ring k|z, ..., 7,,] and also an automorphism of
the n-dimensional projective space IP7.. One easily checks that Ap = (Aa;;) produces the same
action on IP’%, for any non-zero \ € k. So one is led to consider the action of PGLnH(E) =
GLyy1(k) / E*, which acts faithfully as a subgroup of automorphisms of P7. The converse is

also true by the next result, see Example 7.1.1 in [Har77]:

Theorem 1.1.1. Any k-automorphism of P2 is linear, i.e. it can be viewed as an element of

PGL,,,1 (k). In particular, Aut(PR) = PGL, 1 (k).

Before we present the proof of Theorem 1.1.1, we need the following facts and terminolo-
gies: Given a sheaf of rings / on a topological space X and an open subset U of X, the set
['(U, F) := F(U) refers to the sections of F on U. When U = X then I'( X, F) are the global
sections of F on X.

A ringed space is a pair (X, Ox) consisting of a topological space X and a sheaf of rings
on X. A morphism of ringed spaces from (X, Ox) to (Y, Oy) is a pair (f, f*) of a continuous
map f : X — Y and amap f*: Oy — f.Ox of sheaves of rings on Y, where f,Ox is the
direct image sheaf on Y by f.Ox (V) = Ox(f~'(V)) for any open subset V C Y.

'A unital in P} _ is a setU of ¢® + 1 points meeting every line in PZ | in either 1 or ¢ + 1 points. It is called
q q

classical if it is preserved by a cyclic linear collineation group of order ¢> — ¢ + 1. For more information on
unitals on projective planes, see for example [BE08, CEK00].

The linear collineation group preserving a classical unital ¢/ is called the projective unitary group. See for
example [Blo67, Hof72].



An invertible sheaf F on aringed space (X, Ox) is defined to be a locally free O x-module
of rank 1. The Picard group of (X, Ox), denoted by Pic(X), is the set of all isomorphism
classes of invertible sheaves on X.

Proposition 6.12 in [Har77] shows that in fact Pic(X) is a group under ® of sheaves. A

morphism [ : (X, Ox) — (Y, Oy) of ringed spaces always induces a group morphism
f*: Pie(Y) — Pic(X)

defined by the rule f*(F) = f~1(F) ®-10, Ox, where f*(F) is called the inverse image of

the invertible sheaf F on Y under f.

Example 1.1.2 (The twisting sheaf of Serre). Any invertible sheaf on P is of the form O({)
for some l € 7, i.e. atwisting of O(1) by {, where O(1) is the twisted sheaf of Serre defined
on P The basic way to think about is that the global sections I'(P, O(()) of O(() on P is
precisely the k-vector space of homogeneous polynomials of degree . So we can use it to talk
about homogeneous polynomials in a more geometric way. We address the reader to [Har77,

1I, §5] for more details.

Recall that two divisors D and D’ are said to be equivalent, written D ~ D’ if D — D' is a
principal divisor. The group Div(IP)%) of all divisors on P7 divided by the subgroup of principal

divisors is called the divisor class group, and is denoted by CI(IP’%).

Proof. (of Theorem 1.1.1) Let f be any automorphism of P7. Then f* is an automorphism of
Pic(P2). We know form Corollaries 6.16 and 6.17 in [Har77] that Pic(P})~ CI(IP’%)(%;gZ. Con-
sequently, CI(P%) is generated by a hyperplane, which in turns corresponds to O(1) as a gener-
ator of Pic(P2). Thus f*(O(1)) must be a generator of Pic(IP%), hence it isomorphic to either
O(1) or O(—1), since any invertible sheaf on P} is of the form O(¢) for some ¢ € Z, see Exam-
ple 1.1.2. However, O(—1) has no global sections, but O(1) does, therefore f*(O(1)) = O(1).
In particular, f* induces an automorphism of the k-vector space ['(PZ, O(1)). Furthermore,
the global sections g, ..., 7, of O(1) on P forms a basis of I'(PZ, O(1)), see Proposition 5.13
and Theorem 5.19 in [Har77]. Thus, the pull-backs s; := f*(z;) must be another basis of

the vector space I'(PZ, O(1)), and we may write s; := »; a;;z;, where (a;;) is an invertible
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(n+1) x (n+1) matrix over k. In this case, f is uniquely determined by the s;, and it coincides

with the automorphism (a;;) as an element of PGL,, 1 (k). O

Definition 1.1.3. By a smooth plane curve C' of degree d > 4 over k, we mean a smooth
projective curve C' that is k-isomorphic to a non-singular plane model Fe(X,Y,Z) =0in IP’%,
where Fi=(X, Y, Z) is a homogenous polynomial of degree d with coefficient in . In this case,

C admits a g2-linear system allowing us to embed
_ @,

where g is the genus of C.

2
Lemma 1.1.4. Let C<g—d>IP’% be a smooth plane curve of degree d > 4 over k. Then, it is non-

hyperelliptic of genus g = (d — 1)(d — 2) /2.

Proof. Let HNC C P2 be a hyperplane section of C, i.e. HNC is the intersection of C with a
hyperplane H in PZ. In particular, the canonical divisor K of C'is equivalent to (d—3)(HNC),
see [Har77, Example 8.20.3]. By Bézout’s theorem H N C has degree exactly d. Therefore,

one reads Riemann-Hiirwitz formula as
29 — 2 = deg(Kg) = (d - 3)d,

thatis g = (d — 1)(d — 2)/2.

Next, if f(z,y) = 0 is the affine equation of a smooth plane curve C of degree d > 4, then

{xrys

0<r+s<d-3}
fy

is a basis of the space of regular differentials on C. Therefore, the canonical map C' — P%fl

can be seen as the map
(x:y: )= (@Y’ |0<r+s<d-3).

In particular, when d = 4, this map is exactly the identity map, and hence is an embedding.
That is, a smooth plane curve C of degree d = 4 over k is non-hyperelliptic.
Now, assume that d > 5 and C is hyperelliptic. Hence, it has a hyperelliptic involution ¢

of order 2, which fixes exactly 2g + 2 = (d — 4)(d + 1) points on C. Thinking about ¢, up
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to PGL3(k)-conjugation, as the automorphism [X : Y : —Z], gives at most d fixed points on
F&(X,Y,Z) = 0, since ¢ leaves invariant in P, the line Z = 0, the point (0 : 0 : 1) ¢ C
and no other points. That is, (d — 4)(d + 1) < d, a contradiction!. Therefore, C' must be

non-hyperelliptic. [

Given a divisor D on C, the set of all rational functions g on C such that D + div(g) > 0
forms a k-vector space £(D) of finite dimension ¢(D). If K is the canonical divisor of k.

Then, Riemann-Roch theorem states that
U(D) —U(Ks— D) =deg(D) +1—g.

Theorem 1.1.5 (Theorem 1, [Cha78]). Any isomorphism between smooth plane curves of de-
gree d > 4 over k is induced by a projective linear transformation of ]P’%. In particular, a
smooth plane curve C of degree d > 4 over k has a unique g2 linear system, up to PGLs(k)-

conjugation.

Proof. Let C be a smooth plane curve of degree d over k, and let HNC be a hyperplane section
of C'. We can assume through a g2-linear system that H N C' = P, + ... + P, for some pairwise

distinct points P; of C. By Riemann-Roch theorem and Lemma 1.1.4, we obtain
(HNC)—l(Kg—HNC)=d+1—(d—1)(d—-2)/2.

On the other hand, £(K) is exactly the vector space of homogenous polynomials of degree
d — 3, so its dimension equals to (dgl), see [Har77, Example 8.20.3]. Hence, the members of
L(Kg), cutting out H N C are exactly polynomials with a fixed linear factor (recall that H N C
has degree d > d — 3, and lies on a line in IP’%). Consequently, {(Kg — HNC) = (df).

Next, let ¢ : C' — Cbean isomorphism as in the theorem, where C’ is a smooth plane
curve of degree d over k. It suffices to show that the divisor ¢*(H N C) lies on a line in IP’%,

or equivalently, hyperplane sections of C are mapped to hyperplane sections of C’. That s, )

sends collinear points in P2 to collinear points®. Because ¢* (K — H NC) =Kz —¢*(HNC),

2PGL3(k) sends collinear points of IP’% to collinear points of IP’%.
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then {(Kz — ¢*(HN C)) = {(Kg — HN C). In particular,
. — d—1 d—2
K(ICC/)—E(ICC/—gb(HﬁC)):( 5 )—( 5 ):d—Q.

So there exist d — 2 points P}, ..., P} , on ¢*(H N C), such that any curve of degree d — 3
passing them will contain the whole ¢*(H N C). Now, suppose that ¢*(H N C) = P} + ... +
P o+ P, + P;isnot on a line. Denote the line which joins P/ and P} by L; ; with i # j.
Therefore, there is one point, say P;, which is not on Ly_1 4, and {P;_,, P;} ¢ Ly,. For
each 3 < ¢ < d — 2, draw a line L; through P/, but missing the points P, ; and P). Then
LisLs...Ly5 is a curve of degree d — 3 passing through P/, ..., P, ,, but does not contain

¢*(H N C), a contradiction. =

Corollary 1.1.6. Let C be a smooth plane curve of degree d > 4 defined over an algebraically
closed field k of characteristic p > 0. Then, Aut(C) is a finite subgroup inside PGLs(k), fixing

a certain non-singular plane model F5(X,Y,Z) = 0 of C in IP’%.

Proof. Since C has genus g = (d — 1)(d — 2)/2 > 3, the full automorphism group Aut(C)
is finite. Moreover, C' is a smooth plane curve over k, then it has a gﬁ—linear system, which
is also unique, up to conjugation in PGL3(k), from the proof of Theorem 1.1.5. In particu-
lar, Aut(C') admits an injective representation inside Aut(P2) = PGLs(k), characterized by

leaving invariant a fixed non-singular plane model say, F=(X,Y, Z) = 0in IP%. [l

Theorem 1.1.7. Let C;, for i = 1,2, be two isomorphic smooth non-hyperelliptic curves of
genus g over k, canonically embedded in ]P’%_l. Then any isomorphism between the C; is

linear. In particular, Aut(C;) can be seen as a finite subgroup of PGL, (k).

Proof. The idea can be rephrased in terms of linear series, we refer for example to [HKTOS,
Chp. 11]. Let £;, for i = 1,2, denotes the canonical linear series of C; respectively. By
Theorem 6.72-(1) in [HKTO8], the canonical series is the unique series of dimension g — 1 and
order 2g — 2. Therefore, an isomorphism f : C; — C can always be identified with its action
between the £;, see Theorem 11.18 and Lemma 11.19 in [HKTO8]. In other words, f naturally
induces an isomorphism f . ki — K, between the canonical models K; for C; in P%_l,
so it is linear. Consequently, Aut(C;) is embedded, as a finite subgroup, into Aut(IP’%*l) =

PGL, (k). O



Remark 1.1.8. Let C be a smooth curve of genus g > 2 defined over an algebraically closed
field k. The automorphisms of C' are induced by automorphisms of the ringed space (C, Og),
where O denotes the ring of regular functions of C. This coincides with the set of all k-
automorphisms of the algebraic rational function field k(C) of C, denoted by Gal(k(C)/k). In
particular, if C' is a smooth plane curve of degree d > 4, then Gal(k(C)/k) can be viewed as a

finite subgroup of PGL3(k) , by using Remark 1.1.6.

§1.2 Finite subgroups of the 3-dimensional projective general
linear group

Assume that C' has a smooth plane model F(X,Y, Z) = 0 of degree d > 4 over k. That is,
the genus g = (d — 1)(d — 2)/2 > 3. Also, the g>-linear system is unique, up to conjugation in

PGL;(k), see [HKTO08, Lemma 11.28], thus we can think about Aut(C') as a finite subgroup

of PGL3(k).

The determination of the finite subgroups of PGLj3(k) is quite well understood in the sub-
ject. For instance, we recall this one made by H. Mitchell [Mitl1, §1-10], which is based
entirely on geometrical methods. H. Mitchell [Mitl1] proved that G fixes a point, a line or
a triangle unless it is primitive® and conjugate to some group in a specific list. However, as
a consequence of Maschke’s theorem in group representation theory, the first two cases are
equivalent, in the sense that if GG fixes a point (resp. a line) then it also fixes a line not passing

through the point (resp. a point not lying the line). In particular, we have the next result, which

can also be read in its present form in [DI09, Theorem 4.8]:

Theorem 1.2.1. Let G be a finite subgroup of PGL3(k) such that p 1 |G|. Then G satisfies one

of the following conditions:

1. it fixes a line in IP’% and a point () off this line,

3A subgroup H of a group G is termed core-free if Nyce ©H 21 is trivial. A group G is said to be primi-
tive if it has a core-free maximal subgroup.



2. it fixes a triangle (i.e. a set of three non-concurrent lines),

3. it is conjugate to one of the finite primitive subgroups* of PGLs(k) namely, the Klein group
PSL(2,7), the icosahedral group As, the alternating group Ag, or to one of the Hessian

groups Hess, with x € {36, 72, 216}.

Definition 1.2.2. An element of PGL3(k) is called intransitive if it has the matrix shape

* x 0
* % 0

0 01

We use the notation PBD(2, 1) for the subgroup of PGL3(k) of all intransitive elements. A

subgroup of PBD(2, 1) is also called intransitive.

Obviously, there is a natural map A : PBD(2,1) — PGLy(k) given by

* *x 0
ko ok —
* x 0 € PBD(Q, 1) — € PGLQ(k).
ko ok
0 01

The next result gives the list of finite subgroups of the 2-dimensional projective general
linear group PGLy(k). See [Suz77, Chapter 3] and [Web98, §§71-74], or [Hug05, Lemma

2.2.1, I], for more details.

Theorem 1.2.3. Let k be a field of of characteristic p = 0 or p > 2. Any finite subgroup G of

PGLy(k), such thatp = 0orp > 0withpt |G

, Is conjugate to one of the following groups:
1. The cyclic group Z./nZ = (diag((,, 1)) of order n, n > 1,

01
2. The dihedral group Do, = (diag((,, 1), ) of order 2n, n > 1,

10

4See Theorem 1.2.4-(4) or the notations at the beginning of the memoir.
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The alternating group A4, consisting of the transformations

+1 0 0 =+1 SR G = 1 -1 ¢
0 1 10 1 -1 11 1 ¢ 1=

where v =1, 3,

The symmetry group Sy, consisting of the transformations

¢ oo 0 ¢ =g
0 1 10 I

where v,V =0,1,2,3,
The alternating group As, consisting of the transformations

¢ o 0 ¢ el PYCaN e

0 1 -1 0 R Von g R Vo g
where A := 2(=1++/5), A := (-1 —V/5), and v,/ = 0,1,2,3,4.

The list of finite groups G of PGL3(k), where k has characteristic p = 0, are explicitly

given in [MBD61, Chapter VII]. Using Corollary 2.3.6 in [Hug(05], one also obtains the list

when p > 2 is relatively prime with |G|. In particular, we have the next theorem, which is

Lemma 2.3.7, case I in [Hug05]:

Theorem 1.2.4. Let G be a finite subgroup of PGLs(k), where k has characteristic p # 2 such

that p t |G|. Then, G is conjugate to one of the following groups:

1.

Type 1: An intransitive subgroup of PGLs(k) whose natural image under \ in PGLy(k) is

equal to one of the groups in Theorem 1.2.3,

Type II: A group generated by T := [Y : Z : X| and a finite group generated by the image

in PGL3(k) of diagonal matrices.

The group of order 9 generated by T and S := diag(1, (3, (3) will be called Hess,,
Type III: A group generated by R := [X : Z : Y| and a group of Type II.

The group generated by Hessg and R will be called Hesss,

9



4. Type IV: One of the Hessian groups; The group Hesssg of order 36 generated by Hess g and

1 1 1
Ve=11¢ & |
1 & G

the group Hessyo of order T2 generated by Hessss and UV UL, where U := diag(1,1, (3),
or the group Hessy 4 of order 216 generated by Hesszo and U.
The alternating group As of order 60 generated by E, := diag(1,(2,(5), By == [X : Z -

Y], and
1 1 1

Es:=11 G+G? G6+¢' |

1 G+¢G G+6G72

or the alternating group Ag of order 360 generated by -, Fs, Es, and

1 V 1
Ev=1 2n G+6G* G+G' |
2 GHG GHG
where vy = 1(—1+ v/—15) and v := 1(—1 — \/=15).

The Klein group PSLy(F7) of order 168 generated by Fy := diag((r,(%,(3), Fo:=[Y : Z :

X], and
a b
v o od |,
d a v

where a' = (7 — G,V = (2 — (2, and ¢ = (7 — (5.

Remark 1.2.5. Theorem 1.2.4 could be viewed as an extended version of the classification
given in Theorem 1.2.1. First, given any a line L. C ]P)% and a point P € IP’% \ L, one can

consider a transformation A € PGL3(k) that moves L to the reference line Z = 0 and the point
P to the reference point (0 : 0 : 1). In this way, any finite subgroup G of PGL3(k) that fixes a
line and a point off this line is conjugate to a group of Type I. Second, for any finite subgroup

G C PGLs(k) that fixes a triangle A, we may assume up to conjugation that A has vertices
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(1:0:0),(0:1:0),and (0: 0 : 1) respectively. In particular, such groups are classified
according to its action on the vertices, i.e with respect to a subgroup of the permutation group
(X :Z:Y],[Y : Z: X]) modulo a finite group made entirely of diagonal matrices. So we
are again in Type I, Type 11, or Type I11. Finally, it is straightforward that the groups of Type IV

coincides with the finite primitive subgroups of PGL;3(k) given in Theorem 1.2.1-(3).

Definition 1.2.6. By an homology of period n € Z>; coprime with p, we mean a projective

linear transformation of the plane PZ, which acts, up to conjugation in PGL3(k), as
(X:Y:Z2)= (X :Y :2), (1.1)

where (,, is a primitive nth root of unity.
Such a transformation fixes pointwise a line (its axis) and a point off this line (its center).

For example, a homology in the canonical shape (1.1) has axis X = 0 and center (1: 0 : 0).

One easily can see the following observation:

Lemma 1.2.7. Let 0 € PGL;3(k) be a non-trivial planar projective transformation of finite

order coprime with p.

1. If o is a homology, then the fixed points of o consists entirely of its center and all points on
its axis. In particular, every triangle whose set of vertices is pointwise fixed by o contains

its center as a vertex.

2. If o is a non-homology, then it fixes exactly three points. In particular, there is a unique

triangle whose vertices are pointwise fixed by o.

The following results turns out to be very useful in hand when one wants to determine the
automorphism group of a smooth plane curve over k. See [Mitl1, Theorems 6,8, and 9] and

[Mitl1, Theorem 4], respectively:

Theorem 1.2.8 (Mitchell, [Mitl1]). Let G be a finite group of PGL3(k), where k has charac-
teristic p # 2 such that p t |G|. If G contains an homology of period n > 4, then it fixes a
point, a line or a triangle. Moreover, the Hessian group Hessqi¢ is the only finite subgroup of

PGL3(k) that contains homologies of period n = 3, and does not leave invariant a point, a

line or a triangle.
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Proposition 1.2.9 (Mitchell, [Mit11]). Let G be a finite group of PGLs(k), where where k has
characteristic p # 2 such that p 1 |G|. Inside G, a transformation, which leaves invariant the

center of an homology, must leave invariant its axis and vice versa.

§1.3 Galois points for smooth plane curves

Let K be an algebraic function field in one variable over .

Definition 1.3.1 (see [Nam84]). The gonality Gon(K) of K, is the minimum of the degree

extension [K : k(t)] where ¢ runs over the transcendental elements of K.

Definition 1.3.2 (see [MYO00]). A maximal rational subfield K,, of K is a maximal subfield
among the ones that are purely transcendental extensions of k. By Liiroth’s theorem, any
subfield K satisfying k # K’ C K, is rational.

A maximal rational subfield K, satisfying [K : K,,|] = Gon(K) is called a g-maximal

rational subfield of K.

Example 1.3.3. In the case where K = k(C) is the rational function field of a smooth plane

curve C over k of degree d > 4, we have the following facts (see Theorem 5.3.17 in [Nam84]):

1. If K, is a g-maximal rational subfield of K, then [K : K,,] = d — 1. The extension K/K,,
is obtained by 7% : k(L) = E(IF%) < k(C), where 7p is the projection from C to a line L

with a center P € C.

2. If one considers a projection wp from C to a line L with a center P ¢ C, then we get an
extension of fields 7% : k(L) = E(]P%) — k(C) such that [k(C) : k(L)] = d. In this case,

k(L) is a maximal rational subfield of k(C'), but not a g-maximal one.

In both cases, we get a maximal rational subfield. Therefore we may consider the natural point

projection map wp : C — PL, ie. for an arbitrary point Q € C, the point 7p(Q) is the

k )
intersection point of L with the line PQ), joining P and Q).

The field extension does not depend on the line L, but on whether the point P &€ IF’% lies
on C or not, see [YosOl]. So the function field E(L) is denoted by Kp, and the extension is

considered from a geometric point of view.
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The notion of Galois points, as far as we know, was first introduced by H. Yoshihara in

1996, see [Fuk09, MYO00, YosO1].

Definition 1.3.4. Following the notations above, a point P € IP’% is a Galois point for C, if the
function field extension 75 : Kp — K, induced by 7p, is Galois.
A Galois point P is an inner (resp. outer) Galois point for C, if P € C (resp. P ¢ C). The

number of inner (resp. outer) Galois points for C is denoted by §(C) (resp. &'(C)).

Example 1.3.5. Let C be the smooth plane curve over k defined by X3 Z +Y*+ Z* = 0, where
k is a field of characteristic p # 2,3. The point P := (1 : 0 : 0)isan P :== (1 : 0 : 0) is
an inner Galois point for C. The natural point projection from P, wp : C — IP% is defined by
(X:Y:2)eCw (Y:2).SoK/Kp=k(x,y)/k(y): 2°+y* + 1 = 0is cyclic extension,

in particular is Galois.

Example 1.3.6. Let C be the smooth plane curve defined by XPZ + X 7P — YPt! = 0 over k,
where k is a field of characteristic p > 3. The point P := (1 : 0 : 0) is an inner Galois point
for C, since K/Kp = k(x,y)/k(y) : 2P + x — yP*1 = 0 is an Artin-Schreier extension, which

is well-known to be Galois.

Example 1.3.7. Let C be the smooth plane curve of degree d > 5 defined by X¢ + Y417 +

Y Z%=1 = 0 over k, where k is a field of characteristicp = 0 or p > (d — 1)(d — 2) 4 1. The
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point P := (1 : 0 : 0) is the unique outer Galois point for C, see Proposition 2.4.10 and its

proof.
H. Yoshihara in [MYO00, YosO1] classified the numbers §(C) and &'(C) when k has zero

characteristic. For positive characteristic p > 0, M. Homma in [Hom06] determined §(C') and

o' (U) when C is a Fermat curve of degree d = p’+ 1. S. Fukasawa in [Fuk06, Fuk08, Fuk14b]

introduced the number §(C') when p > 2 or d — 1 is not a power of 2, and ¢'(C') when p 1
d,d = pord = 2° with p = 2. In [Fukl3], he investigated the remaining cases for §(C)
and &'(C'). More precisely, a complete answer was given to the following problems: Find and
classify smooth plane curves of degree d = 2° 41 with £ > 2, p = 2 and §(C) = d. Second, let
p>0,e>1,d= p with p { £. Then determine &'(C) when (p°,¢) ¢ {(p,1), (2¢,1)}.
Summing up, we have the following classification theorem of smooth plane curves by the

numbers 6(C') and &' (C):

Theorem 1.3.8 (Yoshihara, Homma, Fukasawa). Let C' be a smooth plane curve of degree

d > 4 over k, where k is a field of characteristic p > 0. Then,

1. 6(C)=0,1,dor (d — 1)® + 1. Furthermore, we have:
(a) 6(C) = (d—1)3+ 1ifand only if p > 0, d = p° + 1 for some e € N, and C is
isomorphic to the Fermat curve of degree d.

(b) 6(C)=d>5ifandonly ifp = 2, d = 2° + 1, and C is isomorphic to a curve defined
by

V¥ 4 [ (X +ay +a%2) =0,

a€lFse

for some c € k\ {0, 1}.

(c) 6(C)=d=4ifand only if p # 2,3 and C is isomorphic to the curve
XZ+Y'+ 7' =0.
2. 8'(C)=0,1,3,70r (d— 1)* — (d — 1)® + (d — 1)%. More precisely,

(i) 0'(C) = (d—1)*~(d—1)3+(d—1)*ifand only if p > 0, d — 1 is a power of p, and

C is isomorphic to the Fermat curve of degree d.
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(ii) 8'(C) = Tifand only if p = 2, d = 4, and C is isomorphic to the Klein quartic curve.

(iii) §'(C) = 3 and three Galois points are not contained in a common line if and only if

p1d, d— 1is not a power of p, and C'is isomorphic to the Fermat curve of degree d.

(iv) §'(C) = 3 and three Galois points are contained in a common line if and only if

p=2,d =4, and C is isomorphic to a plane curve defined by
(XP+ X2+ (XP+X2)(Y?+Y2)+ (Y +Y) +cZ' =0,
for some c € k\ {0,1}.

Remark 1.3.9. The assumption ¢ # 0, 1 is to avoid singular points on C. For example, when
§(C) = d > 5, there are exactly d points on C'N{Y = 0}. Therefore, singular points should lie
on Y # 0. Moreover, by [Fuk13, Lemma 5], (X : 1 : Z) is a singular point only if it is Fae-

rational such that c+ h(Xo, Yy) = 0, where h(X, Z) =[] (X +a+a?Z) = 0. However,

a€lFse

we have by [Fuk13, Lemma 6] that {h(X,7) : X,Z € Fyc} = {0, 1}. Consequently, ¢ = 0 or

1 are discarded.
As a consequence of Theorem 1.3.8, one has:

Theorem 1.3.10. (Yoshihara, Theorems 4,4’ and Propositions 5,5, [Yos0l ]) Let C be a smooth
plane curve of degree d > 4 over k, where k is a field of characteristicp = 0 orp > (d—1)(d—
2) + 1. Then &'(C) = 0,1, or 3, and moreover §'(C) = 3 if and only if C is isomorphic to the
Fermat curve of degree d. On the other hand, if d = 4 then 5(C) = 0, 1, or 4, and similarly the
curve with §(C) = 4 is unique and is isomorphic to Y Z3 + X* +Y* = 0. On the contrary, for

d > 5, one gets 5(C) = 0 or 1.

Remark 1.3.11. The full automorphism groups of smooth plane curves with at least two Galois
points have already been investigated. Fermat, Klein curves and the curve X3Z +Y*+ 74 =0
are quite well understood and were studied by many authors (see for example [HKTOS8, Hur03,
KS96, Rit04]). The curve characterized by §'(C') = 3 and three Galois points are contained in
a common line has automorphism group isomorphic to the symmetry group S4, while the curve

characterized by 6(C') = d > 5 has automorphism group isomorphic to PGLy(Fae) provided

that e > 2 (see [Fukl14a, Theorem 1, Theorem 2].
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Finally, we end up this subsection by proving the next statement, see [Har13, Lemma 3.7]:

Proposition 1.3.12 (Harui, [Har13]). Let C be a smooth plane curve of degree d > 5 over k,
where k is a field of characteristic p = 0. A cyclic group G of automorphisms of C automor-
phisms of C has order at most d(d — 1). Furthermore, if G is generated by an homology with
center P, then |G||d when P ¢ C (resp. d — 1 when P € C). The equality |G| = d (resp.

|G| = d — 1) holds if and only if P is an outer (resp. inner) Galois point for C.

Oikawa [Oik56] and Arakawa [Ara00] gave, possibly stronger, upper bounds than Hurwitz
bound (Theorem 1.1) when G fixes finite subsets of C (not necessarily pointwise). As an
application of Riemann-Hurwitz formula, one gets the next results. We address the reader to

[Oik56, Theorem 1] and [Ara00, Theorem 3] or [Har13, Theorem 3.2] for the complete details.

Theorem 1.3.13. Let C be a smooth plane curve of genus g > 3 defined over an algebraically

closed field of characteristic zero, and let G be a subgroup of Aut(C). Then

1. (Oikawa’s inequality) If G fixes a finite subset S of C with |S| = j > 1, then |G| <
12(g — 1) + 6j.

2. (Arakawa’s inequality) If G fixes three distinct finite subsets S; (i = 1,2,3) of C with

1Si| = ji > 1, then |G| < 2(g — 1) + j1 + j2 + Js.

Proof. (of Proposition 1.3.12) We may assume, without loss of generality, that o is a generator
of GG, represented by a diagonal shape matrix. In particular, G fixes each of the three reference
lines L; : X =0,Ly : Y =0,and Ly : Z = 0, and each of the three reference points
P:=(1:0:0), P,:=(0:1:0),and P3:=(0:0:1).SetS; = CNL;fori=1,2,3, hence
each S, is a non-empty subset of C of cardinality at most d, and is fixed by G.

We distinguish between the different situations of CNV,where V = {P1, Py, P3}:

() If|CNV|>2,say P, P, € C, then at least one of the subsets S; \ {P}, S \ {P,} and
S3 \ { Py, P»} is non-empty with cardinality at most d — 1 (otherwise, 51 = {P»}, Sy =
{P,} and S3 = {P;, P,}. So L, and L, intersects C' at P, and P,, respectively with
multiplicity d. Hence the defining equation for C' becomes Z¢ + XY G(X,Y,Z) = 0

for some homogenous polynomial of degree d — 2. But also Ls intersects C' only at P,
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and P, thatis G(X,Y, Z) = X7Y %277 for some 0 < j < d — 2, a contradiction to
non-singularity). One applies Arakawa’s inequality (Theorem 1.3.13) for such a subset

with the two subsets { P, }, { P»} to obtain

G| <2(g—1)+(d—-1)+1+1=(d—1)><d(d—1).

(i) If [CNV| = 1,say P, € C, then either S, \ {P;} or S3 \ {P;} is a non-empty subset of
C' with cardinality at most d — 1. Using Arakawa’s inequality (Theorem 1.3.13) again for

such a subset with the two subsets { P, } and .S;, we then have

G| <2(g—1)+(d—-1)+1+d=d(d—-1).

(i) fCNV = Pthen C : X%+ Y94 Z¢ + lower order terms. This implies that ¢ =
diag(¢T, ¢7, 1) for some integers m,n where 0 < m,n < d — 1. Hence 0¢ = 1 and |G|

divides d, in particular, |G| < d(d — 1).

Second, suppose that ¢ is a homology. Then, up to conjugation in PGL3(k), one can take
o = diag(1,1, (), where ( is a root of unity. That is, its center is P3 := (0 : 0 : 1) and its axis
isL3:Z =0.Letmp, : C — Pr: (X 1Y : Z)+ (X :Y) be the natural point projection

map from P;, and 7 : C' — C/G be the natural quotient map. Hence
v:C/G—PL:G(X: Y Z)— (X:Y)
is well-defined, and the following diagram is commutative

c— " 7/G

N/

In particular, |G| = deg(n) is a factor of deg(mp,), whichis d — 1 if Py € C and d otherwise.
Furthermore, if |G| = deg(mp,), then mp, coincides with the quotient map 7, which implies

that P is a Galois point for C and G is the Galois group at P;. ]
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§1.4 The classification for smooth plane curves: Harui’s work

Proposition 1.4.1. Let C be a smooth curve of genus g > 2 over k, where k is a field of
characteristic p > 0. The stabilizer G of a place P of the function field k(C) of C is always

of the form N x Z/mZ, such that
(i) if p=20, then N is trivial.

(ii) if p > 0O, then N is a nilpotent group consisting of all elements of Gp whose order is a

power of p, and m is relatively prime to p.

Proof. We only sketch the proof, and we address the reader to Lemma 11.44 and Theorem
11.49 in [HKTO8] for more details. Choose a uniformizer element z of k(C) at P. The key
point is that for every a € Gp, there exists a unique non-zero constant ¢, € k, such that
ordp(a(z) — caz) > 1. Moreover, ¢, is independant of the choice of the uniformizing element
z and any eigenvalue of « is a power of c,. The mapping ¢ : Gp — k : a > c, is a group
homomorphism. So G'p/ ker(¢) is isomorphic to a finite multiplicative subgroup of k. Thus it
is cyclic of order m coprime with p, since any finite multiplicative subgroup of % is the group
of m-th roots of unity for a suitable m with ged(m, p) = 1.

Now if a € ker(¢), then any eigenvalue of « is equal to 1. Hence ker(¢) consists of all
those «, for which it associates a lower-triangular matrix A, whose main diagonal consists

entirely of 1’s. Since any k-automorphism of k(C) is of finite order, we deduce that
* if p = 0, then A, must be the identity matrix and thus « is the identity k-automorphism,

e if p > 0, then A, has order a power of p , and ker(¢) is nilpotent, being isomorphic to a

subgroup of matrices of the shape A,.
[

Corollary 1.4.2. Let C be a smooth curve of genus g > 2 defined over k, where k is a field of
characteristic p > 0. Any subgroup G of automorphisms of order coprime with p, that fixes a

point on C, is cyclic.
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Definition 1.4.3. For a non-zero monomial cX“Y " Z% with ¢ € k\ {0}, its exponent is defined
to be max{iy, is, i3 }. For a homogenous polynomial F'(X,Y, 7Z), the core of it is defined to be
the sum of all terms of F' with the greatest exponent. Now, let Cy be a smooth plane curve
over k, a pair (C, H) with H < Aut(C) is said to be a descendant of C if C'is defined by a
homogenous polynomial whose core is a defining polynomial of Cy and H acts on C|, under a

suitable change of the coordinates system, i.e. H is conjugate to a subgroup of Aut(C)).

Recently, T. Harui, in his unpublished paper in arXiv [Har13], provided a classification of
the automorphism groups of smooth plane curves of degree d > 4 over algebraically closed

fields of zero characteristic. We detail the statement and its proof next.

Theorem 1.4.4 (Harui, Theroem 2.1, [Har13]). Let k be a field of characteristic p = 0, and let
G be a subgroup of automorphisms of a smooth plane curve C over k of degree d > 4. Then

one of the following situations holds:

1. G fixes a point on C and then it is cyclic.

2. G fixes a point not lying on C and we always think in the following commutative diagram,

with exact rows and vertical injective morphisms:

1——k ——PBD(2,1) 2= PGLy(k) — 1

G G’

where N is a cyclic group of order dividing the degree d and G' is a subgroup of PGLy(k),
which is conjugate to a cyclic group Z/mZ of order m with m < d — 1, a Dihedral group
Do, of order 2m with |[N| = 1 or m|(d — 2), one of the alternating groups A4, As, or to the

symmetry group Sj.

3. G is conjugate to a subgroup of Aut(Fy), where F is the Fermat curve X +Y <+ 74 = (.
G| divides Aut(F,)| = 6d% and (C,G) is a descendant of F.

In particular,

4. G is conjugate to a subgroup of Aut(K,), where K is the Klein curve curve XYt +

Y 29t + ZX1 In this case, |G| divides | Aut(K,)| = 3(d* — 3d + 3), and (C,G) is a
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descendant of K.

5. G is conjugate to a finite primitive subgroup of PGLg(E) mentioned before in Theorem

1.2.1-(3).
Proof. From Theorem 1.2.1 there are three cases:

(i) G fixes aline L C IP’% and point P ¢ L. If P € C then G is cyclic by Corollary 1.4.2,
and it has order at most d(d — 1) by Proposition 1.3.12. Otherwise, we can assume that
L:Z=0andP = (0:0:1) ¢ C, and thus G is an intransitive finite subgroup of
PGLj3(k) by the virtue of Theorem 1.2.4, Type I. In particular, we can think about G in
a short exact sequence of the form 1— N GG~ 1, where N = Ker(Alg) and
G’ = Img(A|g). Here A is the natural embedding appeared in Definition 1.2.2. In other
words, N could be viewed as the part of GG acting on the variable Z and fixing the other
variables, while GG’ is the part acting on X, Y and fixing Z. This gives us the embedding
N — & and G' — PBD(2, 1) in the statement. Moreover, every automorphism 7 in N
is represented by a unique diagonal matrix diag(1, 1, () for some root of unity ¢. Thus
the embedding N — E 1 +— ( is injective, and N is isomorphic to a subgroup of
%". Hence N is cyclic generated by a homology 7, and the assertion on the order of NV
follows from Proposition 1.3.12. On the other hand, the possibilities for G’ as a subgroup
of PGLy (k) is given by Theorem 1.2.3. It remains to give an upper bound for m when
G’ is isomorphic to Z/mZ or Ds,,: In both cases, there exists an automorphism o € G
whose image ¢’ := A(o) is of order m. Up to a change of variables in PBD(2, 1),
in particular preserving the assumptions on the line L and the point P, we may take
o = diag(a, 8, 1) such that 5 is a primitive mth root of unity. Recall that P, = (1:0:0)
and P, = (0 : 1: 0) are the fixed points of o on L, so when G’ = Z/mZ,i.e. G = (n,0),
then P, and P, are the fixed points by GG on L. Moreover, in case of Ds,,, there must be
7 € G such that 7 := A(7) and ¢’ generate G’ with 7/ = 1 and 7/0’7’ = ¢/~'. That is

G = (n,0,7) and we may assume that 7 = [yY : v.X : Z].

Let C : F(X,Y,Z) = 0 be the defining equation for C' with respect to the above assump-

tions, and e; the intersection multiplicity of C and L at P; for j = 1, 2. We first note that
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e1 = eo if G’ = Ds,,, because of the automorphism 7. As a first insight we show the the

next observation:

Observation 1. If ¢; > 2 or e5 > 2, then NV is trivial.

Proof. Suppose that ¢, > 2, then C is defined by F(X,Y,Z) = X*'Z +
XaYeG(X,Y)+ lower order terms in X, where G(X,Y") is a homogenous polyno-
mial in X, Y of degree d — e; — es, such that neither X nor Y is a factor of it. Since
n = diag(1, 1, ¢) is an automorphism of C, then F(n(X,Y, Z)) = AF (X, Y, Z) for some

X € k. Hence ¢ = land N is trivial. Similarly we deal the situation when e; > 2. [

We need to treat each of the following subcases:

(@) CN L C {P,P}: If G'is isomorphic to Z/mZ, then G fixes each of P, and P,
and at least one of them belongs to C. So G itself is cyclic and we go back to the
former situation at the beginning (Theorem 1.4.4-(1)). If G’ is isomorphic to Ds,,,
then e; = e; = 4 > 2, and N is trivial by Observation 1. Furthermore, C is smooth
at P; and P,, hence the defining equation of C' becomes (X9~ + Y%~1)Z+ lower
order terms in X and Y. Since o € Aut(C), a?~! = 3471, and 0’¥~* = 1. Thus m

divides d — 1, in particular m < d — 1.

(b) C' N L contains a point () distinct from P, and P,: We show the following observa-
tion:
Observation 2: The order m of ¢’ divides d — e; — es. Moreover, if m = d then

(C, @) is a descendant of the Fermat curve F.

Proof. Suppose that o7 fixes Q for some integer j > 1. Then ¢/ € N, since it
fixes three points on L, namely, (), P, and P, in particular it fixes L pointwise.
Therefore 0’/ = 1 and m divides j. Moreover, it is obvious that o™ fixes (), then
the orbit of Q) by H := (o) equals |H/(c™)| = m. In other words, we can write
(CN L)\ {Py, P} as a disjoint union of orbits of m points. Now, Bézout’s theorem
for C reads as d = e; + es + Z:ZS m - e; for some positive integers e;, hence m

divides d — e; — es. In particular, if m = d, then e; = e; = 0, and neither P
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(i)

nor P lies on C. Hence the core of F(X,Y,Z) must be X + Y 4 Z% but also
G = (n,0) when G’ = Z/mZ and (n,o,T) when G’ = Ds,,. In both situation the
core of F'(X,Y, Z) is invariant under the action of G, which implies that (C, G) is

a descendant of the Fermat curve F;. ]

It is clear now, by Observation 2, that when G’ = Z/mZ then m < d — 1 or (C, G)
is a descendant of the Fermat curve F;. On the other hand, e; = e; when G’ = Dy,,,,

and moreover
+ (C, @) is a descendant of the Fermat curve if e; = ey = 0.
e m|ld—2ife; = ey = 1.

e m<d—4and N is trivial if e; = e5 > 2.
That is to say, Theorem 1.4.4, (1), (2) and (3) follows in this case.

G fixes a trianlge A and neither a line nor a point is leaved invariant by G. Up to projective
equivalence, we may assume that A consists of the three reference lines L; : X =0, Ly :
Y =0,and L3 : Z = 0. So the set of vericies of § is V' = {P;, P5, P3}, where G acts
transitively on V', by our assumptions that neither a line nor a point is leaved invariant
by G. Hence either C' and V are disjoint or V' C C. Also, each element of G gives a

permutation of the set { X, Y, Z} of the corrdinate functions, up to a constant.

In the case that C' contains V, we denote by 7; the tanget line to Cat P, fori = 1,2, 3.
By the assumptions on (, these lines are not concurrent, pairwise distinct, and G fixes

the set {7}, T, T3} and acts on it transitivley.
We treat each of the following subcases:
(a) C and V are disjoint: The core of F'(X,Y, Z) should be X¢ 4+ Y4 + Z4, and G is

then a subgroup of Aut(F,). Hence (C,G) is a descendant of the Fermat curve in

this subcase.

(b) V. C C and each of T}’s, for i = 1,2,3, is an edge of A: We may assume that
T, : Z =0,Ty, : X = 0,and T3 : Y = 0. Then the core of F(X,Y,7) is
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XYd=t 4 Y z4=t + ZX491 which is fixed by G. So (C, Q) is a descendant of the

Klein curve K.

() V c C and non of T}’s, for i = 1,2, 3, is an edge of A: We show that this subcase
does not occur.
Let P/ be the intersection point of 7;, and T;,, where {i1,12,43} = {1,2,3}. Then
they are pairwise distinct because otherwise 77, 75, and T3 are concurrent and their
intersection point is fixed by G, a contradiction. Therefore, we have a triangle A’
fixed by G, whose edges are formed by 77s and the set V' := { P|, P;, P;} represents

its vertices. We also note that V" and V' are disjoint by assumption.

There is a natural group homomorphism ¢ : G — S3 given by
o= [OZXZ'I : 6X12 : ’)/Xz:,)] eG— (iligig),

where o, 8,7 € & with {iy, 45,03} = {1,2,3},X; = X, X, = Y, and X3 = Z.
Since neither a line nor a point is fixed by G, Im(y) is isomorphic to Z/3Z or S.
Furthermore, any o € Ker(p) is written in the shape diag(a, 3,1) € PGLs(k).
Hence it fixes V' pointwise, which implies that it fixes each 7}, for : = 1,2,3. In
particular, it fixes V'’ pointwise, and it follows by Lemma 1.2.7 that o is trivial. We
then conclude that G is isomorphic to Im(y), which is Z/3Z or S3. If G = Z/3Z,
then it fixes a line, which conflicts our assumptions on GG. On the other hand, if
G = Ss, then it is G is generated by 0 = [Y : Z : X] and some 7 of order 2 such
that o7 = o~1. After a suitable change of coordinates, if necessary, we may take

7 = [GY : (G'X ¢ Z]. Thus G fixes the point (1 : ¢;' : (3), which contradicts

again the restrictions on G.

(iii) G is conjugate to a finite primitive subgroup of PGLs(k). This leads us to the statement

(5) in Theorem 1.4.4.
This completes the proof. []

We also need Theorem 2.3 in [Har13]:
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Theorem 1.4.5 (Harui, [Har13]). Let C be a smooth plane curve of degree d > 5 with d # 6

over k, where k is a field of characteristic p = 0. Then | Aut(C)| < 6d?.

Proof. Suppose first that Aut(C') is not primitive, then it fixes a line or a triangle, by Theorem
1.2.1. If it fixes a line L, then S := C N L is a non-empty set of cardinality at most d, which is

also fixed by Aut(C). Apply Oikawa’s inequality (Theorem 1.3.13-(1)) to obtain that
| Aut(C)] < 12(g — 1) + 6|S| < 6d(d — 3) + 6d = 6d(d — 2) < 6d°.

Similarly, if Aut(C) a triangle A, then C'N A is non-empty set of cardinality at most 3d, which
is fixed by Aut(C). So we have the same inequality | Aut(C)| < 6d? by the same argument
above.

Second, if Aut(C) is primitive, then | Aut(C)| < 360. Hence | Aut(C)| < 6d* for any
d > 8. If d = 5 or 7, then we still have the inequality | Aut(C)| < 6d? except for the pairs
(d,| Aut(C)|) = (5,168), (5,216), (5,360) or (7,360) again by Theorem 1.2.1. However,

these four exceptional cases do not occur following Theorem 1.1. [

The previous results; Theorem 1.4.4, Theorem 1.4.5 still true when the characteristic p is
positive and big enough. For example, it does forp > (d — 1)(d —2) +1 = 2¢g + 1, and we
justify this next (see also Badr-Bars [BB16c, §6]):

Fix a prime p > 0 and let k£ be a field of characteristic p > 2. Consider a
smooth plane curve C' of genus ¢ = (d — 1)(d — 2)/2 > 3 over k, and suppose that
| Aut(C)], | Aut(Fy)|, | Aut(Ky)|, and d(d — 1) are relatively prime with p, and p > 7, where
Fy and K, are the Fermat curve and the Klein curve of degree d, respectively. Then the tech-
niques appeared in [Har13] hold.

Consider the p-torsion of the degree 0 Picard group of C, which is a finitely generated
7./pZ-module of dimension . The integer v is called the p-rank of C, and always v < g,
where ¢ is the genus of C. For a point P of C, we mean by Aut(C)p, the subgroup of Aut(C)

fixing the place P.

Lemma 1.4.6. Assume that | Aut(C)p| is prime to p, for any point P of C and that the p-rank

of C is trivial. Then | Aut(C)| is prime to p.
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Proof. Let 0 € Aut(C) be of order p. Then the extension k(C)/k(C) is a finite extension
of degree p, and is unramified everywhere (if it ramifies at a place P, then o is an element
of Aut(C)p, which conflicts our assumption on | Aut(C)p|). Now, if v = 0, i.e the p-rank
is trivial for C, then using Deuring-Shafarevich formula [HKTO8, Theorem 11.62], we get
3,—__11 = p, where 7/ is the p-rank for C/ (o), which is not possible. Therefore such an extension

does not exist. OJ

Lemma 1.4.7. Let C be a smooth plane curve of degree d > 4 over k. If p > 2g + 1, then
Aut(C)p is coprime with p, for any point P of C.

Proof. By [HKTOS8, Theorem 11.78], the maximal order of the p-subgroup of Aut(C')p is at
most (p_ﬁ#. Hence, with g = $(d — 1)(d — 2) and assuming that p > %, we obtain the

result. u

Lemma 1.4.8. Let C be a smooth curve of genus g > 2 over an algebraically closed field k
of characteristic p > 0. Suppose that C has a separable unramified subcover ® : C — c’ of
degree p. Then, C has genus > 2, g = 1(mod p) and v = 1(mod p). In particular, one needs

to restrict p < g, for the existence of such a subcover.

Proof. The Hurwitz formula for ® gives the equality (29 — 2) = p(2¢’ — 2), where ¢’ is the
genus of C'. First g #0,1,since g > 2. So g’ > 2and g — 1 = 0(mod p). Now, consider the
Deuring-Shafaravich formula, which could be read as y — 1 = p(y’ — 1) in such an unramified
extension, where 7 the p-rank of C. It ~v = 1, then there is nothing to prove, and if v > 1,

then the congruence is clear. Finally, the situation v = 0 does not occur. [

Corollary 1.4.9. Let C be a smooth plane curve of genus g = %(d —1)(d —2) > 2 over k.
Suppose that the characteristic p satisfies p > (d—1)(d —2)+1 > g. Then Aut(C) is coprime

with p.

Proof. If o € Aut(C) is of order p, then k(C) /k(C)? is a separable degree p extension, and by
Lemma 1.4.7, it is unramified everywhere. By Lemma 1.4.8, we conclude that such extensions

do not exist. ]
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CHAPTER

ES-Irreducibility vs “large’ and “‘very

large” automorphisms groups

We consider, up to k-isomorphism, a smooth plane curve C of degree d > 4 defined over k, that
is C € MP! with genus g = 3(d — 1)(d — 2) > 3. It corresponds to C a set of infinitely many
non-singular plane models in IP’% of degree d, where any two of them are isomorphic over k and
their automorphism groups are PGLj3(k)-conjugate. By the uniqueness of the linear series g2
([HKTOS8, Lemma 11.28]), any isomorphism ¢ between two such non-singular plane models
of C'is given by an automorphism of the projective plane PZ, i.e. we can take ¢ € PGL3(k),
by Theorem 1.1.5. In other words, if F-(X,Y,Z) = 0 is a non-singular plane model of Cin
IP’%, then any other non-singular plane model of C over k is given by an equation of the form

Fs(¢(X,Y, Z)) = 0, for some change of variables ¢ € PGL3(k). We use the notation
°C: Fyol(X,Y, Z) = Fo(6(X,Y, Z)) = 0.

Hence Aut(Fy) and Aut(F,-.5) are finite subgroups of PGL3(k), and Aut(Fyp) =
¢_1 Aut(Fg)qb.

Definition 2.1. Given a smooth plane curve C over k, any two non-singular plane models of

C over k are said to be k-projectively equivalent or k-isomorphic.

Now, let G be a finite non-trivial group. Recall that if C' € MIN(G), then o(G) < Aut(Fg)

P

for some injective representation ¢ : G — PGLg(k). Also, C' € MPF!(G) if and only if
o(G) = Aut(Fg), for some p.
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Definition 2.2. Let o : G — PGL;3(k) be an injective representation of a finite non-trivial
group G inside PGLs (k). The stratum of smooth plane curves C over k modulo k-isomorphism,
such that o(G) < Aut(Fy) for some non-singular plane model F=(X,Y,Z) = 0 of C over k,

—_—~—

is denoted by o(M}'(G)). Similarly, we define o(ME'(G)) when o(G) = Aut(Fg).

Remark 2.3. We note that if o; : G — PGLs(k), fori = 1,2, are PGL3(k)-conjugated, then
01(M(G)) = 02(M'(G)).

Definition 2.4 (Normal forms). Given a finite non-trivial group G, the associated normal forms
fo the stratum Mgl(G) is a finite set of homogenous equations {N1 ¢q, ..., Nmc}in X,Y,Z,
each one of them is equipped with parameters, under some algebraic restrictions, as the co-
efficients of its monomials. Moreover, any specialization of the parameters in k of an Nic
corresponds to some C € M5 {(@). Conversely, any C € /\/15 Y(G) is k-isomorphic to a non-

singular plane model over k given by a specialization of the parameters in k of some N

In the same way, one defines the associated normal forms to the stratum M 5 Y(G). However,
in this case, a specialization of the parameters of two distinct forms N3, ¢ and N3, ¢ gives two
non-singular plane models over k, which in turns relate to two non-isomorphic smooth plane

—_~—

curves in MPN(G), see Lemma 2.2.4.
Following the above notations, it becomes very natural to investigate the next question:

Question 2.5. For a fixed degree d, list the ¢'s and the groups G's such that Q(/\/l_f; H@)) is

non-empty. Next, determine the associated normal forms to the stratum ./\/lf; Y@ for each such

G. The same problem is also rephrased for the different strata o( ME'(G)) and for MI'(G).

For a cyclic group Z/mZ of order m, Dolgachev in [Dol12] determined the ¢'s and m’s for
which o(ME'(Z/mZ)) # (). The defining equation of each non-empty o(MZL(Z/mZ)) is also
given. On the other hand, P. Henn in [Hen76] and Komiya-Kuribayashi in [KK79], provided
the list of ¢'s and G's such that o(MZL'(G)) and Q(./T/l\_?)P/l (G)) are non-empty. Moreover, the
associated normal forms to each non-empty W (G) are determined (Theorem 2.2.1). See

also E. Lorenzo’s PhD thesis [LG14, § 2.1 and § 2.2] and R. Lercier, et al. [LRRS14], in order

to fix some minor details.
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The structure of this chapter is as follows: In section 2.1, we follow the same technique
as Dolgachev [Doll2] to give the list of ¢'s and m's where o(M}"(Z/mZ)) # 0, for any
g > 3; Theorem 2.1.3 and Corollary 2.1.6. Next, one sees in Henn Table (Theorem 2.2.1)
the following phenomenon, occurring for g = 3: Given a finite non-trivial group G such that
/T/l\g/l(G) # (), there exists at most a single normal form, that describes the stratum j/\/l\:f/l(G),
up to PGL;3(k)-conjugation. This motivates us to define the concept of “ES-irreducibility” of
X/l\gP/Z(G) in section 2.2. Roughly speaking, the stratum X/l\gP/Z(G ) is called ES-Irreducible if it is
defined by a single normal form (see Definition 2.2.6 for the precise statement). This would be
a weaker concept than the irreducibility of MNf;l(G) inside the moduli space M, in the sense
that the number of ES-irreducible components is a lower bound of the number of its irreducible
components in M. In section 2.3, we show examples of non ES-Irreducible strata of the form
.X/I\QP/Z(Z /mZ) for infinitely many genera g > 6. Finally, we characterize, in Section 2.4, the
stratum M " (G), where G has elements of order d* —3d+3, (d—1)?,d(d—2),d(d—1),md, or
m(d—1) with m > 2, to be always defined by a single normal form. In particular, a non-empty
K/EP/Z(G), in this case, is ES-Irreducible.

We shall deal with the following items:

2.1. Cyclic automorphism subgroups of smooth plane curves.
2.2. Union decomposition of M/"(G) and “ES-irreducibility”.
2.3. Strata of smooth plane curves not ES-irreducible.
2.4 On smooth plane curves, admitting “large” or “very large” automorphisms.
The main results of sections §2.1 and 2.4 have been published in [BB16b], whereas those

of sections §2.2 and 2.3 have been published in [BB16c].

§2.1 Cyclic automorphism subgroups of smooth plane curves
Fix an integer g = 1(d — 1)(d — 2) > 3 and a finite non-trivial group G.

Lemma 2.1.1. Let C : F(X,Y, Z) be a smooth plane curve of degree d defined over k. Then

the defining equation F (XY, Z) = 0 must have degree at least d — 1 in each variable.

Proof. For example, if F(X,Y,Z) = 0 has degree < d — 2 in Z, then F(X,Y,Z) =
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Z?:—OQ BiZ'Lq_s(X,Y), where Ly ;(X,Y) is a homogenous polynomial of degree d — i in

X and Y. Hence, (0 : 0 : 1) is a projective solution of the system

F F F
F(XY.2)= S0(x.y,2) = 20X, 2) = S2(X, Y. 2) =0

That is, it is a singular point of F'(X,Y, Z) = 0. O

Definition 2.1.2. Let Fiz(X, Y, Z) = 0 be a non-singular plane model of degree d over k for
C e MI

g » Where k is a field of characteristic p = 0 or p > 2g + 1. Then, Aut(Fp) =

o(Aut(C)), for some o : G < PGLs(k). If o € Aut(C) is an element of exact order m,
then by a change of variables in IP% (that is, changing the non-singular plane model of C' to
a k-projectively equivalent one), we may assume that o(c) acts on F(X,Y,Z) = 0 as the

automorphism

(XY :2)— (X:Y ¢t 2),

where (,,, is a primitive mth root of unity in K and a, b are integers, such that 0 < a < b < m.
Moreover, if ab # 0, then m and ged(a, b) are relatively prime (we can reduce to ged(a, b) = 1)
and if a = 0, then ged(b, m) = 1.

We write 04.4.m(Z/mZ) for (diag(1,¢%, (")) in PGL3(k). Furthermore, we call C' of Type
m, (a,b) and C € 0q,p.m(ML(Z/mZ)).

Our aim here is to investigate, which cyclic groups could appear inside Aut(C') and the as-
sociated normal forms to each case as well. Therefore, to determine all possible Types m, (a, b),
for which the stratum gq, 4, (M} (Z/mZ)) might be non-empty. We follow a similar approach
as Dolgachev in [Dol12], that deals with the same question for d = 4 (see also [Bar12, §2.1]).

Before we state our main result for this section, we need the following notations, which will
be used through the sequel.

Notations.

» We say that Type m, (a, b) is a generator of o(Z/mZ), for some ¢ : Z/mZ — PGLs(k)
when o(Z/mZ) = 0apm(Z/MZ).

s L;. is homogeneous polynomial in k[X,Y, Z] of degree 4, such that the variable * €

{X,Y, Z} does not appear.
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For simplicity, we also define the next index sets:

S)m ={u<j<d—-1[d—j=0(mod m)};

u

gd. X ad) = {u<i<d—ulai+ (d—1i)b=0(mod m)};
SIAX ew =11<i<d—ulai+ (d—1—i)b=0(mod m)};
SN e = {0 <i < jlai+ (j —i)b = a(mod m)};

S@ap = {0 < i <jlai+ (j —i)b=0(mod m)};

Sj’),/(a,b) ={0<i<j|bi+ (d—j)a=a(modm)};

m

Sitap =10 < i< jlai+(d—j)b = a(mod m)};

m,(a,b

L= {(a,b) e N?| ged (a,0) =1, 1 <a#b<m-—1}.

The three reference points in Pz are P := (1:0:0), P,:= (0:1:0)and P3:= (0:0:

1), respectively.

Here u, j, m, d, a and b are all non-negative integers.

Theorem 2.1.3 (Badr-Bars, Theorem 7, [BB16b]). Let C' € /\/lf; Ube a smooth plane curve of

degree d > 4 over k, where k is a field of characteristicp = 0 or p > (d — 1)(d — 2) + 1,

such that Aut(C) is not trivial. Then, C € 0q4m(MPEYZ/mZ)) for some a,b,m as in the

list (1) — (6) below. Moreover, each component 9,y (MY (Z/mZ)) is associated to a single

normal form F,, , (X,Y,Z) = 0:

1. The curve C € gy 01 (MEYZ/mZ)) withm|d — 1 and F,, ,, (XY, Z) is defined by

74y + Z Zd_ij,Z + Lz
JES(2)m

2. The curve C € 0y 01 (MEYNZ/mZ)) with m

d, and F, X, Y, Z) is given by the form

a,b,m(

Z'+ > 2Lz + Loz
JjE€ES()m
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3. All reference points lie on F,,,  (X,Y,Z) = 0: The curve C' € Om.as(MEIZ/mL))
withm | (d*> — 3d+ 3) and (a,b) € Ty, such thata = (d—1)a+b = (d — 1)b (mod m).

In this case,

d—2
Fourm (XY, 2Z) == XY +YT'Z4+ 27X + Z Z B XTyigii 4

=2 jes(1)hX

m,(a,b)
+Y XYz e Yy XY 74
=Y i Z
zGSm,(a’b) zESm&a’b)

4. Exactly two of the reference points lie on ‘Fga,b,m(X7 Y, Z) = 0: One of the following

subcases occurs:

(4.1) C € 0map(MINZ/mZ)) for some m|d(d — 2) and (a,b) € Ty, such that (d —
1)a+ b= 0(mod m) and a + (d — 1)b = 0 (mod m). Moreover, F,,, (X,Y,Z)

is
d—1

XT4y T Zz4yz ey N guX Yz e YT B Yzt
j=2 ieS(Q)if(w ieShX m(at)

(4.2) C € omap(MEUZ/MZ)) for some m|(d — 1), and (a,b) € Ty, such that (d —
1)a+b=0(mod m) and (d — 1)b = 0 (mod m). We thus have

Foosn XY, 2) = X4 X274y 24 Y Buyizi 4
€555 )
d—2
+ YN guXTIYIZT Y By XYz
=2 €S2 0 iesi

(4.3) C € 0map(MEIHZ/mZ)) for some m|(d — 1) and (a,b) € Ty, In this situation,
f

Qa,b,m

(X,Y, Z) is defined by

Xd + X(ydfl_’_del_i_ Z B(d—l),iYiZdilii)_F

ed—1,X
€5, m, (a,b)

d—2
+ > BaoY'ZU YT Y B XY
. d,X | — . j, X
i€S5% L e Jj=2 i€s@nX,

5. Only one reference point lies on F,,, (X,Y,Z) = 0: Then C € Om.ap(MEINZ/MT)),
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where m|d(d — 1) and (a,b) € T,,, such that da = 0(mod m) and (d — 1)b =

0 (mod m). Moreover, F, X, Y, Z) reduces to

a,b,m(

Xd + Yd+X(Zd_1+ Z B(d—l),iyizd_l_i>+

. @d—1,X
1651 m, (a,b)
d—2
+ ) > BiaX Y'Y B Y24
=2 . i, X . ad,X
J 165(2)1}1,(&,}) 1€85] . (a,b)

6. None of the reference points lie on F,,,  (X,Y,Z) = 0: Then C € 0 qp(ML(Z/mZ))

with m|d and (a,b) € Iy, and F,,, (X,Y,Z) has the form

d—1
Xd + Yd + Zd + Z Z ﬁjﬂXd_JYZZJ_Z + Z Bd,iyizd_i~
I=2 ies@l N, ) €SP )

Remark 2.1.4. We warn the reader because it may happen that a projective equation obtained
for some Type m(a, b), is not geometrically irreducible or is not smooth for any specialization
of the parameters. Hence, 9qp,m (M "(Z/mZ)) is empty and should be discarded from the list.
Finally, for some reason, a repetition of monomials might happen in Theorem 2.1.3- case (3),

so one needs to unify those repeated terms, by renaming the parameters.

Proof. We show the result when k has characteristic p = 0. The same argument holds for
p>2g+1=(d—1)(d—2)+ 1, since this restriction implies that | Aut(C)| is coprime with
p, we address the reader to the discussion after Theorem 1.4.5.

Without loss of generality, we consider a non-singular plane model F(X,Y,Z) = 0 of C
over k, such that the cyclic element order m acts as the diagonal matrix diag(1, ¢a,¢t). In
other words, if o is a generator of order m, then we can choose coordinates, so that me’m(d) 18
represented by (X : Y : Z) — (X : ¢2Y : (%, Z), where a, b are integers with 0 < a # b < m.
Moreover, one can assume that a < b with ged(b,m) = 1 if a = 0, and with ged(a,b) = 1,
otherwise.

Case I: Suppose first that « = 0 and write: F(X,Y,Z) = AZ? + Z;l;i Z%IL; 7+ Lag.

If A = 0, then, by non-singularity (Lemma 2.1.1), L; z # 0 and (d — 1)b = 0 (mod m).

Hence, m|d — 1 and we can take a generator (a,b) = (0,1). By checking each monomial’s

invariance, we obtain that L, ; # 0 only if j € S(2),, and we therefore recover Types m, (0, 1)

33



of in Theorem 2.1.3, case (1), after transforming L, » to be Y through a change of the variables
X, Y, which in turns preserves the shape of 0,4m(0).

If A # 0, then db = 0 (mod m). From this we get m|d and (a, b) = (0, 1) is again generator
for each m. Also, we use the same argument as above, and we obtain Types m, (0, 1) of the

form Z¢ + 5 Zd_jLLZ + Lg,z, which proves Theorem 2.1.3, case (2).

jeS(1
Case I1 : Suppose that a # 0, then, necessarily, m > 2 and we distinguish between the different

subcases related to how many reference points lies on F(X,Y, Z) = 0:

o If all reference points lie on F=(X,Y,Z) = 0, then the possibilities for the defining

equation are now:

QL

-2
C: Yy (XLjx +Y" Ly + 29791, ).
1

[
Il

Because a # b with a # 0, we can reduce to

d—2
Co XY+ Y Z4 290X + Y (X Lix + YLy + 2977 L, ).

j=2
The first three factors implies thata = (d—1)a+b = (d—1)b (mod m), so m|d* —3d+3.
The normal form in Theorem 2.1.3-(3) now follows, by checking monomials’ invariance
in each L; . For example, rewrite L;x as 3.7_, 8;;Y'Z7~%, hence f3;; = 0, if m {

ai + (j — )b or equivalently i ¢ S(l)f,f(a’b)), since diag(1,¢%, %) € Aut(Fpg).

» If two reference points lie on F5(X,Y, Z) = 0, then by re-scaling the matrix g, (o)
and permuting the coordinates, we can assume that (1 : 0 : 0) ¢ {Fs(X,Y,Z) = 0}.
The equation thenis X+ X% 2Ly x + X9 3L x+...4+ X Lg_1.x+ Lax = 0, since Ly ,
is not invariant by 9, (0) because ab # 0. Moreover, Z ¢ and Y are not in Lqx, as
(0:1:0)and (0:0:1)arein F=(X,Y,Z) = 0. Suppose first that Y¢~1Z and Y Z4~1
arein Ly x. Then (d—1)a+b = 0 (mod m) and a+(d—1)b = 0 (mod m). In particular,

m| d(d — 2) and for each such Type m, (a, b), the equation becomes

d—1 j d—2
XU Y Z4Y 2T Y 0N B Xy AT 1Y B Yz = 0.
j=2 i=0 =2

It is straightforward to see that if ¢ ¢ S(Q)f;’f(a p (resp. i ¢ Sehe m.(ap))> then Bj; =0
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(resp. B4 = 0). This shows Theorem 2.1.3, subcase (4.1). Second, assume that Y17 e
Lqx and YZ% ' ¢ L, x. Then, by non-singularity (Lemma 2.1.1), Z¢1 is in Ly x,
and (d — 1)a + b = 0 (mod m) and (d — 1)b = 0 (mod m). Therefore, m| (d — 1), and

we get the equation

d—-2 J
Xt 4+ Xz Yz 4 0y gL XYz
j=2 i=0
d—1 d—2

+ D) Ban XY ZUT LY B Y 2 =0,

1 =2

(]

Consequently, by monomials’ invariance, we conclude that

() if i ¢ S(2)27 ) then B;; = 0,
(i) if i ¢ S .4 then Ba_1); =0,

(iii) if i ¢ S5, ,4)» then Bg; =0,

and Theorem 2.1.3, subcase (4.2) is deduced.

Up to a permutation of Y and Z, it remains to consider the subcase, for which Y417 and
Y Z%~! are notin L. Again, by non-singularity, Z%~* and Y*~! must appear in Ly ; x.
Consequently, (d — 1)b = 0 (mod m) and (d — 1)a = 0 (mod m), and thus m|(d — 1).
Hence, the defining equation is reduced to

-2 j

X'+ X2 XY 4 YN g XYz
j=2 =0
d—2 d—2
+ Y BaY' 24 By XY Z =0,

i=2 i=1

Theorem 2.1.3, subcase (4.3) is now obvious by noticing that 5;; = 0 when m { ai +

(j — )b

If one reference point lie on Fir(X, Y, Z) = 0, then by normalizing the matrix g, 4, (o)
and permuting the coordinates, we may take (1: 0:0), (0:1:0) ¢ {F5(X,Y,Z) =0}.
We thus can write

C: X 4+ Y 4 X2 Ly x + XT3 Ly x + ..+ XLy 1x + Lax =0,
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such that Z¢ ¢ L, x. By non-singularity (Lemma 2.1.1), we have Z%' € L; 1 x. In
particular, da = 0(mod m), (d — 1)b = 0(mod m), and m|d(d — 1). The above

equation turns out to be

d-2 j d—1 d—1
XY X Z9 4 TN B XTIY 2T T B0V 2 Y T Bamya XY 2 =0
7=2 i=0 i=1 i=1

From which we conclude Theorem 2.1.3, case (5).

* If none of the reference points lie in Fr(X,Y, Z) = 0, then
d—1
C:X+Y"+ 2+ X*ILjx+ Lyx =0,
=2
where L x does not appear, since ab # 0 and L, x is not invariant under g, (o).

Clearly, da = db = 0(mod m) and therefore m|d. Moreover, we check monomials’

invariance to obtain

d—1
Co X4y 424> Y XYz >y g Yzt =0,
j=2 ieS(z)Z;jia’b) iestX m, (ab)
This shows Theorem 2.1.3, case (6), and therefore completes the proof. ]

Remark 2.1.5. Theorem 2.1.3 and its proof lead to an algorithm for listing all cyclic groups
that could appear together with a normal form, for any arbitrary degree d > 4. The detailed
implementation in SAGE is valid at the link http://mat.uab.cat/~eslam/CAGPC.sagews. We
also refer the reader to Appendix A, for the complete determination of the different types ap-
pearing up to degree 9. In other words, to the possible non-trivial strata g, q,,(M}"(Z/mZ)),

with their associated normal forms, once the degree is fixed.
We conclude from Theorem 2.1.3:

Corollary 2.1.6. Let H be a non-trivial cyclic subgroup of Aut(C), where C € Mg) U with

d > 4. Then, the order of H divides one of the integers
d—1,d, d—3d+3, (d—1)% d(d—2), dd—1).

In particular, all automorphisms of C have orders at most d(d — 1).
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Corollary 2.1.7. Let G be a finite non-trivial group, embedded into PGL3(k) via some o, such
that o( M} (G)) is non-empty, where g = 5(d — 1)(d — 2) > 3 and k has characteristic p = 0
orp > 2g + 1. Then, there exists a single normal form F,c(X,Y,Z) = 0 of degree d over k,
which defines the stratum o(M['(G)). The same is also true for the stratum ,Q(.//\/l\gP/l(G)). In

this case, the single normal form is denoted by F, ¢ .(X,Y, Z) = 0.

Proof. Let o € G be an automorphism of maximal order mm > 1. Up to PGLs(k)-conjugation,
we may take o(c) diagonal diag(1,¢2,¢?), where 0 < a < b and (,, a primitive mth root
of unity in K. One follows the same idea in the proof of Theorem 2.1.3, to associate a single
normal form Fy,(X,Y,Z) = 0 to the stratum o(M}"({s))). For example, if 0 < a <
b < m and all reference points {(1 : 0 : 0),(0 : 1 : 0),(0 : 0 : 1)} satisfy the equation
Foo)(X,Y, Z) = 0, then we reduces to Theorem 2.1.3, case (3).

Now, to move from o({0)) to o(G), we assume an element 7 of G, which does not belong
to (o). Since o(7) should retain invariant the equation F,)(X,Y, Z) = 0, one obtains extra
algebraic relations between the parameters of F,,)(X,Y, Z). In this way, F,(X,Y,7) is
constructed from F,,) (X, Y, Z) by repeating the procedure for each such 7 and gluing together
all the algebraic restrictions needed for non-singularity, irreducibility,...etc.

Similarly, we get F, (X, Y, Z) from F, (X, Y, Z). In fact, for a finite group H such that
0(G) < H < PGLs(k), and for which there exists a smooth plane curve of genus g whose au-
tomorphism group is isomorphic to H, we need to apply the process above for the generators of

H notin o(G). Hence, we only need to consider a complement of certain algebraic constraints,

so that 7, ¢ .(X,Y, Z) = 0 does not have a bigger automorphism group than H. ]

Remark 2.1.8. It could happen that two different specializations of F, ¢ in k give two non-
singular plane model over k for the same curve C' € o(M/*(G)). This happens if there
exists an isomorphism ¢ between the two models of C, such that ¢~'o(G)¢ = o(G), and
¢~'o((0))¢ = o({(0)). If this is the case for some o(M}!(G)), then the family F, ¢ is said
to be geometrically complete over k for the stratum o(M/*(G)). Otherwise, it is called a ge-
ometrically representative over k for Q(Mg !(@)). The same holds for F, .. One can reads

[LRRS14] for more details (see also section §4.3 in chapter 4).
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§2.2 Union decomposition of M:'(G) and “ES-irreducibility”

The motivation of this section comes from the well-known Henn table, which classifies
the strata of smooth non-hyperelliptic plane curves of genus 3 over C, by their automor-
phism groups and the associated normal forms: We use the formal GAP library notations
“GAP(n,m)” to refer the finite group of order n, appearing in the mth position of the atlas
for small finite groups [Gro]. We also use Z/mZ for the cyclic group of order m. The field k

is always of characteristic p = 0 or p a big enough prime.

Theorem 2.2.1 (P. Henn [Hen76] and Komiya-Kuribayashi [KK79]). The following table de-
termines completely the set of C-isomorphism classes of smooth plane quartic curves over C,

together with their automorphism groups:

Table 2.1: Henn’s Table

Aut(C) Model Restrictions
7./27 X4+ X20o(Y, Z) + Ly(Y, Z) Ly(Y, Z) # 0, not below
)27 x TJ27 | X* +Y* + Z% + aX?Y? +bY2Z% + cZ2%X? a# +b#c# +a
737 %Y + X(X —Y)(X —aY)(X —0bY) not below
Z/6Z Z3Y + X* 4+ aX?Y2 + Y* a#0
S3 X3Z+Y3Z + X?Y?2 +aXYZ?+ bZ* a#b, ab#0
D, XYY+ 24 +aX?Y? +bXY 22 b#0, £ 7=
Z]9Z X4+ XY3+YZ3 -
GAP(16,13) X4+ Y44 70 + aX?Y? +a #0,2,6,2v/-3
S4 X4V 4+ 24+ a(X2Y? 4+ Y222 + 22 X?) a#0, 72T
GAP(48, 33) X4+ vi4+ X273 —
GAP(96,64) Xt4yt4 74 —
PSLy(F7) X3Y +Y3Z + 73X —

The algebraic restrictions for the parameters (in the last column) are taken so that the defining
equation is non-singular and has no bigger automorphism group. For example, the term “not

below” is equivalent to assume more restrictions, so that no larger automorphism group occurs.
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It appears in Table 2.1 the phenomenon: There exists a single normal form describing any of
the strata K/EP/Z(G), where G is one of the groups appearing in Henn Table. Roughly speaking,
if this phenomenon holds for some genus g, we say that the stratum W (G) is ES-Irreducible
(or Strongly Equation Irreducible). This would be a weaker condition than the irreducibility
inside the moduli space M.

In this language, we can formulate the main result in [Hen76] and Komiya-Kuribayashi

[KK79] as follows:

Theorem 2.2.2 (Henn, Komiya-Kuribayashi). If G is a non-trivial group that appears as the
full automorphism group of a smooth plane curve of genus g = 3 over C, then M'Y(G) is

ES-Irreducible.

Remark 2.2.3. P. Henn in [Hen76], observed that M2'(Z/3Z) admits already two irreducible
equation components. The first component corresponds to g 1 3(Z/3Z) = (diag(1, 1, (3)), and
is defined by the normal form

Z3Y + Ly z =0,

whereas the second corresponds to 01 23(Z/3Z) = (diag(1,(3,¢3)). Its defining normal form
is

X'+ XY+ 2 +aX?YZ +BX(YZ)? =0.
However, the second one has always a bigger automorphism group, the symmetry group Ss.

Now, we introduce the precise definition of ES-Irreducibility of the stratum //\/l\gP/Z(G), see
Definition 2.2.6:

Denote by Ag the quotient set {0 : G — PGLs(k)}/ ~, where g; ~ g, if and only if
3¢ € PGL3(k), such that 0, (G) = ¢ 05(G)¢.

Clearly, M} (G) = U e, 0(M(G)), where [g] is the equivalence class of ¢ in Ag.

P

Lemma 2.2.4. We have /T/l\gﬁ(G) = Ujgea, ©€MEUG))

Proof. By definition, W(G) = Upeas g(//\/l\?(G)). Moreover, C € o1(MPH(G)) N
gg(./\/l/é?l(/G)) means that it has a non-singular plane model F=(X,Y, Z) = 0 over k such that
Aut(Fg) = ¢ 01(G)p1 = ¢; " 02(G) o for some ¢, ¢y € PGL3(k). That is o; ~ 0, and the

union is disjoint. O]
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If C € 01(MPHG)) N 02(MEPHG)) with [01] # [02] € Ag, and F(X,Y, Z) = 0 is a non-
singular plane model over k of C, then Aut(Fy) < PGL3(k) should have two non-conjugate
subgroups isomorphic to GG. A detailed study of the work of Blichfeldt [Bli10] would give the
list of G's for which the decomposition M/*(G) = U[Q]GAGQ(MéDl(G)> may not be disjoint.

For instance, we address the reader to Example 2.2.5 below due to B. Huggins [Hug05]:

Example 2.2.5 (B. Huggins, Lemma 7.1.1, [Hug05]). Take m,r € Z* such that 2mr > 5 and
r is odd when m does. Let z¢ be the complex conjugate of z for any z € C. Consider a binary
form G(X,Y) € C[X, Y]\ R[X, Y] given by

G(X,Y) = f[(xm — @ Y™)(X™ + aSY™),

=1
for some ay, ...,a, € C such that the next conditions hold: G(X,1) has no repeated zeros,
the map [« : ] — [B : a does not map the zero set of G(X,Y') into itself, for any root of
unity ¢ we should have {a;, —1/al} # {Ca;, —(/a$}, and when n = 3, the map |« : (] —
[—a+ (14+v/3)B: (1 +/3)a + (] does not map the zero set of G(X,Y) into itself

Now, the equation

Fo(X,Y,Z) = 7" - G(X,Y) =0

defines a smooth plane plane curve C of degree d = 2mr > 5 over C, whose automorphism

group is PGL3(C)-conjugate to
(diag(Cm, 1,1), diag(1, G, 1), diag(1, 1, Comr))-

Therefore, for m > 2, C € o(MPZ/mZ)) N 0o( MEUZ/mZ)) where 01(Z/mZ) :=
(diag(1,1, () and 02(Z)mZ) = (diag(1,{m, C2)). In particular, (1] # [02] € Ag, since

diag(1, 1, () and diag(1, Cn, C2) are in different conjugacy classes of PGL3(k).

Fix a [g] € Ag, then we can associate infinitely many non-singular plane models over
k for C' € o(MJ'(G)), which are pairwise k-isomorphic through a change of variables ¢ €
PGL; (E) However, it is suffices to work with the models such that G is identified with o(G) <
PGL;3(k), for some ¢ in [g] € Ag as a subgroup of automorphisms. Under this restriction, C

is associated with a non-empty family of non-singular plane model over k, where any two
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of them are k-isomorphic via an isomorphism ¢ in the normalizer of o(G) in PGLs3(k), i.e.
¢ o(G)¢ = 0(G).

Second, Lemma 2.1.1 assures that the defining equation of any non-singular model of C'
over k must have degree at least d — 1 in each variable. Moreover, we use a change of variables,
so that a non-singular plane model, whenever it exists, has only monic monomials in its core
(Definition 1.4.3). Consequently, we reduce the situation to a set of k-projectively equivalent
non-singular plane models for C, such that o(G) retains invariant the defining equation of each

of them, and the core is formed entirely of monic monomial terms.

Definition 2.2.6. Write M["(G) as U o(MFY(G)), we define the number of the equa-

€Ag
tion components of M}"(G) to be the number of elements [o] € Ag such that o(M[!(G)) is
not empty. We say that M["(G) is equation irreducible if it is not empty and M}(G) =
o(MFY(G)) for a certain [9] € Ag. A similar notion arises for the stratum 7\4:13/1 (G) =
g AGQ<X/ED/Z<G)). We define the number of the strongly equation irreducible components
of //\A\?(G) to be the number of the elements [p] € Ag such that Q(W(G}) is not empty. We
say that ]/l\gP/Z(G) is equation strongly irreducible (or simply, ES-irreducible) if it is not empty

and /T/I\E(G) = Q(W(G)), for some [g] € Ag.

Of course, if //\/l\? (G) is not ES-irreducible then it is not irreducible and the number of the
strongly equation irreducible components of X/l\gP/Z(G) is a lower bound for the number of its
irreducible components inside M.

To finish this section, we state some natural questions concerning the stratum o(M}*(G)),
and similar questions are also formulated for Q(W(G}) with different strata of the moduli

space M,:

Question 2.2.7. Is it true that, for all the elements C of o(ME'(G)), the corresponding Galois

covers C — C /G have a fixed ramification data?

We believe that the answer to this question for & = C (i.e. for the case of Riemann sur-
faces) should always be true from the work of Breuer [Bre0O]. See also the next section 2.2.1
for the explicit Galois subcover and the ramification data of the strata o(ML'(Z/8Z)) and

o(MG'(Z/4Z)).
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Question 2.2.8. Is o(M/'(G)) an irreducible set when G is a cyclic group?

We note that when & = C, Cornalba [Cor87], for a cyclic group G of prime order, and
Catanese [Catl2], for a general order, obtained that the stratum of smooth, projective, genus
g curves with a cyclic Galois subcover of a group that is isomorphic to G and a prescribed
ramification is irreducible.

Concerning the irreducibility question, we prove in §2.4 that, if G has an element of order
(d—1)% d(d — 1), d(d — 2) or d> — 3d + 3, then o(M}"(G)) has at most one element.
Therefore, it is irreducible. In the next subsection (§2.2.1), we deal with the irreducibility of
the ES-Trreducible stratum MZ!(Z/8Z), where the single normal form has only one parameter.

Moreover, Catanese, Lonne and Perroni in [CLP15, §2] define a topological invariant for

the strata M, (G), which is trivial if it is irreducible.

Question 2.2.9. Consider a non-trivial group G such that the set Ag is given by one element
(see Example 2.2.10 below for such a groups). Is it a necessary condition that the topological
invariant in [CLP15, §2] is trivial in order to be irreducible? Is it true that the strata Mgl(G)

are irreducible?

Example 2.2.10 (The Hessian group). The representations of the Hessian group Hesssig of

order 216 inside PGL3(k) are unique up to conjugation, see H. Mitchell [Mitl1, p. 217]. For
example, Hessgyg = (S, T, U, V'), where

1 00 100 11 1 010
1

S=10¢ o |[,U=[010 |, V= s 1 G G| T=]1001
G —G3

00 ¢ 00 ¢ 1 G G 100

Also, we consider the primitive Hessian subgroups of order 36, Hesssg (one of them is
(S,T,V)), and the primitive subgroup of order 72, Hessyy = (S, T, V,UVU™1).

For the above fixed representation, there are exactly three primitive subgroups of order 36
(see [Gro06]), which are also normal in Hesszo. Moreover, the Hessian subgroup Hess7o is
normal in Hesso16. We recall, by Grove in [Gro06, §23,p.25] and by Blichfeldt in [Blil0] (see
also [HLSS, §1] for the statement of Blichfeldt’s result of our interest) that any representation

of Hessq14 corresponds geometrically to a certain subgroup fixing four triangles (having 18
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elements), and the alternating group A, acting in such four triangles. Furthermore, any repre-
sentation of the primitive subgroups of order 36 or 72 is obtained by the group of 18 elements
fixing the four triangles together with certain permutations on the four triangles (equivalently,
with certain subgroups of A,). On the other hand, it follows, by Blichfeldt (see [HLSS, §1, on
type (E),(F),(G)]), that such Hessian groups are represented in PGLj3 (E) up to conjugation,
with respect to the representation described above. Therefore, any injective representation
of Hesssg or Hessyo in PGL3 (%) extends to an injective representation of Hessy16, and more-
over the three different subgroups of Hesssg in any representation are conjugate to (S, T, V).
Consequently, one concludes that the representations of Hess, with x € {36,72,216} inside
PGL3(K) forms a unique set up to conjugation.

Thus, for any of the Hessian groups Hess, with x € {36,72,216}, the stratum M\g—ﬁl(Hess*)

is ES-Irreducible, when it is not empty, since the set Apess, 1S trivial.

Our aim interest in investigating whether the M["(() is ES-irreducible or not, and the
classical result of Klein concerning the uniqueness (up to conjugation) of the finite subgroups

of PGLs(k), encourage us to ask the following question in group theory:

Question 2.2.11. Is it true that there exists a non-cyclic finite subgroup G of PGLs(k), such

that the set Ag has at least two elements?

2.2.1 The strata M{'(Z/87Z) and /QE W(Z/87)

Let k be a field of characteristic p = 0 or p > 13. Consider an element C' in the moduli space
Mg, which has a non-singular plane model over k with an effective action of the cyclic group
of order 8, thatis C € ML (Z/87Z). More concretely, we have MEY(Z/87) = o( MENZ/8Z))
(we will justify this later in chapter 4) with o(Z/8Z) = (diag(1, (s, —1)), where (g is an 8th
primitive root of unity in k. Furthermore, such a stratum is described over k by the single
normal form

J:Q,Z/SZ(X7 Y, Z) = X4+ Y Z+ X7+ BXSZ2 =0

with a parameter 3, taking values in &\ {#2}, for non-singularity (see Table 4.1). Therefore,

we can always associate to C' a non-singular plane model of the form X° + Y47 + X7 +
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BeX3Z* = 0 over k for some Bz # £2. In the language of [LRRS14] (or see Remark
2.1.8 and section §4.3), the family F,z/s7(X,Y,Z) = 0 is a geometrically complete over &
for ML (Z/87). However, it is not geometrically representative over k, since a curve in the
family F,7/s7(X,Y, Z) = 0 with parameter /3 is isomorphic to the curve with parameter —3
through ¢ = diag(1, (;4, (i), where (¢ is a primitive 16th primitive root of unity. So, for any
C € MFN7Z/87), there is at least two non-singular plane models of C' over k in the family
Fouysz(X,Y, Z) = 0.

Now, let us compute all the non-singular plane models of the form X° + Y47 + X 7% +
BX3Z? = 0, which can be associated to the fixed curve C': These models are obtained by a
change of the variables ¢ € PGLs(k) such that ¢~*(diag(1, (s, —1))¢ = (diag(1, (s, —1)), and
the new model has a similar defining equation of the form X® +Y*Z + X Z* + 3/ X372 = 0.
Without any loss of generality, we can suppose that ¢! diag(1, (s, —1)¢ = diag(1, (s, —1).
Hence, in order to have the same eigenvalues which are pairwise distinct, we may assume
that ¢ is a diagonal matrix, say ¢ = diag(1, A2, A3). Therefore, we get an equation of the
form X5 + XN\ Y*Z + MjXZ* + z03X3Z% = 0. So, we must have A\j\3 = A\ = 1, and
thus A% is 1 or —1. This means that the number of non-singular plane models isomorphic to
C € MEYZ/8Z) over k in the family F, 752 (X, Y, Z) = 0 is exactly two. In this case, we get
a map

[ Fozysz = A\ {—2,2},

which is finite and has degree 2, where A% is the affine line over k. Consequently, the map
9 MGH(Z/8Z) — A\ {~2,2}/ ~

C =[] = {Pe, —Fe},
where a ~ b < b = a or a = —b, is bijective. Moreover, as we will see in chapter 4,
X5+ Y47 + XZ* + X372 = ( has a larger group of automorphisms than Z/8Z if and only
if # = 0. Then, we still have a bijective map

—_~—

§: MEUZ/BZ) — A\ {—2,0,2}/ ~

C — [Ba] = {6z —Be}-
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For example, when k = C, the right hand side in both situations is irreducible.

On the other hand (about an example for Question 2.2.7), if we consider the Galois cyclic
cover of degree 8, given by the action of o(Z/87Z) on X° + Y4Z + X Z* + X372 = 0, we
get that it ramifies at the points (0 : 1 : 0) and (0 : 0 : 1) with ramification index 8, and at the
four points (1 : 0 : h), where 1 + h* + 3h% = 0 with ramification index 2, if 3 # +2. Hence,
MPENZ/8Z) is inside the stratum of smooth curves of the moduli space Mg, which have a
cyclic Galois subcover of degree 8 to a genus zero curve, and also ramify at six points (two of

them are with ramification index 8, and the other four points are with ramification index 4).

§2.3 Strata of smooth plane curves not ES-irreducible

We construct certain strata X/I\QP/Z(G), which are not ES-Irreducible (see Definition 2.2.6). We
first ask for a group G such that there exist at least two non-conjugated injective representations
0; - G — PGL3(k) withi = 1,2, i.e. §¢ € PGL3(k) with ¢~ 0;(G)¢ = 02(G) (more details
are included in the previous section §2.2). Because of the zoo of the groups that could appear for
smooth plane curves (Theorem 1.4.4), we only consider G, a cyclic group of order m. Second,
one needs to prove the existence of two smooth plane curves over & whose automorphism

groups are conjugate to o;(G), for each i = 1, 2 respectively.

In this section, we prove that the stratum KA\;{’/Z(Z /(d — 1)Z) is not ES-irreducible, for any
odd degree d > 5, and it has at least two irreducible components. In particular, when d = 5, we
will see in chapter 4 that G = Z /47 is the only group such that W(G) 1s not ES-Irreducible.
Moreover, for even degree d, we prove that ./T/l\éf(Z /3Z) is not ES-irreducible. More generally,
we may conjecture, by our work in §2.4, that the stratum //VI\E(Z /mZ) might be not be ES-

Irreducible only if m divides d or d — 1, which is true up to degree 9, at least. See the tables in

Appendix A.

The above construction of non-irreducible strata holds when & is a field of characteristic

p=0orp> (d—1)(d— 2)+ 1, by the virtue of the discussion at the end of chapter 1.
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2.3.1 The stratum MF!(Z/(d — 1)Z)

Consider Table A.3. One finds find that MY (Z/mZ) is not empty only for m =
2,3,4,5,8,10,13,15, 16, and 20. Moreover MEN(Z/mZ) = o( MENZ/mZ)) when m # 4,5,
where o is determined by o(Z/mZ) = (diag(1,¢2,¢?)). Hence, the strata W(Z/mZ), for
m # 4,5, are expected to be ES-Irreducible, if they are non-empty.

Now, we consider the remaining situation W(Z /mZ) with m = 4 and 5: obviously, the
Type 5, (1,2) always have a bigger automorphism group by permuting X and Z. Therefore,
there is at most one normal form, defining smooth plane curves over k of genus 6, whose
full automorphism group is isomorphic to Z/5Z (observe that the number of the conjugacy
classes of representations of Z/5Z in PGLg(k) is three). In particular, ./T/l\ﬁp/l (Z/5Z) is also
ES-Irreducible, when it is non-empty. More precisely, X/l\éjl (Z/5Z) = o(MEYZ/5Z)), where
o(Z/5Z) = (diag(1, 1, (5)). On the other hand, for the cyclic groups of order 4, we have: Type
4, (1, 3) is not irreducible, since it decomposes as X . G(X,Y, Z). Hence, it is singular, and

will be out of the scope of our purposes. Then, we obtain MJY(Z/AZ) = 01 (MEUZ/AZ)) U

02(MEUZ/AZ)), where o, corresponds to Type 4, (0, 1) and g, to Type 4, (1, 2) respectively.

On Type 4, (0, 1)

Consider the one parameter family C,, of smooth plane curves over k defined by an equation
of the form: F, (X,Y,Z) := X° +Y® + XZ* + fX3Y? = 0, where 8 # 0. Since ) :=
diag(1,1,¢4) € Aut(F,,) is an homology of order 4, with axis, the reference line L : Z = 0
and center, the reference point P; = (0 : 0 : 1), then Aut(F,, ) should fix a point, a line or a
triangle (Theorem 1.2.8).

If Aut(F,, ) fixes a triangle and neither a line nor a point is leaved invariant, then
F,, (X,Y, Z) must be a descendant of the Fermat curve F5 : X° + Y?® + Z° = 0 or the Klein
curve K5 : X4Y 4+ Y*Z + Z*X = 0 (we refer to the proof of Theorem 1.4.4). However, this is
impossible because 4 1 |Aut(Fs)|(= 150), and 4 1 |Aut(K5)|(= 39). So Aut(F,,) should fix
a line and a point off that line. By Proposition 1.3.12, the center P is an inner Galois point for
Fo (XY, Z), and it is unique by Theorem 1.3.10. Therefore, it must be fixed by the full auto-

morphism group Aut(F,,). In particular, Aut(F,,) is cyclic, by Corollary 1.4.2, and the axis
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Z = (s also fixed due to Proposition 1.2.9. Consequently, any automorphism of 7, (X, Y, Z)

is of the shape

x x 0

x* x 0

0 01
and we reduce to diag(1, \, 11), because of the term X Z* and since 3 # 0. This in turns yields
N =X =" = 1,50\ = 1andtis a 4th root of unity. This shows that Aut(F,,) is
isomorphic to Z/47.

By the above discussion, we conclude:

Proposition 2.3.1. The substratum gl(//\/lx(’;/l(Z /A7) is non-empty.

On Type 4, (1, 2)

Similarly, we study the one parameter family 592 of smooth plane curves over k defined by
Fo (XY, Z) = X5+ X(Y*+ Z*) + BY?Z% = 0, where 8 # 0. The family admits a cyclic
subgroup of automorphisms generated by 77 := diag(1, (4, —1). For the same reason as before,
i.e 41| Aut(K;)| and | Aut(Fs)|, F,,(X,Y, Z) is not a descendant of the Fermat curve F; or
the Klein curve K. Moreover, Aut(F,,) is not conjugate to an icosahedral group Aj, since it
contains no elements of order 4. Also, we exclude the groups: the Klein group PSL(2,7), the
Hessian group Hess,16, and the alternating group Ag, using Theorem 1.4.5 for d = 5. Second,
the next lemma shows that Aut(F,,) is not conjugate to any of the Hessian subgroups Hess,,

for * = 36, 72, and hence it should fix a line and a point off this line:

Lemma 2.3.2. There is no smooth plane curve C over k of genus 6, whose automorphism group

is conjugate to Hess,, for any x € {36,72,216}.

Proof. Let F(X,Y,Z) = 0 be a non-singular plane model for C' of degree 5 over k, and

suppose on the contrary that Aut(F%) is conjugate, through some ¢ € PGL3(k), to Hess,.
Then Aut(F,-.5) is given by the usual representation inside PGL3(k) of the above Hessian
groups. In particular, it has always the five automorphisms: [Z : Y : X|, [X : Z : Y], [V :
X:Z, Y Z:X],and [X : G3Y : (37]. Because F, 15(X,Y, Z) = 0 is invariant under

the actionof [Z : Y : X|, [X : Z : Y], [Y : X : Z],and [Y : Z : X], it must be of the
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form: u(X® +Y®+ 75 + (X Z + XY + VX +YZ + Z' X + Z'Y) + G(X,Y, Z), for
some u,a € k, and G(X,Y, Z) is a homogenous polynomial of degree at most three in each
variable. Now, acting by the fifth automorphism diag(1, (3,¢2), we get u = a = 0, which in

turns conflicts non-singularity. [

Since 7 € Aut(F,,) is a non-homology in its canonical form, i.e. diag(1,a,b) with 1,a,b
(resp. 1, a3, ) are pairwise distinct, then the fixed line is one of the reference lines B = 0
with B € {X,Y, Z} and the fixed point is one of the reference points, characterized by B # 0.
Equivalently, all automorphisms of F,, (X, Y, Z) are of one of the shapes o1 := [X : vY +wZ :
sY +tZ], oo = X +wZ 1 Y : sX +tZ], or 3 == X +wY : sX +tY : Z].
If 1 € Aut(F,,), then s = 0 = w (Coefficients of Y° and Z°), and we have the same
conclusion for , and (3, by the coefficients of X3Y?2, Y4Z and Z3X, Y Z*4, respectively. So
any automorphism is diagonal say diag(1, A, i), hence A* = p* = N2p® = 1, and A = (], s =
¢y, for (r,7") € {(0,0), (2,0), (1,2), (3,2)}. That is Aut(F,,) is isomorphic to Z/4Z, which
was to be shown.

The analogue of Proposition 2.3.1 is:
Proposition 2.3.3. The substratum oo( MEWZ/AZ)) is non-empty.
Summarizing all the discussion made in this subsection, we can write:

Corollary 2.3.4. Suppose that the stratum ME'(Z/mZ) is non-empty. Then it is ES-Irreducible
if and only if m # 4. Furthermore, for m = 4, it has exactly two irreducible equation compo-

nents, and hence the number of its irreducible components is at least two.

Remark 2.3.5. For any element C in o;(MZL(Z/4AZ)), the Galois cover of degree 4 corre-

sponding to
{]:91<XaYa Z) = 0} - {FQI(X7}/’ Z) = O}/<dlag(17 17 C4)>7

where F, (X,Y, Z) := ZY + Ls z, is ramified exactly at six points with ramification index
4: indeed, the fixed points of n?, for i = 1,2,3,4 in P? (E) are all the same set, where =

diag(1, 1, (). Therefore, we only need to consider the ramification points of 7. In particular,
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the ramification index is always 4. By Hurwitz formula, we get 10 = 4(2gg — 2) + 3s, where
go is the genus of F,, (X,Y, Z)/(diag(1,1,{)). Hence go = 0 and s = 6.

On the other hand, for any element C' in g,(MZE'(Z/47Z)), the Galois cover
{]:QQ(Xv Y,Z) =0} — {ng(X> Y, Z) = 0}/(diag(1, ¢4, —1)),

where F, (XY, Z) := X° + X (Y4 + Z1) + Bo 0 X322 + $32X%Y 27 + B52,Y? 73, is ramified
at the points (0 : 1:0), and (0 : 0 : 1) with ramification index 4, and at the 4 points (1 : 0 : h),
where 1 + h* + (2 0h? = 0 with ramification index 2 provided that 355 # +2. We exclude the

situation 3, o = £2 so that the defining equation is non-singular.
The above results, Propositions 2.3.1, 2.3.3 and Corollary 2.3.4, are generalized as follows:

Theorem 2.3.6. Let d > 5 be an odd integer, and consider g = %(d — 1)(d — 2) as usual. Then

//\/l\;,P/l(Z /(d — 1)Z) is not ES-Irreducible, and it has at least two irreducible components.

Proof. The above argument for the concrete families of Type 4, (0, 1) and Type 4, (1, 2) still
valid, for any odd degree d > 5, and the proof is quite similar. In other words, let F,, (X,Y, Z)
and F,,(X,Y,Z) be the two families of smooth plane curves over k of Type d — 1,(0,1)
and Type d — 1,(1,2) defined by the normal forms X? + Y¢ + Z4-1X + pX4-2y2 = (,
and X? + X(Y9 ! + Z471) + BY2Zd — 2 = 0 respectively, and such that 5 # 0. Then
Aut(F,,) and Aut(F,,) are non-conjugate cyclic groups of order d — 1, and generated by
n = diag(1,1,¢;1) and 7] := diag(1, {41, (3 ), respectively. Therefore, they belong to two

different [o]’s.

On Type d — 1, (0,1): Again with an homology 7 of period d — 1 > 4 inside Aut(F,,),
the group Aut(F,,) fixes a point, a line or a triangle (Theorem 1.2.8). Moreover, the center
P; = (0 : 0 : 1) of n is an inner Galois point (Proposition 1.3.12), and also it is unique
(Theorem 1.3.10). Hence, it should be fixed by Aut(F,,), and its axis Z = 0 is then leaved
invariant (Proposition 1.2.9). So Aut(F,,) is cyclic (Corollary 1.4.2), and automorphisms of
Fp (X,Y, Z) = 0 are all of diagonal shapes diag(1,v,t), such that v = t4=* = v = 1. This
shows that | Aut(F,, )| = d — 1.
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On Type d — 1,(1,2): First, Aut(F,,) fixes a line and a point off this line: No loss of
generality to assume d > 7 (for d = 5, we refer Proposition 2.3.3). The alternating group Ag
has no elements of order d — 1 > 6. The Klein group PSL(2, 7), which is the only simple group
of order 168 (up to isomorphism), has no elements of order > 8, and also there are no elements
of order 6 inside (for more details, we refer to [Vis]). Therefore, the primitive groups As;, Ag,
and PSL(2,7) do not appear as the full automorphism group. Furthermore, the elements of
the Hessian group Hessy;4 = GAP(216,153) have orders 1,2, 3,4, and 6. Then Hess, with
x € {36,72,216} do not appear as the full automorphism group, except possibly for d = 7.
On the other hand, d — 1 1 3(d? — 3d + 3), thus F,,(X,Y, Z) = 0 is not a descendant of the
Klein curve K,. Also, F,,(X,Y,Z) = 0 is not a descendant of the Fermat curve Fj, since
d — 11 6d? (except for d = 7). Finally, it remains to deal with the degree d = 7 to exclude the
Hessian groups and being a descendant of the Fermat curve F;: By the same line of argument
as we did for Type 4, (1,2), one shows that none of the Hessian groups could appear as the
automorphism group of a smooth plane curve of degree 7. Furthermore, automorphisms of Fx
are of the shapes [X : (#Y 1 (2], [(2Z : (§Y + X], [X : (B2 + 3V, [(5Y + X = (2Z], [¢3Y -
GZ: X, [¢2Z . X : (¢Y]. However, none of them is of order 6, and the claim follows.

Now, the full automorphism group should fix a line and a point off this line. Due to the
presence of 77 in Aut(F,,), we obtain all automorphisms to be of one of the shapes [X :
oY +wZ o sY +tZ), [vX +wZ Y  sX +tZ], or [vX +wY : sX +tY : Z]. If
(X 1 oY +wZ : sY +tZ] € Aut(F,,), then s = w = 0 (coefficient of Y¢ and Z9), and
the same holds for [vX + wZ : Y : sX + tZ] (resp. [vX +wY : sX +tY : Z]) from the
coefficients of X?2Y2 Y4~ Z (resp. Z972X?2, Y Z9~1). Hence, all automorphisms reduces to
diagonal shapes say diag(1,v, s). Hence v%™ = 57! = 0252 = l,andv = ¢} |, s = (|,

with d — 1|2r — 7. Therefore, Aut(F,,) is cyclic of order d — 1. O

2.3.2 The stratum MY}(Z/37).

From Table A.4 of Appendix A, we get the following normal forms for o(MI}(Z/37)):
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Table 2.2: Normal forms for o(M(Z/37))

3,(0,1) 78+ Z3L3 74 Loz
3,(1,2) | XOV +Y5Z + Z°X + in XA 7% + pp X2V + 32724+
s X3Y2Z + s XY3Z2 + g X2Y 73

where yi;, are parameters that assumes values in &, so that the associated plane model over k of

the respective stratum o(M1}(Z/3Z)) are non-singular.

On Type 3, (1, 2)

Proposition 2.3.7. Let C € MUEZ/37Z), such that C admits a non-singular plane model
F=(X,Y,Z) = 0 over k of the form

XY AY Z+ 2P X+ XA 224+ po XY 4 13 Y 2 2 4 py XY 2 2+ s X Y3 22 4 16 X2Y 72 = 0.
Then, Aut(Fg) should fix a line, a point or a triangle.

Proof. Tt suffices to show that Aut(Fg) is not conjugate to any of the finite primitive subgroups
inside PGLs3(k), and the result follows by Theorem 1.2.1. Before we go further, we recall that
S = diag(1, (3, (3) is an automorphism.

Let S’ € Aut(Fg) be of order 2 such that S’SS” = S~!. Then S’ must have the shape
(X :BZ:B7YY], [BY : 71X : Z],0or [BZ : Y : B71X], for some 3 € k \ {0}. However, non
of these transformations retains Fz(X,Y, Z) = 0, hence Aut(F) does not contain an S as a
subgroup. In particular, it is not conjugate to A or Ag. Similarly, we exclude the Klein group
PSL(2,7), since it contains an octahedral group of order 24 (but not an isocahedral group of
order 60), and because all elements of order 3 inside forms a single conjugacy class (we refer to
[Vis]). Lastly, if Aut(F%) is conjugate, through a transformation ¢, to the Hessian group Hess,
with * € {36,72,216}, then, we may assume ¢ 'S¢ = S, as we did not fix a plane model
over k for a smooth plane curve whose automorphism group is Hess,. In particular, ¢ has the
shape; [Y : vZ : BX], [Z : vX : Y], or [X : 4Y : BZ]. Clearly, non of them transforms
Fa(X,Y,Z) =0t0 Fyn(X, Y, Z) = 0with {[X : Z: Y[ [Y : X : Z], [Z : YV : X]} C
Aut(F,-.5). Therefore, Aut(Fg) is not conjugate to Hess,, for any * € {36, 72,216}, and we

are done. OJ
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Notation. Let A be the subset of & \ {(0,0,0)}, consisting of all solutions of the following

system of polynomial equations

‘1’1(C1,§2,§3) =1, ‘1’2(§1,§27§3) = ‘1’3(§1,§2;§3) = C§W4(§1,§2,§3)7

where

Uy (61, 62,63) = §3§25 + (§1§§ +1)s + §357

\112(§1,§27§3) = C92 ((5CS + 1)§3§25 + (5C96 + Cg + (2C§ + CS’ + 3)§1§§)§2 + (Cg + 5)9?) )
Wa(c,6,5) = G (¢ +5)sssy + (5 + (3¢5 + 265 + Daisy + Dx + (5 (55 + 1)<3)
Ualst,s2,53) = Co(CGo(5G + D)szss + Col(Co + (G + 3C5 + 2)s165 + 5)sa + Co(5G5 + 1)s5)

and (g is a primitive 9th root of unity. Define (A); to be the set of all values that appear in the
Ist coordinate of the 3-tuples in .4, which (by a computation) is a finite subset of k.

Now, we state and prove the main result for this part:

Theorem 2.3.8. Consider C € MZEZ/3Z) that has a non-singular plane model
F=(X,Y, Z) = 0 over k of the form X°Y +Y°Z + Z°X + uX?Y Z3 = 0 with u ¢ (A), U{0}.
The full automorphism group of F(X,Y,Z) = 0 is isomorphic to 7/3Z, and it is generated
byS: (X:Y:Z)— (X :GY:(32).

Proof. A priori, Aut(Fy) fixes a line and a point off that line or it fixes a triangle using Propo-

sition 2.3.7. We treat each of the two subcases:

(A) Ifitfixes aline and a point off this line, then the line must be one of the reference lines B =
0, with B € {X,Y, Z}, and the point is one of the reference points, given by B # 0 (recall
that S is an automorphism, which is non-homology). Therefore, Aut(Fg) is cyclic, since
all reference points lie on Fi=(X, Y, Z) = 0. In particular, any automorphism should be in

the normalizer of (S) in PGL3(k), which is generated by the set of all diagonal matrices
together with the set of all permutations of {X,Y, Z} in PGL3(k). Since u # 0, all
automorphisms of Fz(X,Y, Z) = 0 reduces to diagonal shapes. Moreover, if diag(1, v, t)

is an automorphism, then tv* = 1 =3, and t> = v. Hence t = (3" = (§ andv = (5" = (3"

for some integer 7, which implies that Aut(Fz) = (5).
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(B) Ifit fixes a triangle and neither a line nor a point is leaved invariant, then Fz(X,Y, Z) =0
is a descendant of the Fermat curve Fy : X% + Y% + Z6 = 0 or it is a descendant of the
Klein curve Kg : X°Y +Y?Z+Z°X = 0. Moreover, Aut(F5) is conjugate to a subgroup

of one of the following groups (see [Harl3, §5]):

Aut(Fs) = (XY :Z],[X:GY Z,[Y:Z:X],[X:Z:Y]),

Aut(Kg) = ([Z:X:Y], [X: Y : (7)),
respectively. We deal with each of these subcases:

(i) Suppose first that Aut(Fg) is conjugate, through some ¢, to a subgroup of Aut(Fg).
It is enough to assume ¢~ 'S¢ € {S,[Y : Z : X|,[Y : (Z : X|, [V : 3Z :
X} where (g is a primitive 6th root if unity, since any automorphism of order 3 in

Aut(F), which is not an homology, is conjugate to one of these inside Aut(Fg).

If 'S¢ = S, then ¢ is again in the normalizer of (S) in PGL3(k). So, it belongs to
the subgroup generated by diagonal matrices and the symmetry group on {X,Y, Z}.

Obviously, non of them produces the core X6 + Y% + Z¢ from F=(X,Y, Z) = 0.

If 'S¢ = [V : vZ : X] forsome v € {1, (s, (2}, then ¢ has reduces to the shape

A 1 A2
GABy Pa (GGNBs |
GABs B3 A°(3fs

where \* = v. We thus get F,_.(X, Y, Z) of the form
Uy (1, Be, Bs3) (u2§3X6 +Y°% 4 V4C§Z6) + lower terms.
Hence, W (p, B2, 83) = 1, v = (3, and F;_.5(X, Y, Z) has the form
XO+YO+ 20+ (Ua(p, B2, B3) XY + Wa(ps, Ba, B3)Y°Z + Ws(p, Bo, B3) X Z°) + ..

Moreover, [Y : (§Z : X] is an automorphism of F,, 1&(X,Y,Z) = 0, which is
impossible because ;1 ¢ (A);. Therefore, Fr(X,Y,Z) = 0 is not a descendant of

the Fermat curve Fg.
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(ii) In the same way, if F5(X,Y, Z) = 0 is a descendant of the Klein curve K¢ through

¢ € PGLs(k), then we may impose
¢S € {S, ST (Y 1 (2 X], (G2 X G Y]}

with 7 = 0,1, 2, and (, is a primitive 21th root of unity. If p~*S¢ = [(5,Y : (5, Z :
X1, then ¢ has the shape
Aot 1 NG

A" CsB2 B2 NGB |

AGoi"G3Bs B3 NGy (3P
with A3 = (5;*". To get the core of the Klein curve, we, particularly, need to spe-
cialize the parameters /i, 33, (3, so that the monomials X¢, Y 76 X°7 XY, and
Y Z5 disappear from F,1w(X,Y, Z) = 0. This is impossible, unless p = 0, which
is not the situation. Similarly, we exclude [(;;*"Z : X : (},Y], and therefore, ¢
is in the normalizer of (S), that also produces the core X°Y + Y°Z + Z°X. In
this case, we get the defining equation (XY + Y?Z + Z°X) + 11G(X,Y, Z),
for some G(X,Y, Z) € {X?Y Z°, X°Y?Z, X Z?Y?}. In particular, Aut(F, .5) <
([X : (nY : (;*Z]). Checking monomials’ invariance of F,a(X,Y, Z) under
this action, we only get the automorphisms [X : (51Y : (5;*" Z] with 7|7, and the

automorphism group is Z/3Z.

On Type 3, (0,1)

Proposition 2.3.9. If C € M'(Z/37) has a non-singular plane model F(X,Y, Z) = 0 over
k of the form Z%+ 73 L3 7+ L ; = 0, then Aut(Fg) is conjugate to the Hessian group Hessy s,

or it leaves invariant a point, a line or a triangle.

Proof. The result follows directly from Theorem 1.2.8, since U = diag(1, 1,(3) € Aut(Fp)
is an homology of period 3, and Hessy14 is the only primitive group, which contains such

automorphisms and does not leave invariant a point, a line or a triangle. O]
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The main result of this part is stated below:

Theorem 2.3.10. The automorphisms group of any C € ME(Z/3Z), having a non-singular
plane model F5(X,Y, Z) = 0 over k of the form Z® + X°Y + XY° + uX3Z% = 0, with u # 0
is cyclic of order 3, and generated by U : (X 'Y : Z)— (X : Y : (32).

Proof. First, assume a change of the variables ¢ such that ¢~ 'U¢ = U. Then ¢ should be of

the shape

x 0

* x 0 |,

0 01
and it is clear that {[Z : YV : X|, [X : Z : Y]} € Aut(F, ). In particular, Hessz6 does not
occur as the full automorphism group, and Aut(F) therefore fixes a point, a line or a triangle
(Proposition 2.3.9).

We treat each of the following subcases:

(A) First, assume that Aut(Fy) fixes a line and a point off that line. If F(X,Y,Z) = 0
admits a larger non cyclic automorphism group than Z/3Z, then Aut(Fg) satisfies a short
exact sequence of the shape 1 — Z/3Z — Aut(Fz) — G — 1, where G is conjugate to
Z/mZ with m € {2,3,4}, Dy, with m = 2, or 4, A4, S4, or to A;. For G, conjugate to
Z7)3Z, Ay, Sy, or to As, there exists, by Sylow’s theorem, a subgroup H of automorphisms
of F(X,Y, Z) = 0 of order 9. Hence, H is Z/9Z or Z/37Z x Z/3Z, however non of them
happens: one easily excludes Z/9Z, since 9 1 d — 1, d, (d — 1)?, d(d — 2), d(d — 1), or
d?—3d+3 with d = 6 (see Corollary 2.1.6). Moreover, if H = 7.]37x 7./ 37, then we have
an automorphism 7 of order 3, which commutes with U. So, n = [v.X4+wY : sX+tY : Z],
and from the monomials X% and Z3Y3, we obtain w = 0 = s, and v°t = vt®> = v3 = 1.

That is € (U), a contradiction.

By a similar argument, one shows that G is not conjugate to Z/4Z, or Ds,,, because for any
GAP(6m, j), there must be an automorphism 7 of order 2 or 4, which also commutes with
U. On the other hand, if G is conjugate to Z/27Z, then there should be an automorphism 7
of order 2 with nUn = U~!. And, such an automorphism does not exist, as U/ and U~! are

in different conjugacy classes in PGL3(k)
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(B)

Now, we conclude by the above discussion that Aut(F%) is cyclic (so, it is abelian). Hence,
it can not be of order > 3, since we then have to recognize our curve to be of Type m, (0, 1)
for some m, divisible by 3. By Table A.4 in Appendix A, this is not possible, and the

automorphism group is exactly Z/37Z.

Second, if a triangle is fixed by Aut(F%), and neither a point nor a line is leaved invariant,
then as we mentioned earlier (Theorem 1.4.4), Fi=(X,Y, Z) = 0 is a descendant of the
Fermat sextic curve Fg or the Klein sextic curve Ks. However the Klein curve is not
an option, as it does not have automorphisms of order 3 whose Jordan form looks like
an homology. Also, the set of automorphisms of order 3 of the Fermat curve, which are
homologies forms exactly two conjugacy classes in Aut(Fy), represented by U and U?
respectively. But also U/ and U ! are in different conjugacy classes of PGLs(k), therefore
F=(X,Y,Z) = 0 is a descendant of the Fermat curve through a change of variables ¢,
with ¢~ 'U¢ = U. Thus, ¢ = [0y X + oY : S1X + 5Y : Z], and F, (X, Y, Z) = O'is

given by the equation
e0 X041 YO+ Z0 4 u(an X + oY )P 23 420 X°Y +e3 X Y 24+, XPY 2 465 X2Y 466 XY,

where gy == a1 (af +B1) (= 1), and g, = ayf; (ad+ ;) (= 1). In particular,
(a1 1) (azf2) # 0, and hence [X : AZ : dY], [A\Z : 6Y : X|,[A\Y : 6Z : X], and
AZ © X pY] ¢ Aut(F,-.p), forany A\, € k" (for instance, due to the monomial
XY?Z%). Furthermore, [\Y : X : §Z] € Aut(F,.5) only if ¢y = ap and A = 0° = 1,
and F,_15(X,Y, Z) becomes

Z°+ pad(X + Y’ Z° + an(X +Y)(BiX + 5oY) (0} (X +Y)' + (51X + 2Y)") .

Then B8, = f,, since we are assuming [Y : X : 6Z] € Aut(Fy_.5). In this case, ¢ is
not invertible, a contradiction. Finally, if diag(1, ¢, ¢} ) retains F, 515X, Y, Z) = 0, for
some integers 0 < r, 1’ < 6, then r = 0 and 1’ is even (recall that ai; g # 0). So, being a

descendant of the Fermat curve yields also that Aut(F,_.5) is Z/3Z.
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Corollary 2.3.11. The stratum ML} (Z/37Z) is not ES-Irreducible, and it has at least two irre-

ducible components.

§2.4 On smooth plane curves, admitting “large” or ‘very
large” automorphisms

There is a lot of interest on smooth curves having a large automorphism group: For k = C, a
smooth curve C' € M, has large automorphism group if it has a neighborhood (with respect
to the complex topology) in M, such that any other smooth curve inside the neighborhood
has a smaller automorphism group. For such situations C' admits a model defined over Q,
C/ Aut(C) corresponds to the projective line and the Galois cover C' — C'/ Aut(C) is a Belyi
morphism, in particular it is ramified exactly at 3 points. The last property of a Belyi morphism
that is ramified at three points and is a Galois cover, characterizes smooth curves with large
automorphism group. For more details, we refer to Wolfart [Wol97]. Another notion in the
literature for C' to be of large automorphism group is when | Aut(C)| > 4(g — 1). In particular,
for C' e M, it means that | Aut(6)| > 2(d® — 3d 4 2) — 4. In this case C' — C/ Aut(C) is a
map from C to a projective line, which is ramified at 3 or 4 points, see [FK92, p.258-260].
The above definitions of large automorphism group are very restrictive to our proposes for

smooth plane curves C' € /\/léD Uin this chapter.

Definition 2.4.1. We say that an automorphism 7 € Aut(C) is “very large”, if its order is
d*> —3d+3,(d—1)2 d(d—2),ord(d— 1), and it is “large”, if its order is md, m(d — 1) or

m(d — 2) for some integer m > 2.

We devote this section to study /\/15 !(G) when G has elements of “large” or “very large”
order. Recall that the irreducibility of the strata //\/l\;{;l(Z /mZ.) is a deep problem (see section
§2.2). In this section, we will show that M}"(G) is irreducible when G has an element of order
(d—1)%d(d—1),d(d — 2) or d* — 3d + 3, since the stratum in this case is a single point. On
the other hand, M}"(G) is ES-irreducible when G has an element of order md, m(d — 1) or

m(d — 2) for some integer m > 2.
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2.4.1 Strata of smooth plane curves, having a ‘“‘very large’” automorphism

Take, as usual, a non-singular plane model Fx(X,Y,Z) = 0 of degree d > 4 for C €
./\/15 '(Z/mZ) over k, where k is a field of characteristic p = 0 or p > 2g + 1. Assume
moreover that n € Aut(Fg) is of order m that acts on Fir(X,Y,Z) = 0 as the automor-
phism (X : Y : Z) — (X : ¢4Y : ¢%Z). In particular, m must divide one of the integers
d—1,d,d*—3d+3, (d—1)% d(d—2),ord(d— 1), by Corollary 2.1.6.

The stratum MY (Z/d(d — 1)Z)

The following results (Proportions 2.4.2 and 2.4.3) are well-known in the literature, see for
example [Har13, Proposition 3.8] when k has characteristic p = 0 and the same result follows

by our discussion in chapter 1 when p > 2g + 1:

Proposition 2.4.2. Forany d > 5, C € MY (Z/d(d — 1)Z) if and only if F(X,Y,Z) = O is
k-isomorphic to X +Y*+ X 74! = 0. In particular, MY (Z/d(d—1)Z) is irreducible with a
single element. In fact, M} (Z/d(d—1)Z) = (M (Z/d(d—1)Z)), where o(Z/d(d—1)Z) =

(diag(1, ¢ty Cary))-

Proof. If C : X¢ +Y? + XZ%' = 0 is a non-singular plane model for C, then C' €
MINZ/d(d — 1)Z), since diag(1, Cdd 1)+ Cdta_1y) is an automorphism of order d(d — 1).
Conversely, suppose that C € M (Z/d(d — 1)Z) and fix a non-singular plane model
F+(X,Y,Z) = 0 for C. Since d(d — 1) does not divide any of the integers d — 1, d, d> —
3d + 3, d(d — 2), and (d — 1)%, then Fx(X,Y,Z) = 0 is k-projectively equivalent to
Type d(d — 1), (a,b) of the form Theorem 2.1.3-(5), for some (a,b) € T'y_1), such that
da =0 mod d(d — 1) and (d — 1)b = 0 mod d(d — 1). In particular, we can take a = d — 1
and b = d as a generator of these types: indeed, a« = 0 mod d — 1 and b = 0 mod d, and we

also have
. d—1)m m m’'—m)+m
dlag(l,gé(d_i) 5 :ii(d 1) diag(1, Cd(d 1)7<d(d71))d( s
- 4,X d—1,X
Hence, the index sets .S (2)m , ST n(ap) and SY m,(ap) are all the empty set, for all

J =2,...,d — 2: we justify this by the computations;
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S@ia g = {0<i<jl(d=1)i+(j—i)d=0moddd—1)}
= {0<i<j|dj—i=0modd(d—1)}
= (), since 0 <dj —i<d(d—1),

g X a1y @d1a = 1 <i<d=1[(d—1)i+ (d—1i)d=0modd(d-1)}

= {1<i<d-1|d—i=0modd(d—1)}
= (), since,0 <d—i<d(d—1),

S denaerg = {1<i<d—1](d=1)i+(d—1—i)d=0mod d(d— 1)}
= {1<i<d-1|i=0modd(d—1)}

= 0.

Now, if we substitute in the normal form of Theorem 2.1.3, case (5), then one finds that

Fs(X,Y,Z) = O reduces to X + Y9+ X 79! = (), which was to be shown first. O

Proposition 2.4.3. The full automorphism group of C : X% + Y + XZ% ' = 0 withd > 5 is
cyclic of order d(d — 1). Hence ./T/l\_f/l(Z/d(d —1)Z) = MFYZ/d(d —1)Z) is also irreducible.

Proof. Since diag(1, Cg(;lil), Qfll( d—l))d € Aut(C) is a homology of order d — 1, then its center
P; = (0 : 0 : 1) is an inner Galois point of C (Proposition 1.3.12). Moreover, it is also
unique (Theorem 1.3.8). Therefore, it must be fixed by Aut(C), which implies that Aut(C)
is cyclic by the virtue of Corollary 1.4.2, and thus | Aut(C)| < d(d — 1) by Corollary 2.1.6.
But also diag(1, (j,t 1), Cia 1) € Aut(C) is of order d(d — 1). Consequently, Aut(C) =

(dlag(l, Cj(_d1,1y Cccll(dfl))> :

Remark 2.4.4. Recall that for d = 4, the automorphism group of C' : X%+ Y* + XZ3 = 0is

isomorphic to Z /47 © A,, given by

{(r,9) € pa x H : k" = x(g9)} /%1,

where 1, is the group of nth roots of unity, H is the group A, and Y is the character y : H —

w3 defined by x(S) = 1 and x(7T") = (3, where S, T are generators of H of order 2 and 3
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respectively with the representation H = (S,T|S? = 1,T7% = 1,...), and (3 is a primitive

3rd-root of unity, see [Hen76] (or also [Bar12]).

Corollary 2.4.5. If G is a non-cyclic automorphism subgroup of a smooth plane curve of order
divisible by d(d — 1) with d > b, then it does not contain any automorphism of order order

d(d — 1).

The stratum MP'(Z/(d — 1)?Z)

Proposition 2.4.6. For d > 4, C € MI(Z/(d — 1)*Z) if and only if it is k-isomorphic to
X'+ YT Z + X2 = 0. In particular, the stratum MY (Z/(d — 1)*Z) is irreducible and
contains only a single element. More precisely, M (Z/(d — 1)*Z) = o(M[Y(Z/(d — 1)°Z)),

where o(Z/(d — 1)°Z) = (diag(L, G135

Proof. If C : X? + Y% 'Z + XZ%' = 0 is a non-singular plane model for C, then
C € MPY(Z/(d—1)*Z), since diag(1, {(a—1)2, C((jjll))édd)) is an automorphism of order (d—1)2.
Conversely, suppose that C € MI(Z/(d — 1)*Z). Because (d — 1) + d — 1, d, d* — 3d +
3, d(d —2), and d(d — 1), we can consider, up to k-isomorphism, a non-singular plane model
Fs = 0 of Type (d — 1), (a,b) of the form Theorem 2.1.3, subcase (4.2). In particular
(a,b) € T'(g_1y2 such that (d — 1)a +b = 0 mod (d — 1)?, (d — 1)b = 0 mod (d — 1),
and a = (d — 1)m —m/;b = (d — 1)m’ for some integers m and m'. Moreover,
diag(1, (4 () = diag(1, Game, G 5@ S0 we take o = 1 and
b = (d — 1)(d — 2) as a generator of such types of smooth plane curves. Consequently, the

index sets Sg’X (d-1)2, (ab)> qu,x (d-1)2, (a)’ and 5(2){&{1)2,(@5)’ forj =2, ...,d — 2, become

all empty;

=4

=
»
|

——

0<i<jli+(j—i)(d—1)(d—2)=0mod(d—1)"}

= {0<i<j|j(d—1)—di=0mod(d— 1)}

We get the last equality, because (d — 1)? | j(d — 1) — di gives d — 1|7, and thus ¢ = 0. This in
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turns implies that d — 1| j, which is not possible as 0 < j < d — 1. Also, we we obtain

d, X o
S2 (d-1)2,(ab)

(2<i<d—2|i+(d—i)(d—1)(d—2)=0mod(d—1)%}
C {2<i<d-2|d—1]i}

= 0,
gd—1X @12 @y = 11<i<d=1]i+(d—1-19)(d—1)(d—2)=0mod(d—1)*}
= {1<i<d-—1]|(d—1)*|di}

= 0.

Lastly, we substitute into equation Theorem 2.1.3, subcase (4.2) to obtain the prescribed defin-

ing equation X + Y% 17 + X 79! = (, and we have done. O
Proposition 2.4.7. The full automorphism group of C = X + Y417 + X791 = 0, for any
d > 4 is cyclic of order (d — 1)?. Hence .//\/l\fl(Z/(d —1)°Z) = MJNZ/(d — 1)*Z) is also

irreducible.

Proof. Since diag(1,(4-1,1) € Aut(C) is a homology of order d — 1, we can deduce that
Aut(C) is cyclic of order at most d(d — 1) and is also divisible by (d — 1)? (one follows the

same argument for Proposition 2.4.3). Thus Aut(C) is exactly Z/(d — 1)?Z. O

Corollary 2.4.8. If G is a non-cyclic subgroup of automorphisms of a smooth plane curve of
order divisible by (d — 1)* with d > 4, then it does not contain any automorphism of order

order (d — 1)

The stratum ME'(Z/d(d — 2)Z)
Definition 2.4.9. (central extension) Let N, F and G be three groups. We call G an extension
of E' by N if there is a short exact sequence

1= N-=-G—=FEF—=1

An extension is called a central extension if the subgroup N lies in the center of G.

The next result (Proposition 2.4.10) is [Har13, Proposition 6.2] when £ has characteristic

p = 0, and the same is true when p > 2¢g + 1 by our discussion in chapter 1.
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Proposition 2.4.10. Consider the smooth plane curve C of degree d > 4 defined by the form
C : X4+ Y¥1Z +YZ¥" = 0 over k. The full automorphism group H, is completely

determined as follows:

1. For d +# 4,6, it is the central extension

d—2)

(o, 7| 0 =742 =1 and oro =7 47V)

of the dihedral group Dsq_o) of order 2(d — 2) by Z/dZ. In particular, Aut(C) is of
order 2d(d — 2).

2. Ford = 6, it is a central extension of Sy by Z./6Z, and its order is 144.

3. Ford = 4, C is k-isomorphic to the Fermat quartic curve Fy : X*+Y*+ Z* = 0. Hence
Aut(C) = (Z/AZ)* x Ss.

Proof. For d = 4, the change of variables [X : Y + (4Z : Y — (4Z] transforms C' : X* +
Y3Z +YZ3 =0t X*+2(Y* - Z*) = 0, which is clearly the Fermat quartic curve, up to
a rescaling the variables Y and Z. The automorphism group in this case is already quite well
known, see [Hen76] or [Bar12].

For d > 5, we have 0 := diag(1, (a(q—2), Cdf(fid_;)) € Aut(C) of order d(d —2) > 2d. Hence
C can not be a descendant of the Fermat curve F;. But also 092 € Aut(C) is a homology of
order d with center P, = (1 : 0 : 0) and axis L : X = 0. Thus P, is an outer Galois point
for C' (Proposition 1.3.12), and it is unique (Theorem 1.3.8). Therefore, P, should be fixed by
Aut(C), and the same for the axis L : X = 0 (Proposition 1.2.9). So we Aut(C) is a subgroup

of PBD(2, 1), and we can think about it in a short exact sequence of the form
—\ A

where Ker(A|, @) = (07?) by using Theorem 1.4.4-(2). Furthermore, Tm(A| Aut(@)) con-
tains an Dy(q_9) coming from the images of o and 7 := [X : Z : Y]. Consequently
Im(Aly @) = Da(a-2), A4, Sa0r A, again by Theorem 1.4.4-(2).

If d = 6, then Im(A| Aut@) has a subgroup of order 8, and hence can not be A,. Moreover,

for some suitable o, € k', [ X : Y + 87 : f71Y — (4 Z] € PGLs(%) defines an automor-
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phism of C : X6 +Y Z° + Y®Z = 0, whose image in Im(A| ) has order 3. In particular,
Im(A| @) = Sa, and Aut(C) is a central extension of S, by Z/6Z.

Next assume that d > 5 and d # 6. We apply Oikawa’s inequality (Theorem 1.3.13) to
the the set S := C N L, which is a non-empty set of C of cardinality at most the degree d,
to obtain | Aut(C)| < 6d(d — 2). Moreover, A(c) € Im(A] 5,4 @)) is of order d — 2, and an
element of Ay or Sy (resp. As) has order at most 4 (resp. 5). So if Im(A] Aut(@)) = Ay or
Sy (resp. Ajp), then d = 5 (resp. d < 7). On the other hand, if Im(A|Aut(5)) = As;, then
60d = | Aut(C)| < 6d(d — 2), which gives d > 12, a contradiction to d < 7. If d = 5 and
Im(Al @) = Sa, then 24 - 5 = | Aut(C)| <6 - 5 - 3, which is impossible. Lastly, if d = 5
and Im (A 5,@)) = A, then (A(0), A(7)) = D¢ must be a subgroup of A4 of index two, which

is also absurd. Consequently, Im(A) is conjugate to Dy(g_9), and Aut(C) = (o, 7). O

Proposition 2.4.11. For d > 4, C € MFYZ/d(d — 2)Z) if and only if it is k-isomorphic to
X1+ Y"1 Z 4+ Y29 = 0. Hence M (Z/d(d — 2)Z) is irreducible and consists of a single
point of M. Furthermore, MI''(Hy) = MFYZ/d(d —1)Z) = o(MFN(Z/d(d —1)Z)), where

o(Z/d(d — 2)Z) = (diag(1, Caa—2), C(;(((jd_;)»-

Proof. It suffices to prove the “only if” part, since the other parts are immediate consequences
of Proposition 2.4.10. Since d(d—2) does not divide d—1, d, d*—3d+3, (d—1)*and d(d—1),
we may consider an Fi(X, Y, Z) = 0 to be of Type d(d — 2), (a, b) defined by the normal form
Theorem 2.1.3, subcase (4.1). Hence (a, b) € 'g(q—2) With (d —1)a+b = 0 mod d(d — 2) and
a+ (d—1)b =0 mod d(d — 2). In particular, « = m and b = dm’ + m for some integers m
and m/, such that m and dm’ 4+ m are relatively prime and d — 2|m + m/. Consequently, m = 1

and m’ = d — 3 is a generator because

diag(L, Caa-2); Calaa) )™ = diag(L, (s, o or)-
Therefore,

S(2)ia) i = {0<i<jli+(j—1i)(d(d—3)+1)=0mod d(d—2)}



asd(d —2)|j(d—1) — di gives d|j, a contradiction.

S5 a2y = {2<i<d—2|i+ (d—i)(d(d—3)+1)=0mod d(d—2)}
C {2<i<d—-2|d—1—i=0modd— 2}

= 0.

This implies that C' is k-isomorphic to X + Y917 4 Y 74! = 0. O

The stratum MY (Z/(d? — 3d + 3)Z)

The next result is well-known in the literature, see for example [Har13, Propostion 3.5] when &

has characteristic p = 0, and the same is true when p > 2¢ + 1 by our discussion in chapter 1:

Proposition 2.4.12. The automorphism group of the Klein curve K; : X47'Y 4+ Y417 +
791X = 0 of degree d > 5 is a semidirect product of 7./37 by 7./(d* — 3d + 3)Z. More

precisely, it is isomorphic to

2_3d+3

(r, o| ¢ =03 =1 and 10 = o7 V),

In particular, Aut(K,) is of order 3(d* — 3d + 3).

Proof. The group H := (0, 7), where 0 := [Z : X : Y] and 7 := diag(1, Gz 3413, (o grs) 15
a subgroup of Aut(K,), which is a semidirect product of Z/37Z acting on Z/(d* — 3d + 3)Z.
Hence | Aut(K,)| is a multiple of |H| = 3(d? — 3d + 3). On the other hand, K, has exactly
three (d — 3)-inflection points namely the three reference points P;, fori = 1,2, 3, see [KatO1,
Lemma 2.3]. Therefore, these distinguished points constitute a set .S of cardinality 3, which is
fixed by Aut(K,). Using again Oikawa’s inequality (Theorem 1.3.13), we obtain | Aut(Ky)| <
12(g—1)+6.3 = 6(d* —3d+3). Now it remains to show that | Aut(K)| is odd: assume on the
contrary that /{; admits an involution 7, then it fixes at least one of the three (d — 3)-inflection
points, say P3. Hence, the set { P, P} of the remaining two (d — 3)-inflection points must also
be fixed, therefore 1 has the shape diag(«, 3, 1) with (o, 8) € {(1,—1),(—1,1),(—1,—1)}, or
(VY : 471X : Z] for some v # 0. Obviously, non of these transformations retains K, and the

result follows. []
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Remark 2.4.13. The automorphism group of the Klein quartic curve is isomorphic to
PSLy(F7), the unique simple group of order 168 (see [Hen76]). This completes the result

for all degrees d > 4.

The next result should also be well-known in the literature, we write it for completeness:

Proposition 2.4.14. Ford > 5, C € /\/lf;l(Z/(d2 — 3d + 3)Z) if and only if C is k-isomorphic
to the Klein curve Kq : XY + Y917 + Z97'X = 0. Hence M (Z/(d* — 3d + 3)Z) is
irreducible, being a set of a single point. Moreover,

—_~—

MPYAtL(Ky)) = MIZ/(d* = 3d + 3)Z) = o(MJ(Z/(d* — 3d + 3)Z)),

where o(Z/(d? — 3d + 3)Z) = (diag(1, Cz—sar3, (o g s))-

Proof. Again we only need to show the “only if” statement, and the other parts are conse-
quences of Proposition 2.4.12. Since d* —3d +3 1 d — 1, d, d(d — 1), d(d — 2), (d — 1)*
for any d > 5, then C has a non-singular plane model F=(X,Y,Z) = 0 over k of Type
d*> — 3d + 3, (a,b) of the form Theorem 2.1.3, case (3), for some (a,b) € Ty2_3443, such
that a = (d — 1)a+b = (d — 1)b(mod d* — 3d + 3). In particular, every solution is
of the shape @ = m and b = (d* — 3d + 3)m’ — (d — 2)m for some integers m and m’.
Because diag(l,Cd2_3d+3,cd_2(f;d213)m = diag(1, % 54,5 C;gi;ii?)m,_(d_mm), we can take

a=1modd?—3d+3andb = —(d — 2) mod d* — 3d + 3 as a generator of these types of

curves. Consequently, forall j = 2,...,d — 2

5(1)52{%37(17_@_2)) = {0<i<jli—(j—i)(d—2)=1mod(d*—3d+3)}
= {0<i<j|j(d—2)—i(d—1)+1=0mod(d*—3d+3)}

= 0.

The last equality comes from the fact |j(d —2) —i(d — 1) + 1| < d* —3d + 3. Then j(d — 2) —

i(d — 1)+ 1 = 0, which in turns gives d — 1|j — 1. This is impossible,as 0 < j — 1 < d — 1.
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Also,

S saes. (1 a2y = {0<i<jli+(d—j)(d®—4d+5)=1mod(d’ - 3d+3)}
= {0<i<j|l(d—j)(d—2)—i+1=0mod (&> —3d+3)}
= (), since0 < (d—35)(d—2)—i+1<d —3d+3.

S s (1 —(azy = {0<i<j|—(d=2)i+(d—j)=1mod(d*—3d+3)}

= 0,

since |(d—j) —(d—2)i—1] < d*—3d+3,and if (d—j) — (d—2)i—1 =0, thend — 2|5 — 1,
a contradiction.
Therefore C is k-isomorphic to X4 'Y + Y417 4+ Z41X = 0. The full automorphism

group Aut(C) is then determined explicitly by Proposition 2.4.12. O]

2.4.2 Strata of smooth plane curves, having a “large” automorphism:

Galois points

In the previous subsection (§2.4.1) we showed that if m is “very large”, then the stratum
MPHZ/mZ) is given, up to k-isomorphism, by a single point of M,. Therefore, it is an irre-
ducible stratum. In general it is difficult, for an arbitrary m, to decide whether M} (Z/mZ) is
irreducible or not. We have seen in §2.2 a weaker concept than the irreducibility that we call ES-
irreducibility (see Definition 2.2.6). For instance, the strata M}"(Z/mZ) ES-irreducible when
m is “very large”. However, it is not true that M}"(Z/mZ) is always ES-irreducible, and we
already have seen such examples in §2.3. In this case, the stratum, which is not ES-irreducible,
is also not irreducible subset of M.

Here we show that the stratum Mf NZ/mZ) for m “large” remains ES-irreducible, and
moreover we obtain further details about them. The cases where m is a multiple of d or d — 1
are strongly related to inner and outer Galois points (see §1.3 of chapter 1), which will help a
lot in determining, more precisely, the automorphism groups of these strata in some cases.

One can read Henn [Hen76] or Bars [Barl2] for the well-known results in the literature on

smooth plane quartic curves. So, we may assume that d > 5.

66



We are interested in smooth plane curves C' € /\/15 I of an arbitrary, but a fixed degree
d > 5, and whose automorphism groups contain homologies of period d (resp.d — 1). When
a homology 7 of period d or d — 1 is present inside Aut(C'), the genus of C'/(n) is zero and
C has an outer (resp. inner) Galois point P (see Proposition 1.3.12). Moreover, 7(P) remains
an outer (resp. inner) Galois point for C, for any 7 € Aut(C). Consequently, if C has, for
example, a unique inner Galois point, then it should be fixed by the full automorphism group

Aut(C'). In particular, Aut(C') is cyclic when the characteristic p = 0 or sufficiently big (see

[HKTOS8, Lemma 11.44] and Corollary 1.4.9).

The stratum MP'(Z/m(d — 1)Z) for 2 < m < d.
We start with the following observation:

Lemma 2.4.15. The stratum ./\/lf;l(Z/m(d —1)Z) with 2 < m < d is not empty only if d = 0

or 1 mod m.

Proof. Since m(d — 1) does not divide d — 1, d, d* — 3d + 3, and d(d — 2), it must then divides

d(d — 1) or (d — 1)2, by Corollary 2.1.6. O

Proposition 2.4.16. For d > 5 and 2 < m < d, such that d = 0 mod m, C € M (Z/m(d —
1)Z) if and only if C has a non-singular plane model Fx(X,Y, Z) = 0 over k of the form
X4y 4 Xz Y gxdmiym, 2.1)
2<mj<d—2

In particular, Aut(C) is a cyclic group of order divisible by m(d — 1).

Proof. If C is a smooth plane curve of the form (2.1), then 1 := diag(1, ng(;_l), Cma—1)) 1s an
automorphism of order m(d —1). Hence, C € M (Z/m(d—1)Z). Moreover, Fo(X,Y, Z) =
0 can not be a descendant of the Klein curve Ky, since m(d — 1) t 3(d* — 3d + 3). Also
F=(X,Y,Z) = 0 is not a descendant of the Fermat curve Fy, as 2(d — 1) f 6d?, and m(d —
1) > 2d for m > 3, while Aut(F}) has elements of order at most 2d. On the other hand,
n™ = diag(1, 1, C;g‘fd_l)) is a homology of period d — 1 > 4, with center Py = (0 : 0 : 1) and
axis Lz : Z = 0. Therefore, the point (0 : 0 : 1) is an inner Galois point for C' (Proposition

1.3.12), and it is unique (Theorem 1.3.8). Hence it should be fixed by the full automorphism
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group Aut(C). Consequently, Aut(C) is a cyclic group (Corollary 1.4.2) of order divisible by
m(d —1).

Conversely, if C' € M (Z/m(d — 1)Z), then F(X,Y, Z) = 0 can be taken to be of Type
m(d — 1), (a, b) of the form Theorem 2.1.3, case (5), because m(d — 1) td — 1, d, d* — 3d +
3, (d—1)? and d(d—2). So (a,b) € T'yya—1) such that m(d — 1)|da, and m(d — 1)|(d —1)b. In
particular, @ = (d— 1)t and b = m¢t’ for some integers ¢ and ¢'. If we consider any integer s with
t = s(mod m), then n*'==)d=D+" — diag(1, C(ddl 1),C””‘td 1)), and we can take t = 1 = ',

Thus we get

ST a1, [detam) {1<i<d—1|(d—1)i+ (d—i)m=0mod m(d—1)}
= {1<i<d—-1|(d—=1)i—(i—1)m =0 mod m(d—1)}
C {1<i<d—-1|(i—1)=0modd—1}

= {1}

But also m(d — 1) does not divide (d — 1)(m + 1), so 1 ¢ S m(d—1), (d—1,m)> and

SPX m(d—1), (d—1,m) = 0. Similarly, we conclude that Shx m(d—1), (d—1,m) = 0. Furthermore,

SV a1 = {0<i<j|(d=1)i+ (j—i)m =0mod m(d—1)}
C {0<i<jld—1]j—i}

= {}

By assumption, n € Aut(Fp), therefore S(Q)j’Xm(dfl)y(dem) = () when m t j, and {j},
otherwise. We substitute into equation Theorem 2.1.3, case (5) in order to obtain the defining

form (2.1). O
Proposition 2.4.17. Ford > 5and 2 < m < d, such that d = 1 mod m, C' € ./\/lfl(Z/m(d —

1)Z) if and only if C has a non-singular plane model Fx(X,Y, Z) = 0 over k of the form

X4y Zz 4 Xz Y gxtmizm 2.2)

2<mj<d—2
In this case, Aut(C) is again cyclic of order divisible by m(d — 1).
Proof. We first modify 7 of Proposition 2.4.16 to be diag(1, (mn(d—1); Cg'(g_ligd_l)). Then, fol-
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lowing the same technique, one deduces that smooth plane curves C' of the form (2.2) are in the
stratum M/ (Z/m(d — 1)Z), and also the full automorphism group is cyclic of order divisible
by m(d — 1).

Conversely, C € MP(Z/m(d — 1)Z) with d = 1 mod m implies that F&(X,Y,Z) = 0
is of Type m(d — 1), (a,b) of the form Theorem 2.1.3, subcase (4.2). In particular, (a,b) €
I'yu(d—1), such that m(d — 1) | (d — 1)a + b, (d — 1)b. Hence a = mt — t' and b = (d — 1)’
for some integers ¢ and ¢’. Similarly, it suffices to assume t = 1 and ¢ = m — 1, since

™ = diag(1, ¢ g1y Cgary)- Thus

SihX = {1<i<d—1]i+(d—1—-14)(m—1)(d—1)=0mod m(d—1)}

m(d—1), (a,b)
= {1<i<d—1|m(d-1)|i}
= @7
S5 e @y = {2<i<d—=2]i+ (d—i)(m—1)(d—1)=0mod m(d—1)}

= {2<i<d—2|m(d-1)|di—(d—1)}
C {2<i<d—2|d—1|di}

= 0.
Lastly, forall 2 < j < d — 2,

S iy @y = {0<i<jli+ (G —i)(m—1)(d—1)=0mod m(d—1)}
= {0<i<j|di—j(d—1)=0mod m(d—1)}
C {0<i<j|d—1|di}

= {0}

Notice that i = 0 gives m|j, so, we obtain the form (2.2) after we substitute into Theorem

2.1.3, subcase (4.2). O
The following corollaries are consequences of Propositions 2.4.16 and 2.4.17:

Corollary 2.4.18. The stratum Mfl(Z/m(d —1Z), with2 < m < dand d > 5 are either

empty or ES-irreducible, given by a single normal form.

69



Corollary 2.4.19. The full automorphism group of any C € MINZ/m(d — 1)Z), for some
2 < m < d is cyclic and always contains a homology of period d — 1. In particular, C has a

unique inner Galois point.

Remark 2.4.20. The converse of Corollary 2.4.19 is also true. That is to say, if C' is a smooth
plane curve of degree d > 5, such that Aut(C) contains a homology 7 of order d — 1, then
C has an inner Galois point (Proposition 1.3.12), and moreover it is unique (Theorem 1.3.8).

This point should be fixed by Aut(C'), which in turns implies that Aut(C') is cyclic (Corollary
1.4.2).

The stratum MY (Z/mdZ) for 2 <m < d — 1.

Lemma 2.4.21. The stratum Mgl(Z/de) with2 < m < d — 1 is not empty only if d = 1 or

2 mod m.

Proof. The result follows again by Corollary 2.1.6, since md is not a divisor of d — 1, d, d* —

3d+3,and (d — 1)2 O

Proposition 2.4.22. For d > 5 and 3 < m < d — 1, such that d = 1 mod m, C €
MPNZ/mdZ) if and only if C has a non-singular plane model F~(X,Y,Z) = 0 over k of
the form

X'+ vie Xzt Y pxtmizm 2.3)

2<mj<d—2

In this case, Aut(Fy) should fix a line in P?(k) and a point off this line. In particular, all

automorphisms of F(X,Y, Z) = 0 are of the shape

* 0 *

Proof. Any smooth plane curve C' of the form (2.3) is in M!Y(Z/mdZ), since 1 :=

diag(1,¢™,, ¢ ) € Aut(Fg) is of order md. Moreover n™ is a homology of period d > 4

md

with center P, = (0 : 1:0) and axis Ly : Y = 0. Therefore, Aut(C') fixes a projective line and

a point off that line or it fixes a triangle (Theorem 1.2.8). Suppose first that it fixes a triangle
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and neither a point nor line is leaved invariant, then Fiz(X,Y, Z) = 0 must be a descendant of
the Fermat curve K or the Klein curve K, which is impossible, as md t 3(d* — 3d + 3), and
automorphisms of F,; have orders at most 2d < md. Consequently, a line and a point off that
line is leaved invariant. Furthermore, P, is an outer Galois point for C (Proposition 1.3.12),
and it is unique due to Theorem 1.3.10 and because C is not k-isomorphic to the Fermat curve
F,. Hence such a point should be fixed by Aut(Fg), and so does the axis Y = 0 (Proposition
1.2.9). So we deduce the shapes of automorphisms of Fi(X,Y, Z) = 0.

Conversely, one may follow the same line of argument, that we did in Proposition 2.4.16 to

conclude that C' is of Type md, (mt, dt') of the form Theorem 2.1.3, case (5), and to also figure

mt ~dt’
md’ Smd

out that we can assume ¢ = 1 = #' as a generator, since ("' =4+t = diag(1, ), for any
s satisfying ¢ = s mod m. In particular, the index sets Sf o~ md,(m,q) and Sf - md,(m,d) 4r€
empty, and moreover i € S(2)j7de7(m’d), for some j if and only if md|mi — (j — i)d, thus d|i

and i = 0. Then S(2)7% d(md) 7 () only if m|j, which completes the proof. Il

m

Remark 2.4.23. For m = 2, Proposition 2.4.22 still true with the same proof, if we assume

that F=(X, Y, Z) = 0 is not a descendent of the Fermat curve F; of degree d.

There is a similar statement to the previous results when d = 2 mod m. We only state the

result, since the proof can be obtained through similar techniques:

Proposition 2.4.24. Ford > 5and2 < m < d — 1, withd = 2 mod m, C € Mgl(Z/de)
if and only if C has a non-singular plane model Fe(X,Y,Z) =0 over k of the form
Xlpyrlz4yzet 4+ > BY'iz¥ = 0. (2.4)
2<i=1 mod m<d—2

In such a case, Fs(X,Y,Z) = 0 is a descendant of the Fermat curve Fy (only if m = 2),
or Aut(Fg) fixes a line and a point off this line. So, for m > 2, all automorphisms of
F&(X,Y, Z) = 0 have the shapes

100

0 *x =

0 = =
Remark 2.4.25. Unfortunately, it might happen here that different kinds, i.e. non-cyclic, of

groups occurs as the full automorphism of C' € /\/llgD !(Z/mdZ). For example, when d = 6 and
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m = 2, the defining equation for the stratum M1} (Z/127Z) reduces to
XC+ Y Z+YZ° + Be3Y? 25

In particular, diag(1, (12, (7,) is an automorphism of order 12, but the automorphism group is

not cyclic, since we have the extra automorphism [X : Z : Y.
Now, we end up this part with the following corollaries:

Corollary 2.4.26. The strata J\/lf; YNZ/mdZ), for2 < m < d — 1and d > 5, are either empty

or ES-irreducible.

As we mentioned earlier that if Aut(C) contains a homology of period d then C' has an
outer Galois point. Moreover, if C is isomorphic to the Fermat curve of degree d, then it has
two more outer Galois points and it is unique, otherwise. See Theorem 1.3.8 and Proposition

1.3.12 for more details. Finally, we conclude:

Corollary 2.4.27. For any C € M (Z/mdZ) with3 < m < d — 1, Aut(C) always contains

a homology of period d. In particular, C' has a unique outer Galois point.

2.4.3 More cases: The stratum M (Z/m(d — 2)Z)

We investigate the finite groups G that contain cyclic subgroups of order m(d — 2), and for
which the stratum ./\/15 '(@) is non-empty. This question is completely solved when g = 3 (see

[Hen76]) and we solve it in chapter 4 when g = 6. Therefore, we take d > 6 and m > 2.

Lemma 2.4.28. The stratum M} (Z/m(d — 2)Z), for d > 6 and m > 2 is non-empty only if

d =0 mod m.

Proof. Since d > 6 > 2+ —2~, then m(d — 2) > d, and m(d — 2) does not divide d and d — 1.
Moreover, (d —1)? =1 mod d—2, d* —3d+3 =1 mod d—2,and d(d—1) = d mod d — 2,
so m(d — 2) does not divide (d — 1)?, d(d — 1), and d* — 3d + 3. Using Corollary 2.1.6, we

deduce the result. ]

We first treat the situation when m is even:
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Proposition 2.4.29. For any even integer m > 2, dividing the degree d > 6, any C €

MPEUZ/m(d — 2)Z) has a non-singular plane model F&(X,Y, Z) = 0 over k of the form

5]
X'+ Y24y z 4 Y BXTII(Y Z) =0 (2.5)

j=1

In particular, M (Z/m(d — 2)Z) is ES-irreducible, in this case.

Proof. 1t suffices to prove the result for M/ (Z/2(d — 2)Z), since M (Z/m(d — 2)Z) C
MPHZ/2(d — 2)Z): indeed, if 7 is an automorphism of C' of order m(d — 2), then % is also
an automorphism, but it is of order 2(d — 2).

It follows, by Lemma 2.4.28, that Fi5(X,Y,Z) = 0 is considered to be of Type 2(d —
2), (a, b) of the form Theorem 2.1.3, subcase (4.1), for some (a, b) € I'y4_2) such that 2(d — 1)
is dividing both (d — 1)a + b, and a + (d — 1)b. First, we show thata = 1 and b =d — 3is a
generator of these types of curves: We already have (1,d — 3) € I'y4_9), and moreover 2|a — b
and d — 2|a + b. So we can write a = ¢ + (42)t/, and b = —t + (42)t/, for some integers ¢

and t'. In particular, we get 2| + ¢ 4 ()¢, and

)t+(d2;2)t’

diag(1, Co(d—2),; Cé’(jiz) = diag(1, (52, Cora9))»

which proves the claim on a and b. Second, the associated sets SS’X 9(d—2),(1,d—3) and

S(2)"* y4_2).(1.a_s) for j =2, ...,d — 1 are computed as follows:

S5 s aes = {2<i<d—2|it (d—i)(d—3)=0mod2(d—2)}
C {2<i<d—-2|2(i—1)=0mod(d—2)}
1
— {2d
{2 }7
since 0 < 2(i — 1) < 2(d — 2), and thus 2(i — 1) = d — 2. Moreover, we have

S i mas = {0<i<jli+(j—i)(d—3)=0mod2(d-2)}

C {0<i<j|j—2i=0mod(d—2)}.

But |j — 2i| < d — 1, therefore j — 2i = 0 or +(d — 2). In particular, S(Q)j’Xz(dﬁ)’(Ldf?,) = (),
if 5 is odd and {%, jﬂ#}, if 5 is even. Furthermore, always 0 < 7 < j, thus when j is even
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and < d — 2, S(2)"% ;) 145 = {3} and when j = d — 2, S(2)"% ;) (145 =

{0,942, d — 2}. Consequently, we obtain the normal form

X4 Y Z 4 Y 28 4 X2 (BroaoZ72 + foa oY)+ Y XTI (YZ)i=0.
j=2.4,....d—2,d
Now, Bi-20 = Poa—2 = 0, because diag(l,gg(d_z),(g&iz)) € Aut(Fg). Also g; = 0, if

2m t j. To deal with the case when m > 2 even, one just need to impose more restrictions on

the parameters (3;, appearing in (2.5), to ensure that C' is also of Type m(d — 2), (a, b). O

The full automorphism group of C' € MINZ/m(d—2)Z), with an even m > 2, is described

by the next proposition':

Proposition 2.4.30. Let G be a finite subgroup of PGL3(k), then for an even m > 2, dividing

d>6C ¢ MINZ/m(d —2)Z) N //\/I?(G) only if one of the following situations occurs:

1. d = 6 and G is isomorphic to a central extension of Sy by 7./67. So G is of order 144,
and X/l\gP/Z(G) is irreducible set of one element, defined by X% + Y57 +Y 75 = .

2. d > 6 and G is isomorphic to (o, 7|7?> = 02 = 1, 707 = o74) a central
extension of order 2d(d — 2) of the dihedral group Dy(y_oy of order 2(d — 2) by Z/dZ.
Again, //\/l\gp/l (G) is an irreducible set of one element given by the equation X*+Y 17 +

Y Z4-t = 0.

3. G is a central extension of a dihedral group Do of order 2s by a cyclic group N of order,
dividing d and also divisible by m, such that s = % ifdtd—2 ands = d—2
otherwise. Furthermore, we can think about G as an intransitive subgroup of PGLs(k),

whose elements are all of the shape

IThe statement rectifies [BB16b, Proposition 36, (3)-(5)] due to some small gaps.
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which contains a subgroup isomorphic to

m(d—2) (m=1)(d-2)-1

(o,7|* =0 =landtoT =0~ :

with o = diag(1, (mn(d—2), Cd_(g_g)) andT = [X : Z : Y. Finally, any element of./T/l\g/l(G)

m

has a non-singular plane model through the form (2.5) of Proposition 2.4.29 such that

Bj # 0, for some j € {1, ..., L%J}

Proof. By Proposition 2.4.29, it suffices to study the normal form defined by equation (2.5).
If 3; = Oforall j = 1,..,[Z], then the form reduces to X + Y% 'Z + Y Z%! = (. The
full automorphism group in such case is well-known by Proposition 2.4.10, which proves (1)
and (2). Second, suppose that 3; # 0, for some j. We note that the form (2.5) of Proposition

2.4.29 admits always a bigger automorphism group through permuting the variables Y and

d—2) d—2)—1>

Z. More precisely, (o, 7|72 = o™ = 1, andtor = o (M= is a subgroup of

automorphisms, where o = diag(l,{m(d,g),cgl_(g’fz)) and 7 = [X : Z : Y]. Consequently,

Aut(C) is not cyclic, since (n,7n') does. Also Fs(X,Y,Z) = 0 is not a descendant of the
Klein curve K, because |(o,7)| 1 3(d* — 3d + 3). Moreover, Aut(Fz) is not conjugate to any
of the finite primitive subgroups of PGL3(k), because m(d — 2) > 8 and non of these groups
contains elements of order > 7 (in fact, the Klein group PSL(2, 7) is the only one with elements
of order 7). On the other hand, Fi=(X, Y, Z) = 0 is not a descendant of the Fermat curve Fy,

since m(d — 2) > 2d, for all even m > 2, and automorphisms F}; have orders at most 2d, also

form = 2, |{o, 7)| = 4(d — 2) does not divide |Aut(F;)| = 6d* (recall that d > 6 and is even).

We therefore conclude by the above discussion that Aut(Fg) should fix a line and a point
off this line, moreover the fixed point does not belong to F=(X,Y, Z) = 0 (otherwise, Aut(Fg)
is cyclic). Through the subgroup (o, 7) of automorphisms of Fx(X,Y, Z) = 0, we obtain that
the line must be X = 0, and the point is (1 : 0 : 0). In particular, all automorphisms of

F5(X,Y,Z) = 0 are of the shape



and we can think about Aut(F) in a short exact sequence
1 - N — Aut(Fp) — AAut(Fg)) — 1

with N = (diag({, 1,1)), acyclic group of order ¢, dividing d, and A(Aut(F%)) is conjugate to
a cyclic group Z/sZ of order s < d — 1, a Dihedral group Dy of order 2s with s|(d — 2) (recall
that diag(—1,1,1) € N), one of the alternating groups A4, As, or to the symmetry S;. As
mentioned earlier, we just need to consider the case when m = 2, since M} (Z/m(d—2)Z) C
MPNZ/2(d — 2)Z). Hence A(Aut(C)) contains the elements A(7) = [Z : Y] of order 2 and
A(o) = diag(1, Cg(?ziz)) of order n = gcd(dd_;;d% (hence n = £2if4td —2,andn = d — 2,
otherwise). In particular, A(Aut(Fg)) always contains a dihedral subgroup of order d — 2 > 6,
when 4 1 d — 2 and 2(d — 2) > 8, when 4|d — 2. Then it is not isomorphic to Z/mZ and A,.
Furthermore, for d # 6,8 we exclude the group S, and, for d # 8, 12, we also exclude As. In
this case, i.e, when d # 6, 8,12, A(Aut(Fg)) is conjugate to Dy where s = %, ifd4d—2,
and s = d — 2. Thatis | Aut(Fg)| = 2s|N| is divisible by [(o, 7)| = 2m(d — 2), hence m
divides |N|.

Finally, we claim to show that A(Aut(F%)) is not conjugate to S, and As, for d = 6,8, 12:
We first mention that our dihedral group Dy, if exists inside S, or A, forms a single conjugacy
class in S, and Aj respectively. In other words, it could only be isomorphic to an Dg inside
S4, when d = 6, Dg inside S; or As, when d = 8, and to Dy inside A5, when d = 12. In
all situations, it is unique up to conjugation inside S, and Aj;, respectively. So, up to change
of the variables Y and Z in (diag(1, (2s), [Z : Y]), we may consider S, and As;, if happens,
to be the same as in Lemma 2.2.1, (d)-(e) of [Hug05]. We refer to [Hug05, Lemma 2.2.1
and Lemma 2.2.3] for the details. Consequently, if the defining equation for some curve C'
contains a monomial X¢~2™J (Y Z)™ for some j with d — 2mj > 0, then all automorphisms of
F+(X,Y,Z) = 0, when restricting on Y and Z are of the shapes diag(\, p1) or [AZ : pY]. So
A(Aut(Fg)) # Sa, As, in this case. Otherwise, by [Hug05, Lemma 6.2.1, (d)-(e)], we always

d
2

ask for the binary form \Y4~1Z + A1y Z9-1 4+ \2(Y Z)%, where A is a 2s-th root of unity, to

be in the ideal generated by
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» For A(Aut(F5)) =S4 :

Y233y 7% — 3328 + 2 YR 4 Y2t - 28 Y Z(Yr - ZY),

» For A(Aut(Fy)) = A5 :
Y Z(Y 4 11Y525 — 719,

— (Y20 4 Z2%) + 228(Y 2% — Y° Z15) — 4940 710

(Y30 4 Z%9) 4 522(Y* Z° — Y°Z%) — 10005(Y >0 210 + Y20 719,

For d = 6, we have the monomial (XY Z)2, so both groups are already excluded. For d = 8

d
2

and 12, it is not possible to express the polynomial AY 417 + \~1y Z4-1 4 \2(Y Z)% as an
element of the ideals above. Hence, both groups can not also occur for d = 8 and 12.

This completes the proof. []

As a corollary of Proposition 2.4.30, we have:

Corollary 2.4.31. The stratum /T/l\_g/l (Z/m(d — 2)Z), for any even integer m > 2 is always
empry.

Now, we handle the situation when d = 0 mod m and m > 2 is odd:

Proposition 2.4.32. For any odd integer m > 2, dividing the degree d > 6, any C €
MPAZ/m(d — 2)Z) has a non-singular plane model Fs(X,Y, Z) = 0 over k of the form

t
X'+ Y Z vz 1Y pX TV Z)™ =0, (2.6)

j=1

where t = % when d is even, and t = [%j otherwise. In this case, the stratum

MPINZ/m(d — 2)Z) is ES-irreducible.

Proof. Similarly, as Proposition 2.4.29, we consider an F5(X,Y,Z) = 0 to be of Type
m(d —2), (a,b) of the form Theorem 2.1.3, subcase (4.1), for some (a, b) € I';;,(4—2) such that
m(d—1)|(d—1)a+b, a+(d—1)b. In particular, 2a = (d—2)ty+mto and 2b = (d—2)ty,—mto,
for some integers ¢, and t;, and we distinguish between whether d is even or odd as fol-
lows: If d is even, then so is o and a = mt + (52)', b = —mt + (%2)¢/, for some in-

tegers ¢ and ¢'. Moreover, m divides %', since m(d — 2)|(d — 1)a + b and consequently,
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diag(1, (m(a—2), Cg?;_lggdd)fl)mt*(dff)t/ = diag(1, (9 ij%(d_Q)). Therefore, we set a = 1
and b = (m — 1)(d — 2) — 1 as a generator of these curves. As usual, it remains to deter-
mine the index sets SS’X mi(a,p) and S(2)j’Xm’(a7b), for j = 2,...,d — 1. In fact, these sets are
the same as those of Proposition 2.4.29, and the rest will be typical, except possibly we use
the automorphism diag(1, Gn(a—2), Q;Ej:;;) instead of diag(1, (p(a—2), Qg;(j_z)), to obtain the

prescribed equation in the statement. If d is odd then ¢, and ¢, have the same parity, thus a =

w, b= w. Moreover, 2| +to+ 2t(, since m(d—2)|(d—1)a+b, a+(d—1)b,

and in particular, we can replace ¢y by 2t — (%)té, for some integer t. So (fn( i-2) = (;EZ:;;“,

and diag(1, (-2, (;EZ:;%)“ = diag(1, Cond—2)» C&(d_2)). Hence, we can set again ¢ = 1 and
b= (m —1)(d —2) — 1 as a generator. Finally, the sets So* mi(a,p) @0d S(2)J¥Xm7(a’b), for

7 =2,...,d— 1 are given below:

S5 e = {2<i<d—=2]i+ (d—i)((m—1)(d—2)—1) =0 mod m(d - 2)}
C {2<i<d-2]2(i—1)=0mod(d—2)}

= 0.

The last equality follows because 0 < 2(i — 1) < 2(d — 2), s0 2(i — 1) = d — 2, which is not

possible since d is odd. On the other hand, for2 < 57 <d —1

S an = {0<i<jli4 (G —i)((m—1)(d—-2)—1)=0mod m(d—2)}
= {0<i<j|(d—1)j —di=0mod m(d—2)}

C {0<i<j|j—2i=0mod(d—2)}

Because |j — 2i| < j < d—1,thenj —2i = 0,£(d — 2), and so

0, if j€{1,3,...d—4}
S an €4 {0,d -2}, if j=d—2
{1} otherwise

In particular, we obtain the normal form

XY Z 4y 2z + X2 (a2 pY )+ Y giX (YZ): =0,
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for which we need to impose more the condition diag(1, (ma—2), C;LEZ 1;) € Aut(C). Then

-2
a = = 0, and moreover 3; = 0 when m { % Lastly, rename j to be 2mj7 in order to get the
mentioned defining equation.

This completes the proof. []

The full automorphism groups of the elements inside M}*(Z/m(d — 2)Z), for an odd

m > 2, that divides d > 6 are also investigated:

Proposition 2.4.33. Let G be a finite subgroup of PGL3(k), then for an odd m > 2, dividing

d>6,C¢c MINZ/m(d — 2)Z) 0 MEPG) only if one of the following situations occurs:

1. d = 6 and G is isomorphic to a central extension of Sy by Z./67Z. So G is of order 144,
and W(G) is irreducible set of one element, defined by X% + Y57 +Y 75 = .

2. d > 6 and G is isomorphic to (o, 7|t* = 0?2 = 1, 707 = o~@V) g central
extension of order 2d(d — 2) of the dihedral group Dy(y_oy of order 2(d — 2) by Z/dZ.
Again, W(G) is irreducible set of one element given by the equation X% + Y417 +
Yy Z4-1 = 0.

3. m # 3ord > 6, and G is a central extension of Dss by a cyclic group N of order
dividing d and also divisible by m, such that s = % ifdtd—2 ands = d—2
otherwise. Furthermore, we can think about G as an intransitive subgroup of PGLg(E),

whose elements are all of the shape

1 00
0 * x |,

0 * =

which contains a subgroup isomorphic to

O_m(d—2)

=landtoT = g_(m_l)(d—2)—1>

(o,7| 7% =

Y

’The statement is a refined version of [BB16b, Proposition 39]. The proof is even simpler, especially when
we treat the case m = 3 and d = 6, such that C is a descendant of the Fermat curve.
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with o = diag(1, (-2, Cd?§—2)) andT = [X : Z : Y. Finally, any element of./T/l\f/l(G)

m

has a non-singular plane model through the form (2.6) of Proposition 2.4.32 such that
B; # 0, for some j € {1, ..., t}.
Proof. One applies the first part of our argument for Proposition 2.4.30, to conclude the fol-

lowing:
* Case (1) and (2) are equivalent to the situation when 5; = 0 for all j € {1,2, ..., t}.

* The normal form (2.6), always admits a bigger automorphism group (o, 7) of order
2m(d — 2), generated by o := diag(l,(m(d,g),fi_(iQ)) and 7 := [X : Z : Y]. In

particular, Aut(C) is not cyclic.

+ C is not a descendant of the the Klein curve and also Aut(C') is not conjugate to any of

the finite primitive groups inside PGL3(Fk).
o If m # 3 ord > 6, then (' is not a descendant of the Fermat curve F);, as well.

Therefore, when m # 3 or d # 6, we can think again about Aut(Fg) in a short exact sequence
1 - N — Aut(Fg) — A(Aut(Fg)) — 1, where A(Aut(Fg)) contains again A(7) = [Z : Y]
and A(o) = diag(1, g@_(;l—:s))- So we follow the same line of discussion in order to deduce (3)
of Proposition 2.4.33.

Finally, we treat the case when m = 3 and d = 6, and Fz(X,Y,Z) = 0 is a descendant
of the Fermat curve Fy : X® + Y°® + Z6 = 0, through a projective linear transformation
¢ € PGL3(k): The normal form reduces to C : X5 +Y®Z + Y Z° + BY3Z3 = 0. Recall that
ot = diag(1, (3, 1) is an automorphism for Fi=(X,Y, Z) = 0 of order 3, which is a homology.
It is also know that homologies of order 3 in Aut(Fg) forms two conjugacy classes represented
by o and o® respectively. Moreover, both o* and o® lies in a different conjugacy classes in
PGL3(k). Therefore, we may assume ¢~ 'ol¢ = o, thus ¢ = [X : oY + pusZ : 1Y + 137]
and F(X,Y, Z) = 0 s transformed to F,_15(X, Y, Z) = 0 of the form

X0+ Y+, Z2° + G(Y, 2),

where vy 1= Yop2 (V2 + Bu3vs + p3) = 1and vy = a3 (5 + Bp3 i + pz) = 1. In par-
ticular, (Yop10)(v3p3) # 0 and [QY @ (¢X : Z)], (87 : Y : (¢X] ¢ Aut(Cp). However,
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| Aut(F, 15)| > 3 and 0! € Aut(F, .5), so it follows by the next observation (see [Har13,
Proposition 3.3 and Lemma 6.5]), that F¢,15 is the Fermat curve itself, a contradiction.
Observation 3: Let (C, G) be a descendant of the Fermat curve F}; of degree d > 4, where

G = Aut(C). Then there exists a commutative diagram

1 ——Z/d7Z x 7.)dZ — Aut(F,;) —= Ss 1

1 — Ker(o|g) G Im(g|lg) — 1
Denote by 7, 72 and 73 the three automorphisms diag((y, 1, 1), diag(1, {4, 1) and diag(1, 1, (y)
respectively. Hence, if G contains two of the three 7/s, then it contains the other and C' is
projectively equivalent to the Fermat curve Fy. If | Im(o|¢)| > 3 and G contains one of the 7.s,

then it contains all of them and again C is k-projectively equivalent to F.

Proof. Using a quite similar argument like the one made for the Klein curve (Proposition
2.4.12), one shows that Aut(F}) is a semidirect product of S3 = ([Y : Z : X|,[X : Z : Y])
acting on Z/dZ x Z/dZ = (diag((4,1,1),diag(1,(4, 1)) (or see [Harl3, Proposition 3.3]
for the complete details). In particular, Aut(F}) lives in a short exact sequence of the form
1 — Z/)dZ x Z)dZ — Aut(F;) — S3 — 1, from which the mentioned diagram comes
from. On the other hand, it is obvious that any two of the 7)}s generate the third one. There-
fore, if G contains at least two of them, then it must have the other one, and moreover, if
F+(X,Y,Z) = 0is a plane model of C' over k whose core is X + Y4 4 Z4, then it must be
invariant under the action of 7;, for i = 1,2, 3. This only can happen when Fr(X,Y,Z) =0
is the Fermat curve itself. Lastly, if |Im(o|¢)| > 3 and G contains one of the 7.s say
n1, then Im(p|¢) is isomorphic to either Z/3Z or Sz, and thus G must contain an element
of order 3. We may assume it to be of the shape [(¢Y : (’Z : X], for some integers
0 < a,b < dThus n*[¢3Y : 7 : X] = [Y : ¢Z : X] € G, which in turns gives
Y G Z X =[Z: X Y] € G Inparticular, [Z : X : Y]u[Z : X : Y] =n, € G,

and C is again k-projectively equivalent to the Fermat curve F. [

This finishes the proof. O]
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CHAPTER

Fields of definition of non-singular plane

models of smooth curves

Given a smooth curve C defined over a field k£ that admits a non-singular plane model of
degree d > 4 over kP, a fixed separable algebraic closure of k, it does not necessarily have a
non-singular plane model defined over the field £. We determine under which conditions this
happens and we show an example of such phenomenon: a curve defined over k£ admitting plane
models but none defined over k. Now, even assuming that such a smooth plane model exists,

we wonder about the existence of non-singular plane models over k for its twists:

Definition 3.1. Let V' be a smooth quasi-projective variety over k. A variety V' defined over k

is called a twist of V over k if there is a k*P-isomorphism
¢: V=V @ kP =V =V @ k5P,

A twist V' is called trivial if V and V' are k-isomorphic. The set of all twists of V' modulo

k-isomorphisms is denoted by Twist;, (V).
Example 3.2 (Example 2, [MT10]). Consider the Fermat quartic curve
C:X'+Y'+27'=0.
Over the field k = 13, it has 32 points, while the curve
C X 44V - XPY2+ 72 =0

has 8 points. Therefore, C and C' are not Fy3-isomorphic. However, they do over Fi3(a) where
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o € Fig such that o = 2, through the isomorphism
o (X:Y:Z)—» (X+aY : X —aY : 7).
That is C' is a twist of C' over 13, which is non-trivial.

We characterize twists possessing such models and we also show an example of a twist not
admitting any non-singular plane model over k. As a consequence, we get explicit equations
for a non-trivial Brauer-Severi surface. Finally, we obtain a theoretical result to describe all the
twists of smooth plane curves with cyclic automorphism group having a model defined over k
whose automorphism group is generated by a diagonal matrix.

The structure of this chapter is as follows. In section 3.1, we collect the most necessary
results, known in the literature, about central simple algebras (or briefly CSA’s), and the con-
nection with Brauer-Severi varieties, which will be used in this chapter. For more details, we

refer, for example, to [GS06, Jah].

Definition 3.3. By a smooth k*P-plane curve C over k, we mean a smooth curve over k ad-
mitting a non-singular plane model Fg(X,Y, Z) = 0 over k*® of degree d > 4. We say that C
is a smooth plane curve over k if C' as a smooth curve defined over k is also k-isomorphic to a

non-singular plane model F(X,Y,Z) = 0 in IP.

Section 3.2 is devoted to the study of the minimal field L where there exists a non-singular
model over L for a smooth k*P-plane curve C' defined over k, i.e. that C' is L-isomorphic to
Fo-1e(X,Y, Z) = 0 for some @ € PGL3(k*P) with Fi,_1z € L[X,Y, Z]. We prove that if the
degree of a non-singular k£*P-plane model of C' is coprime with 3, or C' has a k-rational point
or the 3-torsion of the Brauer group of k is trivial (in particular, if £ is a finite field), then the
curve C'is a smooth plane over £ (i.e. admits a k-model): Theorem 3.2.8 and Corollaries 3.2.1,
3.2.2. Moreover, we prove that a smooth plane model of C' always exists in a finite extension
of k of degree dividing 3, see Theorem 3.2.4. Section 3.2 ends with an explicit example of a
smooth @—plane curve over Q which is not a smooth plane curve over Q; however, we construct
a smooth plane model over a degree 3 extension of Q. In Section 3.3, we assume that C'is a

smooth plane curve over k. We obtain Theorem 3.3.2 characterizing the twists of C' which are
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also smooth plane curves over k. Moreover, we construct a family of examples over k = Q
for which a twist of C' does not admit a non-singular plane model over Q. This construction is
not explicit because we do not provide equations of such twists. Section 3.4 details an explicit
example of a smooth @—plane curve over Q((3) having a twist that does not possess such
a model in the field Q((3), where (3 is a primitive 3rd root of unity. Interestingly, we find the
already mentioned explicit equations for a non-trivial Brauer-Severi variety. In Section 3.5, we
study the twists for smooth plane curve C over k, such that Aut(C) is a cyclic group. We prove
that if Aut(Fp_.¢) is represented in PGL;3(£°°P) by a diagonal matrix, (where Fip_15(X, Y, Z)
is k-isomorphic to C') then all the twists are diagonal, i.e. of the form F D)_16(X Y, Z)=0
with D a diagonal matrix, Theorem 3.5.2. We apply this result to some special families of

curves, see Corollary 3.5.4. We also construct an example of a curve C' that being Aut(Fp_15)
cyclic (but not diagonal) has all the twists not diagonal.
We shall deal with the following items:
3.1. Brauer-Severi varieties and Central simple algebras.
3.2. The field of definition of a non-singular plane model.
3.3. On twists of plane models defined over k.
3.4. An explicit non-trivial Brauer-Severi variety.

3.5. Twists of smooth plane curves with diagonal cyclic automorphism group.

The main results in this chapter are resulted into the arXiv preprint [BBLG16].

§3.1 Brauer-Severi varieties and Central simple algebras

We aim to collect the most necessary results, known in the literature, about central simple
algebras (CSA’s), and the connection with Brauer-Severi varieties, which will be used in this
chapter. For more details, we refer, for example, to [GS06, Jah].

The connection between CSA and Brauer-Severi varieties was first observed by E. Witt
in [Wit35] and H. Hasse, in the particular case of quaternion algebras and plane conics. To
that connection in its general form there are several approaches; the most elementary one was

promoted by J.-P. Serre in his books Corps locaux [Ser68, X, §5 and §6] and Cohomologie
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Galoisienne [Ser94, Remarque III.1.3.1]. This approach is based on non-abelian group coho-
mology. The main observation is that CSA’s of dimension n? over a field k as well as (n — 1)-
dimensional Brauer-Severi varieties over k can both be described by classes in one and the

same cohomology set H'(Gal(k*? /k), PGL,, (k*P?)), see Definition 3.1.18.

Definition 3.1.1. A central simple algebra (or simply CSA) over a field k is a finite dimensional
associative algebra over k, which is simple, i.e contains no non-trivial (two sided) ideal and the

multiplication operation is not uniformly zero , and for which the center is exactly &.

Remark 3.1.2. Any simple algebra can be viewed as a CSA over its center. A division algebra

is a CSA such that all non-zero elements are invertible, see [GS06, Example 2.1.1].

Theorem 3.1.3 (Wedderburn). Given a CSA A over k, there exists a division ring D over k and
a positive integer n, such that A is isomorphic to M, (D). Moreover the division algebra D is

unique up to isomorphism.
Corollary 3.1.4. The dimension of any CSA over k is always a square.
Definition 3.1.5. The degree of a CSA, A over k is defined to be the square root of dimy,(A).

Definition 3.1.6. Let A be a CSA over £, a field extension L/k is said to be a splitting field of
Aif Ay == A®y L = M, (L) for some n, and we say that L/k splits A. For any CSA A, there

exists a finite Galois extension k£ C L that splits A.

Example 3.1.7 (Example 4.2, [Ten09]). L = k is always a splitting field of any CSA A over a
field k.

Theorem 3.1.8 (Theorem 4.4, [Ten09]). Let A be a CSA over k of degree n. If L/k is a field

extension of k of index n that is contained in A, then L splits A.

Wedderburn’s Theorem gives a strict relation between central simple algebras and division
algebras, and suggests the introduction of the following relation: Two central simple algebras
A and B over the same field k are equivalent if there are positive integers m, n such that
M,,(A) = M, (B). Equivalently, A and B are equivalent if A and B are matrix algebras over

the same division algebra. The equivalence class of the central simple algebra A over k is

denoted by by [A], and is called a Brauer class.
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Definition 3.1.9. Let L /k be a finite Galois extension, the set of all Brauer equivalence classes
of central simple algebras over k, which split by L, is denoted by Br(L/k), and is called the
Brauer group of £ relative to L. While, the union of the sets Br(L/k), for all finite Galois

extension is denoted by Br(k), and is called the Brauer group of k.

By Remarks 2.4.7 in [GS06], we know that Br(L/k) classifies division algebras splits by L,
up to isomorphism, since each Brauer equivalence class contains a unique (up to isomorphism)
division algebra. So, by Wedderburn’s Theorem, if A and B are two Brauer equivalent k-
algebras of the same dimension, then A = B. Moreover, the sets Br(L/k) and Br(k), equipped

with the tensor product of k-algebras, are abelian groups, see Proposition 2.4.8 in [GS06].

Example 3.1.10. In the following cases, every division algebra over a field k is k itself, so that

the Brauer group Br(k) is trivial:

(i) k is an algebraically closed field (Example 3.1.7).
(ii) k is a finite field (Wedderburn’s Little theorem), see [Ser79, page 162].

(iii) k is the function field of an algebraic curve over an algebraically closed field (Tsen’s
Theorem, see [GS06, Theorem 6.2.8]). More generally, the Brauer group vanishes for

any quasi-algebraically closed field.

(iv) k is an algebraic extension of Q, containing all roots of unity, see [Ser79, page 162].

Example 3.1.11. The Brauer group Br(R) is the cyclic group of order two. There are just two
non-isomorphic real division algebras with center R: R itself and the quaternion algebra H.

Since H @ H = M4(R), the class of H has order two in the Brauer group.

Example 3.1.12. Let k be a local field, meaning that k is complete under a discrete valuation

with finite residue field. Then Br (k) is isomorphic to Q/Z, see [Ser79, page 193].

Definition 3.1.13. The n-torsion Br(k)[n] of the Brauer group Br(k) is the set of all elements

of Br(k) of order, at most n.

Definition 3.1.14. The period of a CSA A over k is defined to be its order as an element of
the Brauer group Br(k). Define the index of A to be the degree of the division algebra that is

Brauer equivalent to A.
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We particularly have:
Corollary 3.1.15 (e.g. [dJO4]). The period of a CSA over k divides its index, and hence is finite.

For any natural number n € N, we consider the set Az* of all CSA’s of dimension n? over
k, modulo k-algebras isomorphism. Similarly, one constructs the set Azﬁ/ ¥ of all isomorphism
classes of CSA’s of dimension n? over k, which splits by L, for any field extension L/k. In

particular,

Azl = U AzE/R

L/k
Theorem 3.1.16. For n € N, and a finite Galois extension L/k, there is a natural bijection of

pointed sets

ak/® o AzbF s HY(Gal(L/k), PGL,(L)).

Moreover, this is inflated to a unique natural bijection
a¥ . Azl < HY(Gal(k*P/k), PGL, (k*P)),

such that af” P an / k for each finite Galois extension K /k inside k*P.
Az,

L/k

/" and an

The bijections a’* are defined in the following way: Given a CSA A € Az

isomorphism ¢ : A ®; L — M, (L), the class of A is mapped to the class of the 1-cocylce
flo)==¢ooogp oo™t € Auty(M,(L)) = PGL,(L), for o € Gal(L/k).

In particular, one gets the following commutative diagram

Ao L —2 5 M, (L)

o f(o)oo

Ao L —2 5 M, (L)

The inverse map associates to each 1-cocycle f € Z'(Gal(L/K),PGL,(L)), the k-subalgebra
of M, (L) given by

(M € M,(L)| f(¢) o "M = M forall o € Gal(L/k)}.

88



Definition 3.1.17. (G-sets) Let GG be a finite group. A G-set £ is a set equipped with a G-
operation from the left. We will use the notation 9x := ¢g-x forx € F and g € G. A morphism

of G-sets, or simply a G-morphism, is a map ¢ : £ — F' of GG-sets such that the diagram
GXF——F
idxe L

GxyF——F
commutes.
Given a G-set E, one puts H(G, E) := E€, ie. the zeroth cohomology set of G with

coefficients in E is just the subset of G-invariants in E. If E is a G-group then H(G, E) is a
group.

Definition 3.1.18. If A is a G-group then a cocycle from Gto Aisamapa: g€ G+ ay € A,
such that a,y = a, - 9a, for each g,¢" € G. Two cocycles a,a’ are cohomologous if there
exists some b € A where a;, = b~t-a,- 9bforevery g € G. This is an equivalence relation and
the quotient set, the first cohomology set of G with coefficients in A, is denoted by H' (G, A).

This is a pointed set as the map g — e defines a cocycle, the so-called trivial cocycle.

Definition 3.1.19. (The inflation map) Let  : G’ — G be a homomorphism of finite groups.
Then, for an arbitrary G-set F, one has a natural pull-back map h* : H*(G, E) — H°(G", E).
If £ is a G-group then the pull-back map is a group homomorphism. For an arbitrary G-group
A there is the natural pull-back map h* : H'(G, A) — H'(G’, A), which is a morphism of
pointed sets!. If & is the canonical projection on a quotient group then infg/ = h* is called
the inflation map. The composition of infg, with some extension of the G'-set £ (the G’'-group
A) is usually called the inflation, as well. We simply use the notation inf if G and G’ are well

understood.

Remark 3.1.20. Non-abelian group cohomology H'(G, A), fori = 1,2, can be extended to the

case where G is a profinite group and A is a discrete G-set (respectively G-group) on which G

!The image h*(a) of a € H'(G, A) is defined by ¢’ € G’ > ay,(y)
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operates continuously. Put
H'(G, A) == lim H(G/G', A
G/
where the direct limit is taken over the inflation maps and G’ runs through the normal open

subgroups G’ of GG such that the quotient G/G’ is finite.

The bijection af"v in Theorem 3.1.16 above, is then obtained from the bijections aﬁ/

b using the
inflation map. We address the reader to Theorem 3.6 and Corollary 3.8 in [Jah] and Theorem

5.4 in [Ten09], for the complete details.

3.1.1 Cyclic algebras

Definition 3.1.21. Let L/k be a cyclic extension of degree n, that is, A Galois cyclic field
extension of k. Fix a character x : Gal(L/k)—Z/nZ, i.e. choose a specific generator o of

Gal(L/k) characterized by x (o) = 1. Given a € k*, we consider a k-algebra (x, a) as follows:

As an additive group, (x, a) is an n-dimensional vector space over L with basis 1,e,...,e" 1
(x,a) := @ Le'.
0<i<n

Multiplication is given by the relations: e. A = o(\) .e for A € L, and " = a.
Some computations shows that (y, a) becomes a CSA of dimension n? over k. Moreover,

by the proof of Theorem 2.2 in [Ten09], the map ¢ : (x, a) ® L — M, (L) defined by

010 00

0 0 1 00
blem1) =

0O 0 0 . 1 0

0 0 0 01

a 0 0 00

and

d(A® 1) = diag(\, a(N), ..., " 1()\)), for \€ L
is an isomorphism of L-algebras. That is (x,a) splits by L. It is called the cyclic algebra
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associated to the character y and the element a € k.

Example 3.1.22 (Example 5.5, [Ten09]). Let L/k be a cyclic extension of degree n with
Gal(L/k) = (o). Then an element of H'(Gal(L/k),PGL, (L)) represented by a 1-cocycle
f:Gal(L/k) — PGL, (L) is completely determined by the value of f(c), which is subject to

f@)- 7 (f(a)) - T (f(@))-..n T (fo) = 1. 3.1)

00 ... 0 a
10 ... 00
Coi=1 0 1 0 0
00 ...10

Define a 1-cocycle f by setting f(o) = C, mod L*. Hence
f(o)-7(f(@)- " (f(e) .- 7 (f(0)) = Cp mod L* = al mod L* = T mod L*,

where [ is the identity matrix. That is, the condition (3.1) is indeed verified. Moreover, ac-
cording to Theorem 3.1.16, the k-algebra corresponds to this 1-cocycle is the set of matrices of
M € M,(L) satisfying f(c') o "M = M < C.7" M C;* = M for all i, which amounts to
C,°MC;' = M. Clearly, I,C,,...,C" ! satisfy the latter identity. Moreover, since conjuga-

tion by C, is “almost a cyclic permutation”, it is not difficult to verify that the matrices
Sy := diag(b, o(b),...,a"'b), for b€ L

also satisfy the identity as well. That is, S5;C, = C,°S, = CuSsu), or equivalently,
Se-1(4)Ca = CaSy, for all b € L. Therefore, A := P, SyCt is a k-subalgebra of the cor-
rect dimension n?, hence it must be the algebra defined by the 1-cocycle f above. Obviously, A

is isomorphic to (x, a), the cyclic algebra given by a and the character x(c) = —1 mod n.

Theorem 3.1.23 (Wedderburn, Theorem III, [Wed21]). The elements of Az§ are given by cyclic

algebras of the form (x,a) with n = 3. In particular, each of them splits by a cyclic cubic
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extension L of k.

Remark 3.1.24. Using the inflation map in Galois cohomology ([Jah, Lemma 3.7]), one de-

duces a bijection can be given by
(x,a) € Az s inf(f : 0 — C,) € H(Gal(k**? /k), PGL3(k*P)).

Proposition 3.1.25 (e.g. §2.1, [Han07]). We have (x,a) € Az§ is the trivial CSA if and only if

a is the norm of an element of L.

3.1.2 Brauer-Severi varieties

Definition 3.1.26. A Brauer-Severi variety D over k of dimension n is a smooth projective
variety, such that the base extension D = D ®;, k*P is k*P-isomorphic to the n-dimensional
projective space P}, over k°°P. In other words, it is a twist of P} over k (Defintion 3.1).

The set of all isomorphism classes of Brauer-Severi varieties of dimension n over k is

denoted by BSF.

The next result is [Jah, Corollary 4.7] (see also section §3.3 for the general statement for

quasi-projective varieties):
Corollary 3.1.27. The set BSF is in bijection with H*(Gal(k*P /k), PGL,, 41 (k*P)).

Remark 3.1.28. By Corollary 3.1.15, Example 3.1.22, Theroem 3.1.23 and Corollary 3.1.27,
one deduces that a Brauer-Severi surface corresponds to a CSA of dimension 9 and period

dividing 3. Hence, to an element of Br(k)[3].
Moreover, we have by F. Severi, cf. J.-P. Serre [Ser68, X, §6, Excercise 1]:

Proposition 3.1.29 (Severi). A Brauer-Severi variety of dimension n over k, with a k-rational

point is isomorphic over k to Py, i.e. it is a trivial twist of P}
J. Roé and X. Xarles in [RX 14, Corollary 6] proved the following result:

Theorem 3.1.30 (Roé-Xarles). Let C' be a smooth k*P-plane curve defined over k of degree

d >4, and let Y : C — P2.., be a morphism given by (the unique) g2-linear system over k*°P.
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Then there exists a Brauer-Severi variety D (of dimension two) defined over k, together with a

k-morphism g : C — D, such that g @ k*P : C — P3.., is equal to .

The idea of the proof of Theorem 3.1.30, that is also used in the next section (§3.2.1), 1s: A
k*P-plane model of the curve C defines a 1-cocycle f € H*(Gal(k*P/k), PGLs3(k*P)) by the
g3-linear series over k*°P. Therefore, the corresponding twist ¢y : P2, — D ®; k5P, maps the
k*¢P-plane model of C' into a smooth curve defined over k, which lives inside the Brauer-Severi

variety D over k.

§3.2 The field of definition of a non-singular plane model

This section is devoted to the study of the minimal field L where there exists a non-singular
model over L for a smooth k*P-plane curve C' defined over k, i.e. that C' is L-isomorphic to
Fo1a(X, Y, Z) = 0 for some Q € PGL3(k*P) with i, € L[X,Y, Z].

One deduces some remarkable consequences from Theorem 3.1.30:

Corollary 3.2.1. Let C be a smooth k*P-plane curve over k. Assume that C has a k-rational

point, i.e. C(k) is not-empty. Then C' admits a non-singular plane model over k.

Proof. By Proposition 3.1.29, a Brauer-Severi variety over k of dimension n with a k-rational
point is isomorphic over k to P?. Therefore, by Theorem 3.1.30, the map g : C'/k — D = P2,

which is defined over k, gives a non-singular plane model for C over k. U

Corollary 3.2.2. Let k be a field for which Br(k)|[3] is trivial. Hence, any smooth k*P-plane

curve C over k admits a non-singular plane model over k, and so does every twist of C over k.

Proof. We mention earlier (Remark 3.1.28) that a non-trivial Brauer-Severi surface over k cor-
responds to a non-trivial 3-torsion element of Br(k). Therefore, if Br(k)[3] is trivial, then the
g3-system factors through g : C/k < P% and, by Theorem 3.1.30, all is defined over k. In

particular, a non-singular plane model of C' (hence, of any of its twists) over k exists. [l

Example 3.2.3. It is well-known that Br(k)[3] is trivial when k = F, and k = R. In particular,

any smooth k*P-plane curve over such a field k always has a non-singular plane model over k.
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Theorem 3.2.4. Let C' be a smooth k°P-plane curve defined over k, then it admits a non-
singular plane model over an L such that [L : k] | 3, ie. AP € PGL3(k*P) for which
Foe(X,Y, Z) € LIX,Y, Z] and such that C and Fp_.&(X,Y, Z) = 0 are L-isomorphic.

Proof. First, we have a k-morphism of C' to a Brauer-Severi surface D over k (Theorem
3.1.30). Second, by Theorem 3.1.16 and Theorem 3.1.23, D corresponds to an element of
Az¥, ie. a central simple algebra over k of dimension 9 that splits (if it is not trivial) by
a degree 3 Galois extension L/k. Moreover, D ®; L corresponds to the trivial element in

H'(Gal(k*? /L), PGL3(k*P)). In particular, D ®;, L = P2 over L, and
g, L:C®, L— P

are all defined over L. In this way, we obtain a non-singular plane model of C' over L. Third,
any non-singular plane models of C' over k°P is of the form Fp_.5(X,Y, Z) = 0 for some

P € PGL3(k*?), so one gets the second part of the statement. O

Let D be a Brauer-Severi variety of dimension n — 1 over k. By Corollary 3.1.27, it cor-
responds to an element of H'(k, PGL,, (k*P)), hence to a CSA of dimension n? by Theorem
3.1.16. Therefore, we always can identify D with its image in the the Brauer group Br(k).

Now, if V' be an algebraic variety over k. The natural inclusion £ C k(V'), where k(1) is

the algebraic function field of V', induces a map
Br(k)“5Br(k(V))

given by mapping the class of a Brauer-Severi D over k to the class of the variety D ®; k(V).
In particular, this applies to V' = D. In this case, the base extension D ®j, k(D) has a k(D)-
rational point coming from the generic point of D. Hence, by Chatelet’s theorem (Theorem
5.1.3 in [GS06]), the class of D in Br(k) lies in the kernel of the map rp. The following

famous theorem shows that this construction already describes the kernel.

Theorem 3.2.5 (Amitsur, Theorem 5.4.1, [GS06]). Let D be a Brauer-Severi variety defined
over a field k. Then, the kernel of the restriction map Br(k)—2Br(k(D)) is a cyclic group

generated by the class of D in Br(k).
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Theorem 3.2.6 (Lichtenbaum, Theorem 5.4.10, [GS06]). Let D be a Brauer-Severi variety

over k. Then, there is an exact sequence

0 — Pic(D) — Pic(D ®y, k*P) = Z-25Br(k) 2 Br(k(D)). 3.2)

The map § sends 1 to the Brauer class corresponding to D. Here Pic(D) is the Picard group

of D.

Corollary 3.2.7 (Remark 5.4.11, [GS06]). If the class of D has order { in the Brauer group,
then there is a divisor class of degree { on D. The associated linear system defines the (-

dimensional embedding of D over a splitting field L.

The following result is a particular case of an argument by J. Roé and X. Xarles in [RX14]

following Chatelet [Ch4]:

Theorem 3.2.8 (Roé-Xarles). Let C' be a smooth k*P-plane curve defined over k of degree d

coprime with 3. Then C'is a smooth plane curve over k.

Proof. Recall that a Brauer-Severi surface D over k corresponds to a CSA of period dividing
3, hence its class in the Brauer group Br(k) has order dividing 3, say m. On the other hand,
by Theorem 3.2.6 and Corollary 3.2.7, there exists a divisor class on D of the same order m,
which generates Pic(D). Now, let C be a curve over k in Pic(D) such that C = C ®;, k*P
has a non-singular plane model of degree d. Then its image in Pic(D ®; k°P) = Z equals
d. Consequently, if d is coprime with 3, then so does m and hence m = 1. That is, D is the
projective plane P%.

We address the reader to [RX14, Theorem 13] for a more general statement on hypersur-

faces in Brauer-Severi varieties. ]

Corollary 3.2.9. Let C' be a smooth k*P-plane curve defined over k of degree d coprime with

3. Then, any twist C' € Twist,(C') is a smooth plane curve over k.

Proof. By our assumption, any twist of C' over k is also a smooth k°°*P-plane curve of degree
d, coprime with 3. Then a non-singular plane model over k exists for each twist, by using

Theorem 3.2.8. []
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3.2.1 An example of a smooth Q-plane curve over Q, which is not a

smooth plane curve over Q

Following the proof of Theorem 3.1.30, in order to construct a smooth k*P-plane curve C' over
k, which is not a smooth plane curve over k£, we need to construct a non-trivial 1-cocycle in

H'(Gal(k*P/k), PGL3(k*P)) corresponding to C.

Theorem 3.2.10 (Weil, [Wei56]). Let C' be a smooth curve defined over a field F, and let F/ K
be a Galois extension. Suppose that for every o € Gal(F/K), there exists an F-isomorphism

¢y : °C +— C such that
G5 0 "Gy = ¢pr forall 0,7 € Gal(F/K).

Then there exists a curve C' over K and an F-isomorphism ¢ : C' @ F — C such that

¢y 0 7P = ¢ forall o € Gal(F/K).

We now construct the example: let us consider Qy, the splitting field of the polynomial
f(t) = t? +12t* — 64. 1t is an irreducible polynomial and the discriminant of f is (2°32)?, then
Gal(Q;/Q) = Z/3Z, moreover, as we can check with SAGE [ea], the discriminant of the field
Qy is a power of 3, and the prime 2 becomes inert in (Q;. Let us denote the roots of f by a,b, ¢
in a fixed algebraic closure of @, and let us call o the element in the Galois group that acts by

sending a — b — c.

Definition 3.2.11. (Fields of definition) Given a smooth curve C'/F over F, then C'is defined
over k C F'if and only if there is a curve C’/k defined over k, that is isomorphic over F' to C.

In such case, K is called a field of definition of C'.

Proposition 3.2.12. The smooth plane curve over Q¢

| , | b .
C: 642° + abY® + aX® +8Y3273 + %X3Y3 +aZPX? =0,

has Q as a field of definition, but it does not admit a non-singular plane model over Q.
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Proof. The matrix
00 2
¢=110 0
010
defines an isomorphism ¢ : °C' — (), satisfying the Weil’s cocycle condition (Theo-
rem 3.2.10): ¢,s = ¢> = 1. We therefore obtain that the curve is defined over Q, and
that there exists an isomorphism ¢, : Cg — C, where Cy is a rational model such that
¢ = @o o %oyt € PGL3(Q). The assignation ¢, = @y o "¢, defines an element of
H'(Gal(Q;/Q),PGL3(Qy)). By Proposition 3.1.25, this cohomology element is non-trivial,
since 2 is not a norm of an element of Qs (recall that 2 is inert in Q). Therefore ¢y is not given
by an element of PGL3(Qy), or of PGL3(Q) because the cohomology class by the inflation
map is not trivial, as well. Thus the curve C' over Q does not admit a non-singular plane model
over Q, as if there is a non-singular plane model over (Q, such a model would be of the form

Fipg-1a(X,Y,Z) = 0, for some P € PGL3(Q) where Fjp15(X, Y, Z) = 0 a non-singular

model over Q, hence ¢, would be given by P € PGL3(Q), a contradiction. ]

Remark 3.2.13. We have just seen an example of a curve defined over a field k£, not admitting
a particular model (a plane one) over the same field. For hyperelliptic models, we find such
examples after Proposition 4.14 in [LR12]. In [Hug05, chapters 5,7], there are also examples
of hyperelliptic curves and smooth plane curves where the field of moduli is not a field of

definition, so, in particular, there are not such models defined over the fields of moduli.

§3.3 On twists of smooth plane curves over &

Let C be a smooth curve over a field £ and let Twist,(C') be the set of isomorphism classes of

twists of C over k. One can read chapter III of [Ser94] for a proof of the following theorem:

Theorem 3.3.1. Let V' be a quasi-projective algebraic variety over k. The set Twisty (V) is
in one to one correspondence with the first Galois cohomology set H'(Gal(k*P /k), Aut(V))
givenby [V'| = &: 7 & = ¢o To7L for 7 € Gal(k*P/k), where

GV =V Quk*P =V =V @ k5P
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is a fixed k*°P-isomorphism.

Given a cocycle ¢ € H'(Gal(k*P/k), Aut(C)), the idea behind the computation of equa-
tions for the twist, is finding a Gal(k**? /k)-modulo isomorphism between the subgroup gener-
ated by the image of ¢ in Aut(C) and a subgroup of a general linear group GL,, (k*P). After
that, by making explicitly Hilbert’s Theorem 90, we can compute an isomorphism ¢ : C" — C,
and hence, we obtain equations for the twist. For non-hyperelliptic curves, see a descrip-
tion in [LG14] (or Appendix B), the canonical model gives a natural Gal(k*P /k)-inclusion

Aut(C) — PGLy4(k*P), but we can go further, the action gives a Gal(k*P/k)-inclusion
Aut(C) — GL,(k*P) which allows us to compute the twists. For hyperelliptic curves, we
refer to [LLG16], where an efficient algorithm to compute equations of twists of hyperelliptic
curves of arbitrary genus over any separable field (of characteristic different from 2) is given.
In this section, we assume that C' is a smooth plane curve over k, that is, that C' is given by

an equation F(X,Y, Z) = 0 with F(X,Y, Z) € k[X,Y, Z]. We give a characterization of

the twists of C' which are also smooth plane curves over k.

Theorem 3.3.2. Let C' be a smooth plane curve over k and identify it with a fixed non-singular

plane model F(X,Y,Z) = 0 with F5[X,Y, Z] € k[X,Y, Z]. Then there exists a natural map
Y HY(Gal(k*? /k), Aut(Fg)) — H'(k, PGL3(k*P)),

defined by the inclusion Aut(Fg) C PGL3(kP) as Gy-groups. The kernel of ¥ is the set of all
twists of C' that are smooth plane curves over k. Moreover, any such twist is obtained through

an automorphism of P..,, that is, the twist is k-isomorphic to
FM—lé(X7 Y, Z) = F@(M(X, Y, Z)) S ]{Z[X,Y, Z]7
for some M € PGL3(k*P).

Proof. The map is clearly well-defined. Second if a twist C’ admits a non-singular plane model
Fer(X,Y,Z) = 0over k, then Fir7(X,Y, Z) = 0 and F5(X, Y, Z) = 0 are isomorphic through
an M € PGL3(k*P), since any isomorphism between two non-singular plane curves of degrees

> 3 is given by a linear transformation in P%..,. Hence, the corresponding 1-cocycle o +
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M o °M~' € Aut(Fs) becomes trivial in H' (Gal(k*P/k), PGL3(k*P)). Conversely, if the
image of a twist C’ of C over k under ¥ is trivial, then it must be given by a k*P-isomorphism
¢ : Fg — (' that is defined by some M, € PGL3(k*P). Such an M, produces a non-
singular plane model over k for C’. In this case, both C’ and its model are k-isomorphic by

definition. ]

Remark 3.3.3. We can reinterpret the map X in Theorem 3.3.2 as the map that sends a twist

(" to the Brauer-Severi variety D in Theorem 3.1.30.

Remark 3.34. In order to define a natural map > : Twisty(C) —
H'(Gal(k*?/k), PGL3(k*P)) for a smooth k*P-plane curve C over k, we need that
Aut(C) has a natural inclusion in PGL3(k*P) as Gal(k*®/k)-groups. For instance, this is
possible when there exists P € PGL3(k*P) where Fp_15(X,Y, Z) € k[X,Y, Z]. Indeed, in
this situation the inclusion Aut(Fp_15) € PGL3(k%P) is of Gal(k*P /k)-groups and defines a

map

Twisty(C) = H' (Gal(k*P /k), Aut(Fp_.g)) — H'(k, PGL3(k*P)).

Remark 3.3.5. Consider a smooth plane curve C' defined over & of degree d coprime with 3 or
such that Br(k)[3] is trivial. Then X in Theorem 3.3.2 is the trivial map by Corollary 3.2.9 and
Corollary 3.2.2.

Remark 3.3.6. Theorem 3.3.2 can be used to improve the algorithm for computing twists for
non-hyperelliptic curves, see [LG17] or [LG14, Chp.1], for the special case of non-singular
plane curves. If ¥ is trivial in Theorem 3.3.2, then we can work with matrices in GL3 (k)
instead of in GL, (k°P).

We use this improvement to compute the twists of some particular families of smooth plane

curves over k, in section §3.5.

3.3.1 Twists of a smooth plane curve over . which are not smooth plane

curves over k

We construct a family of smooth plane curves over Q but some of its twists are not smooth

plane curves over Q. This construction is not explicit in the sense that we do not construct
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the equations of the twist and the Brauer-Severi surface where the twist lives (Remark 3.3.3).
Nevertheless, in the next section (§3.4), we provide an explicit concrete construction giving
defining equations.
Consider the family C,, , of Q-plane curves defined by the equation
Coga: XO+ aigyﬁ + aigz(d + aig(agxi”y?’ oo X228+ Y328 =0,

with ap,a € Q such thata # —10, £2, 1,0, 2 (-1 £ /5).

Proposition 3.3.7. Let C' be a Q-plane curve in the family Cao,a as above (in particular,
it corresponds to a certain og,a € Q). Then C is a smooth Q-plane curve with au-

tomorphism group isomorphic to GAP(54,5), which is generated by the automorphisms

diag(1, (3, (3), diag(1,1,(), [ag'Z : X : Y] and [YanX = Z = /Y.

Proof. For simplicity, we work with the Q-isomorphic model ¢C' obtained by a change of

variables of the shape ¢ := [X : ¢/a,Y : {/a3Z]. Hence “C is defined by the equation
F(X,Y,Z) =X+ Y+ Z° + a(X*YV? + X3 2% + Y*Z%) = 0.

We first show that ¢C' is smooth. Since a # +2, the polynomial F(X,0,7) = X + Z6 +
aX3Z3 has no repeated zeros, in particular the system F(X,0,7) = Fx(X,0,Z) = 0 has
no solutions. On the other hand, a point (X, : 1 : Zy) € ]P% with XqZ, # 0 satisfies
F(Xo,1,2y) = Fx(Xo,1,Zy) = Fz(Xo,1, Zy) = 0 only if a® + 2a® — 1 = 0, which conflicts
our assumption that a # —1, $(—1 £ v/5). Moreover, if X, = 0 or Zy = 0, then a® — 4 = 0,
which is also absurd.

Second, we prove the claim on Aut(C). Let G be the subgroup of automorphisms of
F(X,Y,Z) = 0 generated by S := diag(1,(3,(2), U := diag(1,1,(3), T = [Z : X :
Y],and W := [X : Z : Y]. Thus G is conjugate to GAP(54,5), since SU = US, ST =
TS, WSW = S~ UT = STU, WI'W = T and WUW = SU. Consequently, Aut(C)
is not conjugate to any of the following groups: a cyclic group, the Klein group PSL(2,7), the
icosahedral group As, the alternating group Ag , the Hessian groups Hess, with x € {36, 72}.
Also F'(X,Y, Z) = 0 can not be a descendant of the Klein curve K of degree 6, since |G| does

not divide | Aut(Kg)| = 63. Furthermore, GG fixes no points in the projective plane IE%, then
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so does Aut(C'). Therefore, by the aid of Theorem 1.4.4, we just need to investigate whether
F(X,Y,Z) = 0is a descendant of the Fermat curve Fi of degree 6 or Aut(F;5) is conjugate to
the Hessian group Hesss16. We saw in Example 2.2.10 that the representations of Hessq;¢ forms
a unique set, up to conjugation in PGL3(Q). Hence there is no loss of generality to suppose
that this fixed representation in Example 2.2.10 acts on F(X,Y,Z7) = 0. More generally,
any non-singular plane curve of degree 6 whose automorphism group is the Hessian group
Hessag = (S, T, U, V) should be of the form X®+ Y%+ 76+ o/ (X3Y? + X323 4+ Y32Z3) =0
for some a’ € Q, since its defining equation must be invariant under the action of [Z : Y :

X, [X:Z:Y],[Y:X:Z],[Y:Z:X]and diag(1, (3, (3). Now,

1 1 1
V=11 ¢ ¢ | €Aut(®0)
LG G
only if a = —10, which is not allowed by our assumptions on a. Next, one can easily check

that Aut(Fg) is isomorphic to GAP(216, 92), thus it contains a unique subgroup of order 54,
up to conjugation inside Aut(Fp) itself. Therefore, we may assume that F/(X,Y,7) = 0
is a descendant of the Fermat curve Fj through a projective transformation ¢ € PGLs3(Q)
such that 9)~'G% = G. Then again the transformed equation should be of the form C’ :
X6 4 YS 4+ 76 4 o/ (X3Y? 4+ X32° 4 Y32Z3) for some o’ € Q. In particular, F(X,Y,Z) =0

admits no more automorphisms in Aut(Fg) (recall that a # 0).

This shows the result. ]

Theorem 3.3.8. Consider the subfamily C, , of smooth plane curves over Q given by

1o, 1
Cpa s X0+ 5Y0 4 20+ ]%(ﬁx?’w +pX3Z% 4+ Y323 =0,

with a € Q\ {—10,£2,—1,0} and p = 3 or 5 (mod 7) a prime number. Given p and a
as before, or equivalently a smooth plane curve C over Q in C,,, then there exists a twist

C" € Twistg(C') which does not admit a non-singular plane model over Q.

Proof. Consider the Galois extension M/Q with M = Q(cos(27/7), (3, ¢/p), where all

the automorphisms of Aut(C)) are defined (Proposition 3.3.7). Let o be a generator of
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the cyclic Galois group Gal(Q(cos(27/7))/Q). We define a 1-cocycle on Gal(M/Q) =

Gal(Q(cos(27/7))/Q) ® Gal(Q((s, ¢/p)/Q) to Aut(C') by mapping (o,id) — [Y : Z : pX]
and (id, 7) + id. This defines an element of H'(Gal(M/Q), Aut(C)). It remains to show that
its image under Y is not trivial inside H' (Gal(M/Q), PGL3(M)), and the conclusion is then an
immediate consequence of Theorem 3.3.2: By Theorem 3.1.16, H'(Gal(M/Q), PGL3(M))
is the set of CSA’s over Q of dimension 9. Moreover, each of these algebras splits by
a degree 3 field extension of QQ inside M, by the virtue of Example 3.1.22. We know
from [Was82, Theorem 2.13] that (p) is prime in Q(cos(27/7))/Q, hence p is not a norm
of an element of Q(cos(27/7)). In particular, the image of our 1-cocycle is not trivial
H'(Gal(Q(cos(27/7))/Q), PGL3(Q(cos(27/7)))) (it is trivial if and only if p is a norm of
an element of Q(cos(27/7))/Q). Then so does its image in H' (Gal(M /Q), PGL3(M)), which

was to be shown. ]

§3.4 An explicit non-trivial Brauer-Severi variety

This section details, following the ideas in §3.3, an explicit example of a smooth plane curve
over Q((3) having a twist that does not possess such a model in the field Q((3), where (3 is a
primitive 3rd root of unity. Interestingly, we find the already mentioned explicit equations for
a non-trivial Brauer-Severi variety. As far as we know, this is the first time that this kind of

equations are exhibited.

Let us consider the curve C,, : X6 + Y% + Z6 4+ o(X3Y? + V32% + Z3X?) = 0 defined
over a number field k¥ O Q(¢3) where a € k. Fora € k\ {—10,4£2,-1,0,1(-1 £ /5)}, it
is a non-hyperelliptic, smooth plane curve of genus g = 10 and its automorphism group is the

group of order 54 determined in the previous section (Proposition 3.3.7).

The algorithm in [LG17], allows us to compute all the twists of C,, previous computation
of its canonical model in IP’% We follow such algorithm, since this time we will see that X is

not trivial, so we cannot use the improvements in Remark 3.3.6.
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3.4.1 A canonical model of C, in P

Let us denote by «;, ¢ € {1, ..., 6}, the six different roots of the polynomial TS +aT?+1=0,
and define the points on C,: P, = (0 : «; : 1), Q; = (a; : 0 : 1) and 00; = (e : 1 : 0)
for i € {1,...,6}. The divisor of the function x = X/Z is div(z) = > P, — ) oo; and
the function y = Y/Z is div(y) = > Q; — >_ 00;. The ramification data of the morphism
r:(Xo:Yy:1)eC,— (Yop:1) € IP% gives the zeros of dx, and the poles of dx are exactly
these of x but with order increased by 1. Since z is ramified at P = (X, : Yy : 1) € C,, if and
only if F,(x,y,1) = 0 at P. Equivalently, if 7° + a(X3 + 1)T% + X§ + aX3 + 1 = 0 has
double roots. That is, if X§ +aX3+1=0o0r4(X§+aXi+1) = a*( X5+ 1)% Let us denote

by 83i,i € {1, ...,6}, the six different roots of the polynomial 7 + f—“QT 3 +1 = 0 and denote

by Vij = (B : 47 ¢/—%(82 +1) : 1) where j € {1,2,3}. We finally get
div(de) =2 Qi+ Y Vij—2) oo

In particular, dx is not a regular differential on C,. However, any of the differentials w;, for

1=1,2,...,10, where

rdx x? 1> 1
W = , Wo = —Wp, W3 = —Wp, Wg = —wWip
y(2y3 + a(x® 4+ 1)) Y T Ty
Yy 1 x
Ws = TWy, W = —Wi, Wy = —Wq, Wg = YW, Wg = —Wi, Wig = —W1.
T Y Y T

is regular on C,, since div(2y® + a(z® + 1)) = > V;; — 3" 0o;. We list the divisors of these

differentials below.

diviw)) = > P+Y Qi+ Y o0, div(ws) =3 P, div(ws) =3 _ Qs

diviws) = 3 ooy, diviws) =2 P+ Y Qi diviwe) =2) Qi+ o0;,
diviws) = > P+2Y oo, diviws) =Y Pi+2) Qi diviws) =2) P+ > oo,
div(wie) = D> Qi+2> oo

The space of regular differential on C|, is isomorphic to the space of cubic tangents to C, with

basis {1, z,y, 2%, 2y, y*, 3, 2%y, zy*, y>}. In particular, {w;}; forms a basis of the space of the
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regular differentials on C,,, since it coincides with the set
{(1/F,)dx, (x/F,)dz, (y/F,)dz, ..., (x3/Fy)dx, (:L’2y/Fy)d:L’, (ny/Fy)dx, (yg/Fy)dx}.

Lemma 3.4.1. The ideal of the canonical model of C,, in }P’%[wl, ...,wyg| is generated by the

polynomials
2 2
Welg = Wy, Wl = W1, Wil = Wrl1p, Walds = WoW1p, Wals = WeWr7, Wals = Wrlg, Wal3s = WeW10,

2 2 2 2 2
WaWip = Wg, Wal7 = Wy, WeWg = W7, W3lWs = Wy, Wal3 = WsWg, WalWg = Wg,
2 2 2 -0
ws + wj + wi + a(wsws + wewip + wrwg) = 0.

We denote by C, this canonical model.

Proof. 1f wy # 0, then the des-homogenization of this ideal with respect to w, gives the affine
curve C, for Z = 1. If wy = 0, then w; = wy9 = 0, s0 wg = wyg = 0 and wy = 0, so if wg # 0
we recover the part at infinity (Z = 0) of C,. If wy = w3 = 0, then all the variables are equal
to zero which produces a contradiction.

To check that it is non-singular, we need to see if the rank of the matrix of partial derivatives
of the previous generating functions has rank equal to 8 = dim(IED%) — dim(C') at every point,
that is, that the tangent space has codimension 1. If w, # 0, then the partial derivatives of the
first seven equation plus the last one produce linearly independent vectors in the tangent space.
If wy = 0, we have already seen that ws # 0 and by equivalent arguments, neither it is ws. Then
the 6th, Tth, 8th, 9th equations plus the last four equations produce 8 linearly independent

vectors. O

Remark 3.4.2. The canonical ideal for a non-hyperelliptic C'is generated, at worst, by quadrics
and cubics. In fact, cubics are only needed for trigonal curves and plane curves of degree 5, see

[Swill, page 3].

Remark 3.4.3. The canonical embedding of C, in IP’%_I = IP% coincides with the composition

of the g2-linear system of C,, with the Veronese embedding given by:

IP’%%IP%: (x:y:2) = (zyz:2® % 25 2%y 92 222y 2 y2?).
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In particular, we get that the ideal defining the projective space ]P’% in IP’% by the Veronese
embedding is generated by the polynomials defined in Lemma 3.4.1 after removing the last

one.

This is true in general for any smooth plane curves C' over k of degree d > 4. Because
the sheaves Q'(C) and O(d — 3)|¢ are isomorphic (e.g. [Har77, Example 8.20.3]), then
H°(P2,O(d — 3)) — H%(C, Q') is an isomorphism. That is, the canonical embedding of

2Verd_3

C' is isomorphic to the composition C——P2 —= Piil, where ¢ comes from the (unique) g2-

linear system and Ver,_3 is the (d — 3)-Veronese map, all are defined over k.

3.4.2 The automorphism group of C, in P

Let us consider the automorphisms of the curve C, givenby R=[Y : X : Z|, T =[Z: X : Y]
and U = diag(1,1,(3). By Lemma 3.3.7, we easily check that Aut(C,) = (R,T,U). For
instance, W := [X : Z : Y] =TRT' € (R, T,U) and S := diag(1,(3,(3) = U*WUW €
(R, T,U). Thus (R, T,U) < Aut(C,) = GAP(54,5) = (S, U, T, W) < (R,T.U).

Second, we obtain that the pullbacks R*(w;) = —w;, T*(w1) = w; and U*(w;) = CGw;.

So, in the canonical model, these automorphisms look like

1/{0 0 0|0 O O|O O O 1/{0 0 00 O O|O O O
0(jo 1 0|0 0 0|0 O O 0{0 0 1/0 O 0|0 O O
0(1 o 0|0 O O|O O O o({1 0 0|0 O O|O O O
0(jo o 140 O OjO O O 0j{0o 1 00 O 0|0 O O
R R .— 0(jo o 00 O Oj1 0 O ,T—>TZ: 0j{0 0 00 O 1|0 0 O
0(jo o 0|0 O OjO 1 O 0j{0 0 01 0 0|0 O O
0j0o 0 0|0 O 0|0 O 1 0{0 0 0|0 1 0|0 O O
0{j0o 0 01 0 OjO O O 0|{0 0 0|0 O O|JO 1 O
0{0o 0 0|0 1 0|0 O O 0|0 O 0|0 O O|JO O 1
0(jo o 00 O 1j0 0 O 0j{0 0 00 O O|1 0 O

and U — (3diag(1,¢3,¢3,¢2,¢3,1,G3, (3,1, (3) := C3U. We define the faithful linear represen-

tation Aut(C,) <— GLjo(k) by sending R, T,U — R, T ,U. Moreover, it preserves the action

of the Galois group Gj.
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3.4.3 An explicit twist over £ = Q((3) of C, without a non-singular plane

model over k£

Now, let us consider the curve C, defined over k = Q((3), and the field extension L = k(~/7)
with Galois group Gal(L/k) = (o) = Z/3Z, where o(+/7) = (3v/7. We define the cocycle
¢ € Z(Gy, Aut(C,)) — Z' (G, PGLo(k)) given by &, = TU.

Lemma 3.4.4. The image of the cocycle £ by the map
¥ HY(k, Aut(C,)) — H'(k, PGL3(k))

is not trivial.

Proof. By construction, the image of the cocycle ¢ in H' (k, PGL3(k)) coincides with the infla-
tion of the cocycle in H'(Gal(L/k), PGL3(L)) where £, = TU. Now by Theorem 3.1.16 we
conclude, since (3 is not a norm in L/k (no new primitive root of unity appears in L than k and

(3 is not a norm of an element of ). [l

In order to compute equations defining the twist C/, associated to the cocycle ¢ (and the

Brauer-Severi surface that contains such a twist), we need to find a matrix ¢ € PGLo(k) such

that £, = ¢ o “¢~!. We can then take

1|0 0 0|0 0 0 0 0 0
o| 7 V2 7 10 0 0 0 0 0
0| V7 GV 1¢2| o0 0 0 0 0 0
0| ¥7 GV 1|0 0 0 0 0 0
- ol 0 0 0|1 7 GVT|o 0 0
= ) 0 0 |1 ¥ Y |o 0 0
0| o 0 0 |G YT VY2 |o 0 0
0| o 0 0|0 0 0 1 GYT GV
o| o 0 0 ]o 0 0 G GYVT V2
ol 0 0 0|0 0 0 G VT eV

Lemma 3.4.5. Let fg,fl, f2 < k‘[.’lfl, ...,.an], and deﬁne go = f(] -+ \5/7][1 + \B/ﬁfg, g1 = fo +
GVTH+ ¢ VT o, go = fo + CGTfL+ G V72 fy. Then the ideals in Lz, ..., x,] generated

by <90791792> and <f07 f1, f2> are equal.
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Proof. Clearly, we have the inclusion (g, g1,92) < (fo, f1, f2). The reverse inclusion can
be checked by writing 3fy = go + g1 + g2, (G — DV7f1 = g1 — Cag2 + ({3 — 1) fo and
VP f=g0— fo— VTh. L

Proposition 3.4.6. The equations in ]P’% of the non-trivial Brauer-Severi surface B over k con-
structed as in Theorem 3.3.2 from the cocycle £ above are

wiwy = (swswy + (3wews + T(3wrwio, w3 — Twaws = (3wswio + (swrws + (3wewo,
wiws = wswio + (Cwrws + (swewo, Tw2 — T{3waws = wswg + (Bwews + T(3wrw10,

Twiwg = (3wswsg + Twew1o + 7C3ZUJ7UJ9, 49&)2 - 7§§w2w3 = wswsg + T(3wswio + 7C§M7WQ,

w% + 14¢3wewr = 7T¢3wawig + Twawg + 7(3w3wy, w% — TC3wewr = Twawig + Twaws + 7(%&)3&)9,
w2 4 2¢3wswr = (3wawg + waws + T¢3waw1o, w2 — (3wswr = wawy + (3w3ws + T(3waw10,

Tw2 + 2¢swswe = (3waws + T¢2wswig + T¢2wawy, Tw? — (swsws = waws + Twawio + 7¢3wawg,

w2 4 14C3wow1o = T¢3wowr + waws + T(Rwswes, w2 — T¢iwow1o = T¢3wawr + T¢3waws + Twawe,
w2 4 14¢2wswi0 = (3waws + (wsws + T¢3wawr, wi — T¢awswio = (Fwaws + (3waws + T¢3wawr,

Tw?, + 2CGwswy = (Gwaws + Twswr + Twaws, 7wy — Gusw — 9 = Gwaws + TCRwswr + Twaws,

Proof. We only need to plug the equations of the isomorphism ¢ into the equations defining
C,. We will get equations for C/. However, even defining a curve over k, these equations are
defined over L = k:({’/? ). In order to get generators of the ideal defined over k, we need to

apply Lemma 3.4.5. [

In order to get the equations of the twisted curve, we only need to add the equation that we
get by plugging ¢ in w3 + w? + w? + a(wsws + wewio + wrwy) = 0, and apply Lemma 3.4.5

again.

Proposition 3.4.7. The curve C! is a twist over k of the curve C, for a € k \
{-10,+£2,-1,0, %(—1 + /5)} which does not admits a non-singular plane model over k,
i.e. is not a smooth plane curve over k, and the defining equations of C, in P are the ones

given in Proposition 3.4.6 plus the extra equation:

w3 + ldwswy + a(ws — Twswy) = 0
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§3.5 Twists of smooth plane curves with diagonal cyclic auto-
morphism group

In this section, we prove a theoretical result, by which we obtain directly all the twists for
smooth plane curves C over a perfect field £ having the extra property: C' is isomorphic
over k to a plane k-model Fir(X,Y,Z) = 0, such that Aut(Fg) is cyclic and generated
by an automorphism 1) € PGL3(k) of diagonal shape. In this case, we show that any
twist in Twist,(Fz(X,Y, Z) = 0) is represented by a non-singular plane model of the form
Fy1x(X,Y, Z) = 0 for some diagonal ¢ € PGL3(k). We apply this result to some particu-
lar families of smooth plane curves over k£ with large automorphism group, different from the
Fermat curve and the Klein curve, see section §2.4 of chapter 2 for such families.

The condition that v is a diagonal matrix is necessary, and we will provide examples when

1 is not diagonal, such that not all the twists are diagonal ones.

Definition 3.5.1. Consider a smooth plane curve C' over k given by Fx(X,Y, Z) = 0. We say
that [C"] € Twist,(C) is a diagonal twist of C, if there exists an M € PGL3(k) and a diagonal
D € PGL3(k), such that C" is k-isomorphic to Fopy-e(X,Y,Z) = 0.

3.5.1 Diagonal cyclic automorphism group: all twists are diagonal

Theorem 3.5.2. Let C : Fx(X,Y,Z) = 0 be a smooth plane curve over a perfect field k.
Assume that Aut(Fg) C PGL3(k) is a non-trivial cyclic group of order n (relatively prime
with the characteristic of k), generated by an automorphism ¢ = diag(1,¢%,¢?) for some
a,beN.

Then all the twists in Twist,(C) are given by plane equations of the form
Fra(X,Y, Z) = 0with Fp_.e(X,Y, Z) € k[X,Y, Z] and D is a diagonal matrix. In par-

ticular, the map Y. is trivial.

Proof. We just need to notice that the embedding Aut(C') — PGLj(k) factors through GLs ().

Thus the map X in Theorem 3.3.2 factors as follows:

> : H'(k, Aut(F5)) — H'(k, GL3(k)) — H'(k,PGL3(k)).
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Moreover, H'(k, GL3(k)) = 1, so the map X is trivial. By Theorem 3.3.2 any twist has a non-
singular plane model Fp_15(X,Y, Z) = 0 over k, for some P € PGL3(k). Since Po ?(P~!) €
Aut(Fz) = (diag(1,¢%,¢?)) for any o € Gy, then 7P = P o diag(1, v, w) for some n-th roots
of unity v, w. Writing P = (a; ;), one easily deduces that o(a; ;) = u;a;; with u; = 1, us =
v,uz = w. Consequently, for any fixed integer j, we have o(a;;)a;; = o(ay )a; ;. That is
a; j ai_,; is a Gp-invariant, which in turns gives that a; ; = m;a, ; for some m; € k. In particular,
P reduces to M D for some D a diagonal projective 3 x 3 matrix and M € PGL3(k). This
proves that all the twists are diagonal. However, the plane model F|,, D),@(X .Y, Z) = 0 over

k is k-isomorphic through M to F,_1&(X,Y, Z) = 0. Hence F|,_.5(X,Y, Z) = 0 defines a

non-singular plane model over k for the twist. [

Remark 3.5.3. More generally, suppose that C'is a smooth plane curve over k, identified with
F&(X,Y,Z) = 0, and having a twist [C'] € Twist,(C) with a non-singular plane model
Fye(X,Y, Z) = 0 over k for some Q € PGLs(k), such that Aut(F,¢) = (diag(1, 2, ¢2)).
Then, any other twist [C"] € Twisty(C) is represented by a model Fopy-15(X,Y,Z) = 0
over k through some diagonal D € PGLs(k).

Now, we apply Theorem 3.5.2 to some particular smooth plane curves of degree d > 5
with cyclic automorphism group in order to obtain all of their twists: let k be a perfect field of

characteristic p = 0 or p > (d — 1)(d — 2), and consider the smooth k-plane curves

C : Xi4vyi4Xxzil =,

O X4 yrlz 4 Xz =0,

Both curves are defined over k with cyclic diagonal automorphism groups of orders d(d—1) and
(d — 1)?, generated by diag(1, Cj(jjl_l), Cj(d_l)), and diag(1, ((g—1)2, C((g:ll))g(d_Q)) respectively

(see subsection §2.4.1). Furthermore, applying the Theorem, we obtain:

Corollary 3.5.4. Let k be a perfect field of characteristicp = 0orp > (d—1)(d—2) + 1. For
d > 5, any twist of C : X1+ Y9+ X791 = 0 over k is given by X% + aY? + bX 7971 = 0
for some a,b € k*. Moreover, two twists {a,b} and {a’,V'} are k-isomorphic if and only if

a=a modk* and b= modk*".
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Similarly, for ' : X4+ Y317 + X791 = 0, any twist is given by X% + aY4"1Z +
bX 741 = 0 for some a,b € k*, where the twist {a,b} and {a’,b'} are k-isomorphic if and

onlyifa’ = M*a, b/ = M N*bfor some M,N € k*.

Proof. By Theorem 3.5.2, any twist of C' has a non-singular plane model over k, which can
be obtained through a diagonal change of variables in PGL3(k) of the shape diag(1, ), p1).
Hence, one could think about the defining equation as X% + Y4 + p4-1 X 791 = 0 such
that A%,y € k. So A = a and u = “~/b for some a,b € k*, and the defining equation
for the twist is X 4+ aY? 4+ 06X Z% = 0. On the other hand, two twists {a, b} and {a’,V'}
are equivalent if and only if there exists an ¢ € PGL3(k) and an automorphism « of C' such
that o o ¢ = ¢’ 01, where ¢ = diag(1, Va, “V/b) and ¢ = diag(1, Va/, “ V'), see Remark
1.3.1 in [LG14]. This is equivalent to write ¢» = diag(1, ¢, ¢') for some ¢,¢" € k*, such that

a’' = aM?® and V' = bN" for some M, N € k*, which was to be shown in this situation.

In the same way, one shows the result for C’. ]

3.5.2 Aut(C) cyclic does not imply diagonal twists

Let C' be a smooth plane curve over k, a field of characteristic p > 0, and identify C' with its

model F(X,Y,Z) = 0 over k. Suppose also that Aut(Fgz) C PGL3(k) is a cyclic group of
order n, generated by a matrix o, such that the conjugacy class of ¢ in PGL3(k) contains no
elements of a diagonal shape. Then the twists of C' mapped to zero by ¥ (i.e., those ones that

admits a smooth plane curve over k), are not necessarily represented by diagonal twists.

Proposition 3.5.5. Let C be the smooth plane curve over Q by:
Fa(X,Y,2) = XY +Y'Z + X7 + (X*Y? + Y322 + X22%) = 0.
Then Aut(Fg) = Z/37, and generated by [Y : Z : X] in PGL3(Q).

Proof. Because 0 := [Y : Z : X] € Aut(Fp) is of order 3, then Aut(F%) is conjugate to one
of the automorphism groups appearing in [BB16a, Table 2] (or see Table 4.2 in subsection §4.1

of the next chapter), with 3 dividing its order.
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Assume first that 7 € Aut(Fp) is of order 2 with 7o = o~'. For simplicity, we consider

the Q-equivalent model Fr_.5(X,Y, Z) = 0 defined by
4X°+20X°%Y Z+ ((—5 —9iV3)Y?3 4 (=5 + 9@'\/§)Z3> X2—6XY?Z2—4Y Z(Y*+Z%) = 0,

which is obtained via the change of variables P of the shape

1 1 1

1 G G
1 G G
Hence P~'oP = diag(1,(3,(3) € Aut(Fp_1z), and P~'7P € Aut(Fp_.z) should be [X :
aZ : a"'Y] for some a € Q. One easily checks that Fp_,5(X,Y,Z) = 0 can not have
automorphisms of this shape. Consequently, the symmetry group S; = (7, p) does not happen
as a bigger subgroup of automorphisms. Then so are GAP(30, 1) and GAP(150,5) in [BB16a,
Table 2], since both groups contain an S3 and a single conjugacy class of elements of order 3.
Second, any automorphism of order 3 of the GAP(39,1) in [BB16a, Table 2] is conju-
gate to either o or 0!, Therefore, if Aut(F) is conjugate, through some P € PGL3(Q), to

GAP(39, 1), then we may suppose that P~'o P = ¢. Thus P reduces to

s

1 0 O a1 Qo Qg
0 Cg 0 a3 1 Q9 S PGL3(@)7
0 0 ¢ ay az o

for some s € {0,1,2}, and the transformed defining equation of Fp_.5(X,Y,Z) must
be XY + Y*Z + Z*X = 0. For s = 0, we need to terminate the coefficients of
Y3, Y4X,Y3X2 Y3272, and Y3X Z, which conflicts the assumption that P is invertible. For
s = 1 or 2, we impose that the monomials X, Y and Z° do not appear, so P is of diagonal
shape and Fip_15(X,Y, Z) = O is not XY + Y*Z + Z*X = 0. Consequently, Aut(F5) is not
conjugate to GAP(39, 1).

By all the above argument, we conclude by Table 4.2 that Aut(F) must be of order 3. [J

Proposition 3.5.6. Let C' be the smooth plane curve over Q as before (Proposition 3.5.5). Then

C admits a twist over Q, which is not diagonal.
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Proof. The defining equation Fz(X,Y, Z) = 0 has degree 5, coprime with 3. Then, by Corol-
lary 3.2.9, any twist of C' = C ®q Q is also a smooth plane curve over Q.

We construct the twist following the algorithm in [LG17] (see Appendix B) and Theorem
3.3.2 because X is trivial: By Proposition 3.5.5, all automorphisms of are defined over K = Q,
and the twisted product I' = Aut(C) x Gal(K/k) ~ Z/37Z. That is, for each cyclic field exten-
sion L/Q of degree 3, there exist (exactly two) non-trivial twists of the curve Fir(X, Y, Z) =0
over k, which have L as their splitting field. Since the set of such extensions is not empty, the
curve C has a non-trivial twist. However, it is easy to check, that a twist of Fx(X,Y,Z) =0

through a diagonal isomorphism D € PGL3(Q) is always the trivial one. Therefore, any non-

trivial twist of C' must be a non-diagonal twist. ]

Remark 3.5.7. By our discussion in [BB16c, §6] (or see section §1.4), Proposition 3.5.5 ex-
tends to any perfect field & of characteristic p > 13. And, we ask for (3 ¢ k in order to construct
a non-trivial twist as in Proposition 3.5.6. Degree 5 is the smallest degree for which such an

example exists, see [LG14] to discard degree 4 exceptions.

Remark 3.5.8. In Appendix B, we apply the algorithm in [LG17] to the simplest degree 5
examples. This shows the improvements of Theorem 3.5.2 and Corollary 3.5.4 to compute the

. .. . -1
twists inside IP’% not in IP’% .
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CHAPTER

Arithmetic aspects of smooth plane

curves of genus 6

Let k be a fixed algebraic closure of a field k of characteristic p > 0. By a smooth k-plane
curve C' of genus g, we mean a smooth projective curve C' that admits a non-singular plane
model {F(X,Y, Z) = 0} C P2 over k of degree d, in this case, the genus g equals 1(d —
1)(d — 2). The first genus for which there exist smooth k-plane curves are: 0, 1,3,6, ... The
curves of genus 0 are isomorphic to the projective line, and the curves of genus 1 are elliptic
ones, which are quite well understood. For genus 3, we always get plane quartic curves, and
different arithmetics properties have been investigated by many people around. We mention,
for example, a classification up to isomorphism with good properties that can be found in
[LRRS14, LG14], or the study of their twists in [LG14, LG16]. For genus 6, the dimension of
the (coarse) moduli space Mg of smooth curves of genus g = 6 over k is equal to 3g — 3 = 15.
The stratum M of smooth k-plane curves of genus 6 has dimension equal to 21 — 9 = 12,
since there are 21 monic monomial of degree 5 in 3 variables and all the isomorphisms are given
by projective matrices of size 3 X 3. In particular, this dimension is larger than the dimension
of the hyperelliptic locus, which is 2g — 1 = 11.

The existence of universal families for a moduli space helps to recover the information on
its points and allows to write down the attached objects to a point of this space. It becomes
difficult to deal with a moduli space when a universal family does not exist. R. Lercier, C.
Ritzenthaler, F. Rovetta and J. Sijsling in [LRRS14, §2] introduced three good substitutes for
the notion of universal family: complete, finite and representative families.

The aim of this chapter is to study the existence of a so-called representative classification
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for the different strata in ME" by their automorphism group. In particular, we look for complete
and representative families over k, which tends to be suitable substitutes to universal families

of (coarse) moduli spaces, especially when the spaces have no extra structures.

The structure of this chapter is as follows. Section 4.1 is devoted to the study of the strat-
ification by automorphism group of smooth k-plane curves of genus 6, i.e. the different strata
of ME!, where k has characteristic p = 0 or p > 2g + 1 = 13. A full description of the au-
tomorphism groups and the associated normal forms is given in Theorem 4.1.12. The diagram
in Figure 4.1 shows how looks like the stratification by automorphism groups of non-singular
plane quintic curves. In section 4.2, we explain an interesting phenomenon, which appears in
Figure 4.1; the existence of a final stratum of plane curves whose dimension is not zero. By
a final stratum we mean a stratum not containing any other proper stratum. One could expect
that by adding restrictions in the parameters of a family defining a stratum with a given au-
tomorphisms group, one get bigger automorphism groups until obtaining a zero-dimensional
stratum. This happens for all the families except for one. For this family each restriction in
the parameters providing a bigger automorphism group yields a singular curve. We find an
explanation for this fact: this family can be embedded in a family of curves of genus 6 with the
same automorphism group for which we can carry out the previous operation without getting
singular curves, the key point is they are not plane curves anymore: Proposition 4.2.1, Corol-
lary 4.2.2. Moreover, we prove that this may happen in general for higher genera: Theorem
4.2.4. In section 4.3, we refine the classification given in Theorem 4.1.12, since it is not repre-
sentative or even complete over % (see Remark 4.3.4): Theorem 4.3.6. We end up this chapter
with section 4.4, in which a full description of the set Twist(C') of twists of a smooth k-plane

curve of genus 6 defined over k£ can be found.

We shall deal with the following items:
4.1. Stratification by automorphism group of ME".
4.2. Final families: A canonical interpretation.
4.3. Complete and representative families.

4.4. Twists of smooth pane curves of genus 6.
The main results of section §4.1 have been published in [BB16a]. The results of sections
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§4.2 and §4.3 are resulted into the manuscript [BLG17].

§4.1 Stratification by automorphism group of M

Given any finite non-trivial group G, it is classically known from Greenberg [Gre74, Theorem
4] that one can construct a Riemann surface R whose conformal automorphism group Aut(R)
is isomorphic to G.

This section is concerned with the following question:

Question 4.1.1. Let k be a field of characteristic p > 0. Once the genus g > 3 is fixed,
determine the finite non-trivial groups G (up to isomorphism), for which the stratum W(G)
over k is non-empty. That is, the groups G such that there exists a smooth k-plane curve C of

genus g whose automorphism group is isomorphic to G.

Henn in [Hen76] and Komiya-Kuribayashi in [KK79] solved the question for g = 3 over
the complex field C. We solve it for ¢ = 6, in order to get a compact table as Henn Table
(Theorem 2.2.1), but for smooth k-plane curves of degree 5.

We start with the next result, which is a consequence of Theorem 1.4.5 for characteristic

p = 0, and the discussion after, at the end of chapter 1, for p > 13:

Corollary 4.1.2. Let C be a smooth k-plane curve of degree d = 5, where k is a field of
characteristic p = 0 or p > 13. Then, the full automorphism group Aut(C) of C (seen as
a smooth plane curve over k) is not conjugate to the Hessian group Hessoq, the Klein group

PSL(2,7) and the alternating group As.
Starting with the results in section §2.4, we conclude:

Corollary 4.1.3. Let C be a smooth k-plane curve of degree d = 5, where k is a field of

characteristic p = 0 or p > 13. Then, we have (up to k-isomorphism):
1. The cyclic group p(Z/20Z) = (diag(1, (3, (5)) appears as Aut(C) inside PGL3(k),
where C'is k-isomorphic to X° + Y5 + X Z* = 0.
2. The cyclic group p(Z,/16Z) = (diag(1, (16, (I2)) appears as Aut(C) inside PGLs(k),
where C is k-isomorphic to X° + Y*Z + X Z* = 0.
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3. The group GAP(30,1) = (0,7|7* = o' = (70)%¢® = 1) appears as Aut(C) inside
PGLs(k) with o := diag(1,(i5,(l3) and 7 := [X : Z : Y]. In this case, C is k-
isomorphic to X5 +Y*Z + Y Z4* = 0.

4. The group GAP(39,1) = (1,0|0'® = 72 = 1, o7 = 70°) appears as Aut(C) inside
PGLs(k) with o := diag(1, (13, (1Y) and 7 := [Y : Z : X|. Moreover, C' is k-isomorphic
to the Klein curve XY +Y*Z + 71X = 0.

5. The cyclic group p(Z./87) = (diag(1,(s,—1)) appears as Aut(C) inside PGL3(k),
where C'is k-isomorphic to X° +Y*Z + X Z* + Ba0 X222, for some oy # 0, 2.

Before we prove Corollary 4.1.3, we reproduce here Table A.3, representing the different
types of cyclic subgroups of automorphisms of smooth k-plane curves of degree 5, which was

a consequence of the work in chapter 2.

Table 4.1: degree 5

Type: m, (a, b) F(X,Y,Z)

20, (4,5) X5+Yo+ X74

16, (1,12) X5+ Y17+ X7*

15, (1,11) X°+Y*Z+YZ*

13, (1,10) XY +Y'Z + 72X

10, (2,5) X54Y5 4+ XZ4 + By g X322

8,(1,4) X5+ YAZ + XZ* + Bo g X327

5,(1,2) X5+ Y5+ Z° + B3 X2Y 7% + B43XY3Z
5,(0,1) 7%+ Ly 4

4,(1,2) XP+ X(ZY+ YY) + BooX3Z% + B3, X°Y2Z + B3,V 2 23
4,(0,1) 7Y + Ls

3,(1,2) XY Z+YZ 4+ o1 X3Y Z + X?(B302° + B3 3Y?) + Buo XY Z?
2,(0,1) Z4 7+ Z*Lyz + Ls »

Proof. (of Corollary 4.1.3) One just needs to apply Propositions 2.4.3, 2.4.7, 2.4.11, 2.4.14,

and 2.4.17 when d = 5, by the aid of Table 4.1.
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It remains, for the last case, to observe that if Aut(C') is bigger, then it is always cyclic
(Proposition 2.4.17 when d = 5 and m = 2), and then should be the cyclic group of order
16 (Table A.3 above). Therefore, 32 # 0 is the only restriction to impose, so that the curve
has automorphism group exactly Z/8Z. While the restrictions 29 # £2 comes form non-

singularity. [

4.1.1 Automorphism groups having small cyclic subgroups

By the aid of Corollary 4.1.3, it remains to describe Aut(C'), where C is a smooth k-plane
curve of degree 5, which appears in Table 4.1 and such that the maximal order for any element

inside Aut(C) is exactly 2d = 10 or at most d = 5.

Proposition 4.1.4. Let C be a smooth k-plane curve of degree 5, with o € Aut(C) of order
10 as an automorphism of maximal order. Then, we reduce up to k-isomorphism to C' : X° +
Yo+ XZ 4 Bo o X?Z? = 0 for some (a9 # 0, and o acts on C' as diag(1, (},, —1). Moreover,

one of the following subcases occurs:

1. Ifﬁ%,o = 20, then C' is k-isomorphic to the Fermat curve Fs : X° +Y® + Z° = 0 and
Aut(C) is isomorphic to GAP(150, 5).

2. If B3y # 20, then Aut(C) is isomorphic to Z/10Z, and we can think about C as a

descendant of the Fermat curve of the form
Cp: X°+Y° + Z° +u (&Y' Z+YZY) +u/ (EY* 22+ Y?Z%) =0,
for some (u,u’) € B \ {(0,0)}.

Proof. Since the maximal order is 10, we have by, Table 4.1, a non-singular E-plane model of
C via the normal form X5 + Y5 + X Z* + 3,0 X32Z?% = 0 for some (2 # 0. In particular, o
acts on such a model as the automorphism diag(1, ¢%,, —1). We know, by Proposition 2.4.22
and the Remark after it, that if C' is not a descendant of the Fermat curve, then Aut(C') fixes
the line Y = 0 and the point (0 : 1 : 0).

Assume first that C' is not a descendent of the Fermat quintic curve. Then, by Theorem

1.4.4, Aut(C) satisfies a short exact sequence 1 — Z/5Z — Aut(C) —* G — 1, where
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7,/57 is generated by 02, and G (as a subgroup of PGLy(k)) contains A(c) = diag(1, —1) of
order 2. Then G is PGLy(k)-conjugate to Z /27, Z,/A7Z, S3, A4, Sy, or to A5. However, Z /57 is
contained in the center of Aut(C') (Theorem 1.4.4-(2)), so if G has an element A(7) of order
3 or 4, then so does Aut(C'), since 7 must be of order divisible by 3 or 4, respectively. In
particular, Aut(C') has an element of order 15 or 20, which contradicts the maximality of the

order of . Therefore, G = Z/2Z and | Aut(C)| = 10, in other words, Aut(C) = Z/10Z.

Secondly, if C' is a descendant of the Fermat curve of degree 5, then this happens through a

change of variables P € PGLg(E), such that
PloP e {[X : (7 : (Y1 [CHY - X - (2. (o2 : G = X] |54 (a+ D)}
In any of these situations, we always obtain a Fermat descendant of the form
Cp: X°+Y°+ Z° + u(¢HA*B + AB*) + u/((},A*B* + A*B®) = 0,

where {A, B} C {X,Y,Z}. Furthermore, Cp is the Fermat curve only if 55, = 20, and
Aut(Cp) is cyclic of order 10 otherwise. For example, if P~1oP = \[X : (%7 : (3¢Y], then

A= (%), 5la+ b+ 2, and P reduces to

O C2a+2 a3
1 0 0 | € PGLs(k).
O 2a+2,}/3 73

Therefore, C' is transformed into Cp of the form
X2+ Y° + 22 +u(( YV Z + Y 2+ (GyTVYS 22+ Y22 = 0,

by setting az(a3 + Ba0yaa3 + v3) = 1. Now, Cp is the Fermat curve only if u = v’ = 0, or

equivalently, 53+ 52,07303 — 375 = bag—Bapv3a5+75 = 0. Thus 53, = 20 (for instance, one

1

can take g = — U0 2}1)/1/0, and v3 = & gij V5 \when Bop =2V5, and ag = 5, and 3 = — 573
when (35 = —24/5). Otherwise, i.e. u # 0 or v’ # 0, one may assume that a = 0 and b = 3,
since any [X : (27 : (3¢Y] € Aut(Cp) is conjugate inside Aut(Fs) to [X : (5,Z : Y] through
diag(1, ¢ty, ¢5,) for some integers s and ¢. Hence Cp admits no more automorphisms inside

Aut(F5) and Aut(Cp), as a subgroup of Aut(F}), is again cyclic of order 10. Finally, we note
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that, for any other value of P~'o P, one can reduce to some concrete (a, b) and obtain exactly
the same system to solve involving (s as before. Thus, we always get the same conclusion as

above. ]

Remark 4.1.5. Recall that Aut(F5) is generated by 7, = [X : Z : Y], m = [Y : Z :

X], n3 := diag((s, 1,1), and n, := diag(1, {5, 1) of orders 2, 3, 5, and 5 respectively. Moreover,

(mn2)® = (mns)(nsm) ™" = (n3ma) (nams) ™" = mmimi (nsna) ~> = mansmy  (n3ma) ~* = 1.
Consequently Aut(F5) = GAP(150,5).

The following lemma is very useful to discard all the groups, that contains a Z/27Z x Z/27.,

for smooth plane curves of degree 5.

Lemma 4.1.6. Let k be a field of characteristic p = 0 or p > 13. Then there is no smooth k-
plane curve C of degree 5, with 7./ 27. x /27 < Aut(C). In particular, the full automorphism
group Aut(C') is not isomorphic to any of the groups: 7./27, X 7./]27, A4, Sy and As.

Proof. By Theorem 1.2.1 and Theorem 1.4.4, the group Z /27 x Z /27 inside PGL;3(k), which
gives invariant a smooth plane curve C of degree d, should fix a point not lying on C, or C'is
a descendant of either the Fermat or the Klein curve. For d = 5, it could not be a descendant
of the Fermat curve and the Klein curve, since 4 is not a divisor of |Aut(F5)| = 150 and
| Aut(K5)| = 39. Therefore, the automorphism subgroup Z/27Z x 7 /27 fixes a point not lying
in C'. Moreover, 2 t d, so we can think about it in a short exact sequence (see Theorem 1.4.4
and its proof):

1->N=1—-H—>H—1,

where H is conjugate to Z/27 x Z./27 inside PGLy(k). We can also assume that H acts
only on the variables Y, Z because N is the subgroup of Aut(C) acting on X. Now, if o, 7 €
H C PGLy(K) are of order two, such that o7 = 70, then we can suppose, up to a change
of variables of ]P’%, that 0 = diag(1l,—1) and 7 = [aY + bZ : ¢Y — aZ] # o. Consequently,
C has a model of Type 2, (0, 1). However, all possible 7 does not retain invariant the equation
of Type 2, (0, 1), for any choice of the parameters, and the result follows: indeed, 7 commutes

with o, therefore 7 = diag(—1,1) or [bZ : ¢Y], with be # 0. Hence C has the expressions:
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Z4 0 7+ ZLsz+ Ls zand Y*L1y + Y? Ly y + Ls y, simultaneously. In particular, it reduces

to the form X - G(X, Y, Z), a contradiction to irreducibility. O

Now, we handle the situation for smooth k-plane curves of degree 5, whose automorphism

groups has an automorphism of order 5 (resp. order 4), as an element of maximal order.

Proposition 4.1.7. Let k be a field of characteristic p = 0 or p > 13. Suppose that C' is
a smooth k-plane curve of degree 5, with an automorphism o of maximal order 5. Then we

reduce, up to k-isomorphism, to one of the following subcases:
1. Aut(C) =Z/5Z, and C'is of Type 5, (0, 1) of the form Z° + Ls 7 = 0,

2. Aut(C) = Dy, generated by o := diag(1,(s,(2) and 7 := [Z : Y : X]. Moreover,
C is defined by the form X° + Y® + Z° + 331 X?Y Z? + B43XY3Z = 0 for some
-2
(3,1, Ba3) € k- \ {(0,0)}.

Proof. We investigate smooth k-plane curves of Type 5, (a,b), which appear in Table 4.1:

(A) Type 5, (1,2) : First Aut(C) is not conjugate to Hess, with * = 36, 72, and also C'is not a
descendant of of the Klein curve, since Hess, and Aut(K;) do not have elements of order
5. On the other hand, C' always admits a larger automorphism group isomorphic to Dy,
through the extra automorphism 7 = [Z : Y : X], in particular, it is not cyclic. Moreover,
we use Lemma 4.1.6 to discard A5. Consequently, Aut(C') fixes a line and a point off this

line, or C'is a descendant of the Fermat curve F3 of degree 5.

We treat each of these subcases:

(i) If Aut(C) fixes a line and a point off this line, then it should be the line Y = 0, and
the point is (0 : 1 : 0), since (o, 7) < Aut(C). Hence we reduce to automorphisms

of the shapes
q 0 (6%

0 1 0 |ePGLyk).

m 0 7
From the coefficients of Y2272, Y3X? (resp. XY, Y Z%), we must have a; = 73 = 0

(resp. as = y; = 0). Moreover, agl =773 =1land asyyis = L, or (az1713)° = 1,
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since (3.1, B1,3) # (0,0). This implies that | Aut(C')| = 10, and then is exactly the

dihedral group Dj.

(ii) If C' is a descendant of the Fermat curve Fj, through a change of variables P €
PGL3(k), and neither a line nor a point is leaved invariant, then we may impose
P~loP = o, since automorphisms of the Fermat curve of order 5, which are not
homologies forms a single conjugacy class of Aut(Fs). So P has one of the shapes
diag(1, A\, w), [Y : AZ : puX], or [Z : AX : puY]. However, it is straightforward to

verify that Cp has no more automorphisms in Aut(F3) than P~ (o, 7) P. So again

Aut(C) = Dl().

(B) Type 5, (0,1) : In this case, we have a homology o = diag(1,1,{5) € Aut(C) of order
d =5, with center (0 : 0 : 1) and axis Z = 0. Then, by Proposition 1.3.12, (0: 0 : 1) is an
outer Galois point for C', moreover it is unique, since C'is not E-isomorphic to the Fermat
curve (recall that any automorphism of C' has order < 5). Thus, it should be fixed by
Aut(C). Consequently, Aut(C') fixes also the line Z = 0 (Proposition 1.2.9). Therefore,

Aut(C) satisfies a short exact sequence (Theorem 1.4.4-(2))
1—- N — Aut(C) - G — 1,

where N is cyclic of order dividing 5, and G is conjugate to Z/mZ, Do,,, Ay, Sy, orto As
with m < d — 1(= 4), and moreover m | d — 2(= 3) or N is trivial, when G = Dy,,. If
N is trivial, then G = Aj, since it is the only option with elements of order 5 are present
inside. Hence, Z/27 x 7 /27 is a subgroup of Aut(C'), a contradiction to Lemma 4.1.6.
Thus N = 7Z/57. Moreover, for any value of G (except possibly {1}, Z/27Z, 7./47Z and
Ay such that Aut(C') = Dyg, GAP(20, 3), As), there are automorphisms of order greater
than 5, which conflicts our assumption. Again, by Lemma 4.1.6, we exclude G = A,.
Furthermore, one verifies that there exists no 7 € Aut(C) of order 2, such that To7 = 071,

that is G # Z/27. Also, there are no 7 € Aut(C) of order 4, such that (7¢)*> = 1 and
oro~! = 70. Thus G # Z/AZ, and Aut(C) is cyclic of order 5.

This completes the proof. ]
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Proposition 4.1.8. Let k be a field of characteristic p = 0 or p > 13. Suppose that C

is a smooth k-plane curve of degree 5, with an automorphism o of maximal order 4. Then

Aut(C) = (o) and we reduce, up to k-isomorphism, to one of the following situations:

1. o acts on C as the automorphism diag(1,1,(y), and C is defined by an equation of

the form Z*Y + Ls 7z(X,Y) = 0, such that Ls z(X,(,Y) # (L5 z(X,Y) for any
(m7 n) E {(87 1)7 (167 1)7 (207 4)}’

2. o acts on C as the automorphism diag(1,(y, —1), and C is defined by X° + X (Y* +

ZY) + BooX3Z% + B32X?Y2Z + B52Y%Z3 = 0 for some P59 # 0.

Proof. We study the two Types 4, (a,b) mentioned in Table 4.1: In both cases, C' can not

be a descendant of the Fermat curve Fy or the Klein curve K5, since 4 does not divide

| Aut(Fs)| = 150 and | Aut(K5)| = 39. Also, Aut(C) # Aj;, because it has no elements

of order 4. Therefore, Aut(C) is conjugate to one of the Hessian subgroups Hess,, with * = 36

or 72, or it fixes a line and a point off this line (Theorem 1.4.4 and Corollary 4.1.2). Moreover,

for the last case, we need to consider a short exact sequence 1 - N =1 — Aut(C) - G — 1,

where GG must contain an element of order 4. So G could only be conjugate to Z/4Z, or Dg

(Lemma 4.1.6).

(A)

(B)

We treat now each of the subcases:

Type 4,(0,1): Similarly to Type d — 1, (0, 1) in chapter 2, §2.3.1, there is a unique inner
Galois point for C, and hence it should be fixed by Aut(C'). Consequently, Aut(C) is
cyclic. The algebraic restrictions on the binary form Ls » are to avoid C' to be with larger
cyclic automorphism group, more precisely, to be of Type 8, (1,4), Type, 16,(1,12), or

Type 20, (4,5).

Type 4,(1,2): Clearly 55 # 0, or C decomposes to X.G(X,Y,Z) = 0, in particular
it is singular. Second, we claim to show that non of Hess, for x = 36, 72 occurs as the
automorphism group of a smooth k-plane curve of degree 5: We know that both groups
contain reflections, but no four groups, hence all reflections in the group will be conju-

gate to [Z : Y : X]|, see [Mitl1, Theorem 11]. Therefore, we can take P € PGL3(k)
with P~'0?P = [Z : Y : X], where Aut(Cp) < PGLs3(k) is described by the
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usual representation of the above Hessian groups. In particular, Aut(Cp) always have
the five automorphisms: [Z : Y @ X[, [X : Z : Y], [Y : X : Z],[Y : Z : X],
and diag(1,(3,(?). Since the defining equation for C'p is invariant under the action of
(Z:Y X, [X:Z:Y],[Y:X:Z,and [Y : Z : X|, Cp is defined by an equation of
the form u(X°+ Y5+ Z°) +a(X*Z+ XY + VX + Y Z+ Z* X+ Z'Y)+ H(X,Y, Z),
for some u,a € K and H(X,Y, Z), a homogenous polynomial of degree 5, such that the
degree of any of the variables is at most three. Then consider the action of diag(1, (3, (3)
to get u = 0 and a = 0, a contradiction to non-singularity (Lemma 2.1.1). This shows the

claim.

On the other hand, because N is trivial and o € Aut(C) is a non-homology, we can
suppose that the fixed line is X = 0 and the point is (1 : 0 : 0). That is, all automorphisms
of C are of the shape [X : vY +wZ : sY +tZ] € PGL3(K). One checks that there is no
automorphism 7 of this shape of order 2, with To7 = 0~1. Hence Aut(C) is not conjugate

to Dg, and therefore it is the cyclic group of order 4.
This finishes the proof. O]

Now it remains the study of smooth k-plane curves C' of degree 5, such that their automor-
phisms are of orders at most 3. So Aut(C') is not conjugate to A5 and Hess, with * = 36, 72,
since in each case, automorphisms of order > 3 exist. Therefore Aut(C') fixes a line and a

point off this line, or it is conjugate to a subgroup of Aut(F5) or Aut(Kj).

Proposition 4.1.9. Let k be a field of characteristic p = 0 or p > 13, and let C' be a smooth

k-plane curve of degree 5 of Type 3, (1, 2), such that automorphisms of C have orders, at most

3. Then C' is defined by the normal form
X+ Y Z + Y2+ Bon XPY Z + XP(B302° + B33Y?) + BaaXY?Z? = 0.

Moreover, Aut(C) = Z/3Z = (diag(1,(3,(3)) when B30 # B33, and Aut(C) = Sz via the

extra automorphism | X : Z : Y| otherwise.

Proof. Because | Aut(K;)| = 3 - 13, then if C is a descendant of the Klein curve K3, then

Aut(C) is exactly a Z/3Z inside Aut(Kj), since otherwise an automorphism of C' of order
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> 3 should exist by Sylow’s theorem. Second, if C'is a descendant of the Fermat curve Fj,
then Aut(C) is a Z/3Z or Sz inside Aut(F}): indeed, | Aut(F3)| = 2-3-5%, hence any subgroup
of order > 3 is conjugate to S3 (remark that Aut(F5) has no elements of order 6), or it contains
elements of order 5 > 3. Moreover, if Aut(C') = Ss, then there exists 7 € Aut(C') of order 2
such that 707 = o1, This reduces 7 to be of the shape [X : 37 : 37'Y], which retains the
defining equation for C if and only if 3 = 1 and Bs0 = Bs33. Third, if Aut(C') fixes a line and
a point of this line, then (Theorem 1.4.4-(2) and Lemma 4.1.6) Aut(C') satisfies a short exact
sequence of the form 1 — N =1 — Aut(C) — G — 1, where G is conjugate to Z/3Z or S,

which was to be shown. L]

Proposition 4.1.10. Let k be a field of characteristic p = 0 or p > 13, and let C be a smooth k-

plane curve of degree 5 of Type 2, (0, 1), such that any automorphism of C' has order, at most 2.

Then C'is k-isomorphic to Z*Y +Z%Ls z+Ls ; = 0, and Aut(C) = Z,/27 = (diag(1,1, —1)).

Proof. Clearly C' is not a descendant of the Klein curve, since | Aut(K;)| = 39 is odd. Also,
if it is a descendant of the Fermat curve, then Aut(C') is a Z/27Z in Aut(F3;), as |Aut(F5)| =
2 - 3 - 5%, so subgroups of order > 2 obviously have elements of order > 2. Lastly, if Aut(C')
fixes a line and a point off this line, then we think about it in a short exact sequence 1 — N =
1 — Aut(C) — G — 1, where G contain an element of order 2 and no higher orders happens.
Therefore Aut(C') should be Z/27Z, or Z /27 x 7./27. However, we exclude the latter case by
Lemma 4.1.6. [l

We need to assure the existence of a smooth k-plane curve C, through some specializations
of the parameters, for which the maximal order of its automorphisms is exactly m, for m < 5.
This is some sort of tedious computations, since we do not know a priori the dimension of the
strata /\/;lg(G). We already saw the situation when m = 4 in chapter 2, §2.3, also when m = 3
and G = Z/37Z. To treat the case when m # 4, we can apply similar arguments, which will
not be reproduced here (nevertheless, we know all the possible groups and the representations
that could appear such that m divides their orders). This in turns simplifies the computations,

in order to conclude:

Lemma 4.1.11. Let k be a field of characteristic p = 0 or p > 13. Consider a degree 5
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homogenous equation F(X,Y, Z) = 0 over k, associated to some Type m, (a,b) in Table 4.1,
where m < 5 and m # 4. Then, there exists a smooth k-plane curve C obtained by a concrete
specialization of the parameters, such that all of its automorphisms are of order, at most m.
Moreover, for Type 3, (1,2), we have smooth k-plane curves with this property, where some of

them satisfy Bso # 3,3 and others also satisfy B39 = 33 3.

4.1.2 How looks like the stratification by automorphism groups?

We sum up all the results obtained previously in section §4.1.

Theorem 4.1.12 (Badr-Bars, [BB16a)). Let k be a fixed algebraic closure of a field k of char-
acteristic p with p = 0 or p > 13. The following table gives the complete list of automor-
phism groups of non-singular plane curves of degree 5 over k, along with normal forms (or
geometrically complete families over k using Remark 2.1.8 and Definition 4.3.2) for the as-

sociated strata. We denote by L; g a homogeneous polynomial of degree i in the variables

{X,Y, Z}\{B}.

Case G o(G) Fya)(X,Y,2)

1 GAP(150,5) | [(X:Y :Z),[X:¢GY 2 Z) X5 4+Y5 4275
X:Z:Y],[Y:Z:X]
2 | GAP(39,1) | [X:GaY :¢l02),[Y: Z: X] XY +Y4Z + 74X
3 GAP(30,1) | [X :CisY 1 (H2Z][X: Z: Y] X +Y*Z +YZ*
4 7,/20Z (X : ¢G5 : (5, 2] X5+ Y5+ x274
5 7./16Z [X : C6Y : (J22] X5 4+Y4Z + X274
6 Z/10Z (X :¢3Y : ¢5y2] X%+ Y0 4+ XZ4 4 B2,0X3 22
7 Dig (X :¢GY:¢22),[Z2: Y X] X5+ YOS+ 254 B31X2Y 22 4+ BasXY3Z
8 7./8Z [X : Y : ¢32] X3+ Y4Z + XZ4 + B2, X322
9 S3 (X : Y :¢22] X5+ Y4Z+YZ4+ B2 1 X3Y Z + B3 3X2(Z3 +Y3)+
[X:Z:Y] +Ba,2XY22Z2
10 7./57 [X:Y :¢57) Z%+ L z
11 YAZYA (X : QY :32) X5+ X(Z2+Y4) + B2,0X322 + B32X2Y2Z + B52Y2 23
12 Z7./AZ [X:Y :¢Z] Z4Ly,z + L5,z
13 Z/3Z (X : Y :¢22] X3+ Y4Z+YZ4 + B 1 X3Y Z+
+X2(B3,023 + B3,3Y3) + a2 XY 222

14 Z)27, [X:Y: (7] ZALy,z + Z%La,z + Ls 7
15 {1} X:Y:Z] Ls(X,Y, Z)

Table 4.2: Geometrically complete families over k&
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The algebraic restrictions on the coefficients, so that each family is smooth, geometrically

irreducible, and has no larger automorphism group are not given for seek of simplicity.

Table 4.2 can be seen as the Henn Table (Theorem 2.2.1), but for smooth E-plane curves
of degree 5. The following diagram shows how looks like the stratification by automorphism

groups of non-singular plane quintic curves (we will justify the computation of the dimensions

later):
Z./16Z Z./20Z GAP (150, 5) GAP (30,1) GAP (39,1) dim 0
7./8Z. 7./10Z dim 1
757 Dio dim 2
7./AZ. 7./AZ. S3 dim 3
\
7/3Z dim 4
7)27. dim 7
{1} dim 12

Figure 4.1: Stratification by automorphisms group

Remark 4.1.13. Table 4.2 confirms that G = Z /47 is the only group, such that M (G) is not
ES-irreducible, as we mentioned before in chapter 2, §2.3. In other words, for Z /47, we obtain

two p’s, where their normal forms F,(X,Y, Z) = 0 are not k-isomorphic, and corresponds to a

disjoint decomposition of /T/l\ép/l (Z)AZ).

§4.2 Final families: A canonical interpretation

We can see in Figure 4.1 a phenomenon that does not happen for degree 4. We define a fi-

nal stratum by automorphism groups to be a stratum that does not properly contain any other
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stratum. There is a final stratum in M/" of dimension greater than zero. This may sound
odd since we could expect that by adding conditions in the parameters we would get bigger

automorphisms groups. However, we will see that this is a normal situation for higher degrees.

4.2.1 A canonical interpretation

The family for the stratum with p(G) = (diag(1, {4, —1)) can be described by the equation’
Sapc: XP+AXPZ* + BX?Y?*Z + CXY* + XZ* +Y?7Z3 = 0.

This stratum has dimension 3 and it is a final stratum: no restriction of the parameters give a
larger automorphism group. Now, it is easy to see that making A = B = C' = ( we get a larger
automorphism group. For instance, we get the new automorphism diag(1, s, (4). However, the
plane curve defined by this equation is singular.

We next show an explanation of this final stratum not having dimension zero. We will regard
the family Sy p ¢ in MZ" inside a family in M that is not final. When we add restrictions
there, we get extra symmetries and the curve is not plane anymore.

Let us start by computing the family K4 g ¢ of canonical models of S4 ¢ in P%_l = ]P’%
We define the functions x = X/Z andy = Y/Z.

div(z) = 2(0:0:1)+2(0:1:0)= Y (GvV—=C:1:0)

s=1

4
= 2P+2Q - R,

=1

div(y) = (0:0:1)—(0:1:0)—i(jm:1:0)+(1;0:i fAixz/m>

s=1
4 4
- Q- REY T
i=1 i=1
In order to compute div(dx), we work with the affine form

F(x,y,1) = 2° + Az® + Ba?y* + Cay* + z + ¢*.

!One starts with the defining family equation in Table 4.1, case 11. By non-singularity, the coefficient of
Y273 must be non-zero, so we can re-scale Y to getSa.B.c.
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The differential dx is an uniformizer for all points except for P and the 7;’s because the tangent
space to the curve at these points have equation 2 — o for some o € k(A, B, C') (we have used

d(x — ) = dz). Then, for those points, we have to work with the expression

y(2Bz* + 4Cxy? + 2)

de = —
v bat 4+ 3Ax2 + 2Bxy? + Cyt + 1 Y

We finally get
4 4
div(de) =P+ Q + ZRi +2Tm
i=1 i=1

and a basis of regular differentials is given by

dx xdx
wp = —,w; = —, wy = dx,
Yy
x2dx
w3 = , wy = xdr, ws = ydx.

Proposition 4.2.1. The ideal of the canonical model of Sa g ¢ in P°|wy, ..., ws| is generated by

the polynomials
2 _ 2 2 _ _
Wows = Wy, Wowyg = WiWza, WoWs = Wy, Wy = W3Ws, WiWs = Walg, W1Wys = Wal/s,

wlwg + Aw? + Buwow? + Cwowaws + wgwl + wgwg) =0,
wg + Aw0w§ + Bwiwsws + C’wgwg + wgwg + wowiws = 0,
waw3 + Awowswy + Bwawsws + Cwaws + wiwy + wowaws = 0.
We denote it by K4 .c.

Proof. If wy # 0, then the des-homogenization of this ideal with respect to wy gives
w? + Aw? + Bwiws + Cwyws + wi + w3,

and we recover the affine curve Sy g for Z = 1. If wy = 0, then w; = wy = 0, w3wy = wg,
ws(w3 4+ w?) = 0 and we recover the points at infinity for Sa g o: @Q, R;’s.

To check that it is non-singular, we need to see if the rank of the matrix of partial derivatives
of the previous generating functions has rank equal to dim(P°) — dim(K4 pc) = 4 at every
point, that is, the tangent space has codimension 4. If w # 0, the partial derivatives of the first

three equations plus the equation in the second line produce 4 linearly independent vectors in
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the tangent space. If wy = 0, then ws is non-zero, and, the 3rd, 4th, and the 6th equations
plus the equation in the last line provide 4 linearly independent vectors. Moreover, this is

independent of the choice of the parameters A, B, C. [

Corollary 4.2.2. If we specialize the parameters to A = B = C = 0, then we get a smooth

curve of genus 6, whose full automorphism group has order multiple of 8 and contains

dlag(Cg,C§7C§,C§>C§»C§)

This curve does not admit a non-singular plane model over k. So the 11th stratum of plane
curves of genus 6 in Table 4.2 that is final as a plane stratum, is indeed living inside a stratum

of smooth curves of genus 6 which is not final.

Proof. We only need to check that the curve K o is not isomorphic to any one in the family
8th in Table 4.2 with automorphism group Z/8Z. In order to check that we just look at the
automorphism [X : (Y : —Z] of order 8 in this family acting in its canonical model. We
mimic the previous computations and we get the matrix diag(¢3, ¢¢, (s, ¢, (2, (3). The group
generated by this matrix is clearly non conjugated to the group generated by the one in the

statement of the corollary. So, the curve K o does not have a smooth plane model. O]

We reinterpret the existence of these special kind of families of plane curves in terms of g
linear series as follows: suppose that C is such a family describing a stratum of plane curves,
and let D be a divisor in Div(C) that defines a g2 linear series for C. In particular, D is of
degree d, and the vector space £(D) has dimension 2. For some specializations of the param-
eters in the canonical family KC, given by the canonical embedding ® : C < P9~'(k), one
gets more automorphisms. Hence more symmetries in the defining equations, which in turns
produce more meromorphic functions with poles bounded above by D = ®(D). Therefore,
dim(L(D)) > 2, and we do not get a smooth k-plane model anymore.

In our example the divisor D generating the g¢-linear system is D = @ + Zle R;, and

wi wo

L(D) is generated by 1, “2. For the special choice of the parameters A = B = C' = 0,

7"-)0"’-)0.

we get D = 5@ and L(D) contains the linearly independent functions 1, % 2“3 5o the

wo? wo? wo

(projective) dimension of £(D) is greater than 2 and it does not define a ¢gJ linear system
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anymore. This why, for this choice of the parameters we do not get a smooth plane model

anymore, and it is due to the extra symmetries of the curve.

4.2.2 Non-zero dimensional final strata for higher odd degrees

In this subsection we show examples of non-zero dimensional final strata in /\/15 ! for infinitely
many ¢’s. Throughout this subsection, & has characteristic p = O or p > 2g + 1.

To prove that they are final strata, that is, that there cannot be more automorphisms, we use
similar techniques to the ones used in section §2.3. In particular, we need the next Theorem,

which follows when one combines Theorem 1.2.1, and the proof of Theorem 1.4.4

Theorem 4.2.3 (Mitchell, Harui). Let G be a subgroup of automorphisms of a smooth k-plane

curve C of degree d > 4. Then one of the following situations holds:
1. G fixes a line and a point off this line.

2. G fixes a triangle and neither line nor a point is leaved invariant. In this case, (C,G)
is a descendant of the the Fermat curve Fy : X +Y?® 4+ Z% = 0 or the Klein curve

Kqg: XYl 4 yzi-l 4 ZzX41 = .

3. G is conjugate to a finite primitive subgroup of PGL3(k) namely, the Klein group
PSL(2,7), the icosahedral group As, the alternating group Ag, the Hessian group Hess,
with x € {36,72,216}.

We prove:

Theorem 4.2.4. Let C be a family of smooth k-plane curves of an odd degree d > 7 with

d = 1 (mod 4), defined by an equation of the form

Xd+XYd_l + aXZd_l+Y(d+1)/2Z(d_l)/2+

+ Z ij(dH)/?ijjz(dfl)/? + Z ¢; XYT =0,

J odd J even
1<5<(d—3)/2 2<j<d-3

Then, it is a non-zero dimensional final stratum with automorphism group (diag(1, —1,(4_1)).
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Proof. We firstnote thatn : (X : Y : Z) — (X : =Y : (41 Z) defines an automorphism of C
of order d — 1, and also a # 0 by non-singularity. Because n* = diag(1, 1, {(4-1)/2) € Aut(C)
is a homology of period (d — 1)/2 > 3, then by Theorem 1.2.8, Aut(C) is conjugate to the

Hessian group Hessqj¢ or it fixes a point, a line, or a triangle.

Any element of Hessg has order at most 6. Hence if Aut(C) is the Hessian group then

= 7. However, applying the same argument that we did for Lemma 2.3.2, we deduce that
there exists no smooth k-plane curve of degree 7, whose automorphism group is conjugate to
Hessy16. That is, Aut(C) fixes a point, a line, or a triangle. On the other hand, C can not be a
descendant of the Klein curve K, since d — 1 does not divide | Aut(Ky)| = 3(d* — 3d + 3).
Similarly, it is not a descendant of the Fermat curve, except possibly if d = 7. Fix d = 7,
and recall that the automorphisms of F; : X7 + Y7 4+ Z7 = ( are of the shapes [X : 5V :
GZ[GZ Y X)X 2 GZ QY] QY - X (2] [GY G2 X, or [GGZ X« (2]
for some integers s,t. Non of these transformations has order 6, so C with d = 7 is not a
descendant of the Fermat curve F of degree 7. Consequently, Aut(C) in PGL3(k) must fix a
line and a point off this line. In particular, the fixed line is one of the reference lines B = 0
with B € {X,Y, Z}, and the point is one of the reference points P;, for i = 1,2, 3, since
n € Aut(C) does. Consequently, all automorphisms of C are all of one of the next shapes;
(X Y +wZ :sY +tZ], v X +wZ Y : sX +tZ],or [vX +wY : sX +tY : Z]. In any
case, we always get s = w = 0 through the term Y (¢*1/2Z(d=1)/2 "and since Y¢, Z¢ does not
appear in the defining equation for C. Consequently, any automorphism of C is diagonal, say
diag(1, \, 1), where A7t = pd=1 = \(@+D/2,(d=D/2 = 1 S0 \ = +1 and p = (3> for some

integer s. In other words,

Aut(C)| = d — 1 and Aut(C) = (diag(1, —1,4-1)).

Finally, we show that our family is final. Given a smooth plane curve C' over k of an odd
degree d > 7 with d = 1 (mod 4), such that diag(1, —1, (4_1) is an automorphism, then C' must

be defined by an equation of the form

Xd+Xyd—1 + de—l +

+ Z ij(d+1)/2—jyjz(d—1)/2 + Z Cde—jyj —0.

J odd J even
1<j;j<(d+1)/2 2<;<d-3
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By non-singularity, we must have b(q;1)/2 7# 0, or C' decomposes as X - G(X,Y, Z) for some
homogenous polynomial of degree d — 1, and it becomes singular. Now, rescale the varaible
Z in order to make Y (¢+1)/2 7(d=1)/2 hag coefficient 1, and rename the parameters after to get a

non-singular plane model in the family of Theorem 4.2.4. [

§4.3 Complete and representative families

R. Lercier, C. Ritzenthaler, F. Rovetta and J. Sijsling in [LRRS14] explicitly constructed normal
forms, which are complete and representative families over k (Definition 4.3.2) for smooth
plane quartics with automorphism group of order > 2. These kind of families are used to
determine unique representatives for the isomorphism classes of smooth plane quartics over
finite fields. We also refer to the PhD thesis [LG14, Ch. 2] for such families of smooth plane
quartic curves over number fields. We start with a classification already obtained in section
§4.1 and we mimic the techniques in [LRRS14] and [LG14].

First, for convenience, we recall the definitions of complete and representative families over

a field k of characteristic p = 0 or p > 2¢g + 1. For more details, see [LRRS14, §2].

Definition 4.3.1. Let S be a scheme over k. A family of smooth curves of genus g > 2 over
S is a morphism of schemes C — S that is proper and smooth with geometrically irreducible

fibers of dimension 1 and genus g.

Definition 4.3.2. [complete, finite, representative family] Let C be a family of smooth curves
over a scheme S over k, and assume that each geometric fiber of C corresponds to a point of
a fixed stratum S C M,. We then get a morphism f- : S — S over k. The family C — S
is complete (resp. representative) over k for the stratum S if f- is surjective (resp. bijective)
on F-points for every algebraic extension F'/k. If the family is complete over k£ and all the
fibers of fc- are finite and with bounded cardinality, we say that the family is finite over k. In
particular, if a family is finite, the dimension of the family is equal to the dimension of the
scheme S.

The family C — S is geometrically complete (representative) over k if it is complete (rep-

resentative) after extending the scalers to k.
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Lemma 4.3.3 (Lemma 2.2, [LRRS14]). If a family defined over a perfect field k is geometri-
cally representative, then it is representative and complete over k. In this case, all the curves
in the family are defined over the field of moduli (see section §5.1), since they cannot be iso-

morphic to its conjugates.

Remark 4.3.4. In the above sense, the families given in Theorem 4.1.12 are not necessarily
representative or even complete over a field & of characteristic p = 0 or p > 13. For example,

the smooth plane curve C' defined over Q by
C:X5+Y5+%XZ4+X322 =0

is isomorphic through ¢, = diag(1, 1, )\(4/5), where A = 1 or (4, to
X° 4+ Y+ X2 +V2X32% =0,

respectively. In particular, it has two representatives in Table 4.2 with automorphism group

isomorphic to Z/10Z. However, non of them is defined over Q.

We start with the families in Theorem 4.1.12, which are geometrically complete over &
for each of the strata o( ML (G)). Isomorphisms between two curves in the same family, in
particular with identical automorphism group o(G) in PGL3(k), are clearly given by 3 x 3

projective matrices in the normalizer N, (k) over k.

Theorem 4.3.5. Let o(G) be one of the automorphism groups given by Theorem 4.1.12, such

that .//\/l\?l(g(G)) is not 0-dimensional. The normalizer N yc)(k) of o(G) in PGLs (k) is gener-

ated by:
* Ny (k) = PGLs(k); * Nyzssz)(k) = GLyz(k);
* Nyz/oz) (k) = GLaoz(k); * Ny (k) = (Tx (k). Gos),
* Nozysz (k) = (D(k), S5); * Nowssz)(k) = (D(k),[Z : Y : X]);
* Nyz/az) (k) = GLao,z(k); * Nowuo) (k) = (Ty (%), Gos) ;
* Nyz/az)(k) = (D(k),[Z : Y+ X]); * Ny@z/i0z) = D(k).
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Proof. The Theorem is a straightforward implication from the well-known result that says that

two non-singular matrices commute if and only if there is a common basis in which both of

them diagonalize or one is a multiple of the identity. As an example, we prove the cases

0(Z/3Z) and p(S3) simultaneously, and the remaining situations are proven in the same way:

if ¢ € Ny(z/az) (F), then ¢! diag(1, G, (2)¢b = diag(1, G, (2), or diag(L, (3. Cy). Hence, ¢ is

diagonal or a permutation of the variables, up to a re-scaling. In particular, ¢ is a product of

an element of D(%) and an element of Ss, which gives the situation for o(Z/37). On the other

hand Ny (s,)(k) € Nyz/sz)(k). Furthermore, if ¢ € N,z/3z) (k) such that ¢~ [X : Z : Y]¢ is

of order 2 in o(S3) = (diag(1, (3, (%), [X : Z : Y]), then

Rewriting diag(a,(},1) as diag(a,1,1)diag(a,(s,1)", and [aX

diag(a, (5, 1)[X : Z : Y], gives the conclusion for o(S3).

¢ € {diag(a,¢5,1),[aX : 5Z :Y]|a €k and 0 < r < 2}.

Gz Y] as

]

Theorem 4.3.6 (Representative families). The following table shows representative families

over a perfect field k of characteristic p = 0 or p > 13, for each stratum of smooth k-plane

—_—~—

curves of genus 6, with non-trivial automorphism group of order # 5. For ME(o(Z/5Z)) a

geometrically complete family is shown.

’ Case G Foa)(X;Y;2) Parameters restrictions
1 GAP(150, 5) X5 +Y5 25
2 GAP(39,1) X4Y +Y4Z + 724X
3 GAP(30,1) X54+v4Z +YZ4
4 Z/20Z X5 4+Y® 4+ xz4
5 7./16Z X5+ Y4Z + x74
6 7./10Z X5 + Y5 +aXZ4 + X372 a#0,1/4
7 Dio Y5 +a(X5 4 Z5) + X2YZ? + bXY3Z, a#0,b#1
Y5 +c(X5 +Z°%) +XY3Z c3 # —33575
8 7./8Z X5 4+ Y4Z + aXZ* + X372 a#0,1/4
9 S3 aX5% + Y4Z + YZ% + a2X3YZ + abX?(Z3 + Y3) 4+ cXY?222, n.s
d2X5 + Y4Z 4+ YZ* + dX2(Z3 + Y3) 4+ eXY?2Z2, n.s
f4X5 + Y4Z + YZ% + £XY 272 f#0,-3128
10 Z/5Z Z% + XY (X +Y)(X +aY)(X +bY) ab(a —1)(b—1)(a —b) #0, n.b
11 YAZYA X3 4+ X372 + Y273 +aX?Y2Z + X(bY*4 + cZ4), be#0,c# — o5
X5 4+ X2Y2Z 4+ X(dY*? + eZ*) + Y2273, de #0
X5 4+ £(Y2Z3 + X(Y?* +7Z%)) #3230
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12 YAZYA X3 4+ ¢(X3Y2 + aX2Y3 + bcXY4 + c2Y? + Z2Y) n.s, n.b
X5 4 s(XY% 4+ Y5 +7Z4Y)
X5 +e(X2Y3 + fXY4 +eY5® + Z2Y),
X5 4+ g(X2Y3 + XY4 + Z4Y)

13 7./37. aX® + Y4Z + YZ* + a2X3YZ + aX?(bY3 + cZ3) + dXY?Z2,
e?X5 + Y4Z + YZ* + X2 (eY?3 + fZ3) + gXY2Z2, nse# f
h2X5 + Y4Z + YZ%* + hX2Z3 + sXY?2Z2, n.s
t2X5 + Y4Z + YZ* + tX2Z3 t#0, 3125
4 7.)2Z ZAY +Z%(X3 +XY? +aY3) + Ls 2 n.s, n.b

Table 4.3: Representative families over k
The families that are modified respect to the ones in Table 4.2 are highlighted. The auto-
morphism groups remain the same one than in Table 4.2.
The parameters restrictions come from avoiding singular equations and larger automor-
phism groups. We use the abbreviations “n.s” and “n.b” for non-singularity and no bigger

automorphism group, when it is tedious to write down the restrictions.

Proof. Clearly, the zero dimensional strata families are representative over k, since each repre-
sents a single point in the (coarse) moduli space M. For the rest of cases, except for the case
with G ~ Z/5Z (see section 4.3.1), we will use the same techniques used in [LRRS14] and

[LG14].

(i) The cases G ~ Z/10Z and Z/8Z. We first see that the family for Z/10Z is geometri-
cally complete, since the matrix ¢ = daig(1,1,1/ \/E) gives an isomorphism between
this family and the one in Theorem 4.1.12. Next, since the automorphism group is made
of diagonal matrices with different eigenvalues, any isomorphism between two curves in
this family should also be given by a diagonal matrix, see Theorem 4.3.5. It is easy to
check that such isomorphism should look like daig(1, (¢, ), but then o = 1 and we get
an automorphism. In particular, a curve in the new family is only isomorphic to itself, not

to its conjugates, so the family is complete and representative.
Symmetrically, one treat the situation when G ~ Z/8Z.

(ii) The case G ~ D;o: We start with the more general family than in Theorem 4.1.12: aY >+
b(X® + Z5) 4+ cXY3Z + dX?*Y Z* = 0. We know a, b # 0 to avoid getting the singular
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(i)

(iv)

points (1:0:0)and (0:1:0). So, after rescaling and renaming variables, we obtain the

geometrically complete family: X° + Y5 + Z° +aXY3Z + bX%Y 7% = 0.

If b = 0, then a # 0 to avoid having a bigger automorphism group, so again, after
rescaling and renaming variables, we can work with the family: Y® + ¢(X® + Z°) +
XY?3Z = 0. Now, it is easy to check that all the matrices in N, (see Theorem 4.3.5)
carrying equations in this family into equations again in the family, leave the equation
invariant. In other words, a curve with parameter a in this family is only isomorphic to

itself, which implies that the component in the family is representative over k.

If b # 0, we work with the family Y° + a(X® + Z°) + bXY?Z + X?Y Z? = 0. Again

any matrix in N,p,) leaving the family invariant, fixes each equation.

So, the family given by these two components is representative over £ for the stratum with

DlO-

The cases G ~ S3 and Z/3Z. By Theorem 4.1.12, the family X° + Y*Z + Y Z* +
XY Z + aaX?(Z% + Y?) + a3 XY?Z* = 0 is geometrically complete over k when
G ~ S3. One easily checks that it it is not geometrically representative. Moreover, at
least one of the as is non-zero or we get a larger automorphism group isomorphic to
GAP(30,1). We split up into three disjoint subfamilies by the rule: if a # 0, then we
use the isomorphism diag(a?, 1, 1) and after rename the parameters to get the subfamily
BX5+ Y Z+YZ + P XY Z + abX?(Z3 + Y?) + ¢ XY?Z? = 0. It is geometrically
representative over k, since a curve in the subfamily is only isomorphic to itself using
Theorem 4.3.5. Similarly, we obtain the subfamily d>X° + Y*Z + Y Z* + dX?(Z3 +
V3) +eXY?2Z? =0whena; =0and as # 0,and f* X5+ Y*Z +YZ*+ fXY?Z% =0

when a; = ay = 0 and a3 # 0.

The stratum of Z/3Z is handled in the same way.

The cases G ~ 7Z/4Z. As above, we need to split up the stratum into different pieces.
For the one with automorphism group isomorphic to Z/4Z in case 11, the 3rd component
was originally given by X° + X (hY? + Z*) + Y273 = 0, and on which the normalizer

(see Theorem 4.3.5) acts non-trivially. More precisely, the geometric fibers over +h are
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isomorphic via ¢ = diag(1, +/(s, £(4). So one asks to trivialize the action in order
to obtain a geometrically representative family over k. Equivalently, we need to solve a
Galois descent problem by descending our subfamily to K := k(h?), the fixed subfield
of L := k(h) under the automorphism & : h > —h. This could be easily done through
the change of variables diag(1, Vh, \/E) to get the prescribed component in the Theorem,

after renaming the parameter.

The stratum of Z /47 in case 12 is handled in the same way, but we ask to solve more than
one Galois descent problem: First, X° +a; X3Y? +a, X?Y3 + a3 XY+ a, Y5+ Z1Y =0
is geometrically complete over k, where a3 or a4 is not zero (by non-singularity). Second,
we split up as follows: If a; # 0, re-scale Y and Z, and rename the parameters to obtain
the subfamily X°+ X3Y?2+aX?Y3+bXY*+cY5+Z*Y = 0. Itis not geometrically rep-
resentative over k, since the isomorphism diag(1, —1, (3) produces isomorphic geometric
fibers over (a, b, ¢) and (—a, b, —c). Change the variables by ¢ = diag(1, ¢, \/c) to get the
family X°+c2X3Y 2+ (ac) 2 X2V 3 +bcA X YA 4+CY 5 +c2 Z4Y = O over K := k(c?, b, ac),
a fixed subfield of L := k(a, b, c) under the action of the automorphism a ++ —a, b — b,
and ¢ — —c. In particular, it is geometrically representative over k, and we rename the
parameters to get the component X° + ¢(X3Y?2 + aX?Y3 + beXY? + Y + Z1Y) = 0.
Now we distinguish between the following subcases when a; = 0: if a = 0, then,
necessarily, asas # 0, or we have a larger automorphism group through the extra auto-
morphism diag(1, (5 ', () or diag(1,(; ", (16) respectively. Therefore, after re-scaling
Y, Z and renaming the parameters, the subfamily X° + XY* + dY® + Z4Y = 0is a
geometrically complete subfamily over & with isomorphic geometric fibers over d and
¢3d for any integer 0 < s < 3. In this case, we descend to K := k(d*) via the iso-
morphism ¢ = diag(1,d ™", {l/F) and we get a geometrically representative over k for
our substratum defined by X° + s(XY* + Y® 4+ Z1Y) = 0. If ay # 0, the subfamily
X° + X?Y3 + cXY* 4+ dY?® + Z'Y = 0 is geometrically complete over k, with isomor-
phic geometric fibers over (¢, d) and ((5c, (5 °d) through diag(1, (3, (;5). Use the isomor-
phism ¢ = diag(1, d, W), for d # 0, in order to solve the Galois descent problem to get
a subfamily over K := k(cd, d®). In particular, X°+e(X2Y 3+ fXY44eY?+2Z1Y) = 0,
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is therefore geometrically representative over k. Lastly, if d = 0 (thus ¢ # 0), we
use the isomorphism ¢ = diag(1,c¢™*,v/c~2), and we obtain a family over k(c?) by
X° 4+ g(X?Y? + XY* + Z1Y) = 0, which is geometrically representative over k. This
completes the discussion for these strata.

(v) The case G ~ Z/27. The family Z*Y + Z*(X® + XY? + aY?®) + L5 z = 0 is geomet-
rically complete over & for /T/l\_GP/l (0(Z/37)) (and finite, so the dimension of these stratum
is 7). It is even geometrically representative over k: assume that we have an isomorphism
between two curves in the family. Then 7 — Zand Y — b0Y and X — eX + Y. Hence,
X3+ XY?24+aY? — 3 X3 +3e2f XY + (Bef? +eb?) X Y2+ (f2 + fb? +ab®) Y, which

means e¢3/b =1, f/b =0 and eb = 1, so the isomorphism is an automorphism.

4.3.1 The stratum for G ~ 7 /57

Before proving the last part of Theorem 4.3.6, we need some previous results.

Lemma 4.3.7. The family C(p) : Z°+ XY (X +Y)(X +aY ) (X +b0Y) = 0 is a geometrically
complete family over k for the stratum of smooth k-plane curves of genus 6, with automorphism

group isomorphic to 7./57. In particular, the associated scheme has dimension 2.

Proof. The family Z° + Ls 7 = 0 is a geometrically complete family over & for the stratum, by
Theorem 4.1.12. Moreover, L;  should factored in E[X , Y] into pairwise distinct linear factors,
otherwise, it will be singular. Now, up to k-isomorphism, we change X and Y, separately, to
make one of the factors equals to X = 0 and another to Y = 0. Second, re-scale X, Y and Z
simultaneously to get the factor (X + Y) in the factorization of L5 z. Now, we can write the
family as Ciop) : Z° + XY (X 4+ Y)(X + aY)(X + bY) = 0. This family is geometrically
complete over k for .7\/7? (0(Z/5Z)), and finite (we justify this next), so the dimension is 2.

Isomorphisms from the curve C(, ) to another curve in this family come from transforma-

tions
a f ot +
= b
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sending the set {0, 1,00, a,b} to a set {0, 1,00, ¢,d}. The set T of such transformations is a

group and it is isomorphic to S;5. Moreover, it is generated by

a(b—1)
el

ni(a,b) = (a, o(a,b) = (%, %), s(a,b) = (b, a).

The latest does not properly define a transformation of the curve in the family since switching
the parameters a, b does not change the equation. The first two satisfy the relations 72 = 75 =
(7172)® = 1 generating a group isomorphic to As;.

The family defined in this way C — S is finite and the fibers of f-~ : S — S have cardinality
120. Another way of checking the cardinality is starting with a generic curve Z° + H?ZO(X +
«;Y") and counting the (5 - 4 - 3) - 2 ways of choosing the 3 roots going to 0o, 0, 1 and getting

the parameters a and b. See Appendix C. ]

The family C, ) is defined over k(a,b). We are ideally looking for a family (with two
parameters since we know the dimension is two) defined over L = k(a, b)”. Hence, we look
for the Galois descent from k(a,b) to L. This the idea behind the ad-hoc method used in
[LRRS14], see the proof of [LRRS14, Theorem 3.3].

The following asserts that the analogue of Liiroth’s theorem [Har77, Chapter 1V, 2.5.5]

holds in dimension 2.

Theorem 4.3.8 (Chapter V, Theorem 6.2 and Remark 6.2.1, [Har77]). Let L/K be a subfield
extension of a purely transcendental extension K (a,b)/ K, where K is an algebraically closed
field. If K(a,b) is a finite separable extension of L, then L is also a pure transcendental

extension of K.

We can now prove:

Claim. There exists a representative family over k, for the stratum M (o(Z/5Z)) of

smooth k-plane curves of genus 6, and the proof of Theorem 4.3.6 is finished.

Proof. Consider the family C(, ), which is geometrically complete over £ (see Lemma 4.3.7).
It is defined over E(a, b), or to be more precise, it is already defined over the subextension

k(c,d) where ¢ = a + b and d = ab. We want to descend it to the invariant subfield L under

the action of the symmetric group Ss on k(a, b), or equivalently of A5 on k(c,d). In this way,
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we will get a representative family over k: if such a family exists, it is purely transcendental of

dimension 2 by Theorem 4.3.8, and hence given by 2 parameters.

On the other hand, Weil’s cocycle criterion [Wei56] (see Theorem 3.2.10) states that if there

exists a family of isomorphisms

{¢U : Uc(a,b) - C(a,b)}geGal(E(a,b)/L)’

satisfying the cocycle condition ¢,,,, = ¢4, “* ¢, for all o and o9, then there exist a descend
of the curve C(, ) over L. That is an isomorphism ¢ : C — C(4) of smooth curves, satisfying

¢ o “¢p~! = ¢, and where C is defined over L = k(«, 3)7.

The Galois group Gal(k(a,b)/L) = Ss; and generated by 7y, » and 73. We define
G, = AN=X+Y): NZX+Y): 7], ¢, = [VX : %EY : Zland ¢, = [X 1Y : Z] where

A= /(a—1)"2(a—b)"la? and the family {%}aeGal(E(a,b)/L) by extending with the cocy-
cle condition. This gives a well-defined family of isomorphisms satisfying the Weil cocycle

condition. Hence, the mentioned descend C exists.

A priori, the curve C does not need to be a smooth plane curve over L, even if the iso-
morphisms ¢, are (projective) matrices and C(, ) are smooth plane curves, see Proposition
2.19 in [BBLG16]. But, Theorem 3.2.8 says that a smooth L-plane curve defined over L has
a non-singular plane model over L when the degree is coprime to 3, so even we can find a

non-singular plane model of C over L. [

Remark 4.3.9. In this case, we conclude that the isomorphism ¢ is also defined by a matrix,
since all matrices ¢, can be seen, not only as matrices in PGLj3(k(a, b)), but as matrices in

GLy(k(a, b)), since all of them will have the shape

* % 0
* % 0

0 01

Now, Hilbert’s Theorem 90 implies the existence of a matrix ¢ satisfying ¢ o ¢~ = ¢,.

Indeed, we can construct an explicit matrix ¢ by taking a sufficiently general matrix M, and
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making Hilbert’s Theorem 90 explicit:

o= ), oM

T€Gal(k(a,b)/L)
The meaning of a sufficiently general matrix M is that the matrix ¢ constructed in that way is

invertible. It is a straightforward computation to check that ¢, = ¢ o ¢~ 1.

4.3.2 Detecting representatives in the list

Given a smooth k-plane curve C' of genus 6 with known non-trivial automorphism group, we
can find its representative over k in the classification in Theorem 4.3.6 by using the remarks
at the end of chapter 2 in [LG14]. Roughly speaking, if ¢ : C — Cis an isomorphism
between C' and its representative C in the list, then Aut(C) = ¢! Aut(C)¢. The idea is to
find a suitable projective 3 x 3 matrix ¢ such that the equality holds. Moreover, the families
provided in Theorem 4.3.6 are geometrically representative over k, that is a curve in the family
is only isomorphic to itself, not to its conjugates. Therefore, if C' is defined over k, then
its representative must be defined over k£ as well, by the virtue of Weil’s criterion of decent

(Theorem 3.2.10).

(i) G ~ Z/2Z,7/AZ (case 11), or Z/5Z: Let 1 be a generator of Aut(C'), then it is con-
jugate in PGL3(k) to diag(1,1,¢,) with n = 2,4 or 5 respectively. Let v,,v, be two
eigenvectors of 7 with respect to the two equal eigenvalues, and let v; be an eigenvector

of 77 with respect to the other eigenvalue. We can take
¢ = (Muy + Aav, [ A3y + gy [ vg)

It now remains to adjust the scalers \; so that C is defined over k.

l

(i) G ~ Z/3Z,7/A7 (case 12), Z/87,7./10Z,Z/16Z,7/20Z: A generator n of G is
PGLs(k)-conjugate to diag(1, a, b), for some a, b, where 1, a, b are pairwise distinct. Let
v, for i = 1,2, 3 be three eigenvectors associated to the three distinct eigenvalues. Thus,

we can take
¢ = ()‘121 | A2V |23> )
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and then choose the scalers \}s properly to get C defined over k.

(iii) G ~ S3,D10, GAP(30,1) or GAP(39,1): consider an element 7 of G of order 3 when
G ~ S3 and 15 when G ~ GAP(30,1). Then, as the previous case, i is PGLs(k)-
conjugate to diag(1, a, b), for some a, b, such that 1, a, b are pairwise distinct. Moreover,
we can take

v = (Mg | Awy [ 0g),
where v,, for ¢« = 1,2, 3, denotes a three eigenvectors associated to the three distinct
eigenvalues. Since elements of order 2 in G forms a single conjugacy classes, we may
further assume that ¢~ '[X : Z : Y]¢ = n/ where Aut(C) = (n,7), and such that C
is defined over k. We follow the same method for G ~ Dy, by modifying 7 to be of
order 5 and replacing [X : Z : Y] with [Z : Y : X]. Lastly, for G ~ GAP(39,1), n
has order 13 and [X; Z; Y] is replaced with either [Y : Z : X] or [Z : X : Y], because
elements of order 3 in GAP(39, 1) forms two conjugacy classes represented by P and

P~ respectively.

(iv) G ~ GAP(150,5): 3! element of order 2 (resp. order 3), up to conjugation in Aut(C'), say
11 (resp. 7). This 7y (resp. 1) is PGL3(k)-conjugate to [X : Z : Y] (resp. [Y : Z : X]).
Also, there exist two homologies 73 and 74 of order 5 in Aut(C'), which are conjugate to

diag(¢s, 1, 1), and diag(1, 5, 1) respectively. Moreover,

() (nsm) ™" = (nga) (nans) ™ = munfon (nena) = = 12many ! (nama) ™ = 1.

Let v, be an eigenvector of 7); associated to the eigenvalue different from the other two.

Similarly, v, for 3 and v, for 4. Thus
p = (Asug [ Aavy [ vy + pavy) -
Secondly, adjust the scalers so that ¢ ~'ny¢ = [Y : Z : X], and C is defined over k.
Example 4.3.10. Consider the smooth plane curve C defined over k by the equation

C: Y4 Y3 (X -2 YA XAZ)PHAY (X + 2 (X + X Z+72H)—4X Z(X+2) (X ~-Z)* = 0
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It is clear that |7 .Y : X] is an automorphism. For simplicity, we assume that C' has no more
automorphisms. Since vy := (1 : 0 : 1), v, := (0 : 1 : 0) are two eigenvectors associated to
the eigenvalue 1, and vy := (1 : 0 : —1) is an eigenvector associated to the eigenvalue —1, we
may take ¢ of the shape

Aoz 1

Ao A 0 | € PGLy(k).

Ao A3 —1

We then need to adjust the scalers to get something of the form
ZY%Y + Z2(XP + XY? +aY?) + Ly 4.

For instance, if \y = 0, then \3 # 0, by invertibility of ¢. Hence, the transformed equation

using the reduced ¢ in this situation becomes
320321 + Z2(=3203Y7 + 1605( Ao X + MY)Y? +4(Xo X + \Y)?) + Ls 4 = 0.

Thus, \y # 0 in order to get the monomial X372, and also \, = 0 to avoid the monomial

X2Y Z2. Consequently, we get

AaA A3
7Y + Z2(-\Y° + %XYQ + g X + Loz =0.
3

In particular, we ask for Ao and \s in k such that AoXs = 2 and A3 = 8)3. So, ¢ should be

01 1
=120 0 |,
01 —1

and the representative of C' over k in Theorem 4.3.6 turns out to be

C: 7Y + Z2(XP + XY2 = V¥ + X(2X* — XY? + 3Y%) = 0.

§4.4 Twists of smooth plane curves of genus 6

Let C be a smooth k-plane curve of degree 5, and assume that & is a perfect field of zero

characteristic or p > 13. We compute equations of all twists of C over k, except for the Fermat
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and the Klein curves 2, by using the parameterizations obtained in Theorem 4.3.6. However,
we do not give a big emphasize computing them modulo k-equivalence for the cases with non-
cyclic automorphism group *. The idea is that we can find an unique non-singular plane model
F(X,Y,Z) = 0 over k in one of these families (in Theorem 4.3.6), representing C=C®k,
in particular Aut(C) equals to one of the fixed group representations o((G) in Theorem 4.1.12.
However, C' descends to k also as a smooth plane curve over k (Theorem 3.2.8), then so does
F(X,Y,Z) = 0. In particular, it is isomorphic to its conjugates, which is not possible, since
the families in Theorem 4.3.6 are geometrically representative over k (in particular, a curve in
the family is only isomorphic to itself). Consequently, F'(X, Y, Z) = 0 should be defined over

k by the virtue of Weil’s criterion of decent (Theorem 3.2.10). In other words, computing the

twists of F'(X,Y, Z) = 0 over k is the same as computing them for C over k.

For computing equations for twists, we mainly use the improved method in [LG14] and
[LG17], given in chapter 3 for smooth plane curves. For some families, we directly use Theo-

rem 3.5.2, and for the other cases, the following observation is useful:

Remark 4.4.1 (Remark 3.3, [LG16]). Let C;/k for i € {1,2} be two curves such that there
exists an inclusion of automorphism groups ¢ : Aut(Cy) — Aut(C:), compatible with the
action of Gy, that is, such that o(c(a)) = t(o(«)) for all 0 € Gy and all @ € Aut(Ch).
Then, there is a natural inclusion of the set of cocycles of the first Galois cohomology groups
7' (Gy, Aut(C)) < Z'(Gy, Aut(Cy)). The inclusion does not lift to an inclusion of cohomol-

ogy sets

In what follows, we use \/a to denote a fixed /-th root of o € k in the algebraic closure k

of k, where we assumed all the time that £ is perfect.

2For both cases we only inspect how are the twists following what is done in Fermat and Klein quartics.

3 A reader who is interested to get a complete classification of twists for non-cyclic cases may mimic the
techniques [LG14] for genus 3 curves. Our aim is just to measure how much our representative classification in
Theorem 4.3.6 would be helpful to compute the twists.
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4.4.1 Cyclic cases

We deduce by Theorem 3.5.2 that the set Twist(C') is made exclusively of diagonal twists, for

any when Aut(C ®, k) is cyclic. We detail the description for each such subcase.
Proposition 4.4.2. Let C/k be a smooth k-plane curve of genus 6. Hence,

1. if Aut(C @y k) ~ 7/20Z, then from Theorem 4.3.6 C' is k-isomorphic to X° + Y +
X7Z* = 0. In particular;, any twist for C over k is given by ¢ = diag(1, /m, </n), and
has the form

X5+ mYS4+nXZ' =0,

for some m,n € k*. Two twists {m,n} and {m’,n'} are equivalent if and only if m =

5 4
m’ mod k* and n = n' mod k* .

2. if Aut(C ®y, k) ~ Z/16Z, then from Theorem 4.3.6 C is k-isomorphic to X° + X Z* +
Y4Z = 0. In particular;, any twist for C over k is given by ¢ = diag(1, </n//m, /m),
and has the form

X5+ mXZ +nY'Z =0,

for some m,n € k*. The twists {m,n} and {m’,n'} are equivalent if and only if m' =

¢*m, n' = qq¢’*n for some q,q € k*.

3. if Aut(C ®y k) ~ Z/10Z, then from Theorem 4.3.6 C'is given by a single choice of the
parameter a in k of the family X° +Y? + aXZ* + X3Z% = 0. In particular, any twist
for C over k is given by ¢ = diag(1, </m,/nm), and has the form

X5+ mY® +a(nm)*’XZ* + nmX>*Z* = 0,

for some m,n € k*. The twists {m,n} and {m’,n'} are equivalent if and only if m' =

¢m and n' = q~°¢"*n for some q, ¢ € k*.

4. if Aut(C ®y k) ~ Z/87Z, then from Theorem 4.3.6 C' is given by a single choice of the

parameter a in k of the family X° +Y*Z +aX Z* + X372 = 0. In particular, any twist
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for C over k is given by ¢ = diag(1, \/n/+/m,~/m), and has the form
X5 4 nY4Z + am?XZ*+ mX32% = 0,
for some m,n € k*. Two twists {m,n} and {m',n'} are equivalent if and only if m’ =

¢*m and n' = qq*n for some q, ¢ € k*.

5. if Aut(C ®g k) ~ Z/5Z, then from Theorem 4.3.6 C'is given by a choice of the parame-
ters a, b in k, not necessarily unique, of the family Z°+ XY (X +Y ) (X +aY ) (X +bY) =

0. In particular, any twist for C over k is given by ¢ = diag(1, 1, /m), and has the form
mZ% + XY (X +Y)(X +aY)(X +bY) =0,
for some m € k*. Two twists {m} and {m'} are equivalent if and only if m’ =

m mod k*’.

6. if Aut(C ®y k) ~ Z/AZ as case 11 in Theorem 4.3.6, then from Theorem 4.3.6 C' is

k-isomorphic to a non-singular plane model, for a single choice of the parameters, in

one of the following families

XP 4+ X322+ Y222 +aX?Y2Z + X (WY + cZ%),
XP+ X?Y2Z + X(dY* +eZ") + Y25,

X+ f(Y?Z3 + X(Y* + Z%)), respectively.

Moreover, any twist for C over k is given by ¢ = diag(1,\/n/y/m,/m), and has the
form
X+ mX*Z% + mnY?Z% + anX?Y?Z + X (b(n?/m)Y* + em®Z%),
X? 4+ nX?Y?Z 4+ X(d(n?/m)Y* + em?Z*) + mnY?Z3,

X%+ f(mnY?Z? + X((n?/m)Y* +m?Z%)), respectively,

for some m,n € k*. The twists {m,n} and {m’,n'} are equivalent if and only if m' =
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maq?, n' = nqq’? for some q,q € k*.

7. if Aut(C ®y, k) ~ Z/AZ as case 12 in Theorem 4.3.6, then from Theorem 4.3.6 C' is
k-isomorphic a non-singular plane model, for a single choice of the parameters, in one

of the following families

X? 4 ¢(X3Y2 + aX?Y? + be XY+ Y + Z1Y),
X% 4 e(X2Y? + fXY* 4 eY® + Z%Y),
X° 4 s(XY* 4+ VP + ZYY),
X5+ g(X?Y? 4+ XY* + ZYY), respectively.
In this case, any twist for C over k is given by ¢ = diag(1, 1, \/m), and has the form
X? 4+ (X324 aX?Y? + b XY+ AY° +mZtY),
X° +s(XY'+Y° +mZ'Y),
X2+ (X3 + XY +eY? +mZ'Y),
X° + g(X?Y? 4+ XY* 4+ mZ'Y), respectively.

Two twists {m} and {m’} are equivalent if and only if m’ = m mod k*".

8. if Aut(C ®y, k) ~ Z/3Z, then from Theorem 4.3.6 C' is k-isomorphic to a non-singular

plane model, for a single choice of the parameters, in one of the following families
X+ Y Z+YZ + XY Z + aXP(bYP + ¢ Z°) + dXY? 27,
EXP+Y' Z+YZ + X (eYP + f2°) + gXY? 2P,
XS+ Y Z+YZ*+ h X223 + sXY?Z2,

EXP+YZ +YZ 4+ tX2Z3, respectively.
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Thus any twist for C over k is given by ¢ = diag(1, &/m, v/m?), and has the form

*X° +m*Y*'Z + m*Y Z* + &*mXPY Z + amX? (bY? + emZ®) + dm* XY? 2,
EX°+m*Y ' Z +mPYZ' + mX?(eY? + fmZ®) + gm*XY?Z?,
REXS +mPY1Z + m3Y Z* + hm? X223 + sm*XY?Z?,

X5+ m*Y Z + m3Y ZY 4+ tm2 X273, respectively,

for some m € k*. Two twists {m} and {m'} are equivalent if and only if m’ =

m mod k*°.

9. if Aut(C ®y, k) ~ Z/27Z, then from Theorem 4.3.6 C' is k-isomorphic to a non-singular
plane model, for a single choice of the parameters, in the family Z'Y + Z*( X3+ XY? +
aY?) + Ls 7 = 0. Any any twist for C over k is given by ¢ = diag(1, 1,/m), and has
the form

m?ZYY + mZ* (X + XY? +aY?) + Ls z = 0,

for some m € k*. Two twists {m} and {m'} are equivalent if and only if m’ =

m mod k*”.

Proof. For any of the above cases, twists of C' over k are all diagonal of the shape
diag(1,\, ) € PGLs3(k). We just need to adjust the scalers )\, u € k properly, so that the

transformed equation for C' under ¢ is defined over k.

We show, for example, the 6th case when Aut(C ®;, k) ~ Z/47Z. By Theorem 4.3.6, we

get C' in one of the following families

XP 4+ X322 4 Y222 4+ aX?Y2Z + X (bY* + cZ%),
X+ X2Y2Z + X(dY* 4+ eZ*) +Y? 23,

X5+ f(Y?Z3 + X(Y* + Z%)), respectively,

for a single choice of the parameters. By non-singularity, we know that XY* and X Z* occurs
with non-zero coefficients. Hence A\, u* € k, and moreover \?i® € k by the aid of the

term Y2Z3. Consequently, 1 = /m and A\ = ¢/n2/m = \/n/\/m for some n,m € k*.
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Next, substitute into the above equations to obtain the defining form for the twist over k as
in the statement. Finally, two twists {m,n} and {m’,n'} are equivalent if and only if there
exists an ¢» € PGL3(k) and an automorphism « of C' such that & o ¢ = ¢’ 0 1), where ¢ =

diag(1, v/n/v/m,/m) and ¢ = diag(1,1/n’/v/m’,v/m'), see Remark 1.3.1 in [LG14]. This
is equivalent to write ¢ = diag(1,q,q’) for some ¢,¢' € k*, such that m’ = mq?® and n’ =

ng*q’, which was to be shown in this situation.

In the same way, one can treats any of the other cases. O]

4.4.2 Non-cyclic cases

We handle the situation for which the automorphism group of C' ®, k is not cyclic.

Proposition 4.4.3. Let C/k be be a smooth k-plane curve of genus 6 such that Aut(C ®j, k) ~
GAP(30,1). From Theorem 4.3.6 C' is k-isomorphic to X° +Y*Z + Y Z* = 0, and the set

Twisty (C) is formed by twists of one of the following form:

1. Almost-diagonal twists of the form

XP42rY 5 46smY  Z+4mrY3 22 —2sm?Y 2 Z3 —6rm?*Y Z*—2sm32° = 0, r,s,m € k.

2. Diagonal twists of the form

X54+mY'Z+mPYZt =0, m e k*.

Proof. By Lemma B.1, we know that every twist of C is given by an isomorphism ¢ of the
shape [X : a;1Y + a12Z @ anY + anZ] : C' — C, where we can assume that aja9; # 0,

and then we write a;; = «,a15 = af,as1 = v and asy = 7). Making the substitution
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Y - a(Y +pZ)and Z — v(Y + §Z) in the equation of C, we get

AB ek

ABM +3AH € k

AAHM —2ABN € k

4AHM? —4ABMN + AHN €k

AHM? — ABNM? +2AHNM — 3ABN? € k

AHM?N — ABMN? — AHN? € k

where A = ay, B=a*++% H =3B +~3), M = 3+ and N = 36. A computations
shows that M, N, AH, AB € k. In particular, 5 and ¢ are the two roots of a polynomial of
degree 2 over k. If 5 and ¢ are both k-rational numbers, then we get a diagonal twist of the
form X5 +mY*Z +m3Y Z* through ¢ = diag(1, ¥/m, ¥/m'1), for some m € k*. Otherwise,
we can assume 3 = /m = —§, and we get a’y + ay? € k and (a*y — av*)\/m € k. Hence,
aly = r+sy/mand ay? = r—sy/m for some r, s € k. We therefore obtain an almost-diagonal

twist as in the statement, since

o= (T—G—S\/m)‘l and7: 15 (T—S\/m)4
\/ r—sym ' \/ r+sym

Proposition 4.4.4. Let C'/k be a smooth k-plane curve of genus 6 such that Aut(C ®; k) ~ Ss.
From Theorem 4.3.6 C' is k-isomorphic to a curve in one of the next families for a single choice

of the parameters
X+ Y Z+YZ + a* XY Z 4 abX? (2P + Y?) + cXY?Z? =0,
PX°+Y Z+YZH 4+ dXP (2P +Y?) + eXY?Z? =0,
XS4 Y Z+YZh + FXY?Z2 = 0.
The set of twists Twisty(C) is formed by twists of one of the following forms:
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1. Diagonal twists defined by an equation of the form
A’ X°+mP(Y'Z +mY Z' + a®>m 7 XY Z + abX?(Z° + m7'Y?) + e XY?Z%) = 0,
PXP+m*(Y*'Z+mYZ* +dX*(Z° + m™'Y?) +eXY?2Z%) =0,
FAXP 4+ mPA (Y Z +mY Z* + fXY?Z?) = 0, respectively.

through ¢ = diag(1, /m, vVm?2), form € k*.

2. Almost-diagonal twists parameterized by elements A, B,m € k such that there exist
N € k with A2 —mB? =

= N3, where we can take an isomorphism

1 0 0
o=\ 0 YA+Bym mY/A+ Bym
0 /A-Bym —ym{/A-Bym

Therefore, an almost-diagonal twist { A, B, m, N} is defined by an equation of the form
2N (Y? = mZ?) (mBZ(3Y? + mZ?) + A(Y® + 3mZ?Y)) + cN*(Y? —mZ*)* X +
+2ab (mBZ(3Y? + mZ?) + A(Y? +3mZ%Y)) X* + a’N(Y? —mZ*) X° + a®X° = 0,

*X° +2d (mBZ(3Y? + mZ?) + A(Y® + 3mY Z%)) X? + eN*(Y? — mZ*)* X +
+2N(Y? = mZ?) (mBZ(3Y? + mZ*) + A(Y? + 3mZ*Y)) = 0,
2N(Y? —mZ?) (mBZ(3Y? + mZ*) + A(Y® + 3mZ*Y)) +

+ X5 4+ FN?(Y? —mZ*)?X = 0, respectively.

Proof. Since Aut(C ®; k) < GAP(30,1), we can apply Remark 4.4.1. In particular, by

Proposition 4.4.3, any twist C’ of C' over k is either a diagonal twist of the shape ¢ =

diag(1, §/q, \/q'!) oritis an almost-diagonal twist of the shape

1 0 0
oo|o VEE myEE |
0o v ( W)‘l 15/ (r—sv/m)4




where m, ¢ € k*. Consider, for example, C' of the form

XS+ Y Z+YZ + FXY?2Z2 =0.

When C’ is a diagonal twist, the monomial term XY?2Z? restricts ¢ € k** and the twist
reduces to ¢ = diag(1, /m, mv/m?2) for some m € k*, which in turns is equivalent to ¢ =

diag(1, ¢/m, v/m?) in the statement.

When C’ is almost-diagonal, the coefficient of XY in C" is f{/(r? — ms?)? should be in
k*. Therefore, r+sv/m = (A+B+/m)® for some A, B € k. Moreover, the term X (Y2—mZ?)?
occurs in C” with coefficient f /(A2 — B?m)2. Consequently, A>— B?m € k** . and we deduce

the result in this situation.

In the same way, we can handle the remaining situations when C' lies in any of the other

components. [

Proposition 4.4.5. Let C/k be a smooth k-plane curve of genus 6 such that Aut(C®k) ~ D.
From Theorem 4.3.6 C' is k-isomorphic to a curve in one of the two next families for a single

choice of the parameters

VP +a(X°P+Z°)+ XY Z2 +bXY?Z =0

Yo+ e(XP+ 2Z2°)+ XY3Z =0.

The set of twists Twisty(C') is then formed by twists of one of the following forms:

1. Diagonal twists of the form

VP +a(mX®+m 2%+ XY Z2 +bXY?Z =0

Y? + e(mX® +m™ 2% + XY?®Z = 0 respectively.

2. Almost-diagonal twists parameterized by elements A, B, m € k such that there exists N € k
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with A> — mB? = N°, where an equation is given by

20dAX° + X*(N?Y +10amBZ) + 20amAX>?Z? + 2mX?Z*(10amBZ — N?Y) + beX?Y?*+
+10am*AX Z* + Z*(2am>*BZ% + (mN)*Y Z? — bmNY?) + Y® = 0,
2¢(AX° +5mBX*Z + 10mAX>Z? + 10m*BX?Z% + 5m*AX Z* + m*BZ°) + Y°+

+N(X? —mZ*)Y? = 0 respectively.

Proof. We know from Lemma B.1, that any twist of C' is given by an isomorphism ¢ of the
shape [a11 X + a13Z7 1 Y @ a3 X + agsZ] : ¢ — C. Now, we can proceed exactly as in
Proposition 4.4.3. In particular, C” is either a diagonal twist coming from an isomorphism of

the shape ¢ = diag(+/a, 1, v/3) or it is an almost-diagonal twist by an isomorphism
vVA+Bym 0 /my/A+ Bym
¢ = 0 1 0
VA—Bym 0 —/my/A— Bym
Moreover, the monomial terms XY 37 and X?Y Z? restricts & = m, 3 = m~! for some m €

k*, when C' is a diagonal twist, and A?> — mB? € k** when C" is almost-diagonal. ]

The Klein and the Fermat curves

In this part, we inspect the determination of the set of twists of a smooth k-plane curve C/k of
genus 6 such that Aut(C ®; k) ~ GAP(39, 1) or GAP(150, 5).

Here we detail our inspections for each case;
(A) If Aut(C @4 k) ~ GAP(39, 1), then C is k-isomorphic to the Klein quintic
Cx: XW+Y'Z+2Z'X =0.

It is remarkable, that the study of the twists of the Klein quartic is considerably more
complicated than the study of the twists of the Klein quintic. The explanation is that in
the degree 5 case, we do not have the extra involution s (see Section 6 in [LG16]) in the
automorphism group. As a consequence of this simplicity, is that the splitting field L of a

twist of C'x over k always contains a unique cyclic extension of Ly/k of degree 3, that is
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(B)

Ly = k(a, 8,v) where «, [3, v are the three roots of a cubic polynomial over k. Moreover,
there are exactly two non-equivalent twists with the same splitting field L. Therefore,
one expects the set of twists Twist,(Cx) to be in two-to-one correspondence with cyclic
Galois extensions of k of degree 3: k(a, 3, ), where «, [3,~y are the three roots of a cubic

polynomial over k such that a8y € k*".

Furthermore, if one follows the same method in [LG17, Proposition 4.1] and [LG16, Sec-
tion 6], for the Klein quartic curve, and mimic the techniques there, then it is also expected
that any twist comes with splitting field L = k((i3, ¥a, V3, ¥/7) with afy € . In

particular, we can always take an isomorphism ¢ : C;. — C of the shape

Yo a¥a o o
VB BV 5P
VT R
to get a representative twist C', of C'x over k with splitting field L. The other twist is

obtained by switching «, 3, v by o2, 512, v12.

Let C'/k be a smooth k-plane curve of genus 6 such that Aut(C' ®;, k) ~ GAP(150, 5).

Then, C is k-isomorphic to the Fermat quintic

Cr: X°+Y°+272°=0.

Definition 4.4.6 (Definition 4.7, [LG16]). The set Pol (k) is defined to be the set of separable

polynomials of degree 3 with coefficients in £ and whose independent coefficient is in —1 - £*",

1.e.

equals to —« for some o € k*".

Given P(T) = (T — a)(T — B)(T — 7) € Poly’(k), we can attach to it the twist

D) (b—u i1\ 2 7
“ 2 <21)( i )Sl+i2+2i3X1Y2Z3=O, (4.1)
iy + iy +1i3 =25

11,109,123 = 0
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where S; = o/ + 7 + ~7 for j € N, and the isomorphism ¢ : C" — CJ is given by

Ja aya oo
o=| VB 8Y5 75
VT A
whose splitting field is L = k(Cs, ¥/o, /B, /7).
Now, if we mimic the computations in [LG14, §3.1] or [LG16, §4], for the Fermat quartic

curve, and apply Lemma B.1, then it becomes expected that any other twist of C'r lies in one

of the two categories:

(i) A diagonal twist of the form aX® + bY® + Z° = 0 via an isomorphism ¢ =
diag({/a, v/b, 1) where 1 # a # b # 1. After right multiplication by a suitable ratio-

nal matrix, say

1 ga (qa)?
1 gb (gb)?
1 ¢ ¢

with ¢ = (ab)?, we obtain the equivalent twist given by the isomorphism

vVa qay/a (qa)*v/a Vaa qay/qa (qa)?y/qa

o0=1 Vb Vb (ab*Vb | =| Vab abVad (a0)*Vb |-
1 q ¢ NG} *3/q

which has the form (4.1) with & = ga, 8 = ¢b, and v = ¢. Thus, it corresponds to
P(T) = (T — a)(T = B)(T — ) € Poly’(k).

(i) An almost-diagonal twist given by an isomorphism

Ve ymie 0
¢p=1 Ve —ymve 0 |,
0 0 1

where ¢ = a + by/m and ¢ = a — by/m and m € k*. We can assume that b # 0, after
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right multiplication, if necessary, by the rational matrix

1 m 0O
1 1 0
0 0 1

We take the equivalent twist
Vac qe/ac (q0)*ac
o= | VE VT @E |
Vi oada aVa
where ¢ = (a? — b*m)?, which is again of the form (4.1) with a = gc, 8 = ¢¢, and v = q.

Thus, it corresponds to P(T) = (T — a)(T — B)(T — v) € Pol}’(k).
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CHAPTER

The field of moduli and fields of

definition for smooth plane curves

Let C be a smooth plane curve of genus g > 3 over k, where k is a perfect field of characteristic
p=0orp > 2g+ 1. The field of moduli of C, relative to the Galois extension k/k, is denoted
by Mz /k(C’) (see Definition 5.1.3). It has been proven by B. Huggins, in her PhD [Hug05],
that My, (C) is always a field of definition for C unless Aut(C) is PGL3(k)-conjugate to a
diagonal subgroup of PGLs(k), or to one of the Hessian groups Hess, with x € {18, 36}.

We aim in this chapter to investigate the next question:

Question. Given a smooth plane curve C over k such that Aut(C) is PGL3(k)-conjugate to
a diagonal subgroup of PGLs(k), when the field of moduli Mz /k(ﬁ) needs to be a field of

definition?

To answer this question, we fix a non-singular plane model Fiz(X,Y, Z) = 0 over k for C'in
one of the families of Theorem 2.1.3, such that Aut(F) < PGLj3(k) is diagonal, that is made
entirely of 3 x 3 projective matrices of diagonal shapes. We first show that if Aut(F) contains
a non-homology of order n > 1 (Definition 1.2.6), then M /k(é) is always a field of definition,
unless n divides one of the integers d, d — 1 or d(d — 2). We also give a geometrically complete
family over k£ and describe the automorphism group in each subcase as well; see Theorem 5.4.4.
Secondly, if Aut(F%) is made entirely of homologies, then it is either a cyclic group of order
dividing d or d — 1, or it is isomorphic to Z /27 x 7Z/2Z; see Lemma 5.4.8. In the case that
Aut(Ff) is cyclic generated by an homology of order n > 1, dividing d with d odd or divides

d — 1, then again My /k(é) is a field of definition; see Theorem 5.4.14 and Theorem 5.4.15. In
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the remaining situations, we construct explicit examples of smooth plane curves over C, whose
field of moduli relative to the Galois extension C/R is R, but it is not a field of definition; see
Proposition 5.4.2, Theorem 5.4.6, Theorem 5.4.16 and Proposition 5.4.20.

We shall deal with the following items:
5.1. The field of moduli and fields of definition.
5.2. Débes-Emsalem: The canonical model for C'/ Aut(C).
5.3. On the field of moduli of smooth curves with odd signature.

5.4. Smooth plane curves with diagonal automorphism groups.

§5.1 The field of moduli and fields of definition

Definition 5.1.1. (Fields of definition) Let k¥ C L C L be fields, where L is a fixed algebraic
closure of L. Given a smooth curve C'/ L, then C'is defined over k if and only if there is a curve
(" /k that is isomorphic over L to C. In such case, k is called a field of definition of C.

We say that C'is definable over k if there is a curve C’/k such that C' and C” are isomorphic,

viewed as smooth curves over L.

Definition 5.1.2. (The field of moduli) Let C'/k be a smooth curve over k. The field of moduli

of C, denoted by k¢, is the intersection of all fields of definition of C :=C Q k.

There is another definition for the field of moduli which is commonly used and is defined

relative to a given field extension L/k:

Definition 5.1.3 (Definition 1.2, [AQ12]). Let C'/L be a smooth curve and let L/k be a field
extension. The field of moduli of C relative to the extension L/k, denoted by M, /,(C), is the
subfield of L fixed by the subgroup

Upp(C) :={o € Gal(L/k) : C = °C}.
We recall Weil’s condition of decent, which gives necessary and sufficient conditions for a

field k to be a field of definition for C:

Theorem 5.1.4 (Weil, [Wei56]). Let C be a smooth curve defined over a field L, and let L/k

be a Galois extension. Suppose that for every o € Gal(L/k), there exists an L-isomorphism
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Oo 2 °C +— C such that
b5 © “Pr = Gor forall o,7 € Gal(L/k).

Then, one gets a curve C' over k and an L-isomorphism ¢ : C' @ L — C such that ¢, 0 ¢ =

@, for all o € Gal(L/k).

If Aut(C) is trivial, then Weil’s condition of descent becomes trivially true and so the field
of moduli needs to be a field of definition. On the other hand (see for example the Introduction
in [DE99]), a smooth curve C'/k of genus g = 0 is k*°P-isomorphic to the projective line P,
which is defined over the prime field kq of k. Moreover, if ¢ = 1, the field of moduli is ko(j),
where 7 is the modular invariant of C, and it is known that for characteristic p # 2,3, C'is
k*°P-isomorphic to a model defined over k(j) (see [Sil09, Chp. III, Proposition 1.4]).

The real difficulty happens for ¢ > 2 and non-trivial automorphism groups, since the Weil’s

criterion of decent is not easily checked.

Proposition 5.1.5 (Débes-Emsalem, Proposition 2.1, [DE99]). Let C' be a smooth curve over
L and let L/k be a Galois extension. The group Up,(C) is a closed subgroup of Gal(L/k)

with respect to the Krull topology. In particular,
Urye(C) = Gal(L/Mp,(C)).

The field of moduli M, (C') of C relative to the extension L/k is contained in each field of
definition of C' between k and L. Hence if the field of moduli is a field of definition, it is the
smallest field of definition between k and L. Finally, if F' := My ,(C), then the field of moduli

of C relative to the extension L/ F is exactly F.

Remark 5.1.6. The final observation of Proposition 5.1.5 that the field of moduli relative to the
extension L /My ,(C) equals My, (C) generally allows one to reduce to the situation where
the base field & is the field of moduli of the given curve C, relative to L/k, by extending the

scalars from k to My ,(C).

Due to S. Koizumi [Koi72, Proposition 2.3-(ii)], Theorem 1.5.8 in [Hug05] shows that,

M /i (C) is a purely inseparable extension of k¢, where k is the prime field of k.
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Corollary 5.1.7 (Corollary 1.5.9, [Hug05]). Let C' be a smooth curve over a field k. Then, C'

is definable over a finite separable extension of its field of moduli k.

The main relation between the field of moduli in Definition 5.1.2 and Definition 5.1.3 is the

following theorem:

Theorem 5.1.8 (B. Huggins, Theorem 1.6.9, [Hug05]). Let C' be a smooth curve over a field
k. Then, C is definable over its field of moduli k¢ if and only if given any algebraically closed
field F D k, and any subfield L. C F with F'/L Galois, C ® F can be defined over its field of

moduli Mp;1(C), relative to the extension F'/L.

5.1.1 The field of moduli for smooth plane curves

Definition 5.1.9. (Diagonal groups) The group of all 3 x 3 projective linear matrices of diagonal
shapes over an algebraically closed field & of characteristic p > 0 is denoted by D(k). A finite

non-trivial group G is called diagonal if it can be viewed as a subgroup of D(k), i.e. if there is

an injective representation o : G < D(k).

Example 5.1.10. Of course, cyclic groups of order relatively prime with the characteristic p

are diagonal. The converse is not true, for example, the group
<d1ag(_]—7 L, 1)7 dlag(L —1, 1)>
is diagonal, but not cyclic, since it is isomorphic to 7./27. x 7./ 27Z.

It has been proven in [Hug05] the next result for smooth plane curves:

Theorem 5.1.11 (B. Huggins, Theorem 6.4.8, [Hug05]). Let k be a perfect field of charac-
teristic p not equal to 2, and let C be a smooth plane curve of genus g > 3 defined over k.
The field of moduli M, /k(U) of C, relative to the Galois extension k/k, is a field of definition,
unless Aut(C) is PGLs(k)-conjugate to a diagonal subgroup of PGL3(k), or to one of the
Hessian groups Hess, with x € {18,36}, or to a semidirect product B x A for some finite

diagonal subgroup A of PGL3(k) and a non-trivial p-group BB consisting entirely of elements
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of the shape
1 00

a 1 0
gy 1

Remark 5.1.12. We are interested in smooth plane curves C over k, where k is a perfect field
of characteristic p = 0 or p > 2¢g + 1. In particular, Aut(C) has order coprime with p (see
section §1.4 in chapter 2). Thus, by Theorem 5.1.11, one just needs to study the cases where

the automorphism group is diagonal or PGLs(k)-conjugate to Hess;s or Hessag.

On the stratum MP' (Hess,)

Recall that Hess;g = (S, T, R), where S := diag(1,(3,¢3), T:=[Y : Z: X]and R := [X :
Z :Y],and Hesssg = (Hessis, V) where V := [X+Y + 7 : X+ GY +GZ : X+GY +(7).

Lemma 5.1.13. The Hessian groups Hess,, for x € {18,36} above are not diagonal in the

sense of Definition 5.1.9.

Proof. Assume on Hess, is PGL3(k)-conjugate to a diagonal subgroup G’ < PGL3(k). By
definition G should contain a non-homology ¢ of order 3, and we may write it as diag(1, (3, (3).
Moreover, there should be another element v of order 3, such that »¢ = ¢1). Hence v should
be of the shape {[Y : Z : X]|, [Z : X : Y]} modulo D(k). Thus ¢/ ¢ D(k), which contradicts

the assumption on G. ]

Consider the stratum /\/lfg’l(Hessls) of smooth plane curves C' defined over k such that
Hess;g < Aut(C). A geometrically complete family over & (Definition 4.3.2) is given be-

low:

Proposition 5.1.14. Let k be a perfect field of characteristic p = 0 or p > 2g + 1. The stratum
MZI(Hesslg) is not empty only if the degree d is divisible by 3. In this case, the family

d/3
Z U (X2 + V2 4 Z3)AP=Cmtn) (XYY 4 (Y Z)? + (X Z2)*)™( XY Z)" = 0,(5.1)

m,n € N
2m +n =0

with ag o # 0 is geometrically complete over k for /\/lgl(Hesslg).
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Remark 5.1.15. We note that M?' (Hessgg) € M (Hessyg). Therefore, if there is a smooth
curve C € Mgl(HeSS;}G), then it is defined by an equation of the form (5.1), probably with
more algebraic restrictions on the parameters a;, b;, c; via the extra automorphism V. That is,

the family (5.1) would define a geometrically complete family over £ for ./\/lfg’l (Hesszg) as well.

Proof. (of Proposition 5.1.14) Since Hess;g contains an element of order 3, which is not a
homology, we may consider a non-singular plane model F(X,Y, Z) = 0 over k of degree d,
such that ¢ := diag(1,(3,(3) € Aut(Fg)(< Hess,). In particular, any monomial term in the

defining equation for Fi=(X, Y, Z) = 0 should be of in the ideal
(X,Y*,2°,YZ) CR[X.Y. 2],

That is, each monomial term of F(X,Y, Z) is of the form X°Y3tZ3u(y 7Z)d=(s+3t+3u)  for
some s,t,u € N. Moreover, there should be two automorphisms v and ¢ of orders 3 and 2

respectively, such that ¢~ = ¢ and 9 = ¢ 1. Some computations shows that there must

be D,D" € D(k),j € {1,2}and A € {[X : Z : Y], [Y : X : Z],[Z : Y : X]}, where
= DT/ and ¥ = D'A. Thuswemay take v =T =[Y : Z: X|]andd = R=[X: Z:Y].

The defining equation Fi(X, Y, Z) = 0 is then formed by terms in the ideal
(XP+ Y3+ 23 XYZ (XY + (YZ)* +(X2)%).

By non-singularity, F(X, Y, Z) should have degree > d — 1 in each variable. Consequently,
the core of F=(X,Y, Z)is X¢ + Y9 + Z? and 3 | d, since (S, T, R) < Aut(C). Thus the form

(5.1) is geometrically complete over k. [

B. Huggins in [Hug05, Chp. 7, §2 and 3] constructed examples of smooth plane curves of
genus 10 not definable over their field of moduli, and whose automorphism groups conjugate

to Hess,, for x = 18, 36.

Definition 5.1.16. A quaternion extension of a field K is a Galois extension F'/K such that

Gal(F'/K) is isomorphic to the quaternion group of order 8.

Definition 5.1.17 (Lemma 7.2.3, [Hug05]). A field K is of level 2 if —1 is not a square in K,

but it is a sum of two squares in K.
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Lemma 5.1.18 (Lemma 7.2.3, [Hug05]). Let K be a field of level 2. Then, for u,v € K*\ (K*)?
such that uv ¢ (K*)?, K(\/u, /v) is embeddable into a quaternion extension of K if and only

if —u is a norm from K (\/—v) to K (i.e. —u = 2* + vy?® for some x,y € K).

For instance, the field K := Q((3) is of level 2, since (¢2)> + (2 = —1 and /-1 ¢ K.
It is easily shown that £2 are not norms from K (1/—13) to K. So neither X (1/2,1/13) nor
K (v/—2,+/13) are embeddable into a quaternion extension of K.

Now fix K to be the field Q((3), and define the following:

5= XYZ,
o= XP4+YP4 23

f = (XY)P+Y2)P+(X2)%

Suppose that oy, o, g, u, v € QF, such that L := K (y/u, \/v) is a Z /27 x 7. /27 extension of

K that can not be embedded into a quaternion extension of /. Let

e = a1GVu+ eV + sV,

ey = (VU + aaVu + Gy,
1

Cy2 = al\/ﬂ—l—ag\/ﬂ—i—&g\/u — E

Theorem 5.1.19 (B. Huggins, Lemma 7.2.5 and Proposition 7.2.6, [Hug05]). Following the

above notations, let
Fa (XY, Z) = cpt® — 6epth — 180,20 + 4.

Then the equation F s (X,Y,Z) = 0 such that F s (X, 1,1) is square free, defines a
smooth plane curve C over Q, with automorphism group Hesss. The field of moduli Mg /Q(C’ )
is Q((3), but it is not a field of definition.

Remark 5.1.20. It has been mentioned by B. Huggins [Hug05, page 136] that smooth plane
curves C' over C with automorphism group Hess;g are always definable over its field of moduli,

relative to C/R.

Theorem 5.1.21 (B. Huggins, Lemma 7.3.2 and Proposition 7.3.3, [Hug05]). Following the
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above notations. For a = ai € C with a € R*, the equation

Fo(X,Y,Z) =% — 185 + (a — %)V — 6ath =0

gives a smooth plane curve C' over C, with automorphism group Hesssg. Moreover, the field of

moduli Mc/r(C) = R, and it is not a field of definition.

§5.2 Débes-Emsalem: The canonical model for C/Aut(C)

Let C' be a smooth curve of genus g > 2 with non-trivial automorphism group over k, where
k is a perfect field of characteristic p = 0 or p > 2¢g + 1. Using Proposition 5.1.5 and Remark
5.1.6, we may take k as the field of moduli My, (C) of C, relative to the Galois extension
k/k. Consider a family of k-isomorphisms {¢, : °C — C},cq,. Each isomorphism ¢,
induces an isomorphism ¢, : °C/ Aut(°C) — C/ Aut(C) such that the following diagram is

commutative:

°C/ Aut("C) —2=— T/ Aut(C)
Next we compose with the canonical isomorphism i, : “(C'/ Aut(C)) — °C/ Aut(°C), that

sends

P.7(Aut(C)) € 7(C/Aut(C)) — “P. Aut(°C) € °C/ Aut(°C),
to get a family of isomorphisms {@, := i, 0 ¢, : 7(C/ Aut(C)) — C/ Aut(C)} e, , satisfy-
ing the Weil’s cocycle condition of descent (see [DE99, Theorem 3.1]). Therefore, by Theorem
5.1.4, there exists a k-model By, of C'/ Aut(C), and an isomorphism 6 : B, @ik — C/ Aut(C)

over k, such that # o 0~ = ¢_. In other words, we obtain the next commutative diagram (Fig-

ure 5.1) The model By, is called the canonical model of C'/ Aut(C') over k.

Proposition 5.2.1 (Débes-Emsalem, Corollary 4.3-(c), [DE99]). Following all the above no-
tations. The curve C is definable over its field of moduli k, if the canonical model By, has a

k-point.
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°C i c

7(C/ Aut(C)) i T/ Aut(C)

By @i k

Figure 5.1: The canonical model for C/ Aut(C)

§5.3 On the field of moduli of smooth curves with odd signa-

ture

Definition 5.3.1 (signature). Let ® : C' — C/G be a branched Galois covering between smooth
curves defined over an algebraically closed field, where G is a finite group. Let yy, ..., y, be
its branch points, that is ®!(y;) has cardinality < |G|. The signature of ® is defined as
(go; M1, ..., m,), where gy is the genus of C'/G and m; is the ramification index of any point in

®~(y;). The branch divisor of ®, denoted by D(®) is the divisor of C'// Aut(C) defined by

D(CI)) = 22:1 m; . Y.

R. Hidalgo [Hid12] considered complex curves C' such that the natural cover 7z : C —
C'/ Aut(C) has signature of the form (0; m1, ms, m3, my), proving that C' can be defied over
its field of moduli if my ¢ {my, mo, m3}. Artebani-Quispe in [AQ12] extended such a result

to smooth curves of odd signature:

Definition 5.3.2 (odd Signature). A smooth curve C defined over an algebraically closed field
of genus g > 2 has odd signature if the signature of the natural covering 7z : C — C'/ Aut(C)

is of the form (0; my, ..., m,.) where some m; appears exactly an odd number of times.

Theorem 5.3.3 (Artebani-Quispe, Theorem 2.5, [AQ12]). Let C be a smooth curve of genus
g > 2 defined over an algebraically closed field F'. Let L be a subfield of F, such that F'/L is
Galois. If C is an odd signature curve, then M F/ 1(C) is a field of definition for C.
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To prove Theorem 5.3.3, we need some well-known results, we refer, for example, to

Lemma 2.3 and Lemma 2.4 in [AQ12]:

Lemma 5.3.4. Let B be a smooth curve of genus 0 defined over an infinite field L, and suppose

that B has an L-rational divisor D of odd degree. Then B has infinitely many L-rational points.

Lemma 5.3.5. Given a Galois branched covering ® : C — C /G defined over an algebraically
closed field F, we have D(°®) = 7(D(®)) for any o € Gal(F'/L).

Proof. (of Theorem 5.3.3) By Proposition 5.1.5 and Remark 5.1.6, we may assume that
M F/L(é) = L. PFollowing the notations of section §5.2, we set ® := 67! o mz. Since P,
is an isomorphism, D(®) = D(°®) = ?(D(®P)) for any o € Gal(F/L), by the aid of Lemma
5.3.5. That is, D(®) is an L-rational divisor of C'/ Aut(C). Moreover, f is an isomorphism,
so D(®) = 0~ 1(D(ng)). In particular, ® and 7 have the same signature. Because ® has an
odd signature, then we can take y;,, ..., ¥i,,,, to be the points on the support of D(®) with the
same coefficient say m;. The divisor y;, + ... + ¥i,.,, is an L-rational divisor of C// Aut(C)
of odd degree. If L is infinite, then Lemma 5.3.4 implies that B has an L-rational point and C
can be defined over L by Corollary 5.2.1. Otherwise, the result follows by Corollary 1.6.6 in
[Hug05]. O

From Theorem 5.1.8 and Theorem 5.3.3, it follows:

Theorem 5.3.6 (Artebani-Quispe, Theorem 0.1, [AQ12]). Let C be a smooth curve of genus

g > 2 defined over a field k. If C ®y, k is an odd signature curve, then C'is definable over k.

Remark 5.3.7. A smooth curve C defined over C is called pseudo-real if the field of moduli,
relative to the extension C/R, is R, but it is not a field of definition. The idea of having odd
signature is used among other techniques by Artebani-Quispe-Reyes, in [AQR17], to show that
a smooth plane curve C' of genus 6 over C is pseudo-real, only if Aut(C) is isomorphic to
Z/2Z or Z/47Z. However, by Theorem 4.3.6, we know that representative families over R exist
for these two particular stratum. Hence, Lemma 4.3.3 implies that the field of moduli relative
to C/R is always a field of definition. That is smooth plane curves over C of genus 6, which

are pseudo-real, do not exist.
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§5.4 Smooth plane curves with diagonal automorphism group

Let C : F(X,Y,Z) = 0 be a family of smooth k-plane curves associated to the stratum
g(//\/l\z?(G )) ( see Definition 2.2), where k is a perfect field of characteristic p = 0 or p > 2g-+1.
Isomorphisms between smooth k-plane curves in the same family C (in particular with identical
automorphism group o(G) < PGL;(k)) are given be elements in the normalizer Ny (k) of

their automorphism group in PGL3(%). Thus the following lemma is useful for computations:

Lemma 5.4.1 (Normalizer). Let o : G — PGL3(k) be a diagonal finite non-trivial group, such

that p t |G| when p > 0. Hence

1. If o(G) contains a non-homology ¢ = diag(C%, (%, 1), then Ny (k) = (D(k), H) for

n

some H < §3

2. If o(Q) is generated by an homology ¢ = diag(1,1,(,) for some n € Zso, then
Noe) (E) = GL2,Z<E)-

Proof. Using Lemma 1.2.7 and the assumption that o(G) is diagonal, we deduce that there is
always a unique set V, which is fixed pointwise by o(G). Itis {P, = (1 : 0:0), P, = (0 :
1:0), Py =(0:0:1)} when a non-homology is present inside o(G), while it is formed by
all points of the line L3 : Z = 0 and the point P; otherwise. Therefore, V' is also fixed by

Ny (k), and the computations becomes too straightforward. [l

We motivate this section by the next example due to B. Huggins in [Hug05]. Take m,r € N
such that 2mr > 5 and 7 is odd when m does. Let z¢ be the complex conjugate of z for any

z € C. Consider a binary form G(X,Y) € C[X, Y] \ R[X, Y] given by

G(X,Y) := f[(xm — GY™)(X™ + afY™),

i=1
for some ay, ...,a, € C such that the next conditions hold: G(X,1) has no repeated zeros,
the map [ : 8] — [8 : «] does not map the zero set of G(X,Y') into itself, for any root of
unity ¢ we should have {a;, —1/a$} # {Ca;, —(/a}, and when m = 3, the map [« : 5] —
[—a+ (14 v/3)8 : (1 +v/3)a + (] does not map the zero set of G(X,Y) into itself.
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Proposition 5.4.2 (B. Huggins, Chapter 7, §1, [Hug05]). Following the above notations, let C

be a smooth plane curve of degree > 5 defined over C by an equation of the form
F=(X,Y,Z) = 2" —G(X,Y) =0
Then, the automorphism group Aut(Fg) is diagonal and equals

<d1ag(<m7 17 1)7 dlag(lv Cma 1)7 dla’g(la 17 Cer))'

Moreover, the field of moduli Mcr(C) is R, but it is not a field of definition.

5.4.1 Diagonal automorphism groups, containing a non-homology

Consider the moduli space M, of smooth plane curves C of genus g = 2(d — 1)(d — 2) > 3

defined over k, where k is a perfect field of characteristic p = 0 or p > 2g + 1.

—~— nh

Definition 5.4.3. For arbitrary integer n > 2, let (M[") ding D€ the substratum of M, of

smooth plane curves C, satisfying

1. Aut(C) is diagonal, i.e. o(Aut(C)) < D(k) for some injective representation .

2. Aut(C') contains a non-homology of maximal order n > 1. Being maximal means that

any other non-homology in Aut(C') is of order at most 7.

Fix a non-singular plane model F(X,Y,Z) = 0 of C over k of degree d, where
Aut(Fg) = o(Aut(C)). Hence N, of Aut(@))(E) equals (D(k), H) for some H < S, by Lemma
5.4.1-(1). Now we state our main result for this section, improving the results of B. Huggins

(Theorem 5.1.11) for smooth plane curves that possess a diagonal automorphism group.

Theorem 5.4.4. Following the above notations, let k be a perfect field of characteristic p = 0
nh

orp>2g9+1C € (X/l\gp/l) , and moreover assume that Mz, (C') = k. Then, k is always

n,diag

a field of definition for C, except possibly when one of the following cases occur:

1. First, n|d and F(X,Y, Z) = 0 is defined over k by an equation of the form

d—1
X4 vi4 Z4+ (x4 Y gz Y gzt =0
j=2

. j, X - qd, X
J 165(2)1)(%1)) i€S]

n, (a,b)

168



In particular, Aut(Fg) < (diag((4, 1,1), diag(1, (4, 1), diag(1,1, (), and so any au-

tomorphism of C' is of order dividing the degree d.
2. Second, n|d — 1 and F=(X,Y, Z) = 0 is defined over k by an equation of the form

Xd + X(Zdil + Ydil + Z (YZ)ﬁ (Oérl,rzymn =+ Bm,erQn)) +

ry, 2 €N
2ri +ron=d—1

T Z X Yz)~ (Mmmyren + )‘rs,rszmn) +

r5,re € N

<.
||
I\

2r5 +rgn = j

+ > (YL (Y A+ Oy Z7) = 0.

rg,rqg €N

2r3 +ran =d

WIth Ypy v, 0ps vy 7 0 and 7, 7 VO, ., for some 13,14, where v is a (d — 1)/n-th root

of unity v. Moreover, ayr, = 0 Uff B17y, = 0, Ypgry = 0 0ff 0pypy = 0 and piyrg = 0 Iff
MArsrg = 0. In this case, Aut(F) = (diag(1, ¢, 1))

3. Third, n = mm/’ for some positive integers m and m’' > 1 such that m |d and m’ | d — 2,

where F(X,Y, Z) = 0 is defined over k by an equation of the form

Xd+Yd—IZ + de—1_|_

—2i—jm/’ i jm’ jm’ L im/’
+ > BXTEIT Y 2 (Y 4 Gl 2 =0,
i,4,£; €N

m | 2 4+ jm’

such that B; # 0 for some j. Moreover, Aut(Fg) = (diag(1, ,, gnf(dfl)»_

Proof. Since we have a non-homology inside Aut(C'), it suffices to consider C' of Type n, (a, b)
for some n as in Theorem 2.1.3, cases (3)-(6). Hence, for all situations, except when n | d with
respect to case (6) in Theorem 2.1.3, we have at least one of the P/s, the three reference points,
lies on F=(X,Y,Z) = 0. But also Aut(F}) is made entirely of diagonal 3 x 3 projective
matrices by assumptions, so Aut(Fg) fixes a point on Fi(X, Y, Z) = 0. Therefore, it is cyclic
(Corollary 1.4.2), generated by some diag(1,¢2,¢%) with ab # 0. For C in the family of
Theorem 2.1.3, case (6), non of the reference points lies on Fr(X,Y,Z) = 0. In such case,

Aut(F) does not need to be cyclic, see for example, Proposition 5.4.2. More concretely, the
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core of the defining equation for C'is X?+ Y+ Z%, thus Aut(F5) (being diagonal) lives inside

<diag(Cd7 17 1)7 dlag(L Cd> 1)7 dlag(la 17 Cd)):

which shows the result in the statement of Theorem 5.4.4-(1).
On the other hand, the idea of the proof applied to the different families in Theorem 2.1.3,
cases (3)-(5) is to study the action of the normalizer Nuy(r.) (k) < (D(k), §3> (Lemma 5.4.1).

Once we are able to reduce to a situation where there exists a set of isomorphisms
(TFs)(X,Y, Z) = 025 Fy(X, Y, Z) = 0,

for o € G}, living in D(k), we deduce that the canonical model B, over k for C'/ Aut(C) has
k-points, and therefore k is a field of definition of C, by using Proposition 5.2.1.

We distinguish between the following cases appeared in Theorem 2.1.3, (3)-(5):

(I) Theorem 2.1.3-(3): This case is distinguished by involving all reference points P;, for
i = 1,2,3, lying on F5(X,Y,Z) = 0. Moreover, C is of Type n, (a,b) for some
(a,b) € T, such that n| (d> —3d +3)anda = (d — 1)a + b = (d — 1)b (mod n). We
may take a = 1 (mod n) and b = —(d — 1) (mod n) as a generator of o(Z/nZ), since

we have b = —(d — 1)a (mod n), and so

dlag<17 CZ7 Cﬁ) = dlag(L Cna Cg(dfl))“ € <d1&g(1’ gm C;(dfl)»

The defining equation in this case has core X9~ 'Y + Y417 4+ Z9-1X hence the ac-
tion of (D(k),Ss) is trivial except possibly an isomorphism of (D(k),[Y : Z : X]).
However, [Y : AZ : pX] & Nawr,)(k), since otherwise diag(1,¢?',¢7) €
Aut(Fp) = <diag(1,§n,Cﬁ(d_1))>. That is, 2(d — 1) = 0 (mod n), and n should di-
vide ged(2(d — 1),d? — 3d + 3) = 1, a contradiction. Therefore, by Lemma 5.4.1, the

normalizer Nauy(r) (k) < D(k). In particular, we always can take
(CF=)(X,Y,Z) = 025 Fo(X,Y, Z) = 0
in D(k).
Next, the three reference points P/s are common k-points of F5(X,Y,Z) = 0 and
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D

("Fz)(X,Y, Z) = 0, which also pointwise fixed by Aut(Fz) = Aut(“Ff), and ¢ s,
since all are 3 x 3 projective matrices of diagonal shapes. Following the notations of
section 5.2, the images P; := 7(P;) = (°7)(P;) become k-points of Fiz/ Aut(F5) and
?(Fg/ Aut(Fg)) simultaneously, and also pointwise fixed by the isomorphism ¢, via
the commutativity of Figure (5.1). Hence, each of the points ~(P;) € By, ®, k, for

1 =1, 2, 3 satisfies

071 (Pi) = (707" 0 ¢,)(Pi) = (071)(Pi) = “(07'(7

for all o € G. In particular, they are k-points of By ®j k, and so of By.

Theorem 2.1.3-(4): In this situation, the two reference points P and P; lie on C
Fs(X,Y,Z) = 0, where C is of Type n, (a,b) for some (a,b) € T, according to

one of the following subcases:

(i) Theorem 2.1.3-(4.1): C'is of Type n, (a,b) for some n | d(d — 2), such that (d —

1)a4+b=0(mod n)and a + (d — 1)b = 0 (mod n). Since
diag(1, ¢y, ¢h) = diag(1, ¢5, ¢, “7D*) = diag(1, Gu, ¢, 1),

we can take ¢ = 1 (mod n) and b = —(d — 1) (mod n) as a generator of these

curves. Moreover, if we write n = mm’ for some m |d and m'|d — 2, then

m’ > 1 (otherwise, n |d, and the automorphism diag(1, (,, ¢n (d_l)) reduces to

diag(1, ¢, (y), i-e. it is a homology, a contradiction). Therefore, diag((,,, 1, 1) and
diag(1, ¢, ¢,/ are also automorphisms of Aut(Fs). This in turns restricts the
(X,Y,Z) = 0in Theorem 2.1.3-(4.1) to be

defining equation F,

a,b,m

X' +ylz4 vz Y XTIV 2) (YT B 27) = 0,

i,j €N

m|2i + jm/
A priori, one does not need to worry about smooth curves in this family, which are
isomorphic to their conjugates through a family of isomorphisms in D(k) (in such

a situation, k is a field of definition, since the canonical model has k-points arising

from the two reference points % and Ps on F,, , (X,Y,Z) = 0). So, we just pay
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our attention to the subfamily Co : Fyz(X,Y, Z) = 0, where [X : A\Z : uY] (or
equivalently, [X : Z : Y]) may act non-trivially and might contains smooth curves
not having % as a field of definition. This subfamily is characterized by the next
property: Forany ¢, 5 € N, o; ; = 0iff 5, ; = 0, and also o, j,Bi,.j, 7 0 for some
io, jo € N. For each i,j € N with m|2i + jm/, we define the subfamily Eéi’j) by
the equation ]—"é%] ) (X,Y,Z) = 0 of the form

Xd 4 Ydflz + YZlel + Xdi%ijm/(YZ)i(anjml + bjzjm’) 4

+ > XEHE(Y Z) (0 Y™ 4+ by 27) = 0,

i/ 5 €N

m |24/ 4 ' m!
witha;b; # 0, a; # b;,and aj = 0iff b;; = 0. This gives us a union decomposition
for the family Co as |, ; ¢ Furthermore, the action of [X : Z : Y] on the
component J—"é%j ) (X,Y, Z) = 0 can always be trivialized when b; # —a;, through

the isomorphism

1 0 0
bii=| 0 a5 b |:HFL XY 2)=0} > {FP(x,v,2) = 0}.
0 bj Q;
To see this we notice that [ X : Z : Y] acts non-trivially on ]-'O(%j )(X Y, Z) = 0iff
it does for the family
X4 Y9z 4 v 747t 4 X2y 2) (0, Y™ 4 b, 27 = 0,
Moreover, ¢; ; satisfies the Weil’s cocycle condition of descent

[X . Z . Y] O 00¢i,j = ¢i,j7

where 0y is the automorphism of k(a;, b;) mapping a; +— b; and b; + a;. The new
component
il R (6, (XY, 2)) = 0

Y o,C 1,J

for the transformed family #iCy, : Fozlor ]-1 (X,Y, Z)) = 0, which has less isomor-
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phic geometric fibers, satisfies the property that any of its curves % Fz(X,Y, Z) =
Fe(¢;}(X,Y, Z)) = 01is isomorphic to its conjugates (" Fi)(“¢; (XY, Z))) = 0
through by = 70, ].1 0 ¢y o ¢;; for some ¢, € D(k). Furthermore, a(b—J) must
be either b; or bl, since the two points Py := ¢ (P) = (0:1: ;—27) and
Py = ¢ (Ps) = (0:1: ;—‘;J) are the only points of F(¢; (XY, Z)) = 0,
which are fixed by Aut(?iFg) = ¢; o Aut(Fg) o ¢;; (recall that Aut(Fg) is
diagonal, containing a non-homology by assumption. Thus P, and P; are the fixed
points of Aut(Fg) on Fe(X,Y,Z) = 0). Butif ¢, = diag(1l, \,, /,) acts on
Fo(X,Y, Z) = 0, then XYy, = Aopd™t = 1,0(aj) = (Aopts)' ™ a; and
o(b;) = (Motto)'12™b;. Hence a(b—J) = (Z—;)Cﬁgzj, for some integer ¢;. Con-
sequently, if bz # azfgggj, we always get a k-point on the canonical model of
%1 P/ Aut(?+i Fi). For example, the two points 6~ L(Pi7) and 6~ (P.7) are such

k-points, where PQW and PQ“J are the images of Py’ and P;” under the action of .

We justify this for Pé’j and similarly for E,

0B = (707 0 8,)(P) = (0)(FP) = (67 B = (07 (),

for any 0 € G}. Finally, we conclude by our discussion that curves C in the
original family, which might not be definable over their field of moduli are in one

of the components C 7 Where b2 = a2(’] ™% This reduced the equation to

Xd—FYdilZ 4 YZCZ*I_'_

i—jm’ im/ ¢ m’
oY BXTEITYZ) (Y 2 =0,

7,,],2 eN

m | 2i 4+ jm/

such that 3; # 0 for some j. However, the canonical model always has the two

points #~1(P;7) and 6~ (P}”), where

(0 (B7), 07 ()} = {07 (P 07 (B

for all o € Gy. In particular, both points are definable over at most a quadratic

extension of k. This shows case (3) in the statement of the theorem.

173



(ii)

(111)

Theorem 2.1.3-(4.2): C is of Type n, (a, b) for some n | (d — 1)? with (d — 1)a +
b = 0(mod n) and (d — 1)b = 0 (mod n). Obviously, the core X + X 741 +
Y417 is not retained by any permutation of the coordinates functions {X,Y, Z}.
So the group §3 gives no non-trivial isomorphic geometric fibers in the family. In
particular, Fz(X,Y, Z) = 0 is isomorphic to its conjugates through isomorphisms
in D(k), by using again Lemma 5.4.1. Similarly as before, the canonical model B,

for Fz/ Aut(Fg) over k has at least two k-points, which shows the result in this

subcase.

Theorem 2.1.3-(4.3): C'is of Type n, (a, b) for some n | (d — 1). We observe that
curves in such a family are classified to be of one of the types: Type n, (1,b),
Type n, (a,1) for some a,b € {2,3,...n — 1}, or Type mm’, (m',m) where
m,m’ > 1 are relatively prime. Indeed, if ged(a,n) = 1 (resp. ged(b,n) = 1),
then ab’ = 1 (mod n) (resp. a’b = 1 (mod n)) for some O (resp. a’). So, rename
Co i= (% (resp. (), and b := bb' (resp. a := aa’) to obtain diag(1,¢%, (%) =
diag(L, 2, (') (resp. diag(L, ¢!, (1)) := diag(L, G, C2) (resp. diag(L, C2, ),
and we get Fr(X,Y,Z) = 0 of Type n, (1,b) or Type n, (1,a). Otherwise

ged(a,n), ged(b,n) > 1 and diag(1,¢%, ¢%) = diag(1,¢%,¢%,), where m =

/ [

_—a
~ ged(an)?

and OV = Thus m, a’ and m/, V'

n _ n _b
ged(an) M T gedbn) @ ged(bm)

are relatively prime. Rename (% := (,, and ¢, := (,, to recover the last types.

On the other hand, the geometrically complete family over k, defining the whole
stratum in this subcase has core X¢ + X (Z%! 4+ Y4~1), which restricts the nor-
malizer Naus(r) (k) to be a subgroup of (D(k),[X : Z : Y]), by the aid of Lemma
5.4.1. Therefore, we just need to characterize those curves in the family, for which
the action of [X : AZ : uY] € PGL3(k) is not trivial, since otherwise we can
take {¢,} C D(k), which in turns gives an existence of k-points on the canoni-
cal model By, over k for Fir/ Aut(F%), using the same discussions as before. By
non-singularity, the index set Sg X n.(a,p) 18 NON-empty or the curve is reduced to
X.G(X,Y, Z). Moreover, if [X : AZ : uY'] provides isomorphic geometric fibers

in the family, thend — ¢ € S;l -~ (a,py Whenever an i does. We treat the situation

n,
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for the different types mentioned earlier in our substratum:

For F(X,Y, Z) = 0 of Type mm’, (m', m) with m and m/’ relatively prime, i(m’—
m) +m = 0 (mod mm/') and i(m' — m) — m' = 0 (mod mm’). Hence m +m’' =
0 (mod mm'), which is not possible. For F5(X,Y,Z) = 0 of Type n, (1,b), we
get —i(b— 1)+ b = 0(mod n) and i(b — 1) + 1 = 0(mod n). Hence b =
—1(mod n), 2 = 1 (mod n). Consequently, Aut(Fg) = (diag(1,,, ¢, ")), and
the defining equation, in Theorem 2.1.3-(4.3), for F=(X,Y, Z) = 0 is reduced to
the prescribed form in the statement of Theorem 5.4.4-(2). Lastly, the restrictions
on the parameters arises from the fact that [X : AZ : pY] acts non-trivially on

Fs(X,Y, Z) = 0. Similarly, we handle the situation for Type n, (a,1).

(IIl) Theorem 2.1.3-(5): We get C of Type n, (a,b) for some n|d(d — 1) and (a,b) € T,
such that da = 0 (mod n) and (d — 1)b = 0 (mod n). Moreover, exactly one reference
point lies on Fz(X,Y, Z) = 0. If we look at the core X% + Y4 + X Z4~1 of the family
describing our stratum, and noticing that 1 ¢ Sf . then we recognize that the action
of the normalizer Naus(r) (k) is trivial except possibly an element of D(k), see Lemma

5.4.1. Hence, as we explain many times, one obtains a k-point on the canonical model

for F=/ Aut(Fg), and C is definable over £, its field of moduli.
This completes the proof. []

Remark 5.4.5. Suppose that a smooth plane curve C over k, as in Theorem 5.4.4, descends
to its field of moduli %, relative to the extension E/ k, where k is perfect. Then there is no
guarantee, in this case, that the curve C has a non-singular plane model over k. This is not true
in general, however it does when the degree d is coprime with 3, the curve has a k-point, or the
3-torsion Br[3|(k) of the Brauer group Br(k) is trivial; Corollaries 3.2.1, 3.2.2 and Theorem
3.2.8.

The general question concerning the existence of non-singular plane models over fields of
definition of a smooth plane curve C over k has already been addressed in chapter 3 of this

memoir.

We already have seen an example of (1) at the beginning of this section (Proposition 5.4.2
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with m,r > 2). We construct next an explicit example for case (2) in Theorem 5.4.4:

Theorem 5.4.6. For any degree d = nm + 1 with n > 10 even and 4 Y nm, let C be a smooth

plane curve over C of degree d defined by an equation F(X,Y, Z) = 0 of the form

X4 4 Z (YZ)Ts (7r3:T4YT4"_|_(_1)T37T3’T4Z7”4”) +

r3,r4 €N

2rg3 +rgn =d

d—2
Y XY (Y (<), )
j=2

r5,r6 € N

2r5 +rgn =3

+OX (24 Yy > (YZ)" (Y™ + (1)@, 1, 277)) = 0,

ry,re2 €N
2ry +rgn =d —1

such that ., ., # 0, (—1)", (—1)7"3(5_1%3“ for some r3,ry € N with 2r3 + rqyn = d and
ged(ry,m) = 1. Then Aut(Fg) is cyclic, generated by diag(1, (,, (,'). Moreover, the field of

moduli Mcr(C) is R, but it is not a field of definition.

Remark 5.4.7. The non-singularity restrictions for F5(X,Y,Z) = 0 are too tedious to be
explicitly written down. However, we warn the reader that a plane curve over C defined by

such a form, which is also smooth, may not exist.

Proof. (of Theorem 5.4.6) Since diag(1,(,, ¢, ") is an automorphism of Fx(X,Y,Z) = 0
of order n > 10, Aut(Fg) can not be conjugate to any of the finite primitive subgroups of
PGL;3(C) mentioned in Theorem 4.2.3-(3). Moreover, (Fg, G) is not a descendant of the Fer-
mat curve X¢ + Y? + Z9 = 0 or the Klein curve X% 'Y + Y417 4+ Z4-1X = 0 with
G = Aut(Fg), because n = =1 does not divide any of the integers 64> and 3(d*> — 3d + 3).
Consequently, we can think about Aut(Fg) in a short exact sequence (Theorem 1.4.4) of the
form

1 —— C* —— GLy 4(C) -2 PGL,(C) — 1

1—— H—— Aut(Fp) G

where H is a cyclic group of order dividing the degree d, and (G is conjugate to one of the
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following group: Z/tZ, Doy with t < d — 1, A4, Aj or to S;. Furthermore, H can be thought
as the subgroup of automorphisms of Fi(X, Y, Z) = 0 acting trivially on Y and Z, whereas G
acts trivially on X. Hence H is trivial because of the core X + X (Y4~! + Z9=1) of the defin-
ing equation for F(X,Y,Z) = 0. Also, G always has the element o(diag(1,(,, (")) =

diag(¢?,1) of order > 5, so it should be cyclic or dihedral. In both cases,

ged(n,2)
(diag(1, ¢y, ¢, 1)) is normal in Aut(C'), and therefore Aut(Fg) < (D(C), [X : Z : Y]) us-
ing Lemma 5.4.1. More concretely, any automorphism of Fs(X,Y,Z) = 0 is of the shape
diag(1,¢) ¢ N or [X : ¢ Z - ¢J V] for some 0 < f,f < d— 1. The condition
Yrara 7 0, (—1)73, (—1)’"3§g_ﬁr3m , for some 73 and r, ensures that Aut(F%) is diagonal.
Hence it is cyclic, since it fixes the two reference points P, and P; on Fr(X,Y,Z) = 0.
Lastly the same kind of argument as we did in the proof of Theorem 5.4.4-(II) works for
F5(X,Y,Z) = 0, and one deduces that Aut(Fs) = (diag(1, (s, () for some s dividing
m (recall that d — 1 = nm). So, the monomial terms in defining equation for C' are in the ideal
(X,YZ,Y* Z*). However, the restriction ged(ry, m) = 1 for some r4 restricts s = 1, and thus
Aut(Fp) is generated by diag(1, ¢, ¢, ").

On the other hand, Fy(X,Y,Z) = 0 is isomorphic to its complex conjugate
("Fg)(X,Y, Z)) through the isomorphism ¢ = [X : —Z : Y. Hence R is the field of moduli
of F5(X,Y,Z) = 0, relative to C/R. Moreover, any isomorphism ¢’ : ("Fg)(X,Y,Z) —
Fs(X,Y, Z) is of the shape 1 o ¢ for some n € Aut(Fg). Thatis ¢/ = [X : —(, 77 : (JY]
for some integer 0 < f < m. One easily checks that such a ¢’ does not satisfy Weil’s co-
cycle condition of descent (¢/ o ¢’ = 1), since nm is not divisible by 4: indeed, ¢/ o ¢/ =
diag(—1,¢/,(27), so we ask for (2 = —1, which in turns gives 4f = 0, n, 2n, or 3n. Since
4fn,¢ =[X:—Z:Y]or[X:Z:-Y],and ¢* # 1 in both situations. Consequently R is
not a field of definition for C'. ]

5.4.2 Diagonal automorphism groups containing only homologies

The following lemma classifies the diagonal groups in PGL3(k), which are made entirely of

homologies. Here £ is a perfect field of characteristic p > 0.

Lemma 5.4.8. Let o : G — PGL3(k) be a diagonal finite non-trivial group, such that p t |G|
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when p > 0. If o(G) is made entirely of homologies (Definition 1.2.6), then o(G) is either
cyclic or it is conjugate to 7./ 27 x 7./27 = (diag(1, —1,1),diag(1, 1, —1)).

Proof. Assume that o(G) # (diag(1,—1,1),diag(1,1,—1)). Hence there must be an homol-
ogy ¢ € o(G) of order m > 2, since (diag(1, —1,1),diag(1, 1, —1)) is the unique non-trivial
diagonal subgroup whose elements have orders at most 2. There is no loss of generality to
assume that ¢ = diag(1, 1, (), in particular its axis is the reference line L3 : Z = 0 and its
center is the reference point P, = (1 : 0 : 0). If o(G) \ (¢) = 0, then o(G) is cyclic and
there is nothing to prove further. Otherwise, we can take ¢ € o(G) \ (¢). Moreover, if 1
has a different axis from L3, then ¢y € p(G) is a non-homology for a suitable choice of the
integer s because m > 2: For example, write ¢ as diag(1, (,,,, 1) for some integer m’ > 1,
hence ¢*y = diag(1, (v, (5,)- So when m # m/, we can take s = 1, and s = 2 otherwise. In
both cases, ¢*1 is a non-homology in ¢(G), which conflicts our assumption that o(G) is made
entirely of homologies (Definition 1.2.6). Therefore, all elements of o(G) admit the same axis
and the same center, i.e. each is of the shape diag(1, 1, (,) for some n € N. Consequently,
o(G) is contained in the cyclic group generated by diag(1, 1, (,,, ), Where ny is the least common

multiple of the orders of the elements of o(G). Thus o(G) is cyclic. O

Definition 5.4.9. The substratum of M, representing smooth plane curves C of genus g =

&2(‘1_2) > 3 over k, whose automorphism group Aut(C) is cyclic generated by an homology
h
of a fixed order n > 1, is denoted by (M[") ding”

As usual, fix a non-singular plane model Fi=(X,Y, Z) = 0 of C over k of degree d, such
that Aut(Fz) = (diag(1, 1, (,)). Hence Nauy(ry) (k) equals GLy z(k), by Lemma 5.4.1-(2).

—~~—h

A necessary condition on n so that the stratum (./\/lg b . might be non-empty is con-

n,dia,

cluded directly from Theorem 2.1.3-(1), (2), where we follow the notations and conventions of

chapter 2:

—~—h

Proposition 5.4.10. The stratum (MY l)n ding is non-empty only if n divides d or d — 1. More-

over, the family

Ci:Z%+ > ZLjz+ Loz =0, (5.2)
je€S(1)n
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is geometrically complete over k when n|d, whereas the family

Cot 27V + > 2Lz + Lz =0, (5.3)
Jj€ES(2)n

h

does when n|d — 1. That is, for any C € (ML) an Fs(X,Y,Z) = 0 with

n,diag’

(diag(1,1,¢(,)) < Aut(Fg) is given by a specialization of the parameters in (5.2) or (5.3)

over k.

Remark 5.4.11. By non-singularity, the homogenous binary form L, z(X,Y") in Proposition
5.4.10 can not have any repeated linear factors for any specializations of the parameters in
k; otherwise, we may assume (up to k-equivalence) that the repeated factor is X = 0, and
Laz(X,Y) reduces to X?L4 5 7(X,Y). Butalsod — 1 ¢ S(u), foru = 1,2, since n > 1.
Hence F(X,Y,Z) = 0 in the family is defined by Z°G(X,Y,Z) + X?L4 2 7(X,Y) = 0,

which in turns implies singularity at the reference point P, = (0 : 1 : 0).

h
P ; :

Curves of (M] )n7 ding having odd signature

h

We characterize the situation when the stratum (M) | ding contains smooth plane curves over

g

k of odd signature.

h

Proposition 5.4.12. A smooth curve C € (MIT) has an odd signature if and only if either

n,diag
d is odd and n = d, or d is even and n = d — 1. In this case, i.e. when C is of odd signature,
Fe(X,Y,Z) = 0 is given, up to k-isomorphism, by a specialization of the parameters of the
form Z¢ + Ly 7 = 0 when n = d for an odd d, and Z*~'Y + Ly z = 0 whenn = d — 1 for an

even d.

Proof. By Remark 5.4.11, we know that the binary form L,z factors into d distinct factors
associated to d distinct roots, say (a; : b;) € P'(k), fori = 1,2,...,d. Since Aut(Fy) =
(diag(1,1,¢y)), the covering nr_ = Fg — Fg/ Aut(Fg) is ramified exactly at the d points
{(a; : b; : 0)} whenn

d, plus the extra point P; = (0 : 0 : 1) when n|d — 1. This gives d branch
points (resp. d + 1) each is of ramification index n when n|d (resp. n|d — 1). Consequently,

F=(X,Y,Z) = 0 has odd signature only if n|d and d odd or if n|d — 1 and d even. The

179



Riemann-Hurwitz formula reads as

(d—1)(d—2) =2 = n(2go — 2 +d(1 — %)),

when n|d and d odd, and as

(d—1)(d—2)—2=n(29y— 2+ (d+1)(1 — %)),

when n|d — 1 and d even, where g is the geometric genus of the quotient curve Fiz/ Aut(Fg).
Setting go = 0 and solving for n, we obtain n = d (resp. n = d — 1). This proves the ”if and
only if” statement.

Lastly, forn = d (resp. n = d — 1), the index set S(1); = {1 <j<d—-1:d—j

0 mod d} (resp. S(2)4-1 ={2<j<d—1:d—j=0modd— 1})is obviously empty. [

—~~—nh

The stratum (M[") diag With n|d—1

h

Suppose that the stratum (ME?) . is non-empty for some fixed integer n > 1 with n|d — 1.

n,diaf
h
n,diag

Let C € (/\/lf; 0 , and moreover assume that £ is perfect of characteristic p = 0 or p >
2g+1. We will see that when k = M, .(C), then k becomes a field of definition of C'. The idea
is to split up the family C,, of Proposition 5.4.10, into at most four components with an extra

property. We then show that the canonical model By, for Ffw/ Aut(Fg) always has a k-rational

point, and the field of moduli £ therefore is a field of definition, by the aid of Proposition 5.2.1.

Proposition 5.4.13. Consider the subfamilies Cés) of Co, for each s = 1,2, 3,4, which is given
by

d
eV o 27+ Y 2L+ X XYY a XY =,

JES(2)n Jj=3
d—1
¢ 0z + > 2L+ XY+ XY =0,
JES(2)n j=3
d—2
Cé‘g) . ZTYy 4+ Z Zd_ij,Z + X4 Xyt ¢ Z and_ij =0,
JES(2)n j=3

d
cV o 2T+ Y 2L+ XY ) XY =0,

FES(2)n j=3
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h

Then Ui:l Cés) defines a geometrically complete over k for the stratum (ME") ding when n|d—

—~~—h

1. Moreover, the index set S(2),, is always empty when n = d—1, and the stratum (M[") | ding

is only described via the three components Cés), fors=1,2 3.
Proof. By non-singularity, X or X%~V should appear in L, 7. Hence, up to rescaling the
variable X and then renaming the parameters, we can split up Cs, in Proposition 5.4.10, into

two components defined by the forms

st @ Z7'Y+ > Z9Liz+ XYW 4 XY 4 L+ ag XY 4 agY =0,
JES(2)n

2nd ¢ ZNY 4+ Y ZLjz 4+ X'+ al XY + 4 0 XY 4 agY?! = 0.
Jj€S(2)n

We always can assume a, = 0 in the first component, by a change of variables of the shape
X — X — 427 and then renaming the parameters. This in turns gives the fourth component
C§4) in the statement. Similarly, we may take a; = 0 in the second component via X
X — 4Y and renaming after. Moreover, if a; = 0, then we split it up with respect to Y4, if it
appears or not (if it does not appear, then XY %! does, by non-singularity). Therefore, we get
the substrata Céz) and CéB), up to rescaling Y and Z. Finally, for a # 0, we rescale Y and Z to
get Cél).

A priori, the index set S(2),, is empty if and only if diag(1, 1, (4—1) € Aut(Cs). In this case,
n = d — 1 and the subfamily C§4) is not irreducible anymore, since it factors as Y. G(X, Y, 7).

For this reason we exclude C§4). [

The main result for this subsection is now stated:

Theorem 5.4.14. Following the above notations, let k be a perfect field of characteristic p = 0

_ h
orp>(d—1)(d—2)+1withd > 4. Let C' € (M[") ding With 1, g > 1 such that n divides

d—1.Ifk = Mm(ﬁ), then it is also a field of definition for C.

Proof. Tt suffices to consider an Fi=(X, Y, Z) = 0 in the family Uizl Cés) (Proposition 5.4.13),
since it is a geometrically complete family over k for our stratum. Because of the mono-
mial term Z97'Y in the defining equation Fi=(X,Y,Z) = 0, the action of the normalizer

Naug( Fa)(k)’ which is GLy (k) by Lemma 5.4.1, is possibly not trivial only for an isomor-

phism of the shape [aX + Y : 7Y : Z]. Moreover, the components ¢, for s = 1,2,3,4,
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are well-defined up to k-isomorphism, which means that even [aX + SY : vY : Z] does not
define an isomorphism between two curves in two distinct components. Now, it is straight-
forward to check that 5 = 0 in any case, so Fz(X,Y, Z) = 0 is isomorphic to its conjugates
{7(F5)(X,Y, Z) = 0}scq, through a set of isomorphisms {¢,} C D(k), i.e ¢, is diagonal:
For example, consider an Fi=(X,Y, Z) = 0 in the subfamily Cél). Since X471Y does not be-
long to the defining equation for F5(X,Y,Z) = 0, we must impose da?"'3 = 0. Because
[aX + BY :4Y : Z] is invertible, then 3 = 0, which was to be shown.

Hence, as explained previously in section §5.4.1, the reference point P; = (0 : 0 : 1) on
F=(X,Y, Z) = 0 shall produce a k-point on the canonical model By, for F;=/ Aut(Fg) over k.
Thus £ is a field of definition for C' by Proposition 5.2.1. ]

h
The stratum (M[")

ding with n| d and d odd

_ h
Theorem 5.4.15. Let C' € (M}") ding’ where n > 1 is a fixed integer dividing the odd degree

d > 5. As usual, assume that My, = k and k is perfect of characteristic p = 0 or p > 2g + 1.
Then k is a field of definition for C.

h

Proof. By Theorem 5.3.3 and Proposition 5.4.12, one gets the result when C' € (M), ding’

i.e. when n = d. Therefore, we take 1 < n < d divides d. Since the automorphism group

Aut(Fg) = (diag(1,1,(,)), we get by Proposition 5.4.10 that the family
Ci - 744+ Z Zd_fanngz—i-Ld’Z:O,
1<f<d—1
such that L, z # 0 for some 1 < f < % — 1, is a geometrically complete family over & for

(MPZ "

g >n,diag

. Moreover, the normalizer Ny (r.) (k) = GLs, z(k) by using Lemma 5.4.1.

We first show the next observation:
Observation. Denote by C| , the family defined by Z 4+ Lyz = 0. Then, for any o € G}, and
any isomorphism ¢, : °Cj, — Cj, there always exists an 7, € (diag(¢;',¢; ', 1)) and an
isomorphism ng : ?Cy — Cj such that 7, o ¢, and &,, as elements of GLy z(k), give the same

action on Cj.

Proof. Clearly an element ¢ € GLj z(k), which acts non-trivially on the family Cj , acts
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also non-trivially on the family C;. The converse still true, unless ¢ € (diag(¢;"', (", 1)).
Therefore, the number of geometric fibers, which are isomorphic and given by the action of
GLy z (k) on the family Ci is exactly the same number of isomorphic geometric fibers of
the family C; arisen by the action of GLy (k) \ (diag(¢;"',¢;',1)). Consequently, for any
o € Gy, the action of any isomorphism ¢, : °C] ; — C] ; can always be extended to an action

5(, : ?Cy — Cj. In particular, the composition 50 o ¢! acts trivially on Z¢ + L, z = 0, that is

G0 0 07" =0, € (diag(¢;h, (71 1)) O

Next, by the virtue of Theorem 5.3.3 and Proposition 5.4.12, we may consider a family
of isomorphisms {¢, : 7Cj, — C| o}seq,, satisfying the Weil’s cocycle criterion of descent
(Theorem 5.1.4). Using the above observation, we also have a set of isomorphism {qga =

Mo © ¢y : °C; — Ci}oeq,, where n, := diag(e; !, ¢, !, 1) for some dth root of unity €,. Hence,

g o )

it satisfies

(ULfThZ)(X’ Y) = Lfn,Z(ga(Xv Y)) = G;fann,Z(¢a(X7 Y)),

forallo € Gy, andall 1 < f < £ — 1. Take any 0,7 € Gy, then

Linz(60r(X,Y)) = (TLpma)(X,Y) = (L 2)(X,Y) =7 (67" Lynz(6-(X,Y))
= 0(6;7) (L 2) (C6-(X,Y)) i= 0 (€ 7") (L 2) (X', Y)
= o(ez")e " Ly 2(¢0(X',Y))
= (o 0(er)) " Lyn z((¢0 0 “07)(X,Y))
= Lpnz(((n5 0 nr) 0 (50 79:))(X,Y))
= Lpnz((o 0 d0) © (71 0 76,))(X,Y))
= Lpnz((650 79:)(X,Y)).

So the family {$U}geck satisfies the Weil’s condition of descent, and £ is a field of definition

for C}. O

h
The stratum (M[")

, With n | d and d even

There is no smooth plane curve C' of degree 4 over & with automorphism group conjugate to
h

(diag(1, 1,(4)). Hence, the stratum (MZ"), ;.. is empty, and we have nothing to say in this
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case. See P. Henn [Hen76] or F. Bars [Bar12] for more details.

h
The next result shows an example of a smooth plane curve in the stratum (M/") ding OVET

C, for any even degree d = 2(2s + 1) > 6, whose field of moduli is R, relative to the Galois

extension C/R. However, it is not a field of definition for C.

Theorem 5.4.16. For an arbitrary, but a fixed even degree d of the form 2(2s + 1) > 6, the
h

stratum (/\/lg h is non-empty, in the sense that, there exists a smooth plane curve C of

d,diag
genus g = 3(d — 1)(d — 2) over C with automorphism group (diag(1,1,(,)). Moreover, the
field of moduli Mc(C) is R, but it is not a field of definition.

—~~—h

In particular, representative families over R do not exist for the stratum (./\/15 b d.diag”

Proof. For example, take C to be a smooth plane curve over C defined as Proposition 5.4.2

with m = 1 and r = 2s + 1. Then, Aut(C') = (diag(1,1,{,)). Also R is the field of moduli

for C, relative to C /R, but it is not a field of definition.

On the other hand, if a representative family over % exist for some stratum of M,, then
the field of moduli needs to be a field of definition for every curve C' in this stratum (Lemma

4.3.3). Thus by the above counter example, we deduce that such a family over R does not exist
h

for (MZ!

g )d,diag'

O

h
It remains yet the study of (M]") ding When the degree d > 4 is even and n divides d

properly. In this case, the field of moduli does not need to be a field of definition as well. The
first example appears for genus 3 curves, and we refer to the work of Artebani-Quispe, [AQ12,
§4, Lemma 4.2, Proposition 4.3], for a smooth plane quartic curve over C, not definable over its
field of moduli R, and whose automorphism group is the cyclic one of order 2. We generalize

this example taking into account the next example.

For an arbitrary, but a fixed integer d = 4m > 12, consider a plane curve C over C defined

by an equation of the form

Fa(X,Y,Z) =2+ Z2g(X,Y) - f(X,Y) =0, (5.4)
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where

g(X,)Y) = ﬁ(X —a;Y)(X + iY)
f(X,Y) = f[(X —bY)(X + %Y),

7

ﬁ
Il
—_

such that a; € R* for all 1 < i < 4, hence ¢(X,Y') is a binary form in R[X,Y]. Assume
also that f(X,Y) and g(X,Y) has no repeated zeros. We also choose the as in the way
that g(X,Y) is not ¢)gz-invariant or 1, ,-invariant for any ¢, : (X : Y) — (Y : ¢X) and
Vap: (X 1Y) = (X +aY :bX —Y)in PGLy(C).

Remark 5.4.17. The last condition on the zero set of g(X, Y'), not to be invariant under any ¢z
or 9, 3, is not strong. One just need to impose finitely many conditions on the a;s: For instance,
an 1 acts as a product of pairwise disjoint 2-cycles on the set {(a; : 1)}; since it has order 2
in PGLy(C). Soif ¢z : (as : 1) <> (ar : 1) (resp. (—1/a; : 1)) for some s, ¢, then ¢ = a,/a;
(resp. —a;/ay). Therefore, it suffices to choose the as such that {a;, ;—1}1 + {f—‘g, }%}Z for

any s, t. In this case, g(X,Y’) is not ¢.-invariant for any 1. € PGLy(C).

The action of an 1), is treated in the same way. However, it is a bit more tedious.

Lemma 5.4.18. A plane curve defined by an equation of the form (5.4) over C as above is

always smooth.

Proof. Since F(X,0,2) = Z%+ (X Z)% — X = 0 has no repeated zeros, the common zeros
of Fx(X,0,7) and (Fz) (X, 0, Z) do not exist. Moreover, (Fg)(X,1,72) = Z:¢'(X,1) —
F(X,1) and (F5),(X,1,2) = 42571225 + g(X,1)). But f(X,Y) is square free, then
(X : 1 : 0) gives no singular points on Fs(X,Y,Z) = 0. Furthermore, if we substitute
g(X,1) = —2Z% into Fs(X,1,7) = 255(X,1,Z) = 0, we get that S is singular only if
f(X,1)g'(X,1)? = —f/(X,1)? that is when f(X, 1) has repeated zeros, a contradiction. So
the equation is smooth. [

—_—

h

Proposition 5.4.19. The stratum (M£"), ding is not empty for any d = 4m > 12. That is, there
2 K

exist a smooth plane curve over C of degree d = 4m > 12, for any m € Zx, such that its

automorphism group is cyclic of order &, generated in PGL3(C) by diag(1, 1, ¢ a ).
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Proof. Consider a plane curve C of degree d, given by an equation Fe(X,Y,Z) = 0 of the

form (5.4) over C as above. Hence C' is smooth by Lemma 5.4.18.

Second we show the claim on Aut(Fg) to be the cyclic group (diag(1,1,¢ %)> under a

suitable choice of the b)s. Obviously, ¢ := diag(1,1, (4/2) € Aut(F5) is a homology of order

d/2 > 4. Therefore, Aut(Fy) fixes a point, a line or a triangle, by Theorem 1.2.8. In particular,

it is not conjugate to any of the finite primitive group mentioned in Theorem 4.2.3-(iii). Now,

we treat each of the following subcases:

(@)

(i)

A line L C P% and a point P ¢ L are leaved invariant: By Theorem 1.4.4, we can think

about Aut(Fg) in a short exact sequence

1 —— C* —— GLyy(C) 2= PGL,(C) — 1

1 (1) Aut(Fg) G 1
where G is conjugate to a cyclic group Z/mZ of order m < d—1, a Dihedral group D, of
order 2m with m/|(d — 2), one of the alternating groups A4, Aj, or to the symmetry group
S4. Any such G, which is not cyclic, contains an element of order 2. Let ¢/’ € Aut(Fp)
such that o(¢") has order 2. Then, o(¢/’) has the shape 1. or 1, for some a, b, c € C\ {0},
which is absurd by our assumptions on g(X,Y). Consequently, G = o(Aut(Fy)) is
cyclic, generated by the image of a specific )¢ € GLyy(C). This would lead to a
polynomial expression of bls in terms of the a,s, hence we still have infinitely many
possibilities to choose the b}s such that f(X,Y’) not (o(t¢))-invariant. In particular,

|G| = 1 and Aut(Fg) is PGL3(C)-conjugate to (diag(1,1, (a/2)).

A triangle A is fixed by Aut(Fg) and neither a line nor a point is leaved invariant: It
follows by Theorem 1.4.4 and its proof that (F, Aut(Fg)) must be a descendant of the
Fermat curve F; : X¢4+Y%+Z% = 0 or the Klein curve K; : X 'Y +Y 4174 7971X =
0. Since d/2 does not divide | Aut(Ky)| = 3(d®> — 3d + 3), (Fr, Aut(Fg)) is not a
descendant of K. Hence 3P € PGL3(C) such that H := P~ Aut(Fg) P is a subgroup
of Aut(Fy), which is a semidirect product of S3 = (T :=[Y : Z: X|,R:=[X : Z:Y])
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acting on (Z/dZ)* = (diag({, 1,1), diag(1, {4, 1)), see [Harl3, Proposition 3.3]. That
is, any element of H has the shape DR'T7, for some 0 < i < 1and 0 < j < 2 and

D € D(k). It is straightforward to check that any D77 and DRT’ with j # 0 has order

3 < g. Thus P~'4P € D(k), and then we may assume that P in the normalizer of
(1), up to a change of variables in Aut(Fy). In this case, we can think about H in the

commutative diagram

1 ——— (Z)dZ)? —— Aut(Fy) —= Ss 1

1 — Ker(oly) = (¢) H G :=Im(g|lg) —1

We note that Z in the transformed defining equation through P appears exactly as the
original equation. Hence G is at most cyclic of order 2, since P~ Aut(Fg)P should
have an element of the shape [(5Y : (}Z : X] or [(5Z : (X : Y] for some integers
s, t otherwise, which is not possible. For the same reason, GG is then generated by an
o([¢5Y : ¢! X : Z]), and again it enough to restrict f(¢(X,Y)) not to be (o([¢5Y : ({X :

Z]))-invariant, where ¢ is the restriction of P on the ideal (X,Y).

]

Proposition 5.4.20. Let C be a smooth plane curves defined over C by an equation

Fa(X,Y, Z) = 0 of degree d = 4m > 12 with m odd, of the form (5.4) as in Lemma 5.4.18 and

d _ h
Proposition 5.4.19 with the extra condition [[7_, b; € R. Then C € (M}"), diag MOTEOVET The
2 b

field of moduli for C relative to the Galois extension C /R is R, but it is not a field of definition.

Proof. Such a curve is isomorphic to its complex conjugate (F)(X,Y, Z) = 0 through ¢ :=
[—Y : X : (4). Hence R is the field of moduli for C relative to C/R. However, it is not a field of
definition for C.. To see this, let ¢’ : Fz — F5 be any isomorphism. Then ¢o¢/~! € Aut(Fx),
and so ¢’ = ¢odiag(1,1,¢ g )" for some integer 0 < r < %. Any such ¢’ does not satisfy Weil’s
condition of descent (Theorem 5.1.4): ¢/o¢’ = 1, since ¢/ o¢/ = diag(1,1, —1) # 1. Therefore
R is not a field of definition for C. O
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On the stratum MP\(Z /27 x 7./27)

The following generalizes Lemma 4.1.6:

Proposition 5.4.21. Smooth plane curve C over k of odd degree d > 5 with 7./27. x 7./27, <
Aut(C) do not exist, where k is a field of characteristicp = 0 or p > (d—1)(d —2) + 1. Hence
Aut(C) is not conjugate to any of the groups 7./27 x 7./27, A4, Sy or As inside PGLs(k).

Proof. Following the work of H. Mitchell [Mitl1] and T. Harui [Har13], the group Z /27 x
7]27 C PGL3(E), giving invariant a smooth plane curve C of degree d > 4, should fix a point
not lying on C or C must be a descendant of the Fermat curve F; : X% + Y9 + Z¢ = 0 or
the Klein curve Ky : X4 'Y 4+ Y4 1Z + Z4-1X = (. But also, for an odd degree d > 5,
4 does not divide | Aut(Fy)| = 6d? and | Aut(Ky)| = 3(d*> — 3d + 3). In particular, C' can
not be a descendant of Fj; or K,, and we can think about Z/27 x 7 /27, in a short exact
sequence of the form 1 — N = 1 — H — H — 1, where H is PGLy(k)-conjugate to
7./27. x 7./27, (Theorem 1.4.4). Let H = (n,1n,) < PGLy(k) acts on the variables Y, Z,
then we can assume, up to conjugation of groups in PGLy(k), that , = diag(1, —1) and
ne = [aY + b7 : ¢Y — aZ]. Because niny = 1911, we get n, = diag(—1,1) or [bZ : ¢Y]
for some be # 0. Being of Type 2, (0,1) with 2 { d, C should have defining equation of the
form Z9 'Ly z + Z9 Ly + ... + Z°Lq_27 + Laz = 0,and Y 'Ly + Y P L3y 4 ... +
Y2Ld,2,y + Lqy = 0 simultaneously. This reduces CtoX.G (X,Y, Z) for some homogenous
polynomial of degree d — 1, a contradiction to non-singularity. So such a smooth curve does
not exist. The second part is clear, since any of these group contains a subgroup isomorphic to

7.)27 x 7.]27. O
Now, fix an injective representation o : Z/27Z x 7Z/27 — PGL3(k) with
o(Z)27. x 7.)27) = (diag(1, —1,1), diag(1, 1, —1)),
and let d > 4 be an even integer.

Proposition 5.4.22. Let C be a smooth plane curve of even degree d > 4, such that o(Z/27. x
Z./27) acts on a non-singular plane model F(X,Y, Z) = 0 of C overk, i.e. C' € MPNZ )27
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Z/27), where k is a field of characteristicp = 0 orp > (d—1)(d—2)+1. Then Fx(X,Y, Z) =
0 is given by a specialization in k of the parameters sty € k of the family defined by X® +
Yd 4+ 74 D st s 10 (XY Z")2 = 0, where the sum is taken over 0 < s,t,u < <2 with

s+t+u=4

Ford = 4, o(Z /27 x 7/ 27) appears as the full automorphism group of some smooth plane

curves of genus g = 3 over k. The family
Cape s X+ Y14+ 24+ aX?Y? 40X 2% + Y222 =0,

with a2, b?, ¢? are pairwise distinct, and a® + b* + ¢ — abc, a?,b%, ¢* # 4 is geometrically
complete over k for the stratum M5 (Z /27 x Z,/27.), where k is perfect of characteristic p = 0
orp>(d—1)(d—2)+1.

Let G be the group acting on the triples (a, b, ¢) € C?, generated by
g1(a,b,¢) := (b,a,c), g2(a,b,c) = (b,c,a), gs(a,b,c) == (—a,—b,c), gs(a,b,c) == (a,—b, —c).

E. W. Howe [HowO1, Proposition 2] observed that any isomorphism between C, ;. and Cg(a,b,c) ,
for g € G, is defined over QQ(i). Moreover, if F is a subfield of C containing Q(7), then C, .
is isomorphic to Cy . if and only if g(a, b, c) = (', V', ¢’) for some g € G (Proposition 4.4 in

[AQI2]).

Theorem 5.4.23 (Artebani-Quispe, §4, [AQ12]). Following the notations above, let Cy, . be a

smooth plane curve over k in the family Capc- Then
(i) If k = Ris the field of moduli for C, ., relative to C/R, then it is also a field of definition.

(ii) If F/k is a Galois extension with Q(i) C F C C and a,b, c € F, then the field of moduli

for Cop., relative to F/k is k(abe,a® + b* + 2, a* + b* + ¢*).

(iii) If F'/k is a general Galois extension with a,b,c € F, then Cyy . is isomorphic to Cyr y o
over F if and only if g(a,b,c) = (a', 0, ) for some g € (g1, 92). Moreover, the field of
moduli for C, ., relative to F/k equals k(a + b+ ¢, a® + b* + ¢*,a® + b + ¢3).

(iv) Any o € Gal(Q(a, b, c)/Q(abe,a® + b + 2, a* + b* + ¢*) acts as some g, € G. Hence
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we have a natural injective homomorphism of groups
Y Gal(Q(a, b, ¢)/Q(abe, a® + b* 4 %, a* +b* + ') = G : 0 g,.

Moreover, if Q(i) C Q(a, b, ¢) and Im(v)) C (g1, g2), then the field of moduli Q(abc, a® +
v+ at + b+ ) for C, . relative to the Galois extension Q(a, b, ¢)/Q(abc, a® + b +
2 a + b* + ) is a field of definition.
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APPENDIX

Types of cyclic groups of automorphisms

for low degrees

We list down all cyclic subgroups of automorphisms and the associated defining equations,
obtained for low degrees through manipulating Theorem 2.1.3 in Chapter 2. In other words, we
determine the possible Type m, (a, ), for which the locus py, as(M}"(Z/mZ)) might be non-
empty, and we also associate a normal form %, , (X,Y,Z) = 0 describing the corresponding
stratum.

For a fixed degree d, there is no relation between the notations for the parameters from one
family to another: For example, we use, by an abuse of notation, (3; ; as the parameter of the
monomial X% /Y77~ in any normal form.

It might happen that two families Type m,(a,b) and Type m, (a’,b’) are isomorphic
through a permutation of the variables, or F, , (X,Y,Z) = 0 always decomposes as
X .Gy, (X,Y, Z) = 0. Compiling the code in SAGE and removing such situations yields

the next tables (see the programm in http://mat.uab.cat/~eslam/CAGPC.sagews)

Table A.1: degree 4

’ Type m, (a, b) ‘ F(X,Y,2)
12,(3,4) X444yt x2z8
9,(1,6) Xt4+Y324Xx23
8,(1,5) X44+Y3Z+vY2Z3
7,(1,5) X3Y 4+Y3Z 4+ 273X
6,(3,4) X4+ Y4+ XZ3 + fa2X?Y?
4,(1,2) XA+ Y44 Z4 + B0 X222 + B30 XY2Z
4,(0,1) Z4+ Ly z
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Table A.2: degree 4 (continued)

3,(1,2) | X4+ X(Z3+Y3) + B2 1 X2Y Z + Bs2Y 222

,(0,1) Z3Y + Ly z
,(0,1) Z4+ Z%Lo 7 + La,z
Table A.3: degree 5
’ Type: m, (a, b) ‘ F(X,Y,Z)
20, (4,5) X5+ Y54+ x274
16, (1,12) X5 4+Y4Z + X224
15,(1,11) X5 4+Y4Z+YZ4
13,(1,10) XY +Y4Z + 24X
10, (2,5) X2+ Y5+ XZ% 4 B2,0X322
8,(1,4) X5 +Y4Z + XZ4 4 B2, X322
5,(1,2) X5 4+ YS + 254 B31X2YZ2 4+ BasXY3Z
5,(0,1) Z%+ Ls z
4,(1,2) X5+ X(Z4+Y4) + B2,0X322 + B32X2Y2Z + B5,2Y 223
4,(0,1) ZYY + Ls 7
3,(1,2) X5+ Y4Z+YZ4 4+ B X3Y Z + X2(B3,02% + B3,3Y3) + Ba 2 XY?222
2,(0,1) ZALy,z + Z%L3 7z + L5 z
Table A.4: degree 6
’ Type: m, (a, b) ‘ F(X,Y,2)
30, (5,6) X6 4 v6 4 x7°
25, (1,20) X6 +v57Z + x7°
24, (1,19) X6 +v5Z +v2Z5
21, (1,17) XY +Y®Z + XZ5
15, (5,6) X6 4+ Y6+ X754 B3 3X3Y3
12,(1,7) X6 +Y3Z +YZ5+ Bs,3Y32Z3
10, (5, 6) X6+ YO 4 XZ5 4 B2 oX?Y? + B44 X%V
8,(1,3) X0 L YPZ 4+ YZ5 + By X?Y22Z2
7,(1,3) XY +YPZ + XZ° + aq 2 X2Y? 22
6,(1,2) X6+ YO0 4 76 4 B3 0X3Z3 + BaoX?Y2Z2 4 B5 4 XYAZ
6,(1,3) X6+ Y64+ Z6 4 By 0 X422 + Be,3Y3 2% + X2 (B4,02% + BasY32)
6,(0,1) Z% + Lg 7z
5,(1,2) X0+ X754+ XY? + B31X3YZ2 + Ba3X%Y3Z + B6,2Y2 24
5,(1,4) X6+ X754+ XYO + B2 1 XY Z + Ba2X?Y2Z2 + B6,3Y 323
5,(0,1) Z%Y + Lg 7
4,(1,3) X6+ Y5Z+YZ54 BesY3Z3 + Ba 1 XY Z + X2 (84,024 + Ba2Y?Z2 + BaaY?)
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Table A.5: degree 6 (continued)

3,(1,2) | XOV +Y®Z +XZ% + a0,0X2Y* +a32XY32%2 4+ B2 0 X422 + B30 X3Y2Z + 42 2Y2 24
+y31X2Y Z3

3,(0,1) Z8 + Z3Ls,7 + Lo,z

2,(0,1) Z8 + Z%Lo 7 + Z%2L4,z + Lo,z

Table A.6: degree 7

[ Type: m, (a, b) | F(X,Y,Z)
42, (6,7) XT4+Y7T+Xx26
36, (1, 30) XT4+vY087Z 4+ Xx26
35, (1,29) XT4+Y%Z +YvZ6
31, (1,26) X0y +vY67 4+ x26
21,(3,7) XT+Y7T+ X276+ B3,0X423
18,(1,12) XT+Y6Z + X756+ B3 0X423
14,(2,7) XT+Y7T+ XZ5 + B20X5Z% + Bao X324
12, (1, 6) XT+YOZ + XZ5 + B0 X322 + Bao X324
9,(1,3) XT+Y6Z + X756 + B3,0X4 23 + B53X2Y322
7,(1,2) XT 4+ YT 4+ Z7 4 B4 1X3Y Z3 4 B5 3 X2Y3Z2 + Bs 5 XY Z
7,(1,3) XT 4+ YT+ 727 4 831 XY 22 4 B5,4X?YAZ + B 2 X Y224
7,(0,1) ZT+ Ly g
6,(1,2) X7+ XZ0 4+ XYO 4 B30X*Z3 4+ Ba2 X3Y2Z2 + B5,4X2YAZ + Br,2Y% 25
6,(2,3) XT 4+ X706+ XYO + B2 0X52Z2 + B3,3X4Y3 + By,0X3Z% + B53X2Y3 22
+B7,3Y324
6,(0,1) Z8Y + L7,z
5,(1,4) XT4+YSZ4+YZ0 + P21 XPYZ + Ba2X3Y2Z2 4 B 3 XY32Z5
+X2(B5,025 + B5,5Y°)
4,(1,2) XT4+YSZ 4+ XZ5 4 B20XOZ% + B32XAY2Z + B52X%Y 2253 + B 4 XY 222
Br.2Y?2Z% + X3(Ba0Z* + PaaY?)
3,(1,2) X7+ X706+ XY + B2 1 XY Z + BaaX3Y222 + Be,3XY3Z3 + Br2Y225
+B7,5Y5 22 + X4 (B3,02% + B3,3Y3) + X2(B5,1Y Z4 + B5,4Y2Z)
3,(0,1) Z8Y + Z3Ly,z + L7 7
2,(0,1) Z8Y + Z4L3 7z + Z%Ls,z + L7,z

Table A.7: degree 8

[ Type: m, (a, b) | F(X,Y,Z)
56, (7,8) X84 vy8 4 x2Z7
49, (1,42) X84Y"Z4+X2Z7
48, (1,41) X84+Y'Z4+YZ"
43,(1,37) XY 4+Y"Z+XZ7
28, (7,8) X8+ Y8+ XZ7 + By XAY4
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Table A.8: degree 8 (continued)

24, (1,17) X8 +YTZ+YZ" + BsaY4Z4
16, (1,9) X8+ YTZ+YZT + Bs5Y°Z3 + Bs 3Y3 2P
14, (7,8) X8+ Y8+ XZ7 + B2 o XOYV2 + Baa XY + B6,6X2Y
12, (1,5) X8+ YTZ+YZ7 + B aYAZ4 + Ba o X4Y222
8,(1,2) X8+ Y8+ 78 4 BaoX4Z4 + B5,0X3Y 223 + B uaX?YAZ2 + Br s XYOZ
8,(1,3) X8+ Y84 Z8 4+ By oXAY222 + B aYAZ% + X2(Bs,1Y Z° + Bs,5Y° Z)
8,(1,4) X84+ Y8+ Z8 + B20X622 + Bao X Z + B5,4X3YAZ + B0 X226
+B7,4XY4Z3
8,(0,1) Z8 + Lg z
7,(1,2) | X8+ XZT 4+ XY 4 B41 XY Z3 4+ B53X3Y3Z2 + Be 5 X2YOZ 4 B3 oY 226
7,(1,3) | X3+ XZT + XY 4 B31XY 22 4 B5,4X3YAZ + B6.2X2Y2Z4 4 By 5 YO Z3
7,(1,6) X8 4+ XZ7T 4+ XYT 4 B2 1XOYZ 4 B1 2 XAY2Z2 + Bs,3X2Y3Z3 + Bg 4 Y424
7,(0,1) ZY + Ls,z
6,(1,5) X84+ YTZ+YZ + B21 X0V Z + Ba,20X*Y2 2% + Bg a Y424
+X2(B6,025 + B6,3Y 323 + Bs,6Y ")
,(0,1) Z8 + Z* L4z + Ls,z
,(1,2) X84 YTZ4+YZ7 + BsaY*Z4 4+ B21XOY Z 4 B2 X2V 222
+X5(B3,02% + B3,3Y3) + X3(B5,1Y Z4 + B5,4Y4Z)
+X2(B6,025 + B6,3Y3Z% + B6,6YC) + X (B7,2Y2Z° + Br Y5 Z?)
2,(0,1) Z8 + Z8Lo 7 + Z L4,z + Z%Le,z + Ls,z
Table A.9: degree 9
’ Type: m, (a, b) ‘ F(X,Y,2)
72, (8,9) X94+v94+x278
64, (1,56) X94+Y8Z + X278
63, (1,55) X9 +Y8Z +vZ8
57, (1,50) X8Y +Y8Z 4+ X278
36, (4,9) X9+ Y2+ XZ8 4 B4,0X524
32, (1,24) XO+Y8Z + XZ8 + B4,0X? 24
24,(8,9) X94+Y?+ XZ8 + B3,3XY3 + B6,6X3Y6
21,(1,13) X2+ Y8Z +YZ8 + Bs,3X3Y323
19, (1,12) X8Y +Y8Z + XZ8 + ap3X3Y323
18,(2,9) XO4+Y? + XZ8 4 Bo0X 2% + BaoX®Z* + Bs,0 X326
16, (1,8) X9+ Y8Z + XZ8 4 BooX"Z2% + Ba,0X°Z% + Be 0 X326
12, (4,9) X9+ YO+ XZ8 4+ B3 3XOV3 + Ba,0X°Z% + B6,6X3YE
+B7,3X2Y324
9,(1,2) X0 4+ YO+ 294 Bs 1 XY Z4 4 Be 3 X3Y3Z3 + Br 5 X2Y 0 Z2
+Bs,7 XY Z
9,(1,3) XO4+ Y9+ 2%+ B30X073 + B5,3X4Y322 + B6,0X32% + Br 6 X2Y6Z
+B8,3XY325
9,(0,1) Z%+ Ly z
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Table A.10: degree 9 (continued)

8,(1,2) | X2+ XZ8 + XY8 + BaoX®Z% + B5,2X4Y2Z3 + B6,4aX3Y*Z% + B76X2°Y6Z
+B7,6X2Y8Z + By 2Y2Z7
8,(1,4) X9+ XZ8 + XY8 + B2 0X"Z2 + Ba,0X°Z* + B5,4X YA Z + Bs,0X3 26
+B7,4X2Y4Z3 + BoaY4Z5
8,(1,6) | X2+ XZ8 4+ XY8 4 B30XOY2Z + B4.0X°Z% 4 B 4 X3YAZ2 4 Br 2 X2Y22Z5
+B9,6Y 523
8,(0,1) Z8L1,7 + Lo,z
7,(1,6) XO4+Y8Z +YZ8 + o1 XY Z + Ba o XOY?2Z2 + Bs,3X3Y32Z3
+B8,4XY4Z4 + X2 (Br0Z7 + Br,7YT)

6,(2,3) X9+ YO+ XZ8 + Boo X722 + B33XOV3 + Ba 0 X5Z4 + B5,3X4Y3 22
+B7,3X2Y3Z% 4+ B7 3Y3Z5 + Bs 6 YCZ3 + X3(B6,025 + Bo,6Y®)

4,(1,2) X9+ XZ8 + XY8 + Bo0X7 22 4+ B32X0Y2Z + B52X4Y2 23+
+B8,aXY4Z% + By 2 Y2ZT + By 6YOZ3 + X5(B4,02* + B1,4Y?)

+X3(B6,025 + B6,aY* Z2%) + X2(Br,2Y?Z5 + Br,6Y5Z)
4,(0,1) Z8Y + Z4Ls5. 7z + Lo 7z
3,(1,2) X8Y +Y8Z 4+ XZ8 + a0,0X?Y 7 + 53X Y322 4 a5 3X2Y4Z3
+ag 2 XYOZ2 + 452 X3Y 224 + B2 X3Y 224 + 6,0 XY 322 + Br 4 X2Y 123
+B2,0X7 2% + B32XOY2Z + 422Y2ZT + (Ba1Y Z3 + BaaY ) X5
+v3,1X2Y Z6 + (a1 X3Z + g 0 Z4) Y + (4,0 X4 + 74,3XY3) 25
3,(0,1) Z%+Z%L3 7 + Z3Le,z + Loz
2,(0,1) Z8L1,7 + Z%L3, 7 + Z*Lys, 7z + Z?L7,7 + Lo 7
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APPENDIX

The algorithm on twist for smooth

curves: Explicit examples

The algorithm for computing Twist, (C') of a non-hyperelliptic curve C' of genus g > 3 devel-

oped in [LG14, Chp.1] and [LG17] has three main steps:

@

(ii)

Find a canonical model: Take a basis of the space of the regular differentials Q'(C), and
compute a canonical model C over k via a canonical embedding C' — PY~! that we can
take also defined over k. Hence, C' and C belong to the same class in Twist,(C) and
Twisty(C) = Twist(C'). Furthermore, the automorphism group Aut(C) can be naturally
viewed as a subgroup of PGL,(k). Also, any isomorphism ¢ : C' — C can be also

viewed as a matrix in PGL, (k).

Galois embedding problem (see for example [NSWO0S, §9.4]): Given a field £ and a finite
group (G, one may ask the following question, the so called Inverse Galois problem: does
there exist a Galois extension F'/k such that Gal(F'/k) ~ G?7 The Galois embedding
problem is a generalization of this. It asks whether a given Galois extension K /k can
be embedded into another Galois extension F'/k in such a way that the restriction map
between the corresponding Galois groups is given in advance. In other words, a Galois

embedding problem is a diagram:

Gal(F/k)

lﬂ

G —L Gal(K/k) —— 1
where 7 is the natural projection and f is an epimorphism. A solution to this embedding
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problem is a morphism ¢ : Gal(F'/k) — G such that next diagram is commutative:

Gal(F/k)

™

G —4 Gal(K k) —— 1

A solution is called proper if it is surjective.

Now given a smooth curve C' over a field &, let K be the field over which all the au-

tomorphisms of C' are defined. Denote by I' the twisted product Aut(C) x Gal(K/k),
where Gal(K/k) acts naturally on Aut(C) and the multiplication rule is (1,0)(p, 7) =
(n°p,a7).
A group homomorphism ) : G — T is said to be an epiy-morphism if the composition
o : G — I' — Gal(K/k) is surjective, where 7 is the natural projection on the second
component of I'. It is known that the set Twist,(C') is in one-to-one correspondence with
the set

I/{Bx/n(Gk,F) ={Y: G — I': ¢ epi, — morphism}/ ~,
where two epip-morphisms 1) and ¢’ are equivalent if there exists (¢, 1) € I" such that
V(o) = (¢, 1)op(c)o(p, 1) forall o € Gy, and we write 1) ~ ¢, This correspondence
sends atwist g : C' — Cto)y: Gy =T 10w (po ¢ 7w(0)).
Let ¢ € I/{gr/n(Gk,F) and let L be its splitting field. We have ¢(Gal(K/K)) =~

Gal(L/K) and ¥(Gy) ~ Gal(L/k). Then 1) can be seen as a proper solution to the

Galois embedding problem:

e

1 —— p(Gal(K/K)) — (Gy) —= Gal(K /k) — 1

As it was noticed in [LG14, §1.1], Gal(L/k) ~ Im(¢) < I and Gal(L/K) ~

Y(Gal(K/K)) < Aut(C) x {1}. Hence, in order to compute Hom (G}, ') we should
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compute all the pairs (G, H) where G < T', H = G N Aut(C) x {1} and [G : H] =
| Gal(K/k)| up to conjugacy by elements (p, 1) € I'. Then, we will find all proper solu-

tions (and thus the corresponding splitting fields L) to the Galois embedding problems:

w

1 H G—3Gal(K/k)——1

Every such a solution can be lifted to a solution to the Galois embedding problem:

Gy

| —— Aut(C)— T — T Gal(K /k) —— 1

Conversely, every solution v of the above embedding problem provides a twist over &k of

C.

(ii1) Explicit equation of Twists: the idea behind the computation of equations for the twist, is
finding a Gj-modulo isomorphism between the subgroup in Aut(C') associated to a pair
(G, H) as above and a subgroup of a general linear group GL,, (k). After that, by making

explicitly Hilbert’s Theorem 90, we can compute an isomorphism ¢ : C' — C, and hence,

we obtain equations for the twist.

Assume that C' is a smooth curve over k with a plane non-singular model over k& such that 3
in Theorem 3.3.2 is trivial, in such case all the twist admits a plane non-singular model over
k, see Theorem 3.3.2. Now instead of computing a canonical model of C, we can consider
a plane model over k associated to C', modifying point (i) of the algorithm. The point (ii) is
independent of the embedding of C' inside a projective space. In point (iii), the algorithm of

[LG17] requires to investigate the solutions in GLg(k;) using [LG14, Lemma 1.1.3]. Now, in

the modified algorithm, it is enough to look for solutions in GL3(k). As in [LG14, LG17] the

elements to reach for solutions in GL, (k) or GL3(k) is quite hard except that we have a control
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of the matrix that could appear. For example, we can apply the next result in some situations,

which can ne proved in the same way as Lemma 2.2.2 in [LG14] for g = 3:

Lemma B.1. Assume that C' is a smooth curve over k with a plane non-singular model over k
such that ¥ in Theorem 3.3.2 is trivial. Let ¢ € H'(k, Aut(C)) be a cocycle with splitting field
L. Assume that the elements of §(Gal(L/k)), as matrices in GL3(L), have the form as block

matrices
A0
(B.1)
a
where A € GLy(L) and a € L. Then, there exists an isomorphism ¢ : C' — C' associated to
€ has the form as the block matrix (B.1). In the particular case, in which §(Gal(L/k)) is made

of diagonal matrices, we can take ¢ : C' — C' also a diagonal matrix.

We use the above modified algorithm to compute the twists over k for the smooth plane
curves defined over k by X° +Y? + XZ* =0and X° +Y*Z + XZ* = 0, where k is a field
of zero characteristic or positive characteristic > (5 —1)(5 — 2) + 1 = 13. Here we recover the

result obtained for these curves in Theorem 3.5.4.

Example B.2. Let C be the smooth plane curve X° +Y?° + X Z* = 0 over a field k of charac-
teristic p = 0 or p > 13. The full automorphism group Aut(C) ~ GAP(20,2) is generated by
S :=diag(1,1,{) and T := diag(1, (5, 1), so it is defined over K = k((4, C5).

We assume the generic case in which (4, (5 ¢ k. Then [K : k| = 8 and the Galois group
Gal(K/k) is generated by 11 : (4 — —Cy, (5 (s and 7o : (4 > (4, G5 = C2 of order 2 and 4
respectively where ToT; = TyTo. In particular, Gal(K/k) ~ GAP(8,2).

The group Gal(K/k) acts naturally on Aut(C) as follows: 7, : S + S* T w T and
0 S+ S, T — T2 The twisted product T := Aut(C) x Gal(K/k) is isomorphic to
GAP(160,207), and generated by the elements ¥, := (ST, 1),95 := (1,71) and V5 := (1, 1),
where 920 = 93 = 9% = 1, 990105 = 91, 91093 = 93013 and 9909395 = V3.

The degree of the defining equation of C' is coprime with 3, thus, by Corollary 3.2.9, every
twist of C' has a non-singular plane model over k. Consequently, by Theorem 3.3.2, the map

Y. is trivial. In particular, we only look for solutions of the Galois embedding problems inside

GLs3(k) not in GLg(k). One finds that all the twists of C over k are covered by diagonal
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matrices, and they are of the form aX° +Y?>+bX Z° for some a,b € k through an isomorphism
of the shape diag(a, 1, B) in GLs3(k).

The Galois embedding problems for C are given by the pairs (G, H) appears in the 2nd
and the 3rd columns of Table B.1 in GAP notations. This means that a twist p : C' — C
over k has a splitting field L such that Gal(L/k) ~ G and Gal(L/K) ~ H for some pair
(G, H) in the list. The pairs (G, H) can be generated via a slight modification of [LG 14, Table
5.5] in MAGMA [BCP97]. A set of generators of both G and H are given in the 4", 5'* and
6" columns: G is generated by the elements h x 1 € H x 1 and g; x 7; withi = 1,2. The
integer n(q, ) that appears in the 7" column is the number of non-equivalent twists of C with
the same splitting field L. By the aid of [LG14, Proposition 4.1], we find solutions to these
Galois embedding problems as described in the 8" column. In the remaining part of the table,
we give the associated set of non-equivalent twists which are defined by equations of the form
aX?+ Y+ X741 = 0 through an isomorphism of the shape diag(a, 1, 8) whose splitting
field is L.

We thus collect the computations into the following result:

Theorem B.3. Following all the above notations, the set Twisty(C') is completely determined

by Table B.1 and Table B.2 below.

Table B.1: The pairs (G, H), and Twists

| [ m@ | ) Jend) o] |nem]| L [a]
1 S| 1 —4
2 —
2 | GAP8,2) | GAP(L1) | 1 515 1 K 1 100
3 1| 82 25
4 1] 1 1
5 | GAP(16,10) S |1 K(y/n) —4rn?
6 | GAP(16,3) S | S 4 —20rn?
! GAP(2,1 S? 2 K(V/5n2 1
7 | GAP(16,3) @1) 1| s (V5n?) 5rn?
8 | GAP(16,10) 1 1 K(y/n) rn?
9 1| s2 25m?
10 1|1 m®
GAP(40,12) | GAP(5,1 T 4 K(¥m ms
11 ( ) (5, 1) S | 52 (m) —100m?*
12 S |1 —4ms
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Table B.2: The pairs (G, H), and Twists (continued)

| [ @ | mw) Jend) | o] nen | L | o | b
13 | GAP(32,25) GAP(4,1) S 1] 1 8 K(¥Yn) 1 (—4)71(25)72n253+1
14 | GAP(80,50) S |1 K(v/n, ¥/m) —4rn?ms®
15 | GAP(80,34) 1|8 4 B} s 125rn2?m?
6 | GAPGo,31) | CAPU02) SR R I 8| K(Von2 ym) | m —500rn2m®
17 | GAP(80,50) 1] 1 K(v/n, Ym) rn?ms
18 | GAP(160,207) | GAP(20,2) S, T 11 32 K({Yn, ¥m) | m® | (—4)71(25)72n23+1ms

We obtain the equation of the twist via the isomorphism diag(«, 1, 8), where o = /a and
B = Vb for the cases (1)-(8), 5 = +{/ Ts /m?® for the cases (9)-(12) and B = V/b</m? for the
cases (13)-(18), for some n € k\ k* and m € k\ k°, with s € {1,2,3,4}, r € {1,25} and

ji € {0,1}, fori =1,2,3.

Proof. As an example, we show the computations for the 9th case. Let m be an element of
k\ k°, and set L := K(5/m). Then L/k is a Galois extension with Galois group isomorphic
to GAP(40,12): we have Gal(L/k) = (ho, h1, hs) where hg : G5 — (s, Ca = Cay /M —
CVM, hy i G Gy G —Cay VM = /M, and by : G5+ (2, G+ Ca, VM — V/M. In
particular, b5 = h? = h3 = 1, moreover hihy = hohy, hihohy = hg, and hohy = hohd.
Hence Gal(L/k) ~ GAP(40,12). This proves that solutions to this Galois embedding
problems already exist. Second we are looking for isomorphisms ¢, = diag(as, 1, 5s),
for s = 1,2,3,4 whose splitting field is L and produce the defining equations for the
four non-equivalent twists over k. This can be done by applying the 1-cocylce condition:
@, 0 M2l = g, Therefore, we can take ¢, = diag(v/m?, 1,+/5v/m?), and the twists
are defined by m*X?® + Y? + 25m*X Z* = 0, for s = 1,2, 3 and 4. O

Example B.4. Consider the smooth plane curve C defined over a field k of characteristic p = 0
or p > 13 by the equation X° + Y*Z + X Z* = 0. The full automorphism group Aut(C) is
isomorphic to GAP (16, 1), and is generated by S := diag(1, Ci6, (13). Assuming that (¢ ¢ k,
then K = k(&16) and [K : k| = 8. Moreover, Gal(K/k) is generated by 11 : (16 — (35 (of
order 4) and 1y : (16— (Jg (of order 2) with T9Ty 79 = Ty, in particular Gal(K /k) is isomorphic
GAP(8,2). The action of Gal(K/k) on Aut(C) is defined by 7,(S) = S* and 15(S) = S”.
Now, the group T := Aut(C) x Gal(K/k) is generated by the elements 1, := (s,1), ¥y 1=
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(1,7) and V3 := (1, 72) of orders 16, 4 and 2 respectively. Thus

F = <191, 192,793 ’ ?916 = 19% = 19% == 1, 192191 == 19:1')192, ?93191193 == 19{, 193192193 = 192> == GAP(128, 913),

where Aut(C') is identified with lat[42] inside the subgroups lattice of T
Similarly, as the previous example, the computations can be collected into the following

result:

Theorem B.5. Following all the above notations, the set Twisty(C') is completely determined
by the following tables: The pairs (G, H) and their splitting fields as solutions of the associated

Galois embedding problems are included in the next table.

Table B.3: The pairs (G, H) and their splitting fields

1 @ [ ) Jen) | a [ o[ nem L |
; GAP(8,2) | GAP(L1) 1 Sls 1 1 K
3 GAP(16,5) S | s3 K('W/=n8)
4 | GAP(16,10 1] 1 K(Jn
5 GAP((16,6)) GAP(2,1) S e 2 K 1{)/(%)
6 GAP(16,3) 52 | §2 K(V2n?)
7 GAP(32,9) S5z | g8 K( Van?t)
8 | GAP(32,25 1|1 K(¥Yn
9 GAPE32, 38; GAP(4,1) st S | s3 ‘ K( 1(\6/\;734)
10 GAP(32,11) S | S5 K(¥/—=in%)
11 | GAP(64,41) sz ] g K(/—2n?)
12 | GAP(64,42) GAP(.1) 52 s | 1 . K(V2n?)
13 | GAP(64,123) 1 1 K ()
14 | GAP(64,125) s | s K('W/=n?)

[ 15 [ capa2s,013) [capas,) | s [ 1 [ 1| 16 [ K(¢n) |

The equations of each twist of C over k is defined by an equation of the form X° +aY*Z +

bX Z* for some a,b € k through an isomorphism of the shape diag(1, \, ).
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Table B.4: Equations of Twists

[ 2o |

|

|

ID(G) a b A I
1 1 1
GAP(8,2) 1 1 1
2 4 \/§
3 GAP(16,5 > —n2, —4n? -1 CTs V=B, —C3svV2 ¥V n G
4 GAP(16,10 > ) n?,4n? 1 f, ff 1
5 GAP(16,6 > —2n?, —8n? -1 Cq V/=16n8, —V2 W/ =16n8, v = ¢4, —V2 S
6 GAP(16,3 > —2n?2, —8n? 1 (P V212, (5sv/2V/2n2 Ca
7 2n, 4n3 Vand Vant)3 2
GAP(32,9 > o 4 G4 Vian, Ga( 1’;)74 ; v2
8n, n3 Y=L Wand, Y22 VaAnT)” —4 5 4n?) -2
3 4 373 1
8 | Gap@2,25 > ki 1 v, GV .
4 4n,4n (1—(4)%, (1+C4)Vn3 -1
9 3 7 16/ 4 2 (16/__7\3 2
GAP(32,38 > mnn 3 1 . C167 16” ) Gl ( 716) . Clg
4n,4n (Cu) - Cl(,) vV —nt, C4\/§( \4 7n4) *Cm
1 2n, 4n3 i/ —dn®, (3 (/—4n®)3 —C V4
01 cap@2 11> oo 4 VAT, Gl VoAnT)T ca
8n, n Y= W/ —ant, S VALV AT Gy
11 4,8n? o2 L(V=2n?)7, (1 - Ca)(V=2n%) (V=2n2)!
—om )
GAP(6L.41 > 1,207 L Y=a(V—2nd), (V—2n2)? —(V—2n)t
’ 2n, 4n3 2 ¢Ts V—=2n2, C16( V/—2n2)° V2( WV =2n2)*
—a3n = =
X 8n,n’ Cr6 V=4 V=2n2, 1¢16vV/—4( V—2n2)° | —v2(V—2n?)*
12 4,8n o2 L¢3s(V2n?)7, (1 - Ca)(V2n?)3 —(Van2)t
GAP(64,42 > 1,2n 3m$Te V=4 V2n?)7, (V2n?)? (Van2)*
’ 2n, 4n3 g2 Won2, (V2n2)5 V2( V/2n2)4
n
8n, n3 V=1 V22, L Y=4(V2n2)5 —V2( V2n2)4
13 2 8 8 3
GAP(64,123 > ’ n2 ' n
4n, 4n? V=4¥n, V—4(¥Yn)3 (/)
— n
g 4n3, 4 V=A(Yn)°, LV=A(Yn)"
2 3 16/ o5 ,2 (16 3
14 n,n (e v _”Qvflel( 1\/6_"2) ( %/ =n2)*
n3,1 5 Cie( m)‘ﬂ 5 *”2)7
GAP(64,125 > 5 —n —7s 2
4n, 4n <16 V=t V— V= ( V- n2)? —( 16 7712)4
4n®, 4 C16\/—(1v6— )»lv—(l\/es—n )7
15 ) L W/n?
rn, rn? n3 f v n13 (—1)r—1t 18/p12
GAP(128,913 > 16 7 Vn
=1 for r=1 .
TTLS,T n v )yl Y/
y= V=4 forr=4 (-1 "
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APPENDIX
Isomorphic geometric fibers for the

stratum /?/l\g YZ/57)

We saw in section §4.3 that the family C(, ) defined by Z°+ XV (X +Y)(X+aY ) (X +bY) =0
is geometrically complete over k for the stratum ME'(Z/57Z), where k is a field of characteristic
p = 0 orp > 13. Isomorphisms from the curve C(, ) to another curve in this family come from

transformations
a f t
: t '_> %7
sending the set {0, 1,00, a,b} to a set {0, 1,00, ¢,d}. The set T of such transformations is a
group and it is isomorphic to S5. Moreover, it is generated by
a(b—1)
b—a

(a,b) = (a, ) ma(a,b) = (%, %), 7(a.b) = (b.0).

The latest does not properly define a transformation of the curve in the family since switching
the parameters a, b does not change the equation. The first two satisfy the relations 7% = 75 =
(1172)° = 1 generating a group isomorphic to A;. We generate here the full list of geometric
fibers over (a,b), which are isomorphic over k. For each situation (a’,b’), we associate an
isomorphism between the fibers (a,b) and (a’,0’). The 5th column determine the order of the

field automorphism o; : (a,b) — (a’, V).
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Table C.1: Isomorphic fibers

% v Yo, | O(oi = (a,b) = (@, 0)) |
1 1 L . 11 2
5 b 1 dlag(lvg7Tﬁ)
3 1 a . 1 1
1 Z i dlag(1757 \G/E)
b b
5 a b s
- o bl X:—(X+Y): /1 —-a)1-0b)Z]
b—1 l—a
7 1 b e T
o B—o (X ZH(X +Y): §f lemllezd) 7
b—a 1—a
1 _a_
et X Xy ==
a—b 1-b
a—1 (I—a)b
(1;171)11 (X :—X + (%)Y . 5/7(17a[)lz<17b) 7]
—b)a
— - 5/ —(1—b)2 —a
B X gy R
(a—1)b

a— - 5/—(1—a)2(a—
P X X+ (1 —a)y) Ut

3
3
2
2
2
3
4
4
3
3
4
4
3
2
16 3
17 s /(1—a)(az 2
[X 2 ZH(X 4 (220)y) : §f d=alle=h) 7)
18 4
19 3
=1 . 5/(1=b)2(a—b)
> X 5 (X+1-bY): o3 Z] 2
21 4
-1 —b . 5/ (A=b)(a=b)?
- S ) /O ;
23 1 1 . 2
a B [V :X: VabZ)
24 3 2 2
25 a a4 2
b Llxy . 5/
26| ¢ a o /a2l 6
27 b b 1 . 6
= ¥ Z Y:3X: 8527 3
a
29 a—1 b—1 3
. ot b [V :—(X+Y): VabZ]
30 = = 6
b—a
b—a 4
b =1 . 5/b
- V:Z(X+Y): /52 =
a=b 5
- [Y: (X +Y): /%2 ;
a(1-b) 4
P [Y: 22X —Y: {/(ab)(21)12Z]
a—1 5
b(1—a) 5
a(1-b) V312X — v §/(ab)(52)42) "
1
b—a
3
— 5/b(1—a)?
b(I=a) Vi d(a—1x —v): {2 aly y
l1—a
b(a—bl) ] (a—b)4 6
= o
a5 [Y:5({(a-b)X-bY): § ) Z) 5
b—a
b
(1) [V 55X+ (5)Y) {20520 7] .
% Tb 1-b ) b3 3
1—
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Table C.2: Isomorphic fibers (continued)

a! 14 ¢a,; ‘ O(O’i . (a, b)
45 a a(1=b) - -
- - b— 5 —b
46 a&{b GLZ [Y: 28X 4+ (%)Y): (t(zab)g A >
a— a—
47 1 1 :
48 1?1 1Ib X+Y:=-X:{/(a—1)(1-b)Z] -
1-b 1—a
49 a _a_ -
- =b -1 5/(1—a)(a—b
50 aab Ll X +Y:Zlx: §f3=2eb 7 !
a— a—
51 b _b_ -
b= b—1 -1 5/(1—b)(b—
52 % L [X+Y:Glx: §/0=bd=ez -
— —a
53 11— 1-b ;
54 1—: 1_a [X+Y:-Y:{=17] -
- —b
55 | ol ‘= X4y:ly: o/=z 3
56 a—b a—1 =Y — :
a a
57 =1 b—a -
. b o1y 5/—1
58 boa 58 X+Y:3ty: {527 -
59 b—a 1 : -
a(b1_1> e X+Y:—(X+1v):{ (a—l);(l—b) 2]
60 a a(b=1) 4
61 1 a—b -
aﬁb b(a;l) [X +Y: —(X + %Y) .5 (b*l)i(lfa) Z}
2 | sz | b ;
63 a a(d=1) -
b= o =1 . 5/(a=1)2(a=b)
Y U= X4y =ix -y {flllti g .
—a
65 a(1-b) a : -
- b(1;a> a<1l:b) X+Y: 7(%)( + %Y) .3 (afliiéafb) 7] :
66 b b(1—a) 6
67 b(a—1) b -
= eS| _5/0=D2(b—a)
s | b Ba=T) X+Y:Z2X-Y: \/TZ] .
-
69 b b(1—a) -
O (X 4+ —(AX 4 Ly): /Ll )

70 a(l1-b) a 6
71 1—a a—1 -
b=l X+(1—-a)Y:=X: 810 -a)2b-1)Z]

—1
72 2—1 1—a 5
73 b—1 1—b -
= X+(1=-bY:=X: Y/ (a—1)(1-0b)2Z]
b—1
74 1-0b =2 .
75 | e=t a—1 - -
=5 1= - —1D2(b—
76 agélj Z—l [X + GTIY : TIX .2 (a 114( a) Z] .
a— a
77 a=b a—b -
=1 - - 5/(1— )2
78 aa—’; ab [X + ety =lx . {/1=ala=b)l 7 .
a— a
79 b—1 b—1 -
b= b b— — r b—1)2(a—b
80 b%(ll 51 X+ bty gl §/ et g ;
—a
81 b—a b—a -
b—1 b b _ AT
= 2 D A :
83 a—b :
aib 1-b [X+aY: —(X+Y) .5 (1—@)2(1—6)2]
84 - a -
85 b—a b -
1—a [X+bY : —(X+Y): {/(1—-a)(1-0b)2Z2]
b—
86 b 172 .
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Table C.3: Isomorphic fibers (continued)

a v b0, | O0i : (a,b) = (a/, 1)) |
1-b 1
87 | = a Xa4ly. =l(x+y): 3/0=a?@a=b),
33 T b [X+2Y: =(X+Y): o ]
a a—b
b b—1
89 a a—1 (X éy-;l(X V) - 5/(a—1)(a—b)2Z]
90 b—1 b + a ‘a + ) : a?
a—1 a
1 —1
N | 3 = X4 ly:=lix 4y 500200,
92 a—1 1 [ + b . T( + ) . P }
a—b b
—1
93 (I;—l % xiaey.=l(x1y). 5 (bfl)(bfa)QZ
94 @ a1 X+ 3Y: 57 (X+Y): /7]
b b—1
95 L b Y Y 1
— 1— Yy .
96 1= T Xt o a2
l—a l1—a
97 L a—1 Y 1
98 i:l{ E [X+ T—b * b—1 5b_1Z]
b—1 b
99 Z:}I) ail [X—i— aYl . 1Y i 1 Z}
—b a— —a Vi—a
100 | 25 a1
101 _a_ a—l y 1
—b —b a Y .
102 371 au, [X+ a—b " b—a - <5/b,aZ]
a—b a—b
103 | 2 2=t by 1
b—1 1—b (X + 25 2= A
E—N b b—1 " 1-b 31—b
104 | 355 b1
105 1=b U bY Y 1
b b— LY.
106 l 17{; [X + b—a " a—b " 5/a_bZ]
b—a a—b
b—1 1-b
107 b—a a(a—b) x4 e=bY . =DY . 5/(0-02(1-a)?
108 a(1-b) b—1 [ + a—b X+ a—b a—b ]
a—b b—a
b(1— 1
109 (bfaa> Z—b X b(l—a)Y | X (a=1)Y | 5 (1—b)2(1—a)2Z
110 a1 BI—a) X+ = —X+ 5y b—a ]
a—b b—a
—b )
11 aEllfb) [llfb [X+ a=b vy . ;1X+ b—a y . 5 (a=b)2(a—1)2 Z}
112 a—b a—b a(l1-b) T a a(1-b) : a®(1-b)
1-b a(l1-b)
113 | l=e [ MI=9) (e 1)2
1-b 1-b bla=1)y, . —1 1— . 5/ (a=b)2(a—1)
EVRe=D a(l;a) X+oenY: 2 X+e=nY: -0 2]
a(1—b) 1-b
b— b—
115 ﬁ b(1—0;1) (X + boa y . —lyy a=b y .5 (b—a)2(b—1)2 2)
116 b—a b—a b(l—a) b b(l—a) . b3 (1—a)
b(l—a) 1—a
117 | e0=9 1-b 2(5_1)2
(1= 1— a(b—1) =1 1-b . 5/ (b—a)2(b—1)
s (1;50 ar= KX+ sa Y 5 X Tsan? iyt
l—a b(l—a)
119 a b 5
diag(1,1, /=1
120 b a 9 )
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