ADVANCED

INSPECTION
TECHNIQUES FOR

MOLECULAR
SIMULATIONS

Pedro Hermosilla Casajas

Supervised by
Pere-Pau Vazquez
Alvar Vinacua



Advanced inspection techniques for
molecular simulations

Pup THESIS

Pedro Hermosilla Casajts

ViRVIG research group
Universitat Politecnica de Catalunya

Electronic and Atomic Protein Modeling group
Barcelona Supercomputing Center

Supervised by
PERE-PAU VAZQUEZ
ALVAR VINACUA



Pedro Hermosilla Casajus
June 2017



Acknowledgements

The work presented in this thesis is not only the result of three years of
work, but also the result of the knowledge and support received from many
people since I first enrolled in the university. Therefore, I would like to dedicate
some lines to all the people that make this thesis possible.

First, I would like to thank my advisors, Pere-Pau Vazquez and Alvar
Vinacua. I will always be eternally grateful to Pere-Pau for introducing me to
the world of research when I was only a student trying to find my way almost
ten years ago, for his guidance during all these years, and for his constant
motivation and support (even when I was miles away). I am also forever
thankful to Alvar for his guidance and for showing me the values a scientist
should have. I will really miss his scientific anecdotes. I cannot imagine a
better team to help a student take his/her first steps into science.

I would like to thank my number one fan, my partner Gloria. I cannot begin
to describe how grateful I am for her daily support, her continuous encouraging
words, and her permanent smile which lighted even the darkest days after hours
of writing. I could not have gone through this last stage of my thesis without
her support.

I am infinitely grateful to my siblings Susana and Carlos, who have morally
and emotionally supported me in my life. To my mother, Concepcion, for
raising me and providing me with everything I needed, even if it was not
always easy, and to my father, Jose Antonio, for all his proud words after each
publication.

A very special gratitude goes out to everyone at Moving research group,
with a special mention to Isabel Navazo, who always took every student in the
group under her wing, and to everyone who worked in the CRV in the past six
years. After all the fun we shared, inside and outside the office, you became
more than colleagues, you became my friends.

I am also grateful to Victor Guallar and Jorge Estrada for helping and
providing the funding for the project, and for all their suggestions and feedback,
without which this work could not have been done.

And finally, last but by no means least, to the people who have crossed my
path and have contributed directly or indirectly to this thesis.

Thanks you all for your encouragement!






Contents

1 Introduction 1
1.1 Motivation . . . . . . . . ... ... 2
1.2 Biomolecular background . . . .. ... ... ... ... .. .. 3
1.3 Addressed problems and contributions . . . . ... ... .. .. 6
1.4 About this document . . . . . . .. ... ... ... ... 7

2 State of the art 9
2.1 Representation methods . . . . . . ... ... ... ... ... 9

2.1.1 Spacefilling . . . . . ... 9
2.1.2 Balls& Sticks . . . . . . ... .. 13
2.1.3 Ribbons . . . . . . ... 14
2.1.4 Molecular surfaces . . . . .. ... ... ... .. ... 16
2.2 Illustrative visualization . . . . . .. ... ... ... ...... 19
2.2.1 Introduction . . . . .. ... ... ... .. ... 19
2.2.2 Ambient occlusion . . . .. ... ... ... 19
2.3 Visualization of interaction forces . . . . . . . . ... ... ... 23

3 Efficient rendering of large molecular models 25

3.1 Real-time volume-based ambient occlusion . . . . . . ... ... 25
3.1.1 Ambient occlusion . . . ... .. ... ... ... ... 26
3.1.2 Overview . . . . . ... 31
3.1.3 Algorithm . . . .. ... ... .. ... ... 31

3.1.3.1 Occupancy pyramid . . . ... ... ...... 33
3.1.3.2  Occupancy computation . . . . . .. ... ... 33
3.1.3.3  Volume-based ambient occlusion . . . .. . .. 37
314 Results . . .. ... ... 39
3.1.5 Conclusions . . . . . .. . ... ... . 43

3.2 Realtime halos . . . . . . . . . ... . ... 45
3.2.1 Overview . . . . . . . . . ... 46
3.22 Halos . .. . . . .. 47
323 Temporalhalos . . . . .. ... ... ... ... ..... 48
324 Results . . ... ... 49
3.2.5 Conclusions . . . . . . . . ... oo 52

3.3 Realtime secondary structures generation . . . ... ... ... 54
3.3.1 Algorithm . . . .. ... ... ... ... .. 55

iii



iv CONTENTS
3.3.2 Implementation . . . . . .. ... ... L. 59
3.321 CPU ... ... . . 59

3.3.2.2 Vertexshader . ... .............. 61

3.3.2.3 Tessellation control shader . . . ... ... .. 62

3.3.2.4 Tessellation evaluation shader . . . ... ... 64

3.3.2.5 Fragment shader . . . . . . .. ... ... ... 65

3.3.3 Ambient occlusion . . . .. ... ... ... ... ... 66
3.34 Results . .. . .. 68
3.3.5 Conclusions . . . . . . . . ... 71

3.4 Interactive solvent excluded surface refinement . . . . ... .. 73
3.4.1 Algorithm . . . . ... ... L 74
3.4.1.1 SES computation . ... ............ 76

3.4.1.1.1 Probe intersection . . . . .. ... .. 76

3.4.1.1.2 Distance field refinement . . . . . .. 77

3.4.1.2 Implementation . . .. .. ... ... ..... 78

3.4.1.3 SES progressive refinement . . . . .. .. ... 79

3.4.1.4 Detection of missing features . . . . . .. ... 85

34.15 SEScoloring . . ... ... ... ... ..., 86

3416 SESrendering . ................. 87

3.4.2 Results . .. . . ... 89
3.4.2.1 Performance . ... ... ... ... ...... 89

3.4.2.2 Evaluation ... ... .............. 93

3.4.3 Conclusions . . . . . . . . ... o 94

4 Visualization of molecular interaction forces 97
4.1 Application-Driven visualization design . . . . . ... ... .. 100
4.1.1 Background . . . . . ... ... 100
4.1.2 Design requirements . . . . . ... ... ... 104

4.2 Interaction energy calculation . . . . . ... .. .. ... 106
4.3 Interaction energy visualization . . . . . .. .. ... ... ... 109
4.3.1 Idiomsandfilters . . . . .. . ... .. ... ....... 109
4.3.1.1  Filtering . . . ... ..o 110

4.3.1.2 Focusand context . . .. ... ... ...... 111

4.3.1.3 Feature enhancement . . ... ... ... ... 112

4.3.1.4 Interaction . . .. .. ... ... ... ..... 113

4.3.2 3D visualization . . .. ... ... ... ... ... ... 113
4.3.2.1 Atom representation . . . . . . ... ... ... 113

4.3.2.2 Energy representation . . . . . ... ... ... 115

4.3.2.3 Visualization configuration . . .. .. ... .. 117

4.3.3 2D visualization . . . . . . .. ... o 118



CONTENTS v

4.4 Application cases . . . . . . . ... 120
4.4.1 Single conformation analysis . . . ... ... ... ... 120

4.4.2 Trajectory analysis . . . . . . . ... ... ... ..... 124

4.4.3 Evaluation . ... ... ... .. ... .. ... ... 127

4.4.4 Comparison with other methods . . . . ... ... ... 127

4.5 Conclusions . . . . . . . . . .. . 129

5 Conclusions 131
5.1 Context of the thesis . . . . . . . . ... ... ... ... .... 133
5.2 Futureresearch . . . . .. . .. .. ... ... ... ... ... 134

5.3 Publications . . . . . . ... 135






Introduction

Visualization is a discipline whose objective is to communicate information
through images. One could argue that visualization has been used even before
written language. Cave drawings, cartographic maps and scientific illustrations
are some examples of how images were used to transfer and store knowledge.
In the past decades, visualization evolved rapidly thanks to computers, as
they provided the tools and techniques to generate more complex and accurate
images, and the necessity to understand and analyze bigger amounts of data.
This made visualization a field of growing importance and interest with a vast
number of application areas.

One of these areas is scientific visualization (SciVis). SciVis is focused
on the visualization and inspection of scientific data in order to help scientists
with understanding, knowledge discovery and hypothesis testing processes. De-
pending on the nature of the data, the objectives of the visualization and the
techniques used to achieve them are different. In this thesis, we focused on
molecular visualization, a subarea of SciVis that aims to visually represent
molecules and their properties.

Molecular visualization has been a power tool in the development of modern
chemistry, having, thus, a direct impact in other areas like biology, medicine,
physics or geology. Molecular visualization has its roots at the beginning of
the 19'" century, when Dalton [Dall0] used hand drawings to illustrate his
atomic theory. Over the succeeding decades, molecular visualization helped in
communicating new breakthrough discoveries, such as the illustration of the
double-helix model of DNA structure proposed by Watson and Crick [WC53]
in 1953. In addition, it helped lead to actual discoveries, such as the 3D model
used by Kekulé to solve the structure of benzene [Kek66] in 1866. However,
molecular visualization did not become a hot research field until a few decades



2 CHAPTER 1. INTRODUCTION

ago. The improvements of methods to visualize the structure of molecules,
such as X-Ray crystallography, increased the available known structures of
biomolecules (the Protein Data Bank [BWF100] currently has almost 130k
known structures of biomolecules). This vast amount of available data together
with the increasing computational power of hardware and the development of
methods to simulate the behavior of such structures, as molecular dynamics or
Monte Carlo techniques, drove the attention of researchers into this field. In
last decades many advances in the field were carried out, improving the quality
of molecular visualization itself, providing insight about certain properties of
molecules, or even developing new techniques to understand their behavior over
time. This thesis aims to contribute to this field with novel visualization tech-
niques which improve the pharmacology drug design processes and enzymatic
catalysis studies.

1.1 Motivation

Molecular dynamics simulations are computer simulations of the physical move-
ments of atoms and molecules, and the interactions between them. These sim-
ulations are used, among other places, in chemical physics, materials science,
and the modeling of biomolecules. In the particular cases we focus on (pharma-
cology drug design and enzymatic catalysis), molecular dynamics simulations
predict the binding mode and binding affinity of a small molecule (the drug)
with a biomolecule (figure 1.1). Usually, the objective of the drug is to activate
or inhibit the function of the biomolecule, which, in turn, results in a ther-
apeutic benefit to the patient. Therefore, determining the pathway the drug
takes to dock onto the biomolecule and how strong the binding is, determines
the potency of the drug.

Computing molecular dynamic simulations is a complex and time-consuming
process, which usually requires a specific hardware such as the Anton machine
[DDG*12], which allows the parallelization of the calculation. Even so, the
calculation may last for days or weeks. New technological advances, based on
protein structure prediction algorithms and Monte Carlo sampling, have been
made [MSG13, BVAGO5] to reduce this calculation time to the order of hours
or minutes and, with hardware advances, this time could be reduced even more
(to the order of seconds) in the near future.

The results generated by these techniques are usually hundreds of trajecto-
ries composed of thousands of single steps, leading easily to several gigabytes
of data for each simulation. In spite of the speed of these methods, analyzing
such results can take days or weeks, since most of the available software focuses
on the analysis of single conformations. Moreover, it is not until the analysis



1.2. BIOMOLECULAR BACKGROUND 3

Figure 1.1: Visual representation of the docking process of a drug into a
protein. The drug, highlighted with a yellow silhouette, is trying to enter
into an opening of the protein. When the drug achieves the active site,
it will create chemical bonds with the residues of the area, activating or
inhibiting the function of the biomolecule.

of these results when the researcher realizes if the parameters chosen to run
the simulation were appropriate to achieve the desired results, having to rerun
the simulation again if they were not.

Providing new tools and techniques to visualize and to interact with these
simulations is crucial to understanding them. Moreover, proper tools could
allow the analysis and modification of the simulations in real-time, guiding
them to better results (which would directly translate to a reduction of the
calculation time).

1.2 Biomolecular background

This section aims to provide a brief introduction into the field of biomolecules,
providing the reader with the basic knowledge to understand the techniques de-
veloped during this thesis. To obtain a complete introduction into the subject,
the reader can refer to [VV10].

Proteins are large biomolecules crucial for life, as they carry out a large
number of functions in living organisms. Proteins replicate the DNA, catalyze




4 CHAPTER 1. INTRODUCTION

0 ® [ ® 0 ® &

- Jc — - — e

Residue i-1 Residue i Residue i+1 Residue i+2

Figure 1.2: Proteins are sequences of connected amino acids. All amino
acids share a common structure (H, N, Cy, C and O atoms in the image)
and a side-chain specific to each amino acid type (R; blocks). The com-
mon structure allows the creation of peptide bonds between them, gathering
together sequentially and creating a chain known as the protein backbone.

metabolic reactions, transport molecules from one location to another and so
on. They are composed of one or more chains or sequences of amino acids.
These amino acids are connected between them by peptide bonds and the
order, type, and length of the residue chains define the characteristics of the
protein, as they are unique.

There are 20 amino acids which make up proteins [GWCD15, RUC*13].
All of them have a common structure (H, N, Cy, C and O in Figure 1.2) and
a residue that is different for each type of amino acid (R in Figure 1.2). The
common atoms of the amino acids are known as the protein backbone, as they
connect one amino acid to the next in the chain.

The peptide bonds between amino acids are not rigid and they can fold,
allowing the movement of the atoms. Each protein has a specific conformation
(disposition of the atoms in the space) which makes it operative and functional,
also known as its native conformation. To achieve this native state, most of the
proteins fold by themselves, but, in some special cases, proteins are assisted
by other molecules (molecular chaperones). Correct folding is key for the right
function of a protein, whereas incorrect folding can lead to a malfunction of
the system. Indeed, many diseases are related to incorrect folding of proteins,
e. g. Alzheimer’s disease or Parkinson’s disease [VV10].

The structure of folded proteins can be analyzed at different scales, from
atom level to protein complex level. Linderstrgm-Lang, in his third Lane Lec-
ture in 1952 [K.52], introduced a classification to describe the structures of a
protein at different levels:

e Primary structure: This is the lowest level at which proteins are ana-
lyzed, namely the atomic level. The description of the primary structure



1.2. BIOMOLECULAR BACKGROUND

—

B-Sheet (3 strands) a-helix

Figure 1.3: Different classification of the protein structures at different
levels. The primary structure refers to the sequence of amino acids of the
protein. The secondary structures describe the patterns formed along the
backbone due to hydrogen bonds. The tertiary structure is given by the final
conformation of the protein. And, lastly, quaternary structure describe the
interactions between different single proteins to form a protein complex. ©
By Thomas Shafee (Own work) [CC BY 4.0 (http://creativecommons.org/licenses/by/4.0)], via

Wikimedia Commons.



6 CHAPTER 1. INTRODUCTION

is given by the sequence of amino acids which form the backbone of the
protein.

¢ Secondary structure: The three-dimensional structure of the pro-
tein may lead to the formation of hydrogen bonds between two non-
consecutive amino acids in the backbone, creating characteristic patterns,
most commonly a-helices and -sheets. In the a-helix pattern, a part of
the backbone acquires the form of a helix due to hydrogen bonds created
between amino acids separated by approximately 4 positions in the back-
bone. On the other hand, in the S-sheet pattern, two distant parts of the
backbone (or even two different backbone chains) are interconnected in
parallel by hydrogen bonds between at least two or three pairs of amino
acids.

e Tertiary structure: The term of protein tertiary structure refers to the
final structure of a single protein after folding. The residues of the amino
acids interact and bond with each other, which makes the protein fold
into its native conformation. The tertiary structure of a protein is given
by the 3D coordinates of its atoms in this native state.

e Quaternary structure: The quaternary structure describes how differ-
ent protein subunits (single proteins) gather together forming a protein
complex to perform a certain task.

The different levels of protein structure analysis are illustrated in Figure 1.3.

1.3 Addressed problems and contributions

The work presented in this thesis aims to address the following problems related
to molecular visualization within the scenario described in section 1.1:

o Better communication of the molecular shape: Rendering molecules
using basic lighting could make the recognition of their shapes difficult.
Ambient occlusion is a well-known technique used to increase the shape
perception of objects. It is commonly used in molecular visualization due
to the particular shape of molecules (usually possessing several cavities
and pockets). However, most of the current techniques do not have an
acceptable quality, cannot be computed in real-time and/or do not scale
well with the size of the molecule. This thesis presents a new technique
to compute the ambient occlusion factor, which overcomes the aforemen-
tioned problems [HGVV16].



1.4.

ABOUT THIS DOCUMENT 7

Enhance the understanding of the ligand position during the
simulation: Being able to identify the ligand position in a single time
step and during the whole simulation is mandatory to validate a simula-
tion. This thesis introduces a technique to render halos around certain
molecule and to generate temporal halos, which indicate the areas where
the molecule was in previous steps [HGVV16].

Fast generation of complex representations: The ribbons represen-
tation model illustrates the underlying structure of a protein, making the
identification of certain properties easy. The rendering techniques com-
monly used to generate this representation have several limitations. This
thesis presents a new technique to generate and render large molecules us-
ing the ribbons representation model in real-time [HGVV15b, HGVV15a].

Real-time generation of solvent excluded surface (SES): The
solvent excluded surface is a representation method which emphasizes
the surface of the molecules that can be reached by another molecule.
The computation of these representations is a time-consuming process
which the current state-of-the-art is only able to compute in real-time
for molecules with a limited number of atoms. In this thesis, we intro-
duce a new method to compute an approximation of the solvent excluded
surface for large molecules progressively, providing a quick approximation
and allowing interaction with the intermediate results during the refine-
ment [HKG'17].

Effective visualization of molecular interaction forces: Molecular
dynamics simulations are driven by the interaction forces between all the
atoms of the system. The understanding of these interactions is crucial to
understand the simulation. Despite their importance, the visualization of
these forces has not received much attention. In this thesis, we introduce
a novel system to compute, visualize, and filter these forces for complete
simulations in real-time [HEG'17].

1.4  About this document

The remainder of this document is organized as follows: Chapter 2 reviews the
state-of-the-art methods related to the research topics addressed in this thesis.
Chapter 3 covers the contributions related to efficient rendering of molecules.
Thus, Section 3.1 describes the method developed to compute ambient occlu-
sion factors in molecular scenes. After that, Section 3.2 presents the algorithm
used to generate halos around the ligand while Section 3.3 shows the techniques



8 CHAPTER 1. INTRODUCTION

used to generate and render the secondary structures of a biomolecule. Lastly,
the algorithm to compute solvent excluded surfaces is introduced in Section 3.4.
The last contribution of the thesis, the visualization of the interacting forces
of a simulation, is presented in Chapter 4. In the last chapter, Chapter 5,
the conclusions, the possible future lines of research and the publications are
addressed.



State of the art

In this chapter, we will review the most significant work in the different fields
we have addressed in this PhD thesis. First, we will talk about the models
used to represent molecules in molecular science, then, we will talk about
the shading technique ambient occlusion, and at the end, we will talk about
the visualization of the interaction forces involved in the molecular dynamics
simulations.

2.1 Representation methods

In this section, the most popular representation methods used in molecular
visualization are presented. Moreover, the use of the different models in molec-
ular software is described, indicating its major shortcomings.

2.1.1 Space-filling

The Space-filling model is one of the most commonly used methods to visu-
alize molecules, as it gives a good approximation of the overall shape of the
molecule [Per05]. This model represents each atom of the molecule using a
sphere with its size determined by the element’s van der Waals radius’, which
illustrates the volume occupied by the molecule [KKL™16].

This model was first used by Pauling, L. and his colleague Corey, R. in
1953 [CP53]. They created a physical model of various molecules (figure 2.1)
using hardwood spheres to represent the atoms, with their size proportional

The van der Waals radius describes how close two unbonded atoms can get before they
begin to repel one another. Introduced by Pauling in 1945 [Pau45], it is named after Johannes
Diderik van der Waals, winner of the 1910 Nobel Prize in Physics.

9



10 CHAPTER 2. STATE OF THE ART

Figure 2.1: Pauling and Corey with their Space-filling model, 1951. ©
Copyright California Institute of Technology.

to the element’s van der Waals radius (1 inch = 1 A). These spheres were cut
to create matching flat faces, allowing intersections between them. Moreover,
they colored the spheres using a color palette which assigned each atom type
a specific color. The initial color palette had the colors listed below:

e White: Hydrogen
e Black: Carbon

e Blue: Nitrogen

¢ Red: Oxygen

In 1965 L. W. Koltun patented a simplified version of the model [Kol65]
where the spheres were made of plastic and joined with snap connectors. The
Space-filling model is also known as the CPK model, named after their inven-
tors, Corey, Pauling, and Koltun.

Later, with the appearance of molecular visualization software [HDS96,
KBW96, GS01, PVV02, PGH"04, MGB™05, Sch16], the Space-filling model
was used in computer graphics to represent molecules. The first approach taken
by these packages to draw the atom spheres was use triangle meshes [HDS96,
KBW96, GS01, PVV02], and the standard rasterization algorithm to project
them on screen. Although the graphics pipeline was optimized to render tri-
angles, they are not the best choice to render the spheres of the Space-filling
model since they could generate visual artifacts and performance penalties.
The process of triangulating a sphere consists in using a set of planes to ap-
proximate a curved surface, so that the approximation can produce sampling



2.1. REPRESENTATION METHODS 11

Figure 2.2: Images of Sigg’s implementation [SWBGO6] of the Space-
filling model on the left and Tarini’s [TCMOG] on the right.

artifacts. If the number of triangles used is big enough, we can assure that the
projection area in pixels of these triangles is small for a certain distance, so
the curved surface of the sphere can be approximated with small error. But
if the software allows zooming on the scene, the sampling can always be vis-
ible if the camera is close enough. Therefore, the user had to select between
performance (determined by the number of triangles of the scene) and image
quality (defined by the number of triangles used to approximate the spheres).
To overcome these problems, and with the appearance of programmable
GPUs, Randima et Kilgard [RK03] proposed a method to render spheres using
impostors. They rendered a quad oriented towards the camera that covered the
whole sphere, and, for each pixel, they determined the real shape of the sphere
using a set of textures. Their implementation improved both performance and
image quality, but the algorithm was only designed for a camera with ortho-
graphic projection. In 2004, Bajaj et al. [BDST04], used Randima’s technique
to render the spheres of the Space-filling model under orthographic and per-
spective projection, although, in perspective projection, the sphere shape and
pixel depth were only approximations, as the technique was designed only for
orthographic projection. In 2005, Halm et al. [HOFO05] also used textured
impostors to visualize molecules, but they improved the rendering under per-
spective projection by modifying the depth value stored in the texture.
Despite improving the rendering of spheres, textured impostors still had
sampling problems (the texture only stored a discrete number of samples, and
the performance suffered from texture bandwidth consumption). Procedural
impostors, on the other hand, could generate accurate representations without



12 CHAPTER 2. STATE OF THE ART

Figure 2.3: Physical 3D model of Kekulé’s Ball and Stick model
(1 865) /Kek66]. Image obtained from [Per05].

any sampling problem. They were successfully used to represent glyphs by
Gumbhold in 2003 [Gum03], but it was not until 2006 when Tarini et al. pre-
sented their work [TCMO6] in which they used them to render molecules. They
computed, for an orthographic projection, all the needed information to render
the spheres on the fragment shader, including silhouettes and other illustrative
effects (Figure 2.2). A more general algorithm to render procedural impostors
was developed by Sigg et al. [SWBGO06] the same year. They computed the
real ray-sphere intersection on the fragment shader for both orthographic and
perspective projection (Figure 2.2).

These techniques produced high-quality images for most of the molecules,
but they did not scale well when they had to visualize big molecular aggre-
gations, as whole cells. Different approaches were developed to deal with this
amount of data, but, as the topic is out of the scope of this thesis, we are
only going to mention the most relevant ones. An incremental work carried
out by different authors [GRDE10, LBH12, FKE13] led to a system that could
handle big molecular systems. This software ray-casted the scene distributed
in a grid-based data structure, allowing to find the first atom which intersected
with the ray without unnecessary tests. Another approach was developed by
Le Muzic et al. in 2014 [LMPSV14], which used the latest features of the GPUs
to generate different levels of detail adaptively. A deeper analysis of these tech-
niques can be found in the state-of-the-art report presented by Kozlikova et
al. [KKL*16].



2.1. REPRESENTATION METHODS 13

Figure 2.4: Images of Halm’s implementation of the Balls & Stick
model [HOFO05] on the left and Sigg’s implementation [SWBGO06] on the
rigth.

2.1.2 Balls & Sticks

The Balls & Sticks model (B&S) and the Space-filling model are similar as both
use spheres to represent the atoms. But, nevertheless, the B&S model, uses a
smaller sphere radius, being able to represent the bonds between atoms by a
set of cylinders. In 1865, during the "Friday Evening Discourse" at London’s
Royal Institute, this model was first presented by A. Hoffman [Hof65]. Hoffman
used colored croquet balls connected by sticks to demonstrate his work, "The
Combining Power of Atoms". The next year, Kekulé, created a similar model
in 3D to solve the structure of benzene [Kek66] (Figure 2.3). The B&S model
was used later by several Visualization Software Packages [HDS96, KBW96,
GS01, PVV02, PGH'04, MGB™05, Sch16] as one of the most commonly used
methods to communicate the structure of molecules.

The rendering techniques used to visualize molecules with the Space-filling
and the Balls and Sticks models evolved together as both of them needed to
render spheres to represent the atoms. However, the B&S model also had to
render cylinders to represent the bonds between atoms. In the rest of this sub-
section, we will discuss only the most popular techniques to render cylinders,
as the techniques used to render spheres have already been described.

The first approach used to visualize molecules with the B&S model approx-
imated their geometry by triangle meshes and used the standard pipeline to
render them. As we discussed in Subsection 2.1.1, this can lead to sampling
problems and a low rendering performance. To overcome these problems, as



14 CHAPTER 2. STATE OF THE ART

Figure 2.5: Hand drawing of the structure of a molecule using ribbons

(1981) [Ric81].

for the Space-filling model, Bajaj et al. in 2004 [BDST04] and Halm et al.
in 2005 [HOF05] used textured impostors to represent the cylinders (see Fig-
ure 2.4). However, as Halm et al. commented on their paper, for perspective
projections the pixel depth values obtained with these techniques were only
approximations.

A year later, in 2006, two different methods improved cylinder rendering.
The first one, the method proposed by Tarini et al. [TCMO06], used procedu-
ral impostors. Although Tarini’s impostors were fast to render, they worked
only with orthographic projection cameras (they were developed under that as-
sumption). A more general algorithm was developed by Sigg et al. [SWBGO06],
where the impostors performed a real ray-surface intersection, allowing both
orthographic and perspective projections (see Figure 2.4).

2.1.3 Ribbons

Another relevant representation method is the ribbons mode. This method
provides a higher abstraction of the underlying structure of biomolecules by
rendering their backbone chain using a set of sheets and tubes. This repre-
sentation helps experts to focus on particular properties of the biomolecule by
removing from the visualization not relevant information.

This method was popularized by Richardson [Ric81]. He used this method
on his hand drawings to illustrate the common secondary structures found in
biomolecules (see Figure 2.5). Later, the ribbons representation method was
used in molecular visualization for its simplicity.



2.1. REPRESENTATION METHODS 15

Figure 2.6: Images of Krone’s implementation of the ribbons model
[KBE08] on the left and Bagur’s implementation [BSN12] on the right.

The method most commonly used to extract the 3D geometry from the
molecule is the one proposed by Carson [Car91], as it is fast to compute and
produces a smooth representation. He used a B-Spline to interpolate between
the positions of the carbon-a atoms of the amino acids and then, generate
the tubes and sheets over them. Later in 2004, this work was extended by
Halm et al. [HOF04] to generate an adaptive number of triangles depending
on the distance from the camera and their orientation. The reduced number
of triangles increased the rendering speed, but the adaptive triangle creation
added overhead on the CPU side and an extra transmission load between CPU
and GPU (they had to create the triangles every time the camera changed its
position and then sent them to GPU memory ). Zamborsky et al. [ZSK09], in
2009, proposed a method with the objective of reducing the amount of data
stored by an animation. Their method interpolated the backbone and used a
predefined representation for each segment type. In 2008, Krone et al. [KBEOS],
compared three different methods to generate the geometry of the secondary
structures. One method created the geometry completely on the CPU, another
method was a hybrid CPU-GPU algorithm, and the last one generated all the
geometry on the GPU using geometry shaders (see Figure 2.6). The comparison
pointed out that the faster method to render molecules on ribbons mode was
the precomputation of the geometry on the CPU, but it required too much
memory to store the data, making it unsuitable for large simulations. On
the other hand, the GPU implementation did not require precomputation or
additional stored data, but the rendering was too slow for large molecules.
The only method that had acceptable results for all the simulations tested was



16 CHAPTER 2. STATE OF THE ART

Figure 2.7: Solvent accessible surface (yellow) and solvent excluded sur-
face (red). © Tmage from the state-of-the-art report published by Kozlikova et al. [KKL*16].

the hybrid method, as it provided a good trade-off between rendering speed
and stored/transmitted data. These results were obtained using the hardware
available in 2008, but, as it was pointed out by Kozlikova et al. in their State
of the Art report [KKL'16], these results should be different using the latest
GPUs. In 2011, Wahle et al. [WB11], also introduced a new method to generate
the ribbons geometry on the GPU. Despite using the GPU, they only exploited
basic GPU features, such as vertex and pixel shaders, being able to execute
their algorithm in older hardware.

A different approach to visualizing molecules in ribbons mode was taken by
Bajaj et al. [BDST04]. They used procedural impostors to represent the a-helix
and cylinders to represent the 8-sheets. Despite using impostors did not require
precomputation and it improved the performance, the visual quality was not as
good as the one provided by the 3D geometry. As similar technique was used
by Bagur et al. [BSN12] (see Figure 2.6). They also used procedural impostors
to represented the secondary structures, but, although the visual quality of
the method was better than Bajaj et al’s, they still had visual artifacts in the
joints of the secondary structures with the rest of the protein backbone.

2.1.4 Molecular surfaces

Molecular surfaces are popular representation methods focused on visualizing
the area around molecules which match certain criteria.

One of the first surfaces being defined was the solvent accessible surface
(SAS). This molecular surface was defined by Lee and Richards in 1971 [LR71].
It was designed to illustrate the regions of a molecule that can be accessed
by a solvent molecule, approximated by a sphere or probe (water is usually
represented by a sphere of radius 1.4 A). It is described by the center of the



2.1. REPRESENTATION METHODS 17

sphere while rolls over the atoms of the molecule, represented by the Space-
filling model (see Figure 2.7). Although it shows the accessible regions, this
molecular surface does not show the real volume of the molecule, and it can
intersect with other molecules during a simulation. The SAS is commonly
visualized with the same rendering techniques used to represent the Space-
filling model, as it can be interpreted as a Space-filling model with the atom
radius increased by a user defined probe radius.

In 1977, Richards [Ric77] defined a new molecular surface that showed
the regions of a molecule accessible by a solvent molecule but without the
disadvantages of the SAS, the smooth surface. He defined his surface by a
rolling probe as the SAS but, instead of using the center of this probe, he used
its surface (red surface on Figure 2.7). Greer and Bush in 1978 [GB78] also
defined the same surface, but they called it solvent excluded surface (SES), a
term that is usually used to refer this surface.

The algorithms used to calculate the SES can be divided into two types, the
ones computing the surface discretizing the 3D space surrounding the molecule,
and the ones that compute an analytical representation of the surface by de-
termining the implicit surface equations of all patches.

The first type of algorithms discretize the 3D space surrounding the molecule
using a regular grid and classify the points on the grid as inside or outside the
SES. The scalar field represented by the 3D grid is then triangulated using
the marching cubes algorithm [LLC87] or rendered directly using ray-marching.
Although these methods are easy to implement and they are fast for small
grids, the memory requirements and the computation time increase with the
grid resolution. Can et al. [CCWO06] developed an algorithm that falls into
this category based on level sets, Yu [Yu09] presented an efficient algorithm
which used lists to speed up the computations, and the EDTSurf algorithm, by
Xu and Zhang [XZ09], extracted high-quality SES meshes based on Euclidean
distance transformations.

The second algorithm type has its origins in Conolly’s work [Con83], where
he presented the equations to define the SES analytically and an algorithm
to compute it. These equations were used later by different algorithms to
compute the SES analytically: In 1994, Varshney et al. [VBJT94], developed a
parallelizable algorithm to compute SES, and Edelsbrunner and Miicke [EM94]
presented the alpha-shapes, which can be used to compute the SES. Later in
1996, Sanner et al. [SOS96] presented an auxiliary data structure called re-
duced surface and an algorithm to compute it from where the SES could be
extracted. This algorithm was later improved by Krone et al. [KBEQ9], be-
ing able to update only the parts of the data structure that changed from
one frame to another (see Figure 2.8). In 2010, Krone et al. [KDE10] also



18 CHAPTER 2. STATE OF THE ART

Figure 2.8: Ray-casting of a solvent excluded surface (SES) ([KBE0Y] on
the left hand side of the figure and [LBPcH10] in the right hand side).

developed a parallel version of the algorithm that computed the reduced sur-
face on the GPU. The same year Sanner presented his reduced surface data
structure, Totrov and Abagyan [TA96] developed a parallelizable algorithm to
compute the SES analytically, the contour-buildup. This algorithm was imple-
mented on the CPU by Lindow et al. [LBPcH10] obtaining interactive frame
rates for molecules up to 10* atoms (see Figure 2.8). A year later, Krone et
al. [KGE11], adapted the same algorithm for GPUs obtaining interactive frame
rates for molecules up to 10° atoms, being the fast algorithm to compute the
SES analytically.

A couple of decades ago, the visualization method most commonly used to
render surfaces was triangular meshes [SOS96, TA96, VBJ194], but recently,
ray-casting was successfully applied to represent them (see Figure 2.8). Krone
et al. [KBE09, KDE10] and Lindow et al. [LBPcH10] used ray-casting to render
surfaces, reducing thus the rendering time and the memory consumption. In
2012, Parulek and Viola [PV12] presented a modified ray-marching algorithm
that computed the implicit surface during the ray traversal.

Other molecular surfaces have been defined aiming to improve the SES and
SAS or present extra information. In 1999, Edelsbrunner [Ede99] presented
the molecular skin surface, a molecular surface that was C'-continuous. Later,
in 2012, Krone et al. introduced the gaussian density surface. This surface
provided an approximation of the SES with the advantage that it could be
computed faster than the SES. Another surface related with the SES is the



2.2. ILLUSTRATIVE VISUALIZATION 19

ligand excluded surface, defined by Lindow et al. [LBH14] in 2014. This surface,
instead of approximating the solvent molecule by a sphere, the whole molecule
was used to test the areas of the protein that could be reached by it.

A more detailed overview of the molecular surface types is given in the
state-of-the-art report presented by Kozlikova et al. [KKL116].

2.2 Illustrative visualization

2.2.1 Introduction

Illustrative visualization encompasses a vast number of techniques which aim to
highlight certain features of the visualized model. These techniques were used
for centuries to enhance medical and scientific illustrations, focusing on the
communication of information more than in mimicking the real world. A clear
example can be found in Leonardo Da Vinci and his anatomical illustrations,
or in the drawings used by Goodsell [GO92, Goo03] to illustrate molecules and
cells.

Later, with the popularization of computer generated images, these tech-
niques were also applied to Scientific Visualization, since they are the perfect
tool to communicate scientific results. Silhouette rendering, for example, is
able to highlight important parts of the model and it can also increase the
perception of its shape [ST90, MH04, HV09, HV10]. A similar technique is the
rendering of halos, which, instead of drawing a line in the contour, uses a halo
with the same purpose [BG07, JD08]. Both techniques are a common resource
in communicating visual information of different data types. In the particular
case we are focusing on, molecular visualization, these techniques were suc-
cessfully applied by Tarini et al. [TCMO06]. Other commonly used illustrative
visualization technique is hatching [PHWFO01], where the color and illumina-
tion is simplified and only represented by a set of lines, emphasizing thus the
shape of the model. Some examples of this technique applied to molecular
visualization can be found in [LKEP14, Web09]. The techniques described in
this section are deeply covered in the book [GGO01] or in the tutorial [VGB'05],
where other illustrative visualization techniques are presented.

2.2.2  Ambient occlusion

Among all illustrative visualization techniques, one that gained a lot of atten-
tion, both in molecular visualization and in other areas, is ambient occlusion.
It was first described by Zhukov et al. [ZIK98] as an approximation of the
indirect illumination in the scene. Since then, it has been widely used in dif-
ferent visualization and computer graphics fields. Many algorithms have been



20 CHAPTER 2. STATE OF THE ART

developed to compute or approximate ambient occlusion, using different ren-
dering techniques to achieve the desired trade-off between image quality and
computation time. Based on this trade-off we could classify the existing algo-
rithms in two main groups, the algorithms that compute ambient occlusion in
real time and the ones that compute it offline.

Offline computations of ambient occlusion usually achieve better quality
than the ones computed in real time, since they are not restricted by time, being
able to compute it more accurately. Most of these algorithms use ray-tracing
and Monte Carlo integration to solve the ambient occlusion equation (the am-
bient occlusion equation is described in Section 3.1.1). An example of these
algorithms is the one presented by Landis in his SIGGRAPH course. [Lan02].
He pre-computed ambient occlusion factors for each point of the model and
then stored them in textures. Later, he used these precomputed values dur-
ing rendering to approximate ambient light. This technique was extended by
Pharr and Green [PG04] to use these precomputed values in real-time applica-
tions. They also used the same preprocessing step, but the precomputed values
were then used to calculate the object’s ambient light during rendering in real-
time. The main drawback of this technique was that the computed ambient
occlusion factors were only valid for static scenes, as soon as one object of the
scene moved the values had to be computed again. The same year, Sattler et
al. [SSZKO04] developed an algorithm to compute the ambient occlusion terms
also in a preprocessing step, but, instead of tracing rays through the scene,
they used the graphics hardware to create multiple shadow maps from a set of
predefined views to approximate the visibility of the scene points.

Real-time applications raised the necessity of having more realistic illumi-
nation, thus driving research into creating new algorithms which approximate
ambient occlusion in real-time. These algorithms, focusing on the speed instead
of on the quality, compute rougher approximations of the ambient occlusion
factors, but with the advantage of doing it in real-time. The algorithms of
this group can be again classified into subgroups based on the information
used to compute the visibility of each point: screen-space ambient occlusion,
geometry-based ambient occlusion, and volume-based ambient occlusion.

The algorithms of the first group, screen-space algorithms, are those algo-
rithms which only use 2,5D information to compute the visibility of a point.
These algorithms sample the camera depth buffer to roughly estimate the visi-
bility of a point. These algorithms are commonly used in games since they are
very fast and can be easily integrated into their rendering pipelines. However,
the poor sampling and the lack of 3D information cause important visual arti-
facts. The first image-space algorithm was introduced by Mittring [Mit07] in
2007, which was included in the game Crysis. This method was later improved



2.2. ILLUSTRATIVE VISUALIZATION 21

by different authors [BSD08, FM08, MOBH11], but all of them based their
algorithms on comparing depth information and normals of the neighboring
pixels.

Geometry-based ambient occlusion algorithms, on the other hand, compute
visibility using the 3D information of the scene, achieving better quality than
screen-space methods. However, these techniques are more expensive to com-
pute. Their cost depends on the number of objects in the scene, making them
not practical for big dynamic scenes. Inside this group, there is a wide variety
of algorithms. The method proposed by Bunnell in 2005 [Bun05] is a clear
example of a geometry-based algorithm. This method uses proxy elements to
approximate scene objects during visibility computation, simplifying thus the
intersection tests. The idea of using proxy elements during visibility tests was
also used by Shanmugam and Arikan [SA07]. They used proxy elements to
compute low-frequency occlusions, while high-frequency occlusions were cal-
culated using a screen-space method. A more recent algorithm, presented by
McGuire in 2010 [McG10], extruded the object’s triangles in the geometry
shader to generate a volume for each triangle. Then, in the fragment shader,
he accumulated the individual contributions of the volumes to approximate the
occlusion of the pixel.

The algorithms of the last group, volume-based ambient occlusion algo-
rithms, compute the visibility of each point sampling a volume which approx-
imates the geometry of the scene. These techniques use 3D information of the
scene to compute the visibility of each point, but, on the contrary to geometry-
based approaches, their cost is decoupled from the complexity of the scene. The
approach used by Papaioannou et al. [PMP10] falls into this category. A more
interesting method was proposed by Crassin et al. [CNS*11]. They created a
hybrid method to approximate the ambient occlusion factor and the indirect il-
lumination in dynamic scenes with real-time frame rates. This method creates
a hierarchical approximation of the scene, a Sparse Octree, which is updated
with the dynamic objects every frame, and then, in image-space, the ambient
occlusion factor is calculated for each pixel sampling this data structure.

Ambient occlusion is a commonly used technique in molecular visualization
since Tarini used it in his software QtMol [TCMO06]. Ambient occlusion is the
perfect tool to easily identify the shape and cavities of the molecules, some-
thing of key importance in molecular simulation analysis. Tarini et al. [TCMO06]
adapted the method proposed by Sattler et al. [SSZK04] to visualize molecules
with the Space-filling and Balls & Sticks models. They calculated multiple
shadows maps from different views and saved the accumulated shadow factor
in a texture. Then, during rendering, the pixel shader accessed the correct po-
sition of the texture to retrieve the ambient occlusion factor. Despite obtaining



22 CHAPTER 2. STATE OF THE ART

Figure 2.9: Image obtained with Grottel et al.’s method [GKSE12] on the
left, and an image of the method proposed by Skdanberg et al. [SVGR16] on
the right (this method also includes diffuse interreflections).

high-quality images, this method is not suitable for dynamic scenes, since the
ambient occlusion is precomputed. Moreover, the size of the texture used to
store the occlusion factors increases with the number of atoms, making it not
very scalable. Later, in 2012, Grottel et al. [GKSE12] proposed a volume-
based method to calculate ambient occlusion factors for molecular scenes (see
left Figure 2.9). This method is similar to the method developed by Crassin
et al. [CNST11]. They created a coarse approximation of the molecule using a
3D occupancy grid and, in image-space, they calculated the ambient occlusion
factor for each pixel sampling this data structure. They achieved high frame
rates, but the approximation of the scene did not have enough resolution to
capture occlusions between nearby objects. This method was later improved
by Staib et al. [SGG15] by using a hierarchical 3D grid to approximate the
scene and, in screen-space, they computed the ambient occlusion factor using
voxel cone tracing over the data structure. Their implementation also allowed
them to use transparencies and global illumination effects. A complete dif-
ferent (geometry-based) approach was presented by Skanberg et al. [SVGR16]
(see right Figure 2.9). They performed a search in the local neighborhood of
an atom and computed the occlusion contribution of each neighbor. They also
computed the diffuse interreflection between the atoms using a mathematical
formula obtained with a symbolic regression algorithm.



2.3. VISUALIZATION OF INTERACTION FORCES 23

Thri84 A
by Ile9l
M Leud8

‘\‘ Asp93

IHES
Alass E i
n\‘E -9 B Q . Phe!38
236 _‘o el
A
Gly97

b %m
i, ot

Aspl02 %Iuet%

B e
2wi7

Figure 2.10: Image generated by LigPlot+ [LS11] of the closest inter-
actions between a molecule and a protein on the left, and window of the
PLIP software [SSH' 15] on the rigth.

2.3 Visualization of interaction forces

Nowadays molecular visualization packages have a vast number of techniques to
visualize the conformation of the atoms during a simulation, but the techniques
available to visualize the interaction forces that drive these simulations are lim-
ited. Most of the software packages use a 2D visualization of the molecule of
interest (ligand) with the nearest interacting atoms (or groups of atoms), mak-
ing difficult to understand the real 3D arrangement of these atoms. Moreover,
most of them have limited (or null) interaction and only allow the analysis of
a single step of the simulation. This is the case of LigPlot+ [LS11], where a
2D view of the ligand is shown with some motifs that give information about
the interaction of this molecule with the neighboring residues (Figure 2.10).
A similar result can be obtained by using LeView [Cabl3], Maestro [Sch16] or
PoseView [SMR06].

Visualizing these interactions in 3D has had the same attention than in
2D, and they also focus on showing only the closest interactions. Further-
more, their analysis is limited to single frames of the simulation with insuf-
ficient interaction. However, visualizing the underlying physics is common in
related fields, such as material science, where Grottel et al. [GBM™12] repre-
sent scalar fields through color overlaid on the molecular surfaces and represent
electrostatic dipoles with arrows. Similar representations using isosurfaces are
common to other crystallography applications such as Vesta [MI08, MI11],
where the overlaid color represents electrostatic potential or hydrophobicity.



24 CHAPTER 2. STATE OF THE ART

Hyde [SHLT12] uses a similar representation to code the total affinity energy
contribution, whereby the process takes several seconds. Cipriano and Gle-
icher [CGO7] illustrate charges over the molecular surface by stylizing both
the surface shape and the charge values. Giinter et al. also focus on the
atom level, where the signed electron density and reduced gradient fields are
computed and then simplified to illustrate van der Waals and steric repulsion
forces between atoms [GBCGT14]. By showing colored dots at the contact
surface between atoms, representing the van der Waals and hydrogen-bonding
interactions, Word et al. allow the evaluation of atom packing in biomolecular
structures [WLLT99]. Another tool, LigandScout, exploits several views to
support drug designers when screening chemical databases [WL05]. It allows
for the interactive creation of so-called pharmacophores (which are based on
known ligands) that act as templates for finding new ligands. In the creation
process, LigandScout highlights the ligands key features that interact with the
protein and supports surface coloring based on lipophilicity, hydrogen bonding
or charge, using predefined scoring functions. The PLIP system (Figure 2.10)
is a web service that generates 3D views focused at the atom level and showing
several interaction types [SSHT15]. However, as discussed later, no interaction
or filtering is supported, and it is not designed to deal with a sequence of frames.
More recently, Skanberg et al. have proposed to visualize energy interactions
between atoms through diffuse interreflections computed for the surfaces of the
atoms [SVGR16]. Falk et al. visualize molecule reactions by means of arrows
augmenting paths representing molecule trajectories [FKRE09]. Khazanov and
Carlson exploit tables to communicate molecule interactions [KC13]. They also
communicate the interaction between ligand and binding site through modifi-
cation of color and van der Waals radii on an atom scale and indirectly address
the residue scale by performing this depiction individually for each amino acid.
Sarikaya et al. also take into account the residue scale, by visualizing classifier
performance with respect to protein chains on which a classifier has oper-
ated [SAMG14]. Finally, to communicate the differences of surface projected
parameters, Scharnowski et al. propose to use deformable models [SKR™14].

In the following chapters, we present the methods designed throughout
the development of this thesis to overcome the limitations of the techniques
described in this chapter.



Efficient rendering of large molecular models

This chapter introduces the contributions of the thesis related to efficient ren-
dering of large molecules. Techniques to accelerate the rendering of common
representation methods and illustrative techniques to enhance the visualization
are presented.

3.1 Real-time volume-based ambient occlusion

Illustrative visualization techniques are commonly used in helping to high-
light specific features of the model or in favoring the recognition of the shape
of the scene. Many of these techniques are also used in molecular visual-
ization [Goo03], as the understanding of the scene is crucial in this kind of
visualization. In particular, ambient occlusion is a rendering technique which
approximates the global illumination at every point in the scene based on their
visibility. As a result, this technique darkens the concave areas of an object
and brightens the convex ones, making it suitable for emphasizing the shape
of the molecules.

Ambient occlusion facilitates the recognition of the molecular conformation
and the identification of features like pockets or tunnels. However, this tech-
nique is expensive to compute. Many researchers have approximate this effect
in real-time by computing it on screen-space [Mit07, FMO08, Kaj09]. Despite
handling dynamics scenes at higher frame rates, these techniques suffer from
artifacts, as they do not use all the information of the scene to compute the
ambient occlusion factors. Other techniques were developed for the specific
case of molecules [TCM06, GKSE12] in which the computation takes into ac-
count the whole scene (or a simplification of it). Nevertheless, they cannot
be computed in real-time or the resulting quality is not good enough. Later

25



26 CHAPTER 3. EFFICIENT RENDERING

Figure 3.1: The left part of the figure is generated using only the ambient
occlusion factors computed by the algorithm presented in this section, and
the right part of the image is the final composition of the standard Phong
shading with our ambient occlusion factors.

on, while the work presented here was under revision, a similar technique was
presented by Staib et al. [SGG15].

The previous chapter analyzed the most important techniques to compute
this effect, for both molecular and generic scenes. This section, on the other
hand, introduces a new method to compute the ambient occlusion factor for
the specific case of molecules represented by the Space-filling or the Balls &
Sticks models. This method takes advantage of the simplicity of the elements
that compose these scenes, to approximate the ambient occlusion factor in real-
time for molecules up to 1356K atoms. The resulting high-quality shading we
obtain is illustrated in Figure 3.1.

The rest of the section is organized as follows: Section 3.1.1 introduces the
reader to ambient occlusion, Section 3.1.2 gives an overview of the method, in
Section 3.1.3 the algorithm is described, and, in Sections 3.1.4 and 3.1.5, the
results and the conclusions are presented.

3.1.1 Ambient occlusion

Ambient occlusion is a rendering technique which aims to improve the shape
perception of a scene. This technique shades each point of the scene as a
function of its visibility. Points occluded by near geometry appear darker than
unoccluded objects, which are shaded with a brighter tone. Figure 3.2 presents



3.1. REAL-TIME VOLUME-BASED AMBIENT OCCLUSION 27

Figure 3.2: Comparison of the same molecule rendered using a constant
term to approzimate the ambient light (left) and rendered using the ambient
occlusion algorithm (right). Ambient occlusion clearly improves the shape
perception of the molecule, making easily noticeable features like tunnels or
cavities.

a comparison of a molecule rendered using a constant ambient term and the
same molecule rendered using ambient occlusion. This figure clearly illustrates
how in the image rendered using ambient occlusion the shape perception is
increased, making their cavities and tunnels easily recognizable. This section
introduces ambient occlusion briefly, for completeness, following the description
gave by Sunet in his Master Thesis [Sunl6] (where the interested reader may
find a complete description).

Ambient occlusion can be understood as an approximation of the rendering
equation, from where its mathematical equation can be derived through some
simplifications. The rendering equation is used by rendering algorithms to
shade the objects of a scene since it calculates the amount of reflected light by
a point in a specific direction. This equation defines the outgoing light as a
function of the incoming light from all possible directions:

Lo(p, w,) = /Q F Dy wor i) Li(p, wi)cosbidw; (3.1)

In this equation, L,(p,w,) refers to the amount of reflected light by point p
in the direction w, and is calculated as the sum of the incident light (L;(p,w;))
from all possible incoming directions (w;) multiplied by the surface reflectance
properties (f(p,wo,w;)). The incoming light directions are defined as all the
directions within the hemisphere centered at the surface normal, so an integral
over this hemisphere has to be evaluated, being w; a differential solid angle
in this hemisphere (an infinitesimally thin cone of incident directions). The
amount of incident light in each direction is modulated then by the surface
reflectance properties. f(p,w,,w;), also known as bidirectional reflectance dis-



28 CHAPTER 3. EFFICIENT RENDERING

SN
,\\,///\L:\//r/«ﬁ,{\r///\i\\\f )
DDV = =y
/ /7//\?\‘11 sl//\\@’//\// A\ \\L/>\Lﬂ//~ A
=SSN SE L N ST
A \//,\\?\\//\i ‘//\ v//\\;\ //\i .//\ \¢>\?\ ///;
Figure 3.3: Parameters involved in the evaluation of the BRDF. The
BRDF' determines the amount of reflected light in the outgoing direction

Wo, by a point with normal n, for an incoming light direction w;.

tribution function or BRDF, is a function that encodes the material behavior,
modulating the amount of reflected light by a surface point (p) in a particular
outgoing light direction (w,) for a given incoming light direction (w;), i. e., it
modulates the reflected light for a given input and output directions. Figure 3.3
illustrates this process. The final light contribution is attenuated by cosf, the
cosine of the angle between the normal and the incoming light direction w;.

This equation does not have an analytical solution, so it can only be ap-
proximated. One of the most commonly used methods to approximate the
rendering equation is ray-tracing. Ray-tracing simulates the light in the scene
with a set of rays, and the integral of the equation is approximated using Monte
Carlo integration. Ray-tracing, like all the other methods to approximate this
equation, is computationally expensive due to the recursive nature of the ren-
dering equation. The incoming light in a given direction w; may arrive not only
from a light source but also reflected from another surface, where the rendering
equation has to be evaluated too. This recursion increases the computational
cost exponentially, depending on the degree of accuracy we want to achieve
(determined by the number of light bounces simulated).

One of the simplest approximations of the rendering equation is to take
into account only the direct light coming from the light sources and ignoring
the light bounced on other surfaces. Despite being very easy to evaluate,
this approximation does not generate realistic results, since all the points the
light cannot reach are rendered black. A better approximation that keeps this
simplicity is assuming that bounced light reaches every point in every direction
with the same intensity, transforming the indirect light contribution into a



3.1. REAL-TIME VOLUME-BASED AMBIENT OCCLUSION 29

constant. The images generated by this method appear to be more realistic
because all parts of the scene are shaded. However, in those parts where only
the ambient term contributes to the lighting, the depth and shape perception
is reduced.

Ambient occlusion is an algorithm which tries to approximate indirect light
by computing an ambient term for each point of the scene instead of using a
constant. This ambient term is computed based on the visibility of the point,
giving a measure of how much light could arrive at the point without being
occluded by other surfaces. In order to derive the ambient occlusion equation
from the rendering equation, this method makes two assumptions. The first
assumption made by this method is that surfaces are perfectly diffuse, i. e.
they reflect light equally in every direction, which transforms our rendering
equation in:

Lo(p,w,) = k‘/ L;(p,w;)cosh;dw; (3.2)
Q

substituting the BRDF of the surface, f(p,w,,w;), by a constant k. The
other assumption made by this method is that light intensity is independent of
the direction in which light reaches a point, being the same for all directions.
Here is where ambient occlusion differs from the constant ambient term. The
constant ambient term method assumes that light reaches the point equally in
all directions, but, ambient occlusion instead, assumes that light reaches the
point equally only in the directions where the light is not occluded by other
surfaces. If the light coming from a specific direction reaches another surface
first, its intensity should not be added to the outcoming light intensity of the
point. This method can be expressed by the following modification of the
rendering equation:

Ly(p,w,) = k‘/ V(p, wi)cosh;dw; (3.3)
Q

where

0 p occluded in direction w;

1 otherwise (3-4)

V(p7 wi) = {

In this new equation the incoming light intensity, L;(p, w;), is substituted by
the visibility function V' (p, w;), which has a value of 0 when the light is occluded
by another surface in the direction w; and one otherwise. For convenience, we
define the ambient occlusion factors in the range [0, 1], which also helps us to
derive the value of the constant k. For a completely unoccluded point, the
ambient occlusion factor should be 1. Moreover, in this case, every individual



30 CHAPTER 3. EFFICIENT RENDERING

evaluation of V' (p, w;) is also evaluated to 1, since no light direction is occluded.
Putting these two definitions together we can easily derive the value of k:

Lo(punoccludeda wo) =k /Q V(punoccludedaWi)cosgidwi

= k/ cost; dw;
Q
=km (3.5)
1
k=— i
_ (36)

which gives us the last element to define our ambient occlusion equation:

Lo(p,w,) = 1/QV(p, wj )cosB;dw; (3.7)

s

This equation computes the ambient occlusion factors for points in a scene,
but without any further modification, it can lead to completely pitch black
scenes in some cases. When we compute this value for closed scenes, like
rooms or buildings, this equation will generate ambient occlusion factors equal
to 0 for all the points. The visibility function V (p,w;) will always be evaluated
to 0 for all light directions (because the light will hit the walls first). To avoid
this problem, a modification of the ambient occlusion equation was designed
where the visibility function V' (p,w;) is substituted by a fall-off function p.

Lo(p,w,) = ;/{)p(d(p,wi))cosﬂidwi (3.8)

p is a function that takes as a parameter the distance between the point p
and the point which occludes p in the direction w;. The value returned by p
is 0 for small distances and increases to 1 when the occluder is farther than a
given threshold.

(3.9)

| f(d) €]0,1] d < threshold
p(d) = { 1 otherwise

This modification of the ambient occlusion equation is known as ambient
obscurance, and not only makes ambient occlusion work in closed scenes but
also reduces the algorithm to a local problem, since the visibility tests are
performed only with the surrounding geometry. In practice, this equation is
the one used in literature when referring to ambient occlusion.



3.1. REAL-TIME VOLUME-BASED AMBIENT OCCLUSION 31

3.1.2 Overview

For molecules, we propose an algorithm that aims to approximate the ambient
occlusion equation by using a volume-based simplification of the scene during
the point visibility tests instead of the real geometry. This method is integrated
into a deferred rendering pipeline (an overview of this pipeline is illustrated in
Figure 3.4), and has the following steps:

1. In the first step, the atoms and bonds of the molecule are rendered.
As discussed in Chapter 2, the fastest method to render molecules rep-
resented by Space-filling or Balls & Sticks models is using procedural
impostors. Similar to [SWBGO06], our method renders a quad for each
element (an atom or a bond), ensuring that the projection of the quad
on the screen covers the projection of the element. Then, for each pixel,
the ray-element intersection test is performed, and the normal and depth
values are computed. These values (normal and depth), together with
the atom color, are stored for each pixel in a G-Buffer composed by two
floating-point buffers.

2. While the rendering of the molecules is taking place, two compute shaders
process each atom and bond and fill our data structure.

3. When the two previous passes are finished, a third pass evaluates the
ambient occlusion for each pixel on the screen using the data structure
computed in step 2.

4. In the last pass, the color, normal, depth and ambient occlusion values
computed in the previous steps are used to evaluate the lighting for each
pixel.

The steps 2 and 3 are discussed in more detail in the next section, but steps
1 and 4, since they implement previously known techniques, are not covered.

3.1.3  Algorithm

The proposed method, as mentioned in the previous section, is composed
mainly of two different steps: the simplification of the scene and the ambi-
ent occlusion computation. The first one uses a 3D hierarchical data structure
to store the simplified representation of the scene, which we call Occupancy
pyramid. This pyramid is filled by the first step and then used by the second
one to compute the final ambient occlusion values. This algorithm is based
on the work presented by Crassin et al. [CNST11] in 2011, but, our method



32

CHAPTER 3. EFFICIENT RENDERING

CPU

(O] AR

Impostors Screen Quad SBO

A 4

2nd Pass
Occupancy Grid

1st Pass
G-Buffer

et LR

| 3rd Pass
‘ ™\ Ambient Occlusion

4th Pass
Final Composition

cova

Figure 3.4: The pipeline of the algorithm. In the first step, the G-Buffer
is filled out with the scene information. In parallel, the second step com-
putes the occupancy pyramid. In the third step, the occlusion factors are
computed for each pixel. And, in the last one, the values obtained int the
previous steps are combined to generate the final image.



3.1. REAL-TIME VOLUME-BASED AMBIENT OCCLUSION 33

does not require a preprocess step, being able to compute our data structure
at every frame.

3.1.3.1 Occupancy pyramid

The Occupancy pyramid is a hierarchical 3D voxelization of the space delimited
by the bounding box of the molecule, where each voxel contains an occupancy
value. These values approximate the volume of the voxel occupied by the atoms
of a molecule. Therefore, this data structure allows us to estimate, with only
one texture fetch, the occlusion generated by the part of the molecule contained
inside the voxel. Due to the hierarchical nature of the data structure, different
volume sizes can be consulted by selecting different levels in the hierarchy.

In our implementation, we used a maximum and minimum resolution of
1283 and 83 respectively, having five different resolutions of our occupancy
approximation. These numbers were selected empirically and were found to
generate good quality ambient occlusion for all the models we tried.

Moreover, the fact that we use a low-resolution data structure allowed us to
use a floating-point 3D texture to represent it. Despite not being optimized to
remove empty space areas, 3D textures provide a hardware implementation of
trilinear interpolation and texture cache access. These two hardware features
improve the performance of the reading and writing operations compared to
Crassin’s approach, which used a less GPU-friendly data structure, the Sparse
Octree.

3.1.3.2 Occupancy computation

In order to compute the occupancy values of each voxel, we execute two com-
pute shaders that calculate the occupancy contribution of each element of the
scene (spheres and cylinders). One of the shaders computes the occupancy con-
tribution of the spheres (atoms), and the other shader computes the occupancy
contribution of the cylinders (bonds).

Computing the exact intersecting volume between an element and a voxel
would make our algorithm not suitable for real-time applications since it is
computationally expensive. We chose, instead, an algorithm that, although it
overestimates the volume, is cheap to compute and produces acceptable results
(see Figure 3.11 for a comparison between our method and the AO computed
using path tracing).

The list of atoms is stored in GPU memory using one Shader Storage Buffer,
where each atom stores its radius and the 3D coordinates of its center. The
bond list is also stored in another Shader Storage Buffer, where each bond
stores the 3D coordinates of the two atoms connected by the bond. The



34 CHAPTER 3. EFFICIENT RENDERING

Compute Shader Update Grid

Compute min and
Update Grid level 0 max voxels

o For each voxel
] -
Intersection test
o
Update
Update Grid level 5 occupancy

Figure 3.5: Overview of the algorithm executed by the compute shaders to
fill out the Occupancy pyramid. First, the shader determines the vozels that
possibly intersect with the element, and for each of them, an intersection
test is performed. If there is an intersection, the shader increments the
vozel value with an approximation of the incident volume of the element
into the voxel.

two compute shaders described before are then executed, with their respec-
tive Shader Storage Buffer as input (Figure 3.5). The threads of these com-
pute shaders first determine the voxels (of the different levels of the occupancy
pyramid) which the element could intersect. These voxels are defined as the
ones that intersect with the volume of the element’s bounding box. The selec-
tion of these voxels can be carried out easily by determining the voxels where
the minimum and maximum points of the bounding box lay, and then select
the voxels between the two. This simple algorithm is able to skip most of the
voxels easily at a low computational cost. Then, for each selected voxel, a more
accurate intersection test is computed to determine whether the element really
intersects the voxel or not. Where the intersection test succeeds, the compute
shader increments the occupancy value with an approximation of the incident
volume.

In order to approximate the overlap of an atom (given by a center and a
radius) with a voxel, we find the point in the voxel that is closest to the center
of the atom and compute the distance between them (7). If that distance r is
less than the radius r, of the atom, we increase the occupancy of the voxel by
the equation:

Tq—T
D
where D is the length of the diagonal of a voxel (see Figure 3.6-right). In

(3.10)



3.1. REAL-TIME VOLUME-BASED AMBIENT OCCLUSION 35

d
d <>
«—>
r
. D —
Cylinder D 1 o
Sphere
Voxel
G
D/2 —

Figure 3.6: Fwvaluation of the occupancy of a voxel. The portion of a
vozel that is occupied by a bond (left) or atom (right) is approximated as
a ratio of the penetration distance d and the diagonal of the vozel D.

the case of bonds, we compute the point on the cylinder that is closest to the
center of the voxel and compare the signed distance between them with D/2
(see Figure 3.6-left). If the distance is smaller than D/2, we increment the
occupancy of the voxel by:
D_,
D
Having two or more threads trying to add its occupancy contribution to
one voxel at the same time is a common scenario during the update of the data
structure. These collisions could lead to different occupancy values for a voxel
on consecutive frames, generating a flicker effect on the computed occlusion
factors. Since our factors are floating-point values, we cannot use the integer
atomic operations provided by OpenGL to overcome this problem. Instead, and
like in [CG12], we access our floating-point texture as an integer texture using
imageAtomicCompSwap(), converting values from float to int and vice versa
during read and write operations via floatBitsToUint() and wintBitsToFloat().
Despite removing the synchronization problem between threads, this mech-
anism adds extra computational cost because some threads have to wait until
they are able to write into memory. As the number of collisions increases, the
system slows down. In order to reduce the number collisions, we shuffle the
elements in the Shader Storage Buffer, ensuring that elements that are close
in the scene are far away in the buffer. Since the atoms of the residues are
read following the order of the backbone, the atoms of the same residue are
packed together. Shifting the atoms a fixed number of positions ensures that
two neighbor atoms in the resulting buffer will not be close in the backbone.

(3.11)



36 CHAPTER 3. EFFICIENT RENDERING

50k 250k 550k 1350k

——Shuffle ——No Shuffle

Figure 3.7: Frame rates obtained with different molecules when the ele-
ments of the Shader Storage Buffers are shuffled and when they are not.
Note that when the number of atoms is greater than 300K, the shuffled
buffers obtain better performance due to the reduction of collisions in the
vozel access.

However, this could not be enough in some cases: Being far in the backbone
does not guarantee the atoms are far in the scene too. Two residues far away
in the backbone can be close in the space due to the protein folding. A more
sophisticated method could be used to solve this issue in which the spatial rela-
tionship between atoms determines the final ordering. Nevertheless, we found
our solution enough to reduce the impact of collisions in the performance. The
plot in Figure 3.7 illustrates the frames per second obtained for molecules with
a different number of atoms.

The plot shows that when the number of atoms is greater than 300K, the
shuffled buffers obtain a better performance than the regular ones. When the
number of atoms is high, not all the atoms can be processed in parallel in the
GPU, so the buffer is processed in chunks. Shuffling the buffer reduces the col-
lisions inside these chunks. On the contrary, when the number of atoms is low,
fewer chunks have to be processed which leads to a high number of collisions.
Moreover, this method has another potential drawback: the coherence in the
texture access for each compute shader workgroup is reduced, increasing thus
the texture cache misses. Based on the results of our experiments, we shuffle
the buffers for molecules with more than 300K atoms.

This algorithm allows us to fill the Occupancy pyramid every frame for
molecules up to 1350K atoms while maintaining a real-time frame rate.



3.1. REAL-TIME VOLUME-BASED AMBIENT OCCLUSION 37

Pixel Shader Occupancy Grid

Level K

L] L]

o o 0 o

L] ... [ ]
A

L] LN

Level K+1

Figure 3.8: In order to evaluate AO, we trace rays along the main di-
rection of a set of cones that cover the space above the shading point. For
each ray, we sample a set of points s1, So,...S, and the ambient occlusion
factor is obtained by querying the occupancy pyramid at these points. The
radius of the inscribed spheres determines the LOD to use when querying
the occupancy pyramid.

3.1.3.3 Volume-based ambient occlusion

As discussed in the section 3.1.1, ambient occlusion is an algorithm that ap-
proximates the global illumination by measuring the amount of light that may
reach each surface point. The algorithms used to compute it can be divided into
several categories. The most commonly used algorithms in real-time applica-
tions compute the visibility of each point based only on additional information
stored for each pixel, dismissing thus 3D information of the scene. Despite hav-
ing good performance, these algorithms do not take into account all the scene
to compute the visibility, which generates artifacts and incorrect shadow esti-
mations. Other techniques compute the occlusion based on the real geometry
of the scene achieving a high-quality shading, although they have a high com-
putational cost. Our algorithm, instead, uses a volume-based simplification of
the scene to approximate the visibility of each point, obtaining a good trade-off
between performance and image quality. Our algorithm is based on the work
proposed by Crassin et al. [CNST11] since both techniques use a volume-based
simplification of the scene that, later, is sampled using Vozel Cone Tracing.
After the Occupancy pyramid is computed, the algorithm renders a quad
covering the screen. Then, for each pixel, the depth and the normal of the
pixel are recovered from the G-buffer filled in the first step (Figure 3.4). From
the depth value the 3D world position is reconstructed, and, together with



38 CHAPTER 3. EFFICIENT RENDERING

Figure 3.9: Molecule A with 3.9K atoms (left) and molecule 3J3A with
46K rendered with the ambient occlusion presented in this section.

the normal, the ambient occlusion factor is approximated using Voxel Cone
Tracing. Voxel Cone Tracing approximates the visibility of the hemisphere
centered at the point of interest by using a set of cones, as it is illustrated in
Figure 3.8. In our implementation, we used three, five or nine cones to cover
the hemisphere, depending on the desired quality/performance. For each of
these cones, we compute the center and radius of a set of tangent spheres that
fit inside the cone. We tested different configurations, and four spheres cover
enough distance to have a high shadowing quality. We sample the occupancy
pyramid at the center of each sphere, accessing the level of the hierarchy with
a voxel size equal to the sphere radius. Since the sphere radius usually does
not coincide with any voxel sizes in the hierarchy, a trilinear interpolation
between the two closest levels is performed to have a good approximation of
the occupied volume of the sphere. Then, we accumulate the occupancy along
the ray using the following equation to determine the percentage of indirect
light rays that arrive at the point from this set of directions:

rayo+ = f * spho * (1.0 — ray,) (3.12)

where ray, is the occlusion accumulated along the ray (which is initialized
to 0), sph, is the occlusion of the sphere and f is a scaling factor used to adjust
the resulting occlusion. As discussed before, this algorithm overestimates the
incident volume of the elements into the voxels. Furthermore, it does not take
into account the overlap between atoms in the Space-filling model. In order to
parametrize the introduced error, we scale the occupancy of the tangent spheres
by the factor f, which decreases with the sphere radius. As more volume is
approximated, more error could have been introduced. This parameter was



3.1. REAL-TIME VOLUME-BASED AMBIENT OCCLUSION 39

Figure 3.10: More examples of molecules rendered with our ambient
occlusion algorithm: molecule 1K4R with 545K atoms on the left and
molecule 3IYJ with 1356K on the right.

initialized to [1.0, 0.9, 0.85, 0.8] for the four spheres of each ray, but they can
be adjusted to obtain different shading effects. The final occlusion factor is
then averaged between all the cones.

The final composition step combines the color with the ambient occlusion
and calculates the lighting using the information stored in the G-buffer gener-
ated by the first step. Note the high-quality ambient occlusion obtained, and
how close to the ground truth our algorithm is when it is compared to an image
generated using path tracing (Figure 3.11).

3.1.4 Results

In this section, we present the results obtained by the presented algorithm. It
was implemented and tested on an Intel Core i7 PC, running at 3.5 GHz, with
16 Gb of RAM, and a GeForce 770 GTX. The viewport size used for all these
tests was 1280 x 720.

The algorithm presented in this chapter was used to render molecules with
a different number of atoms using both, Space-filling and Balls & Sticks repre-
sentation models. These molecules were obtained from the Protein Data Bank
and simulations carried out by our collaborators at the Barcelona Supercomput-
ing Center. As Table 3.1 shows, we obtained more than 30 fps in all the tests,
even for the largest tested molecule which has more than 1.3M atoms (com-
puting the occupancy pyramid at every frame). Since our algorithm performs
expensive tasks in the pixel shader, we decided to evaluate the performance



40 CHAPTER 3. EFFICIENT RENDERING

Figure 3.11: Comparison of our ambient occlusion algorithm (left) with
the ground truth, computed using path tracing [Kaj86] (right).

using three different configurations: In the first one the molecule fills the whole
viewport (column headed by the letter N in Table 3.1), in the second one the
molecule is at a medium distance from the camera (column headed by the let-
ter M in Table 3.1), and, in the last one, the molecule is far away from the
camera (column headed by the letter F in Table 3.1). Performing these three
tests, not only we were able to determine the performance of our algorithm in
the worst case scenario, but also we were able to identify when the bottleneck
of the algorithm was the pixel shader and when it was the compute shader. If
the frames per second obtained for the three configurations are substantially
different, it indicates that the main cost of the algorithm is in the pixel shader.
On the contrary, when the performance is similar for all of them, it indicates
that the number of pixels rendered does not determine the cost of the algo-
rithm. This is the case of the molecules A and 3IYJ in Table 3.1. Molecule
3IYJ has a large number of atoms, which makes the compute shader execu-
tion expensive. Molecule A, on the other hand, has only a few atoms, but
every atom covers a high number of voxels, which makes the compute shader
execution also expensive.

Besides measuring the performance of the algorithm, Table 3.1 also evalu-
ates the impact of shuffling the elements in the Shader Storage Buffers. This
comparison is presented in the rows headed by S (shuffled buffer) and NS
(Non-shuffled buffer). As discussed in Section 3.1.3, shuffling the elements of
the buffers is only useful when the GPU is not able to process in parallel all
the elements of the scene (they are processed in chunks). Table 3.1 shows that
when the number of elements in the scene increases, the shuffled buffers ob-
tain better performance than the regular ones (Molecules 1K4R and 31YJ in
Table 3.1).

Images of the molecules used to get the measurements can be found in the



3.1. REAL-TIME VOLUME-BASED AMBIENT OCCLUSION 41

Table 3.1: Performance measured in frames per second for different
molecules (N)ear the camera (occupying the whole viewport), at (M)id-
distance, and (F)ar from the molecule. Ambient occlusion has been com-
puted at the highest quality (nine cones per point). “S-F” indicates usage
of the Space-filling render mode, while “B&S” indicates usage of the Balls
& Sticks render mode. Frame rates have been measured without shuffling

the buffer of elements (NS) and with the shuffle applied (S).

Molecule AO Vertex
atoms - |Figure orting

(# [Figure]) Sorti N M F
A No AO - 816.52 1,953.11 3,444.91
(3.9K - Fig. 3.9) AO S 188.19 223.36 236.02
NS 201.22 241.46 257.51
3J3A No AO - 547.88 1,233.95 1,491.38
(46K - Fig. 3.9) AO S 171.53 216.79 226.86
NS 265.45 393.55 425.65

<3

A 1CWP No AO - 169.74 382.59 499.96
(227K - Fig. 3.12) AO S 76.98 120.51 115.98
NS 89.16 130.62 143.48
1KAR No AO - 136.66 192.29 456.49
(545K - Fig. 3.10) AO S 70.83 85.38 116.42
NS 53.58 61.57 76.01
3IYJ No AO - 64.72 88.68 96.95
(1,356 K - Fig. 3.10) AO S 34.09 38.95 42.51
NS 25.44 28.03 29.46
A No AO - 2,255.40 3,104.45 3,705.44
(3.9K - Fig. 3.9) A0 S 671.81 779.95 852.78
NS 706.51 840.02 907.55
3J3A No AO - 1,156.75 1,504.23 1,858.25
(46K - Fig. 3.9) AO S 345.12 402.41 434.37
" NS 342.05 398.52 431.88
g 1CWP No AO - 351.47 527.38 600.48
(227K - Fig. 3.12) AO S 123.88 148.24 157.04
NS 92.53 105.86 109.98
1KAR No AO - 209.63 275.68 276.19
545K - Fig. 3.10 S 64.6 71.63 72.14
( ) AO NS 34.36 36.21 36.41
31YJ No AO - 88.23 107.19 108.08
(1,356 K - Fig. 3.10) AO S 30.63 33.08 33.27

NS 14.83 15.35 15.42




42 CHAPTER 3. EFFICIENT RENDERING

Table 3.2: Impact of the number of cones used to compute the ambient
occlusion on the rendering speed in fps. The same molecule A from Fig-
ure 3.9 was rendered in Space-filling and Balls & Sticks modes using 3, 5
and 9 cones per fragment.

9 cones 5 cones 3 cones

near 201.22 204.45 206.28
Space-filling mid. 24146 243.16  243.65
far 257.51  258.19  258.28

near 706.51 77249 783.12
Balls & Sticks mid. 840.02 882.29  886.01
far 907.55 939.53  941.86

Figures 3.9, 3.12 and 3.10. In Figure 3.13 only the ambient occlusion factors
are illustrated, for both the Space-filling and Balls & Sticks models.

All the frame rates measurements in Table 3.1 are taken using nine cones
to approximate the hemisphere visibility at each point. Table 3.2 shows the
results obtained varying the number of cones (3-5-9) for the same molecule.
From the table, we can conclude that the variation of the number of cones
has a little impact on the final cost of the algorithm. Although it may seem
that extra texture accesses would highly increase the cost of the algorithm, the
locality of our accesses and the hardware cache make it almost negligible.

In order to evaluate the correctness of the ambient occlusion factors com-
puted with our method, we compared the results to that obtained using a path
tracing algorithm. The results of the comparison are shown in Figure 3.11.
Note that the differences are hardly visible. While our method yields slightly
higher occlusions in marked creases, the shadings are smooth and coherent with
the shape, offering correct depth cues and adequate high-frequency detail.

Besides comparing the results obtained by our algorithm with the ground
truth, we also compared our method with a state-of-the-art method. We com-
pared our method with the one proposed by Grottel et al. [GKSE12] since
they also use a voxelization of the scene to approximate the occlusion factors.
As it is illustrated in Figure 3.12, our method is capable of handling high
and low-frequency occlusions at the same time due to the hierarchical nature
of the voxelization. On the other hand, Grottel et al’s method only takes
into account low-frequency occlusions, which is translated into a wrong shape
perception. Furthermore, Grottel et al’s method was designed to generate oc-
clusions in scenes composed of billions of particles, in which each atom can
be approximated by a single point without introducing a significant error. In



3.1. REAL-TIME VOLUME-BASED AMBIENT OCCLUSION 43

Figure 3.12: Comparison of our ambient occlusion algorithm (left) with
the algorithm proposed by Grottel et al. [GKSE12] with a resolution of 83
(middle) and 163 (right).

our case, on the other hand, where molecules have fewer atoms (the molecules
commonly used in our pharmacology simulations rarely exceed 60-80K atoms),
this assumption leads to wrong occlusion estimation.

3.1.5 Conclusions

This section has presented a novel approach to enhance the depth perception in
molecular visualization by using ambient occlusion. The presented algorithm
is capable of approximating the ambient occlusion effect in real-time even for
complex scenes composed of hundreds of thousands of atoms. All the com-
putations are carried out on the GPU using a GPU-friendly data structure,
which allows us to use hardware capabilities as the texture cache. The method
was tested on different molecules obtained from the Protein Data Bank and
on real molecular dynamics simulations, obtaining high-quality images in all
cases. Moreover, our method was compared with the ground truth and with a
state-of-the-art method, which demonstrated that our method provides a high-
quality ambient occlusion closer to the ground truth than previous approaches
in real-time.



44 CHAPTER 3. EFFICIENT RENDERING

Figure 3.13: Images rendered with only the ambient occlusion factors,
using the Balls € Sticks model (bottom) and the Space-filling model (top).



3.2. REALTIME HALOS 45

3.2 Realtime halos

Pharmacology drug design simulates the docking of a small molecule (the lig-
and) into a protein. The simulation software generates hundreds of trajectories
where the ligand is trying to find the docking position moving around the pro-
tein. Experts, then, inspect those trajectories that achieve a better docking
(trajectories where the system achieves the lowest energy) using a molecular
visualization package. These tools allow them to explore the frames of each
trajectory using different representation methods. However, selecting the same
representation methods for the ligand and the protein, or selecting similar ones
with the same color coding, could make difficult to identify the ligand in the
scene. Moreover, experts are interested in visualizing the areas where the lig-
and tried to dock or the pathway the ligand followed to reach the docking
position. One possible solution could be visualizing the ligand on all the frame
positions, but in most of the cases, it will generate a cluttered image. Bidmon
et al. [BGBT08] and Furmanova et al. [FJB*17] have presented different meth-
ods to visualize the ligand position during long trajectories. In both cases, the
number of frames was simplified and they used the center of the ligand on the
remaining ones to generate a set of lines. Hence, despite giving a good overview
of the areas where the ligand was trying to dock, those approaches only use a
subset of the ligand positions.

Illustrative visualization techniques are focused on highlighting specific fea-

Figure 3.14: Image of the trajectory of a ligand highlighted with our
technique to render temporal halos. In this image, the attenuated halo
shows the regions recently visited by the ligand in the stimulation.



46 CHAPTER 3. EFFICIENT RENDERING

GPU

ﬁ 1°Pass 2°Pass

BBox Stencil Halo

Render Occupancy Grid
Molecule fio
«

coNn

—

A 4

Impostors

Figure 3.15: Pipeline of the halo algorithm. Once the scene is rendered
using the pipeline described in Section 3.1 the molecule which generates the
halo is rendered to the stencil buffer. In a second pass, the halo is computed
in the non-modified pizels of the stencil buffer using the occupancy pyramid
computed by the ambient occlusion algorithm.

tures of the model (on Section 3.1 we used ambient occlusion to improve the
understanding of the shape of the molecule), which makes them the perfect
candidates to improve the inspection of the trajectories during the drug design
process. Halos were successfully used by Tarini et al. [TCMO06] to highlight the
shape of molecules. However, they were limited to orthographic projection.
This chapter introduces an algorithm to generate halos around a group of
atoms represented using Space-filling or Balls & Sticks models, which help the
experts to identify the ligand within the 3D view. Moreover, it also presents an
algorithm to generate temporal halos, which highlights the areas recently vis-
ited by the ligand. These techniques are efficiently integrated into the graphics
pipeline described in Section 3.1. As an example of the results obtained, Figure
3.14 illustrates both techniques applied to a trajectory.

3.2.1 Overview

The algorithm presented in this section is integrated into the pipeline described
in Section 3.1. The same algorithm used to compute the Occupancy Pyramid
in the ambient occlusion algorithm is used here to compute an extra occupancy
pyramid, which is filled out only with the volume occupied by the atoms we
are interested in highlighting. This new occupancy pyramid is used then to



3.2. REALTIME HALOS 47

generate the halo in two extra passes (see Figure 3.15):

o First, the molecule we want to highlight is rendered in the stencil buffer.

e Then, for the pixels not marked in the stencil buffer, the halo is computed
using a ray-marching algorithm.

In the following section, we describe this process in detail.

3.2.2 Halos

Halos can be easily rendered for the whole molecule using the same data struc-
ture defined in Section 3.1. However, their utility becomes prominent when
rendered around the ligand, since this helps researchers to clearly and quickly
identify the ligand and distinguish it from the protein. Therefore, we add a
second copy of our data structure that stores the occupancy pyramid of the
drug only. Since the drug is smaller than the protein, this data structure
can be of lesser resolution. However, for simplicity, we keep it with the same
dimensions as the original occupancy pyramid used in AO computations for
the whole molecule. This new data structure is filled out together with the
previous one during the ambient occlusion computation by the same compute
shaders, but, because the number of image bindings to a shader is limited, we
can only update the first three levels of this new occupancy pyramid (1283,
643 and 32%). Notice that the computational cost added by the new occupancy
pyramid consists only in some extra writing accesses when the atoms tested
belong to the ligand.

Once the image is composed by the regular pipeline, the halo is computed
and added to the final image by two extra rendering passes. The first one
renders the procedural impostors of the molecule on focus (the drug) into the
stencil buffer, which prevents us from generating halos over it. These impostors
are rendered using the existing depth buffer from the previous steps, so, in order
to avoid discarding pixels by the depth test, we render the procedural impostors
using a depth offset. Moreover, since we are only interested in identifying the
pixels where the molecule is projected and not in computing the lighting, we
can skip the computation of the normals in the pixel shader.

The second step computes the final halo intensity of each pixel and merges
the result with the final image. In order to do so, the bounding box of the ligand
is sent through the pipeline where only the back faces are rasterized. For each
pixel not marked in the stencil buffer, the algorithm traces a ray from the back
face towards the camera. If the depth value stored at the G-Buffer (generated
at the beginning of the pipeline) is closer than the rasterized back face, this



48 CHAPTER 3. EFFICIENT RENDERING

Figure 3.16: Computation of the halo intensity. For each pizel, a ray
is traced towards the camera and the occupancy grid is sampled uniformly
while its occupancy values are accumulated. The resulting accumulated
occupancy is then used as the halo intensity value.

depth is selected as the ray starting point. Each ray traverses the occupancy
pyramid until it reaches the front faces of the bounding box. The occupancy
values stored in the voxels of the occupancy pyramid are accumulated along
the ray, sampling the data structure using trilinear interpolation at equidistant
sampling points. The result, then, is used as the alpha channel of the halo color
which determines its transparency. This process is illustrated in Figure 3.16.
The halo can be adapted by the user to each scene by selecting its intensity
and size. The intensity of the halo can be adapted by modifying a user defined
variable, which scales the final alpha component of the halo color. The halo
size, instead, is determined by the LOD level selected during the access to the
data structure. As a higher level in the hierarchy is selected, a bigger halo
is generated. Notice that with this algorithm the halo is calculated using 3D
information and it can be rendered even if the molecule to highlight is hidden
in the scene.

3.2.3 Temporal halos

As discussed before, the pathway a ligand followed is crucial to the analysis of
a simulation. This section introduces a new technique to visualize this pathway
using a continuous halo around the ligand.

The algorithm to generate halos described in the previous section uses an



3.2. REALTIME HALOS 49

occupancy pyramid to generate halos around the ligand. This data structure is
cleared at the beginning of every frame, and it is computed again for the new
configuration of the scene. Instead of clearing it, we accumulate the occupancy
values along different frames, keeping the areas visited by the ligand during the
simulation in our data structure. By tracing rays through the data structure,
as we did to generate the halo around the ligand in the previous section, we
are able to visualize all the places visited by the ligand as a continuous halo.
Instead of using the bounding box of the ligand to trace the rays, we use the
bounding box of the whole scene, generating rays over the whole data structure.

This technique illustrates the ligand pathway effectively, but it can gener-
ate cluttered images for long trajectories. In order to reduce the amount of
information visualized, we slowly vanish the halo along a time frame 7. At
the beginning of every frame, a compute shader reduces the occupancy of each
voxel (for the three levels of the occupancy pyramid) according to the time
elapsed between frames. The new occupancy is computed using the following
equation:

t—t
Of:Oi—ma:L‘( TO,1> (3.13)

where O; is the initial occupancy of the voxel, ¢ is the current time, ¢, is
the time of the last frame and T is the desired duration of the halo persistence.
Figure 3.17 shows this technique applied to a simulation.

3.2.4 Results

This section describes the results obtained by applying the proposed halo tech-
nique to different scenes. All the tests were performed on an Intel Core i7 PC,
running at 3.5 GHz, with 16 Gb of RAM, and a GeForce 770 GTX. The view-
port used in these tests had a size of 1280 x 720.

We used a temporal halo to highlight the pathway of the ligand along a
real simulation generated by our colleagues (Figures 3.14 and 3.17). Table 3.3
presents the frames per second obtained by using a halo and a temporal halo
in this simulation. Both algorithms were tested modifying the projection size
of the molecule on screen. Despite always having real-time performance, our
algorithm has a relatively high impact on the rendering speed, as our ray-
marching algorithm does not use any optimizations (e. g. proxy geometry
could be used to reduce the number of rays).

Moreover, we used halos within our application not only to emphasize the
position of the ligand but also to highlight the selection of any group of atoms.
In Figure 3.18 a chain of a molecule is accentuated rendering a halo around it.



50 CHAPTER 3. EFFICIENT RENDERING

Figure 3.17: Ligand path highlighted using temporal halos. The image il-
lustrates how the halo intensity fades along the time, leaving a low-intensity
halo around the first visited areas.

Table 3.3: Impact of halos on rendering speed. The same molecule (see
Figure 3.14) is rendered with no halos, a halo around the ligand, and a halo
around the larger molecule. Frame rates are reported both for the Space-
filling and the Balls & Sticks render modes, with a 1280 x 720 viewport.

no halos ligand  mol.

near 201.22 113.49 101.75
Space-filling mid. 241.46 126.68 122.91
far 257.51 131.28 129.52

near 706.51 484.77 328.78
Balls & Sticks mid. 840.02  575.9 489.98
far 907.55 621.83 604.08

Besides the performance tests, we also carried out a small user study to
assess the utility of the halos and the ambient occlusion. We prepared a ques-
tionnaire that was answered anonymously by 11 domain experts, all of them
working with drug simulations daily. We asked them to rank in a 1...7 Likert
scale (where one is either "totally agree" or "totally preferred" and seven is
"totally disagree") their preference with respect to five questions, summarized
in the following listing. The brackets indicate the contents of the pictures we
showed to the users when asking the questions.



3.2. REALTIME HALOS 51

Figure 3.18: Halo used to highlight a chain of a protein complex. The
attention of the user is driven to the selected chain thanks to the bright
halo color surrounding the atoms.

1. [AO image] is better to understand the rendering [than an image without

AQ].
2. If you could always use [AO] in your visualization, you would do it.

3. [Image with a halo around a drug] helps better understand the drug
position [than the image without a halo].

4. [Halos| are helpful to visualize simulations.

5. [Image with a halo path] helps to understand the path covered by the
molecule.

6. The resulting image [image with a halo path] is useful.

The plot in Figure 3.19 shows the results obtained in the user study. For
all the answers we obtained a mean value below 3 and the 3rd quartile below
3,5. Despite having some answers greater than 5, the results of the test show
that the experts appreciate the quality of our rendering techniques and they



52 CHAPTER 3. EFFICIENT RENDERING

4.00 @ Median
BMean

200 +—j —
_ o o

|

1.00 _V_—,_ T T T 1

Q1 Q2 Q3 Q4 Q5 Q6

Figure 3.19: Results of the user study. The user answered 6 questions
(where 1 is "totally” agree and 7 is "totally disagree") quantifying the qual-
ity and utility of the images generated by our ambient occlusion and halo
techniques. The results show that experts think these techniques can im-
prove their task on drug design analysis (all the answers have a mean and
median below 3).

think these techniques could improve the analysis of drug design simulations
as the understanding of the conformation of a molecule.

3.2.5 Conclusions

We have introduced a new technique to highlight the ligand, or any group of
atoms in a molecule, through rendering a halo around them. This technique
uses the same data structure used to compute the ambient occlusion in Sec-
tion 3.1, which make it easily integrable within our pipeline. Moreover, the
halo is computed using 3D information of the scene, making it stable against
occlusions or fast movements of the camera.

Furthermore, we have extended this algorithm to support temporal halos.
Them, not only help to highlight the ligand but it also illustrates the pathway
the ligand has followed to reach the current position.

The utility of this technique, together with the ambient occlusion algorithm,
was tested through a small user study, which revealed that domain experts find



3.2. REALTIME HALOS

53

them helpful to analyze their simulations.



54 CHAPTER 3. EFFICIENT RENDERING

3.3 Realtime secondary structures generation

Ribbons is an abstract visualization technique commonly used by experts to un-
derstand the underlying conformation of a protein since only the structural in-
formation of the molecule is presented. The backbone chain of the biomolecule
is rendered using a set of sheets and tubes, depending on the pattern created
by the chain. These patterns are widely repeated among biomolecules, and the
most common are a-helix and -sheet. The first one, the a-helix, appears when
two or more close amino acids in the chain create a hydrogen bond between
them, twisting the backbone into a helix. B-sheets, on the other hand, are
formed when a set of consecutive amino acids in the backbone create hydrogen
bonds with another set of consecutive amino acids far away in the chain. The
formation of these secondary structures is briefly described in Section 1.2.
Most systems generate a 3D mesh to represent the secondary structures in
a preprocess [HDS96], which is later used during rendering. This method is
able to render molecules in ribbons mode at high frame rates, even for large
scenes, but nevertheless, in some scenarios, the preprocess makes this method
prohibitive. Inspecting molecular dynamics simulations in real-time, for exam-
ple, requires an interactive visualization of the results, which implies generating
the ribbons geometry in real-time for each step as soon as it is received by the
visualization software. Under these conditions, a wiser method should be used.
More recent techniques optimize this generation process dividing the compu-
tation between CPU and GPU [WB11] or generating all the geometry on the

@

/

rTng

Figure 3.20: Image of a molecule rendered in ribbons mode with our
technique. The yellow arrows represent the B-sheet secondary structures
and the red helices the a-helices.




3.3. REALTIME SECONDARY STRUCTURES GENERATION 55

GPU [KBEO08], reducing thus the overhead created by the data transmission
between CPU and GPU. Despite these optimizations, they are not able to
maintain a real-time frame rate when representing large molecules, due to the
high number of triangles generated.

This section introduces a novel technique to generate and render the geom-
etry of the ribbons representation model using the GPU, being able to create
only the necessary triangles for a given point of view. Figure 3.20 presents
a molecule rendered using this technique. Furthermore, this section describes
how the ambient occlusion algorithm presented in Section 3.1 can be adapted
to generate this effect on the ribbons model, increasing thus the understanding
of the shape of the scene.

The rest of the section is organized as follows: Section 3.3.1 describes the
algorithm used to generate and render the geometry. Section 3.3.2 presents
how the algorithm was adapted to the GPU architecture. Section 3.3.3 explains
how the ambient occlusion is generated. The results obtained, together with
comparisons against the existing methods, are shown in Section 3.3.4. And,
lastly, the conclusions are given in Section 3.3.5.

3.3.1 Algorithm

The ribbons representation method is focused on visualizing the secondary
structures formed by the backbone chain of a biomolecule. As discussed in
Section 1.2, these secondary structures are common patterns found in the 3D
arrangement of amino acids. The ribbons representation method uses a set of
different motifs to visualize these structures. The S-sheet secondary structures
are represented by a sheet that covers all the amino acids involved in generating
the secondary structure. Commonly, an arrow is added at the end of the sheet
to communicate the direction of the backbone (see yellow sheets in Figure 3.20).
The a-helix secondary structures are represented by a sheet too, but here, the
sheet is folded acquiring a helix shape (see red helix sheets in Figure 3.20).
The parts of the backbone which do not form any secondary structure pattern
are represented by a tube, driving away the attention to more relevant areas
(see blue tubes in Figure 3.20).

All the motifs used to represent the different secondary structures are
aligned to the backbone, i. e. they follow the backbone direction. In order to
have a smooth secondary structure representation, Carson [Car91] proposed a
method which used a B-Spline (generated from the 3D positions of the atoms)
as a guide for the secondary structure motifs. To develop our technique, we
adopted his approach. He defined the B-Spline using the 3D positions of the
C, atoms of each residue as control points, generating thus a segment of the



56 CHAPTER 3. EFFICIENT RENDERING

Ci+2

Figure 3.21: A segment of the B-Spline. Control points are illustrated
in blue, the vectors used to align the sheet in green, and the interpolated
B-Spline segment is illustrated by the red curve.

B-Spline for each pair of consecutive amino acids (see Figure 3.21). Notice
that the first and last control points have to be repeated in order to generate
the first and last segments of the B-Spline. The motifs are then generated on
the B-Spline and oriented to illustrate the direction of the hydrogen bonds.
As in [KBEO08], we use, instead of the hydrogen bond direction, a vector d to
orient the sheets, which is defined by the direction between the C, and the O
atoms of each residue. Despite being defined different, they are virtually equal
and d can be easily computed from the atoms of each amino acid [CB86]. Two
consecutive amino acids in the backbone usually have their side chain oriented
to opposite directions, which also makes d vectors point in opposite directions.
To have smooth changes of d along the backbone, we compare the d vector
of every amino acid against the previous one, and if the angle between them
is greater than 90°, we flip d. Moreover, for each control point, we compute
a second vector, n, perpendicular to d and the segment direction. To avoid
discontinuities at every control point Cj, the n vector is calculated using the
direction of the segment ¢ — 1 and the segment ¢ as described by the following
equation:

S+ Si—1
|si + si—1]
(d x savg;)

(d % savg,)]

savg; =

(3.14)

where s; and s;_1 are the directions of the two segments to which the control
point belongs. d and n are then used to extrude the geometry of the secondary
structure motifs from each B-Spline segment.

One of our main goals during the design of the algorithm was to increase the
speed of the existing methods, so a unified algorithm to generate the geometry



3.3. REALTIME SECONDARY STRUCTURES GENERATION 57

L IV

Figure 3.22: Geometry used to represent backbone segments which belong
to different secondary structure type. «-helix on the left, 3-sheet on the
center, and simple backbone segment on the right.

of every secondary structure type at the same time was mandatory. Further-
more, we wanted to have smooth transitions between consecutive amino acids
belonging to different secondary structures, allowing us to continuously illus-
trate the formation or destruction of a secondary structure block during a
simulation.

In order to achieve that, our algorithm uses two quadrilateral patches to
represent each backbone segment (see Figure 3.22). Each patch is aligned to
the backbone segment and oriented using the vectors d and n. Then, using
the distance towards the camera, the patches are subdivided and triangulated.
Since distant patches have a small projection on the screen, we use a low
number of triangles to represent them. Close patches, on the other hand,
have a big projection on the screen. Therefore, they are subdivided using a
higher number of triangles. The positions of the new vertices of the patches
are obtained first by interpolating the control points using a B-Spline. Then,
the vectors d and n are interpolated too and used to displace the new vertex
as is illustrated in Figure 3.23.

Figure 3.23: Patch configuration used to obtain the ribbon representation.
The vertices of the patch are displaced using the d and n vectors of the B-
Spline segment.



58 CHAPTER 3. EFFICIENT RENDERING

distance
¢
®

Cit1 G G G Ci1

Figure 3.24: Function used to determine the displacement of the B-sheets
end segments. Using a triangle function the algorithm is able to generate
arrows at the end of each B-sheet.

This algorithm is able to generate the geometry of the a-helices, but we also
need to generate the geometry of the (-sheets and the rest of the backbone.
We need to generate the arrows at the end of the §-sheets and the tubes to
represent the backbone. To achieve that, we introduced a little modification
on the algorithm: we use a different distance to displace the vertex along the
d vector for each type of secondary structure. Thus, we can generate sheets of
different widths and, in the case of the backbone, we can generate tubes. These
tubes are generated defining the displacements along the d vector equal to the
displacement along the n vector, giving, as a result, a prism that represents
the backbone (see Figure 3.22-right).

Generating arrows is a bit more complicated since the displacements along
the d vector have to vary within the same patch. To do so, we use a triangle
function to determine the displacement along d. Figure 3.24 illustrates the
function plot and its relationship with the final geometry. In order to be
consistent over the whole molecule, these arrows have to be rendered in the
last segment of each [-sheet, so we have to identify them and use the linear
function as the displacement of their vertices.

At this point, the algorithm is able to generate the geometry of each sec-
ondary structure type, but we still had to define how to generate those segments
where each endpoint belongs to a different type of secondary structure. At these
segments, a linear interpolation is performed in the colors and displacement
distances used along d, creating a smooth transition between consecutive sec-
ondary structures (see Figure 3.20). Furthermore, this interpolation method
allows us to smoothly illustrate the creation and destruction of these secondary
structures along a simulation.



3.3. REALTIME SECONDARY STRUCTURES GENERATION 59

3.3.2 Implementation

We have implemented this algorithm fully on the GPU in order to meet our
requirements: reduce the amount of information to transfer between CPU and
GPU and generate geometry with an adaptive resolution for the current point
of view. In this section, we describe how the tasks were distributed through four
different stages of the graphics pipeline, in such a way that none of them require
complex computations. An overview of the process is shown in Figure 3.25.

3.3.2.1 CPU

The main task of the CPU is to prepare the frame data, loaded from disk or
received from the simulation software, for the GPU computations. Using the
frame data, the CPU prepares two buffers, a vertex buffer and an index buffer.
The vertex buffer contains all the B-Spline control points and the index buffer
contains the indices of the B-Splines control points which each segment will
use.

For each control point, we store the following information in the vertex
buffer: the xyz coordinates of the C 3D position, the xyz coordinates of the
d vector, and an integer that encodes the type of secondary structure to which
the residue belongs. In the index buffer, for each segment, we store four indices
pointing the four control points the segment will use to interpolate. Figure 3.26
illustrate the content of the buffers. Notice that the index buffer only has to
be computed once for a whole simulation, since the backbone structure always
remains the same. The vertex buffer, on the other hand, has to be updated
for every new step of the simulation. The 3D positions of the atoms change in
every single step and they have to be uploaded to the vertex buffer to represent
the current conformation of the molecule.

The buffers are sent through the graphics pipeline, and the algorithm gen-
erates a patch for each segment of the backbone. However, in order to generate
a correct representation of each segment, the algorithm should generate two
patches with opposite orientations instead of only one (see Figure 3.22). Many
approaches can be adopted to generate them: e. g. adding extra logic into
the shaders or performing two draw calls to send the data twice through the
pipeline. We, instead, duplicate the content of the index buffer and invert the
order of the duplicated indices. The algorithm, then, will generate automat-
ically the patches with the opposite orientation because the vector n, which
defines the orientation of the patch, is computed using the direction of the
segments. These new patches are added at the end of the index buffer.

Introducing these inverted indices, however, has a drawback. The sense of
direction is lost. Before, the indices followed the direction of the backbone, but,



60 CHAPTER 3. EFFICIENT RENDERING

Buffer creation

cUoN

Vertex Shader

Color determination

Tess Control Shader

Tessellation level

cUon

Tess Evaluation Shader

Vertex displacement

Fragment Shader

Normal calculation

Figure 3.25: Rendering pipeline: the load is balanced among the differ-
ent stages of the algorithm. The CPU creates the data buffers, the vertex
shader determines the colors, the tessellation stage is in charge of cal-
culating the subdivision level required and performing the tessellation, and
finally, the fragment shader recomputes normals to provide a better shading

effect.



3.3. REALTIME SECONDARY STRUCTURES GENERATION 61

Vertex Buffer

Vv \Y \Y \Y V

1 2 8 4 5

C,o| d |Type| C,| d |Type

- A -/ Index Buffer

Figure 3.26: Buffer creation. The CPU generates two buffers, a vertex,
and an index buffer. The vertex buffer stores three parameters for each
amino acid of the backbone: the 8D position of the Cy atom of the amino
acid, the 3D coordinates of the d displacement vector (we use the direction
given by the Cy, and the O atoms) and the secondary structure type which
the amino acid belongs. The index buffer stores the four indices of each
backbone segment.

now, half the buffer is following one direction and the other half is following
the opposite one. This double orientation prevents us from identifying the
end segments of the [-sheets where we ought to draw an arrow. However, the
sense of direction can be easily recovered adding an extra float for each control
point that increases its value along the backbone, so the shader can determine
the original direction of the backbone and identify the last segment of every
[B-sheet.

These buffers are sent to the graphics pipeline where each segment is inter-
preted as a patch of four vertices.

3.3.2.2 Vertex shader

A vertex shader is executed for each vertex of the patch. The main task of this
stage is to pass all the information to the next stage and determine the color
used to render the patch. To do so, the vertex shader obtains the vertex color
from a constant array defined in the shader using the secondary structure type
as an index. The array holds the color chosen for each secondary structure
type. The colors we have chosen to render the secondary structure types are
red for a-helices, yellow for S-sheets, and blue for the rest of the backbone (see
Figure 3.20).



62 CHAPTER 3. EFFICIENT RENDERING

e1
® o ® 9
es
C ¢ e C ¢
i i+1
e4 86 82
¢ ® ¢ ®
e

3

Figure 3.27: Patch tessellation. As is illustrated in the left image, the
patch tessellation is defined through 6 values which determine the tessella-
tion of the different edges of the patch. The right image presents the result
of tessellating a patch with the values [6, 2, 6, 4, 6, 4] as the tessellation
factors of the edges [e1, ea, e3, e, €5, €]

3.3.2.3 Tessellation control shader

The main goal of this stage is to determine the tessellation level used to sub-
divide the patch.

The shader first calculates a normalized distance of each vertex of the seg-
ment (C; and Cjy1) towards the camera. These normalized distances are in
the range [0,1], where zero is the minimum, and one is the maximum, and are
calculated using the following equation:

|C' — poscam| — distmin

Dist(C) = clamp < ,0.0, 1.0) (3.15)

distmar — disStmin

where [distyin, distma,] is the range of distances where the subdivision of
the patch varies. We have tested several distances to define this range, and we
found that disti, = 10 A and dist,e. = 160 A produce good results without
visual artifacts.

Hardware tessellated patches have the configuration illustrated in Figure 3.27
(left), and its subdivision is defined by the inner and outer tessellation factors.
The outer tessellation factors define the subdivision levels of the outer edges
e1, eg, eg and e4, and the inner tessellation factors define the number of subdi-
visions of the internal edges e5 and eg. Figure 3.27 (right) shows an example of
a possible patch subdivision with the values [6, 2, 6, 4, 6, 4] as the tessellation
factors of the edges [e1, €2, €3, €4, €5, €g]. These patches are connected to gen-
erate the representation of the backbone. So, in order to avoid discontinuities
or visual artifacts between two consecutive patches, the subdivision levels of



3.3. REALTIME SECONDARY STRUCTURES GENERATION 63

the border edges ey and ey4 are defined using the distances of the points Cj41
and C; respectively, whilst the rest of edges are defined using the maximum of
the aforementioned. The formulas used to compute the factors for the edges
are listed below:

Tess(e1) = Tess(es) = Tess(ez) =
max(Dist(C;), Dist(Cit1)) * (BSmaz — BSmin)

+ BSin (3.16)
Tess(ez) = Dist(Cit1) * (SSmax(Type(Cit1)) — SSmin(Type(Cit1)))

+ SSmin(Type(Cit1)) (3.17)
Tess(eq) = Dist(Cy) * (SSmaz(Type(C;)) — SSmin(Type(C5)))

+ SSmin(Type(Ci)) (3.18)
Tess(eg) = max(Tess(ez), Tess(es)) (3.19)

where BSy4z, BSmin are the maximum and minimum subdivisions of the
B-Spline, and SSi,0z, SSmin are the maximum and minimum subdivisions
of the patch in the extruding direction (which is different for each type of
secondary structure).

The tessellation factors of the edges e1, e and es control the number of
subdivisions of the B-Spline (horizontal subdivisions of the backbone in the
current segment), and they are in the range [BSnuz, BSmin]. In our appli-
cation, we use twelve and two as BSjq: and BSj,n, which provides enough
resolution to approximate the B-Spline. These tessellation factors are calcu-
lated first by determining which distance between the central control points
(C; and Cj41) and the camera is the maximum when normalized and lastly by
translating this distance from the range [0, 1] to [BSymaz, BSmin]. However, for
the segments that generate the arrows of the S-sheets, the tessellation level of
the B-Spline is always the maximum. If an adaptive tessellation level is allowed
on these segments, visual artifacts will appear, as the arrow will be changing
its shape with the geometric resolution.

The tessellation factors of the edges e2, e4 and eg instead, control the num-
ber of subdivisions of the patch in the extruding direction (vector d in Fig-
ure 3.23). Since the patches used to represent the different types of secondary
structures have different sizes, the number of subdivisions needed to achieve a
good visual quality is also different. Then, these factors use different ranges de-
pending on the type of secondary structure, [SSnin(Type), SSmaz(Type)]. In
our system, we use eight and two as SSpq; and Sy, if the segment belongs
to an a-helix or a 8-sheet, and if the segment does not belong to any secondary



64 CHAPTER 3. EFFICIENT RENDERING

e ey

ol ;. AN o

NS T
AN g g 2|
T
D

Figure 3.28: FEffect of the progressive tessellation. Note the different
geometric resolution between near and far secondary structures (this effect
has been exaggerated in this image in order to show the difference).

structure both, values are set to two. As commented before, in order to avoid
discontinuities and visual artifacts, the e; and e4 tessellation factors are de-
fined by selecting the normalized distance of the closest segment point (C; for
the edge e4 and Cj;1 for the edge ez), generating thus the same number of
triangles in the joints between two patches. These factors are then translated
from the range [0, 1] to [SSmin(Type), SSmaz(Type)]. Lastly, the tessellation
factor of the interior edge eg is defined by selecting the maximum between the
es and ey factors.

Besides the tessellation factors, the tessellation control shader also calcu-
lates the n vectors used to displace the newly generated vertices using the
equation 3.14. The n vector is only computed for the central control points, C;
and (41, since the information needed to generate the n vectors for the control
points C;_1 and Cj s is not available. In order to generate the n vectors of the
four control points of the patch, the points C;_5 and C;y3 should be available
in the tessellation control shader, allowing the computation of the segments
directions s;_9 and s;42.

3.3.2.4 Tessellation evaluation shader

The tessellation evaluation shader determines the final position of the new ver-
tices created during the subdivision of the patches. This shader is executed for
each new vertex created by the tessellation pipeline. With every execution, a
pair of coordinates (x and y) are available which indicate the position of the
new vertex inside the patch. Using these coordinates, we move the new vertex
to its corresponding position as described in Section 3.3.1. The x coordinate is



3.3. REALTIME SECONDARY STRUCTURES GENERATION 65

104 Ve
23 LAY

Figure 3.29: Triangle reduction thanks to our adaptive tessellation (top)
versus the regqular tessellation that would guarantee correct images upon
zooming (bottom). Note how the number of triangles is reduced in the top

figure.

used to evaluate the B-Spline and to obtain a 3D position along it. Moreover,
we evaluate another B-Spline, also using the x coordinate, to obtain the inter-
polated d vector. The n vector, instead, is obtained using linear interpolation,
since only the n vectors of two of the four control points are available. The 3D
position on the B-Spline is then moved along the interpolated vectors d and n
using the y coordinate as in Figure 3.23.

As a result, we have different patch resolutions for the close and far seg-
ments of the backbone, which has the main benefit of preserving the scalability
of the algorithm. Figure 3.28 presents a molecule which secondary structures
are rendered using different resolutions. To provide the close view, we have ex-
aggerated the subdivision levels so that they appear at closer distances than in
normal operation of the algorithm. Note how our system allows changing the
number of triangles depending on the depth. In order to illustrate the effect of
the adaptive tessellation in a real case, we also provide a comparison of a fully
tessellated representation and an adaptive one in Figure 3.29. The image on
the bottom contains only triangles, but really small since all the ribbons are
created using the level that ensures they are correctly visible for near views.
On the contrary, the top image shows how we save a lot of geometry with our
adaptive method.

3.3.2.5 Fragment shader

The last stage of the pipeline, the fragment shader, is in charge of performing
the lighting calculations to shade the surface of the sheet. To avoid artifacts



66 CHAPTER 3. EFFICIENT RENDERING

Figure 3.30: The fragment shader recomputes the normal for each pixel
in order to avoid artifacts due to the adaptive resolution of the patches. At
the corners of the patch, defined by the displacement distance r, the normal
is obtained interpolating between the vectors d and n.

produced by the adaptive tessellation of the geometry, we calculate the normal
also on this stage at pixel level. If the interpolated vertex normal is used in-
stead, the lighting at the borders of the patches will change with the movement
of the vertices carried out by the tessellation evaluation shader. The normal
at fragment level is obtained linearly interpolating the vectors d and n on the
corners of the patch, as illustrated in Figure 3.30. Here, the y coordinate pro-
vided by the tessellation stage is used to determine whether the pixel is in the
corner of the patch, and the value used to interpolate the vectors.

3.3.3 Ambient occlusion

Besides generating the geometry of the secondary structures on the GPU, we
also developed an algorithm to compute the ambient occlusion effect for these
models. This algorithm works in real-time and it is based on the algorithm
presented in Section 3.1, which was designed to approximate the ambient oc-
clusion factors for molecules rendered using the Space-filling or the Balls &
Sticks models. The previous algorithm has the following steps:

o First, we create a coarse representation of the scene that is stored as
an occupancy pyramid. Each level of this pyramid is a voxelization of
the scene at a different resolution that stores an approximation of the
occupancy of each voxel. This occupancy pyramid is updated at every
frame (using the compute shader) by performing an intersection test
between the scene primitives (spheres and cylinders) and the voxels, and
approximating the overlap between them.

e In a second pass, the ambient occlusion factor is calculated for each pixel



3.3. REALTIME SECONDARY STRUCTURES GENERATION 67

Figure 3.31: The figure shows the difference between rendering a molecule
using standard lighting methods (left) and ambient occlusion (right). On
the right image, the shape perception is increased thanks to the darker areas
in the interior faces of the a-helices or in the [(-sheets occluded by other
elements of the scene.

using the voxel cone tracing algorithm [CNS*11] through the occupancy
pyramid.

To adapt this algorithm to our ribbons model, we modified the generation of
the occupancy pyramid. We computed the overlap between the patches of the
backbone and the voxels of the data structure by approximating each backbone
segment by a set of boxes (3 for each segment), each one with a different
size. The voxels, on the other hand, are approximated by their bounding
spheres. Then, as in the algorithm designed for cylinder-voxel intersections,
the minimum distance between the box and the sphere is computed. The
overlap between the elements is estimated with the following equation:

D_,
D
where r is the minimum distance between the objects and D is the diagonal

of the voxel. Attempting to approximate each segment by a variable number

(3.20)



68 CHAPTER 3. EFFICIENT RENDERING

Figure 3.32: This figure presents two images obtained using our algorithm
with two molecules of different sizes, demonstrating the scalability of the
proposed method. The molecule (3IYN) on the left, with 7/9K residues
and 5,975 K atoms, is the biggest molecule we tested, while molecule on
the right (3EXG) has a medium size of 10K residues and 83 K atoms.

of boxes (as the geometry of the segments is adaptive too) would be counter-
productive since it would lead to visible popping artifacts in the shadowed
areas. An illustration of the cylinder-voxel overlap can be found in Figure 3.6
of Section 3.1, which can also illustrate the box-voxel overlap.

We present an example of a molecule rendered using our implementation
of ambient occlusion for ribbons models in Figure 3.31.

3.3.4 Results

This section presents the results of the tests carried out to measure the perfor-
mance of our algorithm. All these tests have been executed on an Intel Core
i7 PC, running at 3.5 GHz, with 16 Gb of RAM, and a GeForce 770 GTX,
rendering them in a 1280 x 720 viewport.

We ran a series of tests for molecules occupying a central part of the screen
(we call it far or F') and with a zoom-in (called Near, or N)). In the close view,
the maximum tessellation level is achieved by the near geometry to see the effect
of the screen coverage. The molecules used in our test are diverse, ranging from
a simple molecule of 249 residues to a large example of 749K residues (Figure
3.32 left). Note that the latter case is exceptionally large, orders of magnitude
larger than the ones used in the pharmacological simulations we are addressing.



3.3. REALTIME SECONDARY STRUCTURES GENERATION 69

Table 3.4: Performance measured in frames per second for different
molecules (N)ear the camera (where the near geometry has the mazximum
tessellation level) and (F)ar from the camera (where all the geometry has
the minimum tessellation levels). “Our” indicates the performance mea-
sured with our method and “[KBE08]” are the frames per second measured
with the method proposed by Krone et al. [KBE0S] (using five segment for
each curve section and siz edges for the tube’s front and back faces). Fram-
erates have been measured without uploading the buffers to the GPU (NU)
and uploading them (U).

Molecule # residues  VBO Our [KBEO0S]

name (# atoms) update N F N F
A 249 NU 2,594.21 3,596.47 1,531.91 1,946.81
(3,967) U 2,504.29 3,388.34 1,388.87 1,838.98
3EXG 10,781 NU 1,198.53 2,375.83 263.57 287.75
(83,339) U 1,059.86 2,093.71 254.99 274.18
1OWP 29,220 NU 760.75 1,330.46 86.84 90.06
(227K) U 667.96 1,078.64 85.44 89.51
1Y 171,720 NU 246.47 290.35 14.48 14.46
(1,356 K) U 198.72 222.94 14.31 14.56
3TYN 749,340 NU 68.98 72.51 3.52 3.54
(5,975 K) U 48.41 50.19 3.36 3.39

We also evaluated the impact of uploading the data every frame to the GPU in
order to obtain an insight of the performance in applications where the data is
received every frame. Table 3.4 shows the results obtained by these tests. Note
how we achieve real-time frame rates even with the largest molecule, and how
our method scales very well with the size of the molecule. Moreover, the table
shows how there is hardly any difference between the version that uploads the
buffers to the GPU at every frame (shown as U) and the method that does not
(NU in the table), as the data transmitted from CPU to GPU consists only of
the backbone information.

Besides the performance tests, we also compared our method with the
method presented by Krone et al. [KBE0S8] (Figure 3.35). The results of this
comparison are also shown in Table 3.4. Their method obtains high frame rates
for small molecules, but as the number of residues in the molecule increases
the frame rate drops down. Our method, however, scales very well with the



70 CHAPTER 3. EFFICIENT RENDERING

Figure 3.33: Close up view of the virus capsid 3IYJ composed by 171K
amino actds. Thanks to our adaptive resolution we are able to navigate
through big scenes as the one presented by this figure.

size of the molecule.

We also provide a comparison of the performance of our algorithm when
adding ambient occlusion. Roughly, the frame rates decay to half (except for
the first model, that was actually so fast to render that the AO calculation

& pat

; ) &

Figure 3.34: Snapshot taken from inside the virus capsid 31YJ composed
by 171K amino acids and 1,356 K atoms.



3.3. REALTIME SECONDARY STRUCTURES GENERATION 71

Table 3.5: Performance measured in frames per second for different
molecules without ambient occlusion (NoAQO) and with it (AO). Note that
even with ambient occlusion activated, our system is able to render complex
molecules in real-time.

Mol name A 1CWP 3IYJ 3IYN
#residues 249 29,220 171,720 749,340

NoAO 2,582.18 726.41  244.17 70.01
AO 436.83 340.64  117.18 35.06

dominates the cost). In Table 3.5 we can see those frame rates. Note that we
still maintain real-time frame rates for the most complex molecules.

3.3.5 Conclusions

We have presented an algorithm capable of generating and rendering the ge-
ometry of the secondary structures of very complex proteins on-the-fly using
the tessellation stage of the GPU. While other existing algorithms also use the
GPU to generate the geometry on-the-fly, ours is capable of generating only
the geometry needed for the current point of view, allowing the interaction
with bigger molecules in real-time and the use of other rendering effects in
order to increase the visual quality of the rendering. We have also adapted
an existing method to calculate the ambient occlusion factors for this type of
scenes, obtaining real-time frame rates even for macromolecules.



72 CHAPTER 3. EFFICIENT RENDERING

Figure 3.35: Visual comparison of our method with the method proposed
by Krone et al. [KBEOS]. The two images are similar since the only dif-
ferences are the edges of the patches and the transitions between different
secondary structures. Krone et al.’s method has sharp edges and transi-
tion, while in our method they are smoother. However, the main differ-
ence between the methods is that Krone et al.’s method uses always the same
geometric resolution while our method is adaptive, allowing the real-time
visualization of bigger models.



3.4. INTERACTIVE SOLVENT EXCLUDED SURFACE REFINEMENT 73

3.4 Interactive solvent excluded surface refinement

Molecular surfaces are commonly used methods to analyze molecular struc-
tures, as they can illustrate the accessibility to the molecule. In particular, the
solvent excluded surface (SES) illustrates the reachable areas of the molecule
for a specific solvent (represented by a sphere). The SES is generated by rolling
a spherical probe (the solvent) over the van der Waals (vdW) surface of the
molecule (see Figure 3.36). Thus, the SES is defined as the surface traced out
by the probe during this process.

Since the SES is very well suited for analyzing the molecular interface and
cavities, its use is widespread for facilitating the analysis of molecular dynamics
(MD) simulations. In pharmacology drug design, these simulations calculate
the interaction between a molecule and a ligand, and they output a set of
consecutive spatial atom configurations (trajectories). Due to the complexity
of the SES computation process, most of the existing algorithms compute it
in a preprocessing stage, rather than the mapping stage of the visualization
pipeline. While this allows for SES generation for static molecules and fixed
probe radii, preprocessing is not feasible for dynamic setups, where the atom
positions change over time, or the probe radius is altered during a visual anal-
ysis.

In the past few years, the development of new algorithms [LBPcH10, KGE11,
PV12] allowed the computation of an analytical solution in real-time (or inter-
active frame rates) for molecules of small-medium size. However, the memory
consumption and computational cost of these algorithms grow exponentially
with the size of the molecule. More details about of the state-of-the-art meth-
ods to compute molecular surfaces are given in Section 2.1.4.

Figure 3.36: The SES (red) can be defined analytically as the surface that
is traced out by a spherical probe (gray, shown in two sample positions)
rolling over the vdW surface of the atoms (blue) of a molecule.



74 CHAPTER 3. EFFICIENT RENDERING

In this section, we propose a novel SES computation algorithm that exploits
modern GPUs to support the interactive generation of SESs. The algorithm
has been developed specifically for dynamic data. We further do not assume
or rely on any particular frame ordering, since modern systems usually gen-
erate many of those configurations at once in parallel. To achieve interactive
SES updates, we have used a grid-based approach, which is suitable for GPU
implementation. And, to make our algorithm scalable, it has been designed
in such way that for large molecules, for which real-time frame rates cannot
be achieved at full detail, a progressive update of the SES is supported (see
Figure 3.37). Moreover, we introduce an interpolation scheme which allows a
seamless transition between the different levels of details.

The rest of the section is organized as follows: Section 3.4.1 describes the
basic algorithm used to compute the SES, its implementation on GPU, the
progressive algorithm in charge of the SES refinement, the coloring method
used, and the rendering algorithm which provides a smooth transition between
intermediate results. Moreover, this section discusses the error generated by
our algorithm and a method to reduce it. In Section 3.4.2 the results of the
tests are shown together with the results of the comparisons against different
methods. Lastly, the conclusions are presented in Section 3.4.3.

3.4.1 Algorithm

Kozlikova et al. [KKLT16] classified, in their state-of-the-art report, the al-
gorithms to compute the SES in two main categories: those that compute an
analytical representation of the surface and those that compute the surface by
discretizing the space around the molecule. Our algorithm falls into the second
category, as we use a regular 3D grid that represents a signed distance field to
the SES. Despite the resulting memory consumption requirements, this repre-
sentation allows us to compute a coarse representation of the SES in real-time
easily, to refine this coarse representation progressively, and to create a smooth
transition between different levels of detail.

The workflow of our algorithm is the following: When the application loads
a new molecule (or receives a new frame from the simulation software), we
compute a signed distance field to the SES using a low-resolution grid. This
computation is carried out in milliseconds due to the low resolution of the
grid, so the user does not perceive any drop in performance. This coarse
representation is then immediately rendered and shown to the user. Meanwhile,
the algorithm computes refined versions in the background by increasing the
resolution of the grid. Once a new level is computed, the algorithm performs
a smooth transition between the current level and the one just computed.



3.4. INTERACTIVE SOLVENT EXCLUDED SURFACE REFINEMENT

75

Initial Model

Continuous interactive
seamless rendering

Progressively refined
SES model

Complete SES

Figure 3.37: [llustration of the SES generation algorithm. To maintain
interactivity, if GPU capabilities are not enough to generate the full SES in
a single frame, a coarse model is generated first, which is then progressively
refined several steps. Progressive refinement occurs in a seamless way, and
the user can explore the molecule meanwhile.



76 CHAPTER 3. EFFICIENT RENDERING

O O e o o o o o o
O O O O e o o o o
®@ ®¢ O 0 0O e o o o
0O~-0 [0 o @ o e o o

Figure 3.38: Step 1: Probe intersection. The figure shows how the tests
performed at the grid points are used to classify them. Red points are
classified as interior to the SES, blue ones are classified as exterior to the
SES, and yellow ones as points on the boundary of the SES.

3.4.1.1 SES computation

Our algorithm to compute the SES is based on the one proposed by Lindow
et al. [LBH14]. They developed a grid-based algorithm to compute the lig-
and excluded surface (LES), a generalization of the SES where the surface is
defined by rolling a molecule instead of a sphere (more details are given in
Section 2.1.4). Our algorithm is also grid-based and it generates a 3D signed
distance field with positive values outside the SES and negative values inside.
Similar to Lindow et al. [LBH14|, we compute the signed distances only in the
proximity of the SES, so the range of distances is limited. In our case, this
range is [—rg,7p], where 74 is the distance between two neighbor grid points
and 7, is the probe radius. Points of the grid at longer or shorter distance are
clamped to r, and —r, respectively.

Our algorithm, unlike the one proposed by Lindow et al. [LBH14]| for the
LES, has no collision problems and it can be executed in parallel without using
synchronization mechanisms, making it suitable for GPU implementations. We
accomplished that by dividing the computation into two distinct steps: probe
intersection and distance field refinement.

3.4.1.1.1 Probe intersection

In the first step of the algorithm, the points of the grid are classified as points
located outside the SES, inside the SES, or in the boundary of the SES. This
classification is based on two simple tests: checking both the center of the grid
point and a probe located at the center of the grid point for intersections with



3.4. INTERACTIVE SOLVENT EXCLUDED SURFACE REFINEMENT 77

® & & O\O0 0o 0o o o
@ & & 0O b o o o o
& & &8 0O 9o o o o
e & & O p) o o o o

/0 Q \0 0 0 0 ©o
0O 0 o o o

0O 0 O o

Figure 3.39: Step 2: Distance field refinement. For each yellow point,
the algorithm searches for the closest blue point in a meighborhood. The
distance to the SES is then computed as the difference between the probe
radius and the distance between these two points.

the atoms of the molecule (using the Van der Waals radius). An illustration of
these two tests is shown in Figure 3.38. The results of these tests are used to
classify the points according to the following criteria:

Outside SES: If there is no intersection between the probe and the atoms,
the grid point is classified as a point outside the SES, and the algorithm
assigns 7, as the distance to the SES (blue points in Figure 3.38).

Inside SES: If the distance between the grid point and at least one atom of
the molecule is less than the radius of this atom minus r, (the distance
between two closest neighbors on the grid), the point is classified as an
interior point of the SES (red points in Figure 3.38). In this case, the
algorithm assigns —r, as its distance to the SES.

Boundary: If there is an intersection between the probe and an atom, but
the distance between the grid point and all the atoms of the molecule is
longer than the radius of the atoms minus 74, the grid point is classified
as being on the boundary of the SES (yellow points in Figure 3.38). The
distance between such a point and the SES is determined in the second
step of the algorithm.

3.4.1.1.2 Distance field refinement

In this second step, the remaining distances to the SES of the points in the
border region are computed. Thus, the algorithm searches the neighborhood



78 CHAPTER 3. EFFICIENT RENDERING

of these boundary points for adjacent points that are outside the SES. As
described in the previous section, on the points outside the SES a probe could
be placed without intersecting any of the surrounding atoms, what could make
the surface of these probes a good approximation of the SES. The distance of
a boundary point p. is then updated with the maximum distance from p. to
the surface of the probes (being negative if p. lies outside the probe).

To ensure that all the probes which could affect the distance of our p. point
are tested, its neighborhood is defined by the set of points p; at a distance r,+rg
or less from p.. The algorithm initializes the distance of p. to —r4, and then it
iterates over all the points in the neighborhood and selects the closest p; that
lies outside the SES. If no p; was found that is outside the SES, the distance
of p. is not updated (e.g., it remains —ry). If there is at least one, the distance
of p. is updated using the following equation:

d =1y — ||[pos; — posc|| (3.21)

Figure 3.39 illustrates this process.

Note that updating the distances in parallel requires no synchronization.
The algorithm only searches the neighborhood of each sample for points outside
the SES and does not modify these values in this step; they were computed in
the first one.

3.4.1.2 Implementation

We have implemented our algorithm to run on the GPU, using compute shaders
for both steps. To represent the signed distance field we used a 3D float texture
centered at the molecule which encloses it. Each thread of the first compute
shader classifies a grid point of the distance field as described in the first step
of the algorithm. Then, each thread of the second compute shader calculates
the distance to the SES of one boundary grid point. In order to perform
these computations efficiently, some optimizations are applied, which we now
describe.

In order to classify a point, the algorithm has to perform intersection tests
between the grid point and the atoms of the molecule, which can be prohibitive
when the number of atoms increases. Therefore, it is crucial only to perform
the intersection test with close-by atoms and discard the ones that are farther
away. Efficient retrieval of neighboring atoms within a fixed radius is a common
problem that is usually solved by using spatial subdivision data structures (see,
e.g., [Gre07, BSC15, Hoel4]). We opted for the method of Green [Gre(07],
which was also used by Krone et al. [KGE11] and Skénberg et al. [SVGR16] in
different molecular visualization techniques. This method subdivides the space



3.4. INTERACTIVE SOLVENT EXCLUDED SURFACE REFINEMENT 79

into a regular grid and sorts the atoms into the grid cells based on their centers.
Then, we can obtain neighboring atoms within a fixed radius in constant time.
In our case, we set the cell size to the probe radius r, plus the maximum Van
der Waals radius. This cell size guarantees that we only have to visit 27 cells
of the grid to obtain all the atoms that possibly intersect with our probe.

As described by Green [Gre07], the distribution of the atoms into the cells
can be efficiently implemented using the radix sort algorithm®. This algorithm
assigns an integer key to each cell based on their position, and, for each atom,
the key of the cell they belong is computed. The atoms, then, are sorted based
on their keys using the radix sort algorithm, packing together all the atoms
belonging to the same cell. The last step determines the starting and ending
atom index for each cell. We have implemented the radix sort algorithm using
a compute shader for each of the steps of the algorithm.

The compute shader which implements the second step of the algorithm
executes a thread for each point classified as boundary since these points have
no distance assigned yet. However, keeping track of all these points is not a
straightforward task in the context of a parallel algorithm. One possible solu-
tion is to mark these points in the first step and, on the CPU, pack them into
a buffer, executing the second step of the algorithm only for them. Although
this is a simple solution, it does not scale well when the resolution of the grid
increases (the number of grid points to keep track grows exponentially) and
we lose spatial coherence in the execution of a shader workgroup (which can
lead to performance issues related to cache misses when accessing the data).
Instead, we chose a more GPU-friendly solution. We grouped the grid points
into bricks of 83, and then, we selected those that need further refinement.
Among all bricks of the grid, the ones that need further refinement are defined
as the ones that contain at least one boundary point (see the yellow bricks in
Figure 3.40). Packing grid point into bricks reduces the workload of the CPU
and accelerates the selection process. In addition, it lowers the data transfer
between GPU and CPU, and it adds local coherence inside the workgroups in
the second step as we use a workgroup size equal to the brick size (83).

3.4.1.3 SES progressive refinement

One of our main goals in this project was to ensure real-time interaction. For
this reason, in our system, the application computes the SES using a low-
resolution 3D grid in real-time and, in the background, it refines the coarse

!The radix sort algorithm is an algorithm able to sort a list of integers in constant time
(O(n)). More details about this algorithm and its implementation on GPU can be found
on [HH11].



80 CHAPTER 3. EFFICIENT RENDERING

Figure 3.40: The grid points are packed together into bricks. In the first
step of the algorithm, these bricks are classified. Yellow bricks have at least
one grid point labeled as SES border. The blue bricks are the ones close to
the yellow ones. Red ones have all grid points classified as interior points.

The rest of the bricks (white) are not taken into account in the computation
of the refined SES.

surface to provide a more exact SES progressively.

In order to store the different SES resolutions, we selected a data structure
composed of a mipmapped 3D array of floats with a base resolution of 5123.
This data structure is initialized with the value of the probe radius since it is the
maximum distance allowed by our algorithm. We have chosen this maximum
resolution as a compromise between SES quality and memory consumption.
For a virus capsid of 500k atoms (1K4R), the grid cells are still below 1A,
while it only uses 620 Mb.

For a given molecule, the algorithm calculates the SES for a range of levels
within the mipmapped array. The base level, I, is used to compute the coarse
representation of the molecule, while the end level, [, is the level used to
compute the most refined version of the SES. The algorithm starts computing
the SES for the Ig, and, progressively, computes the SES for the rest of levels
until the SES at [, is complete.

The main bottleneck of the SES computation algorithm is in the distance
field refinement step (described in Section 3.4.1.1.2). When the number of
neighboring points that are considered increases, the performance decreases.
Thus, at I, we choose the smallest neighborhood that keeps an acceptable SES
quality and allows its computation in real-time. We choose the highest level
in the hierarchy in which the distance between two neighbor grid points is less



3.4. INTERACTIVE SOLVENT EXCLUDED SURFACE REFINEMENT 81

Frame initialization

< Progressive Refinement
(Real-Time)

(Interative)

Sorted atoms ‘

Step 1: Probe inter. T T3 erickstoupdate
* Bricks to refine

Sort Atoms

* Sorted atoms

Step 1: Probe inter.

Step 2: DF Ref. + Bricks to refine

Step 2: DF Ref.

Bricks to update

Hierarchical
Distance Field
Sorted atoms
Start ° °
resolution . .
E [ J [ J [ J [ J l l
: e o o o Step 1: Probe inter.
* oo 00 00 00 + Bricks to refine
End e o 00 00 0 0 \
| ti e e 060 00 0 0 .
resolution e Step 2: DF Ref.

Figure 3.41: Qverview of the progressive refinement process: First, the
atoms of the molecule are sorted and then, a coarse version of the SES is
computed in real-time. The sorted atoms and the brick list obtained in the
first computation are then used to compute a more refined version of the
SES. Along the frames, new versions of the SES are computed using the
brick list of the previous resolutions until the highest resolution is reached.

than the probe radius. With this configuration, the algorithm considers for
each grid point the cells at a (Manhattan) distance of less than or equal to
two, which makes a maximum of 124 neighbors. For large molecules, we do
not allow a resolution greater than 1283 for the level [, since a bigger resolution



82 CHAPTER 3. EFFICIENT RENDERING

could not be computed in real-time. To select [, the algorithm follows a similar
criterion, choosing the lowest level in the hierarchy where the distance between
two neighbor grid points is less than the probe radius divided by 7 (for each grid
point the algorithm has to visit seven neighbors in each direction). However,
since our data structure has a finite resolution of 5123, the final level may
not exceed this limit. These numbers have been chosen empirically from tests
performed on our hardware, but they can be modified to tune the algorithm
to different hardware.

Once ls and [, are known, the algorithm computes the SES for I, and
presents the result to the user immediately. First, the algorithm sorts the
atoms into a spatial subdivision grid G, (using the GPU radix sort algorithm
described in section 3.4.1.2), which will be used for the computation of all
levels in the range [ls, lc], so it has to be computed only once. Next, the two
steps of the algorithm are executed to calculate the coarse version of the SES.
In the first step, the classification of the grid points is performed. In addition,
this step classifies the bricks of the grid (see Section 3.4.1.2) in four different
categories:

Border bricks (B;) These bricks are defined as the ones containing at least
one point on the border of the SES (yellow bricks in Figure 3.40).

Interior bricks (B;) Interior bricks are only composed of grid points inside
the SES (red bricks in Figure 3.40).

Adjacent bricks (B,;) These bricks contain grid points completely outside
the SES, and they have, at least, one neighboring brick in the boundary
region (By) (blue bricks in Figure 3.40).

Outside bricks (B,) Outside bricks are the rest of the bricks of the grid, the
ones which contain grid points completely outside the SES and have all
the neighboring bricks classified as B, too (white bricks in Figure 3.40).

In the second step, the By, bricks are updated with the distance to the SES.
At the coarsest level, this whole computation takes milliseconds and can be
performed in real-time during rendering. The output of this stage is composed
of: a distance field that represents the coarse SES, the atoms distributed into
G4, and the classification of the bricks. The algorithm immediately renders
the coarse SES, so that the user can interact with it. Meanwhile, in the back-
ground, the algorithm computes the following levels of the hierarchy using the
information obtained from the coarse level calculation.

In order to reduce the computation of the next level, only the volume of the
SES and its vicinity are recomputed. Therefore, we execute our SES algorithm



3.4. INTERACTIVE SOLVENT EXCLUDED SURFACE REFINEMENT 83

Figure 3.42: Discrete sampling can miss features inside the surface (e.g.,
cavities or tunnels). This image shows how a cavity is not detected in a
surface generated with a low grid resolution (top, generated with a 1283
grid resolution), while it is in a high resolution (bottom, generated with a
2563 grid resolution). Updating interior bricks in all levels is mandatory
to overcome this limitation of the discrete sampling.

on the volume defined by the By, B; and B, bricks of the coarse level, ;.
Note that a brick on the level [; covers the same volume as eight bricks in the
level [;_1 since the resolution is doubled in each axis. We execute, then, our
SES algorithm in those bricks contained by the By, B; and B, bricks of the
coarse level. The recomputation of the bricks classified as By is mandatory
as they contain the actual surface, but the recomputation of B; and B, may
not seem so obvious. B; and B, bricks are also recomputed to avoid artifacts
in the refined versions. B; bricks contain points completely inside the SES,
and they are recomputed to do not miss internal features of the SES (cavities
or tunnels). Small interior features of the SES are missed if the surface is
poorly sampled, which can happen in the first coarse levels of the hierarchy.
Recomputing these areas with a higher sampling in the lower levels can recover
these missing features (see Figure 3.42).

B, bricks contain grid points completely outside the SES that have at least
one neighboring brick in the boundary region (By). These bricks have to be
recomputed in the remaining levels to avoid incoherent distance values between



84 CHAPTER 3. EFFICIENT RENDERING

Figure 3.43: The big blue point on the left belongs to a brick that does not
need to be refined but has a neighbor that belongs to another brick that needs
to be refined: the big yellow point to the right. In a higher resolution, some
of the points of the left brick became yellow (a probe placed at them have
an intersection with the molecule) even if all the points in the previous
resolution had no intersection. These bricks have to be updated in the
higher resolution levels to avoid artifacts on the resulting surface.

adjacent grid points. A brick can be composed only of grid points outside the
SES at a certain resolution, but, when more samples are used, that could not
be the case anymore. The new samples can be part of the SES boundary as
illustrated in Figure 3.43. Hence they need to be updated.

The SES computation of the next level is performed using the following
pipeline: First, the classification of the bricks carried out at the coarse level
is downloaded to CPU memory. Then, on CPU, the bricks that need to be
recomputed are packed together in a buffer. In the background, while the user
inspects a coarser version of the SES, the application executes the algorithm
described in Section 3.4.1.1 for the selected bricks. The algorithm works exactly
in the same way as it works for the coarse level. The result is presented to
the user using a smooth transition between the previous level and the new
refined one. This process is repeated for further levels in the hierarchy until
the algorithm computes the last one, [, (always using at level [; the brick
classification calculated in the previous level I;;1). This algorithm is executed
in parallel to the rendering, so for each frame, a fixed number of bricks are
processed. To maintain an interactive frame rate, we process only 512 bricks
per frame, but this number could be reduced on slower GPUs (we have used a
NVidia GTX 970 in our experiments).



3.4. INTERACTIVE SOLVENT EXCLUDED SURFACE REFINEMENT 85

3.4.1.4 Detection of missing features

Due to the discrete nature of our representation, the volume of the SES can
be overestimated. Each point of the grid stores only an approximation of the
distance between the point and the surface. The real distance, however, is in
the range [d, d+(v/3-7,)], where d is the approximated distance stored in a grid
cell and r, the distance between two neighboring cells along one axis. That is,
ry defines the maximum error of our solution.

Consequently, the probability of missing internal features of the molecule
(cavities or tunnels) increases with r4. Simply speaking, the chances of missing
a small cavity are higher if the space around the molecule is sampled by a small
number of points (i.e., a coarser grid).

These limitations may not be relevant for small 74, but, when r, is larger
than a certain value, the result can deviate significantly from the analytical
solution. Thus, we developed a method that refines the last level of our SES,
le, in certain areas. The algorithm analyzes the bricks of the highest resolution
grid to find areas with possible missing features. These bricks have been defined
as having at least one point that satisfies the following conditions. First, this
point has to be located inside the SES but outside of the atoms of the molecule.
Second, it has to be surrounded only by interior points. And third, one of its
neighbors also has to be outside of the atoms and, together, they have to satisfy
the following condition: d,1 + dp2 + |[posi — posa| > 2 -1, - 1, where dp,; and
dp2 are the distances between the points and their closest atoms, pos; € R3
and posy € R? are the positions of the grid points, rp is the probe radius, and
1 is a user-defined parameter that controls the number of selected bricks. If
two points satisfy these conditions, a probe might fit between them. Note how
two neighboring points may not satisfy the conditions for ;= 1 and still miss
a cavity since the probe can be placed at some distance from the line defined
between them. Moreover, two neighboring points can satisfy the conditions for
p =1 and do not miss any internal feature (which often happens for large r).
Parameter p helps the user to limit the extra computations according to her
needs and the size of the molecule.

For the volume contained by the bricks that passed this test, our algorithm
is executed with a resolution of 643 with a small modification. If a probe
can be placed in one of these new points, our mipmap is updated with the
newly calculated distances at the highest resolution. These updates have to be
performed using data access synchronization (atomic operations) since more
than one new sample could try to modify at the same time the value of an
original grid point.



86 CHAPTER 3. EFFICIENT RENDERING

Figure 3.44: Top: the SES is colored using the CPK color convention
to identify the atoms; center: color mapping showing the residue types;
Bottom: (per residue) electrostatic potential.

3.4.1.5 SES coloring

Researchers often use the SES to detect tunnels or cavities in the surface, but
it is also important for them to be able to identify the atoms/residues, the



3.4. INTERACTIVE SOLVENT EXCLUDED SURFACE REFINEMENT 87

electrostatic potential, the hydrophobicity, and other properties in the surface.
To support the visual analysis, we store another 3D texture at the lowest
resolution selected for this molecule, [, and, for each texel, we store the color
or property associated with the nearest atom. By using this texture, the surface
can be smoothly colored according to the stored properties.

We chose to encode these properties at the lower resolution to have smooth
transitions between colors since higher resolutions would make the borders
between colors clearly visible. Moreover, it does not add extra computational
costs (it can be computed together with the coarsest level) and it uses limited
extra memory, as the selected resolution is never greater than 1283. Different
examples are presented in Figure 3.44.

3.4.1.6 SES rendering

In this section, we describe the rendering algorithm used to visualize the SES
stored as a distance field. The most commonly used techniques to visualize a
surface stored in a distance field are either by extracting a mesh using marching
cubes (MC) [LC87] or by ray-marching it directly [HSST05]. We chose to
ray-march the distance field, as it does not require extra storage and it can
be done efficiently. The classical algorithm of ray-marching takes samples
along the ray, separated by constant distance, but we use, instead, the values
stored in the grid points as the distances between consecutive samples. This
optimization speeds up the rendering and removes some possible artifacts (e.g.
missing the surface on the border). When the ray hits the surface, we use a
Sobel filter [GWO06] to compute the normal at that point. This filter compares
the values of the 26 neighboring points against the values stored at the hit point.
On hardware with low performance, a simpler filter could be used instead,
reducing thus the number of texture lookups (e.g. central differences [BLM96]).

Another advantage of ray-marching over MC is that it allows us to perform
smooth transitions between the different levels of detail easily. When a new
level I; of the distance field hierarchy is computed, the renderer has to perform
a transition from the current level /;;; to the new level [; along a time frame
t. This transition is done by the hardware trilinear interpolation. The render
performs a linear interpolation of the level identifier along time, from i+ 1 to 7.
This interpolated value is then used as the LOD parameter in the textureLod
call during the ray-marching. With this function call, the hardware performs a
linear interpolation between the distances stored at the different levels, which
is translated into a smooth surface transition between levels. When the hit
point is reached and the normal has to be calculated, the algorithm also lin-
early interpolates the distance between neighbor samples. This interpolated



88 CHAPTER 3. EFFICIENT RENDERING

I S

643 1283 256° 5123

Figure 3.45: The image shows from left to right the progressive refinement
in the SES generation process. Note the continuity through the different
steps thanks to our algorithm.

distance is used to determine the neighbor positions in order to compute the
normal using the Sobel filter. This simple algorithm gives us a smooth transi-
tion between grid resolutions for both surface shape and lighting. Figure 3.45
illustrates how a molecule was rendered using different grid resolutions from
left to right, applying smooth transitions between them.

Moreover, we improved the performance of our ray-marching algorithm
using a well-known technique from GPU-based volume raycasting. In order to
reduce the ray traversal distance, we render the By, bricks of the desired level
to encode a texture with the entry and exit points of the rays, skipping thus
the empty space of the volume. This simple technique substantially increases
the frame rate of our rendering algorithm, and, since we already keep track
of these bricks in our SES computation, it does not add extra computational
cost.

Furthermore, we used ambient occlusion to increase the understanding of
the surface’s shape and help the visual identification of cavities and tunnels.
Since the SES of a molecule is derived from its Space-filling representation
and they are very similar, we used the ambient occlusion algorithm described
in Section 3.1 to calculate the occlusion factors of the SES. This algorithm
computes a 3d occupancy pyramid, which approximates the volume occupied
by the Van der Waals spheres of the atoms, and then uses it to compute the
ambient occlusion factor of each pixel. To compute ambient occlusion factors
on the SESs, we used the occupancy pyramid calculated with the Van der Waals
spheres. Then, for each pixel, we approximate its occlusion factor applying
the algorithm Vozel Cone Tracing over the previously calculated occupancy



3.4. INTERACTIVE SOLVENT EXCLUDED SURFACE REFINEMENT 89

Figure 3.46: Ambient occlusion factors computed for the SES model gen-
erated by the methods presented in this section. Note how the ambient
occlusion algorithm improves the shape perception of the surface, highlight-
ing the cavities, one of the key features of the SESs the experts are looking
for during analysis.

pyramid. Figure 3.46 illustrates the ambient occlusion factors computed for
an SES.

3.4.2 Results
3.4.2.1 Performance

The presented technique was tested in different molecules using a workstation
with the following configuration: Intel Core i7 PC, running at 3.5 GHz, with
16 Gb of RAM, and a GeForce 970 GTX, at a screen resolution of 1024 x 768 px.
The results of these tests are presented in Table 3.6. The columns of the table
present: the time spent sorting the atoms of the molecule, the time required to
compute the coarse SES, the start and end resolution used for each molecule,
the time required to compute the most refined version of the SES, the frames
per second of the application during the refinement process, and the cell size
of the higher resolution grid. The computation of the coarse version of the
SES is performed in real-time even for big molecules up to 545 K atoms, while
the computation of the most refined SES takes a bit more than 4 seconds in



90 CHAPTER 3. EFFICIENT RENDERING

Figure 3.47: SES of SEXG molecule with 83 K atoms generated using a
distance field resolution of 5123.

the worst case. During the computation of the different levels, the application
is able to maintain a real-time frame rate, allowing the interaction with the
intermediate results. The progressive SES computation thus enables a fast
rendering of large simulation trajectories on the fly. Notice that for small
test cases, like Traj 8 in Table 3.6, our algorithm takes longer to complete
the computation of the highest resolution, whereas times descend for larger
molecules. For small molecules, the cells in the high-resolution grid are very
small, and there is a large number of them inside the probe. Therefore, the
algorithm needs to visit many neighbors and slows down. This can be easily
avoided in practice since such high resolutions are not needed for small models.
On the other hand, for big molecules like 1K/R, the algorithm computes the
most refined version in less than 2 seconds, but, however, the cell size used is
remarkably higher, which can easily lead to missing features. In these cases,
the algorithm proposed in Section 3.4.1.4 has to be used to avoid missing these
tunnels and cavities.



3.4. INTERACTIVE SOLVENT EXCLUDED SURFACE REFINEMENT 91

Table 3.6: Performance obtained for different molecules using the fol-
lowing hardware configuration: GeForce GTX 970 with 2 GB of memory,
Intel i7 and 12 GB RAM. The different columns show the time required to
sort the atoms in the regular grid [2], the resolution of the distance field
in the base level [3] and the time in milliseconds needed to compute it [4],
the resolution of the distance field used in the last refined level [5], the
time in milliseconds needed to compute all the refined levels [6], the mean
frames per second obtained during the refinement process [7] and, in the
last column [8], the cell size of the last refined level.

Molecule Sort ls ls le (ls, lc] FPS Cell
(#atoms) (ms) res. (ms) res. (ms) comp. (A)
1] 21 B [4 [5] [6] 7 8]

Traj 1 (2,066) 0.16 643 542 2563 775 51.61 0.21
Traj 2 (3,967) 020 64 5.23 2563 464  79.74 0.28
Traj 3 (11,224)  0.47 1283 10.09 5123 4,149 4555 0.20
2G47 (16,962)  0.60 1283 9.72 5123 2151  90.63 0.29
1S3S (22,367)  0.80 128%  7.58 5123 930 133.29 0.40
3J3A (46,276)  1.55 1283 8.94 5123 1,822 136.66 0.43
3EXG (83,339) 218 128% 881 5123 1,242 165.06 0.51
ICWP (227K)  6.24 128% 11.52 5123 2468 164.51 0.58
1K4R (545K) 11.96 1283 15.89 5123 1,649 177.08 0.98

Since no other methods to compute the SES calculate the result progres-
sively we decided to compare our technique with the faster existing method,
the GPU-based contour-buildup method by Krone et al. [KGE11], which is
implemented using CUDA and included in the publicly available visualization
system MegaMol [GKM*15]. The main drawback of the CUDA implementa-
tion of the contour-buildup in MegaMol is that it requires a huge amount of
GPU memory. For the test data set 1S3S with 22 K atoms, it requires 1.9 GB
of memory (the SES computation takes 32ms on a Nvidia GTX 970), while a
protein of about 30 K atoms (PDB ID: 3K19) requires already 2.7 GB of mem-
ory. Consequently, even newer consumer graphics cards with 4 GB VRAM or
more will quickly run out of memory for large structures like virus capsids.
This prevents the use of the CUDA-contour-buildup for such large structures.
In contrast, our technique has almost constant memory consumption, making
it very scalable. It requires just 620 MB for a data structure with a maximum



92 CHAPTER 3. EFFICIENT RENDERING

Table 3.7: Performance in frames per second when rendering the dis-
tance field for different resolutions and molecules using the ray-marching
algorithm. Moreover, the last column shows the frames per second of our
method using ambient occlusion. When we compare our method with Meg-
aMol (the column labeled as RC shows the performance in fps of that sys-
tem), we see that our system is capable of achieving sustained interactive
frame rates even for large molecules. The timings were computed by averag-
ing the rendering time from 512 distinct random directions that uniformly
sample a sphere, to even out variations due to camera placement.

Molecule #atoms 1283 2563 5123 RC[KBE09] 5123+ AO

Traj 1 2,066 250.80 233.69 — — —
Traj 2 3,967 254.34 248.42 — — —
Traj 3 11,224 225.11 237.54 227.90 — 176.76
2G47 16,962 212.77 221.33 205.89 188.1 175.08
1538 22,367 229.86 223.73 212.74 126.3 151.46
3J3A 46,276 202.17 185.91 137.60 72.0 114.79
3EXG 83,339 200.18 202.94 180.56 69.2 137.81
1CWP 227K 17547 167.71 158.93 27.7 110.57
1K4R 545K 165.71 162.27 144.35 12.6 76.40

resolution of 5123, which is constant for all the molecules, and 32b for each
atom of the molecule. Moreover, the CUDA-contour-buildup, as was pointed
out before, requires 32 ms to compute a molecule with 22 K atoms (1S3S), while
our algorithm is able to present a coarse version of the SES in one-fourth of
the same time.

Moreover, we compared the rendering speed of our method to that of
MegaMol. While our method uses volume ray-marching (see Section 3.4.1.6),
MegaMol uses GPU-based ray casting to render the implicit patches of the
SES [KBE09]. A comparison of the frame rates can be found in Table 3.7.
Despite having similar performance for up to medium-sized proteins (2G47
of 16,962 atoms), ray-marching clearly outperforms ray-casting for very large
data sets even when using high-resolution volumes. The rendering performance
on MegaMol is limited by the number of implicit patches generated (i.e. the
number of atoms), while our rendering method, on the contrary, depends on
the grid resolution and the shape of the molecule.

Furthermore, we compared the performance of our algorithm to that of



3.4. INTERACTIVE SOLVENT EXCLUDED SURFACE REFINEMENT 93

Figure 3.48: Visualization of the distance between our result and the
analytical solution. The distance is represented by a color scale from red
(distance 0) to blue (distance equal to the probe radius). On the left part
of the image, a histogram of the distances is shown.

EDTSurf [XZ09] (see Table 3.8) since this algorithm also uses a grid to compute
the SES. Although the comparison is not precise, we only use powers of two as
grid resolutions and EDTSurf uses the CPU instead of the GPU to compute
their solution, it showed that our algorithm is consistently faster. In all the
tests our algorithm took less than one second to compute the SES using a grid
resolution of 2563, being more than 20 times faster than EDTSurf in most of
the cases.

3.4.2.2 FEvaluation

Lastly, and to ensure the correctness of our results, we compared the SES gen-
erated by our method with the exact SES. The exact surface was obtained
using Chimera for a molecule of 3,967 atoms (this computation is not practical
for very large molecules on this software), and the result of our algorithm was
obtained using a resolution of 2563. To this end, we sampled 2,676,613 ran-
dom points uniformly distributed over the surface given by our algorithm and
computed their distance to the exact surface generated by Chimera [PGH'04]
(see Figure 3.48). The result was an average distance of 0.231743A with a



94 CHAPTER 3. EFFICIENT RENDERING

Table 3.8: Performance comparison between our method and the EDT-
Surf software [XZ09]. The table shows the resolution of the discretization
used by the EDTSurf algorithm and the time in seconds needed to com-
pute the SES with the CPU implementation provided on their website. We
compared these results with the time required by our technique to compute
(progressively) the SES until a grid resolution of 256° was reached (we use
power-of-two grid resolutions and they do not).

EDTSurf EDTSurf Our method
Molecule #atoms Grid Resolution Time (s)  at 2563 (s)

Traj 1 2,060 203 x 181 x 172 1.64 0.78
Traj 2 3,967 217 x 194 x 271 3.22 0.46
Traj 3 11,224 275 x 225 x 299 5.19 0.20
2G47 16,962 201 x 299 x 234 3.34 0.16
1S3S 22,367 254 x 299 x 89 1.99 0.09
3J3A 46,276 299 x 287 x 299 4.44 0.19
SEXG 83,339 216 x 225 x 299 3.64 0.16

root mean square error of 0.269498A. Notice that this amounts to a standard
deviation of roughly 0.14A, so even if there are points at zero distance of the
exact SES, and others at up to 1.43A, they are extremely rare (see histogram
on Figure 3.48). This means that our algorithm yields a surface with a small
outward bias (of the order of magnitude of the spacing between samples) orig-
inated by its conservative nature. Occasionally, it may miss some small cavity,
but this will only happen if inspecting a whole molecule, at a scale at which
this cavity cannot be seen.

3.4.3 Conclusions

This section presented a new GPU-accelerated algorithm that computes the
SES on the fly. In contrast to previous approaches, we are able to progressively
refine the result, which allows its calculation and rendering at interactive frame
rates for very large models like the virus capsid showed in Figure 3.49. Our
system requires no precomputation and thus, we can handle dynamic models.
The progressive component of our algorithm is achieved using a space dis-
cretization. At first sight, this might be considered a disadvantage, since too
coarse a refinement might lead to missed cavities or incorrect surface shapes.



3.4. INTERACTIVE SOLVENT EXCLUDED SURFACE REFINEMENT 95

Figure 3.49: SES of the virus capsid 1CWP with 227 K atoms generated
using a distance field resolution of 5123.

However, the resolution we use is fine enough to avoid such problems, as shown
by the tests where we compared the surface obtained by our method to the
analytical solution and found that they only had small discrepancies (see Fig-
ure 3.48). Moreover, we proposed a method to detect and compute the missing
features skipped by our algorithm when the resolution is not fine enough. An-
other advantage of our approach is that we support smooth transitions between
refinement levels, thus, the progressive improvement happens seamlessly. Fi-
nally, we have also shown how we can encode atom properties on the generated
surface using color to support visual analysis.






Visualization of molecular interaction forces

Molecular design procedures, such as drug design and protein engineering, are
complex processes, largely benefiting from computational resources but also
from the human analysis. In drug design, for example, a costly iterative loop
involves simulations requiring long computation times, followed by a data anal-
ysis phase, which is conducted by domain scientists using numerical analysis
and visualization tools. Once some clues favoring or hindering binding have
been understood, the ligand is modified by taking into account these clues, and
another iteration is performed. In typical cases, computer simulation times
range from hours to weeks, depending on the complexity of the molecules and
the methods used. In our scenario, instead, the simulation software running
on a supercomputer allows the computation of many simulation paths at the
same time. This amount of available data implies that the requirements for
analysis tools become more demanding.

As a result of the computational resources getting more affordable, human
resources are becoming more and more the limiting factor in the computer-
assisted molecular design process. In fact, most of the data analysis is per-
formed in meeting rooms where different specialists discuss the outcomes of
the simulation and the next design step. To enable these experts during com-
prehension and decision making, it is of great importance to provide effective
data examination and visualization tools. In this chapter, we will focus on one
of the key aspects required to make informed decisions in the molecular design
process: understanding which parts of the molecule influence the binding of
the ligand. This information is key, as it enables the domain expert to hypoth-
esize which residues can be altered in the subsequent design process in order
to improve the ligand’s affinity. Unfortunately, communication of this infor-
mation results in several challenges. First, the binding information must be

97



98 CHAPTER 4. VIS. OF MOLECULAR FORCES

Coulomb. vow Solvation

Coulomb.

Figure 4.1: Successive steps during the visual analysis of the binding of
aspirin and the phospholipase A2 protein. We compute and visualize all
essential interaction energies represented by 2D and 3D arrows. The orien-
tation of the depicted arrows encodes the sign of the energy, i.e., attracting
vs. repelling force. The width of the arrows, as well as the color of the
residue’s silhouettes, support energy quantification. During the visual anal-
ysis, energies are computed and depicted on-the-fly to support interactive
hypothesis testing (top), and residues can be filtered based on energy and
distance to obtaining a more focused view (bottom). Additionally, a 2D

visualization helps to obtain total energy values in an uncluttered manner
(Figure 4.2).



99

F1015¢(0.45)

Higsc(-6.59)
7
\ e
7
C2gbb(-7.08) “‘§ f 2 ’ K31bb(0 54)

—~
I
\ -
(X
44444 ééjv ‘‘‘‘
D4gsclig.07)

Figure 4.2: 2D abstract representation of the main energies involved in
the simulation step visualized in Figure 4.1 (bottom).

available instantly; for instance, if the domain expert selects a new step of the
simulation, this information must be updated. Second, visual clutter, resulting
from the multitude of displayed forces, which especially arises when considering
long-range forces, needs to be reduced. Third, domain experts must be able
to identify the involved residues and to quantify the related energies. When
considering the usually dense representation of complex molecules, it becomes
clear that a single 3D visualization will not be able to meet all these challenges.
Therefore, we combine 2D and 3D visualizations together with brushing-and-
linking in order to communicate which residues influence the ligand. Further-
more, we propose how to perform real-time computations of the three main
energy components, for the energy model used, which enables the domain ex-
pert to explore entire trajectories consisting of multiple snapshots interactively.
Moreover, with the proposed brushing-and-linking setup, it becomes possible
for the first time also to analyze long-range interactions, which play an impor-
tant role when a ligand is initially approaching a molecule. We not only hope
that this long-range analysis sheds new light on the entire docking process but
also expect that it helps to reduce required computation resources, as it allows
for early intervention with the running simulation. Thus, we support a more
effective, computer-based molecular design process by making the following
main contributions:

e We propose visual analysis techniques for the real-time computation and



100 CHAPTER 4. VIS. OF MOLECULAR FORCES

inspection of interaction energies arising between a molecule’s residues
and the ligand.

e We propose a linked visualization setup communicating the computed
interaction energies, by reducing visual clutter and enabling direct iden-
tification of the individual residues.

e We enable domain scientists through the means of brushing-and-linking
to explore the underlying interactions, which in particular allows them
for the first time to also inspect long range energies.

As illustrated in Figures 4.1 and 4.2, we combine these contributions, such
that the user can interact with the input data to gather new knowledge, to
formulate and assess hypotheses, and provide visual explanations of the dis-
coveries.

The rest of the section is organized as follows: Section 4.1 addresses the
design requirements and discuss the application background; Section 4.2 de-
scribes the algorithm used to calculate the different energy components; the
visualization motifs and techniques used to communicate these energies are pre-
sented in Section 4.3; in Section 4.4 we study how our application improved the
understanding of the underlying forces driving the docking process on different
simulations and we also compare our application with the available software;
and, lastly, in Section 4.5, we present the conclusions.

4.1 Application-Driven visualization design

Before describing the different features of our application, in this section, we
provide, first, a discussion of the background of our application (the energy
model used) and, second, a description of the different visual design require-
ments.

4.1.1 Background

In computational drug design, as well as in other molecular modeling areas, a
key aspect is to estimate the interaction energy between the protein and the
ligand (or substrate in, e.g. enzymatic catalysis).

The free energy G of the protein-ligand system is a powerful tool to under-
stand the binding process. Computing AGhing, the difference of free energy
between the bound state and the unbound state where the protein and lig-
and stay free in the solvent, can be used as a measure of the binding strength
or affinity between them (more negative values of the energy mean a stronger



4.1. APPLICATION-DRIVEN VISUALIZATION DESIGN 101

binding). Typical energy models are additive, allowing to understand the main
contributions or the key interactions that would favor (or disfavor) ligand bind-
ing. The energy model used by our application is based on three terms:

o Van der Waals interaction energy, Finter, vDW, Which shows how well the
protein and ligand molecules pack together.

o Electrostatic interaction energy (the interaction in vacuum plus the sol-
vent screening), FEinterele, Which shows the strength of the interaction
between the protein and ligand charges, screened by the effect of the
solvent.

e Change in solvation energy, AGgoly, which shows how much the protein
and ligand prefer to be bound together, instead of being free in the solvent
(regarding exclusively the interaction with the solvent molecules, and
including entropy).

So the binding energy of a given simulation step is computed as follows:

AGbind = Einter,VDW + Einter,ele + AG'solv (41)

A more detailed development of the formula for AGping leads to:

AG'bind = Einter,vdW + i\?ccel;}:erlré =+ AGiSr(l)%zr,pol—i_ (4 2)
AG?S;¥’p01 + AGSH%IV .
where the Electrostatic interaction energy (Eintercle) €xpands into the in-

: : vacuum : solv
teraction in vacuum (EReTeR) plus the solvent screening (AGHE, [o1), and the

Change in solvation energy (AGsgoly) expands into a polar (AG§E;¥7pol) and a
non-polar term (AGSY).

The Van der Waals and Electrostatic interaction terms are calculated using
the OPLS 2005 force field [BBC105], while the polar solvation energy follows
the generalized Born model OBC [OBCO04], and the ACE model [SBK98] is
used for the non-polar solvation energy. Together, they create an energy model
which deals with the protein and ligand in atomic detail, while considering the
solvent as a continuum. The equations used to compute each term, derived
from the different models listed above, are the following;:



102 CHAPTER 4. VIS. OF MOLECULAR FORCES

6 3
3 (0ii04j)°  (0ii0j5)
Einter,vdW = 4w/€z’z’€jj ( ) — 3
i€protein Tij rij
j€ligand

vacuum Z q:4; C

inter,ele — —
i€Eprotein TZ]
j€ligand
—rfij.GB.bound o
A solv = - Z (1 . e ij oun qu]C
inter,pol —
i€protein Esolv fij,GB,bound
j€ligand
solv 1 e_Hfij,GB,bound qzq]C
AC;rest,pol = -5 Z (1 — )
2 j i Esolv fij GB,bound
JFi ) )
(4,j Eprotein or
i,jE€ligand)
( ) e~ #Ji5,GB,unbnd QinC
Esolv fij,GB,unbnd

—KQ bound C_[-QC
i

1 e
B2

o~ F%,unbnd quC ]

Esolv Q5 unbnd

Esolv Q5 bound

—(1-

6 6
Ri Ri
AGYRY = 2:47rbi(RZ-—|—Rs)2 () - ()

@ bound Q4 unbnd

where some subterms expand as follows:

212 .
fij.GBbound = \/T3; + 05} 1ounq€ P Pound
2
rs.
_ ij
Dyound =

Qij,bound = \/ai,boundaj,bound

_ 22 -
fij,GBunbnd = \/T3; + Q7 npnq€ P mbnd

2
L
(20t,unbnd)?

Qjjunbnd = 4/ unbnd j,unbnd

= 073 x ww'wow
EsolvEokBT

r
D unbnd =




4.1. APPLICATION-DRIVEN VISUALIZATION DESIGN 103

and the constants and variables are defined as:

o« (' =332.0637

o 7 : distance between atoms i and j (in A).

o ¢; : charge of atom i (in atomic units).

e ¢; : charge of atom j (in atomic units).

e ¢ : OPLS epsilon parameter for atom 4 (in kcal/mol).

€j; + OPLS epsilon parameter for atom j (in kcal/mol).

« 0y : OPLS sigma parameter for atom i (in A).

oj;j : OPLS sigma parameter for atom j (in A).

e Ny : Avogadro number. Ny = 6.02213670 x 10%3.

e eunit : Unit charge of a proton (in Coulombs). e = 1.602177330 x 10719,
o I : Ionic strength (in mol/liter). For these studies, we used I = 0.1 mol/L
e kg : Boltzmann constant (in J / K). kg = 1.3806580 x 10~23

o T : Temperature (in Kelvin). In these formulas, a room temperature of
298.0K is used.

o &0 : Permittivity constant of vacuum, 8.8541878160x10~'2 Coulombs?/Jm
e cgolv : Relative permittivity constant of solvent: 80.0.

* Qbound : Born radius of atom 4 (in A) in bound state.

* (Y bound : Born radius of atom j (in A) in bound state.

e (Y unbnd : Born radius of atom ¢ (in A) in unbound state.

e (junbnd : Born radius of atom j (in A) in unbound state.

e R;: Atomic radius of atom 7 parameterized for ACE model.

« R, : Solvent probe molecule radius (1.4,A).

e b; : ACE solvation parameter for the atom i.



104 CHAPTER 4. VIS. OF MOLECULAR FORCES

These parameters are mostly constants and some of them are defined for
each type of atom, as €;;, o4 or q;. However, the Born radius of each atom
change at each step of the simulation and it has to be recomputed. To compute
the Born radius of an atom we used the definition given by Onufriev et al.
in [OBCO04], where the radius is computed through small contributions from
the rest of the atoms of the system. Thus, to compute the Born radius of
all the atoms of a simulation step, this method needs to compute N? small
contributions where NN is the number of atoms of the system.

The Van der Waals (equation 4.3) and Electrostatic interaction terms (equa-
tions 4.4 and 4.5) model the interaction of the ligand with the protein, involving
only computations between pairs of atoms where one belongs to the ligand and
the other to the protein. Since the number of atoms of the ligand is usually
small, we can consider it as a constant, so that the cost of computing these
terms is linear in the number of atoms of the protein, O(n). The polar sol-
vation energy term (equation 4.6), on the contrary, has a quadratic cost in
the number of atoms of the protein, O(n?). This term is composed of two
summations. The first one adds the contributions to the change in solvation
energy of all pairs of atoms in the protein and all pairs of atoms in the ligand,
which leads to a quadratic computational cost in the number of atoms of the
protein (since we considered the number of atoms of the ligand a constant).
The second summation adds together the change of solvation self-energy of
each atom of the system, being linear in the number of atoms of the protein,
O(n). Therefore, the computational cost of the polar solvation energy term is
O(n? +n) = O(n?). The non-polar solvation energy term (equation 4.7), as
the second summation of the polar term, evaluates the energy change in each
atom of the system, which translates to a linear computational cost too.

Since the interaction energies are visualized for each pair of ligand and pro-
tein chemical group, we compute the interaction energy of each pair by adding
all the corresponding interactions between any pair of atoms, one belonging to
the ligand and the other to the protein chemical group, as shown in the above
formulas. The change in solvation energy of a given chemical group, instead,
is the sum of its atomic values; as shown above. Some solvation contributions
are actually calculated for a pair of atoms, so those energies are divided among
the two atoms.

4.1.2 Design requirements

In this chapter, we propose visualizations which have been developed with
the goal to help domain experts understand the forces acting in molecular
processes, through analyzing the main components of the binding energy. In



4.1. APPLICATION-DRIVEN VISUALIZATION DESIGN 105

drug design, for example, domain experts need to analyze whether the ligand
will or will not dock at the intended position. To answer this question, domain
experts have to inspect the numerical results of the main interaction energy
components which are usually provided in result tables. While such a table
could be analyzed for a single ligand, comparing them for several ligands is not
practical. However, since it is often necessary to study more than one bound
structure, as an ensemble of structures will aid in a better characterization of
the bound complex, domain experts need to be able to analyze this type of
data effectively. In addition, studying the drug migration pathway, from the
solvent to the bound complex, might better help in addressing the binding (or
its absence) mechanism and locate key interactions that could facilitate (or
hinder) binding [EHB*15]. Similar conclusions can be observed in enzymatic
catalysis [AFFM*16]. The detailed mechanistic knowledge provided by the
binding energy analysis should locate those parts of the molecule/receptor that
enhance or prevent docking, facilitating the following design steps.

The interaction of molecules is atom-based, but atoms group naturally into
residues or chemical groups accountable of collective responses, such as ionic
groups (carboxylic groups, etc.), aromatic groups (phenyl, etc.) or an entire
residue, for which one is often interested in the whole group interaction. This
is the reason why we analyze interaction energies in chemical groups and/or
residues, not single atoms.

With the help of domain researchers, we have identified the following ques-
tions as being essential to be answered in the visual analysis process:

e Q1: Which are the most active groups in the interactions between molecules?

e Q2: Which are the most powerful binding energy components at a certain
simulation configuration?

e Q3: Is the proximity of the drug causing instability in any residue of the
protein?

e Q4: Is the ligand solvation force favoring or rejecting binding?

o Q5: Which residues (if any) prevent drug delivery?

By creating a visualization method that illustrates the different components
of the molecular interaction energies, we enable domain experts to answer these
and other questions, thus gaining a detailed knowledge of the binding mecha-
nism. Importantly, our system not only computes the energy components on
the fly but also provides a series of filters that let the user select distances or
energy ranges to inspect them in fine detail. To support such an interactive



106 CHAPTER 4. VIS. OF MOLECULAR FORCES

visual analysis, besides effective visualizations, an efficient implementation is
essential. Therefore, we exploit a data structure computed by the GPU that
facilitates queries such that residues and groups can be filtered in real-time.
The filtered information is then communicated using the proposed visualiza-
tion techniques. This way we can provide an interactive visual analysis system
that lets the user inspect the set of energies that are interacting at any time in
a simulation. In the following sections, we will describe this system by focusing
on the two main parts:

Interaction energy calculation: To compute the interaction energies on
the fly, a GPU-based set of programs is used that computes an array
of energies for each residue (and for each atom in the case of solvation
energy), each time a new step of the simulation is selected (or a structure
is loaded). Furthermore, a specialized energy data structure is used to
accelerate the queries issued by the domain expert through the visual-
ization front end.

Interaction energy visualization: During the visualization phase, the do-
main expert can interact with the data by means of widgets. These
provide several visualization motifs and filters that facilitate the data
analysis and inspection, as well as data presentation.

4.2 Interaction energy calculation

Given a configuration of the molecules, the computation of the energies involved
is not inexpensive. Some of the quantities involved (the Born radius and the
polar solvation energy,, AGfgé‘t”pol in Equation 4.2, change due to interacting
charges) have a cost which is quadratic in the number of atoms. Since we want
our application to be able to adapt to changes in the configuration (because of
user interactions or a change of frame in a simulation trajectory) interactively,
we employ GPU computation at each change. Therefore, when the user selects
a new step of the simulation, first we dispatch the computation of the Born
radius to a set of compute shaders. In order to compute the Born radius of
each atom, we must visit all other atoms in the molecule, yielding a quadratic
cost. Each thread of our compute shader calculates 16 of these interactions and
adds the result to a shader storage buffer using atomic operations. Once the
interactions are computed, and all the individual contributions are added for
each atom, another compute shader is resort. This compute shader executes a
thread for each atom of the molecule where its final Born radius is computed
based on the interactions with the rest of the atoms previously calculated. Note



4.2. INTERACTION ENERGY CALCULATION 107

Input model / path

4

New step Filter update
Calculate Energies Parameter change
(Compute shader) Min distance: Min energy:

: i ]
* Max distance: Max energy:
: 1 1

Sort Groups 3
(GPU Radix Sort)

Search on grid
% ' A
pas

-
\ \

Energies

Energies

Distance

oF
hP
¥

Distance N

Filter change 3 Active residues

3D exploration 2D abstract view

Figure 4.3: Overview of the data flow underlying our application. When
the current step or the configuration change, the system automatically com-
putes the forces being exerted by each residue in the compute shaders (left ).
When the user modifies the filters, the selected residues are quickly gathered
from the indexing data structure computed by the previous step (center)
and then used to render the 8D or the 2D abstract views (right).



108 CHAPTER 4. VIS. OF MOLECULAR FORCES

that this radius is computed in parallel for the bound and unbound state at
the same time.

After computing the Born radius, our system computes the solvation en-
ergy terms for each atom (using equations 4.6 and 4.7). Again, equations 4.6
and 4.7 require N? separate operations, so we execute another compute shader
to perform this task, assigning 16 of these computations to each thread as in
the Born radius calculation.

When all of these terms have been computed for all atoms, we launch an-
other compute shader that computes the VDW (equation 4.3) and Electrostatic
terms (equations 4.4 and 4.5) and the final value of the energy between the
ligand and the atom groups. Each thread of this compute shader is responsible
for computing these energies for a single interaction between the ligand and
an atom group. With this strategy, we are able to compute the energy of the
system more than 20 times per second for molecules up to 18 K atoms (using
a computer with a processor Quad Core i7 at 3.7 GHz, 16 Gb of RAM and a
GeFroce GTX 980).

The previously described method allows the fast computation of all the
energies involved in the interaction between the ligand and the protein, but
visualizing all of them at the same time generates a too cluttered image where
they are hardly identifiable. To reduce the amount of information shown, we
provide different filtering methods based on the energy of the interaction and
the distance between the ligand and the atom group. Iterating over all the atom
groups to check which ones meet the filtering requirements can slow down the
performance of the application when the number of groups is too large. To
ensure an interactive filtering, we build an auxiliary data structure that allows
us to find the selected groups in constant time. This data structure is a 2D grid
composed of 128 x 128 cells, where each one stores the groups within a certain
energy and distance range. Both energy levels and distances are discretized
into 128 possible segments with an energy range of [-3.0, 3.0] and a distance
range of [0, 50]. With those parameters, we assure a fixed number of groups
per cell for all the examples we have tried. In order to distribute the atom
groups among the cells, each time the configuration changes, or the user shifts
his attention to a different aspect turning on or off some energy component,
the array holding the energies of all the groups is sorted according to the key
of the cell where the atom groups belong. This sorting key is constructed
concatenating the energy and the distance bucket index (this is represented
by the bottom portion of the “New step” box in Figure 4.3). The sort is
carried out using a radix sort algorithm, implemented in four compute shaders
corresponding to the three steps in [HH11] plus an additional step to building
the table which holds in each cell the start and end position in the buffer of



4.3. INTERACTION ENERGY VISUALIZATION 109

the entries corresponding to that cell.

Once the sort is complete, the results obtained are downloaded to the CPU.
When the user modifies some of the filter ranges (“Filter update” box in Fig-
ure 4.3), the cells containing the chosen ranges are determined, and using the
index table, all the groups in those cells are checked for the current filter ranges
(as the cells will contain some neighbor values as well, because of the discretiza-
tion). The filtered groups are made visible and, for each group, an identifier
according to their energy level is computed to determine the appropriate colors
of the silhouette. The start and end points of the connection arrows are also
uploaded to the GPU with the same identifier that will determine their color.

4.3 Interaction energy visualization

The workflow in our system has the following steps (see Figure 4.3): The user
opens a file that contains a structure or a simulation path. At this point,
and every time the user switches between path frames (“New step” box), the
GPU calculates the energy terms, updates the energies-distances data structure
and downloads it to the CPU. Then, the user may freely update the filters.
When those are changed, the data structure is queried (“Filter update” box) to
determine active groups, energies, and so on. The user can then freely inspect
the 3D and 2D views or update the filters again. All of this happens in real-
time. In this section, we describe how the visualization tool has been designed
and implemented.

4.3.1 Idioms and filters

In order to support domain experts in answering the questions listed in Sec-
tion 4.1.2, we have developed interactive visualizations communicating the
binding energy factors computed in real-time. By employing filtering, we can
ensure that only residues currently of interest appear in the view. The visu-
alization of these elements is then enhanced with visual idioms that provide
information so that domain experts can easily understand the important forces
in the current step of the simulation path. We have realized this interactive
visual analysis by including the following visual idioms: filtering, focus and
context, feature enhancement, and interaction. Most of them are illustrated in
Figure 4.4.



110 CHAPTER 4. VIS. OF MOLECULAR FORCES

Coulomb vDw Solvation

Figure 4.4: The snapshot corresponds to the docking position of an arti-
ficial substrate, ABTS, to the manganese peroxidase 4. In Figure 4.7 and
Figure 4.8 the docking path is illustrated. This zoomed view shows the main
idioms used to communicate energy: cones for the direction of forces, their
thickness and color to encode energy and intensity, and colored highlights
of residues as described in Section 4.5.

4.3.1.1 Filtering

In several cases the interaction energies are omnipresent, despite the fact that
for several groups the absolute energy is rather low, e.g., the ligand will have
electrostatic interactions with most of the groups of the protein. If all these
energies were communicated, our visualization would be too cluttered. There-
fore, we support filtering to restrict the energies and the groups to be visualized
to those which fulfill certain criteria. Currently, we support three types of fil-
ters: i) distance filtering, i) energy level filtering, and i) energy type filtering.



4.3. INTERACTION ENERGY VISUALIZATION 111

Figure 4.5: In order to provide context to the ligand and the interac-
tion groups, we provide a clipping plane which determines the part of the
molecule that will be visible and the part that will be rendered using trans-
parencies. These figures illustrate how the user, through a slider, modifies
the value of the clipping plane, moving the plane along the molecule.

Thus, by selecting any (or all) of the energy types, changing the range of dis-
tances at which interactions are considered and the amount of energy, the user
can finely analyze individual or group interactions. In Figure 4.1 we have ap-
plied distance filtering to confine the visualized residues to those having a short
distance interaction with the ligand only.

4.3.1.2 Focus and context

The central entity that guides any exploration within our application is the
energy enhancement. As a result, we always enhance the groups that are ac-
tive, i.e., whose energy is within the limits determined by the used energy level
filter. However, to embed the currently selected groups, it is important to add
context to the focused elements. Therefore, we provide the visual context in
two flavors: ¢) Eliding information using a user-defined clipping plane, and i)
Superimposing a layer that renders, using semi-transparency and silhouette en-
hancement, the information concerning the non-active groups (see Figure 4.5).
We allow the user to define the plane direction by selecting the current view
orientation, and, once the plane direction has been fixed, the user is able to
move the plane along it using a slider. Moreover, the parts of the molecule that
are clipped away by the plane are then rendered using the semi-transparent
layer. Both context idioms can be freely combined.



112 CHAPTER 4. VIS. OF MOLECULAR FORCES

Figure 4.6: Energy communication through a set of cones. This picture
presents two different atom groups where one strongly interacts with the
ligand while the other has a weak interaction. The magnitude of the inter-
action is encoded by the size of the cones. In this image, the cones on the
bottom represent the stronger interaction while the cones on the top, thin-
ner than the bottom ones, represent the weak interaction. Moreover, this
image illustrates how both atom groups exert an attractive force on the lig-
and, which is represented by the orientation of the cones. The orientation
of the cones indicates the direction in which the ligand would move due to
the interaction. In addition, the cones encode the dominant energy com-
ponent of the interaction in their color, being the electrostatic component
the dominant one in the two examples of the image.

4.3.1.3 Feature enhancement

In order to facilitate comprehension of the affecting energies, we color-code
the dominant energy type on the silhouettes of the respective groups (see Fig-
ure 4.4), where each energy type is encoded using a color scale with two different
hues (which represent the positive and negative ranges). Further communica-
tion of the energy and sign is provided by means of arrows, drawn along the
axis that links the ligand with the active group. These cones are color coded
with the hue of the energy type and indicate the direction in which the ligand
would move due to a single interaction. The size of their base also encodes the
amount of total energy, so harder interactions are more likely to stand out in
cluttered scenes where many groups are active 4.6. For an individual energy
analysis or only repulsion/attraction analysis, the user could also modify the
application to highlight only the total energy using a color scale with two hues,
where one hue represents the positive range and the other the negative.



4.3. INTERACTION ENERGY VISUALIZATION 113

4.3.1.4 Interaction

During the whole visual analysis process, the user may freely inspect the 3D
view by modifying the viewpoint, zoom, pan, and so on. Moreover, the user
can modify the filters interactively and, to visualize a trajectory, the path step
can be manually selected or an animation can be triggered to see the full path.
To support a more exact quantification, a 2D view, with details on the amino
acids is also provided. This view is created by projecting all active residues
in a circular layout around the ligand. By exploiting linking, we ensure that
when filters are updated or the step of the path changes, the view is updated
accordingly. Figure 4.7 and Figure 4.8 show the last steps of the docking path
of an artificial substrate.

4.3.2 3D visualization

To provide visual cues for the users to understand the energies involving each
residue at any point in the simulation path, we need to visualize both, the
binding energy and the elements affecting it. Therefore, we choose a default
representation that lets the user identify the groups and facilitates the incor-
poration of energy information around the molecules.

4.3.2.1 Atom representation

We chose to render the active elements using the licorice method since it rep-
resents the molecules with a set of thin cylinders and spheres to reduce the
footprint on the screen. This representation is a good balance between space
occupied and information. Since the cylinders are encoded with the traditional
colors of the atoms, they are easy to identify, and additional information is com-
municated via a thick silhouette around them. In order to reduce clutter, only
the active residues or groups are shown, and to provide 3D context, the rest of
the molecule is visualized using van der Waals surfaces. To do not occlude the
active groups a user-defined cutting plane (described in Section 4.3.1.2) is used
to determine which part of the molecule will be rendered semi-transparent and
which part will be rendered opaque. Moreover, we compute ambient occlusion
factors for each pixel (using the algorithms described in Chapter 3), providing
thus a better understanding of the location of the groups within the molecule.

We selected these representation methods as they provide the best balance
between communication of the selected atom groups and understanding of the
molecule conformation. However, our application allows the modification of
these representation methods, permitting any combination of the methods de-
scribed in Chapter 3. Examples of different configurations are presented in



114 CHAPTER 4. VIS. OF MOLECULAR FORCES

Figure 4.7: The interaction through the 2D views (Figure 4.7 top, Fig-
ure 4.7 bottom, Figure 4.8 top and Figure 4.8 bottom represent four steps
of the simulation) visually explains the docking procedure of the ABTS, an
artificial substrate, to the manganese peroxidase 4. Once the histidine 220
(H220) has established an attraction connection (top), the substrate does
not leave the surface of the protein and finally docks (Figure 4.8 bottom),
also attracted by a lysine (K186) and another histidine (H142). This can
be seen interactively by hoping between path steps.



4.3. INTERACTION ENERGY VISUALIZATION 115

Figure 4.8: Last steps of the docking procedure of the ABTS, an artificial
substrate, to the manganese peroxidase 4. The first simulation steps are
illustrated in Figure 4.7.

Figure 4.9.

4.3.2.2 Energy representation

Energies are typically signed, so we will use diverging hue representations to
show them. The hues for the range selections fulfill the following requirements:



116 CHAPTER 4. VIS. OF MOLECULAR FORCES

Figure 4.9: Alternative representation methods. The top image presents
a possible visual configuration where the context is given by the molecule
represented with ribbons and the ligand and the interacting groups repre-
sented with the Balls € Sticks model. The bottom image presents another
possible configuration. Here the context is given by the molecular SES and
the ligand and interacting groups are represented with Space-filling model.
Although we use licorice and Space-filling as our default configuration, we
give the opportunity to the user to freely select the representation method
to use, since each method has its benefits and drawbacks.



4.3. INTERACTION ENERGY VISUALIZATION 117

i) Avoid blue-red hues, since these are commonly used for polarization, i)
Avoid the colors commonly used to represent proteins (e.g. some gray, red
and blue hues), i) enhance color distinction by reducing the amount of tones
and using perception-based selections, iv) avoid the repetition of hues to make
them unambiguous. Under these conditions, we decided to represent the dom-
inant energy of each interaction with a 7-point diverging hue scale where white
represents neutral or close to neutral values.

We selected green-brown for electrostatic energies (typically spread in both
sign directions), violet-yellow hues for van der Waals energies keeping the violet
hues for negative, far more common in vdW than positive values. Finally, a
gray-desaturated red scale was used for solvation energy. The solvation energy
is encoded in the color of the silhouette of the ligand since it is an important
information that communicates whether the ligand is comfortable in the sol-
vent or uncomfortable, which might favor binding. Although having the same
neutral color for all the energy types might seem confusing, the energies repre-
sented by these colors are not relevant for the understanding of the simulation
as their magnitudes are small (see Figure 4.1). This guides the attention of
the domain experts to the groups with high magnitudes, as they are repre-
sented with highly saturated colors. These magnitudes are also communicated
through other more precise means (see Visualization Configuration below, and
the 2D view described in Section 4.3.3).

In all cases, the energy magnitudes are rendered as a thick silhouette around
the licorice representations of the active bonds. These color combinations
and molecular representations result in a quite understandable way to encode
interactions, facilitating the comprehension of simulation results. The main
idea behind this is to avoid the requirement of checking other regions of the
screen (tabular representations of values are also commonly used) and thus
keeping the attention of the user on the task.

4.3.2.3 Visualization configuration

To further guide the attention of the users to active groups, we also highlight
the interactions with geometric elements that go from the center of the ligand
to the center of the group of interest. The user can select between two types
of geometric objects, cylinders or cones (see Figure 4.10). The first ones con-
nect the ligand and an atom group by a cylinder, whose color indicates the
sign and type of dominant energy of the interaction (selecting the first or last
color from the corresponding diverging scale). The second ones draw a set of
cones between the ligand and the atom groups, whose orientation indicates
the direction the ligand would follow as a consequence of the influence of the



118 CHAPTER 4. VIS. OF MOLECULAR FORCES

(a) Lines. (b) Cones.

Figure 4.10: Geometry objects encoding the interaction energy. We pro-
vide two methods to represent the interaction between the ligand and the
atom groups (besides the silhouette color): (a) Lines and (b) Cones. Both
of them encode the dominant energy term of the interaction in their color,
but the cones also encode the sign and magnitude of the total energy in their
direction and size. Moreover, we allow the user to activate and deactivate
this feature since these objects can lead to too cluttered images.

corresponding group of interest. Besides of using the same coloring method as
the cylinders, the cones have base areas proportional to the total energy level.
To avoid possible occlusions introduced by these objects, the user can freely
toggle these elements on and off.

Furthermore, the user can activate a set of overlays which communicate
the actual value of the energy involved in the interaction together with a code
that identifies the atom group (see Figure 4.11). The code is composed of first
the letter identifying the residue type followed by the residue number. Then a
two letter code indicating if the atom group belongs to the backbone (bb) or
the side-chain (sc) of the residue is added at the end.

4.3.3 2D visualization

When generating a 2D projection of the groups of interest, it is important to
facilitate an easy mental linking with the 3D visualization. As a consequence,



4.3.

INTERACTION ENERGY VISUALIZATION 119

Rb2bb(-11.40)
\

RB2sc(-36.77)

Figure 4.11: Our tool provides a set of overlays which present additional
information. This information is composed of the residue type letter, the
residue index within the structure, a two letter code indicating if the atom
group belongs to the backbone (bb) or the side-chain (sc) of the amino
acid, and the energy value of the interaction.

our proposed algorithm for generating the 2D visualizations takes into account
the 3D arrangement of the groups and exploits the same connections (cones
or cylinders) as used in the 3D view, as well as the same color coding for
the silhouettes of the groups. The individual steps of the algorithm can be
summarized as follows:

1.

Calculate the vector that goes from the center of the ligand to the center
of the scene. This vector is then used as the direction of the virtual
viewing plane of step 4.

. Determine the number of active groups.

Subdivide the virtual space around the ligand into as many equal sectors
as there are active groups.

. For each group, calculate the projection to a virtual viewing plane cen-

tered in the ligand, and exploit clockwise sorting to assign the respective
partition.

. Project the residues at a fixed distance from the center, and centered in

their sector, maximizing the projected area.



120 CHAPTER 4. VIS. OF MOLECULAR FORCES

To facilitate the interpretation of the projected groups, we project each
residue to the 2D view with a (different) projection direction that maximizes its
area. The optimal direction is achieved by performing a Principal Component
Analysis' of the group’s atoms’ positions, whereby the smaller eigenvector of
the matrix determines the optimal projection direction. With this strategy, we
achieve an ordering of the residues that is directly related to their 3D position
in space, thus facilitating the inspection in both 2D and 3D views at the same
time.

Furthermore, we draw the overlay indicating the id of each residue and the
energy value together with its representation, packing in a single view all the
relevant information for the current step. Figure 4.13 shows a single simulation
step represented by this 2D view.

4.4 Application cases

The proposed visual analysis techniques have been integrated into an appli-
cation which is flexible and offers a large range of features, and thus allows
to analyze different aspects of biomolecular interactions, with applications, for
example, in drug design and protein engineering processes. We can analyze
data from the point of view of the agnostic scientist, just trying to gather new
knowledge, or we can use it to assess some hypothesis. Usually, hypothesis
testing will lead to simpler scenarios because we already have an initial guess
about which parameters to analyze. In the following subsections, we will dis-
cuss application cases describing how the presented visual analysis techniques
enable new insights. We will start by discussing a single conformation analysis
process, before discussing the insights achieved when applying our approach to
a more complex trajectory analysis.

4.4.1 Single conformation analysis

An initial scenario where we can use our visualization is to understand which
molecular forces are predominant in a given structure, such as the bound con-
formation obtained from measurements or simulations. The proposed visu-
alizations enable to spot key residues and chemical groups in the interaction
between protein and ligand, both enhancing or opposing binding. This in-
formation is paramount for the scientist in order to understand the binding

!Principal Component Analysis is a technique used to reduce the dimensionality of the
data, which, in the case of computer graphics, can be used to approximate a set of points
in R? by a plane with a minimum error. For more information, the reader can address to
[Jol14].



4.4. APPLICATION CASES 121

R126sc(-5.68)
1
/r*f'\

Q21155 (-16.41)

L N ‘;," ‘
T S G \

f;j};;' ‘ {n( \m sc(-67.22)
AT = SE e
AR | e

s

vow  solvati

(b) Energy restriction to

(a) Initial exploration step, absolute value below -5 kcal/mol.

Figure 4.12: Interaction between the palmitate ligand and the intestinal
fatty acid protein. Initial exploration does not let us see the important
interactions happening close to the palmitate acid. By carefully filtering
energy terms larger than -5kcal/mol, we can see how palmitate interacts
strongly at electrostatic level (dark green interactions) with several residues,
notably with arginines (R126 and very strongly with R106) as shown in the
image. The values between parentheses indicate the total energy.

mechanism, as well as to choose ligand groups in drug design or protein amino
acids in enzyme engineering for mutation, whereby the mutations are per-
formed with the goal to improve or disfavor molecular interaction. Suggested
changes can later be confirmed or discarded by analyzing a new simulation
with the modified protein-ligand system.

With the following example, investigating the binding of palmitate, a fatty
acid ligand, to the intestinal fatty acid-binding protein, we further illustrate
how we can quickly assess molecular interaction hypotheses from a crystal
structure inspection. The bound structure was obtained from a Nuclear Mag-
netic Resonance Spectroscopy (NMR) experiment (PDB id lure, [HPC96)),
after minimization with the OPLS-AA force field using the PELE [MSG13].
This system is interesting since palmitate’s binding could show important con-
tributions from the electrostatic, vdW and solvation energy terms, and our
analysis is focused on question Q1, asking for the most active groups. Thus,
the first hypothesis is that several arginine (Arg or R) residues, which are pos-
itively charged amino acids, should have an important role at the electrostatic
level because they are in the vicinity of the negative polar extreme of the fatty



122 CHAPTER 4. VIS. OF MOLECULAR FORCES

L36sc(-1.51)
YitTse(-2.48) 138sc(-2.50)
\1)‘ ) P ¢
Yidse(-1.49) ) : O  RM06sc(7.66)
S | |
()~ \ | /
A0\ I
- N \ { / r3
Mi8sc{-1.79) < . \\ | // “‘ ~ EStsc(-3.04)
~7 Y !
7~ “-“ ‘ 'V"' A
Ll
| 4“‘ \\\\
T\W\ - // B O
Fssl-1.s8) ] // / ! \ \\ SO0 Reasei-1.0)
-/ | N
[ )
/AN S =
h v L
D74bb(-1.77) AN — We2sc(-1.67)
2\ N K /
L72sc(-1.90) L72b(-1.48)
A73bb(-1.42)

Figure 4.13: Interaction of the palmitate ligand with several leucines and
phenylalanines residues at vdW level. Note the strong yellow silhouettes
that indicate strong interactions.

acid, a carboxylic group. We can verify this assumption in Figure 4.12, where
we checked all Coulomb contributions lower than -5kcal/mol. Through the
visual analysis, three arginines having large electrostatic stabilizing contribu-
tions can be clearly identified, whereby the strength directly correlates with
the cone radii. This is also seen in Figure 4.12, where the numerical value
of each contribution indicates that Argl06, the one closer to the polar ligand
group, is the main stabilizing residue.

A second hypothesis that can be easily tested is the nature of some of the
vdW interactions. Since palmitate has a long aliphatic tail, some hydrophobic
residues should have important vdW interactions, such as leucines (Leu or L)
and phenylalanines (Phe or F). We can assess this by inspecting the vdW en-
ergies as shown in Figure 4.13. Here, several contributions can be identified,
and we can see the interacting residues, i.e., leucine side chains (sc) and back-
bones(bb) (L36sc, L38sc, L72bb, and L72sc), and phenylalanine side chains
(F62sc and F55sc). Interestingly, we can observe a strong destabilizing vdW



4.4. APPLICATION CASES 123

TEAr T

" et

Coulomb VoW Solvation

Figure 4.14: The solvation term in the palmitate ligand, when inside
the protein, indicates that, contrary to the hypothesis, it does not favor
binding. Note the high energy value color coded in its silhouette. Being a
fatty molecule, the expected value would be low (gray).

component from arginine 106 (R106), induced by the large ionic attraction
seen above. This example constitutes a nice (didactic) illustration of force
field terms balance and is directly related to our question Q2 asking which
ones are the most powerful binding energy components.

We can see another example of how the visualization can help to confirm or
reject hypotheses. In this case, related to question Q4, questioning the solva-
tion force, the fatty acid has a long aliphatic chain. Consequently, it is expected
that removing it from a water environment, which is polar, and placing it in its
bound protein conformation would be associated with a (de)solvation energy
gain. However, when using the visualization to assess the results, the domain
experts were surprised by a desolvation loss instead. As a consequence, a fur-
ther detailed study was triggered and then it was discovered that the charged
Carboxylate group in the ligand actually opposes this, and the total effect is a
desolvation energy loss. This finding could be made by referring to Figure 4.14,
where all the energies are removed except the solvation force that is encoded
in the silhouette of the ligand. We can observe that the energy is strongly
positive, and can thus reject the hypothesis that solvation energy terms would
facilitate palmitate’s binding.



124 CHAPTER 4. VIS. OF MOLECULAR FORCES

4.4.2 'Trajectory analysis

A more complex scenario involves the analysis of multiple structures, obtained,
for example, from molecular dynamics or Monte Carlo simulations. We can run
the whole ligand migration path, asking the application to highlight residues
with dominating interaction energies at each frame of the simulation by simply
stepping through simulation time. Note, that the term frame usually refers to
a step in the simulation performed for the study of the protein-ligand binding.
Similarly, multiple experimental structures can be analyzed simultaneously.

Figure 4.15 and Figure 4.16 shows three different snapshots along the as-
pirin migration simulation in the phospholipase A2 protein. The top image in
Figure 4.15 shows the ligand in the bulk solvent, far from the protein surface,
where no energies acting on the ligand are detected. The bottom image in Fig-
ure 4.15 illustrates the ligand approaching the surface and how our visualization
shows the initial protein-ligand recognition forces, two long-range electrostatic
contributions that guide the ligand towards the protein. Electrostatic forces
are dominant usually when the ligand is relatively far from the protein. This is
one example of question Q1 mentioned earlier. Here we also observe again the
key stabilizing role of the calcium ion (green cones) together with some minor
destabilizing electrostatic contributions (brown cones) from other calcium co-
ordinated groups (having the same sign as aspirin). This partially deals with
our questions Q2 and Q3, asking for the most powerful binding energy compo-
nent and about drug-induced instability. In addition, we can clearly observe
some vdW smaller interactions from hydrophobic residues with the aromatic
group of the aspirin ligand. This addition of van der Waals forces only appears
at short range interactions. Finally, the top image in Figure 4.16 shows the
ligand close to the docking position. We observe a strong interaction between
the aspirin ligand and a calcium ion associated with the protein.

The crystal structure of the complex (PDB id loxr, [SEJ*05]) shows, from
a structural perspective, that this interaction exists. Our application enriches
this information from an energetic point of view, as well as it allows to re-
late, in a qualitative manner, the strength of this interaction with that of the
aspirin to other important interacting residues, such as histidine and aspartic
acid residues. The calcium ion is clearly visible as the green sphere in the
middle of the protein. An inspection of the abstract view (bottom image in
Figure 4.16) reveals all the interacting residues, and we can see clearly how
histidine (H48sc and H48bb) and aspartic acid (D49sc) residues are also inter-
acting, as predicted. It can be further concluded, that some of these strong
electrostatic attractive contributions, importantly, from the active site calcium
(Ca) ion (with and overall 4+2 charge), are responsible for driving the ligand



4.4. APPLICATION CASES 125

Figure 4.15: Three different stages of the aspirin docking to the phos-
pholipase A2 protein (following in Figure 4.16). The top image shows the
aspirin in the bulk solvent, so no energies are exerted. The bottom image
shows the ligand closer to the protein, thus electrostatic energies appear.

to its final bound position. Thus, this study constitutes a nice example of how
this tool allows studying the ligand binding mechanism at atomic detail.

As we could show in the discussed application cases, the proposed visual
analysis techniques can be used to answer the stated questions Q1 to Q4.



126 CHAPTER 4. VIS. OF MOLECULAR FORCES

CA201(-134.11)

Figure 4.16: The top image shows a frame near the docking position. At
this point, the calcium is strongly attracting the aspirin (green thick cones),
where other groups exhibit repulsive electrostatic energies (brown cones).
The bottom image shows the abstract view with all the active residues.

Unfortunately, we could not discuss any application case where we could answer
question @5, asking for residues preventing drug delivery. This is due to the fact
that the simulation data analyzed in this work has already been analyzed before
with conventional methods. Accordingly, only those simulations resulting in a



4.4. APPLICATION CASES 127

successful binding were at our disposal.

4.4.3 FEvaluation

The development of the system has been done in close collaboration with do-
main experts. However, we also asked other experts, external to our team, in
order to gather opinions on the design and implementation of our visualiza-
tion tool. In particular, we asked the opinion of two more experts: a chemist
that works in protein engineering, and a computational chemist working in
computer-aided drug design. After a small demo of the tool, we let them play
for thirty to forty minutes with it. During and after the session, we gathered
their comments.

Both of them found the tool very useful, with large applicability in protein
engineering tasks (e.g. to inspect the result of protein mutations and to an-
alyze protein-protein interactions), molecular dynamics (to better understand
the molecules behavior), electrostatic steering (in order to analyze the effect
of electrostatic fields in guiding the ligand’s path), and also enzyme engineer-
ing. Moreover, they also found the application useful for results presentation,
to help other collaborators "understand what is really happening". They also
commented on the interface, where they referred to it as "very intuitive", since
the interacting groups are easily identified. Finally, the semi-transparent visu-
alization of the molecule was deemed very interesting, since it helps grasping
how the ligand is getting close to the molecule without rendering it completely.

From the design point of view, the use of cones of different sizes was
found appealing because the users can identify the interactions and infer their
strength quite simply. Furthermore, the domain experts valued the possibility
of filtering the energy magnitudes, energy types, and distances very positively.

4.4.4 Comparison with other methods

To investigate the benefits of the proposed system, we have performed a com-
parison to previous systems capable of visualizing molecular interaction forces.
Due to their popularity, we have included the Maestro system [Sch16] as well
as PLIP in this comparison [SSHT15]. To obtain a common frame of refer-
ences, we have used both systems to visualize the binding between aspirin and
the phospholipase A2 protein, an interaction visualized using our system in
Figure 4.1, 4.2, 4.15 and 4.16. Figure 4.17 (a) shows the result achieved with
Maestro, and Figure 4.17 (b) shows the result obtained with PLIP.

When comparing the results obtained with Maestro and PLIP to the results
of our system, besides the different visualization design communicating inter-
action intensity and signage, three conceptual differences immediately become



128 CHAPTER 4. VIS. OF MOLECULAR FORCES

(P WP ™R oty
(s a5 ) 28 30
s
a5

™R
64

LEU TRP.
2 19
ILE
9

(a) Maestro (b) PLIP

Figure 4.17: Full results obtained from Maestro (a) and PLIP (b) when
using the systems to visualize the binding of aspirin and the phospholipase
A2 protein.

clear, and we analyze them one by one.

First, while our system employs linked views in order to communicate the
interacting forces, Maestro and PLIP use a single view only. Interestingly,
Maestro uses a 2D visualization, while PLIP uses a 3D visualization. We
see this as an indicator that both 2D and 3D have their benefits, and that
our design considering the linking of a 2D and a 3D view might be helpful.
Furthermore, we believe that having two linked views makes it more intuitive
to map the binding information to the 3D structure of a molecule.

The second major difference is the consideration of time-varying data.
While Maestro and PLIP show a single frame only, our system enables re-
searchers to interactively explore arbitrary frames in a time-varying dataset
(an essential prerequisite for understanding protein dynamics, as shown in
Figures 4.1, 4.15 and 4.16), where the exploration of a sequence of frames is
vital to understand the whole docking process and the energies that intervene.

Finally, in contrast to Maestro and PLIP, our system supports a full inter-
active analysis. This was one of the advantages noted by the domain experts
when evaluating our system. In our case, the outcome is not only based on
a close contact analysis, but molecular interactions can also be filtered by
strength or distance, or by energy type. Moreover, all visualizations are up-
dated in real-time and the user can freely explore the 3D rendering at will,
with real-time updates. Among other benefits, this enables for the first time
the exploration of long-range interactions, as already noted. A second impor-



4.5. CONCLUSIONS 129

tant feature is the flexibility we provide for interactively selecting views for
data presentation.

4.5 Conclusions

This chapter presented visualization concepts developed for the analysis of
binding forces in drug design and protein engineering. The proposed visual
analysis workflow provides domain experts with several tools that let them
perform a detailed analysis of the most relevant energies that intervene in a
docking simulation: electrostatic energies, van der Waals energies, and solvent
energies. This way, it becomes possible to gain an understanding of how simu-
lations perform, why a ligand is getting or not getting to the docking position,
and which are the residues crucial to such reactions. This chapter discussed the
interaction computations used, outlined how to visualize the obtained results,
and showed how filtering can help in the analysis process.

Furthermore, we showed examples where domain experts can see at a glance
which are the dominant energies throughout the simulation, or how easy it is to
determine the strongest interactions at a certain point of the path. Through
the filtering, the system instantly highlights the important residues and the
energies can be seen as color-coded to indicate their relevance. Thanks to the
GPU-based energy calculation, which evaluates the binding equations in real-
time, the application may be extended to any simulation path generated by
other systems. The only necessary changes would be in the input files. In con-
trast to current approaches, our approach is able to deal with full simulation
paths, instead of only single frames. Moreover, we may deal with informa-
tion by residue, as well as per atom. This facilitates the analysis since most
forces are exerted at residue level. Moreover, the application provides a set
of widgets that further facilitate the inspection, such as user-defined colors
and transparency, configurable clipping plane, high-quality illumination, and
different rendering modes to add contextual information to the selected view.






Conclusions

The amount of data generated by Monte Carlo simulations, and the time and
resources required to compute them, impose new requirements on the analy-
sis tools used to retrieve information from their results. These tools should
facilitate the analysis of whole trajectories, instead of focusing on single step
analysis. Moreover, they should allow the inspection of intermediate results
of unfinished simulations. Therefore, the techniques used by these tools must
work in real-time without expensive preprocesses, presenting the results as
soon as they are requested. Throughout the development of this thesis, we
have proposed new techniques to visualize such results, improving the render-
ing quality, speed and the information presented, which work completely in
real-time, complying with the aforementioned requirements.

Chapter 3 presents a set of techniques to improve the quality and rendering
speed of different representation methods. Section 3.1 introduces a new method
to compute ambient occlusion factors in molecules (represented by the Space-
filling or the Balls &Sticks models) by using a hierarchical occupancy grid data
structure. Besides improving the image quality, this technique also increases
the molecular shape perception, allowing the easy identification of tunnels and
cavities within the molecular structure. Moreover, this technique achieves real-
time frame rates even for big molecules up to 1300 K atoms, providing a trade-
off between rendering speed and image quality not found in previous methods.
In Section 3.2, we describe a technique which is able to highlight, using the same
data structure computed by the ambient occlusion algorithm, certain parts of
the molecule via a well-known illustrative visualization technique: halos. With
this technique, the user can easily follow the ligand or certain amino acids
of the biomolecule through a simulation. Furthermore, this section proposes
an extension to the basic halo algorithm which allows the positions visited

131



132 CHAPTER 5. CONCLUSIONS

by the selected molecule over a certain time range to be highlighted. Despite
obtaining real-time frame rates for the examples tested, this technique has a
high impact on the performance, since no rendering optimizations were applied.
Nevertheless, by using proxy geometry or a smarter sampling scheme, we could
easily increase the performance, making this technique available to hardware
with low performance too.

The next section, Section 3.3, presents a technique to visualize secondary
structures using ribbons. For each frame, this technique computes the geom-
etry of the ribbons directly from the vertex data provided by the simulation
software (or an external file) on the GPU and then, renders them. With this
configuration, no precomputation is needed and the data transferred between
CPU and GPU at every frame is minimized. Moreover, this technique selects,
also in real-time, a different resolution for each segment of the backbone accord-
ing to the distance to the camera, using lower resolutions for distant objects
and a higher resolution for closer ones. This adaptive resolution allows the
rendering of big molecules up to 750 K residues in real-time using the ribbons
model, something not possible with previous methods.

The last section of Chapter 3, Section 3.4, describes a technique to compute
and render solvent excluded surfaces (SES) interactively. One of the main
limiting factors on the usage of these surfaces during the analysis of molecular
simulations is the time required to compute them. Computing these surfaces
for a whole trajectory could slow down the analysis process or even make it
unpractical. The technique presented in this section, instead of computing the
complete surface, computes an approximation of the SES in milliseconds and
presents the result immediately to the user. Then, a refinement process starts
in the background, where more accurate versions of the surface are computed
until a fine enough resolution is achieved. Our technique, contrary to previous
methods, assures interactivity during the analysis of whole simulations even
for big molecules up to 545 K atoms. Moreover, this section presents a method
to obtain smooth transitions between levels with different resolutions. Despite
the interactivity of this technique, the resolution used could not be enough to
compute all the internal features of the surface for big scenes. This section
also proposes a method to retrieve these missing features in a refinement step
carried out at the end of the process.

In order to demonstrate the significant improvement of the techniques pre-
sented in Chapter 3 compared with the available methods, we performed dif-
ferent comparison tests against state-of-the-art methods and the results were
presented in their respective sections. These results showed that all the tech-
niques presented improved the rendering quality or the computation speed, or
both.



5.1. CONTEXT OF THE THESIS 133

The last contribution of this thesis is presented in Chapter 4: a tool to
visualize the forces driving the interaction between a biomolecule and a ligand.
This tool, using different energy models to represent the interactions between
atoms, calculates in real-time the energy between every pair of atoms in a
simulation step. These single interactions are then grouped and shown to the
user using well-known visualization techniques. The number of interacting
groups can be filtered to avoid cluttered images and to show only the relevant
information. The groups are presented to the user encoding the energy of
their interaction by a set of colors and motifs. Context of the whole system
is provided by using a clipping plane and transparencies to visualize the rest
of the molecule. Furthermore, a 2D abstract view, linked to the 3D main
view, allows easy identification of the selected atom groups, displaying extra
information about the groups and their interaction. Moreover, the end of
this chapter presents the results of some use cases, in which the utility of the
tool was demonstrated, together with a comparison with the existing software,
which highlights several deficiencies that were fulfilled by our proposal.

In conclusion, the techniques presented in Chapter 3 improved the effi-
ciency and quality of the most commonly used techniques to visualize molecu-
lar simulations. These improvements now allow the use of the aforementioned
methods whilst inspecting real-time simulations of big molecular scenes, which
was impossible for most techniques until now. At the same time, they provide
high-quality visualization, which not only helps in presenting the results but
also helps to identify different features of the molecule. Chapter 4 presents
the last contribution of this thesis, the design of a new tool which analyzes
the underlying forces driving the simulations, an aspect which did not receive
much attention until now and provides new insight into the behavior of such
molecules.

5.1 Context of the thesis

This thesis was developed in close collaboration with the Electronic And Atomic
Protein Modeling group of the Barcelona Supercomputing Center (BSC). This
group developed a Monte Carlo simulation software called Protein energy land-
scape exploration (PELE) [MSG13, BVAGO5], which, using protein structure
prediction algorithms, is able to simulate the interaction between ligands and
biomolecules much faster than previous methods. The researchers of the group
use PELE in their daily work to simulate the interactions between different
ligands and proteins in a workflow that sometimes can be tedious. The con-
tributions of this thesis resulted directly from real needs of these researchers,
who gave us feedback during all the design process. This collaboration helped



134 CHAPTER 5. CONCLUSIONS

us to find real problems to solve and to obtain feedback from the final users of
our techniques, Additionally, it will help the researchers in their daily work, as
they are tasked with integrating the software developed by the author during
these years within their simulation software.

5.2 Future research

Molecular visualization is a growing area with many open research problems,
some of which were addressed in the development of this thesis. Ambient
occlusion is a powerful tool to enhance the perception of the molecular shape,
but existing algorithms only focus on generating occlusions at a certain scale.
Our work (presented in Section 3.1) provides a method to generate occlusions
at the atomic and molecular level simultaneously. Despite the quality achieved,
when we attempting to visualize molecular aggregations, such as whole cells, a
more sophisticated technique should be used to take into account the occlusions
generated between the vast number of molecules in the system, making this
problem a possible future research direction.

Another interesting line of research is the adaptation of the algorithm pro-
posed in Section 3.3 to other areas in visualization and computer graphics.
Since our method is able to adaptively generate the geometry to visualize a
curve, the same principles can be applied to enhance the rendering of other
elements with a similar geometry, such as hair, brain fibers, enhanced lines and
SO on.

The computation of solvent excluded surfaces has attracted much attention,
since this surface is a highly useful tool in the analysis of molecular shapes.
However, its computation still is an expensive process. Much research has
been conducted related to its computation. In this thesis, we presented a
method to compute this surface progressively for cases in which the size of the
molecule does not allow its computation in real-time. Nevertheless, its real-
time computation remains an open problem when dealing with molecules with
a very large number of atoms.

Although all the presented topics appear to be promising research direc-
tions, the visualization of the interacting forces between molecules is the topic
which raises more challenges. The tool presented in this thesis visualizes the
interactions between the ligand as a whole and the atoms of the molecule gath-
ered into groups. To provide a more detailed inspection, the interactions could
be divided and shown by atom pairs. Moreover, the area around the ligand
could be divided into regions and the energy of each one could be visualized,
indicating which parts of the ligand are affected by certain energies. Another
important topic for future research is the use of a clustering method based on



5.3. PUBLICATIONS 135

these computed energies (or other criteria) to improve the inspection of the
results generated by the simulation software.

Besides the research directions described, we are also planning to study the
workflow followed by chemists of different expertise to identify steps in which
a smart and innovative visualization method could improve their daily work,
allowing for more efficient research.

5.3 Publications

The resulting algorithms and tools developed in this thesis led to the following
publications:

e P. Hermosilla and V. Guallar and A. Vinacua and P.P. Vazquez. High
quality illustrative effects for molecular rendering, Computers € Graph-
ics, 54:113-120, 2016.

e P. Hermosilla and V. Guallar and P.P. Vazquez and A. Vinacua. Adaptive
on-the-fly molecular ribbons generation, Poster EuroVis, 2015.

e P. Hermosilla and V. Guallar and P.P. Vazquez and A. Vinacua. Instant
Visualization of Secondary Structures of Molecular Models, In Proc. of
Eurographics Workshop on Visual Computing for Biology and Medicine,
pages 51-60, 2015.

o P. Hermosilla and J. Estrada and V. Guallar and T. Ropinski and A.
Vinacua and P. P. Vazquez, Physics-Based Visual Characterization of
Molecular Interaction Forces, IEEE Transactions on Visualization and
Computer Graphics, 23(1):731-740, 2017.

« P. Hermosilla and M. Krone and V. Guallar and P.P. Vazquez and A.
Vinacua and T. Ropinski, Interactive GPU-based generation of solvent-
excluded surfaces, The Visual Computer, 33(6): 869-881, 2017.






Bibliography

[AFFM™16] Sandra Acebes, Elena Fernandez-Fueyo, Emanuele Monza, M Fa-

[BBCT05]

[BDSTO4]

[BGOT]

[BGBT08]

[BLMO96]

[BSC15]

[BSDOS]

tima Lucas, David Almendral, Francisco J Ruiz-Duenas, Henrik
Lund, Angel T Martinez, and Victor Guallar. Rational enzyme
engineering through biophysical and biochemical modeling. ACS
Catalysis, 6(3):1624-1629, 2016.

Jay L Banks, Hege S Beard, Yixiang Cao, Art E Cho, Wolf-
gang Damm, Ramy Farid, Anthony K Felts, Thomas A Halgren,
Daniel T Mainz, Jon R Maple, et al. Integrated modeling pro-

gram, applied chemical theory (impact). Journal of computational
chemistry, 26(16):1752-1780, 2005.

C. Bajaj, P. Djeu, V. Siddavanahalli, and A. Thane. Texmol:
interactive visual exploration of large flexible multi-component
molecular complexes. In Visualization, 2004. IEEFE, pages 243—
250, Oct 2004.

S. Bruckner and E. Groller. Enhancing depth-perception with
flexible volumetric halos. IEEFE Transactions on Visualization
and Computer Graphics, 13(6):1344-1351, Nov 2007.

Katrin Bidmon, Sebastian Grottel, Fabian Bos, Jiirgen Pleiss, and
Thomas Ertl. Visual abstractions of solvent pathlines near protein
cavities. Computer Graphics Forum, 27(3):935 — 942, 2008.

M. J. Bentum, B. B. A. Lichtenbelt, and T. Malzbender. Fre-
quency analysis of gradient estimators in volume rendering. IEEFE
Transactions on Visualization and Computer Graphics, 2(3):242—-
254, Sep 1996.

Jens Behley, Volker Steinhage, and Armin B Cremers. Efficient
radius neighbor search in three-dimensional point clouds. In IEEFE
International Conference on Robotics and Automation (ICRA),
2015. to appear.

Louis Bavoil, Miguel Sainz, and Rouslan Dimitrov. Image-space
horizon-based ambient occlusion. In ACM SIGGRAPH 2008
Talks, SIGGRAPH 08, pages 22:1-22:1, New York, NY, USA,
2008. ACM.

137



138

BIBLIOGRAPHY

[BSN12]

[Bun05]

[BVAGO5]

[BWF+00]

[Cab13]

[Car91]

[CB86]

[CCWO6]

[CGO7]

[CG12]

[CNS*11]

Pranav D Bagur, Nithin Shivashankar, and Vijay Natarajan. Im-
proved quadric surface impostors for large bio-molecular visualiza-
tion. In Proceedings of the Eighth Indian Conference on Computer
Vision, Graphics and Image Processing, page 33. ACM, 2012.

M. Bunnell. Dynamic ambient occlusion and indirect lighting.
GPU Gems?2, pages 223233, 2005.

Kenneth W. Borrelli, Andreas Vitalis, Raul Alcantara, and Vic-
tor Guallar. Pele: Protein energy landscape exploration. a novel

monte carlo based technique. Journal of Chemical Theory and
Computation, 1(6):1304-1311, 2005.

Helen M Berman, John Westbrook, Zukang Feng, Gary Gilliland,
T N Bhat, Helge Weissig, Ilya N Shindyalov, and Philip E Bourne.
The protein data bank. Nucleic Acids Research, 28:235—-242, 2000.

Ségolene Caboche. Leview: automatic and interactive generation
of 2d diagrams for biomacromolecule/ligand interactions. Journal
of cheminformatics, 5:40, 2013.

Mike Carson. Ribbons 2.0. Journal of Applied Crystallography,
24(5):958-961, 1991.

Mike Carson and Charles E Bugg. Algorithm for ribbon models
of proteins. Journal of Molecular Graphics, 4(2):121-122, 1986.

Tolga Can, Chao-I Chen, and Yuan-Fang Wang. Efficient molecu-
lar surface generation using level-set methods. Journal of Molec-
ular Graphics and Modelling, 25(4):442 — 454, 2006.

Gregory Cipriano and Michael Gleicher. Molecular surface ab-
straction. IEFEE Transactions on Visualization and Computer
Graphics, 13(6):1608-1615, November 2007.

Cyril Crassin and Simon Green. Octree-based sparse voxeliza-
tion using the gpu hardware rasterizer. In Patrick Cozzi and
Christophe Riccio, editors, OpenGL Insights, pages 303-318. CRC
Press, 2012.

Cyril Crassin, Fabrice Neyret, Miguel Sainz, Simon Green, and
Elmar Eisemann. Interactive indirect illumination using voxel
cone tracing. Computer Graphics Forum (Proceedings of Pacific
Graphics 2011), 30, sep 2011.



BIBLIOGRAPHY 139

[Cons83)

[CP53]

[Dal10]

[DDG+12]

[Ede99]

[EHB15]

[EM94]

[FIB*17]

[FKE13]

[FKREO09]

M. L. Connolly. Analytical molecular surface calculation. Journal
of Applied Crystallography, 16(5):548-558, Oct 1983.

Robert B. Corey and Linus Pauling. Molecular models of amino
acids, peptides, and proteins. Review of Scientific Instruments,
24(8):621-627, 1953.

John Dalton. A New System of Chemical Philosophy, volume 2
of Cambridge Library Collection - Physical Sciences. Cambridge
University Press, 2010.

Ron O Dror, Robert M Dirks, JP Grossman, Huafeng Xu, and
David E Shaw. Biomolecular simulation: a computational micro-
scope for molecular biology. Annual review of biophysics, 41:429—
452, 2012.

Herbert Edelsbrunner. Deformable Smooth Surface Design. Dis-
crete and Computational Geometry, 21:87-115, 1999.

Karl Edman, Ali Hosseini, Magnus K Bjursell, Anna Aagaard,
Lisa Wissler, Anders Gunnarsson, Tim Kaminski, Christian Kéh-
ler, Stefan Béckstrom, Tina J Jensen, et al. Ligand binding mech-
anism in steroid receptors: From conserved plasticity to differen-
tial evolutionary constraints. Structure, 23(12):2280-2290, 2015.

Herbert Edelsbrunner and Ernst P. Miicke. Three-dimensional
alpha shapes. ACM Transactions on Graphics, 13(1):43-72, 1994.

Katarina Furmanova, Miroslava Jaresova, Jan Byska, Adam Ju-
réik, Jalius Parulek, Helwig Hauser, and Barbora Kozlikovéa. In-
teractive exploration of ligand transportation through protein
tunnels. BMC' Bioinformatics, 18(2):22, 2017.

Martin Falk, Michael Krone, and Thomas Ertl. Atomistic vi-
sualization of mesoscopic whole-cell simulations using ray-casted
instancing. Computer Graphics Forum, pages 195-206, 2013.

Martin Falk, Michael Klann, Matthias Reuss, and Thomas Ertl.
Visualization of signal transduction processes in the crowded en-
vironment of the cell. In Proceedings of the 2009 IEEE Pacific
Visualization Symposium, pages 169-176, Washington, DC, USA,
2009. IEEE Computer Society.



140

BIBLIOGRAPHY

[FMOS]

(GBTS]

[GBCG+14]

[GBM*12]

[GGO1]

[GKM*15]

[GKSE12]

[GO92]

[Goo03]

[GRDE10]

Dominic Filion and Rob McNaughton. Starcraft 2, effects and
techniques. Advancesin Real-Time Rendering in 3D Graphics and
Games Course - SIGGRAPH 2008, 2008.

J Greer and B L Bush. Macromolecular shape and surface maps
by solvent exclusion. Proceedings of the National Academy of
Sciences, 75(1):303-307, 1978.

David Gunther, Roberto A Boto, Juila Contreras-Garcia, Jean-
Philip Piquemal, and Julien Tierny. Characterizing molecular
interactions in chemical systems. Visualization and Computer
Graphics, IEEE Transactions on, 20(12):2476-2485, 2014.

Sebastian Grottel, Philipp Beck, Christoph Muller, Guido Reina,
Johannes Roth, Hans-Rainer Trebin, and Thomas Ertl. Visual-
ization of electrostatic dipoles in molecular dynamics of metal ox-
ides. IEEE Transactions on Visualization and Computer Graph-

ics, 18(12):2061-2068, December 2012.

Bruce Gooch and Amy Gooch. Non-Photorealistic Rendering.
A.K. Peters, 2001.

S. Grottel, M. Krone, C. Muller, G. Reina, and T. Ertl. Meg-
amol — a prototyping framework for particle-based visualization.

Visualization and Computer Graphics, IEEE Transactions on,
21(2):201-214, Feb 2015.

S. Grottel, M. Krone, K. Scharnowski, and T. Ertl. Object-space
ambient occlusion for molecular dynamics. In Pacific Visualiza-
tion Symposium (PacificVis), 2012 IEEE, pages 209-216, Feb
2012.

David S Goodsell and Arthur J Olson. Molecular illustration in
black and white. Journal of molecular graphics, 10(4):235-240,
1992.

DS Goodsell. Ilustrating molecules. The Guild Handbook of Sci-
entific Illustration, Hodges ERS,(Ed.), 2:267-270, 2003.

Sebastian Grottel, Guido Reina, Carsten Dachsbacher, and
Thomas Ertl. Coherent Culling and Shading for Large Molecular
Dynamics Visualization. Computer Graphics Forum, 29(3):953—
962, 2010.



BIBLIOGRAPHY 141

[Gre07]
[GSO1]

[Gum03]

[GWO6]

[GWCD15]

[HDS96]

[HEG'17]

[HGVV15a]

[HGVV15b]

[HGVV16]

[HH11]

S. Green. White paper: Cuda particles. Technical report, 2007.

Jason D Gans and David Shalloway. Qmol: a program for molec-
ular visualization on windows-based {PCs}. Journal of Molecular
Graphics and Modelling, 19(6):557 — 559, 2001.

Stefan Gumhold. Splatting illuminated ellipsoids with depth
correction. In Thomas Ertl, editor, VMYV, pages 245-252. Aka
GmbH, 2003.

Rafael C. Gonzalez and Richard E. Woods. Digital Image Pro-
cessing (3rd Edition). Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 2006.

Anthony J.F. Griffiths, Susan R. Wessler, Sean B. Carroll, and
John Doebley. An Introduction to Genetic Analysis. WH Free-
man, 11 edition, 2015.

William Humphrey, Andrew Dalke, and Klaus Schulten. Vmd:
Visual molecular dynamics. Journal of Molecular Graphics,
14(1):33-38, February 1996.

P. Hermosilla, J. Estrada, V. Guallar, T. Ropinski, A. Vinacua,
and P. P. Vazquez. Physics-based visual characterization of molec-
ular interaction forces. IEEE Transactions on Visualization and
Computer Graphics, 23(1):731-740, Jan 2017.

Pedro Hermosilla, Victor Guallar, Alvar Vinacua, and Pere-Pau
Vazquez. Instant visualization of secondary structures of molec-
ular models. In In Proc. of FEurographics Workshop on Visual
Computing for Biology and Medicine, pages 51-60, 2015.

Pedro Hermosilla, Victor Guallar, Pere-Pau Vazquez, and Alvar
Vinacua. Adaptive on-the-fly molecular ribbons generation. In
Poster FuroVis, pages 1-3, 2015.

P. Hermosilla, V. Guallar, A. Vinacua, and P.P. Vazquez. High
quality illustrative effects for molecular rendering. Computers &
Graphics, 54:113 — 120, 2016. Special Issue on CAD/Graphics
2015.

Takahiro Harada and Lee Howes. Introduction to GPU radix
sort. http://www.heterogeneouscompute.org/wordpress/wp-
content/uploads/2011/06 /RadixSort.pdf, 2011. Online; accessed
2016-03-29.



142

BIBLIOGRAPHY

[HKG*17]

[Hoel4]

[Hof65]

[HOF04]

[HOF05]

[HPC96]

[HSST05]

[HV09)

[HV10]

[JDO8]

Pedro Hermosilla, Michael Krone, Victor Guallar, Pere-Pau
Véazquez, Alvar Vinacua, and Timo Ropinski. Interactive gpu-
based generation of solvent-excluded surfaces. The Visual Com-
puter, 33(6):869-881, 2017.

R. C. Hoetzlein. Fast fixed-radius nearest neighbors: Interactive
million-particle fluids. In GPU Technology Conference, 2014.

A Hoffmann. On the combining power of atoms. Proceedings of
the Royal Institution, 4:401-430, 1865.

A. Halm, L. Offen, and D. Fellner. Visualization of complex
molecular ribbon structures at interactive rates. In Information
Visualisation, 2004. IV 2004. Proceedings. Fighth International
Conference on, pages 737-744, July 2004.

Andreas Halm, Lars Offen, and Dieter W. Fellner. Biobrowser: A
framework for fast protein visualization. In Ken Brodlie, David J.
Duke, and Kenneth 1. Joy, editors, EuroVis, pages 287-294. Eu-
rographics Association, 2005.

Michael E Hodsdon, Jay W Ponder, and David P Cistola. The
NMR solution structure of intestinal fatty acid-binding protein
complexed with palmitate: application of a novel distance ge-
ometry algorithm. Journal of molecular biology, 264(3):585-602,
1996.

Markus Hadwiger, Christian Sigg, Henning Scharsach, Khatja
Biihler, and Markus Gross. Real-time ray-casting and advanced
shading of discrete isosurfaces. Computer Graphics Forum,
24(3):303-312, 2005.

P. Hermosilla and P.P. Vazquez. Single pass gpu stylized edges. In
Proceedings of IV Iberoamerican Symposium in Computer Graph-
ics (SIACG 2009), 2009.

P. Hermosilla and P.P. Vazquez. Npr techniques using the geom-
etry shader. GPU Pro, pages 149-166, 2010.

Pere-Pau Vazquez José Diaz, Héctor Yela. Vicinity occlusion
maps: Enhanced depth perception of volumetric models. In Com-
puter Graphics International (CGI), pages 56—63, 2008.



BIBLIOGRAPHY 143

[Jol14]

K.52]

[Kaj86]

[Kaj09)]

[KBEOS]

[KBEOY]

[KBWYG]

[KC13]

[KDE10]

[Kek66]

[KGE11]

[KKL*16]

Tan Jolliffe. Principal Component Analysis. John Wiley & Sons,
Ltd, 2014.

Linderstrgm-Lang K. Proteins and enzymes. Lane Medical Lec-
tures, VI, 1952.

James T. Kajiya. The rendering equation. SIGGRAPH Comput.
Graph., 20(4):143-150, August 1986.

V. Kajalin. Screen-space ambient occlusion. ShaderX7, pages
413-424, 2009.

Michael Krone, Katrin Bidmon, and Thomas Ertl. GPU-based
Visualisation of Protein Secondary Structure. In Ik Soo Lim and
Wen Tang, editors, Theory and Practice of Computer Graphics.
The Eurographics Association, 2008.

M. Krone, K. Bidmon, and T. Ertl. Interactive visualization of
molecular surface dynamics. Visualization and Computer Graph-
ics, IEEE Transactions on, 15(6):1391-1398, Nov 2009.

Reto Koradi, Martin Billeter, and Kurt Wiithrich. Molmol: A
program for display and analysis of macromolecular structures.
Journal of Molecular Graphics, 14(1):51 — 55, 1996.

Nickolay A Khazanov and Heather A Carlson. Exploring the
composition of protein-ligand binding sites on a large scale. PLoS
Computational Biology, 9(11):e1003321, 2013.

Michael Krone, Carsten Dachsbacher, and Thomas Ertl. Parallel
computation and interactive visualization of time-varying solvent
excluded surfaces, 2010.

Aug. Kekuié. Untersuchungen iiber aromatische verbindungen
ueber die constitution der aromatischen verbindungen. i. ueber
die constitution der aromatischen verbindungen. Justus Liebigs
Annalen der Chemie, 137(2):129-196, 1866.

M. Krone, S. Grottel, and T. Ertl. Parallel contour-buildup algo-
rithm for the molecular surface. In Biological Data Visualization
(BioVis), 2011 IEEE Symposium on, pages 17-22, Oct 2011.

Barbora Kozlikova, Michael Krone, Norbert Lindow, Martin Falk,
Marc Baaden, Daniel Baum, Ivan Viola, Julius Parulek, and



144

BIBLIOGRAPHY

[Kol65]

[Lan02]

[LBH12]

[LBH14]

[LBPcH10]

[LCS7)

[LKEP14]

[LMPSV14]

[LR71]

[LS11]

Hans-Christian Hege. Visualization of molecular structure: State
of the art revisited. Computer Graphics Forum, 2016. (to appear).

L. W. Koltun. Space filling atomic units and connectors for molec-
ular models, February 23 1965. US Patent 3,170,246.

Hayden Landis. Production-ready global illumination, 2002.

Norbert Lindow, Daniel Baum, and Hans-Christian Hege. Interac-
tive Rendering of Materials and Biological Structures on Atomic
and Nanoscopic Scale. Computer Graphics Forum, 31(3pt4):1325—
1334, 2012.

N. Lindow, D. Baum, and H.-C. Hege. Ligand excluded surface:
A new type of molecular surface. Visualization and Computer
Graphics, IEEE Transactions on, 20(12):2486-2495, Dec 2014.

Norbert Lindow, Daniel Baum, Steffen Prohaska, and Hans chris-
tian Hege. Accelerated visualization of dynamic molecular sur-
faces, 2010.

William E. Lorensen and Harvey E. Cline. Marching cubes:
A high resolution 3d surface construction algorithm. In ACM
SIGGRAPH Computer Graphics and Interactive Techniques, vol-
ume 21, pages 163-169, 1987.

Kai Lawonn, Michael Krone, Thomas Ertl, and Bernhard Preim.
Line integral convolution for real-time illustration of molecular
surface shape and salient regions. Computer Graphics Forum,
33(3):181-190, 2014.

Mathieu Le Muzic, Julius Parulek, Anne Kristin Stavrum, and
Ivan Viola. Illustrative visualization of molecular reactions using
omniscient intelligence and passive agents. Computer Graphics
Forum, 33(3):141-150, 2014.

B. Lee and F.M. Richards. The interpretation of protein struc-
tures: Estimation of static accessibility. Journal of Molecular
Biology, 55(3):379 — IN4, 1971.

Roman A Laskowski and Mark B Swindells. Ligplot+: multiple
ligand—protein interaction diagrams for drug discovery. Journal
of chemical information and modeling, 51(10):2778-2786, 2011.



BIBLIOGRAPHY 145

[McG10]

[MGB*05]

[MHO4]

[MIOS]

[MI11]

[Mit07]

[MOBH11]

[MSG13]

[OBCO4]

[Pau4b]

[Per05]

Morgan McGuire. Ambient occlusion volumes. In Proceedings of
High Performance Graphics 2010, June 2010.

John Moreland, Apostol Gramada, Oleksandr Buzko, Qing
Zhang, and Philip Bourne. The molecular biology toolkit (mbt):
a modular platform for developing molecular visualization appli-
cations. BMC' Bioinformatics, 6(1):21, 2005.

Morgan McGuire and John F. Hughes. Hardware-determined fea-
ture edges. In Proceedings of the 3rd international symposium on
Non-photorealistic animation and rendering, pages 35—147. ACM
Press, 2004.

Koichi Momma and Fujio Izumi. VESTA: a three-dimensional vi-
sualization system for electronic and structural analysis. Journal
of Applied Crystallography, 41(3):653-658, 2008.

Koichi Momma and Fujio Izumi. VESTA 3 for three-dimensional
visualization of crystal, volumetric and morphology data. Journal
of Applied Crystallography, 44(6):1272-1276, 2011.

M. Mittring. Finding next gen-cryengine 2. In SIGGRAPH ’07:
ACM SIGGRAPH 2007 courses, pages 97-121, 2007.

Morgan McGuire, Brian Osman, Michael Bukowski, and Padraic
Hennessy. The alchemy screen-space ambient obscurance algo-
rithm. In Proceedings of the ACM SIGGRAPH Symposium on
High Performance Graphics, HPG ’11, pages 25-32, New York,
NY, USA, 2011. ACM.

Armin Madadkar-Sobhani and Victor Guallar. Pele web server:
atomistic study of biomolecular systems at your fingertips. Nu-
cleic Acids Research, 41(W1):W322-W328, 2013.

Alexey Onufriev, Donald Bashford, and David A Case. Exploring
protein native states and large-scale conformational changes with
a modified generalized born model. Proteins: Structure, Function,
and Bioinformatics, 55(2):383-394, 2004.

L. Pauling. The nature of the chemical bond. 1945.

James A. Perkins. A history of molecular representation part one:
1800 to the 1960s. Journal of Biocommunication, 31(1), 2005.



146

BIBLIOGRAPHY

[PGO4]

[PGH'04]

[PHWFO1]

[PMP10]

[PV12]

[PVV02]

[Ric77]

[Ric81]

[RKO03]

[RUC*13]

M. Pharr and S. Green. Ambient occlusion. GPU Gems, pages
667-692, 2004.

Eric F. Pettersen, Thomas D. Goddard, Conrad C. Huang, Gre-
gory S. Couch, Daniel M. Greenblatt, Elaine C. Meng, and
Thomas E. Ferrin. Ucsf chimera-a visualization system for ex-

ploratory research and analysis. Journal of Computational Chem-
istry, 25(13):1605-1612, 2004.

Emil Praun, Hugues Hoppe, Matthew Webb, and Adam Finkel-
stein. Real-time hatching. In Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Techniques,

SIGGRAPH 01, pages 581—, New York, NY, USA, 2001. ACM.

G. Papaioannou, M. L. Menexi, and C. Papadopoulos. Real-time
volume-based ambient occlusion. IFEE Transactions on Visual-
ization and Computer Graphics, 16(5):752-762, Sept 2010.

Julius Parulek and Ivan Viola. Implicit representation of molec-
ular surfaces. In IEEFE Pacific Visualization Symposium, pages
217-224, 2012.

Alessandro Pedretti, Luigi Villa, and Giulio Vistoli. Vega: a ver-
satile program to convert, handle and visualize molecular struc-
ture on windows-based {PCs}. Journal of Molecular Graphics
and Modelling, 21(1):47 — 49, 2002.

F. M. Richards. Areas, Volumes, Packing, and Protein Structure.
Annual Review of Biophysics and Bioengineering, 6(1):151-176,
1977.

Jane S. Richardson. The anatomy and taxonomy of protein struc-
ture. In John T. Edsall C.B. Anfinsen and Frederic M. Richards,
editors, Advances in Protein Chemistry, volume 34 of Advances
in Protein Chemistry, pages 167 — 339. Academic Press, 1981.

Fernando Randima and Mark J. Kilgard. The Cg Tutorial: The
Definitive Guide to Programmable Real-Time Graphics. Addison-
Wesley, 2003.

Jane B Reece, Lisa A Urry, Michael L Cain, Steven A Wasser-
man, Peter V Minorsky, and Robert B Jackson. Campbell biology.
Pearson Higher Ed, 10 edition, 2013.



BIBLIOGRAPHY 147

[SA07]

[SAMG14]

[SBKOS]

[Sch16]

[SEJ*05]

[SGG15]

[SHL*+12]

[SKRT14]

[SMRO6]

Perumaal Shanmugam and Okan Arikan. Hardware accelerated
ambient occlusion techniques on gpus. In Proceedings of the
2007 Symposium on Interactive 3D Graphics and Games, 13D
'07, pages 73-80, New York, NY, USA, 2007. ACM.

Alper Sarikaya, Danielle Albers, Julie Mitchell, and Michael Gle-
icher. Visualizing validation of protein surface classifiers. Com-
puter Graphics Forum, 33(3):171-180, 2014.

Michael Schaefer, Christian Bartels, and Martin Karplus. Solu-
tion conformations and thermodynamics of structured peptides:

molecular dynamics simulation with an implicit solvation model.
Journal of molecular biology, 284(3):835-848, 1998.

LLC Schrodinger. Schrodinger release 2016-1: Maestro version
10.5. http://gts.sourceforge.net/, 2016.

Rajendra Kumar Singh, AS Ethayathulla, Talat Jabeen, Sujata
Sharma, Punit Kaur, and Tej P Singh. Aspirin induces its anti-
inflammatory effects through its specific binding to phospholipase
a2: Crystal structure of the complex formed between phospholi-
pase a2 and aspirin at 1.9 & resolution. Journal of drug targeting,
13(2):113-119, 2005.

Joachim Staib, Sebastian Grottel, and Stefan Gumhold. Visu-
alization of particle-based data with transparency and ambient
occlusion. Computer Graphics Forum, 34(3):151-160, 2015.

Nadine Schneider, Sally Hindle, Gudrun Lange, Robert Klein,
Jurgen Albrecht, Hans Briem, Kristin Beyer, Holger Claufien,
Marcus Gastreich, Christian Lemmen, et al. Substantial improve-
ments in large-scale redocking and screening using the novel hyde

scoring function. Journal of computer-aided molecular design,
26(6):701-723, 2012.

K. Scharnowski, M. Krone, G. Reina, T. Kulschewski, J. Pleiss,
and T. Ertl. Comparative visualization of molecular surfaces using
deformable models. Computer Graphics Forum, 33(3):191-200,
2014.

Katrin Stierand, Patrick C Maaf}, and Matthias Rarey. Molecular
complexes at a glance: automated generation of two-dimensional
complex diagrams. Bioinformatics, 22(14):1710-1716, 2006.



148

BIBLIOGRAPHY

[SOS96]

[SSH*15]

[SSZKO04]

[ST90]

[Sun16]

[SVGR16]

[SWBG06]

[TA96]

[TCMOG6]

M. F. Sanner, A. J. Olson, and J. C. Spehner. Reduced sur-
face: an efficient way to compute molecular surfaces. Biopolymers,
38(3):305-320, Mar 1996.

Sebastian Salentin, Sven Schreiber, V Joachim Haupt, Melissa F
Adasme, and Michael Schroeder. Plip: fully automated protein—
ligand interaction profiler. Nucleic acids research, 43(W1):W443—
W447, 2015.

Mirko Sattler, Ralf Sarlette, Gabriel Zachmann, and Reinhard
Klein. Hardware-accelerated ambient occlusion computation. In
Proceedings of the Vision, Modeling, and Visualization Conference
2004 (VMV 2004), Stanford, California, USA, November 16-18,
2004, pages 331-338, 2004.

Takafumi Saito and Tokiichiro Takahashi. Comprehensible ren-
dering of 3-d shapes. In Proceedings of the 17th Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH
’90, pages 197-206, New York, NY, USA, 1990. ACM.

Marc Sunet. Ambient Occlusion on Mobile: An Empirical Com-
parison. Universitat Politecnica de Catalunya, 2016.

R. Skénberg, P. Vazquez, V. Guallar, and T. Ropinski. Real-time
molecular visualization supporting diffuse interreflections and am-
bient occlusion. IEEF transactions on visualization and computer
graphics, 22(1):718-727, 01 2016.

Christian Sigg, Tim Weyrich, Mario Botsch, and Markus Gross.
Gpu-based ray-casting of quadratic surfaces. In Proceedings
of the 3rd Eurographics / IEEE VGTC Conference on Point-
Based Graphics, SPBG’06, pages 59-65, Aire-la-Ville, Switzer-
land, Switzerland, 2006. Eurographics Association.

M. Totrov and R. Abagyan. The contour-buildup algorithm
to calculate the analytical molecular surface. J. Struct. Biol.,
116(1):138-143, 1996.

Marco Tarini, Paolo Cignoni, and Claudio Montani. Ambient
occlusion and edge cueing for enhancing real time molecular vi-
sualization. IEEE Transactions on Visualization and Computer
Graphics, 12(5):1237-1244, September 2006.



BIBLIOGRAPHY 149

[VBJ*+94]

[VGB*05]

[VV10]

[WB11]

[WC53]

[Web09]

[WLO5]

[WLL*99]

[XZ09)]

[Yu09]

Amitabh Varshney, Frederick P. Brooks, Jr., Jr. William, and
William V. Wright. Linearly scalable computation of smooth
molecular surfaces. In In IEEE Computer Graphics and Appli-
cations Vol 14, page pp., 1994.

Ivan Viola, Meister Eduard Gr'oller, Katja B"uhler, Markus Had-
wiger, Bernhard Preim, David Ebert, Mario Costa Sousa, and
Don Stredney. leee visualization tutorial on illustrative visualiza-
tion, 2005.

D. Voet and J.G. Voet. Biochemistry, 4th Edition. John Wiley &
Sons, 2010.

Manuel Wahle and Stefan Birmanns. Gpu-accelerated visualiza-
tion of protein dynamics in ribbon mode. In Visualization and
Data Analysis, volume 7868, 2011.

J. D. Watson and F. H. C. Crick. Molecular structure of nucleic
acids: A structure for deoxyribose nucleic acid. Nature, 171:737—
738, 1953.

Joseph R Weber. Proteinshader: illustrative rendering of macro-
molecules. BMC' structural biology, 9(1):19, 2009.

Gerhard Wolber and Thierry Langer. Ligandscout: 3-d pharma-
cophores derived from protein-bound ligands and their use as vir-
tual screening filters. Journal of chemical information and mod-
eling, 45(1):160-169, 2005.

J.Michael Word, Simon C. Lovell, Thomas H. LaBean, Hope C.
Taylor, Michael E. Zalis, Brent K. Presley, Jane S. Richardson,
and David C. Richardson. Visualizing and quantifying molecular
goodness-of-fit: small-probe contact dots with explicit hydrogen
atoms. Journal of Molecular Biology, 285(4):1711-1733, 1999.

Dong Xu and Yang Zhang. Generating triangulated macro-
molecular surfaces by euclidean distance transform. PLOS ONE,
4(12):e8140, 2009.

Zeyun Yu. A list-based method for fast generation of molecular
surfaces. In Int. Conf. of the IEEE Engineering in Medicine and
Biology Society, volume 31, pages 5909-5912, 2009.



150

BIBLIOGRAPHY

[ZIK98)]

[ZSKO09]

S. Zhukov, A. Iones, and G. Kronin. An ambient light illumination
model. In George Drettakis and Nelson Max, editors, Render-
ing Techniques ’98, Eurographics, pages 45-55. Springer Vienna,
1998.

Matus Zamborsky, Tibor Szabo, and Barbora Kozlikova. Dynamic
visualization of protein secondary structures. In Proceedings of the
13th Central European Seminar on Computer Graphics (CESCG),
pages 147-152, 2009.



Molecular dynamics simulations are computer simu-
lations of the physical movements of atoms and mol-
ecules, and the interactions between them. In the
particular cases we focus on (pharmaceutical drug
design and enzymatic catalysis), molecular dynamics
simulations predict the binding mode and binding
affinity of a small molecule (the drug) with a hiomol-
ecule. Providing new tools and techniques to visual-
ize and to interact with these simulations is crucial
in understanding them. Throughout the development
of this thesis, we have proposed new techniques to
improve both the rendering quality and speed of dif-
ferent molecular representation models. Moreover,
we developed a novel system to analyze docking sim-
ulations and the underlying interactions between
the atom groups.




	Cover
	Thesis
	Back

