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SUMMARY

Over the past decades, the challenges originated as a result of high energy prices and
the growing pressure to reduce greenhouse gas emissions have fuelled a large interest in
energy and process systems related research. On the one hand, process industries are
faced with the need to cover the increasing demand for energy as developing nations grow
and developed countries continue to progress in an increasingly uncertain marketplace,
and on the other hand, the resources that have traditionally supported this continued
progress begin to show environmental impacts that could threaten the sustainable de-
velopment of species in the world. As a consequence, the present situation could be
described as driven along three main edges: energy, sustainability and uncertainty.

Of particular relevance for these problems is research on computer-aided systems technol-
ogy to develop strategies for investigating the impact of process industries on both, the
system efficiency and its life cycle environmental impact. In this sense, Process Systems
Engineering (PSE) offers a unique set of tools that are capable of applying traditional
engineering and scientific knowledge to systemic problems, thereby enlarging the scope
of traditional chemical engineering to larger system scales while allowing the applica-
tion of robust and systematic tools to more complex systems problems. Hence, the new
emphasis on energy and sustainability experienced in the area has been appended to its
other more traditional computational and uncertainty related problems.

v
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In this sense, the general goal of this thesis is to explicitly address these challenges by
first making a step towards closing the gap between science-based and systems-based re-
search in PSE. This problem is addressed through the integration of techniques and the-
ories from different disciplines into advanced mathematical programming programming
frameworks able to deal with both, the environmental and the uncertainty challenges
in the design and planning of more sustainable process industries. For this purpose,
multi-objective optimization is proposed as the core mathematical programming frame-
work able to represent the effects of these, sometimes, conflicting criteria in the design
of process systems.

In particular, a set of multi-objective optimization tools able to deal with both, uncer-
tainty sources and the life cycle environmental impact, are proposed for two problems of
process design. Thus, the first half of the thesis is devoted to the design and planning of
hydrogen supply chains and the second half to the design of a large-scale complex indus-
trial process plant. The problem of hydrogen infrastructure design has been mentioned
in the scientific literature to be of paramount relevance for enabling the development of
hydrogen as an energy vector with the potential to drive the transition towards a more
sustainable energy system, whereas the problem of whole industrial process optimization
has been a traditionally challenging one in PSE particularly due to the computational
complexity involved in accurately representing process unit operations. In addition, a
strategy for reducing the number of redundant objectives in cases where more than one
environmental life cycle assessment (LCA) metrics need to be explored is also presented.

The energy challenge is addressed, first by providing two frameworks for designing hy-
drogen infrastructures, one capable of mitigating the effects of uncertainty in energy
prices and another one able to optimize the economic performance and any life cycle
environmental metric defined by standard LCA methodologies, identifying robust and
non-redundant more sustainable hydrogen supply chain designs. Hydrogen presents sev-
eral advantages as an energy vector, that are mainly given by its potential to become
environmentally friendy and by its adaptability to the current energy system conditions,
where it can play roles ranging from energy storage vector for the electricity system, to
being used as a fuel or chemical agent in industrial operations.

With regards to sustainability, LCA has recently emerged as a key element for envi-
ronmental impact assessment that allows to trace emissions and waste generated in
industrial processing activities from “cradle-to-grave” in a holistic manner. Therefore,
our approach is to append the LCA metrics as additional criteria to be optimized. Com-
bining multi-objective optimization with LCA allows for the automation of the search for
process design solutions that can be more environmentally friendy. By proposing a solu-
tion based on principal component analysis that can identify redundant environmental
metrics, we ensure that all the metrics of interest can be explored, while decision-makers
can be aware of particular interactions beteween them, therefore making the problem
analysis and decision steps more tractable.

vi
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Uncertainty is addressed by formulating stochastic mathematical programming frame-
works, that allow to quantify and evaluate the effects on parameter uncertainties at the
design step. By appending risk metrics as additional criteria to be optimized, these
models are able to represent different attitudes that decision makers can exhibit towards
the risk associated to changing conditions. Thus, the mathematical models provided are
able to account for the methodological uncertainty associated to classical deterministic
frameworks. In addition, appending LCA metrics as additional criteria to be optimized
allows to account for the methodological uncertainty associated to traditional frame-
works that only dealt with economic performance in a similar way. Furthermore, by
focusing on the uncertainty and evaluating the capabilities of the modelling frameworks
in different conditions and with different structural characteristics, more robust models
can be provided that are able to account for the many sources of uncertainty that usually
affect modelling tasks and in turn the associated decision making.

Thus, the second chapter of this thesis is opened with a problem for hydrogen supply
chains design that allows to control for the variability associated to uncertain in energy
prices (i.e., operating costs). The mathematical model is formulated as a multi-objective
multi-period stochastic programming MILP problem that is capable of simultaneously
optimizing the expected economic performance and of controlling for undesirable out-
comes related to volatile energy prices. This latter task is accomplished by appending
a the worst-case value, a financial risk metric, to the economic performance as an ad-
ditional criterion to be optimized. In addition a two-step sequential algorithm is pre-
sented, which is able to expedite the search of the corresponding Pareto set by one order
of magnitude. The results in this case showed that, in the actual conditions, a hydrogen
network constituted by centralized steam methane reforming plants would be the most
economic solution, whereas coal gasification would be a more robust design more able
to cope with the uncertainty energy prices.

Next, the hydrogen design problem is reformulated to its deterministic form in order to
solve high dimensional multi-objective model, where the economic performance of the
network design is simultaneously optimized with eight different life cycle environmen-
tal metrics. Note that these metrics are used as part of the well-known Eco-Indicator
99 life cycle assessment (LCA) methodology for calculating 4 damage categories. The
corresponding pairwise Pareto sets are represented, and three main hydrogen supply
chain design trends are identified for them. The problem scope is enlarged by applying
a principal components analysis (PCA) to the post-optimal analysis of the environmen-
tal metrics in order to determine the conflicting and redundant objectives. The results
show that only four of the eight initial metrics would suffice for representing the problem
with a very large extent (measured by the variance resulting from the PCA), and the
representative network designs that minimize the conflicting environmental impact met-
rics showed decentralised hydrogen supply chains of compressed hydrogen from steam
methane reforming and wind electrolysis.
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Then we proceed to present a novel formulation for the optimal design and operation
of single-site large-scale industrial process plant. The problem is posed as a determin-
istic multi-objective MINLP problem that is capable of simultaneously optimizing the
economic performance and three different environmental impact metrics. Several model
tests where performed in order to understand the impacts of different uncertainty sources
on it. As a result, the model was tested with two different energy price datasets, for
the bi-criterion case including only one environmental impact metric and for the mul-
tiple criteria case of the three environmental metrics and the economic objective, the
demand constraint was tested for a fixed and a flexible case and the product quality
constraints that limited the process operation were also tested by means of a sensitivity
analysis. The results showed that the economic performance of the model exhibited
more flexibility than its environmental performance.

Finally, with the aim of considering the uncertainties that tend to affect life cycle in-
ventory of emissions associated to LCA, the deterministic problem presented in the
previous chapter was reformulated to its environmental stochastic counterpart. In order
to allow for the representation of different attitudes that decision-makers may exhibit
towards environmental risk, we appended to the economic objective function three differ-
ent stochastic and risk metrics represented by the expected environmental performance,
the worst-case value and the downside risk. The underlying multi-objective formulation
capable of simultaneously optimizing for all the above metrics is able to represent any
type of probability distributions of the uncertain parameters with or without correlation.
Without loss of generality, the problem was solve for three different correlation cases and
lognormal probability distributions, which tend to be a more common case in LCA.

The presented set of multi-objective tools are devised as particularly suitable to deal with
the challenges that motivated the work, as first, they are able to design process systems,
that by the consideration of life cycle assessment metrics have the ability to become
more sustainable, second, they can be applied to single-site and multi-site industrial
process and energy systems, and third, they are specially suited to produce robust and
systematic solutions capable of addressing the three major uncertainty sources affecting
systems problems: parameter, model and methodological uncertainty.

viii
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CHAPTER 1

INTRODUCTION

If the Lottery is an intensification of chance, a periodic infusion
of chaos into the cosmos, then is it not appropriate that chance
intervene in every aspect of the drawing, not just one?

Jorge Luis Borges, The Lottery in Babylon, 1941

A new emphasis on energy and sustainability has emerged recently in the area of Pro-
cess Systems Engineering (PSE). It arises as a response to the observed and projected
continued appetite for energy in the world and the consequently increasing carbon emis-
sions related to the combustion and use of fossil resources (IEA, 2015; Grossmann and
Guillén-Gosálbez, 2010). The underlying challenges of how to supply that energy and
how to reduce the associated emissions, lie within the basis of chemical engineering
core expertise, and given the enlarged scope of PSE to cover larger spatial and tem-
poral scales of systems (see Figure 1.1), these can be posed as complex whole systems
problems where the largest unit in scale to be studied can be seen as the earth and its
surrounding environment. Needless to say is the fact that the nature of these problems
calls for an interdisciplinary perspective, where the cross-fertilization of different areas
of knowledge appears as an invaluable tool for fostering societal advances.

This thesis explicitly attends the demand of these challenges by making a step towards
closing the gap between science-based and systems-based research in the area of PSE,
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CHAPTER 1 INTRODUCTION

stated first by Grossmann and Westerberg (2000) at the beginning of this century.
Through the integration of techniques and theory from different areas of knowledge,
the main goal of this work is to develop advanced mathematical programming tools for
the synthesis and planning of more sustainable process systems1.Ultimately, the goal of
the products of this thesis is to serve as decision-support tools to inform at the different
steps of the decision-making processes involved on energy and sustainability problems,
specifically when these take place in the presence of uncertainty.

More specifically, knowledge from different fields is integrated within a unified framework
in this thesis: from management science through the use of the supply chain concept to
solve large scale energy systems problems and risk management to control for uncertain
undesirable outcomes, from sustainability with the implementation of life cycle assess-
ment (LCA) as a central piece within the frameworks and from statistics by applying
principal component analysis (PCA) for addressing the problem of objective visualiza-
tion and decision-making in the underlying multi-objective optimization (MOO) prob-
lems. As a core element, computer-aided process engineering (CAPE) multi-objective
mathematical programming tools are used for formulating general modelling frameworks
able to deal both, with uncertainty and sustainability goals. These are tested through
their application to two specific synthesis problems: a multi-site problem on the design
and planning of hydrogen supply chains, and a single-site problem on the synthesis and
operation of complex industrial chemical plants.

The importance of uncertainty on optimization has been acknowledged since the be-
ginnings of mathematical programming history (Dantzig, 1955), with the problem of
planning under uncertainty still being considered as one of the most important open
problems in optimization (Sahinidis, 2004). Different classifications of uncertainty have
also been proposed to best tackle the problems arising from the need to assess and con-
trol the uncertainty governing some of the model parameter spaces. Nevertheless, to the
extent of our knowledge, in the area of process systems engineering these classifications
have traditionally been focused on the uncertainty that affects the parameters, somehow
leaving aside the modelling activity the structural and methodological uncertainties as-
sociated to the framework itself and the choices, perspectives or objectives adopted in
it for decision-making.

Although all the aforementioned types of uncertainty have a key role and are addressed
in different parts of the thesis, one its contributions lies on having widened the scope
of the uncertainty considered in PSE problems, by recognizing and embedding within
the modelling framework the uncertainty due to choices, also known as methodological
uncertainty. More specifically, the methodological uncertainty associated with classical
single-objective optimization frameworks is implicitly addressed by proposing a multi-
objective optimization approach as the default basis for dealing with the problems of

1A process system here refers to the set of activities carried out in the processing industry, where
raw materials are converted into final products generally by using a set of energy vectors and/or
processing equipment. By this definition, a process system includes the energy systems involved in
its processing activities and at the same time it is also enclosed as part of a wider energy system
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1.1 BACKGROUND AND MOTIVATION

Figure 1.1: Chemical supply chain in a multidisciplinary scale perspective

design and planning of more sustainable process systems. This perspective is introduced
in more detail in Subsection 1.5.3. The background, motivation and major challenges
that this work aims to address are presented in Section 1.1. We next give an overview
of the PSE field in Section 1.2, where the applied nature of the area is depicted and its
activities are mapped according to its now familiar temporal scopes and decision levels.
Section 1.3 delivers a brief introductory note to the science basis of the mathematical
programming techniques used for process design and optimization. Then our approach
for dealing with sustainability in process systems design is explained in Section 1.4,
and as previously mentioned, Section 1.5 introduces our perspective for dealing with
uncertainty in process systems optimization. Finally, in Section 1.6 a schematic outline
of the present work is given, both on a conceptual and on a content basis. Note that the
aim of the present chapter is mainly to serve as a roadmap for this thesis, by providing a
perspective and an overview of the background, challenges and methodology used. The
specific literature reviews, methodological details and model formulations are presented
within each of the chapters.

1.1 Background and motivation

Over the past decades, challenges originated as a result of high energy prices and the
growing pressure to reduce greenhouse gas emissions have fueled a large interest on
energy and process systems related research. Of particular relevance for these problems
is research on computer-aided systems technology to develop strategies for investigating
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CHAPTER 1 INTRODUCTION

the impact of the design of process industries on both, the system efficiency and its life
cycle environmental impact. With regard to the environmental performance of a system,
life cycle assessment has emerged as a key element that allows to trace and represent the
emissions and waste related to the relevant activities associated to a product or process
from “cradle-to-grave” in a holistic manner (Guinée et al., 2002).

Life cycle assessment (LCA) was originally envisaged as a descriptive tool for identifying
the main sources of environmental impact of a product or process over its entire life
cycle (see Subsection 1.4.1). The lack of a systematic approach in LCA to improve
the environmental performance of a system has since very beginning presented a major
drawback of the framework. In this sense Azapagic and Clift (1999) where the first to
propose the integration of LCA and multi-objective optimization (MOO) as an effective
method to overcome this limitation. As a result of these trend and its direct application
to the current energy challenges, multi-objective optimization tools have started to play
an increasingly important role in the design and planning of more sustainable process
systems during the last decade (Grossmann and Guillén-Gosálbez, 2010; Pieragostini
et al., 2012). Subsection 1.4.2 introduces the general methodology used for coupling
MOO and LCA and provides the references to the corresponding chapters and sections
where the specific problem formulations and solution strategies can be found.

To our knowledge, the work by Grossmann et al. (1982) constitutes the first attempt to
implement environmental considerations in an MOO framework in PSE, where the local
toxicological impacts of the plant and the economic performance were simultaneously
optimized in a synthesis problem for industrial chemical complexes. In general nowa-
days, when the problem addressed involves the representation of multiple sites along
large spatial and temporal scopes, the formulation takes the form of a mixed-integer
linear programming (MILP) problem (Bojarski et al., 2009; Hugo and Pistikopoulos,
2005; Guillén-Gosálbez et al., 2010; Mele et al., 2011). This is because in these prob-
lems it is possible to represent the capacity limitations via simplified linear constraints.
However, design problems at the plant level require smaller temporal and spatial res-
olutions within the chemical supply chain (see Figure 1.1), which lead to non-linear
equations to describe the process system operations in more detail. This gives rise to
more complex mixed-integer non-linear programming (MINLP) problem representations
(Guillén-Gosálbez et al., 2008). While considerable advances have been accomplished in
the solution and application of MILP and MINLP models over the past decades (Gross-
mann, 2002; Sawaya, 2006; Karuppiah and Grossmann, 2012), challenges still remain
those of modelling and solving large scale synthesis and planning problems for sustain-
able process systems (Grossmann and Guillén-Gosálbez, 2010). This constitutes a major
barrier that has so far constrained the application of these studies to the academic en-
vironment, despite their potential for improving industrial decision-making practices.
Details on the general formulation of these problems is introduced in Section 1.3 and
Figure 1.3.

4
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A major limitation present in most recent optimization-based frameworks that incorpo-
rate life cycle analysis like the ones presented by Guillén-Gosálbez et al. (2010); Zamboni
et al. (2009); Mele et al. (2011); Salcedo et al. (2012) is their reliance on deterministic
formulations, which assume that a “base-case” scenario will be realised with perfect ac-
curacy. As mentioned above, the already complex nature of the underlying large-scale
MILP and MINLP multi-objective optimization formulations, which result in high com-
putational burdens, together with the applied nature of the field constitute significant
barriers for this type of research. However, in practice the various forms of uncertainty
inherent in pricing, supply, demand, unit operation and life cycle inventories require
more robust decisions that can potentially optimize the economic and environmental
performance in a wide variety of scenarios.

Although there has been already considerable progress in the area of optimization under
uncertainty, mainly for solving large scale complex stochastic formulations (Sahinidis,
2004; Geletu and Li, 2002), little work has been done to incorporate life cycle analysis
for the purpose of driving robust and effective decisions able to mitigate uncertainty.
Although uncertainty analysis is common in environmental and LCA studies is a widely
studied subject (Huijbregts, 1998, 2001; Zelm et al., 2009; Boithias et al., 2016), to
the best of our knowledge, Guillén-Gosálbez and Grossmann (2009, 2010) were the first
to introduce a multi-objective MILP formulation that specifically addressed the uncer-
tainty present in the life cycle inventory associated with the operation of a supply chain
problem. Then, Sabio et al. (2014) formulated a large scale process MINLP problem in
which the uncertainty associated to the life cycle inventory of emissions was represented
using correlated distributions of different uncertainty scales.

The approach introduced in Sabio et al. (2014) was next applied to a MILP problem of
petrochemical supply chains design by Reyes-Labarta et al. (2014), showing the impor-
tance of the flexibility that the process model exhibits for reaching more robust outcomes.
More recently, stochastic formulations dealing mostly with uncertainty in demands and
supply of MOO approaches coupled with LCA for MILP supply chain formulations have
been presented by Gebreslassie et al. (2012); Balaman and Selim (2014); Osmani and
Zhang (2014). In spite of all these advances, the area of optimization under uncertainty
to date has only focused on investigating parametric uncertainty, somehow relying on
activities or operations outside the modelling scope for dealing with uncertainties of
structural or methodological nature, despite being the latter the ones having the largest
impact in the solutions is exposed by Boithias et al. (2016). Section 1.5 portrays in more
detail our novel perspective for dealing with uncertainty in PSE.

The problem of uncertainty characterization deserves a field of study on its own. The
classification most commonly used in the areas of life cycle assessment and decision mak-
ing is followed in this work. This classification distinguishes between parameter, model
or structural uncertainty and uncertainty due to methodological choices. Structural un-
certainty refers to the extent to which structural features of the model (i.e., constraints,
parameters and variables included) adequately capture the nature of the process de-
scribed. And methodological uncertainty, on the other hand, arises when there are
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CHAPTER 1 INTRODUCTION

different normative views about what constitutes the “correct” approach for optimal
decision-making (i.e., objective functions to be included in the formulation, allocation
methods) (Huijbregts, 2001; Bilcke et al., 2011). Section 1.5 extends the interpretation
of this concepts and their application in this work.

Optimization under uncertainty has classically dealt with problems more closely related
to the science-based research, where parameter uncertainty tends to play a central role.
Parameter uncertainty arises owing to uncertainty in the choice of parameter values
(Bilcke et al., 2011). Parameters used in the models are usually economic, demograph-
ical, epidemiological and experimental in nature. It is well known that some aspects
related to structural uncertainty are well known to be parametrizable (Bilcke et al.,
2011), Nevertheless, without undermining the importance that all types of uncertainty
have, methodological uncertainty related to the perspective taken or function to be op-
timised represents a major challenge in optimisation based frameworks that is rarely
discussed. As a consequence, challenges still remain both, those of addressing other
important sources of uncertainty and those of designing whole and robust energy and
process systems more sustainable.

Despite the general nature of the modelling frameworks proposed, the specific problem
addressed and its scope play both significant role in PSE. The problem-specific con-
straints and nuances required to accurately model different process systems determine
the type of formulation finally obtained, and in turn also its adequate solution strategy
(see Section 1.3 and Section 1.4). In this respect, single-site problems have historically
received more attention in the literature than multi-site problems (Grossmann, 2004,
2005). The case of multiple plants (chemical supply chains) has only recently emerged
as an important area of research in PSE during the present decade (Grossmann and
Westerberg, 2000), and as a consequence, the integration of different decision-making
levels (i.e., strategic, tactical, operational) still remains an important challenge in PSE
(Grossmann, 2012).

The overall goal of this thesis is, then, to contribute to the development of CAPE
tools for the design and planning of more sustainable processes under uncertainty. The
problem is tackled by establishing new connections between the science-based fields of
chemical engineering and statistics, and the systems-based fields of management science
and life cycle assessment. Using basic tools from the PSE field, such as multi-objective
optimization and optimization under uncertainty as a bridging connection, new theoret-
ical and computational insights capable of exploiting the rich knowledge developed in
all these areas are obtained.

In particular, the major theoretical challenges addressed in this thesis are the following.

• First, by implementing a multi-objective formulation as a basis for the synthesis
and planning of more sustainable process systems, we provide a tool for analyzing
the methodological uncertainty associated with classical single-objective optimiza-
tion.
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• Second, the combination of multi-objective optimization (MOO) and life cycle
analysis (LCA) provides a systematic methodology capable of analyzing solutions
that reduce the environmental impact to the design of process systems.

• Third, life cycle analysis is incorporated to optimization under uncertainty with
the aim of driving more robust and effective sustainable process design options
able to mitigate uncertainty.

• Fourth, risk management metrics are proposed as effective modelling tools capable
of controlling undesirable outcomes, while representing different decision-maker
attitudes towards risk.

• Fifth, the problems addressed in this work take into account strategic and tactical
aspects, as well as single-site and multi-site process systems, therefore contributing
to fill the gap in the PSE literature for frameworks integrating different spatial and
temporal scales with wider systemic perspectives.

To the extent of our knowledge, this particular set of MOO tools coupled with LCA
has first been brought in this work to the real corporate environment by formulating
the complex industrial scale problem right from the start (see Chapter 4, Chapter 5
and Sabio et al. (2014)). Note that we present contributions on both, the modelling
and algorithmic dimensions of the problem, with the main focus placed on the former
aspect. Hence, in addition to developing more holistic mathematical models, we provide
effective tailor-made algorithms that expedite the solution procedure.

1.1.1 Objectives

The objectives of this thesis are:

• Devise a systematic and holistic framework able to mitigate and assess the financial
risk associated to volatile energy markets for the design and planning of hydrogen
supply chains under uncertainty.

• Extend the problem of environmental hydrogen supply chain design to account for
all damage categories and environmental impacts included in LCA methodologies,
while reducing it to the smallest possible representative set.

• Formulate a novel mathematical programming framework for large-scale complex
industrial process plants able to simultaneously optimize the economic performance
and the life cycle environmental impacts.

• Extend this framework to systematically produce robust solutions in the presence
of uncertainties in LCA.

7
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Figure 1.2: Hierarchical decision levels in PSE (Grossmann and Guillén-Gosálbez, 2010)

1.2 Process systems engineering

Process systems engineering (PSE) is the research branch of chemical engineering that
aims to solve industrial problems through the development of methods and tools that
effectively combine knowledge from science, engineering and systems. PSE interests
range from the molecular level to the management of the product supply chain (see Fig-
ure 1.1), being the synthesis and planning of processes a central aspect of its associated
research(Grossmann and Westerberg, 2000).

A common and practical approach for classifying activities within PSE according to their
temporal scale distinguishes between for tactical, operational and strategic planning
decisions. Strategic planning involves long-term decisions (usually 1–2 years), like the
design and redesign of chemical plants. Tactical planning involves decisions on the
medium term (3–6 months). These include, among others, purchases of raw materials
and production levels to be set at the chemical plants. Finally, operational planning
deals with activities in the short term (generally, the time horizon extends from one or
more days to a week), such as the scheduling of manufacturing tasks and strategies for
control and supervision at local levels. All these temporal scale levels are found at the
two major geographical scale units, the single-site (i.e., chemical or process plant) and
the multi-site systems (i.e., supply chains), as depicted in Figure 1.2.

At the top of the pyramid in Figure 1.2 we can find the entire supply chain (SC), in which
the plant is immersed. This is the field of study of the new emerging area of PSE known
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1.3 MATHEMATICAL PROGRAMMING

as “Chemical Supply Chain” or “Supply Chain Management” (SCM) (Grossmann and
Westerberg, 2000; Simchi-Levi et al., 2000), whose goal is to provide support tools to take
decisions associated with the optimal design and management of chemical production
and distribution networks. The largest scale decision units in PSE at the moment
are therefore the supply chain and the manufacturing plant. These two levels have in
common systems-type traits, such as the fact of being influenced by all decision levels
(i.e., strategic, tactical and operational) and the exposure to uncertainties whose effects
are correlated to their scale (i.e., large), as indicated in Figure 1.1. This constitutes one
of the major reasons supporting the explicit consideration of methodological uncertainty
at these decision levels, since its effects can not only be pervasive throughout the scales,
but also irreversible due to their magnitudes.

1.3 Mathematical Programming

Amongst the set of tools conforming the science base of PSE, mathematical program-
ming, also referred to as optimization, has always played a central role and has expe-
rienced notable advances in the field due to its widespread applications (Grossmann,
1989; Grossmann and Westerberg, 2000; Grossmann, 2002, 2004, 2005; Grossmann and
Guillén-Gosálbez, 2010; Grossmann, 2012, 2014). In mathematical programming, op-
timization problems take the form of a mathematical framework MOO, as expressed
in Equation 1, where an objective function set F is minimized or maximized without
violating any problem-specific resource or design constraints (g, h).

(MOO) min
x,y,z

(F1(x, y, z), F2(x, y, z), ..., Fn(x, y, z))

s.t. h(x, y, z) = 0

g(x, y, z) ≤ 0

x ∈ <, y ∈ {0, 1}, z ∈ N

(1)

The objective function set and the mathematical constraints (Fn], g, h) are formulated as
algebraic equations, which can be linear or non-linear. The variables on whose domain
the equations are defined (x, y, z), can take the form of continuous or discrete variables.
In the discrete space, binary variables are used to represent the logic decisions and
integer values to represent the number of units.

When all the algebraic equations are linear and all the variables are continuous, the
model takes the form of a linear programming problem (LP). In a simple case composed
by two variables, the problem could could be geometrically represented as shown in
Figure 1.3 a, where the lines represent the linear equations (i.e., g(x, y, z), h(x, y, z)) and
the grey area would be the corresponding feasible region enclosed within the equality
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and inequalities. On the other hand, if non-linear equations are present in any of the
problem equations (i.e., objective function or constraints), but all the variables are still
continuous (i.e., type x), a non-linear programming problem is defined (NLP). As can
be observed in Figure 1.3 b, the corresponding feasible region becomes geometrically
more sophisticated. Finally, when discrete (i.e., integer (type z) or binary (type y))
variables are present in the problem equations, the formulation takes the form of a mixed-
integer linear programming problem (MILP) when all the equations are linear, and a
mixed-integer non-linear programming problem (MINLP) when non-linear equations are
present (see Figure 1.3 c and Figure 1.3 d respectively).

Figure 1.3 graphically shows how the presence of integer variables reduces the feasible
region of the originally continuous formulation and makes it non-convex, thus increas-
ing the complexity of the problem resolution. This classification effectively depicts the
problems in increasing order of resolution complexity and helps explaining the structure
of this work. The first half of the thesis, (i.e., Chapter 2 and Chapter 3), concentrates
on two different MILP problem formulations of a hydrogen supply chain design. Sec-
tion 2.2 introduces a stochastic formulation of the problem that accounts for uncertain
energy prices and Section 3.2 depicts its deterministic counterpart, where methodologi-
cal uncertainty is more explicitly addressed by optimizing eight different environmental
metrics agains the economic performance. Their complete formulations are presented in
Section 2.3 and Section 3.3 respectively and the corresponding case studies can be found
in Section 2.5 and Section 3.5.

Chapter 4 and Chapter 5 present a new large-scale MINLP framework representing a
synthesis problem for a complex industrial process plant introduced in more detail in
Section 4.2. The deterministic formulation of the problem is detailed in Section 4.3 and
its stochastic counterpart in Section 5.3. The solution strategies are followed for these
large-scale multi-objective deterministic and stochastic MINLP problems are presented
in Section 4.4 and Section 5.4. Note that to this point we have so far followed the
approach of solving the deterministic and stochastic programming formulations of the
same problems as a systematic methodology to account for uncertainty at the design
stage. The complete details of our perspective for optimization under uncertainty and
the reasons for choosing stochastic programming as our basic framework to deal with
parameter uncertainty are set in Section 1.5.

1.3.1 Solution approaches for multi-objective problems

Multi-objective optimization problems are formulated when a conflict between the cri-
teria of interest is envisaged. The interest in resolving the problem lies in unveiling the
trade-off relationship between both objectives, which can range from non-existent or in-
significant, to not only relevant but also exploitable according to the circumstances. For
this reason, when the objectives can be represented by pairs, the Pareto set or Pareto
frontier (see Figure 1.8 in Subsection 1.5.3) is an efficient method for describing the
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Figure 1.3: Graphic representation of feasible regions for major classes of optimization prob-
lems

relationship between the objectives of interest. Despite the advantages provided by hav-
ing this additional information, multi-objective optimization problems also suffer from
associated additional complexities. For instance, if the problems of interest are more
ill-defined and the optimization task is approached through a more exploratory perspec-
tive, the visualization of all the conflicting relationship combinations and its analysis can
turn into an impracticable problem whose resolution tends to resort to human-model it-
erative interaction methods to be solved (Branke et al., 2012). This subject is briefly
introduced in Subsection 1.4.3, where references to the chapters and sections of this work
where theory and formulations for objective reduction techniques are presented in more
detail can be found.

The resolution of a multi-objective optimization problem involves finding the surface
that defines the trade-off between the objectives and thus specific strategies are required
for this task. The three main types of MOO solution approaches, as presented by
Grossmann (2014) are:

1. Those based in the transformation of the problem into a single-objective one

2. The non-Pareto approaches which use search operators based on the objectives to
be optimized

3. The Pareto approaches which directly apply the concept of dominance

Here the first class of approaches is chosen due to their suitability to be applied in
conjunction with standard exact algorithms (i.e., LP, NLP, MILP), as opposed to the
second and third classes (Grossmann, 2014). Within the first class or single-objective
multi-objective optimization methods we can find:

• Weighted-sum method or aggregation methods, based on aggregating the objec-
tives into a single vector using pre-defined weights for each objective.

• Goal programming approach, where the objectives are assigned a pre-defined target
value that need to reach and the objective function is formulated as an aggregation
of the previously defined satisfaction values.
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• ε-constraint method (Haimes et al., 1971), where one of the objectives is consid-
ered as primary and the others are posed as secondary objectives formulated as
constraints via auxiliary ε parameters.

As can be observed, the first two methods imply the use of weights or “a-priori” judge-
ments before the problem is resolved. The objective then turns into an algebraic combi-
nation of the objectives. Goal programming can be considered a particular case of the
weighted-sum method, where the objectives are substituted by their corresponding sat-
isfaction values. The resolution of an MOO problem following either of these approaches
gives rise to either a single solution if single weights are used for each objective, or to
a surface predefined by the weights used when several weights are used. In addition to
the necessity to include “a-priori” information, as explained in Subsubsection 2.3.6.6,
the weighted-sum method is only rigorous for the case of convex Pareto sets, whereas
the ε-constraint method is also rigorous for the non-convex case, which turns to be our
case in all the problems solved in this work. We therefore select the ε-constraint method
as our default approach to solve the multi-objective MILP and MINLP formulations of
this work for two major reasons, first its adequacy for solving non-convex Pareto sets,
and then its capability of reflecting the underlying existing relationship between the
objectives without the need to resort to “a-priori” user information.

The solution approach and its algorithmic implementation is introduced in Section 4.4
and represented in Figure 4.7 for the case of simultaneously optimizing the economic
performance and three different environmental metrics. It is also applied in Subsub-
section 2.3.6.6 for optimizing the expected value of the economic performance and the
worst case metric, in Section 3.4 for optimizing one economic performance metric against
eight different environmental criteria and in Section 5.4 as an extension of the stochastic
counterpart of the problem solved in Section 4.4 where the expected economic perfor-
mance is optimized against the worst case value and the downside risk metrics. The
corresponding Pareto sets are illustrated in Figure 2.3, Figure 2.4, Figure 3.2 to Fig-
ure 3.9, Figure 4.8, Figure 4.12,Figure 4.13,Figure 4.16, Figure 5.5 and Figure 5.6 in
their corresponding chapters.

Note that here we present the general case of the problem, where one or more objec-
tive functions can be formulated. Subsection 1.4.2 introduces the specific determinis-
tic problem formulation MOOe, where one economic performance criteria is optimized
against several environmental impact metrics, which is the case presented in Chapter 3.
Thereafter, Subsection 1.5.1 presents the specific stochastic problem formulationMOOr,
where the expected value of an economic performance metric is optimized against a risk
metric (i.e., worst case or downside risk).
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1.4 Environmental impact assessment

The sustainability challenge, defined more generally as the endurance of systems and
processes, is addressed here by appending the environmental impact as a necessary cri-
terion to be optimized along with the economic performance in the strategic design and
planning of process systems. Environmental impact assessment methods are evidence
based procedures used to assess the environmental effects of a system. Since their for-
mal implementation in the United States in the early 70s, they have been increasingly
used around the world. Nowadays they constitute a common practice in most developed
countries contributing to objective policy making. Although the agreement on the met-
rics to be used still constitutes a major debate to be resolved, both in the scientific and
political spheres, consensus has been reached on the fact that the environmental perfor-
mance of a product or process should be evaluated over its entire life cycle (Grossmann
and Guillén-Gosálbez, 2010).

1.4.1 Lifecycle assessment (LCA)

LCA is a framework for identifying and evaluating the environmental burdens associated
with a product or process over its entire life cycle (Guinée et al., 2002). Product envi-
ronmental life cycle analysis (LCA) is used for identifying and measuring the impacts of
different industrial products on the environment

If we have a production process like the one depicted in Figure 1.4, we will have as inputs
the raw materials and utilities, and as outputs, the products, waste generated, and some
emissions to air, soil and water. Before the raw materials and utilities enter the process,
they might have gone through different pre-processing steps, such as extraction, storage
and transportation, these are also tracked and their environmental impacts are accounted
for in an LCA analysis. After the products exit the gate of the manufacturing plant,
they might also experience different stages like the use and disposal/recycling phases.
All of these steps have an impact in the environment, from what is called the cradle, to
the gate or to the grave. The concept of cradle to grave analysis, which is a synonym of
LCA, is known as well-to-wheels analysis when applied to transport fuels and vehicles.
Thus, a well-to-tank analysis for transport fuels and vehicles is in effect a cradle to gate
analysis.

In this work the cradle to gate analysis is adopted for the processing systems modelled
in Chapter 3, Chapter 4 and Chapter 5, as indicated by the red rectangle in Figure 1.4.
Subsection 4.1.1 gives an overview of the literature on environmental performance of
process design and optimization and Subsubsection 4.3.6.2 introduces the LCA method-
ology.
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CHAPTER 1 INTRODUCTION

Figure 1.4: Scopes in life cycle assessment methodology

1.4.2 Environmental impact reduction: Multi-objective optimization
(MOO) and LCA

Despite the advantages that LCA methodology brings for assessing the environmental
impact of a product in a holistic manner, it lacks a systematic procedure to effectively
compare multiple alternative routes in order inform and manage the reduction of en-
vironmental impacts. One possible manner to address this problem is by combining
multi-objective optimization and LCA in a single mathematical programming frame-
work (Azapagic and Clift, 1999). Figure 1.5 shows how the application of life cycle
analysis to the optimization of a process or product is able to provide a holistic frame-
work for reducing its associated environmental impacts. Traditional approaches focused
on reducing the environmental impact associated to local stages of a product chemical
supply chain, such as the production step. Therefore, by neglecting the interconnections
of raw materials, production processes and uses of a product life cycle one may end
reducing the impact locally in one stage at the expense of increasing the impacts in
other stages of the product life. In contrast, the framework proposed here, by adopting
a global boundary for the environmental impact quantification, avoids shifting the im-
pacts to other stages of the manufacturing chain. In Figure 1.5 we can see how metric
2 is minimized locally at the manufacturing stage, while its impact in the rest of the
stages continues to be high. Also Metric 1 is extremely reduced in the use and disposal
phase, while its impact at the manufacturing stage escalates. On the other hand, by
reducing the life cycle impact of a product, which is represented by metric 3 in the figure,
a whole system reduction is achieved, which is represented in the right hand side bars
representing the sum of the impacts along the different processing stages for each metric.
This global approach avoids shifting the impact to other stages of the manufacturing
chain, as opposed to traditional local environmental impact methods (see Figure 1.5).
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1.4 ENVIRONMENTAL IMPACT ASSESSMENT

The problem of simultaneously optimizing the economic and the life cycle environmental
performance associated to a product or process system, gives rise to a multi-objective
optimization problem whose formulation can be presented as follows.

(MOOe) min
x,y,z

(C(x, y, z), EI1(x, y, z)...EIn(x, y, z))

s.t. h(x, y, z) = 0

g(x, y, z) ≤ 0

x ∈ <, y ∈ {0, 1}, z ∈ N

(2)

By solvingMOOe, one can simultaneously optimize the economic and the environmental
performance according to different environmental metrics. Some authors have adopted
a similar approach for different supply chain design problems in the area of PSE (Hugo
and Pistikopoulos, 2005; Bojarski et al., 2009; Guillén-Gosálbez et al., 2008, 2010), but
despite these efforts there are open issues, like which indicators should be used, how
can uncertainty be best managed and how to apply this approach to new problems.
More specifically, in Chapter 4 and Chapter 5 a case where three environmental metrics
addressing very different types of impacts are be optimized together with the economic
performance of an industrial process system. On the other hand, Chapter 3 of this
thesis presents a slightly different perspective of the problem, where eight different en-
vironmental impact metrics are simultaneously optimized together with the economic
performance and then reduced to a reference subset of non-redundant representative
metrics for the design of a hydrogen supply chain. Details of this last approach are
presented in the following section.

The solution of MOO problems is given by an ensemble of Pareto points that form the
Pareto set. Our goal is then to unveil the shape of the natural trade-off that lies be-
hind the corresponding economic and environmental performance pairs and represent
it in a two dimensional space. A review of the literature in the area of multi-objective
optimization and LCA is given Subsection 4.1.2 and the details of the formulation of
environmental impact categories within the objective functions of the problems are pre-
sented in Subsubsection 3.3.5.6 and Subsubsection 4.3.6.2.

1.4.3 Objective reduction: Multi-objective optimization (MOO)
and Principal Component Analysis (PCA)

One of the major challenges in multi-objective optimization is the visualization and
analysis of the multidimensional Pareto sets arising from the solution of problems with
more than two objective functions (Branke et al., 2012). In these problems with many
objectives, decision-makers need to deal with a large number of criteria, that might or
might not be conflicting, but whose relationships at this stage are uncovered. When
several objectives are non-conflicting, they can be considered are redundant since they
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CHAPTER 1 INTRODUCTION

Figure 1.5: Holistic framework combining multi-objective optimization (MOO) and LCA. In
red the environmental impact measured by metric 1 for each manufacturing stage:
raw material extraction, manufacture, storage, distribution and use; in blue, the
environmental impact according to metric 2 is shown. In green, environmental
impact for metric 3. The total values represent the sum of each environmental
impact metric for all the product life cycle stages are shown.
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1.4 ENVIRONMENTAL IMPACT ASSESSMENT

would effectively produce the same design solutions. Therefore the best practice in this
case would be to remove them from the analysis.

Despite the advances in the MOO field on dimensionality reduction (Deb and Saxena,
2005; Brockhoff and Zitzler, 2009; Branke et al., 2012), its application to environmental
problems is quite scarce in the literature. In a seminal paper Guillén-Gosálbez (2011a)
presented a method for objective reduction based on a rigorous MILP formulation to
systematically identify redundant objectives. Later, this approach was applied to differ-
ent problems. For instance, Oliva et al. (2013) superposed a clustering algorithm to the
original MILP and applied it to the design of petrochemical, hydrogen and bioethanol
supply chains. Later,Vaskan et al. (2014) applied the MILP reduction technique to
produce more sustainable planning and operation strategies of electricity and steam
utility plants, and Copado et al. (2014) presented an algorithm for its application to
environmental and systems biology problems. The advantage of this approach is that it
can ensure a minimum distance error for the reduced dimensional set obtained, but its
computational implementation can become challenging.

More recently, Kostin et al. (2015) implemented the MILP rigorous algorithm within
the MOO resolution strategy that overcomes the need for post-optimal solution analysis.
Antipova et al. (2015) used a post-optimal “Pareto filter” technique for the environmental
MOO problem of a reverse osmosis plant. Despite being computationally efficient, this
technique could not guarantee the best redundant objectives are selected.

In this work, we use a statistical technique known as Principal Component Analysis
(PCA) for reducing the dimensionality of the objective set in a multi-objective opti-
mization problem involving nine different objectives. PCA is a mathematical procedure
that uses orthogonal transformation to convert a set of possibly related variables into a
set of uncorrelated variables called principal components.

This orthogonal transformation is done by first standardizing the data (i.e., subtract-
ing the mean and dividing by the standard deviation) in order to find the correlation
matrix and its eigenvectors (i.e., e1, e2, e3). Next, the eigenvectors are ordered and
these are called the principal components. The original dataset is finally projected in a
smaller dimension defined by the eigenvectors (see Figure 1.6) and the principal com-
ponents are found on that new basis. More details on the theory and the formulation
implementation are found in Chapter 3. More specifically, a review of the literature on
multi-objective optimization and PCA is introduced in Subsection 3.1.2 and the details
of the methodology and its implementation in the mathematical formulation are given
in Section 3.4. The results of its application to the design of a hydrogen supply chain in
Spain are finally presented in Section 3.5.

Deb and Saxena (2005) investigated the use of PCA to identify redundant criteria in
MOO problems. Then, Sabio et al. (2012) and Pozo et al. (2012) applied this ap-
proach for reducing the environmental objectives hydrogen infrastructure design and in
petrochemical supply chains respectively. This framework proved less computationally
intensive that the MILP rigourous approach, while still being able to ensure that the
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CHAPTER 1 INTRODUCTION

Figure 1.6: Orthogonal projections in principal component analysis

best objective set is selected according to the the statistic criteria used within the PCA
setting.

1.5 Uncertainty

Optimization under uncertainty is the area that explicitly deals with the problem of
incorporating the effects of “non-deterministic” information into the PSE mathematical
programming frameworks. Its goal is to reflect real situations when decisions need to be
made, even when their consequences are not fully understood.

Traditionally, the methods developed in formal sciences, such as mathematics, find their
way around uncertainty by providing accurate problem definitions (i.e., hypothesis, ax-
ioms) that restrict the problem environment to strict pre-defined conditions. This is the
main reason why problem definition is a key step in the scientific method. Nevertheless,
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1.5 UNCERTAINTY

when formal sciences are applied to real problems, such as the ones found in biology,
engineering or chemistry, they confront the need to deal with data and experiments,
which at the same time depend on the states or conditions under which those data are
obtained. At this stage it is easy to observe how the effects of uncertainty start to filter
through the elements of the system under study to manifest as parameter variations in
this particular case. Not in vain, the original word for ’statistics’ was coined in part to
define a field that dealt with information about ’states’.

On the other hand, the areas more closely related to systems sciences, which in our case
are represented by management science and life cycle analysis, deal with environments
that are less easily reducible to a controlled unit (i.e., humans, environment). Although
in these cases variations in data are also observed, their causes cannot be easily unveiled
by just changing the states or conditions of the experiments. For instance, method-
ological and model uncertainty turns out to be of particular importance in these fields,
since even the frameworks used to define the concepts are highly debated. Therefore,
parameter uncertainty, although still existent, is overshadowed by the magnitude of un-
certainties affecting larger system scales. An overview of uncertainty characterization
and quantification in LCA is presented in Subsection 5.1.2 and Subsection 5.1.3.

In contrast, in formal and natural sciences, where the theories are perhaps more easily
testable and therefore accepted, the theoretical frameworks can be taken as “constant”
and therefore the major part of the uncertainty analysis is concentrated on parame-
ters. Parameter uncertainty is the uncertainty associated to the parameter values, usu-
ally taken from economic, demographic, epidemiological or experimental studies (Bilcke
et al., 2011). To overcome the limitations associated with this perspective, sensitivity
analysis and model testing are stressed out as activities of high relevance and decisions
are frequently taken by experts in the systems. Despite these differences, science-based
and systems-based research fields have in common the necessity to develop models and
frameworks able to represent the realities of the problems they study, which take a
central role in both fields. This is portrayed in the echelons represented in Figure 1.1.

Given the pervasive nature of uncertainty, it is impossible to imagine how models them-
selves would escape from it. Structural or model uncertainty is related to the aspects of
the problem (i.e., constraints) represented in the model and the model paradigm (i.e.,
simulation or optimization, deterministic or stochastic). Examples of structural uncer-
tainty within optimization frameworks are choice of available technologies in a flowsheet
design task, the use of capacity expansions in supply chain problems or the use of sin-
gle period or multi-period problem formulations. Thus, the approaches to deal with
structural uncertainty can range from model reformulations (i.e., addition and removal
of constraints and functions) to the comparison of different modelling frameworks for a
similar case study.

Methodological uncertainty in contrast arises from differences used in the evaluation
methodology (Bilcke et al., 2011). Dealing with uncertainty due to choices can involve
then evaluating different perspectives taken in a decision-making activity (i.e., consumer
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Table 1.1: Examples of uncertainty in each phase of process systems design in PSE

vs producer, environmental vs economic), the valuation technique (i.e., single-objective
or MOO, weights), the time horizon for the analysis or allocation methodologies in
LCA. Examples of all these types of uncertainties found in PSE optimization problems
are presented in Figure 1.1.

In sum, we have that science-based research has traditionally focused on parameter (or
parametrizable) uncertainty (Sahinidis, 2004), while systems-based research has dealt
more deeply with the issues of defining and classifying uncertainty (Huijbregts, 2001;
Bilcke et al., 2011). While the aim of this thesis is not to provide a philosophical frame-
work for understanding uncertainty, the systems nature of the processes under study
provides a good case for applying the knowledge gained from the study of uncertainty in
both, science-based and systems-based research. Arguably, we consider that optimiza-
tion as a mathematical framework already deals with an important part of the model
structural uncertainty by including all possible alternatives and choices available for each
problem.

More specifically, this work analyses the uncertainty related to energy prices in Chap-
ter 2 by implementing a stochastic probabilistic scenario framework combined with risk
management for controlling the variability of the economic performance at the design
stage of a hydrogen supply chain. This proves to give robust solutions able to cope
with this type of uncertainty. In Chapter 4, we formulate a novel MOO determinis-
tic MINLP framework for the design of process industries, where three environmental
metrics are optimized along with the economic performance. In this case, two different
energy price data sets were tested, fixed and flexible demand satisfaction and extreme
tests and sensitivity analysis were performed to check the limiting constraints of the
problem. In Chapter 5, the uncertainty associated to the life cycle inventory of emis-
sions of the industrial plant is considered using scenarios that can model any type of
continuous/discrete probability distributions. Particularly, without loss of generality, we
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1.5 UNCERTAINTY

focus on lognormal distributions that are able to capture the high uncertain, but less
probable scenarios by means of their associated long tails. All these analysis can be
mapped on to different uncertainty analysis categories, as it is explained in the following
sections.

1.5.1 Parametric uncertainty: sensitivity analysis and stochastic
programming

Parameter uncertainty, as introduced by Bilcke et al. (2011) appears when there is uncer-
tainty in the choice of parameter values. Traditionally, in mathematical programming
the frameworks considering that all parameters are known in advance are said to be
deterministic. This type of problems are characterized by a single solution point that
describes the optimal design or plan that the decision-maker should adopt (see Fig-
ure 1.7a). In contrast, when uncertainty is considered, the solution to the problem
might be given a range of solutions corresponding to different process system designs in
our case.

Optimization under uncertainty is the field that deals with the development of sys-
tematic mathematical programming frameworks capable of considering uncertainty at
the modelling stage. The two major mathematical programming approaches used for
process design under uncertainty are robust optimization and stochastic programming.
Robust optimization is more widely applied on short term scheduling problems where
ensuring the feasibility of the constraints over a given uncertainty range is of primal
importance. On the other hand, stochastic programming can better handle flexibility
via the recourse actions taken once the uncertainty is revealed in a large number of
scenarios, being therefore better for longer term strategic problems (Grossmann, 2014).

It is worthwhile to mention that stochastic problems present major computational chal-
lenges associated to the existence of scenarios and scenario trees. Robust optimization
and chance constraint formulations, on the other hand, do not suffer from these problems,
but still present challenges for the computation of the probabilities and their associated
derivatives, and lack in turn the ability to represent recourse actions. In this thesis, both
the supply chain design and the industrial plant synthesis are long-term problems of at
least one year planning horizons, and in consequence a stochastic programming formula-
tion has been considered as better suited for addressing their parametric uncertainties.

Both of the approaches introduced in the previous lines give rise to sophisticated sys-
tematic tools for addressing uncertainty in a rigorous and robust manner, as they either
involve the integration of full probability distribution functions or the sampling of as
many scenarios as it is required to ensure the solutions lie within an acceptable confi-
dence level. More classical methods for dealing with parameter uncertainty either rely
on manually changing few parameters, most commonly known as sensitivity analysis.
In this work we consider that parameter uncertainty approaches are those which are
mainly concerned with the uncertainty related to parameter values, as it is the case of
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stochastic programming, robust optimization or sensitivity analysis. Examples of pa-
rameter uncertainty found at different stages of process systems design in PSE are given
in Figure 1.1.

Although stochastic programming and robust optimization approaches involve consid-
erable problem reformulations affecting the model structure, as their focus here is to
assess the effect of parameter variations in the solution, they are classified as techniques
for dealing with parameter uncertainty. In this work, the main approaches used for pa-
rameter uncertainty are manual parameter change, sensitivity analysis, complete dataset
change and stochastic programming (see Figure 1.2). In particular, uncertainty in energy
prices was addressed via a stochastic programming formulation presented for the case of
a hydrogen supply chains design (see Subsection 2.3.1). An overview of the literature on
hydrogen infrastructure optimization under uncertainty can be found in Subsection 2.1.3.
In Chapter 4 the different parameter tests are performed for the new deterministic in-
dustrial synthesis design problem presented. More specifically, the model is run for
different energy datasets in Subsection 4.5.1 and Subsection 4.5.2 and an extreme test
is run to determine the limiting product quality constraints in order to run a sensitivity
analysis on them (see Subsubsection 4.5.1.4). In Chapter 5 the uncertainty in the life
cycle inventory of emissions for the industrial plant design problem is presented through
a stochastic formulation in Section 5.3 and the results also explore the effect of different
combinations of correlated uncertain parameters, as introduced in Subsection 5.5.1. An
overview of uncertainty in LCA and optimization is introduced in Subsection 5.1.1 and
of multi-objective optimization under uncertainty in Subsection 5.1.4.

1.5.2 Structural uncertainty: constraint reformulations and
deterministic-stochastic analysis

Structural uncertainty relates to the type of model and structure chosen for the analysis
(Bilcke et al., 2011). In this step, the expert needs to decide which parameters, variables
and equations are going to be represented in the problem formulation. As an example,
in Chapter 2 and Chapter 3 the hydrogen supply chain design problem is represented, in
very general terms, as a mass balance constrained problem for the specific geographical
locations and a capacity expansion coupled with production rates for the manufacturing
stages. Accordingly, in Chapter 4 and Chapter 5, the representation of the manufactur-
ing plant is done using the concepts of unit operations, experimental correlations, flow
diagrams and process synthesis(McCabe and Smith, 2001; Sargent, 2005; Grossmann,
1989).

Structural uncertainty analysis is therefore not focused on the parameter variation ef-
fects, but on the effect of the model structure in the results obtained. For instance, it is
well known in PSE that the formulation of first principles models poses significant chal-
lenges, in particular for large scale process systems operations like chemical complexes
or even complex process units (i.e., distillation columns). To overcome these problems,
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Figure 1.7: Solution representation for deterministic, stochastic and risk management frame-
works. (a) Single point solution for a deterministic problem. (b) Expected value
and interval range of the probability distribution output of a stochastic prob-
abilistic framework. (c) Expected value and interval range of the probability
distribution output of a stochastic framework in including risk management for
reducing the probability of obtaining outcomes higher than Ω.
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simplified short-cut models or process linearization are often pursued as the most pop-
ular strategies to resolve the models. Experimental correlations can be seen also as a
simplified representation of the processes, although given their uncontrollable nature,
they might present mathematical forms that give rise to similarly challenging problems.

Other common discussion in the area of PSE is the single-period (i.e., static) or multi-
period (i.e., dynamic) representation of process models. Despite the advantages of for-
mulating multi-period problems, these tend to increase the computational challenges of
their single-period counterpart by several scales of magnitude particularly in large-scale
complex models. In a similar line, the issue of deterministic and stochastic models poses
significant implementation challenges, but these have been indeed raised in order of im-
portance given the impacts, current relevance and pervasive nature that uncertainties
have in PSE (Grossmann, 2014). An attempt to map these uncertainties in the different
process system design stages is presented in Figure 1.1.

Note that here we refer only to structural uncertainty within the optimization field, but
structural uncertainty analysis should also be addressed by comparing different mod-
elling frameworks (i.e., simulation vs optimization), although the modelling paradigms
by themselves pose significant challenges to these tasks. For instance, whereas in a sim-
ulation framework a structural uncertainty analysis might involve the consideration of
a different process unit to perform a task, in optimization frameworks theoretically all
possible process units are included. In this work, structural uncertainty is addressed
very modestly in three different forms.

• Allowing flexible demand (i.e., changing an equality by an inequality constraint).

• Including and excluding uncertain parameter correlation.

• Solving an MOO model for economic and environmental performance measured
via Metric 1 in deterministic and stochastic form.

Here, we mention a stochastic problem formulation as an approach for analysing struc-
tural uncertainty. This is due to two main reasons: first, the focus here is on detecting
differences that the structure of the model formulation produces in the results, and sec-
ond, the same model is solved in a deterministic and stochastic formulation sequentially.
The results of these analysis can be found in Chapter 4, Subsection 4.5.1, and Chapter 5,
Subsection 5.5.1 and their respective Pareto sets are presented in Figure 4.8 and Fig-
ure 5.5. The results of reformulating flexible and fixed demand satisfaction constraints
had a larger impact than expected and are shown in Subsubsection 4.5.1.3, whereas the
uncertain environmental parameter correlation effects fall in a different impact scales
depending on the metrics used, as shown in Subsection 5.5.1, Figure 5.5 and Figure 5.6.
Note that these methods prove to be a useful practice to explore the deterministic model
boundary conditions, but do not provide a way of systematically generating robust so-
lutions. The latter is only accomplished by the use of the stochastic programming
formulation presented in the previous section, where the uncertainty can be embedded
at the design step.

24

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTION TO THE DEVELOPMENT OF MORE SUSTAINABLE PROCESS INDUSTRIES UNDER UNCERTAINTY 
Nagore Sabio Arteaga 
 



1.5 UNCERTAINTY

1.5.3 Methodological uncertainty: multi-objective optimization and
Pareto sets

Uncertainty around methodological choices arises when different views exist about what
constitutes the correct approach for optimum decision-making (Bilcke et al., 2011). Ex-
amples for economic evaluation include the perspective taken (i.e., risk averse or oppor-
tunistic decision-maker, economic performance, environmental impact, societal welfare),
whereas in life cycle analysis these take usually the form of impact allocation procedures,
weights in integrated impact indicators or the specific environmental impact metric cho-
sen (i.e., carbon, carbon equivalent, greenhouse gases, acidification and eutrophication,
respiratory effects on humans). Huijbregts (2001) recognised this category as uncer-
tainty due to choices in his characterization of uncertainty in LCA. Examples of these
uncertainty type in PSE are presented in Figure 1.1.

In the present work, we exploit the capabilities of stochastic programming with recourse
and enlarge its scope by introducing the concept of risk management represented by the
worst case and downside risk metrics in the objective function (Barbaro and Bagajewicz,
2004; Bonfill et al., 2004; Eppen et al., 1989). These risk metrics, traditionally more
used in robust optimization approaches, are applied here to two long-range planning
design problems in Chapter 2 and Chapter 5. Subsubsection 2.3.6.6 gives an overview of
the risk management framework used and Figure 5.2b portrays the differences in both
risk metrics. The aforementioned worst case formulation allows the representation of
allows the representation of risk-averse decision-makers in stochastic programming, but
it can be considered an overly conservative metric in some instances (Grossmann, 2014).
For this reason, the downside risk as defined by Eppen et al. (1989) is appended to the
stochastic industrial problem formulation in Subsection 5.3.1 and considered as an ad-
ditional risk metric to be optimized together with the traditional expected performance
and the worst case metric.

In contrast to their deterministic counterpart, stochastic problems present a range of
solutions that in their simplest form are reduced to the corresponding expected value.
The effect of substituting the expected value by a risk metric is represented in Figure 1.7b
and Figure 1.7c, where its ability to control the undesired outcomes is portrayed. The
resulting multi-objective formulation of these problems has the form of MOOr in Eq. 3,
where the first objective function is the expected value of the system cost and the second
is the worst case.

(MOOr) min
x,y,z

(EC(x, y, z), RM1(x, y, z)...RMn(x, y, z), ))

s.t. h(x, y, z) = 0

g(x, y, z) ≤ 0

x ∈ <, y ∈ {0, 1}, z ∈ N

(3)
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As mentioned before, Chapter 2 and Chapter 5 of this thesis use this combined approach
applied to a hydrogen supply chain design and planning problem and to the synthesis
and operation of an industrial process plant respectively. In Subsubsection 2.3.6.1 and
Subsubsection 2.3.6.6 the implementation of the MOOr multi-objective formulation,
where the expected economic performance and the worst case value are simultaneously
optimized, is presented for the MILP problem on hydrogen supply chains design in
Spain. In Subsection 5.3.1 the stochastic formulations for the expected economic perfor-
mance, risk management, worst case value and downside risk metrics are depicted for the
multi-objective MINLP synthesis problem of an industrial chemical plant. Next in Sub-
section 5.3.2, Subsection 5.3.3 and Subsection 5.3.4 the scenario planning probabilistic
“quasi-simulation” approach used to for the stochastic problem resolution is introduced
in detail. The problem solutions are presented first via their respective Pareto sets
in Figure 2.3, Figure 2.4, Figure 5.5 and Figure 5.6, and the solution visualization is
complemented by the use of the cumulative probability curves for each objective in Fig-
ure 2.7, Figure 5.7, Figure 5.8 and Figure 5.9. The latter set of figures provide a picture
where all the objective function profiles can be combined, thereby allowing to compare
different risk values associated to the design solutions obtained when using the expected
performance, worst case value and downside risk metrics respectively. The types of
uncertainty addressed in each part of this thesis are presented in Figure 1.2.

The selection of the metric to be optimized is a key element in optimization. Traditional
performance indicators in chemical process design have focused on economic metrics, like
profit or costs, and on non-economic objectives, such as customer satisfaction or product
quality. However, organizations have recently started to focus more on improving their
environmental performance. One could argue that costs for environmental considerations
could be derived and therefore implemented as additional constraints in a single-objective
framework. However, assessing these costs (externalities caused by the chemical process)
is very challenging. Hence, MOO is better suited to deal with this problem, as in
addition to avoiding the need to calculate externalities it allows identifying solutions
where significant environmental improvements can be attained at a marginal increase in
cost.

Pareto sets are an effective representation for multi-objective problems, for they allow
to graphically visualize the trade-off of conflicting objectives. In fact, by looking at
Figure 1.8, we can see that after both metrics have been optimized independently, the
Pareto front can inform of the costs associated (i.e., reduce F1) for reducing a given
amount the environmental impact (i.e., reduce F2). The figure depicts how the Pareto
frontier of an integer linear or non-linear problem looks like, where the points represent
the problem design solutions, and the lines are just artificially added to connect the dis-
continuous Pareto set obtained when solving a MILP or MINLP problem. The extreme
point depicted in light green represents the solution that independently minimizes F2,
while the black point on the other end represents the solution that minimizes F1. All
the green points in between these extreme solutions, and in the case of our synthesis
problems, reflect the optimal non-dominated (i.e., Pareto efficient) feasible designs that
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Figure 1.8: Pareto set as a tool for uncovering methodological uncertainty in optimization
frameworks

simultaneously optimize F1 and F2. The advantage of this methodology is that it en-
sures that the decision maker selects one option located in the frontier of efficient or
non-dominated solutions by default. That is, to guarantee that the decision is optimal
in the resulting two dimensional space. This can be generalized for the case of more
objectives and other objectives than cost and environmental performance.

We argue here that multi-objective optimization is an effective methodology for dealing
with the uncertainty associated to the methodological choice of performance indicators in
mathematical programming. This is because it allows assessing the impact of the choice
of a particular metric on the final Pareto solution selected. Not in vain, Grossmann (2012,
2014) recently highlighted the importance of research on optimization under uncertainty
in PSE. Traditional techniques used in optimization under uncertainty are also effective
for addressing structural uncertainty, but that needs to be considered more explicitly
at the modelling stage. The main goal of the uncertainty framework outlined here is
to help PSE practitioners to implement systematic procedures for dealing with whole
system uncertainties at the modelling stage (see Figure 1.1), thereby achieving more
robust process models able to cope with all types of systems uncertainties.
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1.6 Outline

The capabilities of the systematic multi-objective optimization frameworks arising from
the combination and individual use of these techniques is demonstrated through its
application to two major design problems.

The first half of this thesis is devoted to the design and planning of hydrogen supply
chains for vehicle use, while in the second half we introduce a novel formulation for the
synthesis and operation of a complex industrial process system. The modelling tasks are
carried out by initially ensuring the efficient solution of the deterministic formulation and
next proceeding to the formulation and solution of their specific stochastic counterparts
stochastic as prescribed by Grossmann (2014). Note however, that the order followed
to present the chapters has been chosen by chronology of their publication order, which
does not necessarily reflect the order of the modelling tasks carried out. Thus, if we look
at Figure 1.1, we therefore navigate from the larger geographical and temporal scales in-
volved the in multi-site design problems, to the smaller temporal and geographical scales
involved in the design and operation of a single-site problem, following the “uncertainty
and abstraction” arrow, and in increasing order of formulation complexity indicated by
the “precision” arrow.

Hydrogen supply chain

In Chapter 2 we introduce the first MOO stochastic framework to effectively deal with
the problem of controlling the uncertainty of the economic performance arising from
volatile energy prices on the design and planning of hydrogen supply chains for vehicle
use in Spain (see Section 2.2 and Section 2.5). This problem is of particular relevance
for the energy challenge mentioned at the beginning of this chapter, since hydrogen still
continues to be an alternative to fossil fuels showing high flexibility for addressing the
transition to a low carbon economy, but also with the potential of being increasingly
turned into a renewable and zero-carbon energy vector (see Subsection 2.1.1, Subsec-
tion 2.1.2 and Subsection 2.1.3). In particular the model includes the formulation for
all possible road and maritime transportation modes, including ships, trains, trucks and
hydrogen pipelines. The production routes modelled include steam methane reforming
with carbon capture, coal gasification with carbon capture, biomass gasification and
electrolysis. The storage options include cryogenic spherical tanks for liquid hydrogen
and pressurized cylindrical vessels for compressed hydrogen. The formulation of the re-
sulting three echelon supply chain gives rise to a multi-objective stochastic multi-period
problem that minimizes the expected cost and the worst case metric to address the fi-
nancial risk of the system. The corresponding mathematical formulation is presented
with detail in Section 2.3. A two-step algorithm is also devised and introduced in Sec-
tion 2.4 for the resolution of the problem, which reduces its associated computational
time in one order of magnitude. For more information see the corresponding scientific
publication by Sabio et al. (2010).

Chapter 3 returns to the deterministic formulation of a hydrogen supply design problem

29

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTION TO THE DEVELOPMENT OF MORE SUSTAINABLE PROCESS INDUSTRIES UNDER UNCERTAINTY 
Nagore Sabio Arteaga 
 



CHAPTER 1 INTRODUCTION

(see Subsection 3.1.1, Section 3.2 and Section 3.5), but this time including the life cycle
inventory of emissions associated to eight individual environmental metrics that form
part of the Eco-Indicator 99 methodology, and the total discounted cost of the system.
The results show that the problem solutions follow similar patterns for several indicators.
The arising visualization and analysis difficulties associated with the high dimensionality
of the problem are addressed by identifying redundant life cycle environmental metrics
using principal component analysis (PCA). As a result of the combination of MOO and
PCA (see Subsection 3.1.2 and Section 3.3), the dimensionality of the problem is halved
and four environmental metrics are identified as redundant. These results indicate that
half of the initial set of environmental metrics are able to represent the eight initial
criteria in the supply chain design space. More details can be found in the corresponding
scientific publication by Sabio et al. (2012).

Industrial process plant

Chapter 4 presents a novel formulation for more sustainable synthesis and operation of a
complex industrial plant (see Section 4.2). Here, LCA is brought together with MOO for
the synthesis and operation of the industrial scale problem presented in Section 4.1. The
operations intervening in the process units are defined by non-linear equations expressed
through complex process-specific experimental correlations2. More details on the math-
ematical formulation are given in Section 4.3. The model allows for the use of external
intermediate products and raw materials, changes in the internal flows of the network
in order to by-pass specific process units (thereby modifying the current topology) and
fuel switching as design options to meet the desired product quality constraints while
optimizing the objectives considered. The design task is thus posed as a multi-objective
formulation where the economic performance and three different environmental metrics
are considered, and the corresponding Pareto sets obtained after the model is resolved
are depicted in Section 4.5. In addition, Subsection 4.5.1, Subsection 4.5.2, Subsubsec-
tion 4.5.1.3 and Subsubsection 4.5.1.4 show the effects of using different energy price
datasets, allowing flexible demand and performing sensitivity analysis around the most
influential product quality constraints. The methodological uncertainty associated to
the use of single-objective optimization frameworks is also addressed by first solving a
bi-criteria problem for one environmental impact indicator and then adding other two
environmental metrics to the analysis (see Subsubsection 4.5.1.1, Subsubsection 4.5.1.2,
Subsubsection 4.5.2.1 and Subsubsection 4.5.2.2).

Finally, in Chapter 5 the deterministic formulation introduced in Chapter 4 is taken
as a basis to develop a stochastic programming model. More specifically, addressing
the uncertainties associated to the life cycle inventory of emissions gives rise to a multi-
objective stochastic problem where the LCA uncertainty is addressed at the design stage.
An overview of the literature in the fields of uncertainty in LCA and optimization un-
der uncertainty is introduced in Subsection 5.1.1, Subsection 5.1.2, Subsection 5.1.3 and

2Note that the complexity of modelling a problem of that scale using first-principles makes is one of
the major challenges that industries and consultancies are facing nowadays, and therefore is out of
the scope of our research time frames and desktop computational capability
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Subsection 5.1.4. Next, the industrial scale problem to be solved is defined in Section 5.2.
The problem is formulated as a multi-objective framework where the economic perfor-
mance is simultaneously optimized with three different stochastic and risk management
metrics: the expected value of the environmental impact, its worst case value and the
downside risk metric. The goal of this approach is to represent different decision-making
perspectives towards risk. By using three different stochastic and risk management met-
rics, the model deals with the uncertainty associated with single-objective optimization
problems (see Section 5.3). Additionally, three cases of increasing order of magnitude
in the associated uncertainty levels in the life cycle inventory of emissions are explored.
The model is solved using a multi-objective stochastic optimization approach introduced
in Section 5.4 and results are presented only for one environmental indicator in this case,
three cases for correlation levels of the probability distributions and the three different
stochastic and risk management metrics in Section 5.5.

This industrial scale problem addresses the challenge of formulating systematic frame-
works for large scale problem resolutions. The underlying computational challenges
arise mainly from the pervasive non-convexities associated to the form of the process
correlations. To our knowledge it is the first study bringing to industry an MOO-LCA
systematic framework capable of managing uncertainty. More details on the study can
be found in its corresponding scientific publication in the AIChE Journal (see Sabio
et al. (2014)).

Figure 1.9 shows a map of the contents presented the thesis, where the methodologies
used and problem characteristics are mapped to the corresponding chapters. Later,
Figure 1.10 provides a more classical outline of the thesis, where the contents of each
chapter and general structure of the different thesis parts are depicted.
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Notation

Indices
e scenarios
n objectives

Sets
F set of objectives
g set of inequality constraints
h set of equality constraints

Parameters

Ω target for risk management

Variables
EI Environmental impact
EC Expected economic performance
C Economic performance
RM Risk metric
n Number of environmental or risk metrics
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CHAPTER 2

MULTI-OBJECTIVE OPTIMIZATION OF A
HYDROGEN SUPPLY CHAIN –
STOCHASTIC APPROACH

Water will one day be employed as fuel, that hydrogen
and oxygen of which it is constituted will be used

Jules Verne, The mysterious island, 1874

2.1 Introduction

In this chapter we present a decision-support tool to address the strategic planning of
hydrogen supply chains for vehicle use under uncertainty in the operating costs. This
work is inspired on previous formulations of the hydrogen supply chain design prob-
lem (Guillén-Gosálbez et al., 2010; Guillén-Gosálbez and Grossmann, 2010) and extend
their capabilities to represent different decision-making perspectives towards risk. Our
aim here is to explore the capabilities of a stochastic optimization framework able to
handle price volatilities in the energy sector for a higher level energy systems strategic
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planning and design task within the chemical supply chain. Given is a superstruc-
ture of alternatives that embeds a set of available technologies to produce, store and
deliver hydrogen. The objective of our study is to determine the optimal design of the
production-distribution network capable of fulfilling a predefined hydrogen demand. The
design task is formulated as a multi-objective, multi-period and multi-scenario stochastic
mixed-integer linear problem (MILP) that considers the uncertainty associated with the
coefficients of the objective function of the model (e.g. operating costs, raw materials
prices,etc.). The novelty of the approach presented is that it allows decision-makers to
control for the effects of uncertainty in the economic performance at the hydrogen net-
work design step. This is accomplished by using a risk metric that is appended to the
objective function as an additional criterion to be optimized. An efficient decomposition
method is also presented that proves to expedite the solution of the underlying multi-
objective model in one order of magnitude by exploiting its specific structure. The
capabilities of the proposed modeling framework and solution strategy are illustrated
through the application to a real case study based on Spain, for which valuable insights
are obtained. For more details on this work, please refer to the original publication
(Sabio et al., 2010).

2.1.1 Prospects of hydrogen as a future energy vector

The growing concern about possible disruptions in the oil supply and the need to reduce
greenhouse gas (GHG) emissions have fostered in recent years the research for a more
sustainable energy and transport model ((Weissman et al., 2011, 2012),). Globally, the
transportation sector accounts for an 18% of carbon dioxide global emissions and a
25% of the primary energy use (World Resources Institute, 2005; WRI, 2005). Within
this context, hydrogen seems a potential alternative fuel and energy carrier since it can
be produced safely and locally, besides having the possibility of being environmentally
friendly. Not in vain, several books and information sources have been devoted to explain
the opportunities and challenges of a future hydrogen economy (Ball and Wietschel,
2009a,b; Dunn, 2002; Ball et al., 2007; Kim and Moon, 2008a).

Recent views suggest that the transition to the hydrogen economy will depend on two
main factors that must be developed in parallel:

1. Construction of an efficient hydrogen infrastructure.

2. Adoption of policies promoting fuel cell technologies (Ball and Wietschel, 2009a;
Kelly et al., 2010).

The development of an efficient infrastructure for producing and delivering hydrogen
appears as a key factor, both to achieve the hydrogen transition and for its future
development (NRC, 2004; DOE, 2009a; Hajimiragha et al., 2009). Thus, the design
of an economically viable hydrogen Supply Chain (SC) could play an important and
decisive role on the final market introduction and success of hydrogen as an alternative
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fuel and energy carrier. Despite several valuable contributions in the area, the dispute
over the future of hydrogen is still in the air. The situation reveals in fact the need for
more models and tools capable of assisting decision makers in this issue (DOE, 2008).

2.1.2 Hydrogen infrastructure optimization

In a pioneering work, Van den Heever and Grossmann (2003) focused on the integration
of production planning and reactive scheduling in the optimization of a refinery hydrogen
network. Here, hydrogen was part of a refinery production process and the problem was
formulated as a deterministic multi-period mixed-integer non-linear program (MINLP).
The SC design was out of the scope of the work, which was dedicated to integrate the
mid-term planning decisions and reactive scheduling of a two-echelon single commodity
network, for which valuable insights and solution strategies were devised. Then, Hugo
et al. (2005) proposed a deterministic multi-period MILP approach for the long-term
strategic planning of a multi-echelon hydrogen network taking into account economic
and environmental concerns. Nearly at the same time Almansoori and Shah (2006)
presented a steady-state deterministic mathematical programming framework to design
and operate a future British hydrogen SC by optimizing the economical performance of
the network. This work focused on getting an accurate and developed data set capable
of producing reliable results for a generalized model built and presented in particular
detail.

More recently significant contributions appeared from places where hydrogen has started
to be seen as an important alternative fuel and energy carrier. Specifically, Ingason
et al. (2008) proposed an MILP approach to find the most economical site selection
for some hydrogen production technologies in Iceland. Lin et al. (2008b) devised an
MILP model to optimize a hydrogen station sitting in Southern California by minimizing
the fuel-travel-back time. Using the same framework, Lin et al. (2008a) proposed an
approach to determine the least-cost hydrogen infrastructure design considering different
technological alternatives to be established in the region of Southern California. These
approaches provide a more detailed view of the operational level of hydrogen networks
focused on the region under study.

Kim et al. (2008) developed a steady-state MILP model for the optimization of a hy-
drogen SC under demand uncertainty, which accounted for the optimization of the max-
imum, minimum and average scenarios. This work can be seen as the first stochastic
approach to optimize a hydrogen network. Li et al. (2008) extended the previous work
by Hugo et al. (2005) where the case study of China was specifically analyzed under a
multi-period MILP framework for a hydrogen infrastructure design and optimization.
In the same year, Kim and Moon (2008b) introduced a multi-objective optimization ap-
proach for the strategic design of a hydrogen infrastructure taking into account cost and
safety. The mathematical formulation of this model is an extension of the work by Kim
et al. (2008). Also Guillén-Gosálbez et al. (2010) have presented a new deterministic and
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multi-period MILP framework for hydrogen network optimization considering cost and
environmental impact. In this work, they focus on the analysis of the environmental im-
pact through a life cycle analysis perspective, and a new algorithm is presented to reduce
the large computational burden associated to the problem resolution. Later, Kamarudin
et al. (2009) developed a deterministic MILP single-period model to optimize a future
hydrogen infrastructure in Malaysia, and Almansoori and Shah (2009) extended their
previous snapshot formulation (Almansoori and Shah, 2006) to present a multi-period
MILP model for optimizing the operation of a future hydrogen supply chain in Great
Britain. Most recently, Guillén-Gosálbez and Grossmann (2010) extended their previ-
ous formulation to consider uncertainty in the environmental damage assessment model
for their original bi-criterion environmentally conscious supply chain problem. Despite
the theoretically sound capabilities of their novel approach, the framework relied on a
joint chance-constraint reformulation that turned the stochastic model into a non-convex
MINLP problem considerably more difficult to solve.

2.1.3 Hydrogen infrastructure optimization under uncertainty

Almost all the modeling approaches described above imply the use of deterministic
models assuming that all problem parameters can be perfectly known in advance. De-
terministic models are solved for the most likely scenario, thus neglecting any possible
variability in its parameter values. This strategy provides solutions that perform well
in the mean scenario, but can yield poor results for other possible values of the un-
certain parameters. In practice, however, there are several sources of uncertainty that
can affect the calculations (e.g., prices of final products, operating cost, demand, re-
source availability, etc.). These uncertainties can be handled using stochastic models
that incorporate them at the modeling stage. The use of stochastic programming al-
lows to assess the SC decisions in the space of uncertain parameters, before the final
solution is taken. In particular, the two prevalent stochastic approaches are stochastic
programming with recourse (Linderoth et al., 2006) and robust optimization (Ben-Tal
and Nemirovski, 1998).

The use of stochastic modeling tools has allowed for the incorporation of different sources
of uncertainty into the decision-making process. Specifically, demand has been the
most studied source of uncertainty (Sahinidis, 2004; Shapiro, 2004; Grossmann, 2004,
2005; Guillén-Gosálbez et al., 2005; Melo et al., 2009; Guillén-Gosálbez et al., 2006b,a),
whereas other uncertainties, especially those appearing in the coefficients of the objective
function (product prices, operating cost, etc.) have received much less attention. In the
context of designing a hydrogen SC, the latter sources of uncertainty play a major role.
This is due to the energy price variability to which the actual financial market is exposed,
which recently reached historic levels and is largely dependent on fossil fuel prices.

Stochastic models that consider the variability of the uncertain parameters typically
optimize the expected economic performance of the system. These approaches can lead
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to solutions that perform well on average but have large probabilities of unfavorable
scenarios.

In practice, decision makers may have different attitudes towards the financial risk asso-
ciated with the investment on a project under uncertainty. Many decision-makers tend
to be risk averse, that is to say, they aim to avoid unfavorable situations thus showing a
clear preference for solutions with lower variability for a given budget. The idea under-
lying risk management is the incorporation of the trade-off between risk and cost within
the decision making process (Ferrer-Nadal et al., 2008; Guillén-Gosálbez et al., 2005;
Barbaro and Bagajewicz, 2004). This leads to a multi-objective optimization problem
in which the expected performance and a specific risk measure are the objectives consid-
ered. In this way, the concept of Supply Chain Management (SCM) coupled with risk
management tools offer the opportunity of reducing the impact of unexpected events
through an integrated multi-objective management of the network.

The aim of this work is to provide a mathematical programming framework for long-
term design and planning of hydrogen supply chains for vehicle use under uncertainty
in their economic performance with the ability to handle the financial risk associated to
market changes.

Our approach is based on a novel multi-scenario MILP that accounts for the uncertainty
associated with the coefficients of the objective function. The financial risk is explic-
itly measured via the worst case, which is appended to the objective function as an
additional criterion to be optimized. The resulting large scale bi-criterion MILP tends
to be computationally prohibitive as the number of time periods, alternatives included
in the superstructure, potential locations and scenarios increases. Hence, our model-
ing framework is complemented by an efficient decomposition method that expedites
the search of the Pareto solutions of the multi-objective model by exploiting its math-
ematical structure. The capabilities of the proposed modeling framework and solution
strategy are illustrated through its application to a real case study based on Spain, for
which valuable insights are obtained.

The chapter is organized as follows. Firstly, the problem studied is formally stated in
Section 2.2 and the corresponding mathematical formulation is next provided in Sec-
tion 2.3 . The decomposition strategy developed to solve the problem is introduced in
Section 2.4 . In Section 2.5 a case study is described together with the capabilities of the
proposed modeling framework and solution strategy. Finally, in Section 2.6 conclusions
and remarks are presented.

2.2 Problem statement

The design problem addressed in this work has as objective to determine the optimal con-
figuration of a three-echelon hydrogen supply chain for vehicle use (production-storage-
market) in terms of minimizing the expected total discounted cost and the associated

41

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTION TO THE DEVELOPMENT OF MORE SUSTAINABLE PROCESS INDUSTRIES UNDER UNCERTAINTY 
Nagore Sabio Arteaga 
 



CHAPTER 2 HYDROGEN SUPPLY CHAIN MOO – STOCHASTIC APPROACH

financial risk. The superstructure of the three-echelon SC taken as reference in this
work is depicted in Figure 2.1. This network includes a set of plants, where hydrogen
can be produced (pentagons), and a set of storage facilities (circles), where hydrogen is
stored for being delivered to the final customers (rectangles) in order to meet their de-
mand. The geographical framework includes the region of interest (e.g. country), which
can be divided into a set of potential locations. These potential locations correspond
to different sub-regions of the original region of interest, each one characterized by a
given hydrogen demand. We consider that the set of potential locations of the problem
along with the associated geographical distribution of the demand are input data to the
problem. Consequently, the design problem can be formally stated as follows: Given
are the hydrogen demands, fixed time horizon and number of time periods in which it
is divided, the set of available production, storage and transportation technologies, the
capacity limitations of plants and storage facilities, the costs associated with the net-
work operation (production, transportation and inventory costs), the investment cost,
the probabilistic information that describe the uncertain parameters (i.e., type of prob-
ability distribution, number of scenarios, mean and variance) and interest rate. The goal
is to determine:

1. The SC design: Involving the number, type, location and capacity of plants and
storage facilities, along with the number and type of transportation units (e.g.
tanker trucks, railway tube cars, etc.) and transportation links to be established
between the potential locations;

2. the associated planning decisions: Including the production rates of plants, inven-
tory levels at the storage facilities and flows of hydrogen between plants and storage
facilities; in order to simultaneously minimize the expected total discounted cost
and the associated financial risk of the network.

2.3 Mathematical model

The model presented in this work is inspired by previous approaches introduced by Al-
mansoori and Shah (2006) , Almansoori and Shah (2009) Kim et al. (2008), Kim and
Moon (2008b), Guillén-Gosálbez et al. (2010) and Guillén-Gosálbez and Grossmann
(2010). Our approach presents on a multi-objective, multi-period and multi-scenario
stochastic optimization model that extends the deterministic mathematical formula-
tion previously presented by Guillén-Gosálbez et al. (2010) to account for different
decision-making perspectives towards risk. More specifically, our mathematical formu-
lation, which is based on the superstructure depicted in Figure 2.1, extends the previous
formulations in order to account for a larger amount of production and transportation
technologies. Particularly, the model considers the possibility of establishing different
production and storage facilities in a set of potential locations with known demand and
uncertain economic parameters. Financial risk management tools are introduced in the
formulation to reduce the probability of occurrence of undesirable outcomes. Thereby,
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Figure 2.1: Three echelon supply chain taken as reference.
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this model includes the financial risk, represented by the worst case, as an additional
criterion to be optimized. For the sake of completeness of our work, we next provide
a detailed description of the MILP model notation, constraints, and objective function
equations.

2.3.1 Model features

The following assumptions are considered in our study:

• Demand scheme: The model is prepared to design a network capable of satisfying
a given hydrogen demand pattern.

• Multi-period scheme: The network design covers a fixed time horizon divided in
several periods of time accounting for prices and demand variations.

• Uncertainty: It is introduced in the operating costs of the network. The rest of the
parameters involved are considered to be deterministic. The reason for that is to
analyze separately the effects of different sources of uncertainty. However the model
could be easily extended in order to account for other parameter uncertainties.

• Economies of scale: In order to introduce the effect of the economies of scale,
while avoiding to introduce non-linearities in the problem formulation, we used
the six-tenths-factor rule.

• Capacity expansions: In the model an initial demand is assumed, and the network
design can be adapted to demand variation by introducing capacity expansions.
However, in the case of pipelines it is assumed that they can only be constructed
once in the life time of the project. With regard to the maritime transport, we
consider that the ships are not purchased, but rather they are hired.

Also remark that aspects related with a detailed design and sizing of the facilities are at
this point outside the scope of this work, which concentrates on the major SC strategic
decisions rather than on the particular features of the individual SC echelons.

2.3.2 Mass balance constraints

The mass balance regulates the flow interactions along the supply chain, and must be
satisfied for every hydrogen form i, liquid or gas, in each potential location g and time
period t. Thus, for every location, the sum of the initial inventory Sigst−1 plus the amount
produced (PRigpt) and the input flow rate (Qig′glt) must equal the final inventory (Sigst)
plus the amount delivered to the customers (Digt) and the output flow rate (Qigg′lt) of
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hydrogen:∑
s∈SI(i)

Sigst−1 +
∑

p∈PI(i)
PRigpt +

∑
g′ 6=g

∑
l∈LI(i)

Qig′glt

=
∑

s∈SI(i)
Sigst +Digt +

∑
g′ 6=g

∑
l∈LI(i)

Qigg′lt ∀i, g, t
(1)

In Eq. (1), SI(i) represents the set of storage technologies that can be used for product
form i, LI(i) is the set of transport modes that can transport product form i, and PI(i)
denotes the production facilities that can produce product form i.

2.3.3 Capacity constraints

2.3.3.1 Plants

In Eq. (2) the total production rate of hydrogen form i in location g produced via
technology p in period t (PRigpt) is restricted to be lower than the existing capacity of
the plant and higher than a minimum desired percentage, τ , of the capacity installed.
The capacity of each production technology p at location g in period t is represented by
CPL
gpt .

τCPL
gpt ≤

∑
i∈IP (p)

PRigpt ≤ CPL
gpt ∀g, p, t (2)

In this equation, IP (p) denotes the set of hydrogen forms that can be produced by
technology p. The capacity of each technology p in period t is calculated by adding
the expansion in capacity (CEPL

gpt ) executed in period t and location g to the existing
capacity at the end of the previous period:

CPL
gpt = CPL

gpt−1 + CEPL
gpt ∀g, p, t (3)

Equation (4) is applied to limit capacity expansions within lower and upper bounds,
obtained by multiplying the number of plants installed, which is denoted by the integer
variableNPL

gpt and the minimum and maximum capacities associated with each technology
p (PCPL

p and PCPL
p , respectively).

PCPL
p NPL

gpt ≤ CEPL
gpt ≤ PCPL

p NPL
gpt ∀g, p, t (4)

2.3.3.2 Storage facilities

In a similar way as for the production facilities, Eq. (5) enforces the total inventory of
product in form i kept at the end of period t in the storage facilities of type s installed
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CHAPTER 2 HYDROGEN SUPPLY CHAIN MOO – STOCHASTIC APPROACH

in location g (Sigst), to be lower than the available capacity. Here, CST
gst represents the

storage capacity of product form i during period t in location g associated with storage
technology s.∑

i∈IS(s)
Sigst ≤ CST

gst ∀g, s, t (5)

This equation constrains the amount of hydrogen delivered from the storage facility to
the customers to be lower than its capacity. In this equation, IS(s) represents the set
of product forms i that can be stored by technology s. This approach also uses the
storage period θ, as previously introduced by Almansoori and Shah (2006), which is
multiplied by two in order to cover fluctuations in both supply and demand as well as
plant interruptions:

2(θDigt) ≤
∑

s∈SI(i)
CST
gst ∀i, g, t (6)

In Eq. (6) SI(i) denotes the set of storage technologies s that can handle product forms
i. In a similar manner as occurred with the manufacturing plants, the capacity of the
storage technology s at any time period t is determined from the previous one and the
expansion in capacity executed in the same period:

CST
gst = CST

gst−1 + CEST
gst ∀g, s, t (7)

Finally, the value of the capacity expansion for storage facilities CEST
gst is bounded within

lower and upper limits.

SCST
s NST

gst ≤ CEST
gst ≤ SCST

s NST
gst ∀g, s, t (8)

2.3.4 Transportation constraints

In this block of equations, we introduce a binary variable Xgg′lt to represent the existence
or absence of a transportation link of type l (e.g., tanker trucks, railway tube cars,etc.)
between locations g and g′ in time period t.

QCgg′lXgg′lt ≤
∑

i∈IL(l)
Qigg′lt ≤ QCgg′lXgg′lt

∀g, g′(g 6= g′), l 6= pipeline, t

(9)

A zero value of the aforementioned binary variable prevents the flow of material that
can be transported via transportation technology l between g and g′ from taking place,
whereas a value of one allows the transport within some lower QCgg′land upper bounds
QCgg′l. In Eq. (9), IL(l) denotes the set of product forms i that can be transported by
transport mode l.
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2.3 MATHEMATICAL MODEL

Eq. (10) is similar to Eq. (9), but applies only to pipelines. Specifically, we assume that
if a pipeline is constructed, then the associated transportation link will remain open
throughout the entire time horizon:∑

t′<t+1
QCgg′lXgg′lt′ ≤

∑
i∈IL(l)

(Qigg′lt +Qig′glt) ≤
∑

t′<t+1
QCgg′lXgg′lt′

∀g, g′(g 6= g′), l = pipeline, t

(10)

Furthermore, only one transportation link involving pipelines can be constructed at most
during the entire time horizon:∑

t′<t+1
Xgg′lt′ ≤ 1 ∀g, g′(g 6= g′), l = pipeline, t (11)

We assume that a location can either import or export hydrogen, but not both at the
same time. This is because if a location can only satisfy its needs by importing from
other locations, it would not need to export to other locations:

Xgg′lt +Xg′glt ≤ 1 ∀g, g′(g 6= g′), l, t (12)

Specific constraints are appended to the model formulation to handle the case of mar-
itime transportation devices. Hence, the binary variables Xgg′lt denoting the existence of
transportation links are forced to take a zero value in some particular cases via Eqs. 13
and (14), which prevent ships from transporting materials between locations with no
harbors and also avoid the use of road transportation devices between harbors that are
not connected by road transportation.

Xgg′lt = 0 ∀l, g, g′ ∈ LG

LG = {l, g, g′ : (l = ship) ∧ ((g, g′) /∈ SGG(gg′))}
(13)

Xgg′lt = 0 ∀l, g, g′ ∈ LG′

LG′ = {l, g, g′ : (l 6= ship, pipeline) ∧ ((g, g′) ∈ SGG′(gg′))}
(14)

In these constraints, SGG(g, g′) is the subset of allowable maritime links, whereas
SGG′(g, g′) is the subset of maritime links (i.e., SGG′(g, g′) ⊂ SGG(g, g′)) that cannot
be connected through road transportation units.

2.3.5 Demand satisfaction constraint

The total amount of hydrogen consumed (Digt) is constrained to be lower than the total
hydrogen demand (Dgt) in each location and period, and higher than a given minimum
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CHAPTER 2 HYDROGEN SUPPLY CHAIN MOO – STOCHASTIC APPROACH

demand satisfaction level (dsat) :

Dgtdsat ≤
∑
i

Digt ≤ Dgt ∀g, t (15)

2.3.6 Objective function equations

The model presented considers that the coefficients of the objective function (e.g. fa-
cility investment and variable costs and transportation costs) are uncertain and that
their variability can be described through a set of scenarios with given probability of
occurrence. As a result, the cost associated with the establishment and operation of the
SC is not a single nominal value, instead it is a stochastic variable that follows a discrete
probability function. In this context, the optimization method must identify the set of
solutions (i.e., strategic SC decisions) that simultaneously minimize the expected value
of the cost distribution as well as its financial risk level. The main advantage of the
scenario-based approach is that it allows dealing with any type of probability function.
Furthermore, this approach avoids the non-linearities associated with the reformulation
of the probabilistic constraints used in robust optimization (Ben-Tal and Nemirovski,
1998; Janak et al., 2007; Guillén-Gosálbez and Grossmann, 2009).

2.3.6.1 Expected cost

The expected total cost is given by the mean value of the discrete distribution of the
cost associated to each scenario realization:

E[TDC] =
∑
e

probeTDCe (16)

The total discounted cost attained in each particular scenario realization (TDCe) is
calculated as the sum of the discounted costs associated with each time period t:

TDCe =
∑
t

TCte

(1 + ir)t−1 ∀e (17)

In the previous expressions, e is a subscript that represents a particular scenario e and
probe is the probability of occurrence of this scenario. In Eq. (17), ir represents the
interest rate and TCte is the total amount of money spent in period t and scenario e,
which includes the capital (FCCt, TCCt) as well as operating costs (FOCte, TOCte)
given by the production, storage and transportation facilities of the network:

TCte = FCCt + FOCte + TCCt + TOCte ∀t, e (18)

In practice, it will be possible to have a good estimate of the capital cost at the design
stage, since it is usually agreed before the establishment of a new facility. On the other

48

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTION TO THE DEVELOPMENT OF MORE SUSTAINABLE PROCESS INDUSTRIES UNDER UNCERTAINTY 
Nagore Sabio Arteaga 
 



2.3 MATHEMATICAL MODEL

hand, the value of the operating cost will fluctuate according to the market trends.
Hence, in Eq. (17) FCCt and TCCt can be regarded as non-scenario dependent variables,
whereas FOCte and TOCte will in general depend on the specific scenario realization.

2.3.6.2 Facility capital cost

The facility capital cost over period t (FCCt) is determined from the capacity expansions
made in the manufacturing plants and storage facilities during that period:

FCCt =
∑
g

∑
p

(
αPLgptN

PL
gpt + βPLgptCE

PL
gpt

)
+
∑
g

∑
s

(
αSTgstN

ST
gst + βSTgstCE

ST
gst

)
∀t

(19)

The parameters, αPLgpt , βPLgpt , αSTgst and βSTgst are the fixed and variable investment terms
corresponding to plants and storage facilities, respectively. These parameters reflect the
concept of economies of scale.

2.3.6.3 Facility operating cost

The facility operating cost term is obtained by multiplying the unit production and
storage costs (upcigpte and uscigste, respectively), which are regarded as uncertain pa-
rameters, with the corresponding production rates and average inventory levels:

FOCte =
∑
i

∑
g

∑
p∈PI(i)

upcigptePRigpt

+
∑
i

∑
g

∑
s∈SI(i)

uscigste (θDigt) ∀t, e
(20)

2.3.6.4 Transportation capital cost

The transportation capital cost, which includes the cost of the trucks and railcars is
calculated via Eq. (21):

TCCt =
∑

l 6=ship,pipeline
NTR
lt · cclt + PCCt ∀t (21)

Here, PCCt is the pipeline capital costs, cclt represents the capital cost associated with
transport mode l in period t, and NTR

lt is an integer variable that denotes the total
number of transportation units of type l purchased in period t. Note that ships and
pipelines are excluded from the first term of the summation. The reason for this is that
the model assumes that ships are hired for carrying out the specific transportation tasks
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(e.g., outsourcing), whereas the capital cost of pipelines is calculated via the following
equation:

PCCt =
∑
g

∑
g′ 6=g

∑
l=pipeline

upcctXgg′ltdistancegg′ ∀t (22)

where upcct is the unit capital cost of the pipeline per unit of length built and distancegg′
denotes the distance between potential locations g and g′.

The average number of trucks and/or railcars required to satisfy a certain flow between
different locations is computed from the flow rate of products between the locations
(Qigg′lt), the transportation mode availability (avl), the capacity of a transport container
(tcapl), the average distance traveled between the locations (distancegg′), the average
speed (speedl) and the loading/unloading time (lutimel), as stated in Eq. (23):

∑
t′<t+1

NTR
lt′ ≥

∑
i∈IL(l)

∑
g

∑
g′ 6=g

∑
t

Qigg′lt

avltcapl

(
2distancegg′
speedl

+ lutimel

)

∀l 6= ship, pipeline

(23)

The total number of transportation units available in any period t includes those pur-
chased in the same period t as well as those acquired in previous periods t′. Therefore,
the left hand side of the inequality in Eq. (23) represents the summation of all the trans-
portation units purchased in all the time periods t′ up to the actual period t (i.e., t′ = t).
Also here, IL(l) denotes the set of product forms i that can be transported by trans-
port mode l. For the purpose of simplicity, this work assumes that each transportation
facility can only operate between two predefined locations. For this reason the distance
between locations g and g′ (distancegg′) is multiplied by two, so the model accounts for
the return journey of the trucks/railcars.

2.3.6.5 Transportation operating cost

The total operating cost associated with the transportation tasks carried out in scenario
e in period t (TOCte) is determined from Eq. (24):

TOCte = ROCte + POCte + SOCte ∀t, e (24)

where ROCte, POCte and SOCte are the operating costs associated with road trans-
portation technologies and railway, pipelines and ships, respectively. The first term
includes the fuel (FCte), labor (LCte), maintenance (MCte) and general costs (GCte):

ROCte = FCte + LCte +MCte +GCte ∀t, e (25)
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2.3 MATHEMATICAL MODEL

The fuel cost is a function of the fuel price (fuelplte) and fuel consumption:

FCte =
∑
g

∑
g′ 6=g

∑
l 6=ship,pipeline

∑
i∈IL(l)

fuelplte
2distancegg′Qigg′lt

fuelcltcapl
∀t, e (26)

Note that the main source of uncertainty here is the fuel price, since it cannot be perfectly
known in advance at the design stage. In Eq. (26), the fractional term represents the fuel
usage, and it is determined from the total distance traveled in a trip (2 distancegg′), the
fuel consumption of transport mode l (fuelcl) and the number of trips made per period
of time (Qigg′lt

tcapl
). The labor transportation cost is described as a function of the driver

wage in scenario e (wagelte) and total delivery time (i.e., the term inside the brackets):

LCte =
∑
g

∑
g′ 6=g

∑
l 6=ship,pipeline

∑
i∈IL(l)

wagelte

×
[
Qigg′lt

tcapl

(
2distancegg′
speedl

+ lutimel

)]
∀t, e

(27)

The maintenance cost, which accounts for the general maintenance of the transportation
systems, is a function of the cost per unit of distance traveled in scenario e (cudlte) and
total distance driven:

MCte =
∑
g

∑
g′ 6=g

∑
l 6=ship,pipeline

∑
i∈IL(l)

cudlte
2distancegg′Qigg′lt

tcapl
∀t, e (28)

The general cost includes the transportation insurance, license and registration, and
outstanding finances. It can be determined from the unit general expenses in scenario e
(gelte) and number of transportation units as follows:

GCte =
∑

l 6=ship,pipeline

∑
t′≤t

gelteN
TR
lt′ ∀t, e (29)

Equation (30) determines the pipeline operating costs from the unit operating cost of
the pipelines in scenario e (upocte) and the freight to be delivered.

POCte =
∑
g

∑
g′ 6=g

∑
l=pipeline

∑
i∈IL(l)

upocteQigg′lt ∀t, e (30)

Finally, Eq. (31) calculates the ship operating costs based on the unit operating costs for
maritime transportation in scenario e (usocte), the time required to deliver the hydrogen
and the cargo:

SOCte =
∑
g

∑
g′ 6=g

∑
l=ship

∑
i∈IL(l)

usocte (distancegg′Qigg′lt) ∀t, e (31)
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2.3.6.6 Risk management

The traditional approach to address optimization under uncertainty relies on formu-
lating a single-objective optimization problem where the expected performance of the
system is the objective to be optimized. This strategy does not allow controlling the
variability of the objective function in the uncertain space. In other words, optimizing
the expected economic performance of a SC does not imply that the process will yield
better results at a certain level considering the whole cost distribution. The underly-
ing idea in risk management is to incorporate the trade-off between financial risk and
expected cost into the decision-making procedure. This gives rise to a multi-objective
optimization problem in which the expected performance and a specific risk measure are
the objectives considered. The solution of such a problem is given by a set of Pareto
solutions that represent the optimal trade-off between expected performance and risk
level. In mathematical terms, the financial risk associated with a design project can
be defined as the probability of not meeting a certain target profit (maximization) or
exceeding a certain cost level (minimization) (Barbaro and Bagajewicz, 2004).

Hence, the financial risk associated with a design x and a cost target Ω can be expressed
as follows:

Risk(x,Ω) = P[TDC(x) ≥ Ω] (32)

In Eq. (32) TDC(x) is the total cost associated to a hydrogen network design x, that
is, the cost resulting after the uncertainty has been unveiled and a scenario has been
realized.

Specifically in this work, the probability of meeting unfavorable scenarios is controlled by
adding the worst case cost as an additional objective to be minimized. This metric is easy
to implement and shows good numerical performance in stochastic models, as pointed
out by Bonfill et al. (2004), while at the same time circumvents the introduction of more
binary variables in the formulation. The worst case value can be easily determined from
the maximum cost attained over all scenarios:

WC ≥ TDCe ∀e (33)

The inclusion of the worst case as an alternative objective to be minimized along with
the expected total cost leads to the following bi-criterion MILP formulation:

(MOP ) min
x,y,z

(E[TDC](x, y, z),WC(x, y, z))

s.t. Eqs. (1)− (33)

x ∈ <, y ∈ {0, 1}, z ∈ N

(34)
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where x, y and z denote the continuous, binary and integer variables of the problem,
respectively. The aforementioned multi-objective problem can be solved by standard
algorithms for multi-objective optimization such as the ε-constraint or the weighted-
sum method (Ehrgott, 2000b). The weighted-sum method is only rigorous for the case
of convex Pareto sets, whereas the ε-constraint method is also rigorous for the non-convex
case, which turns out to be our case. This method entails solving a set of instances of
problem (P ) corresponding to different values of the auxiliary parameter ε:

(P ) min
x,y,z

E[TDC](x, y, z)

s.t. Eqs. 1− 33

WC(x, y, z) ≤ ε

ε ≤ ε ≤ ε

x ∈ <, y ∈ {0, 1}, z ∈ N

(35)

where the lower and upper bounds within which the epsilon parameter must fall (i.e.,ε ∈
[ε, ε]) are obtained from the optimization of each scalar objective separately.

2.4 Solution approach: two-step sequential approach

Model (P ) tends to be computationally intensive, especially as the number of potential
locations, available technologies and time periods increases. To circumvent this issue,
we introduce next a decomposition strategy that expedites its solution and makes it
possible to address medium/large size instances of (P ) that might appear when dealing
with realistic problems found in practice.

Our solution method is a two-step sequential approach that exploits the specific structure
of the model. This solution procedure is inspired on previous bi-level decomposition
methods presented so far in the literature (Iyer and Grossmann, 1998; Guillén-Gosálbez
et al., 2010). The method exploits the fact that in practical problems the relaxation of
the integer variables of the full space model tends to be very tight. In other words, the
solution that is obtained when (P ) is solved defining z as continuous variables instead
as integers is indeed very close to the true optimal solution of (P ). The reason for this is
that in practice these integer variables take large values, since they represent the number
of facilities to be established in big regions that cover high demands. On the other hand,
the binary relaxation tends to be much weaker.

Based on this observation, we propose a method to solve (P ) that relies on decomposing
it into two hierarchical levels: a lower relaxed master problem (MP ) and an upper
bounding slave problem (SP ), that are solved in a sequential way.
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2.4.1 Master problem

The master problem (MP ) is obtained from model (P ) as follows. The integer variables
z (i.e., NPL

gpt , NST
gst and NTR

lt ) representing the number of production, storage and trans-
portation technologies, are relaxed by reformulating them as continuous variables. Note
that by doing so, the solution of the model is highly expedited, since the combinatorial
complexity associated with the presence of integer variables is reduced to a large extent.
The master problem can therefore be expressed as follows.

(MP ) min
x,y,rz

E[TDC](x, y, rz)

s.t. Eqs. 1− 33

WC(x, y, rz) ≤ ε

ε ≤ ε ≤ ε

x, z ∈ <, y ∈ {0, 1}

(36)

where rz denotes the set of integer variables that are relaxed into continuous ones. The
master problem is therefore a relaxation of the original problem, and for this reason it
provides a lower bound on its global solution.

2.4.2 Slave problem

The upper bounding slave model (SP) corresponds to the same original full-space formu-
lation in which the integer variables are obtained by rounding up (or down) the optimal
values of the relaxed integer variables provided by the master problem solution. The
solution of the slave problem provides an upper bound to the true optimal solution of
(P), since its search space is contained in that of the full-space model. The slave problem
has the following form:

(SP ) min
x,y,z

E[TDC](x, y, z)

s.t. Eqs. 1 33

z = drz∗e

WC(x, y, z) ≤ ε

ε ≤ ε ≤ ε

x ∈ <, y ∈ {0, 1}, z ∈ N

(37)
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where rz∗ denotes the optimal values of the relaxed integer variables calculated by the
master problem.

2.4.3 Remarks

• The model presented in this work can be easily extended in order to address
uncertainty in the demand. This could be accomplished by reformulating some
variables of the problem as scenario-dependent ones.

• As shown in the work by Gebreslassie et al. (2009b), minimizing the expected
cost of a stochastic problem with uncertain coefficients in the objective function is
equivalent to minimizing the cost in the mean scenario. Thus, in this particular
case, single-objective stochastic models that attempt to optimize the expected
performance of the network provide the same solution as deterministic approaches.
This does not happen when risk management metrics are considered, since such
consideration leads to a multi-objective problem.

• In practice, the decomposition strategy works better when the number of trans-
portation units is left free in the slave problem. This occurs because the master
problem tends to provide solutions that underestimate the requirements of trans-
portation units, since the relaxation of the integer variables denoting the number
of plants take more advantage of the concept of economies of scale, thus decreasing
the transportation needs.

• The slave problem of our method might be infeasible for some values of epsilon.
This might occur when the master problem will predict too optimistic solutions
(i.e., low worst case values) that cannot be attained in practice when the integrality
requirement is enforced. This limitation can be overcome by removing the ε-
constraint from the slave problem. As it will be discussed later in Section 2.5, this
will result in a shift of the Pareto curve corresponding to the slave solution with
respect to that provided by the master problem.

• The solution method presented in this chapter can be applied to previous opti-
mization models for optimizing hydrogen SCs, either deterministic or stochastic,
presented so far in the literature (Hugo et al., 2005; Almansoori and Shah, 2006; Li
et al., 2008; Kim and Moon, 2008b; Kim et al., 2008). Our method might improve
the practical implementation of these models, thus allowing for their application
to more complex problems.

2.5 Case study based on Spain

The capabilities of our modeling framework and solution strategy are illustrated through
their application to a case study based on a real-world problem. Specifically, the optimal
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design of a hydrogen SC for vehicle use in Spain is addressed. A superstructure is
postulated following the scheme presented in Section 2.2, where all different alternatives
for hydrogen production, storage and transportation are embedded.

The region of interest is Spain and the potential locations, which are depicted in Fig-
ure 2.2a, are its autonomous communities (i.e., states of the country). Each of these
regions has an associated hydrogen demand that can be fulfilled either locally or by
importing hydrogen from other locations.

Figure 2.2b shows the alternatives considered for the production, storage and delivery
of hydrogen. In this case, hydrogen (liquid or gas) can be produced via steam methane
reforming, coal gasification, biomass gasification and wind electrolysis. Moreover, differ-
ent storage and transportation facilities are considered for the case of liquid and gaseous
hydrogen. With regard to the transportation technologies, we consider trucks, trains,
ships and pipelines. In order to reflect the current increasing concerns and policies for
greenhouse gas mitigation we have assumed that steam methane reforming and coal
gasification facilities must include carbon sequestration devices.

The future expected hydrogen demand in Spain (see Table2.1) was calculated based on
the annual report for gasoline and diesel fuel demands published by MITYC (2008).
This information was translated into the corresponding hydrogen demand by using low
calorific values provided by DOE (2009b). According to the report published by OSE
(2009), the transportation sector accounts for 60% of the fuels consumption in Spain. A
minimum demand satisfaction level of 90% was considered for the network calculations.

2.5.1 Transportation data set

All the data taken from sources before 2009 were actualized to current values by using the
IPC factor (INE, 2009; IMF, 2009). The original data for United Kingdom (Almansoori
and Shah, 2006) were adapted to Spain considering a correcting factor of 0.8, mainly
based on an average factor relating the currencies of the two countries(IMF, 2009). To
determine the pipelines capital cost, we follow the work by Amos (1998).

The maximum flow rate of liquid and compressed gaseous hydrogen transported via
trucks or railcars QCgg′l was assumed to be 960 000 kg d−1, while the minimum flow
rate QCgg′l was assumed to be equal to the capacity of each transportation mode as done
by Almansoori and Shah (2006). The capital and operating costs of the transportation
modes are shown in Table 2.2. Particularly ship transportation costs were provided
by Transmar S. L. (2009). The average delivery distances between the different poten-
tial locations were estimated taking as central points the capitals of the autonomous
communities (see Table 2.3).
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(a) Set of potential locations for the supply chain entities of the case study.

(b) Set of available production, storage and transportation technologies of the case study.

Figure 2.2: Definition of the case study.
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Table 2.1: Hydrogen demand for t = 1 (assuming an annual increment of 5 %).
Potential locations Indentifier Demand (ton/d)
Andalucía 1 3,487
Aragón 2 937
Asturias 3 513
Baleares 4 695
Canarias 5 845
Cantabria 6 295
Castilla y León 7 2,131
Castilla la Mancha 8 1,509
Cataluña 9 3,372
Ceuta 10 20
C. Valenciana 11 2,210
Extremadura 12 599
Galicia 13 1,595
La Rioja 14 182
Madrid 15 2,200
Melilla 16 12
Murcia 17 836
Navarra 18 526
País Vasco 19 1,209
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CHAPTER 2 HYDROGEN SUPPLY CHAIN MOO – STOCHASTIC APPROACH

2.5.2 Production data set

Table 2.4 includes the production data set cost. The minimum and maximum production
capacities for each plant type (PCPL

p and PCPL
p ) were assumed to be 10,000 and 480,000

kilograms per day (kg d−1) respectively, based on commercial and near commercial
medium to large hydrogen plants (Almansoori and Shah, 2006).

In this example, we devote our attention to the uncertainty associated with the unit pro-
duction costs, and assume that the other operating parameters can be perfectly known
in advance. We also consider that the uncertain values follow normal distributions. The
mean values of these Gaussian bells from which the representative scenarios of the uncer-
tain space are generated are given also in Table 2.4. A variance of 25% was assumed for
steam methane reforming, (SMR), 5% for coal gasification (CG), and 10% for biomass
gasification (BG) and electrolysis (E). The uncertain parameters were described by 50
scenarios using Monte Carlo sampling. The number of scenarios required to provide
a solution within a specified confidence interval was determined by using the statistic-
based methodology proposed by Law and Kelton (2000). Particularly in our case study,
with a sample composed by 50 scenarios we can ensure a relative error of 0.5% and a
confidence interval of 99.9% for the value of the E[TDC] obtained.

The variability of the natural gas price affects the operating cost of steam methane
reforming. To account for this variation, an increment of 20% on the original mean
value from 2004 of hydrogen unit production costs was assumed for t ≤ 4 , while for
t ≥ 5 an increment of 25% was considered based on historic data provided by INE (2009)
and NRC (2009).

The investment cost of carbon sequestration technologies (CCS) represents the 5% of the
total capital investment cost in the case of SMR and 10% for CG (Ball and Wietschel,
2009b). For biomass gasification, no carbon sequestration technology was assumed, since
it is regarded as a life cycle zero-carbon emission technology.

2.5.2.1 Storage data set

Table 2.5, available as supplementary material, includes the storage data set cost. The
minimum and maximum storage capacities of each storage type (SCST

s and SCST
s ) were

assumed to be 10,000 and 540,000 kilograms, respectively (Almansoori and Shah, 2006).
The storage period (θ) is 10 days.
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CHAPTER 2 HYDROGEN SUPPLY CHAIN MOO – STOCHASTIC APPROACH

Table 2.4: Production costs
Production costs Product SMR CG BG E
Capital cost (million e)a Gaseous hydrogen 329 670 788 47
Unit production cost (e/kg)b Gaseous hydrogen 0.82 0.92 1.49 2.28
Capital cost (million e)a Liquid hydrogen 465 832 1,226 97
Unit production cost (e/kg)b Liquid hydrogen 1.33 1.49 2.67 2.93
a Capital cost associated to a design production capacity of 480,000 kg /dsay for
SMR, CG and BG, and of 50,000 kg/day for E. The design storage capacity is
540,000 kg.
b Uncertain parameter average value.

Table 2.5: Storage costs
Storage data Product Container typea Cost
Capital cost (million e) Liquid hydrogen CST 106
Unit storage cost (e/kg day) Liquid hydrogen CST 0.0043
Capital cost (million e) Gaseous hydrogen PCV 1,645
Unit storage cost (e/kg day) Gaseous hydrogen PCV 0.0660
a Pressurized cylindrical vessel (PCV) for gaseous hydrogen and cryogenic spherical
tank (CST) for liquid hydrogen
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2.5.3 Results and discussion

2.5.3.1 Computational performance

We first solved several problems with various complexity levels. Particularly, we solved
several instances of the problem considering different number of time periods with a
length of two years each. The goal is to illustrate the performance of the proposed
solution method as compared to the full-space model (i.e., problem (P ) without decom-
position, relaxation or approximations).

All the problems were implemented in GAMS (Brooke et al., 1998) and solved in an
AMD Phenom TM 8,600 B Triple-Core 2,300 MHz processor machine using CPLEX
9.0 as MILP solver. Tables 2.6, 2.7, 2.8 and 2.9 show the problem sizes and solution
times for the proposed two-step sequential approach, solving each sub-problem to global
optimality (i.e., 0% gap), and the full-space method considering an optimality gap of
1%. This allows for a fair comparison between both methods as the sequential approach
provides always solutions with less than 1% of optimality gap. We should note that in
the slave problems of the algorithm, all the integer variables are relaxed except those
denoting the number of transport units.

Due to space limitations, in the tables we only show the results corresponding to the
extreme solutions of the Pareto set (i.e., the minimum expected total discounted cost
and the minimum worst case). Notice that in the case of the sequential approach, the
quality of the solution shown in the table represents the difference between the solutions
of the higher level and lower level problems, and not the optimality gap with which the
sub-problems were solved.

As can be observed, for small problems (i.e., t = 2), the full-space method is almost
as efficient as the decomposition strategy, since the number of integer variables is very
small. On the other hand, as the size of the problem increases the differences in CPU
time are more significant. Specifically, for t = 3, the two-step sequential approach
provides near optimal solutions (i.e., solutions with an optimality gap lower than 1%)
in CPU times that are on average one order of magnitude lower than those reported by
the full-space approach.

Let us also note that the upper bounding (or slave) problem can be solved very quickly,
whereas the lower level (or master) problem is the bottleneck of the proposed method.
As shown in Table 2.6 to 2.9, the latter formulation decreases significantly the number of
integer variables in comparison with the full space model. This reduces the combinatorial
complexity of the problem to a large extent, thus alleviating its computational burden. It
can also be observed that minimizing the worst case is computationally more expensive
than minimizing the cost. Remark that the full space method is only able to minimize
the worst case up to six time periods, whereas the two-step sequential approach can
provide solutions for up to eight periods.
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Figure 2.3: Pareto optimal solution curves for t=2 using 2-step sequential approach and full
space methods.

2.5.3.2 Pareto optimal solutions

Having proved the application and computational effectiveness of the proposed algo-
rithm, we next use it to determine the Pareto set of the bi-criterion problem. Specifically,
Figure 2.3 shows the results obtained with the full space method and the decomposition
strategy for a two time period resolution. For a higher number of periods, the full-space
method is only able to solve the extreme points of the curve, and as shown in the figure,
there is a clear trade-off between the expected cost and financial risk. An improvement
in one of the metrics can only be achieved by sacrificing the other. As observed, the
solutions calculated by the master and slave problems provide valid lower and upper
envelopes within which the Pareto set of (P ) must fall.

As an illustrative example, consider the case in which a decision-maker wants to know
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the lower and upper bounds on the best possible expected cost for a worst case value
equal to Ω. As shown in the figure, the minimum possible expected cost corresponds to
that of solution b. This would be the cost attained if the Pareto set would be completely
flat between a and b. This is indeed the best possible situation that could occur since
it implies that no trade-off exists between both points. On the other hand, an upper
bound on the cost is provided by the objective function value of solution c. This is
because among all the feasible solutions of (P ) with a worst case value below omega
(i.e., WC < Ω) that have been calculated by the slave problem, c is the one with
maximum expected cost. Note that the points above the upper bound envelope are non
Pareto optimal, since they are dominated at least by those belonging to the upper bound
set. On the other hand, solutions below the lower bound set are impossible to attain,
since the master problem of our method provides a rigorous lower bound on the global
solution of (P ).

For the case of target values that fall below the minimum worst case value calculated
by the slave problem, we can only provide lower bounds but not upper bounds to the
problem. In fact, for that region of the search space we cannot even know if there exists
a feasible solution. Thus, the minimum possible worst case that can be attained will
always lie between the minimum worst case values provided by the master and slave
problems. The main reason for that is that the master problem provides a rigorous
lower bound, while the slave problem is a lissome bound more close in theory to the real
value of the solution. In practice, the quality of the lower and upper bounds provided
by the method will depend on the specific problem being solved. As observed, in our
case these bounds are quit tight.

In Figure 2.4, the Pareto optimal solution curve corresponding to the slave upper bound
problem for a six time period resolution of the stochastic MILP problem is presented.
This represents a complex problem in which the full space method fails to provide the
entire Pareto set. For the sake of simplicity, we only provide the upper bound curve in
this case.

As in the previous case, there is a clear trade-off between expected cost and worst case
. Each point of the Pareto set corresponds to a specific hydrogen network design. The
minimum cost solution (point A) corresponds to the single objective problem that would
arise from minimizing exclusively the expected total cost, as introduced in Section 2.4.
The specific supply chain design of this solution is shown in Figure 2.5. This is also
the solution that one would obtain with standard deterministic approaches. In this
solution, the model suggests to produce liquid hydrogen via steam methane reforming
and to construct plants in every potential location in order to reduce the material flows
between the regions. This is mainly a consequence of the exceptional expected economic
performance that steam methane reforming plants show nowadays in comparison with
the rest of technologies, which is largely due to the competitive price of natural gas.

Nevertheless, the price of natural gas shows very high variability in contrast to its
main economic competitor, the coal. Thus, as uncertainty is unveiled over the different
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Figure 2.5: Hydrogen supply chain design for the minimum cost solution. The numbers inside
the circles and triangles denote the number of facilities of each type.

scenarios represented, and by accounting for the worst case cost occurring in these
realizations, the model resolves that the solution showing less variability over the time is
the production via coal gasification. Therefore, the minimum worst case solution, which
corresponds to point C of Figure 2.4 and to the hydrogen supply chain design depicted in
Figure 2.6, entails a mixture of production technologies corresponding to a large extent
to coal gasification for liquid hydrogen and some steam methane reforming plants also
for liquid hydrogen. The points lying in between these extreme solutions correspond
to specific designs involving different mixtures of steam methane reforming and coal
gasification production technologies. Note that Figure 2.5 shows a more decentralized
hydrogen network, while in Figure 2.6 a considerable increment on transportation links is
observed. This is mainly due to the economic performance of steam methane reforming
plants, which shows the economic advantages of building larger plants that implement
this technology versus transporting the hydrogen.

Figure 2.7 depicts the cumulative probability curves of the feasible extreme solutions
calculated by the slave problem. The aforementioned curves show for each possible
target value imposed on the total cost, the probability of attaining a cost lower or equal
to it. Note that according to the definition of financial risk, the cumulative probability
corresponds to the difference between one and the risk associated with the given target
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Figure 2.6: Hydrogen supply chain design for the minimum worst case solution. The numbers
inside the circles and triangles denote the number of facilities of each type.

value, as it is depicted in Figure 2.7. The figure shows that for low cost levels (i.e.,
lower than 1.557×1012 e) the minimum cost solution, which entails a hydrogen network
formed by steam methane reforming plants, show a level of risk lower than the minimum
worst case solution, which encompasses a mixture of production plants dominated by coal
gasification ones. On the other hand, for high cost levels (i.e., higher than 1.557×1012 e)
the coal gasification technology shows less financial risk than steam methane reforming.
Hence, both solutions represent different attitudes towards risk, being solution C the
one with lower probability of unfavorable scenarios with high cost. Due to the inherent
trade-off between expected economic performance and risk, there is no solution that
performs better considering the whole range of target values. Therefore, the task of
decision makers is to select among the Pareto points the one that better reflects their
objectives.

It should be noted that the outcome of the analysis is indeed very sensitive to the specific
data considered.
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2.6 Conclusions

This work has introduced a novel decision-support tool for managing the financial risk
associated in the strategic design and planning of hydrogen supply chains under uncer-
tainty in the operating costs via the worst case value. One of its additional novelties
is the inclusion of all possible technologies available at the moment for hydrogen pro-
duction, storage and transportation, into a single mathematical model. The framework
proposed is able to evaluate all their possible combinations considering several periods
of time and in the face uncertainties in the coefficients of the objective function using a
multi-scenario systematic approach.

The problem has been mathematically posed as a multi-objective multi-scenario multi-
period stochastic MILP formulation accounting for the minimization of the expected
total discounted cost and the worst case value. Thus, the model explicitly incorporates
the trade-off between risk and cost at the decision-making level.

Furthermore, a two-step sequential approach that exploits the specific mathematical
structure of the model formulation has been introduced as a way to overcome the nu-
merical difficulties associated with the application of the proposed strategy to large scale
problems.

In Section 3.1 the importance of the infrastructure in determining the future of hydrogen
as an energy vector has been presented. Also the existent optimization frameworks aimed
at paving the way for this transition and important decision period have been reviewed.
The approaches presented differ in the following characteristics:

• performance metrics considered (i.e., the amount of objectives considered and their
nature)

• geographical space resolution (e.g., regional, country-level, etc.)

• time representation (i.e., single-period or multi-period)

• uncertainty consideration (i.e., deterministic or stochastic)

The mathematical model presented in Section 3.3 is a demand driven model, which con-
siders capacity expansions and economies of scale for the production facilities, assumes
that the raw material availability and its associated transport costs are negligible com-
pared to the rest of the costs of the network and the uncertainty in the operating costs
of the network reflecting energy market fluctuations.

As has been reported, stochastic frameworks optimizing the expected performance of
problems where uncertainty is present in the coefficients of the objective function are
equivalent to the optimization of the mean scenario. In that sense the functionalities of a
more complex stochastic framework would not be useful unless its additional information
is used. Our approach specifically handles this issue by appending to the objective
function an additional criteria represented by a risk management metric with reported
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good computational performance and effectiveness.

Note that although the main goal of the model is to provide a robust framework for
dealing with parametric uncertainty in the operating costs, the Pareto sets obtained as
a result of the underlying formulation could be used for the methodological uncertainty
analysis associated to single-objective economic optimization frameworks. This is here
possible because, as mentioned earlier, the expected performance in these problems
tends to be equivalent with the mean scenario, which is the solution of its deterministic
problem counterpart.

On the computational side, the solution strategy detailed in Section 3.4 has been shown
from numerical examples to be very efficient, providing solutions with an optimality gap
lower than 1% in a fraction of the CPU time (i.e., at least one order of magnitude faster)
required by the original formulation. The strategy was applied to a case study consisting
of:

• 19 potential locations

• 8 different production modes

• 2 types of storage facilities

• 6 transportation modes

The most complex instance of the problem solved for 8 time periods gives rise to 25,268
continuous, 16,096 binary and 1,552 integer variables, showing that almost half of the
total number of variables of the problem are binary and integer. In this sense the
decomposition method can also be applied to similar SC models presented so far in the
literature, thus allowing for its practical implementation in problems of larger size.

Finally, the effectiveness of the proposed approach as a decision-making tool capable
of providing insights into the SC design problem has been also highlighted. Results
indicate that for a given level of cost, lower levels of risk can be obtained by switching
from steam methane reforming to coal gasification production plants at the design step.

The financial risk optimization using worst case scenario as performance metric has the
capability of informing decision-makers about the total cost value at which both (i.e.,
mean and risk averse) supply chain designs are equivalent from a risk point of view.
This is achieved through the representation of the cumulative probability distribution
functions of the objectives optimized. These in turn, unveil the robustness advantages
of the strategy dominated by coal gasification plants in the event of higher energy costs.
The results also show the clear financial advantage that steam methane reforming plants
present for low energy price scenarios. From a purely economic point of view, the
production of liquid hydrogen appears to be superior in all instances if new infrastructure
needs to be built.

It is also seen that the share of the variations considered in the operating costs have a
share of 2 % in the total discounted cost of the network. If these variations were extended
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to other potentially affected parameters of the network the share would presumably
increase. In any situation, the presented results illustrate the shift in the network designs
that can be expected even in the event of small differences in the overall budget.

The insights obtained in the numerical analysis might change according to the input
data. However, the method introduced is general enough to be adapted to any particular
situation. The tool presented is intended to enhance our knowledge on how to establish
optimal SC networks capable of dealing with uncertainties in realistic problems.
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Notation

Indices

e scenarios
i hydrogen form
g potential locations
l transportation mode
p manufacturing technologies
s storage technologies
t time period

Sets

IL(l) set of hydrogen forms that can be transported via transportation mode l
IP (p) set of hydrogen forms that can be produced via technology p
IS(s) set of hydrogen forms that can be stored via technology s
LI(i) set of transportation modes for hydrogen form i
PI(i) set of technologies that can produce hydrogen form i
SI(i) set of storage technologies for hydrogen form i
SGG(gg′) set of allowable maritime links
SGG′(gg′) subset of maritime links that cannot be covered by road transportation

units

Parameters

avl availability of transportation mode l
cclt capital cost of transport mode l in period t
cudlte maintenance cost of transportation mode l in period t per unit of distance

traveled in scenario e
Dgt total demand of hydrogen in location g in period t
distancegg′ average distance traveled between locations g and g′
dsat demand satisfaction level to be fulfilled
fuelcl fuel consumption of transportation mode l
fuelplte pfuel price for transportation mode l in period t in scenario e
gelte general expenses of transportation mode l in period t
ir interest rate
lutimel loading/unloading time of transportation mode e
PCPL

p upper bound on the capacity expansion of manufacturing technology p
PCPL

p lower bound on the capacity expansion of manufacturing technology p
θ average storage period
τ minimum desired percentage of capacity to be used
probe probability of occurrence of scenario e
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QCgg′l upper bound on the flow of materials between locations g and g′ via
transportation model l

QCgg′l lower bound on the flow of materials between locations g and g′ via
transportation model l

SCST
s upper bound on capacity expansion of storage technology s

SCST
s lower bound on capacity expansion of storage technology s

speedl average speed of transportation mode l
tcapl capacity of transport mode l
upcigpte value of unit production cost of hydrogen form i produced via technology

p in location g in period t for scenario e
uscigste unit storage cost of hydrogen form i stored via technology s in location

g in period t in scenario e
upocte unit operating cost of the pipelines in scenario e
usocte unit operating costs for maritime transportation in scenario e
SOCte operating cost of ships in period t and scenario e
ROCte operating costs associated with road transportation technologies

and railway in period t and scenario e
wagelte driver wage of transportation mode l in period t in scenario e
αPLgpt fixed investment term associated with manufacturing

technology p installed in location g in period t
αSTgst fixed investment term associated with storage

technology s installed in location g in period t
βPLgpt variable investment term associated with manufacturing

technology p installed in location g in period t
βSTgst variable investment term associated with storage

technology s installed in location g in period t

Variables

CPL
gpt capacity of manufacturing technology p in location g in period t

CST
gst capacity of storage technology s in location g in period t

CEPL
gpt capacity expansion of production technology p in location g in period t

CEST
gst capacity expansion of storage technology s in location g in period t

Digt amount of hydrogen form i distributed in location g in period t
FCte fuel cost in period t in scenario e
FCCt facility capital cost in period t
FOCte facility operating cost in period t in scenario e
GCte general cost in period t in scenario e
LCte labor cost in period t in scenario e
MCte maintenance cost in period t in scenario e
upcct unit transportation cost of pipelines in period t
PCCt pipeline capital cost in period t and scenario e
POCte pipeline operating cost in period t and scenario e
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SOCte ship operating cost in period t and scenario e
PRigpt production of hydrogen mode i via technology p in period t in location g
Qigg′lt flow of hydrogen mode i via transportation mode l between locations g

and g′ in period t
Sigst amount of hydrogen in physical form i stored via technology s in location

g in period t
TCte total amount of money spent in period t and scenario e
TCCt total transportation capital cost in period t
TDCe total discounted cost and scenario e
TOCte transportation operating cost in period t in scenario e
E[TDC] Expected total discounted cost of the network
WC Worst case cost of the network

Integer variables

NPL
gpt number of plants of type p installed in location g in period t (integer

variable)
NST
gst number of storage facilities of type s installed in location g in period t

(integer variable)
NTR
lt number of transportation units of type l purchased in period t (integer

variable)

Binary variables

Xgg′lt binary variable (1 if a link between locations g and g′ using transportation
technology l is established, 0 otherwise)
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CHAPTER 3

MULTI-OBJECTIVE OPTIMIZATION OF A
HYDROGEN SUPPLY CHAIN –
DETERMINISTIC APPROACH FOR
OBJECTIVE REDUCTION

If you are Noah, and your ark is about to sink, look for the
elephants first, because you can throw over a bunch of cats,
dogs, squirrels, and everything else that is just a small
animal and your ark will keep sinking. But if you can find
one elephant to get overboard, you are in much better shape

Vilfredo Pareto, 1848 – 1923

3.1 Introduction

Assessing the environmental performance of hydrogen infrastructures is essential for
determining their practical viability. Previous optimization approaches for hydrogen
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CHAPTER 3 HYDROGEN SUPPLY CHAIN MOO – DETERMINISTIC APPROACH

networks, like the one presented in the previous chapter, have mostly focused on opti-
mizing the economic performance. Meanwhile, the few works in the literature attending
environmental impacts relied on a single metric to measure the environmental perfor-
mance. Given that the study of environmental impact indicators is an active area of
research and constitutes a major subject under current debate, this approach can be
inadequate as it may leave relevant environmental criteria out of the analysis. We pro-
pose herein a novel framework for optimizing hydrogen supply chains (SC) according to
several environmental indicators. The model builds on the formulation of the problem
presented in Chapter 2, and by bringing the problem to its deterministic form, we are
then able to append the building blocks of the environmental performance analysis. Our
method comprises two steps. In step one, we formulate a multi-objective mixed-integer
linear program (MILP) that accounts for the simultaneous minimization of the most
relevant life cycle assessment (LCA) impacts. Principal Component Analysis (PCA) is
next employed in the post-optimal analysis of the MILP in order to facilitate the in-
terpretation and analysis of its solution space. We demonstrate the capabilities of this
approach through its application to the design of the future (potential) hydrogen SC
in Spain. Note that the present work was also published as an original research article
(Sabio et al., 2012).

3.1.1 Infrastructure optimization and the future of a hydrogen
economy

A major obstacle in the transition towards a hydrogen economy is the lack of infrastruc-
tures to produce, store and deliver hydrogen. Even though hydrogen is an abundant
chemical element, it does not exist in a free form. Therefore, it must be generated via
different technologies, such as steam methane reforming, coal gasification, water elec-
trolysis, and biomass gasification, among others. These technologies differ in capital
investments, required feedstocks, production cost (Balat and Kirtay, 2010) and envi-
ronmental performance (Koroneos et al., 2004, 2005; Spath and Mann, 2004, 2001).
Designing efficient hydrogen infrastructures requires the simultaneous assessment of all
these alternatives and subsequent identification of the best combination of them in terms
of some pre-defined criteria. Mathematical tools can assist decision-makers in this task
by automating the search for optimal solutions, thereby guiding policy makers towards
the adoption of hydrogen infrastructures with improved economic and environmental
performance.

Most of the optimization approaches for hydrogen networks available in the literature
seek to optimize the economic performance. Almansoori and Shah (2006) developed
a deterministic mathematical programming model to minimize the total daily cost of
the future British hydrogen SC. Ingason et al. (2008) presented an optimization model
for the design of a hydrogen network in Iceland that minimized the annual cost of
the investments. The model of Lin et al. (2008a) identified the configuration of a SC
producing the least-cost hydrogen for South California. Kim et al. (2008) proposed a
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stochastic formulation to examine the total daily cost of the South Korean hydrogen SC
under demand uncertainty. Sabio et al. (2010) developed a stochastic model to optimize
hydrogen SCs under uncertainty in the operating costs.

Optimizing exclusively the economic performance may lead to solutions that do not
fully exploit the environmental benefits of moving towards a hydrogen-based energy
system (Hugo et al., 2005). It is therefore nowadays becoming increasingly clear that
environmental concerns must be accounted for along with economic criteria in the op-
timization of hydrogen infrastructures. Multi-criteria decision-making, and particularly
multi-objective optimization, provide a systematic framework to accomplish this task.

3.1.2 Multi-objective optimization (MOO) coupled with principal
components analysis (PCA)

Hugo et al. (2005) proposed a MILP model for the long-term strategic planning of a
multi-echelon hydrogen network that optimizes both economic and environmental crite-
ria (i.e., greenhouse gas (GHG) emissions). The bi-criterion model of Guillén-Gosálbez
et al. (2010) takes into account the minimization of the damage to human health caused
by climate change and the total daily cost of hydrogen SC. Li et al. (2008) developed a
MILP model for optimizing the future hydrogen infrastructure in China that simultane-
ously minimizes the associated GHG emission and maximizes the profit of the hydrogen
SC.

The aforementioned works restrict the analysis to two objectives: one economic indica-
tor and one environmental metric. This consideration can lead to solutions in which a
single environmental damage (e.g., global warming potential) is reduced at the expense
of increasing others (e.g., acidification, respiratory effects, etc.). A more comprehen-
sive and holistic environmental assessment of hydrogen SCs requires the simultaneous
consideration of several damages in the decision-making process.

Unfortunately, increasing the number of objectives leads to problems whose solutions
are difficult to visualize and analyze. Objective reduction techniques (Deb and Sax-
ena, 2005; Brockhoff and Zitzler, 2009; Guillén-Gosálbez, 2011b) attempt to overcome
this limitation by identifying redundant metrics that can be omitted while still preserv-
ing the mathematical structure of the problem to the extent possible. Further, these
methods allow uncovering relationships between environmental impacts, enhancing our
understanding on the environmental performance of the hydrogen infrastructure.

In this work, we integrate multi-objective optimization with PCA (Jackson, 2003) to
address the environmentally conscious design of hydrogen networks. Multi-objective
optimization enables the systematic calculation of optimal trade-off solutions, whereas
PCA identifies redundant objectives that can be left out of the analysis, shedding light
on the interactions between the environmental damages caused by the hydrogen infras-
tructure.
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CHAPTER 3 HYDROGEN SUPPLY CHAIN MOO – DETERMINISTIC APPROACH

The capabilities of our approach are illustrated through a case study that addresses
the design of the future hydrogen SC to be established in Spain. The model includes
three main hydrogen production technologies (i.e., steam methane reforming, coal gasi-
fication, and water electrolysis), two types of hydrogen storing (i.e., cryogenic spherical
tanks for liquid H2 and pressurized vessels for compressed H2), and six transportation
alternatives (i.e., tanker trucks, railway tank cars, ships, tube trailers, railway tube cars,
and pipelines). The environmental performance of the system is evaluated according to
a set of life cycle impacts measured following a cradle-to-gate approach. Numerical
results show that several environmental effects of the hydrogen network are highly cor-
related, which makes it possible to focus our attention on a reduced set of damages. Our
approach identifies those technological alternatives representing the optimal trade-off
between the economic and environmental performance of the hydrogen network.

The remainder of this chapter is organized as follows. In Section 3.2, the problem under
study is formally stated, and the assumptions made are briefly presented. In Section 3.3,
we describe the equations of the multi-objective MILP derived to tackle the SC design
problem. In Section 3.4, we present a combined method that integrates multi-objective
optimization and PCA. In Section 3.5, the proposed approach is applied to a real case
study based on the future Spanish hydrogen SC, for which valuable insights are obtained.
The conclusions of the work are finally drawn in Section 3.6 of this chapter.

3.2 Problem statement

The goal of the design problem addressed in this chapter is to determine the optimal
configuration of a three-echelon hydrogen SC for vehicle use (production-storage-market)
in terms of cost and damage to the environment. For our analysis, we will consider a
generic hydrogen SC superstructure like the one depicted in Figure 3.1. This network
comprises a set of production plants (pentagons), and a set of storage facilities (circles),
where hydrogen is stored before being delivered to end customers (rectangles).

A region of interest divided into a set of potential locations is considered. These potential
locations correspond to different sub-regions in which a given hydrogen demand must
be satisfied. We consider that the set of potential locations along with the associated
geographical distribution of the demand are input data to the problem.

The design problem can be formally stated as follows. Given are the hydrogen demand,
a fixed time horizon and set of time periods, a set of available production, storage and
transportation technologies, the capacity limitations of plants and storage facilities, the
costs associated with the network operation (production, transportation and inventory
costs), the investment cost, and the interest rate. The goal is to determine the following
decisions:

• the number, type, location and capacity of plants and storage facilities, along with
the number and type of transportation units (e.g., tanker trucks, railway tube cars,
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Figure 3.1: Structure of three echelon supply chain
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etc.) and transportation links to be established between the potential locations;

• the production rates at the plants, inventory levels at the storage facilities and
flows of hydrogen between plants and storage facilities;

so as to simultaneously minimize the total cost and the associated damage to the envi-
ronment.

3.3 Mathematical model

The MILP formulation derived to tackle the problem presented above is based on that
introduced by Almansoori and Shah (2006) and Guillén-Gosálbez et al. (2010). The
mathematical model considers all possible configurations of the future hydrogen SC as
well as all technological aspects associated with the SC performance, including several
production and storage technologies and transportation modes. For the sake of com-
pleteness of this work, we provide next an outline of the mathematical formulation.
Further details can be found in the works by Guillén-Gosálbez et al. (2010) and Sabio
et al. (2010). Particularly, we will first discuss some general features of the model before
immersion into a detailed description of its equations.

Production plants

Hydrogen can be produced in different ways. In this chapter, we consider only three
technologies for hydrogen production plants: steam methane reforming (SMR), coal
gasification (CG) and water electrolysis (WE). Note, however, that the model could be
easily extended in order to account for more technologies (e.g., biomass gasification,
biomass pyrolysis, photobiological H2 production, nuclear-powered electrolysis etc.).
Steam methane reforming of natural gas is the leading technology now and the pathway
by which most hydrogen is made today. Konieczny et al. (2008) reported that nearly
48% of hydrogen is produced via SMR from natural gas. Nowadays, SMR is regarded
as the most profitable way to produce hydrogen (Balat and Kirtay, 2010). However,
during the conversion of natural gas into hydrogen, a SMR plant emits large amounts of
GHGs mostly CO2 and CH4 (Spath and Mann, 2001). The production cost of hydrogen
via coal gasification is about twice as much as from natural gas. Coal is much cheaper
than natural gas, but the capital and operating costs of coal gasification are higher than
those associated with a SMR plant (Padró and Putsche, 1999). The most significant
environmental impact associated with coal gasification is given by the emissions of CO2
and SO2 (Koroneos et al., 2005). Electrolysis of water is a promising technology to
produce hydrogen, since it can be coupled with a renewable source of energy (e.g., wind
power), thereby avoiding the usage of fossil fuels. In this work, we consider that the
electrolyzer employs electricity from wind turbines. This system is more expensive than
SMR and coal gasification, but offers significant environmental benefits.
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3.3 MATHEMATICAL MODEL

Storage facilities

The proposed model considers two possible alternatives for physical storage of hydrogen:
compressed hydrogen storage and liquefied hydrogen storage. Liquefied gas requires
less volume than compressed hydrogen. However, the liquefaction process consumes
more utilities and demands additional equipment. The expenditures associated with
the liquefaction and compression of hydrogen are included in the unit production and
capital cost of the production facilities.

Transportation technologies

The terrestrial transport of compressed and liquid hydrogen can be carried out using
trucks or railroad cars. In addition, pipelines can be constructed to deliver compressed
hydrogen. Ships can also be freighted in order to supply maritime regions with hydrogen.
These ships can transport hydrogen in both physical forms: either compressed gas or
liquid.

3.3.1 Mass balance constraints

The mass balance must be satisfied for every hydrogen form i, liquid or gas, in each
potential location g and time period t. Thus, for every location, the sum of the initial
inventory Si,g,s,t−1 plus the amount produced (PRi,g,p,t) and the input flow rate (Qi,g′,g,l,t)
must equal the final inventory (Si,g,s,t) plus the amount delivered to the customers (Di,g,t)
and the output flow rate (Qi,g,g′,l,t) of hydrogen:∑

s∈SI(i)
Si,g,s,t−1 +

∑
p∈PI(i)

PRi,g,p,t +
∑
g′ 6=g

∑
l∈LI(i)

Qi,g′,g,l,t

=
∑

s∈SI(i)
Si,g,s,t +Digt +

∑
g′ 6=g

∑
l∈LI(i)

Qi,g,g′,l,t ∀i, g, t
(1)

In Eq. (1), SI(i) represents the subset of storage technologies that can be used for
product form i, LI(i) is the subset of transport modes that can transport product form
i, and PI(i) denotes the production facilities that can produce product form i.

3.3.2 Capacity constraints

3.3.2.1 Plants

In Eq. (2), the total production rate of hydrogen form i in location g produced via
technology p in period t (PRi,g,p,t) must be lower than the existing capacity of the plant
and higher than a minimum desired percentage, τ , of the capacity installed. The capacity

87

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTION TO THE DEVELOPMENT OF MORE SUSTAINABLE PROCESS INDUSTRIES UNDER UNCERTAINTY 
Nagore Sabio Arteaga 
 



CHAPTER 3 HYDROGEN SUPPLY CHAIN MOO – DETERMINISTIC APPROACH

of each production technology p at location g in period t is represented by CPL
g,p,t.

τ CPL
g,p,t ≤

∑
i∈IP (p)

PRi,g,p,t ≤ CPL
g,p,t ∀g, p, t (2)

In this equation, IP (p) denotes the subset of hydrogen forms that can be produced
using technology p. The capacity of each technology p in period t is calculated by
adding the expansion in capacity (CEPL

g,p,t) executed in period t and location g to the
existing capacity at the end of the previous period:

CPL
g,p,t = CPL

g,p,t−1 + CEPL
g,p,t ∀g, p, t (3)

Equation (4) is applied to limit capacity expansions within lower and upper bounds.
These bounds are obtained multiplying the number of plants installed (integer variable
NPL
g,p,t) with the minimum and maximum capacities of each technology p (PCPL

p and
PCPL

p , respectively).

PCPL
p NPL

g,p,t ≤ CEPL
g,p,t ≤ PCPL

p NPL
g,p,t ∀g, p, t (4)

3.3.2.2 Storage facilities

Equation (5) forces the total inventory of product in form i kept at the end of period
t in the storage facilities of type s installed in location g (Si,g,s,t), to be lower than the
available capacity. Here, CST

g,s,t represents the storage capacity of product form i during
period t in location g associated with storage technology s.∑

i∈IS(s)
Si,g,s,t ≤ CST

g,s,t ∀g, s, t (5)

This equation constrains the amount of hydrogen delivered from the storage facility
to the customers to be lower than its capacity. In this equation, IS(s) represents the
subset of product forms i that can be stored by technology s. Our model makes use of
the storage period θ, as previously introduced by Almansoori and Shah (2006), which is
multiplied by two in order to cover fluctuations in both supply and demand as well as
plant interruptions (Simchi-Levi et al., 2000):

2 (θ Digt) ≤
∑

s∈SI(i)
CST
g,s,t ∀i, g, t (6)

In Eq. (6), SI(i) denotes the subset of storage technologies s that can handle product
forms i. Similarly as with the manufacturing plants, the capacity of storage technology s
at any time period t is determined from the previous one and the expansion in capacity
executed in the same period:

CST
g,s,t = CST

g,s,t−1 + CEST
g,s,t ∀g, s, t (7)

88

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTION TO THE DEVELOPMENT OF MORE SUSTAINABLE PROCESS INDUSTRIES UNDER UNCERTAINTY 
Nagore Sabio Arteaga 
 



3.3 MATHEMATICAL MODEL

Finally, the capacity expansion of the storage facilities CEST
g,s,t is bounded within lower

and upper limits.

SCST
s NST

g,s,t ≤ CEST
g,s,t ≤ SCST

s NST
g,s,t ∀g, s, t (8)

3.3.3 Transportation constraints

To define these constraints, we introduce the binary variable Yg,g′,l,t that represents the
existence or absence of a transportation link of type l (e.g., tanker trucks, railway tube
cars, etc.) between locations g and g′ in time period t.

QCg,g′,lYg,g′,l,t ≤
∑

i∈IL(l)
Qi,g,g′,l,t

≤ QCg,g′,lYg,g′,l,t ∀g, g′(g 6= g′), l 6= pipeline, t
(9)

When this binary variable is zero, there is no flow of materials via transportation tech-
nology l between g and g′. On the other hand, when the binary variable is one, it is
possible to transport materials within some lower QCg,g′,l and upper bounds QCg,g′,l. In
Eq. (9), IL(l) denotes the subset of product forms i that can be transported by transport
mode l.

Equation (10) is similar to Eq. (9), but applies only to pipelines. Specifically, we assume
that if a pipeline is constructed, then the associated transportation link will remain open
over the entire time horizon:∑

t′<t+1
QCg,g′,lYg,g′,l,t′ ≤

∑
i∈IL(l)

(Qi,g,g′,l,t +Qi,g′,g,l,t)

≤
∑

t′<t+1
QCg,g′,lYg,g′,l,t′ ∀g, g′(g 6= g′), l = pipeline, t

(10)

Furthermore, we cannot establish more than one transportation link using pipelines
between two given regions during the entire time horizon:∑

t′<t+1
Yg,g′,l,t′ ≤ 1 ∀g, g′(g 6= g′), l = pipeline, t (11)

We assume that a region can either import or export hydrogen, but not both at the
same time. This is because if a region cannot satisfy its needs with internal production,
it will not export to other locations:

Yg,g′,l,t + Yg′,g,l,t ≤ 1 ∀g, g′(g 6= g′), l, t (12)

Eqs. (13) and (14) are added to handle maritime transportation. These equations
force binary variable Yg,g′,l,t (denoting the existence of transportation links) to take a
zero value in some specific cases in order to prevent ships from transporting materials
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between locations with no harbors. These constraints avoid also road transportation
between harbors that are not connected by roads.

Yg,g′,l,t = 0 ∀l, g, g′ ∈ LG

LG = {l, g, g′ : (l = ship) ∧ ((g, g′) /∈ SGG(g, g′))}
(13)

Yg,g′,l,t = 0 ∀l, g, g′ ∈ LG′

LG′ = {l, g, g′ : (l 6= ship,pipeline) ∧ ((g, g′) ∈ SGG′(g, g′))}
(14)

In these constraints, SGG(g, g′) is the subset of coastal regions with operating har-
bors, whereas SGG′(g, g′) is the subset of coastal regions with operating harbors (i.e.,
SGG′(g, g′) ≤ SGG(g, g′)) that cannot be connected through road transportation units.

3.3.4 Demand satisfaction constraint

The total amount of hydrogen consumed (Di,g,t) is constrained to be lower than the total
hydrogen demand (Dg,t) in each location and period, and higher than a given minimum
demand satisfaction level (dsat) :

Dg,t dsat ≤
∑
i

Di,g,t ≤ Dg,t ∀g, t (15)

3.3.5 Objective function equations

The model seeks to optimize the economic and environmental performance of the hy-
drogen SC. The economic objective is represented by the total discounted cost (TDC),
whereas the environmental impact is quantified according to the LCA principles.

3.3.5.1 Total discounted cost

For the sake of simplicity, the economic performance of the SC is quantified according to
the total discounted cost. Note, however, that more sophisticated financial metrics could
be easily incorporated into the SC model, as was done in the past by the authors (Guillén-
Gosálbez et al., 2007; Laínez et al., 2007). The total discounted cost is calculated as the
summation of the discounted costs associated with each time period t:

TDC =
∑
t

TCt

(1 + ir)t−1 (16)

In Eq. (16), ir represents the interest rate and TCt is the total amount of money spent
in period t , which includes the capital (FCCt, TCCt) as well as operating costs (FOCt,
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TOCt) given by the production, storage and transportation facilities of the network:

TCt = FCCt + FOCt + TCCt + TOCt ∀t (17)

3.3.5.2 Facility capital cost

The facility capital cost in period t (FCCt) is determined from the capacity expansions
made in the manufacturing plants and storage facilities during that period:

FCCt =
∑
g

∑
p

(
αPLg,p,tN

PL
g,p,t + βPLg,p,tCE

PL
g,p,t

)
+
∑
g

∑
s

(
αSTg,s,tN

ST
g,s,t + βSTg,s,tCE

ST
g,s,t

)
∀t

(18)

Here, the parameters, αPLg,p,t, βPLg,p,t, αSTg,s,t and βSTg,s,t are the fixed and variable investment
terms corresponding to plants and storage facilities, respectively.

3.3.5.3 Facility operating cost

The facility operating cost term is obtained by multiplying the unit production and
storage costs (upci,g,p,t and usci,g,s,t, respectively) with the corresponding production
rates and average inventory levels:

FOCt =
∑
i

∑
g

∑
p∈PI(i)

upci,g,p,tPRi,g,p,t

+
∑
i

∑
g

∑
s∈SI(i)

usci,g,s,t (θ Di,g,t) ∀t
(19)

3.3.5.4 Transportation capital cost

The transportation capital cost, which includes the cost of the trucks and railcars is
calculated via Eq. (20):

TCCt =
∑

l 6=ship,pipeline
NTR
l,t ccl,t + PCCt ∀t (20)

Here, PCCt is the pipeline capital costs, ccl,t represents the capital cost associated with
transport mode l in period t, and NTR

l,t is an integer variable denoting the total number
of transportation units of type l purchased in period t. Note that ships and pipelines
are excluded from the first term of the summation. This is because the model assumes
that ships are hired for carrying out the specific transportation tasks (i.e., outsourcing).
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The capital cost of pipelines is calculated via the following equation:

PCCt =
∑
g

∑
g′ 6=g

∑
l=pipeline

upcct Yg,g′,l,t distanceg,g′ ∀t (21)

where upcct is the unit capital cost of the pipeline per unit of length built and distanceg,g′
denotes the distance between potential locations g and g′.

The average number of trucks and/or railcars required to satisfy a certain flow between
different locations is computed from the flow rate of products between the locations
(Qi,g,g′,l,t), the transportation mode availability (avl), the capacity of a transport con-
tainer (tcapl), the average distance (distanceg,g′), the average speed (speedl) and the
loading/unloading time (lutimel), as stated in Eq. (22):

∑
t′<t+1

NTR
l,t′ ≥

∑
i∈IL(l)

∑
g

∑
g′ 6=g

∑
t

Qi,g,g′,l,t

avl tcapl(
2 distanceg,g′

speedl
+ lutimel

)
∀l 6= ship,pipeline

(22)

The total number of transportation units available in any period t includes the ones
purchased in the same period t as well as those acquired in the past (i.e., in previous
periods t′). Therefore, the left hand side of the inequality in Eq. (22) represents the
summation of all the transportation units purchased in all the time periods t′ up to the
actual period t (i.e., t′ = t). Also here, IL(l) denotes the subset of product forms i
that can be transported by transport mode l. For simplicity, this work assumes that
each transportation facility can only operate between two pre-defined locations. For
this reason the distance between locations g and g′ (distanceg,g′) is multiplied by two in
order to account for the return journey of the trucks/ railcars.

3.3.5.5 Transportation operating cost

The total operating cost associated with the transportation tasks carried out in period
t (TOCt) is determined from Eq. (23):

TOCt = ROCt + POCt + SOCt ∀t (23)

where ROCt, POCt and SOCt are the operating costs associated with road transporta-
tion technologies and railway, pipelines and ships, respectively. The first term includes
the fuel (FCt), labor (LCt), maintenance (MCt) and general costs (GCt):

ROCt = FCt + LCt +MCt +GCt ∀t (24)
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The fuel cost is a function of the fuel price (fuelpl,t) and fuel consumption:

FCt =
∑
g

∑
g′ 6=g

∑
l 6=ship, pipeline

∑
i∈IL(l)

fuelpl,t
2 distanceg,g′ Qi,g,g′,l,t

fuelcl tcapl
∀t (25)

In Eq. (25), the fractional term represents the fuel usage, and it is determined from
the total distance traveled in a trip (2 distanceg,g′), the fuel consumption of transport
mode l (fuelcl) and the number of trips made per period of time (Qi,g,g′,l,t

tcapl
). The labor

transportation cost is a function of the driver wage (wagel,t) and total delivery time
(i.e., the term inside the brackets):

LCt =
∑
g

∑
g′ 6=g

∑
l 6=ship, pipeline

∑
i∈IL(l)

wagel,t

×
[
Qi,g,g′,l,t

tcapl

(
2 distanceg,g′

speedl
+ lutimel

)]
∀t

(26)

The maintenance cost, which accounts for the general maintenance of the transportation
systems, is a function of the cost per unit of distance traveled (cudl,t) and total distance
driven:

MCt =
∑
g

∑
g′ 6=g

∑
l 6=ship, pipeline

∑
i∈IL(l)

cudl,t
2 distanceg,g′ Qi,g,g′,l,t

tcapl
∀t (27)

The general cost includes the transportation insurance, license and registration, and
outstanding finances. It can be determined from the unit general expenses (gel,t) and
number of transportation units as follows:

GCt =
∑

l 6=ship, pipeline

∑
t′≤t

gel,tN
TR
l,t′ ∀t (28)

Equation (29) determines the pipeline operating costs from the unit operating cost of
the pipelines(upoct) and freight to be delivered.

POCt =
∑
g

∑
g′ 6=g

∑
l=pipeline

∑
i∈IL(l)

upoctQi,g,g′,l,t ∀t (29)

Finally, Eq. (30) calculates the ship operating costs based on the unit operating costs
for maritime transportation (usoct), the time required to deliver the hydrogen and the
cargo:

SOCt =
∑
g

∑
g′ 6=g

∑
l=ship

∑
i∈IL(l)

usoct (distanceg,g′Qi,g,g′,l,t) ∀t (30)
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CHAPTER 3 HYDROGEN SUPPLY CHAIN MOO – DETERMINISTIC APPROACH

3.3.5.6 Environmental impact

The calculation of the environmental impact of the SC requires the quantification of
the life cycle inventory of emissions and feedstock requirements, that is, of all relevant
inputs and outputs of materials and energy associated with the network operation. The
life cycle inventory (LCI) can be expressed as a function of some continuous decision
variables of the model. Specifically, it can be calculated from the production rates at
the plants (PRi,g,p,t), and hydrogen flows (Qi,g,g′,l,t) as follows:

LCIb =
∑
i

∑
g

∑
p

∑
t

PRi,g,p,t (ωPrb + ωStb )

+
∑
i

∑
g

∑
g′ 6=g

∑
i∈IL(l)

∑
t

Qi,g,g′,l,t ω
Tr
b ∀b

(31)

The first term of Eq. (31) represents the emissions associated with the manufacture and
storage of hydrogen. This term accounts for the emissions released during the extraction,
processing and delivery of raw materials to the production facilities, the production of
hydrogen itself, and its compression or liquefaction. The second term accounts for the
emissions associated with the transportation of hydrogen between sub-regions. ωPrb , ωStb ,
and ωTrb denote the life cycle inventory entries (i.e., emissions released to the environment
or resource taken from the ecosphere) associated with chemical b per reference flow of
activity. In the production and storage of hydrogen, the reference flow is one unit of
main product produced/stored. In the transportation tasks, the reference flow is one
unit of mass transported one unit of distance.

The damages in impact category d (DAMd) are calculated from the life cycle inventory
and the corresponding damage factors (υb,d) as follows:

DAMd =
∑
b

υb,d · LCIb (32)

In this work, we assess the environmental performance of the hydrogen SC by means
of the following 8 environmental LCA indicators: damage to human health caused by
carcinogenic substances (CS), damage to human health caused by respiratory effects
(RE), damage to human health caused by climate change (CC), damage to human health
caused by ozone layer depletion (OLD), damage to ecosystem quality caused by ecotoxic
substances (ES), damage to ecosystem quality caused by acidification and eutrophication
(AE), damage to minerals (DM), and damage to fossil fuels (DFF). All these impacts
are determined according to the Eco-indicator 99 methodology (ISO, 1997–2000).
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The overall formulation can be finally expressed in compact form as follows:

(M) min
y,Y,N

{TDC(y, Y,N);DAM1(y, Y,N), . . . , DAMD(y, Y,N)}

s.t. Eqs. (1)− (32)

y ∈ R, Y ∈ {0, 1}, N ∈ Z+

(33)

Here, y denotes the continuous variables of the problem (capacity expansions, produc-
tion rates, inventory levels and materials flows), Y represents the binary variables (i.e.,
establishment of transportation links), and N are the integer variables denoting the
number of plants, storage facilities and transport units.

Model (M) can be solved by any multi-objective optimization method (see Marler and
Arora, 2004). In this work we obtain Pareto solutions using the ε-constraint method
(Ehrgott, 2000a).

3.4 Proposed approach: combined use of
multi-objective optimization and PCA

The multi-objective model presented above accounts for the simultaneous minimization
of several criteria. The need to consider multiple environmental objectives represents a
major obstacle, as it increases the problem complexity in terms of calculation and anal-
ysis of the Pareto set. To ameliorate these difficulties, we propose to use PCA (Jackson,
2003; Krzanowski, 2000) with the aim to identify and uncover relationships between
objectives. Particularly, the outcome of the PCA will be utilized to eliminate redundant
environmental impacts, thereby facilitating the visualization and interpretation of the
solution space.

PCA is a multivariate technique that allows to identify inter-related variables and trans-
form them into a smaller set of uncorrelated variables, known as principal components
(PCs), which consist of a convex combination of the original variables. PCs are ordered
according to the amount of variance they explain. Henceforth, the first j PCs can be
used to select a subset of the original variables while still retaining most of the variance
existing in the full-space problem.

Different methods based on PCA have been proposed so far for identifying a subset of
uncorrelated variables from a wider set of correlated variables (see Zuur et al. (2007) for
more details). We propose herein to take advantage of this particular application of PCA
for identifying redundant environmental objectives in the multi-objective MILP formu-
lation, with the final aim to reduce its dimensionality and enhance our understanding
about its solution space.

Gutiérrez et al. (2010) explored the use of PCA to study relationships among different
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CHAPTER 3 HYDROGEN SUPPLY CHAIN MOO – DETERMINISTIC APPROACH

LCA metrics in the context of waste water treatment plants. 7 different indicators (eu-
trophication, EU; acidification potential, AP; abiotic depletion; ADP, global warming,
GW; photochemical oxidant formation potential, POFP; ozone layer depletion, OD; and
terrestrial mycotoxicity potential, TETP) were considered in the study. After applying
PCA, strong correlations were observed between ADP, GW and POFP, and between
AP, OD and TETP. They also applied PCA and LCA to study mussel cultivation and
waste electrical and electronic equipment.

To the best of our knowledge, Deb and Saxena (2005) were the first to use PCA in
multi-objective optimization. They proposed a procedure to identify redundant ob-
jectives from the outcome of a PCA study performed on a set of feasible points of a
multi-objective problem. Particularly, they developed some heuristic rules to reduce the
dimensionality of the problem based on the components of the eigenvectors of the corre-
lation matrix. The authors claimed that their method is able to provide good results for
large-dimensional problems with up to 30 objectives. In this work, we apply a similar
strategy to the multi-objective design of hydrogen infrastructures.

Our approach is as follows. First we generate a set of solutions of the original MILP
(i.e., the model with the whole set of objectives O) by using any available multi-objective
algorithm. Assume that, the ε-constraint method is employed to generate a set of Pareto
solutions R, that is, an |R|-by-|O| matrix. Prior to the application of PCA we normalize
this matrix by dividing each objective function value per the maximum one as follows:

nFo,r = Fo,r
Fo

(34)

where Fo,r denotes the original value of the objective function to be normalized, and Fo
is the maximum value of objective o over all the solutions (i.e., Fo = max

r=1,...,|R|
{Fo,r}).

The data set is next standardized so as to make its centroid equal to zero. This is done
by subtracting the mean of each column from each data point in the matrix and dividing
the result by the standard deviation of the corresponding column. We next calculate
the eigenvalues λ and eigenvectors X of the standardized correlation matrix. We then
apply Kaiser-Guttman rule (Guttman, 1954; Kaiser, 1960) and exclude from the analysis
the eigenvalues that are less or equal to 1. After sorting the remaining eigenvalues in a
descendant order, the cumulative explained variance of the first j principal components
(Gj) is determined as follows:

Gj =
j∑
e=1

λe
|λ|∑
e=1

λe

(35)

Deb and Saxena (2005) suggested to define a threshold cut (CUT), typically 95%, and
keep for the PCA the eigenvalues with cumulative explained variance below it. Hence,
the principal components (i.e., the first j eigenvalues with Gj ≤ CUT and the corre-
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3.5 CASE STUDY

sponding eigenvectors) of the data set are then selected for the analysis. Note that the
appropriate value of CUT is case-dependent and may be greater or lower than 95%.
We propose to use the graphical Cattell Scree test (Cattell, 2009) for determining the
number of components to retain in PCA. The Scree test involves plotting the eigenvalues
in a descendant order against their sequence numbers and determining the changeover
from a steep slope to a levelling off. The components to the right of this break should
be dropped from further analysis. The lack of any clear break or multiple break points
would make impossible to use the Scree test. In this case another approaches to deter-
mining the number of components should be used (see Jackson, 1993).

The next step is analyzing the eigenvectors (typically referred to as loadings). The
elements of the loadings are employed to identify conflicts among objectives. Particularly,
the first elements of the loadings denote the contribution of the first objective in the
principal components, the second ones denote the contribution of the second function,
and so on. The most-positive value x+ corresponds to the objective that causes the
maximum increase in the principal component, whereas the most-negative element x−
denotes the function causing the largest decrease. Hence, the objectives corresponding
to the most-positive and most-negative elements of the factor loading are regarded as
the most conflicting objectives within that principal component.

Different methods are available in the literature for reducing the dimensionality of a
data set using PCA. Without loss of generality, we follow herein the heuristic procedure
suggested by Deb and Saxena (2005). In the context of our problem, this method enables
us to identify conflicts and redundancies among LCA metrics. This information will be
employed to remove redundant objectives from the analysis. Technical details about
this strategy can be found elsewhere, and are summarized in Figure 3.15 at the end of
the chapter. Note that other procedures based on the analysis of the correlation matrix
could be used for reducing the dimensionality of the problem (see Goel et al., 2007).

We should clarify at this point that in this work the emphasis is placed on the use of
PCA in the post-optimal analysis of the MILP. Note, however, that it is possible to
use the same strategy in an iterative manner. That is, applying PCA for identifying
redundant objectives and then resolving the model in the reduced space of objectives
and repeating the overall procedure until a stopping criterion is satisfied.

3.5 Case study

3.5.1 Dataset and assumptions

The capabilities of the proposed methodology are illustrated through its application to
a case study based on Spain. A planning horizon of 8 years is defined. We consider 19
potential locations for the establishment of production and storage technologies that are
defined according to the administrative divisions (autonomous communities) of Spain.
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CHAPTER 3 HYDROGEN SUPPLY CHAIN MOO – DETERMINISTIC APPROACH

The corresponding hydrogen demand, which has been determined assuming a market
penetration of 12.9% in 2040 and 36% in 2050 in the current energy system based on fossil
fuels, is displayed in Table 3.1 (HyWays, 2004; Seydel and Wietschel, 2007; HyWays,
2010). A minimum demand satisfaction level of 90% is set. Distances between sub-
regions were calculated considering the capitals of the autonomous communities and the
main roads or maritime routes connecting them. These data are listed in Table 3.2.

Table 3.1: Hydrogen demand, kg/day
Sub-region Autonomous community 2040–2042 2042–2044 2044–2046 2046–2048

G01 Andalusia 723,144 942,895 1,162,646 1,382,397
G02 Aragon 125,896 164,154 202,412 240,669
G03 Principality of Asturias 83,833 109,308 134,784 160,259
G04 Balearic Islands 114,722 149,585 184,447 219,309
G05 Canary Islands 240,767 313,932 387,097 460,262
G06 Cantabria 50,214 65,473 80,732 95,991
G07 Castile and León 233,435 304,372 375,309 446,245
G08 Castile-La Mancha 209,819 273,580 337,340 401,101
G09 Catalonia 680,427 887,197 1,093,966 1,300,736
G10 Ceuta 8,772 11,438 14,104 16,769
G11 Valencian Community 458,320 597,595 736,871 876,146
G12 Extremadura 103,761 135,293 166,824 198,355
G13 Galicia 236,528 308,405 380,282 452,159
G14 La Rioja 29,883 38,963 48,044 57,125
G15 Madrid 566,728 738,947 911,166 1,083,384
G16 Melilla 5,263 6,863 8,462 10,062
G17 Region of Murcia 137,293 179,014 220,735 262,456
G18 Foral Community of Navarre 63,563 82,878 102,194 121,510
G19 Basque Country 170,566 222,397 274,229 326,061
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CHAPTER 3 HYDROGEN SUPPLY CHAIN MOO – DETERMINISTIC APPROACH

The minimum and maximum production capacities of each technology are given in Ta-
ble 3.3 (Almansoori and Shah, 2006; Kim et al., 2008; Padró and Putsche, 1999). Ta-
ble 3.4 shows the capital cost of the production facilities considered in this study, whereas
the associated production costs are presented in Table 3.5 (Almansoori and Shah, 2006;
Kim et al., 2008; Padró and Putsche, 1999). The minimum and maximum storage ca-
pacities for liquid and compressed H2 are 10,000 and 23,240,000 kilograms, respectively
(Amos, 1998).

Table 3.3: Minimum and maximum production capacities of each technology, kg /day
Technologies

SMR CG WE
Minimum production capacity 10,000 10,000 10,000
Maximum production capacity 480,000 480,000 50,000

Table 3.4: Capital cost of production facilities, million e
Hydrogen form

Liquefied Compressed
SMR 465 329
CG 832 670
WE 97 47

Table 3.5: Hydrogen production cost, e/kg
Hydrogen form

Liquefied compressed
SMR 1.33 0.82
CG 1.49 0.92
WE 2.93 2.28
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3.5 CASE STUDY

The unit storage cost is e0.004 /(kg·day) for liquefied hydrogen, and e0.066 /(kg·day)
for compressed hydrogen (Amos, 1998). The capital and operating cost parameters of
trucks and railroad cars can be found in Table 3.6 (Almansoori and Shah, 2006; Amos,
1998). The capital cost associated with the establishment of pipelines is e708,673 per
km (Almansoori and Shah, 2006; Amos, 1998). The daily transportation cost of hydro-
gen using pipelines is e0.0576732 per kg of H2 (Amos, 1998). The model parameters
taken from the studies corresponding to United Kingdom or US were converted from
local currencies to euros using the average exchange rates (IMF, 2009). Moreover the
consumer price index (INE, 2009) and a correcting factor of 0.8 were applied to the
parameters corresponding to United Kingdom. The hourly freight cost associated with
maritime transport is e0.00115 per kg of H2 (Transmar S. L., 2009).

The minimum flow rate of each transportation mode is assumed to be equal to the
minimum capacity of the corresponding transportation mode, whereas the maximum
flow rate for any type of transportation mode is 96,000,000 kg per day (Almansoori and
Shah, 2006).

The LCA impact was quantified according to the Eco-indicator 99 methodology, using
the hierarchist perspective and average weighting (H/A). The emissions and feedstock
requirements associated with SMR, CG and WE technologies were calculated according
to the studies by Spath and Mann (2001), Koroneos et al. (2005) and Spath and Mann
(2004), respectively. The work of Koroneos et al. (2005) considers only the emissions
associated with coal gasification, and neglects those taking place during coal extraction
and transportation from mines to process plants. We filled these data gaps using the
Ecoinvent database (Ecoinvent Centre, 2010). For the transportation of coal, we made
the assumption that coal is transported by diesel train, and assumed an average distance
between the coal mine and the CG facility of 50 km. The impact of the transportation
tasks using trucks, rail cars, onshore pipelines and ships was also retrieved from Ecoin-
vent. The LCA impacts due to the production, storage and transportation technologies
are shown in Table 3.7.

101

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTION TO THE DEVELOPMENT OF MORE SUSTAINABLE PROCESS INDUSTRIES UNDER UNCERTAINTY 
Nagore Sabio Arteaga 
 



CHAPTER 3 HYDROGEN SUPPLY CHAIN MOO – DETERMINISTIC APPROACH

T
able

3.6:
Param

eters
used

to
calculate

the
capitaland

operating
cost

for
different

terrestrialtransportation
m
odes

Tanker
truck

Tube
trailer

R
ailway

tank
car

R
ailway

tube
car

Average
speed

(km
/h)

55
55

45
45

C
apacity

(kg
/trip)

4,082
181

9,072
454

C
ost

ofestablishing
transportation

m
ode

(e
)

434,236
217,118

434,236
260,541

Availability
oftransportation

m
ode

(h
/day)

18
18

12
12

D
river

wage
(e

/h)
19.97

19.97
19.97

19.97
Fueleconom

y
(km

/L)
3.58

3.58
10.13

10.13
Fuelprice

(e
/L)

1.01
1.01

0.24
0.24

G
eneralexpenses

(e
/day)

7.14
7.14

5.95
5.95

Load/unload
tim

e
ofproduct

(h
/trip)

2
2

12
12

M
aintenance

expenses
(e

/km
)

0.085
0.085

0.054
0.054

102

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTION TO THE DEVELOPMENT OF MORE SUSTAINABLE PROCESS INDUSTRIES UNDER UNCERTAINTY 
Nagore Sabio Arteaga 
 



3.5 CASE STUDY

T
ab

le
3.
7:

Va
lu
es

of
th
e
en
vi
ro
nm

en
ta
li
nd

ic
at
or
s,

ec
op

oi
nt
s

U
ni
t

C
S

R
E

C
C

O
LD

ES
A
E

D
M

D
FF

Pr
od
uc
tio

n
SM

R
kg

of
H
2

9.
08

60
×
10
−

5
7.
87

75
×
10
−

2
6.
47

71
×
10
−

2
0

0
6.
24

49
×
10
−

3
7.
10

70
×
10
−

6
3.
96

62
×
10
−

1

C
G

kg
of

H
2

8.
47

94
×
10
−

4
6.
76

36
×
10
−

1
2.
44

14
×
10
−

1
4.
68

30
×
10
−

7
3.
15

98
×
10
−

4
3.
15

49
×
10
−

2
1.
26

21
×
10
−

4
7.
16

12
×
10
−

2

W
E

kg
of

H
2

0
5.
41

96
×
10
−

1
5.
30

12
×
10
−

3
0

0
2.
58

68
×
10
−

3
1.
46

42
×
10
−

4
9.
79

77
×
10
−

3

St
or
ag
e

Li
qu

efi
ed

H
2

kg
of

H
2

5.
60

15
×
10
−

2
1.
47

61
×
10
−

1
3.
23

77
×
10
−

2
8.
79

14
×
10
−

6
1.
64

68
×
10
−

2
1.
21

51
×
10
−

2
4.
68

96
×
10
−

3
1.
24

10
×
10
−

1

C
om

pr
es
se
d
H
2

kg
of

H
2

1.
24

48
×
10
−

2
3.
28

02
×
10
−

2
7.
19

49
×
10
−

3
1.
95

36
×
10
−

6
3.
65

95
×
10
−

3
2.
70

03
×
10
−

3
1.
04

21
×
10
−

3
2.
75

77
×
10
−

2

Tr
an

sp
or
ta
tio

n
Tr

uc
k

tk
m

6.
93

55
×
10
−

7
7.
36

64
×
10
−

6
1.
39

99
×
10
−

6
1.
09

63
×
10
−

9
6.
57

62
×
10
−

7
9.
22

40
×
10
−

7
1.
16

88
×
10
−

7
1.
20

57
×
10
−

5

R
ai
lw
ay

ca
r

tk
m

4.
38

10
×
10
−

8
5.
06

19
×
10
−

7
1.
49

69
×
10
−

7
3.
87

08
×
10
−

11
1.
19

19
×
10
−

8
4.
27

17
×
10
−

8
2.
24

52
×
10
−

9
5.
18

74
×
10
−

7

Pi
pe

lin
e

tk
m

1.
86

78
×
10
−

8
4.
87

89
×
10
−

7
3.
00

30
×
10
−

7
3.
20

98
×
10
−

9
1.
01

06
×
10
−

8
7.
94

42
×
10
−

8
6.
28

37
×
10
−

9
2.
84

78
×
10
−

6

Sh
ip

tk
m

2.
04

53
×
10
−

8
6.
47

76
×
10
−

7
5.
84

93
×
10
−

8
3.
29

64
×
10
−

11
3.
69

28
×
10
−

8
7.
60

13
×
10
−

8
1.
21

84
×
10
−

9
4.
46

95
×
10
−

7

103

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTION TO THE DEVELOPMENT OF MORE SUSTAINABLE PROCESS INDUSTRIES UNDER UNCERTAINTY 
Nagore Sabio Arteaga 
 



CHAPTER 3 HYDROGEN SUPPLY CHAIN MOO – DETERMINISTIC APPROACH

3.5.2 Results and discussion – MOO Problem

To simplify the calculations, we generated the Pareto solutions by solving a set of bi-
criteria models in which the cost was optimized against each single LCA impact sepa-
rately. Note that each of the points calculated in this way is guaranteed to be weakly
Pareto optimal in the original search space. Each of these bi-criteria problems was writ-
ten in GAMS (Rosenthal, 2008) and solved with the MILP solver CPLEX 12.0 on a
HP Compaq DC5850 desktop PC with an AMD Phenom 8600B, 2.29 GHz triple-core
processor, and 2.75 Gb of RAM.

We ran the ε-constraint method for each of these bi-criteria models, obtaining finally
41 Pareto solutions. The CPU time required to calculate a single Pareto solution varies
from 2 minutes to 4 hours. Figures 3.2 to 3.9 show the corresponding bi-criteria Pareto
sets. Particularly, in each plot we show for each Pareto point, the normalized values
of all the environmental metrics. The normalization has been performed by dividing
the environmental performance by the maximum impact value over all Pareto solutions.
The points highlighted in bold correspond to the values of the impact being optimized
(i.e., the one being minimized in the bi-criteria model), whereas the remaining ones
represent the environmental performance of each solution in the remaining categories.
As observed in Figures 3.3, 3.5, 3.6 and 3.8, the environmental metrics tend to behave
in a similar manner, that is, when one of them is minimized, the remaining ones are also
reduced.

In contrast, in Figures 3.2, 3.4, 3.7 and 3.9, as we move from right to left we observe
that certain metrics are monotonically increasing while some others go up and down
depending on the cost value.

Particularly, three regions can be distinguished in Figure 3.2 that differ in the produc-
tion and storage technologies as well as in the schemes of hydrogen delivery. In interval
AB, hydrogen is produced via SMR , and the solutions mainly differ in the amounts of
hydrogen compressed and liquefied. From A to B, the amount of compressed hydrogen
increases, since this storage technology causes less impact in the considered environmen-
tal metrics. WE facilities appear after point B, and its number gradually increases as
we approach point D. Note that water electrolysis coupled with wind turbines produces
much more solid particles than SMR facilities (28.7 g/kg of H2 in the case of WE and
2 g/kg of H2 in the case of SMR). Because of this, the RE values increase gradually
after point B. Moreover, WE plants require more concrete and steel than SMR facilities.
Therefore, the inclusion of WE plants in the hydrogen network increases minerals con-
sumption and consequently the DM impact. This effect is only observed in the interval
CD.

In Figures 3.3, 3.5, 3.6 and 3.8 all the configurations operate exclusively with SMR
facilities. These solutions differ only in the amounts of transported hydrogen and its
physical form. As we move from A to B, the amount of compressed H2 increases.
Similarly, we obtain more decentralized SC requiring less transportation tasks. In point
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B (i.e., minimal impact solution), the compressed hydrogen demand is fully covered
with the internal production facilities located within each region. As a result, all curves
monotonically decrease from A to B, since the associated structural changes reduce
simultaneously the impact in all damage categories.

In Figures 3.4 and 3.7, three regions with different SC topologies are identified. In
the interval AB, liquefied hydrogen is produced via technologies SMR and WE. The
steep increase in impacts RE and DM is due to the increasing share of WE. The SC
configurations placed on the right hand side of point B produce hydrogen in both physical
forms: compressed and liquefied. These designs open only WE facilities. The decrease
in the values of RE and DM is due to the increase in the percentage of compressed H2,
which is the storage technology with the best environmental performance in all of the
environmental metrics.

Coal gasification appears only in the interval AB on Figure 3.9. It causes the raise of
all metrics except DFF (the one being optimized). After point B, only WE is selected,
and solutions in the interval CD differ in both the amount of compressed and liquefied
hydrogen and scheme of hydrogen delivery. This shift from the combined use of CG and
SMR to WE technology decreases all of the environmental metrics in point B except
DFF.
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Figure 3.2: Pareto set of solutions between TDC and CS (CS — damage to human health
caused by carcinogenic substances; RE — damage to human health caused by
respiratory effects; CC — damage to human health caused by climate change;
OLD — damage to human health caused by ozone layer depletion; ES — damage
to ecosystem quality caused by ecotoxic substances; AE — damage to ecosystem
quality caused by acidification and eutrophication; DM — damage to minerals;
DFF — damage to fossil fuels)
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Figure 3.3: Pareto set of solutions between TDC and RE (CS — damage to human health
caused by carcinogenic substances; RE — damage to human health caused by
respiratory effects; CC — damage to human health caused by climate change;
OLD — damage to human health caused by ozone layer depletion; ES — damage
to ecosystem quality caused by ecotoxic substances; AE — damage to ecosystem
quality caused by acidification and eutrophication; DM — damage to minerals;
DFF — damage to fossil fuels)
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Figure 3.4: Pareto set of solutions between TDC and CC (CS — damage to human health
caused by carcinogenic substances; RE — damage to human health caused by
respiratory effects; CC — damage to human health caused by climate change;
OLD — damage to human health caused by ozone layer depletion; ES — damage
to ecosystem quality caused by ecotoxic substances; AE — damage to ecosystem
quality caused by acidification and eutrophication; DM — damage to minerals;
DFF — damage to fossil fuels)
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Figure 3.5: Pareto set of solutions between TDC and OLD (CS — damage to human health
caused by carcinogenic substances; RE — damage to human health caused by
respiratory effects; CC — damage to human health caused by climate change;
OLD — damage to human health caused by ozone layer depletion; ES — damage
to ecosystem quality caused by ecotoxic substances; AE — damage to ecosystem
quality caused by acidification and eutrophication; DM — damage to minerals;
DFF — damage to fossil fuels)
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Figure 3.6: Pareto set of solutions between TDC and ES (CS — damage to human health
caused by carcinogenic substances; RE — damage to human health caused by
respiratory effects; CC — damage to human health caused by climate change;
OLD — damage to human health caused by ozone layer depletion; ES — damage
to ecosystem quality caused by ecotoxic substances; AE — damage to ecosystem
quality caused by acidification and eutrophication; DM — damage to minerals;
DFF — damage to fossil fuels)
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Figure 3.7: Pareto set of solutions between TDC and AE (CS — damage to human health
caused by carcinogenic substances; RE — damage to human health caused by
respiratory effects; CC — damage to human health caused by climate change;
OLD — damage to human health caused by ozone layer depletion; ES — damage
to ecosystem quality caused by ecotoxic substances; AE — damage to ecosystem
quality caused by acidification and eutrophication; DM — damage to minerals;
DFF — damage to fossil fuels)
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Figure 3.8: Pareto set of solutions between TDC and DM (CS — damage to human health
caused by carcinogenic substances; RE — damage to human health caused by
respiratory effects; CC — damage to human health caused by climate change;
OLD — damage to human health caused by ozone layer depletion; ES — damage
to ecosystem quality caused by ecotoxic substances; AE — damage to ecosystem
quality caused by acidification and eutrophication; DM — damage to minerals;
DFF — damage to fossil fuels)
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Figure 3.9: Pareto set of solutions between TDC and DFF (CS — damage to human health
caused by carcinogenic substances; RE — damage to human health caused by
respiratory effects; CC — damage to human health caused by climate change;
OLD — damage to human health caused by ozone layer depletion; ES — damage
to ecosystem quality caused by ecotoxic substances; AE — damage to ecosystem
quality caused by acidification and eutrophication; DM — damage to minerals;
DFF — damage to fossil fuels)
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Figures 3.10 to 3.12 summarize the main strategic decisions associated with the extreme
solutions of the Pareto sets in Figures 3.2 to 3.9 . Interestingly, the minimization of
some environmental metrics leads to the same SC configuration. More precisely, two
minimum impact SC designs are identified: one for the minimization of CS, CC, AE,
and DFF and another one for the minimum RE, ES, OLD, and DM solutions.

In the minimum cost solution, all production facilities are based on SMR and produce
liquefied hydrogen that is stored in cryogenic spherical tanks. The SC structure is
quite decentralized, and many regions (ten in total) fulfill their demand by domestic
SMR plants, except few of them that import liquid H2 from neighboring communities.
Short-distance terrestrial transportation is carried out with trucks, whereas for middle-
distance the model selects railroad. Melilla and the Balearic and Canary Islands import
hydrogen via freighted ships. The demand in Ceuta is fully satisfied by the domestic
SMR production facilities.

Figure 3.11 presents the minimum CS, CC, AE, and DFF network. In this SC configura-
tion, compressed hydrogen is produced via WE. The SC is pure decentralized, and does
not require any transportation. The SC configuration with minimum RE, ES, OLD,
and DM also produces compressed hydrogen but using SMR technology instead of WE.
Figure 3.12 shows the corresponding SC structure. As observed in this network, the
hydrogen flows between sub-regions are all zero.
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Figure 3.10: SC configuration for the solution with minimum TDC
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Figure 3.11: SC configuration for the solutions with minimum CS, CC, AE and DFF
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Figure 3.12: SC configuration for the solution with minimum RE, ES, OLD and DM
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We next applied PCA to these solutions. The correlation matrix is shown in Table 3.8.
The closer the elements of the matrix are to -1 or 1, the stronger is the correlation be-
tween the corresponding objectives. It can be seen that metrics CS, ES, OLD and DM
are somehow equivalent, whereas AE is highly correlated with CC. The eigenvectors and
eigenvalues of the correlation matrix are presented in Table 3.9, where the principal com-
ponents are arranged in a descent order. The most-negative and most-positive elements
of the principal components are highlighted in bold font. The conflicting objectives are
written below the cumulative explained variance of every principal component.

Table 3.8: Correlation matrix
CS RE CC OLD ES AE DM DFF

CS 1 0.4400 0.4007 0.9995 1.0000 0.6729 0.9988 -
0.0375

RE 1 0.0735 0.4517 0.4435 0.3886 0.4792 -
0.8966

CC 1 0.4235 0.4027 0.9237 0.377 0.2743
OLD 1 0.9996 0.6938 0.9984 -

0.0453
ES 1 0.6753 0.9989 -

0.0408
AE 1 0.6621 0.0165
DM 1 -

0.0847
DFF 1
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Figure 3.13: Scree plot

We performed a graphical Scree test to decide the number of principal component to
be kept for further analysis. As observed in Figure 3.13, the levelling curve starts from
the forth principal component. However, the forth and subsequent components do not
satisfy the Kaiser-Guttman rule, so we analyzed only the eigenvectors corresponding
to the first three principal components with a cumulative explained variance of almost
100%. As observed, four environmental indicators can be excluded from the set of
objectives following the heuristic rule proposed by Deb and Saxena (2005).

Figure 3.14 shows the bi-dimensional plots representing the loads of the environmental
objectives projected onto the sub-spaces of the first three principal components. The
metrics selected as redundant are highlighted in blue color, whereas the conflicting ob-
jectives are shown in black.

As observed, the correlation matrix suggests that metrics CS, ES, DM and OLD are
equivalent. Particularly, the correlation coefficients corresponding to these objectives
are higher than 0.9. These metrics have very similar loads in the first three principal
components. Because of this, their projections onto the axes shown in Figure 3.14 are
quite close. One objective, namely OLD, can be retained while the remaining ones can
be excluded from the analysis.
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3.5 CASE STUDY
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Figure 3.14: PCA results in the bi-dimensional spaces (CS— damage to human health caused
by carcinogenic substances; RE — damage to human health caused by respira-
tory effects; CC — damage to human health caused by climate change; OLD
— damage to human health caused by ozone layer depletion; ES — damage to
ecosystem quality caused by ecotoxic substances; AE — damage to ecosystem
quality caused by acidification and eutrophication; DM — damage to minerals;
DFF — damage to fossil fuels)
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CHAPTER 3 HYDROGEN SUPPLY CHAIN MOO – DETERMINISTIC APPROACH

The correlation between AE and CC is also high, and the proposed analysis suggests
to omit impact AE. In Figure 3.14, these two environmental categories lie in the same
quadrant and differ mainly in their projections on the second principal component.
Furthermore, RE and DFF are conflicting according to the correlation matrix, since
they show a very high negative correlation coefficient.
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Figure 3.15: Sche me of the PCA procedure (Deb and Saxena, 2005), where x+ and x− are the
most positive and the most negative elements of an eigenvector), respectively.
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3.6 Conclusions

This work has proposed a systematic approach for the multi-objective design of hydrogen
SCs for vehicle use that considers simultaneously several life cycle environmental criteria
along with an economic performance metric. The environmental performance of the
SC has been measured by independently evaluating eight life cycle assessment metrics
widely used in the most common life cycle environmental impact methodology (e.g.,
EcoIndicator 99). These in turn are used to calculate the damage caused by each specific
SC according the different damage categories.

The proposed methodology comprises two main steps: in step one, a multi-objective
MILP is constructed and a set of Pareto solutions are generated that represent the op-
timal trade-off between the all the pair combinations of economic and environmental
objectives considered in the analysis. Since the analysis of the resulting designs proves
to be a non-trivial task, a multi-variable statistical method (i.e., PCA) is then applied
to detect and omit redundant environmental indicators. This method can identify the
environmental objectives that can be left out of the analysis without disturbing the main
features of the solution space. The main novelties of the work lie on the use of eight
standard life cycle environmental impact metrics and the aplication of PCA as dimen-
sionality reduction technique to interpret the different optimal hydrogen supply chain
designs arising from a multidimensional multi-objective environmental design problem.
We have demonstrated the capabilities of this technique through a case study based on
the future (potential) SC to be established in Spain.

In Section 3.1 the importance of environmental criteria in the evaluation of hydrogen
supply networks is put into context. More specifically, an exhaustive literature review
on the topic of hydrogen supply chain optimization revealed the narrow scope followed
in the few works implementing multi-objective optimization to include environmental
criteria. These works either did not consider life cycle environmental metrics or just
implemented two objectives in their formulation, in which the optimal performance of
a specific environmental metric might imply the deterioration of other environmental
categories. Our approach attempts at overcoming these limitations by providing a full
multi-objective framework embedding all possible environmental categories in the first
instances, for then combining it with PCA into a single iterative framework that is able
to uncover conflicting and redundant environmental criteria. Thus the resulting holistic
approach provides an effective solution for the problem of visualizing highly complex
multidimensional problems.

The mathematical formulation of this problem is introduced in Section 3.2, and then in
Section 3.4 the post-optimality PCA analysis methodology is presented. Therefore, the
combined use of MOO and PCA into a single integrated framework that is designed to be
used in an iterative manner proves instrumental in uncovering redundant environmental
metrics by analyzing their internal correlation structures. Finally a graphical test is
presented as a useful tool to determine the appropriate threshold level to be applied for
determining the number of principal components.
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CHAPTER 3 HYDROGEN SUPPLY CHAIN MOO – DETERMINISTIC APPROACH

Note that this work does not include the production of hydrogen via biomass gasification
since this specific framework was considered inappropriate to evaluate that technology
for two main reasons:

• raw material and transportation environmental impacts would not be negligible
and they would need to be modelled for a hypothetical case in Spain

• the uncertainties associated with the aforementioned biomass life cycle environ-
mental impact calculations would not be properly covered in a deterministic frame-
work

On the other hand, this approach presents a more realistic hydrogen demand profile
accross different time periods than the one introduced in Chapter 2. Particularly, hy-
drogen is assumed to follow penetration rates according to similar trends projected in
wider European research projects covering this topic. For the rest of the parameters,
the same main assumptions and datasets as the ones introduced in Chapter 2 are used
for comparison purposes.

In terms of the environmental performance measured according to the eight different
life cycle categories, the results presented in Section 3.5 reveal two distinct groups of
metrics:

• environmental metrics that simultaneously optimize the whole objective set

• environmental metrics whose optimization leads to dispar trends in the rest of the
objectives

For all of them, the economic optimization solution presents a decentralized SMR based
supply chain producing hydrogen in liquid form. Note that the major difference with the
optimal economic performance solution presented in Chapter 2 is the decentralization of
the supply chain design. This can be explained by the new more gradual and realistic
demand profile introduced. Since the optimal decisions are taken in each period with
the information available at that time, economies of scale are not fully exploited but
the supply chain design is more flexible to introduce different technology mixtures. This
analysis could easily form part of a more systematic structural uncertainty analysis for
different demand profiles.

Interestingly, the optimization of the environmental metrics that simultaneously opti-
mize the rest of the objectives (i.e., RE, ES, OLD and DM) gives rise to a hydrogen SC
configuration also decentralized but producing gaseous hydrogen stored in compressed
form. This appears to respond for the negative environmental impacts of the energy
and electricity used in the liquefaction step. The rest of the environmental objectives
(i.e., CS, CC, AE and DFF), produced a structure where decentralized water electrol-
ysis (WE) plants using wind turbines were installed to produce gaseous hydrogen. As
a result, the solutions obtained indicate that a decentralized structure is more advan-
tageous in both SMR and WE hydrogen supply chains, while gaseous hydrogen is the
most environmentally friendly alternative in any of the cases.
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3.6 CONCLUSIONS

Note that WE is mainly selected for the reduction of only specific environmental met-
rics, but it might be the case that these metrics are considered to be the most important
by decision-makers (i.e, climate change (CC)). The analysis reveals the methodology
uncertainty associated to the use (or bias) of a single environmental metric. In fact, the
solution minimizing cost and CC, although achieves a reduction in most other environ-
mental metrics, it increases quite respiratory effects on humans (i.e. RE).

It is important to mention that limitations of these approach may lie in the environmental
impact evaluation for the different categories and production technologies. As LCA
data must be gathered from different sources in the literature, inconsistencies in the
calculations may arise. One of the difficulties experienced during the course of this work
has to do with the evaluation of the space usage of the compressed hydrogen storage in
the different environmental impact categories. Its inclusion might change the optimal
configurations identified. Also it is observed that coal gasification is considered superior
in DFF impact to steam methane reforming, concluding that these and the rest of the
results presented would benefit from being more widely discussed further in the LCA
expert community.

To sum up, the proposed approach enabled us to identify four redundant environmental
metrics i.e., CS, ES, AE and DM), making it easier to interpret and analyze the efficient
solutions to the problem. The conflicting environmental objectives (i.e., CC, OLD,
DM and DFF) can therefore define almost 100 % of the variance observed amongst the
initial 8 environmental metrics, therefore being a good enough representative group of
the bigger size problem.

Our method proves to offer valuable insights into the hydrogen SC design problem for
vehicle use, suggesting process alternatives leading to significant environmental improve-
ments and shedding light on the environmental performance of hydrogen infrastruc-
tures in different life cycle damage categories. The computational performance of the
MOO-PCA methodology has proved to be computationally efficient, only implying post-
optimality calculations and not adding to the complexity of the problem formulation.

It is worthwhile to make clear that the conclusions obtained about optimal hydrogen
supply chain designs are proved to highly depend on the parameters, structure and
objectives used for the analysis. Despite this fact, our methodology is transparent enough
to analyze the main reasons for these changes and therefore generate valuable insights
to help decision-making. And finally, it is general enough to be easily extended in order
to handle more complex scenarios involving larger number of production, storage and
transportation technologies.
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CHAPTER 3 HYDROGEN SUPPLY CHAIN MOO – DETERMINISTIC APPROACH

Notation

Indices

B set of chemicals indexed by b
D set of impact categories indexed by d
I set of hydrogen forms indexed by i
G set of potential locations indexed by g
L set of transportation modes indexed by l
O set of objectives indexed by o
P set of manufacturing technologies indexed by p
R set of Pareto solution indexed by r
S set of storage technologies indexed by s
T set of time intervals indexed by t
X set of eigenvectors
λ set of eigenvalues indexed by e

Subsets

IL(l) subset of hydrogen forms that can be transported via transportation
mode l

IP (p) subset of hydrogen forms that can be produced via technology p
IS(s) subset of hydrogen forms that can be stored via technology s
LI(i) subset of transportation modes for hydrogen form i
LG(g, g′) subset of restricted maritime links between regions g and g′
LG′(g, g′) subset of restricted terrestrial links between regions g and g′
PI(i) subset of technologies that can produce hydrogen form i
SI(i) subset of storage technologies for hydrogen form i
SGG(g, g′) subset of regions with active harbors that can be connected by maritime

links
SGG′(g, g′) subset of regions with active harbors that cannot be connected by road

transportation units

Parameters

avl availability of transportation mode l
ccl,t capital cost of transport mode l in period t
cudl,t maintenance cost of transportation mode l in period t per unit of distance

traveled
Dg,t total demand of hydrogen in location g in period t
distanceg,g′ average distance traveled between locations g and g′
dsat demand satisfaction level to be fulfilled
fuelcl fuel consumption of transportation mode l
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fuelpl,t price of the fuel consumed by transportation mode l in period t
gel,t general expenses of transportation mode l in period t
ir interest rate
lutimel loading/unloading time of transportation mode l
PCPL

p upper bound on the capacity expansion of manufacturing technology p
PCPL

p lower bound on the capacity expansion of manufacturing technology p
θ average storage period
τ minimum desired percentage of capacity to be used
QCg,g′,l upper bound on the flow of materials between locations g and g′ via

transportation model l
QCg,g′,l lower bound on the flow of materials between locations g and g′ via

transportation model l
SCST

s upper bound on capacity expansion of storage technology s
SCST

s lower bound on capacity expansion of storage technology s
speedl average speed of transportation mode l
tcapl capacity of transport mode l
upci,g,p,t value of unit production cost of hydrogen form i produced via technology

p in location g in period t
usci,g,s,t unit storage cost of hydrogen form i stored via technology s in location

g in period t
upcct unit transportation cost of pipelines in period t
upoct unit operating cost of the pipelines
usoct unit operating costs for maritime transportation and railway in period t
wagel,t driver wage of transportation mode l in period t
αPLg,p,t fixed investment term associated with manufacturing technology p in-

stalled in location g in period t
αSTg,s,t fixed investment term associated with storage technology s installed in

location g in period t
βPLg,p,t variable investment term associated with manufacturing technology p

installed in location g in period t
βSTg,s,t variable investment term associated with storage technology s installed

in location g in period t
υb,d damage factor of chemical b in impact category d
ωPrb life cycle inventory entry of chemical b associated with hydrogen produc-

tion
ωStb life cycle inventory entry of chemical b associated with hydrogen storage
ωTrb life cycle inventory entry of chemical b associated with hydrogen trans-

portation

Variables

AE damage to ecosystem quality caused by acidification and eutrophication
CPL
g,p,t capacity of manufacturing technology p in location g
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CHAPTER 3 HYDROGEN SUPPLY CHAIN MOO – DETERMINISTIC APPROACH

CST
g,s,t capacity of storage technology s in location g in period t in period t

CC damage to human health caused by climate change
CEPL

g,p,t capacity expansion of manufacturing technology p in location g in period
t

CEST
g,s,t capacity expansion of storage technology s in location g in period t

CS damage to human health caused by carcinogenic substances
Di,g,t amount of hydrogen form i distributed in location g in period t
DAMd damage in impact category d
DFF damage to fossil fuels
DM damage to minerals
ES damage to ecosystem quality caused by ecotoxic substances
FCt fuel cost in period t
FCCt facility capital cost in period t
FOCt facility operating cost in period t
GCt general cost in period t
LCt labor cost in period t
LCIb life cycle inventory of chemical b
MCt maintenance cost in period t
OLD damage to human health caused by ozone layer depletion
PCCt pipeline capital cost in period t
POCt pipeline operating cost in period t
PRi,g,p,t production of hydrogen mode i via technology p in period t in location g
Qi,g,g′,l,t flow of hydrogen mode i via transportation mode l between locations g

and g′ in period t
RE damage to human health caused by respiratory effects
ROCt operating costs associated with road transportation technologies
SOCt ship operating cost in period t
Si,g,s,t amount of hydrogen in physical form i stored via technology s in location

g in period t
SOCt operating cost of ships in period t
TCt total amount of money spent in period t
TCCt total transportation capital cost in period t
TDC total discounted cost
TOCt transportation operating cost in period t

Integer variables

NPL
g,p,t number of plants of type p installed in location g in period t

NST
g,s,t number of storage facilities of type s installed in location g in period t

NTR
l,t number of transportation units of type l purchased in period t

Binary variables
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Yg,g′,l,t binary variable (1 if a link between locations g and g′ using transportation
technology l is established, 0 otherwise)

Post-optimality analysis

CUT threshold cut
Fo,r value of objective o in Pareto solution r
Fo maximum value of objective o over all Pareto solutions
Gj cumulative explained variance
nFo,r normalized value of objective o in Pareto solution r
j number of the first principal components selected for analysis
x+ the most positive element of principal component
x− the most negative element of principal component
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CHAPTER 6

CONCLUSIONS

The important thing is not to stop questioning

Albert Einstein, 1879 – 1955

6.1 Summary

The present work presents techniques for managing uncertainty and life cycle environ-
mental impact on two major process design problems, which are presented from the
larger spatiotemporal scales involved multi-site hydrogen supply chains design to the
next step of a single-site complex industrial process plant. We next present a summary
of the knowledge gained during the study of each of these problems. Note that further
discussions and details can be found in the results and conclusions of each corresponding
chapter.
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CHAPTER 6 CONCLUSIONS

Chapter 2. Multi-objective optimization of a hydrogen supply chain
– Stochastic approach

Stochastic programming coupled with risk management techniques were applied to the
multi-site problem of design and planning a hydrogen supply chain in Chapter 2. This
work proposes a novel decision support tool to manage the financial risk associated to
the design of a hydrogen network under uncertain energy prices affecting the network
operating costs via the worst case.

The problem addressed considers a three-echelon supply chain comprised of four different
production facilities differentiated by the raw material from which hydrogen is produced
(i.e., natural gas, renewable energy, coal gasification and biomass), two types of storage
technologies able to handle the two hydrogen product forms (i.e., gas or liquid) and six
several technologies for road, railway and sea transportation of the different hydrogen
forms. This gives rise to a multi-scenario stochastic multi-period multi-objective MILP
mathematical programming model.

The mathematical model presented is a demand driven model, which accounts for capac-
ity expansions and economies of scale in production and storage facilities. It is important
to keep in mind that the problem that arises when uncertainty in the coefficients of the
objective function are considered is very different to the treatment of uncertain demands
in mathematical programming frameworks.

The results presented showed a hydrogen supply chain in Spain that would benefit from
having some coal gasification plants to minimize the probability of high costs in the
event of undesirable high energy prices. This is a result of coal being less sensitive to
market fluctuations than natural gas. Furthermore, the minimum cost solution entails a
decentralized production network composed of SMR plants producing liquid hydrogen.
The two-step sequential decomposition algorithm proposed to solve the model reduces in
one order of magnitude the computational time of the full-space MILP, while providing
solutions within 1% optimality gap.

The multi-site linear problem allows to manage the financial risk associated to energy
market fluctuations, while the worst case proves to be an effective metric to control the
undesirable outcomes in the uncertain parameters space.

Chapter 3. Multi-objective optimization of a hydrogen supply chain
– Deterministic approach for objective reduction

In Chapter 3 we introduced a novel MOO mathematical programming framework that
simultaneously optimizes the life cycle environmental performance of a hydrogen sup-
ply chain design and its economic performance. The formulation enables to evaluate
independently eight independent life cycle environmental metrics that are traditionally
aggregated into a single environmental impact category.
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The mathematical model presented is a multi-objective multi-period MILP based on the
model presented in Chapter 2. The main differences lie in the production technology
dataset considered and the objective function equations. Biomass gasification for hydro-
gen production was removed from the analysis due to the high uncertainties associated
the assessment of the environmental impact of biomass production.

Our approach, which combines MOO, LCA and PCA is comprised of two main steps
that can be executed in an iterative manner.

1. The multi-objective MILP is first run and a set of Pareto fronts are generated that
represent the optimal trade-off between each independent life cycle environmental
impact metric and the economic performance.

2. A post-optimality analysis involving a multi-variable statistical method (i.e., PCA)
is then applied in order to identify redundant environmental metrics that can be
removed from the analysis.

The results show that the MOO problem optimizing the cost and the environmental
performance measured by eight different metric has three major different supply chain
configurations. The optimum economic performance solution presents the same tech-
nologies than the ones found when optimizing the expected cost Chapter 2, while the
topology of the network appears to be more centralized in the present case due to the
assumption of more gradual hydrogen demand penetration. On the other hand, the min-
imum environmental solutions showed SC designs where SMR and WE are selected in
order to reduce the environmental impact instead of coal gasification, which was shown
to lead to a more robust economic performance.

The post-optimality analysis reveals that there are only four of the conflicting objectives,
which would retain almost 100 % of the variance. The elimination of redundant objec-
tives reduces the problem complexity while changing very little the Pareto structure of
the problem. Among the environmental metrics considered, two distinct groups giving
rise to the two different SC configurations are identified: the group of objectives that
simultaneously optimize other metrics, and the group of objectives that produce diverse
results in other metrics when optimized. These underlying dynamics inform about the
effects that the objective choice have in the problem resolution, which might imply that
for instance other environmental metrics could be negatively impacted by optimizing
one of the conflicting ones, as is the case with climate change.

Chapter 4. Multi-objective optimization of industrial processes –
Deterministic approach

In Chapter 4 we presented a deterministic multi-objective optimization (MOO) frame-
work that integrates LCA principles in order to provide systematic process alternatives
to improve the life cycle environmental performance of a complex industrial network.
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The formulation compares three different life cycle environmental criteria against one
economic performance metric.

The mathematical formulation models the operation of a complex industrial process,
where several raw materials, manufacturing units and utilities are optimally combined
in order to produce a set of products with predefined quality specifications. This problem
gives rise to a large scale non-convex MINLP which is solved to local optimality using
a customized initialization scheme and solution strategy for which computational times
of less than 1 minute for normal computers are reported.

Our approach was tested using different datasets and varying demand and product
quality constraints specifications, for which valuable nonintuitive solutions are obtained.
For instance the model is able to identify process layouts involving the bypass or not of
some units, which result in less environmental impact. Also the suitability of Pareto sets
for representing important trade-offs in the process layout for the different objectives was
demonstrated. Intermediate points lying between the extreme solutions corresponding to
each single objective represent valuable Pareto efficient alternatives for decision makers
aiming at improving the environmental performance of their processes.

The chapter closes with an initial assessment of the relevance and sensitivity of the model
results in the face of different uncertainties. On the one hand parametric uncertainty is
evaluated by means of two different price data sets, which lead to different economic per-
formance but very similar environmental impact. In addition, parameter uncertainty by
means of a sensitivity analysis to product quality constraints and the structural uncer-
tainty associated to the demand satisfaction constraint flexibility are also tested. The
former tests showed that the environmental performance changes very little with the
limiting quality constraints, while the economic performance is more sensitive to those
changes. On the other hand, the demand satisfaction appears to have an important
impact on structural decisions. The methodological uncertainty associated to the per-
formance criteria chosen for the analysis is explicitly embedded in the MOO formulation
and shows different process design structures in face of parametric uncertainty.

Chapter 5. Multi-objective optimization of industrial processes –
Stochastic approach

Chapter 5 presents a reformulation of the previously defined deterministic problem for
the optimization of a complex single-site industrial process under uncertainty in the LCI
entries. The problem is turned into a multi-scenario multi-objective stochastic model
where the uncertain parameters are described through scenarios with equal probability
of occurrence. The novelty of the approach is twofold: (i) it can handle any type
of probability distribution of the uncertain parameters, including correlations amongst
them, and (ii) for the very first time we apply the combined use of MOO and LCA to a
complex single-site industrial process.
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The formulation of the problem here incorporates a new environmental objective func-
tion, which is defined through a probabilistic chance constraint. In order to facilitate
the resolution of the original formulation, the continuous function is discretized and ap-
proximated via a customized scenario generation technique for multi-variate sampling
of correlated parameters, which takes into account the quality of the LCI data available.
The discretized chance constraint can be calculated for a predefined confidence level that
defines the minimum number of scenarios required.

Our approach overcomes the limitations associated to solving a stochastic problem that
optimizes the average environmental performance, by using two stochastic metrics that
allow controlling undesirable outcomes of the uncertain parameter realizations: the worst
case and the downside risk. The downside risk accounts for both, the probability of
exceeding an environmental limit and the deviation from such a limit, while the worst
case attempts to minimize the highest impact taking place in the most unfavorable
scenario. Although more simple, the worst case has the advantage of being easy and
efficient to implement and computationally very advantageous.

The results of the case study presented demonstrate that the deterministic MINLP model
produces solutions that can exceed the desired environmental limits when uncertainty
in the LCI data is present. Our example showed that, for the problem being analyzed,
the worst case and downside risk metrics produced the same results under moderate
uncertainty levels. Furthermore, the minimum environmental impact solutions obtained
with the stochastic approach exhibit similar structures and operational strategies than
the ones presented in Chapter 4. The effect of correlations between parameters produced
noticeable deviations leading to a less controllable uncertain parameter space.
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6.2 List of contributions

This thesis work has advanced the state of the art of PSE mathematical programming
techniques in terms of new methodological developments and applications. These include
the following:

• A decision-support tool for managing financial risk in the design and planning
of hydrogen supply chains under uncertainty in the operating costs was intro-
duced. Our approach combines MOO and risk management techniques into a
multi-scenario multi-period stochastic MOO MILP that evaluates all possible pro-
duction, transportation and storage alternatives available for hydrogen at the mo-
ment.

• The computational complexity of this model was addressed by providing a two-
step sequential algorithm that reduces the computational burden in one order of
magnitude.

• An approach based on the combined use of MOO, LCA and PCA for simultane-
ously optimizing several life cycle environmental metrics along with the economic
performance of a hydrogen supply chain was proposed. This method eliminates
redundant objectives and can be seen as an alternative way to handle the method-
ological uncertainty associated to the selection of a specific environmental metric
to be optimized.

• The combined approach of MOO and LCA was applied to a complex single-site
industrial network by developing a unified systematic MINLP mathematical pro-
gramming framework.

• The previous model was extended into a multi-scenario stochastic multi-objective
MINLP to handle uncertainties in the LCI entries. Our approach, which can handle
any type of correlated (or uncorrelated) probability distribution, allows identifying
robust solutions that minimize the probability of undesirable outcomes.

• The deterministic MOO-LCA MINLP model was submitted to a set of parametric,
structural and methodological tests, which in combination with its stochastic coun-
terpart proved a useful protocol for the systematic evaluation of the parametric,
structural and methodological uncertainty affecting problem formulation.

• The proposed single-site MINLP formulation for complex industrial processes was
complemented by a customized solution strategy that expedites the solution strat-
egy.

• MOO has proved to be an effective tool for incorporating environmental criteria in
mathematical programming frameworks, since it allows to study inherent trade-offs
arising during the analysis process alternatives.

• MOO has been shown to be an efficient tool to explore the methodological un-
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certainty associated to the selection of a particular performance criteria to be
optimized, since it can illustrate changes and shifts in configurations that arise
from changing objectives.

• Single-site and multi-site problems may show redundant environmental objectives,
and are both therefore good candidates for the application of objective reduction
techniques, such as the one based on PCA.
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6.3 Future work

Single-site MINLP formulation

On the modeling side:

• Study other sources of uncertainty (i.e., demands, product prices, model con-
straints, weights, objectives, etc)

• Extend the formulation to a multi-period problem, including capital investment
costs and capacity expansion of the production units.

• The substitution of unit process experimental correlations by their corresponding
first principles models would be a desired final outcome to reach.

• Include more flexibility in the process design (i.e., allowing different operating
conditions, unit switches, etc).

On the algorithmic side:

• Several highly non-linear unit production equations can be linearized to enhance
the numerical robustness of the model.

• We also intend to develop global optimization algorithms and strategies to over-
come the observed problem of multi-modality. Here we may need to resort to hy-
brid methods that combine meta-heuristics with mathematical programming, as
the use of deterministic global optimization algorithms might lead to prohibitive
CPU times given the size and complexity of the model.

Multi-site MILP formulation

On the modeling side:

• Apply our stochastic framework for evaluating LCI uncertainties to the hydro-
gen SC covering biomass gasification and other less proved hydrogen technology
options.

• Enlarge the scope of the economic performance to account for life cycle costs, al-
though might probe challenging from the parameter gathering perspective, would
allow the model to present a complete holistic economic and environmental formu-
lation.

• Investigate further redundancies and limitations of different metrics that measure
environmental impacts.

On the algorithmic side:
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6.3 FUTURE WORK

• Explore the use of hybrid methods to further expedite the search for Pareto optimal
solutions.

• Investigate further the combination of quantitative and qualitative approaches for
objective reduction and articulating decision-maker preferences.

• Study the use of multi-criteria decision-making strategies for the selection of Pareto
solutions of interest.
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This thesis presents a general mathematical programming framework
for the design of more sustainable energy systems and process
industries under uncertainty. The approach presented consists on the
formulation of a backbone multi-objective model, which is initially
tested in a classical deterministic form, to then be reformulated as a
stochastic programming problem. The first half of the work is devoted to
the design of robust hydrogen supply chains under uncertain market
conditions and different environmental metrics. The second half of the
thesis brings life cycle assessment into a novel industrial-scale nonlinear
multi-objective optimization framework for systematically designing
robust process plants. Risk management metrics are used for controlling
the impact of the uncertainty associated to the economic and
environmental performance indicators. Principal component analysis is
shown to effectively reduce the dimensionality of problems with a large
number of objectives to smaller non-redundant and representative sets.
Life cycle environmental impact indicators are proved as efficient
additional optimization criteria capable of uncovering robust and more
sustainable process systems designs. Finally uncertainty is analysed
using a multi-dimensional perspective that allows to represent complex
systems-based research problems.
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