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Chapter 1

Introduction

The knowledge of the electronic structure of solid materials is crucial for the understanding
of their properties. In the last decades there was a great progress in the investigation of
electronic structures, but our knowledge is still far from being complete. As in his talk
"There’s a plenty room at the bottom" 1959 in Pasadena the Nobel prize winner Richard
Feynman pointed out, the things would have enormously grater range of possible properties
if we had some control of their arrangement in the atomic scale. This prediction was based on
the novel electronic properties arising in quantum mechanics when the electron is confined
in the scale of its wavelength. Even if the production of miniature devices was starting to
take place at this time, it took four decades to be able to walk through the path opened by
this visionary talk.

Organic semiconductors gained significant scientific interest driven by many techno-
logical applications such as organic light emitting diodes (OLEDs), organic transistors and
photovoltaic applications [1]. The reason for efficient application of organic semiconductors
lies in their good charge-transport properties and there is a great effort in improvement of
their carrier mobilities [2, 3]. Charge transport in these materials usually shows different
behaviour comparing to conventional inorganic semiconductors. Therefore, understanding of
several properties of these complex materials and complete quantitative characterization of
their transport properties is still a challenging tusk.

Low dimensional materials are systems in which electronic state wavefunction is confined,
at least in one of the three dimensions. Electronic confinement generally appears in the range
from 1 nm to 100 nm, which gives rise to quantum size effects and alters their electronic
properties. Low dimensional systems have shown a wide range of intriguing phenomena and
extraordinary electronic, optical, thermal, mechanical and chemical properties.

There has been a great interest in low-dimensional transition metal materials in the
past decades. They are extensively studied because of their specific electric, magnetic and
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structural properties which originate from the possibility to obtain partial oxidation states
of the transition metal atoms [4, 5]. Low-dimensional transition metal materials often show
structural and electronic instabilities which lead to anomalies in their transport properties.
Some of them such as monophosphate tungsten bronzes MPT B or NbSe2, became a subject
of an intensive study because they are showing phase transitions which lead to the formation
of charge density waves (CDWs) [6].

In this thesis we are going to study several aspects of the electronic properties of some
organic semiconductors and low dimensional materials.

• In the Chapter 2 we briefly describe methodology and theory behind the theoretical
calculations of the electronic properties of the studied materials.

• In the Chapter 3 we develop a density functional theory (DFT) model to calculate
phonon modes, phonon frequencies and electron-phonon coupling in the rubrene
crystal, one of the most widely studied organic semiconductor. In this chapter are also
going to be shown our results of the tight binding (TB) calculations of rubrene and a
practical way to remove the problem of inaccuracies with the low frequency modes
which often occurs in the DFT-based methods.

• In the Chapter 4 we study electronic structure of monophosphate tungsten bronzes with
pentagonal tunnels, MPT Bp, which are showing phase transitions with a formation
of charge density waves (CDWs). In this chapter we report results of the electronic
band structure, Fermi surface and Lindhard response function calculation for several
MPT Bp phases, with m = 4,5,6,7,8 and 12.

• Finally, in the Chapter 5 we study electronic structure of several low dimensional
materials Sr5Nb5O17, 2H-NbSe2, TaTe4 and Ta2NiSe7 and investigate if the Fermi
surface nesting is at the origin of the structural and resistivity anomalies exhibited
by these compounds. Therefore, here are going to be presented results of their band
structure, Fermi surface and Lindhard response function calculation.



Chapter 2

Theoretical background

Density functional theory (DFT) has become one of the the most frequently used methods
to study the electronic structure of atoms, molecules and solids [7]. DFT is capable of
determining the properties of a many-electron systems starting from the basic equations of
electrons. Therefore, DFT can provide a practical way to compute ground-states of very
complex systems with even thousands atoms per unit cell. However, the computational cost
of DFT methods is still quite big for systems with a few hundreds of atoms, specially for
structural optimisations or molecular dynamics simulations.

The formulation of density functional theory started in the mid 1960’s with the works of
P. Hohenberg, W. Kohn and L.J. Sham [8, 9] and since then, DFT has been in continuous
development to deal with new fields of study such as electron transport or superconductivity.
Nowadays, DFT is used throughout the world as many different groups have their own
DFT-packages. The DFT code used throughout this thesis is SIESTA [10–14].

In this chapter, we are going to explain shortly the DFT method used in this thesis as well
as the tight-binding (TB) approach, which we used in the calculation of electron-phonon
coupling in rubrene. Here is also going to be explained the method for the calculation of
phonons and electron-phonon coupling in rubrene. At the end of this chapter, we are going
to show the theoretical background we used for the Lindhard response function calculation.

2.1 Electronic Structure

For the calculation of electronic structure of solids we will have to solve the Schrödinger
equation. For the real system, which is consisting of many electrons, this is representing the
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quantum mechanical problem and cannot be solved exactly because of many variables and
complexity of equations. The basic Schrödinger equation is given by:

ĤΨ = EΨ (2.1)

where Ĥ is the Hamiltonian, Ψ is the wavefunction and E is the energy. Solving the time
independent problems in quantum mechanics requires the solving of time independent
Schrödinger equation and finding the wave functions and the corresponding eigenvalues:

ĤΨi(r⃗1......r⃗n; R⃗1......R⃗m) = EiΨi(r⃗1......r⃗n; R⃗1......R⃗m) (2.2)

where Ĥ is the non relativistic Hamiltonian operator for the system formed of n electrons
and m nuclei with the spatial coordinates r1.....rn and R1.....Rm respectively. This operator is
not considering the spin degrees of freedom and is given with the equation:

Ĥ =− h̄2

2me

n

∑
ν=1

∇
2
ν −

m

∑
µ=1

h̄2

2Mµ

∇
2
µ −

m,n

∑
µ,ν=1

Zµe2

|Rµ − rν |
+

+
n

∑
ν<ν ′

e2

|rνν ′|
+

m

∑
µ<µ ′

ZµZµ ′e2

|Rµµ ′ |
+V̂ext =

T̂e + T̂N +V̂Ne +V̂ee +V̂NN +V̂ext (2.3)

The first two terms in the equation (2.3), T̂e and T̂N , represent the kinetic energy of the
electrons and nuclei respectively, and the next terms are dealing with the interactions between
electrons and nuclei: the third term, V̂Ne corresponds to the attraction between electrons and
nuclei, fourth and fifth terms, V̂ee and V̂NN , are repulsive electron-electron and nuclei-nuclei
interactions, respectively, and the last term in the equation (2.3), V̂ext , is any other external
potential, for example, electric or magnetic field, if any.

It is clear that even for the isolated atoms (except for hydrogen atoms) the analytical
solution of such a complex equation as equation (2.3) would be impossible without numerical
methods and approximations. The most widely used approximation for the determination
of electronic structure of solids is Born-Oppenheimer approximation [15, 16]. By this
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approximation, the velocity of electrons is said to be very large compared to the velocity of
nuclei (mnuclei ≫ mel ⇒ p2/2mnuclei ≪ p2/2mel) and thus we can decouple the total wave
function in the electronic part and the nuclear part:

Ψ(R,r) = ϕ
n
m(R)Φm(R,r) (2.4)

where ϕn
m(R) is the wavefunction of the nuclei in the nth nuclear state and Φm(R,r) is the

wavefunction of electrons in the mth stationary state of the electronic Hamiltonian, equation
(2.5):

Ĥe = T̂e +V̂ee +V̂Ne +V̂ext (2.5)

The nuclear coordinates Rm enter here just as parameters because the eigenvalues of the
electron Hamiltonian depend on the fixed positions of the nuclei. If we denote the electronic
eigenvalues as εm(R), we can write:

ĤeΦm(R,r) = εm(R)Φm(R,r) (2.6)

After solving the equation (2.6) for the fixed nuclear positions, we would then like to
solve the Schrödinger equation for the nuclei taking into account that m can be any electronic
state:

[TN +VNN + εm(R)]ϕn
m(R) = En

mϕ
n
m(R) (2.7)

To find the solution of the equation (2.7) is very hard and another approximation is usually
taken for treating big systems: the classical nuclei approximation which treats the dynamic
of nuclei as classical particles in a potential εm(R) generated by the electrons. Therefore, the
movement of nuclei is described by Newton’s equations.

In the further text, we will assume these two approximations, concentrating on the
solution of the electronic Hamiltonian (2.5). At this point it has to be stressed out that this
very difficult many body problem would be impossible to be solved without approximations
such as Hartree-Fock (HF), density functional theory (DFT) or others.

In this chapter we will briefly discuss DFT and tight binding (TB) model, as those are
the formalisms behind the numerical simulations reported in this work. Both methods are
widely used for calculating the electronic structures of materials where DFT as a modern and
efficient method is taking a leading role in the last decade.
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2.2 Density Functional Theory

Density functional theory was born as an idea of reducing the Schrödinger equation to
one-electron problem by choosing one-electron potential. The basic concept of DFT is that
any property of a system can be described as a functional of the ground state electron density.
In this way, we can reduce our 3N variable problem (wavefunction of N interacting electrons)
into a 3 variable problem with the electronic density (function of position). In the following
text are going to be presented the theorems that prove this statement.

2.2.1 Hohenberg and Kohn theorems

An antecedent of this theory was set up by Thomas and Fermi [17] in their independent
works, where the electronic density was taken as the fundamental variable of the many body
problem. In 1964 Hohenberg and Kohn [8] presented two theorems considering the electronic
density as the fundamental object. They showed that this approach could be used to obtain
the exact value for the ground state energy of any system of interacting electrons in the
external potential.

Theorem 1: For any system of interacting particles in an external potential, the exter-
nal potential is determined uniquely by the ground state particle density, except for a constant.

COROLLARY: Since the Hamiltonian is known except for a constant, all the many body
wave functions (including ground and excited electronic wave functions) are determined by
the ground state density ρ0(r).

Theorem 2: A universal functional for the energy in terms of the density can be defined that
is valid for any external potential. For a particular value of the external potential, the exact
ground state energy of the system is the global minimum value of this functional, and the
density that minimizes the functional is the exact ground state density.

COROLLARY: The functional alone is enough to determine the ground state density and
energy.

At this point, based on the previous theorems, we can say that we have an exact theory,
although it is still abstract. This theory is just telling us that if the functional defined as a
function of density is known, then by minimizing the total energy of the system we could
find the exact ground state density and energy. However, the functional is not known and the
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minimization problem is a complex mathematical problem. The Kohn-Sham ansatz (1965) is
giving solutions to these issues.

2.2.2 Kohn-Sham equations

In the Kohn-Sham approach [9] it is assumed that the ground state density of the many
body interacting system is equal to that of some non interacting system under the action of
some imaginary effective potential. In this way, the many body problem is replaced with the
simpler one.

The Kohn-Sham approach is based on the assumption that the exact ground state density
can be represented by the ground state of an auxiliary system of non-interacting particles
where the auxiliary one-electron Hamiltonian was chosen to have the form:

Ĥaux =−1
2

∇
2 +Ve f f (r) (2.8)

Here we have the kinetic energy plus an effective local potential acting on an electron
at the point r. Thus, the density of the auxiliary system and the independent particle kinetic
energy are given in terms of the single particle orbitals:

ρ(r) =
N

∑
i=1

|Ψi(r)|2 (2.9)

Ts =−1
2

N

∑
i=1

⟨Ψi|∇2|Ψi⟩=
1
2

N

∑
i=1

|∇Ψi|2 (2.10)

In the KS approach the ground state energy functional can be written in the following
form:

EKS = Ts[ρ]+ENN +EHartree[ρ]+Exc[ρ]+
∫

d3rVext(r)ρ(r) (2.11)

The term EHartree[ρ] is the interaction of the density ρ(r) with itself, the term Vext(r) is
the external potential due to the nuclei and any other external fields, and ENN is the interaction
between the nuclei. Here we introduce Hohenberg-Kohn functional, FHK[ρ], which includes
all internal energies of the interacting electronic system, kinetic and potential:

FHK[ρ] = T [ρ]+Vint [ρ] (2.12)
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where T [ρ] is the kinetic energy and Vint [ρ] is the interaction energy of electrons with
density ρ(r). The functional FHK[ρ] is universal because kinetic energy and interaction
energy of the electrons are functionals only of the electronic density. Now we can write
exchange correlation energy Exc[ρ] in terms of the Hohenberg-Kohn functional:

Exc[ρ] = FHK[ρ]− (Ts[n]+EHartree[ρ]) = ⟨T̂ ⟩−Ts[ρ]+ ⟨V̂int⟩−EHartree[ρ] (2.13)

We can see that Exc[ρ] is nothing else then the difference between the kinetic energies
of the interacting and non interacting systems, the electron-electron interactions and the
Hartree energy.

One can view the solution of the auxiliary KS problem as a minimization with respect to
the density ρ(r) or the effective potential Ve f t(r) [7] and, using the Lagrange multiplier, one
can derive Kohn-Sham Schrödinger-like equations:

(HKS − εi)Ψi(r) = 0 (2.14)

where εi are the eigenvalues, Ψi the functions and HKS is the effective Hamiltonian de-
fined in (2.8) with:

ĤKS =−1
2

∇
2 +VKS(r) (2.15)

VKS =Vext(r)+VHartree(r)+Vxc(r) (2.16)

The theory is exact so far and the problem of one equation for the many body wave
function has been reduced to a system of N single particle equations in a effective potential
Ve f .

2.2.3 Exchange correlation approximation

To write an actual expression for the exchange-correlation potential, which is a functional
of the density, we need to make some approximations. There are many approximations
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for the exchange correlation term but the most commonly used ones are the local density
approximation (LDA) and the generalized gradient approximation (GGA).

The LDA approximation is based on the idea that the inhomogeneous electronic system
can be considered as locally homogeneous. Basically the exchange correlation potential at
point r which was depending of the value of the density at the point r and also of the density
in the whole space, in the LDA approximation depends only on the value of the density at r
while the variations are neglected. Therefore, the exchange correlation energy can be written
as [7]:

ELDA
xc [ρ(r)] =

∫
ρ(r)εxc[ρ(r)]dr, (2.17)

where εxc[ρ] is the exchange correlation energy density of a uniform electron gas of density
ρ(r).

LDA works well in most cases, despite the fact that the systems are usually inhomoge-
neous. However, it has some deficiencies, like overbinding of molecules and solids, and
the fact that it favours homogeneous systems. Nonetheless, it gives good geometries and
chemical trends.

GGA is basically an extension of the local density approximation where instead of
neglecting all possible variations of density it uses a gradient ∇ρ(r) to modify the behaviour
when its variation is important. In this case the exchange correlation energy is given by [7]:

EGGA
xc [ρ(r)] =

∫
f (ρ(r),∇ρ(r))dr. (2.18)

GGA functionals provide better binding energies than LDA but they overestimate the bonding
distances.

2.2.4 The SIESTA method

In many simulation codes we can find other approximations besides the exchange correlation
approximation, which make the calculations more practical. In this thesis, the SIESTA code
was used, which is relying on some approximations that are going to be given in the following
text.
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Pseudopotentials

The chemical properties of materials are mostly dependent on the valence electrons, while
core electrons have very little or no contribution at all. Therefore, we can separate the valence
electrons from the core electrons which are basically screening the nuclear charge seen by
the valence electrons. For that reason, in SIESTA we use pseudopotentials, which are an
effective potential that valence electrons feel [18]. Actually, introduction of pseudopotentials
in the calculations reduces the computational cost because the number of electrons needed to
describe an atom is reduced.

Although there are different kinds of pseudo potentials, we were working only with
Troullier and Martins ones [19] in its non local form [20]. In all-electron KS calculation the
pseudopotentials are generated for each atomic species and the all-electron wavefunctions
are calculated for all the electron states. Then, the pseudo-wavefunctions are created by
fitting functions to the all-electron wavefunctions following the criteria [7]:

• All electron and pseudo-valence wavefunctions agree beyond a chosen core radius rc.

• All electron and pseudo valence eigenvalues agree for the chosen atomic reference
configuration.

• The pseudo-wavefunctions will be nodeless (smooth) inside the core radius.

• The norm of the pseudo-wavefunctions is the same as the true wavefunctions: norm
conserving pseudopotentials.

The pseudopotentials can be expressed into two fully separable parts: a local part and a
non local part

1. a local part V (local)
I (r), where the pseudopotential depends on (r): this term is long

ranged and behaves asymptotically as the electrostatic field generated by the total core
plus nucleus charge (valence ion charge) as ZV/r for r → ∞.

2. a non local part V nl
I : this is a separated pseudopotential for each angular momentum l

and is created following the method of Kleinman [20]

There are many ways to generate a pseudopotentials and in all of them the user has to
choose between the accuracy and transferability that lead to small cutoff radii or smoothness
of the wavefunctions that require larger rc cutoffs. Therefore, the Kohn-Sham Hamiltonian
in equation (2.14) is modified by replacing the electron-nucleus Coulomb terms with:

VI =V (local)
I (r)+V̂ nl

I (2.19)
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The KS Hamiltonian will now been given in the expression:

H = T +∑
I
[V (local)

I (r)+V̂ nl
I +VH(r)+Vxc(r)] (2.20)

Localized basis sets

In the SIESTA calculations we use the pseudo-atomic orbitals as basis sets to describe the
Kohn-Sham orbitals:

Ψi(r) = ∑
µ

ciµξµ(r) (2.21)

Here, the coefficients ciµ have to be determined and the ξµ(r) are the basis functions.
Different functions in the basis set are denoted with the index µ .

The SIESTA code uses the numerical atomic orbitals which represent the product of
numerical radial function and a spherical harmonic:

ξnlm(r) = Rnl(r)×Ylm(r) (2.22)

where n is the principal quantum number that describes different functions with the same
angular momentum l, and m is the azimuthal quantum number. The basis set describes
only valence states because we use pseudopotentials to describe the core electrons. We say
that numerical atomic orbitals are strictly localized because they are strictly zero beyond a
given radius from the nucleus. Several radial functions with the different radial shape can be
included in one basis set to improve accuracy.

The basis set has to be carefully chosen to be both accurate and practical. For the
description of the Kohn-Sham orbitals one has to use the minimum possible number of
orbitals which give sufficiently good results. The choice of the minimal number of functions
in the basis will actually represent the primary valence degrees of freedom. Therefore, the
minimum set to describe an hydrogen atom will be one s function (1s) and this is called
single-ζ basis. To improve the minimum set we double the basis functions using more
then one radial function per angular momentum (l). This is how we get double-ζ , triple-ζ
and so on. In the case of the hydrogen atom, double-ζ means having two 1s orbitals with
different radial shape. Further on, we can add "polarisation functions" taking into account the
environment of the molecule or solid. In this thesis we used single-ζ and double-ζ polarized
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basis sets, SZP and DZP respectively. In the case of hydrogen atom, DZP would mean having
two orbitals of s symmetry with different radial dependence and a shell of 2p orbitals in the
basis. There are several ways to choose the radial shape for the two orbitals in the same shell.
For the multiple-ζ bases in SIESTA, the first-ζ is generated by solving the radial Schrödinger
equation for an atom restricted with a potential of the form [21]:

V (r) =V0
e

rc−ri
r−ri

rc − ri
(2.23)

Here V0 is a parameter that determines the shape of the confining potential, rc is the cutoff
radius of the orbitals and ri the internal radius where the potential starts. The formation of the
first-ζ is generated differently then second-ζ , triple-ζ and so on. To generate the second-ζ
we chose the "split valence" scheme adapted to numerical orbitals and implemented in the
SIESTA code [13]. In this method the second-ζ orbital has the same tail as the corresponding
first-ζ orbital but change to a simple polynomial behaviour inside a certain "split radius" rs

l :

ξ
2ζ

l (r) = rl(al −blr2) if r < rs
l

or

ξ
2ζ

l (r) = ξ
1ζ

l (r) if r ≥ rs
l (2.24)

where al and bl are determined by imposing the continuity and slope at rs
l . Using the

"split valence" scheme and following the procedure in equation (2.24), the second-ζ is then
defined as ξ

2ζ

l −ξ
1ζ

l , which is zero beyond the split radius rs
l .

2.3 Tight binding approximation

The tight binding method was developed by Bloch in 1928 which was one of the first theories
of electrons in a crystal [22]. In the first formulation of this theory, Bloch considered only the
simplest s-orbitals in the basis [23], while few years later, Jones, Mott and Skinner introduced
different atomic orbitals [24].

The tight binding approximation is often used for large calculations as a method that
efficiently solves the one electron Schrödinger equation. The tight binding model is based
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on linear combination of atomic orbitals (LCAO). In calculations of electronic properties
of condensed matter we usually deal with crystals which are periodic systems of atoms.
Therefore, we can derive the Bloch theorem for the eigenstates by defining the basis of Bloch
orbitals with the wavevector k:

ξµk(r) = Aµk ∑
R j

eikR jξµ(r−R j) (2.25)

where Aµk is a normalization factor and ξµ(r−R j) are orbitals centred on atom j. Now this
basis can be used to write an eigenfunction of the Schrödinger equation as:

Ψik(r) = ∑
iµ

Ci(k)ξµk(r) (2.26)

and when we introduce the wavevector k in the secular equation HΨ = EΨ we get:

Hµν(k)Ciµ(k) = Eiν(k)Sµν(k)Ciν(k) (2.27)

Here, the Hamiltonian Hµν(k) and the overlap matrix Sµν(k) are defined as:

Hµν(k) = ⟨ξµk|H|ξνk⟩ (2.28)

Sµν(k) = ⟨ξµkξνk⟩ (2.29)

These two expressions can be written in their integral forms as:

Hµν(k) = ∑
R

eikR
∫

drξ
∗(r)Hξ (r−R) (2.30)

Sµν(k) = ∑
R

eikR
∫

drξ
∗(r)ξ (r−R) (2.31)
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The Hamiltonian matrix elements in (2.45) consist of kinetic part and potential part:

Ĥe = T̂e +V̂e f f (2.32)

where the first term is the usual kinetic energy and the second term is the effective po-
tential which represents all the possible interactions in the solid. If we assume that V̂e f f is a
sum of the atomic potentials generated by all the atoms in the solid:

V̂e f f = ∑
j

v(r−R j) (2.33)

and introduce this potential into the equation (2.45) we would find that we have four main
kinds of matrix elements:

• One-center, where both orbitals and the potential are centered on the same atom:

∫
drξ

∗(r−R j)v(r−R j)ξ (r−R j) (2.34)

• Two-center, where the orbitals are centered on different atoms and the potential is on
one of the two:

∫
drξ

∗(r−Ri)v(r−R j)ξ (r−R j) (2.35)

• Two-center, with both orbitals on the same atom and the potential centered on another:

∫
drξ

∗(r−R j)v(r−Ri)ξ (r−R j) (2.36)

• Three-center, where the orbitals and the potential are all centered on different atoms.

∫
drξ

∗(r−Ri)v(r−R j)ξ (r−Rk) (2.37)

The calculation of matrix elements of the Hamiltonian that involves the multi-center
integrals can be computationally very costly. Slater and Koster proposed that all the matrix
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elements should be approximated with the two-center form and fitted to theoretical calcu-
lations (or experimental data) [23]. By this approach all matrix elements have the same
symmetry as for two atoms in free space, which is a great simplification and useful approach
in understanding of electrons in materials. The basis set is assumed to be orthogonal and
is introduced in most practical tight-binding approaches as well as in our work with TB in
rubrene.

2.4 Phonons and electron-phonon coupling

The theoretical method used for calculations of phonons and electron-phonon coupling in the
rubrene crystal is going to be presented here.

For the calculation of the vibrational properties we build the force-constant matrix by
displacing individual atoms along the Cartesian directions. The dynamical matrix is defined
from the second derivative of total energy:

Diα, jβ ≡ 1
√

mi
√m j

δ 2E
δuiαδu jβ

(2.38)

where i and j are the atoms, mi and m j their masses and uiα and u jβ are the displace-
ments of these atoms along the Cartesian coordinates α and β , respectively. The force on
atom i upon displacement uiα is given with the equation:

Fiα =− ∂E
∂uiα

(2.39)

We take the finite differences by approximation so that the Dynamical matrix is calculated
from positive and negative displacements of the atom as:

Diα, jβ ≈ ∆Fiα

∆u jβ
(2.40)

From the solution of the eigenvalue equation of the dynamical matrix:

∑
jβ

Diα, jβ e jβ = ω
2eiα (2.41)
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we get the eigenvectors ep (p is the index of the mode) with the Cartesian components
eiα for atom i and phonon frequencies, ωp. The phonon normal modes σ p are calculated as:

σ
p
iα =

1
√

mi
ep

iα (2.42)

In this direct diagonalization of Dynamical matrix we could calculate vibrational proper-
ties of the crystal, such as eigenvectors of phonons ep and their frequencies, ωp. In order
to obtain the phonon frequencies to a sufficient level of accuracy, we had to involve an
alternative method for their calculation which is called a frozen-phonons method. In this
procedure, we displace all atoms of the crystal in the direction of the mode vectors σ p of the
given phonon mode p according to:

u⃗p = u⃗0 +λσ⃗p (2.43)

where u⃗0 is starting position of the atom and λ is the amplitude of the phonon p. Fur-
ther on, we re-calculate the total energies of the crystal with the frozen phonon and perform
these calculations for every normal mode for a set of different amplitudes λ . Finally, from
our results we could observe the change in total energy E −→ E +∆E(λ ) which is given
with the equation:

∆E(λ ) =
1
2 ∑

iα, jβ
λep

iαDiα, jβ λep
jβ =

1
2

ω
2
pλ

2 (2.44)

As it will be shown later, this allows the computation of phonon frequencies with bet-
ter accuracy, especially for the low-energy modes for which the problem of imaginary
frequencies is avoided.

For the calculation of electron-phonon coupling in rubrene crystal we use the Holstein-
Peierls Hamiltonian H = Hel +Hph+Hel−ph which consists of an electronic part, a phononic
part and a coupling part between electrons and phonons and is given in a form:
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H = ∑
M,N

εMNa†
MaN + ∑

Q=(q,p)
h̄ωQ(b

†
QbQ +

1
2
)

+ ∑
Q,M,N

h̄ωQgQ
MN(b−Q +b†

Q)a
†
MaN (2.45)

where εMN are the matrix elements of the electronic coupling between states M and N
and aM(a†

M) and bQ(b
†
Q) are the annihilation (creation) operators for electrons and phonons

respectively. Q is the coordinate of the phonon Q = (q, p) where p is index of the normal
mode and q is the phonon wavevector. This model stands for both intra-molecular and
inter-molecular electron-phonon interactions.

The electronic part of the Hamiltonian, Hel , and the phononic part, Hph, can be directly
computed with Density Functional Theory. For the calculation of electron-phonon coupling in
rubrene we have chosen the frozen-phonons method. The electron-phonon coupling constants
gQ

MN in the model are defined as the linear changes of the electronic matrix elements εMN

with the amplitudes λ of the phonon normal mode p with wave vector q and are calculated
as:

gp =
∂E
∂λ p

1√
2ω3

ph̄
(2.46)

Defined in this way, the coupling constants are dimensionless and explicitly depend on
the phonon wave vector q.

To calculate the electron-phonon coupling constants of each mode in the finite differences
approach, we followed the changes of energies in the electronic band structure when each
mode σ p is applied on the rubrene crystal. The changes in the band structure for different
amplitudes λ would enable the extraction of the electron-phonon coupling constants from
the linear slope of the changes in the electronic energies [25, 26].

In this thesis we are also going to present results of the tight binding calculations of
electron-phonon coupling in rubrene. Therefore, here we will briefly explain the tight binding
model used for these calculations of the rubrene crystal.

Beyond the numerical calculation of electronic energy bands and vibrational properties,
we derive a tight-binding model to parametrize electronic properties and electron-phonon
coupling interactions in rubrene. Thereby, we focus on the states derived from the highest
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occupied molecular orbitals (HOMO) of rubrene, i.e. the up most valence band in the
crystal. We look for a simple TB model in which only one state per molecule is included, the
HOMO orbital. The basis set in our TB approach is made only of HOMO orbitals which are
orthogonal as in usual TB models. In order to obtain TB parameters from DFT calculations
we need to employ a basis transformation from the atomic orbital basis used in the SIESTA

calculations into the basis set made of HOMO orbitals. Therefore, we start from the basis of
atomic orbitals for which the Kohn-Sham Hamiltonian, Ĥ, is described as:

Hµν = ⟨ξµ |Ĥ|ξν⟩ (2.47)

and the overlap matrix as:

Sµν = ⟨ξµ |ξν⟩. (2.48)

Here ξµ and ξν are representing atomic orbitals of the atoms µ and ν . The transition
from the basis set used in density functional theory calculations and the desired orthogonal
tight binding model can be achieved in two steps. First we project onto the molecular HOMO
orbitals |ΨHOMO

M ⟩ known from gas-phase calculations:

|ΨHOMO
M ⟩= ∑

µ

cµM|ξ M
µ ⟩ (2.49)

where M indicates the molecule on which the HOMO orbital is located, |ξ M
µ ⟩ are the

basis functions associated to M and cµM are the coefficients which can be obtained from the
SIESTA calculations of single molecules. In this way we can express the Hamiltonian of
two molecules M and N in the non-orthogonal HOMO basis while neglecting other types of
molecular orbitals as:

HMN = ⟨ΨM|Ĥ|ΨN⟩
= ∑

µν

c∗µMcνN⟨ξ M
µ |Ĥ|ξ N

ν ⟩ (2.50)



2.4 Phonons and electron-phonon coupling 19

and

SMN = ⟨ΨM|ΨN⟩= ∑
µν

c∗µMcνN⟨ξ M
µ |ξ N

ν ⟩ (2.51)

is the molecular overlap matrix of the molecules M and N. The other molecular states
are neglected as we are interested only in the parameters of the HOMO orbitals of rubrene
molecules.

The second step in the tight binding approach was the orthogonalization of the molecular
orbitals for which we have chosen the Löwdin orthogonalization method with the overlap
matrix represented with the equation (2.51). In this method, from the given initial set of
normalized but non-orthogonal wave functions, |ΨM⟩, we generate a new set of orbitals |Ψ′

M⟩
defined as:

|Ψ′
M⟩= |ΨM⟩− 1

2 ∑
N

SMN |ΨN⟩ (2.52)

This single step mixing is repeated until the wave functions are orthogonal to the desired
degree of accuracy. For the HOMO orbitals of rubrene it turns out that a single step of
orthogonalization is sufficient as the overlap matrices are negligibly small after the first
iteration. If we apply this orthogonalization for undisplaced atoms of the rubrene crystal we
can calculate the electronic part of the Hamiltonian (2.45) Hel . Applying this approach for the
crystal structures with the frozen-phonon distortions, we can obtain the Holstein and Peierls
electron-phonon coupling constants, which are now going to be the coupling constants in the
orthogonal molecular HOMO basis, gQ

MN . The local Holstein coupling constants are defined
for the case when q = 0 and can be calculated as:

gp
Holstein =

1√
2h̄ω3

p

(
∂ε0

∂λ
) (2.53)

They are averaged over the four molecules in the unit cell. The Peierls coupling constants:

gp
Peierls =

1√
2h̄ω3

p

(
∂εi

∂λ
) (2.54)
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are defined by the transfer integrals εi between HOMO states of the neighbouring molecules.

2.5 Charge Density Waves and Lindhard response func-
tions

A Charge Density Wave (CDW) represents a state with spontaneously broken translational
symmetry, which is specific to anisotropic low dimensional materials. The phase transition to
the CDW state is accompanied by the development of periodic lattice distortions and often,
to the opening of energy gaps at the Fermi level [27, 28].

In the 1930’s Peierls gave a prediction of CDW showing that a one-dimensional material
would be unstable to the formation of energy gaps on the positions ±kF at the Fermi
level. Later on, in the 1950’s Fröhlich explained that the opening of the gap at the Fermi
level happens as a consequence of interactions of electrons with phonons which have the
wavevector q⃗ = 2kF [29]. In the 1960’s Little suggested that some organic materials with
high polarizability could exhibit superconductivity at considerably high critical temperature.
This suggestion launched a large activity and molecular organic metals were soon prepared.
However, instead of superconducting transitions, these compounds were showing Peierls
transitions. The first evidence for CDW transport in inorganic linear chain compounds was
first reported in 1976 by Monceau et al. [30], who observed anomalous electric behaviour in
NbSe3.

The question one could ask is how are charge density waves connected with one-
dimensionality? One dimensional materials have sections of Fermi surface which are parallel
to each other and provide an optimal condition for nesting. When a piece of Fermi surface
can be translated by wavevector q⃗ and superimposed on another piece of Fermi surface, then
the Fermi surface is said to be nested by a wavevector q⃗, Figure 2.1 [31].

When the Fermi surface is nested then the system shows electronic instability and usually
undergoes a charge density wave transition. The CDW is a periodic modulation of charge
density followed by distortion of crystal lattice. Sometimes it is more energetically convenient
for charge carriers to take this configuration and atoms just follow the new periodic potential,
Figure 2.2. The temperature at which CDW transition happens is called transition temperature
or Peierls temperature, Tp, and the transition is called a Peierls transition.

Figure 2.2a shows the one electron band structure of the unperturbated 1D system. Here,
the charge density, ρ , and the atomic distances, a, are uniform throughout the crystal. Under
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(a) (b) (c)

Fig. 2.1 Fermi surface nesting: (a) 1D Fermi surface - possible nesting, (b) 2D Fermi surface
- no nesting, (c) quasi-2D Fermi surface with partial nesting.

(a) (b)

Fig. 2.2 Charge density wave instability and opening of the gap at the Fermi level.

some perturbation, lowering the temperature below the transition temperature, Tp, the system
undergoes a CDW transition and the gap opens on the Fermi surface at the positions ±kF ,
Figure 2.2b. The electron bands just below the Fermi level combine in such a way that
electrons are having lower energies than before the perturbation and energy bands above the
Fermi level are moving towards higher energies. In this way the band gap opens which is
followed with distortion of the crystal lattice [32].

Without specifying the perturbation, let us assume that some external potential φ ext (⃗r)
leads to a density fluctuation, ρ ind (⃗r), and therefore to a potential φ ind (⃗r) induced by ρ ind (⃗r):

φ
ext (⃗r)=⇒ρ

ind (⃗r)=⇒φ
ind (⃗r)
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The Fermi surface nesting is inducing electronic instability and hence a phase transition
to the charge density wave (CDW) state. The electron charge redistribution is induced by
the perturbed electric potentials. The response of the electron gas to the time independent
potential, φ ind (⃗r), and the rearrangement of the electronic charge, ρ ind (⃗r) are described with
these equations [6]:

φ
ind (⃗r) =

∫
q

φ
ind (⃗q)ei⃗q·⃗rdq⃗ ρ

ind (⃗r) =
∫

q
ρ (⃗q)indei⃗q·⃗rdq⃗

If the potential is given as:
φ (⃗q) = φ

ext (⃗q)+φ
ind (⃗q)

the induced charge density can be expressed as:

ρ
ind (⃗q) = χ (⃗q)φ (⃗q) (2.55)

χ (⃗q) is the so-called Lindhard response function and it is defined by equation:

χ (⃗q) =− 1
(2π)d

∫
1BZ

d⃗k
f (⃗k+ q⃗)− f (⃗k)

E⃗k+q⃗ − E⃗k
(2.56)

Here d is the dimensionality, f (⃗k) represents the Fermi function and E⃗k denotes the free
electron energy at the momentum k⃗ (the Fermi function has values f (⃗k) = 1 for electrons
and f (⃗k) = 0 for holes at T = 0 K).

On the figure 2.3 is shown a Lindhard function for one-, two- and three-dimensional
electron gas at T = 0 K as a function of the wavevector. One can see that for one-dimensional
case, at the position of 2kF a divergence is expected, which would be the origin of charge
density wave.

In the definition of Lindhard susceptibility, equation (2.56), the Fermi function f (⃗k)
indicates that only electron-hole pairs at k⃗ and k⃗+ q⃗ contribute to the development of CDW
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Fig. 2.3 Lindhard response function as a function of wavevector for one-, two- and three-
dimensional free electron gas at zero temperature, [6].

states, since f (⃗k + q⃗)− f (⃗k) ̸= 0 only for ( f (⃗k + q⃗), f (⃗k)) = (1,0) and (0,1). The peak
structure of χ (⃗q) is associated with the selected q⃗ vectors that give the smallest denominator
E⃗k+q⃗ − E⃗k ≈ 0 or E⃗k+q⃗ ≈ E⃗k over large regions in k⃗ space available for integration. The
electron-hole pairs nested by such a wavevector q⃗ have a relatively high density of states at
the Fermi level and CDW phase transition is dominated by the energy of states which are
close to the Fermi level, E f . Thus, the χ (⃗q) peak structure strongly depends of the Fermi
surface topology. Low dimensional materials have more regions of Fermi surface parallel to
each other, which give more density of states available for nesting, and are more strongly
susceptible to the electron energy instability and CDW phase transition. This often allows a
simple graphical interpretation of Fermi surface nesting as the origin of the CDW. Thus, the
CDW instability is driven by the electronic structure and the Fermi surface topology. Indeed,
Fermi surface nesting has provided a powerful tool to understand various examples of the
CDW states observed in many low dimensional materials.

For 1D, at finite temperatures, the numerator in the equation (2.56) is given by:

1
exp(−Ek/kBT )+1

− 1
exp(Ek/kBT )+1

= tanh
Ek

2kBT
(2.57)

where Ek is now measured from the Fermi level, E f . Therefore, the equation (2.56) be-
comes:

χ(q = 2k f ,T ) =−e2n(E f )
∫ E0/2kBT

0

tanh x
x

dx (2.58)
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E0 is an arbitrarily chosen cutoff energy which is usually taken to be equal to the Fermi
energy, E f . The integral can be evaluated giving:

χ(2k f T ) =−e2n(E f )ln
1.14E0

kBT
(2.59)

Fig. 2.4 Lindhard function of one-dimensional free electron gas at various temperatures, [6].

We have studied the Lindhard function for several well-known low-dimensional materials
in order to analyze if the structural modulations that they exhibit originate from some Fermi
surface instability. In all cases, in contrast to the previous methodological approach, we
have carried out the study taking into account the real structure of the systems by using
first-principles density functional theory calculations. It is important to emphasize that large
sets of k points are needed in these very anisotropic materials in order to have accurate
Lindhard functions.



Chapter 3

Electron-phonon coupling in rubrene

3.1 Introduction

The scientific interest in organic semiconductors is constantly growing driven by many
technological applications. These organic materials are particularly interesting from the
processing point of view (e.g. low temperature, solution processable, chemical modifications,
etc.) [33–37]. Efficient charge transport in organic semiconductors is the main reason
for their application in the organic electronics [1–3, 38–41] and there is a huge effort in
improving the carrier mobilities by means of available tools such as chemical and structural
modifications of these organic materials. Thereby, theoretical input can provide guidelines
towards possible realizations of high mobility of charge carriers and production of highly
functional materials [42]. Nonetheless, theoretical interpretation and understanding of several
properties of these materials sometimes remains incomplete. Charge transport in some
organic semiconductors often displays very different behaviour compared to the conventional
inorganic semiconductors.

One of the prototypical materials studied frequently is rubrene (5,6,11,12- tetraphenylte-
tracene), a red coloured polycyclic aromatic hydrocarbon [43–48]. Rubrene, as many other
organic semiconductors, found applications in organic light emitting diodes (OLEDs) and
organic field effect transistors (OFETs) [49–55]. At first it was expected from rubrene to
have small carrier mobilities due to the weak intermolecular interactions and bulky phenyl
rings attached to the side of the tetracene backbone, Figure 3.1. However, most interestingly,
rubrene holds the distinction of being the organic semiconductor with the highest carrier
mobility, which can reach 40cm2/V s for holes [56]. Therefore, rubrene is often used as a
model compound for experiments [56–63] and simulations [43, 45, 64–66]. The most recent
advances for rubrene research include novel kind of growth by means of van der Waals
epitaxy [67] or the detailed analysis of defect formation.[68].
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Theoretically, rubrene has been characterized by means of semiempirical methods and
methods that have been carried beyond the rigid molecule approximation [43, 69]. However,
to date a full analysis of the electronic properties and electron-phonon coupling (including
Holstein and Peierls type of couplings) has not been shown. This might be due to the
structure of rubrene, which exhibits a relatively large unit cell with 280 atoms and results in
840 phonon modes, Figure 3.2, or to the difficulties in density functional theory (DFT) based
methods with accuracy to describe the low frequency modes.

Fig. 3.1 The molecule of rubrene consisting of the central tetracene backbone and four
attached phenyl groups.

We performed density functional theory (DFT) calculations of phonon modes, phonon
frequencies, electron-phonon coupling and the calculation of the distorted structure of rubrene
crystal. The theoretical and computational methods used for these calculations in rubrene are
given in the Chapter 2. Here we are also going to show our results of the tight binding (TB)
calculations of rubrene and a practical way to remove the problem of inaccuracies with the
low frequency modes that often occur in the DFT-based methods and are problematic for the
systems with a large number of atoms.

3.2 Vibrational properties of rubrene

The molecule of rubrene C42O28 is made of tetracene backbone with four phenyl groups
attached on each side of the backbone, Figure 3.1. The phenyl groups are rotated out of
the molecular plane due to the steric hindrance between the phenyls. The crystallization
of rubrene can result in different structures. Depending on the growth conditions, crystals
of rubrene can be monoclinic, triclinic and orthorhombic. In our calculations we were
using a non-primitive orthorhombic unit cell made of four molecules of rubrene: two
molecules exchanged with rototranslation and two more molecules obtained by a non-
primitive translation, Figure 3.2 [70]. We start from the experimental coordinates [58], and
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perform a conjugate gradient optimization to obtain relaxed atomic coordinates and lattice
constants of the crystal. For this relaxed unit cell, we calculate electronic properties, phonon
modes and frequencies as well as electron-phonon coupling parameters.

Fig. 3.2 Perspective view of the rubrene unit cell with four molecules.

All calculations were done with the SIESTA code [10, 13] using the local density ap-
proximation (LDA) [71, 72]. We used double-ζ polarized basis set of numerical orbitals
optimised for the bulk structure of rubrene [21]. The basis set parameters for H and C are
given in the Table 3.1. The pseudopotentials used for calculations of rubrene crystal are the
Troullier-Martins type [19] in their nonlocal form [20].

rc(Bohr) V0(Ry) ri(Bohr) Q(e)
s1ζ s2ζ p d1ζ d2ζ s p d s p d

H 7.50 1.85 4.75 − − 45.4 40.1 − 4.20 2.96 − 0.76857
C 6.50 2.86 8.50 2.95 3.70 39.4 95.7 62.5 3.61 4.31 0.66 0.074

Table 3.1 Parameters that define the basis for H and C: rc is the cutoff radius of each of the
orbitals, V0 and ri are the parameters which determine the confining potential for each shell
and Q is a charge assigned to the atom in the solution of the free atom problem.

After the diagonalization of the dynamical matrix (see Chapter 2 section 2.4) we obtain
frequencies, ωp, and eigenvectors, eiα , of all normal modes, which in the case of our unit cell
made of four molecules or 280 atoms results in 840 normal modes. After careful analysis of
calculated modes it turns out that some phonons have unrealistically small or even imaginary
frequencies. This is a general problem which may seriously jeopardise further calculations
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of electron-phonon coupling constants in rubrene as for these calculations we will be using
phonon frequencies.

The origin of this behaviour lies in the general difficulty to describe collective crystal
vibrations in soft materials like organic crystals. This inaccuracy and the appearance of the
imaginary frequencies are one of the major problems when DFT methods are used in the
systems with the large number of atoms, such as rubrene. Collective molecular modes, such
as libration modes or translations, involve the motion of many atoms. This means that many
force constants will enter in the resulting vibrational frequency. This is in contrast to e.g. a
C-H-stretch mode, where the force constant related to the C-H bond will mostly define the
frequency of the mode. Considering that forces ∆Fiα for displaced atom i (equation (2.39) in
Chapter 2) may have some small numerical error, this error can accumulate in the phonon
frequency ω p which results from all forces. Therefore, if the frequency of the mode is low,
the relative error can then be very large for such modes.

However, detailed inspection of all low-frequency modes shows that vibrational patterns
are correct and orthogonal which leads us to the conclusion that phonon vectors σ p are
correct in contrast to the vibration frequencies. Therefore, we need to re-calculate the mode
frequencies and we do that by applying the frozen-phonon method explained in the Chapter
2. We re-calculate the changes in the total energy ∆E around the equilibrium configuration
for different normal mode amplitudes λ for all vibrations using the equation:

∆E(λ ) =
1
2 ∑

iα, jβ
λep

iαDiα, jβ λep
jβ =

1
2

ω
2
pλ

2

A list of some selected low-frequency modes with frequencies ωI < 50cm−1 is given in the
Table 3.2. Here we denote the phonon frequencies obtained from the direct diagonalization
of the dynamical matrix as ωI and the re-calculated phonon frequencies using the frozen-
phonons approach as ωII . The Table 3.2 shows how the frequencies of the low-frequency
modes can be strongly corrected by the frozen-phonon method.

On the Figure 3.3a is shown an example to illustrate the difference between the frequency
calculated in direct diagonalization (ωI) and the re-calculated one with frozen-phonons
method (ωII) for a chosen mode. The frequency obtained from the direct diagonalization
of Diα jβ is h̄ωI = 5.5 meV (44.4cm−1), while the quadratic fit to the total energy in the
frozen-phonon method yields the corrected mode energy h̄ωI = 7.4 meV (59.6cm−1). This
is a typical example of the general behaviour of the low-frequency modes because the new
value is increased by 34.5% compared to the original frequency of this mode. In the Figure
3.3b are shown relative frequency differences:
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ωI (cm−1) ωII (cm−1) symm. mode descr.
-19.9 17.0 B2g R∥ tetracene
0.06 16.4 B2u Ty +Bmolecule
0.08 21.8 B1g R⊥ tetracene
5.5 20.8 B1u Tz +Bphenyl
9.4 31.7 B1u Bmolecule

16.1 24.0 Au Tx + torphenyl
18.9 41.6 B3u Tx + torphenyl
21.4 41.6 B2g R⊥ tetracene + torphenyl
22.2 46.8 B2u Bmolecule
29.5 43.5 B1g R⊥ tetracene
30.1 37.7 Au Tx +Wphenyl
38.1 52.2 B2u Bmolecule
38.9 46.4 B1g R⊥ tetracene +Wphenyl
42.7 47.7 B1g R∥ tetracene
44.4 59.6 Ag torphenyl
46.9 57.8 Ag torphenyl
47.4 60.3 B3u torphenyl
48.3 55.5 B2g R∥ tetracene
48.5 49.0 B1u Ty
48.6 55.0 B1u Ty +Bmolecule

Table 3.2 Phonon frequencies in both approaches with symmetry assignement and mode
description with abbreviations: (Taxis)-translation, (Raxis)-rotation, (B)-butterfly mode, tor-
torsion and W -wagging

∆ωrel =
ωII −ωI

ωII

Evidently, with the new re-calculated frequencies we obtain higher energies especially
for the low-frequency modes which are corrected by up to 50% and even more. On the
other hand, higher frequencies are only slightly changed which indicated that only collective
modes are affected and the frequencies for the high frequency modes are described well by
the initial diagonalization of the dynamical matrix. For the further calculations we will only
use the corrected frequencies, ωII . With this method for phonon frequencies re-calculation
we achieve the higher accuracy for all the phonon frequencies but most importantly, higher
accuracy for the soft modes or low frequency modes and disappearance of the imaginary
frequencies.
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Fig. 3.3 (a) Change of the total energy of the system with the amplitude of the phonon, (b)
Relative frequency change.

3.3 Electron-phonon coupling

Electronic transport in organic semiconductors is dominated by several factors, with the
interaction of electrons and phonons being of great importance. The strong electron-phonon
interaction taking place in these materials has a much stronger impact on organic semicon-
ductors compared to inorganic ones, as the band widths are much smaller. As a consequence,
this interaction implies specific transport characteristics which cannot be described by con-
ventional approaches.

We performed calculation of the electron-phonon coupling in rubrene by using the frozen-
phonon method described in the Chapter 2. This method implies displacing the atoms of
rubrene by adding each phonon and then calculating the electronic band structure for all
frozen-phonons systems. On the Figure 3.4a is shown the calculated band structure of the
rubrene crystal without phonon and when one phonon is added. From this figure we can se
the impact of specific phonon p on the band structure of rubrene and how the energies of
bands are changing by the influence of phonons.

This example illustrates the impact of a vibration of frequency 1593.3 cm−1 on the
rubrene HOMO bands. This mode is an intramolecular C-C stretch mode and as such
strongly changes the onsite energy. Each HOMO band in the Figure 3.4a is representing the
highest occupied molecular orbital of each molecule in the unit cell. If we follow the changes
in the band structure for different amplitudes λ , we can extract the electron-phonon coupling
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Fig. 3.4 (a) Changes in the band structure of rubrene with distorted geometry, namely without
phonon (red) and with phonon with ω p = 1593.3 cm−1 (black); (b) Brillouin zone and
definition of special points.
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Fig. 3.5 Linear fit for the changes of energy with amplitude for the phonon with ω =
1593.3cm−1. E1, E2, E3 and E4 are corresponding to the energies of four HOMO bands at
the Γ point calculated for different amplitudes λ .

constants gp. On the Figure 3.5 are shown the changes in energies of four HOMO bands of
the example phonon with ω p = 1593.3 cm−1 as the function of amplitude λ for Γ point.
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From the linear slope of the changes in electronic energies, ∆E/∆λ we can calculate the
dimensionless electron-phonon coupling constant using the equation:

gp =
∂E
∂λ p

1√
2ω3

ph̄

Therefore, the averaged electron-phonon coupling constant for the observed mode is
g1593.3 = 0.21. By linear fitting to band structures for all normal modes we could calculate
the electron-phonon coupling constants of all phonon modes. On the Figure 3.6 are shown
results of the calculation of electron-phonon coupling constants gp for each phonon p as a
function of their frequencies, ω p. The four graphs are corresponding to the four HOMO
bands of the four molecules of rubrene and these results are for the Γ point. The results for
the X , Y and Z points of the Brillouin zone are given in the Appendix A.
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Fig. 3.6 Calculated electron-phonon coupling constants g for the four molecules of rubrene
as a function of phonon frequencies ω .

The results show that the highest electron-phonon coupling constants are coming from
the low frequency modes. The reason for this is that the most of the low-frequency modes
correspond to the vibrations of side phenyl groups around the tetracene backbone of rubrene
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molecules and side phenyl rings are mostly responsible for the hopping of charge carriers
from one molecule to another in rubrene crystal [43]. Therefore, for the modes with higher
frequencies which are mostly corresponding to vibrations of the tetracene backbone we find
much weaker electron-phonon interactions. The highest electron-phonon coupling constants
in the Figure 3.6 are coming from the three low-frequency modes with averaged coupling
constants: g107.3 = 0.83, g139.1 = 0.76 and g57.8 = 0.62.

3.4 The tight-binding calculations

To parametrize electronic properties of rubrene, we perform tight-binding (TB) calculations
using the method described in the Chapter 2. Let us first define the transfer integrals in
rubrene. From the Holstein-Peierls Hamiltonian:

H = ∑
M,N

εMNa†
MaN + ∑

Q=(q,p)
h̄ωQ(b

†
QbQ +

1
2
)+ ∑

Q,M,N
h̄ωQgQ

MN(b−Q +b†
Q)a

†
MaN

the first term represents the electronic Hamiltonian which depends on the full set of transfer
integrals εMN of molecules M and N. Due to the high symmetry of the unit cell this set can
be reduced such that TB model of rubrene requires only few relevant transfer integrals. On
the Figure 3.7 is shown the supercell of rubrene with definition of transfer integrals.

According to the assignments to the molecules in the Figure 3.7, the remaining symmetry-
reduced electronic transfer integrals are: εAC, εAD, εAB, εAA+b and εAA±2b. Here b indicates a
lattice vector in vertical direction and A+b denotes the HOMO orbital of the molecule A in
the neighbour unit cell. The coupling between the molecules A and D is negligible and the
transfer integral εAD = 0. For the same reasons we are neglecting εAA+2b because the values
are very small comparing to other transfer integrals.

Applying the TB approach described in the Chapter 2 on the structures including the
frozen-phonons distortion we can determine by finite differences the linear changes in the
transfer integrals and obtain the Holstein and Peierls coupling constants defined as:

gp
Holstein =

1√
2h̄ω3

p

(
∂ε0

∂λ
)
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Fig. 3.7 Supercell of rubrene with definition of transfer integrals. A, B, C and D are the four
molecules within the unit cell where εAC, εAD, εAB, εAA+b are the four nearest-neighbour
transfer integrals and εAA+2b is a second neighbour transfer integral along the lattice vector b.

and
gp

Peierls =
1√

2h̄ω3
p

(
∂εi

∂λ
)

where εi can be εAA+b, εAB or εAC.

The strength of the Holstein and Peierls coupling is expressed by the polaron binding
energy, EH , and by the lattice distortion energy, EP, respectively, defined as:

EH = ∑
p

E p
H = ∑

p
h̄ωp(g

p
0)

2

EP = ∑
p

E p
P = ∑

p
h̄ωp(g

p
i )

2

Here E p
H and E p

P are mode-resolved Holstein and Peierls contributions respectively and
EP consists of all Peierls coupling constants for all nearest neighbours of a specific molecule.
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On the Figure 3.8 are shown results of the calculated EH and EP. As we can see from the
figure, the majority of the 840 modes have electron-phonon coupling close to zero. Modes
with non-local couplings dominate the low-frequency part (< 150cm−1) with EP over 4 meV
from strongly coupled B3g modes (blue lines). In the high-frequency part dominate local
couplings and a few strong coupling modes can be found around 1600 cm−1 (red lines). A
selected list of the calculated values is shown in the Table 3.3 and compared with the results
from the Ref. [69].
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Fig. 3.8 Calculated polaron binding energy (red lines) and lattice distortion energy (blue
lines) and a function of phonon frequencies.

From our results we can see that only the inversion symmetric modes Ag and B2g would
affect the onsite energies of the molecules and would contribute to gp

H . According to the
general symmetry of rubrene, ant-symmetric modes are not playing important role in the
electron-phonon interaction as they are coupling very weakly with the crystal lattice.

From the Table 3.3 most of the strongly coupled modes are in agreement with the values
from Ref. [69]. Only for the low-frequency modes we observe some deviations between the
literature and our results in the electron-phonon coupling constants. However, comparing
the integral values of EH and EP for all 840 modes to those derived in Ref. [69] in table 3.4
we find rather good agreement. The calculated polaron binding energy and lattice distortion
values coincide well with Refs. [45] and [69]. Deviations of the coupling strengths of single
modes in low-frequency range in our results comparing to the literature can be explained by



36 Electron-phonon coupling in rubrene

this work Ref. [69]
ωp ωpgp

0 ωpgp
i ωp ωpgp

0 ωpgp
i

(cm−1) (meV) (meV) (cm−1) (meV) (meV)
57.8 −1.7 0.85 37.4 −0.9 3.4
59.6 1.4 −0.83 66.6 1.6 6.6
89.0 1.6 −4.8 87.7 −0.6 −9.3

107.3 −0.14 2.8 106.3 0 −4.4
139.1 −2.3 −3.7 125.1 1.4 −4.7
639.1 −7.5 1.0 631.2 −10.8 1.3
1011.2 −3.6 −0.04 1002.3 24.6 0
1344.7 19.8 0.04 1348.6 49.9 0
1593.3 −42.0 0.12 1593.8 −45.6 1.6

Table 3.3 Comparison of electron-phonon coupling strength for several phonons.

different treatment of the intermolecular interaction. Further useful quantities for comparison
with literature are effective Holstein ωH and Peierls ωP mode frequencies defined as:

h̄ωH =
∑p(h̄ωPgp

0)
2

EH

h̄ωP =
∑p,i(h̄ωPgp

i )
2

EP

Our results show larger effective Peierls mode frequency ωP comparing to the reference
values because of the different low-frequency electron-phonon coupling constants.

This work Ref. [45] Ref. [69]
εAA+b (meV) 134.0 143 125
εAC (meV) 28.9 23 −6
εAB (meV) 4.1 - -
εAB (meV) −10.7 - -
EH (meV) 106.8 159 99
EP (meV) 21.9 - 20
ωH (cm−1) 1208.9 1400 1277
ωP (cm−1) 117.9 50 77

Table 3.4 Transfer integrals and effective electron-phonon coupling parameters EH , EP, ωH
and ωP in the present work and comparison to literature values
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In the Figures 3.9a and 3.9b are shown the calculated dimensionless Holstein and Peierls
coupling constants gp

0 and gp
AA+b respectively. The highest values for Holstein coupling

constants are g110.6
0 = 0.28, g57.8

0 = 0.25 and g1593.3
0 = 0.21, which was an example phonon

shown in the Figure 3.4a and for which the DFT and TB calculated electron-phonon coupling
constants have the same values. The Peierls coupling constants gp

AA+b are high for the
low-frequency modes but after 800 cm−1 they vanish.
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Fig. 3.9 Spectrally resolved (a) dimensionless Holstein gp
0 and (b) Peierls gp

AA+b coupling
constants.

From the given mode patterns of relevant modes we notice that the inter-molecular
electron-phonon coupling is associated with the motion of phenyl rings. This in particular
corresponds for the modes with torsion of the phenyl rings like e.g. mode from Figure 3.3a
with ωp = 59.6 cm−1 with dimensionless coupling constants gp

0 = 0.19 and gp
AA+b = 0.12.

However, phenyl ring wagging modes that move perpendicular to the tetracene plane, couple
only weakly to the molecular orbitals. The impact of those flipping motions, which has been
discussed in literature [73], is investigated in the following section.

3.5 Flipping motion of phenyl groups

In this section we investigate if the motions of the side phenyl groups can be stronger than
suggested by the weak electron-phonon coupling associated to these vibrations. Motivated by
the work of Kloc et al. [73], we performed Molecular dynamics simulations in the constant
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temperature ensemble using a Nose-Hoover thermostat and time step of 0.5 fs. According
to the model suggested in Ref. [73], the two phenyl groups from the same side of the of
rubrene would change their positions relative to the tetracene backbone from above to below
the tetracene plane and vice versa.

Rubrene is a molecular crystal which molecules are bounded to each other via van der
Waals forces, Figure 3.2. The tetracene backbone of rubrene molecule is made of four fused
benzene rings. On each side of the tetracene backbone are two substituted phenyl groups
which are very flexible and are vibrating around their equilibrium positions above and bellow
the backbone plane on each side due to mutual repulsion.

We investigate the possibility of flipping phenyl groups by calculations with a supercell
which is twice the original cell and consists of eight molecules of rubrene. For one of
the eight molecules we changed the positions of the phenyl rings to the other side of the
tetracene backbone and let the structure relax its energy in the DFT simulations. Observing
the relaxation of supercell we saw that the starting configuration is not a stable minimum and
that the phenyl groups are moving back to their original positions of the undistorted crystal.

(a) (b)

Fig. 3.10 Definition of the two angles between phenyl groups perpendicular to the tetracene
backbone plane in (a) perspective and (b) schematic views.

To analyze the influence of finite temperature on the phenyl groups dynamics we studied
their motions with Molecular dynamics simulations. The expectation was that increasing the
temperature, the phenyl groups would vibrate so much that they would gain enough energy
to flip to the other side of the tetracene plane. For these simulations we define the bonding
angles ang1 and ang2 as in the Figure 3.10 and follow the change of the angles over time for
various temperatures up to 500 K.

On the Figure 3.11 is shown the dynamics of the phenyl groups only for the highest
temperature of 500 K for all eight molecules, while the results for 100 K, 200 K and 300
K are given in the Appendix B. We see that the phenyl groups are vibrating strongly but
that there are no changes in the sign of angles which would indicate that the phenyl groups
flipped to the other side of the tetracene plane. As the phenyl groups are not flipping even at
extremely high temperatures such as 500 K suggests that, they are most likely unable to cross
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Fig. 3.11 Phenyl group dynamics measured with angles ang1 (red) and ang2 (green) at
T = 500 K. Eight graphs correspond to the eight molecules of the supercell.

the backbone plane at ambient temperatures in comparable time. Therefore, we conclude
that the scenario suggested in Ref. [73] could not be confirmed in our calculations nor its
possible influence on the transport properties of rubrene.

For lower temperatures we have similar results as the one on the Figure 3.11 but with
weaker oscillations of the angles. In the Table 3.5 are given the results of the analysis of
the average angles by interpreting the MD trajectory as statistical ensemble and averaging
over ang1 and ang2. These results are for all temperatures. Notice that the average angle is
independent of T but that its standard deviation increases with T and reaches 22% at 300
K. In addition, we do not eliminate the possibility of the flipping occurrence in rubrene at
larger time scales, but we do not observe them in our calculations in the time scale of one
picosecond and we do not find such flipping configurations to be a (meta)stable minimum.

T (K) Ref angle (deg) σ(angle) (deg)
100 25.6 3.0
200 25.3 4.3
300 24.9 5.4
500 25.8 7.6

Table 3.5 Temperature dependent mean value and standard deviation of the angular difference
angi averaged over each molecule and each side i.
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3.6 Conclusion

We derived reliable and efficient method for calculation of material parameters from DFT
approach and applied it on rubrene. DFT-based methods were used to compute all relevant
electronic, phononic and electron-phonon coupling parameters of rubrene which served
as a prototype of a complex organic material build from a molecular core and functional
side groups. We showed a practical way to get accurate frequencies and avoid imaginary
frequencies in low-frequency modes that often occur in DFT-based methods. From DFT
calculations we derived TB model to compute parameters for the Holstein-Peierls type
Hamiltonian which can be directly applied in charge transport calculations and studies of
specific properties of materials such as density of states, conductivity, carrier mobility, etc.
Calculation of phonon modes, electron-phonon coupling and phenyl group motions in rubrene
has led us to the following conclusions:

• The accuracy of phonon frequencies is of the highest importance in the calculations
of electron-phonon interactions. This particularly refers to the low-frequency modes
which frequencies may contain accumulated numerical errors from the forces in the
direct diagonalization of the dynamical matrix.

• The highest electron-phonon coupling constants are coming from the low-frequency
modes which correspond to the vibrations of side phenyl groups around the tetracene
backbone in rubrene. Therefore, we find that electron-phonon interaction in rubrene is
mostly dependent of the vibrations of phenyl groups.

• The results from TB calculations presented in this work are in very good agreement
with the ones in literature. This confirms that our computational method is correct and
assures us in reliability of our results.

• In the calculation of phenyl group motions we do not find the flipping configuration is
stable and we could not reproduce the model suggested in Ref. [73] in the time scale of
one picosecond. Nonetheless, we do not dismiss the possibility of the flipping phenyl
rings occurrence in rubrene at larger time scales.



Chapter 4

Monophosphate Tungsten Bronzes

4.1 Introduction

There has been a great interest in low dimensional transition metal bronzes for several
decades. The term bronze is commonly used for a variety of transition metal oxides with the
general formula AxMyOz where A is an alkali or alkali-earth metal and M is a transition metal
[74]. They were discovered in the nineteenth century by Wöhler who called them "bronzes"
because of their metallic gloss [75]. The bronzes have intense colour with metallic sheen,
they are chemically inert and exhibit metallic or semiconducting behaviour. Although there
has been a great interest in bronzes, the research in this area boosted after the discovery of
charge density waves (CDW) in the blue and purple bronzes in the early 1980’s [76, 77].
Transition metal bronzes are now extensively studied because of their electric, magnetic and
structural properties [78–85]. Such specific characteristics originate from the possibility to
obtain partial oxidation states of the transition metal atoms.

Monophosphate tungsten bronzes (MPTB) rank among the more intensely studied
bronzes. They are showing phase transitions as a function of temperature such that a series of
charge density waves (CDWs) is apparently established [31, 86–93]. The structure of these
materials leads to anisotropic physical properties evidenced by the electrical conductivity
and magnetoresistance [80–82, 91, 93, 94].

The crystal structure of monophosphate tungsten bronzes is three dimensional where
a series of perovskite related W-O octahedral step layers are linked by PO4 tetrahedra
[79, 83, 95–105]. The crystal structure of one of these bronzes, P4W8O32, is shown on the
Figure 4.1. As for all members of this family, octahedral step layers are linked by PO4

tetrahedra generating pentagonal tunnels. The different members of the series differ in the
number of octahedra in the repeat unit of the layer which, in the case of Figure 4.1, is
four. At the junction of WO6 octahedral layers through PO4 tetrahedra, the pentagonal or
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hexagonal tunnels can be created, and for that reason, the monophosphate tungsten bronzes
with pentagonal tunnels are called the MPT Bps and the ones with hexagonal tunnels the
MPT Bhs. The MPT Bh phases are found with alkali-metal atoms Na or K in their hexagonal
channels and their formulas are given by Ax(PO2)4(WO3)p(WO3)q, where A represents the
alkali-metal atom.

Fig. 4.1 View of the crystal structure of the m = 4 member of the MPT Bp along the a-axis:
the purple objects are WO6 octahedra and the green ones PO4 tetrahedra.

All MPTB phases have two perovskite-based W-O layers per unit cell. The general
formula for MPT Bps can be written as (PO2)4(WO3)p(WO3)q. The indices p and q are even
or odd integers. They show the number of WO6 octahedra used to form each W-O layer.
Usually p and q are identical, thereby leading to the alternative formula (PO2)4(WO3)2m.
However, in some cases p and q are not identical, as in (PO2)4(WO3)4(WO3)6. This member
contains two W-O layers per unit cell where one layer contains four and the other layer
six WO6 octahedra per repeat unit [96]. The value of integer m determines the width of
the W-O layer, or actually the parameter c of the unit cell, while a and b parameters are
practically not changing with m. Although not all MPT Bp structures are described with the
same crystallographic axes, in this general introduction to the electronic structure of MPT Bp

phases we will use the system of axes shown on Figure 4.1 for all members of the series.

The Magnéli phases, γ- and η −Mo4O11, contain the same perovskite-type layers and are
isostructural with the MPT Bp and MPT Bh with m = 6, respectively [106–109]. Therefore it
is expected to observe also very similar electronic properties, since W-O layers of the MPTB
phases have the same structure as Mo-O layers of the Magnéli phases and since W and Mo
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atoms are in the same family of the Periodic Table [110, 111]. However, note that the band
filling is slightly different.

Electronic transport and magnetic properties measurements imply metallic behaviour of
monophosphate tungsten bronzes [80–82, 91, 94, 112–114]. Previous electronic structure
studies show that MPT Bp phases have well-nested 1D and 2D Fermi surfaces [31, 90,
115, 116] and it has been found that they are showing different resistivity anomalies [80–
82, 85, 86, 88, 91, 93, 94, 116–118]. Thus, it was proposed that these resistivity anomalies
are originating from charge density wave (CDW) instabilities associated with the Fermi
surface nesting. This was initially predicted from similarity with the Magnéli phases, which
are exhibiting well characterized resistivity anomalies and CDWs associated with the partially
filled t2g-block bands of their perovskite Mo-O layers [110], and later verified by electronic
structure calculations [31].

The tungsten atoms with their partially filled d-orbitals from the perovskite W-O layers
are responsible for the conduction properties of MPT Bps [31, 90, 92]. As we could see from
the crystal structures, the thickness of tungsten layers in MPT Bps depends of the integer m
but, as we will show later, the number of electrons per layer filling the partially filled bands
is always 2 independently of m. In the MPT Bh phases electron counting is slightly different
because of the alkali-metal atoms in their hexagonal channels.

In order to understand the electronic properties of the MPT Bp phases, one has to examine
how their electronic structures are related to the crystal structure, the octahedral distortion
and the average oxidation state of tungsten. The crystal structure of MPT Bp series shows that
the octahedral distortions in the W -O layers are not uniform. Although it has been proposed
that the complex resistivity curves of these materials are due to the occurrence of successive
CDWs, it is not yet clear that all of these modulations can be explained by a Fermi surface
driven mechanism. This is the reason why we decided to reconsider the electronic structure
with special emphasis on the calculation of the Lindhard response function. In this chapter
we will report the electronic band structure, Fermi surface and Lindhard response function
for several MPT Bp phases, with m = 4,5,6,7,8 and 12 in order to characterize the origin of
their structural modulations and resistivity anomalies.

4.2 Electronic structure of MPT Bps

In our study the band structure and Fermi surface calculations were done using density
functional theory (DFT) as implemented in the SIESTA code [10–13]. Several members
of MPT Bp phases, the ones with m = 4,5,6,7,8 and 12, were taken into account and their
experimental crystal structures were used in our study. The calculations were carried out with
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generalised gradient approximation (GGA) using an energy cut off of 350 Ry and k-point
meshes of 20×20×10. There have been several theoretical investigations of the electronic
band structure of monophosphate tungsten bronzes done in the past [31, 87, 90, 92, 115, 116,
119]. However, these calculations were mostly done using the extended Hückel tight-binding
method [120] and, only more recently, ab initio methods have been used [89, 121, 122].

In Figure 4.2 is shown an example of the calculated electronic band structure near the
Fermi level for the member m = 4 of the MPT Bps. Six bands, the lowest bands of the
t2g-block, are crossed by the Fermi level. In the previous tight-binding calculations, only
the isolated octahedral layers were considered. Consequently, the number of partially filled
t2g bands was half the number of bands in DFT calculations which takes into account the
full structure. The use of isolated octahedral layers in the tight-binding studies is justified
by the fact that the PO4 tetrahedra almost completely decouple different layers as shown in
the Figure 4.2 (see the Γ-Z line associated with the interactions along the c-axis, where the
splitting of the bands within any pair is very small).
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Fig. 4.2 The electronic band structure for the m = 4 member of the MPT Bp (see Figure 4.3
for the labeling of the high symmetry points).

The Brillouin zone appropriate to the orthorhombic structure of most of the MPT Bps
is shown in the Figure 4.3. Note that although the MPT Bps with m = 4,6,8 and 12 have
orthorhombic crystal structures, those with m = 5 and 7 have monoclinic lattices [79].
However, since the derivation from the orthorhombic symmetry is very small, in all the band
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structures we have used an orthorhombic representation. This helps in comparing results for
different systems.

The band structure calculations have shown that the electronic structure of all compounds
of the MPT Bp family is very similar. The Figure 4.2 shows that, as predicted, the lowest part
of the t2g bands is always made of three pairs of bands which are almost degenerate [123].
This is because there is a weak interaction between the two layers of the unit cell. From the
calculated band structures we can see that one pair of bands has quasi 1D character: it is flat
along the Γ-Y and Γ-Z directions but dispersive along Γ-X . There are also two pairs of bands
which are apparently 2D. As it will be shown later, this is not correct; it is due to the nature
of the symmetry lines displayed in the band structure. These two pairs of bands look as 2D
but really are also 1D bands along the a+b and −a+b directions.

Fig. 4.3 Brillouin zone for the orthorhombic MPT Bp phases showing the high symmetry
directions.

4.3 Fermi surface and nesting vectors

Before looking in more detail at the DFT results we need to have a clear idea of the general
shape of the partially filled bands of these bronzes as well as how they are related to the actual
crystal structures. With the typical oxidation scheme of P5+ and O2−, the average oxidation
state of W in a MPT B with formula Ax(PO2)4(WO3)p(WO3)q is given by 6−(4+x)/(p+q).
Consequently, a unit cell of an MPT B phase has 4+ x electrons or, in the case of MPT Bp

with p = q = m, 2 electrons per octahedral layer. Consequently, only the lower t2g bands of
the octahedral layers may be filled [31, 90, 92].

Let us now describe the structural patterns of the perovskite type octahedral layers by
considering the case of m = 4 [95]. The W4O21 unit of Figure 4.4a is built from four WO6

octahedra by sharing the equatorial corners, and the W4O18 chain of Figure 4.4b is obtained
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Fig. 4.4 Building up of the octahedral layers of MPT Bp with m = 4.

by condensing these W4O21 units. The W4O18 chain can be represented by the projection
view shown in Figure 4.4c along the chain direction. The W4O18 chains of Figure 4.4c can
be condensed to lead to the W4O16 layers of Figure 4.4d by sharing their axial oxygen atoms.
In the W4O16 layer, the first octahedron of one W4O18 chain shares its axial oxygen atoms
with the third octahedron of the adjacent W4O18 chain (i.e., a 1,3-condensation).

Fig. 4.5 Schematic diagram showing the occurrence of zigzag chains along the a, a+b and
−a+b directions in the octahedral lattice of MPT Bp with m = 4.

If the W4O16 layer of Figure 4.4d is seen from the top (i.e., the z direction), it can be
represented as in Figure 4.5a. This layer can be redrawn in three different ways, as done
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in Figures 4.5b, 4.5c and 4.5d, showing that the step layers of the m = 4 member of the
MPT Bp family, contains octahedral zigzag chains along a, a+b and −a+b directions. This
structural description is completely general and applies to all phases of the MPT Bp series.
The only difference is the number of octahedra in the initial octahedral cluster (Figure 4.4a).

The t2g orbitals of one of the WO6 octahedra are such that the d-orbital containing planes
can be chosen to be aligned along the a, a+b and −a+b directions of the step layers of
MPT Bp (i.e., those shown in Figures 4.5b, 4.5c and 4.5d), respectively. Every t2g orbital thus
makes δ type interactions with those of neighbouring parallel chains but π type interactions
along the chain [90].

For a given elementary unit like that of Figure 4.4a, the lowest t2g orbital combination
that can be built is shown in Figure 4.6. Repeating this type of orbital combination with the
appropriate phases and adjusting the oxygen p-orbital contributions in the shared positions,
one of the three lowest t2g bands of each layer, that being strongly dispersive along the a
direction, may be generated. The remaining two t2g orbitals lead to the other two low lying
t2g bands of each layer (i.e., those strongly dispersive along a+b and −a+b directions) by
the same process.

Fig. 4.6 Lowest lying combination of one of the three t2g orbitals leading to one of the
three low lying t2g bands of MPT Bp with m = 4. Black dots denote positions where oxygen
p-orbitals do not mix because of the local symmetry.

Thus, we conclude that there will be three t2g low lying bands per layer dispersive along
one of the three intrachain directions (a, a+ b and −a+ b) but dispersionless along the
interchain directions. In addition, due to the local orthogonality of the t2g orbitals the three
bands are practically independent from one another to a first approximation. Consequently,
the three t2g bands per layer of the MPT Bps can be approximated by three independent
1D bands resulting from the three t2g orbitals [90]. This description applies to all systems
considered in the chapter.

As we saw from the calculated band structure, there are three pairs of bands of which
one pair has quasi 1D character and the other two pairs quasi 2D character. However, the
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Fig. 4.7 View along c∗ of the Fermi surface for the m= 4 member of the MPT Bp. Γ=(0,0,0),
X = (a∗/2,0,0), Y = (0,b∗/2,0) and S = (a∗/2,b∗/2,0).

qualitative analysis of the band structure leads to the prediction that there must be three 1D
partially filled bands per layer and thus, three 1D Fermi surfaces per layer. The calculated
Fermi surface for the m = 4 member of the MPT Bps is shown in Figure 4.7. As it will be
seen along this chapter, the Fermi surfaces of all MPT Bps have a similar shape.

As shown in Figure 4.8, this Fermi surface can be considered to result from the combina-
tion of a pair of 1D Fermi surfaces (Figure 4.8b) and the "rhombus shape" Fermi surfaces of
Figure 4.8c. The Fermi surfaces of Figure 4.8b are 1D along the a∗ direction (i.e., they are
made of two pairs of planes perpendicular to the a∗ direction and to the plane of the paper)
and are associated with the 1D bands of Figure 4.2. Thus, according to the previous analysis
of the band structure, the Fermi surface of the Figure 4.8c should result from the combination
of the two pairs of 1D Fermi surfaces along the a+b and −a+b directions. Indeed, this is
exactly what is found in the Figure 4.8c, which can be considered to be the combination of a
series of planes perpendicular to the a∗+b∗ and −a∗+b∗ directions of the Brillouin zone.
In other words, the Fermi surface of Figure 4.7 can be decomposed into a set of three pairs
of 1D Fermi surfaces, as schematically shown in Figure 4.9.

At a first look, the Fermi surface of Figure 4.7 may seem to be built from a series of
closed and poorly nested portions. This is specially so when the individual contributions of
the different bands are separately plotted. A low-dimensional metal with several partially
filled bands may lead to apparently unnested Fermi surfaces even if their "intended" surfaces
(i.e., those expected in the absence of the avoided crossings) are all nested. In this case, the
nesting is "hidden" by the avoided crossings [124]. Such hidden, nested Fermi surfaces can
lead to CDWs thereby destroying the nested portions of the combined Fermi surfaces.

In the case of MPT Bps, the Fermi surface has "hidden" one-dimensionality: the final
Fermi surface reveals that there are many parallel parts of Fermi surface perfect for nesting
[31, 90, 92]. From previous analysis one can draw the expected nesting vectors, like in
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Fig. 4.8 Schematic decomposition of the Fermi surface of the Figure 4.7 (a) into a pair of
1D Fermi surfaces associated with 1D bands (b), and the contribution of the apparently 2D
bands (c). We assume nil interactions between the different octahedral layers: every line in
this diagram is really the superposition of two identical lines associated with one of the two
layers.

the Figures 4.10a and 4.10b. In doing so, we must take into account that in one case like
in that of Figure 4.7 (or as the idealized version of Figure 4.8a) there are several nesting
vectors, common to two pairs of 1D Fermi surfaces. Since the lattice distortion associated
with a CDW induces a lattice strain, the lattice vibration most likely to couple with the
CDW instability of a nested Fermi surface is that leading to a maximum electronic energy
stabilization, i.e. that whose wave vector provides the maximum possible nesting. Thus, in
these cases it is frequently observed that the nesting vector associated with the CDW is one
of the common nesting vectors for several Fermi surface components. For instance, given
the Fermi surface of Figure 4.9, there are two kinds of possible maximum nesting vectors:
(i) those being common to the two Fermi surfaces originating from 1D chains along the
diagonal directions (i.e. those in Figures 4.9b and 4.9c), (ii) those being common to one
of these Fermi surfaces and that along a. Some examples of both types are shown on the
Figures 4.10a and 4.10b. Note that some possible nesting vectors are redundant. For instance,
q3 and q5 in Figure 4.10b have the same component along a∗ whereas the components along
b∗ are related by qb∗

3 = b∗−qb∗
5 .

The calculated Fermi surfaces are somewhat warped compared to the hidden ones of
the Figure 4.9. Since the warping in general is small, the common nesting vectors derived
from the hidden Fermi surfaces are most likely the relevant ones for actual compounds. In
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Fig. 4.9 Decomposition of the Fermi surface of Figure 4.7 into the hidden 1D Fermi surfaces
associated with chains running along the a direction (a), the −a+ b direction (b) and the
a+b direction (c). We assume nil interactions between the different octahedral layers: every
line in these diagrams is really the superposition of two identical lines associated with one of
the two layers.

(a) (b)

Fig. 4.10 Illustration of common nesting vectors associated with (a) two 1D chains along
the diagonal directions and (b) one 1D chain along a and one 1D chain along a diagonal
direction.

that case, the CDW may not completely remove the Fermi surface thereby creating small
electron and hole pockets. In some cases, the resulting pockets may even lead to an additional
CDW formation. In any case, the Fermi surface driven CDWs expected in MPT Bp will never
completely destroy the Fermi surface and thus, will be associated to metal-metal transitions.
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The analysis developed up to now provides a simple yet convenient framework to understand
the results of the detailed DFT calculations reported in this chapter.

4.4 Lindhard response function calculation

A CDW instability is coupled to the lattice via the electron-phonon coupling. In linear
response theory, the relevant response of the electrons in band n to a static modulation of the
underlying ionic lattice with wave vector q⃗ is given by the electron-hole Lindhard response
function [6]:

χ (⃗q,T ) =−∑
k⃗

f (En(⃗k+ q⃗))− f (En(⃗k))

En(⃗k+ q⃗)−En(⃗k)

where En(⃗k) is the energy associated with the band n at the point k⃗ of the Brillouin zone
and f (En(⃗k)) the Fermi-Dirac distribution function associated with this state. The Lindhard
response function is large when many states at the Fermi level are coupled with the wave
vector q⃗. This occurs when the Fermi surface contains portions which may be superimposed
onto one another through a translation by a vector q⃗, which is the so-called nesting vector. As
discussed in the first chapter, for a purely 1D metal at T = 0 K, the Fermi surface is perfectly
nested with q = 2k f and the Lindhard response function then exhibits a divergence leading
to a CDW state. In higher dimensionality systems, the Lindhard response is more complex
and needs careful evaluation.

Here are going to be presented the results of Lindhard response function calculation for
the members of monophosphate tungsten bronzes (MPT Bps) with m = 4,5,6,7,8 and 12.
The comparison of calculated Lindhard response function with observed modulation vectors
will be used to discuss the likeliness of the Fermi surface nesting mechanism as the origin of
the different modulations observed in these materials.

4.4.1 MPT Bp with m = 4

The m = 4 member along with the m = 6 member, has been studied extensively [31, 80, 88,
94, 112, 113, 125–128]. This compound is made of WO6 octahedra, which as described
previously (see Figure 4.4), lead to W4O16 step layers. These step layers are linked to each
other across a plane of PO4 tetrahedra forming layers along the (ab) plane of the unit cell
(see Figure 4.1). This junction creates pentagonal tunnels, formed by the corner sharing of
the three WO6 octahedra and two PO4 tetrahedra. The orthorhombic unit cell parameters are
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a = 5.285 Å, b = 6.569 Å and c = 17.351 Å, and the compound crystallizes in the P212121

space symmetry group [95].

There are two nonequivalent tungsten atoms W I and W II (see Figure 4.1) in the W4O16

layers of (PO2)4(WO3)4(WO3)4. Every W IO6 octahedron shares five oxygen atoms with
other WO6 octahedra, while every W IIO6 octahedron shares three oxygen atoms with other
WO6 octahedra and three oxygen atoms with PO4 tetrahedra [115]. The oxidation states
calculated by the bond valence sum analysis [129] are for W I +5.82 and for W II +5.18, and
therefore, the average oxidation state of tungsten in P4W8O32 is +5.5.

(a) (b)

Fig. 4.11 The Fermi surface of P4W8O32: (a) projection along the c∗ direction, and (b) 3D
representation.

In the Figure 4.2 is shown the band structure of P4W8O32. There are two d electrons
per layer, and thus four d electrons per unit cell. The band structure shows that there is
one pair of 1D bands and two pairs of 2D bands. The 1D character is due to the apparently
very weak interactions (δ type interactions) between the adjacent W4O18 chains along the
b axis and strong interaction along the a axis. The calculated Fermi surface of P4W8O32 is
presented in the Figures 4.11a and 4.11b. There are six Fermi surface pairs of sheets coming
from the six bands that are crossing the Fermi level. The Fermi surface on the Figures 4.11a
and 4.11b is the superposition of these six pairs of sheets. Although the contribution of the
apparently 2D bands are closed loops, Figure 4.11 clearly shows that the total Fermi surface
is the superposition of three sets of 1D Fermi surfaces. Thus, the Fermi surface has very
good nesting conditions because of its "hidden" one-dimensionality.

Two anomalies have been found in electrical resistivity for this compound, indicating
the existence of two electronic instabilities. These instabilities are occurring at Tp1 = 80K
and at Tp2 = 52K [93, 94]. The X-ray diffuse scattering studies have demonstrated that they
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are corresponding to the incommensurate charge density waves with the modulation vectors
q1 = (0.33,0.295,0) and q2 = (0.34,0,0) [89, 128, 130], respectively.

(a) (b)

Fig. 4.12 (a) (a∗,b∗) section and (b) 3D representation of the Lindhard response function for
the m = 4 member of MPT Bp.

The results of the Lindhard response function calculation are presented graphically on the
Figures 4.12a and 4.12b and the nesting vectors, which are associated with the maxima are
given in the Table 4.1 and compared with the experimental ones [89, 128, 130]. These values
are in good agreement with the previous theoretical results by Sandré et al [121] As can be
seen in the table, there is a very good agreement between two of the maxima in the Lindhard
response function and the experimental determination of the two modulation vectors (i.e.,
q1 ≈ Q5 and q2 ≈ Q1).

calculation experiment
Q1 0.325,0.0,0.0 0.34,0.0,0.0
Q2 0.0,0.325,0.0
Q3 0.19,0.5,0.0
Q4 0.5,0.175,0.0
Q5 0.325,0.35,0.0 0.33,0.295,0.0

Table 4.1 The maxima of Lindhard response function calculation for P4W8O32.

With this information in mind several scenarios can be proposed to explain the experi-
mental results. First, since the lower temperature transition (i.e. that leading to a smaller
stabilization) is associated with a wave vector with approximately 1/3 component along
a∗, the associated modulation should in principle affect either the two chains along a+ b
and −a+b, or the chains along a only. In the first case, the higher temperature transition,
associated with a modulation having components approximately 1/3 along both a∗ and b∗



54 Monophosphate Tungsten Bronzes

should be associated with the chains along a (scenario I). It may seem surprising to associate
a diagonal nesting vector to the destruction of the Fermi surface associated with the chains
along a. However, since this Fermi surface is made of two planes perpendicular to the a∗

direction, all nesting vectors with an ∼ 1/3a∗ component and any b∗ component will lead to
the full destruction of the remaining Fermi surface planes of Figure 4.11 (this is the reason
for the existence of diffuse lines perpendicular to a∗ for a∗ ∼ 0.33 in Figure 4.12). However
it seems surprising that the higher temperature transition, which should be associated with
the largest energy gain, affects only one type of chain whereas the second affects two types
of chains thus leading in principle to a larger stabilization.

If we now assume that the lower temperature transition is associated with the chains
along a, it is not possible to nest the Fermi surfaces of the two types of diagonal chains with
a single nesting vector having components approximately 1/3 along both a∗ and b∗. Such a
diagonal nesting vector allows the destruction of only one type of diagonal chain. Thus no
common nesting vector would be used in this process (scenario II) and at least one-third of
the Fermi surface will remain after the two distortions. This is very unlikely since it would
be associated with a modest gain in electronic energy.

We can also consider a third scenario in which the high temperature transition would be
associated with one of the diagonal chains (either those along a+b or −a+b) and those along
a. In that case the second transition would be associated with the remaining diagonal chain
(scenario III). This scenario would lead to the destruction of the Fermi surface associated with
two types of chains in the case of the higher temperature transition and the remaining one in
the lower temperature transition so that it is free from the criticism raised for scenario I. One
must take into account that by considering the Lindhard response function we do not take
into account the elastic energy cost of the different distortions which may become decisive
in leading to one or the other structural modulations. However, only from the viewpoint
of the Lindhard response function calculation it can thus be proposed that the modulation
occurring at 80 K is associated with the chains along a and one of the diagonal chains,
and the second modulation occurring at 52 K affects the remaining type of diagonal chains
(scenario III). This scenario has the additional advantage over scenario I of being consistent
with one important experimental observation. The X-ray diffuse scattering experiments
[89, 128, 130] clearly show the occurrence of pretransitional fluctuations in the form of
diffuse lines perpendicular to the a direction and to broader diffuse lines perpendicular to
the a+b and −a+b directions. In other words, the pretransitional fluctuations affecting the
chains along a dominate from room temperature down to the high temperature transition.
This means that the instability of the chains along a dominates the regime of fluctuations at
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high temperature. Taking into account the experimental and theoretical results we conclude
that it must be scenario III which is at work.

In view of all this facts we finally conclude that the high temperature transition is
associated with an instability of the chains along a which induce a modulation in both
chains along a and one of the two diagonal directions. The lower temperature transition
is associated with the remaining diagonal type of chains. After he two transitions, closed
pockets associated with hybridization of the three types of Fermi surface hidden planes
will remain, keeping the metallic character of the bronze. These closed pockets should be
responsible for the Shubnikov-de Haas oscillations observed for this system at temperatures
well bellow that of the second transition [84, 85, 112].

Finally, we should inquire what is the physical meaning of the fact that the three types of
planes of the Fermi surface intersect the a∗ direction at the same point. Noting the occupation
of the bands associated with a, a+b and −a+b directions as fa, fa+b and f−a+b respectively,
it must hold that fa+b = f−a+b = 1/2(1− fa), since the total number of electrons in one layer
is 2 and chains along a+b and −a+b are equivalent. An equal occupation of the three bands
is only possible when fa+b = f−a+b = fa = 1/3. For a 1D system, as for instance the chains
along a, fa = 1/3 means that qa = 2k f = 1/3. Consequently, as far as the number of electrons
is 2, only when the three hidden 1D bands are equally filled (i.e., fa+b = f−a+b = fa = 1/3)
the three types of planes of the Fermi surface can intersect the a∗ direction at the same point.
Consequently, for the m = 4 member of the MPT Bp the filling of the three types of bands is
the same even if there are two different types of chains.

The previous discussion provides an easy way to discuss the occupation of the two
different types of bands of the MPT Bp since for any member of this family it holds that
fa+b = f−a+b = 1/2(1− fa): just looking at the separation between the hidden planes
perpendicular to a∗ in the Fermi surface the filling of the different bands is known.

4.4.2 MPT Bp with m = 5

This compound has been found to exist in two different varieties [89, 96, 102]. The crystal
structure of the first type is built of regular stacking of layers corresponding to m = 5 [102].
The second type is consisting of two layers with different thickness: m = 4 and m = 6
[89, 96]. For a long time, the "regular" 2m = 5+5 structure couldn’t be detected, neither
by X-ray nor by electronic diffraction. There was a belief that the phase 2m = 4+6 is the
only stable one and the regular one is non-existent. Later on, the 2m = 5+5 missing crystal
variety was successfully identified and investigated.

Here are going to be presented results for the regular structure 2m = 5+5. The crystal
structure of this MPT Bp member is monoclinic and is built up of a regular stacking of layers
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Fig. 4.13 View of the crystal structure of the P4W10O38 MPT Bp (m = 5) along the a axis.

corresponding to m = 5. Five WO6 octahedra are forming the W5O26 units which are joining
to form W5O22 chains which are running along a and a±b crystallographic directions. These
chains are further condensed to produce W5O19 step layers, of which are two in the unit cell of
P4W10O38, Figure 4.13. The unit cell parameters are a = 5.283 Å, b = 6.567 Å , c = 20.451
Å and β = 90.40◦, and the compound crystallizes in the monoclinic P21/n space symmetry
group [102]. The synthesised crystals of 2m = 5+5 member are blue-purple with golden
edges, while those of the m = 4 member they are purple.
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Fig. 4.14 Calculated band structure of P4W10O38.
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On the Figure 4.14 is presented the band structure of this MPT Bp member. As expected,
it is very similar to the band structure of the m = 4 member. There are six bands crossing the
Fermi level with practically no dispersion along c∗ and thus, making in that way three pairs
of bands, like in the case of m = 4. One pair of bands has 1D character and is not dispersive
along Γ-Y direction but shows dispersion along Γ-X . The other two pairs of bands apparently
have 2D character and come from the chains of interactions along the a∗+b∗ and −a∗+b∗

directions.

(a) (b)

Fig. 4.15 The Fermi surface of P4W10O38: (a) projection along the c∗ direction; (b) 3D
representation.

On the Figure 4.15 is presented the calculated Fermi surface of P4W10O38. Again, it is a
superposition of six pairs of Fermi surface sheets which are representing the contribution of
six bands crossing the Fermi level (Figure 4.14). The Fermi surface of the m = 5 member
looks very much like the Fermi surface of the m = 4 member although the filling of the three
pairs of bands is somewhat different. As shown in Figure 4.15a, fa = 2k fa = 0.30, i.e., a 10%
smaller than for the m = 4 member, and thus, fa+b = f−a+b = 0.35. Consequently, the 1D
bands along a are filled with 0.6 electrons whereas each of those along a+ b and −a+ b
are filled with 0.7 electrons. On the Figures 4.16a and 4.16b are presented the results of the
Lindhard response function calculation for this compound.

The P4W10O38 shows two successive Peierls transitions at Tp1 = 83K and at Tp2 = 60K
[131]. although only the latter is detected in transport measurements [114]. Two sets of
diffuse lines parallel to the a∗±b∗ directions are already present at room temperature in the
diffuse X-ray scattering measurements [131]. The fluctuations associated with these diffuse
lines diverge, leading to satellite reflections at the qa = (0.32,0.29,0) wave vector below
83 K. Lowering the temperature, below the 60 K, a second set of satellite reflections at the
qb = (0.36,0,0) wave vector appear [102, 131].
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(a) (b)

Fig. 4.16 (a∗,b∗) section of the Lindhard response function for the m = 5 member of the
MPT Bp.

The nesting vectors associated with the maxima of the Lindhard response function as
well as the experimentally determined modulation vectors for this bronze are shown in
Table 4.2. The calculated nesting vectors Q1 and Q5 are in a good agreement with the
superlattice reflections occurring at 60 K and 83 K, respectively. Thus, we conclude that
these modulations are Fermi surface driven CDWs.

calculation experiment
Q1 0.345,0.00,0.0 0.36,0.0,0.0
Q2 0.00,0.345,0.0
Q3 0.16,0.50,0.0
Q4 0.50,0.15,0.0
Q5 0.30,0.355,0.0 0.32,0.29,0.0
Q6 0.30,0.04,0.0

Table 4.2 The maxima of Lindhard response function calculation for P4W10O38.

Note that five of the six maxima in Table 4.2 are very similar to those for the m = 4
member of the series (Table 4.1). However, in the present case there is one additional maxima.
The reason is that as analysed above, the filling of the three bands of a layer is not the same.
As a result, the vertical and "diagonal" planes of the Fermi surface do not cross at the same
point of the a∗ axis. Consequently, what was a single maxima in the Lindhard response
function of the m = 4 member becomes three maxima (two of which are symmetry related) in
that of the m = 5 member. Consequently, the discussion concerning the relationship between
the observed modulations and the Lindhard response function results for the m = 4 member
does not directly apply to the present member.
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The good agreement between the low temperature modulation and the q1 nesting vector
suggests that this modulation affects the chains along the a+b and −a+b directions. On
the other hand, the quite reasonable agreement between the high temperature modulation and
the Q5 nesting vector suggests that this modulation affects both the chains along a and one
of the diagonal directions. Thus, we believe that the high temperature transition is associated
with the destruction of the hidden planes of the Fermi surface associated with the chains
along a and a+b (or −a+b) whereas the low temperature transition is associated with the
destruction of the hidden planes associated with the other diagonal plane, −a+b (or a+b).
The situation is thus similar to that of the m = 4 member of the series but with one important
difference: at high temperatures only the diagonal chains exhibit pretransitional fluctuations.
Thus, the high temperature transition is associated with both the chains along a and one
diagonal direction but is induced by the instability in the diagonal chains. After the two
transitions, closed pockets associated with the hybridization of the three types of the Fermi
surface hidden planes will remain, keeping the metallic character of the bronze [102, 131].

The previous results point to a drop of the influence of the instability in the chains
along a when going from the member m = 4 to m = 5 of the series since the pretransitional
fluctuations in these chains are not observed at high temperatures for the MPT Bp with m = 5
[131]. This is consistent with the decrease of the population of the 1D band along a, (∼ 10%),
when going from the m = 4 to m = 5 members, as can be deduced from the Fermi surfaces
of Figures 4.11a and 4.15a.

4.4.3 MPT Bp with m = 6

The m = 6 member of MPT Bp series (see Figure 4.17) has been studied extensively [89, 93,
112, 113, 116, 122, 132–134]. This compound is isostructural with γ −Mo4O11, with PO4

tetrahedra replacing the MoO4 tetrahedra and WO6 octahedra replacing the MoO6 octahedra
[106–109]. The W6O22 step layers of P4W12O44 are built up of W6O26 chains, which are
condensed by (13)-condensation [97]. This compound is orthorhombic and the cell vectors
are a = 5.29Å, b = 6.57Å and c = 23.55Å. It has the same space group symmetry as the
m = 4 compound: P212121. The crystals of P4W12O44 are dark blue.

There are three types of W atoms with different oxidation number: W I with +5.54, W II

with +5.67 and W III with +5.79. The average oxidation number of tungsten atoms is +5.67.
On the Figure 4.18 is represented the band structure of P4W12O44. As in the previous cases
of MPT Bp series, the band structure consists of six bands that are crossing the Fermi level.
As for the m = 5 member, the interaction between step layers is very small. The calculated
Fermi surface for P4W12O44 is shown on the Figures 4.19a and 4.19b. From this figure we
can estimate the filling of the different 1D bands. Since 2k fa = 0.27, it follows that fa = 0.27,
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Fig. 4.17 View of the crystal structure of the P4W12O44 MPT Bp (m = 6) along the a axis.

fa+b = f−a+b = 0.365. Consequently, the 1D band along a contains 0.54 electrons and each
of the 1D bands along the diagonal direction contain 0.73 electrons. Again, we find that
increasing m leads to depletion of the 1D band along a.
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Fig. 4.18 Calculated band structure of P4W12O44.

This member shows three Peierls instabilities: at Tp1 = 120K, Tp2 = 62K and Tp3 =

30K and the experimentally determined critical wavevectors are q1 = (0.385,0,?), q2 =

(0.31,0.295,?) and q3 = (0.29,0.11,?) respectively [88, 130, 134]. They correspond to
metal-to-metal transitions. Note that already at room temperature this metal exhibits 1D
fluctuations parallel to the a∗+b∗ and −a∗+b∗ directions [134]. The results of Lindhard
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(a) (b)

Fig. 4.19 The Fermi surface of P4W12O44: (a) projection along the c∗ direction; (b) 3D
representation.

response function calculation are given on the Figures 4.20a and 4.20b. The quantum
transport measurements show that the size of carrier pocket that remains after CDW gap
opening is much smaller in m = 6 than in the m = 4 compound [112]. This may indicate
larger Fermi surface nesting for the m = 6 compound and therefore bigger Fermi surface
destruction after the CDW transition.

(a) (b)

Fig. 4.20 (a∗,b∗) section of the Lindhard response function calculated for P4W12O44.

In the table 4.3 are shown the nesting vectors associated with the maxima of the calculated
Lindhard response function as well as the experimental modulation vectors [88, 130, 134].
We find that the vectors Q4 and Q6 are in very good agreement with the first and third
experimentally found transitions and that the Q5 nesting vector does not considerably differ
from the second measured one. Again we conclude that these modulations are Fermi surface
driven CDWs. One must also take into account that after the first modulation the Fermi
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surface is slightly modified because of the structural change. Thus, the agreement between
the calculated and experimental modulation vectors should slightly deteriorate.

Note that five of the six maxima in Table 4.3 are very similar to those for the m = 5
member of the series (Table 4.2); the numerical differences can be understood from the
different filling of the bands noted before. The increase of the population of the 1D bands
along the diagonal directions is clearly visible when comparing Figures 4.19a, 4.15a and
4.11a: the separation between the intersections of the Fermi surface planes along the diagonal
directions and those perpendicular to a increases when m increases.

calculation experiment
Q1 0.13,0.50,0.0
Q2 0.50,0.125,0.0
Q3 0.0,0.37,0.0
Q4 0.375,0.00,0.0 0.385,0.001,?
Q5 0.27,0.36,0.0 0.31,0.295,?
Q6 0.27,0.10,0.0 0.29,0.11,?

Table 4.3 The maxima of Lindhard response function calculation for P4W12O44.

On the basis of our discussion for the m = 5 member and the good agreement between the
120 K modulation and the Q4 nesting vector suggests that the modulation affects the chains
along the a+b and −a+b directions. On the other hand, the quite reasonable agreement
between the 62 K and ∼ 30 K modulations and the q5 and q6 nesting vectors suggests that
these modulations successfully destroy the Fermi surface planes associated with the 1D
bands along a. Note that the high temperature transition for the m = 6 corresponds to the low
temperature transition for the m = 5 according to the experimental modulation vectors. On
the basis of our calculations we propose that the high temperature modulation is associated
with the two 1D chains along the diagonal directions. Since the high temperature transition
should be associated with the larger energy gain, this observation is consistent with the fact
that the diagonal bands are more filled in the present compound and the well-known fact that
the maximum stabilization for a Peierls like distortion in a 1D system is maximum at half
filling. The absence of pretransitional fluctuations perpendicular to a∗ and the fact that the
62 K transition seems to be associated with the nesting vector common to the Fermi surface
planes perpendicular to a and one of the diagonal directions means that the modulation in the
chains along a is induced by the instability of the diagonal chains. Again this is consistent
with the noted depletion of the 1D bands along a in the m = 6 member with respect to
the m = 5 one. The nesting vector associated with the ∼ 30 K modulation, perfectly nests
the regions of the crossing of the Fermi surface planes perpendicular to a and the diagonal
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ones in the region near the a-axis. This means that the third transition is most likely due to
coupling of the closed pockets generated in this region after the second modulation. That
this modulation does not occur in the lower members of the series is consistent with the
observation that the carrier pockets remaining after the different CDWs are smaller in the
present compound.

4.4.4 MPT Bp with m = 7

This odd member of MPT Bp family has peculiar transport properties and doesn’t show
"classical" CDW transitions, as the other MPT Bp members [128, 130, 134]. The purple
crystals of P4W14O50 are monoclinic with the space group P21/n and cell vectors a = 5.291
Å, b = 6.557 Å and c = 26.654 Å and β = 90.19◦. The detailed structure analysis [104]
reveals that m = 7 member has exactly the same structure with successive slabs of the same
width as all the even members of the series (Figure 4.21). The structure analysis show that
P4W14O50 crystallizes in centrosymmetric group, which is an unique characteristics among
odd MPT Bp members.

Fig. 4.21 Crystal structure of the P4W14O50.

There are four types of tungsten atoms in P4W14O50 with different oxidation states: +5.58
for W I , +5.68 for W II , +5.75 for W III and +5.85 for W IV so that the average oxidation state
of W atoms in the layer is +5.71 [104]. The formal valence state of W atoms decreases as
the distance from the PO4 tetrahedra increases. Therefore the W atoms in the middle of the
slab are going to have the lowest oxidation number and the ones on the edges the highest.

On the Figure 4.22 is shown the calculated band structure for this member. As for the
other members of MPT Bp series, P4W14O50 shows six bands crossing the Fermi level. The
features of this six bands are the same for all MPT Bps.
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Fig. 4.22 Calculated band structure of P4W14O50.

The calculated Fermi surface is shown in Figure 4.23. It shows, as for the other MPT Bp

members, that the global Fermi surface has hidden one-dimensionality with hidden 1D sheets
along directions which are perpendicular to a∗ and a∗± b∗ directions. Therefore, similar
nesting vectors are expected as in the other MPT Bp members. From this figure the filling of
the different bands can be estimated as: fa = 0.26, fa+b = f−a+b = 0.37. Consequently, the
1D band along a contains 0.52 electrons and those along the diagonal directions contain 0.74
electrons each. Again, the 1D band along a is depleted with respect to these of the lower m
members.

Electrical resistivity data and X-ray diffuse scattering studies have shown the existence
of two transitions, at Tp1 = 188 K and at Tp2 = 60 K [80, 88, 128, 130, 134]. There have
been found several harmonics of the CDW satellite wavevectors for both transitions. This
compound is the only member of the MPT Bp series showing superconducting properties
(below 0.3 K) [117].

In the Figures 4.24a and 4.24b are represented the results of Lindhard response function
calculation and in the Table 4.4 the calculated nesting vectors, extracted from the Figures
4.24a and 4.24b and compared with the experimental data [128, 134].

The six maxima of the Lindhard response function reported in Table 4.4 are very similar
to those of the m = 5 and m = 6 members of the series (Tables 4.2 and 4.3) with the small
differences being the result of the different electron fillings of the three pairs of 1D bands.
However, when these bands are compared with the observed modulation wave vectors (Table
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(a) (b)

Fig. 4.23 The Fermi surface of P4W14O50: (a) projection along the c∗ direction; (b) 3D
representation.

(a) (b)

Fig. 4.24 (a∗,b∗) section of the Lindhard response function calculated for P4W14O50.

4.4) we face a different situation than that described for the lower m members. In that
case, only one of the observed wave vectors, that corresponding to the high temperature
modulation (q = (0.26,0.073,0.27)) can be compared with one of the calculated ones (Q6 =

(0.26,0.12,0)). Let us point that the experimental wave vector contains one component along
c∗. From the viewpoint of the electronic structure this point is irrelevant since as it is clear
from the band structure there is no interaction between the step layers so that the nesting
is equally good for any value of the c∗ component. This component along the interlayer
direction must be due to either strain or purely coulombic interactions between modulations.

The Q6 nesting vector provides an excellent overlap of the Fermi surface planes associated
with the 1D diagonal chains. In addition, the X-ray diffuse scattering study showed that
pretransitional fluctuations parallel to the a∗+b∗ and −a∗+b∗ directions occur since 300 K
until the 188 K transition [134]. In view of the results of Figure 4.24 we conclude that the
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calculation experiment
Q1 0.125,0.50,0.0
Q2 0.50,0.125,0.0
Q3 0.00,0.375,0.0
Q4 0.37,0.0,0.0
Q5 0.26,0.365,0.0
Q6 0.26,0.12,0.0 0.26,0.073,0.27

0.12,0.03,0.15
Table 4.4 The maxima of Lindhard response function calculation for P4W14O50.

188 K transition in the present MPT Bp is due to Fermi surface nesting driven CDW in the
diagonal chains but affects one of the diagonal chains and those along a. Since it will be of
importance later, let us note that the transition exhibits a large series of harmonics (up to six),
something very unusual for traditional Peierls distortions, which suggests a non sinusoidal
character of the modulation.

The second modulation occurring at 60 K does not coincide with any of the nesting vectors
leading to maxima of the Lindhard response function. This fact is not due to inadequacy
of the calculated Fermi surface. Since the first modulation coincides very well with the
nesting vector associated with the Fermi surface diagonal and vertical (i.e. perpendicular to
a) planes, it is not possible that the a∗ component of the nesting vector associated with the 1D
chains along a∗ can be much different from the calculated value of 0.26a∗ if the modulation
is Fermi surface driven. This value is, however, twice larger than the a∗ component of the
modulation wave vector occurring at 60 K (0.12a∗). Consequently, the 60 K transition cannot
be associated with a Fermi surface driven CDW. This conclusion is confirmed by the fact
that this transition is not associated with pretransitional diffuse lines but with very isotropic
fluctuations in the (a∗,b∗) plane. Let us note also that several harmonics have also been
detected in that case [128, 130, 134].

4.4.5 MPT Bp with m = 8

This even m member of MPT Bp series is well studied along with the m = 4 and 6 even m
members. Dark blue crystals of P4W16O56 are built up in the same fashion as the crystals of
m = 4 and 6. The W8O34 chains are condensed together to make W8O28 layers of which there
are two in the unit cell, Figure 4.25. This compound is orthorhombic with the space group
P212121 and cell vectors are a = 5.29 Å, b = 6.55 Å and c = 26.7 Å [97].

There are four types of tungsten atoms with the different oxidation numbers in P4W16O56:
W I with +5.73, W II with +5.71, W III has +5.76 and W IV +5.81, and the average oxidation
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Fig. 4.25 Crystal structure of the P4W16O56.

state of W atoms in the layer is +5.75. On the Figure 4.26 is shown the calculated electronic
band structure for P4W16O56. As well, it consists of six bands that are crossing the Fermi
level and practically making three pairs of bands without any splitting due to interlayer
interactions.

Figures 4.27a and 4.27b show the calculated Fermi surface of P4W16O56. It shows that
there are hidden one dimensional sheets along directions which are perpendicular to a∗ and
a∗±b∗ directions, as for all the other MPT Bp members. The calculated value for fa is 0.25
and consequently, fa+b = f−a+b = 0.375. The occupation of the 1D band along a is thus 0.5
electrons and that of the bands along the diagonal directions is 0.75 electrons.

This compound shows two very close CDW transitions at Tp1 ∼ 220 K and Tp2 ∼
200 K [90] associated with q1 = (0.47,0.02,0.15) and q2 = (0.19,0.03,0.06) structural
modulations, respectively [128]. This is the only member of the series which shows no long
range order in the CDW state. At high temperature this compound is metallic, which can be
attributed to the undistorted Fermi surface in the normal state. The resistivity measurements
show semiconducting behaviour and enormous anisotropy along the c direction [91].

On the Figures 4.28a and 4.28b are presented the results of Lindhard response function
calculation for P4W16O56.

The nesting vectors in Table 4.5 are very similar to those of the m = 7 member (Table
4.4) and also to those of the m = 6 member (Table 4.3). This is understandable because the
crystal structure and thus the band structures are very similar. The different occupation of
the bands follows a depletion of the 1D band along a and consequently, an increase of the
population of the 1D bands associated with the diagonal chains when m increases. However,
the differences in band occupation are every time smaller as m increases. Thus, it is normal
that the Fermi surface and Lindhard response functions of m = 7 and m = 8 MPT Bp are very
similar. However, the two experimental wave vectors of modulations are not in agreement
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Fig. 4.26 Calculated band structure of P4W16O56.

(a) (b)

Fig. 4.27 The Fermi surface of P4W16O56: (a) projection along the c∗ direction; (b) 3D
presentation.

with the calculated ones. One of the two, q2 = (0.19,0.03,0.06), is strongly related with
the modulation that we concluded that is not originating from the Fermi surface instability
for the m = 7 member and thus, it has probably the same origin in the present system. The
other modulation, q1 = (0.47,0.02,0.15), is not at all related with the wave vector of the
modulation that is shown to be due to a Fermi surface nesting driven mechanism for the
MPT Bp with m = 7. We thus conclude that none of the two modulations in the m = 8
member of the MPT Bp are due to an instability of the Fermi surface. We note that the second
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(a) (b)

Fig. 4.28 (a∗,b∗) section of the Lindhard response function calculated for P4W16O56.

modulation has an a∗ component very near the commensurate 0.5 value. Thus it seams
that there is a net progression from Fermi surface driven to non Fermi surface driven as m
increases with coexistence of the two mechanisms for the m = 7 member. Let us remark that
there is no long range order of the modulations in the m = 8 compound [128].

calculation experiment
Q1 0.125,0.5,0.0
Q2 0.5,0.125,0.0
Q3 0.0,0.375,0.0
Q4 0.37,0.0,0.0
Q5 0.235,0.39,0.0
Q6 0.235,0.14,0.0

0.47,0.02,0.15
0.19,0.03,0.06

Table 4.5 The maxima of Lindhard response function calculation for P4W16O56.

4.4.6 MPT Bp with m = 12

The m = 12 member of MPT Bp series belongs to the larger m members (8 ≤ m ≤ 14)
which show commensurate and incommensurate modulations at high transition temperatures,
T > 500 K [79]. The crystal structure contains W12O40 step layers and is shown in Figure
4.29. From the structural viewpoint this bronze is similar to the low m members of the
series. Plate-like blue crystals of P4W24O80 are orthorhombic with the cell vectors a = 5.31
Å, b = 6.55 Å and c = 42.196 Å and space group P212121 [105].
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Fig. 4.29 Crystal structure of the P4W24O80.

On the Figure 4.30 is shown the calculated electronic band structure for P4W24O80 which
exhibits the same features as all the other MPT Bp. Note again, an almost nil interaction
between step layers. The Fermi surface (Figure 4.31) shows hidden one-dimensionality as
in all other MPT Bp. The value of fa is 0.23 and consequently, fa+b = f−a+b = 0.385. The
numbers of electrons filling the 1D band along a is 0.46 whereas that in the 1D bands along
the diagonal directions is 0.77.
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Fig. 4.30 Calculated band structure of P4W24O80.
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(a) (b)

Fig. 4.31 The Fermi surface of P4W24O80: (a) projection along the c∗ direction; (b) 3D
representation.

On the Figures 4.32a and 4.32b are shown results of the calculated Lindhard response
function. The maxima of the Lindhard response function are shown in Table 4.6. The shape
of this Lindhard response function is similar to those of the low m members of the series.

(a) (b)

Fig. 4.32 (a∗,b∗) section of the Lindhard response function calculated for P4W24O80.

The m = 12 member shows two instabilities at Tp1 = 535K and Tp2 = 500K with the mod-
ulation vectors q1 = (0.12,0,0) and q2 = (0.5,0,0.5) respectively [79, 128]. Single crystal
X-ray diffraction patterns show commensurate modulation wavevectors which correspond to
the structural transitions [128].

Shown in Table 4.6 are listed the maxima of the Lindhard response function for the m= 12
member. Again and for the same reasons explained before, these values are very similar to
those of the m = 7 and m = 8 members. The two experimentally observed modulations do not
coincide with the theoretical values expected for Fermi surface nesting driven modulations.
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calculation experiment
Q1 0.135,0.5,0.0
Q2 0.5,0.125,0.0
Q3 0.0,0.375,0.0
Q4 0.37,0.0,0.0
Q5 0.24,0.12,0.0
Q6 0.24,0.38,0.0

0.5,0.0,0.5
0.12,0.0,0.0

Table 4.6 The maxima of Lindhard response function calculation for P4W24O80.

One of the two modulations (q1 ∼ (0.12,0.0,0.0)) is strongly related with one of those
occurring in the m = 8 (q ∼ (0.19,0.03,0.06)) and m = 7 members (q ∼ (0.12,0.03,0.15)),
and which we have attributed to non Fermi surface driven mechanisms. The other modulation
has two commensurate components, a∗ and c∗ of 0.5, almost the same as the a∗ component
of the second modulation occurring in the m = 8 member. The presence of 0.5 commensurate
components along both a∗ and c∗ strongly suggests that this modulation is related to the
well known antiferroelectric distortion of pure WO3, which is not a Fermi surface driven
instability. This is not that surprising since the WO3 is the m = ∞ limit of the series and for
the large m members of the series, we should expect the same type of instabilities as for WO3.
Thus we conclude that in this MPT Bp, like all high m members of the series, the observed
modulations do not find their origin in instabilities of the Fermi surface.

4.5 Conclusion

The MPT Bp are low dimensional bronzes with a peculiar electronic structure made of the
superposition of 1D bands even if the crystal structure is 3D. The crystal structure contains
W -O step layers of different width depending on the number of octahedra (m) condensed
to give the elementary repeat unit of the layer. Because of the low electron filling of the
t2g block bands of this family of bronzes, the Fermi surface results from the superposition
of planes perpendicular to the a∗, a∗+ b∗ and −a∗+ b∗ directions of the Brillouin zone.
Calculation of the band structure, Fermi surface and Lindhard response function for a series
of MPT Bp for values of m = 4,5,6,7,8 and 12 has led to the following conclusions:

• The Lindhard response function for all the MPT Bps that we have studied (m =

4,5,6,7,8,12) except for the m = 4 case, contains six different maxima which are
associated with common nesting vectors for two of the three different 1D partially
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filled bands of these bronzes. For the m = 4 member, there are only five as a result of
the fact that the three 1D bands are equally filled. Only three of these common nesting
vectors seem to be relevant to explain the electronic instabilities of the low m members
of the series.

• The electronic filling of the bands associated with the 1D chains along a and the
diagonal directions changes along the series. The three bands are equally filled for
m = 4 (0.66 electrons) and then the 1D band along a is progressively depleted down to
0.46 electrons for m = 12, while each of the 1D bands along the diagonal direction are
increasingly populated up to 0.77 electrons for m = 12.

• The structural modulations occurring in the low members of the series m = 4,5 and 6
originate from Fermi surface driven CDWs of the step layers. For the high m members
of the series m = 8,12, the structural modulations (which exhibit many harmonics)
are due to non Fermi surface related mechanisms which are most likely related to
the antiferroelectric instability of WO3 or to antiferrodistortive transitions related to
the different types of rotations of WO6 octahedra in that phase. The m = 7 phase
is a borderline compound where one of the modulations originates from the Fermi
surface instability whereas the other is unrelated to the Fermi surface. Thus, the rich
physical and structural behaviour of this phase is due to the competition between CDWs
resulting from the nesting of the Fermi surface and antiferrodistortive distortions of
the octahedral lattice.

• Among the low m members of this family the nature of the modulations change
according to the filling of the different 1D bands. For m = 4 the higher temperature
modulation originates from the instability of the 1D chains along a coupled with
the instability of one of the diagonal chains whereas the low temperature transition
originates from the instability of the other 1D chain along the diagonal directions. For
m = 5 the high temperature transition is still associated with the destruction of the
hidden planes of the Fermi surface associated with the chains along a and one of the
diagonal directions although the 1D chain along a does not play anymore the leading
role. For m = 6 the high temperature modulation is associated with the instability of the
chains associated with the diagonal directions and the low temperature one, with the
instability of the chains along a. Thus, there is a progressive decrease of the influence
of the chains along a in imposing the kind of CDWs in these low m MPT Bp, which can
be easily related to the decreased filling of the band associated with the chains along
a. The high temperature modulation of the m = 7 member is due to the instability
of one of the diagonal chains coupled with the instability of the 1D chains along a.
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However, the competition with another non Fermi surface driven instability can subtly
modify the filling of the bands so that it is not clear if the situation is apparently more
similar to the m = 5 member; the existence of multiple harmonics makes clear that the
mechanism is not that of a traditional CDW type mechanism.

The theoretical data reported in this chapter provide a firm basis for the discussion of a
large body of the structural and transport properties of the much debated MPT Bp.



Chapter 5

Group V transition metal oxides and
chalcogenides

5.1 Introduction

Transition metal oxides and chalcogenides have been extensively studied on experimental
and theoretical bases for decades [4, 5, 135–137]. This group of compounds are particularly
interesting because of their specific physical properties such as metal-to-insulator transition,
magnetism and superconductivity [138–143].

This chapter is about of some Ta and Nb compounds which are found to be low dimen-
sional with layered or chain-like structure. The physical properties of these low dimensional
materials are dominated by their structural characteristics. All studied compounds in this
chapter include one member of the group V transition metals, Ta or Nb. The electronic
properties of these materials strongly depend on the coordination of the transition metal (Ta
or Nb) and the number of its d-electrons which is giving rise to an array of properties from
metallic to semimetallic and semiconducting [144–151].

Low-dimensional transition metal oxides and chalcogenides often exhibit structural and
electronic instabilities leading to anomalies in their transport properties. This was one of the
reasons why some of the compounds in this chapter were the subject of an intensive study
for many years [152–160]. We have investigated the electronic structure of four compounds:
Sr5Nb5O17, 2H-NbSe2, TaTe4 and Ta2NiSe7 and here are going to be presented results of
their band structure, Fermi surface and Lindhard response function. Our goal is to understand
if Fermi surface nesting is at the origin of the structural and resistivity anomalies exhibited
by these compounds. This question has been debated for a longtime in the four cases.
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5.2 Sr5Nb5O17

Sr5Nb5O17 belongs to the family of low dimensional materials of the homologous series
AnBnO3n+2. This group of materials has a perovskite related layered structure which differs
only slightly from the three-dimensional network of the parent ABO3 perovskite structure
because of the presence of excess oxygen. In the formula AnBnO3n+2, A can be Ca,Sr or
La and B is usually Ti or Nb. Sr5Nb5O17 is the most intensively studied AnBnO3n+2 type of
compound because of its unusual chemical and physical properties [152, 161–164].

Fig. 5.1 Sketch of the crystal structure of the n = 5 member of perovskite-related layered
homologous series AnBnO3n+2. Circles represent the A cations. Within the layers the corner-
shared BO6 octahedra extend zig-zag-like along the b-axis and chain-like along the c-axis.

The AnBnO3n+2 type oxides are very often expressed as ABOx, whereby the corresponding
oxygen content x of a structure type n is calculated as x = 3+2/n. Depending of the oxygen
stoichiometry, these oxides exhibit different physical properties. Thus, when A is an alkali-
earth cation, the n = 4 (or x = 3.5) compounds are insulators and display ferroelectricity with
very high transition temperatures while compounds with n = 4.5 (compounds where layers
with n = 4 and n = 5 alternate) and n = 5 (or x = 3.4) are metallic conductors and some of
them show quasi-one-dimensional (1D) metallic behaviour at high temperatures [152]. When
lowering the temperature the n = 5 compounds show metal-to-semiconductor transition.

Crystal structure of compounds from the series AnBnO3n+2 = ABOx(x = 3+ 2/n) is
derived from the ABO3 perovskite-type structure with slabs of vertex-sharing BO6 octahedra,
Figure 5.1. The BnO3n+2 slab is built from BnO5n+1 zigzag units of n octahedra, Figure 5.2a.
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These zigzag units assemble together forming BnO4n+2 chains by sharing n−1 equatorial
oxygen atoms, Figure 5.2b, and finally forming the BnO3n+2 layer upon sharing all of their
apical oxygen atoms, Figure 5.2c [152, 165]. The crystal structure of Sr5Nb5O17 is shown in
Figure 5.3. The consecutive slabs are shifted with respect to each other by half of the cell.
The cations reside in the empty tunnels of these layers except those of the outer part of the
layer which are somewhat shifted towards the other layer and occupy the interslab region.
The octahedra on the opposite sides of the interslab region do not share oxygen atoms leaving
in that way to an extra layer of oxygen atoms compared to the ideal perovskite structure.

(a) (b)

(c) (d)

Fig. 5.2 Building up of the perovskite like structure of AnBnO3n+2 type compound with n = 5.

The ideal perovskite structure is corresponding to n=∞. Systems with non-integral values
of n, like n = 4.5, are built up of successive slabs with different n values (i.e. alternatively
slabs with n = 4 and n = 5 for the 4.5 case). The A cations usually exhibit an irregular
coordination.

Sr5Nb5O17 is a one-dimensional metal along the c-axis according to resistivity, far
infrared spectroscopy and angle-resolved photoemission [150, 161, 163]. This is in contrast
with the n = 4 member of the series, Sr4Nb4O14 which is a room-temperature semiconductor
as a result of a high temperature (1615 K) ferroelectric distortion. Around 40 K, Sr5Nb5O17,
exhibits a metal to semiconductor transition opening a small gap of a few meV [161]. The
microscopic origin of this transition is still unknown. The 1D character of the conductivity
makes us to suspect that it could be due to Fermi surface nesting.

The NbO6 octahedra in the slabs of SrNbO3.40 are found to be (4+ 1+ 1) distorted.
Distortion of BO6 octahedra is a common feature of the members of AnBnO3n+2 series
[150, 165–168]. Distortion is the highest for the octahedra at the edges of the slab and is the
lowest for the ones in the middle of the slab, Figure 5.1. It has been believed that distortions
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Fig. 5.3 Polyhedral representation of the crystal structure of Sr5Nb5O17.

of the octahedra are responsible for the one-dimensionality in this compound [169, 170] but,
as it has been shown later, this cannot be the case [171] because the one-dimensionality of
the electronic structure already occurs for the ideal (undistorted) structure.

The important step in understanding the band structure of low-dimensional perovskite-like
materials as Sr5Nb5O17 is the knowledge of the nature of the bottom t2g-block bands, which
depend on of the type of perovskite phase, transition metal nature, different local octahedral
distortions and band filling. Charge carriers in Sr5Nb5O17 are niobium 4d electrons [152,
169]. Sr5Nb5O17 is thus a d0.20 material which means that there are 0.20 electrons in d-
orbitals of every Nb atom [171]. However, it should be noted that because of an oxygen
excess the real stoichiometry of the material is SrNbO3.41. Consequently, there are 0.18
electrons instead of 0.20 per Nb atom. All the calculations for this phase have been carried out
with this electron filling. The unit cell in our calculations is made of two Sr5Nb5O17 layers
and therefore contains ten Nb atoms or five Nb atoms per each layer. Consequently, there are
1.8 d-electrons distributed between the niobium d-orbitals of the unit cell. According to a
valence sum analysis the valence of niobium atoms at the borders of the slab is +4.8 and it
decreases towards the center of slabs. The lower valence at the center of slabs indicates that
the extra electrons in 4d orbitals of Nb are most probably settled at Nb sites in the middle of
the slabs. Therefore, the electrical conduction in this compound is taking place mostly in the
middle of the slab, where the NbO6 octahedra are the least distorted [164].

We carried out the band structure and Fermi surface calculations for Sr5Nb5O17 using the
density functional theory (DFT) implemented in the SIESTA code [10–12, 172]. For these
calculations we used the generalised gradient approximation (GGA), the energy cutoff of real
space integration mesh of 300 Ry and the k-point grid of 15×33×45. The calculated band
structure of Sr5Nb5O17 is shown in the Figure 5.4. In our study we used the experimental
crystal structure of Sr5Nb5O17 with unit cell parameters: a = 32.456 Å, b = 5.674 Å and
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Fig. 5.4 The electronic band structure of Sr5Nb5O17 (for labelling of the special points see
Figure 5.5).

c = 3.995 Å [173]. The black crystals of Sr5Nb5O17 are found to be in the Pnnm symmetry
group [174].

Fig. 5.5 Schematic Brillouin zone for the orthorhombic Sr5Nb5O17 showing the high sym-
metry directions. The spatial points are: Γ = (0,0,0), Y = (0,0.5,0), M = (0,0.5,0.5),
Z = (0,0,0.5) and X = (0.5,0,0).

Because of the low electron count only the bottom part of the t2g-block bands may be
filled. Under such conditions, the shape of the band structure is easy to predict. The t2g-block
band levels of a perovskite-type slab are going to raise in energy when the orbitals of the
bridging oxygen atoms are allowed by symmetry to mix with the metal t2g orbitals [171]. As
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there is no metal-metal interaction, knowing how many oxygen p-orbital contributions can
be found in the crystal orbitals of each band for different points of the Brillouin zone, one
could guess the energy dispersion and relative position of the t2g-block band [175]. Thus, the
band structure can be explained by counting the contribution of oxygen p-orbitals which are
by symmetry allowed to mix with niobium d-orbitals.

On the basis of these ideas Tobias and Canadell [171] obtained a general qualitative
band structure for the members of this family. They showed that for an ideal layer without
octahedral distortions the x2 − y2 orbitals lead to 1D bands along the b direction whereas the
xz/yz orbitals lead to 1D bands along the c direction. In addition they showed that the lowest
band at Γ must be of the xz/yz type.

Shown in Figure 5.4 is the calculated band structure of Sr5Nb5O17. The Fermi level cuts
three pairs of bands and the lower part of another pair of bands is very near the Fermi level.
The three lowest pairs of bands at Y are very dispersive along the Y -M and Γ-Z directions
(i.e. parallel to the c direction). These orbitals are made of xz/yz Nb orbitals. The lower pair
of bands at Z is very dispersive along the M-Z direction but weakly dispersive along Z-Γ.
Around Γ this pair of bands undergoes an avoided crossing with the upper of the two pairs of
bands strongly raising along the Γ-X line and become the third pairs of bands at Γ. This pair
of bands is made of x2−y2 orbitals of the Nb atoms. Consequently, the lower t2g-block bands
are all pseudo-1D bands although along different directions as predicted by the qualitative
model. The lower band at Γ is an xz/yz band also in agreement with the qualitative model.

The bands occur in pairs because there are two equivalent slabs per unit cell and the
interslab interactions are very weak. For simplicity, along this paragraph we will not refer to
pairs of bands but simply to bands. The strongly dispersive band along M-Z which becomes
the third band at Γ is built from the lowest combination of the x2 − y2 orbitals of the five Nb
atoms of the repeat unit of the slab. This orbital makes δ -type interactions with the apical
oxygen orbitals along the c direction but π-type interactions with part of the basal oxygen
orbitals along the b direction. This is why they are 1D along the b direction. The xz/yz
bands should occur in pairs for the ideal layer. However, this is not the case here because
of the local distortions in the outer octahedra of the layer which make the two orbitals non
equivalent. However, most of the interactions of these orbitals are δ -type with the basal
oxygen orbitals but π-type with the apical oxygen orbitals so that they are 1D along the c
direction.

On the Figure 5.6 is shown the calculated Fermi surface of Sr5Nb5O17. It is a superpo-
sition of three contributions originating from the three pairs of bands that are crossing the
Fermi level, Figure 5.4. The complete Fermi surface consists of three pairs of two types of
contributions: one pair of quasi-1D Fermi surfaces perpendicular to the c∗-direction and two
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(a) (b)

Fig. 5.6 Calculated Fermi surface of Sr5Nb5O17: (a) projection along the a∗ direction; (b)
3D representation.

pairs of 2D Fermi surfaces with the shape of a cylinder with either circular or elliptical cross
section, Figure 5.6.

The occurrence of the 1D component is in line with our previous discussion. However,
the existence of two 2D components may seem at first sight surprising since the qualitative
analysis lead to the prediction of the existence of just 1D components (although in orthogonal
directions). Looking back to Figure 5.4 the situation becomes clear. The Fermi level falls just
at the bottom of the second and third bands which are strongly dispersive along c. Because
of the octahedral distortions, Sr5Nb5O17 is not a perfect 1D system and these bands exhibit a
small energy dispersion along the transverse direction, b. Since the filling of these bands is
very low, the small curvature leads to a crossing of the Fermi level with the band along the
transverse direction, closing the Fermi surface in the (b∗,c∗) plane. In addition, as mentioned
above, the avoided crossing of the x2 − y2 band, which is 1D in the b direction, mixes with
these bands and incorporates some dispersive character in this direction. Both, small carrier
concentration and some mixing of the x2 − y2 orbitals lead to the two closed components of
the Fermi surface.

The band structure and Fermi surface of Sr5Nb5O17, Figures 5.4 and 5.6 respectively,
show a strong one-dimensional character along the chain direction (c-direction) although
the two cylinder-like components parallel to a∗ should confer a non negligible 2D metallic
character in the (b∗,c∗) plane. In agreement with our study, measurements of thermal and
charge transport properties reveal high anisotropy of the conductivity of this compound with
higher values along the chain direction [161].
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(a) (b)

Fig. 5.7 (a) (b∗,c∗) section and (b) 3D representation of the Lindhard response function for
Sr5Nb5O17.

The calculated Lindhard response function is shown in Figure 5.7. The more remarkable
feature of this figure is the fact that the larger values occur as two lines perpendicular to
c∗ for the value of 0.38c∗. In fact as one looks more carefully at the Figure it appears
that the maxima occur at the border of the Brillouin zone, i.e. for 0.5b∗+ 0.38c∗ and the
symmetry related points. What is the meaning of these results? For a perfect 1D system
along a given direction, the Fermi surface is made of two parallel lines (really sheets in a
three dimensional representation) perpendicular to the chain direction. The two lines can be
nested by an infinite number of vectors having the same component along the chain direction
(2k f , where k f is the Fermi wave vector) and all possible transverse components. In principle,
such a system is susceptible to exhibit a density modulation with any of these wave vectors.
However, if the system is not a perfect 1D and the two lines of the Fermi surface exhibit
some warping, the situation is different. If the warping is weak and almost cosine-like, as it
is the case in Figure 5.6, then there is only one vector that can nest the whole Fermi surface.
This nesting vector has a 0.5 component in the transverse direction meaning that because
of the interchain interaction, the modulation will bring also a doubling along the interchain
direction. Inclusion of the 2D contributions in the calculation of the Lindhard function does
not fundamentally alter the previous results although introduces additional contributions
related to the flat portions of the elliptical section of the cylinders.

The Lindhard function of Figure 5.7 thus suggests that Sr5Nb5O17 will behave as a
pseudo-1D metal with a small but finite interchain coupling. In principle the system could
exhibit a structural modulation with a wave-vector of 0.5b∗+ 0.38c∗, i.e. commensurate
along the transverse direction but incommensurate along the chains direction. It is thus likely
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that the 40 K transition is associated with such a kind of modulation. However, it should be
noted that the Lindhard function has been calculated at 0 K. Since the transition occurs at 40
K and the temperature will lead to some smearing of the Fermi surface, it is possible that
the 0.5b∗ component is irrelevant. However, the occurrence of a 0.5b∗ component is still
possible because of the coulombic interaction between the modulations.

The present results are consistent with the 1D character of the system as found with
different physical measurements [161–163]. Thus, it is tempting to assume that the 40 K
transition results from a Peierls type transition associated with the nesting vector of the 1D
component of the Fermi surface. However, the Fermi surface of Figure 5.6 suggests that
if a Peierls modulation destroys the 1D component, the system should keep the metallic
character because of the two 2D components. This is in conflict with the fact that a small but
definite energy gap occurs after the 40 K transition. A possible explanation is that thermal
contraction slightly modifies the structure such that the Fermi level does not cut anymore the
bottom part of the second and third pairs of bands. In that case the Fermi level would only
cut the lowest band and after the modulation the whole Fermi surface would be destroyed. If
this is correct, the partially filled band would be filled with the extra electrons coming from
the second and third pairs of bands.

Since the calculated nesting vector contains the 0.38c∗ component, this means that the
number of electrons in the 2D bands is 0.18 · 5− 2 · 0.38 = 0.14 electrons per repeat unit
of the layer, i.e. 0.14/5 = 0.028 electrons per Nb atom. This is a relatively small number,
a 15.5% of the electrons in the Nb d bands. If all the electrons fill the lower 1D band as
suggested then the c∗ component of the nesting vector would be larger, 0.45. This explanation
is puzzling in that the energy gap opened after the transition seems to be very small for a
Peierls transition of a 1D system with largely dispersive partially filled band. The only way to
reconcile the two facts would be that the Peierls modulation exhibits very small displacement
amplitudes.

It can be argued that the thermal contraction may not be strong enough to depopulate
completely the second and third bands. In that case, since the number of electrons in the 2D
portions of the Fermi surface is small and can be even smaller at low temperature, it is likely
that the development of the modulation due to the 1D bands induces the localization of these
extra carriers in the 2D bands.

Although more experimental work is needed to solve this problem, we conclude that
the 40 K transition of Sr5Nb5O17 is most likely due to a Peierls like modulation with small
displacement amplitudes originating from the lower xz/yz band of the layer. If a small
number of extra carriers are localized as a result of the modulation or if they do not exist at
low temperature where the metal to insulator transition occurs is an open question. X-ray
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diffuse scattering measurements providing the c∗ component of the modulation would be
invaluable in providing useful information to discuss this point.

5.3 2H-NbSe2

Since the 1960s, when the possibility of superconductivity in layered quasi-2D materials
was proposed, the 2H-NbSe2 has been studied intensively. 2H-NbSe2 is metallic at room
temperature, becomes superconducting at 7 K [176, 177] and there are strong indications
that it is a two-gap superconductor [178–180]. Before reaching the superconducting state it
undergoes a charge density wave transition at around 30 K [181, 182]. Close to 1.5 thousand
papers were published to date about this compound. However, the main interest in 2H-NbSe2

has been shifted from the superconductivity to the charge density wave (CDW) instability
[146, 154, 155, 182–187]. Although the occurrence of both superconductivity and CDW in
this material has been known for many years [181, 182, 188], the controversy concerning
the nature of the CDW has never been settled. In fact although it was known since the
seventies that the CDW leads to a 3×3 superstructure [181, 188], it is only recently that the
detailed crystal structure of the modulated phase has been reported [189]. In recent years,
there has been an enormous interest on this material because of the possibility to prepare
layers of different thickness [190, 191]. It is well established that the superconducting critical
temperature diminishes when decreasing the number of layers [192, 193].

Fig. 5.8 The layered crystal structure of NbSe2.
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2H-NbSe2 belongs to the group of 2H-MX2 phases (M = Nb and X = Se and Se or
M = Ta and X = S or Se) transition metal dichalcogenides. The NbSe2 structure is based
on Nb layers being sandwiched between two Se layers, Figure 5.8. The Nb atoms are on a
trigonal prismatic coordination. The unit cell of the solid contains two identical slabs related
by a screw axis along the c direction. Successive layers are separated by van der Waals
gaps through which there are relatively short Se-Se contacts, i.e., every Se atom makes three
Se-Se contacts (3.537Å) shorter than the sum of the van der Waals radii with the Se atoms of
the adjacent layer. The Se-Se contacts along the c direction within the hexagonal layers are
even shorter, 3.347 Å. These two structural features give a considerable three-dimensional
character to this layered material. The cell parameters of 2H-NbSe2 are a = b = 3.4425 Å
and c = 12.547 Å, and the space symmetry group is P63/mmc [182, 194].

The first band structure calculations for the 2H-NbSe2 were done in the 1973 using a
non-self-consistent potential [145]. However, the results differ in some important aspects
from the more recent DFT calculations [155, 179, 185, 195–198]. The first band structures
of 2H-NbSe2 were showing two bands crossing the Fermi level, while nowadays we know
that there are three bands coming from the Nb d-orbitals and Se p-orbitals.
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Fig. 5.9 Calculated band structure of 2H-NbSe2. (see Figure 5.10 for labelling of the special
points.)

In our study the band structure and Fermi surface calculations for 2H-NbSe2 were done
using density functional theory (DFT) as implemented in the SIESTA code [10–12]. The
calculations were carried out with generalised gradient approximation (GGA), an energy cut
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off of 300 Ry and k-point meshes of 30×30×15. In the Figure 5.9 is shown the calculated
band structure of 2H-NbSe2 and in the Figure 5.10 the schematic Brillouin zone.

There are three bands cutting the Fermi level, Figure 5.9. The two upper bands at Γ are
coming from the Nb d-orbitals and contain a fairly large contribution of the Se p-orbitals. The
third band is mainly built from the Se p-orbitals perpendicular to the layers, the pz orbitals
[155, 179]. Thus, the Fermi surface contains two types of contributions: those associated
with the electron carriers originating from the Nb d-levels and those with the hole carriers
originating from the Se p-levels. From the Figure 5.9 there are three bands cutting the Fermi
level along Γ-M-K-Γ section of the Brillouin zone and only one band along the Γ-A direction.
This band is coming from the Se pz-orbital. The other two Nb d-bands remain always higher
than the Fermi level along this direction.

Fig. 5.10 Schematic Brillouin zone used for the band structure calculation of 2H-NbSe2.
The spatial points are: Γ = (0,0,0), M = (0.5,0.0), K = (0.33,0.33,0), A = (0,0,0.5),
L = (0.5,0,0.5) and H = (0.33,0.33,0.5)

If it were not for the Se based band, the two Nb based bands would be half-filled since
Nb is formally in a d1 state. The main character of these bands changes along the Brillouin
zone. At the zone center they are based on the dz2 orbitals. However, around the K point they
are based on the dxy and dx2−y2 orbitals. The unusual shape of the two bands, with minima
along the Γ-M and the Γ-K directions (as well as the equivalent directions A-L and A-H at
the border of the Brillouin zone) are due to this change in orbital character from the center to
the border of the Brillouin zone. The two in-plane orbitals dx2−y2 and dxy are well oriented
to interact with equivalent orbitals of neighboring Nb atoms. In contrast, the dz2 orbital has
lobes pointing outside the layer plane. Thus, the former can generate metal-metal interactions
but not the latter. By symmetry, the two types of orbitals can not mix at Γ but within the
Brillouin zone the two sets can smoothly mix and interchange character between different
regions. Thus, the phase changes associated with the crystal orbitals of some regions of
the Brillouin zone lead to bonding interactions between neighboring Nb atoms (the regions
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around the minima) whereas in the region around Γ where the dz2 character prevails, these
bonding interactions are not possible and the energy is higher.

The Fermi surface contains two different contributions: one 3D hole contribution coming
from Se p-orbitals and two 2D electron contributions coming from Nb d-orbitals [155, 179].
The Figure 5.11 shows the almost flat 3D portion of the Fermi surface around the Γ point
arising from the Se p levels with the shape of a pancake and a series of tubes along the
interlayer direction centered around the Γ and K points. originating from the Nb d levels.

(a) (b)

Fig. 5.11 Calculated Fermi surface of NbSe2; (a) projection along the c∗ direction; (b) 3D
representation.

Experimental works show that 2H-NbSe2 exhibits a phase transition at T = 33.5 K,
which is assigned to be the Peierls temperature, Tp, of this compound [188]. The resistivity
of 2H-NbSe2 remains metallic below Tp and shows only a small anomaly at the phase
transition [199, 200]. This means that if this is a Peierls transition, the CDW does not involve
a large modifications of the Fermi surface. It has been experimentally shown [188, 201]
that below the temperature of the transition the system exhibits a modulation with a 3×3
supercell (in fact the system is slightly incommensurate [188] but the recent structural
determination by Malliakas and Kanatzidis [189] has shown that refinement of the structure
with a commensurate or incommensurate cell does not lead to any significant difference).
The 3× 3 modulation results from the existence of three modulations with wave vectors
q1 = 1/3a∗, q2 = 1/3b∗ and q3 = (1/3a∗− 1/3b∗) along the three main directions of the
hexagonal plane. The resistivity [200] and heat-capacity [199] measurements indicate that
the decrease in the density of states at the Fermi level associated with CDW formation is only
of the order of 1%. These facts seem to argue against a Fermi surface nesting mechanism
origin of the 3×3 modulation in 2H-NbSe2.
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The origin of the CDW in 2H-NbSe2 has been a matter of debate for around forty years.
Initially, it was attributed to a Fermi surface driven CDW [181]. The suggestion was based
on the shape of the Fermi surface for earlier calculations [145]. However this explanation
has been challenged [154, 155, 185, 186, 198, 202]. Rice and Scott [186] soon proposed
that the CDW was driven by saddle points lying within kB TCDW of the Fermi level and
separated by the 1/3a∗ and equivalent wave vectors [186]. Doran et al [154, 202] used
simple tight-binding models to evaluate the susceptibility and showed that indeed it did
not exhibit sharp peaks. This led them to propose that strong coupling was at the origin
of the instability. A similar conclusion was reached by Whangbo and Canadell on a basis
of different tight-binding calculations [198]. Most of these calculations were not based on
first-principles and for instance lacked an ingredient of the presently known Fermi surface
of the material: the pancake-like hole contribution. More recently several first-principles
calculations have been reported both for the bulk and single layers [153, 179, 196, 197, 203].
In a very detailed study, Mazin et al. [155] carried out DFT calculations for the Fermi surface
and Lindhard response function and proposed that Fermi surface nesting was not at the origin
of the CDW formation. However, the same type of calculations led to the wrong prediction
of a 2× 2 CDW modulation for 2H-NbSe2 single-layer [197] so that it is not clear if this
type of approach correctly describes the electronic structure of the material. In addition,
no microscopic mechanism was proposed to explain the origin of the modulation. Finally,
a recent DFT study of our group [203] could successfully explain most of the physical
measurement for single-layer NbSe2. It was shown that the driving force for the modulation
originates from levels which are around 1.3 eV lower than the Fermi level and that the
transition leads to an increase of the Nb-Nb bonding. It must be mentioned that a similar
debate concerning the origin of the CDW modulation has developed within the photoemission
community. A useful account can be found in the review by Rossnagel [204]. Thus we
decided to apply the same kind of calculations used previously for single-layer 2H-NbSe2 to
the bulk.

From the calculated electronic band structure and Fermi surface, Figures 5.9 and 5.11
respectively, one can notice that there could be a so called "self-nesting" of the pancake
shaped Fermi surface sheets inside themselves. According to the calculated band structure
and Fermi surface, there could be nesting in the Γ-M direction between the flat parts of
tubular Fermi surfaces with a nesting vector which is not far from the experimental one.
However, the warping along c∗ of the pseudo-cylindrical walls is non-negligible so that it is
not clear if such feature would provide a sizeable driving force.

Thus, we carried out the Lindhard response function calculation for 2H-NbSe2 and the
results are shown in Figure 5.13. This Figure exhibits six very weak and broad maxima along
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Fig. 5.12 (a∗,b∗) section of the response function for 2H-NbSe2.

the Γ-M line. These peaks are not far from the 1/3a∗ value. However, as it is clear from the
very diffuse maxima as well as from a 3D representation of Figure 12, there are no sharp
maxima in the response function as required to have a Peierls type instability. Consequently,
the 3× 3 modulation of 2H-NbSe2 can not originate from a Fermi surface nesting driven
mechanism. The possible self-nesting of the cylinders is not effective in stabilizing the
modulation observed for 2H-NbSe2.

We are thus led to the conclusion that the low temperature structural modulation in 2H-
NbSe2 must originate from levels which are not at the Fermi level. This is in agreement with
the very low effect of the modulation on the conductivity. The origin of the 3×3 modulation
was analysed in detail for the case of a single-layer [203]. In that case it was found that the
largest change in the density of states occur around 1.3 eV below the Fermi level and leads to
the splitting of a large Se-based peak which however contains an important participation of
the Nb dxy and dx2−y2 orbitals making Nb-Nb in-plane interactions. When the CDW occurs
the peak splits in two peaks; the lower peak is mostly associated with the Nb-Nb interactions
which are shortened in the CDW structure and provide a stabilization. The upper peak is
mostly associated with the Nb-Nb interactions which are lengthened in the CDW and thus
provide a destabilization. The stabilized levels have a stronger weight in the density of states
so that the distortion associated with the CDW provides a small but finite stabilization to
the system. We have verified that the density of states of the bulk and single-layer exhibit
essentially the same features. Thus, we propose that the origin of the CDW modulation of
bulk 2H-NbSe2 is the same as for the isolated single-layer and is unrelated to the Fermi



90 Group V transition metal oxides and chalcogenides

surface. Despite being one of the first materials for which a Fermi surface driven mechanism
was proposed to explain the CDW and the debate originated through almost forty years, we
believe that the source of stabilization is simply an optimization of the extended Nb-Nb
bonding along the hexagonal layers.

5.4 TaTe4

The polychalcogenides are an interesting group of quasi-one-dimensional compounds, some
of them containing linear chains of metal atoms. In many of these compounds CDW-like
distortions have been observed. The tetratellurides, MTe4 (where M = Nb or Ta), have been
found in the 1960s when their basic structure was determined [205, 206].

The TaTe4 crystal structure consists of columns of TaTe4 containing linear chains of
metal atoms, like the ones on the Figure 5.13. Ta atoms are coordinated by eight Te atoms,
which are making successive squares. These squares are being rotated with respect to each
other, so that Ta atoms are in the centre of a square antiprism. The TaTe4 chains run along
the c-axis and repeat forming a tetragonal structure. NbTe4 occurs with the same structure.
Both systems exhibit metallic properties at room temperature [148, 207]. Thus, we can say
that this is a quasi-1D system with metallic properties. Both systems exhibit a modulated
structure already at room temperature [208, 209]. TaTe4 exhibits a structural transition
around 823 K [206] towards a commensurate 2a×2a×3c modulation, the structure of which
was solved by De Boer et al. [208]. NbTe4 exhibits a more complex behaviour with several
intermediate transitions towards incommensurate structures [156, 209, 210] before the lock-
in to the same commensurate structure as TaTe4 is reached at 50 K [211]. Boswell et al.
[156] observed three types of superlattice spots for TaTe4. They proposed that they were due
to the formation of three different CDWs with wave vectors (0,0,c∗/3), (a∗/2,a∗/2,c∗/3)
and (a∗/2,0,c∗/3). In the case of NbTe4, the c∗ is near but not exactly 1/3 leading above
50 K to incommensurate structures [156, 209, 210].

Conventionally, this structure can be presented as in the Figure 5.14. The closest ap-
proaches between Te atoms in the same chain are the edges of the Te squares and are 3.287Å
and the closest distance between Te atoms between neighbouring chains is 2.928 Å[206].
This indicates that the Te-Te interactions are strong between the neighbouring chains, and
thus, maybe a better description of the system would be provided by Figure 5.14b where
Te-Te bonds linking the different chains have been highlighted whereas the Te atoms of the
square units are considered as non bonded. In fact, both figure 5.14a and 5.14b highlight
different aspects of the structure and the real situation should be something in-between the
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(a) (b)

Fig. 5.13 The structure of TaTe4; orange -Ta atoms, violet -Te atoms; (a) lateral view, (b)
top view along the c-axis.

two descriptions. In anyway, this clearly suggests that these solids must be less clearly 1D
than usually considered and the electronic structure should be rather 3D.

Both NbTe4 and TaTe4 are room temperature metals when the system exhibits a modula-
tion [148, 207]. The resistivity of TaTe4 does not exhibit major anomalies in the investigated
temperature range because the commensurate modulation already is present at room tempera-
ture. The conductivity is almost isotropic in the (a,c) plane. For NbTe4 there is a variation
on the derivative of the resistivity around 50 K when the lock-in of the modulation occurs
and there is a decrease of the conductivity below this temperature.

(a) (b)

Fig. 5.14 The structure of TaTe4 along the c-direction (a) each Ta atom is surrounded by
eight Te atoms in a square anti-prismatic coordination; (b) Representation emphasising that
the closest distances between the Te atoms are amongst the Te atoms of the neighbouring
chains.



92 Group V transition metal oxides and chalcogenides

From the theoretical viewpoint not much has been done concerning these materials. The
only electronic structure works from which we are aware are those of Bullett [212] and
Whangbo and Gressier [213]. Bullet proposed that the interchain interactions are strong but
no detailed mechanism for the modulation was proposed. Whangbo and Gressier reported
tight binding electronic structure calculations for NbTe4. They suggested that the Fermi
surface of these system exhibits flat but warped sheets and the c∗ component of the possible
nesting vectors was around 1/4 which is not in good agreement with the experimental values
of 1/3 or nearly 1/3. Walker and Morelli [214] put forward an interpretation of the different
transitions in NbTe4 on the basis of a Guinzburg-Landau free energy approach of interacting
chains. Finally, let us note that the electronic structure of TaTe4 was experimentally studied
by Zwick et al. [215] by means of angular resolved photoemission spectroscopy. These
authors concluded that both 1D and 3D features were present at the Fermi level. Thus, the
electronic structure of these materials is clearly not yet well understood and we decided
to revisit the electronic structure of TaTe4 on the basis of first-principles DFT calculations
using the average structure of TaTe4 [208].

We calculated the electronic band structure and the Fermi surface of TaTe4 using the
SIESTA code [10–12]. Our calculations were done with the mesh cutoff of 200 Ry and the
k-grid of 30×30×10. The band structure is represented on the Figure 5.15 and the Brillouin
zone used for the band structure calculation is schematically shown on the Figure 5.16. The
unit cell vectors of the average structure of TaTe4 are a = 6.5154 Å, b = 6.5154 Å and
c = 6.8118 Å, and the compound crystallizes in the P4cc space symmetry group [208].

The calculated band structure of the average, non modulated structure of TaTe4 is shown
in Figure 5.15 (see Figure 5.16 for the labelling of the special points). Essentially there are
two bands crossing the Fermi level. The first one is the band crossing the Fermi level along
the Γ-Z line. This band meets at Z a descending one along the same line. In fact these two
bands are simply a folded band because there are two Ta atoms per unit cell along c related
by a two-fold screw axis. This band is strongly based on the Ta dz2 orbitals and thus has a
strong dispersion along the chains direction (this band also crosses the X-R and M-S lines
which are parallel to the c∗ direction). However it is clear from Figure 5.15 that the lower of
these bands has also quite a large dispersion along the interchains direction (see for instance
the dispersion along the Γ-M line). Consequently, the character of this band is in-between
those of a pseudo-1D and 2D bands. The second band crosses the Fermi level along the Γ-M
and M-X directions and along both directions exhibits a very strong dispersion. This band is
also folded along the c∗ direction and the upper subband crosses also the Fermi level so that
it has a character between 2D and 3D. This band results from a complex mixing between Te
and Ta orbitals. The π∗ orbitals of the Te2 units which must be formally full in a (Te2)

2−
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Fig. 5.15 Calculated band structure of TaTe4 using the non modulated average structure
[208].

unit interact strongly with the Ta dxy and dx2−y2 orbitals. The bands based on the Ta dxy

and dx2−y2 orbitals should formally be higher than the Ta dz2 band and consequently they
should be empty. However because of the very strong mixing between Ta dxy and dx2−y2

and Te π∗ orbitals this band is strongly stabilized in several parts of the Brillouin zone and
becomes partially filled. Since the Te2 units are inclined with respect to the c axis, this type
of interaction provides good coupling along the (a∗,a∗) plane but also along c∗.

In transition metal tellurides the relatively low electronegativity of tellurium frequently
leads to complex scenarios of competition between metals and non-metals about the valence
electrons. As a consequence, valence electron localizations in either sub-lattice introduce
various types of homonuclear bonding and numerous examples are known where the Te-Te
distances fall bellow the sum of the Van-der-Waals radii [216, 217]. This is exactly what
happens here. If we consider that the Te atoms are bonded into Te2 dimers, each Te2 dimer is
then counted as a Te2−

2 unit and each Ta atom in TaTe4 would exist as Ta+4 (d1) ion [213].
This means that the Te valence bands should be completely filled and the lower Ta d band
should be half-filled. Is this in agreement with the calculated band structure? Let us note
that the unit cell of the average structure of TaTe4 contains two Ta atoms related through
a twofold screw axis. This means that all bands are folded along the c direction and can
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Fig. 5.16 Schematic Brillouin zone used for the calculation of the band structure of TaTe4.
The spacial points are Γ = (0,0,0), Z = (0,0,0.5), R = (0.5,0,0.5), X = (0.5,0,0), S =
(0.5,0.5,0.5) and M = (0.5,0.5,0)

be seen as an upper and a lower subband touching at the Z point. Consequently the Ta dz2

subband must contain two electrons if the Ta atoms are formally in a d1 situation. As we
have discussed above, this subband is not completely filled since it crosses the Fermi level.
The reason is that another band, the second band discussed above, which should be empty
is in fact partially filled. As we discussed above the last band contains large contributions
of the Ta dxy and dx2−y2 orbitals (as well as Te2 π∗). Consequently, the both Ta dz2 ,dxy and
dx2−y2 are partially filled at the Fermi level. Formally, since all Te based levels below the Ta
ones are filled, the description based on Te2 units is correct and the Ta atoms must be Ta d1.
However, because of the strong Ta-Te interactions described by the second band, there is an
internal and partial electron transfer between the d2

z and the dxy and dx2−y2 orbitals.

The X-ray and electron diffraction studies show that TaTe4 undergoes structural modula-
tion towards 2a×2a×3c superstructure [156, 205, 206]. If the modulation was due, as it
was previously proposed, to a Peierls distortion of the TaTe4 chains, then the commensurate
c∗/3 component along the chain direction would mean that the Ta based dz2 band must be
either one-third empty or one-third filled. In principle, from a qualitative viewpoint, if the
Ta is d1, one should expect that because of some transfer from Te to Ta, the upper Ta dz2

subband becomes one-third filled and leads to a new structure with a c parameter three times
larger through a Peierls scenario. However, this is in contradiction with our analysis of the
band structure. To begin with the interchain interactions associated with the Ta dz2 band are
quite noticeable and the system is at most pseudo 1D. In addition, we have seen that there
is an internal transfer between the Ta dz2 , dxy and dx2−y2 levels. Although in principle one
could think that because of this internal electron transfer the lower Ta dz2 subband becomes
one-third empty, it is virtually impossible that with such complex band structure with two
bands undergoing avoided and real crossing, the filling was a commensurate one, i.e., just
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one-third empty. According to the present band structure, if there was some kind of Peierls
distortion it should be incommensurate, in disagreement with the experimental observation.
From this analysis we are left with the conclusion that the structural modulation is most likely
due to a scenario not involving nesting of the Fermi surface. However, before concluding in
that way we should first consider the nature of the Fermi surface of the system.

(a) (b)

Fig. 5.17 Calculated Fermi surface for the average structure of TaTe4: (a) projection view
along the one of the a∗ directions; (b) 3D representation.

The calculated Fermi surface is shown in Figure 5.17. It contains two different contribu-
tions associated with the two partially filled bands discussed above. The two contributions
relatively flat near the top and bottom of the Brillouin zone borders along the c∗ direction
are associated with the Ta dz2 band. These portions are strongly related to those calculated
by Whangbo and Gressier [213]. Note that they are very irregular and considerably warped.
When taking into account the periodicity, these contributions can be considered as a 3D
object with several holes and many peaks. It is then expected that this object does not have
good nesting properties. The second contribution is made up of four pieces around the M
points of the Brillouin zone which, taking into account the periodicity of the lattice, are
really 3D objects. These objects do not exhibit nesting properties along the c∗ direction. In
contrast, they have quite large flat portions perpendicular to the diagonal directions of the
(a∗,a∗) plane. Thus, none of the two components of the Fermi surface seem to exhibit good
nesting properties along the c∗ direction; in any case, there could be some nesting along the
perpendicular directions.

In order to quantify these observations we have calculated the Lindhard response function.
Shown in Figures 5.18 and 5.19 are two different sections, (a∗,c∗) and (a∗,a∗) respectively.
The (a∗,c∗) section is very flat and no clear maxima appears. In the (a∗,a∗) section there are
some peaks which occur by pairs not far from the (0.2a∗,0.2a∗) and diffuse lines parallel to
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(a) (b)

Fig. 5.18 The results of the Lindhard function calculation for TaTe4 in the a∗-c∗ plane.

the diagonal directions going through the (0.5a∗,∼ 0.2a∗) and (∼ 0.2a∗,0.5a∗) and those
related by symmetry. These features are those related to the nesting associated with the Fermi
surface contributions of the band with strong Ta dxy and dx2−y2 character. Thus, we may
conclude that there are no maxima in the Lindhard function which can provide support for a
Fermi surface nesting driven mechanism for the structural modulation exhibited by TaTe4.

(a) (b)

Fig. 5.19 Calculated Lindhard function for TaTe4 in the a∗−a∗ plane.

As it was the case for 2H-NbSe2, we are led to the conclusion that the driving force for
the modulation occurring in this compound is due to energy levels which do not occur at
the Fermi level. The calculated band structure for the (2a×2a×3c) modulated structure
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of TaTe4 is shown in Figure 5.20. It is clear that it corresponds to a metallic system, in
agreement with the experimental observations. We have also optimised the structures of the
average non modulated and modulated structures of TaTe4. In these calculations we fully
optimised the positions of the atoms keeping the cell constants fixed at their experimental
values (identical in both cases except for the multiplication of the basic cell). We found that
the modulated structure is more stable by 45 meV per formula unit. Comparison of both the
experimental or optimised structures for the modulated and non modulated systems suggest
that the driving force for the modulation is an optimization of the interchain Te-Te contacts.
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Fig. 5.20 Calculated band structure of the modulated structure of TaTe4

2H-NbSe2 and TaTe4 thus provide two examples of non Fermi surface driven CDWs:
whereas in the first case the driving force was optimization of the transition metal bonding,
in the second, it is optimization of the chalcogen-chalcogen bonding.

5.5 Ta2NiSe7

Some transition-metal chalcogenides are layered compounds, of which several representatives
have a commensurate or incommensurate charge density wave (CDW) state at low tempera-
tures. The puzzling properties of NbSe3 and TaS3 [218–220] associated with the occurrence
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of two different incommensurate CDWs, have launched a lot of effort in the search of ternary
transition-metal chalcogenides which may exhibit unexpected transport properties. In the
last decades many ternary transition-metal chalcogenides have been synthesized [221–224]
but only a few of them really undergo a charge density wave transition [225, 226]. One of
the few compounds for which a structural modulation has been characterized is Ta2NiSe7

[159, 160, 225, 227] although its origin has not been elucidated yet. The obvious structural
relations with NbSe3 and Fe3Nb3Se10, two CDW materials, suggest that as in the case of
these materials, the modulation could be Fermi surface driven. We consider this problem in
this section by means of DFT calculations.

The layered ternary chalcogenides, Ta2MSe7, where M can be Ni or Pt, have a structure
related to that of FeNb3Se10 [226]. Therefore, it was believed that the Ta2MSe7 group of
compounds are going to exhibit similar physical properties as FeNb3Se10 and show as well
the charge density wave transitions.

Fig. 5.21 View of the structure of Ta2NiSe7 perpendicular to the (a,c) plane. The three types
of chains run along the b-axis.

The Ta2MSe7 has a laminar structure with layers extending parallel to the c-axis, Figure
5.21. Each slab is composed of three types of chains that run along the b-axis. Each of
these chains occurs four times in the unit cell, twice in each slab. The first type of chains
contains edge sharing octahedra centered by Ta atoms. The second chain type consists
of edge sharing octahedra with Ni atoms displaced from the centers of these octahedra to
give square-pyramidal geometry about the metal atoms. The reason of the distortion of the
square-pyramidal geometry is not clear but may be the consequence of interactions between
Ni and Ta atoms. The third chain type is made of Ta-centered bicapped trigonal prisms of
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Se atoms that share triangular faces along the b-axes. These trigonal prisms contain Se-Se
bonds.

As suggested by the oxidation formalism (Ta5+)2(M2+)(Se2−)5(Se2−
2 ), these ternary

chalcogenides are supposed to have semiconducting properties but Ta2NiSe7 is found to be a
semimetal [159, 225]. As shown by Canadell and Whangbo [151] by means of a tight-binding
study the origin of this fact lies in the fact that the bottom d-block bands of the Ta octahedral
chains overlaps wit the top of the Se p-block bands of the trigonal prismatic chains. These
authors suggested that a CDW along the b direction originating from nesting of the Fermi
surface could occur for this compound. As a matter of fact, a structural modulation associated
with a resistivity anomaly was later reported [227]. Although the modulation occurs along
the b direction, as predicted, the wavevector is different from the proposed one. Here we
must take into account that the correct description of the small band overlap in a semi-metal
is a notoriously difficult question for a tight-binding approach. Consequently, it is not clear if
the disagreement is simply due to a lack of accuracy of the tight-binding calculations or if
it is a more fundamental question. In view of results in the preceding sections it could be
that the modulation was not driven by the Fermi surface of the system. In what follows we
examine this question by means of first-principles DFT calculations.

On the Figure 5.22 is shown the calculated band structure of Ta2NiSe7. The calculation
was done with the SIESTA code [10–12] using the k-grid of 15×50×15 and the mesh cutoff
of 300 Ry. The lattice is C-centered monoclinic, with the lattice parameters a = 13.827 Å,
b = 3.482 Å , c = 18.577 Å and β = 108.80 [225].

Figure 5.22 shows that bands are dispersive along the chain axis, the b-axis, but relatively
flat along the direction perpendicular to the chain, the c-axis. The dispersion along the
interlayer direction is comparable to that along the interchains direction. Thus one could
think that the system is simply a pseudo-1D metal. However, as Figure 5.22 shows, the
situation is more complex.

The Fermi level cuts four bands three of which are quite dispersive along the chains
direction, Γ-Y . To describe them it is best to first concentrate on the Γ-Y direction of
Figure 5.22b. Apparently the Fermi level cuts four bands but it can be seen that one of the
bands undergoes a strongly avoided crossing with an empty band and then crosses again the
Fermi level. Starting at the Γ point and moving along the Γ-Y line the Fermi level almost
immediately crosses the very top of a strongly descending band. This band (band 1 from
now on) is not dispersive at all along the two transverse directions and is kept above even if
very near the Fermi level all along the (a∗, c∗) section of the Brillouin zone passing through
Γ. Thus, this is a strongly 1D band. This band is mostly build from the Se p orbitals of
Se1 which are shared between the two octahedral chains. Continuing along the Γ-Y line the
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Fig. 5.22 The band structure of Ta2NiSe7 in the Z-Γ-X direction and in the Z-Γ-Y direction
of the Brillouin zone. The spatial points are: Γ = (0,0,0), X = (0.5,0,0), Y = (0,0.5,0) and
Z = (0,0,0.5) in units of the reciprocal lattice vectors.

Fermi level cuts a second band (from now on band 2) dispersive along the Γ-Y line which
then undergoes the above mentioned avoided crossing. This band becomes the second filled
band at the Γ point through a very weakly avoided crossing and is somewhat dispersive
along the interchain (Γ-Z) direction. Along the Γ-X direction goes weakly up in energy and
finally crosses the Fermi level in this direction. This band is built from the Ta atoms of the
octahedral chains and one should expect a Fermi surface contribution where the 1D nature
is however overshadowed by a strong warping. After raising in energy and undergoing a
strongly avoided crossing this band goes down and crosses again the Fermi level at around
one-third of the Γ-Y line (we will refer to this second part as band 2’). Since there is a
strongly avoided crossing, the nature of the band before and after the avoided crossing is
however very different. Band 2’ is build from the Ni orbitals of the chains in between the
two types of Ta chains. Tracing back this band at Γ it is possible to see that it has dispersion
along the two transverse directions. Thus one should expect a quasi-3D behaviour. The third
band crossing the Fermi level along Γ-Y (band 3 from now on), which is undergoing an
avoided crossing just before crossing the Fermi level, is also based on the Ta orbitals of the
octahedral chains. Tracing back the character of this band at Γ it is possible to see that it
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becomes the sixth filled band at this point which has nil dispersion along the two transverse
lines. Thus, this band should lead to a completely flat contribution in the Fermi surface.
This band is also made of the Ta orbitals in the octahedral chains. There is a fourth band
crossing the Fermi level which can be seen when looking carefully to the band structure
of the Figure 5.22a. This band (band 4) which originates from a Se based band strongly
raising in energy around Γ, where it becomes the first filled band. This band is quite flat
along the interlayer (Γ-X) direction bur crosses the Fermi level around the middle of this line
and acquires dispersion along the interchain direction (Γ-Z). This band is going to give quite
extended hole pockets. The band is based on the p orbitals of the Se4 which are part of the
octahedral chains but facing the Ni atoms of the next chain.

It is clear from the previous discussion that the main carriers for the conductivity should
be electrons of the Ta atoms in octahedral chains, electrons of the Ni atoms, and holes of the
Se atoms of the octahedral chains. The bicapped Ta trigonal prismatic chains apparently do
not contribute at all to the conductivity and act only as a kind of glue keeping together the
other chains.

(a) (b)

Fig. 5.23 Two different views of the calculated Fermi surface of Ta2NiSe7.

From the previous discussion we should expect a relatively complex Fermi surface. As
noted, band 1 should lead to a strongly 1D contribution along the b direction, i.e. two planes
perpendicular to b∗, very near the center of the Brillouin zone (associated with the Se atoms
shared by the two octahedral chains). In contrast the contributions of band 2 (octahedral Ta
states) and 2’ (Ni states) should be very warped and irregular. Let us note that since bands
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3 and 4 undergo a strongly avoided crossing near the Fermi level, the two bands will mix
quite strongly at the Fermi level. In this situation it is not convenient to work with the two
bands separately to understand their topological features but with both at the same time.
Only in that way the hidden features of each of them clearly appear. In the present case
we should expect a complex mixing of two hidden components: (i) one very flat pair of
planes associated with band 3 (octahedral Ta states) and a series of pockets quite irregular
associated with band 4 (Se states of the octahedral chains)). The Fermi surface should result
from the hybridization of these four components. The calculated Fermi surface is shown
in Figure 5.23. It is indeed quite complex at the first sight. However we can recognise the
two main 1D or pseudo-1D components discussed above. The flat component very near the
center of the Brillouin zone perpendicular to the long direction (b∗) is quite clearly visible
in Figure 5.23a (the two planes at both sides of Γ are so near each other that they look as if
they were collapsed). The pairs of 1D component related to band 3 are more clearly visible
in the Fermi surface cut of Figure 5.23b. Superposed and hybridized with these planes are
two very warped planes coming from band 2 and an almost 3D component near the middle
of the Brillouin zone associated to band 2’ and finally several closed but extended pockets
associated with band 4.

It is obviously not easy to guess the possible nesting properties associated with this
Fermi surface. We have thus calculated the Lindhard response function which is shown in
Figure 5.24. What is immediately clear from there is that despite the puzzling shape of the
Fermi surface there are two clearly 1D components. As we explained before the presence of
lines in the Lindhard function are associated with the presence of flat planes in the Fermi
surface, i.e., 1D states. The lines associated with a very small value of the b∗ component,
i.e. the yellow lines almost at the center of the drawing, are associated with the flat planes
originating from band 1. The lines associated with a value of the b∗ component around 0.07
are associated with the nesting between the planes originating from band 3 and the planes of
band 1. Other than this there is no indication of good conditions for a CDW to develop in this
system. At this point we must remind that the modulation observed in this material has a b∗

component of 0.48 [159], which is completely different from those of the two series of lines
in the Lindhard function. Consequently, we must conclude that the structural modulation in
Ta2NiSe7 does not have a Fermi surface nesting origin.

Are there some reasons for the fact that the nesting in the Fermi surface is not at the
origin of the modulation? We believe that none of the two types of nesting may be very
effective in providing an energy gain. First, the pair of planes very near the center of the
Brillouin zone are to near the center and consequently, the gaps opened by the modulation
should be very small. Second, the nesting of the band 3 and 1 is coupling Ta states with Te
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(a) (b)

Fig. 5.24 b∗-c∗ section of the response function calculated for Ta2NiSe7.

states. When the matrix element in the numerator of the real response function are taken
into account they are most likely very small because of the different orbital nature. Thus, we
conclude that the Fermi surface does not provide a real driving force towards a modulation.

What is then the origin of the structural modulation in this compound? Looking at the
modulated structure, the atoms that are more strongly affected by the modulation are the Ni
atoms and the Se2 ones. The latter are those in the octahedral chains which are leading to
the long Ni-Se contact that is taken as an indication that the coordination of the Ni atom is
not octahedral but square pyramidal. However this distance is not extremely longer (2.73
Å) compared to the opposite one (2.47 Å). This means that there is indeed some bonding
associated with the Ni and Se2 atoms and that the Ni atom should not be described as being
square pyramidally coordinated. Thus the modulation is most likely associated with an
attempt to optimise the bonding between this pair of atoms. The question is now: why a b∗

component very near 0.5 thus meaning that the modulation is almost a dimerization? The Se2
is making a Se-Se bond with the nearest Se of the bicapped trigonal prismatic Ta chain. Thus,
when the Se2 tries to approach the Ni atom to provide some stabilization the Se-Se bond is
lengthened, thus providing a destabilization. Consequently, the Se2 atoms experiences two
conflicting forces and the dimerization is the result of this trade. The global stabilization
must be relatively weak and this is why the modulation only occurs at low temperature (52
K). The fact that the wave vector of the modulation is 0.48b∗ instead of 0.5b∗ is most likely
due to the presence of defects, quite usual in these ternary compounds. Let us note that this
interpretation is consistent with the fact that the modulation is accompanied by an anomaly
in the resistivity. As the calculated band structure shows, the Ni states are contributing at the
Fermi level so that the modulation in the Ni-Se2 distances must affect the partial density of
states of the Ni atoms at the Fermi level and consequently, the resistivity of the material. We
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thus conclude that the CDW in Ta2NiSe7 does not originate from its Fermi surface but subtly
affects it.

5.6 Conclusions

We have studied four compounds which have in their structure group V transition metals Nb
and Ta. These compounds are low dimensional with layered or chain-like structure and have
anisotropic physical properties. Because of their low dimensionality, metallic properties and
occurrence of structural modulations, these compounds are often discussed as possible Fermi
surface driven CDW materials. However the real origin of the CDWs in these materials has
never been elucidated. Thus we have decided to examine if some instability of the Fermi
surface is really at the origin of these modulations. Calculation of the band structure, Fermi
surface and the Lindhard response function for Sr5Nb5O17, 2H-NbSe2, TaTe4 and Ta2NiSe7

has led us to the following conclusions:

• The 40K transition of Sr5Nb5O17 is most likely due to a Peierls like modulation with
small displacement amplitudes originating from the lower Nb dxz/dyz band of the layers.
The pseudo-1D character of the bottom t2g-block bands is not due to the octahedral
distortions but to the topology of the octahedral layers. This is the only compound of
those examined in this chapter for which a Fermi surface driven instability is found to
be at the origin of the CDW.

• The 3× 3 modulation of 2H-NbSe2 can not originate from a Fermi surface nesting
driven mechanism because the calculated Lindhard function does not exhibit sharp
peaks but very broad and weak maxima. The possible self-nesting of the cylinders is
not effective in stabilizing the modulation observed for 2H-NbSe2. In analogy with
recent works of our group concerning single-layers of NbSe2, we propose that the
source of stabilization of the CDW is simply an optimization of the extended Nb-Nb
bonding along the hexagonal layers.

• The Lindhard function for TaTe4 does not exhibit sharp maxima which can provide
support for a Fermi surface nesting driven mechanism for its structural modulation.
We suggest that the driving force for the modulation is simply an optimization of the
interchain Te-Te contacts. 2H-NbSe2 and TaTe4 provide two examples of non Fermi
surface driven CDWs: whereas in the first case the driving force is optimization of the
transition metal bonding, in the second, it is optimization of the chalcogen-chalcogen
bonding.
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• The Fermi surface of Ta2NiSe7 results from the hybridization of both flat and very
warped components leading to a complex shape. The Lindhard calculation suggest
some possible instabilities of the Fermi surface. However they are unrelated to the
observed structural modulation. Again, the structural modulation in Ta2NiSe7 does not
have a Fermi surface nesting origin. We suggest that the modulation results from the
competition of the tendency of the Ni atoms to complete their coordination towards an
octahedral environment and the strength of the Se-Se bonds occurring in the bicapped
trigonal prismatic Ta chains of this material.





Chapter 6

Conclusions

Organic semiconductors became scientifically very interesting group of materials because
of their good charge-transport properties and massive technological applications. Among
all of them, rubrene gained grate interest because it is a organic semiconductor with the
highest carrier mobility which can reach a few tens of cm2/V s. However, a full ab initio
characterization of the electronic properties and electron-phonon coupling (including Holstein
and Peierls type of couplings) is representing a difficult tusk, which might be due to the
sizeable structure of the rubrene unit cell consisting of 280 atoms and resulting in 840
vibrational modes.

There has been a great interest in low dimensional transition metal compounds for several
decades because of their peculiar electric, magnetic and structural properties. Such specific
characteristics originate from the possibility to obtain partial oxidation states of the transition
metal atoms. Low dimensional compounds are known for having anisotropic physical
properties and because of their low dimensionality, metallic properties and occurrence of
structural modulations, these compounds are often discussed as possible Fermi surface driven
CDW materials. However, the real origin of the CDWs in these materials has never been
clarified and thus we have decided to examine if some instability of the Fermi surface is
really at the origin of these modulations.

In this thesis we have studied electron-phonon coupling in rubrene and the electronic
properties of some of the low-dimensional compounds:

• In the Chapter 3 we derived reliable method for calculation of material parameters
from DFT approach and applied it on rubrene crystal. For the calculation of electronic,
phononic and electron-phonon coupling parameters of rubrene we were using DFT base
methods. Hereby, we showed a practical way to calculate accurate phonon frequencies
and avoid imaginary frequencies in low-frequency modes. The accuracy of phonon
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frequencies is of the great importance in the calculation of electron-phonon interaction
because the highest electron-phonon coupling constants are coming from the low
frequency modes. We derived TB model to compute parameters for the Holstein-
Peierls type Hamiltonian and the results are in a very good agreement with the ones in
the literature. The calculation of phenyl group motions led us to the conclusion that
the flipping configuration of rubrene is not stable but that it might be possible in the
longer time scale

• In the Chapter 4 was shown a detailed study of the electronic structure for several
MPT Bp phases, the ones with m= 4,5,6,7,8 and 12. Calculation of the band structure,
Fermi surface and Lindhard response function showed that for all of the selected
MPT Bp members (except for the m = 4) there are six different maxima in the Lindhard
response function which are associated with common nesting vectors for two of the
three different 1D partially filled bands of these bronzes. Our results show that the
structural modulations occurring in the low members of the series, m = 4,5 and 6,
originate from the Fermi surface driven CDWs of the step layers while for the high
m members of the series, m = 8,12, the structural modulations are due to non Fermi
surface related mechanisms.The m = 7 phase is a borderline compound where one
of the modulations originates from the Fermi surface instability whereas the other is
unrelated to the Fermi surface.

• In the Chapter 5 we have studied four compounds which have in their structure group
V transition metals Nb and Ta:

– Sr5Nb5O17 is the only compound of those studied in this chapter that shows a
Fermi surface driven CDW transition. The transition at 40K is due to a Peierls
like modulation with small displacement amplitudes originating from the lower
Nb d-band of the layers. The 1D character of the bottom t2g-block bands is due
to the topology of the octahedral layers.

– The Lindhard response function calculation for 2H-NbSe2 shows that there are
no sharp peaks but broad maxima and that the observed 3×3 modulation is not
driven by Fermi surface nesting. In relation with recent works of our group on
single layers of NbSe2 we suggest that the source of stabilization of the CDW
is an optimization of the extended Nb-Nb bonding along the hexagonal layers
instead of previously thought self-nesting of the cylinders.

– In the case of TaTe4 Lindhard response function does not show sharp maxima
and we conclude that there is no a Fermi surface nesting driven mechanism in the
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origin of its structural modulation. Along with 2H-NbSe2, TaTe4 is an example
of non Fermi surface driven CDWs where in the origin of the modulation lies
optimization of the Te-Te bonding.

– The Lindhard calculation in Ta2NiSe7 shows some possible instabilities of the
very complex Fermi surface which cannot be related to the observed structural
modulations. The structural modulation in this compound is not driven by Fermi
surface nesting and is probably appearing under the influence of Ni and Se2

atoms.
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[141] I.Žutić, J.Fabian, and S.D.Sarma, “Spintronics: Fundamentals and applications,” Re-
views of Modern Physics, vol. 76, no. 2, pp. 323–410, 2004.

[142] Z.Y.Zhu, Y.C.Cheng, and U.Schwingenschlögl, “Giant spin-orbit-induced spin split-
ting in two-dimensional transition-metal dichalcogenide semiconductors,” Physical
Review B, vol. 84, no. 15, p. 153402, 2011.
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Appndx A

Electron-phonon coupling in rubrene

On the Figures A.1, A.2 and A.3 are shown the results of the electron-phonon coupling
calculation in rubrene for the X , Y and Z points of the Brillouin zone. As for the Γ point,
Figure 3.6, the highest electron-phonon coupling constants are coming from the low frequency
modes.
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Fig. A.1 Calculated electron-phonon coupling constants g for the four molecules of rubrene
as a function of phonon frequencies ω for the X point of the Brillouin zone. The highest
electron-phonon coupling constants are coming from the three low-frequency modes with
averaged coupling constants: g107.3 = 0.84, g139.1 = 0.76 and g57.8 = 0.62.
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Fig. A.2 Calculated electron-phonon coupling constants g as a function of phonon frequencies
ω for the Y point of the Brillouin zone with the highest coupling constants: g107.3 = 0.58,
g139.1 = 0.60 and g57.8 = 0.64.
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Fig. A.3 Calculated electron-phonon coupling constants g as a function of phonon frequencies
ω for the Z point of the Brillouin zone. The highest coupling constants calculated for the Z
point are: g107.3 = 0.84, g139.1 = 0.76 and g57.8 = 0.62.



Appndx B

Molecular dynamics simulations

The influence of finite temperature on the phenyl group dynamics was analysed by studying
their motions with Molecular dynamics simulations. For these simulations we were following
the change of the angles defined as in the Figure 3.10 in the Chapter 3 over time for different
temperatures. On the Figures B.1a, B.1b, B.2a and B.2b are shown results of the phenyl
group dynamics at 100K, 200K, 300K and 500K.

(a) T = 100K (b) T = 200K

Fig. B.1 Phenyl group dynamics measured with angles ang1 (red) and ang2 (green) at 100K
and 200K. Eight graphs on each figure correspond to the eight molecules of the supercell.
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(a) T = 300K (b) T = 500K

Fig. B.2 Phenyl group dynamics measured with angles ang1 (red) and ang2 (green) at 300K
and 500K.



Appndx C

Lindhard response function calculation
at finite temperatures

In the Chapter 2 Section 2.5 we defined the LIndhard response function with the equation
2.56:

χ (⃗q) =− 1
(2π)d

∫
1BZ

d⃗k
f (⃗k+ q⃗)− f (⃗k)

E⃗k+q⃗ − E⃗k

When the Fermi surface is nested a quasi-1D material at T = 0K is energetically unsta-
ble and reduces its energy by developing a CDW. This is followed with opening of energy
gap on the Fermi surface at the positions ±kF . Increasing the temperature, some electrons be-
come thermally excited across the energy gap. This lowers the reduction in energy associated
with the CDW formation and eventually quenches the CDW at the transition temperature, Tp.

The MPT Bp member with m= 6, P4W12O44, has three Peierls instabilities: at Tp1 = 120K,
Tp2 = 62K and Tp3 = 30K. In the Chapter 4 section 4.4.3 we gave results of the Lindhard
response function calculation for m = 6 member at T = 0K. Here are shown results of the
Lindhard calculation for this MPT Bp member at several different temperatures: 50K, 150K,
300K and 500K. Going from the Figure C.1a to the Figure C.1d we can see that increasing the
temperature sharp peaks are gradually becoming broad maxima, which is in the agreement
with the equation 2.59 as χ ∼ 1/T .
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(a) T = 50K (b) T = 150K

(c) T = 300K (d) T = 500K

Fig. C.1 (a∗,b∗) section of the Lindhard response function calculated for P4W12O44 at
different temperatures.
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