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Abstract 

 High-mountain ranges are suitable ecosystems for studying local environmental 

shifts driven by large-scale climate changes. The sedimentary records obtained from 

those regions contain information that allows to understand past environmental 

changes that would help to predict the influence of the ongoing climate warming. 

However, the precise features in the response of species assemblages are not fully 

understood, and human pressure may often hide climatic signals. 

 This thesis is aimed at the study of the palaeoecology and palaeolimnology of 

Central Pyrenees along the Holocene. For this purpose, sedimentary sequences were 

extracted from the peat bog that surrounds Bassa Nera pond. In order to understand 

the ecosystem responses to past environmental changes and climate, those sediments 

have been analysed using several biological and inorganic proxies. On the one hand, 

we studied biological indicators such as pollen, diatoms, chrysophytes, non-pollen 

palynomorphs, microscopic charcoal particles, macroremains, tree-rings and 

sedimentary DNA metabarcoding. On the other hand, the inorganic proxies studied 

were Loss-on-ingnition and chemical elements. This work comprises diverse parts 

according to the proposed questions and the proxies that were used to assess them. 

 Combining pollen and diatom analyses at multidecadal resolution, we inferred 

vegetation shifts and peat bog development during the past millennium. A montane 

pollen ratio was introduced as a new palaeoecological indicator of altitudinal shifts in 

vegetation. Our results emphasize the sensitivity of the montane ratio to detect 

upward migrations of deciduous forest and the presence of the montane belt close to 

Bassa Nera pond during the Medieval Climate Anomaly. Changes in aquatic taxa 

allowed to date the onset of the surrounding peat bog which appeared and infilled the 

coring site around AD 1565. Overall, results suggest that Bassa Nera had a low-

intensity human pressure. During the last millennium people changed the 

management of natural resources. From the Medieval Climate Anomaly until AD 1500 

farming was the main activity. However, with the Little Ice Age people turned to 

highland livestock raising.  

 Shortly after, we reconstructed the vegetation and lacustrine dynamics during 

the last 10,000 years using pollen, plant macroremains, charcoal, chemical elements 
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and loss-on-ignition at centennial to decadal resolution. We also applied the montane 

pollen ratio to track altitudinal shifts in high mountain vegetation and we compared 

this ratio to the ice-rafted debris index (IRD), a proxy that summarizes the climatic 

influence of the North Atlantic Circulation. Our results revealed upward shifts of 

deciduous forest and its presence in Bassa Nera from the onset of the Holocene until 

4200 cal yr BP, when it was replaced by coniferous taxa. On the other hand, the 

montane ratio showed a link between vegetation and North Atlantic influence, while 

changes in Sphagnum macroremains and aquatic taxa allowed the description of local 

ontogenic changes from the initial pond to the present peatland. The loss-on-ignition 

record showed some flood events at Bassa Nera between 4500 and 3900 cal yr BP. The 

first inferences concerning anthropic pressure in Bassa Nera date by 7300 cal yr BP 

and were grazing activities, while cereal agriculture appeared around 5190 cal yr BP. 

Along the studied record, the periods of highest human pressure occurred in the late 

Bronze Age, Roman Period and Middle Ages. 

 To assess the past dynamics of subalpine forests of Central Pyrenees for the last 

700 years, we studied the relationships between the sedimentary pollen and tree-ring 

records, as well as their link with climatic drivers. We compared the sedimentary 

pollen and montane pollen ratio from Bassa Nera with nearby tree-ring width data 

from old Pinus uncinata subalpine forests. To study the climate-growth associations, 

we related the dendrochronological data with instrumental meteorological records of 

the 1901-2010 period and with temperature reconstructions for the Pyrenees and 

Northern Hemisphere for the last 700 years. Few robust associations were found 

between any specific arboreal pollen taxa and the tree-ring width of the surrounding 

forests. However, a significant correlation was found between the integrative montane 

pollen ratio and the pine growth of nearby (less than 10 km apart) subalpine forests. 

On the other hand, our results suggest that the sensitivity of pine growth to climate 

has varied over the last 700 years. We also observed that tree-growth variability at 

high elevations is more constrained by low than by high temperatures, although we 

also noted a relaxation of this constrain in recent decades.  

 To explore the diversity of eukaryotic communities of Bassa Nera, we performed 

a metabarcoding study using universal 18S and COI genetic markers. We assessed the 

molecular diversity of four different micro-habitats and five sedimentary depths. The 
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resulting palaeoecological communities recovered from sedimentary DNA were 

compared to those from the modern communities. We also compared the information 

provided by the ancient DNA to the environmental reconstruction from morphological 

proxies such as pollen and macroremains from the same record. We successfully 

amplified ancient DNA with both universal markers from all the sedimentary 

samples, including the deepest one (10200 years old). Even though 18S could amplify a 

broader group of organisms, the taxonomic resolution was lower than that obtained 

from COI, and typically reached the family or genus levels. On the other hand, the 

taxonomic assignment of the detected COI sequences yielded mostly metazoans, 

probably due to gaps in reference databases. This first molecular approach has 

allowed to prove that the diversity of modern and past eukaryotic peat bog 

communities can be assessed using universal metabarcoding markers. 
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Resumen 

 Las cordilleras de alta montaña son ecosistemas idóneos para estudiar los 

cambios ambientales locales promovidos por cambios climáticos a gran escala. Los 

registros sedimentarios obtenidos de esas regiones contienen información que permite 

entender los cambios ambientales ocurridos en el pasado que ayudarían a predecir la 

influencia del calentamiento climático actual. Sin embargo, las características 

concretas de la respuesta entre las comunidades de especies no se entienden 

completamente, y a menudo la presión humana puede ocultar las señales climáticas. 

 Esta tesis se centra en el estudio de la paleoecología y paleolimnología de los 

Pirineos Centrales a lo largo del Holoceno. Para ello, se extrajeron dos secuencias 

sedimentarias de la turbera que rodea el estanque de la Bassa Nera. Con el fin de 

comprender las respuestas de los ecosistemas a los cambios ambientales y climáticos 

ocurridos en el pasado, estos sedimentos has sido analizados utilizando varios 

indicadores biológicos e inorgánicos. Por un lado estudiamos indicadores biológicos 

como el polen, las diatomeas, los crisófitos, palinomorfos no polínicos, partículas 

microscópicas de carbón vegetal, macrofóssiles, anillos de árboles y ADN sedimentario 

a través del metabarcoding. Mientras que los proxis inorgánicos fueron “pérdida por 

calcinación” y elementos químicos. Este trabajo comprende diversas partes en función 

de las preguntas propuestas y los proxis que se han utilizado para responderlas.  

 Combinando el análisis de polen y de diatomeas a una resolución multidecadal 

inferimos los cambios de la vegetación y el desarrollo de la turbera durante el último 

milenio. Se introdujo un índice de polen montano como un nuevo indicador 

paleoecológico para resaltar cambios altitudinales en la vegetación. Nuestros 

resultados enfatizan en la sensibilidad del índice para detectar migraciones 

ascendentes de los bosques caducifolios, así como la presencia del piso montano cerca 

del estanque de Bassa Nera durante la Anomalía Climática Medieval. Los cambios en 

los taxones acuáticos permitieron datar cuando la turbera circundante se desarrolló y 

colmató el lugar donde se extrajo el sondeo, siendo esta en 1565 AD. En general, los 

resultados sugieren que Bassa Nera tuvo una presión humana de baja intensidad. 

Durante el último milenio los habitantes de la zona cambiaron su gestión de los 

recursos naturales. Desde la Anomalía Climática Medieval hasta el año 1500 AD los 
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cultivos fueron la actividad principal. Sin embargo, con la Pequeña Edad de Hielo los 

habitantes pasaron a la actividad ganadera en tierras altas.  

 Posteriormente reconstruimos la vegetación y la dinámica lacustre durante los 

últimos 10.000 años mediante polen, macrofósiles de plantas, carbones, elementos 

químicos y pérdida de materia orgánica a una resolución centenaria a decadal. 

También se aplicó el índice montano de polen para trazar los cambios altitudinales en 

la vegetación de alta montaña y se comparó esta relación con el índice de detritos 

rocosos transportados por el hielo (IRD), un proxy que resume la influencia climática 

de la Circulación del Atlántico Norte. Nuestros resultados mostraron cambios en el 

ascenso de los bosques caducifolios y su presencia en Bassa Nera desde el inicio del 

Holoceno hasta el año 4200 años BP, período en que fueron reemplazados por taxones 

de coníferas. Por otra parte, el índice montano mostró una relación entre la vegetación 

y la influencia del Atlántico Norte, mientras que los cambios en los macrofósiles de 

Sphagnum y los taxones acuáticos permitieron la descripción de los cambios 

ontogénicos locales desde el estanque inicial hasta la turbera actual. El registro de 

pérdida de materia orgánica mostró algunos eventos de inundación en Bassa Nera 

entre 4500 y 3900 años BP. Las primeras inferencias de presión antrópica en Bassa 

Nera datan de 7300 años BP y fueron actividades de pastoreo, mientras que los 

cereales aparecieron alrededor de 5190 años BP. A lo largo del registro estudiado, los 

periodos de mayor presión humana ocurrieron en la Edad del Bronce tardía, el Período 

Romano y la Edad Media.  

 Para evaluar la dinámica de los bosques subalpinos de los Pirineos centrales 

durante los últimos 700 años, se estudió la relación entre el polen sedimentario y los 

registros de los anillos de los árboles, así como su relación con los factores climáticos. 

Comparamos la proporción de polen sedimentario y el índice montano de Bassa Nera 

con los datos de los anillos de los árboles cercanos de los bosques subalpinos de Pinus 

uncinata. Para estudiar las asociaciones clima-crecimiento, relacionamos los datos 

dendrocronológicos con registros meteorológicos instrumentales del período 1901-2010 

y con reconstrucciones de temperatura para los Pirineos y Hemisferio Norte durante 

los últimos 700 años. Se encontraron pocas asociaciones significativas entre los 

taxones específicos de polen y el grosor de los anillos de los bosques circundantes. Sin 

embargo, se encontró una correlación significativa entre el índice de polen montano y 
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el crecimiento del pino de bosques subalpinos cercanos (menos de 10 km). Por otro 

lado, nuestros resultados sugieren que la sensibilidad del crecimiento del pino al clima 

ha variado en los últimos 700 años. También observamos que la variabilidad del 

crecimiento arbóreo en localidades altas está más limitada por las temperaturas bajas 

que por altas, aunque también observamos una relajación de esta restricción en las 

últimas décadas.                                                   .                  

 Para explorar la diversidad de las comunidades eucariotas de Bassa Nera, se 

realizó un estudio de metabarcoding utilizando los marcadores genéticos universales 

18S y COI. Se evaluó la diversidad molecular de cuatro micro-hábitats diferentes y 

cinco profundidades sedimentarias. Las comunidades paleoecológicas resultantes 

recuperadas del ADN sedimentario se compararon con las de las comunidades 

modernas. También comparamos la información proporcionada por el ADN antiguo con 

la reconstrucción ambiental a partir de proxies morfológicos como polen y macrofósiles 

del mismo registro. Amplificamos con éxito el ADN antiguo de todas las muestras 

sedimentarias con los dos marcadores universales, incluyendo la más profunda (10.200 

años de edad). A pesar de que 18S pudo amplificar un grupo más amplio de 

organismos, la resolución taxonómica fue menor que la obtenida de COI, y por lo 

general alcanzó los niveles de la familia o género. Por otro lado, la asignación 

taxonómica de las secuencias de COI detectadas fueron principalmente metazoos, 

probablemente debido a lagunas en las bases de datos de referencia. Este primer 

enfoque molecular ha permitido demostrar que la diversidad de comunidades de 

turberas eucariotas modernas y pasadas pueden ser evaluadas usando marcadores 

genéticos universales.  
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Thesis structure 

 

This thesis is presented as a compendium of publications. It is composed of an 

introduction, four chapters compending the publications, a general discussion and 

main conclusions. This work is aimed at the study of the paleoecology of Central 

Pyrenees. Chapters 2 to 5 are the articles that have been published, accepted or 

submitted in scientific journals cited in the Journal Citation Reports. All chapters 

have been written in English. At the beginning of each chapter, the current status of 

the related paper is indicated.  

 

Chapter 1. Introduction. This work comprises a general overview of the main issues 

related to the purposes of each chapter, including the study area and the main 

objectives. 

 

Chapter 2. Vegetation shifts, human impact and peat bog development in Bassa Nera 

pond (Central Pyrenees) during the last millennium. This chapter assess past 

dynamics of Bassa Nera aquatic system and surrounding vegetation and discerns 

between climate and anthropic pressures. It is a high resolution multiproxy study 

using pollen, charcoal and diatoms. It also performs a montane ratio to infer 

information about past altitudinal shifts of the montane-subalpine vegetation ecotone. 

 

Chapter 3. Environmental history and vegetation dynamics in response to climate 

variations and human pressure during the Holocene in Bassa Nera, Central Pyrenees. 

This study uses the montane ratio introduced in the former chapter and applies it to 

investigate the vegetation shifts during the last 10.200 years. It also relates the ratio 

with global climatic signals of the Northern hemisphere to study the montane 

vegetation sensitivity. The multiproxy analysis of two cores using pollen, charcoal, 

macrorremains, LOI and chemical elements has allowed to reconstruct changes in 

vegetation and the lentic system at local scale. 

 

Chapter 4. Pollen and tree-rings relationships along the last 700 years in the Central 

Pyrenees. This chapter is focused on the relationship between the sedimentary pollen, 
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montane ratio of Bassa Nera and the tree-ring growth of regional forests of Pinus 

mugo var uncinata since the Little Ice Age. It also studies how climatic variables 

affected the pine populations during the 21th century.  

 

Chapter 5. Genetic characterization of modern and past communities of a high 

mountain peat bog system using eukaryotic metabarcoding. This chapter applies DNA 

high-thoughput sequencing techniques to provide a description of current and past 

eukaryotic communities in the peat bog that surrounds Bassa Nera 

 

Chapter 6. Discussion. The main results presented in the preceding chapters are 

discussed together, indicating whats is new and how this compares to or reinforces 

what is already known. Possible directions to future work are also proposed.  

 

Chapter 7. Conclusions. A list of the main conclusions of the thesis based on the 

conclusions from each chapter and grouped according to the main objectives described 

in Chapter 1. 

 

Annex 1. This annex contains the supplementary material used in the Chapters 2 to 5. 

 

Annex 2. Publications. This annex includes the chapters that have been already 

published.  
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"Somehow, when I am counting pollen at the microscope, everything is fine" 

- Conversations with Katja -  
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1.1 Why Palaeoecology? 

 Changes in the atmosphere, land, ocean and cryosphere evidence that the 

current climate is changing across our planet, largely as a result of human activities 

(IPCC 2013). As a consequence, many species may not be able to acclimate to the 

speed of changes of climate variables, especially temperature. Many ecosystems will be 

transformed at high rates and over relatively short timescales. However, there are still 

huge knowledge gaps about the ecological processes that occur over multi-decadal and 

longer timescales (Dorado Liñán et al., 2011), partly due to the short length of 

instrumental records and biotic proxis. A better understanding of the dynamics of past 

climate changes would be very valuable in determining to what extent the current 

rates of climate change are unusual, as well as to improve the reliability of climate 

prediction models. The IPCC assessments have compared their projections of future 

climate change with climatic and biotic observations in order to develop more 

sophisticated models with less uncertainty. Since instrumental climate records prior to 

the 20th century are scarce, there is a need to document past biotic and abiotic 

responses to climatic shifts. These information is obtained from indirect indicators or 

proxy, which consist on natural archives or documentary records prior to the use of 

instrumental climatic data, that by their biological or physical nature record some 

kind of climatic or environmental information. Palaeoclimatic reconstructions 

resulting from the study of such proxies offer a means for placing the current climate 

changes in the perspective of natural climatic variability (Smol et al., 2001). On the 

other hand, environmental reconstructions provide information of ecosystem 

sensitivity and past environmental responses to climate variability. This knowledge 

has been used to test the ability of models to simulate the magnitude and large-scale 

patterns of past changes. Palaeoenvironmental and palaeoecological studies are 

crucial to improve our comprehension of long-term ecosystem dynamics and present 

composition of vegetal communities, and try to distinguish between the effects of 

climatic and anthropogenic forcings (Berglund, 1987; Birks and Birks, 1980; Warner, 

1990). Past environmental and ecological assessments are appropriate tools that 

provide guidelines to predict how forthcoming climate shifts will affect natural 
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ecosystems and allow for the design of appropriate land management measures (Willis 

et al., 2007). 

High mountain ecosystems in temperate mid-latitude areas are well-suited 

places to study past environmental changes. Their harsh environmental conditions 

make them less prone to intensive direct human influence and they will most likely be 

among the first ecosystems to exhibit a response to current climate changes (Engler et 

al., 2011). Evidence exists already, i.e. Gottfried et al. (2012) reported elevated 

replacement rates of cold-adapted plants by thermophilic species in several European 

mountain regions due to the current changes in the climate, and Thuiller et al. (2005) 

predicted high rates of vegetal species loss in the same areas. Lakes and peat bogs 

located in high-mountain areas are excellent sources of sediments containing aquatic 

and terrestrial environmental components, accumulated over time and preserved in 

robust stratigraphic contexts and anoxic conditions (Smol et al., 2001). These features 

make them suitable palaeoenvironmental archives for assessing the potential 

consequences of climate fluctuations on mountain biota and aquatic systems (Cohen, 

2003)⁠. In this context, aquatic systems of the Pyrenees can be considered 

paradigmatic case studies, as the Mediterranean area is one of the most vulnerable 

regions on Earth to the Climate Global Warming (Christensen et al., 2007; IPCC 

2013).  

 

1.2 Multi-proxy analyses 

 Palaeoecological techniques use diverse proxy indicators to reconstruct how 

organisms and communities responded to past environmental changes (Mann, 2002). 

Below, we introduce some of these proxies which have been relevant for the present 

study. Palaeoecology is based in the principle of uniformitarianism created by James 

Hutton and Charles Lyell in the late 18th century (see Simpson, 1970), which states 

that laws of nature are constant across time and space. This means that the physical, 

chemical and biological processes that link the present environment with present 

proxy variations are the same processes that operated in the past, though the rates 

and intensity of such processes might have varied in time (Delcourt and Delcourt, 
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1991). Therefore, we can use present-day information to make inferences about the 

past (Birks and Birks, 1980). 

 

1.2.1 Pollen and spores 

 The analysis of pollen and spores (palynology) from sedimentary samples is the 

principal technique for determining vegetation responses to past terrestrial 

environmental changes and is a well established discipline (Erdtman, 1943). Among 

other uses, it has also been used to assess the anthropic impacts in vegetation and to 

document successional changes (Birks and Birks, 1980; Davis, 1963; Delcourt and 

Delcourt, 1980). The pollen is produced by angiosperms and gymnosperms, while 

spores are mainly from ferns and mosses, but also fungi. The outer walls of pollen 

grains and spores are formed by sporopollenin, a very stable and resistant component 

to most forms of chemical and physical degradation, except oxidation (Traverse, 1988). 

This favours pollen to be maintained in anaerobic environments and allows to perform 

strong chemical digestions to remove the organic matter of the sediments in order to 

concentrate the pollen and spores for their subsequent analysis. In addition, the outer 

wall of pollen and spores (exine) has a very variable appearance, with different shapes 

and sculpture in species-specific patterns that makes possible to identify them to 

various taxonomic levels under the optical microscope (Faegri and Iversen, 1989; 

Hesse et al., 2009; Moore et al., 1991).  

 Plants have diverse strategies of pollination, where pollen dispersion can be 

mediated by the wind (anemophilous) or by insects (entomophilous). The pollen 

production will considerably differ in each case and plants with wind-dispersed pollen 

will produce higher amounts than those with insect-dispersed pollen. In general, 

pollen and spores are produced in abundance and liberated into the environment, 

mixing in the atmosphere and transported until they fall to the ground in form of 

pollen rain (Faegri and Iversen, 1989). As a result, some of them will accumulate in 

the sediments of non-oxidising environments such as bogs, lakes, fens or the sea (Smol 

et al., 2001). The proportion of each pollen type in the pollen rain depends of the 

abundance of its parent plants, providing a picture of the vegetation composition in 

that area and time. However, it is important to note that pollen recovered from lake 
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and terrestrial sediments is largely from plants with wind-dispersed pollen, mainly 

from trees and shrubs. Although local individual taxa will be better represented than 

those farther away, pollen records may suffer an overrepresentation of wind-dispersed 

taxa from a variety of local and distant sources while others insect-dispersed taxa 

could be underrepresented (Birks and Birks, 2000). Hence, it is important to perform 

local and regional studies with modern vegetation analogs before performing 

palaeoenvironmental pollen reconstructions (Jackson and Williams, 2004; Rull, 2006). 

Pollen grains represent a clearly identifiable evidence of plant species which can be 

preserved for a long time in suitable environments, whereas changes in pollen 

frequencies along diverse sedimentary samples from the same record will inform about 

changes in a distance-weighted integration of vegetation through time. 

  

1.2.2 Macrorremains and charcoal  

 In contrast with pollen, which generally represent the regional flora, plant 

macrorremains (seeds, buds or vegetative tissues) provide a local record of the 

vegetation of the past, as they are large and have low dispersal and transport capacity 

(Delcourt et al., 1986; Delcourt and Delcourt, 1980). In studies of lake sediments, the 

macrofossil record is often dominated by the aquatic and wetland plants growing in 

and around the lake, while species preferring dry environments or even terrestrial 

taxa are drastically underrepresented or entirely absent (Birks, 2003). 

 Charcoal found in pollen slides will allow to reconstruct long-term variations in 

fire occurrence as well as to examine the linkages among climate, vegetation, fire and, 

in some instances, anthropogenic activities in the past (Carcaillet et al., 2001; Thinon, 

1978).  

 

1.2.3 Diatoms 

 Diatoms are unicellular algae from the division Bacillariophyta. These 

organisms are characterized by their siliceous wall, the frustule, which is composed by 

two valves that fit perfectly forming a box-like structure. The taxonomy of this group 

is based on the shape and ornamentation of the frustule, which is taxonomically 

distinct to specific level (Krammer and Lange-Bertalot, 2004a, 2004b, 1999a, 1999b). 
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The preservation of the frustule allows diatom remains to be maintained along time 

and makes them a useful indicator of present and past ecological conditions. Diatoms 

can live in almost all aquatic environments and most species are cosmopolitan. 

Although they can be found in many habitats, the most relevant are the planktonic 

and benthic. The planktonic diatoms live either permanently in the water column 

(holoplankton) or just during a part of their life-cycle (meroplankton, tychoplankton). 

On the other hand, benthic diatoms are associated with substrates and can be 

attached to stones in the margin of water bodies (epilithon) or even aquatic plants 

(epiphyton) (Smol et al., 2001). These organisms present relatively strict preferences 

for physical, chemical and biological conditions in the water column and quickly react 

to environmental changes (Dam et al., 1994). In sedimentary samples, diatom 

frustules are numerous, diverse and frequently well-preserved. They allow a reliable 

taxonomic determination at specific level and given that they often have well-known 

ecological preferences, changes in their frequencies can provide valuable information 

about changes in the aquatic ecosystem conditions (Smol et al., 2001).  

 

1.2.4 Tree-rings 

 The study of the growth of tree-rings (dendrochronology) allows to date tree-

rings to the exact year when they were formed and to obtain information on the 

diverse factors that influenced their growth. The tree-rings are formed with the 

division of vascular cambium cells that lay between the wood and the bark and are 

active only during a part of the year. In each growth season, the new ring reflects the 

weather conditions of that growth season (Fritts, 1976). Tree-rings result from the 

change in growth rates through the seasons of the year. The inner portion of a growth 

ring is formed by xylem cells divided at the beginning of the growing season. In this 

period, growth is comparatively rapid and cells tend to be large and thinned-walled, 

producing a less dense wood, known as “earlywood” or “springwood”. As the growing 

season progresses and conditions become less favourable, cambial activity slows and 

the xylem produces smaller cells with thicker walls and denser wood, giving rise to the 

outer portion of the annual ring, which is referred as “summerwood” or “latewood”. In 

temperate climates it is often produced in the summer and the cells stop dividing  
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when temperatures are colder. The rings are thus easier to discern in temperate zones, 

where seasonal conditions differ more markedly and there is a higher difference 

between earlywood and latewood cells (Fritts, 1976). Climate influence tree 

development across space and time, resulting in a common variability expressed in the 

pattern of annual growth rings in trees across broad regions (Douglass, 1919; Hughes 

et al., 1982). Dendrochronology is an invaluable tool for dating events and for 

providing robust annually-resolved palaeoenvironmental insights. When all trees are 

affected by a common environmental factor, such as climate, crossdating provides an 

accurate chronological record that can be used to date events or describe variations in 

environmental conditions (Cook and Kairiukstis, 1990; Schweingruber, 1988). The 

chronologies with the highest degree of strength in their common signal are from 

regions where trees are mostly limited by climatic factors such as temperature or 

drought, normally at the limit of their ecological range and with minimum influences 

of competition and disturbance (Gornitz, 2008). Tree-ring analyses provide both 

reliable and ubiquitous archives for palaoenvironmental reconstruction at local to 

hemispheric scales (Elias, 2006; Gutiérrez, 2009).  

 

1.2.5 DNA and metabarcoding 

 In some instances, a large proportion of the remains from the ancient flora and 

fauna are so damaged that they cannot be properly identified at a taxonomical level, 

but they still can leave some DNA traces in the sediments which could be detected and 

analysed. As a result, the DNA preserved in a small amount of sediment can provide 

valuable information about the biodiversity of past ecosystems and communities, even 

when no macroscopically identifiable remains are present (Coolen and Overmann, 

1998; Willerslev et al., 2003). After an organism dies, several enzymatic, hydrolitic and 

oxidative processes damage the DNA, leading to the fragmentation of DNA molecules 

(Parducci et al., 2017). Environments with limited bacterial abundance such as frozen, 

anoxic or arid areas, with lower proportion of nucleases that damage nucleic acids, will 

present a better preserved DNA (Hofreiter et al., 2001). During the last decade, the 

development of DNA metabarcoding techniques (Hajibabaei et al., 2011; Taberlet et 

al., 2012b) has revolutionized the concept of biodiversity assessment and has allowed  
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to perform broader ecological studies. This technique can be used for biodiversity 

screening of modern samples and has also the potential to be used as a 

palaeoecological tool (Epp et al., 2012). Using a metabarcoding approach, thousands of 

species present in a sample can be detected by high-throughput DNA sequencing and 

automatically identified using molecular taxonomy databases for limited cost. These 

techniques are sensitive to detect not only DNA from organisms that were alive when 

sample was taken ("community DNA") (Creer et al., 2016), but they can also detect an 

array of different types of "extra-cellular DNA", originated from dead remains (Barnes 

and Turner, 2016). On the other hand, environmental DNA refers to community DNA 

and extracellular DNA that can be extracted from environmental samples (such as 

soil, water or air), without first isolating any target organisms (Taberlet et al., 2012a). 

 There are several eukaryotic short standardized DNA regions markers that can 

be amplified by PCR, such as the mitochondrial cytochrome c oxidase I gene for 

animals (COI), the plastid ribulose 1,5-bisphosphate carboxylase gene (rbcL) and the 

maturase K gene (matK) for plants, nuclear ribosomal RNA (18S) genes and the 

internal transcribed spacer (ITS) for fungi (Thomsen and Willerslev, 2015). The 

taxonomic resolution can vary among Phyla depending on the natural variability of 

the used marker. In some cases the marker allows identifications at species-level, 

while in other cases it can only identify higher taxonomic levels such as genera, 

families or orders (Taberlet et al., 2012a). 

 

1.2.6 Modern analogs as palaeoecological tools 

 The study of ecological patterns and processes occurring on present 

environments gives us information about the communities and ecosystems that can be 

applied for reconstructions of past ecosystems (Jackson and Williams, 2004). Studies 

of modern pollen assemblages and their relationships with vegetation and 

environmental factors are necessary to improve our knowledge on 

palaeoenvironmental interpretations (Birks and Birks, 1980; Huntley, 2001). 

Altitudinal gradients are well suited places for modern-analog studies as they 

encompass significant ecological and environmental variations in a relatively small 

study area (Rull, 2006). On the other hand, the study of modern analogs allows to 
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establish a baseline of knowledge of the current communities, needed to monitor 

environmental shifts and responses to the ongoing climate variability.  

 

1.2. Study area 

Peat bogs are wetland environments in areas with excess water, where 

vegetation is mainly composed of hygrophilous species (Sphagnum, mosses, sedges and 

grasses). When those plants die, the vegetal matter does not decompose easily, but 

much of it accumulates, ultimately becoming peat (Minelli, 2004). These ecosystems 

have a remarkable degree of structuring, with a high spatial heterogeneity and 

characteristic assemblages such as water pools alternating with moss carpets and 

Sphagnum hummocks. In the Pyrenees, Sphagnum peat bogs cover small areas and 

are usually restricted to lake shores or wet soils located between 1500 and 2700 m a.s.l 

(Casas et al., 1994; Pérez-Haase et al., 2010; Pérez Haase, 2016). The present study 

was carried out in Bassa Nera, a small lacustrine system of the Central Pyrenees 

mountain range. Future scenarios predict a 5°C increase in temperature for this 

mountain range by 2100 (A2, IPCC, 2007), while precipitation will decrease and 

extreme hydric events will be more frequent (Barrera-Escoda and Cunillera, 2011; 

Brunet et al., 2009; López-Moreno and Beniston, 2009). 

The Bassa Nera (BSN) (42°38′18.5″ N, 0°55′27.6″ E, 1891 m) is a small lentic 

system from glacial origin located close to the montane-subalpine boundary, in the 

peripheral zone of Aigüestortes i Estany de Sant Maurici National Park (PNAESM). It 

is placed in the Aiguamòg Valley (Aran Valley), on the Northern slope of the Central 

Pyrenees (Figure 1). Until the protection of this area by the National Park in 1990, the 

main anthropogenic activities were extensive cattle husbandry, forest exploitation and 

hydroelectric power generation. Nowadays, tourism has displaced all those activities, 

although pasturing and hydroelectric exploitation are still authorized. The pond has 

an area of 2.01 ha and 5 m maximum depth and receives mineral salts only from 

precipitation and runoff. It has a small outlet that drains into the Garonne River. The 

BSN basin lies on a granodiorite bedrock from the Maladeta batholith, which dates 

from the Carboniferous-Permic age (Roca i Adrover et al., 2010). The climate is 

subalpine with Atlantic influence and the annual average precipitation reaches 1152 
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mm and is evenly distributed over the seasons. The mean annual temperature is 

4.25°C, with January being the coldest month (−3°C on average) and July the warmest 

month (14°C on average) (Ninyerola et al., 2003). Bassa Nera is currently in the final  

stages of infilling, surrounded by a complex of marshes and mixed Sphagnum peat 

bogs (Carrillo et al., 2008; Pérez-Haase and Ninot Sugrañes, 2006). Seven plant 

community types have been distinguished in this wetland mosaic of fens, carpets and 

bogs, depending of the water table variation. From all, the most abundant are 

geogenous fens (Scheuchzerio-Caricetea fuscae) and ombrogenous bogs (Oxycocco-

Sphagnetea) (Pérez-Haase et al., 2010; Pérez-Haase A. and Ninot Sugrañes J., 2017). 

The vegetation of Bassa Nera catchment is composed of a conifer forest of Pinus mugo 

ssp. uncinata (Ramon) Domin. and Abies alba Mill. with Rhododendron ferrugineum 

L. in the understory and some Poaceae meadows surrounding the pond.  

 

 

Figure 1.1. Location of the study area: (a) map indicating the relative location of Bassa Nera 

Pond (red point) and other palaeoenvironmental sequences mentioned in the text (black 

points), (b) topographic map of the terrain surrounding Bassa Nera (red point) and (c) coring 

site (red star). 

 

Biogeographically, Aiguamòg Valley lies within the Boreo-Alpine and 

Eurosiberian zones. Cañellas-Boltà et al. (2009) and López-Vila et al. (2014) described 

three altitudinal vegetation belts: the montane belt (<1600 m) is composed of 

deciduous oak forests of Quercus petraea (Mattuschka) Liebl. with Betula pendula 
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Roth., riverine forests (Alnus glutinosa L., Fraxinus excelsior L. and Salix spp.), 

forests with Tilia platyphyllos Scop., Prunus avium L. and Corylus avellana L. and 

mixed forests of B. pendula with Pinus sylvestris L. The subalpine belt (1600–2250 m) 

is dominated by coniferous forests of A. alba and R. ferrugineum at the lowest 

altitudes and Pinus mugo ssp. uncinata with R. ferrugineum at higher altitudes. 

Wetlands are characterized by Scirpus cespitosus L. communities, assemblages of 

Juncus balticus Willd. ssp. pyrenaeus, Carex rostrata Stokes and Caltha palustris L. 

with Epilobium palustre L. and Sphagnum peat bogs. The alpine belt (>2250 m) is 

formed by open and sparse patches of Nardus stricta L. and Festuca eskia Ramond ex 

DC. meadows with Carex spp.  

 

1.3. Palaeoecology of the Central Pyrenees during the Holocene  

1.3.1 Climate, vegetation and anthropic influence 

 The Lateglacial and early Holocene period (broadly 15,000–10,000 cal yr BP) 

was a period of large and rapid climatic changes covering the transition from glacial to 

interglacial conditions. After the Younger Dryas (~11.500 cal yr BP), relatively warmer 

temperatures and an increase in humidity marked the onset of the Holocene in Europe 

(Walker, 1995). The new environmental conditions of the “Holocene climate optimum” 

prompted a rapid expansion of deciduous forests in southwest European mountains 

(Jalut et al., 2009; Pérez-Obiol et al., 2011; Vescovi et al., 2010) and the Pyrenees 

(Benito et al., 2008; Jalut et al., 1992; Montserrat, 1992; Reille and Lowe, 1993). 

Around 8.200 cal yr BP, the most sixiignificant crisis of the Holocene occurred, which 

was globally identified as an abrupt cold and arid event (Alley and Ágústsdóttir, 2005; 

Rohling and Pälike, 2005) and was recorded in the Pyrenees (González-Sampériz et 

al., 2006; Pérez-Sanz et al., 2013). By the Middle-Holocene, a southward shift of the 

North Atlantic westerly jet led to a change in precipitation seasonality (Bond et al., 

2001; Pla and Catalan, 2005) and a transition from a significant Atlantic influence 

into a Mediterranean-influenced climate. This change prompted a drastic decline in 

deciduous taxa and a progressive consolidation of conifers in the Pyrenees (González-

Sampériz et al., 2006; Pèlachs et al., 2011). Some aridification phases inferred from 

pollen occurred in the Mediterranean Iberia, established at c. 8400-7600, 5300-4200, 
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4300-340, 2850-1730 and 1300-750 cal yr BP (Jalut et al., 2000). Such changes in plant 

community composition suggest that the North Atlantic climatic variability had 

sufficient magnitude and duration to affect the Pyrenean ecosystems and force them to 

cross a threshold into a different state. However, the precise features in the response 

of deciduous and conifer species to climatic shifts are not yet fully understood, and 

their study becomes even more complicated when anthropogenic influence is taken 

into account. The past millennium can be considered a crucial period with significant 

climatic variations, and different climatic phases can be distinguished in the Northern 

Hemisphere (Mann et al., 2009): the relatively warm and arid Medieval Climate 

Anomaly (MCA), the cold Little Ice Age (LIA), with increased and irregular rainfall, 

and the current global warming (CGW), with an increase in temperatures caused by 

human activities (IPCC, 2007), starting with the Industrial Revolution (IR) (Seager et 

al., 2007). Reconstructing pre-industrial environmental conditions helps to 

discriminate anthropogenic mechanisms from natural forcings (Jansen et al., 2007) 

and thus to assess the extent of human impact and to provide insight into how 

anthropized ecosystems will respond to current climate change.  

 Several palaeoecological studies cover from the beginning of the Holocene to the 

20th century in the Central Pyrenees. The northern slope of the Pyrenees has been 

intensively studied by Jalut et al. (1992) and Reille and Lowe (1993). In the southern 

slope, studies of Pla and Catalan (2005), González-Sampériz et al. (2006) and Pérez-

Sanz et al. (2013) recorded the rapid climate variability with well-defined arid and 

cold events during the Holocene, highlighting an efficient translation of climate 

variability from the North Atlantic to the mid-latitudes. Pèlachs et al. (2011) also 

found a close coupling between regional climatic patterns from the North Atlantic, 

inferred from the ice-rafted debris index, IRD (Bond et al., 2001) and the accumulation 

of organic matter in a mountain wetland system in the Central Pyrenees. This 

evidence indicates that the Pyrenean landscape has undergone important changes 

during the Holocene. For example, the vegetation response to Holocene abrupt climate 

changes were studied through altitudinal variations in the treeline by Cunill et al 

(2012, 2013), who showed that the edge of the forest and montane vegetation reached 

higher altitudes in past and warmer times, above the current line. The role of fire was 

also important in the configuration of the landscape. During the Early Holocene, fires 



 

14 

were prompted by the interaction of climate and large amounts of deciduous biomass 

(Gil-Romera and González-Sampériz, 2014; Pérez-Sanz et al., 2013). Shortly after, 

Neolithic societies occupied and exploited Central Pyrenees through fire (Cunill et al., 

2013; Ejarque et al., 2010; Gassiot et al., 2014) and complex land use management 

(Bal et al., 2010; Pérez-Obiol et al., 2012). Phases of higher anthropogenic pressure in 

high mountain areas are known since the Early and Middle Neolithic, with an 

important threshold in the Early Bronze Age (Gassiot E, Jiménez J, 2006; Miras et al., 

2007). Since then, it has been widely assumed that the configuration of high mountain 

landscapes has been influenced by humans (Bal et al., 2011; Cunill et al., 2013; 

Ejarque et al., 2010), or at least that humans have accentuated the effects of climatic 

constraints on vegetation during the late Holocene (Jalut et al., 2009) through mining 

activities, farming or cattle raising (Cunill et al., 2013; Albert Pèlachs et al., 2009). 

The vegetation changes during the last millennium associated with the MCA and the 

LIA in Central Pyrenees has been studied at centennial resolution by Cunill et al. 

(2013) and Pérez-Sanz et al. (2013). During that millennium, human exploitation of 

mountainous resources has also played a substantial effect on landscape (Ejarque et 

al., 2010; Miras et al., 2010; A Pèlachs et al., 2009). Over the 20th century, the 

Pyrenean forests showed an enhancement of tree recruitment and densification of the 

alpine ecotones as a response to the increase of temperature and land use 

abandonment (Batllori and Gutiérrez, 2008; Camarero and Gutiérrez, 2004). 
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1.5. Objectives 

 The general objective of this study was to study the environmental changes of Bassa 

Nera catchment along the Holocene to the present and disentangle the climatic or 

anthropogenic origin. To this end, a multiproxy analysis of pollen and spores, charcoal, 

diatoms, tree-rings and DNA has been performed. In order to achieve this main objective, the 

following specific objectives have been proposed along four chapters: 

 

Chapter 2: Vegetation shifts, human impact and peat bog development in Bassa Nera 

pond (Central Pyrenees) during the last millennium.  

 This part aims to disentangle the nature of ecological changes in Bassa Nera 

lacustrine system and its surrounding vegetation during the last millennium. As well 

as to develop and validate specific palaeoecological indicators that are useful for measuring 

potential altitudinal shifts in vegetation. 

 

Chapter 3: Environmental history and vegetation dynamics in response to climate variations 

and human pressure during the Holocene in Bassa Nera, Central Pyrenees. 

 The main purpose is to reconstruct and evaluate the ecosystem response of the area to 

climate forcings and North Atlantic influence, describing the main arboreal dynamics at the 

local level as well as identifying thresholds in vegetation communities and their possible 

causes during the Holocene. As well as to test the response of organic matter indicators such 

as LOI in front of North-Atlantic regional climatic patterns (IRD), comparing the results from 

BSN to those obtained from other Pyrenean systems. Finally, this part aims to assess the 

human influence on the BSN region, determining the point at which this influence became 

strong enough to be detectable and how it was affected by the climatic patterns. 

 

Chapter 4: Pollen and tree-rings relationships along the last 700 years in the Central 

Pyrenees. 

 This chapter aims to understand how the subalpine forests have changed in 

response to past climate forcings in Central Pyrenees at century scales. For this 

purpose, we aimed to find the relationship between pollen and Mountain pine tree-

ring proxies that describes the forest dynamics along the last 700 years. As well as to 

quantify how climate change can affect trees growth at local level, studying the 

climate-tree growth relationships at different temporal scales.  
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Chapter 5. Genetic characterization of modern and past communities of a high 

mountain peat bog system using eukaryotic metabarcoding. 

 This study focuses on establishing occurrence and abundance baselines for a 

wide array of taxa, necessary for characterising the current diversity of peat bogs and 

for detecting and monitoring future changes in these communities. In order to apply 

new markers, we desired to check the suitability of COI and 18S markers to assess 

taxonomic and ecological eukaryotic diversity in peat bog communities. Finally, we 

compared the knowledge about past communities inferred from ancient DNA with the 

palaeoenvironmental reconstructions based on morphological methods. 
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Abstract  

High-mountain lakes are suitable ecosystems for studying local environmental shifts 

driven by large-scale climate changes, with potential applications to predict future 

scenarios. The precise features in the response of species assemblages are not fully 

understood, and human pressure may often hide climatic signals. To investigate the 

origin and impact of past environmental changes in high-mountain ecosystems and 

apply this palaeoecological knowledge to anticipate future changes, we performed a 

multi-proxy study of a sediment core from Bassa Nera, a pond located close to 

montane–subalpine ecotone in the southern central Pyrenees. Combining pollen and 

diatom analysis at multidecadal resolution, we inferred vegetation shifts and peat bog 

development during the past millennium. We introduced a montane pollen ratio as a 

new palaeoecological indicator of altitudinal shifts in vegetation. Our results 

emphasize the sensitivity of the montane ratio to detect upward migrations of 

deciduous forest and the presence of the montane belt close to Bassa Nera pond during 

the Medieval Climate Anomaly. Changes in aquatic taxa allowed to date the onset of 

the surrounding peat bog which appeared and infilled the coring site around AD 1565. 

Overall, our results suggest a low-intensity human pressure and changes in 

management of natural resources during the last millennium, where farming was the 

main activity from the Medieval Climate Anomaly until AD 1500. Afterwards, people 

turned to highland livestock raising coinciding with the ‘Little Ice Age’.  

 

Keywords: diatoms, montane–subalpine shifts, palaeoecological indicators, peat bog, 

pollen, Pyrenees  
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2.1 Introduction  

 Ecosystem reconstructions for the past millennium are crucial for 

understanding past environmental variability and predicting future changes. During 

this interval, different climatic phases are distinguished in the Northern Hemisphere 

(Mann et al., 2009): the relatively warm and arid Medieval Climate Anomaly (MCA), 

the cold Little Ice Age (LIA) with increased irregular rainfall and the current global 

warming (CGW), with an increase in temperatures caused by human activities (IPCC, 

2007), starting with the Industrial Revolution (IR) (Seager et al., 2007). However, due 

to large spatial and temporal heterogeneities, the precise features of climatic 

variability during these periods and the responses of the ecosystems to this variability 

at regional or local levels are not yet fully understood. In many cases, strong human 

pressure greatly influenced the ecosystems, hiding climatic signals even when cli-mate 

was the dominant driver (Bal et al., 2011). Reconstructing pre-industrial 

environmental conditions helps to discriminate anthropogenic mechanisms from 

natural forcings (Jansen et al., 2007) and thus to assess human impact and to predict 

how anthropized ecosystems will respond to current climate change. Lakes located in 

high-mountain ranges in temperate mid-latitude areas are especially suitable for 

assessing the potential consequences of climate fluctuations on mountain biota 

because they will most likely be among the first ecosystems to exhibit a response to 

current climate changes (Engler et al., 2011). Gottfried et al. (2012) have reported 

elevated replacement rates of cold-adapted plants by thermophilic species in several 

European mountain regions due to the current changes in the climate, and Thuiller et 

al. (2005) predicted high rates of vegetal species loss in the same areas. In this 

context, the Pyrenees are an interesting region to study, as the Mediterranean area is 

one of the most vulnerable regions on Earth to the CGW (Christensen et al., 2007). 

Several studies have furnished evidence that the Pyrenees have acted as a glacial 

refuge for forest species during past climate changes (Benito et al., 2008) and might 

contribute to buffer the effects of climate variability in the future (Alba-Sánchez et al., 

2010). Although most of the currently described changes in the Pyrenees are related to 

land use (Améztegui et al., 2010), some Pyrenean forests have already experienced an 

enhancement of tree recruitment and growth during warm periods of the last century 
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(Camarero et al., 2006; Camarero and Gutiérrez, 2004). The palaeoecological history of 

the northern Pyrenean slope throughout the Holocene has been intensively studied 

(e.g. Jalut et al., 1992; Reille and Lowe, 1993). Working on the southern slope of the 

Central Pyrenees, González-Sampériz et al. (2006) emphasized the occurrence of 

abrupt climate changes during the Holocene and the response of vegetation and lake 

systems to such changes, implying an efficient translation of climate variability from 

the North Atlantic to the mid-latitudes. Using a centennial resolution, Cunill et al. 

(2013) and Pérez-Sanz et al. (2013) were able to describe vegetation changes 

associated with the MCA and the ‘LIA’ in the same area. During the last millennium, 

human exploitation of mountainous resources has also played a substantial effect on 

landscape (Ejarque et al., 2010; Miras et al., 2010; Pèlachs et al., 2009).  

 The main purpose of our work is to integrate palaeoecological research from the 

Pyrenees into the ongoing efforts to estimate the future ecosystem dynamics of 

European high-mountain environments in the face of global warming by trying to 

unravel human from climatic influences. The site of our case study is located in the 

Central Pyrenees of Catalonia, where future scenarios predict a 5°C increase in 

temperature by 2100 (A2, IPCC, 2007), while precipitation will decrease and extreme 

hydric events will be more frequent (Barrera-Escoda and Cunillera, 2011; Brunet et 

al., 2009; López-Moreno and Beniston, 2009).  

 With this aim, we present a multi-proxy study combining high resolution 

(multidecadal) of palaeobotanical (pollen, stomata) and palaeolimnological data 

(diatoms, freshwater sponges and chrysophyte cysts) to disentangle the nature of 

ecological changes in a lacustrine system and its surrounding vegetation during the 

last millennium. We also aim to develop and validate specific palaeoecological 

indicators that are useful for measuring potential altitudinal shifts in vegetation. 

Bassa Nera Pond is a location well suited for this purpose in view of its relative 

proximity to the montane–subalpine ecotonal boundary, a feature that is highly 

sensitive to altitudinal vegetation shifts in response to climate-driven changes 

(Luckman and Kearney, 1986). Moreover, the Bassa Nera is located in Aiguamòg 

Valley, where potential indicator taxa have been described (Cañellas-Boltà et al., 2009; 

López-Vila et al., 2014), providing information essential for properly interpreting 

palaeoclimatic and palaeoecological records.  
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2.1.1 Study area  

 The Bassa Nera (42°38′18.5″N, 0°55′27.6″E, 1891 m) is a small lacustrine 

system located in the peripheral zone of Aigüestortes i Estany de Sant Maurici 

National Park. It is situated in the Aiguamòg Valley (Aran Valley), on the Northern 

slope of the Central Pyrenees (Figure 2.1). Nowadays, this pond is surrounded by a 

complex of marshes and a peat bog formed by Sphagnum spp. and Carex lasiocarpa 

Her., with abundant Molinia caerulea (L). Moench, Drosera longifolia L., Menyanthes 

trifoliata L. and Parnassia palustris L (Carrillo et al., 2008). A conifer forest of Pinus 

mugo ssp. uncinata (Ramon) Domin. and Abies alba Mill. with Rhododendron 

ferrugineum L. in the understory and some Poaceae meadows surrounds the 

catchment. The pond has an area of 2.01 ha and 5 m maximum depth, with a small 

outlet that drains into the Garonne River. The water receives mineral salts only from 

precipitation and runoff. The pond’s watershed bedrock is composed of Carboniferous–

Permian granite rocks (Roca i Adrover et al., 2010). The annual average precipitation 

reaches 1152 mm and is evenly distributed over the seasons. The mean annual 

temperature is 4.25°C, with January being the coldest month (−3°C on average) and 

July the warmest month (14°C on average) (Ninyerola et al., 2003).  

 

Figure 2.1. Location of the study area: (a) map indicating the relative location of Bassa Nera 

Pond (red point) and other palaeoenvironmental sequences mentioned in the text (black 

points), (b) topographic map of the terrain surrounding Bassa Nera (red point) and (c) coring 

site (red star).  
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 Biogeographically, Aiguamòg Valley lies within the Boreo-Alpine and 

Eurosiberian zones. Cañellas-Boltà et al. (2009) and López-Vila et al. (2014) described 

three altitudinal vegetation belts: the montane belt (<1600 m) is composed of 

deciduous oak forests of Quercus petraea (Mattuschka) Liebl. with Betula pendula 

Roth., riverine forests (Alnus glutinosa L., Fraxinus excelsior L. and Salix spp.), 

forests with Tilia platyphyllos Scop., Prunus avium L. and Corylus avellana L. and 

mixed forests of B. pendula with Pinus sylvestris L. The subalpine belt (1600–2250 m) 

is dominated by coniferous forests of A. alba and R. ferrugineum at the lowest 

altitudes and Pinus mugo ssp. uncinata with R. ferrugineum at higher altitudes. 

Wetlands are characterized by Scirpus cespitosus L. communities, assemblages of 

Juncus balticus Willd. ssp. pyrenaeus, Carex rostrata Stokes and Caltha palustris L. 

with Epilobium palustre L. and Sphagnum peat bogs. The alpine belt (>2250 m) is 

formed by the open and sparse vegetation of Nardus stricta L. and Festuca eskia 

Ramond ex DC. meadows with Carex spp. The main anthropogenic activities until the 

creation of the National Park in 1955 and the demarcation of a peripheral protection 

area by 1990 were extensive cattle husbandry, forest exploitation and hydroelectric 

power generation. Tourism has displaced those activities, although pasturing and 

hydroelectric exploitation are still authorized.  

 

2.2 Methods  

2.2.1 Coring, sampling, dating and sedimentology  

 A sediment core 706 cm long (PATAM12) was collected in 2007 using a ‘Russian’ 

corer (Jowsey, 1966) on the peat bog that surrounds Bassa Nera and was sliced every 

3–5 cm. This study is focused on the uppermost 330 cm. In total, 10 radiocarbon dates 

(Table 2.1) were obtained from wood and seed macroremains along the entire core by 

the accelerator mass spectrometry (AMS) method at the Beta Analytic Radiocarbon 

Dating laboratory (Miami, FL, USA) or Keck Carbon Cycle AMS Laboratory (Irvine, 

CA, USA). Seven radiocarbon dates fall within the interval analysed here. Ages were 

calibrated with the IntCal13.14C curve (Reimer et al., 2013), and the age–depth model 

was obtained by using smoothing spline interpolation in R package Clam 2.2 (Blaauw,  
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2010). The sedimentological description was performed following Schnurrenberger et 

al. (2003).  

 

Table 2.1. Results of 14C radiocarbon dates for different depths at the Bassa Nera. Sample 

Beta-247298 was excluded of the age–depth model as stratigraphically incongruent (marked 

with an asterisk (*)). 

 

Depth (cm) Laboratory code Dated material AMS 14C years BP 

97.5 Beta-247296 Wood 220±40 

127.5  Beta-251879 Wood 190±40 

192.5 Beta-247297 Wood 270±40 

222.5 Beta-251880 Wood 490±40 

261.5 * Beta-247298 Wood 250±40 

304.5 Beta-251881 Wood 880±40 

428.5 Beta-247300 Wood 2380±40 

517 Beta-247301 Seeds 3570±40 

604.5 Beta-251883 Wood 4530±40 

698.5 UCI-43704 Wood 6410±20 

 

 

2.2.2 Pollen analysis  

 A total of 51 samples were processed at the Catalan Institute of Human 

Paleoecology and Social Evolution, using standard palynological methods (Moore et 

al., 1991) with NaOH, HCl, HF and mineral separation in Thoulet solution (density 

2.0 g/cm3). Microscopic slides were mounted in glycerine. Pollen grains were counted 

until diversity saturation (Rull, 1987) and identified according to Faegri et al. (1989), 

Reille (1992) and the reference pollen collection of IBB-CSIC. Given that most slides 

had superabundant Pinus, which could conceal the vegetation dynamics, counts were 

increased to obtain a representative sample (200–481 pollen grains without Pinus). 

Data are presented as a percentage of the pollen sum, excluding Pinus, Cyperaceae, 

aquatic plant pollen and spores. Diagrams were plotted using Psimpoll 4.27 software 

(Bennett, 2002), and statistically significant zones were based on changes in 

percentages of taxa showing abundances >1%. The method of Optimal Splitting by 

Information Content (Bennett, 1996) was used for this purpose. Stomata, Botryococcus 

algae and sedimentary charred particles (<100 µm; 100–500 µm) on the same pollen 

slides were also counted.  
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 A new montane pollen ratio was calculated to infer past altitudinal variations in 

the montane–subalpine belt in the study site (see supplementary data, available 

online). To obtain this montane ratio, we used several pollen indicator types identified 

in the area by Cañellas-Boltà et al. (2009). Montane pollen types included Alnus, 

Betula, Buxus, Corylus, Fraxinus, deciduous Quercus, Tilia and Salix, while 

subalpine–alpine indicators included Asteraceae, Calluna, Campanula, Ericaceae, 

Plantago and Poaceae. These genera were selected as indicators because the local 

occurrence and abundance of both pollen and parent taxa show the same or similar 

altitudinal patterns. The percentages of the montane pollen were summed and divided 

by the sum of the percentages of subalpine pollen. This ratio was proved with 33 

surface moss samples from the altitudinal transect studied by Cañellas-Boltà et al. 

(2009) in the Aiguamòg Valley. The usefulness of this ratio for discriminating both 

vegetation belts was assessed by calculating its values and their 95% confidence 

intervals for the 33 moss samples from the altitudinal transect studied by Cañellas-

Boltà et al. (2009). According to the modern analogues, values of 2.5 indicate the close 

presence of the montane belt, while higher values imply the upward montane 

migration of the latter within Bassa Nera basin.  

 

2.2.3 Diatom analysis  

 A total of 0.1 g of dry sediment from 35 samples was treated with H2O2, and the 

frustules were mounted in Naphrax (R.I. = 1.7). Valve concentrations (valves g 

sediment−1) were estimated through the addition of a known number of latex 

microspheres (Battarbee, 1986). A minimum of 500 valves per sample were counted 

with a Polyvar light microscope at 1000× magnification and identified at the lowest 

taxonomic level according to Krammer and Lange-Bertalot (1999a, 1999b, 2004a, 

2004b), Cejudo-Figueiras et al. (2011), Buczkó et al. (2010), Bey and Ector (2013) and 

Morales (2005). Observed chrysophycean stomatocysts and sponge spicules were also 

counted. The centric-to-pennate (Ce/Pe) ratio was calculated as an indicator of the 

relative abundance of planktonic to benthic habitat availability. The diatom 

dissolution index (DDI) was computed as the percentage of valves showing dissolution 

and/or breakage signals. The Shannon–Wiener diversity index (H′) was used  
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(Shannon, 1963). The planktonic-to-fragilarioid (P/F) species ratio was calculated as 

an indicator of the duration and extent of ice cover (Douglas and Smol, 1999; Lotter 

and Bigler, 2000). The chrysophytes-to-diatoms (Cr/Di) ratio was calculated as a 

means for estimating trends in algal succession, nutrient content and the length of the 

growing season (Smol, 1985). Diatom diagrams were plotted using Psimpoll 4.27 

software (Bennett, 2002), and zonation was based on changes in percentages of taxa 

showing abundances >3% according to the method of Optimal Splitting by Information 

Content (Bennett, 1996).  

 

2.3 Results  

2.3.1 Chronology and sedimentology  

 Seven radiocarbon dates were used to construct the age–depth model that 

covers the last 2500 cal. yr BP (Table 2.1; Figure 2.2). One date (Beta-247298) was 

rejected as stratigraphically incongruent, probably because the roots might have 

dragged down the wood macrorest where dating was performed. The x-ray radiograph 

of a core retrieved by other researchers working close to PATAM12 reveals that the 

depth of extracting our macrorest coincides with a root-rich level (Pelachs, 2015, 

personal communication), reinforcing this rejection. According to the age–depth model, 

the entire core extends from ca. 7464 cal. yr BP to the present, with an average 

confidence interval error of ca. 150 years. The age– depth pattern for the last 

millennium discussed here showed a sedimentation rate of 0.36 ± 0.15 cm yr−1 (mean 

± SD) from 0.09 to 0.7 cm yr−1, with an average interval of 14–22 years between 

samples (Figure 2.2). Three sedimentary facies have been described (Figures 2.3 and 

2.4): (1) massive brown sandy silt with medium to large granulometry and scarce 

vegetal organic matter (0–50 cm); (2) massive brown-red clay and abundant vegetal 

organic matter (50–195 cm); and (3) massive brown-dark clay with abundant vegetal 

organic matter (195–330 cm). 
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Figure 2.2. Age–depth model for the last 2500 years based on radiocarbon dating of Bassa 

Nera pond and performed with Clam 2.2 software. The box marks the studied period, the last 

1000 years. Sample in red was considered as outlier. 
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Figure 2.3. Percentage diagram of sporomorph, including the total pollen (relative abundance >1%), charcoal percentages and M/A ratio. 

Pinus pollen, wetland plants and fern spores were excluded from the pollen sum (ΣP). Pinus percentage was calculated with the pollen 

sum plus Pinus pollen vegetal associations: lowland (L), montane deciduous forest (MDF), subalpine deciduous forest (SDF), alpine 

meadows (AM), and human related taxa (H). The continuous horizontal lines correspond to statistically significant zones (Bennett, 1996) 

and the dotted lines correspond to subzones. Percentages of the elements out of the pollen sum were calculated by dividing them by the 

pollen sum. Palaeonvironmental phases (see the ‘Discussion’ section) are indicated at the right side of the diagram. Poaceae** shows the 

combined frequencies of Poaceae and Cerealia-t pollen.
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2.3.2 Pollen and charcoal record 

 The pollen diagram (Figure 2.3) is dominated by arboreal taxa, mainly Pinus 

and Abies, with a notable abundance of deciduous taxa. Several anthropogenic taxa 

and various Mediterranean species are present along the whole sequence, increasing 

from 180 cm to the top. Three pollen zones (PZ-1–PZ-3) have been identified. 

 PZ-1 (330–265 cm, 22 samples). The PZ-1 zone is characterized by the maximum 

values of coniferous taxa (Pinus and Abies), with notable abundances of some 

deciduous taxa (deciduous Quercus, Alnus, Betula and Fagus). Shrub elements such 

as Corylus, Prunus and Ericaceae are well represented, while herbs show low 

percentages. This zone shows the highest montane pollen ratio of the studied 

sequence, with values of approximately 2.75. Charcoals are particularly abundant. 

Two subzones can be distinguished. The subzone PZ-1a has a clear Abies dominance 

(45%), with a high amount of deciduous Quercus and large percentages of Cyperaceae, 

Myriophyllum and ferns. In contrast, subzone PZ-1b is characterized by a decrease in 

conifers and deciduous Quercus and a marked rise of Prunus, Artemisia and Poaceae. 

Cyperaceae sharply decrease from 10% to 2%, while Myriophyllum and ferns are 

significantly reduced. In addition, Botryococcus rises by the middle of the subzone, 

coinciding with the appearance of conifer stomata and the decline of charcoal.  

 PZ-2 (265–197.5 cm, 13 samples). This zone is distinguished by a drop of 

arboreal pollen from 60% to 35%, mainly caused by the decrease in conifers (Abies, 

Pinus). Deciduous taxa decline slightly, but a minor increase in some shrub and 

herbaceous elements (Prunus, Poaceae, Rumex, Artemisia, Apiaceae and Plantago) is 

observed. Myriophyllum dominates the aquatic taxa. Potamogeton shows a 

remarkable increase; this increase is followed by a Botryococcus peak. The montane 

ratio displays short periodic fluctuations ranging from 0.5 to 2.2. Charcoal notably 

diminishes by the top of this zone, coinciding with the disappearance of stomata. Two 

subzones can be distinguished according to cereal presence and changes in the 

wetland and aquatic communities. Subzone PZ-2a is characterized by high abundance 

of Secale cereale, Cerealia-t and wetland and aquatic plants (Cyperaceae, 

Ranunculaceae, Myriophyllum and Potamogeton). Botryococcus has the highest values 

of the sequence. The onset of subzone PZ-2b is marked by the disappearance of  
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Cerealia-t and S. cereale as well as by a progressive decrease in Artemisia and 

montane taxa (Alnus, Corylus and Betula). In contrast, Olea increases markedly. 

Cyperaceae remain abundant, but the other aquatic plants virtually disappear. 

Botryococcus also declines. Charcoal decreases and stomata are absent. 

 PZ-3 (197.5–0 cm, 16 samples). The PZ-3 zone shows a notable decrease in 

Alnus, Betula and Prunus. Although Artemisia diminishes, the herbaceous taxa 

spread. Olea reaches its maximum values, and there is a rise in broken and damaged 

pollen by the middle of the zone. Cyperaceae have the same low frequencies as in PZ-

2b. Potamogeton becomes the only aquatic macrophyte, with very low abundances, 

while Botryococcus disappears. The montane ratio continues with oscillations ranging 

from 0.2 to 1.7 and charcoal increase by the middle of this zone. Two subzones can be 

differentiated. The PZ-3a subzone is characterized by an increase in human-related 

taxa (Urtica and Potentilla) and Parnassia. In contrast, Abies shows a slight 

decreasing trend. Poaceae follow an oscillating pattern ranging from 25% to 5%. The 

evergreen Quercus peaks, and Olea spreads. Additionally, charcoal is scarce. The PZ-

3b subzone is marked by an abrupt decrease in Potentilla, Urtica and Parnassia, while 

Olea reaches its maximum values. Cyperaceae and charcoal increase markedly, with 

two charcoal peaks at 50 and 90 cm. At the top of the subzone, Ericaceae and Corylus 

increase.  

 

2.3.3 Diatom record  

 Diatom assemblages are composed of 240 taxa distributed among 52 genera. A 

substantial portion of these taxa are benthic (Figure 2.4). The most significant 

features in the diatom stratigraphy are the high percentages of small Fragilarioid 

taxa, with only five tychoplanktonic species showing abundances >10% at any given 

time along the sequence (Achnanthidium minutissimum (Kützing) Czarnecki, 

Staurosirella pinnata (Ehrenberg) Williams and Round, Staurosira construens var. 

venter (Ehrenberg) Hamilton, Pseudostaurosira alvareziae (Cejudo-Figueiras, Morales 

and Ector) and Stauroforma exiguiformis (Lange-Bertalot) Flower, Jones and Round). 

According to changes in the diatom assemblage, three diatom zones are differentiated 

for the last millennium, which can be divided into subzones. 
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 DZ-1 (330–207.5 cm, 18 samples). In this zone, diatoms reach their maximum 

concentrations in the record, showing periodic fluctuations from 1.61 to 2.54 × 109 

valves g sed-1. The Ce/Pe and P/F ratios also present their highest values in the 

record. H′ ranges from 2.8 to 3.7, and the DDI indicates that diatom frustules are well 

preserved. Assemblages are dominated by the periphytic S. construens var. venter, A. 

minutissimum and S. pinnata, while the abundances of Encyonopsis subminuta 

Krammer and Reichardt, Nitzschia fonticola Grunow in Cleve and Möller and 

Brachysira procera Lange-Bertalot and Moser fluctuate. Minor diatom assemblages 

formed by Kobayasiella sp., Psammothidium subatomoides (Hustedt) Bukhtiyarova 

and Round and Sellaphora cf. radiosa are found exclusively in this zone. Aulacoseira 

nivaloides (Camburn) English and Potapova and Aulacoseira valida (Grunow in Van 

Heurck) Krammer are abundant in the planktonic assemblage. Two subzones can be 

differentiated. The DZ-1a subzone is dominated by S. pinnata, A. minutissimum and 

S. venter. In the DZ-1b subzone, S. pinnata decreases and S. venter shows a dramatic 

drop at 252 cm. However, P. alvareziae and Staurosirella oldenburgiana (Hustedt) E. 

Morales show an increasing trend towards the top of this subzone. The species that 

characterize this zone prefer habitats with low nutrient and alkaline water bodies 

(Van Dam et al., 1994). The Cr/Di ratio is low. The presence of spicules of the sponge 

Ephydatia muelleri (Lieberkühn) (Økland and Økland, 1996) is noteworthy except 

between 222.5 and 152.5 cm.  

 DZ-2 (207.5–177.5 cm, three samples). At the transition between the DZ-1 and 

DZ-2 zones, the diatom concentration decreases drastically to 9.43 × 107 valves g sed-1 

and recovers shortly thereafter. The Ce/Pe and P/F ratios decrease, and H′ decreases 

markedly at 192.5 cm. This zone is characterized by the prominent peak of the 

freshwater species P. alvareziae, which becomes the dominant species, reaching 70% 

abundance at 192.5 cm. The previously dominant species S. pinnata declines to 5%. 

Furthermore, S. venter and the epiphytic A. minutissimum and E. subminuta 

virtually disappear for the first time in the entire record while S. oldenburgiana 

remains constant. In contrast, Eunotia arcus Ehrenberg, S. exiguiformis and the 

acidophilus Tabellaria flocculosa (Roth) Kützing increase slightly, peaking at 

approximately 203 cm. In the planktonic assemblage, A. nivaloides and A. valida are 

replaced by the acidophilus Aulacoseira tethera Haworth (10%). This latter taxon has 
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Figure 2.4. Relative abundances (>3%) of diatom taxa throughout the Bassa Nera record. The continuous horizontal lines delimitate 

three statistically significant zones (Bennett, 1996) and the dotted lines arbitrarily defined subzones. Diatoms are arranged in order 

of appearance.
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been identified according to Krammer and Lange-Bertalot (2004a) and Bey and Ector 

(2013). The density and width of striae together with the rows of areolae and the  

dimensions of the cells seem to indicate that the observed species is indeed 

Aulacoseira, although it could be close to the morphotype described in Buczkó et al. 

(2010). The diatom assemblages of the DZ-2 zone are commonly present in habitats 

with a low-to-medium electrolyte content, circumneutral waters and moist places (Van 

Dam et al., 1994). Even the Cr/Di ratio remains low, reaching 0.048 at 202.5 cm. 

Meanwhile, E. muelleri spicules are present throughout the entire zone. 

  DZ-3 (177.5–0 cm, 14 samples). This zone is marked by the abrupt drop of the 

diatom concentration to 1.81 · 106 valves g·sed–1. The Ce/Pe value slightly increases, 

while H′ oscillates approximately 3.2 bits and decreases towards the top of the zone. 

The DDI reaches its highest values found in the record by the middle of the zone, and 

the P/F ratio remains low. P. alvareziae decreases significantly and is substituted by S. 

exiguiformis (25%), which peaks at 81.5 and 152.5 cm. S. pinnata and S. venter 

recover to their former abundances (DZ-1 zone). Indeed, S. venter has a prominent 

peak at 152.5 cm, reaching 30%. Further minor diatom assemblages formed by 

Gomphonema bohemicum Hustedt, Gomphonema exilissimum (Grunow) Lange-

Bertalot and E. Reichardt, Encyonema vulgare Krammer, Encyonema neogracile 

Krammer and Nitzschia sp. show slight peaks. Four subzones can be identified. The 

DZ-3a subzone is characterized by a decrease in P. alvareziae and S. oldenburgiana 

and an increase in S. venter. Planktonic A. tethera decreases, to be replaced by 

Aulacoseira alpigena (Grunow) Krammer. The DZ-3b subzone is marked by two peaks 

of S. exiguiformis. At 122.5 cm, P. alvareziae reappears, with a peak that coincides 

with decreases in S. exiguiformis and S. venter. The DZ-3c subzone is distinguished by 

a decreasing trend of S. exiguiformis and a peak of P. alvareziae, A. minutissimum, S. 

pinnata and S. venter, while S. oldenburgiana shows an increasing tendency. The DZ-

3d subzone is characterized by a peak of A. minutissimum at 33.5 cm, coinciding with 

a minimum of S. pinnata, S. venter and S. exiguiformis. At the end of this subzone, S. 

pinnata, S. venter, S. oldenburgiana, S. exiguiformis, P. elliptica and A. alpigena 

increase until the present. DZ-3 species are usually found in oligotrophic habitats with 

alkaline waters in freshwater bodies (Van Dam et al., 1994). E. muelleri disappears at 

162.5 cm; however, chrysophytes increase, peaking at 132.5 and 112.5 cm. 
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2.4. Discussion  

2.4.1 Vegetation and palaeoenvironmental reconstruction  

 Our reconstruction of the past environment and vegetation dynamics in the 

Bassa Nera catchment is based on pollen and diatom zonations (Figure 2.5). Our 

results suggest that aquatic habitats progressively shrank through time due to 

changes in hydrological conditions. In the record, temperature changes have led to 

shifts in vegetation ecotones. The study of the montane ratio in this highland 

ecosystem has helped to detect these replacements. The discussion will be structured 

into five main phases according to lacustrine, vegetation and montane ratio changes 

(Figures 2.3 and 2.4). Figure 6 shows the ecosystem dynamics and anthropogenic 

pressure on regional sequences located in the Central Pyrenees and pre-Pyrenees. 

 Phase I. 330–265 cm, AD 801–1297. The pollen record suggests that the 

surroundings of Bassa Nera were dominated by montane forest (deciduous Quercus, 

Betula, Corylus and Prunus) mixed with Pinus, Abies and Ericaceae. The conifer 

stomata demonstrate the close proximity of these taxa to the pond. The highest 

montane ratio values, which are close to the ones observed in the present montane belt 

samples, indicate the proximity of the montane vegetation. This upward shift of the 

montane boundary with respect to the current location suggests warmer conditions. In 

contrast, the increase in Artemisia and Poaceae after the charcoal peak points to 

forest clearance at approximately AD 1000. The S. cereale indicates the presence of 

local and regional crops by AD 1150. A change in water level occurred approximately 

AD 990, inferred from higher planktonic diatom percentages and the large decrease in 

Myriophyllum and Cyperaceae, usually associated with lake margins and shallow 

waters (0.4–4 m deep) (Grosjean et al., 2001). Some periphytic diatom species that live 

attached to this littoral vegetation, such as S. pinnata, also declined. The oscillations 

of diatom concentration, Ce/Pe and P/F might be related to periods of strong 

seasonality and hydric fluctuations. This environmental instability is also evidenced 

by the presence of tychoplanktonic and opportunistic small Fragilarioids (S. pinnata, 

S. venter, P. alvareziae) and A. minutissimum, which has been related to periods of 

increased mixing or turbidity (Axford et al., 2009; Corella et al., 2011; Scussolini et al., 

2011). This phase is set in the context of the MCA (9th–14th centuries), characterized 
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by an increment in temperatures and by relatively arid conditions in south-western 

Europe (Mann et al., 2009; Seager et al., 2007). The Iberian Peninsula (IP) 

experienced generally drier conditions during this period (Moreno et al., 2012). Indeed, 

some lakes of the Pyrenees such as Basa de la Mora and Burg (Figure 2.6) lowered 

their lake levels, with strong seasonality marked by higher summer/autumn 

temperatures (Catalan et al., 2009) and lower winter/spring temperatures (Pla and 

Catalan, 2005). Other nearby pre-Pyrenean lakes also showed a negative hydric 

balance (Catalan et al., 2009; Morellón et al., 2011a).  

 Phase II. 265–220 cm, AD 1297–1493. Between AD 1297 and 1493, the decrease 

in montane ratio suggests a downward shift of the montane vegetation belt. In regard 

to this finding, the pollen diagram shows a decrease in deciduous Quercus and Alnus. 

However, the high percentages of Betula, Corylus and Prunus indicate relatively close 

montane vegetation or mixed forest. This montane downward shift and the landscape 

opening, prompted by the increase in Poaceae and other herbs, suggest colder 

conditions during this period, which correspond to the MCA–LIA transition. In 

contrast, the maximum of Artemisia, together with an increase in some human-related 

taxa (Cerealia-t, Plantago, Potentilla and S. cereale) and small charcoal, evidence the 

use of regional fires for crops and grazing, as has been observed in nearby regions 

(Ejarque et al., 2010; Pèlachs et al., 2009). The small decrease in the Ce/Pe ratio 

jointly with the onset of Potamogeton and higher values of Myriophyllum suggests 

that the pond had relatively shallower water and poor nutrient status (Bornette and 

Puijalon, 2011). The decrease in P/F (Lotter and Bigler, 2000) and the increase in S. 

oldenburgiana might also be indicative of lower temperatures (Finkelstein and 

Gajewski, 2008). The decrease in S. venter and A. minutissimum could imply a 

substantial period of ice cover (Smol, 1988). Thus, the extreme fluctuations of diatom 

concentrations and the decrease in planktonic frequencies might be associated with 

hydrological fluctuations, which have also been observed in karstic Montcortès (1027 

m a.s.l.) and Estanya Lakes (670 m a.s.l.) (Figure 2.1), between AD 1400 and 1460 

(Morellón et al., 2009; Scussolini et al., 2011). In contrast, Bassa de la Mora lake 

presented higher lake levels (Pérez-Sanz et al., 2013) (Figure 2.6). Thus, unstable, cold 

and humid conditions were inferred for the MCA–LIA transition. In Europe, this 

period was humid with cold conditions  (Pfister et al., 1998), whereas in the IP and the 



 

 

 

 

 

Figure 2.5. Summary diagram grouping pollen according to vegetal associations, with additional information about aquatics, 

charcoal, diatom concentration and ratios. Medieval Climate Anomaly (MCA), ‘Little Ice Age (LIA)’ and Industrial Revolution (IR) 

periods are indicated on the right. ‘Local mowing’ includes the following taxa: Centaurea spp, Cerealia-t, Sanguisorba spp and Secale 
cereale; ‘Local grazing’: Galium-t, Juniperus sp, Plantago-t, Potentilla-t, Ranunculus-t, Rumex sp and Stellaria sp and ‘Human-

related taxa’: Urtica sp, Asphodelus-t and Chenopodiaceae/ Amaranthaceae.
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Pyrenees, it was distinguished by fluctuating moist conditions and cold temperatures 

(Morellón et al., 2011a). 

  Phase III. 220–177.5 cm, AD 1493–1618. The increase in Abies coinciding with 

lower montane ratio values, evidenced by the decline of Betula and Alnus, points to a 

maintained downward shift in the vegetation communities and a temperature 

decrease. A conspicuous increase in Poaceae suggests a continuity in the openness of 

the vegetation. The expansion of Olea and Quercus ilex could reflect a high upward 

flow of regional pollen (Cañellas-Boltà et al., 2009), most likely due to the increasing 

development of agricultural practices in the lowlands and favoured by the landscape 

opening (Pérez-Sanz et al., 2013). The drastic decrease in aquatic taxa, the Ce/Pe 

decrease and the change from brown-dark to brown-red fibrous peat moss sediment 

suggest a lower rate of decay of material and the presence of the peat bog at the 

sampling site (Clymo, 1984). The decrease in submerged vegetation restricted the 

amount of habitat suitable for benthic and epiphytic diatoms (A. minutissimum, A. 

valida and E. subminuta (Rivera Rondón, 2013)) and caused a decrease in H′. These 

conditions lead to the replacement of A. minutissimum by a large amount of P. 

alvareziae, together with S. oldenburgiana and other Fragilarioids, suggesting colder 

conditions and, possibly, longer periods with ice cover (Lotter and Bigler, 2000). 

Indeed, a sequence extracted close to PATAM12 coring point also evidenced peat bog 

presence for the last millennium (Pèlachs et al., 2015). The presence of Aulacoseira, 

the main planktonic genus found in this study, could also indicate longer ice cover, 

given its low light requirements and its opportunistic nature (Rühland et al., 2008; 

Willén, 1991). Redon Lake also evidenced long-lasting ice cover during this period 

(Catalan et al., 2009). With the thawing of the ice cover, littoral habitats become first 

available to benthic and periphytic diatoms such as small Fragilarioid species, 

adapted to  cold waters, short growing seasons and prolonged ice cover (Schmidt et al., 

2004). This period represents the end of the MCA–LIA transition (AD 1300–

1600)characterized by fluctuating, moist conditions and relatively cold temperatures 

in the IP and Southern Pyrenees (Morellón et al., 2011a). Some lakes, such as Basa de 

la Mora Lake, increased their water levels (Pérez-Sanz et al., 2013), whereas Redon 

Lake did not show remarkable shifts in its planktonic percentages, suggesting small 

changes in water depth (Catalan et al., 2009) (Figure 2.6). However, Burg Lake 
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increased its Cyperaceae frequencies, while Sparganium decreased, implying 

shallower waters (Bal et al., 2011; Gacia et al., 2008). Estanya Lake also registered 

aridity and fluctuating water levels (Riera et al., 2004). Bassa Nera does not show 

evidence of moist conditions; this could be related to the possibility that local factors 

obscured any plausible regional relationship between climate and peat bog 

development (Mäkilä, 1997).  

 Phase IV. 177.5–90 cm, AD 1618–1823. During this phase, the vegetation was 

dominated by coniferous forest with some deciduous Quercus and Corylus. The low 

montane ratio indicates that the montane boundary remained below the altitude of 

the lake and suggests low temperatures during this period, matching with the second 

phase of the LIA (AD 1600–1850) (Morellón et al., 2011a). A notable increase in 

Potentilla, Urtica and Chenopodiaceae/Amaranthaceae suggests an intensification of 

human disturbance through grazing (Ejarque et al., 2010). The maximum values of 

Olea and evergreen Quercus imply intensified agricultural practices in the lowlands 

and an expansion of meadows (Cañellas-Boltà et al., 2009). Nearby lakes (Bal et al., 

2011; Pérez-Sanz et al., 2013) and other parts of the Pyrenees also recorded high 

proportions of Olea at approximately the same time (Reille and Lowe, 1993) (Figure 

2.6). The low macrophyte diversity, combined with higher frequencies of damaged 

pollen, might indicate periods of aerial exposure. Low diatom concentrations and less 

pelagic assemblages seem to indicate shallower waters because of the infilling process 

and the development of the peat bog in the pond edges. In this regard, it is important 

to note that the study of a single record adds some uncertainty to the evaluation of a 

general circumstance of the pond in front of a particular transition on the coring site 

because the rates of peat growth vary in different parts of the bog according to 

hydrological, topographical and edaphic factors (Mäkilä, 1997). The high values of 

Cr/Di suggest poor nutrient conditions (Smol, 1985). Some authors found similarly 

high proportions of cysts in littoral semi-aquatic mosses, where epiphytic diatoms are 

restricted (e.g. Duff et al., 1995). However, the stable frequencies of monoletes and 

triletes do not suggest a significant increase in mosses and ferns. The disappearance of 

the sponge Ephydatia could be due to a decrease in water temperature below 15°C 

(Økland and Økland, 1996) or limitations in food availability. The absence of wetland 

plants and the influx of humic acids from degrading peatbanks enclosing the lake 



 

 

Figure 2.6. Overview of sediment results (diatom, pollen, algae, macrophyte remains) and resultant climate and environmental 

inferences of Bassa Nera and other lacustrine and peat bog sequences from the Central Pyrenees and pre-Pyrenees recording the last 

1000 years. Dark Ages Cold Period (DACP), Medieval Climate Anomaly (MCA), ‘Little Ice Age (LIA)’ and Industrial Revolution (IR). 

Vegetal associations – Mixed forest: Pinus, Abies, Betula, Corylus and deciduous Quercus; Conifer forest: Pinus and Abies; Montane 

forest: Corylus and deciduous Quercus. Human pressure Crops: Cerealia-t and Secale cereale; Grazing: Rumex, Chenopodiaceae, 

Urtica and Potentilla; Human-related taxa: Plantago, Asteraceae and Artemisia. 
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(Pérez-Haase and Ninot Sugrañes, 2006) would have changed the biochemical 

conditions of the pond, colouring the clay sediment to brown-red and perhaps 

favouring a decrease in Botryococcus (Demetrescu, 1998). This would have prompted 

the replacement of planktonic diatoms by S. exiguiformis, A. alpigena and T. 

flocculosa, which are periphytic forms that can attach to mosses (Krammer and Lange-

Bertalot, 2004b). The second major phase of the LIA was remarkably cold in Europe 

(Mann et al., 2009), while in the Southern Pyrenees it was characterized by colder 

temperatures, higher humidity and maximum glacier advances (González Trueba et 

al., 2008; Morellón et al., 2011a). The Bassa Nera record does not evidence increasing 

moisture, as also occurred in nearby basins as Basa de la Mora Lake and Perafita 

Valley (Bal et al., 2011; Miras et al., 2010). However, other lakes in the pre-Pyrenees 

such as Estanya show periods of large hydrological fluctuations (Morellón et al., 

2011b; Riera et al., 2004) (Figure 2.6). On the other hand, the peat accumulation in 

Bassa Nera could have been favoured by the cold conditions (Martinez-Cortizas et al., 

1999).  

 Phase V. 90–0 cm, 1823 to present. At the onset of this phase, the montane ratio 

remains low, suggesting the downward continuity of the montane vegetation belt 

boundary and low temperatures until the past century, when it increases again. A 

slight decrease in Abies at approximately AD 1921 and the increase in deciduous 

elements suggest a recent dominance of mixed forest. The higher proportion of herbs 

during the past century indicates an open landscape around the catchment. These 

non-forested areas are prone to be eroded and may produce higher sediment input to 

the pond, explaining the switch from clay to sandy silt during this period. The charcoal 

abundance suggests two periods of frequent regional and local fires. The increase in 

Poaceae, Pinus and Corylus at approximately AD 1915 could be due to their ability to 

reappear after fires. The type and acidophilus character of diatoms as well as the 

significant presence of chrysophytes indicate the continuity of shallow waters and the 

expansion of periphytic habitats (Douglas and Smol, 1995). A minor shift in diatom 

assemblage during the past century, marked by an initial decline in S. venter and P. 

alvareziae with a strong peak in the periphytic A. minutissimum and S. pinnata, 

reflects an increase in subaquatic vegetation and greater nutrient-rich conditions (Van 

Dam et al., 1994). This phase includes the end of the LIA in the IP (Morellón et al., 
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2011a) and the onset of a warmer and more arid period, coinciding with the IR and the 

CGW (Seager et al., 2007).  

 

2.4.2 Comparison with other peat bogs 

 The Bassa Nera record shows some peculiarities in aquatic and vegetal trends 

compared with those found by other studies in the nearby region (Bal et al., 2011; 

Cunill et al., 2013; Pérez-Obiol et al., 2012). Some of these unique features might be 

due to differences in ecosystem sensitivity to climate between peat bogs and lakes. Our 

results agree with those from other peat bogs that show analogous conditions and are 

more geographically distant. In the IP, the distribution of peatlands is mainly in the 

northern areas, within the Eurosiberian bioclimatic region (Hernández-Beloqui et al., 

2015; López-Moreno et al., 2010; Martınez-Cortizas et al., 2001; Pérez-Díaz et al., 

2016; Pérez-Díaz and López-Sáez, 2014). Some Northwestern peat bogs also recorded 

wet periods between AD 1110–1210 and AD 1345–1475 (Mighall et al., 2006) with 

several rapid and brief dry episodes between AD 1200–1300, AD 1400–1450 and AD 

1600–1700 (Castro et al.,2015) and higher intra-annual fluctuations after the mid-

16th century (Silva-Sánchez et al., 2016) that could match with the hydrological 

fluctuations of Bassa Nera. In the Alps, the Mauntschas mire showed a change in 

hydrological conditions from AD 1572, favouring peat bog development and decreasing 

the water level (Van der Knaap et al., 2011). Similarly, in northern Poland, the 

Kusowskie Bagno bog presented water table fluctuations from AD 1150, increasing 

abruptly at approximately AD 1240 and then decreasing by AD 1500 (Lamentowicz et 

al., 2015). Carpathian peatlands also showed a substantial increase in the water table 

after AD 1400 and a marked change to drier conditions after AD 1580 (Schnitchen et 

al., 2006). Most of these peat bogs responded to the MCA with water level fluctuations, 

and all of them recorded an abrupt change to drier conditions with the onset of the 

LIA. The ecological response and sensitivity revealed by these palaeoenvironmental 

records provide insights into the nature and timing of the response that we may 

expect the CGW to trigger. Note that peat bogs are known to impact the global water 

cycle because of their water-retention properties (Moore, 2002). This capacity might be 

important in buffering the effects of precipitation decrease due to global warming  
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expected for the Mediterranean region (Giorgi and Lionello, 2008). Therefore, a 

surveillance network along latitudinal gradients of peatlands would act as a sentinel 

and help to apply the appropriate measures of conservation and management.  

 

2.4.3 Lag between pollen and diatom responses 

 Figure 2.7 displays the trends of montane and P/F ratios representing 35 

samples taken at the same core depth. For this purpose, we considered only local 

vegetation, since the presence of the genera used in montane ratio imply the nearby 

occurrence of the pollen source. Our results show a possible faster response of diatoms 

than the local vegetation to the global climatic signal in all the climatic periods 

studied in this work, with a lag of several years to decades, coinciding with Scussolini 

et al. (2011). These trends, however, must be interpreted with caution because of the 

relative large fluctuations of both ratios and the likely influence of anthropogenic 

disturbances. The most coincident trends occur during MCA and IR, suggesting more 

similar response times between the two proxies during warm conditions. However, 

during the IR, the vegetation seemed to respond more intensely, while diatoms had a 

weaker response, most likely explained by the impoverished tychoplanktonic 

assemblage resulting from peat bog infilling. During the LIA, the response of these 

proxies clearly differs. At the species level, the peak in P. alvareziae (Figure 2.4) is 

interpreted as a manifestation of LIA cooling. Since then, the aquatic organisms show 

a decreasing trend during the rest of the sequence. In contrast, Abies peaks shortly 

before the Fragilariaceae, while Pinus and Prunus decline (Figure 2.3), and the 

vegetation strongly fluctuates thereafter, showing range expansions and contractions.  

 

2.4.4 Human impact 

 The presence of human-related species along the whole diagram indicates that 

the Aiguamòg Valley has been subjected to low intensity anthropogenic pressure 

throughout the studied period. The increase in Artemisia (AD 990) and Cerealia-t (AD 

1144), with the high frequency of local and regional charcoal, suggests the use of fire to 

maintain open  spaces for cultivation during the MCA (Bal et al., 2011; Pérez-Obiol et  
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Figure 2.7. Lag between pollen and diatom responses to the same climatic pressure defined in 

the MCA, LIA and IR periods. 

 

al., 2012) (Figure 2.6). Later, the increase in S. cereale and ruderals (Plantago and 

Potentilla) reflect an increase in farming activity and local grazing in the first stages 

of the MCA–LIA transition (AD 1300–1600), which might have increased lake 

turbidity. Other studies performed in adjacent regions have also recorded extensive S. 

cereale cultivation during this period (Cunill et al., 2013; Miras et al., 2010; Pérez-

Obiol et al., 2012). However, these results contrast with nearby pre-Pyrenees regions, 

where wars and the devastating ‘black death’ epidemic (AD 1347-1353) prompted the 

abandonment of lands and crops (Rull et al., 2011). In contrast, Bassa Nera increased 

and shows diversified crops between AD 1300 and 1500. This finding could be due to 

the significant migration from towns to farmland after the large epidemic, together 

with the Querimonia (Gómez, 2007), a privilege document signed by King Jaume II in 

AD 1313 that granted the ownership of mountain lands to Aranese institutions and 

allowed their free use for grazing and farming. From a geographical point of view, the 

harsh winters and poor communication across the mountain passes of Viella and 

Bonaigua that surround the region favoured the geographic isolation of the Aran 

Valley (Boya-Busquet and Cerarols-Ramirez, 2015), affording protection against 

disease outbreaks and favouring regional activities. By the end of the MCA–LIA  
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transition, the disappearance of S. cereale at AD 1500 suggests that crops suddenly 

ceased to occur, with only some grazing evidence remaining (Potentilla and Urtica), 

indicating that people abandoned the farming of the high ranges to develop farming in 

the lowlands; only the livestock persisted because of the increasingly colder conditions. 

The low charcoal values in our record between AD 1583 and 1736 indicate a low 

frequency of fires in the area. However, the short-term decreases in Pinus and the 

increase in Artemisia and Potentilla could indicate periods of forest clearance and 

increases in grazing lands at higher altitudes, as also observed in nearby Basa de la 

Mora Lake sequence (Pérez-Sanz et al., 2013). This pattern contrasts with nearby 

high-mountain valleys that experienced higher pastoral pressure and the use of fires 

for forest clearance or metallurgical activities (Catalan et al., 2013; Ejarque, 2009; 

Pèlachs et al., 2009), highlighting the differences in land use management between 

regions. By the mid-19th century, the frequent fires, forest clearance and the Poaceae 

peak might be the result of an increased need for supplies and raw materials during 

the IR (Ferrer i Alòs, 2012). The social and economic changes during the mid-20th 

century forced migration from the Pyrenees to cities. Therefore, the abandonment of 

rural lands and the establishment of Aiguestortes i Estany de Sant Maurici National 

Park in AD 1955 and the protection of its surroundings in AD 1990 favoured the 

expansion of arboreal taxa, such as Pinus (Améztegui et al., 2010; Bal et al., 2011). As 

in Bassa Nera, the abandonment of traditional land uses in the Pyrenees and many 

Mediterranean mountains has led to recolonization of deforested areas, shrub 

encroachment and densification of treelines (MacDonald et al., 2000). This 

afforestation reduced the grassland extensions and landscape diversity, increased 

water consumption and evapotranspiration and produced marked alterations in 

hydrological responses (Barrio et al., 2013; López-Moreno et al., 2010). These large 

amounts of accumulated deciduous biomass and the expected concomitant increase in 

temperatures and drought events (IPCC, 2007)  might cause a shift to flammable 

material and trigger fire frequency and large-scale fire hazards, as occurred in the 

mid-Holocene (Gil-Romera et al., 2014; Lasheras-Alvarez et al., 2013). Applying 

strategies that minimize the impact of CGW to biodiversity may become essential, 

such as traditional grazing activities and associated management practices with 

ecological forest management (Ninot et al., 2008). Our palaeoecological results are in 
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agreement with Pérez-Sanz et al. (2011), indicating that climate changes have not only 

influenced environmental evolution during recent times but might also have 

modulated the degree of human pressure in the high ranges. 

 

2.4.5 Expected future mountain scenarios under CGW 

 In this study, the observed increase in montane vegetation by the mid-20th 

century points to an ongoing upward range extension in species distribution in the 

Aiguamòg region because of the CGW, which would possibly match with the rapid 

response of alpine Pyrenean treelines to climate registered by Camarero et al. (2015). 

Other studies have also demonstrated recent vegetation shifts in high-mountain 

ecosystems (Gottfried et al., 2012; Thuiller et al., 2005). From approximately 1940 to 

1968, the montane ratio increased from 0.57 to 1.6. In this period, the mean 

temperature in the Pyrenees increased at an average rate of +0.3°C per decade (López-

Moreno et al., 2010) and raised tree establishment and density within the treeline 

ecotone (Camarero and Gutiérrez, 2004). Considering that the predicted temperature 

increase for mountain regions by 2030 is 0.5–1.5°C (IPCC, 2013) and 1.5–2°C by 2021–

2050 in the Pyrenees (IPCC, 2007), we could expect an acceleration of the upward shift 

of the montane belt in the Pyrenean region in a short period of time. This, together 

with a likely decrease in snow accumulation and reinforced Mediterranean summer 

droughts (IPCC, 2007; López-Moreno et al., 2009), could significantly reduce the 

available area for subalpine and alpine ecosystems in the Mediterranean mountains.  

 

2.5. Conclusions 

 The multi-proxy approach used in this work has helped to produce a detailed 

and comprehensive picture of the main events that occurred during the last 

millennium in the surroundings of the Bassa Nera as an example of a temperate high-

mountain environment. This study shows that the vegetation of the Bassa Nera 

catchment responded strongly to climate with altitudinal shifts and is most likely 

currently responding to the CGW. From the MCA to the MCA–LIA transition, the 

montane–subalpine ecotone reached the Bassa Nera catchment. We might expect that 

with the current temperature projections for 2100, this ecotone will eventually reach 
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the Bassa Nera again. This scenario could be extrapolated to other high-mountain 

environments of the Mediterranean region.  

 To the best of our knowledge, this study is the first attempt to link a pollen ratio 

to past altitudinal shifts in the montane–subalpine ecotone. The montane ratio has 

proven the usefulness of good pollen indicators for revealing vegetation trends, 

providing a suitable tool for palaeoecological studies and for monitoring regional 

changes in natural communities in response to CGW. This pollen analysis is site-

specific, and the application of this ratio for interpreting different biogeographic 

locations should be adapted by including local species with similar ecological 

characteristics. The use of the montane ratio in highland peat bog ecosystems would 

help with early detection of the replacement of vegetation predicted by IPCC (2007).  

 Additionally, human management of natural resources has changed over the 

past millennium. Through the MCA and MCA–LIA transition, the people of the region 

used fires to open the forests for cultivating and grazing. With the LIA cooling, grazing 

was the main form of resource exploitation. During the IR, some farming activities 

were still conducted until the authorities restricted resource exploitation by creating 

the National Park.  

 Aquatic taxa, diatom communities and sedimentary units allowed to describe 

the peat bog development at the coring site and its infilling at approximately AD 1565. 

During the past millennium, the small Fragilarioid species dominated the community. 

These opportunistic species had a particularly higher incidence during peat bog 

development in the LIA period, seizing an advantage when the diatom diversity 

diminished due to unfavourable and cold conditions.  

 Consistent shifts in vegetation, fire activity and aquatic communities 

throughout the sequence are clearly related to climatic signals such as the MCA and 

LIA phases. Although the studied lakes nearby such as Basa de la Mora, Burg and 

others located in the pre-Pyrenees (Pérez-Sanz et al., 2013; Riera et al., 2004; 

Scussolini et al., 2011) had shallow waters during the arid conditions of the MCA, the 

Bassa Nera might have maintained or increased its water levels. This finding 

underlines the contrasting responses of lakes and peat bogs to similar climatic 

pressures.  
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 In this study, we have observed the past biotic responses to climate changes and 

considered possible future responses under the scenarios of the CGW. Because high 

spatial resolution has shown that the forecasted climatic changes will not be uniform 

throughout regional areas (Barrera-Escoda and Cunillera, 2011), the information 

provided by this study will help to better understand spatial variability in the impacts 

of climate change on high mountain 

ranges.  

 This study has been based on a single record recovered from the shore of Bassa 

Nera and mainly reflects the evolution of the sedimentological, ontogenic and 

palaeoecological processes occurred in the littoral zone in order to improve the 

obtained palaeoecological and palaeoenvironmental reconstructions and inferences, 

and it would be interesting to investigate other depositional environments like the 

pelagic zone of the pond and other parts of the peat bog and catchment.  
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Abstract  

With the aims of investigating the causes of environmental changes in high mountain 

ecosystems during the Holocene in relation to climate forcings and identifying 

thresholds for vegetation community shifts, we performed a multi-proxy 

palaeoecological reconstruction based on two sediment cores from Bassa Nera, a lentic 

system located close to the montane–subalpine ecotone in the Central Pyrenees. Using 

pollen, plant macroremains, charcoal, chemical elements and loss-on-ignition at 

centennial to decadal resolution, we reconstructed the vegetation and lacustrine 

dynamics during the last 10,000 years. A montane pollen ratio was used as a 

palaeoecological indicator to track altitudinal shifts in high mountain vegetation, 

which was compared to the ice-rafted debris index (IRD) as a proxy for summarizing 

the climatic influence of the North Atlantic Circulation. Our results show upward 

shifts of deciduous forest and its presence in Bassa Nera from the onset of the 

Holocene until 4200 cal yr BP, when it was replaced by coniferous taxa. The montane 

ratio showed a link between vegetation and North Atlantic influence, while changes in 

Sphagnum macroremains and aquatic taxa allowed description of local ontogenic 

changes from the initial pond to the present peatland. The loss-on-ignition record 

showed some flood events at Bassa Nera between 4500 and 3900 cal yr BP. The 

studied proxies allowed inferences concerning anthropic pressure in the catchment 

through grazing activities by 7300 cal yr BP and the appearance of cereal agriculture 

around 5190 cal yr BP. The highest human pressure occurred in the late Bronze Age, 

Roman Period and Middle Ages. 

 

Keywords: Montane–subalpine shifts, Pollen, Sphagnum peat, Charcoal, Pyrenees, 

Holocene 
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3.1 Introduction 

 The development of environmental assessment tools to predict how current 

climate change will affect natural ecosystems is essential to apply proper management 

measures. Palaeoenvironmental reconstructions are crucial to understand ecosystem 

sensitivity and past environmental shifts, as they help to distinguish between the 

effects of climatic and anthropogenic forcings (Last and Smol, 2001; Willis and Birks, 

2006; Catalan et al., 2013). Mountain ecosystems are well-suited to study such 

changes, since their hard environmental conditions make them less prone to intensive 

human influence.  

 The onset of the Holocene, characterised by relatively warmer temperatures and 

an increase in humidity in Europe (Walker, 1995), prompted a rapid expansion of 

deciduous forests in southwest European mountains (Jalut et al., 2009; Pérez-Obiol et 

al., 2011), including the Pyrenees (Benito et al., 2008; Montserrat-Martí, 1992). By the 

Middle-Holocene, a southward shift of the North Atlantic westerly jet (Bond et al., 

2001) led to a change in precipitation seasonality (Pla and Catalan, 2005), a drastic 

decline in deciduous taxa and a progressive consolidation of conifers in the Pyrenees 

(González-Sampériz et al., 2006; Pèlachs et al., 2011). Such changes in plant 

community composition suggest that the North Atlantic climatic variability had 

sufficient magnitude and duration to affect the Pyrenean ecosystems and force them to 

cross a threshold into a different state. However, the precise features in the response 

of deciduous and conifer species to climatic shift are not yet fully understood, and their 

study becomes even more complicated when anthropogenic influence is taken into 

account.  

 With the aim of investigating how the high mountain ecosystems of the Central 

Pyrenees responded to the Holocene climate and anthropogenic forcings, we performed 

a multi-proxy palaeoecological reconstruction of Bassa Nera (BSN), a pond with a ring 

of Sphagnum moss close to themontane-subalpine boundary of the Aiguamòg valley 

(Aran valley). There are several palaeoecological studies in the Central Pyrenees 

covering the Holocene that record a marked climate variability with well-defined arid 

and cold events (Pla and Catalan, 2005; González-Sampériz et al., 2006; Pérez-Sanz et 
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al., 2013), vegetation responses through treeline shifts and biomassfire interactions 

(Cunill et al., 2013; Gil-Romera et al., 2014).  

 Regarding human influence, the Central Pyrenees have been occupied and 

exploited by prehistoric societies since at least the Neolithic (Ejarque et al., 2010; 

Gassiot et al., 2014) through fire and complex land use management (Bal et al., 2010; 

Pérez-Obiol et al., 2012). Phases of higher anthropogenic pressure in high mountain 

areas are known 

since the Early and Middle Neolithic, with an important threshold in the Early Bronze 

Age (Gassiot and Jiménez, 2006; Miras et al., 2007). Since then, it has been widely 

assumed that the configuration of high mountain landscapes has been influenced by 

humans (Ejarque et al., 2010; Bal et al., 2011; Cunill et al., 2013), or at least that 

humans have accentuated the effects of climatic constraints on vegetation during the 

late Holocene (Jalut et al., 2009) through mining activities, farming or cattle raising 

(Pèlachs et al., 2009a; Cunill et al., 2013; Garcés-Pastor et al., 2016). In this study, we 

perform a high-resolution reconstruction of vegetation in order to detect the onset of 

the anthropic pressure in Bassa Nera caused by grazing and agriculture farming.  

 Pèlachs et al. (2011) found a close coupling between regional climatic patterns 

using the ice-rafted debris index (IRD; Bond et al., 2001) from the North Atlantic and 

the accumulation of organic matter in a mountain wetland system in the Central 

Pyrenees (Pèlachs et al., 2011). However, it is advisable to check whether this coupling 

between climatic influence and organic matter deposition may be generalized to other 

lentic systems in order to test the applicability of the IRD to palaeoecological 

reconstructions. Hence, this paper studies the response of organic matter 

accumulation in Bassa Nera to North Atlantic regional climatic patterns and compares 

it with similar regional essays. In a previous study, Garcés-Pastor et al. (2016) 

introduced a montane pollen ratio that was useful for monitoring local upward 

migrations of the montane-subalpine boundary. The present work uses this montane 

ratio to track the response of high mountain vegetation to the Holocene climate 

variability and North Atlantic influence (IRD) and, if possible, to identify possible 

thresholds in vegetation communities. In this paper, we combine diverse proxies 

(pollen, charcoal, macroremains, organic matter, chemical elements and 

sedimentology) from two independent records of Bassa Nera spanning the Holocene 
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with the following objectives: (1) To reconstruct the local vegetation dynamics of BSN; 

(2) to evaluate the ecosystem response of the area to climate forcings and North 

Atlantic influence, describing the main arboreal dynamics at the local level as well as 

identifying thresholds in vegetation communities and their possible causes; (3) to test 

the response of organic matter indicators such as LOI in front of North-Atlantic 

regional climatic patterns (IRD), comparing the results from BSN to those obtained 

from other Pyrenean systems; and (4) to assess the human influence on the BSN 

region, determining the point at which this influence became strong enough to be 

detectable and how it was affected by the climatic patterns.  

 

3.2. Study area 

3.2.1. Environmental and geographical settings 

 The Bassa Nera (42° 38′ 18.5″ N, 0° 55′ 27.6″ E, 1891 m a.s.l.) is a small lentic 

system from glacial origin located in the peripheral zone of “Aigüestortes i Estany de 

Sant Maurici” National Park (PNAESM) (Figure 3.1). Its surface area is 2.01 ha, with 

a maximum depth of 5 m, and it drains by a small outlet into the Aiguamòg River. 

This pond is surrounded by mixed peat bogs and it is currently in the final stages of 

infilling (Pérez-Haase and Ninot Sugrañes, 2006, 2017). The climate is subalpine with 

Atlantic influence and precipitation is well distributed along the seasons (annual 

average=1152mm)(Ninyerola et al., 2003). Mean annual temperature is 4.25 °C, being 

January the coldest month (−3 °C in average) and July the warmest (14 °C in 

average). The BSN basin lies on a granodiorite bedrock from the Maladeta batholith, 

which dates from the Carboniferous-Permic age (Roca i Adrover et al., 2010). The main 

peat communities are geogenous fens (Scheuchzerio-Caricetea fuscae) and 

ombrogenous bogs (Oxycocco-Sphagnetea) (Pérez-Haase et al., 2012). The BSN is 

surrounded by a mixed conifer forest of Pinus mugo subsp. uncinata (Ramond) Domin. 

and Abies alba Mill., with Rhododendron ferrugineum L. in the understory and 

Poaceae meadows. Cañellas-Boltà et al. (2009) described the montane and subalpine 

vegetation altitudinal belts where the catchment area lies. The montane belt (b1600 

m) is composed by deciduous oak forests of Quercus petraea (Mattuschka) Liebl. with  
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Figure 3.1. Location of the study area (A) Map indicating the relative location of Bassa Nera 

Pond in the Iberian Peninsula. (B) Topographic map of the terrain surrounding Bassa Nera. 

(C) Coring sites where the cores A and B were retrieved. 
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Betula pendula Roth.; riverine forests (dominated by Alnus glutinosa L., Fraxinus 

excelsior L., and Salix spp.); forests with Tilia platyphyllos Scop., Prunus avium L., 

and Corylus avellana L.; and mixed forests of Betula pendula Roth. and Pinus 

sylvestris L. The subalpine belt (1600–2250m) is dominated by coniferous forests of 

Abies alba and Rhododendron ferrugineum at the lowest parts and Pinus mugo subsp. 

uncinata with R. ferrugineum at the upper stages. Wetlands are mainly occupied by 

Trichophorum cespitosum subsp. cespitosum (L.) Hartm. communities, assemblages of 

Juncus balticus Willd, subsp. pyrenaeus, Carex rostrata Stokes beds., Caltha palustris 

L. flushes and Sphagnum peat bogs (carpets and hummocks) (Pérez-Haase and Ninot 

Sugrañes, 2006). This part of the valley has experienced low human pressure through 

pasturing and farming during the last millennium (Garcés-Pastor et al., 2016). Since 

the rural exodus of mid-20th century to the creation of the PNAESM in 1955, grazing, 

forest exploitation and hydroelectric electricity generation were the only activities. 

Afterwards, tourism has become an important activity in the national park. 

 

3.3. Material and methods 

3.3.1. Coring, sampling, dating and sedimentology 

 Two cores (PATAM-12 and BSN-6), separated by 47 m, were retrieved from the 

Sphagnum mire surrounding Bassa Nera (Figure 3.1). Core PATAM-12 provides a 

detailed record of the last seven millennia, but lacks the beginning of the Holocene. 

For this reason, we also studied core BSN-6, which covers the last ten thousand years 

and provides a wider environmental framework. The core BSN-6 (core A, 270 cm long) 

was collected in 2011 through the percussion and recover in one step of a 3 m PVC 

tube on a hummock composed by Sphagnum magellanicum and S. capillifolium 

(Figure 3.1). The core PATAM-12 (core B, 706 cm long) was obtained in 2007 with a 

“Russian” corer (Jowsey, 1966) on the Sphagnum quaking carpets (Caricion 

lasiocarpae) that surround the pond. Core A was sliced every 1 cm and core B every 3 

to 5 cm. The chronological framework was based on AMS radiocarbon dates from peat 

and macroremains obtained at Beta Analytic Radiocarbon Dating laboratory (Miami, 

USA) and Keck Carbon Cycle (Irvine, USA), published in Pèlachs et al. (2016) and 

Garcés-Pastor et al. (2016). The radionuclide analysis (210Pb) for dating purposes of 

the uppermost 40 cm of core A was carried out at the Laboratory of Environmental 
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Radioactivity of the Universitat Autònoma de Barcelona (UAB, Spain). The supported 

210Pb was found at 30 cm depth and 210Pb activities were determined by α-

spectrometry through 210Po in equilibrium(Sanchez-Cabeza et al., 1998). Ages were 

calibrated with IntCal13.14C curve (Reimer et al., 2013) and the age–depth models 

(Figure 3.2) were performed with Clam 2.2. software using Smooth Spline function 

(Blaauw, 2010). The sedimentary facies of the cores were described following 

Schnurrenberger et al. (2003) (Figure 3.2). 

 

3.3.2. Pollen, charcoal and macroremains 

 Pollen analyses were carried out in two different laboratories. A total of 62 

samples along 270 cm (core A) and 114 samples in 706 cm (core B) were processed 

according to standard chemical methods (Moore et al., 1991) with KOH, HCl, HF 

digestions and mineral separation in heavy liquid (Thoulet solution; density 2.0 g/cm3) 

at the Universitat Autònoma de Barcelona and the Catalan Institute of Human 

Paleoecology and Social Evolution. The pollen record from the first 330 cm from core B 

(51 samples) has been already studied in Garcés-Pastor et al. (2016). Pollen grains 

were identified according to Faegri and Iversen (1989) and Reille (1992), and counted 

until diversity saturation (Rull, 1987). Because most slides had Pinus superabundance 

that could hide vegetation dynamics, counts were increased in order to get a 

representative sample (minimum 200 pollen grains without Pinus). Stomata, non-

pollen palynomorphs and algal remains were also counted. The palynological results 

are presented as percentage of the pollen sum excluding Pinus, spores and wetland 

plant pollen. Diagrams were plotted using Psimpoll 4.27 software (Bennett, 2002) and 

statistical significant pollen zones were calculated using the method of Optimal 

Splitting by Information Content (Bennet, 1996) on taxa showing abundances N1% 

(Figures 3.3 and 3.4). Some pollen taxa which appear in Figure 3.4 have been excluded 

from Figure 3.3 since they were less represented due to localisms. The montane pollen 

ratio used by Garcés-Pastor et al. (2016), based upon the modern pollen indicators of 

montane and subalpine/alpine stages identified by Cañellas-Boltà et al. (2009), was  

calculated to estimate altitudinal variations of the montane belt. This ratio was 

calculated using taxa that have a significant correlation between the abundance of 

pollen and local occurrence of parent taxa in montane and subalpine-alpine belts in 
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this valley. Montane pollen types included Alnus, Betula, Buxus, Corylus, Fraxinus, 

deciduous Quercus, Tilia and Salix, while subalpine-alpine indicators included 

Asteraceae, Calluna, Campanula, Ericaceae, Plantago and Poaceae. The percentages 

of the montane pollen were summed and divided by the sum of the percentages of 

subalpine-alpine pollen (see more information in Garcés-Pastor et al., 2016). Values of 

2.5 indicate the close presence of montane belt, while higher values imply the upward 

montane migration of the latter within Bassa Nera basin. It is important to highlight 

that this ratio has been inferred from only one altitudinal transect and has been 

useful for the palaeoenvironmental interpretation of BSN catchment (Garcés-Pastor et 

al., 2016), but it should be interpreted with caution if used in other areas or landscape 

mosaics.   

 To study the sedimentary charcoal, the Carcaillet protocol for lacustrine 

sediments was adjusted to peat bog (Carcaillet et al., 2001). Consequently, wet weight 

was used instead of volume in order to minimize the differences of density inside the 

peat bog. A total of 295 samples from core A were digested according to Carcaillet et al. 

(2001) and counted with a stereomicroscope at 40× magnification. Charcoal counts 

were combined and divided by sample weight to calculate charcoal concentration 

(mm2/g) and divided by sedimentation rate to calculate the charcoal accumulation rate 

(CHAR, mm2/g/yr). (Figure 3.3).   

 Plant macroremains at 64 depths from core A were analysed. Samples were 

processed according to Mauquoy et al. (2010) with KOH and sieved with a mesh of 150 

μm (Birks and Birks, 1980). Taxonomic identification was done according to Brugués 

et al. (2007), Smith and Smith (2004) and Daniels et al. (1990) using a 

stereomicroscope and an episcopic microscope. Some Sphagnum macroremains were 

identified at species level while others could only be identified to their taxonomic 

section. In those cases, we could refine the identification within each section to a 

couple of taxa (S. papillosum or palustre and S. denticulatum or subsecundum). 

Results are expressed as presence/absence and Sphagnum percentage in Figure 3.3.  

 

3.3.3. Loss-on-ignition and chemical elements 

 To estimate the organic matter content, 295 samples of core A were dried at 60 

°C to determine the weight loss and burned at 550 °C for 4 h to oxidize organic matter, 
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after absence of carbonates had been verified (Heiri et al., 2001; Luque, 2003). The 

loss-on-ignition results (LOI) are expressed as percentage of dry weight (Figure 3.3). 

In this work only Titanium (Ti) and Manganese (Mn) were considered as proxies of soil 

erosion and water oxygenation (Davies et al., 2015). For this purpose, 98 samples from 

core A were moulded and digested in a microwave oven (CEM, Marsmodel) using a 

solution of HNO3, HCl and HF with a parallel blank digestion. The extracted solutions 

were analysed with an inductively coupled plasma mass spectrometer (ICP-MS, 

Argilent model 7500 ce) at the Chemical Analytic Service of the UAB.  

 

3.4. Results 

3.4.1. Chronology and sedimentology 

 Figure 3.2 shows the age-depth models, the lithology and the correlation of the 

two cores. Seven radiocarbon dates and 31 210Pb dates were used to construct the core 

A age-depth model. It covers the last 10,211 cal yr BP in 270 cm with an average 

confidence interval error of ca. 220 yr and a sedimentation rate of 0.07 ± 0.21 cm yr−1, 

ranging from 0.016 to 0.86 cm yr−1. Date 104.1+/− 0.4 pMC was rejected because lack 

of consistency with the 210Pb dating at the same depth (30.2 cm). Core A shows four 

sedimentary units: Unit I-A (0–17 cm) is composed of living Sphagnum peat with 

abundant roots. Unit II-A (17–185 cm) is the largest of the record and is composed of a 

peat bog texture with light to dark-brown clayey silt and abundant organic matter. 

Two intercalated layers can be distinguished: one characterised by dark-brown fine silt 

with abundant organic matter (60–64 cm) and another with low organic sandy silt 

(115–117 cm). Unit III-A (185–263 cm) is composed of brown-black clay with imbedded 

pennate diatoms and organic matter and shows an intercalated layer of black fine silt 

with coarse-quartz sands and pennate diatoms (243–244 cm). Unit IV-A (264–270 cm) 

presents a transition from quartz pebble to coarse sands (till) and broken diatoms. 

 The age-depth model of core B was built with ten radiocarbon dates. One date 

(250±40 AMS 14C yr BP), obtained from a woody macroremain, was rejected as 

stratigraphically incongruent (see detailed information in Garcés-Pastor et al., 2016). 

The model spans ca. 7490 cal yr BP to the present, with an average confidence interval 

error of ca 150 yr and an average sedimentation rate of 0.2 ± 0.18 cm·yr−1, ranging 
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from 0.04 to 0.78 cm·yr−1. It presents 3 sedimentary units: Unit I-B (0–50 cm) consists 

of massive brown sandy silt with scarce vegetal matter. Unit II-B (50–553 cm) is 

formed by brown-red clay with abundant vegetal matter and few pennate diatoms (50–

195 cm), and dark brown massive clays with abundant organic matter (195–553 

cm)with an intercalated layer of very fine silt with some broken diatoms and low 

organic matter (536–539 cm). Unit III-B (553–706 cm) is composed of clays with 

colours varying from grey to brown. This unit has little organic matter and scarce 

diatoms (553–586 cm) and brown-black clay with pennate diatoms and organic matter 

(586–706 cm), with an intercalated section of brown-red clay with abundant vegetal 

matter and few diatoms (603–677 cm). 

 The two cores were correlated according to their sedimentological features 

(Figure 3.2). One stratigraphic correlation was carried out between the sandy silt 

layer of Unit II-A and the very fine silt layer of Unit II-B. The second correlation was 

made between the base of Unit II-A and the brown-red clay and dark-brown clay 

layers located at 677 cm in Unit III-B. The lithological differences between the studied 

cores are likely due to the concave shape of the basin and the relative position of the 

sampling points. In summary, core A contains 10,211 years in 270 cm and core B 7490 

years in 706 cm. Given the different temporal resolutions between the two records, 

core A will show the main palaeoenvironmental features of the Holocene, and core B 

the last 7000 years at a higher resolution.  

 

3.4.2. Loss-on-ignition and metals 

 The LOI values come fromthree different sedimentary environments (Figure 

3.3): (I) peat bog (0–184 cm), with N70% of organic material, showing an abrupt drop 

to 14% at 105–120 cm; (II) clays (185–263 cm), with an organic content between 30 

and 94% and a sharp decrease below 194 cm; and (III) sands with b19% organic 

matter content (264–270 cm). Ti shows an increasing trend with an important drop at 

60–64 cm (Figure 3.3). Since then, it displays relatively stable values except for a 

prominent peak at 112–116 cm and a  smaller peak at 215 cm. On the other side, Mn 

shows low variability (3–46 μg/g), with two small peaks at 10 cm and 215 cm and one 

large peak at 112–116 cm (311–346 μg/g). 

 



 

 

Figure 3.2. Age-depth models of Bassa Nera cores based on radiocarbon dating, performed with Clam2.2 software using Smooth 

Spline function (Blaauw, 2010) and correlation between their sedimentary facies. Core A presents the 210Pb dates (marked in blue). 

In cores A and B, one radiocarbon date was rejected as stratigraphically incongruent, likely because roots might have dragged down 

the wood macroremain.
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3.4.3. Palynological interpretation 

 The diverse sedimentation rates of the cores and their different locations within 

the lake basin make them suitable to reconstruct the palaeoenvironmental conditions 

in different ways. The information provided by the pollen, charcoal and macroremains 

of core A is used to show the main palaeoenvironmental events and vegetal dynamics 

that occurred in the BSN catchment during the Holocene, while the pollen from core B 

details 

the most relevant landscape dynamics (Figures 3.3 and 3.4). The entire record is 

mainly dominated by arboreal pollen, where the deciduous species that abound at the 

base are replaced by coniferous taxa at around 4000 cal yr BP. Shrubs and herbs 

increase along the record. Mediterranean taxa are present during the entire sequence, 

while anthropogenic indicators and charcoal rise by the middle of the sequence. Seven 

phases are described and summarized according to statistically significant pollen 

zones. 

 

3.4.3.1. Phase I 

 This phase is dominated by herbs, mainly Poaceae and Artemisia, suggesting 

that the pond was surrounded by steppe-like grasslands (10211–10,070 cal yr BP, core 

A: 270–264 cm, 2 samples). The lowest montane ratio values and high proportions of 

Betula point to a nearby birch forest. This agrees with studies that indicate an early 

phase of birch colonization in the Pyrenees during the Late Glacial-Holocene 

transitional period (Reille and Lowe, 1993; Cunill et al., 2013; Gil-Romera et al., 

2014). Therefore, this phase could be a transition from the steppe taxa that abounded 

during the colder and more arid Younger Dryas to a deciduous forest, characteristic of 

the start of the Holocene (González-Sampériz et al., 2006; Reille and Lowe, 1993; Jalut 

et al., 1992).  



 

 

Figure 3.3. Percentage diagram of sporomorphs of core A including: the total pollen (relative abundance ≥1%), montane ratio, aquatic elements and plant 

macroremains, charcoal concentration (mm2/g) and charcoal accumulation rate (CHAR,mm2/g/yr), chemical elements and Loss on Ignition. Pinus pollen, 

wetland plants and fern spores were excluded from the pollen sum (ΣP). Pinus percentage was calculated with the pollen sum plus Pinus pollen. 

Sphagnum palustre or papilosum and Sphagnum denticulatum or subsecundum means that the two species could not be distinguished. The dotted line in 

montane ratio corresponds to the threshold value of 2.5, which indicates the close presence of montane-subalpine ecotone. Higher values imply the 

occurrence of upward montane vegetation in Bassa Nera. Vegetal associations: Lowland (L), Montane deciduous forest (MDF), Subalpine deciduous forest 

(SDF), Alpine meadows (AM), Human related taxa (H). The continuous horizontal lines correspond to statistically significant zones (Bennett, 1996).



 

 

 
 

 

 

Figure 3.4. Percentage diagram of sporomorphs of core B including: the total pollen (relative abundance ≥1%),montane ratio and aquatic elements. Pinus pollen, 

wetland plants and fern spores were excluded from the pollen sum (ΣP) Pinus percentage was calculated with the pollen sum plus Pinus pollen. Due to the low 

values of Cerealia-t, its presence has been represented by a cross in the Poaceae plot. The dotted line in montane ratio corresponds to the threshold value of 2.5, 

which indicates the close presence of montane-subalpine ecotone. Higher values imply the occurrence of upward montane vegetation in Bassa Nera.
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The maximum values of planktonic algae (Pediastrum, Botryococcus) might indicate 

an increase of primary production (Jankovská and Komárek, 2000) as a result of the 

relative increase of temperatures in a cold freshwater environment. The presence of 

Sphagnum denticulatum or Sphagnum subsecundum macroremains is characteristic 

of semi-submerged or flooded areas. The occurrence of S. palustre or S. papillosum 

also points to the early presence of Sphagnum lawns or low hummocks. The sediment 

granulometry and the lowest LOI values also suggest an open water phase with scarce 

vegetation. The presence of Ranunculus and ferns implies high moisture and an 

increase in the lake primary production, while the sands with broken pennate diatoms 

(sedimentary unit IV-A) suggest intense hydrodynamic material input events. 

 

3.4.3.2. Phase II 

 A drop in herbaceous taxa together with the highest frequencies of deciduous 

taxa characterise this phase (10070–7343 cal yr BP, core A:264–199 cm, 14 samples). 

Even though that there is no noticeable increase of montane taxa, the decrease in 

subalpine-alpine taxa prompted by a drop in Poaceae and Asteraceae led to an 

increase in the resulting montane ratio. According to modern analogues, the high 

montane ratio values correspond to the presence of the lower montane altitudinal belt 

(Garcés-Pastor et al., 2016). In this period, the forest shifted froma Betula woodland to 

a mixed Corylus and Betula forest with deciduous Quercus, Ulmus and some Pinus 

(Figure 3.3). Meadows became scarce. The replacement of the sun-tolerant Betula by 

Corylus matches the natural succession of secondary species. The higher frequencies 

of Corylus compared to deciduous Quercus during the entire phase emphasize the 

colonizing capacity of the former and suggest stronger oceanic influence (González-

Sampériz et al., 2006; Montserrat-Martí, 1992). This coincides with studies that 

reported the warmest summer temperatures during the early Holocene in the 

Northern Hemisphere due to maximum summer radiation and minimum winter 

radiation (Heiri et al., 2003; Anderson et al., 1988; Cacho et al., 2010).  

 In the aquatic system, the decrease in freshwater algae (Botryococcus, 

Pediastrum) could indicate shallower or more-turbid waters (Jankovská and Komárek, 

2000), which is consistent with the presence of pennate diatoms in sedimentary unit 

III-A. On the other hand, the co-occurrence of species with affinity for moist 
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(Sphagnum denticulatum or subsecundum) and dry conditions (Sphagnum palustre or 

papillosum, Polytrichum, Ericaceae) evidences a complex Sphagnum landscape. The 

decrease in Ti and Mn, with a change from sands to clays, suggests decreased 

sedimentary input (Nesje and Dahl, 2001). This coincides with the establishment of 

forests surrounding BSN, which would have promoted the rise of LOI, stabilized the 

soils and limited the erosion input into the lake (Figure 3.3). The intercalated layer of 

fine silt between 9397 and 9358 cal yr BP coincides with an important montane ratio 

peak (243 cm), suggesting a punctual event of higher moisture that might have 

favoured the growth of deciduous forest. This could be related to the meltwater events 

of 9300 cal yr BP described in the Pyrenees and Mediterranean regions, when 

increased snow accumulation in winter and large snowpack melt during warmer 

summers led to higher run-off (Pérez-Sanz et al., 2013). Shortly later, between 9195 

and 8789 cal yr BP, the drastic decrease in montane values with the rise of meadows 

(Apiaceae, Artemisia and Asteraceae) would point to colder and drier conditions. This 

period coincides with an episode of forest decline at around 9200 cal yr BP in the 

western Mediterranean (Fletcher et al., 2013) and a cold and arid event registered at 

8800 cal yr BP in Basa de la Mora Lake and the rest of the Iberian Peninsula (Pérez-

Sanz et al., 2013).  

 By 8164 cal yr BP, the occurrence of Ti and Mn peak and a drop in LOI shortly 

followed by the presence of chlamydospores of the mycorrhizic fungus Glomus suggest 

punctual runoff events (López-Vila et al., 2014). The posterior decline of the montane 

ratio reflects a downward shift of montane forest led by a Betula decrease which can 

be also found in Bassa de la Mora lake and the Portalet peat bog, which could point to 

drier summer conditions (Pérez-Sanz et al., 2013; González-Sampériz et al., 2006). The 

shallower waters, inferred by decrease of algae and rise of Cyperaceae and Typha-t 

pollen, could have prompted the increase of emerged littoral areas. The drier 

conditions, the peaks of Ti and Mn and the drop in LOI could be related to the 8200 cal 

yr BP cold event that brought generally cold and dry conditions to the Northern 

Hemisphere (Alley and Ágústsdóttir, 2005; Rohling and Pälike, 2005) and the Central 

Pyrenees (González-Sampériz et al., 2006).  
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3.4.3.3. Phase III 

 This phase is characterised by a sharp decrease in Corylus and Betula, as the 

forest succession evolves (7343–5832 cal yr BP, 11 samples core A: 199–150 cm; 13 

samples core B: 706–632 cm). The montane ratio decreases and fluctuates around a 

value of 20, which suggests punctual episodes of montane forest downward migration. 

Even so, the lower montane belt was still present at the site, composed of a mixed 

Corylus and deciduous Quercus woodland with some Betula, Tilia and Ulmus. 

Meadows increase, indicated by the rise of Poaceae and Artemisia. Salix slightly drops 

and Ulmus shows a decreasing trend, while Alnus rises around the end of the phase. 

Abies appears in the beginning of this phase and rises by 6356 cal yr BP This is in line 

with the east-to-west colonization of the Central Pyrenees by firs (Pèlachs et al., 

2009b; Matías et al., 2016). The marked reduction in Pinus around 7000 cal yr BP 

observed in core B could point to an increase in temperature and precipitation, as 

reported across the Iberian Peninsula (Pérez-Díaz et al., 2016) (Figure 3.4). On the 

other hand, a higher fire frequency is inferred from the noteworthy increment of 

charcoal by 6200 cal yr BP (150 cm). The rise of Cyperaceae points to shallower waters 

and higher extent of littoral areas and, which is corroborated by the differences 

between both records due to small-scale spatial variability. 

 Among the aquatic and littoral elements, the spatial differences illustrate two 

scenarios. Core A shows the peatland development at the shore of the lacustrine 

system by 6866 cal yr BP, likely forming lawns. This is inferred from the increase in 

Sphagnum percentages dominated by S. palustre or S. papillosum with the occurrence 

of the cercozoan Assulina (185–150 cm), characteristic of non-water-saturated topsoils 

(Charman et al., 2000). The rise in LOI and Cyperaceae together with a decrease in 

planktonic algae and the change from clay with abundant diatoms to peat also 

supports this interpretation. In core B, the dominance of Botryococcus, fewer 

sedimentary diatoms (unit III-B) around 6822 cal yr BP and low Cyperaceae 

frequencies points to some water level. The change from brown-dark to brown-red clay 

with organic matter suggests periods of subaerial exposure or hydric fluctuations 

(Figure 3.2). These changes in lake level might have increased water turbidity in shore 

environments, perhaps affecting algae development and favouring the disappearance 

of Pediastrum in core A (Jankovská and Komárek, 2000), while Botryoccoccus and 
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Mougeotia rise in the shallow waters of core B. Nearby localities such as Portalet and 

Estanilles peat bogs and Burg Lake also recorded a transition from a lake to a peat 

system at similar times (González-Sampériz et al., 2006; Pérez-Obiol et al., 2012; 

Pèlachs et al., 2011). 

 

3.4.3.4. Phase IV 

 A transition from deciduous to coniferous taxa marks this phase. The decrease 

in deciduous Quercus and the drop in Betula and Corylus indicate a downward shift of 

deciduous forest (5832–3912 cal yr BP, 10 samples core A: 150–112 cm; 19 samples 

core B: 632–525 cm). However, montane ratio values around 5 indicate the occurrence 

of upper montane forest on the site. On the other hand, Abies expanded and Fagus 

appeared by 4492 cal yr BP. This vegetation shift could point to rainy and warm 

summers, where Abies rose in altitude to avoid the warming, and a change to greater 

precipitation might have promoted a downward displacement of optimal deciduous 

habitats (Alba-Sánchez et al., 2010; Pèlachs et al., 2011). The replacement of Ulmus by 

Alnus in 5286–4054 cal yr BP is coherent with the decline of elm in the rest of the 

Pyrenees (Montserrat-Martí, 1992; Reille and Lowe, 1993). The establishment of 

emerged lands and lakeshore environments might have favoured colonization by 

Alnus (Pérez-Obiol et al., 2016; Revelles et al., 2015). The alpine meadows continued 

their rising trend, dominated by Poaceae, Artemisia and some Apiaceae. This coincides 

with an intensification of anthropic pressure, as inferred by the increase in fires and 

agropastoral pollen indicators (Centaurea, Cerealia-t, Potentilla). 

 In the wetland plant communities, littoral site A has a peaty marsh 

environment, as inferred by the occurrence of aquatic plants (Ranunculus-t and 

Typha-t) and Selaginella-t since 5526 cal yr BP and a drastic decrease in Sphagnum 

percentages. Around 5043 cal yr BP, both S. palustre or papillosum and S. 

denticulatum or subsecundum disappeared in conjunction with a rise in Ericaceae and 

some S. magellanicum. The ombrotrophic affinity of these taxa points to drier peaty 

habitats. On the other hand, the water level increased at site B, as indicated by the 

occurrence of Myriophyllum and planktonic algae (Botryococcus and Mougeotia) 

(Grosjean et al., 2001; Van Geel, 2001). Subsequently (590 cm), the watershed shrank, 

giving rise to marshy conditions with the increase of Potamogeton and Cyperaceae and 
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the reduction of diatoms in clay sediments, leading to peat formation by 4359 cal yr 

BP with a change to dark-brown clay.  

 A remarkable increase in erosion, likely due to a rise in the recurrence of flood 

events, occurred around 4049 cal yr BP, as evidenced by a sharp decrease in LOI, 

peaks in Ti and Mn and the presence of an inorganic silt layer in both cores. This 

event might have damaged the forest that surrounded the pond, with a decrease in 

deciduous Quercus, Abies and Pinus and may have prompted the rise of the montane 

ratio, possibly explained by the colonization of the degraded terrain by Betula. The 

presence of Equisetum and the absence of Ericaceae at site A, characteristic of pond 

margins, also suggest an increase in moisture around 3992 cal yr BP (Pérez-Haase 

and Ninot Sugrañes, 2006). These flood events that appear locally exaggerated in BSN 

are in accordance with a period of wetter conditions registered between 4500 and 3900 

cal yr BP at nearby study sites such as Basa de la Mora Lake and the rest of the 

Iberian Peninsula, such as Sanabria and Enol Lakes (Pérez-Sanz et al., 2013; 

Jambrina-Enríquez et al., 2014; Moreno et al., 2011). Indeed, lakes from France and 

Italy have also registered phases with increasing humidity in this period (Magny et 

al., 2013; Simonneau et al., 2013), a dynamics attributed to positive synergies between 

cold climatic oscillations and human-induced soil destabilization and erosion.  

 

3.4.3.5. Phase V 

 The highest abundances of coniferous taxa suggest that the vegetation 

surrounding the pond was dominated by Abies and Pinus with some mixed montane 

forest (deciduous Quercus, Betula and Fagus) (3912–792 cal yr BP, 14 samples core A: 

112–50 cm; 45 samples core B: 525–290 cm). Although the montane ratio continued to 

decline, the values around 2.75 indicate the proximity of the montane upper limit to 

BSN; Alnus still dominated the riverine forest. On the other hand, a higher anthropic 

pressure (3000 cal yr BP) through forest clearance is evidenced by the intensification 

of fires, the noteworthy rise of shrubs (Ericaceae) and the increase of agropastoral 

indicators (Cerealia-t, Potentilla).  

 Regarding the aquatic system, site A continues showing a pond margin scenario 

at 4049–1455 cal yr BP with the continuity of Equisetum and the absence of 

Ericaceae, while site B still has some water level, as inferred by the rise of 
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Myriophyllum and the presence of diatoms in the sediment (Grosjean et al., 2001). 

However, their decrease at 3169–2303 cal yr BP points to shallower waters and 

matches a period of intensified aridity in the Pyrenees and across the Mediterranean 

(Pérez-Sanz et al., 2013; Jalut et al., 2000). The chemical elements remain stable 

along the phase until 1369–1231 cal yr BP, when an important drop in Ti coincides 

with an intercalated layer of fine silt (unit II-A) and Ericaceae macroremains at site A, 

pointing to a period of dried substrate and lower sedimentary input. 

 

3.4.3.6. Phase VI 

 This phase is marked by the highest values of Prunus-t and a notable rise in 

herbs (Poaceae, Artemisia, Chenopodiaceae/Amaranthaceae) (792–386 cal yr BP, 3 

samples core A: 50–38 cm; 21 samples core B: 290–200 cm). Abies and Pinus forest 

remained in detriment of deciduous vegetation (deciduous Quercus, Fagus and 

Betula), which experienced a downward shift, supported by montane values below 

2.75. The increase of meadows and the co-occurrence of charcoal and anthropogenic 

pollen indicators (Secale cereale, Cerealia-t) indicate the continuity of forest 

clearances for agropastoral purposes. 

 In the wetland community, Sphagnum values > 40% in site A show the 

development of drier S.magellanicum and S. capillifolium hummocks, with Ericaceae 

and Polytrichum (Pérez-Haase and Ninot Sugrañes, 2006) between 499 and 465 cal yr 

BP. At site B, the transition from Myriophyllum to Potamogeton by 544 cal yr BP 

points to a lower lake level. Moreover, a paleoecological study of the last 1000 years in 

BSN (Garcés-Pastor et al., 2016) reported extreme fluctuations of diatom 

concentrations and a decrease of planktonic frequencies, which were interpreted as 

responses to periods of strong seasonality and hydric fluctuations (Figure 3.4). 

 

3.4.3.7. Phase VII 

 The highest values of Poaceae and lowland pollen (evergreen Quercus, Olea) 

characterise this phase (386 cal yr BP–present, 8 samples core A: 38–0 cm; 16 samples 

core B: 200–0 cm). A conifer forest (Abies, Pinus) surrounded BSN, while the low 

montane ratio values show the continuity of the montane boundary at lower altitudes. 

The understorey (Ericaceae) and alpine meadows grew. The decrease in fires and 
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agropastoral indicators (Prunus-t, Cerealia-t), with the highest values of Potentilla 

between 160 and 110 cm, suggest a complex agroforestal system with a dominance of 

pastoral activities (Garcés-Pastor et al., 2016). 

 On the aquatic system, the dominance of Cyperaceae points to the continuity of 

a thin water layer. The establishment of the peat bog at site B at around 370 cal yr BP 

was marked by a change from dark-brown to red-brownish fibrous peat moss. At the 

littoral site A, the disappearance of Equisetum by 171 cal yr BP suggests less 

moisture. Finally, the higher percentages of Sphagnum (S. capillifolium and S. 

magellanicum) and Ericaceae point to the establishment of an ombrotrophic hummock 

in recent times. 

 

3.5. Discussion 

3.5.1. Vegetation response to the North Atlantic influence: montane ratio and 

IRD 

 The ice rafted debris (IRD) index from the North Atlantic (Bond et al., 2001) has 

been used as an indicator of general climatic patterns during the Holocene in regions 

influenced by North Atlantic Ocean circulation (Battarbee et al., 2004). High IRD 

values have been correlated with southward displacements of the Atlantic westerly jet, 

prompting increased precipitation and higher water levels in mid-European lakes 

(Magny et al., 2001; Magny, 2004). Likewise, in the Pyrenees, González-Sampériz et 

al. (2006) reported a translation of climate variability from the North Atlantic to the 

mid-latitudes, and Pèlachs et al. (2011) found a correlation between IRD and 

deciduous tree pollen percentages in Burg Lake, where high IRD corresponded to 

wetter and occasionally colder conditions. 

 With the aim of evaluating the North Atlantic influence in BSN vegetation 

shifts, we compared the montane ratio with the IRD index (Figure 3.5). Cores A and B 

present different behaviour because of their varying sedimentation rates. Core A 

shows a smoothed curve along the record since it has a lower sedimentation rate. On 

the other hand, core B offers a greater detail of the altitudinal shifts due to its higher 

sedimentation rate and resolution. Similar montane ratio and IRD trends are 

apparent during the first half of our records (between 10,200 and 5300 cal yr BP), 
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when high IRD values (the main Bond events 6, 5 and 4 and other secondary peaks) 

coincide with increases in the montane ratio (10,000; 9400; 8100; 7300; 6800; 5750; 

5500; 5300 cal yr BP). The remarkable montane peak at around 9400 cal yr BP (core 

A), which could be related to a punctual high moisture event, has also been registered 

in Burg and Redon Lakes as a phase of low LOI and colder winter/spring temperatures 

(Pla and Catalan, 2005; Pèlachs et al., 2011). However, by the end of Bond event 4, the 

montane ratio starts to decouple from IRD, and fully decoupled trends can be seen 

henceforth during the most recent half of our records, when the montane ratio 

maintains stably low values, despite the occurrence of several Bond events with high 

IRD values (Figure 3.5). Therefore, montane ratio peaks during the first half (10200–

5300 cal yr BP) may be related to the growth of deciduous taxa in response to a 

regional rise of moisture in the Northern Hemisphere, in agreement with Pèlachs et 

al. (2011). However, the increasing mismatch between both trends suggests that other 

pressures besides the North Atlantic climate (probably at a more local level) have 

ultimately influenced BSN vegetation. Regarding those pressures, charcoal notably 

increased around 6700 cal yr BP, indicating that fires in the area might have affected 

the montane forest and prompted the early decrease of the montane ratio by 6650 cal 

yr BP. Shortly later, in 6400–6100 cal yr BP, charcoal becomes recurrently abundant, 

coinciding with a notable decrease of Betula and the montane ratio. Indeed, Betula 

and the montane ratio fall to even lower values around 6140 cal yr BP, when a notable 

charcoal peak occurs (Figure 3.5). During that period, frequent fires might have 

interfered with the response of montane vegetation to the regional moisture increase 

inferred from higher IRD. By 5700 cal yr BP, charcoal notably increased, suggesting 

higher fire frequency. This coincides with a drop of Corylus, suggesting that fires may 

have burnt  the montane forest and favoured resprouting species such as Ericaceae. 

Even though the fire frequency was reduced around 5400 cal yr BP, the montane ratio 

did not respond to the rise of IRD by 5250 cal yr BP. However, a period with less fires 

could have prompted the recovery of the montane ratio by 5100 cal yr BP, which 

responded to IRD with a slight delay until 4750 cal yr BP. 

 Thus, the montane vegetation responded to climatic forcing from 10,200 to 6700 

cal yr BP, followed by a transition period (5700–5250 cal yr BP) when fires could have 

affected the resilience of deciduous vegetation, hampering its response to



 

 

 

Figure 3.5. Summary diagram grouping IRD (Bond et al., 2001), Bond events, montane ratio of cores A and B, Charcoal concentration 

(mm2/g), LOI and relevant selected pollen taxa of core B.
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climate. These results agree with those found in the nearby Basa de la Mora Lake, 

which also presented a retreat in deciduous taxa from 5700 cal yr BP, when frequent 

fires and climatic forcings overcame the regeneration capacity of the vegetation 

(Lasheras-Álvarez et al., 2013). Although Portalet peat bog shows a hiatus by this 

transition period, it also recorded a contraction of deciduous forest from 7700 cal yr 

BP, attributed to a threshold response of the ecosystem to high fire frequencies (Gil-

Romera et al., 2014). Burjachs and Expósito (2015) also noted that vegetation in the 

Mediterranean area of the Iberian Peninsula was more resilient during the first half 

of the Holocene than in the recent Holocene. By 5250 cal yr BP, climate and fires could 

have weakened the resilience of deciduous vegetation beyond a threshold that 

prompted the progressive downward shift of montane vegetation between 5300 and  

4200 cal yr BP in BSN. Indeed, Pla and Catalan (2005) showed that the climate was 

more continental before 4000 cal yr BP, whereas Jalut et al. (2000) and Pérez-Sanz et 

al. (2013) reported a change in precipitation seasonality towards more frequent 

summer droughts, namely, a transition from a significant Atlantic influence to a 

typical Mediterranean climate that affected the deciduous forest composition and 

resilience while promoting fires.  

 

3.5.2. Local differences in the response of organicmatter accumulation to the 

North Atlantic influence: LOI and IRD 

 The close correlation found between Bond IRD oscillations and the 

accumulation of organic matter reported in Burg Lake (1821 m a.s.l.) by Pèlachs et al. 

(2011) suggests a direct North Atlantic influence on climate fluctuations in the Central 

Pyrenees. Of the Pyrenean studies that have used loss on ignition as an organic 

matter indicator (Pla and Catalan, 2005; González-Sampériz et al., 2006; Pèlachs et 

al., 2011), Burg is the only lentic system with a continuous record that can be 

compared to our results. The proximity between BSN and Burg (34.5 km) makes them  

suitable places to study the response of subalpine ecosystems at the regional level. 

However, the LOI trend at BSN differs from the oscillating record at Burg. In BSN, 

the LOI values approach 90% by 6900 cal yr BP (Figures 3.3 and 3.5) and stay rather  
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constant except for a remarkable decrease around 4049 cal yr BP. Conversely, Burg 

has stronger LOI oscillations, reaching 90% values by 5100 cal yr BP and fluctuating 

thereafter following the IRD trend (Pèlachs et al., 2011). Although both records have a 

different response amplitude, they present some similarities in 5500–3800 cal yr BP, 

and we hypothesise that this corresponds to a wetland phase, according to a sediment 

change from organic silt to peat and higher LOI values at both sites. In this general 

trend, several aridity phases have been identified at different moments on the Iberian 

Peninsula during the Middle Holocene, for example, between 6200 and 5600 and 

4600–4300 cal yr BP (Pérez-Sanz et al., 2013; Pèlachs et al., 2007; Azuara et al., 2015). 

The LOI at BSN is less sensitive to global climate changes than at Burg and thus 

shows a high influence of local factors, which might have hidden any direct 

relationship between IRD oscillations and BSN peat bog development (Mäukiläu, 

1997). The accumulation of organic matter in a wetland is promoted by temperature 

and/or water inundation (Crawford et al., 2003), the latter being mainly controlled by 

precipitation (Charman et al., 2009). Therefore, we can attribute differences in the 

LOI trends between both sites to contrasting water inundation patterns. The higher 

and more constant values of LOI in BSN suggest less water table variations than 

Burg. These differences could have been influenced by the orographic conditions of 

both sites, which would have determined the precipitation regime. Although 

significant environmental changes occurred in BSN during the entire record, these 

shifts do not seem to have influenced the LOI values, highlighting that the local 

influence is too important to allow climatic inferences from this variable. On the other 

side, Burg could have been more dependent on precipitation that would have 

prompted an increase of paludification and LOI fluctuations. On the other hand, the 

Portalet peat bog (1802 m a.s.l.) was established after 6400 cal yr BP, reached LOI 

values around 40% and fluctuated thereafter due to alternate periods of peat and 

shallow clastic lake deposition, until a hiatus in 5300 cal yr BP (González-Sampériz et 

al., 2006). Finally, the Molina peat bog, located in north-west Spain (Cantabrian 

region) was established around 6000 cal yr BP and reached LOI values close to 90% 

and then remained stable until the last millennium (Pérez-Obiol et al., 2016). These 

different scenarios show how local influence could limit the suitability of LOI as a  
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paleoclimate indicator in the case of peat bog systems. However, it may be more useful 

in environments with higher Mediterranean influence where climatic oscillations are 

more pronounced (Azuara et al., 2015). 

 

3.5.3. Anthropic influence: fire and crops 

 The low fire frequency and the absence of anthropic indicators between 9968 

and 8548 cal yr BP in Bassa Nera could be attributed to natural fires prompted by the 

large amounts of deciduous biomass, as occurred in the nearby Portalet peat bog and 

Basa de la Mora Lake in the same period (Gil-Romera et al., 2014; Lasheras-Álvarez 

et al., 2013). 

 The BSN catchment is surrounded by many archaeological sites that evidence 

human occupation and exploitation of the high mountains of the Pyrenees since the 

Neolithic (from 9000 to 8571 cal BP) (Gassiot et al., 2014). The first anthropic evidence 

in the PNAESM area is some hunting artefacts from7650 to 7325 cal yr BP found in 

Sardo cave, located 9 km from BSN (Gassiot et al., 2012). Shortly after, the rise in 

agropastoral indicators in BSN (Artemisia, Asteraceae, Potentilla, Galium, Centaurea, 

Rumex) and charcoal particles indicate grazing activities between 7343 and 5832 cal 

yr BP. This is coherent with agropastoral activities recorded in the nearby records of 

Sardo cave (Gassiot et al., 2012), Bosc dels Estanyons (Miras et al., 2007) and the 

Estanilles peat bogs (Cunill et al., 2013). The intermittent presence of Cerealia-t 

pollen in our records between 5190 cal yr BP and 2000 cal yr BP, together with 

agropastoral indicators and charcoal, might be evidence of some cereal-based 

agriculture near BSN. Although the first record is a punctual event (5190 cal yr BP), it 

fits with the development of cereal-based subsistence in the area, coinciding with 

cereal seeds found in Sardo cave and Cerealia-t pollen recorded in the Burg lake and 

Madriu valley records (Pèlachs et al., 2007; Miras et al., 2007; Gassiot et al., 2014). A 

higher fire frequency in 5190–4300 cal yr BP and the rise in pastoral indicators 

(Potentilla, Rumex) suggest an increase in grazing activities in BSN, coinciding with 

an intensification of archaeological settlements found in PNAESM (Sardo cave, 

Estany de la Coveta I, Obagues de Ratera and Saboredo). These lines of evidence of  
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high mountain exploitation in the Central Pyrenees (Gassiot et al.,2014;Pèlachs et 

al.,2007; Jalut et al., 2000) were probably prompted by the increased frequency of dry 

summers around 4600–4300 cal yr BP in the Mediterranean area (Jalut et al., 2000; 

Azuara et al., 2015). The rise of fires during the Bronze Age and the scattered 

presence of Cerealia-t (4230–3500 cal yr BP) point to forest clearance and occasional 

crops. The spread of Fagus, which occurred in the same period (Figure 3.4), could have 

been favoured by the resulting open spaces from anthropogenic disturbance followed 

by a change to higher precipitation (Miras et al., 2007; Pèlachs et al., 2009b). The rise 

of Fagus in BSN fits with its expansion in the Pyrenees and Cantabrian mountains 

(Pérez-Sanz et al., 2013; Montserrat-Martí, 1992; Magri, 2008). During the Late 

Bronze Age (3150–2650 cal yr BP), agricultural landscapes were established in BSN 

with the rise of Cerealia-t and agropastoral indicators (Centaurea, Potentilla, 

Artemisia, Asphodelus). This agrees with the record of higher anthropic pressure 

through farming and pasturing activities found in the nearby Burg, Estanilles and 

Bosc dels Estanyons peat bogs (Bal et al., 2011; Pérez-Obiol et al., 2012; Miras et al., 

2007). Fires increased by 2800 cal yr BP, and Cerealia-t reappeared with the Roman 

Period (2000 cal yr BP). By the Middle Ages (1100 cal yr BP), an intensification of 

agriculture and livestock is indicated by the rise of Cerealia-t, grazing indicators 

(Galium, Potentilla) and fires, coinciding with an increase of human settlements 

in PNAESM and the Central Pyrenees (Catalan et al., 2013). At 800 cal yr BP, the 

appearance of Secale cereale together with the rise of Poaceae, agropastoral and 

arboriculture indicators (Rumex, Artemisia, Castanea, Juglans) point to crop 

diversification and an increase of pastures (Garcés-Pastor et al., 2016). The rise of 

Prunus-t in this period could be related to cultivated species such as P. domestica or P. 

avium. From 450 cal yr BP, the scattered cereal presence and the higher amounts of 

Poaceae and pastoral pollen (Potentilla, Urtica) suggest the abandonment of farming, 

the spread of meadows and the highest grazing exploitation period of the sequence. 

The resulting opening of the landscape would have led to the higher upward flow of 

Olea and evergreen Quercus from an increase of agricultural practices in the lowlands 

(Cañellas-Boltà et al., 2009). Since 120 cal yr BP, the forest clearance and a peak in 

Poaceae might be the result of an increased need for supplies and raw materials  
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during the Industrial Revolution (Garcés-Pastor et al., 2016). Later, the disappearance 

of cereals and the reduction of agropastoral pollen indicate crop abandonment. 

However, the presence of Potentilla suggests some grazing activity until the 

establishment of the PNAESM in 1955 cal AD and the protection of its surroundings 

in 1990 cal AD. 

 Agriculture in BSN has passed through short exploitation phases interspersed 

with periods of land abandonment and grazing. Some authors suggest that these 

human occupation phases could be a result of the synergic effects between climate 

changes and human activity (Gassiot et al., 2012; Jalut et al., 2009). To check whether 

the occupation phases in BSN could have been prompted by climate, we compared IRD 

with the Cerealia-t pollen frequencies (Fig. 5). Our results suggest that cereals rise 

when IRD presents low values (c. 5200, 4250, 3600, 3180, 1950, 1300 cal yr BP), in 

agreement with Pèlachs et al. (2011) in Burg lake. The only occurrence of cereals with 

high IRD values occurs with Secale cereale in 750–500 cal yr BP, known for its 

resistance to cold environments and which is also cultivated in the Estanilles peat bog 

(Cunill et al., 2013; Pérez-Obiol et al., 2012). In agreement with the appearance of 

cereals in other studies of the Central Pyrenees and coinciding with Magny (2004) the 

development of cereal-based subsistence in BSN could have been prompted by the rise 

of the regional population and by dry conditions. The farming activities in BSN and 

their influence in the environment became evident during the Bronze Age and 

intensified in the Roman period and Middle Ages. 

 

3.6. Conclusions 

 In this multi-proxy study we reconstructed the palaeoecological and ontogenic 

events recorded in Bassa Nera during the last 10,200 cal yr BP. Changes in aquatic 

taxa, macroremains and sedimentary units show a non-linear development of the peat 

bog over the larger previous lake. The study of two separated cores allowed us to 

compare some remarkable spatial differences that took place within the same 

catchment. The pollen and the montane ratio were useful to infer structural and 

altitudinal changes in montane forest through the last 10,200 cal yr BP. Vegetation  
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strongly responded to climate during the first half of the Holocene (10200–6700 cal yr 

BP) with punctual episodes of downward shift in the montane forest. Abies appeared 

by 6356 cal yr BP and expanded. Then, a transition period took place (5700–5250 cal 

yr BP) when climate and fires prompted a progressive downward shift of montane 

vegetation and its replacement by coniferous taxa, which has dominated the 

catchment with some mixed montane forest since 3912 cal yr BP. The montane ratio 

was a useful tool for summarizing palaeopalinological data, enabling the assessment 

of the potential correlations between changes in vegetal communities and the climatic 

forcing indicated by the IRD, and highlighting the different responses of the 

vegetation to the North Atlantic influence in Bassa Nera during the Holocene. The 

study of LOI and sedimentary units allowed us to infer important flood events 

between 4500 and 3900 cal yr BP. From 7300 cal yr BP onwards, charcoal and pollen 

indicators evidence human disturbance through grazing, pointing to the use of fire as 

a tool for forest clearance or maintaining open spaces. The first cereal crops in Bassa 

Nera occurred around 5190 cal yr BP and coincided with dry climate conditions until 

the cultivation of cold resistant species like Secale cereale. The second half of the 

Holocene features phases with increased occurrence of agricultural practices 

alternating with land abandonment and grazing. Notable periods of anthropic 

pressure include the Late Bronze Age, with the establishment of agricultural 

landscapes, followed by the Roman Period and Middle Ages. The results from this 

study highlight the sensitivity of the high-mountain vegetation of the Central 

Pyrenees to climate changes and anthropic pressures.  
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Abstract 

To predict the influence of the ongoing climate warming on growth and composition of 

Pyrenean forests and to improve our knowledge of the vegetation-climate-site complex, 

it is necessary to understand how climate has modulated them in the past.. The 

present work assesses the past dynamics of subalpine forests of Central Pyrenees 

during the last 700 years by studying the relationships between sedimentary pollen 

and tree-ring records, and their link with climatic drivers. With these aims, we 

compared the pollen record and calculated the montane-subalpine pollen ratio, an 

index obtained from sedimentary pollen that allows inferring past altitudinal 

variations in the montane-subalpine ecotone, with tree-ring width data from old Pinus 

uncinata subalpine forests located in the “Aigüestortes i Estany de Sant Maurici" 

National Park. To assess climate-growth associations, we related the 

dendrochronological data with instrumental meteorological records of the 1901-2010 

period and with temperature reconstructions for the Pyrenees and Northern 

Hemisphere for the last 700 years. Few robust associations were found between any 

specific arboreal pollen taxa and the tree-ring width series of the surrounding forests. 

However, a significant correlation was found between the integrative montane-

subalpine pollen ratio and the pines growth of nearby (less than 10 km apart) 

subalpine forests. This relationship could be potentially useful to reconstruct long-

term forest productivity and growth changes at decadal to centennial scales using the 

montane-subalpine pollen ratio. On the other hand, our results suggest that the 

sensitivity of pines growth to climate has varied over the last 700 years. Similar 

results have been obtained for the last century as tree-growth variability at high 

elevations is more constrained by low than by high temperatures, although we also 

noted a relaxation of this constrain in recent decades.   

 

keywords: dendroecology, tree rings, pollen, subalpine forests, Mountain pine, 

Pyrenees 
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4.1. Introduction  

Climate and land-use changes are rapidly transforming mountain forests 

ecosystems at extraordinarily short-term scales (Améztegui et al., 2010). 

Unfortunately, the adaptability of those high-elevation ecosystems is limited in 

comparison to the rate of temperature change and land abandonment (Pauli et al., 

2003). For instance, subalpine forests and alpine flora have shifted upwards in 

response to the current climate warming (Jump and Peñuelas, 2005) prompting 

changes in mountain biodiversity (Gottfried et al., 2012; Thuiller et al., 2005). Indeed, 

the IPCC (2013) estimations of future climate scenarios predicts large effects on the 

vegetation of some mountain ranges as the Pyrenees. For example, the Pyrenean 

forests showed an enhancement of tree recruitment and densification of the alpine 

ecotones over the 20th century in response to climate warming and land-use 

abandonment (Camarero and Gutiérrez 2004; Batllori and Gutiérrez 2008). However, 

the IPCC projections of climate-vegetation couplings are limited by the variability at 

multi-decadal and longer timescales (Dorado-Liñán et al., 2012), in part due to the 

short length of instrumental records and biotic proxies. Therefore, 

palaeoenvironmental studies are necessary to improve our comprehension of the long-

term forest dynamics and better understand the actual forests composition as well as 

their future evolution, in order to apply appropriate management measures and to do 

more accurate projections of vegetation shifts and species distribution. 

The present palaeoecological study focuses on pollen and tree-ring records, two 

well-studied proxies that encode different but complementary characteristics of forest 

ecosystems and tree performance. The sedimentary pollen allows to reconstruct the 

presence and abundance of vegetation taxa along thousands of years with multi-

decadal resolution (Foster et al., 2006), whereas annually resolved tree-ring 

chronologies provide detailed information of environmental factors, mainly climate, 

that has affected tree growth (Fritts, 1976; Helama et al., 2010; Bosch and Gutiérrez, 

1999). This study aims to combine the strengths of palynological and 

dendrochronological reconstructions to provide a temporal framework that will allow 

further studies to determine possible forest responses to future environmental  



109 

conditions. In order to provide a solid knowledge about the rate, intensity and 

geographical extent of climate change, it is necessary to combine environmental 

reconstructions with instrumental climate data to have a proper assessment of the 

vegetation-climate-site complex. This paper will compare the palynological and 

dendrochronological data of subalpine forests of the Pyrenees with reconstructed 

temperature for the last 700 years and with the instrumental climate data of the 

1901-2010 period. 

In the Pyrenees as in other mountain ranges the coexistence and replacement of 

diverse tree species with different sensitivities to climate occurs along altitudinal 

gradients (Gutiérrez Merino et al., 1998; Tardif et al., 2003). High-elevation subalpine 

forests are especially sensitive to climatic change, since the species populations 

forming the uppermost distribution limit are growing under unfavourable conditions 

characterized by low temperatures and short growing seasons. In this regard, Batllori 

et al. (2012) have shown that sub-regional response patterns of growth and 

recruitment to temperature, which exerts a positive effect, are rather homogeneous 

across the Pyrenean altitudinal ecotone. These results could explain why natural 

forests limits appear at ca. 2300-2400 m a.s.l (Batllori and Gutiérrez 2008). There are 

evidences that during warmer periods in the past, the ecotone between the subalpine 

forest and montane forest vegetation belts reached higher altitudes in this range 

(Cunill et al., 2012; Garcés-Pastor et al., 2016). Nowadays, a higher tree recruitment 

near the treeline has been registered as a result of the recent increases of temperature 

(Camarero and Gutiérrez 2004; Batllori and Gutiérrez 2008),  but forest ascent is not 

generalized across the Pyrenees. Our study takes place in the region of “Aigüestortes i 

Estany de Sant Maurici” National park (hereafter PNAESM) and nearby areas, in 

Central Pyrenees (Spain), a well-studied area in terms of palaeoecology and 

dendrochronology with many relatively undisturbed and old conifer forests (Pla and 

Catalán 2005; Garcés-Pastor et al., 2016; Camarero et al., 2015).  

Forest-growth models predict that climate warming may enhance the 

productivity of mountain pine, which is mainly limited by low temperatures (Andreu 

et al., 2007; Camarero et al., 2015; Sánchez-Salguero et al., 2016). The referred studies 

have been carried out at large spatial scales (i.e. Pyrenees and Iberian Peninsula) to  
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provide a general assessment of the vegetation response. But at the same time, they 

also found that some parameters of the projection models were influenced by the 

different local climatic conditions and thus highlighted the importance to perform 

local studies in areas that share similar environmental features. Assessing the 

relationships between radial growth and site conditions along ecological and 

altitudinal gradients will provide a proper background to improve the future climate 

tree growth models (Sánchez-Salguero et al., 2016). 

 In order to understand how the subalpine forests have changed in response to 

past climate forcings at local and centennial scales in the Central Pyrenees, we have 

used the palaeoecological information provided by the pollen data of a late Holocene 

lacustrine section from a high-elevation site (published in Garcés-Pastor et al., 2016) 

and the tree-ring width chronologies of mountain pine from 19 high-elevation sites 

(mostly forest limits) situated along the Central Pyrenees (published in Gutiérrez 

Merino et al., 1998; Tardif et al., 2003, Galván et al., 2014), providing a wide spatio-

temporal information about mountain forests growth. We will also use the montane-

subalpine pollen ratio, developed as an indicator of pollen types, to infer past 

altitudinal shifts of the montane-subalpine ecotone (Garcés-Pastor et al., 2016; 2017). 

This pollen ratio could also probably be used to monitor site-specific changes in 

natural communities in response to the current climate warming. The combination of 

this ratio with the mountain pine growth will provide information about the conditions 

at the subalpine stage and about both montane-subalpine and subalpine-alpine 

ecotones. 

 The direct comparison between pollen, montane-subalpine ratio and tree-ring 

width data series from the same area allows a broader estimation of subalpine 

vegetation responses to climate forcings at local scale. This paper analyses potential 

palynological and dendrochronological responses to climate, in order 1) to find the 

relationship between those proxies that better describes the dynamics of subalpine 

forests and montane-subalpine forest ecotones along the last 700 years, and 2) to 

assess how recent climate change can affect forests growth at local scales in the 

Central Pyrenees (PNAESM) by studying climate-tree growth relationships at 

different temporal scales. To fulfil these aims, first we analyse the relationships  
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between mountain pine growth and climate reconstructions during the last 700 years, 

and second we repeat these analyses but using instrumental climate records for the 

last century at monthly and seasonal resolution. 

 

4.2. Materials and methods 

4.2.1 Study area  

 Among conifer species, the mountain pine (Pinus uncinata Ram) is known for its 

wide ecological tolerance and for being adapted to the harsh climate conditions and 

shallow soils depths, allowing it to dominate the high-elevation forests of the Pyrenees 

(from ca. 1800 to 2400 1750-2451 m a.s.l. (Ninot et al., 2007). Such uppermost 

subalpine forests are relatively little influenced by local human activities and trees 

record the regional climatic signal (Gutiérrez Merino et al., 1998; Tardif et al., 2003; 

Dorado-Liñán et al., 2012). Compared with other Pyrenean tree species, P. uncinata is 

the most long-lived species, with maximum ages of 800-1000 years (Galván et al., 

2014). In comparison, silver fir (Abies alba Mill.) reaches maximum longevities of ca. 

500 years (Macias et al., 2006), but this record could be truncated due to past forest 

management (Pèlachs et al., 2009). 

 Most mountain pine forests considered in this study and the pollen record from 

the lake sediments are located within the “Aigüestortes i Estany de Sant Maurici” 

National Park (PNAESM), situated in the Spanish Central Pyrenees (Figure 4.1). In 

this area, mountain pines are abundant and dominate the subalpine vegetation belt. 

Isolated individuals form the upper forest limit or subalpine-alpine treeline ecotone. 

The climate is continental with Atlantic influence. In the region around the Bassa 

Nera pond (hereafter BSN) the annual average precipitation reaches 1152 mm and is 

well distributed over the seasons. On the other hand, the mean annual temperature is 

4.25ºC, being January the coldest month and July the warmest one (Ninyerola et al., 

2003). The subalpine vegetation is composed by conifer forests of mountain pine, silver 

fir and the understorey is dominated by Rhododendron ferrugineum L., Vaccinium 

myrtillus L., and Poaceae meadows (Carrillo and Ninot 1992). On the other hand, the 

montane belt, located below 1600 m a.s.l., is composed by deciduous oak forests of  
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Quercus petraea (Mattuschka) Liebl. with Betula pendula Roth., riverine forests 

(Alnus glutinosa L., Fraxinus excelsior L. and Salix spp.), broadleaf forests with Tilia 

platyphyllos Scop., Prunus avium L. and Corylus avellana L. and mixed forests of B. 

pendula with Pinus sylvestris L. 

 

4.2.2 Tree-ring and pollen datasets  

 We used tree-ring width data from 423 trees sampled at 19 mountain pine 

forests located within the PNAESM (published in Gutiérrez et al. 1998, Tardif et al., 

2003; Galván et al., 2014) (Figure 4.1). Pines were sampled at 1.30 m and two 5-mm-

diameter cores were collected per tree using Pressler increment borers. Pines growing 

at elevations above 2200 m a.s.l. were sampled in open forests. Sampled trees include 

living and recently-dead dominant and mature mountain pine trees. The extracted 

cores were air-dried, sanded and visually cross-dated (Stokes and Smiley 1968). All 

cores were measured to an accuracy of 0.01 mm using an ANIOL measuring device 

(Aniol 1983) and cross-dating was validated with the program COFECHA (Holmes 

1983). Series with abnormal growth or poorly correlated with the master chronology 

were discarded. Each individual ring-width series was standardized applying a spline 

function with a 50% frequency response of 32 years (Cook and Peters, 1981). A 

transformation of the ring-width value into a dimensionless ring-width index was 

done by means of detrending procedures (standardization) including the modelling 

and elimination of first-order autocorrelation (Fritts 1976). The program ARSTAN 

(Cook and Krusic 2013) was used to standardize all the tree ring series. In all 

subsequent analyses, the residual or pre-whitened ring-width indices were used. 

 We used the available pollen frequencies and the derived montane-subalpine 

pollen ratio obtained from a previous palaeoecological study focused on the vegetation 

dynamics of the last millennium (Garcés-Pastor et al., 2016). This sequence was 

obtained from the sediments of the BSN pond a small lacustrine system located in the 

Aiguamòg valley, in the boundary area of the PNAESM (42º 38' 18.5" N, 0º 55' 27.6" E, 

1891 m a.s.l.) (Figure 4.1). Pollen analysis was performed according to standard 

procedures (Moore et al., 1991) with chemical treatment of sediments and mineral 
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Figure 4.1. A) Location of the study area, B) Map showing the locations of the most relevant 

tree-ring width chronologies in the “Aigüestortes i Estany de Sant Maurici" National Park, 

Central Pyrenees. C) Topographic map with the relevant tree-ring chronologies and Bassa 

Nera pond. 
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separation in Thoulet solution. Details on pollen methods and relative abundances 

data can be found in Garcés-Pastor et al. (2016), but basically, the counting and 

identification of the grains were carried out at 400x magnification following Faegri et 

al. (1989) and Reille (1992). The montane-subalpine pollen ratio was calculated 

according to the pollen indicator taxa identified in the area by Cañellas-Boltà et al. 

(2009). Montane pollen types included Alnus, Betula, Buxus, Corylus, Fraxinus, 

deciduous Quercus, Tilia and Salix, while subalpine–alpine indicators included 

Asteraceae, Calluna, Campanula, Ericaceae, Plantago and Poaceae (see more 

information in Garcés-Pastor et al., 2016). In the present work we used the 

palynological data that overlapped with the period covered by most tree-ring 

chronologies (1286-1968, 31 sample depths) to explore correlations between both 

proxies.  

 

4.2.3 Statistical analysis of pollen and dendrochronology 

The pollen and dendrochronological data series used in this study have different 

temporal resolutions; the pollen record has a resolution from 8 to 26 years, while tree-

ring width series are annually resolved. To allow statistical comparison of both 

datasets, we obtained the averages of the residual chronologies for the periods 

comprised between each pollen sample. In order to assess potential statistical 

correlations, we tested the normality of the data with Shapiro-Wilk test (p <0.05). In 

the case they followed a normal distribution, the Pearson correlation coefficient (r) 

was used (Zar et al., 1999). When the variables presented a non-normal distribution, 

the Spearman non-parametric coefficient (rho) was used (Gibbons and Chakraborti, 

2011). According to this, pollen frequencies followed a non-normal distribution, while 

the montane-subalpine ratio and the residual ring-width chronologies showed normal 

distributions. Therefore, individual pollen frequencies were compared with the 

residual ring-width chronologies using the Spearman rho, while the montane-

subalpine ratio was compared with the residual ring-width chronologies using Pearson 

correlation coefficients.  

 

 



115 

To assess differences at local scale between the montane-subalpine ratio and 

tree-ring relationships, the values of the correlation coefficients (r de Pearson) were  

represented in relation to the geographical distance between the tree sampling sites 

and the pollen record coring BSN site, as well as the altitude of the tree sampling sites 

and the BSN site. 

 

4.2.4 Climate and tree-growth relationships 

In this study we focused on the response of the mountain pine forests located 

close to BSN (Gerber, Amitges, Mirador, Sant Maurici) to climate, in order to better 

understand the vegetation-climate-site complex. To differentiate between the 

influences of global and regional climate, the ring-width residuals were compared with 

the Northern Hemisphere Temperature Anomaly (NHTA, Mann et al., 2009) and the 

Pyrenees Temperature Anomaly (PTA, Dorado-Liñán et al., 2012). The PTA regional 

reconstruction is based on 22 maximum tree-ring density chronologies (MXD) 

distributed across the Pyrenees mountain range (from Bizkarze to Llipodère). The 

trees used by Dorado-Liñán et al (2012) were not the same used for the present study. 

Indeed, PTA reconstruction included data of maximum density (MXD), which is a 

different variable than the tree-ring width (TRW) used in this study. Even though a 

correlation between MXD and TRW may exist, this relationship has only been found 

for the series of growth and maximum density from the same trees. In fact, MXD is 

more sensitive to high temperatures in late summer whereas the TRW integrates the 

conditions throughout the growing period (from May to October) (Brifa et al., 2002). 

The last 700 years were divided by the well-known climatic periods (Medieval Climate 

Anomaly, Little Ice Age and Industrial Revolution) and also by 50-year sub-periods.  

To determine the main climatic variables related to radial tree growth during 

the last century in Central Pyrenees (from 1901 to 2010), we assessed short-term 

growth responses by relating ring-width with monthly precipitation and mean 

monthly temperature, obtained from instrumental climatic data. Four localities for 

this analysis were chosen to cover a North-South gradient along 11 km (Gerber, 

Amitges, Corticelles and Barranc de Llacs, Figure 4.1). Gerber and Amitges are 
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located in the eastern part of the PNAESM, while Corticelles and Barranc de Llacs are 

situated in the western PNAESM. All locations are above 2250 m a.s.l. in order to  

assure similar mountain environments, climatic conditions and growth 

characteristics. For the climatic data of the last century, gridded products were chosen 

since none of the meteorological stations in the area of the PNAESM had continuous 

measurements during the 20th century. CRU TS3.21 gridded total monthly 

precipitation and monthly average temperature covering the period 1901–2010 were 

used for the analyses (Harris et al., 2004). The CRU data for the study period were 

extracted from the 0.5º grid centred at 42.75ºN 0.75ºE, which included most of our 

study area in the PNAESM. However, in order to obtain more accurate measurements 

regarding to the elevation of our study site, the CRU data were interpolated with 

available measurements from the nearby meteorological station located at the “Estany 

de Sant Maurici” at 1920 m a.s.l (Figure S1, supplementary material). Thus, monthly-

based CRU mean temperature and the total precipitation were rescaled using Estany 

de Sant Maurici local data. As a consequence, the new climatic series had lower 

temperatures and higher precipitation values than CRU values more similar to the 

Estany de Sant Maurici. However, the variability and trend of the CRU data was kept 

in the new climatic series over the study period. 

Climate-tree-ring growth relationships were assessed by correlating monthly 

climate data with the mean site chronologies for months and seasons using the 

treeclim R package (Zang and Biondi 2015). These relationships were assessed by 

computing bootstrapped Pearson’s correlation coefficients over the common period 

1901-2010. Significance of the correlation coefficients was tested by the bootstrap 

method with a 95% confidence interval. To test whether the influence of precipitation 

and temperature on tree growth was stable or not over the studied period, we 

calculated bootstrapped moving climate-growth Pearson correlations.  
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4.3. Results 

4.3.1 Relationships between pollen, the montane-subalpine ratio and tree 

growth  

The correlations between BSN pollen of individual taxa and the ring-width 

chronologies showed that only some pollen taxa were related with the pine growth 

series (Table 4.1, Table S2 and Figure S2 Supplementary Material). Among the sites 

close to BSN (Table 4.1), we observed a higher number of specific pollen taxa 

correlations in Gerber and Mirador, while in Amitges no significant correlation was 

found for any single taxon. The pollen of Fagus positively correlated with the tree-ring 

growth series in three of the closest localities to BSN (Estany Gerber, Mirador and 

Estany de Sant Maurici), whereas significant correlations for Corylus and 

Sanguisorba were found at two localities (Estany Gerber and Mirador, Table 4.1). 

Pinus pollen frequencies did not show significant relationships with mountain pine 

growth (Table S1, supplementary material).  

Comparing the montane-subalpine ratio of BSN record with ring-width 

chronologies, significant correlations were found for the closest locations to BSN, i.e. 

Gerber (r = 0.46, p = 0.009) and Amitges (r = 0.63, p = 0.012; see Tables 4.1 and Table 

S2, supplementary material). Figure 2 depicts the values of Pearson’s (r) correlations 

between the montane-subalpine ratio and residual ring-width chronologies and 

altitude (m a.s.l.) (Figure 4.2a), and distance (Km) from BSN (Figure 4.2b). Our 

results showed that the correlations between the montane-subalpine ratio and ring-

width chronologies were higher above 2000 m and for sites situated at distances 

shorter than 10 km from BSN (Figure 4.2).  

Finally, in order to test the usefulness of the montane-subalpine pollen ratio to 

estimate the past growth of subalpine forests, we calculated the parameters of the 

linear functions relating the montane-subalpine ratio to Gerber and to Amitges 

chronologies:  

res_Gerber = 0.9637 + 0.02517·Montane_ratio    (p-value=0.009)   (equation 1) 

res_Amitges = 0.9675 + 0.02204·Montane_ratio   (p-value=0.012)   (equation 2)  
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Gerber  

(5.04 km) 

(2268 m) 

Amitges 

(6.42 km) 

(2390 m) 

Mirador  

(7.83 km) 

(2180 m) 

Ratera     

(7.95 km) 

(2170 m) 

Sant 

Maurici  

(7.95 km) 

(1933 m) 

 rho p rho p rho p rho p rho p 

Montane-

subalpine ratio 
0.526 0.002 0.561 0.032       

Alnus 0.383 0.034         

Asteraceae non 

fenestrate 
       -0.928 0.008   

Corylus 0.376 0.037   0.472 0.023     

Fagus 0.393 0.028   0.443 0.034   -0.886 0.033 

Sanguisorba -0.466 0.008   -0.436 0.038     

Secale 0.498 0.004         
 

 

Table 4.1. Spearman rank correlation values (rho) calculated between the montane-subalpine 

pollen ratio, different pollen taxa and residual chronologies of ring-width indices considering 

forests located near the Bassa Nera site. The distance to the pollen site (Bassa Nera) and the 

elevation are indicated for each forest where chronologies were developed (first row).  

 

where res_Gerber and res_Amitges are the respective values of the residual ring-

width chronologies (Figure 4.3, Table S2 supplementary material). These functions are 

significant and could be used to infer past growth of subalpine forests in these two 

sites based on the montane-subalpine pollen ratio. About 21% and 39% of the 

variability in ring-width indices was explained by the values of the montane-subalpine 

ratio at a low temporal resolution, respectively.  

 

4.3.2 Tree growth-temperature relationships during the last 700 years 

Figure 4.4 shows the correlation of the pine residual dendrochronologies with 

Northern Hemisphere Temperature Anomalies (NHTA) (Mann et al., 2009) and with 

the Pyrenees May to September Temperature Anomalies (PTA) (Dorado-Liñán et al., 

2012) for the sampled localities closer than 10 km to BSN. All the significant 

correlations between residual chronologies and temperatures (Figure 4) were positive 

meaning that subalpine trees growth is mainly limited by low temperatures. Focusing 

on the NHTA, positive and significant correlations were found for all localities in the 

1650-1850 period, which matches the second phase of the Little Ice Age (LIA, 1700- 
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Figure 4.2 Plot depicting the correlation coefficient of Pearson’s (r) of montane-subalpine ratio 

with residual ring-width chronologies according to altitude in m a.s.l. (a) and distance to 

Bassa Nera in Km (b)  

 

 

Figure 4.3. Linear models relating the montane-subalpine pollen ratio and ring-width indices 

(y axes) based on chronologies of Gerber and Amitges sites. res_Gerber = 0.9637 + 

0.02517·Montane_ratio (p-value=0.009); res_Amitges = 0.9675 + 0.02204·Montane_ratio (p-

value=0.012) 
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1850; Mann et al., 2009). The studied localities also correlated for the specific sub-

periods of 1650-1699, 1700-1749 and 1800-1849. Other nearby localities such as 

Ratera (2170 m a.s.l.) and Sant Maurici (1933 m a.s.l.) have a shorter 

dendrochronological record (1811-2005) and did not show any significant correlation 

(data not shown). On the other hand, tree-ring chronologies showed better correlations 

with the reconstruction of the PTA (Dorado et al., 2012) than with NHTA. All the tree-

ring chronologies strongly correlated for the periods of LIA (1600-1850) and Industrial 

Revolution (IR, 1850-2005), especially for the 50-year sub-periods of 1650-1699, 1700-

1749, 1800-1849, 1850-1899 and 1950-1999. The correlated sub-periods with NHTA 

and PTA match with the solar grand minima of Maunder (1680-1715 AD) and Dalton 

(1800-1830 AD) (Bard et al., 2000), but only PTA was related to ring-width series for 

the sub-periods of 1850-1899 and 1950-1999. It must be borne in mind that the 

chronologies and the dendro-variable (maximum density, MXD) used for temperature 

reconstruction are independent from those tree-ring width chronologies (TRW) used in 

this study, avoiding a circular reasoning. 

 

4.3.3 Tree growth-climate relationships during the 20th century 

 The relationships between tree-growth with monthly temperatures and 

precipitation are depicted in Figure 4.5. A common pattern to all localities can be 

observed, the majority of monthly mean temperatures are exerting a positive effect on 

growth both during the current and previous year of growth, meaning that growth is 

mostly limited by low temperatures. This positive effect is significant at the beginning 

of the growing period   (months of April and/or May) and at the end of the growing 

period as most correlations are significant in previous fall (months of October and/or 

November) of the year of growth. However, some differences between localities can be 

appreciated. Pine growth from all the sites of study correlated with the previous 

March (t-1) temperatures. Indeed, for Corticelles and Barranc de Llacs, they also 

correlated with the previous November (t-1) temperatures. From all the study sites, 

only Barranc de Llacs showed a negative correlation with the temperatures of the 

previous September (t-1). For the current year, tree growth in Amitges and Barranc de 
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Figure 4,4 Associations (Pearson correlation (p < 0.05) between residual ring-width 

chronologies with Northern Hemisphere Temperature Anomalies (NHTA; Mann et al., 2009) 

and Pyrenees Temperature anomalies (PTA; Dorado-Liñán et al., 2012). # means p < 0.005, S: 

Spearman correlation. MCA-LIA: Medieval Climate Anomaly-Little Ice Age transition; IR: 

Industrial Revolution. Solar Grand minima are depicted in orange stripes. 

 

Llacs correlated with April (t) temperatures. In general, there is a positive relation 

between tree-ring growth and the temperatures of previous March (t-1) and October-

November (t-1) and current April- May (t). Regarding the growth-precipitation 

relationships, the signal strength is quite weak. The only significant and positive 

effect of precipitation is in June (t). On the contrary, Gerber, Corticelles and Barranc 

de Llacs presented a negative relation for the previous April (t-1) and current June (t) 

precipitations. Figure 4.6 shows the seasonal correlations of tree-growth with mean 

monthly temperatures and monthly precipitation. Monthly temperatures in all the 

sites are significantly positively correlated with tree-ring index for "seasons" of 3 

months ending in December-January of the previous year limited. For the case of  
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Figure 4.5 Correlation coefficients of residual annual tree-ring width chronologies against 

monthly mean temperatures and total precipitations. The months in lower case correspond to 

the last year, while the ones in capital letter correspond to the current year month. Significant 

coefficients (p < 0.05) are represented in red (temperatures) and blue (precipitation). 
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Figure 4.6 Seasonal correlation of tree-ring chronologies against mean temperatures and total 

precipitations. Season length are 3 months, where the months in the label are the last. Those 

months in lower case correspond to the last year, while the ones in capital letter correspond to 

the current year month. Significant coefficients (p < 0.05) are represented in red 

(temperatures) or blue (precipitation). 
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Amitges and Corticelles, seasons ending in June-July of the current year were also 

significant. On the other side, precipitation seasons ending in June, July and August 

months of the current year were significant for all the sites. 

 Since growth-climate relationships may not be stable over time and to consider 

the effects of the recent ongoing climate change, we performed a bootstrapped moving-

window response function analysis to check in detail these relationships along the 20th 

century. Results are shown in Figure 4.7. A change in the most influencing months can 

be observed. For the first half of the century (1920-1950) pine growth responded 

positively to the current January and May temperatures. From 1950 onwards, only 

April-May temperatures had a broad positive effect on pine growth. On the other 

hand, results show a generally consistent response of tree growth to May (negative), 

June (positive), and October (positive) to precipitations. For the first half of the last 

century (1920-1950) pine growth responded negatively to May precipitation and 

positively to June. For the second half of the century, the October temperatures 

become more relevant, giving a positive pine growth response. No significant negative 

responses to precipitation are found in this period. 

 

4.4. Discussion 

4.4.1 The local subalpine forest 

 Our results suggest that the pollen records from some individual taxa from BSN 

correlate with pine growth for subalpine forests located at elevations higher than 2250 

m a.s.l. such as those from Gerber and Mirador sites, which could have nearly similar 

ecological and climatic conditions (Table 4.1). On the other hand, mountain pine 

growth at Amitges, located at higher altitude (2390 m), only correlated with montane-

subalpine ratio. Pines in Amitges are in the limit of their natural altitudinal 

distribution. Therefore, it is consistent that Amitges tree growth does not correlate 

with individual pollen taxa from BSN, since this locality has different climatic 

constraints and vegetation arrangements. From all the BSN pollen species that 

correlated with mountain pine growth (Fagus, Corylus and Sanguisorba) (Table 4.1), 
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Fagus would provide a broad regional signal because trees are restricted to the 

lowermost part of the montane belt in the nearby Aran Valley (~1300-1600 m), but 

their pollen can reach the alpine belt (2300-2400 m) (Cañellas-Boltà et al., 2009). On 

the other hand, Corylus is considered a good indicator of the presence of parent taxa, 

since the pollen and parent trees are found in the same mountain belt. By contrast, 

Sanguisorba presents a negative correlation in Gerber and Mirador, but the ecological 

interpretation of this species is rather uncertain, because it could also be considered 

an indicator of human-induced vegetation changes (e.g. mowing, grazing and 

cultivation) (Court-Picon et al., 2006). A similar case is Secale, which is a cultivated 

species that cannot be easily dispersed and represents a local anthropic signal. The 

absence of correlation between Pinus pollen frequencies and P. uncinata tree-ring 

width could be explained by two reasons. First, pines produce high amounts of pollen 

that are dispersed by wind over long-distances, implying a significantly broad regional 

input (Mazier et al., 2006). Second, the studied fossil pine pollen frequencies from BSN 

include both P. sylvestris and P. uncinata, since it is uncertain to distinguish between 

them. The same applies to Abies; even though there is only one species in Central 

Pyrenees (Abies alba), it grows at intermediate altitudinal levels (1800-2000 m a.s.l.) 

and its pollen is also wind-dispersed over long distances (Cañellas-Boltà et. al., 2009). 

 Considering the correlation between the montane-subalpine pollen ratio and 

tree-ring width, a higher correlation of montane-subalpine ratio with Gerber and 

Amitges chronologies suggests that these localities share similar environmental 

conditions that might influence the vegetation communities. This might be at least 

partially related to the climate influence at local scale, which is conditioned by 

altitude and shows notable contrasts according to elevation and slope orientation 

(Ninot and Ferré, 2008). In general, our results suggest that BSN montane-subalpine 

pollen ratio better correlates with tree growth from sites located at the upper-

subalpine stage (>2000 m a.s.l.) and at distances shorter than 10 km from BSN. This 

highlights the local nature of the montane-subalpine ratio (Garcés-Pastor et al., 2016). 

It is noteworthy that the highest correlations between montane-subalpine ratio and  

tree-ring width were found for the sites located at the highest altitudes instead of sites 

located at a similar altitude of BSN coring site (1891 m a.s.l.). The tree-ring width in  



 

 

Figure 4.7 30 years bootstrapped moving-window with an offset of 10 years with Pearson correlations between current year monthly 

temperature and monthly precipitation from the current year with residual tree-ring chronologies from Gerber, Amitges, Corticelles 

and Barranc de Llacs. Asterisks indicate significant correlations at p < 0.05.
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Amitges (2390 m a.s.l.) presents the highest correlation with montane-subalpine ratio  

(Table S2 supplementary material).  Located in the alpine stage, these pines are found 

at the edge of their geographic altitudinal distribution area or growing under 

unfavourable conditions and limited by climatic factors such as low temperatures  

(Camarero and Gutiérrez, 2004, Batllori et al., 2012). As a result, Amitges tree-ring 

width series might be more sensitive to climatic variations (Fritts, 1976), thus showing 

a higher inter-annual variability and correlating better with the montane-subalpine 

pollen ratio. This is in line with studies by Kupfer and Cairns (1996) and Loehle 

(2000), who highlighted that the montane-subalpine ecotone is mainly controlled by 

temperature and sensitive to warming changes. The tree-growth from the highest 

altitudes and the montane-subalpine ratio are both mainly limited by low 

temperatures and, as a result, they are more sensitive to climate shifts than tree-ring 

chronologies from lower altitudes (see Tardif et al., 2003). The sensitivity of these two 

proxies makes them suitable for robust paleoecological reconstructions of high 

mountain forests. Moreover, given the fact that the altitudinal treeline ecotone 

position is also controlled by low temperatures (Batllori et al., 2012), it could be 

expected that both ecotones (montane-subalpine and treeline) could move upwards 

under higher temperatures if tree recruitment takes place at the same time. For the 

moment, we can say that tree-growth is enhanced by higher temperatures and that 

tree-growth positively correlates with the montane-subalpine pollen ratio. This is a 

clear hint to expect an upward shift of the ecotones and therefore, an excellent 

opportunity to verify if this movement is indeed a response to current global warming. 

 

4.4.2 Global and regional climate influence in the Central Pyrenees forests 

 In general, our results suggest a high sensitivity of tree-growth to temperature. 

Since the correlations between them are positive, tree-growth would have been 

enhanced if temperatures had been higher in the past 700 years, and likely tree 

recruitment (Batllori et al., 2012). Tree-ring width chronologies and temperature 

anomalies, NHTA and PTA, showed a high positive correlation during the second 

phase of the LIA (1700-1850) (Mann et al., 2009), characterized by colder 

temperatures, higher humidity and maximum glacier advances in the Southern 

Pyrenees (González Trueba et al., 2008; Morellón et al., 2011). From both temperature 



 

128 

anomaly reconstructions, PTA (Dorado-Liñán et al., 2012) presents a higher 

correlation with ring-width chronologies than NHTA, especially for the periods of LIA 

and IR. Although mountain pine TRW and the MXD chronologies from the same trees 

can show positive and significant correlations in the Pyrenees or Siberia (Galván 2014; 

Kirdyanov et al., 2008), other studies have not found any correlation for P. sylvestris in 

Sweden (Pritzkow et al 2014). These results are in agreement with the fact that Pinus 

uncinata growth is mainly limited by low temperatures near or above the treeline, and 

even under the recent climate change the positive relationship between tree growth 

and temperatures persists at high altitudes while at low altitudes temperature exerts 

a negative effect on growth (Gutiérrez 1991).    

 In general, tree-ring width correlated with the temperature reconstructions 

(NHTA, PTA) and with the solar grand minima of Maunder and Dalton, which is in 

line with other studies performed on the Pyrenees (Esper et al., 2015; Büntgen et al., 

2017).  Büntgen et al. (2008) and Dorado et al. (2012) found that the coldest summers 

in the Pyrenees were in-phase with the same solar minima. On the other hand, PTA 

was the only reconstructed temperature that correlated during the subperiods of 1850-

1899 and 1950-1999, suggesting that pines responded to a more regional climatic 

signal. The subperiod of 1850-1899 coincides with the end of the LIA, which was 

characterized by significant fluctuation of water availability, as suggested by 

important water level oscillations in some Pyrenean lakes, e.g Lake Estanya and Basa 

de la Mora (Morellón et al., 2009; Pérez-Sanz et al., 2013). This subperiod also 

coincided with a period of high frequency of extreme precipitation events (1844-1894) 

registered in the nearby Montcortès lake and most rivers of the NE Iberian Peninsula 

(Corella et al., 2014). The intensity and frequency of extreme rainfall events together 

with an increase of temperature in the Pyrenees should have affected tree growth 

during the second half of 19th century. Regarding the subperiod of 1950-1999, a 

decreasing trend in NTHA and PTA is observed, with a more pronounced decline in 

Pyrenees temperature anomaly (Figure 4). This subperiod was characterised by lower 

lake levels in some Pyrenean lakes (Pérez-Sanz et al., 2013; Garcés-Pastor et al., 

2016), low frequency of heavy rainfall events in the pre-Pyrenees (Corella et al., 2014) 

and especially high temperatures with a drastic climatic variability in the Iberian 

Peninsula (Pérez-Zanón et al., 2016; IPCC, 2013). These contrasting conditions 
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prompted a change in tree-growth pattern of Pyrenean forests (Andreu et al., 2007, 

Agustí-Panareda et al., 2000). Thus, pine growth responded to a general climatic 

pattern (NHTA) modulated by local climatic forcings in the Iberian Peninsula and the 

Pyrenees (PTA). 

 

4.4.3 Short-term growth responses to climate through the last century 

 The four localities selected for this study showed that tree-ring growth was 

significantly and positively related with the previous March (t-1) (Figure 4.5), previous 

autumn (October-November) (t-1) and current year of growth spring temperatures 

(April-May) (t), a result also corroborated by seasonal correlations (Figure 4.6). This 

suggests that low temperatures at the beginning and at the end of the growing season 

constrain tree-ring growth rates. Therefore, tree-rings growth would be wider if 

temperatures were warmer. The only positive and significant relationship between 

growth and precipitation is in June (t), when the growth rates are the highest 

(Camarero et al., 1998), indicating that lack of water is limiting tree-ring formation at 

high altitudes, in our study in three out of four studied sites. Summarizing, our results 

show that, although the climate warming, P. uncinata growth is mainly limited by low 

temperatures throughout the 20th century. Then, it is possible that, although the 

warming and at higher altitudes scale, this vegetation response has not reached any 

shifting threshold (Batllori et al., 2012). These results agree with Tardif et al. (2003), 

which found that the temperatures from November of the previous year and May of 

the same year of ring formation drove the pines growth-climate association. 

Additionally, our results also agree with those reported by Ninot et al. (2011). These 

authors found that low temperatures during the active physiological period (June-

October) were the most limiting factor for the growth and regeneration of mountain 

pine in the timberline of the PNAESM. All these results might be explained by the 

study of Camarero et al. (1998), who pointed that the latewood cells lignification 

period extended from the beginning of June to October, and highlighted a delay 

between tree-ring formation and climate factors. In particular, the authors suggest a 

delay between the physiological activity and the resumption of cambial growth activity  
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in spring (May) and the radial expansion of cambial derivatives and ring growth in 

June-July. On the other hand, the results of Ninot et al. (2011) and Batllori et al. 

(2012) are interesting for our discussion as they report that tree recruitment is also 

limited by low temperatures. In this regard, the warming trend during the 20th has 

favoured higher recruitment rates in the treeline ecotone and also an upward shift of 

the treeline ecotone in the Pyrenees as it has been reported by Camarero and 

Gutiérrez (2004) and Batllori and Gutiérrez (2008) although this is not a generalized 

phenomenon across the Pyrenees.  

 Comparing the effect of the studied climatic variables, we observed a high 

influence of temperature on radial growth, followed by summer precipitation (Figures 

4.5 and 4.6). This is in agreement with the results of Tardif et al. (2003), which 

reported that temperature was the main factor related to radial growth in P. uncinata. 

For the whole period 1901-2009, only June (t) precipitation exerted a significant and 

positive effect on growth, meaning that pines growth is limited to some extent by the 

lack of water when growth rates are higher. The negative and significant effect of 

precipitation in April (t-1) must be interpreted as an indirect effect of precipitation 

lowering temperatures for growth resumption and for replenishment of carbohydrates 

reserves in late fall, which could be also accompanied by an indirect effect of lower 

solar radiation. 

 Moving correlations for shorter intervals, (30-year periods lagged 1 yr) in which 

we split tree growth-climate relationships throughout the 20th century, offer really 

valuable information about the effect of the recent warming trend. These results tell 

us that since the 1970 temperatures (see Figure S1) are not such a strong limiting 

growth factor as they used to be during the first half (Figure 4.7) and in the past 

centuries. In general, since the 1970 there are less significant correlation coefficients, 

e.g. in May, August or January. Thus, tree growth (and recruitment) of subalpine 

forest may benefit from warmer temperatures. Regarding precipitation, there is a 

similar trend as that described for temperatures. Thus, the lack of water in June 

(positive correlation with growth) is no longer significant since the 1970. On the 

contrary, October precipitation showed a significant and positive relationship with 

tree growth, probably due to the extended growing period at high altitudes as a 

consequence of warmer temperatures (Menzel et al., 2006).  
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 4.4.4. Inference of tree growth from palynological indices 

 In this study, we introduce the possibility of inferring dendrochronological 

records (proxies of forest productivity) by using an index derived from pollen 

frequencies for periods longer than those covered by chronologies. Our models (Figure 

4.3) show that such data could be a priori successfully derived for the two sites closest 

to the pollen sampling location and at the highest altitudes. The r-squared values for 

these regressions show that between 21 and 39% of the variability in tree growth can 

be explained by the variability in montane-subalpine ratio, which may be enough only 

for obtaining gross dendrochronological inferences at multidecadal resolution. It is 

important to remark that in this study there are few pollen data from the 

sedimentary core and because of that we lose temporal resolution. A denser sampling 

to achieve higher temporal resolution in future studies would provide a more accurate 

and useful relationship between tree growth and the montane-subalpine pollen ratio. 

 The montane-subalpine ratio has shown to be also correlated to other global 

climatic signals of the Northern hemisphere, such as the ice-rafted debris index 

(Garcés-Pastor et al., 2017). However, our results show that this index is more useful 

at local scales. Local environmental differences between sites may influence the 

sensitivity of trees to climate shifts as has been demonstrated in this study, and affect 

the parameter values of the models. Moreover, this sensitivity may vary over time, as 

shown by the results of the correlation values over the last 700 years and of the 

moving-window analysis for the last century. Therefore, carrying out more local 

studies will help to assess the relationships between radial growth and site conditions 

along ecological gradients, providing a proper background that will allow to improve 

the future climate-tree growth models and potential shifts of the forest belts across 

the altitudinal gradient. 

 

4.5. Conclusions 

 This study highlights the importance of considering the local expression of 

general climatic patterns, modulated by site features, as the driver of forest dynamics. 

Even though no robust correlations have been found in this study between most of the 

pollen taxa (including pine) and tree-ring width, significant correlations exist between 
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the montane-subalpine pollen ratio and the residual tree-ring chronologies from 

nearby localities. This relationship could potentially be used as a paleoecological tool 

to infer dendrochronological data (tree growth) for those periods that are not covered 

by tree-ring chronologies. This correlation is more reliable for trees located at high-

elevation subalpine forests and treeline sites which are more sensitive to changes in 

temperature.  

 The association between tree-growth and climate fluctuations show that growth 

of mountain pine is mainly limited by low temperature. However, this sensitivity has 

varied along the last 700 years when temperatures were lower than today as shown 

by temperature reconstructions. Moreover, for the last century and using 

instrumental climatic data, we have been able to ascertain that tree-growth 

variability is still more constrained by low than by high temperatures at high 

altitudes in the Pyrenees. However, this effect seems to be fading in recent decades. 

Variations in sensitivity of tree species to climatic conditions should be taken into 

consideration when designing predictive models for inferring future forest responses 

to climate change. 
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Abstract 

We performed a metabarcoding study using universal 18S and COI markers to explore 

the diversity of eukaryotic communities of a Pyrenean peat bog ecosystem. We 

assessed the molecular diversity of four different micro-habitats along a flood gradient 

in Bassa Nera lentic system (Central Pyrenees). From the same study site, five 

sedimentary depths were also analysed in order to study the palaeoecological 

communities recovered from ancient DNA and to compare the detected sequences to 

those obtained from the modern communities. We also compared the information 

provided by the sedimentary DNA to the environmental reconstruction from 

morphological proxies such as pollen and macroremains from the same record. We 

successfully amplified ancient DNA with both universal markers from all the 

sedimentary samples, including the deepest one (10200 years old). Even though 18S 

could amplify a broader group of organisms, the taxonomic resolution was lower than 

that obtained from COI, and typically reached the family or genus levels. On the other 

hand, the taxonomic assignment of the detected COI sequences yielded mostly 

metazoans, probably due to gaps in reference databases. This first molecular approach 

has allowed to prove that the diversity of modern and past eukaryotic peat bog 

communities can be assessed using universal metabarcoding markers. 

 

keywords: sedimentary-DNA, community-DNA, palaeoecology, eukaryotes. 
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5.1 Introduction 

 Depositional systems located in areas with low anthropogenic impact, such as 

mountain peat bogs, are invaluable palaeoenvironmental archives which allow to 

study local environmental processes and responses to climate variability (Smol et al., 

2001). The communities living in these ecosystems can be considered sentinels of past 

and current climate shifts and the study of the historical changes in their biodiversity 

is crucial for understanding the dynamics of ongoing ecological processes driven by 

climatic forcings (Mann, 2002). Previous palaeoecological studies on peat land 

communities have traditionally used morphological assessment of a few taxonomic 

groups such as vascular plants, mosses, microalgae, chironomids or pollen (Charman, 

2002; Godwin, 1981; Smol et al., 2001). These studies provide only partial views of the 

total biodiversity present, by analysing some selected taxa, depending on the 

availability of taxonomic expertise (Parducci et al., 2015).  

 Recently, the development of genetic techniques such as metabarcoding has 

allowed to perform ecological studies of broader taxonomical range (Hajibabaei et al., 

2011; Taberlet et al., 2012a). These molecular techniques for biodiversity assessment 

are fast, objective and allow for the simultaneous detailed characterization of a wide 

array of diverse taxa present in the studied ecosystems. Beyond the use of 

metabarcoding for getting information on the extant biodiversity, the DNA obtained 

from sedimentary samples  can represent an important source of information about 

past biodiversity (Pedersen, 2015). Most applications of metabarcoding in 

palaeoecological studies have focused on past vegetation communities by using 

chloroplast genetic markers such as TrnL or rbcL from frozen or lake sediments 

(Anderson-Carpenter, 2011; Jørgensen et al., 2012; Pedersen et al., 2013). Although 

these techniques have been successfully applied to study the modern community DNA 

of environments such as soils, marine benthos or lake sediments (Epp et al., 2012; 

Guardiola et al., 2016; Taberlet et al., 2012; Valentini et al., 2016), they have been 

rarely applied to the study of peat bogs. In recent years, Singer et al. (2016) studied 

the living diversity of Oomycetes in peat bogs using the nuclear 18S rRNA marker. 

This marker has also been used to study free-living soil Cercozoa r planktonic and 

sedimentary protists in lakes (Capo et al., 2016, 2015). However, to the best of our 

knowledge, other emerging universal metabarcoding markers for studying eukaryotic 
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diversity, such as the mitochondrial cytochrome c oxidase subunit I (COI), have never 

been tested in peatland systems. 

 The DNA extracted from sedimentary samples is a mixture of modern DNA from 

living edaphic communities and ancient DNA from the remains of long-dead 

organisms (Bellemain et al., 2013; Epp et al., 2012; Lejzerowicz et al., 2013; Pawlowski 

and Holzmann, 2014). In general, sedimentary DNA studies rely on the assumption 

that the age of the DNA recovered is the same as the age of the sediments in which it 

is found, in absence of contaminations. This may be true when using specific primers 

that selectively amplify the DNA from remains of organisms not currently living in the 

deep strata of the soil (such as vascular plants or photosynthetic microalgae). 

However, universal primers commonly used for amplifying 18S and COI are able to 

detect a wide range of microbial taxa, many of which may belong to the living soil 

communities (Guardiola et al., 2015). Therefore, when using these markers for 

palaeoecological studies, the sequences recovered from edaphic organisms should be 

removed from the analyses in order to get more realistic reconstructions of the fossil 

communities and compare them with modern assemblages. 

 This study aims to obtain a more comprehensive picture of the eukaryotic 

diversity present in Sphagnum communities and sedimentary samples from mountain 

peat bogs, in order to assess its role in actual and past peatland ecosystems. In this 

paper, we offer a first molecular approach to the modern and past eukaryote 

communities of Bassa Nera, a unique wetland system in the Central Pyrenees (Pérez-

Haase and Ninot Sugrañes, 2006; Pérez-Haase and Ninot Sugrañes 2017)⁠. This 

locality has been the subject of several previous taxonomical studies of modern and 

past communities (Pérez-Haase and Ninot Sugrañes, 2006; Cañellas-Boltà et al., 2009; 

Cambra, 2015; Garcés-Pastor, et al., 2016, 2017), which would allow for the 

comparison of the molecular results with other morphological approaches. We used an 

Illumina MiSeq platform to sequence two complementary metabarcoding markers: 18S 

and COI. The use of these molecular assessment techniques would ultimately allow to 

establish occurrence and abundance baselines for a wide array of taxa, necessary for 

characterizing the current diversity of peat bogs and for detecting and monitoring 

future changes in these communities. This is the first molecular characterization of 
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the structure of micro-habitat communities in a peat bog of Central Pyrenees. In this 

study, we aimed 1) to check the suitability of 18S and COI markers to assess 

taxonomic and ecological eukaryotic diversity in peat bog communities and 2) to 

compare the knowledge about past communities inferred from ancient DNA with the 

palaeoenvironmental reconstructions based on morphological methods.   

 

5.2 Methods 

5.2.1 Study site 

 Bassa Nera is a lentic system located in the peripheral zone of Aigüestortes i 

Estany de Sant Maurici National Park at an altitude of 1891 m a.s.l (Figure 5.1). 

Previous paleoenvironmental studies allowed to reconstruct the historical 

development of the modern peat bog from a previous lacustrine environment (Garcés-

Pastor et al., 2016, 2017). The vegetation of Bassa Nera catchment forms a complex 

mosaic that spans from a relatively mid-deep water body (max. depth 5 m) with flat 

shores surrounded by Sphagnum carpets, Cyperaceae fens and Sphagnum bogs, and 

steeper slopes covered by subalpine forest of Pinus uncinata and Abies alba (Carrillo 

et al., 2008; Pérez-Haase and Ninot 2017). The main habitats are geogenous fens 

(Scheuchzerio palustris-Caricetea fuscae) and ombrogenous bogs (Oxycocco palustris-

Sphagnetea magellanici) (Pérez-Haase et al., 2010)⁠. Climate is subalpine with 

Atlantic influence and precipitation is well distributed along the seasons (annual 

average = 1152 mm) (Ninyerola et al., 2003). Mean annual temperature is 4.25 ºC, 

being January the coldest moth (-3 ºC in average) and July the warmest (14 ºC in 

average). 

 

5.2.2 Field sampling and DNA extraction 

 To characterize the modern communities, four different microhabitats were 

sampled following a gradient of water flooding in August 2016 (Figure 5.1). Three 

replicates of 100 mL of a clump of the dominant mosses were obtained from each 

microhabitat and stored in 96% ethanol. We sampled sites next to the mire monitoring  
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Figure 5.1.  Sampling points of the modern and sedimentary samples of Bassa Nera. A) 

Location of the study area. B) Topographic map of the region surrounding Bassa Nera C) 

Location of the sampling points and core extraction. 
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plots used by Pérez-Haase and Ninot (2006) to measure the depth water table, so that 

the average moisture conditions, groundwater pH and electric conductivity are known 

for these sites (Pérez-Haase and Ninot 2017). The sampled microhabitats were: A) 

Sphagnum hummock (plant community Carici fuscae-Sphagnetum magellanici Bick 

1985) B) Sphagnum teres carpet (community Sphagno fallacis-Caricetum lasiocarpae 

Steffen ex Passarge 1964), C) Trichophorum cespitosum fen (Tofieldio calyculatae-

Scirpetum cespitosi Ballesteros, Baulies, Canalís et Sebastià ex Rivas-Martínez et 

Costa 1998), and D) Sphagnum and Drosera longifolia floating mire on the Equisetum 

fluviatile lake shore belt (Equisetetum limosi Steffen 1931) (Pérez-Haase et al., 2010). 

The sedimentary samples were obtained from the core BSN-6 (270 cm long), recovered 

from a hummock dominated by Sphagnum magellanicum and S. capillifolium in the 

littoral of Bassa Nera in 2011 (see more information in Pèlachs et al., 2015 and in 

Garcés-Pastor et al., 2017). The age-depth model was performed with 7 AMS 

radiocarbon dates obtained from peat and macroremains. It covers the last 10,211 cal 

yr BP in 270 cm with an average confidence interval error of ca. 220 yr and a 

sedimentation rate of 0.07± 0.21 cm yr−1, ranging from 0.016 to 0.86 cm yr−1. As a 

result, the age-depth model and the constant sedimentation rate provide a robust 

record for the interpretation of the molecular history (Garcés-Pastor et al., 2017). Five 

samples were studied from the following depths: 31; 109; 160; 220 and 265. cm, which 

correspond to 140, 3795, 6165, 8339 and 10094 cal yr BP, respectively. 

 All the samples were homogenized using a 600 W hand blender and stored at     

-20ºC until DNA extraction. All the equipment was cleaned with a 10% sodium 

hypochlorite solution and rinsed in deionised water between samples. The DNA 

extraction was performed in the laboratories of the University of Barcelona. 0.3 g of 

each homogenized sample were purified using Norgen Soil DNA Isolation Plus Kit 

(www.norgenbiotek.com). DNA concentrations of the purified DNA extracts were 

estimated with 1 µL of the final elution using the Qubit fluorometer 

(www.thermofisher.com).  
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5.2.3 PCR and sequencing 

 In order to get a wide taxonomic range of detected eukaryotic taxa, two different 

metabarcoding markers were used. The V7 region of nuclear-encoded ribosomal 18S 

RNA, which provides information of all eukaryotic groups, was amplified using the 

18S_allshorts primers (5’-TTTGTCTGSTTAATTSCG-3’ and 5’-

TCACAGACCTGTTATTGC-3’) (Guardiola et al., 2015). The shorter length of this 

region (around 100 bp) in contrast with V9 (180 bp) and V4 (350 bp) regions used in 

other 18S studies (Capo et al., 2015; Singer et al., 2016) is convenient for 

palaeoenvironmental studies where DNA may be fragmented. This primer set has 

been successfully used for assessing eukaryotic diversity of marine sediments 

(Guardiola et al., 2015, 2016) and shallow marine hard-bottom communities 

(Wangensteen et al., in review). A new degenerated primer set amplifying a 313 bp 

fragment of the mitochondrial marker COI (miCOIintF-XT 5'-

GGWACWRGWTGRACWITITAYCCYCC-3'; Wangensteen et al., in review; and 

jgHCO2198 5'-TAIACYTCIGGRTGICCRAARAAYCA-3'; Geller et al., 2013) was also 

used. This marker is able to amplify almost all eukaryotic lineages with the exception 

of Viridiplantae and Ciliophora. The 18S marker has less natural sequence variability 

than COI (Wangensteen et al., in review). Therefore, the same sequence of 18S can be 

shared by several species belonging to related clades. This means that a 100% identity 

in 18S generally allows to assign a sequence to higher taxa such as family or order 

(Guardiola et al., 2016), but rarely to species level for metazoans or plants. Conversely, 

a 100% identity on the highly variable marker COI usually means a perfect match to a 

given species.  

 The PCR amplifications were performed at the environmental DNA laboratory 

at the University of Salford, UK. 8-base sample-specific tags for identifying the 

multiplexed samples and a variable number (2-4) of leading random bases, for 

increasing sequence diversity, were attached to the metabarcoding primers. PCR 

conditions followed Guardiola et al. (2015) for 18S and Wangensteen et al., (in review) 

for COI. After PCR, quality of amplifications was assessed by electrophoresis in 

agarose gel. The PCR products were pooled by marker and purified using Minelute 

PCR purification columns. Two Illumina libraries were built from the DNA pools using 

the NEXTflex PCR-free DNA library prep kit (www.biooscientific.com) and identified 
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by different library tags. Both libraries were sequenced together in a single run of 

Illumina MiSeq using v3 chemistry 2x250 bp paired-end sequencing.   

 

5.2.4 Bioinformatic pipelines and statistical analyses 

 The bioinformatic analyses were performed with the OBITools metabarcoding 

software suite (Boyer et al., 2016). The paired-reads were assembled using 

illuminapairedend. The resulting aligned datasets were demultiplexed using ngsfilter. 

A length filter (obigrep) was applied to the assigned reads (75-180 bp for 18S and 300-

320 bp for COI). The obtained reads were dereplicated using obiuniq and chimeric 

sequences were detected and removed with the uchime_denovo algorithm 

implemented in vsearch (Rognes et al., 2016). The individual sequences were clustered 

into molecular operational taxonomic units (MOTUs) using the step-by-step 

aggregation clustering algorithm implemented in SWARM v2 (Mahé et al., 2015) with 

a resolution of d=1 for 18S and d=13 for COI (Wangensteen and Turon, 2016). The 

taxonomic assignment of the representative sequences for each MOTU was performed 

using ecotag (Boyer et al., 2016) on customized local reference databases, created from 

the sequences of 18S available from Genbank and a combination of COI sequences 

available from GenBank and the BOLD database. Both reference databases are 

available on-line from http://github.com/metabarpark/reference_databases. After 

taxonomic assignment, the list was manually checked. Those sequences assigned to 

bacteria or to the root of the tree of life were removed. Other sequences considered as 

potential contaminants related to human presence or activity were also removed. A 

summary of the pipelines is available in table S1 (supplementary material). 

 One main issue with the analysis of the DNA extracted from sedimentary 

samples is to distinguish the reads originated from living communities of edaphic 

organisms from those amplified from the remains of long-dead organisms  (Bellemain 

et al., 2013; Coolen and Shtereva, 2009; Epp et al., 2012; Lejzerowicz et al., 2013; 

Pawlowski et al., 2014). There are groups of organisms that are known to dwell in soils 

down to several meters depth, such as Fungi, Cercozoa, non-photosynthetic 

Chrysophytes, Oomycetes, Ciliophora, Nematoda or Annelida (Fierer et al., 2003; 

Andersen et al., 2013; Asemaninejad et al., 2017). However, representatives of these 

groups may also live in surface bog habitats. Thus, detection of these phyla in 

http://github.com/metabarpark/reference_databases
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sedimentary samples should be interpreted with caution. High abundances of 

sequences from these taxa, compared to non-edaphic taxa, in the sedimentary samples 

must be interpreted as the result of the living organisms in extant deep soil 

communities, rather than the prevalence of these taxa in ancient surface communities. 

To avoid this problem, when comparing ancient and living communities, these groups 

were removed from our analyses so that only those groups typical of non-edaphic 

environments, i.e. Bacillariophyta, Arachnida, Insecta, Rotifera, Tracheophyta, 

Bryophyta, were kept in order to get more realistic reconstructions. Calculations of 

Jaccard dissimilarity matrices and group representation nMDS diagrams were 

performed with the vegan package for R (Oksanen et al., 2016). The significance of 

dissimilarities between communities was assessed using the function ANOSIM in the 

same package. 

 For the case of Viridiplantae, only the results from 18S were used to assess 

modern and ancient plant communities. Given that the decay rate of ancient DNA may 

be different for diverse taxonomic groups (Zhu et al., 2005), the relative abundance of 

reads from ancient taxa shows high levels of uncertainty, so that only 

presence/absence data were used to compare ancient and living communities. 

 To compare the information provided by sedimentary DNA with the 

palaeoenvironmental reconstruction of Bassa Nera based on morphological methods, 

we used the available palynological and macroremain data from the palaeoecological 

study of Garcés-Pastor et al. (2017). Pollen and macroremain analyses were performed 

according to standard procedures (Moore et al., 1991; Mauquoy et al., 2010). Details on 

pollen and macroremain methods can be found in Garcés-Pastor et al. (2017). 

 

5.3. Results 

 We metabarcoded a total of 27 samples (12 samples from four modern 

communities and 15 subsamples from sedimentary material). After the refining 

procedures, our final dataset for 18S comprised a total of 3,568,544 reads, from which 

2,166,574 reads (60.7%) belonged to the modern communities (an average of 180,548 

reads per sample) and 1,401,970 reads (39.3%) to the sedimentary ones (average: 

93,464 reads per sample). In the case of COI, the final dataset included 1,778,003 
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reads, with 1,151,052 reads from modern communities (average: 95,921 reads per 

sample) and 626,951 reads from sedimentary samples (average: 41,797 reads per 

sample). 

 

5.3.1 Read abundances and number of MOTUs for 18S and COI in modern 

samples 

 Figure 5.2 a and b shows the abundance of reads of 18S (a) and COI (b) from the 

modern communities assigned to major eukaryotic groups at a level of Phylum or 

lower. The proportions of sequences which could not be assigned to a phylum 

(unassigned Eukarya, Metazoa and Stramenopiles) were higher for COI (21.5%) than 

for 18S (1%). Remarkable differences can be observed between the groups detected 

with 18S and COI. The 18S yielded more reads from Bryophyta and Tracheophyta, 

while COI presented higher abundances of Arthropoda and Rotifera. Some replicates 

from the same micro-habitat yielded higher reads of a specific Phylum than other 

replicates. This is the case for Platyhelminthes in BSNCarpet-01 and BSNFen-02, and 

Tracheophyta for BSNFloating-03. These differences are due to a high abundance of 

reads from a particular MOTU in those samples, probably related to the presence of a 

single big-sized individual in that replicate (see supplementary material for 

abundance of individual MOTUs). 

 The relative diversity of the different groups is represented in Figure 5.2 c and d 

as the percentage of MOTUs assigned to the different groups in each sample by 18S (c) 

and COI (d). A higher dominance of small-sized MOTUs is remarkable, compared to 

the abundance barplots. A relatively homogeneous pattern of diversity can be observed 

among the different communities.   

 

5.3.2 Comparison between modern and ancient samples 

  Figure 5.3 a and b shows the relative diversity of non-edaphic taxa from 

modern and sedimentary samples for 18S (a) and COI (b), according to the 

presence/absence of  MOTUs belonging to each phyla, after removal of edaphic taxa. 

The 18S detected high diversities of Ciliophora, Tracheophyta, Arthropoda and other 



 

 

 

Figure 5.2. Patterns of read abundance (a, b) and relative MOTU diversity (c, d) per sample using 18S (a, c) and COI (b, d) in the four 

modern communities.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. Relative diversity of non-edaphic taxa from sedimentary and modern samples, according to the detected presence of 

MOTUs of 18S (a) and COI (b), after removal of edaphic taxa.
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protists. On the other hand, COI detected a higher number of Arthropoda, Rotifera 

and Bacillariophyta. Comparing the modern and past samples of 18S, we can observe 

a higher prevalence of Tracheophyta and other protists in the sedimentary samples, 

with a lower number of Arthropoda and other Metazoa. For COI, in general, the 

relative diversity of non-edaphic MOTUs by phylum seems more regular over time. 

 Figure 5.4 shows the non-metric multidimensional scaling ordination for the 

non-edaphic communities of modern and sedimentary samples using Jaccard 

dissimilarities. Results showed significant differences between communities for 18S 

(ANOSIM R=0.98, p-value < 10-4) and COI markers (ANOSIM R=0.97, p-value <10-4).   

 

Figure 5.4. Non-metric multidimensional scaling ordination using Jaccard dissimilarities with 

non-edaphic MOTUs of samples for 18S (a) and COI (b) markers. 

 

5.3.4 Viridiplantae 

 Figure 5.5 shows the abundances and relative MOTU diversity of 18S for the 

divisions of Viridiplantae, which represent a 54.54% of the sequences of the modern 

samples and a 4.52% of the sedimentary samples. The abundances present different 

patterns for the modern communities. The BSN-hummock is similar to BSN-carpet, 
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with high abundances of Sphagnopsida and some Liliopsida and Magnoliopsida. While 

BSN-fen is similar to BSN-floating with a higher proportion of Bryopsida and 

Magnoliopsida. Table S2 shows the rank of the 20 most abundant 18S MOTUs for each  

modern community. A MOTU assigned as Bryophyta had the highest reads in all 

modern communities. Sphagnum dominated BSN-hummock and BSN-carpet while 

BSN-fen and BSN-floating are rich in Bryopsida. The hummock community also 

presents some Magnoliopsida, such as Sanguisorba and Parnassia, with some 

Liliopsida, such as Petrosaviidae. The carpet community presents a higher proportion 

of Liliopsida such as Cyperoideae and Petrosaviidae, while Magnoliopsida are 

represented by Asterales and Filipendula. The fen community is mainly composed by 

Bryopsida with some Magnoliopsida such as Utricularia and Liliopsida 

(Petrosaviidae). Finally, the floating community has higher amounts of Bryopsida and 

Droseraceae, followed by Sphagnum, Cyperoideae and Utricularia. On the other hand, 

COI failed to amplify any Tracheophyta or Bryophyta within the most abundant 

MOTUs (Table S3). 

  The sedimentary samples showed higher abundances of Liliopsida and 

Magnoliopsida, with some Pinopsida and other Streptophyta (Figure 5.5). The relative 

MOTUs diversity also presents some differences between modern samples, where 

BSN-hummock and BSN-carpet are similar and have high diversity of Sphagnopsida. 

BSN-fen and BSN-floating have more Bryopsida, other Bryophyta and Charophyceae. 

On the ancient samples, there are higher presence of Pinopsida and Magnoliopsida. 

Table S4 shows the rank of the 20 most abundant MOTUs for sedimentary samples 

after removing the edaphic taxa. All samples reflect a relatively high number of 

Tracheophyta, such as Cyperoideae, Pooideae, Mesangiospermae or rosids. We can 

observe a shift between Cyperoideae and Pooideae over time, with Cyperoideae 

dominating the samples BSN-31 to BSN-160 and Pooideae being more abundant in the 

oldest samples (BSN-220 and BSN-265). BSN-31 has a 14.28% of Viridiplantae 

sequences, this sample is dominated by Cyperoideae, with some Mesangiospermae 

(Magnoliopsida) and Bryopsida. It also presents some proportions of Pooideae and 

Saxifragales. BSN-109 (2.58% Viridiplantae)  is also dominated by Cyperoideae, 

Pooideae and Mesangiospermae, jointly with Petrosaviidae, lamiids and Equisetum 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5. Abundance (a) and relative MOTU diversity (b) for the divisions of Viridiplantae detected using 18S.
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sp. BSN-160 (1.79% Viridiplantae) has also high prevalence of Cyperoideae and 

Mesangiospermae, followed by Pinidae and Cupressaceae. Surprisingly, BSN-220 

(11.99% Viridiplantae) presents a higher proportion of Tracheophyta  in the most 

abundant MOTUs. It is dominated by Pooideae, accompanied by Pinidae and 

Bryopsida. It also presents some rosids, lamiids and Betulaceae. BSN-265 (0.07% 

Viridiplantae) is still dominated by Pooideae, with some presence of Pinidae. In 

general, the total amount of reads recovered from plants is lower in the sedimentary 

samples compared to the modern samples, and it decreases with depth. Figure S1 

(supplementary material) shows the non-metric multidimensional scaling ordination 

for the Viridiplantae (18S marker) in modern and sedimentary samples using Jaccard 

dissimilarities. Results showed significant differences among communities for 

Viridiplantae (ANOSIM R=0.92, p-value < 10-4). 

 

5.3.5 Arthropoda 

 Figure 5.6 shows the read abundance and relative MOTU diversity of COI for 

the phylum Arthropoda. The relative abundance of the diverse orders strongly differ 

between the modern samples and the ancient ones. The modern samples present a 

higher abundance of mites (Sarcoptiformes and Trombidiformes), whereas the 

sedimentary samples present a large variability among them. The BSN-265 yielded a 

larger proportion of Opiliones and Copepoda, while BSN-160 had very low 

abundances. On the other hand, BSN-220 presents similar proportions to modern 

samples. Finally, BSN-31 and BSN-109 have outstanding proportions of Copepoda and 

Branchiopoda. Some orders, such as Ostracoda, only appeared in the modern samples. 

Table S3 (supplementary material) shows the rank of the 20 most abundant MOTUs 

for COI modern samples. Half of the most abundant MOTUs are from Arthropoda, 

specially the mites Sarcoptiformes and Trombidiformes, basal Hexapoda (Collembola), 

Insecta (Diptera, Coleoptera), Maxillopoda (Cyclopoida, Harpacticoida) and Ostracoda. 

In some cases, the taxonomic assignment could reach the species level. The hummock 

community presented a higher proportion of Arachnida. 

 Table S5 (supplementary material) shows the rank of the 20 most abundant 

MOTUs for COI ancient samples without the edaphic taxa. Most of the MOTUs could 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Read abundance (a) and relative MOTU diversity (b) for orders of the phylum Arthropoda detected by COI.
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be identified only to the ranks of kingdom to order. From all the MOTUs, a higher 

number of Metazoa can be appreciated. From the Arthropoda that could be identified,  

most were Branchiopoda, Maxillopoda and Arachnida. There is a community shift 

from Branchiopoda and Maxillopoda in the most superficial samples (BSN-31, 109, 

160) to an Arachnida community with Insecta and Collembolla (BSN-220, 265). Figure 

S2 (supplementary material) shows the non-metric multidimensional scaling 

ordination for the Arthropoda (COI) in modern and sedimentary samples using 

Jaccard dissimilarities. Results showed significant differences among communities for 

Arthropoda (ANOSIM R=0.89, p-value < 10-4). 

 

5.3.6 Comparison of sedimentary DNA to pollen and macroremains 

 We compared the Viridiplantae 18S from sedimentary DNA results with the 

environmental reconstruction of the same record by Garcés-Pastor et al. (2017). Figure 

5.7 shows the diagram with the presence/absence of the 18S DNA sequences for the 

five sedimentary depths compared with the pollen and macroremains. We can observe 

the presence of conifer and Bryophyta sequences in all samples, while dicots and 

monocots are mainly in BSN-220, On the other hand, green algae are more present in 

BSN-31. 

 BSN-31 presents high proportions of Cyperoideae and Bryopsida with a MOTU 

assigned to Mesangiospermae (Magnoliopsida) that also appears in BSN-109 and 

BSN-160 (BOG2_000000149). It also presents some proportions of Pooideae, 

Saxifragales, Petrosaviidae and Pinidae and traces of Vaccinium sp (Table S3). In 

Table BOG_18S (Supplementary material) we can also observe the presence of 

Desmidiales, Streptophytina, Chlorophyceae and Scenedesmaceae. The macroremains 

presented low proportion of Sphagnum, with Ericaceae, Polytrichum and Equisetum 

in that depth. Regarding the pollen, Pinus, Ericaceae and Poaceae frequencies are well 

represented while Apiaceae have its highest values. 

  BSN-109 also presents high proportions of Cyperoideae, Pooideae and the 

former Mesangiospermae sequence, accompanied by Poaceae and asterids. The 

presence of Betulaceae, Betula and Pinidae is also remarkable, with Equisetum, 

Bryophyta and Desmidiales. Garcés-Pastor et al. (2017) also found Equisetum and 



 

 

 

 

 

Figure 5.7. Diagram with the presence/absense of detected DNA sequences of Viridiplantae and the abundances of pollen and 

macroremains from the morphological study by Garcés-Pastor et al. (2017). 
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Sphagnum macroremains at this depth. Pollen presented the highest amounts of 

Abies, Poaceae and Cyperaceae. On the other hand, Pinus is well represented and 

Betula has relatively low frequencies. Some ferns (Monolet-spore and Selaginella) are 

observed. 

 BSN-160 also has high amounts of Cyperoideae and the former 

Mesangiospermae sequence, followed by Pinidae, Cupressaceae and some Betulaceae. 

It also presents  Desmidiales, Rhodophyta and Bryophyta. COI detected a MOTU 

assigned to Porifera (Table S5). Although freshwater Porifera are in minor proportion, 

its presence has been reported in Bassa Nera (Garcés-Pastor et al., 2017). In the 

morphological palaeoenvironmental reconstruction, no Sphagnum macroremains were 

found at this depth, whereas pollen presented high amounts of Pinus, accompanied by 

Betula and some Poaceae.  

 BSN-220 community has high abundance of Pooideae, Pinidae and Bryopsida 

accompanied by some Betulaceae, Sapindaceae and Pinus. Some traces of Cyperoideae 

and Ericales were also detected, with some COI sequences assigned as Viridiplantae 

(probably green algae) and Rhodophyta.   This depth did not present Sphagnum or 

other macroremains. Regarding the pollen, we can appreciate high proportions of 

Pinus, Betula and Corylus. However, Poaceae and Cyperaceae have its lower values. 

Some Botryococcus was observed. 

 BSN-265 has the lowest DNA abundances, but high proportions of Pooideae and 

Desmidiales, with some presence of Pinidae and traces of Betula, Brassicaceae and 

Prunus. There are also Bryophyta, while COI detected one MOTU of Rhodophyta, a 

Porifera and a Bacillariophyceae (Table S5). Regarding the environmental 

reconstruction, there is no available data of macroremains. By contrast, pollen present 

some Pinus and Poaceae proportions while Betula and Artemisia reach the highest 

values. Some ferns (Monolet-spore) and algae (Botryococcus and Pediastrum) could 

also be appreciated.   
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5.4. Discussion 

5.4.1. Modern communities in Bassa Nera 

 Our results suggest that the 18S marker is more suitable to identify a broader 

range of eukaryotes and to assess the relative abundances of Viridiplantae. However, 

due to its lower natural variability, this marker has a lower taxonomic resolution than 

COI. Therefore, most MOTUs could be identified only to the rank of Family or higher. 

On the other hand, COI is more suitable for Metazoa, allowing to characterize many 

Arthropoda, Annelida and Rotifera, some of them at the species level. Nonetheless, 

COI yields a higher proportion of unassigned sequences that could correspond to the 

ones that 18S identified as Cercozoa or Ochrophyta, highlighting the gaps in the 

current COI reference databases for other groups different from Metazoa 

(Wangensteen et al., in review).  

 The obtained MOTUs for the vegetation communities broadly correspond to the 

communities observed during the sampling. For the case of the BSN-Floating03 

subsample, which showed a high abundance of Magnoliopsida in comparison with the 

other subsamples, a Drosera was observed during the sample processing. Another 

species found in the floating and fen communities was Utricularia sp, which was also 

observed in the catchment (Pérez-Haase and Ninot, 2006; 2017). The MOTU classified 

as Petrosaviidae include sequences of Poaceae, Typhaceae and Cyperaceae 

(Suplementary material). All the modern samples present Petrosaviidae or Cyperaceae 

reads, which is coherent with the catchment vegetation. The communities shift from 

Sphagnopsida to Bryopsida as samples get closer to the pond. The presence of 

Tracheophyta such as Sanguisorba, Parnassia and Violaceae in the Hummock together 

with Filipendula in the carpet suggest a less humid micro-environment. On the other 

hand, the presence of Utricularia and Droseraceae in the fen and floating communities 

indicates wetter conditions and probably nutrient deficit, since both are carnivorous.  

 On the other hand, Table S3 (supplementary material) shows a high amount of 

assigned sequences of Arthropoda by COI, with a higher proportion of Diptera. Even 

though Sarcoptiformes are the most abundant order, different freshwater taxa 

dominate each community (Thorp and Covich, 2009), such as Camisiidae, 

Malaconothridae and Limnozetidae (Suplementary material). Hummock has Nothrus 
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pratensis, while carpet presents Tyrphonothrus maior. In the case of fen and floating 

communities, there is no lower taxonomic identification below the order level. 

However, Diptera and Harpacticoida abundances increase with proximity to the 

floating area. The only Diptera with high abundances in the hummock is Limnophyes, 

which is a chironomid. Carpet presents the Tabanidae Atylotus fulvus and another 

genus of chironomid (Paracricotopus). The fen community has the ceratopogonid 

Stilobezzia ochracea and Culicoides kibunensis and the chironomid Corynoneura, all 

of which present aquatic larvae. The Floating community has a higher abundance of 

Diptera, the ceratopogonid Dasyhelea modesta and Palpomyia lineata, and the 

chironomids Monopelopia tenuicalcar and Polypedilum tritum. The harpacticoid 

copepod Bryocamptus pygmaeus is found in the carpet, fen and floating communities. 

This species inhabits freshwater environments in mountain regions and presents a 

wide ecological plasticity (Jersabek et al., 2001). With 18S we also obtained good 

taxonomic resolution for some Arthropoda (Table S2, supplementary material). As 

occurs with COI, the order Sarcoptiformes (Desmonomata, Brachypylina) has the 

higher dominance in all communities (Figure 6, Arthropoda) but in general, the 

taxonomic resolution is lower. There are some taxa that could be assigned to genus, 

such as Hydrozetes, an aquatic mite in the fen and floating communities or the 

freshwater copepod Acanthocyclops in fen. 

 The strengths of both markers have allowed to reproduce the extant community 

diversity of Bassa Nera. In order to use the MOTUs as ecological indicators, a high 

taxonomic resolution, at the genus or species level, is desirable. Therefore, COI would 

be more suitable than 18S for obtaining detailed ecologically relevant information, 

whereas the better assignment rates of 18S might make this marker more suitable for 

detecting changes in the relative abundances of higher taxonomic groupings. 

 

5.4.2. Ancient DNA in sedimentary samples 

 Once the possible living edaphic taxa are removed from the communities, we 

observe that the patterns of diversity of MOTUs for 18S and COI become more similar 

between the sedimentary and modern samples (Figure 5.4). The non-metric 

multidimensional scaling ordination showed that modern and sedimentary 

communities are statistically different. At first sight, none of the reconstructed 
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assemblages from ancient communities that we have studied can be considered to 

reproduce the modern assemblages. This suggests that more exhaustive studies must 

be performed to create modern community-DNA analogues for all the Phyla. However, 

some differences in abundances between sedimentary and modern samples might be a 

result of a differential preservation rate of the nuclear and mitochondrial DNA along 

time in the different taxa. Our results suggests that the 18S fragment is degraded 

earlier for plants than for animals, being COI better preserved. For example, the low 

detection rate of 18S from Bryophyta sequences cannot be due to gaps in reference 

databases, since they have been abundantly identified from the modern samples. This 

would reinforce the idea that mitochondrial DNA is more protected than nuclear DNA 

from degradation. But the differential detectability could also be just a result of the 

DNA abundance. As mitochondrial DNA, COI has in general a higher number of copies 

per cell (Pääbo et al., 2004). On the other hand, the copy number of tandem rRNA 

sequences for 18S may considerably vary between different eukaryotic groups (Zhu et 

al., 2005). As a result, the quantitative comparison of ancient community composition 

based on sequence abundances must be interpreted with caution. Although their time 

scales were broader, Epp et al (2012) also found a lower amount of bryophyte DNA on 

sedimentary samples while the recent soil samples had high abundances. They 

suggested that Bryophytes contain secondary metabolites that enhance DNA 

degradation (e.g. Xie and Lou, 2009) and this could potentially cause proportionally 

higher DNA degradation rates after cell lysis in bryophytes compared to other 

organism groups. RNA metabarcoding would be a suitable technique to be used in 

future studies for assessing just communities of living organisms, whose results could 

be then compared with the results from total DNA (Guardiola et al., 2016; Lejzerowicz 

et al., 2013).   

 

5.4.3. Palaeoenvironmental reconstruction and ancient DNA 

 In general, the reconstruction obtained from 18S ancient-DNA (Figure 5.3) 

cannot reach high taxonomical resolution and, with some exceptions, most of the 

recovered taxa are in the level of family or above. This might constrain the 

interpretation and comparison to macroremain and pollen data. However, we find that 
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the studied proxies offer complementary information. In this section the discussion 

will be structured into the five studied depths. 

BSN-31: In this case, the Sphagnum macroremain proportions could be related 

with the Bryophyta sequences while Polytrichum might correspond to the MOTU 

assigned to Bryopsida. On the other hand, Vaccinium sequence also fits with the  

Ericaeae. The high amounts of Pinus and Abies pollen match with the sequences of 

Pinidae, which are detected along the whole record. Indeed, the relatively high 

proportions of Poaceae pollen also coincide with the sequences of Pooideae and 

Petrosaviidae. On the other hand, the presence of Desmidiales, Streptophytina, 

Chlorophyceae and Scenedesmaceae suggest a moist environment, also corroborated 

by the presence of COI sequences of Bacillariophyceae and Porifera (Table S5, 

supplementary material). 

 BSN-109: The sequences of Cyperoideae, Pooideae and Poaceae would match 

with the higher amounts of pollen from Cyperaceae and Poaceae. The detection of 

Betula and Pinidae agrees with the presence of the mixed forest based on the pollen 

frequencies. The sequences of Equisetum and Bryophyta would match the Equisetum 

and Sphagnum macroremains. Regarding the aquatic system, Desmidiales might 

indicate some water table, which is in line with the pond scenario that describes 

Garcés-Pastor et al (2017) for this period. 

 In BSN-160, both DNA sequences and pollen point to a mixed pine and 

deciduous forest. On the other side, the high amounts of Cyperoideae pollen and 

aquatic green algae would match with the palaeoenvironmental interpretation of a 

shore environment. This is corroborated by the sequences of Desmidiales, Rhodophyta, 

Bryophyta and the freshwater Porifera, which might also suggest more moisture. 

For BSN-220, Betulaceae and Sapindaceae sequences suggest the presence of a 

montane forest with some Pinidae, coinciding with the higher pollen frequencies of 

Betula (Garcés-Pastor et al., 2017). On the other side, the low abundances of 

Cyperoideae sequences match with the low proportions of Cyperaceae pollen. 

Regarding the aquatic system, the presence of Rhodophyta sequences and 

Botryococcus agree with some water presence. 

 Even though BSN-265 has the lowest DNA abundances, we could extract some 

information. The Pooideae sequences agree with the steppe-like grasslands 
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represented by Poaceae and Artemisia. While the low proportions of Betula sequences 

coincide with the Betula pollen. On the other hand, the sequences of Desmidiales 

agree with the open water environment also reported by high proportions of 

Botryococcus and Pediastrum by Garcés-Pastor et al. (2017). 

 Our results highlight that the interpretation of ancient sedimentary DNA does 

not entirely overlap with the reconstruction based on pollen and macroremains. 

However, the combination of both reconstructions reveals more detailed information of 

plant palaeocommunities than that achieved by each individual approach (Jørgensen 

et al., 2012). Pollen analysis may provide information at a more regional level, while 

macroremains and sedimentary DNA may provide more local details. A higher 

taxonomic resolution for plant species could be probably obtained from using different 

metabarcoding markers, such as chloroplast markers (Parducci et al., 2017).  

  

5.4.4. Future uses of peat bog metabarcoding for palaeoenvironmental 

reconstructions. Pros and cons and things to improve 

 Our results suggest that 18S and COI markers are useful to study modern and 

past peat bog communities. A multi-marker approach is recommendable in order to 

cover the entire community biodiversity (Epp et al., 2012). Currently, the most 

significant limitation in the analysis of community and sedimentary DNA is the lack of 

exhaustive reference databases. Such collections must contain a broad range of 

barcode sequences derived from accurately identified species and covering all the 

major lineages of Eukaryota. Nevertheless, DNA identifications can be more easily 

standardized and are more objective in comparison with morphology-based 

identification approaches (Jørgensen et al., 2012). 

 In this study, 18S has provided more useful information about past communities 

than COI, which was mainly restricted to Metazoa. The use of COI would allow a 

precise assignment of animal communities provided that a complete reference 

database is available (Wangensteen and Turon, 2016). However, with the current 

reference database available for Pyrenean peat bog communities, the taxonomic 

results from COI are scarcely better than those from 18S. This issue will undoubtedly 

be solved in the future by improving the barcoding efforts. In order to obtain a more 
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accurate description of the vegetation palaeoenvironments, it would be desirable to 

use some chloroplast marker which allows for a better taxonomic resolution than 18S 

for higher plants. However, the markers used in this work have allowed to obtain some  

insights on ancient communities and results which broadly agree with those obtained 

from morphological analysis of pollen and macroremains. The present work is an 

exploratory study with 18S and COI makers on a small number of sedimentary 

samples. More extensive studies with higher resolution will undoubtedly allow for a 

more detailed comprehension of the information provided by the DNA from past 

communities. 

 Morphological palaeoenvironmental studies to date are mostly based on the 

identification of vegetal remains. Studies in palaeoecology of other organisms such as 

Arthropoda or other Metazoa have been limited to the scarce biological traces that 

remain in the sediment. With the proper analysis of metabarcoding data based on 

modern analogues, this DNA technique has the potential to offer a new 

palaeoenvironmental multi-approach of diverse taxa from the same period. Such 

approach would allow a better understanding of the relationships between animal and 

vegetation communities and their response to past climatic shifts. The advantages of 

metabarcoding to study a large number of taxa simultaneously without previous 

morphological expertise is obvious in the case of understudied or complex groups, 

where finding taxonomic expertise is often impossible. 

 Although the use of metabarcoding does not depend on taxonomic expertise, it 

requires some bioinformatic skills. The laboratory procedures and data collecting may 

be considerably shorter than for morphological analyses, but the use of contrasted 

bioinformatic pipelines and reliable reference databases is crucial for obtaining 

accurate results. Further investigations are also needed in order to study how DNA 

degradation affects the different markers for different taxa. For example, in this study 

we have seen that the DNA from Sphagnum and other mosses is probably not well 

preserved and might be undetectable in ancient samples with the used markers. 

 Another limiting factor is the scarce knowledge about the autoecology of many 

small-sized metazoan groups, with some notable exceptions such as chironomids. Once 

the reference databases are improved and the sequences are assignable to the genus or 

species level, the ecological interpretation of this data will need current information on 
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species distribution and autoecological preferences. This knowledge would allow the 

acquisition of reliable ecological information from a number of independent  

taxonomical sources such as mites, collembola, copepoda, ostracoda and many other 

small arthropods and metazoans, which would provide robust inferences of 

palaeoecological reconstructions from the detection of metazoan species (Pansu et al., 

2015). 

 This is the first attempt to sequence DNA of ancient samples from the Pyrenean 

peat bogs. We were able to amplify DNA and get useful sequencing information from 

samples spanning a period of 10000 years. However, the number of sedimentary 

samples analysed in this preliminary work is scarce and does not allow to obtain 

robust conclusions. It would be desirable to perform more exhaustive samplings in the 

future. 

 



 

168 

5.5 References 

 

Andersen, R., Chapman, S., Artz, R., 2013. Microbial communities in natural and disturbed 

peatlands: A review. Soil Biol. Biochem. 57, 979–994. doi:10.1016/j.soilbio.2012.10.003 

Anderson-Carpenter, L., 2011. Ancient DNA from lake sediments: bridging the gap between 

paleoecology and genetics. BMC. 

Asemaninejad, A., Thorn, R., Lindo, Z., 2017. Vertical distribution of fungi in hollows and 

hummocks of boreal peatlands. Fungal Ecol.Bellemain, Eva, et al. "Fungal 

palaeodiversity revealed using high‐ throughput metabarcoding of ancient DNAfrom 

arctic permafrost. "Environmental microbiology15.4 (2013): 1176-1189. 

Boyer, F., Mercier, C., Bonin, A., Bras, Y. Le, 2016. obitools: a unix‐ inspired software package 

for DNA metabarcoding. Mol. Ecol. 

Cambra, J., 2015. Micro-scale distribution of algae in a Pyrenean peat-bog, Spain. 

Hidrobiológica. 

Epp, L., Boessenkool, S., Bellemain, E., 2012. New environmental metabarcodes for analysing 

soil DNA: potential for studying past and present ecosystems. Molecular. 

Garcés-Pastor, S., Cañellas-Boltà, N., Clavaguera, A., Calero, M.A., Vegas-Vilarrúbia, T., 2016. 

Vegetation shifts, human impact and peat bog development in Bassa Nera pond (Central 

Pyrenees) during the past millennium. The Holocene DOI: 10.11. 

Garcés-Pastor, S., Cañellas-Boltà, N., Pèlachs, A., Soriano, J-M., Pérez-Obiol, R., Pérez-Haase, 

A., Calero, M-A., Andreu, O., Escolà, N., Vegas-Vilarrúbia, T. 2017. Environmental history 

and vegetation dynamics in response to climate variations and human pressure during 

the Holocene in Bassa Nera, Central Pyrenees. Paleo3. 

Guardiola, M., Wangensteen, O., Taberlet, P., Coissac, E., 2016. Spatio-temporal monitoring of 

deep-sea communities using metabarcoding of sediment DNA and RNA. PeerJ. 

Jersabek, C., Brancelj, A., Stoch, F., 2001. Distribution and ecology of copepods in 

mountainous regions of the Eastern Alps. Dev. Ecol.  

Jørgensen, T., Haile, J., Möller, P., Andreev, A., 2012. A comparative study of ancient 

sedimentary DNA, pollen and macrofossils from permafrost sediments of northern Siberia 

reveals long‐ term vegetational stability. Molecular. 

Lejzerowicz F, Esling P, Majewski W, Szczucinski W, Decelle J, Obadia C, Martines Arbizu P, 

Pawlowski J. 2013. Ancient DNA complements microfossil record in deepsea subsurface 

sediments. Biology Letters 9:20130283 DOI 10.1098/rsbl.2013.0283. 

Mahé, F., Rognes, T., Quince, C., Vargas, C. De, 2015. Swarm v2: highly-scalable and high-

resolution amplicon clustering. PeerJ. 

Mann, M., 2002. The value of multiple proxies. Science, vol. 297, no 5586, p. 1481-1482. 

Mauquoy, D., Hughes, P., van Geel, B., 2010. A protocol for plant macrofossil analysis of peat 

deposits. Mires Peat 7. 

Oksanen, J., Blanchet, F.G., Kindt, R., et al. 2016. vegan: community ecology package. R 

package version 2.3-3.a 

Pääbo, S., Poinar, H., Serre, D., 2004. Genetic analyses from ancient DNA. Annu. Rev. 



169 

Pansu, J., Giguet-Covex, C., Ficetola, G., 2015. Reconstructing long‐ term human impacts on 

plant communities: an ecological approach based on lake sediment DNA. Molecular. 

Parducci, L., Bennett, K., Ficetola, G., Alsos, I., 2017. Ancient plant DNA in lake sediments. 

New. 

Pawlowski, J., Esling, P., Lejzerowicz, F., 2014. Environmental monitoring through protist 

next‐ generation sequencing metabarcoding: assessing the impact of fish farming on 

benthic foraminifera communities. Mol. Ecol. 

Pedersen, M., 2015. Ancient and modern environmental DNA. Phil. Trans. R. 

Pedersen, M., Ginolhac, A., Orlando, L., Olsen, J., 2013. A comparative study of ancient 

environmental DNA to pollen and macrofossils from lake sediments reveals taxonomic 

overlap and additional plant taxa. Quat. Sci. 

Pèlachs, A., Pérez-Obiol, R., Soriano, J.M., Pérez-Haase, A., Dinàmica de la vegetació, 

contaminació ambiental i incendis durant els últims 10.000 anys a la Bassa Nera (Val 

d’Aran), 2016,X Jornades sobre Recerca al Parc Nacional d’Aigüestortes i Estany de Sant 

Maurici 

Pérez-Haase, A., Ninot Sugrañes, J., 2006. Caracterització florística i ecològica de les molleres 

de la Nassa Nera (Aiguamòg). VII Jornades sobre Recer. al Parc Nac. d’Aigüestortes i St. 

Maurici. 

Pérez-Haase, A., Ortuño, E., Sugrañes, J. 2010. Diversitat de comunitats vegetals a les 

molleres de la Vall d’Aran (Pirineus centrals). Acta Bot. 

Pérez-Haase A. and Ninot Sugrañes J. 2017. Hydrological heterogeneity rather than water 

chemistry explain high plant diversity and uniqueness of a Pyrenean mixed mire, Folia 

Geobot 2017, 1:18 DOI: 10.1007/s12224-017-9291-2. 

Schatz, H., and Behan-Pelletier, V. 2008. Global diversity of oribatids (Oribatida: Acari: 

Arachnida). Hydrobiologia, 595(1), 323-328. 

Smol, J.P., Birks, H.J.B., Last, W.M., 2001. Tracking Environmental Change Using Lake 

Sediments. Volume 3: Terrestrial, Algal and Siliceous Indicators, Develkopments in 

Paleoenvironmental Research. 

Thorp, J., Covich, A., 2009. Ecology and classification of North American freshwater 

invertebrates. 

Wangensteen, O., Turon, X., 2016. Metabarcoding techniques for assessing biodiversity of 

marine animal forests. Mar. Anim. For. Ecol. benthic. 

Wangensteen et al., (in review) 

 

Xie, C., Lou, H., 2009. Secondary metabolites in bryophytes: an ecological aspect. Chem. 

Biodivers. 

 

Zhu, F., Massana, R., Not, F., 2005. Mapping of picoeucaryotes in marine ecosystems with 

quantitative PCR of the 18S rRNA gene. FEMS Microbiol. 



 

170 

 



171 

 

General discussion 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Cuando creíamos que teníamos todas las respuestas, de pronto, cambiaron todas las 

preguntas" 

- Mario Benedetti - 
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 In this section, a general discussion of all the results obtained in the preceding 

chapters will be presented together with former palaeoenvironmental analyses carried 

out in the Pyrenees. The temporal framework ranges from the early Holocene to the 

present. Chapter 2 studies the last millennium at a high resolution and proposes a 

palaeoenvironmental tool that is applied in Chapter 3 to study vegetation dynamics 

during the whole Holocene. Whereas Chapter 4 focus in the relationship between the 

pollen of Bassa Nera, regional mountain pine forests and climate from the Little Ice 

Age to the 21th century. Chapter 5 provides a description of current and past 

eukaryotic communities in Bassa Nera. As a result, this section has been divided into 

six subsections, corresponding to the main topics covered in this thesis: 

palaeoenvironmental history, anthropic pressure, climate and vegetation interactions, 

palaeoenvironmental tools, DNA techniques in palaeoecology and 

palaeoenvironmental reconstructions. Finally, possible directions of future work for 

palaeoecological research in the Pyrenees will be proposed in this section.  

 

6.1 Palaeoenvironmental history of Bassa Nera 

 The palaeoecological reconstructions of the Bassa Nera sequences studied in 

this thesis have provided a robust background on vegetation dynamics and ecological 

changes in this lacustrine system since the onset of the Holocene. Vegetation 

responses to environmental shifts have been addressed in Chapters 2 to 4, based on 

different temporal frames and using diverse palaeoecological techniques. From the 

onset of the Holocene to Mid-Holocene, environmental changes in Bassa Nera have 

been mainly driven by climatic variability (Chapter 3). However, the appearance of 

charcoal around 6700 cal yr BP suggest that fires might have also influenced the 

vegetation dynamics and resilience. 

 

6.1.1 Early Holocene (10.000-7000 cal yr BP) 

 The results of Chapter 5 have revealed that by the onset of the Holocene (10.211 

cal yr BP), Bassa Nera was an open water lake surrounded by steppe-like grasslands 

with a relatively nearby birch forest. This scenario might be the transition from the 

steppe taxa that abounded during the colder and arid Younger Dryas to the expansion 
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of deciduous forest in Central Pyrenees (González-Sampériz et al., 2006; Jalut et al., 

1992; Reille and Lowe, 1993). On the other hand, the high proportions of Betula agrees 

with the early phase of birch colonization in the Pyrenees during the Late Glacial-

Holocene transitional period (Cunill et al., 2013; Gil-Romera and González-Sampériz, 

2014; Reille and Lowe, 1993). Shortly after, between 10.070 and 7343 cal yr BP, a 

mixed Corylus and Betula forest established in BSN catchment, prompted by warmer 

summer temperatures (Anderson et al., 1988; Cacho et al., 2010; Heiri et al., 2003). 

This is in line with the Betula-Quercus-Corylus succession registered by several 

authors (González-Sampériz et al., 2006; Jalut et al., 1992; Montserrat, 1992; Reille 

and Lowe, 1993) in all records from both slopes of the Pyrenees. However, our results 

suggest a poor Quercus development, agreeing with González-Sampériz et al. (2006) in 

Portalet. Probably Corylus dominated over Quercus because of the altitude and strong 

oceanic influence. 

 Some fires occurred between 9968 and 8548 cal yr BP in Bassa Nera. Given the 

lack of other anthropic indicators, they might be attributed to natural fires prompted 

by the large amounts of deciduous biomass, as occurred in the nearby Portalet peat 

bog and Basa de la Mora Lake in the same period (Lasheras-Álvarez and Sanz, 2013; 

Pérez-Sanz et al., 2013) (Figure 6.1). 

 

6.1.2 Mid-Holocene (7000-4000 cal yr BP) 

 Deciduous forest decreased between 7343–5832 cal yr BP, while Abies appeared 

and rose by 6356 cal yr BP. The appearance of Abies is coherent with the east-to-west 

colonization of the Central Pyrenees (Pèlachs et al., 2009; Resina et al., 2016), with 

some chronological differences that might be related with their location and altitude 

(Figure 6.1). Around 6800 cal yr BP, the records of Bassa Nera show periods of 

subaerial exposure or hydric fluctuations (Chapter 3) that might point to a transition 

between aquatic and littoral scenarios. This period has been recorded by a transition 

from lakes to peat systems in nearby localities such as Portalet and Estanilles peat 

bogs and Burg lake (González-Sampériz et al., 2006; Pèlachs et al., 2011; Pérez-Obiol 

et al., 2012).  

 A higher fire frequency is inferred from the noteworthy increment of charcoal 

around 6200 cal yr BP. By 5832-3912 cal yr BP, a downward shift of deciduous forests 



 

Figure 6.1. Overwiev of sediment results (pollen, algae, macrorremains) and resultant climate and environmental inferences of Bassa Nera and 

nearby lacustrine and peat bog sequences from the Central Pyrenees and pre-Pyrenees recording the last 1000 years. Dark Ages Cold Period (DACP), 

Medieval Climate Anomaly (MCA), ‘Little Ice Age (LIA)’ and Industrial Revolution (IR). Vegetal associations – Mixed forest: Pinus, Abies, Betula, 
Corylus and deciduous Quercus; Conifer forest: Pinus and Abies; Montane forest: Corylus and deciduous Quercus. Human pressure Crops: Cerealia-t 

and Secale cereale; Grazing: Rumex, Chenopodiaceae, Urtica and Potentilla; Human-related taxa: Plantago, Asteraceae and Artemisia. References: 

Portalet (González-Samperiz et al., 2006;Gil-Romera et al., 2014); Bassa de la Mora (Pérez-Sanz et al., 2013); Bassa Nera (Garcés-Pastor et al., 2016, 

2017); Redon (Pla and Catalan, 2005); Burg (Bal et al. 2011;Pèlachs et al. 2007;2011); Estanilles (Pérez-Obiol et al., 2012;Cunill et al., 2013); Bosc 

Estanyons (Ejarque et al., 2010; Miras et al., 2007); PNAESM (Catalan et al., 2012; Rodríguez 2011)
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prompted a transition from deciduous to coniferous taxa in Bassa Nera catchment. 

The Abies expansion and Fagus appearance by 4492 cal yr BP might have been a 

result of a shift to rainy and warm summers. Where Abies rose in altitude to avoid the 

warming while a change to greater precipitation might have promoted a downward 

displacement of optimal deciduous habitats (Alba-Sánchez et al., 2010; Pèlachs et al., 

2011). A replacement of Ulmus by Alnus in 5286–4054 cal yr BP in Bassa Nera might 

have been favoured by the establishment of emerged lands and lakeshore 

environments (Pérez-Obiol et al., 2016; Revelles et al., 2015) and is coherent with the 

decline of elm in nearby Redon lake (Pla and Catalan, 2005) and the rest of the 

Pyrenees (Montserrat, 1992; Reille and Lowe, 1993) (Figure 6.1).                   

                                              

6.1.1 Late Holocene  

 During the last part of the Holocene Bassa Nera was mostly dominated by 

coniferous taxa with some montane forest. However, changes in the montane ratio 

have allowed to infer upward shifts of the montane boundary along this period. By 

3000 cal yr BP, fires and agropastoral indicators evidence anthropic pressure though 

forest clearance (Chapter 3). On the other hand, the aquatic system remained as a 

pond with shallow waters. 

 The last millennium could be studied with pollen and diatoms (Chapter  2). As a 

result, more information about the aquatic environment was obtained. Results suggest 

that aquatic habitats progressively shrank through time due to changes in 

hydrological conditions. During the Medieval Climate Anomaly (1149-653 cal yr BP) 

montane forest was close to Bassa Nera catchment and there were some anthropic 

influence through forest clearance and local to regional crops. Regarding the aquatic 

system, changes in water level can be appreciated, possibly as a result of strong 

seasonality and hydric fluctuations. The unstable, cold and humid conditions during 

the MCA–LIA transition prompted a downward shift of the montane vegetation and a 

continuity of hydrological fluctuations, with some regional fires for crops and grazing. 

The second phase of the LIA was characterised by an intensification of human 

disturbance through grazing. On the other hand, the aquatic system presented 

shallower waters probably because of the infilling process and the development of the 
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peat bog in the pond edges. The colder temperatures of this phase of LIA might have 

favoured the peat accumulation in Bassa Nera (Martınez-Cortizas et al., 1999). By the 

onset of the warmer and more arid period of the Industrial Revolution, which gave 

way to the Current Global Warming, a mixed forest dominated the catchment, with 

frequent regional fires and a continuity of shallow waters.   

  

6.2 Anthropic influence in Bassa Nera 

 Bassa Nera has passed through short exploitation phases interspersed with 

periods of land abandonment and grazing, possibly as a result of the synergic effects 

between climate changes and human activity (Gassiot et al., 2012; Jalut et al., 2009). 

Our results suggest that the farming activities in BSN and their influence in the 

environment became evident during the Bronze Age and intensified in the Roman 

period and Middle Ages. 

 The first evidences of anthropic influence in Bassa Nera catchment are grazing 

activities, inferred by agropastoral indicators and charcoal from 7343 to 5832 cal yr 

BP. This is coherent with agropastoral activities and forest clearance recorded in the 

nearby records of Sardo cave (Gassiot et al., 2012), Bosc dels Estanyons and the 

Estanilles peat bogs (Cunill et al., 2013; Miras et al., 2007) (Figure 6.1). Between 5190 

cal yr BP and 2000 cal yr BP societies established a cereal based agriculture in Bassa 

Nera. Although the first record is a punctual event (5190 cal yr BP), it coincides with 

cereal seeds found in Sardo cave and Cerealia-t pollen recorded in the Burg lake and 

Madriu valley records (Gassiot et al., 2014; Miras et al., 2007; Pèlachs et al., 2007). In 

agreement with the appearance of cereals in other studies of the Central Pyrenees and 

coinciding with Magny (2004), the development of cereal-based subsistence in BSN 

could have been prompted by the rise of the regional population and by dry conditions. 

The following period (5190–4300 cal yr BP) gave way to a raise in grazing activites 

and matches with an intensification of archaeological settlements found in PNAESM 

(Sardo cave, Estany de la Coveta I, Obagues de Ratera and Saboredo)(Gassiot et al., 

2014). These period of high mountain exploitation in the Central Pyrenees (Gassiot et 

al., 2014; Jalut et al., 2000; Pèlachs et al., 2007) was probably prompted by the 

increased frequency of dry summers around 4600–4300 cal yr BP in the 
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Mediterranean area (Azuara et al., 2015; Jalut et al., 2000). A rise of fires and forest 

management through forest clearance and occasional crops in Bassa Nera and nearby 

valleys characterise the Bronze Age (4230–3500 cal yr BP) (Figure 6.1). The coeval 

spread of Fagus fits with its expansion in the Pyrenees and Cantabrian mountains 

(Magri, 2008; Montserrat, 1992; Pérez-Sanz et al., 2013). The rise of Fagus might have 

been favoured by the combination of the resulting open spaces from anthropogenic 

disturbance with a change to higher precipitation (Miras et al., 2007; Pèlachs et al., 

2009). During the Late Bronze Age (3150–2650 cal yr BP), the rise of cereals and 

agropastoral indicators suggest the establishment of agricultural landscapes in BSN. 

This agrees with the record of higher anthropic pressure through farming and 

pasturing activities found in the nearby Burg, Estanilles and Bosc dels Estanyons peat 

bogs (Figure 6.1). Since that moment, Cerealia-t did not reappear in BSN until the 

Roman Period (2000 cal yr BP). By the Medieval Climate Anomaly (1100 cal yr BP) an 

intensification of agriculture and livestock occurred in Bassa Nera, where societies 

used fire to maintain open spaces (Bal et al., 2011; Pérez-Obiol et al., 2012). This 

coincides with an increase of human settlements in PNAESM and the Central 

Pyrenees (Catalán et al., 2012)(Figure 6.1 and 2.6). Around 800 cal yr BP, the 

appearance of Secale cereale together with agropastoral and arboriculture indicators 

suggest crop diversification and an increase of pastures. Also recorded in adjacent 

regions (Cunill et al., 2013; Miras et al., 2010; Pérez-Obiol et al., 2012) (Figure 2.6). By 

the end of the MCA-LIA transition (~ 450 cal yr BP), the drop of crops and the 

continuity of some grazing evidences suggest that people might have abandoned the 

farming activities in high ranges because of the increasingly colder conditions while 

some livestock persisted. However, around 120 cal yr BP, the frequent fires, forest 

clearance and a peak in Poaceae might be the result of an increased need for supplies 

and raw materials during the Industrial Revolution. Later, the disappearance of 

cereals and the reduction of agropastoral pollen indicate crop abandonment, probably 

as a result of the social and economic changes. The abandonment of rural lands and 

the establishment of Aiguestortes i Estany de Sant Maurici National Park in AD 1955 

and the protection of its surroundings in AD 1990 favoured the expansion of arboreal 

taxa, such as Pinus (Améztegui et al., 2010; Bal et al., 2011).  
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6.3 Climate pressures in vegetation 

  In this thesis we have studied the dynamics of subalpine forests of Central 

Pyrenees during the last 700 years to assess the relationships between palynological 

and dendrochronological records (Chapter 4). Our results suggest a significant 

correlation between the integrative montane pollen ratio and the pine tree-ring growth 

of subalpine and alpine forests located less than 10 km from Bassa Nera. A high 

correlation between the ring-width and temperature reconstructions (NHTA and PTA) 

during the second phase of the LIA (1700-1850) suggest that radial growth of pines is 

more sensitive to the low temperatures during the past cold periods than to recent 

warming. In general, the tree-ring growth correlated with the temperature 

reconstructions (NHTA, PTA) and the solar grand minima of Maunder and Dalton, 

which it is in line with other studies performed on the Pyrenees (Büntgen et al., 2008; 

Dorado-Liñán et al., 2012).   

 On the other hand, PTA was the only reconstruction that correlated during the 

subperiods of 1850-1899 and 1950-1999, coinciding with periods of significant 

fluctuation of water availability and extreme precipitation events. This suggests that 

pine growth responded to a general climatic pattern (NHTA) modulated by local 

climatic forcings in the Iberian Peninsula and the Pyrenees (PTA). Regarding the 

climatic data of the last century, our results suggests that low temperatures before 

and at the end of the growing season do affect the tree-ring growth. Comparing the 

effect of the studied climatic variables, we observed a higher influence of temperature 

in radial growth, followed by summer precipitations (Tardif et al., 2003). Moving 

correlations for shorter intervals showed a shift in the most influential months 

between the first and second half of 20th century. The spring temperatures prevailed 

as the most important drivers of pine tree growth over the second half of the century, 

as a result of the increase of warmer conditions (López-Moreno et al., 2010) and 

reduced frequency of extreme winter cold events (Andreu et al., 2007; Tardif et al., 

2003). 
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6.4 Uses of the montane ratio as a palaeoenvironmental tool 

6.4.1 Altitudinal vegetation shifts 

 The montane-subalpine ratio has proven to be a good indicator of local 

vegetation altitudinal shifts with potential to be used as a palaeoenvironmental tool 

(Chapter 2) (Garcés-Pastor et al., 2016). However, high mountain landscapes are 

characterised by a contrast of vegetation mosaics (Loidi, 2017) and the current 

definition of the montane ratio might not include all of them. Moreover, studies such 

as Cañellas-Boltà et al (2009) have proven that some kinds of vegetation communities 

such as open landscapes might lead to concentrate higher amounts of pollen from 

lowlands transported by the upward flow. As a result, more studies should be 

performed in order to improve the calibration of this ratio. For example, more pollen 

studies should be performed with other altitudinal transects with diverse valley 

orientations of Central Pyrenees and vegetation diversity to find additional suitable 

pollen indicators. Calibrating that information with the current montane ratio would 

allow to embrace a higher vegetation diversity with more regional information. After 

creating a solid baseline of knowledge in the Pyrenees, this approach could be 

compared with other mountain ranges of the Iberian Peninsula or the Alps. 

Furthermore, it could be also interesting to explore the relationship between this ratio 

and temperature, in order to perform inferences. A further step could be to introduce a 

similar ratio using results from environmental DNA. Given that the DNA gives a more 

local information than pollen (Jørgensen et al., 2012), it might be less useful to detect 

altitudinal shifts in vegetation. But it could be very interesting to establish baselines 

for whole eukaryotic communities, to relate those communities to environmental 

parameters in order to detect good indicator eukaryotes and to monitor changes due to 

the ongoing climate warming, as well as to apply them as modern analogs to past DNA 

communities (Chapter 5).  

 

6.4.2 Vegetation response to the North Atlantic influence 

 Furthermore, the relationship between the montane ratio and global climatic 

signals for the Northern hemisphere, such as the ice rafted debris (IRD), has allowed 

to better understand the vegetation response to North Atlantic influence and other 
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pressures such as fires or anthropic influence (Chapter 3). During the Holocene 

Optimum (10.200-5300 cal yr BP) montane ratio and IRD trends were similar, and this 

might be related to the growth of deciduous taxa in response to a regional rise of 

moisture in the Northern Hemisphere (Pèlachs et al., 2011). By the end of Bond event 

4, the montane ratio starts to decouple from IRD. Fires and climate might have 

affected the vegetation resilience of Bassa Nera and hampered its response to climate, 

prompting a progressive downward shift of montane vegetation in the catchment. 

 Although significant environmental changes occurred in BSN during the entire 

record, our results suggest that the Loss on Ignition (LOI) at BSN is less sensitive to 

global climate changes than at Burg. This shows a high influence of local factors in 

BSN, which might have hidden any direct relationship between IRD oscillations and 

BSN peat bog development (Mäukiläu, 1997). These different scenarios show how local 

influence could limit the suitability of LOI as a paleoclimate indicator in the case of 

peat bog systems. 

 

6.4.3 Inference of tree growth from palynological indices 

 Montane ratio has also showed a significant correlation with ring-widths of 

pines from closer localities (Chapter 4), suggesting a sensitivity of those two proxies to 

temperature changes at local scales. This relationship could be used as a 

palaeoenvironmental tool to infer dendrochronologies for periods longer than those 

covered by chronologies at multidecadal resolution.  

 Given that the montane index is more useful at local scales, it could be 

interesting to carry out more local studies in order to better understand the 

relationships between radial growth and site conditions along ecological gradients. 

This would provide a proper background that would allow to improve the future 

climate tree-growth models in high mountain ranges. 
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6.5 DNA techniques in palaeoecology 

 Metabarcoding techniques have allowed to perform fast and objective ecological 

studies of broader taxonomical range (Hajibabaei et al., 2011; Taberlet et al., 2012), 

allowing the simultaneous detailed characterization of a wide array of diverse taxa 

present in the studied ecosystems. Our results have showed that this technique is 

potentially useful to study past and modern Eukaryotic peat bog communities, but it 

still presents some limitations. One of them is the natural sequence variability of the 

marker, that would allow to identify the detected sequences to a higher taxonomic 

resolution. In this study we have used COI and 18S. COI has a high taxonomic 

resolution, while the latter usually assigns sequences to higher ranks such as family 

or order (Guardiola et al., 2016). The second issue is the taxonomic gaps in current 

reference databases. This is a matter of economic resources and time to barcode more 

organisms and improve the databases. By improving the barcoding efforts, this issue 

will undoubtedly be solved in the future. There are additional problems related to 

possible contaminations during the DNA extraction and amplification procedures. But 

one crucial issue that needs to be considered for palaeoecological molecular studies is 

the presence of living edaphic communities in sedimentary samples. 

  In general, sedimentary DNA studies rely on the assumption that the age of the 

DNA recovered is the same as the age of the sediments in which it is found. This might 

be true when studying macroorganisms that are not part of the edaphic community. 

For examples with plants, even though roots can reach a certain depth. But universal 

primers such as 18S and COI are able to amplify a wide range of microbial taxa, which 

may belong to living communities. This problem is worsened by the fact that DNA 

from living organisms may be present at much higher concentrations than DNA from 

old remains. Therefore, sequences from edaphic organisms should be removed from 

the analyses in order to get more realistic reconstructions of the fossil communities 

and to compare them with the modern assemblages.  

 The results with edaphic DNA might compromise the use of some proxies that 

were used in palaeoecology, since we cannot assure if they come from living or dead 

communities. For example, parasitic and saprophyte fungi, mites, testate amoebae, 

and other non-photosynthetic organisms that feed on bacteria. Therefore, more studies 
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must be performed to better understand the biology of those organisms for a proper 

interpretation of those proxies. 

 

6.6 Palaeoenvironmental reconstructions 

 Morphological palaeoenvironmental studies from aquatic sediments are mostly 

based on the identification of pollen and vegetation remains. However, these proxies 

present some issues that could compromise the palaeoecological interpretation if they 

are not taken with caution. 

 Pollen assemblages comprise a distance-weighted integration of surrounding 

vegetation. They incorporate pollen grains from a variety of local and distant sources 

and are affected by the transit of ascending air currents that transport pollen from 

lower-altitude vegetation belts (Jackson and Lyford, 1999). As a result, pollen records 

could present an overrepresentation of some taxa, as we have observed with Pinus in 

Bassa Nera (Chapters 2, 3 and 4), while other taxa might be underrepresented or 

absent. Therefore, it is important to perform local and regional studies with modern 

vegetation analogs in order to better understand local palaeoenvironmental pollen 

reconstructions (Cañellas-Boltà et al., 2009). On the other hand, although pollen 

analyses have recently reached better taxonomic resolution because of improved 

identification keys, the work is still time-demanding, and the occurrence of 

morphological similarities allow taxonomic resolution only to the genus or family level 

in most cases, rarely to the species level (Faegri and Iversen, 1989; Jackson and 

Williams, 2004). On the other hand, macrofossils identification can reach lower 

taxonomic levels but the identification of the remains depends on the nature of the 

preserved material. There is also a bias due to differences in the tissues preservation, 

where seeds and buds use to be the best preserved and identifiable. By contrast, 

macroremains are much less common than pollen (Birks and Birks, 2000), and a 

species absence in the record does not necessarily indicate its absence from the local 

vegetation. Then, pollen has been mainly used to assess regional environmental 

questions, while macroremains allow a more local study. 

 On the other hand, metabarcoding techniques may use chloroplast markers like 

TrnL to obtain a broad register of the past vegetation communities. This DNA 
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technique can help to overcome the problems in taxa identification providing higher 

taxonomic resolution and, in addition, elucidate the ancestry and genetic composition 

of ancient plant populations. Given that chloroplast sequences are essentially absent 

from angiosperm pollen (Birky, 1995), most of the amplified plant sequences come 

from locally deposited seeds or somatic tissues and represent flora from within the 

catchment area (Willerslev et al., 2003). So, sedimentary DNA seems to have an origin 

more similar to macroremains than pollen (Jørgensen et al., 2012; Parducci et al., 

2017; Pedersen et al., 2013), thus providing better information on local biodiversity in 

palaeoenvironmental reconstructions.  

 Many studies (Jørgensen et al., 2012; Parducci et al., 2015; Pedersen et al., 

2013) have revealed that sedimentary DNA data combined with other proxies such as 

pollen and macrofossils show a wider diversity of species than using those proxies 

separately. Therefore, DNA should be viewed as a complementary, rather than 

alternative, approach to assays of more traditional environmental proxies (Pedersen, 

2015). 

 Metabarcoding allows to study other eukaryotic organisms that leave scarce 

biological traces in the sediment and could not be studied at a morphological level. 

With the use of proper markers, this technique has the potential to offer a new 

palaeoenvironmental multi-approach of diverse taxa from the same period. For 

example, using COI and TrnL markers together we would be able to obtain data from 

proxies that have been used in morphology such as oribatid mites, chironomids, 

diatoms, cladocera or vegetation communities. This would allow to obtain a huge 

amount of information in a short time with high taxonomic resolution, and would open 

a vast range of possibilities to palaeoecology research. Another advantage of this 

technique is the traceability of the information, meaning that those sequences that 

could not be taxonomically assigned with current reference databases will be stored in 

public repositories, and they could be objectively identified in the future using updated 

databases. This is not possible when using partial morphological identification data 

which are recorded as unknown taxa in classical studies. 
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6.7 Future work 

 This study highlights the use of independent and complementary proxies for 

further palaeoecological studies. The incorporation of new techniques such as DNA 

metabarcoding and the use of palaeoenvironmental tools like modern analogs and 

vegetation ratios will provide valuable information that will help to perform more 

robust interpretations of past environmental dynamics.  

 This thesis opens some topics which deserve to be more deeply studied in the 

future. In this section we have seen the potential of montane ratio and the need to 

perform further studies regarding modern analogs, to calibrate this ratio with other 

high mountain vegetation assemblages and even with eukaryotic communities.  

 It would also be interesting to perform more palaeoenvironmental 

reconstructions of the Pyrenees peat bogs, in order to have more data about the 

influence of Northern Hemisphere Climate in the vegetation and the aquatic systems, 

as well as to infer patterns in the expansion of high-mountain forest taxa through the 

Pyrenees, such as Abies or Fagus.  

 Future studies for assessing the communities of living organisms are an 

important step for DNA palaeonvironmental studies. For this aim, RNA 

metabarcoding is a suitable technique that could be used. The same sedimentary 

samples can be analysed for RNA and DNA. Then, results could be compared with the 

results from total DNA to distinguish the living organisms from the dead (Guardiola et 

al., 2016; Lejzerowicz et al., 2013). The knowledge of living edaphic communities 

would provide a baseline to properly study the past eukaryotic communities. 
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Overall, the study of the environmental changes occurred in Bassa Nera catchment 

along the Holocene presented in this dissertation contributes to a better 

understanding of the palaeoecology of Central Pyrenees. This study highlights the 

sensitivity of high-mountain vegetation of the Central Pyrenees to climate changes 

and anthropic pressures.  

 In this sense, the main conclusions of this dissertation are grouped according to 

the general objectives described in the Introduction. 

 

Chapter 2:  

 Vegetation of the Bassa Nera catchment responded strongly to climate with 

altitudinal shifts and is most likely currently responding to current global 

warming. From the Medieval Climate Anomaly to the Medieval Climate 

Anomaly – Little Ice Age transition, the montane–subalpine ecotone reached the 

Bassa Nera catchment.  

 

 The montane ratio has proven the usefulness of good pollen indicators for 

revealing vegetation trends, providing a suitable tool for palaeoecological 

studies and for monitoring regional changes in natural communities in response 

to current global warming. 

 

 Human management of natural resources has changed over the past 

millennium. Through the Medieval Climate Anomaly and Medieval Climate 

Anomaly – Little Ice Age transition, people of the region used fires to open the 

forests for cultivating and grazing. With the Little Ice Age cooling, grazing was 

the main form of resource exploitation. During the Industrial Revolution, some 

farming activities were still conducted until the authorities restricted resource 

exploitation by creating the National Park. 

 

 Aquatic taxa, diatom communities and sedimentary units allowed to describe 

the peat bog development at the coring site and its infilling at approximately 

AD 1565. 
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 Consistent shifts in vegetation, fire activity and aquatic communities 

throughout the sequence are clearly related to climatic signals such as the 

Medieval Climate Anomaly and Little Ice Age phases.   

 

Chapter 3:  

 Changes in aquatic taxa, macroremains and sedimentary units show a non-

linear development of the peat bog over the larger previous lake. 

 

 Vegetation strongly responded to climate during the first half of the Holocene 

(10200–6700 cal yr BP) with punctual episodes of downward shift in the 

montane forest. Then, a transition period took place (5700–5250 cal yr BP) 

when climate and fires prompted a progressive downward shift of montane 

vegetation and its replacement by coniferous taxa, which has dominated the 

catchment with some mixed montane forest since 3912 cal yr BP. 

 

 The montane ratio has enabled the assessment of the potential correlations 

between changes in vegetal communities and the climatic forcing indicated by 

the Ice Rafted Debris index, and highlighted the different responses of the 

vegetation to the North Atlantic influence in Bassa Nera during the Holocene. 

 

 From 7300 cal yr BP onwards, charcoal and pollen indicators evidence human 

disturbance through grazing, pointing to the use of fire as a tool for forest 

clearance or maintaining open spaces. 

 

 The first cereal crops in Bassa Nera occurred around 5190 cal yr BP and 

coincided with dry climate conditions until the cultivation of cold resistant 

species like Secale cereale. Notable periods of anthropic pressure include the 

Late Bronze Age, with the establishment of agricultural landscapes, followed by 

the Roman Period and Middle Ages. 
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Chapter 4:  

 Significant correlations exist between the montane-subalpine pollen ratio and the 

residual tree-ring chronologies from nearby localities. This correlation is more reliable 

for trees located at high-elevation subalpine forests and treeline sites which are more 

sensitive to changes in temperature.  

 

 The association between tree-growth and climate fluctuations shows that the 

growth of mountain pine is mainly limited by low temperature.  

 

 The sensitivity of mountain pine has varied along the last 700 years, when 

temperatures were lower than today as shown by temperature reconstructions.  

 

 For the last century and using instrumental climatic data, we have been able to 

ascertain that tree-growth variability is more constrained by low than by high 

temperatures. However, this effect seems to be fading in recent decades.  

 

Chapter 5:  

 Our results suggest that 18S and COI markers are useful to study modern and past 

peat bog communities.  

 

 In this study, 18S has provided more useful information about past communities than 

COI, which was mainly restricted to Metazoa.  

 

 The markers used in this work have allowed to obtain some insights on ancient 

communities and results which broadly agree with those obtained from morphological 

analysis of pollen and macroremains.  

 

 The DNA from remains of Sphagnum and other mosses is probably not well preserved 

and might be undetectable in ancient samples with the used markers. 
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Annex 1 

 

Supplementary materials 

 
This section contains supplementary information for chapters 2, 4 and 5.  
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Supplementary material of Chapter 2 

 

Montane / subalpine ratio  
 

 
 

Figure S1. Altitudinal arrangement of vegetation belts determined in the study of Cañellas-Boltà et al. 

(2009) with the montane / subalpine ratio calculated for every sampling site. The mean value and the 

95% bootstrap confidence intervals (5,000 replicates) are shown for every sampling site. The red line 

separates the ratio values from montane to subalpine samples. (Modified from Cañellas-Boltà et al. 

2009). 

 

 In order to improve the palaeoecological interpretation of Bassa Nera and the 

Aiguamòg Valley, we introduce a pollen ratio based upon a modern proxy-calibration 

study of Cañellas-Boltà et al (2009) done in the same region. In that study, the 

relationships among modern pollen rain, vegetation and altitude were analysed along 

a transect ranging from 800 to 2600 m and including the headwaters of Garona river, 

a sector of Aiguamòg Valley and several sites of Garona Valley, Valarties Valley, and 

Circ de Colomèrs. All those sites are located within the peripheral zone of the 

‘Aiguestortes i Estany de Sant Maurici’ National Park, created in 1955 and extended 

in 1990. From the analysis of the pollen content of 33 moss samples collected along the 

altitudinal transect, four main pollen groups were distinguished in relation to their 

usefulness as vegetation and altitudinal indicators: very good indicators, good 
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indicators, non indicators and allochthonous pollen types. The first two groups were 

useful as indicator taxa for palaeovegetational and palaeoaltitudinal reconstruction, 

while the two latter should be interpreted with caution in palaeoenvironmental 

studies.  

 The montane / subalpine ratio was calculated using only the “very good” and 

“good” pollen indicators of montane and subalpine-alpine belts, which have a good 

correspondence between abundance of pollen and local occurrence of parent taxa. 

Montane pollen types included Alnus, Betula, Buxus, Corylus, Fraxinus, deciduous 

Quercus, Tilia and Salix, while subalpine-alpine indicators included Asteraceae, 

Calluna, Campanula, Ericaceae, Plantago and Poaceae. The percentages of the 

montane pollen were summed and divided by the sum of the percentages of subalpine 

pollen.  

 The utility of this ratio for discriminating both vegetation belts was assessed by 

calculating its values and their 95% confidence intervals for the 33 moss samples from 

the altitudinal transect studied by Cañellas-Boltà et al. (2009). Figure S1 shows the 

analysis of 5,000 bootstrap replicates per sample with a resampling size equal to 80% 

of the original sample sizes and using the rarefy function implemented in R package 

vegan (Oksanen et al. 2016). The 95% confidence intervals for subalpine is 0.16 – 2.12, 

while for montane stage is 2.72 – 43.42. According to this altitudinal transect, the 

values between 2.12 – 2.72 correspond to the real montane / subalpine ecotone.  

 In order to determine a functional threshold value for the ratio, we plotted the 

frequency histograms (Figure S2) obtained from 60,000 further bootstrap replicates of 

samples from the montane belt (800-1700 m) and from 60,000 bootstrap replicates of 

samples from the subalpine belt (1700-2300 m). From this analysis, a threshold value 

of 2.5 can be inferred, which indicates the close presence of the montane-subalpine 

ecotone, whereas higher values in the paleoenvironmental series would imply the 

occurrence of upward montane migration.  

 It is important to highlight that this montane ratio has been proved in one well 

studied altitudinal transect, and therefore it gives a regional interpretation. This ratio 

has been useful for the palaeoenvironmental interpretation of Bassa Nera catchment 

but should be interpreted with caution in other areas with similar vegetation. It would 
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be interesting to calibrate this ratio with other altitudinal transects in order to have a 

better comprehension of the vegetal stages in the forests of Central Pyrenees. 

 

Figure S2. Frequency histograms of 60,000 bootstrap replicates of montane / subalpine ratio 

values from modern samples belonging to both vegetation belts, montane (green) and 

subalpine (red). The threshold discriminating value of 2.5 is indicated. 
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Supplementary material of Chapter 4 

 

Tables
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Table S1 Statistical correlations between pollen of Bassa Nera and Gerber chronologies 
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Montane-

subalpine ratio 
0.526 0.561                  

Abies            0.088        

Alnus 0.383                   

Artemisia         -0.482           

Asteraceae 

fenest. 
    0.486 0.478              

Asteraceae non 

fenest 
             -0.928      

Chenopodicaceae/ 

Amarantaceae 
          0.474         

Corylus 0.376         0.472          

Ericaceae      -0.574  -0.542    -0.288        

Evergreen 

Quercus 
  0.654 0.438               0.622 

Fagus 0.393       0.587  0.443     -0.886     

Fraxinus                -0.550    

Galium                 -0.740   

Helianthemum                  -0.895  

Juglans       -0.620             

Olea        -0.492            

Parnassia     -0.478       -0.478        

Plantago    -0.403               -0.604 

Potentilla                 -0.645   

Rumex        0.584            

Sanguisorba -0.466  -0.620       -0.436 -0.696        -0.602 

Secale 0.498        -0.407           

Tilia                -0.497    

Urtica       -0.577      -0.477       
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Table S2. Statistical correlations between montane-subalpine pollen ratio of Bassa Nera and 

residual dendrochronologies tree-ring chronologies (res).  Significance level = 0.05. BSN = Bassa 

Nera pond. 

 

    
Pearson 

correlation 
 

 

Forest 
Distance 

to BSN 

pond (km) 

Elevation 

Altitude 

(m a.s.l) 
Aspect r p-value 

No. 

Sampled 

trees  

Period 

Gerber 5.04 2268 W 0.460 0.009* 31 1286-1968 

Amitges 6.42 2390 S-E 0.627 0.012* 15 1624-1968 

Mirador 7.83 2180 SE 0.360 0.091 23 1417-1968 

Ratera 7.95 2170 N 0.136 0.796 6 1825-1968 

Sant Maurici  7.95 1933 S-SE -0.472 0.344 6 1825-1968 

Llong 8.2 2323 W-NW  -0.078 0.791 14 1658-1968 

Corticelles  8.61 2269 W-NW -0.073 0.727 25 1378-1968 

Monestero  9.76 2280                                     SE 0.134 0.584 19 1493-1968 

Tessó de Son  10.83 2239 N-NE 0.117 0.654 17 1556-1968 

Airoto 11.03 2300 W 0.440 0.131 13 1679-1968 

Barranc dels Llacs 11.72 2250 N-NW 0.188 0.345 27 1349-1968 

Mata de València  11.73 2019 N-NW -0.098 0.566 13 1679-1968 

Negre 13.04 2451 SE 0.217 0.319 23 1417-1968 

Lladres 14.19 2120 NW 0.122 0.578 23 1417-1968 

Conangles  14.27 2106 S-SW 0.051 0.838 18 1528-1968 

Vall de Mulleres 16.83 1800 N-NE -0.098 0.687 19 1493-1968 

Portell 19.56 2199 W 0.271 0.369 13 1679-1968 

Bielsa 60.47 1890 E -0.259 0.440 11 1727-1968 

Las Cutas  91.74 2080 S-SW 0.086 0.824 9 1769-1968 
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Figures 

 

 
 

Figure S1. Annual mean temperature and total precipitation covering the period 1901-2010. 

Month-based CRU mean temperature and the total precipitation were rescaled using local data 

from Estany de Sant Maurici data weather station. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



205 

 

 

 

 

 

 

Figure S2. Diagram with residual ring-width chronologies, Bassa Nera pollen frequencies of Fagus, Corylus and Alnus, the montane-

subalpine pollen ratio (montane ratio), temperature reconstruction from the Pyrenees and North Hemisphere Temperature Anomaly. 

Solar Grand minima are also depicted in orange stripes. 
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Supplementary material of Chapter 5 

 

Tables 

 

Table S1. Summarized pipeline for the complete metabarcoding procedure including two markers: 

COI and 18S. Software names beginning in “owi_” are custom R scripts available at 

http://github.com/metabarpark. 

 

Sampling (preservation in ethanol) 

Pre-processing: (homogenization of samples) 

DNA extraction: (Norgen Soil DNA Isolation Plus Kit) 

 PIPELINE FOR COI PIPELINE FOR 18S 

PCR-1Tagged 

Leray primers 

Tagged Leray primers Tagged Allshort primers 

Library 

preparation 

NEXTflex (BIOO) NEXTflex (BIOO) 

HT Sequencing Illumina MiSeq 2x250 bp Illumina MiSeq 2x150 bp 

Raw sequences 

QC 

fasttqc 

fastx_trimmer 

fasttqc 

PE alignment illuminapairedend illuminapairedend 

Demultiplexing obiannotate/obisplit 

ngsfilter 

obiannotate/obisplit 

ngsfilter 

Length filter obigrep 300-320 bp obigrep 75-180 bp 

Dereplication obiuniq obiuniq 

Rename identifiers obiannotate obiannotate 

Chimera removal vsearch uchime_denovo vsearch uchime_denovo 

Clustering SWARM v2 d=13 

obitab 

owi_recount_swarm 

delete singletons 

SWARM v2 d=1 

obitab 

owi_recount_swarm 

delete singletons 

Taxonomic 

assignment 

ecotag using db_COI_BOLD ecotag using db_18S 

Add higher taxa owi_add_taxonomy owi_add_taxonomy 

Final refinement Blanks correction 

Abundance renormalization 

Minimal abundance filtering 

Removal of contamination 

MOTUs 

Blanks correction 

Abundance renormalization 

Minimal abundance filtering 

Removal of contamination 

MOTUs 

Community analyses and integration of the results 

 

http://github.com/metabarpark
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Table S2. 20 most abundant 18S MOTUs for modern samples 

 

Hummock Carpet Fen Floating 

Scientific name 
Best 

id 
Total 

reads 
Scientific name 

Best 

id 
Total 

reads 
Scientific name 

Best 

id 
Total 

reads 
Scientific name 

Best 

id 
Total 

reads 

Sphagnum 1 211999 Sphagnum 1 144277 Bryopsida 0.99 212126 Bryopsida 0.99 249266 

Desmonomata 1 82196 Bothrioplana semperi 1 62581 Bothrioplana semperi 0.99 77189 Droseraceae 1 126639 
Tectocepheus 

sarekensis 
1 40149 Rhynchoscolex simplex 1 25935 Utricularia 1 76531 Anystina 0.93 37122 

Hygrocybe  0.99 20472 Cyperoideae 1 22051 Brachypylina 1 24896 Desmonomata 1 28406 

Acrogalumna 

longipluma 
1 20360 asterids 1 18330 Desmonomata 1 16016 

Rhabdolaimus 

aquaticus 
1 27565 

Cernosvitoviella atrata 1 19699 Bryopsida 0.99 16462 Poaceae 0.99 14507 Hydrozetes lacustris 1 17888 

Sanguisorba  1 17635 Aeolosoma sp. GG-2011 0.98 11302 
Rhabdolaimus 

aquaticus 
1 11974 

Enochrus 

quadripunctatus 
1 9841 

Poaceae 0.99 17069 Poaceae 0.99 10116 Hydrozetes lacustris 1 11882 Podocopida 1 8806 

Hydrophilinae 1 12190 Harpacticoida 1 10086 
Geocentrophora 

sphyrocephala 
1 9342 Sphagnum 1 8590 

Brachypylina 1 11678 Cernosvitoviella atrata 1 8355 Calyptostoma velutinus 0.94 8145 
Calyptostoma 

velutinus 
0.94 4164 

Fungi 1 11436 Fungi 1 7457 Harpacticoida 0.96 7488 Tubificina 1 3032 

Agaricomycetes 1 7709 Tubificina 1 7060 Podoplea 0,88 5362 Cyperoideae 1 2639 

Violaceae 1 4612 Filipendula vulgaris 0.99 6371 Fungi 1 4934 Parasitengona 0,94 2503 

Helicoon fuscosporum 1 4525 Brachypylina 1 6083 Harpacticoida 1 4382 Macrobiotidae 0.99 2456 

Catenulida 0.95 4026 Chamaedrilus cognettii 1 5502 Lumbriculidae 1 4115 Zygoptera 1 2238 

Steganacaridae 1 3886 Chaetonotidae 1 5376 Limnognathia maerski 1 2516 Utricularia 1 2126 

Harpacticoida 0.98 3423 Entelegynae 0.98 4964 Acanthocyclops  1 1862 Harpacticoida 0.98 1949 

Parnassia 1 2957 Tubificina 0.99 4753 Aeolosoma sp. GG-2011 0.98 1804 Chaetonotidae 1 1931 

Prismatolaimus 1 2944 Lepidochaetus zelinkai 1 4494 Leotiomycetes 0.98 1737 Lumbriculus 1 1886 

Fungi 1 2765 Naididae 0.97 4472 
Peniophorella 

praetermissa 
0.99 1724 Brachypylina 1 1584 
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Table S3. 20 most abundant COI MOTUs for modern samples 

 

Hummock Carpet Fen Floating 

Scientific name 
Best 

id 
Total 

reads 
Scientific name 

Best 

id 
Total 

reads 
Scientific name 

Best 

id 
Total 

reads 
Scientific name 

Best 

id 
Total 

reads 

Nothrus pratensis 0.99 47933 Malaconothridae 0.84 108107 Malaconothridae 0.84 10258 Malaconothridae 0.84 64168 

Malaconothridae 0.84 32706 Tyrphonothrus maior 1 75834 Sarcoptiformes 0.85 4409 Trombidiformes 0.81 30644 

Poduroidea 0.8 16875 Maxillopoda 0.82 38042 Stilobezzia ochracea 1 2286 Dasyhelea modesta 0.99 17267 

Limnophyes sp.7SW 1 7517 Atylotus fulvus 0.98 15599 Maxillopoda 0.82 2210 Rotifera 0.78 10853 

Microtrombidiidae 0.87 3937 Sarcoptiformes 0.85 14431 Corynoneura 0.99 1432 
Enochrus 

ochropterus 
0.99 10006 

Sarcoptiformes 0.83 2588 Scheloribatidae 0.88 13342 Mycobatidae 0.91 1332 Sarcoptiformes 0.89 8325 

Sordariomycetes 0.86 2489 Paracricotopus 1 10232 Eukaryota 0.79 1293 Eukaryota 0.76 5803 

Tectocepheus 0.88 2324 Pristina 0.85 9395 Isotomidae 0.98 1220 Podocopida 0.88 5649 

Neelipleona 0.89 2227 Didymium 0.85 7599 Platyhelminthes 0.84 968 
Lumbriculus 

variegatus 
0.99 5612 

Anacaena lutescens 1 1973 Malaconothridae 0.99 7191 Bryocamptus pygmaeus 0.98 896 Eukaryota 0.73 5250 

Eukaryota 0.76 1779 Sarcoptiformes 0.82 6714 Neocopepoda 0.82 725 Palpomyia lineata 1 5134 

Planorbidae 0.8 1574 Eukaryota 0.79 6290 Culicoides kibunensis 0.97 636 
Monopelopia 

tenuicalcar 
1 4652 

Eukaryota 0.78 1568 
Bryocamptus 

pygmaeus 
0.98 6275 Malaconothrus 0.84 565 Eukaryota 0.76 3972 

Adineta 0.9 1437 Murrayon pullari 0.99 6041 Leohumicola 0.9 546 Eukaryota 0.78 3687 

Eukaryota 0.71 1390 
Cognettia glandulosa B 

SM2014 
0.98 5978 Harpacticoida 0.84 518 Lecane cornuta 0.87 3630 

Eukaryota 0.8 1342 Eukaryota 0.78 5767 Ploima 0.83 442 Polypedilum tritum 0.98 2703 

Eukaryota 0.76 1311 Trombidiformes 0.81 5726 Sordariomycetes 0.88 440 Trebouxiophyceae 0.79 2605 

Eukaryota 0.75 1148 Philodinidae 0.9 4961 Pristina 0.85 417 Ochrophyta 0.75 2287 

Eukaryota 0.79 1114 Bdelloidea 0.9 4741 Cyclopoida 0.86 316 
Bryocamptus 

pygmaeus 
0.98 2225 

Leohumicola 0.9 1085 Leotiomycetes 0.88 4325 Eukaryota 0.75 288 Maxillopoda 0.84 2216 
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Table S4. 20 most abundant 18S MOTUs for sedimentary samples 

 

31 cm 109 cm 160 cm 220 cm 260 cm 

Scientific name 
Best 

id 
Total 

read 
Scientific name 

Best 

id 
Total 

read 
Scientific name 

Best 

id 
Total 

read 
Scientific name 

Best 

id 
Total 

read 
Scientific name 

Best 

id 
Total 

read 

Cyperoideae 1 
2806

3 
Cyperoideae 1 2955 Cyperoideae 1 6802 

Bicosoecida gen. 1 

sp. EK-2010a 
0.9 2335 Dinophyceae 0.87 3999 

Mesangiospermae 
BOG2_000000149 

0.97 9089 Pooideae 1 1795 
Bicosoecida gen. 1 sp. 

EK-2010a 
0.92 5505 Pooideae 1 619 Heterophryidae 0.89 3965 

Bryopsida 0.99 7058 
Mesangiospermae 
BOG2_000000149 

0.97 1564 Bicosoecida 0.82 1645 Pinidae 1 377 Pooideae 1 80 

Pooideae 1 776 Poaceae 0.99 178 
Mesangiospermae 
BOG2_000000149 

0.97 748 Bryopsida 0.99 277 Desmidiales 0.94 50 

Paramonas globosa 0.87 585 
Bicosoecida gen. 1 

sp. EK-2010a 
0.92 151 Paramonas globosa 0.87 554 Navicula 1  216 

Bicosoecida gen. 

2 sp. EK-2010a 
0.85 46 

Paramonas globosa 0.87 547 asterids 1 143 
Bicosoecida gen. 1 sp. 

EK-2010a 
0.9 412 Salamandroidea 1 127 Adeleidae 0.91 19 

Chaetonotus 

acanthodes 
1 281 

Bicosoecida gen. 1 

sp. EK-2010a 
0.88 97 Bicosoecida 0.82 369 rosids 0.99 114 Polypodiidae 1 17 

Saxifragales 0.98 267 Equisetum arvense 1 96 Salamandroidea 1 132 rosids 1 110 rosids 1 16 

Bicosoecida gen. 1 

sp. EK-2010a 
0.92 218 Paramonas globosa 0.87 84 Pinidae 1 79 asterids 1 109 Petrosaviidae 1 13 

Poaceae 0.99 202 rosids 1 80 Cupressaceae 0.99 39 Desmonomata 0.99 101 Dysderidae 1 13 

Gregarinasina 0.89 171 Petrosaviidae 1 76 Paramonas globosa 0.91 27 Fragilariaceae 0 91 Salamandroidea 1 12 

Pyrenomonadales 0.77 140 Sapindales 1 43 
Bicosoecida gen. 1 sp. 

EK-2010a 
0.88 22 Betulaceae 96 76 

Paramonas 

globosa 
0.89 9 

Pinidae 1 121 Streptophytina 0.89 41 Desmidiales 0.91 21 Petrosaviidae 1 74 rosids 0.99 8 

Nuclearia 0.86 88 Desmidiales 0.94 29 
Mesangiospermae 
BOG2_000077141 

0.97 19 Mesangiospermae 1 61 Pinidae 1 8 

Nuclearia 0.76 82 Navicula 1 27 Dysteridae 1 13 Sapindales 0.99 47 Bacillariophyta 0.88 7 

Chaetonotidae 1 79 Betulaceae 1 24 
Mesangiospermae 
BOG2_000010361 

0.96 12 
Rhizidiomyces 

apophysatus 
1 40 Prunus 1 6 

Prunus 1 63 Brassicaceae 1 20 Navicula 1 9 Cymbellales 0.9 37 Petrosaviidae 0.98 5 

Microdalyellia 1 62 rosids 0.99 18 Paramonas globosa 0.92 9 Chaetonotidae 0.93 37 Navicula 1 5 

Chaetonotidae 1 59 Petrosaviidae 0.98 17 Lauraceae 1 7 Papilionoideae 1 34 Sinella curviseta 1 5 

Paramonas globosa 0.88 45 Pinidae 1 15 Sapinadaceae 1 7 Pinus 0.99 33 Atripliceae 1 4 
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Table S5 20 most abundant COI MOTUs for sedimentary samples 

 

31 cm 109 cm 160 cm 220 cm 260 cm 

Scientific name 
Best 

id 
Total 

read 
Scientific name 

Best 

id 
Total 

read 
Scientific name 

Best 

id 
Total 

read 
Scientific name 

Best 

id 
Total 

read 
Scientific name 

Best 

id 
Total 

read 

Bacillariophyceae 0.81 4774 Branchiopoda 0.73 251 Arthropoda 0.82 2867 Psychoda alternata 0.93 15 Rhodophyta 0.79 9248 

Porifera 0.82 2032 Bacillariophyta 0.81 51 Porifera 0.75 333 
Tyrphonothrus 

maior 
1 9 Porifera 0.75 1841 

Planorbidae 0.8 1897 Navicula 0.84 24 Arthropoda 0.76 41 Malaconothridae 0.84 6 Opiliones 0.77 540 

Maxillopoda 0.81 1028 Thalassionema 0.86 14 Branchiopoda 0.73 31 Rhodophyta 0.81 6 
Bacillariophycea

e 
0.81 93 

Branchiopoda 0.73 396 Bacillariophyta 0.83 14 Arthropoda 0.8 15 Nothrus pratensis 0.99 5 
Ceratophysella 

denticulata 
0.83 25 

Florideophyceae 0.84 362 Sellaphora 0.85 13 Bacillariophyta 0.84 13 Sarcoptiformes 0.85 3 Opiliones 0.77 24 

Branchiopoda 0.73 166 Bacillariophyceae 0.82 13 Eimeria 0.72 12 Murrayon pullari 0.99 3 Mollusca 0.72 15 

Branchiopoda 0.72 127 Bacillariophyceae 0.82 12 Naviculaceae 0.83 9 Rotifera 0.82 3 Branchiopoda 0.75 13 

Porifera 0.82 110 Haslea 0.86 11 Bacillariophyceae 0.82 7 Coccomyxa 0.76 2 
Tyrphonothrus 

maior 
1 11 

Rhodophyta 0.81 80 Bacillariophyceae 0.83 11 
Tyrphonothrus 

maior 
1 6 Bacillariophyceae 0.85 2 Araneae 0.92 8 

Pyropia 0.82 78 Nitzschia 0.83 10 Harpacticoida 0.83 6 Crotoniidae 0.9 2 Diptera 0.9 8 

Banchiopoda 0.75 74 Sellaphora 0.84 10 Murrayon pullari 0.99 6 Sarcoptiformes 0.85 2 Harpacticoida 0.79 8 

Tyrphonothrus 

maior 
1 73 Bacillariophyceae 0.83 10 Malaconothrus 0.87 4 Limoniidae 0.94 2 Haslea 0.84 7 

Pyropia 0.83 58 Bacillariophyta 0.83 10 Malaconothridae 0.84 4 Harpacticoida 0.84 2 Naviculaceae 0.83 7 

Maxillopoda 0.82 57 Arthropoda 0.76 10 Othius angustus 0.99 4 Rhodophyta 0.8 1 Sellaphora 0.84 7 

Branchiopoda 0.73 54 Sellaphora 0.87 9 Nothrus pratensis 0.99 3 Acutodesmus 0.75 1 Harpacticoida 0.82 7 

Rhodophyta 0.83 44 Bacillariophyta 0.85 9 Asplanchna 0.81 3 Sellaphora 0.86 1 Bos 0.99 7 

Rhodophyta 0.82 44 
Tyrphonothrus 

maior 
1 9 Rhodophyta 0.99 2 Banksinoma 0.95 1 Platyhelminthes 0.75 7 

Branchiopoda 0.74 41 Ovatella vulcani 0.92 9 Dysdera 0.86 2 Malaconothridae 0.99 1 Porifera 0.82 7 

Maxillopoda 0.81 35 Stylochoidea 0.78 9 
Malaconothrus 

mollisetosus 
 2 Sarcoptiformes 0.82 1 Porifera 0.82 7 
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Figures: 

 

Figure S1. Non-metric multidimensional scaling ordination using Jaccard 

dissimilarities with Viridiplantae. 
 

 

Figure S2. Non-metric multidimensional scaling ordination using Jaccard 

dissimilarities with Arthropoda. 
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Annex 2 

 

This annex provides the original publications of: 

 

 

 

Chapter 2: Garcés-Pastor, S., Cañellas-Boltà, N., Clavaguera, A., Calero, M.A., Vegas-

Vilarrúbia, T., 2016. Vegetation shifts, human impact and peat bog development in 

Bassa Nera pond (Central Pyrenees) during the past millennium. The Holocene, 27(4), 

553-565. 

 

 

Chapter 3: Garcés-Pastor, S., Cañellas-Boltà, N., Pèlachs, A., Soriano, J-M., Pérez-

Obiol, R., Pérez-Haase, A., Calero, M-A., Andreu, O., Escolà, N., Vegas-Vilarrúbia, T. 

2017. Environmental history and vegetation dynamics in response to climate 

variations and human pressure during the Holocene in Bassa Nera, Central Pyrenees. 

Palaeogeography, Palaeoclimatology, Palaeoecology, 479, 48-60. 
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