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P R E FA C E

My doctoral thesis consists of four single papers (chapters) which are intended for
publication in academic journals. Although all these papers are related and cover
different aspects of a common theme, each of them can be read on its own and does
not require any prior knowledge from the other chapters. It naturally follows that this
style of presentation results in some overlap between the chapters, e.g. with respect
to the core model, data description, and related literature. The readers of my entire
dissertation will hopefully excuse the presence of potential redundancies that cannot
be avoided at this point.

Up to the date of submission of this dissertation in February 2017, two out of
four papers have been published in international peer-reviewed journals. The ar-
ticle “Gibrat’s law redux: think profitability instead of growth”, co-authored with
Mishael Milaković and Simone Alfarano, was published in Industrial and Corporate
Change, 2016, Vol. 25, No. 4, 549-571. The second article ”The real versus the fi-
nancial economy: a global tale of stability versus volatility”, co-authored with Niels
Förster, Simone Alfarano, and Mishael Milaković, was published in Economics: The
Open-Access, Open-Assessment E-Journal, 2014, Vol. 8, 2014-17. The two remaining
papers “The ultimate corporate objective is survival” and ”A statistical equilibrium
approach to forecasting corporate profitability” are unpublished to date. In one way
or another, all four essays revolve around statistical regularities in the dynamics of
business firms.

My interest in the behavior of large, publicly traded corporations rests on the granu-
lar view of aggregate fluctuations that has received growing attention in recent years
(e.g. Acemoglu et al., 2012; Carvalho and Gabaix, 2013; Gabaix, 2011). The funda-
mental idea of this literature is that the dynamics of large corporates may be of huge
quantitative importance for macroeconomic quantities, e.g. GDP volatility, imply-
ing that a better understanding of these dynamics may contribute to a kind of new
“micro-foundation” of macroeconomics that is empirically sound and well-founded.
Although macroeconomic insights are beyond the scope of this dissertation, I would
hope that the identification of empirical regularities in firm dynamics is a first step
towards such a theory.

To explain how these four papers are related and why they hopefully contribute to
a larger whole, it is instructive to add some remarks about the underlying vision and
research methodology. At the most fundamental level, the common theme underly-
ing all papers is the problem of aggregation that economic theory often circumvents
with the representative agent paradigm. If agents were homogeneous, it would be
sufficient to consider the behavior of a single agent and the aggregate properties of
the system could be derived from the behavior of this individual. However, research
originating in the field of statistical physics suggests that this reasoning is mislead-
ing in complex systems that are characterized by a large number of heterogeneous
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interacting agents, or as Aoki and Yoshikawa (2007) put it (p. 26), “Micro behaviors
of the representative agent do not mimic the behavior of the macroeconomy. Macroe-
conomic phenomena are the outcomes of interactions of a large number of economic
agents such as households and firms.“ Statistical physicists developed an alternative
methodology to describe these systems. Their approach builds on the perception that
complex dynamics and interactions among the system’s constituent units may pro-
duce robust statistical regularities at a higher level of aggregation that do not directly
reflect the behavior of the subsystems. Following this idea, we need to shift the focus
from a deterministic to a probabilistic modeling approach that takes into account the
presence of fluctuations (even in equilibrium), or to quote Aoki and Yoshikawa (2007)
again (p. 26), “Equilibrium in the macroeconomy is better described by a probability
distribution than by a ‘point’ in some space or set.” Thus, the present collection of
articles approaches the dynamics of business firms from a probabilistic perspective.

To detect these macro-regularities, one needs to select suitable quantities to charac-
terize the states the system may take at every point in time. Browsing the literature
that has been published in the research field of industrial dynamics so far (part of
which is quoted in the first chapter), one is left with the impression that most papers
in this vein focus on the growth rate of firm size. To this end, the first chapter of
this dissertation explores the cross-sectional and time series properties of profit and
growth rates in closer detail to show that profit rates are economically more funda-
mental and statistically more convenient than growth rates, and that Robert Gibrat’s
seminal idea of a common law governing the dynamics of all firms applies to prof-
itability but not firm growth.

The paper presented in the second chapter replicates some of the results pertaining
to the statistical properties of profit and growth rates on a much broader basis con-
sidering data of about 30,000 firms from more than 40 countries. It shows that the
stability of the average profit rate and its volatility is not a peculiarity of the US data
but a rather universal feature that can be observed across countries. Defining firm
size in terms of market value, this paper also contributes to the literature stressing
“excess volatility” in financial returns.

The third chapter investigates the impact of firm idiosyncrasies on profitability.
Given that profit rates are in statistical equilibrium, one should expect that profit
rates are governed by a common probabilistic law of motion for all firms. Such a view
is diametrically opposed to previous findings in the industrial organization, strategic
management, and accounting and finance literature which stress the importance of
sectoral or firm-level effects on performance. It turns out that survival time may be a
potential explanation for the emergence of such divergent views because a common
law for profitability only prevails conditional on survival. This leads to the fundamen-
tal question of what the ultimate business objective should be.

Finally, the fourth chapter presents an application of the statistical equilibrium
methodology to forecasting profitability.

Overall, I think that the results presented in this dissertation suggest that statistical
equilibrium is a very reasonable first order approximation to the profitability of sur-
viving corporations, and that methods for the modeling of complex systems do have
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explanatory power for problems in economics. One of the major questions for future
research should be if these insights on the dynamics of large, long-lived corporations
can be exploited to draw inferences on the macroeconomy.
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P R E FA C I O

Mi tesis doctoral consta de cuatro artículos (capítulos) que están destinados a ser
publicados en revistas académicas. Aunque todos estos artículos están relacionados,
en el sentido de que abarcan diferentes aspectos de un tema común, cada uno de
ellos puede leerse por sí solo y no requiere ningún conocimiento previo de los otros
capítulos. Debería deducirse con bastante naturalidad que este estilo de presentación
da lugar a una cierta superposición entre los capítulos, por ejemplo con respecto
al modelo básico, la descripción de los datos y la literatura relacionada. Dicho esto,
ha de entenderse y esperarse que los lectores de mi tesis disculpen la presencia de
redundancias potenciales inevitables en este momento.

Hasta la fecha de presentación de esta tesis en febrero de 2017, dos de los cuatro ar-
tículos han sido publicados en revistas indexadas internacionales. El artículo “Gibrat’s
law redux: think profitability instead of growth”, co-escrito con Mishael Milaković y
Simone Alfarano, fue publicado en Industrial and Corporate Change, 2016, Vol. 25, No.
4, 549-571. El segundo artículo “The real versus the financial economy: a global tale of
stability versus volatility”, en coautoría con Niels Förster, Simone Alfarano y Mishael
Milaković, fue publicado en Economics: The Open-Access, Open-Assessment E-Journal,
2014, Vol. 8, 2014-17. Los dos artículos restantes “The ultimate corporate objective is
survival” y “A statistical equilibrium approach to forecasting corporate profitability”
no se han publicado hasta la fecha. De una manera u otra, los cuatro ensayos giran en
torno a regularidades estadísticas en la dinámica de las empresas. Complementan y
añaden más apoyo empírico al trabajo de Alfarano y Milaković (2008) y Alfarano y col.
(2012) que ya sugiere que la distribución de las tasas de beneficio en firme pueden
caracterizarse como un resultado estadístico de equilibrio.

Mi interés en el comportamiento de las grandes corporaciones que cotizan en bolsa
se funda profundamente en la visión granular de las fluctuaciones agregadas que ha
recibido creciente atención en los últimos años (por ejemplo Acemoglu y col., 2012;
Carvalho y Gabaix, 2013; Gabaix, 2011). La idea fundamental de esta literatura es
que la dinámica de las grandes corporaciones puede ser de gran importancia cuan-
titativa para cantidades macroeconómicas, por ejemplo la volatilidad del PIB, lo que
implica que una mejor comprensión de estas dinámicas puede contribuir a una nueva
“micro-fundación” de la macroeconomía empíricamente sólida y bien fundamentada.
Aunque las ideas macroeconómicas están más allá del alcance de esta tesis, pretendo
que la identificación de las regularidades empíricas en la dinámica de las empresas
sea un primer paso hacia una teoría de este tipo.

Para explicar cómo estos cuatro artículos están relacionados y por qué esperamos
contribuir a un todo más grande, creo que es instructivo dar un paso atrás y añadir
algunas observaciones sobre la visión subyacente y la metodología de investigación.
En el nivel más fundamental, el tema común subyacente a todos los artículos es el
problema de la agregación en la economía que la teoría económica suele tratar de elu-
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dir con el paradigma del agente representativo: si los agentes son homogéneos, basta
con considerar el comportamiento de un solo agente y las propiedades agregadas
del sistema pueden derivarse del comportamiento de este individuo. Sin embargo, la
investigación que se origina en el campo de la física estadística sugiere que tal razo-
namiento ya no se sostiene en los sistemas complejos que se caracterizan por un gran
número de agentes interactivos heterogéneos, o como ya expresó Aoki y Yoshikawa
(2007)(p.26): “Los micro comportamientos del agente representativo no imitan el com-
portamiento de la macroeconomía. Los fenómenos macroeconómicos son el resultado
de las interacciones de un gran número de agentes económicos, como los hogares y
las empresas.“ Afortunadamente, los físicos estadísticos no sólo se dieron cuenta de
que las interacciones hacen inviable el análisis de los destinos individuales, sino que
también han desarrollado una metodología alternativa para describir estos sistemas.
Su enfoque se basa en la percepción de que las dinámicas complejas y las interac-
ciones entre las unidades constituyentes del sistema pueden producir regularidades
estadísticas robustas a un nivel más alto de agregación que no reflejan directamente
el comportamiento de los subsistemas. Siguiendo esta idea, necesitamos cambiar el fo-
co desde un enfoque determinista a un modelado probabilístico que tenga en cuenta
la presencia de fluctuaciones (incluso en equilibrio), o citar Aoki y Yoshikawa (2007)
nuevamente (p. 26): “El equilibrio en la macroeconomía está mejor descrito por una
distribución de probabilidad que por un ‘punto’ en algún espacio o conjunto.” Por lo
tanto, abordaré la dinámica de las empresas desde una perspectiva probabilística.

Para detectar tales macro-regularidades es necesario seleccionar una cantidad ade-
cuada para caracterizar los estados que el sistema puede tomar en cada momento.
Examinando la literatura que se ha publicado hasta ahora en el campo de la “dinámi-
ca industrial” (parte de la cual se cita en el primer capítulo), da la impresión de que la
mayoría de los artículos se centran en la tasa de crecimiento del tamaño de la empresa.
Para ello, el primer capítulo de esta tesis explora las propiedades transversales y de
series temporales de las tasas de beneficio y crecimiento de la manera más detallada
para mostrar que las tasas de beneficios son económicamente más fundamentales y
estadísticamente más convenientes que las tasas de crecimiento, y que la idea seminal
de Robert Gibrat de una ley común que gobierna la dinámica de todas las empresas
se aplica a la rentabilidad, pero no al crecimiento de la empresa.

El artículo presentado en el segundo capítulo reproduce algunos de los resultados
relativos a las propiedades estadísticas de las tasas de beneficio y crecimiento sobre
una base mucho más amplia considerando datos de unas 30.000 empresas de más de
40 países. Muestra que la estabilidad de la tasa de ganancia promedia y su volatilidad
no son peculiaridades de los datos de los Estados Unidos, sino más bien características
universales que pueden observarse entre países. Definiendo el tamaño de la empresa
en términos de valor de mercado, este artículo también contribuye a la literatura
enfatizando la “volatilidad excesiva” en los mercados financieros.

El tercer capítulo investiga el impacto de las idiosincrasias de las empresas en la ren-
tabilidad. Dado que las tasas de beneficio están en equilibrio estadístico, uno debería
esperar que las tasas de beneficio se rigen por una ley probabilística de movimiento
común para todas las empresas. Este punto de vista es diametralmente opuesto a los
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hallazgos previos en organización industrial, gestión estratégica y literatura de con-
tabilidad y finanzas que subrayan la importancia de los efectos sectoriales o a nivel
de empresa sobre el rendimiento. Resulta que el tiempo de supervivencia puede ser
una posible explicación para la aparición de opiniones tan divergentes, ya que una
ley común para la rentabilidad sólo prevalece condicionada a la supervivencia, lo que
lleva a la pregunta fundamental de cuál debería ser el objetivo final del negocio.

Finalmente, el cuarto capítulo presenta una aplicación de la metodologíía de equili-
brio estadístico para predecir la rentabilidad.

En general, creo que los resultados presentados en esta tesis sugieren que el equili-
brio estadístico es una aproximación de primer orden muy razonable a la rentabilidad
de las corporaciones supervivientes y que los métodos para el modelado de sistemas
complejos pueden tener un poder explicativo para los problemas económicos. Una de
las principales preguntas para la investigación futura debería ser si estos conocimien-
tos sobre la dinámica de las grandes empresas de larga vida pueden ser explotados
para extraer inferencias sobre la macroeconomía.
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abstract

We argue that firm profitability can be conveniently characterized by one and the same
diffusion process for all firms, akin to Gibrat’s seminal idea of a common stochastic
description for the dynamics of firm growth. Here we show that the diffusion of profit
rates applies across all surviving corporations, irrespective of their size or industry,
which is not true for growth rates. The diffusion process is empirically consistent with
both the cross-sectional distribution of profit rates and the individual time series of
corporate profit rates, leading to the notion of a statistical equilibrium. This has stark
and unexpected implications for our understanding of individual destinies, since the
model and data suggest that idiosyncratic efforts have no impact on the aggregate
distributional outcome. Instead, idiosyncratic efforts merely affect the individual per-
sistence of abnormal profits from the system-wide norm. Put differently, corporations
have to participate in the same game and can merely choose the speed at which they
play it, but they cannot bend the rules.

1.1 introduction

Gibrat’s rule of proportionate effect is probably the first and most influential stochastic
model seeking to provide a dynamic law for the evolution of firm destinies. It claims
that firm growth is independent of size, and that each firm’s growth rate depends on
random shocks to its current size, conventionally understood as independent draws
from a normal distribution with identical mean and variance across all firms. After
many decades of empirical research on Gibrat’s “law”, however, the literature seems
to be in broad agreement that the law cannot adequately describe the growth dynam-
ics across firms, essentially because the average and volatility of the individual time
series depend on a multitude of factors like firm size, age, life-cycle, or numerous sec-
toral specificities (see, for instance, the surveys by Santarelli et al., 2006; Sutton, 1997).
Therefore, it seems fair to say that a comprehensive and generally accepted stochastic
theory of firm growth does not exist today. The lack of empirical support for Gibrat’s
original idea is hardly astounding because the idea simply lacks economic intuition,
or as Sutton (p. 42) puts it in his well-known survey, “there is no obvious rationale for
positing any general relationship between a firm’s size and its expected growth rate,
nor is there any reason to expect the size distribution of firms to take any particular
form for the general run of industries.” Essentially, the basic assumption of a common
growth rate distribution that is invariant across firms of different sizes or industries
seems questionable both from an empirical and theoretical point of view.

The purpose of the present paper is to show empirically that in contrast to firm
growth, the rate of profit does in fact obey a common dynamic law across firms in
many different sectors and industries, and that the expected rate of profit and even its
volatility are independent of size. Put differently, we adapt Gibrat’s original approach
of looking for a common law of motion for firm destinies, but shift our attention away
from growth rates and instead towards profit rates. Like Gibrat, whose growth model
was inspired by the (cross-sectional) size distribution of firms, we also start from the
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observation of the (cross-sectional) distribution of profit rates and the question which
stochastic process could lead to such an outcome. Contrary to Gibrat, however, we
rely on a well known principle of economics, namely the tendency for competition to
equalize profit rates. The idea that the rate of profit is independent of size and tends
to be equalized across competing uses has been one of the earliest and most deeply
rooted theories in the history of economic thought, dating back to classical economics.
It contends that market economies are driven by the perpetual reallocation of capital
in search of profit rate equalization, and represents one of the most widely accepted
theories of capitalism (see, e.g., Foley, 2006).

So instead of staying on Gibrat’s well-trodden path of random growth rates that are
drawn from a common distribution, we propose a dynamic law for the evolution of
profit rates that turns out to be a diffusion process consistent with the cross-sectional
distribution of profit rates (see Alfarano et al., 2012, for details). The process incor-
porates the principle that competition tends to equalize profit rates, a principle that
provides the economic intuition for the very existence of a common distribution of
profit rates across firms, and is absent in the case of growth rates. The diffusion
process will serve as the theoretical foundation of our current empirical investigation
and relies on three parameters: a system-wide average rate of profit, a system-wide
dispersion or volatility measure of profit rates, and an idiosyncratic noise factor that
determines the persistence of abnormal profits for individual firms.

Compared to our previous investigation, the major novelty in this paper is that
we investigate the actual time series properties of profit rates, and not merely their
cross-sectional distribution. It turns out that the model’s assumption of a common
location and dispersion parameter across all firms is clearly reflected in the time series
data, which strongly suggests that the diffusion process is a useful description of the
time evolution of individual firm profitability. Closed-form solutions for the transient
density and the autocorrelation function of the diffusion process enable us to estimate
the idiosyncratic noise levels with maximum likelihood, and to compute the half-life
of abnormal profits (or adjustment speed towards the norm) for each firm.

Our main finding is that the process provides a very reasonable description of the
profit rate evolution for all firms in the sample, irrespective of size or sectoral char-
acteristics. In addition, the autocorrelation function (ACF) of the diffusion process
is also consistent with the observed ACFs. Hence the diffusion process is not only
consistent with the cross-sectional distribution of profit rates, but also with the time
evolution of individual destinies, a situation that is the very definition of a statisti-
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cal equilibrium.1 To the best of our knowledge, the dynamic law governing corpo-
rate profitability is so far the only economic process that appears to exhibit statistical
equilibrium, suggesting that profit rates are a most fundamental characteristic of the
macroeconomy. Our economic interpretation of the statistical equilibrium property is
that all surviving corporations are subject to the same competitive pressures of capi-
tal reallocation, irrespective of their industry or particular line of business. They all
face the same profitability benchmark and volatility, while their idiosyncratic efforts
merely affect the persistence of abnormal profits. In other words, survivors have to
participate in the same game and can merely choose the speed at which they play
it, but they cannot change the fundamental rules of the game, which apparently pre-
scribe a common location and dispersion parameter for corporate profitability.

Interestingly, the empirical densities of both profit and growth rates are well de-
scribed by exponential power or Subbotin distributions (see, e.g., Alfarano and Mi-
laković, 2008; Alfarano et al., 2013; Bottazzi and Secchi, 2006; Bottazzi et al., 2001,
2002; Stanley et al., 1996, for growth rate distributions), often approximating a special
case of the Subbotin distribution known as the Laplace distribution. In our experience,
the similarity in the functional form of the cross-sectional distribution of profit and
growth rates frequently evokes claims that the two quantities essentially measure the
same thing and can be used interchangeably. This is false. Notice, firstly, that the two
differ in their dimensionality because growth rates are logarithmic differences in size
over time, while profit rates are defined as the ratio of a flow (of economic income
over time) relative to a stock (of capital that generates this income). Secondly, our
comparison of the statistical properties of growth and profit rates in the following
section will show that there are pronounced differences in the parameterizations of
the respective cross-sectional Subbotin distributions. Our dataset suggests that the
growth rates of long-lived US non-banking corporations are even more leptokurtic
than the Laplace distribution, which has recently been observed for the French man-
ufacturing sector as well (see Bottazzi et al., 2011). The rate of profit, on the other
hand, turns out to be significantly closer to the Laplace distribution than the corre-
sponding growth rates in our sample and, more importantly, the volatility of profit

1 Originating within statistical mechanics, and applying more broadly across the natural sciences, the
term statistical equilibrium refers to the state of a system in which the average quantities governing this
state are independent of time. In our reading of the economic literature, however, there has been very
little interest in the concept so far, and there is currently no coherent definition of statistical equilibrium
in the field. Econometric textbooks (see, e.g., Mills and Markellos, 2008, p. 10–11) refer to the situation
we observe in our data in terms of ergodicity and stationarity, mentioning statistical equilibrium merely
in passing (if at all). Other authors, starting with Foley (1994), use the term statistical equilibrium to
denote the cross-sectional distribution that achieves the largest informational entropy in the variable
of interest, but cannot provide information on the dynamic law that governs the state of the system.
We refer the interested reader to Garibaldi and Scalas (2010) for a technical treatment of the statistical
equilibrium notion in physics and its various flavors in economics.
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rates turns out to be independent of size, which is not true for growth rates.2 Thirdly,
there are also pronounced differences in the autocorrelation structures of growth and
profit rates. Previous empirical studies of the autocorrelations in growth rates yield
inconclusive results, with positive autocorrelations in firm growth rates reported by
Chesher (1979) and Geroski et al. (1997) for the UK, and by Weiss (1998) for Aus-
tria, while Boeri and Cramer (1992) and Goddard et al. (2002) observe negative serial
correlations in German and Japanese data. Other studies do not find any significant
autocorrelations in firm growth rates (see, for instance, Almus and Nerlinger, 2000;
Geroski and Mazzucato, 2002; Lotti et al., 2003), whereas Coad (2007) reports that
smaller French manufacturing firms exhibit negatively correlated growth rates, while
larger firms display positive autocorrelations. Our results regarding long-lived US
corporations indicate that there are no statistically significant autocorrelations in firm
growth rates. In contrast, we show that profit rates do exhibit significantly positive
autocorrelations.

We are of course aware that several of our empirical findings, especially those per-
taining to growth rates, are already present in the literature. The purpose of our
explicit statistical comparison in the next section is therefore not to claim novelty
where none exists, but rather to convince the reader that profit rates are economi-
cally more fundamental and quantitatively more convenient than growth rates when
it comes to finding a general law of motion for the destiny of corporations. Given the
statistical properties of profit rates, the third section presents a model for the dynamic
law that governs corporate profitability and accounts for the data. Since the diffusion
coefficient (or noise level) remains the only source of idiosyncrasies in the statistical
equilibrium model, we investigate its properties in the fourth section, finding that
large, diversified, or capital intensive corporations exhibit the smallest diffusion coef-
ficients, and therefore the most persistent deviations from the systemic rate of profit.
The final section discusses our findings and concludes.

1.2 data

The data for this study are taken from Thomson Reuters’ Datastream and consist of
annual observations for the sales, operating income, total assets, number of employ-
ees, and market value of publicly traded US companies. According to the database, a
total of 6,860 firms have been present in the market for at least one year from 1980–
2011, and have operated in at least one of the 78 different sectors listed in Table 2 in
Appendix A.1. Unlike many previous studies that typically focus on the manufactur-
ing sectors (SIC codes 20 to 39), our present analysis considers a diverse set of firms

2 The classical claim that profitability should be independent of size has already been established in the
empirical literature (see, e.g., Alexander, 1949; Amato and Wilder, 1985; Goddard et al., 2005; Hall and
Weiss, 1967; Marcus, 1969; Whittington, 1980), and we also find that the profitability of surviving US
corporations is independent of size in our sample. The important point here concerns the volatility in
profit and growth rates. In our sample, the rate of corporate growth would also seem independent of
size but its volatility, unlike the volatility of profit rates, is not.
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across the different sectors, and merely excludes banks (SIC codes 60 and 61) because
their balance sheets exceed those in other sectors by at least an order of magnitude.

We focus on long-lived or “surviving” firms that we define as companies operat-
ing in the market for the entire time span from 1980 to 2011. This panel contains
522 companies that account on average for more than seventy percent of market cap-
italization, total assets and employment in the sample. The importance of such a
‘granular’ view of the economy has recently been forcefully argued by Gabaix (2011),
who finds that about one third of variations in US GDP growth can be attributed to the
idiosyncratic destinies of the largest one hundred corporations. This is particularly
true for power-law distributed firm sizes (see Axtell, 2001), where the largest firms
contribute disproportionately to aggregate output, and the empirical size distribution
of companies in our sample also indicates a power-law tail

f(S) = αSαminS
−(α+1) (1)

for S> Smin, with a tail index α close to unity, also known as Zipf’s law.3 The power
law tail contains between 149 (in 1980) and 214 (in 2011) companies, and on average
long-lived corporations account for seventy percent of the companies in the upper
tail. Hence the impact of these corporations on the economy is non-negligible, and
we consider their dynamics as a crucial determinant of macroeconomic fluctuations.

For each company, we compute annual (logarithmic) growth rates g of firm size S,

gi,t = log(Si,t+1) − log(Si,t) , (2)

where i runs over firms and t denotes time. We consider sales, total assets, number of
employees, and market value as proxies for firm size.4 Our proxy for the profit rate p
is the return on assets,

pi,t =
Ii,t

Ai,t
, (3)

where I denotes operating income, and A denotes total assets.

3 The critical cut-off value Smin was identified with a Hill plot, which graphs the estimated tail index
as a function of tail size. For every year we observe a plateau around the benchmark α= 1 after a few
initial oscillations, suggesting that the Zipf law is a fairly robust feature of the size distribution’s upper
tail. Concerns regarding a potential ‘survivorship bias’ are addressed in the final section.

4 We will mostly report data for growth in total assets since both referees suggested to focus on a single
growth quantity for better legibility. Results for the other quantities are qualitatively in line with results
for growth in total assets. As one might expect, the growth rate of market value turns out to be the
most volatile quantity; on average, its standard deviation exceeds the standard deviation of profit rates
by a factor greater than three. Employment growth appears more volatile than growth in sales or total
assets, but the latter are still approximately twice as volatile as profit rates. This material is available
upon request.
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Figure 1: Time evolution of the mean and standard deviation of corporate profit and growth
rates. Lines between data points are visual aids.

1.2.1 Empirical densities

To understand the distributional properties of growth and profit rates, it is instructive
to first consider the time evolution of their means and standard deviations in Figure 1.
Notice that the mean and standard deviation of profit rates are remarkably stable
compared to their growth rate counterparts. The stability of the average profit rate
becomes most apparent when we look at the dot-com bubble and the recent financial
crisis. During those years a massive drop in market demand was reflected in sizable
decreases in firm growth and sometimes even in firm size. The adverse effects on firm
profitability, however, appear very moderate in comparison to the growth rate series.5

Although Figure 1 merely shows the average behavior, we do observe a decline in
growth rates that is more pronounced than the decline in profitability.6 Yet the first
two moments still provide less information than the distributions of growth and profit
rates, which we turn to next.

In the recent literature on growth rate distributions, it is common practice to elim-
inate possible trends in firm size by considering the normalized (logarithmic) size

si,t = log(Si,t) −N−1
N∑
i=1

log(Si,t), (4)

5 One could speculate that adverse demand shocks induce firms to reduce costs (number of employees)
or the scope of their operations (total assets), thereby mitigating the effects of decreasing sales on
profitability.

6 This non-trivial stability of the profit rate over time has also been pointed out by Mundt et al. (2014),
who analyze data from more than 30,000 publicly traded firms in more than forty countries that account
for about ninety percent of world GDP. Therefore we would like to think that our present findings do
not just reflect a peculiarity of the US data.
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which is obtained by subtracting the average (log) size of all long-lived firms from
the (log) size of company i. Then the normalized growth rate is defined as the first
difference of (4)

g̃i,t = si,t+1 − si,t. (5)

Profit rates, on the other hand, are not normalized in any way and simply remain in
the raw form (3). In order to fit the empirical distributions of growth and profit rates
in our sample, we follow standard procedure in the field and employ the exponential
power distribution first suggested by Subbotin (1923),

f(x) =
1

2σα1/αΓ(1+ 1/α)
exp

(
−
1

α

∣∣∣∣x−mσ
∣∣∣∣α) , (6)

where α,σ ∈ R+,m ∈ R, and Γ(·) denotes the Gamma function. The distribution is
characterized by three parameters: a location parameter m, a scale parameter σ, and
a shape parameter α that is responsible for qualitative differences in the distribution,
in particular its kurtosis. It is readily verified that the Subbotin density includes the
Laplacian (α= 1) and the Gaussian (α= 2) as special cases.

Figure 2 presents the pooled empirical densities of profit rates and normalized
growth rates, as well as the corresponding Subbotin fit obtained from maximum like-
lihood estimation of the parameters, reported in Table 3 (see Appendix A.2). The
parameter estimates of the pooled empirical distribution of profit rates are denoted
by α̂, σ̂ and m̂. We find that the empirical densities of both profit and growth rates
are clearly non-Gaussian, and can be reasonably well approximated by a symmetric
Subbotin distribution. The empirical density of profit rates exhibits a “linear tent-
shape” on semi-log scale that is characteristic of the Laplace distribution, while the
growth rate distribution is more leptokurtic than the Laplace.7 This visual impression
is confirmed by maximum likelihood estimates of the shape parameter α, which are
significantly smaller than unity for growth rates, while the maximum likelihood esti-
mates of the scale parameter σ illustrate that growth rates are also significantly more
volatile than profit rates.

To check whether our results are affected by the aggregation of data from different
years, we have also estimated α and σ for every single year during the period 1980-
2011. As Figure 3 illustrates, there is a remarkable year-to-year stability of the Laplace
distribution for profit rates, with rather small fluctuations in the parameter values over
time. In 25 out of 32 years the estimated shape parameter is consistent with a Laplace
distribution at the 95% confidence level. Since maximum likelihood estimates of the
shape parameter are quite sensitive to outliers, we investigated the relatively small
values of the shape parameter in the last four years, and it turns out that they are in

7 Some studies (see, for instance Amaral et al., 1997; Bottazzi et al., 2011) investigate the empirical
distribution of “rescaled” growth rates that are divided by their standard deviations conditional on
firm size. To a certain extent, this procedure brings the parameter estimates closer to a Laplace fit,
yet we obtain a significantly better Laplace fit for profit rates using merely raw data on the ratio of
operating income to total assets in our dataset.
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Figure 2: Pooled empirical densities of annual profit and growth rates for long-lived (non-
banking) corporations in the United States during the period 1980-2011. The mode
of the profit rate distribution is m̂ = 9.3%. Due to the normalization of growth
rates, their distribution is centered around zero. The solid curves show the Sub-
botin fit obtained by maximum likelihood estimation of the shape and scale pa-
rameter (standard errors in parentheses), yielding estimates of α̂ = 0.95 (0.01) and
σ̂ = 0.0570 (0.0005) for profit rates, and α̂ = 0.76 (0.01) and σ̂ = 0.0977 (0.0010) for
growth rates.

fact due to very few extreme observations. Eliminating, for instance, merely the two
most extreme profit rates at both sides of the spectrum leads to estimates for α that
cannot be distinguished from the Laplace benchmark (α = 1) at the 95% confidence
level. As far as growth rates are concerned, we can reject the null hypothesis α = 1

in approximately 90% of cases. Thus we continue under the assumption that the
Laplace distribution is a reasonable benchmark for the distribution of profit rates,
while growth rates are more leptokurtic.

1.2.2 Autocorrelations

Inspection of the line charts for a dozen randomly chosen time series of growth and
profit rates indicates that profit rates are substantially more persistent than growth
rates. To properly quantify this graphical impression, we consider their autocorrela-
tion function (ACF). For the estimation of the autocovariance function, however, we
must consider that the number of observations per time series is quite small in our
sample. In case of an autocorrelated process and a small number of observations,
subtracting the sample mean from the observations in the autocovariance function
leads to a systematic underestimation of the true autocorrelation (see, for instance,

9
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Figure 3: Year-by-year maximum likelihood estimates of the Subbotin shape (left panel) and
scale (right panel) parameters. Error bars show two standard errors.

Fuller, 1996). Intuitively, this negative bias stems from the fact that the autocorrela-
tion coefficient is a scaled sum of cross-products of deviations of Xt from its mean.
For each time series these deviations must sum to zero by construction, so that neg-
ative deviations must eventually be followed by positive deviations on average and
vice versa. Therefore, the expected value of cross-products of deviations is negative
(see Campbell et al., 1996, p. 46). In order to mitigate this negative bias, we replace
the estimated mean of each individual time series with the median m̂ of the pooled
empirical density in the autocovariance function.8

Figure 4 presents a box-and-whisker plot for the 522 estimated autocorrelation func-
tions of the profit rate and growth rate time series. Our analysis suggests that statis-
tically significant autocorrelations in growth rates can only be found in relatively few
time series: serial correlation seems to be completely absent in annual growth rates of
market value (in line with the weak-form efficient market hypothesis of Fama, 1991),
which is consistent with many previous findings in the pertinent empirical literature
(see, for instance, Cont, 2001, for a review of the stylized facts of financial returns).
The annual growth rates of sales, total assets, and employment appear to be slightly
more persistent, yet the estimated autocorrelation coefficients cannot be distinguished
from zero at the 95% confidence level in the vast majority of cases. If present at all,
we find that autocorrelation in growth rates is very weak, consistent with previous
results by Bottazzi et al. (2001) and Bottazzi and Secchi (2005). These findings can
be interpreted as evidence against the “optimal size” hypothesis since one should ob-
serve pronounced positive autocorrelations in growth rates as firms approach some
optimal size.9

8 The reason why this particular substitution is preferable will be clarified in Section 1.2.3, and is es-
sentially based on the statistical equilibrium property of the profit rate series. The relevance of the
negative bias for our subsequent diffusion model is illustrated in Figure 16 (see Appendix A.4).

9 This is particularly true in case of (non-linear) adjustment costs that prohibit firms from instantly
attaining their optimal size. Instead, these firms would grow gradually by equating the marginal gains
from having a larger size with the marginal costs of growing (see Coad, 2007).
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(a) Profit rate
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(b) Growth rate of total assets

Figure 4: Box-and-whisker plot for the estimated autocorrelation functions of profit rates and
growth rates. The boxes include the 25 percent quantile, the median, and the 75

percent quantile. The red dashed lines show the 95 percent confidence interval under
the null hypothesis of zero autocorrelations. The interval has been computed as
±1.96/

√
T , where T = 32 is the length of the profit rate time series.

Profit rates, on the other hand, exhibit strong positive autocorrelations. Similar
results have been reported in the so-called persistence of profits literature, which finds
significantly positive first-order autoregressive coefficients in time-series regressions
of profit rates (for a recent take on the subject see, for instance, Cable and Mueller,
2008). Notice, however, that these models typically approach the dynamics of firm
profitability via stationary AR(1) processes, and hence are misspecified because their
stationary distribution is Gaussian, yet the previous subsection shows that empirical
profit rate distributions are much closer to the Laplace. Since we cannot rule out
a negative bias in the estimated autocorrelation coefficients of profit rates, it seems
imprudent to specify the number of statistically significant time lags for the non-
parametric analysis in Figure 4. Instead we will introduce the correlation time of our
subsequent diffusion model as an alternative measure of profit persistence in section
1.4.1.

1.2.3 Size (in)dependence

The law of proportionate effect is conventionally understood as a multiplicative stochas-
tic process whereby a firm’s current size is the result of a sequence of independent
and identically distributed growth shocks. According to the central limit theorem, the
growth rate distribution should then be Gaussian, and the corresponding firm size
distribution should be log-normal.10 While the hypothesis of proportionate random

10 From a technical point of view, one should be more precise and additionally state that the length of the
sequence of growth shocks (and the mean and variance of the resulting distribution) is the same for all
firms.
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Figure 5: Location (mi) and dispersion (σi) of firm profit rates as a function of firm size. Points
represent binned data and have been computed in the following way: for each time
series, i = 1, . . . ,522, we calculate a firm’s median profit rate mi and corresponding
mean absolute deviation σi. Then we split the firms according to their median size
into ten (almost) equipopulated bins. The points represent the average mi and σi of
the approximately 52 firms in each bin. The black lines represent the phenomeno-
logical values m̂ = 9.3% and σ̂= 5.7% of the empirical profit rate distribution. Error
bars correspond to one median absolute deviation.

growth is useful to explain the considerable heterogeneity in firm size, it lacks an
economic justification as already pointed out in the introduction.

There is, on the other hand, good reason for profit rates to be independent of size.
Profit rates are central to economic competition since they guide the allocation of
capital across competing uses in different sectors and industries. Capital seeks out
abnormally profitable activities independent of their size, because it is the rate of re-
turn to invested capital (say, ten percent), and not the absolute return (say, ten million
currency units) that guides the allocation of capital. In the absence of further infor-
mation, one should therefore expect both the location parameter m of the profit rate
distribution, and the dispersion parameter σ to be independent of firm size. In order
to judge how well the data reflect this prediction, we consider the median and mean
absolute deviation as the location and dispersion measures, because they correspond
to the maximum likelihood estimators of m and σ when sampling from a Laplace
distribution (see, for instance, Johnson et al., 1995; Kotz et al., 2001). As illustrated
in Figure 2, the Laplace is a reasonable benchmark for the pooled profit rate distri-
bution, and hence we denote the parameter estimates from the pooled cross-sectional
distribution by m̂ and σ̂.

To further fix notation, let mi and σi denote the median and mean absolute devia-
tion of the profit rate time series of firm i. Figure 5 suggests that both the median and
mean absolute deviation of profit rates are rather homogeneous across different size
classes, and are reasonably close to the unconditional values m̂= 0.093 and σ̂= 0.057
of the pooled empirical profit rate distribution. We cannot rule out the existence of
a small negative bias for the smallest size bin, yet this bias is caused by around 15
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Figure 6: Location (mi) and dispersion (σi) of growth rates as a function of firm size. The
binning procedure is the same as in Figure 5. A least squares power law fit for the
relation between the dispersion of growth in total assets and size yields −0.06± 0.01.
The use of alternative size measures leads to the estimates −0.10 ± 0.02 for sales,
−0.10± 0.02 for the number of employees, and −0.09± 0.02 for market value (not
shown here). Error bars correspond to one median absolute deviation.

to 25 out of 522 firms, that is by about 3 to 5 percent of all long-lived companies.11

The visual impression that mi and σi are virtually the same for the vast majority of
firms is supported by linear regressions, which yield slope coefficients that cannot
be distinguished from zero at the usual confidence levels once the smallest size bin
is excluded from the analysis (see Tables 4 and 5 in Appendix A.5 for details). The
intercept in the linear regressions provides rather limited information since firm sizes
span several orders of magnitude and are very large to begin with, so that an extrap-
olation of any linear relationship to size zero is hardly meaningful. In any case, the
values of mi and σi in each bin cannot be distinguished from m̂ and σ̂ at the usual
significance levels. The remarkable similarity between the parameters of the pooled
cross-sectional distribution and the individual corporate time series strongly suggests
that profit rates are generated by a common dynamic law.12

Figure 6 repeats the analysis for the growth rates of firm size. While the location
parameter of growth rates is not markedly affected by size, we find a clear inverse re-
lation between the dispersion of growth rates and company size, in line with previous
studies that report power-laws with scaling exponents close to −0.15 (see, for instance,
Amaral et al., 1997; Bottazzi and Secchi, 2003; Stanley et al., 1996). Fitting a power
law to our data yields scaling exponents ranging from −0.06± 0.01 for growth in total
assets to −0.10± 0.02 for sales and employment growth rates. In contrast to profit
rates, removing the smallest size bin from the growth rate analysis does not lead to

11 Twelve (thirteen) of the twenty-five corporations with the lowest mi (highest σi) operate in just four
industries with SIC codes 13, 36, 38, and 67.

12 One referee suggested to check the validity of our findings by repeating the analysis for the subset
of manufacturing firms (SIC codes 20 to 39). It turns out that all our central results (like the distribu-
tional regularities, autocorrelation structures, and size independence of profit rates) carry over to this
subsample (see Appendix A.3 for details).
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significantly different slope coefficients,13 and preserves the scaling of the dispersion
of growth rates with firm size, which the pertinent literature typically ascribes to firm
diversification.

1.3 model

The preceding analysis suggests that profit rates are characterized by a stationary
cross-sectional distribution, and that firm-level time series exhibit persistent autocor-
relations. In addition, the location and dispersion of the individual series are in-
dependent of size and very close to the location and dispersion estimates m̂ and σ̂
of the pooled cross-sectional distribution. These properties of corporate profit rates
establish a major difference to growth rates, and would seem to represent a more
immediate way to study the competitive behavior of corporations, at the very least
from a statistical point of view. Inspired by the empirical densities of cross-sectional
profit rates, Alfarano et al. (2012) have recently introduced a diffusion process with a
stationary Laplace distribution. We argue here that the process is not only consistent
with the observed cross-sectional distribution, but also with the time series properties
of surviving corporations, including their autocorrelation structures. To the best of
our knowledge, the Laplace diffusion introduced below is the only model for the dy-
namics of firm profitability that is consistent with both the cross-sectional distribution
and the individual time series properties of profit rates.

1.3.1 Diffusion

Alfarano et al. (2012) propose the stochastic differential equation

dXt =−
D

2σ
sign(Xt −m)dt+

√
DdWt, (7)

to model the dynamic evolution of firm profitability, where Xt denotes the profit rate,
σ is a dispersion parameter, sign(·) denotes the signum function, m is the average
rate of profit, and dWt are Wiener increments. The (square root of the) constant term
D determines the noise level in the (random) second term, but notice that it also in-
fluences the strength of the reversion to m in the (deterministic) first term. From an
economic point of view, this part of the stochastic process reflects the negative feed-
back mechanism of classical competition: capital will seek out sectors or industries
where the profit rate is higher than the economy-wide average, typically attracting
labor, raising output, and reducing prices and profit rates in the sector. This provides
an incentive for capital to leave the sector, leading in turn to higher prices and profit
rates for the surviving firms. Notice that the first term (or drift function) of the stochas-
tic model (7) does not depend on the current profitability of a firm. The second term

13 To be precise, the cited papers consider the relationship between size and the standard deviation of
growth rates. We have also estimated the power law exponents for this relationship and find that the
results are very similar to the ones we report for the mean absolute deviation.
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(or diffusion function) is governed by random Wiener increments, which incorporate
all idiosyncratic factors affecting firm profitability. In the particular case (7), the noise
level

√
D is constant over time and independent of the profit rate. Another particular

feature of the diffusion (7) is that the drift and the diffusion function are intertwined,
since the variance of the idiosyncratic noise term affects the speed of adjustment to-
wards the system-wide average. It can be interpreted in the sense that competition
simultaneously generates fluctuations in corporate destinies and convergence to the
average rate of profit.

The notion of statistical equilibrium rests on the idea that all surviving corporations
are subject to the same stochastic process (7), with common parameters m and σ that
match the location and dispersion parameters of the stationary distribution of the
process,

fS(x;m,σ) =
1

2σ
exp

(
−

∣∣∣∣x−mσ
∣∣∣∣) . (8)

It is easily verified that (8) is obtained from (6) for α= 1. The empirical analysis in the
preceding section therefore suggests that m and σ can be readily observed from the
pooled empirical density of profit rates, and would apply to the individual destinies
of all surviving corporations, regardless of their size or industry. In other words,
statistical equilibrium describes a situation where the profit rate of each surviving
corporation reverts to the same systemic rate of profit, and fluctuates around it with
the same (systemic) variability. That means that the only source of firm-specific effects
in the model originates from the diffusion coefficient D, because the unconditional
equilibrium distribution (8) does not depend on this parameter. Accordingly, the
statistical equilibrium model leaves a single degree of freedom for idiosyncrasies in
corporate profitability.

1.3.2 Transient density

A useful alternative representation of a diffusion process is provided by its transient
density (or Fokker-Planck equation, see Risken, 1996), which describes the time evolu-
tion of the stochastic system by means of a second-order partial differential equation,

∂p(x,t)
∂t

=−
∂

∂x
(A(x;D)p(x,t)) +

1

2

∂2

∂x2
(B(x;D)p(x,t)), (9)

where A(x;D) and B(x;D) are the drift and diffusion functions of the underlying
diffusion process, and

p(x,t) = f(x,t|x0,t0) (10)
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denotes the conditional probability density for a transition from state x0 at time t0 = 0
to state x at time t. For the particular diffusion (7) with zero mean, that is

Zt = Xt −m, (11)

and initial condition f(z,0|z0,0) = δ(z− z0), where δ(·) denotes Dirac’s delta function,
Toda (2012) demonstrates that a closed-form solution to (9) exists under appropriate
boundary conditions and is given by

f(z,t|z0,0) =
1√
2Dπt

· exp
(
−
(z− z0)

2

2Dt
−
1

2σ
(|z|− |z0|) −

D

8σ2
t

)
+
1

2σ
exp

(
−
1

σ
|z|

)
Φ

(
−
|z|+ |z0|− (Dt)/(2σ)√

Dt

)
, (12)

where Φ(·) denotes the cumulative distribution function of the standard normal. The
closed-form solution of the Fokker-Planck equation in (12) allows us to estimate the
idiosyncratic diffusion coefficient by maximum likelihood, and it is also helpful in
finding a closed-form solution for the autocorrelation function of the diffusion pro-
cess (7).

1.3.3 Autocorrelation function

For stationary Markov processes, the autocorrelation function obeys the textbook for-
mula (see, for instance, Kampen, 1992)

κ(τ) =

∫∞
−∞dz

∫∞
−∞dz0 zz0f(z,τ|z0,0)fS(z0), (13)

where fS denotes the stationary density. Here the stationary density corresponds to
(the zero-mean-shifted version of) equation (8), and the transient density f obeys (12).
In this case, Touchette et al. (2010) show that the autocorrelation function of (7) is
characterized by an (asymptotic) exponential decay,14
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.

Figure 15 (see Appendix A.4) illustrates the probability density and autocorrelation
function of simulated realizations of the diffusion process in equation (7). While the
model is consistent with the distributional and autocorrelation properties of empirical
profit rates, the good fit between the estimated and theoretical autocorrelation func-

14 The pre-factor stems from the non-linear nature of the drift function in (7).
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tion only occurs for time series that are sufficiently long. For shorter time series, we do
observe a negative bias in the estimated autocorrelation function. This, however, im-
plies that the persistence of abnormal profits is actually even stronger than Figure 4

suggests. Given (7), we can avoid the negative bias in the persistence of abnormal
profits by using the theoretical autocorrelation function. Estimating the persistence of
abnormal profits then boils down to estimating the diffusion coefficient D from the
transient density (12).

1.4 results

In the diffusion model (7), the persistence of profits is determined by the drift func-
tion, hence the speed of convergence towards the systemic rate of profit depends on
two parameters: the diffusion coefficient D and the scale parameter σ. In statistical
equilibrium all firms are subject to the same location and scale parameters m and σ,
so the diffusion coefficient D remains as the only source of idiosyncratic differences
in the profitability of surviving corporations. If σ is the same for all corporations,
then the noise level Di measures the persistence of abnormal profits directly, and
can be interpreted in the sense that firms with larger diffusion coefficients are prone
to larger shocks in their profitability, while their abnormal profits do not persist for
long. Conversely, firms with smaller diffusion coefficients are on average subject to
smaller shocks, while their abnormal profits are more persistent. In order to estimate
the diffusion coefficient for each profit rate series, we apply the maximum likelihood
method to the solution (12) of the Fokker-Planck equation.

1.4.1 Estimation of the diffusion coefficient

Given discrete annual observations, we estimate the diffusion coefficients for each
firm by numerically minimizing the negative log-likelihood

− logL(Di) = − logfS(zi,0) −
T−1∑
t=0

logf(zi,t+1|zi,t;Di) (15)

with respect to Di, where fS(zi,0) is the stationary Laplace density of some initial state
zi,0, and f(zi,t+1|zi,t;Di) is the solution of the transient density (12) evaluated for each
observation zi,t+1 = pi,t+1 − m̂ at time t+ 1 conditional on the previous observation
zi,t at time t. Equipped with the estimated coefficients, we then compute the speed of
adjustment (or characteristic time scale or relaxation time) of the profit diffusion from (14)
as the number of years that are necessary for the autocorrelation function to reach the
value one half.15

15 We consider the half-life definition in order to account for the non-linear nature of the diffusion process.
The usual choices that are typically based on the dominant exponential term would in fact neglect such
effects. Essentially we are solving the implicit equation κ(τi;Di, σ̂,m̂) = 0.5 for τi.

17



æ

æ

ææææææææ
ææææææææææææ
æææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææ

æææææææææææææ
ææ
ææ
æ

æ

æ

æ

noise level

0 100 200 300 400 500

0.01

0.1

0.05

0.02

0.2

0.03

0.3

0.015

0.15

0.07

Rank

D
i

noise levelæ

adjustment speedì

ì

ì

ììì
ììì
ìì
ììì
ììììì
ìììì
ìì
ìììììì
ììììììì
ììììììììì
ììììì
ìììì
ìììììììì
ììììììììììì
ììììììì
ììììììììììììì
ììììììììììììììì
ììììììììììììììììììì
ììììììììììì
ììììììììì
ììììììììììììì
ììììììììììììììììì
ììììììììììììììììììììììì
ìììììììììììììììì
ììììììììììììì
ììììììììììììììììììì
ìììììììììì
ìììììììììììììììììììì
ììììììììììììììì
ììììììììììììììììììììì
ìììììììììììììììì
ìììììììììììììììììììì
ìììììììììììììì
ìììììììììììììììììì
ìììììììììììììììììììì
ìììììììììììììì
ìììììììììì
ìììììììììììììì
ìììììììì
ììììììììììì
ìììììììì
ìììììììììì
ììììììììì
ììììììì
ììììì
ììììììì
ìììììì
ìì
ìì
ì
ì

ì
ì

adjustment speed

0.1

1

10

100

Y
ea

rs

Figure 7: Sorted estimates of the noise level
√
D (left axis) and corresponding relaxation time

of abnormal profits (right axis) for long-lived US corporations. The latter shows the
number of years that are necessary for the autocorrelation function (14) to reach the
value 1/2. The arrows indicate the median noise level of around 3.3% p.a., and the
corresponding median half-life of abnormal profits (around 9 years).

Figure 7 presents the estimated diffusion coefficients and corresponding half-life of
abnormal profits, where we observe a pronounced variability in the diffusion coeffi-
cients that translates into heterogeneous time horizons for the dissipation of abnormal
profits. The median diffusion coefficient is Dmed ≈ 1.1× 10−3, implying a standard
deviation of the idiosyncratic noise in the diffusion equation of

√
Dmed ≈ 3.3% per

annum, which corresponds to a longitudinal relaxation time of about nine years. For
some firms, however, the diffusion coefficients are very small and imply relaxation
times that are much longer than the length of the observed time series. Analyzing
these firms in more detail, we find that considerable fractions are made up by utilities
or insurance companies, with total assets far above the sample average, high capital
intensity, and relatively steady profit series in comparison to other sectors. At this
point we can merely speculate that entry and exit barriers in these sectors, probably
stemming from large capital requirements, prevent a smooth and frictionless realloca-
tion of capital in search of profit rate equalization.

Firms with relatively short relaxation times, on the other hand, disproportionately
often operate in business sectors with SIC code 36 (electronical equipment), 38 (mea-
suring instruments), and 13 (oil and gas extraction). Intuitively, the latter is charac-
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Figure 8: Estimates of the noise level (
√
D) vs firm size on double-logarithmic scale. A least-

squares power-law fit yields a scaling exponent of 0.18± 0.03 for total assets as a
measure of size. Using alternative size measures yields the estimates 0.17 ± 0.03
for sales, 0.16± 0.02 for the number of employees, and 0.16± 0.03 for market value.
Error bars correspond to one median absolute deviation.

terized by a high degree of uncertainty, while large changes in profitability for the
former two sectors might be caused by operating leverage effects.16

1.4.2 What determines the diffusion coefficient?

The observed heterogeneity in the diffusion coefficient raises the question whether
firm or industry characteristics affect the persistence of abnormal profits. We will
focus on what are perhaps merely the most obvious attributes, and consider here the
impact of size, diversification, and capital intensity on the persistence of abnormal
profits.

1.4.3 Firm size

While the data suggest that size basically does not influence the rate of profit, we can
ask whether size instead has an impact on the diffusion coefficient? On average larger
corporations appear more stable and are affected by smaller idiosyncratic shocks to
their profitability than smaller entities. The double-logarithmic plot in Figure 8 sug-

16 Operating leverage increases with the proportion of fixed in relation to variable operating costs. During
demand surges, high operating leverage could well lead to larger profits, but it also makes firms more
vulnerable as they cannot readily cut expenses to absorb plummeting demand when most costs are
tied up in machinery, plants, real estate, or distribution networks.
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gests that the standard deviation of the idiosyncratic noise scales with size according
to a power law

√
D ∼ αS−β. (16)

To avoid distortions arising from booms and busts in single years, we calculated the
mean size of each surviving corporation during the period 1980-2011,17 and divided
the sorted values into deciles, calculating the median size and

√
Di in each decile.

Fitting a power relation

log
√
D= logα−β · s (17)

to the data yields least squares estimates of β= 0.18± 0.03 for total assets, β= 0.17±
0.03 for sales, β = 0.16± 0.02 for the number of employees, and β = 0.16± 0.03 for
market value. All estimates are significant at the one percent level and indicate an
inverse relationship between size and the noise level, so the larger a corporation the
more persistent its abnormal profits tend to be.

1.4.4 Diversification

In order to proxy the degree of corporate diversification, we consider Datastream’s
product segment decomposition of corporate revenues. The data associate segment-
level SIC codes with the corresponding revenues of each company, and we use the
product segment data to compute three common measures of corporate diversifica-
tion: segment count, Herfindahl index, and entropy.

The first measure literally counts the number of sectors a company operates in.
Since Datastream merely provides up to ten business segments per company, we de-
cided to group business sectors on a 3-digit SIC level. Table 1 illustrates that 66 of
the 522 corporations concentrate their business activity in a single sector, while the
remaining 456 companies are diversified across different sectors. Around half of the
sample operates in four business segments or more. Considering the median D in
the third column of Table 1, we observe a tendency for the diffusion coefficient to de-
crease with the number of business segments. To further quantify this impression, we
have tested for differences between medians in the different groups. Comparing firms
operating in one business segment with companies that are active in four (or more)
sectors, a Mann-Whitney test rejects the null hypothesis that the average diffusion co-
efficient of non-diversified corporations is smaller or equal to that of diversified ones
at the five percent level. The business segment count, however, lacks information on
the relative importance of the different segments, that is on how much the respec-
tive revenues in these segments contribute to a corporation’s overall sales. Therefore,

17 Taking either the latest available observation of firm size or the maximum value per firm leads to very
similar results.
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Table 1: Median diffusion coefficient (and its square root) for firms that operate in a certain
number of business segments (3-digit SIC level).

Business segment count Number of firms Dmed
√
Dmed

1 66 0.001764 0.042

2 99 0.001681 0.041

3 97 0.001369 0.037

4 101 0.000841 0.029

5 70 0.000961 0.031

6 49 0.000784 0.028

7 29 0.001024 0.032

8 11 0.000625 0.025

Note: The persistence of abnormal profits seems to increase with the business segment count of a
corporation.

Herfindahl suggests a diversification index that computes the sum of squared shares
of each segment’s contribution to total sales

Hi =

n∑
j=1

P2ij, (18)

where Pij is the percentage share of company i’s sales that is generated in business
segment j. Notice that the measure decreases with increasing diversification. Alterna-
tively, the entropy methodology can be applied to calculate a sales diversity index:18

Ei =−

n∑
j=1

Pij logPij. (19)

Unlike the Herfindahl index, which weights the share of each business segment by
itself, the entropy measure weighs each Pj by the logarithm of 1/Pj, so that it is more
sensitive to small sales shares than the Herfindahl index, and largely ignores small
differences in large sectors. The entropy measure in equation (19) increases with
increasing diversification.

The Spearman rank correlation coefficient for the relationship between
√
Di and the

Herfindahl-index is 0.17, indicating a moderate negative effect of diversification on the
adjustment speed of the process.19 Based on the Spearman rank test, we find that the

18 For instance, Horowitz (1970) uses entropy as a measure of industry concentration, while Jacquemin
and Berry (1979) use the concept to measure corporate diversification.

19 Again, notice that more diversification leads to a reduction of the Herfindahl index, thus a positive
correlation between Di and the Herfindahl index implies that the speed of convergence toward the
average profit rate decreases with increasing diversification.
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null hypothesis of
√
Di and the Herfindahl index being independent or negatively

correlated can be rejected at the one percent level.
In case of the entropy measure, the correlation coefficient equals −0.15 and the null

hypothesis that
√
Di and the entropy measure are not negatively correlated is also

rejected at the 1 percent level. Furthermore, we have regressed the square root of
the diffusion coefficient on these two diversification measures and find coefficients of
0.0246± 0.006 for the Herfindahl-index and −0.0142± 0.0038 for the entropy measure.
Both coefficients are statistically significant at the one percent level.

Overall, the results suggest that there is a moderate negative correlation between
the diffusion coefficient and firm diversification, which is nevertheless quite robust
with respect to several diversification measures. Abnormal profits would thus seem
to be more persistent for more diversified corporations.

1.4.5 Intensity of capital

The long relaxation times for insurance and utilities corporations indicate that capital
intensity has an impact on the persistence of abnormal profits. According to the
DuPont identity, the profit rate of a firm i can be decomposed into the product of its
profit margin and asset turnover,

pi,t =
Ii,t

Si,t
·
Si,t

Ai,t
, (20)

where (the inverse of) the latter measures capital intensity. The coefficient for the
rank correlation between asset turnover and the noise level

√
Di equals 0.27, implying

that abnormal profits are more persistent for capital intensive corporations (with a
correspondingly low asset turnover). A one-sided Spearman rank test rejects the null
hypothesis of nonpositive correlations at the one percent level.

Figure 9 provides an alternative illustration of the relationship between asset turnover
and the noise level. We calculate the average asset turnover for each corporation dur-
ing the period 1980-2011, group them into deciles, and calculate the median for each
bin as well as the median of the associated noise levels

√
Di. An ordinary least squares

regression yields an intercept of 0.0227± 0.004 and a slope parameter of 0.0112± 0.003,
both of which are statistically significant at the one percent level. In summary, the ab-
normal profits of capital intensive corporations are more persistent.

1.5 discussion

The possibly most fundamental questions, pertaining to the origin of the particular
values of the systemic rate of profit and its dispersion, still remain unanswered here.
Yet the data suggest that statistical equilibrium provides a very reasonable first ap-
proximation to the profitability of surviving corporations.20 Conditional on survival,

20 We cannot emphasize enough that survival is key to our results, as already argued at length by Alfarano
et al. (2012).
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Figure 9: Estimates of the noise level (
√
D) vs asset turnover, measured as the ratio of sales to

total assets. Ordinary least squares regression of
√
Di on asset turnover yields an in-

tercept of 0.0213± 0.0040 and a slope parameter of 0.0109± 0.0031. Both parameters
are statistically significant at the one percent level; error bars represent one median
absolute deviation.

US corporations generate an average rate of profit of about nine percent, along with a
rather tranquil playground that disperses profit rates by less than six percent on aver-
age. Therefore it would appear that survival by itself warrants some sort of autopilot
mode for corporations, in which they cannot do better but, perhaps surprisingly, also
not worse than the system-wide average. Consequently, the idiosyncratic characteris-
tics of corporations are independent of the systemic rate of profit and merely have an
impact on how quickly abnormal profits are dissipated.

Knowledge of the relaxation time is of potential interest to outside investors because
investing either in corporations which currently operate under a relatively large dif-
fusion coefficient and are below the systemic rate of profit, or in those that currently
operate above under a small diffusion coefficient, would both appear to be profitable
strategies. These strategies, however, will pay off if and only if the respective corpora-
tions manage to survive, which is certainly unpredictable and therefore still leads to
risky strategies.

As far as the much more abundant literature on growth rates is concerned, note
that our sample builds on corporations from a broad set of industrial contexts, unlike
previous studies that have mostly focused on particular sectors of the economy, such
as manufacturing, services or the pharmaceutical industry. The results pertaining to
the probability distribution, autocorrelation and scaling behavior of growth rates are
consistent with the previous literature, in spite of the broader sectoral scope, again
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indicating the importance of survival for the statistical regularities in both growth and
profitability.

There are undeniably second-order effects that are not accounted for by the diffu-
sion model. A substantial fraction of the deviations reported in sections 1.2 and 1.4
can be traced to a relatively small number of corporations in even fewer industries:
about a dozen corporations with SIC codes 13 (oil and gas extraction), 36 (electronic
equipment excluding computers), 38 (measuring instruments), and 67 (holding and
other investment offices) account for half the deviations, which stem from the high
volatility and leptokurtosis in the respective corporate time series. At the other end of
the spectrum the largest corporations, like insurance carriers and utility companies,
exhibit the least volatility and kurtosis in their profit rate series, and therefore account
for most of the deviations in the relaxation time of abnormal profits. Recall that their
relaxation times exceed the length of the observed series by almost an order of mag-
nitude. So the idea that the most capitalized corporations are somehow privileged
in a competitive environment (see, e.g., Baumol, 1967) lives on in a modified form,
however not relating to the rate of profit itself or its volatility, but rather to the long
persistence of abnormal profits in capital intensive industries.21

Pronounced deviations from the diffusion model might help to identify imper-
fections in the competitive environment, and potentially have antitrust implications.
Since the diffusion model rests on the classical idea of a perpetual reallocation of capi-
tal in search of profit rate equalization, large empirical deviations in profit persistence
should essentially be tied to frictions in the reallocation of capital.

Finally, and maybe most controversially, we would like to argue that concerns of
a ‘survivorship bias’ are perhaps the wrong way of framing the empirical analysis.
After all, Gabaix’s granular view of aggregate fluctuations in the US economy firmly
suggests that the surviving corporations in our sample account for the major share
of macroeconomic fluctuations, and are thus at the very least an interesting group
of firms to study in its own right. Since everything in our analysis is conditional on
(the uncertain and unpredictable) survival of corporations, one might instead wonder
whether there is a systemic cost for the survival of a certain number of large corpo-
rations? Does capital need to be churned, do other corporations have to die, in order
to observe the tranquil dissipation of excess profits for a certain (and ultimately inter-
changeable) set of surviving corporations? And if so, how much capital needs to be
metabolized in the process?

21 Notice that stakeholders in these industries, once their profitability actually happens to be below the
systemic rate, might not consider it such a privilege after all.
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A
A P P E N D I X

a.1 sample characteristics

Table 2: Sector definitions and number of firms in each sector.

Division SIC Sector No. of firms No. of long-lived firms

Agriculture, forestry, and
fishing

01 Agricultural production -
crops

20 1

02 Agricultural production -
livestock and animal spe-
cialities

3 0

07 Agricultural services 4 0

08 Forestry 3 0

09 Fishing, hunting and trap-
ping

2 0

Mining

10 Metal mining 139 4

12 Coal mining 27 1

13 Oil and gas extraction 336 15

14 Mining and quarrying of
nonmetallic minerals, ex-
cept fuels

19 1

Construction
15 Building construction - gen-

eral contractors and opera-
tive builders

37 5

16 Heavy construction, except
building construction - con-
tractors

26 3

17 Special trade contractors 21 1

Manufacturing 20 Food and kindred products 141 20

21 Tobacco products 8 2

22 Textile mill products 19 2

23 Apparel, finished products
from fabrics and similar
materials

35 4

24 Lumber and wood prod-
ucts, except furniture

25 5

25 Furniture and fixtures 27 8

26 Paper and allied products 36 8

27 Printing, publishing and al-
lied industries

71 15

28 Chemicals and allied prod-
ucts

636 36

29 Petroleum refining and re-
lated industries

31 10

30 Rubber and miscellaneous
plastic products

55 6

(continued)
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Table 2 – Continued
Division SIC Sector No. of firms No. of long-lived firms

31 Leather and leather prod-
ucts

19 3

32 Stone, clay, glass and con-
crete products

30 6

33 Primary metal industries 70 9

34 Fabricated metal products 79 15

35 Industrial and commercial
machinery and computer
equipment

297 36

36 Electronic, electronical
equipment and compo-
nents

555 33

37 Transportation equipment 147 24

38 Measuring, analyzing and
controlling instruments

422 33

39 Miscellaneous manufactur-
ing industries

59 4

Transportation, communica-
tions, electric, gas, and sani-
tary services

40 Railroad transportation 9 5

41 Local, suburban transit and
interurban transportation

3 0

42 Motor freight transporta-
tion

30 3

44 Water transportation 41 2

45 Transportation by air 34 4

46 Pipelines, except natural
gas

10 0

47 Transportation services 24 0

48 Communications 227 8

49 Electric, gas, and sanitary
services

191 62

Wholesale trade 50 Wholesale trade-durable
goods

145 10

51 Wholesale trade-
nondurable goods

100 11

Retail trade

52 Building materials 8 1

53 General merchandise stores 29 7

54 Food stores 25 5

55 Automotive dealers and
gasoline service stations

29 1

56 Apparel and accessory
stores

62 7

57 Home furniture, furnish-
ings, and equipment stores

28 3

58 Eating and drinking places 85 7

59 Miscellaneous retail 92 3

Finance, insurance and real
estate

62 Security and commodity
brokers, dealers, and ex-
changes

72 1

63 Insurance carriers 141 20

64 Insurance agents, brokers,
and service

19 3

(continued)
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Table 2 – Continued
Division SIC Sector No. of firms No. of long-lived firms

65 Real estate 85 1

67 Holding and other invest-
ment offices

334 11

Services

70 Hotels, rooming houses,
camps, and other lodging
places

42 1

72 Personal services 15 4

73 Business services 1018 19

75 Automotive repair, services,
and parking

12 1

76 Miscellaneous repair ser-
vices

3 1

78 Motion pictures 54 0

79 Amusement and recreation
services

68 1

80 Health services 118 5

81 Legal services 2 0

82 Educational services 49 1

83 Social services 5 0

84 Museums, art galleries, and
botanical and zoological
gardens

1 0

86 Membership organizations 1 0

87 Engineering, accounting,
research, and management

187 4

89 Services, not elsewhere
classified

27 0

Public administration

92 Justice, public order, and
safety

1 0

95 Administration of environ-
mental quality and housing
programs

1 0

97 National security and inter-
national affairs

8 0

99 Nonclassifiable establish-
ments

26 0

Total 6860 522

Note: Firms operating in more than one sector are classified according to the business segment that
generated the most revenue. The fourth column refers to the whole dataset, while the fifth column
represents long-lived firms.

27



a.2 estimates of the subbotin parameters

Table 3 presents the estimated Subbotin parameters for profit and growth rates, distin-
guishing between different measures of firm size: besides total assets we also consider
the sales, number of employees, and market value of corporations to check the robust-
ness of our findings. Figure 2 in the main text already suggests that the Laplace fit
is better for profit than for growth rates, which is confirmed by the estimates of the
shape parameter α since they are significantly smaller than unity for the growth of to-
tal assets, sales, and employment. The best Laplace fit is obtained for the growth rates
of market value, yet an analysis of the year-by-year distributions (not shown here) re-
veals that the scale parameter exhibits pronounced fluctuations over time, suggesting
that the Laplacian nature of the pooled market value growth rate distribution is an
artefact of aggregation.22

Table 3: Maximum likelihood estimates of the Subbotin parameters α and σ.

shape parameter α̂ scale parameter σ̂

profit rate 0.95 (0.01) 0.0570 (0.0005)
growth rate of total assets 0.76 (0.01) 0.0977 (0.0010)
growth rate of sales 0.74 (0.01) 0.0999 (0.0011)
growth rate of number of employees 0.62 (0.01) 0.0806 (0.0009)
growth rate of market value 1.01 (0.01) 0.2467 (0.0024)

Note: Standard errors are shown in parentheses.

a.3 disaggregation

The analyses done so far considered firms from a diverse set of industries. A potential
objection to this approach is that our results were affected by the aggregation of data,
thus one referee suggested to check the validity of our findings in Section 1.2 for
the firms in the manufacturing industries (SIC 20–39), where our sample contains
279 long-lived corporations. Hence this section replicates our analysis in Section 1.2
for these firms, shown in Figures 10–14. It turns out that the statistical properties
observed across all sectors also hold within the manufacturing sector.

22 This material is available upon request.
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Figure 10: Pooled empirical densities of annual profit rates and growth rates for publicly
traded manufacturing companies in the United States during the period 1980-2011.
The mode of the profit rate distribution is m̂= 11%. Due to the normalization of the
data, the growth rate distribution is centered around zero. The solid curves show
the Subbotin fit obtained by maximum likelihood estimation of the shape and scale
parameter, yielding the estimates α̂ = 1.05 (0.02), σ̂ = 0.0606 (0.0008) for the profit
rates and α̂= 0.80 (0.01), σ̂= 0.0990 (0.0014) for the growth rates.
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Figure 11: Year-by-year maximum likelihood estimates of the Subbotin shape (left panel) and
scale (right panel) parameters for the firms in the manufacturing industries. Error
bars show two standard errors.
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(a) Profit rate
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Figure 12: Box-and-whisker plot for the estimated autocorrelation functions of profit rates
and growth rates for firms in the manufacturing industries. The boxes include
the 25 percent quantile, the median, and the 75 percent quantile. The red dashed
lines show the 95 percent confidence interval under the null hypothesis of zero
autocorrelations. The interval has been computed as ±1.96/

√
T , where T = 32 is the

length of the profit rate time series.

æ æ æ

æ
æ

æ

æ

æ æ æ

10
7

10
8

10
9

10
10

10
11

-0.1

0.0

0.1

0.2

0.3

Size

m
i

æ

æ

æ æ æ
æ

æ
æ

æ

æ

æ

æ

æ æ æ
æ

æ
æ

æ

æ

10
7

10
8

10
9

10
10

10
11

0.01

0.02

0.05

0.10

0.20

0.50

Size

Σ
i

Figure 13: Location (mi) and dispersion (σi) of profit rates as a function of firm size for firms
in the manufacturing industries. The black lines represent the phenomenological
m̂ = 11% and σ̂ = 6.06% of the empirical profit rate distribution. Error bars corre-
spond to one median absolute deviation.
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Figure 14: Location (mi) and dispersion (σi) of growth rates as a function of firm size for
firms in the manufacturing industries. A least squares power law fit for the relation
between the dispersion of growth in total assets and size yields −0.06± 0.02. Error
bars correspond to one median absolute deviation.

a.4 simulations

Simulations of the diffusion process (7) reproduce the stationary density and auto-
correlation profile on a sufficiently long time scale, as illustrated in Figure 15. To
demonstrate the relevance of the negative bias in the ACF for shorter time series, we
have performed Monte Carlo simulations of the Laplace diffusion in equation (7)
with different time series length T . We then calculated the autocovariance function by
subtracting the sample mean from the observations. Figure 16 shows that subtracting
the time series mean leads to a significant negative bias in the estimated autocorrela-
tion function that becomes smaller once the length of the time series increases. In fact
for shorter time series, as in our data (T ≈ 30), this particular shape of the autocorre-
lation function results from an exponentially decaying autocorrelation function and a
bias which is linear in the time lag τ. Subtracting the systemic profit rate m instead
of each individual time series mean leads to a considerable reduction of the bias, but
does not eliminate it completely. Thus we also computed the correlation time, based
on the analytical solution of the autocorrelation function for our model, and report it
as a more robust statistic in Section 1.4.1.
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Figure 15: Simulation of the model by Alfarano et al. (2012). The left panel illustrates the
probability density (blue dots) of 1000 simulated time series with common param-
eters σ = 0.057, D = 0.001, and zero mean. The simulated data fit the probability
density function of a Laplace distribution with corresponding location and scale
parameters, which is represented by the black solid line. The right panel shows the
estimated autocorrelation function of the diffusion process (blue dots) along with
the theoretical autocorrelation function (black solid line). The estimated autocor-
relation function has been averaged over 1000 realizations of the diffusion process
with time series length T = 10000.
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Figure 16: Autocorrelation function of the Laplace diffusion with parameters σ= 0.057,m= 0
and D = 0.001 as a function of time series length T . Autocorrelation coefficients
are calculated using the mean of each time series and are averaged over 1000 real-
izations of the process. For comparison, we also show the bias-corrected estimate
that emerges when m replaces the time series mean in the autocovariance function
(black stars).

32



a.5 regression results

Table 4: Estimates for the slope coefficient in linear ordinary least squares regressions of the
location parameter m on the logarithm of firm size.

Size measure Slope including first bin Slope excluding first bin

Profit rates
Total assets -0.0011 (0.0017) -0.0030 (0.0019)
Sales 0.0054 (0.0020) 0.0021 (0.0019)
No. of employees 0.0072 (0.0025) 0.0045 (0.0029)
Market value 0.0055 (0.0016) 0.0042 (0.0019)

Growth rates
Total assets -0.0002 (0.0016) -0.0016 (0.0020)
Sales -0.0010 (0.0012) -0.0018 (0.0015)
No. of employees 0.0013 (0.0008) 0.0009 (0.0011)
Market value 0.0107 (0.0029) 0.0054 (0.0021)

Note: Standard errors are shown in parantheses. Bold values are statistically significant at the 5 percent
level.

Table 5: Estimates for the slope coefficient in linear ordinary least squares regressions of the
logarithm of the dispersion parameter σ on the logarithm of firm size.

Size measure Slope including first bin Slope excluding first bin

Profit rates
Total assets -0.1015 (0.0303) -0.0506 (0.0232)
Sales -0.0875 (0.0334) -0.0210 (0.0184)
No. of employees -0.0831 (0.0301) -0.0267 (0.0198)
Market value -0.0602 (0.0361) -0.0200 (0.0412)

Growth rates
Total assets -0.0634 (0.0125) -0.0525 (0.0149)
Sales -0.1044 (0.0165) -0.0821 (0.0175)
No. of employees -0.0979 (0.0189) -0.0721 (0.0196)
Market value -0.0913 (0.0154) -0.0737 (0.0174)

Note: Standard errors are shown in parantheses. Bold values are statistically significant at the 5 percent
level.
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T H E R E A L V E R S U S T H E F I N A N C I A L E C O N O M Y:
A G L O B A L TA L E O F S TA B I L I T Y V E R S U S V O L AT I L I T Y
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abstract

The question how the real and the financial side of a capitalist economy relate to
each other has been a frequently recurring topic in the history of economic thought.
Our paper addresses this question from the viewpoint that capital ultimately seeks
returns from its perpetual reallocation and essentially faces two choices: it can either
be “entrepreneurially” allocated to real economic activity, or it can be “financially”
invested in legal claims against such activity. Adopting such a perspective, we study
here how real and financial returns relate to each other over the past fifteen years,
both within and across countries, by considering more than 30,000 publicly traded
firms in more than forty countries that stand for 70% of the global population and
about 90% of world income. We compare the average rates of return to both types of
investment and their respective volatilities. While average returns, perhaps somewhat
surprisingly, turn out to be roughly equal across the two domains, the volatility of
financial returns exceeds ‘real volatility’ by an order of magnitude. From a systemic
point of view, these finding raise the question why capital would seek out financial
investments in the first place.

2.1 introduction

The question how the real and the financial side of a capitalist economy relate to
each other has been a frequently recurring topic in the history of economic thought,
and the call for papers of this special issue in Economics explicitly mentions its impor-
tance in light of the recent turmoils in the global economy. Our paper addresses this
question from the viewpoint that capital ultimately seeks returns from its perpetual
reallocation and essentially faces two choices: it can either be “entrepreneurially” al-
located to real economic activity (that is the production of goods and services), or it
can be “financially” invested in legal claims against such activity. Adopting such a
perspective, we study here how real and financial returns relate to each other over the
past fifteen years, both within and across countries, by considering more than 30,000

publicly traded firms in more than forty countries that stand for 70% of the global
population and about 90% of world income. We compare the average rates of return
to both types of investment and their respective volatilities. While average returns
turn out to be roughly equal across the two domains, the volatility of financial returns
exceeds ‘real volatility’ by an order of magnitude. We also find that real returns are
positively autocorrelated and exhibit remarkable stability over time, while financial
returns have no memory and are characterized by pronounced fluctuations that are
hard to reconcile with fluctuations in the real returns to economic activity. From a
systemic point of view, these findings raise the question why capital would seek out
financial investments in the first place.

Our perspective owes its intellectual debt to at least three influences. Firstly, we
take the position that the destinies of the largest firms in an economy are of crucial
quantitative importance for aggregate outcomes, a viewpoint that Gabaix (2011) calls
the “granular origins of aggregate fluctuations”. Secondly, we focus on the profit
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rate as a measure of the returns to real economic activity, an idea that has pervaded
classical economic thinking since the times of Adam Smith (see, e.g., Foley, 2006).
Last but not least, the latent notion of some form of excess volatility in financial
returns dates back to the seminal contributions of Shiller (1981) and LeRoy and Porter
(1981).

The pre-analytical vision of our study rests on the observation that positive long-
run deviations of financial returns from the real rate of profit amount to a Ponzi
scheme and are therefore unsustainable, simply because in the long run companies
cannot afford to pay more to financial stakeholders than they earn from their real
activities. On the other hand, negative long-run deviations coupled with arbitrage
considerations would render financial investments relatively unattractive. Two impor-
tant strands of literature have helped to shape this way of thinking, the first being
the fundamental principle of valuation put forth by Miller and Modigliani (1961), the
second being the efficient markets hypothesis of Fama (1970, 1991). According to the
first, deviations from a firm’s fundamental share price, perceived as the discounted
value of future income streams, should be eliminated through trading on perfect cap-
ital markets. More importantly, Modigliani and Miller argue that it is ultimately the
left-hand side of a company’s balance sheet that matters, i.e. its real activities, and
not how the right-hand side of the balance sheet is composed, i.e. how exactly and
in which proportions the different financial claims are stacked against these real ac-
tivities. According to the second, price movements are directly tied to the arrival of
new information about activities in the real economy, implying that financial returns
should be coupled to returns in the real economy. We find it unfortunate, however,
that both these strands as well as the excess volatility literature have apparently sin-
gled out corporate dividends to be the most important determinant of a company’s
income stream. The reason why we find this choice less than ideal is that (i) dividend
policy varies widely across companies and that (ii) the pertinent literature still, after
more than half a century, has not determined a robust effect of dividends on share
prices (see, e.g., Al-Malkawi et al., 2010, for a recent review of the field).

In order to compare real and financial returns, we propose to consider a firm’s (pos-
sibly negative) ratio of its operating income to its total assets as a meaningful measure
of the profit rate, in line with the orthodox accounting and business economics litera-
ture where it is also known as the return on assets, or ROA. Our measure of financial
returns will be the (possibly negative) growth rate of the corresponding firm’s finan-
cial market value. Choosing these two proxies for real and financial returns of course
still represents an imperfect and stylized approach, mainly because the ROA is in-
fluenced by empirical accounting issues (see, e.g., Burgstahler and Dichev, 1997) and
because the growth rate of market value does not implicitly account for the peculiari-
ties of a publicly traded company’s dividend policy. Yet we would like to believe that
both quantities are useful first-order approximations to the real and financial rates of
return.

Interestingly, the profit rate has not been at the forefront of economic inquiry for
many decades, which is probably due to the fact that orthodox theories have not been
able to provide a coherent explanation for the profit rate (see, e.g., Naples and Aslan-
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beigui, 1996). Profit rates have nevertheless been studied in the context of the so-called
persistence of profits literature that starts with Mueller (1977) (see, e.g., Cuaresma and
Gschwandtner, 2006, for a more recent take on the subject), and more recently also in
the context of a statistical equilibrium framework Alfarano and Milaković (2008) and
Alfarano et al. (2012, 2013) that will guide our present investigation.23

2.2 data description and sample selection

The data used in this study come from Thomson Reuters Datastream and consist of
annual observations on operating income, total assets and market value for 32,201

publicly traded domestic companies from 43 different countries listed in Table 6. The
countries in our sample stand for approximately 70 percent of world population and
represent the largest economies in terms of world income, accounting for more than
87 percent of global gross domestic product in 2011 according to the IMF’s World
Economic Outlook database. The dataset contains firms which have been present in
the market for at least one year between 1997 and 2011. It is filtered according to
two criteria: first, we exclude banks (entities with SIC codes 60 and 61 on a two-digit
classification level) from the analysis because it is well known that their balance sheets
and profit rates differ from those of non-banks by at least one order of magnitude.
Second, to check to what extent our results are affected by the entry and exit of firms,
we create two different samples. The first one considers entities that report data on
all three variables (operating income, total assets, and market value) in at least one
period, hence it includes firms with life spans varying between one and fifteen years.
The second sample focusses on long-lived or “surviving” firms that we define as
companies reporting data in the first and the final period of the time window. The
time period has been chosen in such a way to maximize the number of observations
across countries.24

Table 6 provides information about the number of firms in both the entire sample
and the subset of firms that fulfill the longevity criterion, comprising 7,488 surviving
firms. Datastream does not contain enough companies in Egypt and Russia that can
be classified as long-lived companies according to our criterion, thus we only present
results for firms with shorter life spans for these two countries. Averaging across
all countries, around one quarter of the firms can be classified as long-lived. Notice,
however, that these surviving firms on average account for approximately 60 percent
of a country’s total market capitalization according to World Bank data and, therefore,
must be regarded as an important driver of economic activity. This argument is also
supported by Gabaix (2011) who finds that about one third of variations in US GDP
growth can be attributed to the idiosyncratic destinies of the largest one hundred US
firms.

23 Foley (1994) and Garibaldi and Scalas (2010) provide useful background material for readers who
might not be entirely familiar with the concept of statistical equilibrium. To the best of our knowledge,
Farjoun and Machover (1983) provide the first probabilistic perspective on the rate of profit.

24 Datastream provides the most extensive coverage for US firms, going back to 1980. For most countries
in our sample, however, coverage only begins in 1997.
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Table 6: Countries under consideration.

Country Number of firms Number of long-lived
firms

Survival rate (in %)

Argentina 74 26 35.1
Australia 1700 128 7.5
Austria 81 35 43.2
Belgium 138 44 31.9
Brazil 442 78 17.6
Canada 187 104 55.6
Chile 191 62 32.5
China 2053 153 7.5
Czech Republic 15 4 26.7
Denmark 155 76 49.0
Egypt 107 0 0.0
Finland 128 57 44.5
France 727 228 31.4
Germany 952 233 24.5
Greece 268 81 30.2
Hong Kong 1199 298 24.9
India 2249 222 9.9
Indonesia 358 120 33.5
Ireland 35 16 45.7
Israel 420 21 5.0
Italy 260 83 31.9
Japan 3378 1589 47.0
Malaysia 851 227 26.7
Mexico 128 50 39.1
Netherlands 107 67 62.6
New Zealand 135 32 23.7
Norway 178 39 21.9
Pakistan 162 48 29.6
Poland 381 13 3.4
Portugal 55 20 36.4
Russia 361 1 0.3
Singapore 694 123 17.7
South Africa 321 69 21.5
South Korea 1614 235 14.6
Spain 130 53 40.8
Sweden 421 91 21.6
Switzerland 217 111 51.2
Taiwan 1459 168 11.5
Thailand 768 220 28.6
Turkey 309 65 21.0
United Kingdom 1353 424 31.3
United States 7411 1770 23.9
Venezuela 29 4 13.8

Total 32201 7488 23.3

Note: The numbers in the second and third column refer to non-bank companies. Firms for which
Datastream does not provide data on all three variables have been removed. The survival rate in the
fourth column is computed as the ratio of the number of long-lived firms to the number of all firms in
that country.
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Based on these data we compute two quantities for each firm: the profit rate or
return on assets, and the growth rate of market value. The profit rate of company i in
year t is computed as the ratio of operating income (I) to total assets (A)

pi(t) =
Ii(t)

Ai(t)
, (21)

while the growth rates are computed as logarithmic time differences in market value
(MV)

gi(t) = log(MVi(t+ 1)) − log(MVi(t)), (22)

which should approximate the annual percentage change in market value. Notice
that the comparison of both quantities is dimensionally sound in the sense that both
quantities measure the annualized reurn per invested capital.

2.3 empirical results

Since our goal is to obtain a global perspective of real and financial rates of return, we
will focus on the time series properties of cross-sectionally averaged real and financial
rates of return. Hence, our focus shifts from the return of a single stock or company to
the central locations of the profit rate and growth in firm market value distributions
in a given country. In the following analysis, we employ the median as location
parameter since it is a more robust estimator against outliers.

Figure 17 illustrates the time evolution of the median profit rate as well as the me-
dian financial return for the six largest economies in the world: the US, China, Japan,
Germany, France, and Brazil. The diagrams for the remaining countries are provided
in Figures 21–26 in the appendix. For all countries we observe pronounced differences
between the real and the financial side of the economy regarding the intensity of mar-
ket reactions. Although there are also moderate up- and downturns in the median
profit rate (notice for instance the decline in firm profitability in the course of the re-
cent financial and banking crisis in almost every considered market), the rate of profit
exhibits a remarkable stability over time that is at odds with the high volatility in
financial returns. This non-trivial stability of the profit rate has already been pointed
out by Alfarano et al. (2012), who study the distributional details of profit rates for
the US for a time span that dates back to 1980 and is thus about twice as long as
the present one. One of their findings is that the average rate of profit (measured
for instance by the mode or median of the profit rate distribution) exhibits the same
stability that we find here. Hence we would like to believe that our present results are
not an artefact of the chosen time period.

From an economic point of view, Alfarano et al. (2012), argue that the considerable
stability of the profit rate should stem from the notion of classical competition that
gives rise to a negative feedback mechanism, whereby capital seeks out sectors or
industries where the profit rate is higher than the economy-wide average, typically
attracting labor, raising output, and reducing prices and profit rates in the process.

40



Ú

Ú

Ú Ú

Ú Ú

Ú

Ú

Ú
Ú

Ú

Ú

Ú

Ú

Ú

Ê

Ê Ê

Ê Ê

Ê

Ê

Ê

Ê
Ê

Ê

Ê

Ê

Ê

Ê
Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï
‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡

1998 2000 2002 2004 2006 2008 2010
-0.8

-0.6

-0.4

-0.2

0.0

0.2

Year

M
ed
ia
n

Growth rate of entire sampleÚ

Growth rate of long-lived firmsÊ

Profit rate of entire sampleÏ

Profit rate of long-lived firms‡

(a) United States

Ú Ú
Ú

Ú

Ú
Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ê

Ê

Ê

Ê

Ê

Ê
Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡

1998 2000 2002 2004 2006 2008 2010
-1.0

-0.5

0.0

0.5

1.0

Year

M
ed
ia
n

(b) China

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú
Ú

Ú

Ú

Ú
Ú

Ê

Ê

Ê

Ê
Ê

Ê

Ê

Ê

Ê

Ê
Ê

Ê

Ê

Ê
Ê

Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡

1998 2000 2002 2004 2006 2008 2010
-0.6

-0.4

-0.2

0.0

0.2

Year

M
ed
ia
n

(c) Japan

Ú

Ú

Ú
Ú

Ú
Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ê

Ê
Ê Ê

Ê

Ê

Ê

Ê

Ê Ê

Ê

Ê

Ê

Ê

Ê

Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡

1998 2000 2002 2004 2006 2008 2010

-0.4

-0.2

0.0

0.2

Year

M
ed
ia
n

(d) Germany

Ú Ú

Ú
Ú

Ú
Ú

Ú Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ê Ê

Ê
Ê

Ê
Ê

Ê Ê
Ê

Ê

Ê

Ê

Ê
Ê

Ê

Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡

1998 2000 2002 2004 2006 2008 2010

-0.4

-0.2

0.0

0.2

Year

M
ed
ia
n

(e) France

Ú

Ú

Ú Ú

Ú
Ú

Ú Ú

Ú

Ú

Ú

Ú

Ú

Ú

ÚÊ
Ê

Ê

Ê

Ê

Ê

Ê Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡

1998 2000 2002 2004 2006 2008 2010
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Year

M
ed
ia
n

(f) Brazil

Figure 17: Time evolution of the median profit rate and the median growth rate of market
value for the United States, China, Japan, Germany, France, and Brazil. Results
are shown for the entire sample and the long-lived firms. For visual clarity, linear
interpolations between annual data points have been added.
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This in turn provides an incentive for capital to leave the sector again, leading to
higher prices and profit rates for firms that remain in the industry.

On the other hand, the growth rates of market value appear to fluctuate around
the rate of profit, but their volatility is far too large to be explained by changes in the
return to real economic activity. Hence, instead of the negative feedback mechanism
that characterizes the real sector, financial markets seem to be subject to some sort
of positive feedback mechanism and strong cross-correlations that drive stock prices
into the same direction for extended periods of time. In fact, the recent literature on
heterogeneous agent-based financial market models agrees in all its different flavors
(see, e.g., Lux et al., 2007, for a comprehensive and fairly recent review) that positive
feedbacks, typically in the form of self-reinforcing social interactions, are crucial for
the reproduction of the observed stylized facts regarding the statistical properties of
financial returns.

Visual inspection of the median time series also suggests that returns in the real
economy are more persistent than financial returns. To quantify this impression, we
have calculated the first-lag autocorrelation coefficient for the median profit rate and
growth in market value series, using the estimator

γ=
1

T

T−1∑
t=1

(Xt − x̄T )(Xt+1 − x̄T ), (23)

where

x̄T =
1

T

T∑
t=1

Xt (24)

is the mean of T = 15 observations from the time series. The results presented in Fig-
ure 18 support the view that annual returns earned in the real economy are positively
autocorrelated, while there are no statistically significant autocorrelations in growth
rates of market value, in line with the (weak-form) efficient market hypothesis.25 This
finding is very well established in the literature (see, e.g., Cont, 2001, for a review
of the empirically established statistical properties of financial returns).26 In light of
the behavior of financial returns, the fact that autocorrelations in profit rates persist
for one year (and most probably even longer) appears striking to us. We very much
suspect that this finding traces back to real frictions and inertia introduced by, for
instance, barriers of entry, the need to create and maintain corporate infrastructure,
the administrative burden of founding a company, or the efforts and costs involved in
hiring and releasing employees, which are all absent from financial capital investment.

25 Note that the short length of the time series introduces a negative bias in the estimated autocorrelation
coefficient (see, e.g., Fuller, 1996). Therefore, the autocorrelation in profit rates is even stronger than
Figure 18 suggests. This bias probably explains the negative but statistically insignificant estimates for
the autocorrelation coefficients of market value growth rates.

26 If at all, significant autocorrelations in financial returns can merely be found on much smaller intraday
time scales (so-called high frequency data) for which microstructure effects come into play.
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Figure 18: First-lag autocorrelation coefficients of both the median profit rate and growth in
market value series for all countries in our sample. The red dashed lines show the
95% confidence interval under the null hypothesis of zero autocorrelations. The
interval has been computed as ±1.96/

√
T , where T = 15 is the length of our time

series.

Moreover, our analysis indicates that there are differences in average firm profitabil-
ity across countries. If we compute the median of the median profit rate series, the
results for the long-lived companies vary between 1 percent in case of Portugal and
approximately 10 percent for Pakistan. When the entire sample is considered, on one
end Pakistan still has the highest average profit rate (approximately 9.7 percent), but
now a high incidence of negative reported earnings in Australia at the other end of
the spectrum results in an average return on assets of -6.1 percent (see Figure 27 in the
appendix). This raises the question whether markets with a high profit rate are also
more attractive to financial investors. Figure 19 presents a scatter plot showing combi-
nations of the profit rate and the growth rate of market value (both averaged over the
time series and across firms) for all countries in our long-lived sample. A weighted
linear least squares regression of the financial return on the rate of profit that takes
into account differences in market size or economic importance across countries is
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Figure 19: Scatter plot showing combinations of the average profit rate and the average growth
rate of market value for long-lived firms in each country. The data points have been
computed as the median of the median time series. Weighted least squares regres-
sion of the average financial return on the average profit rate yields an intercept
of −0.02± 0.03 with a p-value of 0.57 and a slope parameter of 1.27± 0.52 with a
p-value of 0.02. Thus we cannot reject the hypothesis that average real and financial
returns are the same (that is, a slope parameter of unity) at the usual confidence
levels. The weights have been calculated by starting from the sum of market values
of all (long-lived) firms in a country relative to global market capitalization for a
given year, and have then been averaged over the period 1997-2011.
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also shown.27 We chose the weighting function to be the sum of market values of
all (long-lived) firms in a country as a percentage of the market capitalization of the
entire sample. To avoid distortions arising from booms and busts in single years, we
calculate the weight for every year between 1997 and 2011 and then take the mean of
these 15 values for each country. The weighted regression yields a slope coefficient of
1.27± 0.52 with a p-value of 0.02. Since the estimate for the slope coefficient cannot
be statistically distinguished from unity at the usual confidence levels, we take this to
imply that investments in the real and the financial sector yield the same return on av-
erage. Thus, we may conclude that at least on the aggregate level financial returns are
tied to the rate of profit, supporting the hypothesis that the profit rate is an important
benchmark for financial returns on average. Our results also carry over to the entire
sample of firms, in which case we find an intercept of −0.02± 0.02 with a p-value of
0.38 and a slope of 1.42± 0.54 with a p-value of 0.01 (see Figure 27 in the appendix).
Next we conduct a similar exercise for the volatility of the two quantities, measured
as the median absolute deviation of the median time series. We chose this particu-
lar dispersion measure because it is more robust against outliers than the standard
deviation.

Figure 20 presents the results for the long-lived companies. The scatter plot for the
entire sample is provided in the appendix (Figure 28). We observe in both samples
that the volatility of financial returns is about one order of magnitude higher than the
volatility of profit rates, confirming the visual impression from the time series plots
that financial returns are “excessively volatile” compared to profit rates. To check
whether the two volatilities are related, we have regressed the median absolute de-
viation of growth in market value on the volatility of profit rates, again weighting
countries with their percentage share of total market capitalization. However, in con-
trast to our results for the median, we do not find any clear relationship between
the two variables. A weighted least squares regression for the set of long-lived firms
yields an intercept of 0.08± 0.03 with a p-value of 4× 10−3, but the slope parameter
of 6.36± 4.01 only has a p-value of 0.12. Regressing the volatility of profit rates on
the volatility of financial returns and weighting the data with total assets instead of
market values, we obtain a constant of 0.01± 0.001 with a p-value of 4.8× 10−7 and
a slope of 0.01± 0.01 with a p-value of 0.12. Similar results are found for the entire
sample, and we are happy to provide them upon request. Therefore, although there
is a relation between the two rates of return in terms of the median, the fluctuations
in financial returns seem to be disconnected from fluctuations in the return of real
economic activity.

As we argued before, one popular explanation for the excess volatility in finan-
cial returns and the endogenous dynamics of the financial sector that seem to be
“disconnected” from fundamental factors are speculative activities of traders and the
presence of herding behavior in financial markets, but not in the real sector. Since in
both volatility regressions the slope is not significantly different from zero, the estima-
tor for the intercept can be interpreted as a (weighted) sample average of volatilities

27 An (unweighted) ordinary least squares regression leads to similar results and supports our central
findings.
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Figure 20: Scatter plot showing combinations of the profit rate volatility and the volatility of
growth rates of market value for long-lived firms in each country. The data points
have been computed as the median absolute deviation of the median time series.
It is noteworthy that the volatilities differ by one order of magnitude, and that we
cannot reject the hypothesis that the slope coefficient in a linear regression is equal
to zero at the usual significance levels.
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across countries. Thus the estimates confirm the impression that volatility in financial
returns exceeds volatility in profit rates by about one order of magnitude.

2.4 discussion and concluding remarks

While the length of the available time window in Datastream is certainly not ideal, the
period 1997 to 2011 nevertheless strikes us as instructive for two reasons. It contains
a period of considerable “financialization” or “securitization” of the global economy
that starts in the 1990s, but it also contains a period of substantial financial distress
through the global economic and banking crises that began in 2007. One might won-
der whether the average equality of profit rates and financial returns would also hold
without this realignment period? Reproducing the median regressions (Figures 19

and 27) for the period 1997-2006, we find a slope coefficient of 1.59 ± 0.53 for the
long-lived corporations and 1.44± 0.66 for the entire sample (both parameters are sta-
tistically significant at the 5% level), thus our results for the years prior to the crisis are
consistent with those reported in section 2.3 for the entire sample period, and we re-
ject the hypothesis that the average equality of returns is merely due to the presence
of the most recent crisis in our sample. Overall, our findings are compatible with
some form of “investor rationality” since returns appear to be the same on average,
so that investors eventually realize that irrational exuberances or panics cannot last
forever.

On the other hand, the source of deviations in volatility is most likely due to neg-
ative versus positive feedback mechanisms in the operation and allocation of real
and financial capital. From our point of view, this leads to the question why capital
would seek out financial market allocations in the first place. At this point, we find
the observation by Shackle (1967) instructive, who claims that the foremost purpose
of financial investment (or ‘money’ as he called it in the 1960s) “is the refuge from
specialized commitment, the postponer of the need to take far-reaching decisions” be-
cause it provides much higher liquidity compared to the commitment of capital to
real activity.

This view has intuitive appeal, but then one ultimately has to confront the question
whether the possibility of postponing specialized commitments comes at a macroe-
conomic cost. Interest in this question dates back to the work of Kaldor (1956) and
Pasinetti (1962), who have put forth what is often termed the Cambridge growth equa-
tion, a theory that in a more contemporary language boils down to statements about
the relationship between the profit rate and the financial rate of return (see, e.g., Ci-
ccarone, 2004, for a recent take on the subject), with far reaching implications for
the functional distribution of income and macroeconomic stability at large. Ortho-
dox interest in this subject has seemingly vanished altogether, which is probably
due to the critique of the Cambridge growth equation by Samuelson and Modigliani
(1966). In retrospect this strikes us as a rather unfortunate development, particularly
since Kaldor, Pasinetti and Robinson have argued in their replies to Samuelson and
Modigliani (that were published in the same issue) that the “Anti-Pasinetti” critique
would require labor’s propensity to save to become so high as to allow the accumu-
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lation of capital through labor at a rate that is greater than the speed at which capi-
talists accumulate capital. But then the total capital of the economy would eventually
be entirely owned by workers, while the capitalists would become extinct. Casual
observation of economic history suggests that such an outcome does not appear to be
very likely.

Irrespective of these long-standing theoretical debates, we would like to conclude
by pointing out once more that from a macro-perspective we find it most surprising
that the profit rate appears as such an enormously stable and positively autocorrelated
variable in each country, making it a very worthwhile candidate for further study in
our opinion, despite the apparent orthodox disinterest in the subject.
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Figure 21: Time evolution of the median profit rate and the median growth rate of market
value for Argentina, Australia, Austria, Belgium, Canada, and Chile. Results are
shown for the entire sample and the long-lived firms. For visual clarity, linear
interpolations between annual data points have been added.
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Figure 22: Time evolution of the median profit rate and the median growth rate of market
value for Czech Republic, Denmark, Egypt, Finland, Greece, and Hong Kong. Re-
sults are shown for the entire sample and the long-lived firms. For visual clarity,
linear interpolations between annual data points have been added.
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Figure 23: Time evolution of the median profit rate and the median growth rate of market
value for India, Indonesia, Ireland, Israel, Italy, and Malaysia. Results are shown for
the entire sample and the long-lived firms. For visual clarity, linear interpolations
between annual data points have been added.
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Figure 24: Time evolution of the median profit rate and the median growth rate of market
value for Mexico, the Netherlands, New Zealand, Norway, Pakistan, and Poland.
Results are shown for the entire sample and the long-lived firms. For visual clarity,
linear interpolations between annual data points have been added.
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Figure 25: Time evolution of the median profit rate and the median growth rate of market
value for Russia, Singapore, South Africa, South Korea, Spain, and Sweden. Results
are shown for the entire sample and the long-lived firms. For visual clarity, linear
interpolations between annual data points have been added.
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Figure 26: Time evolution of the median profit rate and the median growth rate of market
value for Switzerland, Taiwan, Thailand, Turkey, United Kingdom, and Venezuela.
Results are shown for the entire sample and the long-lived firms. For visual clarity,
linear interpolations between annual data points have been added.
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Figure 27: Scatter plot showing combinations of the average profit rate and the average growth
rate of market value for the entire sample of firms. The data points have been com-
puted as the median of the median time series. Weighted least squares regression
of the average financial return on the average profit rate yields an intercept of
−0.02± 0.02 with a p-value of 0.38 and a slope parameter of 1.42± 0.54 with a p-
value of 0.01. Weights have been calculated as the sum of market values of all firms
in a country as a percentage of the market capitalization of the entire sample for a
given year and are averaged over the period 1997-2011.
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Figure 28: Scatter plot showing combinations of the profit rate volatility and the volatility of
growth rates of market value for the entire sample of firms. The data points have
been computed as the median absolute deviation of the median time series.
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abstract

The question about the determinants of firm profitability occupies research in indus-
trial organization, strategic management, accounting and finance, and related fields.
In one way or another, existing contributions suggest that either industrial or firm-
level determinants of firm performance do exist. In this paper, I show that the effect of
firm idiosyncrasies on the dynamics of profitability becomes almost negligible when
companies survive in the market for a sufficiently long time period. Conditional on
survival, the time evolution of the profit rate is governed by a common dynamic law
for all firms. This has unexpected consequences for our understanding of corporate
strategy because survival rather than profitability becomes the ultimate business ob-
jective.

“[. . . ] Businessmen [. . . ] tend to believe that generating profits is their
principal mission, with survival and risk control something to perhaps
consider - they miss the strong logical precedence of survival over success.
To make profits [. . . ], it would be a good idea to, first, survive.” (Taleb,
2012, p. 160)

3.1 introduction

The return on capital is certainly one of the most important metrics to assess the per-
formance of a business. It measures how much profit the entity generates per unit
of its assets, and therefore allows to compare performance across different uses, e.g.
firms or business units. The question about the determinants of this profitability ratio
occupies practitioners as well as the academic profession, and lead to a plethora of the-
ories and recommendations for business practice. In this paper, I study the diffusion
of profitability for a diverse sample of long-lived corporations and look for systematic
differences in its parametrization among firms. While previous studies stress the im-
pact of firm and industry-level determinants on profitability, my results suggest that
the profit rates of surviving companies are dispersed around a common measure of
central tendency and have the same volatility on average, irrespective of the firms’ in-
dividual characteristics. The perception that the profit rates of surviving corporations
are realizations of the same stochastic process with a common location parameter and
volatility for all firms has unexpected consequences for our understanding of corpo-
rate strategy because, in the long-run average, no surviving firm can do better, or
worse, than the system-wide average. Consequently, survival becomes the primary
business objective, concisely summarized in the introductory quote from Taleb (2012).

While the results reported in this paper suggest universality in the process govern-
ing profitability of corporations, the majority of existing investigations in industrial
organization, strategic management, and accounting and finance stresses the sources
of variation in profitability among firms (an excellent review of this literature, part of
which is cited here, is provided in Goddard et al., 2005), putting different weights on
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industrial, corporate, and business unit effects (see, e.g., Rumelt, 1982; Schmalensee,
1985, for a discussion of the relative importance of these effects). The industrial orga-
nization literature stresses the role of sectoral specificities. A prominent strand of this
literature revolves around the well-known structure-conduct-performance paradigm
which dates back to Mason (1939, 1949), Bain (1951, 1956), Porter (1980), and, more
recently, Slater and Olson (2002). According to this approach, the structural charac-
teristics of the market environment, e.g. the number and size of buyers and sellers,
barriers to market entry, or firm diversification, affect the conduct of firms operating
in this market which in turn determines their performance. The strategic management
literature, on the other hand, puts more emphasis on the role of firm-specific effects
(see, e.g., Barney, 1991, 2001; Levinthal, 1995; Peteraf, 1993; Teece, 1981). Proponents
of the resource-based view, for example, argue that a sustained competitive advantage
may arise from organizational, financial, technological, or intellectual resources avail-
able to the company which must be valuable, rare, and imperfectly imitable by others.
Complementary insights stem from studies in accounting and finance that investigate
the time series properties of performance measures, such as earnings or book rates
of return to capital, to improve forecasts in equity valuation or cost of capital models.
While early contributions in this vein conclude that earnings are essentially unpre-
dictable and follow a random walk or submartingale process (Albrecht et al., 1977;
Callen et al., 1993; Lintner and Glauber, 1978; Watts and Leftwich, 1977), more recent
studies consider relative performance measures and stress the persistence in prof-
itability (see, e.g., Fairfield et al., 2009; Fama and French, 2000; Freeman et al., 1982;
Nissim and Penman, 2001). Like in industrial organization and strategic management,
inter-firm differences in persistence and variability of profitability are associated with
factors such as product type, barriers to market entry, firm size, and capital intensity
(see, e.g., Baginski et al., 1999; Lev, 1983).

In this article, I consider some of the most popular quantities whose effect on prof-
itability has been stressed in previous work, summarized in the extensive literature
review in Table 13 in Appendix C.1, and study their impact on profitability over the
lifespan of firms. I find that the relation between profitability and these characteristics
is a highly time-dependent phenomenon: while average profitability and its volatility
are remarkably homogeneous across long-lived firms and largely independent of firm
characteristics, they exhibit (partly non-monotonic) correlations with these character-
istics for shorter lived firms. The former result testifies to the existence of a common
dynamic law governing the dynamics of surviving corporations that is obviously not
intended by individual agents but results from the complex interactions among com-
petitive firms. Given that the profit rates of surviving firms are drawn from the same
distribution, their time series can be conveniently described by one and the same
diffusion process with a common location and scale parameter for all companies.
My findings are, therefore, in line with the notion of a statistical equilibrium which
predicts that individual firm destinies have no systematic impact on the aggregate
distributional outcome and the macroscopic properties of the system, summarized by
the average profit rate and its volatility, which seem to be binding constraints for all
surviving firms in the sample. Since these regularities hinge on the length of the ob-
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servation period, however, it is hardly surprising that studies which do not consider
the long-run average behavior, but try avoid any notion of “survivorship bias”, yield
mixed and inconclusive results on the sign and significance of profitability determi-
nants. My results do not rule out the possibility that the factors identified in these and
related studies may have an impact on the short to mid-run dynamics of profitability.
Instead, the main argument here is that firm idiosyncrasies become negligible if firms
survive in the market for a sufficiently long time period because the long-time average
behavior of each firm converges to the average of the ensemble. The only variable that
relates to the location and dispersion of profitability is the market to book value, or
Tobin’s q, pointing towards a kind of dichotomy between “real” and “financial” firm
attributes and a probably different perception of firm dynamics in financial markets
and the real economy.

The notion of a statistical equilibrium in firm profit rates has been already stressed
in previous investigations. Alfarano and Milaković (2008) encode the complex move-
ments of capital in search of profit rate equalization into a moment constraint to derive
the maximum entropy distribution of the rate of profit. This stationary distribution
characterizes the cross-sectional distribution of states in equilibrium and is given by
the Laplace which is parsimoniously described by a location and a dispersion param-
eter. A diffusion process for the time evolution of profitability that has the Laplace
distribution as stationary density has been introduced in Alfarano et al. (2012). This
process has three parameters: a location parameter, a dispersion parameter, and a
diffusion coefficient. According to the statistical equilibrium methodology, the former
two parameters should be identical across all firms and equal to the phenomenologi-
cal values of the equilibrium distribution, while the latter parameter remains the only
source of firm idiosyncrasies. The results presented in this paper are consistent with
these implications of the model.

The structure of this article is as follows. After providing a brief summary of the sta-
tistical equilibrium model in Section 3.2, I introduce the data in Section 3.3. In Section
3.4, I estimate the diffusion process and investigate the relevance of firm idiosyn-
crasies for the diffusion of profit rates, considering groups of firms that differ with
respect to their lifespan. The final section summarizes my findings and concludes.

3.2 model review

The theoretical backbone of this investigation is the statistical equilibrium model of
competitive firms that was presented in Alfarano et al. (2012). It builds on the clas-
sic idea that market economies are driven by the perpetual reallocation of capital in
search of profit rate equalization. The starting point of the model is a distributional
regularity in firm profit rates from which the authors derive a dynamic law of motion
for profitability. This section provides a brief review of this statistical regularity and
the model. Yet I refer the interested reader also to the initial paper for a detailed
derivation and deeper discussion of the model.
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Figure 29: Pooled empirical density of annual profit rates for long-lived publicly traded US
companies in the Datastream Worldscope database. Annual profit rates of all years
between 1980 and 2012 are pooled together. The black line represents a fit of the
Laplace distribution in equation (25) to the empirical density. Maximum likelihood
estimation of the Laplace parameters yields m̂ = 0.0947± 0.0006 and σ̂ = 0.0581±
0.0005.

Alfarano et al. (2012) start from the empirical finding that the cross-sectional distri-
bution of long-lived firms’ profit rates is not Gaussian but rather follows a symmetric
Laplace (or double-exponential) distribution with probability density function28

f(x;m,σ) =
1

2σ
exp

(
−

∣∣∣∣x−mσ
∣∣∣∣) . (25)

The Laplace distribution in equation (25) is characterized by two parameters: a loca-
tion parameter m ∈ R and a dispersion (or scale) parameter σ ∈ R+. In Figure 29 I
fit the Laplace to the cross-sectional profit rate density for the present sample of long-
lived US corporations from the Datastream Worldscope database.29 When plotted on
semi-logarithmic scale, the data display the linear tent-shape that is characteristic of
the Laplace distribution. Parametric estimation of the location and scale parameter
by maximum likelihood yields m̂ = 0.0947± 0.0006 and σ̂ = 0.0581± 0.0005, imply-
ing that surviving US companies generate an average profit rate of about 9.5 percent,
along with a volatility of about 5.8 percent on average. In the further course of this
study I will refer to these estimates as the phenomenological values of m and σ.

28 Fat tails and deviations from Gaussianity imply the presence of interactions among firms and would
not be observed if shocks to profitability were iid (Dosi et al., 2000). Thus, I presume that these
statistical properties are due to some underlying correlating mechanism, first and foremost arising
from the very process of competition.

29 Details on the data will be given later in Section 3.3.
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Figure 30: Sectoral distributions of annual profit rates for long-lived publicly traded US com-
panies. The black lines illustrate a Laplace fit with the phenomenological values of
m and σ.

The same distributional regularity is also observed on the sectoral level, as illus-
trated in Figure 30. To this end, I use two-digit SIC codes to group the companies
into business divisions which represent the broadest categories according to the SIC
scheme.30 Then I plot the empirical density of their profit rates as in Figure 29, but this
time for only one division at a time. Table 7 summarizes the corresponding parameter
estimates. It is visually apparent that the profit rate distributions for particular sectors
also exhibit the characteristic Laplacian shape and virtually collapse on the aggregate
distribution, which suggests that this regularity is not an artifact of aggregation and
testifies to the hypothesis that the fundamental force of profit rate equalization is an
utterly universal mechanism that is present for all industries under study.

A stochastic process for the time evolution of the profit rate that is consistent with
the Laplace distribution in equation (25) is the diffusion

dXi,t =−
Di
2σi

sign(Xi,t −mi)dt+
√
DidWt, (26)

where dXi,t is the change of firm i’s profit rate from period t to t + 1, mi is the
average profit rate, σi is the volatility, Di denotes the diffusion coefficient or character-
istic time scale of the process, dWt are Wiener increments, and sign(·) is the signum
function. The drift function in the first term of equation (26) captures the negative
feedback mechanism that is described by the notion of classical competition: when-
ever the profit rate is below (above) mi, the drift is positive (negative) and pulls the
profit rate towards its long-term mean. The diffusion function in the second term of
equation (26) is governed by the Brownian motion and reflects idiosyncratic factors
on firm profitability. Since the latter are too complex for deterministic modeling, they
are considered random.

30 The division “agriculture, forestry and fishing” (SIC 01-09) is omitted because it contains only one
long-lived firm. Details on the sectoral composition of the present sample are given later in Section 3.3.
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The notion of statistical equilibrium is reflected in the parametrization of the dy-
namic law in equation (26). If the system is in statistical equilibrium, time series and
cross-sectional averages coincide, implying that the parametrization of the dynamic
law in equation (26) must be consistent with the cross-sectional distribution in equa-
tion (25). Formally, this requires the additional restriction mi = m and σi = σ ∀ i,
i.e. all surviving companies face the same profitability benchmark and volatility on
average, while all potential idiosyncrasies are captured by the diffusion coefficient Di.
The latter remains the only source of firm specific effects in the model because the
equilibrium distribution is independent of the diffusion coefficient. In the following,
I will turn to the empirical validity of this assumption. Before turning to the results,
however, I will introduce the data set in the next section.

3.3 data

The sample of firms used in this study consists of publicly traded US enterprises re-
ported in the Datastream Worldscope database between 1980 and 2012. The raw data
set includes approximately 7,800 companies operating in 77 different sectors on a two-
digit SIC code level. It is filtered according to the following criteria. First, I exclude
banks (SIC codes 60 and 61) because the balance sheets of banking firms differ struc-
turally from those in other industries. Second, I focus on long-lived companies which
are defined as firms that are present in the data set for the entire period 1980-2012.
As reported in Table 8, this filtering reduces the sample to 498 companies. Although
these corporations represent less than 7 percent of the overall population in the sam-
ple, I would like to argue that they are a very interesting group of firms to study
because they are mostly large firms which contribute disproportionally to aggregate
output. In fact, Mundt et al. (2016) show that on average about 70 percent of these
surviving firms belong to the power law tail of the firm size distribution (see Axtell,
2001). My perspective is therefore in line with a granular view on macroeconomic
activity stating that microeconomic shocks to firms or disaggregated sectors do not
cancel out in the process of aggregation as initially proposed by Lucas (1977), but
may lead to significant aggregate fluctuations when the firm size distribution is suf-
ficiently heavy-tailed (Gabaix, 2011), or in case of intersectoral input-output linkages
(Acemoglu et al., 2012).

For the remaining 498 long-lived firms I obtain annual observations for the vari-
ables operating income, sales, property plant and equipment, current assets, total
assets, common equity, total liabilities, long-term debt, short-term debt and current
portion of long-term debt, market value of equity as well as the number of employees
from Datastream. From the same source I also take a decomposition of total sales into
up to ten product segments, sorted from the largest to the smallest segment according
to its contribution to total sales. These data are complemented by the companies’ year
of foundation obtained from the corporate websites. Using the time series of operat-
ing income and total assets, I compute the return on assets for each firm which serves
as an approximation to the profit rate. From the remaining variables I compute eight
key variables intended to capture different financial and industrial characteristics of
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Table 7: Maximum likelihood estimates of the Laplace distribution for different business divi-
sions.

Division m̂ σ̂

B: Mining 0.0744 (0.0044) 0.0717 (0.0005)
C: Construction 0.0802 (0.0052) 0.0584 (0.0038)
D: Manufacturing 0.1109 (0.0008) 0.0580 (0.0006)
E: Transportation, communications, electric and gas 0.0786 (0.0008) 0.0270 (0.0009)
F: Wholesale trade 0.1227 (0.0034) 0.0492 (0.0017)
G: Retail trade 0.1261 (0.0028) 0.0518 (0.0014)
H: Finance, insurance, and real estate 0.0355 (0.0010) 0.0815 (0.0062)
I: Services 0.0866 (0.0019) 0.0572(0.0015)

Note: Division A: agriculture, forestry and fishing is ommited since there is only one long-lived firm in
this sector. Bootstrapped standard errors are are shown in parantheses.

Table 8: Definition of business divisions and number of long-lived firms in each division.

Division SIC codes Number of firms

A: Agriculture, forestry and fishing 01 – 09 1

B: Mining 10 – 14 20

C: Construction 15 – 17 9

D: Manufacturing 20 – 39 267

E: Transportation, communications, electric, and
gas

40 – 49 81

F: Wholesale trade 50 – 51 18

G: Retail trade 52 – 59 32

H: Finance, insurance and real estate 62 – 67 32

I: Services 70 – 89 38

Total 498

Note: Firms that operate in more than one sector are classified according to the sector that generated
the highest revenue in 2012.
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Table 9: Summary statistics for the independent variables.

Variable Mean SD Min 25% Median 75% Max

Z1: Capital intensity 0.57 0.82 0.00 0.14 0.25 0.54 8.04

Z2: Firm age 91.69 37.87 15.00 60.00 89.50 115.00 222.00

Z3: Specialization 0.71 0.20 0.26 0.55 0.69 0.89 1.00

Z4: Leverage 0.64 0.59 −0.19 0.25 0.52 0.87 5.56

Z5: Productivity 267.52 238.76 23.13 124.48 184.29 331.86 1951.97

Z6: Liquidity 34.92 197.71 0.71 7.29 13.40 29.40 4229.90

Z7: Growth in sales 0.07 0.04 −0.06 0.04 0.06 0.09 0.25

Z8: Tobin’s q 1.16 0.61 0.08 0.81 0.99 1.34 6.18

Note: I report (from left to right): mean, standard deviation, minimum, first quartile, median, third
quartile, and maximum. As explained in the main text, explanatory variables represent time series
medians over the sample period 1980-2012.

Table 10: Spearman rank correlations between the explanatory variables.

Variable Z1 Z2 Z3 Z4 Z5 Z6 Z7

Z1: Capital intensity
Z2: Firm age 0.11

(0.01)
Z3: Specialization 0.03

(0.52)
−0.20
(0.00)

Z4: Leverage 0.41
(0.00)

0.15
(0.00)

−0.13
(0.00)

Z5: Productivity 0.18
(0.00)

0.13
(0.00)

0.00
(0.92)

0.32
(0.00)

Z6: Liquidity −0.48
(0.00)

−0.18
(0.00)

0.08
(0.07)

−0.61
(0.00)

−0.33
(0.00)

Z7: Growth in sales −0.15
(0.00)

−0.33
(0.00)

0.08
(0.06)

−0.14
(0.00)

−0.04
(0.32)

0.23
(0.00)

Z8: Tobin’s q −0.09
(0.05)

−0.07
(0.13)

0.01
(0.84)

−0.36
(0.00)

−0.20
(0.00)

0.23
(0.00)

0.35
(0.00)

Note: P-values (in parantheses) equal to 0.00 imply p < 5× 10−3.

the firms which turned out to be prevalent in prior studies of profitability (Capon et
al., 1990). I explain these variables in more detail below. If time series of the firm char-
acteristics are available, I calculate realizations for each year between 1980 and 2012

and take the median observation in order to obtain a more robust measure which is
independent of extraordinary effects in single years. Summary statistics for the regres-
sion variables are provided in Table 9. Table 10 suggests that correlations between the
independent variables, although partially significantly different from zero, are still
low enough in absolute terms to expect sufficient independent variation among the
independent variables, refuting potential concerns about concurvity.31

1. I operationalize capital intensity as the ratio of fixed capital, measured in terms
of property plant and equipment, to total sales. Property, plant and equipment

31 Concurvity denotes the nonparametric analog of multicollinearity.
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is net of depreciation and includes portions of both owned and rented/leased
fixed assets.

2. Firm age is measured in terms of the number of years from the firm’s year of
foundation to the latest period I have data for, 2012.

3. The specialization ratio rests upon the product segment decomposition of sales
and measures the percentage of the largest product segment in terms of total
sales. These product segments are defined on a 4-digit SIC code level. Conse-
quently, the specialization ratio is larger than zero and smaller or equal to unity.
The value one indicates that the firm is completely specialized, while a lower
value stands for a higher degree of corporate diversification.

4. The sum of long-term debt and short-term loans divided by common equity rep-
resents leverage. According to general business practice, time intervals shorter
than twelve months are regarded as short-term, while items with maturity longer
than one year are long-term. Nevertheless, many firms include current portions
in their long-term debt, which requires a reclassification of these amounts. Thus,
I measure the amount of short-term loans via the Datastream variable “short-
term debt and current portion of long-term debt” which backs out the current
portion from long-term debt. Unlike alternative definitions of leverage that di-
vide debt by total assets, my quite narrow definition attempts to exclude items
that may have little to do with financing, e.g. trade credit or assets held against
pension liabilities (see Rajan and Zingales, 1995, for a discussion of different
measures of leverage).

5. I approximate labor productivity with the ratio of total sales to the number of em-
ployees. In Datastream the variable number of employees refers to the average
annual number of full and part time employees, but excludes seasonal employ-
ees. Part time employees are converted into full time equivalents in Worldscope
by default.

6. The current ratio is a proxy for liquidity and is intended to measure the firm’s
ability to repay short-term creditors with liquid assets. It is computed as current
assets divided by short-term debt and current portion of long-term debt. The
variable current assets includes cash and equivalents, receivables, inventories
and prepaid expenses.

7. Firm growth rates are computed as logarithmic time differences in total sales.

8. Finally, I consider the well-known q ratio introduced by Tobin (1969) which com-
pares the market value of a firm to the reproduction cost of its assets. For the
present analysis I use the approximation of q suggested by Chung and Pruitt
(1994) because it represents a good compromise between precision, data require-
ments and computational effort. Approximate q is calculated as the ratio of
equity at market value plus the book value of short and long-term debt to total
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assets, assuming that the reproduction costs of assets are equal to book values
and that market and book values of debt are identical.

3.4 results

3.4.1 Parameter estimation

I estimate the parameters of the diffusion process from its corresponding transient
density using the Fokker-Planck equation formalism. With initial condition f(xi, |xi,0,0)=
δ(xi − xi,0), where δ(·) denotes Dirac’s delta function, and for appropriate boundary
conditions, the solution to the Fokker-Planck equation reads

f(xi,t|xi,0,0) =
1√
2Diπt

· exp

(
−
(xi − xi,0)

2

2Dit
−

1

2σi
(|xi −mi|− |xi,0 −mi|) −

Di

8σ2i
t

)

+
1

2σi
exp

(
−
1

σi
|xi −mi|

)
Φ

(
−
|xi −mi|+ |xi,0 −mi|− (Dit)/(2σi)√

Dit

)
,

(27)

with Φ(·) the cumulative distribution function of the standard normal distribution
(Toda, 2012).32 Given discrete observations of the random variate that follows the
diffusion process and the closed-form solution to its transitory density, we can apply
maximum likelihood techniques to estimate the parameters of the diffusion process.
To this end, for each time series {Xi,t,t> 0}, I numerically maximize the log-likelihood

logL(Di,σi,mi) = logf(xi,0;σi,mi) +

T−1∑
t=0

logf(xi,t+1|xi,t;Di,σi,mi) (28)

with respect to the parameters, where f(x0) denotes the (unconditional) Laplace den-
sity of the initial state x0 defined in equation (25), and f(xt+1|xt;D,σ,m) is the solution
to the transient density evaluated for each observation xt+1 conditional on xt. Two
peculiarities of the estimation procedure deserve further explanation. First, I estimate
m and σ separately and fix the other one of the parameters at its phenomenological
value to increase the stability of the estimation. Moreover, fixing m in the estima-
tion of σ ensures that the dispersion of profit rates is measured with respect to the
systemwide benchmark m̂ for all firms.33 Second, maximization of the likelihood
function is non-trivial due the singularity of equation (25) at x=m. To cope with this
issue, I prefer search algorithms to gradient-based methods and take recourse to the

32 Toda (2012) uses tbe diffusion process as a model of income dynamics. His initial formulation of the
Fokker-Planck equation does not contain the location parameter.

33 Notice that the phenomenological σ̂ measures the dispersion of profit rates with respect to the phe-
nomenological m̂.
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Table 11: Summary statistics for the parameter estimates.

Mean Median Mode SD IQR VC QC Skew Kurtosis

mi 0.1003 0.0920 0.0802 0.0568 0.0613 0.5662 0.6658 1.7203 13.4373

σi 0.0788 0.0633 0.0396 0.0729 0.0526 0.9259 0.8310 7.8879 94.4568

Di 0.0946 0.0012 0.0002 1.5210 0.0028 16.0798 2.3083 18.7957 372.847

Note: I report the mean, median, mode, standard deviation, interquartile range, variation coefficient,
quartile coefficient, skewness, and kurtosis. The mode is estimated with the half-range method pro-
posed by Bickel (2002) which iteratively identifies densest half ranges.

differential evolution algorithm (Storn and Price, 1997) which does not use derivative
information when attempting to find the global optimum of the likelihood function.34

Estimation of the diffusion process for each firm i = 1, . . . ,n yields n = 498 triples
of estimates {m̂i, σ̂i,D̂i}ni=1 whose sampling distributions are illustrated in Figure 31.
Table 11 shows the corresponding summary statistics. The histograms of the esti-
mated location and scale parameters are relatively narrow and peaked close to the
phenomenological values m̂= 0.095 and σ̂= 0.058, while the distribution of the diffu-
sion coefficient is extremely right-skewed. It exhibits the heaviest tails and the highest
variation of the three parameters. I take this to imply that heterogeneity among firms
is captured primarily by the diffusion coefficient, while location and dispersion are
relatively homogeneous across firms. While visual inspection of the histograms may
be useful to get a first impression of the possible range of estimates, it cannot pro-
vide information on how much of the observed variability is due to sampling error
and how much is due to significant differences among firms. To this end, I move
from graphical analysis and descriptive statistics to more formal testing and apply
the maximum likelihood ratio test. Table 12 illustrates the results. In case of the
dispersion parameter, the null hypothesis that the estimated parameter is statistically
indistinguishable from the phenomenological value cannot be rejected in 445 out of
498 cases on the 5 percent level which corresponds to approximately 89 percent of
firms in the sample. For the location parameter, the null is not rejected in 431 cases
which is about 86 percent of firms. I take this to imply that time series estimates of
average profitability and volatility are largely consistent with the phenomenological
values from the aggregate profit rate distribution.

Next, I turn to the question if the parameters of the diffusion process relate to firm
characteristics.

3.4.2 Do firm idiosyncrasies matter for profitability?

To this end, I compute the expected value E[Y|Z] = g(Z), where Y stands for either one
of the three parameters of the diffusion process, conditional on the companies’ indus-
trial and financial characteristics introduced in Section 3.3. The latter are contained in
the p-dimensional vector of regressor variables Z = (Z1, . . . ,Zp) ′. Since the functional

34 Numerical analyses on the properties of the estimators are provided in Appendix C.2.2.
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Figure 31: Histogram of location parameters, dispersion parameters, and diffusion coeffi-
cients.
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Table 12: Likelihood ratio test.

m σ

Hypotheses: H0: mi = m̂, (σi,Di) = (σ̂,D̂i);
H1: mi = m̂i, (σi,Di) = (σ̂,D̂i)

H0: σi = σ̂, (mi,Di) = (m̂,D̂i);
H1: σi = σ̂i, (mi,Di) = (m̂,D̂i)

Number of non-rejections of H0: 431 445

Note: LU: likelihood of the unrestricted model, LR: likelihood of the restricted model. Under H0 I
impose the restriction that the parameter under test is equal to its phenomenological value, i.e. for the
scale parameter I compare LU(σ̂i,m̂,D̂i) to LR(σ̂,m̂,D̂i), and for the location parameter LU(σ̂,m̂i,D̂i)
to LR(σ̂,m̂,D̂i). The test statistic is Λ = −2 logλ, where λ = LR/LU denotes the likelihood ratio. For
the scale parameter I compute p-values from the χ2 distribution which is the asymptotic distribution
of the test statistic under the null (Wilks, 1938). Since Wilks’ theorem is violated in case of the location
parameter, I use an approximation of the critical value from a simulated distribution generated via a
resampling scheme. To this end, I simulate 10,000 realizations of the diffusion process with location
and scale parameters equal to their phenomenological values, diffusion coefficient equal to D = 10−3

(which is the median coefficient computed over all long-lived firms), and time series length T = 33.
Then I re-estimate the parameters with the procedure described in the main text, and compare the
associated value of the likelihood function to the likelihood of the restricted model. The critical value
is given by the 95% quantile of this simulated distribution (see Figure 37 in Appendix C.2.1).

form of these relationships is not obvious a-priori, I apply a nonparametric kernel
regression technique that allows flexible estimation of a non-specific, smooth function
g(·) in

y= g(z) + ε, (29)

where g is some unknown smooth function to estimate and ε are observation errors.
Extending this technique to the multiple regression case permits to control for poten-
tial interaction effects between the explanatory variables. The regression relationship
in equation (29) is fitted with the multivariate generalization of the local constant
estimator proposed by Nadaraya (1964) and Watson (1964)

ĝh(z) =
∑n
i=1Kh(z − Zi)yi∑n
i=1Kh(z − Zi)

(30)

(see e.g. Härdle et al., 2004).35 It builds on the idea that observations Zi near the target
point z should contain information about the value of the regression function g at z
(Eubank, 1999). Thus, g is estimated as a weighted average of observed responses
near the target point, with weights given by kernel functions K. In the multiple

35 All regressions are conducted in R using the np package by Hayfield and Racine (2008).
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regression design, K is a multivariate kernel function in the p-dimensional space
which is constructed as a multiplicative kernel

Kh(z − Zi) =
1

h1, . . . ,hp
K

(
z1 −Zi,1
h1

, . . . ,
zp −Zi,p
hp

)
=

p∏
j=1

h−1j K

(
zj −Zi,j
hj

)
, (31)

i.e. K is the product of p univariate kernels K, which are continuous, bounded and
symmetric real functions integrating to one.36 Here, I choose one of the most com-
monly used functions and take K as a Gaussian kernel

Khj(z−Zi,j) =
1√
2π

exp

{
−
1

2

(
z−Zi,j
hj

)2}
. (32)

The size of these kernel functions is determined by the parameter hj which is called
bandwidth.37 Naturally, the bandwidths can differ across the different predictors.
Thus, in the multivariate setting, we have a vector of bandwidths h = (h1, . . . ,hp) ′.
To fix the bandwidth parameter, I employ the multivariate generalization of the rule
proposed by Silverman (1986)

hj =

(
4

p+ 2

)1/(p+4)
n−1/p+4)ψj, (33)

where n denotes sample size, and ψ is a robust measure of spread (Scott, 2015).38

Finally, I evaluate the uncertainty of the regression function using 50 pointwise confi-
dence intervals based on bootstrapped standard errors. These are adjusted for multi-
ple testing with the Bonferroni correction.39

Figure 32 illustrates the conditional estimates of the location parameter. Except for
Tobin’s q, the partial regression plots are almost flat for all variables, implying that
profitability does not exhibit any systematic relationship to the industrial and organi-
zational characteristics of the companies on average. In some cases we observe some

36 The product kernel constructs the unknown multivariate density of all covariates from the product of
their univariate kernels. The idea is that, under independence, the joint density of random variates
can be computed as the product of their marginal densities. Notice, however, that the assumption of
independence among the kernels does not transfer over to the multivariate estimator because averaging
is still conducted over observations from all covariates (see Henderson and Parmeter, 2015, p. 61), i.e.
the independence assumption is used to construct the kernel weights, but not the entire estimator.

37 The bandwidth parameter determines the smoothness of ĝ. A small bandwidth leads to a relatively
noisy regression surface, whereas a too large value results in oversmoothing and might eliminate
important features of the relationship. Therefore, an appropriate value of the bandwidth parameter
has to be selected that balances bias and variance of the estimate.

38 To increase robustness, ψ is estimated as the minimum of the sample standard deviation and the
normalized interquartile range, ψ̂j = min

{
1
n−1

∑n
i=1(zi,j − z̄j)

2,IQR/1.34
}

.
39 For visual convenience, I draw continuous bands around the 50 error bars in all graphical representa-

tions of the regression function.

71



0.0 0.5 1.0 1.5 2.0 2.5

−
0

.1
0

0
.0

5
0

.2
0

Capital intensity

m̂
i

50 100 150 200

0
.0

0
0

.1
0

0
.2

0

Firm age

m̂
i

0.4 0.6 0.8 1.0

0
.0

0
0

.1
0

0
.2

0

Specialization ratio

m̂
i

0.0 0.5 1.0 1.5 2.0 2.5

0
.0

0
0

.1
0

0
.2

0
Leverage ratio

m̂
i

200 400 600 800

0
.0

0
0

.1
0

0
.2

0

Labor productivity

m̂
i

0 20 40 60 80 100

0
.0

0
0

.1
0

0
.2

0

Liquidity ratio

m̂
i

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

0
.0

0
0

.1
0

0
.2

0

Sales growth

m̂
i

0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
0

.1
0

0
.2

0

Tobin’s q

m̂
i

Figure 32: Partial nonparametric regression plots for the location parameter with 95% confi-
dence intervals. The two-dimensional graphical representation of the multiple re-
gression relationship is obtained by plotting the location parameter against one pre-
dictor and fixing all other explaining variables at their median value. Dashed hori-
zontal lines are a visual aid and illustrate the phenomenological value m̂ = 0.0947.
Since bandwidths are constant over the entire support of each variable and the data
may become scarce in the tails of the distribution, the data are trimmed by drop-
ping between one and three percent of the most extreme realizations at both ends
of the spectrum.
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mild fluctuations in the conditional means, yet the 95 percent confidence bands al-
ways enclose the phenomenological value m̂= 0.095. The only statistically significant
relationship is the market to book value which relates positively to the location param-
eter, i.e. companies that operate below the system-wide benchmark are valued less
than the reproduction cost of their assets, while the securities market assigns a kind of
premium to those firms which are excessively profitable. My findings, therefore, sug-
gest a kind of dichotomy between “real” characteristics of the companies like growth,
age, or diversification on the one hand, and the firms’ financial valuation on the stock
market on the other hand. The relationship between the average profit rate and q may
not be surprising considering that both quantities are measures of corporate perfor-
mance. Unlike the profit rate, however, q should incorporate aggregate expectations
about the stream of future profits via marking a firm’s assets to market (Erickson and
Whited, 2000).40 Thus, one could argue that the market-to-book ratio increases with
average accounting returns because these raise expectations about future profitability
(Pastor and Veronesi, 2003). However, considering that the diffusion process predicts
mean-reversion of the return to capital, such deviations from the systemwide-average
profit rate cannot be sustainable in the long-run and should be eliminated through
the reallocation of capital. From this perspective, it strikes me that financial valua-
tion somehow overreacts to the short and mid-run dynamics of profitability, without
taking into account that a common location and scale parameter reflects the cost of
survivorship.41 To strengthen the argument that financial variables behave somewhat
differently, I have also experimented with alternatives to q. For example, I considered
the ratio of market value of equity to total assets as well as the ratio of market value
to the book value of equity. It turns out that m also relates to these variables which
confirms that quantities involving market valuation exhibit peculiar patterns.

Results for the scale parameter, displayed in Figure 33, are qualitatively in line with
those obtained for the location parameter. Companies with higher q exhibit more
volatility in the profit rate which should be attributed to the deviation of m̂i from m̂

for these firms.42 For the remaining variables I do not detect any systematic effect on
the dispersion of profit rates.

To assess the power of my results, I performed several robustness checks. First,
it turns out that average profitability and its volatility remain independent of “real”
characteristics if q is excluded in the regressions. Thus, I can rule out that indepen-
dence ofm and σmerely prevails because all volatility in these parameters is captured
by q. Second, I used also shorter time intervals (15, 20, 25 years of data) to estimate
the parameters for long-lived firms to see if independence is due to long-term averag-

40 In investment theory, Erickson and Whited (2000) interpret the expected stream of future marginal
benefits from investment as marginal q. However, since marginal q is difficult to measure, most em-
pirical studies (including the present one) consider average q instead. Hayashi (1982) shows that the
two measures coincide if firms are perfectly competitive and production technology exhibits constant
returns to scale.

41 The notion of a real vs. financial disconnect is, of course, well established in the literature, mostly
revolving around excess volatility in financial markets (e.g. LeRoy and Porter, 1981; Livan et al., 2014;
Mundt et al., 2014; Shiller, 1979, 1981).

42 Again, notice that volatility is measured with respect to m̂ for all firms.
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Figure 33: Partial nonparametric regression plots for the scale parameter with 95% confidence
intervals. Horizontal lines are a visual aid and illustrate the phenomenological
value σ̂= 0.0581.
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Figure 34: Partial nonparametric regression plots for the diffusion coefficient with 95% confi-
dence intervals.

ing. It turns out, however, that the results are virtually the same for shorter training
samples. Third, I investigated the relation between the two parameters and time se-
ries volatility of corporate characteristics to check if changes in these characteristics
might explain differences in profitability. These regressions, graphically illustrated
in Figures 38 and 39 in Appendix C.3, suggest that even the time volatility of firm
attributes is irrelevant for average profitability and its volatility. I take this as another,
markedly stronger, indication that location and dispersion are truly independent of
idiosyncratic efforts and firm specificities.

Figure 34 shows the diffusion coefficient as a function of the eight explanatory vari-
ables. Contrary to the former two parameters, we now observe some (weak) depen-
dencies on “real” characteristics, e.g. firm age, specialization, leverage, and liquidity,
which is consistent with previous findings in the persistence of profit literature (e.g.
Geroski and Jacquemin, 1988; Gschwandtner, 2005; Mueller, 1977, 1990; Waring, 1996).
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The speed of adjustment is lower for mature, less specialized, and liquid firms. For
some variables, e.g. leverage, the observed relationships exhibit even non-monotonic
patterns. It is also worth noting that q is negatively correlated with the diffusion
coefficient, implying that firms operating under a lower diffusion coefficient exhibit
higher market-to-book ratios on average. Overall, the finding that D captures firm
idiosyncrasies is consistent with the notion of statistical equilibrium because the dif-
fusion coefficient does not determine the stationary equilibrium distribution in equa-
tion (25).

3.4.3 Are shorter lived firms different?

The results that have been presented so far suggest that average profitability and its
volatility do not depend on industrial characteristics, while the diffusion coefficient
captures firm idiosyncrasies. In this section, I investigate if this property also holds for
shorter lived firms. Put differently, I study the effect of sample selection considering
the conditional mean of the parameters as a function of survival time. Since my
focus is on long-lived corporations while the majority of previous studies in the field
attempts to avoid what is usually called “survivorship bias”, one could hypothesize
that opposing views on the relevance of firm idiosyncrasies might result from the
consideration of different samples and life spans. To this end, I group firms according
to their survival time T into one of three disjunct subsamples. The first group contains
1804 firms which exist in the population surveyed by the database for 10-17 years. The
second sample contains 837 firms which exist for 18-25 years, while the third group
contains all older companies (720 firms).43 Since it is well-known that the profit rates
of shorter lived firms do not obey a symmetric Laplace but an even more leptokurtic
and asymmetric distribution (Alfarano et al., 2012; Wagner et al., 2010), I do not
estimate the location and dispersion parameter from the diffusion process for these
firms. Instead, two descriptive statistics are considered. My estimate of the location
parameter is the median profit rate of the time series, while volatility is measured in
terms of mean absolute deviation from m̂. Then, as before, I regress the parameters
on the firm characteristics, but this time separately for each group of firms.

43 I am aware that the number of observations is only a rough proxy for survival time because firms
could have been incorporated before 1980, the first year of the observation period, implying that the
true survival time is longer. Unfortunately, data on the year of incorporation is not available for all
approximately 7,800 firms in the sample, but only for the 498 long-lived corporations, so that I cannot
compute a more accurate measure of survival time at this point. To assess the significance of this
shortcoming, I considered the firms with data in 1980 in more detail. It turns out that 543 firms are
present in the sample in that year, 498 (i.e. more than 90 percent) of which are classified as long-lived
corporations. 30 out of the remaining 45 firms exist in the sample for 25 years or more, i.e. these
entities already belong to the group of firms with the longest survival time. 5 out of the remaining 15

corporations have a life span of 10-17 years, while the other 10 companies belong to the second group
with 10 6 T 6 25. Since the risk that firms have been incorrectly classified as shorter lived entities
with 10 6 T 6 17 affects at most 5-15 firms, I would like to believe that my definition of life span is a
reasonable approximation, and that the measurement error is still small enough to obtain meaningful
results.
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Figure 35: Partial nonparametric regression plots for the location parameter conditional on life
span T . The right panel shows firms with 10-17, the middle panel those with 18-25,
and the right panel those with more than 25 observations.
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Figure 36: Partial nonparametric regression plots for the dispersion parameter conditional on
life span T . The right panel shows firms with 10-17, the middle panel those with
18-25, and the right panel those with more than 25 observations.



Figures 35-36 illustrate the regression results for the three subsamples. It is visu-
ally apparent that the parameters for shorter lived firms relate to (at least some of)
the characteristics of the firms under study. For 10 6 T 6 17, correlations not only
occur between profitability and q, but also pertain to other variables. Often, these re-
lationships exhibit even non-monotonic patterns, which is consistent with the mixed
and sometimes inconclusive results on these relationships that have been reported
in previous studies (see Table 13 in Appendix C.1). If the focus shifts to long-lived
corporations, however, firm idiosyncrasies become clearly less important. Moreover,
comparing firms in the left panels of Figure 35 to those in the right panels, it is worth
noting that the sign of the relationship between average profitability and q changes
from negative to positive. At this point I can merely speculate, but one could ar-
gue that this speaks in favor of some sort of uncertainty effect. Along the lines of
Pastor and Veronesi (2003), the market-to-book ratio increases with the uncertainty
about future profitability. This uncertainty contributes to a high market valuation of
young, unprofitable firms. Since the uncertainty declines over time as investors learn
about the posterior profitability distribution, one should expect a gradual decline of
the market-to-book ratio over time. At the same time, however, there is a positive
effect of increasing profitability on the market value via the expectations channel. So,
while the uncertainty is seemingly dominating for shorter lived firms, the expecta-
tions channel is more relevant for long-lived companies. The notion of increasing
(average) profitability and declining volatility over the lifespan of firms is confirmed
in Figure 40 in Appendix C.4.

3.5 concluding remarks

This paper investigates the impact of firm idiosyncrasies on the dynamics of corporate
profitability. In contrast to previous studies, which stress the importance of firm and
industry-level determinants (e.g. diversification, productivity, capital structure), I find
that the profit rates of surviving corporations are on average the same and also exhibit
equally volatile fluctuations, irrespective of most of their idiosyncratic characteristics.
Tobin’s q (and other variables that contain the market valuation of corporations), on
the other hand, correlate significantly with profitability and its volatility, pointing to-
wards a dichotomy between real and financial attributes. This disconnect is consistent
with the notion of bubbles and fads (Blanchard et al., 1993), or any other social inter-
actions that lead to herding behavior in financial markets, that is changes in financial
valuation which cannot be justified ex post by fundamentals (see, e.g., the seminal
story by Shiller, 1981, on subsequent dividend or earnings changes). Interestingly, Li-
van et al., 2014 have recently argued that the diffusion model provides an alternative,
yet constructive, measure of the real performance of corporations that does not rely
on dividends or earnings. Their main idea is to compare profit rate cross-correlations
with financial cross-correlations using a spectral decomposition of the respective time
series. The problem is that profit rates are positively correlated in time, while finan-
cial returns are not (in line with the efficient market hypothesis by Fama, 1970, 1991).
The diffusion model allows them to filter out the serial correlation in real returns, and
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they are able to show that merely subtracting the leading spectral component from
the financial correlations (often referred to as the market mode or excess comovement)
makes the two time series consistent with each other, both in terms of the average re-
turn and the average volatility. This further testifies to the usefulness of the process,
even in light of the real vs. financial disconnect. Certainly, the positive correlation be-
tween profitability and financial performance does not inform us about the causality
between the two. At any rate, it is hard to imagine that financial performance would
have a causal influence on real performance, while it seems intuitive that the opposite
has to be the case. It is worth noting, however, that there is a recent strand of literature
that tries to make exactly the former case (see, e.g., Goldstein and Yang, 2014).

One of the most significant findings of this study is that a common law for corporate
profitability prevails only for surviving entities, i.e. firms that managed to withstand
the competitive forces over an extended period of time, while this is not true for
shorter lived firms. Thus, it is potentially the consideration of different samples that
leads to these diverging views on the role of firm or industry-level characteristics
in the existing literature and in the present study. While my results might seem
unexpected or even contestable to authors who have been working in the many fields
relating to corporate profitability, it should be noted that they are entirely data-driven.
After all, Figures 35 and 36 strikingly show the independence of profitability and its
volatility from corporate idiosyncrasies conditional on survival time by solely relying
on descriptive statistics. This is not to say that the reduced-form model is peripheral
to our investigation. Quite to the contrary, it is only by virtue of the model’s accuracy
that I was led to investigate the stark, and in light of the literature most unexpected,
conjecture that idiosyncrasies are irrelevant for corporate profitability.

Finally, the finding that the profit rates of long-lived corporations appear as re-
alizations of the same stochastic process, with a common location and dispersion
parameter for all firms, has instantaneous consequences for our understanding of cor-
porate strategy because, conditional on survival, corporations cannot do better (or,
perhaps more surprisingly, worse) than the system-wide average. Consequently, sur-
vival ought to be the primary, if not the only, business objective - and is everything
but just a short-term goal for small, young firms.
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C
A P P E N D I X

c.1 literature review

Table 13: Determinants of profitability in the empirical and theoretical literature.
Determinant Author(s) Type Sample Period Control vari-

ables
Relationship

Diversification Montgomery
(1985)

E 128 Fortune 500

firms
1972-
1977

Market share,
firm size, con-
centration, firm
growth

Negative

Palich et al.
(2000)

M Inverted-U-
shaped

Palepu
(1985)

E 30 firms from
the food prod-
ucts industry

1973-
1979

Neutral

Tallman and
Li (1996)

E 192 large US
multinational
manufacturing
firms

1987 Firm size, lever-
age, industry
growth

Quadratic

Markides
and
Williamson
(1994)

E 164 randomly
selected For-
tune 500 firms

1981 Capital in-
tensity, R&D
intensity, adver-
tising intensity

Positive

(continued)
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Table 13 – Continued

Determinant Author(s) Type Sample Period Control vari-
ables

Relationship

Market valu-
ation

Blanchard et
al. (1993)

T Ambiguous:
when asset
markets value
firms at their
fundamental
value, one
should expect
a tight positive
relationship
between the
profit rate and
Tobin’s q. On
the other hand,
deviations may
occur in case
of information
asymmetries
between man-
agers and the
market, fads
or speculative
bubbles

Pastor and
Veronesi
(2003)

T Positive: the
market-to-book
ratio increases
with average
accounting
returns because
these raise
expectations
about future
profitability.
Moreover, the
market-to-book
ratio increases
with uncer-
tainty about
future prof-
itability

Growth Reid (1995) E 73 Scottish
young micro
firms

1985-
1988

Business type,
market share,
rival’s pricing,
product dif-
ferentiation,
leverage

Negative

(continued)
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Table 13 – Continued

Determinant Author(s) Type Sample Period Control vari-
ables

Relationship

Cho and Pu-
cik (2005)

E 488 Fortune 500

firms
1998-
2000

Quality and
innovativeness
indices, market
value

Positive

Bottazzi
et al. (2008)

E Unbalanced
panel of 14,000-
17,000 Italian
manufacturing
and 10,000-
13,000 service
firms

1998-
2003

Credit rat-
ings, sectoral
affiliation

Neutral

Leverage Rajan and
Zingales
(1995)

E Approximately
8,000 interna-
tional corpo-
rations from
31 different
countries

1987-
1991

Firm size,
market-to-book
ratio, ratio of
fixed to total
assets

Negative

Fama and
French
(2002)

E Approximately
3,000 firms
from the Com-
pustat database,
excluding
utilities and
financial firms

3

years
be-
tween
1965

and
1999

Market-to-
book ratio,
depreciation-
to-assets ratio,
firm size, R&D
expenditures
relative to total
assets

Negative

Danis et al.
(2014)

E Non-financial
firms from the
Compustat
database

1984-
2011

Firm size,
market-to-book
ratio, tangible
assets, industry
concentration

Non-
monotonic:
positive when
firms are at or
close to opti-
mum leverage,
and negative
otherwise

Liquidity Goddard et
al. (2005)

E Pan-European
sample consist-
ing of 12,508

firms

1993-
2001

Past profitabil-
ity, firm size,
market share,
leverage

Positive

Deloof
(2003)

E 1,009 large Bel-
gian firms

1992-
1996

Firm size, firm
growth, finan-
cial debt ratio,
ratio of fixed fi-
nancial to total
assets

Positive

(continued)
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Table 13 – Continued

Determinant Author(s) Type Sample Period Control vari-
ables

Relationship

García-
Teruel and
Martínez-
Solano
(2007)

E 8,872 small and
medium-sized
Spanish firms

1996-
2002

Firm size,
firm growth,
leverage

Positive

Eljelly (2004) E 29 Saudi-
Arabian
publicly-traded
firms

1996-
2000

Firm size Negative

Capital
intensity

Russo and
Fouts (1997)

E 243 US firms
from various
sectors, exclud-
ing utilities

1991-
1992

Firm growth,
advertising
intensity, firm
size, industry
concentra-
tion, industry
growth, en-
vironmental
rating

Negative

Hecht (2008) E Unbalanced
panel of ap-
proximately
2,400 active
and inactive
nonfinancial
firms located
in Japan, Ger-
many, UK and
US

1980-
2004

market-to-book
ratio, ratio of
dividends to
book equity,
country, indus-
try, dividend
payments

Negative

Fama and
French
(2000)

E Unbalanced
panel of 2,343

financial and
utility firms

1964-
1996

Dividends,
market-to-book
ratio, ratio of
dividends to
book value of
common equity

Neutral

(continued)
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Table 13 – Continued

Determinant Author(s) Type Sample Period Control vari-
ables

Relationship

Hart and
Morgan
(1977)

E 113 industries
in the UK

1968 employment
concentration
ratio, change
in money sales,
ratio of adver-
tising to sales,
firm size, em-
ployment, ratio
of imports to
domestically
produced sales,
number of
firms in the
industry

Positive

Hanel and
St-Pierre
(2002)

E 302 US Ameri-
can, Canadian,
and Japanese
firms

1978-
1991

Market share,
price elasticity
of demand,
R&D capital
intensity, var-
ious variables
characteriz-
ing the firm’s
technological
environment

Positive

Age Coad et al.
(2013)

E Unbalanced
panel of 73,891

Spanish man-
ufacturing
firms

1998-
2006

Firm size, short-
term and long-
term debt ratios

Negative

Majumdar
(1997)

E 1,020 Indian
firms

1988-
1994

Firm size, liq-
uidity, capital
intensity, firm
growth, debt-
to-equity ratio,
import ratio,
diversity index

Negative

Rosenbusch
et al. (2011)

M Negative

(continued)
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Table 13 – Continued

Determinant Author(s) Type Sample Period Control vari-
ables

Relationship

Ito and
Fukao (2010)

E Approximately
14,000 Japanese
overseas affili-
ates

1989-
2002

Firm size, lo-
cal sales ratio,
Japanese equity
ratio, local
procurement
ratio, WTO
membership,
management
structure, place
of business

Positive

Qian et al.
(2008)

E Largest 189 US
Fortune 500

firms

1996-
2000

Firm size,
leverage, risk,
regional di-
versification
index, multina-
tionality index,
product scope
index

Neutral

Productivity Jovanovic
(1982)

T Positive: firms,
which have
incomplete
information
about their true
costs and pro-
ductivity levels,
learn about
their situation
when operating
in the market.
A selection
process leads to
growth and sur-
vival of more
productive and
profitable firms,
and to decline
and exit of
less efficient
and profitable
entities

Demsetz
(1973)

E 95 US indus-
tries

1963 Positive

(continued)
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Table 13 – Continued

Determinant Author(s) Type Sample Period Control vari-
ables

Relationship

Bottazzi
et al. (2008)

E Unbalanced
panel of 14,000-
17,000 Italian
manufacturing
and 10,000-
13,000 service
firms

1998-
2003

Credit rat-
ings, sectoral
affiliation

Positive

Foster (1977) T Positive: the
profitability
threshold above
which firms
decide to
enter the mar-
ket depends
positively on
productivity

Note: Abbreviations in the third column refer to the type of the study. I distinguish E: empirical, T:
theoretical, and M: meta-analysis.
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c.2 estimation

c.2.1 Likelihood ratio test

Figure 37: Simulated sampling distribution of the likelihood ratio test statistic (histogram) for
the location (left) and dispersion parameter (right), superimposed with a χ2 distri-
bution with one degree of freedom (solid line). We observe that the χ2 distribution
is a reasonable description for the dispersion parameter, while it turns out be too
restrictive for the location parameter. This motivates why I use a data-dependent
distribution of the test statistic for m.

c.2.2 Numerical analyses on m and σ estimators

In this section, I attempt to quantify bias and estimation error in the maximum like-
lihood estimation of the Fokker-Planck equation. In particular, I focus on the effect
of small samples, the adjustment speed of the diffusion, and the approximation error
arising from the availability of discretely observed data. I simulate 500 realizations of
the process

Xt+δt = Xt −
D

2σ
sign(Xt −m)δt+

√
Dδt · ηt+δt, (34)

with different time series length T and location and scale parameters equal to their
phenomenological values using the Euler-Maruyama method. In equation (34), η ∼

N(0,1) are independent and identically distributed standard normal random numbers,
and δt = ∆t/S are time increments with ∆t = 1 and micro time steps S ∈N+. That
is, the discrete time interval ∆t is partitioned into S equal subintervals of width 1/S.
Then I re-estimate the location and dispersion parameter for each realization and
compute three summary statistics. Let θ denote the parameter to estimate and θ0 is
the correct value of this parameter. Then I consider the sample mean

θ̄= E[θ̂], (35)
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the standard error

sθ̄ =

√
E[(θ̂− θ̄)2], (36)

and the root mean squared error

θRMSE =

√
E[(θ̂− θ0)2] =

√
E[(θ̂− θ̄)2] + (θ̄− θ0)2, (37)

which is determined by the variance of the estimate and its bias. Table 14 summarizes
the simulation results. It turns out that the estimate of the location parameter is
unbiased also for small samples, irrespective of the characteristic time scale of the
diffusion. The estimate of the dispersion parameter, on the other hand, exhibits a
positive small sample bias that is most pressing when the adjustment speed is high
(D= 10−2). Moreover, for small values of the diffusion coefficient (D= 10−4) and short
time series (T = 30), the standard error associated to both estimators is rather high and
declines only slowly with sample size, which also explains the high dispersion of the
estimates in Figure 31.
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Table 14: Parameter estimates of simulated data as a function of the diffusion coefficient (D),
time series length (T ), and the number of micro time steps (S).

m σ

D S T Mean SE RMSE Mean SE RMSE
(m̄) (sm̄) (mRMSE) (σ̄) (sσ̄) (σRMSE)

0.0001 1 30 0.097 0.079 0.079 0.064 0.051 0.051

100 0.099 0.072 0.072 0.070 0.049 0.050

200 0.097 0.071 0.071 0.070 0.047 0.048

500 0.097 0.061 0.061 0.070 0.039 0.041

1000 0.093 0.037 0.037 0.067 0.028 0.029

10 30 0.093 0.075 0.075 0.066 0.049 0.050

100 0.092 0.073 0.073 0.068 0.047 0.048

200 0.093 0.065 0.065 0.067 0.046 0.047

500 0.092 0.051 0.051 0.066 0.035 0.036

1000 0.094 0.038 0.038 0.065 0.032 0.032

100 30 0.097 0.077 0.077 0.064 0.051 0.052

100 0.090 0.076 0.076 0.067 0.049 0.050

200 0.100 0.063 0.063 0.068 0.043 0.044

500 0.095 0.059 0.059 0.071 0.043 0.045

1000 0.094 0.044 0.044 0.064 0.031 0.032

0.001 1 30 0.094 0.071 0.071 0.075 0.046 0.049

100 0.098 0.044 0.044 0.075 0.031 0.036

200 0.096 0.030 0.030 0.072 0.022 0.026

500 0.095 0.012 0.012 0.071 0.012 0.018

1000 0.096 0.008 0.008 0.071 0.010 0.016

10 30 0.097 0.070 0.070 0.070 0.046 0.048

100 0.094 0.042 0.042 0.068 0.031 0.032

200 0.096 0.023 0.023 0.065 0.021 0.022

500 0.095 0.009 0.009 0.061 0.011 0.012

1000 0.095 0.005 0.005 0.060 0.007 0.007

100 30 0.094 0.071 0.071 0.069 0.045 0.046

100 0.094 0.031 0.031 0.063 0.026 0.026

200 0.096 0.022 0.022 0.062 0.018 0.019

500 0.095 0.007 0.007 0.061 0.012 0.012

1000 0.095 0.004 0.004 0.059 0.008 0.008

0.01 1 30 0.096 0.046 0.046 0.110 0.028 0.059

100 0.095 0.021 0.021 0.113 0.015 0.057

200 0.096 0.014 0.014 0.113 0.012 0.056

500 0.095 0.007 0.007 0.113 0.007 0.055

1000 0.095 0.005 0.005 0.113 0.005 0.055

10 30 0.095 0.020 0.020 0.066 0.019 0.021

100 0.094 0.011 0.011 0.065 0.010 0.012

200 0.095 0.007 0.007 0.065 0.007 0.009

500 0.095 0.005 0.005 0.064 0.004 0.008

1000 0.095 0.004 0.004 0.065 0.003 0.007

100 30 0.096 0.018 0.018 0.062 0.018 0.018

100 0.095 0.008 0.008 0.060 0.009 0.010

200 0.095 0.005 0.005 0.059 0.006 0.006

500 0.095 0.003 0.003 0.059 0.004 0.004

1000 0.095 0.003 0.003 0.059 0.003 0.003

Note: Results refer to 500 simulated realizations of the diffusion process with m= 0.095 and σ= 0.058.
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c.3 robustness checks
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Figure 38: Relation between the location parameter and time series volatility of corporate char-
acteristics, measured in terms of median absolute deviation. As before, dashed
horizontal lines illustrate the phenomenological value m̂= 0.0947.
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Figure 39: Relation between the dispersion parameter and time series volatility of corporate
characteristics, measured in terms of median absolute deviation. As before, dashed
horizontal lines illustrate the phenomenological value σ̂= 0.0581.
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c.4 effect of lifespan on average profitability and its volatility

Figure 40: Average profitability (left) and its volatility (right) as a function of lifespan L. Lifes-
pan is measured in terms of the number of years that firms survive at least in the
sample. The points illustrate the median mi and σi, respectively, of all firms in
each bin. Error bars correspond to one standard error that has been computed as
the standard deviation of 1000 bootstrap samples of the statistics in each bin.

93





4
A S TAT I S T I C A L E Q U I L I B R I U M A P P R O A C H T O F O R E C A S T I N G
C O R P O R AT E P R O F I TA B I L I T Y

95



abstract

This paper proposes a statistical equilibrium methodology to model and forecast firm
profitability that accounts for the fat-tailed distribution of return on assets (ROA).
The approach builds on a new type of data generating process (AMIK diffusion) that
has recently been introduced by Alfarano et al. (2012). Employing the maximum
likelihood method for the estimation of this process, I assess its out-of-sample fore-
casting performance at short and longer time horizons. The ability of the model to
predict ROA is evaluated relative to another prominent mean-reverting diffusion pro-
cess, namely the Ornstein-Uhlenbeck model, and other univariate time-series models
from the ARMA and ARIMA varieties. Using balance sheet data of more than 500

long-lived publicly traded US corporates, I find that the AMIK diffusion is not out-
performed by other time series models in most cases if we add the assumption that
profit rates are ergodic.

4.1 introduction

Forecasts of profitability are relevant for firm managers, financial analysts, investors,
and other groups of corporate stakeholders. Amongst others, they may affect corpo-
rate strategy, investment decisions, and the valuation of equity (see, e.g., the residual
income model by Feltham and Ohlson, 1995; Ohlson, 1995). The perception that, to
some extent, profitability is predictable arises because accounting rates of return, un-
like financial returns, are persistent and exhibit a mean-reverting property in their
time series (Fama and French, 2000; Freeman et al., 1982; Nissim and Penman, 2001).
From a methodological viewpoint, this raises the question of how to model the dy-
namics of profitability most appropriately.

Despite the appealing statistical properties of profit rates, it appears that profitabil-
ity has received relatively little attention in the forecasting literature, mostly in ac-
counting and finance, and that the majority of existing papers is concerned with
modeling and forecasting of earnings as an alternative measure of firm performance.
Several early contributions from the 1960/70s explore the time-series properties of
earnings. They come to the conclusion that earnings follow a martingale process,
implying that the best prediction for earnings is the “naive” forecast (e.g. Ball and
Watts, 1972; Lintner and Glauber, 1978; Little, 1962). Other studies investigate the
forecasting capacity of various autoregressive (integrated) moving average models in
the spirit of Box and Jenkins (1970) (e.g. Albrecht et al., 1977; Brown and Rozeff, 1979;
Callen et al., 1993; Collins and Hopwood, 1980; Foster, 1977; Griffin, 1977; Lookabill,
1976; Watts and Leftwich, 1977). In the research field of corporate profitability, the
majority of studies employ, instead of time-series models, regression analysis that pos-
tulates some sort of structural relationship between profitability and other variables.
For example, Fairfield et al. (1996) analyze the predictive content of several earnings
components (e.g. operating earnings, non-operating earnings and taxes, and special
items) on the return on equity and find that disaggregation improves the forecasting
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accuracy relative to the models subject to the higher level of aggregation. In a similar
vein, Fairfield and Yohn (2001), Soliman (2008), and Bauman (2014) use the DuPont
methodology to decompose ROA into the product of asset turnover and profit mar-
gin. They provide evidence that changes in asset turnover and profit margin contain
valuable information for forecasting the change in ROA. Employing a variant of the
Fama and MacBeth (1973) regression, Fama and French (2000) and Allen and Salim
(2005) conduct forecasting analysis on ROA in order to draw insights into the change
of earnings. Their model uses the ratio of dividends to the book value of equity, the
market-to-book ratio, and a dummy variable to distinguish between dividend and
non-dividend paying firms as explanatory variables for expected profitability. One
of the few exceptions that employs time-series analysis to forecast profitability is the
study by Fairfield et al. (2009) which attempts to predict returns on equity and net
operating assets by means of autoregressive processes. Moreover, although time se-
ries models have been seldomly used to forecast profitability, they play the dominant
role in the rich persistence of profit literature that employs autoregressive processes
as their major work horse (e.g. Geroski and Jacquemin, 1988; Goddard and Wilson,
1999; Gschwandtner, 2005; Mueller, 1986, 1990).

In this paper, I employ the statistical equilibrium methodology that has recently
been introduced by Alfarano and Milaković (2008) and Alfarano et al. (2012), and ex-
tend the scope of its relevance by examining the forecasting power of this approach on
ROA. The model presumes that profitability is subject to ergodicity conditional on sur-
vival, i.e. that time-series and cross-sectional properties of the data will converge on a
sufficiently long time scale. This presumption makes it feasible to extract information
on the individual time-series from the cross-sectional profit rate distribution and leads
to forecasting gains when more data is available in the cross-sectional sphere than in
the time-series dimension, which is frequently the case in practical applications. The
perception that the ensemble average may disclose information on the individual time-
series has been prevalent also in previous investigations. For instance, Fairfield et al.
(2009) report the superiority of models predicting mean-reversion to economy-wide
rather than industry-specific levels. Yet, by its very nature, their autoregressive model
cannot account for several features of the data. Instead, the statistical equilibrium ap-
proach offers, at least, three reasons why the model based on it should be a valuable
tool to forecast profitability. First, it reproduces the empirical distribution of profit
rates that is markedly non-Gaussian but approximately follows the Laplace distribu-
tion (see e.g. Alfarano and Milaković, 2008; Alfarano et al., 2013; Scharfenaker and
Semieniuk, 2016), implying that small deviations around the mean and extreme events
occur more often than in the case of a normal distribution. Second, the model is also
consistent with the autocorrelation structure of the data that exhibit an (asymptotic)
exponential decay, i.e. short memory, as pointed out by Mundt et al. (2016). Finally,
Mundt (2017) presents evidence that individual firm characteristics are almost negli-
gible for the dynamics of profitability if the entity has survived in the market for an
extended period of time, which testifies to the existence of a common law of motion
governing profitability for long-lived firms. Therefore, it should be worthwhile to in-
vestigate if the model’s ability to replicate these features also materializes in superior
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forecasting capacity. To this end, I estimate the stochastic process of firm profitability
via maximum likelihood and a closed-form solution to its transient density using a
sample of more than 500 publicly traded US non-banking corporations, and assess
the model’s goodness of fit with respect to its out-of-sample forecasting performance
at short and longer time horizons (up to three years ahead). The performance of
the model is evaluated relative to another prominent mean-reverting stochastic pro-
cess, namely the Ornstein-Uhlenbeck model, and more established time-series models
from the mixed autoregressive integrated moving average (ARIMA) family. Since the
significance of its properties has been widely discussed in the literature on forecast-
ing earnings, I also consider the random walk process as a special case of an ARMA
model. In the paper, comparison of forecasting power between all competing mod-
els hinges on two alternative loss functions, mean squared error (MSE) and mean
absolute error (MAE), as well as the superior predictive ability (SPA) test by Hansen
(2005).

While it is, of course, statistically convenient to select firms with a long history of
data in order to maximize the number of observations, the main reason for choosing
this particular sample goes far beyond technical considerations. In fact, the selection
of long-lived firms is inevitable because the notion of statistical equilibrium prevails
merely for surviving entities. Shorter lived firms, i.e. entities that have only recently
entered the market or disappear within the sample period, are not subject to the
common mechanism that implies a kind of auto-pilot mode for those which survive.
Why should it be relevant to study these corporations? Interestingly, it turns out
that surviving firms are often large in terms of size: the sample used for the present
investigation contains more than 200 entities that are listed on the 2013 Forbes For-
tune 500 list. Given that gross revenues of the largest 500 US corporations accounted
for approximately 73 percent of US nominal GDP in 2013, their impact on the over-
all economy is certainly non-negligible and their individual destinies may have even
macroeconomic implications (Gabaix, 2011, provides empirical evidence on this “gran-
ular hypothesis”). Thus, surviving corporations are a very relevant group of firms to
study.

One of the key results obtained in this paper is that the statistical equilibrium model
is not outperformed by other models in most cases, under both the MSE and MAE
loss function. For one year ahead forecasts, the random walk is the toughest com-
petitor, while the Ornstein-Uhlenbeck process turns out to be second-best for longer
horizons. Box-Jenkins ARMA and ARIMA-type models are clearly dominated by the
former two diffusion processes. Further, perhaps somewhat surprisingly, the random
walk outperforms models predicting mean-reversion to firm-specific profitability lev-
els. While this respectable overall performance of the naïve forecast illustrates the
difficulty of predicting individual behavior in a system of interacting individuals, it
also implies that the notion of statistical equilibrium is essential to realize forecasting
gains.

The remainder of this paper is organized as follows. Section 4.2 describes the data
and outlines the forecasting design. Section 4.3 presents the statistical equilibrium
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Table 15: Sample composition by sectors.

Division SIC codes Number of firms

Agriculture, forestry, and fishing 01-09 1

Mining 10-14 21

Construction 15-17 9

Manufacturing 20-39 279

Transportation and public utilities 40-49 87

Wholesale trade 50-51 16

Retail trade 52-59 33

Finance, insurance, and real estate 62-67 32

Services 70-89 38

All 516

Note: Firms are classified according to the business segments that provided the highest revenue at the
end of 2013.

model and introduces its competitors. Section 4.4 reports the main results and sec-
tion 4.5 summarizes and concludes.

4.2 data and forecasting methodology

The dataset for this study is obtained from Thomson Reuters and builds on firms’ an-
nual financial statements, as reported in the Datastream Worldscope Database. World-
scope includes publicly quoted companies and provides the best coverage and longest
history of data for developed markets in North America, where the earliest informa-
tion is available for 1980. Since this investigation aims at long-lived firms, my focus
will be on US companies that are listed on the stock exchange since 1980 and still exist
in 2013, the year when the data for this study were collected. This condition is met
by 516 entities operating in virtually all sectors of the US economy except banking, as
shown in Table 15.

Profitability of these firms is measured in terms of return on assets, computed as
the ratio of the flow of operating income to the stock of total assets, which serves as an
approximation to the profit rate. Table 16 provides several summery statistics for this
financial ratio. They suggest that the cross-sectional profit rate distribution is fairly
symmetric around the mean. The year-by-year skewness statistics do not exhibit any
clear pattern, indicating that neither negative nor positive skew is an universal feature
of the data. Negative realizations of the skewness statistic occured mainly during
the last financial and banking crisis, yet it turns out that this is due to extremely
few observations. Moreover, the annual cross-sectional profit rate distributions are
markedly non-Gaussian since they exhibit considerable excess kurtosis, i.e. fatter tails
than the Normal distribution. This is confirmed by the Anscombe and Glynn (1983)
test which clearly rejects the null hypothesis of zero excess kurtosis at any level of
significance (see Table 17). Various goodness-of-fit tests, also summarized in Table 17,
support the perception that the data are not normally distributed. They reject the null
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Table 16: Summary statistics for the cross-sectional profit rate distribution.

Year Mean SD Skewness Kurtosis Min Max Obs.

1980 0.1408 0.1039 2.4947 21.0385 -0.2581 0.9585 516

1981 0.1345 0.0939 3.3124 36.7539 -0.1765 1.2094 516

1982 0.1172 0.0876 0.8289 6.3440 -0.1421 0.5749 516

1983 0.1188 0.0893 1.2978 10.8612 -0.1915 0.7362 516

1984 0.1267 0.0795 0.4899 6.6484 -0.2442 0.5687 516

1985 0.1148 0.0809 0.8484 7.5380 -0.1450 0.6072 516

1986 0.1025 0.0887 0.1384 7.8971 -0.2771 0.6466 516

1987 0.1044 0.0841 -0.8784 14.6086 -0.5934 0.5220 516

1988 0.1066 0.0789 -0.6874 10.0193 -0.4856 0.3465 516

1989 0.1064 0.0732 0.0756 4.7722 -0.1739 0.3855 516

1990 0.1001 0.0721 -0.1188 6.3441 -0.3135 0.3931 516

1991 0.0905 0.0721 -0.1145 6.6357 -0.3169 0.4282 516

1992 0.0930 0.0697 0.4469 5.0058 -0.1655 0.4052 516

1993 0.0957 0.0668 0.6979 5.6224 -0.1413 0.4220 516

1994 0.1013 0.0740 -0.3734 12.1097 -0.3714 0.4906 516

1995 0.1048 0.0734 -0.6240 11.0761 -0.4347 0.4531 516

1996 0.1057 0.0696 0.0404 6.8725 -0.2435 0.4478 516

1997 0.1071 0.0732 0.1539 9.1781 -0.2950 0.5896 516

1998 0.1050 0.0692 0.0613 7.5899 -0.2895 0.4689 516

1999 0.1011 0.0716 0.0740 5.3818 -0.1854 0.3948 516

2000 0.0999 0.0812 0.8255 12.6345 -0.2969 0.7243 516

2001 0.0849 0.0850 1.3233 20.7017 -0.4831 0.8170 516

2002 0.0803 0.0862 0.3010 29.3674 -0.6976 0.8626 516

2003 0.0830 0.0815 0.3818 21.9214 -0.6107 0.7044 516

2004 0.0924 0.0803 1.8493 20.1981 -0.2525 0.8285 516

2005 0.0944 0.0841 -0.5844 15.4016 -0.5064 0.6448 516

2006 0.0996 0.0837 -0.0314 19.4832 -0.5756 0.7337 516

2007 0.0932 0.0918 -1.4965 22.2446 -0.7486 0.6888 516

2008 0.0839 0.1389 -9.5543 159.0419 -2.2566 0.5060 516

2009 0.0685 0.0920 -1.9882 21.7573 -0.8252 0.3883 516

2010 0.0854 0.0887 -2.6070 42.1125 -0.9420 0.6562 516

2011 0.0914 0.1018 -2.3489 79.0333 -1.2427 1.1218 516

2012 0.0861 0.1110 1.0702 57.0922 -0.9368 1.3831 516

2013 0.0865 0.1284 -0.3022 130.0858 -1.6702 1.7950 516
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Table 17: P-values of normality and kurtosis tests.

Year AD CVM KUI JB ALM SW AG

1980 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1981 0.0000 0.0004 0.0000 0.0000 0.0000 0.0000

1982 0.0113 0.0200 0.0010 0.0000 0.0000 0.0000

1983 0.0022 0.0084 0.0000 0.0000 0.0000 0.0000

1984 0.0507 0.0608 0.0042 0.0000 0.0000 0.0000

1985 0.0108 0.0219 0.0003 0.0000 0.0000 0.0000

1986 0.0004 0.0011 0.0000 0.0000 0.0000 0.0000

1987 0.0001 0.0002 0.0000 0.0000 0.0000 0.0000

1988 0.0015 0.0033 0.0000 0.0000 0.0000 0.0000

1989 0.0107 0.0126 0.0000 0.0000 0.0000 0.0000

1990 0.0028 0.0037 0.0000 0.0000 0.0000 0.0000

1991 0.0093 0.0130 0.0000 0.0000 0.0000 0.0000

1992 0.0144 0.0183 0.0000 0.0000 0.0000 0.0000

1993 0.0016 0.0021 0.0000 0.0000 0.0000 0.0000

1994 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000

1995 0.0011 0.0032 0.0000 0.0000 0.0000 0.0000

1996 0.0048 0.0100 0.0000 0.0000 0.0000 0.0000

1997 0.0030 0.0085 0.0000 0.0000 0.0000 0.0000

1998 0.0061 0.0150 0.0001 0.0000 0.0000 0.0000

1999 0.0058 0.0153 0.0000 0.0000 0.0000 0.0000

2000 0.0004 0.0022 0.0000 0.0000 0.0000 0.0000

2001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000

2002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2005 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000

2006 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2007 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2009 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2010 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2011 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2012 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2013 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Note: Abbreviations refer to AD: Anderson-Darling test (Anderson and Darling, 1952), CVM: Cramér-
Von Mises test (Cramér, 1928; Mises, 1928), KUI: Kuiper test (Kuiper, 1960), JB ALM: Jarque-Bera
adjusted Lagrange multiplier test (Urzúa, 1996), Shapiro-Wilk test (Shapiro and Wilk, 1965), and
Anscombe-Glynn test (Anscombe and Glynn, 1983). P-values greater than 5 percent are shown in
boldface. Entries equal to 0.0000 imply p-value < 5× 10−5.
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of Gaussian distributed profit rates for all except one of the 34 annual cross-sectional
distributions on the 5 percent level. Altogether, these empirical observations support
the hypothesis of a symmetric leptokurtic profit rate distribution as embodied in the
AMIK model.

Turning to the time-series properties, the autocorrelation functions in Figure 45 in
Appendix D.1 suggest that profit rates are highly serially correlated. This graphical
impression is confirmed by the Ljung and Box (1978) and Box and Pierce (1970) tests
which both reject the null hypothesis of zero autocorrelations in approximately 450

out of 516 cases on the 5 percent level. Accordingly, profit rates do not move errati-
cally but appear predictable, to some extent, due to the rich statistical structure and
memory that we find in the data. Finally, I have also tested for stationarity of indi-
vidual profit rate time-series. Clearly, such formal testing is hampered by the rather
small number of observations available in the time domain and the fact that profit
rates are positively autocorrelated, in particular if the diffusion of profit rates is rather
slow. Yet, on the 5 percent level, I cannot reject the null hypothesis of (second or-
der) stationarity in approximately 70 percent of cases based on the Priestley and Rao
(1969) test which considers time-variations in the Fourier spectrum. It is worth not-
ing that a similar frequency is observed for synthetic data of the same size that obey
the AMIK diffusion, and that the test easily detects stationarity in simulated data as
the length of the time-series is growing larger. I take this to imply that the remain-
ing, approximately 150, profit rate time series are not necessarily non-stationary, but
rather attribute this result to the limited power of the test for small samples.44 More-
over, notice that both mean and standard deviation of the cross-sectional profit rate
distribution exhibit remarkably little fluctuations over time, which is already some
indication for stationarity of the data.

4.2.1 Forecast design

To forecast profitability, I employ a rolling window scheme where I estimate a model
in-sample and use the fitted model to obtain out-of-sample predictions for forecast
horizons up to 3 years ahead. The rolling window permits to generate several predic-
tions for each forecast horizon from a single time-series, and is less sensitive to effects
in single years than the fixed scheme because forecast errors are averaged across dif-
ferent time periods. Moreover, the SPA test does not allow for parameters that are
estimated with a recursive scheme, which is why I do not consider it here.45 In or-
der to obtain and evaluate the forecasts, I split each time-series into two subsamples.
The first one consists of 20 annual observations and serves as in-sample or training
period for parameter estimation, while the following 3 observations are used as out-of-

44 This problem is also relevant for other popular tests for (non-)stationarity, e.g. those which test for unit
roots in autoregressions (see, e.g., the discussion in Cochrane, 1991).

45 While the fixed scheme considers an in-sample of fixed size, the recursive scheme employs a window
of in-sample observations that includes all data points from the beginning of the in-sample period and
successively adds more recent observations. Thus, the recursive scheme implies an in-sample that is
expanding over time.
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Figure 41: h step ahead forecasts with a rolling window.

sample or testing period for forecast evaluation. Both the training and testing sample
are then rolled forward by adding one more recent observation and dropping one
from the beginning of the respective period, so that the number of observations in
each of the two subsamples remains constant. Given that no data is available after
2013, this scheme implies that the rolling window can be shifted 11 more times, per-
mitting a total of 12 predictions for each forecast horizon h = 1,2,3 years. Figure 41

provides an illustration of the rolling window scheme.

4.2.2 Forecast evaluation

The relative out-of-sample predictive accuracy of each model is evaluated by means
of the test outlined in Hansen, 2005. Unlike the prominent Diebold and Mariano, 1995

test that examines if two models exhibit equal predictive accuracy, Hansen’s approach
provides a testing framework for superior predictive ability (SPA) that compares the
forecasting error of a single (benchmark) model relative to the whole set of competi-
tors. It constitutes a refinement of the reality check (RC) for data snooping that has
been suggested by White, 2000, considering a studentized test statistic and a sample-
dependent null distribution as modifications. The bootstrap should control for the
small sample at our disposal, and avoids reference to asymptotic results which are
potentially misleading in our case due to the relatively small number of observations.
In what follows, I give a brief summary of the SPA test.
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Hansen’s test for SPA asks whether any of the alternatives is superior to the bench-
mark model in terms of forecast accuracy. To this end, it considers the null hypoth-
esis that the benchmark is not outperformed by any of the competitors in terms of
expected loss. To fix notation, let xt+h denote the ex-post realized return on assets in
period t+ h, and x̂t+h is the corresponding forecast. Then the expression

dk,t+h ≡ L(xt+h, x̂0,t+h) − L(xt+h, x̂k,t+h) (38)

quantifies the loss of competitor k = 1, . . . ,m at time t+ h relative to the benchmark
model 0, where L denotes some real-valued loss function, e.g. squared or absolute
forecasting errors. Relative losses of all competitors are collected in the vector

dt+h = (d1,t+h, . . . ,dm,t+h)
′. (39)

If the benchmark is not outperformed by other models, the expected relative loss of
each competitor, µk ≡ E[dk,t+h], is smaller than or equal to zero.46 Therefore, the null
hypothesis is given by

H0 : µ6 0, (40)

where µ≡ (µ1,µ2, . . . ,µm) ′. This hypothesis is then tested via the test statistic

TSPA ≡ max
k=1,...,m

[√
Nd̄1
ω̂1

, . . . ,
√
Nd̄m

ω̂m
,0

]
, (41)

whereN denotes the number of observations that are employed for model comparison,

d̄k =N
−1

N∑
t=1

dk,t+h (42)

is the sample mean loss differential of model k, ω2k ≡ Var(
√
Nd̄k), and ω̂2k denotes an

estimate of ω2k (see Hansen, 2005, p. 372 for details on the estimation). A major dif-
ference from White’s RC is that the test statistic in equation (41) employs studentized
loss differentials which is supposed to improve the power of the test if forecasting
performances exhibit cross-sectional heteroskedasticity.47

Finally, the distribution of the test statistic under the null hypothesis is approxi-
mated by resampling the vector of relative performances, dt+h in equation (39), using

46 Notice that µk refers to the (unknown) population mean of the loss differential series.
47 Dividing estimates of average loss differentials by their variability (studentization) ensures that losses

of all models are compared in the same units of standard deviation. Thus, models with very volatile
performances compare less favorably (see Hansen, 2005, p. 369).
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the stationary bootstrap proposed by Politis and Romano (1994). These bootstrap
series are denoted by

d∗b,t+h = (d∗1,b,t+h, . . . ,d∗m,b,t+h)
′, (43)

where b = 1, . . . ,B, and B is the number of bootstrap samples of length N. Then,
the null is imposed by recentering the performance differentials in µ. Since poor
models could potentially bias the test result towards acceptance of the null hypoth-
esis, Hansen (2005) suggests to exclude irrelevant alternatives when simulating the
null distribution. Here, poor means that the studentized average loss differential,
n1/2d̄k/ω̂k, is smaller than the threshold

√
2 ln(ln(N)). Formally, this is achieved by

defining the centered variable

Z∗k,b,t+h ≡ d∗k,b,t+h − d̄k · 1{n1/2d̄k/ω̂k>−
√
2 ln(ln(N))}

, (44)

where 1 denotes the indicator function. The average of the left-hand side of equa-
tion (44) is

Z̄∗k,b =N
−1

N∑
t=1

Z∗k,b,t+h. (45)

Since Z̄∗k,b is the centered bootstrap analog of d̄k, the distribution of the test statistic
under the null is derived from the bootstrap test statistic

T∗SPAb ≡ max
k=1,...,m

[√
NZ̄∗1,b
ω̂1

, . . . ,

√
NZ̄∗m,b

ω̂m
,0

]
. (46)

Finally, the estimated p-value of the test statistic TSPA is given by the percentage of
bootstrap test statistics T∗SPAb that exceed TSPA, i.e.

p̂SPA ≡ B−1
B∑
b=1

1T∗SPAb >TSPA . (47)

4.3 competing models

The following section introduces the competing forecasting models. The starting point
is the AMIK diffusion which has recently been introduced as a model for the time
evolution of long-lived firms’ profit rates. Among the competitors I consider the
Ornstein-Uhlenbeck process as an alternative mean-reverting diffusion, as well as
more established time-series models of the mixed autoregressive and moving average
varieties. Details about model selection, estimation, and forecasting are provided in
each subsection.
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Figure 42: Pooled empirical density of annual profit rates for 516 long-lived publicly traded
US companies vs. Laplace fit for different in-sample periods.

4.3.1 Statistical equilibrium model of competitive firms

Alfarano et al. (2012) and Alfarano and Milaković (2008) have recently proposed a
statistical equilibrium model of competitive firms that approaches firm competition
from a probabilistic perspective. They argue that the tendency of competition to
equalize returns to capital across different uses leads to an equilibrium distribution of
profit rates that characterizes the macroscopic properties of the ensemble of interact-
ing business firms. Given that this cross-sectional distribution is fairly symmetric but
non-Gaussian due to excess kurtosis, they suggest to employ a more fat-tailed model
and fit a Laplace distribution

fS(x) =
1

2σ
exp

(
−

∣∣∣∣x−mσ
∣∣∣∣) , (48)

with location m ∈R and scale parameter σ ∈R+. A battery of goodness-of-fit tests in
Table 18 suggest that the Laplace distribution is indeed a reasonable, albeit not perfect,
approximation of the data since the null hypothesis of Laplacian distributed profit
rates cannot be rejected on the 5 percent level in the majority of cases.48 Following this
approach, I fit the cross-sectional profit rate distribution with equation (48). Figure 42

depicts the empirical density for the different portions of in-sample data, while the
corresponding maximum likelihood (ML) estimates are provided in Table 19. Plots
of the empirical densities corroborate the Laplace hypothesis since a log-linear plot
shows the characteristic tent-shape.

48 I very much suspect that some departure from the Laplace distribution can be explained with earn-
ings management which leads to anomalies of profit rate realizations around x ≈ 0. This is a well
documented phenomenon in the accounting literature (Burgstahler and Dichev, 1997).
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Table 18: P-values of various goodness-of-fit tests for the Laplace distribution.

Year AD CVM KS KUI WU2

1980 0.0344 0.1001 0.0809 0.0020 0.0064

1981 0.0049 0.0199 0.0190 0.0157 0.0024

1982 0.0944 0.1533 0.1112 0.0907 0.1257
1983 0.1252 0.1845 0.1551 0.0073 0.0265

1984 0.3737 0.4675 0.4168 0.3815 0.2326
1985 0.2452 0.3143 0.1697 0.0989 0.1615
1986 0.6617 0.6492 0.7440 0.9412 0.8879
1987 0.5748 0.5212 0.3833 0.2245 0.3242
1988 0.2099 0.3568 0.4789 0.4196 0.5583
1989 0.0669 0.1310 0.1917 0.4221 0.3156
1990 0.3666 0.4832 0.4073 0.5415 0.5940
1991 0.6249 0.6611 0.8287 0.5187 0.4731
1992 0.3180 0.4917 0.4223 0.3509 0.4383
1993 0.0651 0.1763 0.1753 0.4651 0.3973
1994 0.0389 0.1073 0.1681 0.2117 0.2526
1995 0.2115 0.3269 0.2678 0.3270 0.3389
1996 0.1181 0.1890 0.1100 0.1132 0.1330
1997 0.0315 0.0581 0.0767 0.1299 0.0711
1998 0.2109 0.2984 0.4579 0.1065 0.1255
1999 0.0357 0.0758 0.0393 0.0139 0.0234

2000 0.0261 0.0562 0.0292 0.0806 0.0574
2001 0.5265 0.7227 0.7568 0.4987 0.5482
2002 0.1024 0.2074 0.0654 0.0964 0.1637
2003 0.0232 0.0833 0.0386 0.1303 0.1662
2004 0.0041 0.0288 0.0040 0.0152 0.0243

2005 0.0251 0.0891 0.0808 0.0152 0.0185

2006 0.0080 0.0335 0.0282 0.0435 0.0186

2007 0.0255 0.0707 0.0238 0.0226 0.0206

2008 0.1769 0.3234 0.2621 0.1357 0.1565
2009 0.4185 0.4381 0.4477 0.7069 0.6309
2010 0.0603 0.1401 0.0827 0.1110 0.1204
2011 0.0455 0.1098 0.0601 0.0123 0.0123

2012 0.0211 0.0577 0.0127 0.0060 0.0096

2013 0.0106 0.0358 0.0019 0.0004 0.0019

Note: Abbreviations refer to AD: Anderson-Darling test (Anderson and Darling, 1952), CVM: Cramér-
Von Mises test (Cramér, 1928; Mises, 1928), KS: Kolmogorov-Smirnov test (Massey, 1951), KUI: Kuiper
test (Kuiper, 1960), and WU2: Watson U2 test (Watson, 1961). P-values greater than 5 percent are
shown in boldface. Entries equal to 0.0000 imply p-value < 5× 10−5.
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Table 19: Estimated parameters of the cross-sectional profit rate distribution.

In-sample period m̂ σ̂

1980-1999 0.1024 (0.0007) 0.0564 (0.0006)
1981-2000 0.1010 (0.0006) 0.0556 (0.0006)
1982-2001 0.0992 (0.0007) 0.0552 (0.0006)
1983-2002 0.0976 (0.0007) 0.0548 (0.0005)
1984-2003 0.0956 (0.0007) 0.0544 (0.0005)
1985-2004 0.0935 (0.0007) 0.0539 (0.0006)
1986-2005 0.0926 (0.0006) 0.0537 (0.0005)
1987-2006 0.0920 (0.0006) 0.0533 (0.0005)
1988-2007 0.0914 (0.0006) 0.0534 (0.0006)
1989-2008 0.0908 (0.0006) 0.0539 (0.0006)
1990-2009 0.0895 (0.0006) 0.0543 (0.0006)
1991-2010 0.0887 (0.0007) 0.0545 (0.0006)

Note: Bootstrapped standard errors of the parameter estimates are shown in parentheses.

Inspired by this distributional regularity, Alfarano et al. (2012) construct the mean-
reverting stochastic differential equation (SDE)

dXt =−
D

2σ
sign(Xt −m)dt+

√
DdWt (49)

for the time evolution of the profit rate that has the Laplace in equation (48) as sta-
tionary density.49 This diffusion process (henceforth AMIK process) is characterized
by three parameters θ = {m,σ,D}. It defines a diffusion on the real line around the
measure of central tendency m∈R, with dispersion σ∈R+. The parameter D∈R+ is
a diffusion coefficient and specifies the speed of mean-reversion, while dWt represent
Wiener increments. The process in equation (49) consists of two components. The dif-
fusion function in the second term incorporates idiosyncratic shocks to profitability
which are assumed to occur randomly with mean zero and variance D, while the drift
function in the first term reflects the systematic tendency for competition to equalize
profit rates across firms. Notice that the current realization of the profit rate deter-
mines merely the sign of the drift, not its strength, which in absolute terms is equal
to D/(2σ). As we shall see later, this constitutes a key difference to the competing
Ornstein-Uhlenbeck process, for which the strength of the drift is proportional to the
deviation from the average profit rate.

To estimate the diffusion process, I proceed as follows. Since equation (49) defines
a Markov process with continuous trajectories, its transition probabilities obey the
Fokker-Planck equation (see, e.g., Gardiner, 2009; Risken, 1996)

∂p(x,t)
∂t

=−
∂

∂x
(A(x;θ)p(x,t)) +

1

2

∂2

∂x2
(B(x;θ)p(x,t)), (50)

49 The distributional regularity in Figure 42 is obtained from cross-sectional data, while the dynamic law in
equation (49) refers to the time-series. However, if (and only if) the system is in statistical equilibrium,
cross-sectional and time-series properties will coincide so that the aggregate distributional regularity
can be used to draw inferences on the time series of a single firm.
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Table 20: Alternative specifications of the AMIK model.

Specification Restricted parameter(s) Free parameter(s)

M1 m,σ,D
M2 m σ,D
M3 σ m,D
M4 m,σ D

where A(x;θ) and B(x;θ) are the drift and diffusion functions of the underlying pro-
cess, and p(x,t) ≡ f(x,t|x0,0) denotes the conditional probability density for a tran-
sition from some initial state x0 at time 0 to state x at time t. The Fokker-Planck
equation is a deterministic second-order partial differential equation that will be em-
ployed for ML estimation of the parameters and for obtaining the predictive density.
Considering the initial condition of a unit probability mass in point x0, the solution
to the Fokker-Planck equation is

f(x,t|x0,0) =
1√
2πDt

· exp
{
−
(x− x0)

2

2Dt
−
1

2σ
(|x−m|− |x0 −m|) −

Dt

8σ2

}
+
1

2σ
exp
{
−
1

σ
|x−m|

}
Φ

(
−
|x−m|+ |x0 −m|− Dt

2σ√
Dt

)
, (51)

whereΦ(·) is the cumulative distribution function of the standard normal distribution
(Toda, 2012). Since there is no previous observation for x0, I follow standard proce-
dure in the field and evaluate this component using the unconditional probability
density fS(x) (see, e.g., Ghongadze and Lux, 2012; Lux, 2009). The log-likelihood of
observations then amounts to

logL(θ) = logfS(x0;θ) +
T−1∑
t=0

logf(xt+1|xt;θ). (52)

It is maximized numerically to obtain the parameter estimates θ̂= {m̂, σ̂,D̂}.
I distinguish four alternative model specifications in the estimation of the diffusion

process in equation (49) which are summarized in Table 20. AMIK M1 is the most
flexible model. It estimates all three parameters {m,σ,D} individually for each firm.
Specification AMIK M2 has only two degrees of freedom since it assumes that all firms
share a common location parameter, while σ and D remain firm-specific parameters.
This assumption is motivated by the pre-analytical vision of a statistical equilibrium
in firm profit rates. It implies that profit rates of all surviving firms in the sample
regress toward the same value, which is the phenomenological m̂ from the cross-
sectional profit rate distribution. In a similar vein, AMIK M3 estimates m and D

from the time-series, while the dispersion parameter σ is estimated from the cross-
sectional distribution, implying that the volatility of each time-series corresponds to
the phenomenological σ̂ from the cross-sectional profit rate distribution. Finally, in
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Figure 43: Evolution of the transient density of the AMIK diffusion conditional on the start-
ing value x0 = −0.8. The diffusion coefficient equals D = 0.005, and the standard
deviation is

√
2σ = 0.1. As time increases the mode shifts toward m = 0. The three

bold lines represent the mean (black), median (gray), and mode (light gray) of the
transient density.

the AMIK M4 specification, I impose the restriction that both the location and scale
parameter are identical to all firms and equal to their phenomenological values m̂ and
σ̂, respectively, implying that the profit rates of all firms revert to the same average and
share a common volatility, as predicted by the statistical equilibrium methodology.

In addition to parameter estimation, the solution to the Fokker-Planck equation
will be employed for obtaining the predictive density. As illustrated in Figure 43, we
observe an asymmetric conditional probability density in the transient regime of the
process, while it converges to the symmetric Laplace with unconditional mean m and
long-term volatility σ for t→∞. Since forecast horizons up to 3 years are typically not
long enough to reach this stationary distribution, one could consider the mean, mode,
and median of the transient density as alternative predictors. Here, I will focus on
the mean prediction because it yields the best forecasting performance. The expected
value is determined by solving the integral

E[X] =

∫∞
−∞xf(x,t|x0,0)dx (53)

by means of numerical integration.
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4.3.2 Ornstein-Uhlenbeck process

A prominent alternative mean-reverting diffusion process is the model proposed by
Uhlenbeck and Ornstein (1930):50

dXt =
D

2σ2
(m−Xt)dt+

√
DdWt. (54)

Unlike the AMIK process, the Ornstein-Uhlenbeck (OU) process has a drift term
which depends linearly on the deviation from the unconditional mean m.51 Put dif-
ferently, the greater the distance between the actual realization and the long-term
average, the stronger is the drift which pulls the profit rate to its unconditional mean.
Thus, extreme profit rate realizations shall occur less frequently than in the AMIK
model, leading to a more platykurtic distribution than the Laplace.52

Also for the OU process the corresponding Fokker-Planck equation can be solved
analytically. Given the SDE in equation (54), the solution to equation (50) is

f(x,t|x0,0)=
1√

2πσ2
(
1− exp

(
−Dt
σ2

))exp

−
1

2σ2


(
(x−m) − (x0 −m)exp

(
− Dt
2σ2

))2
1− exp

(
−Dt
σ2

)

 ,

(55)

which is Gaussian for all t with time-dependent first and second moment (see, e.g.,
Gardiner, 2009, p. 128). Figure 44 plots the transient density as a function of time. For
t→∞, the conditional PDF converges to a stationary Normal distribution

fS(x) =
1√
2πσ2

exp
{
−
(x−m)2

2σ2

}
(56)

with unconditional mean m and variance σ2.
The OU process is estimated via ML using equations (52), (55) and (56). The forecast

is the conditional mean of the transient density, given by

E[X] = x0 exp
(
−
Dt

2σ2

)
+m

(
1− exp

(
−
Dt

2σ2

))
. (57)

50 Notice that the generic dispersion parameter σ refers to different volatility measures in equation (49)
and equation (54). In the AMIK model, σ refers to the mean absolute deviation while it denotes the
Gaussian standard deviation in the OU process. Yet one can compute one measure from the other since
a Laplace-distributed random variable X ∼ L(m,σ) has standard deviation

√
2σ.

51 Another diffusion process that exhibits mean-reverting behavior is the model by Cox et al. (1985) which
is frequently used for the modeling of interest rates. In this model the conditional volatility of random
innovations in the diffusion function prevents negative realizations of the process. Since a zero lower
bound is absent for the profit rate, I do not consider this model here.

52 Since the OU process is the continuous time analog of a stationary AR(1) process, it should be similar
to the model used in Fairfield et al. (2009). However, their model includes the predicted value of sales
growth as an additional variable.

111



Figure 44: Evolution of the transient density of the OU process conditional on the starting
value x0 = −0.8. The diffusion coefficient equals D = 0.005 and the standard devi-
ation is σ = 0.1. As time increases the mode shifts towards m = 0. The bold black
line represents the mean prediction.

4.3.3 AR(I)MA-type models

As additional candidates, I consider time-series models from the mixed autoregres-
sive and moving average varieties. Despite their simplicity, these models may capture
some of the aforementioned data characteristics for sensible choices of the parame-
ters, in particular mean-reversion and positive autocorrelations. Here, I will consider
ARMA(p,q) as well as more general ARIMA(p,d,q) models.

The ARMA(p,q) model reads

(1−

p∑
i=1

λiB
i)Xt = c+ (1+

q∑
i=1

ψiB
i)εt, (58)

where B represents the backshift operator, Λ(B) = 1 − λ1B − λ2B
2 − · · · − λpBp and

Ψ(B) = 1+ψ1B+ψ2B
2 + · · ·+ψqBq are the autoregressive and moving average poly-

nomials, respectively, and εt denotes a white noise series with E[εt] = 0, E[ε2t ] = σ
2 and

E[εtετ] = 0 for t 6= τ. c represents a constant term that is included to capture a possibly
non-zero mean of the process.

I estimate the p+ q+ 2 model parameters in Ξ = (c,λ1,λ2, . . . ,λp,ψ1,ψ2, . . . ,ψq,σ2) ′

for 16 p,q6 5 via ML assuming that εt are i.i.d. Gaussian random variables (see, e.g.,
Hamilton, 1994, ch. 5 for details). From the set of estimated models within this range I
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choose the specification that minimizes the Schwarz (1978) information criterion (SIC).
As it turns out, the parsimonious, yet effective, ARMA(1,1) specification

Xt = c+ λXt−1 + εt +ψεt−1 (59)

comes out as the most favored model across firms, and is therefore chosen for fore-
casting.

To predict with ARMA, I follow the standard procedure for obtaining linear fore-
casts, as outlined, e.g., in Diebold (2006), ch. 8. First, the process is updated in the
time dimension to period t+ h. Then, I project on the information set available in t,
the period when the forecast is made, which contains current and past realizations
of the response variable and innovations. To this end, all future values of the re-
sponse variable and innovations are replaced with their forecasts. The latter are zero
by definition, while the former are obtained via the recursive method (also known as
chain rule of forecasting). Thus, the h-step ahead forecast for an ARMA(1,1) process
conditional on the information set available in t is

x̂t+h =

{
ĉ+ λxt +ψεt if h= 1,
ĉ+ λx̂t+h−1 if h > 1.

(60)

In addition to ARMA(p,q) processes, I have also estimated mixed autoregressive
integrated moving average models

(1−

p∑
i=1

λiB
i)(1−B)dXt = (1+

q∑
i=1

ψiB
i)εt (61)

to account for a potential non-stationarity of the data. For 1 6 p,q 6 5 and d > 1,
ARIMA(1,1,1) compares most favorably based on SIC. Thus, I fit an ARMA(1,1) model
to the first difference of the original series, which is then used for forecasting.53 Pre-
dictions for the original data can be obtained by successively adding the forecast of
the first difference (i.e. the change in that variable) to the last observation of the
original data, x, or its forecast, x̂, respectively.

Finally, I complete the set of competitors by considering the random walk (RW)
without drift

Xt = Xt−1 + εt, (62)

which is a special case of ARMA(1,0) with unit root. Obviously, in case of the RW no
parameters need to be estimated and the best prediction is the naïve forecast

x̂t+h = xt ∀h > 0. (63)

53 Here I drop the constant because it determines the drift (not the mean) in an ARIMA model.
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Table 21: Summary of forecasting performances: number of winnings in the test for SPA.

MSE MAE

h Benchmark Benchmark

AMIK
M1

OU ARMA ARIMA RW AMIK
M1

OU ARMA ARIMA RW

1 404 419 278 190 459 414 422 276 181 461
2 363 368 297 163 386 365 365 292 166 400
3 341 336 290 128 348 355 332 296 129 357

AMIK
M2

OU ARMA ARIMA RW AMIK
M2

OU ARMA ARIMA RW

1 443 416 280 188 428 435 413 276 175 428

2 392 378 297 162 339 404 379 293 161 363

3 370 342 283 115 284 382 344 304 115 309

AMIK
M3

OU ARMA ARIMA RW AMIK
M3

OU ARMA ARIMA RW

1 451 418 279 188 434 447 415 281 170 432

2 407 378 305 160 368 403 382 295 154 378

3 384 355 298 125 335 388 346 309 128 345

AMIK
M4

OU ARMA ARIMA RW AMIK
M4

OU ARMA ARIMA RW

1 456 413 284 190 419 435 416 270 176 434

2 405 369 279 158 328 407 378 290 160 351

3 380 342 287 119 281 386 344 304 120 301

Note: The null hypothesis is that the benchmark model is not outperformed by other models in terms
of MSE and MAE, respectively. Entries refer to the number of firms for which the null hypothesis
cannot be rejected on the 10 percent level. For each loss function the highest number of winnings is
shown in boldface.

4.4 results

Tables 22-28 in Appendix D.2 show summary statistics for the estimated parameters
of AMIK M1-M4, OU, ARMA, and ARIMA models. For ARMA it turns out that
the estimated autoregressive parameters are smaller than unity in absolute value in
478-498 out of 516 cases (depending on the period under consideration), indicating
stationarity of the vast majority of fitted models. Based on the estimation results, I
construct out-of-sample forecasts and compute squared and absolute forecast errors
for comparison of forecast accuracy. Table 21 presents the SPA test results for different
benchmark models and forecast horizons up to three years ahead. From these I infer
the following regularities:

1. Perhaps somewhat surprisingly, RW is not outperformed by the unrestricted
AMIK M1 process and its mean-reverting competitors in most cases. This holds
particularly for shorter forecast horizons, h6 2, for which the difference between
RW and the other models is most pronounced. For h = 3, RW and the second
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best AMIK M1 achieve nearly identical results, implying that the random walk’s
initial advantage is averaged out over longer time horizons. Nevertheless, the
respectable performance of RW suggests that the profit rate exhibits considerable
random fluctuations and that models predicting mean-reversion to firm-specific
profitability levels are not superior to the naïve forecast.

2. AMIK M1 and OU yield quite similar performances. For one year ahead fore-
casts, the latter achieves the highest number of winnings. Yet the difference
to AMIK is small and probably not due to a systematic advantage. For longer
forecast horizons, however, differences between the two models become more
pronounced and turn in favor of AMIK, in particular for the MAE criterion.

3. Turning to the Box-Jenkins models, ARMA is clearly dominated by AMIK, OU,
and RW for both the MSE and MAE criterion. Moreover, there is no indication
that differencing improves the forecasting capacity since ARIMA performs con-
sistently worse than ARMA. Although the information criterion clearly favors
d = 1 in ARIMA(p,d,q), I have also experimented with higher order differenc-
ing, yet ARIMA remains inferior to the other models also for these specifications.
Overall, the bad performance of ARIMA models is in line with the results re-
ported in Section 4.2 which already suggest that non-stationarity of the data is
(if at all) a minor issue, although the analysis builds on raw data.

4. Considering the full set of AMIK specifications M1 to M4, I find support for the
statistical equilibrium methodology since the relative forecasting performance of
AMIK improves if the phenomenological values ofm and σ replace idiosyncratic
location and dispersion parameters. In case of the MSE (MAE) criterion, AMIK
M4 yields 37 (1), 36 (29), and 38 (42) more winnings than the second best model
for one, two, and three years ahead forecasts, respectively, while the difference
between AMIK M4 and the naïve RW forecast amounts to 37 (1), 77 (56), and 99

(85). This implies that RW can only be outperformed if it is assumed that the
system is in statistical equilibrium.

5. Comparing the models with two degrees of freedom, AMIK M2 and M3, it ap-
pears that fixing the dispersion parameter σ leads to more forecasting gains than
fixing the location parameter m. I infer that this is due to the short testing sam-
ple since previous investigations indicate that the median half life of abnormal
profitability is about 9 years (Mundt et al., 2016). Thus, most firms should need
more than 3 years to converge to the system-wide average profit rate.

Two insights from additional experiments may be worth reporting as well:

6. Since the transient density of the AMIK diffusion becomes asymmetric for some
t, I have also experimented with alternatives to the expected value. However,
it turns out that both the median and the mode of the conditional probability
density function are clearly dominated by the expected value, i.e. their SPA test
results are inferior to the mean prediction (results not shown). The failure of the
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mode should arise from the abrupt jump of the transient density’s maximum
that can be observed in Figure 43.

7. I also computed MSE and MAE loss functions by averaging forecasting errors
across firms to obtain an overall assessment of each model’s relative forecasting
performance. An advantage of this approach is that the number of observations
in the test for SPA rises from 12 (number of time shifts of the rolling window) to
516 (number of firms in the sample).54 While the test indicates that ARMA and
ARIMA models are inferior to their competitors, the p-values of the remaining
models are typically so high that there are no statistically significant differences
between them at the usual confidence levels.55 This confirms the results reported
in Table 21 which already suggest that the forecasting performances of AMIK,
OU, and RW are relatively similar and that significant differences between the
models occur only in approximately 40-100 out of 516 cases.

Finally, since the notion of ergodicity does not relate to any specific type of distri-
bution, say, Laplace or Gaussian, I also considered to what extent the performance
of the other (stationary) models might improve if firm-level parameter estimates are
replaced with ensemble averages. For OU, I follow the procedure outlined in Sec-
tion 4.3.1. The only difference from AMIK is that the cross-sectional parameters are
now estimated from the PDF in equation (56) because the stationary distribution of
OU is Gaussian. Adding restrictions to the ARMA model is a little more cumbersome.
Since the mean m of a stationary ARMA(1,1) process is given by

m=
c

1− λ
, (64)

we can express the constant in terms of c =m(1− λ) and substitute the right hand
side of this expression for c in equation (59). This yields

Xt −m= λ(Xt−1 −m) + εt +ψεt−1. (65)

Thus, we obtain a restricted model by fitting an ARMA process to the centered time
series. The latter is obtained by subtracting the cross-sectional sample mean from the
time series. I also tried to fix the variance, but estimation of the restricted model yields
many cases (firms) for which λ is close to −ψ, indicating an overparametrization of the
model that should be avoided (see Hamilton, 1994, p. 60).56 I take this to imply that it
is not readily feasible to fix the variance of this model, and hence do not report results
for ARMA M3 and ARMA M4. Table 29 in Appendix D.3 reports the corresponding
SPA test results for the remaining (restricted) models. I find that AMIK M2 and M3

are still superior to the alternatives for forecast horizons h> 2 years, while superiority
of AMIK M4 against OU M4 prevails only for the longest forecast horizon h = 3.

54 Here, I employed a fixed scheme instead of a rolling window scheme.
55 This material is available upon request.
56 In this case, a simple white noise process Xt = εt would model the data equally well because (1−λB)≈

(1+ψB) in (1− λB)Xt = (1+ψB)εt.
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Overall, these results strongly suggest that parameter estimation from cross-sectional
data improves the forecasting performance of all models, and that (under identical
conditions) the correctly specified AMIK process outperforms the misspecified OU
model only for longer time horizons.57

4.5 concluding remarks

In this paper, I employ the statistical equilibrium model by Alfarano and Milaković
(2008) and Alfarano et al. (2012) to forecast profitability of long-lived corporations.
The model is consistent with the leptokurtic profit rate density that is well approxi-
mated by a symmetric Laplace distribution and the autocorrelation structure of the
data. Moreover, in line with previous theoretical (e.g. Ohlson and Juettner-Nauroth,
2005) and empirical studies (e.g. Fairfield et al., 2009), it accounts for the idea that
profitability reverts to an economy-wide average because the notion of statistical equi-
librium implies that profit rates are drawn from the same distribution. While pure
autoregressive or mixed ARMA-type models can at best account for persistence in
profitability and mean-reversion to economy-wide profitability levels, they are not
consistent with the Laplacian nature of profit rates and are, therefore, counterfactual.
Thus, to the best of my knowledge, the new approach is the only model that simulta-
neously accounts for all these characteristics of the data.

A general problem of forecasting firm profitability is the relatively small amount of
accounting data that is available for model estimation and forecast evaluation, which
could impair the detection of significant differences between the models. Although
the present data set is certainly not ideal from a statistical viewpoint, the results are
encouraging in that they indicate weak superiority of the statistical equilibrium model
vis-à-vis its competitors, particularly for longer forecast horizons. One of the main in-
sights is that the assumption of ergodicity is absolutely essential to realize forecasting
gains relative to the random walk, which turns out to be a tough competitor for stan-
dard time series and more structural diffusion models, as it has been reported by
Meese and Rogoff (1983a) and Meese and Rogoff (1983b) in the context of forecasting
exchange rates.

While one could have hoped to obtain more definite results, it is not even clear
whether the AMIK diffusion would show better forecasting performance if it was the
“true” data generating process, mainly because of random innovations in the diffu-
sion function. These innovations capture idiosyncratic effects on profitability arising
from complex interactions among firms, yet the stochasticity of these shocks prevents
accurate prediction of the profit rate. In a sense, the respectable performance of the
random walk testifies to these fluctuations that prevail even in (statistical) equilib-
rium.58 Forecasting becomes even more cumbersome because the diffusion coefficient

57 OU ist misspecified in the sense that its stationary distribution is Gaussian, whereas the empirical
density of the data is approximately Laplace.

58 Notice that statistical equilibrium refers to a stationary distribution of states within the system, not to
an equilibrium state of every single individual. In fact, the position of any two individuals in that
equilibrium distribution is perfectly interchangeable.
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D appears in both the drift and the diffusion function of the AMIK model. On the
one hand, a larger D would imply faster mean-reversion which should improve the
performance of AMIK relative to its competitors as differences in autocorrelations be-
come more pronounced. However, a larger diffusion coefficient also implies a larger
variance of idiosyncratic shocks to profitability. On the other hand, if D is small, a low
noise level comes along with slow mean-reversion, so that the alternative (and prob-
ably misspecified) models might represent a reasonable approximation to the AMIK
diffusion in the short run.59

Several of the arguments raised before already suggest that there are limitations
to predicting individual behavior when the environment is characterized by intense
interactions among individuals. As I have repeatedly emphasized, the statistical equi-
librium model explicitly accounts for this observation by stating that profit rates are
governed by both the systematic drift towards the system-wide average and random
fluctuations. In such an environment, forecasting performance may not be the most
telling criterion for goodness of fit because individual behaviors are affected by so
many things that they are, essentially, extremely hard to predict. Overall, my finding
that, under identical conditions, the misspecified OU process and the correctly speci-
fied AMIK process yield very similar performances indicates that forecasting accuracy
is an extremely fragile criterion. What should receive more attention are robust aggre-
gate properties that arise from these interactions among firms, i.e. the cross-sectional
distribution of profit rates, which constitute the backbone of this statistical equilib-
rium approach.

59 Ghongadze and Lux (2012) observe a similar problem for a stochastic model of economic sentiment
indicators.
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Figure 45: Box-Whisker chart for the estimated autocorrelation functions of profit rates. The
boxes include the 25, 50, and 75 percent quantiles. 95 percent asymptotic confidence
intervals are shown as red dashed lines.
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d.2 estimation results

Table 22: Summary statistics for estimated parameters of AMIK M1.

In-sample
period

Min. 25% Median 75% Max.

m̂

1980-1999 -0.1630 0.0714 0.0987 0.1417 0.4994

1981-2000 -0.1630 0.0701 0.0978 0.1392 0.3254

1982-2001 -0.1413 0.0680 0.0966 0.1330 0.5698

1983-2002 -0.1413 0.0668 0.0943 0.1304 0.4478

1984-2003 -0.1413 0.0660 0.0932 0.1280 0.4429

1985-2004 -0.1413 0.0648 0.0906 0.1290 0.4429

1986-2005 -0.1413 0.0668 0.0903 0.1246 0.2682

1987-2006 -0.1630 0.0669 0.0902 0.1246 0.3795

1988-2007 -0.1655 0.0673 0.0900 0.1220 0.4346

1989-2008 -0.2043 0.0658 0.0906 0.1220 0.3795

1990-2009 -0.2043 0.0594 0.0857 0.1173 0.3795

1991-2010 -0.1655 0.0603 0.0864 0.1165 0.4145

σ̂

1980-1999 0.0044 0.0202 0.0312 0.0471 0.2356

1981-2000 0.0039 0.0198 0.0316 0.0467 0.2170

1982-2001 0.0049 0.0197 0.0326 0.0468 0.1905

1983-2002 0.0039 0.0203 0.0319 0.0458 0.1885

1984-2003 0.0039 0.0202 0.0311 0.0458 0.1845

1985-2004 0.0040 0.0196 0.0311 0.0450 0.1936

1986-2005 0.0036 0.0198 0.0309 0.0450 0.1581

1987-2006 0.0032 0.0197 0.0303 0.0450 0.1812

1988-2007 0.0024 0.0193 0.0305 0.0455 0.2059

1989-2008 0.0035 0.0200 0.0304 0.0477 0.2213

1990-2009 0.0025 0.0196 0.0309 0.0478 0.2220

1991-2010 0.0024 0.0188 0.0307 0.0481 0.2552

D̂

1980-1999 0.0000 0.0005 0.0013 0.0038 4.3628

1981-2000 0.0000 0.0005 0.0014 0.0039 1.0983

1982-2001 0.0000 0.0005 0.0014 0.0036 1.0826

1983-2002 0.0000 0.0005 0.0014 0.0033 2.0623

1984-2003 0.0000 0.0005 0.0012 0.0030 1.5877

1985-2004 0.0000 0.0005 0.0011 0.0028 7.7582

1986-2005 0.0000 0.0004 0.0011 0.0029 3.7175

1987-2006 0.0000 0.0004 0.0010 0.0026 11.5684

1988-2007 0.0000 0.0004 0.0010 0.0024 3.7328

1989-2008 0.0000 0.0004 0.0010 0.0027 7.2643

1990-2009 0.0000 0.0004 0.0011 0.0028 12.8265

1991-2010 0.0000 0.0004 0.0011 0.0028 4.6466

Note: Entries equal to 0.0000 imply that the corresponding values are smaller than 5× 10−5.
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Table 23: Summary statistics for estimated parameters of AMIK M2.

In-sample
period

Min. 25% Median 75% Max.

σ̂

1980-1999 0.0087 0.0408 0.0610 0.0916 0.5061

1981-2000 0.0089 0.0402 0.0611 0.0897 0.4425

1982-2001 0.0078 0.0403 0.0617 0.0905 0.5569

1983-2002 0.0074 0.0402 0.0599 0.0913 0.4954

1984-2003 0.0078 0.0389 0.0578 0.0910 0.4894

1985-2004 0.0087 0.0368 0.0558 0.0883 0.6204

1986-2005 0.0097 0.0360 0.0567 0.0849 0.4524

1987-2006 0.0095 0.0354 0.0555 0.0851 0.4983

1988-2007 0.0098 0.0346 0.0557 0.0867 0.6071

1989-2008 0.0097 0.0357 0.0574 0.0894 0.6285

1990-2009 0.0105 0.0343 0.0588 0.0844 0.6126

1991-2010 0.0103 0.0338 0.0565 0.0828 0.6013

D̂

1980-1999 0.0000 0.0004 0.0011 0.0029 9.5482

1981-2000 0.0000 0.0004 0.0011 0.0030 24.7156

1982-2001 0.0000 0.0004 0.0011 0.0029 12.5131

1983-2002 0.0000 0.0004 0.0010 0.0026 63.9495

1984-2003 0.0000 0.0004 0.0010 0.0025 31.2953

1985-2004 0.0000 0.0004 0.0009 0.0025 12.8177

1986-2005 0.0000 0.0004 0.0009 0.0024 28.0575

1987-2006 0.0000 0.0004 0.0009 0.0023 17.1738

1988-2007 0.0000 0.0004 0.0009 0.0022 24.4018

1989-2008 0.0000 0.0003 0.0009 0.0022 30.4482

1990-2009 0.0000 0.0004 0.0009 0.0025 65.9330

1991-2010 0.0000 0.0004 0.0009 0.0024 10.2520

Note: The location parameter m is fixed at its phenomenological value. Entries equal to 0.0000 imply
that the corresponding values are smaller than 5× 10−5.
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Table 24: Summary statistics for estimated parameters of AMIK M3.

In-sample
period

Min. 25% Median 75% Max.

m̂

1980-1999 -0.1630 0.0715 0.0992 0.1418 0.2979

1981-2000 -0.1630 0.0696 0.0967 0.1366 0.3254

1982-2001 -0.1413 0.0684 0.0968 0.1331 0.5698

1983-2002 -0.1413 0.0668 0.0941 0.1304 0.4478

1984-2003 -0.1630 0.0659 0.0929 0.1280 0.4429

1985-2004 -0.1413 0.0655 0.0909 0.1280 0.4429

1986-2005 -0.1413 0.0667 0.0904 0.1246 0.2682

1987-2006 -0.1630 0.0671 0.0904 0.1265 0.4145

1988-2007 -0.1655 0.0667 0.0895 0.1216 0.4346

1989-2008 -0.2043 0.0658 0.0902 0.1208 0.3795

1990-2009 -0.2043 0.0604 0.0858 0.1179 0.3790

1991-2010 -0.1661 0.0598 0.0864 0.1173 0.4145

D̂

1980-1999 0.0000 0.0004 0.0011 0.0032 4.5497

1981-2000 0.0000 0.0005 0.0011 0.0032 5.1624

1982-2001 0.0000 0.0005 0.0012 0.0029 13.6392

1983-2002 0.0000 0.0005 0.0011 0.0026 3.7498

1984-2003 0.0000 0.0005 0.0011 0.0025 2.1020

1985-2004 0.0000 0.0004 0.0010 0.0025 3.6174

1986-2005 0.0000 0.0004 0.0010 0.0025 4.0469

1987-2006 0.0000 0.0004 0.0010 0.0023 1.2582

1988-2007 0.0000 0.0004 0.0009 0.0023 13.6962

1989-2008 0.0000 0.0004 0.0009 0.0024 3.7846

1990-2009 0.0000 0.0004 0.0010 0.0026 28.3821

1991-2010 0.0000 0.0004 0.0010 0.0025 3.0516

Note: The dispersion parameter σ is fixed at its phenomenological value. Entries equal to 0.0000 imply
that the corresponding values are smaller than 5× 10−5.
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Table 25: Summary statistics for estimated parameters of AMIK M4.

In-sample
period

Min. 25% Median 75% Max.

D̂

1980-1999 0.0000 0.0004 0.0010 0.0027 9.6918

1981-2000 0.0000 0.0004 0.0010 0.0026 6.9888

1982-2001 0.0000 0.0004 0.0011 0.0026 0.3425

1983-2002 0.0000 0.0004 0.0010 0.0025 0.1601

1984-2003 0.0000 0.0004 0.0009 0.0023 2.2816

1985-2004 0.0000 0.0004 0.0009 0.0023 1.5836

1986-2005 0.0000 0.0004 0.0009 0.0023 1.5836

1987-2006 0.0000 0.0004 0.0008 0.0021 1.8736

1988-2007 0.0000 0.0004 0.0008 0.0021 12.5901

1989-2008 0.0000 0.0003 0.0008 0.0022 9.6918

1990-2009 0.0000 0.0003 0.0009 0.0025 1.3057

1991-2010 0.0000 0.0003 0.0009 0.0023 9.6918

Note: The location parameter m and the dispersion parameter σ are fixed at their phenomenological
values. Entries equal to 0.0000 imply that the corresponding values are smaller than 5× 10−5.
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Table 26: Summary statistics for estimated parameters of the OU process.

In-sample
period

Min. 25% Median 75% Max.

m̂

1980-1999 -0.0514 0.0736 0.1037 0.1400 0.4210

1981-2000 -0.0649 0.0717 0.1010 0.1382 0.3799

1982-2001 -0.0345 0.0689 0.0974 0.1317 0.4038

1983-2002 -0.1391 0.0693 0.0968 0.1315 0.4265

1984-2003 -0.1586 0.0673 0.0957 0.1295 0.4017

1985-2004 -0.1475 0.0674 0.0940 0.1263 0.3954

1986-2005 -0.1935 0.0664 0.0930 0.1270 0.3727

1987-2006 -0.2091 0.0685 0.0932 0.1235 0.4156

1988-2007 -0.2710 0.0672 0.0917 0.1236 0.4088

1989-2008 -0.7252 0.0662 0.0906 0.1222 0.3997

1990-2009 -0.2813 0.0622 0.0873 0.1172 0.4076

1991-2010 -0.3333 0.0627 0.0865 0.1182 0.4295

σ̂

1980-1999 0.0071 0.0261 0.0377 0.0599 0.4101

1981-2000 0.0062 0.0248 0.0381 0.0578 0.4267

1982-2001 0.0052 0.0246 0.0395 0.0574 0.2580

1983-2002 0.0046 0.0251 0.0373 0.0558 0.2989

1984-2003 0.0060 0.0249 0.0381 0.0576 0.2587

1985-2004 0.0060 0.0243 0.0369 0.0584 0.2374

1986-2005 0.0056 0.0247 0.0371 0.0583 0.2520

1987-2006 0.0047 0.0242 0.0365 0.0577 0.2854

1988-2007 0.0056 0.0242 0.0367 0.0576 0.3695

1989-2008 0.0040 0.0243 0.0372 0.0580 0.9164

1990-2009 0.0048 0.0239 0.0370 0.0583 0.5244

1991-2010 0.0038 0.0233 0.0374 0.0566 0.5416

D̂

1980-1999 0.0000 0.0005 0.0014 0.0037 0.4382

1981-2000 0.0000 0.0005 0.0014 0.0038 6.9470

1982-2001 0.0000 0.0005 0.0013 0.0036 3.6951

1983-2002 0.0000 0.0005 0.0014 0.0031 0.4925

1984-2003 0.0000 0.0005 0.0012 0.0029 0.1651

1985-2004 0.0000 0.0005 0.0011 0.0027 3.0114

1986-2005 0.0000 0.0005 0.0011 0.0028 0.3227

1987-2006 0.0000 0.0004 0.0011 0.0026 1.6097

1988-2007 0.0000 0.0004 0.0010 0.0025 0.3960

1989-2008 0.0000 0.0004 0.0010 0.0027 0.9644

1990-2009 0.0000 0.0004 0.0011 0.0029 0.3035

1991-2010 0.0000 0.0004 0.0011 0.0028 4.1833

Note: Entries equal to 0.0000 imply that the corresponding values are smaller than 5× 10−5.
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Table 27: Summary statistics for estimated parameters of the ARMA model.

In-sample
period

Min. 25% Median 75% Max.

ĉ

1980-1999 -0.9227 0.0272 0.0515 0.0845 0.9339

1981-2000 -104.7131 0.0265 0.0481 0.0827 4.6861

1982-2001 -10.4311 0.0275 0.0481 0.0821 1.0418

1983-2002 -122.2397 0.0267 0.0484 0.0834 0.5198

1984-2003 -1.2884 0.0259 0.0473 0.0802 0.9154

1985-2004 -2.9854 0.0261 0.0455 0.0754 7.9124

1986-2005 -2.6578 0.0256 0.0426 0.0731 2.5900

1987-2006 -0.5794 0.0237 0.0431 0.0697 0.8173

1988-2007 -1.1162 0.0232 0.0418 0.0676 9.0449

1989-2008 -7.0722 0.0224 0.0394 0.0672 1.8875

1990-2009 -1.9883 0.0220 0.0403 0.0664 11.1863

1991-2010 -2.3408 0.0212 0.0404 0.0671 9.9020

λ̂

1980-1999 -42.8141 0.1498 0.5025 0.6903 10.9541

1981-2000 -76.4585 0.1493 0.5061 0.7058 1182.9813

1982-2001 -7.5930 0.0999 0.4974 0.6975 156.6820

1983-2002 -425.9735 0.1319 0.4942 0.6721 2102.9842

1984-2003 -7.8685 0.1605 0.4893 0.7042 15.0287

1985-2004 -75.0235 0.1978 0.5124 0.6854 46.9542

1986-2005 -33.0459 0.2100 0.5219 0.6888 18.0523

1987-2006 -8.5463 0.2636 0.5350 0.7097 8.2472

1988-2007 -96.8263 0.2857 0.5296 0.7100 12.7770

1989-2008 -18.6911 0.2915 0.5438 0.7165 108.8221

1990-2009 -148.6684 0.2922 0.5510 0.7193 22.6550

1991-2010 -216.5744 0.2827 0.5481 0.7182 42.7274

ψ̂

1980-1999 -14.9776 -0.0538 0.2002 0.5437 42.8123

1981-2000 -1182.9816 -0.0676 0.1968 0.5515 76.4629

1982-2001 -156.6805 -0.0626 0.2140 0.5806 7.6365

1983-2002 -2102.9835 -0.0107 0.2584 0.5556 425.9736

1984-2003 -15.0498 -0.0419 0.1928 0.5137 7.9088

1985-2004 -46.9609 -0.0229 0.1945 0.4754 75.0284

1986-2005 -18.0662 -0.0404 0.2149 0.5069 33.0370

1987-2006 -8.2253 -0.0300 0.2135 0.5087 8.5292

1988-2007 -12.8117 -0.0258 0.2049 0.4988 96.8289

1989-2008 -108.8210 -0.0226 0.1703 0.4757 18.7106

1990-2009 -22.6645 -0.0697 0.1834 0.4915 148.6667

1991-2010 -42.7190 -0.0446 0.1903 0.4979 216.5742

σ̂2

1980-1999 0.0000 0.0004 0.0008 0.0019 0.0843

1981-2000 0.0000 0.0004 0.0008 0.0020 0.0769

1982-2001 0.0000 0.0004 0.0009 0.0019 0.0426

1983-2002 0.0000 0.0004 0.0008 0.0017 0.0454

1984-2003 0.0000 0.0004 0.0008 0.0017 0.0353

1985-2004 0.0000 0.0003 0.0008 0.0017 0.0352

1986-2005 0.0000 0.0003 0.0008 0.0017 0.0303

1987-2006 0.0000 0.0003 0.0007 0.0016 0.0348

1988-2007 0.0000 0.0003 0.0007 0.0016 0.0297

1989-2008 0.0000 0.0003 0.0007 0.0016 0.2208

1990-2009 0.0000 0.0003 0.0008 0.0018 0.1902

1991-2010 0.0000 0.0003 0.0008 0.0016 0.1796

Note: Entries equal to 0.0000 imply that the corresponding values are smaller than 5× 10−5.
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Table 28: Summary statistics for estimated parameters of the ARIMA model.

In-sample
period

Min. 25% Median 75% Max.

λ̂

1980-1999 -211.0938 -0.5234 0.1014 0.7645 174.8884

1981-2000 -80.4232 -0.5979 0.1289 0.7736 22.4037

1982-2001 -160.4340 -0.5599 0.1647 0.7962 1089.6294

1983-2002 -353.2678 -0.4222 0.2198 0.8769 110.0544

1984-2003 -47154.0926 -0.5238 0.1389 0.7083 1054.2162

1985-2004 -108.2522 -0.5494 0.1340 0.7729 51.5886

1986-2005 -68.8545 -0.5947 0.0721 0.7039 46.1794

1987-2006 -71.2947 -0.5500 0.0640 0.6925 174.8354

1988-2007 -68.6584 -0.5735 0.0575 0.7256 149.5186

1989-2008 -2892.6316 -0.5915 0.0843 0.7117 612.8428

1990-2009 -99.5175 -0.5716 0.1753 0.7330 223.8485

1991-2010 -51.6857 -0.4959 0.1667 0.6779 419.4589

ψ̂

1980-1999 -174.8887 -1.0020 -0.4312 0.5400 211.0947

1981-2000 -22.3862 -1.0006 -0.4645 0.6494 80.4274

1982-2001 -1089.6297 -1.0011 -0.5632 0.4500 160.4363

1983-2002 -110.0584 -1.1239 -0.6171 0.2780 353.2683

1984-2003 -1054.2164 -1.0000 -0.4398 0.4481 47154.0926

1985-2004 -51.5841 -1.0120 -0.5480 0.4760 108.2533

1986-2005 -46.1846 -1.0003 -0.3937 0.6226 68.8601

1987-2006 -174.8356 -1.0003 -0.3637 0.6152 71.3003

1988-2007 -149.5205 -1.0000 -0.3103 0.6363 68.6620

1989-2008 -612.8425 -1.0000 -0.3210 0.6858 2892.6317

1990-2009 -223.8490 -1.0000 -0.4303 0.5852 99.5186

1991-2010 -419.4585 -1.0000 -0.4543 0.4831 51.6785

σ̂2

1980-1999 0.0000 0.0004 0.0010 0.0021 0.0831

1981-2000 0.0000 0.0004 0.0009 0.0021 0.0570

1982-2001 0.0000 0.0004 0.0010 0.0020 0.0398

1983-2002 0.0000 0.0004 0.0009 0.0019 0.0383

1984-2003 0.0000 0.0004 0.0009 0.0018 0.0360

1985-2004 0.0000 0.0003 0.0008 0.0017 0.0523

1986-2005 0.0000 0.0003 0.0008 0.0017 0.0442

1987-2006 0.0000 0.0003 0.0008 0.0016 0.0440

1988-2007 0.0000 0.0003 0.0008 0.0017 0.0420

1989-2008 0.0000 0.0003 0.0008 0.0017 0.1113

1990-2009 0.0000 0.0003 0.0008 0.0018 0.1735

1991-2010 0.0000 0.0003 0.0008 0.0018 0.1686

Note: Entries equal to 0.0000 imply that the corresponding values are smaller than 5× 10−5.
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d.3 restricted models

Table 29: Comparison of restricted models: number of winnings in the test for SPA.

MSE MAE

h Benchmark Benchmark

AMIK M2 OU M2 ARMA M2 AMIK M2 OU M2 ARMA M2

1 436 436 252 419 440 241

2 405 387 256 414 385 253

3 389 347 260 398 371 267

AMIK M3 OU M3 ARMA M3 AMIK M3 OU M3 ARMA M3

1 423 436 - 426 429 -
2 423 398 - 424 404 -
3 421 372 - 426 373 -

AMIK M4 OU M4 ARMA M4 AMIK M4 OU M4 ARMA M4

1 389 443 - 388 454 -
2 384 395 - 393 413 -
3 389 368 - 385 383 -

Note: The null hypothesis is that the benchmark model is not outperformed by other models in terms
of MSE and MAE, respectively. Entries refer to the number of firms for which the null hypothesis
cannot be rejected on the 10 percent level. For each loss function the highest number of winnings is
shown in boldface.
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