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“Scientists	say	that	we	are	made	of	atoms,	but	a	little	bird	told	

me	that	we	are	made	of	stories”	

“Si	me	caí	es	porque	estaba	caminando.	Y	caminar	vale	la	pena,	

aunque	te	caigas”	

Eduardo	Galeano	(1940	–	2015)	
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Peripheral	 artery	 disease	 (PAD)	 is	 a	 common	manifestation	 of	 systemic	

atherosclerosis	affecting	peripheral	arteries.	Despite	affecting	more	than	

200	 million	 patients	 in	 industrialized	 countries,	 PAD	 is	 often	

underdiagnosed.	 The	 first	 stages	 of	 the	 disease	 are	 asymptomatic	 and	

thus,	 to	 perform	 an	 early	 diagnose	 becomes	 difficult.	 Patients	 can	

undergo	different	treatment	according	disease	severity:	management	of	

cardiovascular	 risk	 factors,	 exercise,	 rehabilitation	 and	 pharmacological	

intervention.	 In	 advanced	 stages,	 vascular	 specialists	 usually	 perform	

invasive	surgical	procedures.		

The	 ankle-brachial	 index	 (ABI)	 is	 the	most	 used	 test	 for	 PAD	 diagnosis	

although	 it	 presents	 some	 limitations.	 It	 is	 an	 easy	 technique	based	on	

the	 ratio	 between	 the	 pressure	 of	 ankle	 arteries	 and	 the	 pressure	 of	

brachial	artery	of	the	arm.	There	are	additional	circulating	biomarkers	of	

diagnosis,	mainly	 based	 on	 cardiovascular	 risk	 factors,	 inflammation	 or	

oxidative	process;	they	are	not	exclusively	for	PAD	but	for	atherosclerosis	

in	general.		

Inflammation,	 oxidation,	 vascular	 remodeling	 and	 mitochondrial	

dysfunction	 play	 an	 important	 role	 in	 the	 development	 of	

atherosclerosis.	We	hypothesized	that	an	increased	knowledge	on	these	

processes	would	provide	circulating	biomarkers	for	the	disease	as	well	as	

possible	therapeutic	strategies.	

In	Study	1	(International	Journal	of	Molecular	Sciences),	we	performed	a	

tissue	 characterization	 by	 investigating	 the	 immunohistochemical	

expression	 of	 paraoxonases	 (PON)	 and	 chemokines	 in	 arteries	 of	 PAD	

patients.	 Results	 showed	 that	 PON1	 and	 PON3	 were	 increased	 in	

Abstract	
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atherosclerotic	 arteries,	 probably	 by	 PPARγ-	 and	 NFκβ-mediated	

pathways,	 suggesting	 an	 oxidative	 stress	 prevention	 and	 foam	 cell	

formation	during	atherosclerosis.	Chemokine	(C-C	motif)	 ligand	2	(CCL2)	

and	 atypical	 chemokine	 receptors	 (ACKR)	 DARC	 and	 D6	 were	 also	

significantly	increased	in	affected	arteries,	although	they	did	not	show	a	

uniform	 distribution	 among	 artery	 layers.	 This	 increased	 expression	 of	

CCL2	may	 be	 related	 to	 the	 inflammatory	 conditions	 within	 the	 artery	

wall.	The	expression	of	ACKRs,	which	bind	to	CCL2	but	do	not	exert	signal	

transmission,	may	modify	chemokine	availability	and	cell	migration.		

Extracellular	 matrix	 (ECM)	 turnover is also involved in vascular 

remodeling.	 In	Study	 2	 (Journal	 of	 Vascular	 Surgery),	 by	 combining	

histological	 and	 proteomics	 approaches,	 we	 confirmed	 a	 significant	

artery	 remodeling	 in	 PAD	 patients.	 Atherosclerotic	 arteries	 showed	 a	

specific	 protein	 profile	 in	 which	 ECM-related	 components	 were	

underexpressed,	 suggesting	 a	 possible	 degradation	 of	 the	 ECM.	 We	

then	 measured	 a	panel	of	ECM	fragments	of	degradation	(neo-epitopes)	

by	 ELISA	 in	 serum	 samples	 of	 PAD	 patients.	 Neo-epitopes	 of	 versican	

degradation	 (VCANM)	 and	 type	 IV	 collagen	 degradation	 fragments	

(C4M)	 showed	 potential	 as	biomarkers	to	segregate	patients	across	the	

spectrum	of	PAD.		

Impaired	 metabolism	 and	 mitochondrial	 dysfunction	 may	 also	

predispose	to	 disease.	 In	 Study	 3	 (Translational	 Research),	 we	 used	

a	 targeted	 metabolomics	 methodology	 to	 assess	 the	 plasma	

metabolome	 of	 PAD	 patients.	 Many	 of	 measured	 metabolites	 were	

connected	 not	 with	 PAD,	 but	 with	 associated	 comorbidities	

(hypertension,	 type-2	 diabetes,	 dyslipidemia),	 age	 or	 body	 mass	

index.	We	 discarded	 these	metabolites	as	PAD	biomarkers,	and	focused	

on	the	6	remaining	metabolites	directly
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related	to	PAD.	(Iso)citrate	and	glutamate	showed	the	best	discriminant	

capacity	not	only	between	control	volunteers	and	PAD	patients,	but	also		

for	an	early	detection	of	the	disease.		
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1. CARDIOVASCULAR	SYSTEM

In	 humans,	 cardiovascular	 system	 is	 a	 closed	 and	 double	 system

consisting	 of	 heart	 and	 blood	 vessels	 by	 which	 blood	 is	 carried	 to	 the	

tissues.	Its	main	function	is	to	maintain	cellular	homeostasis	by	allowing	

the	 exchange	 of	 breathing	 gases,	 nutrients,	 water,	 hormones	 and	

metabolic	waste	products	between	tissues	and	vessels	[1–4].		

Blood	vessels	are	divided	into	arteries,	veins	and	capillaries.	The	wall	

of	arteries	and	veins	has	a	similar	structure	with	some	minor	differences	

meanwhile	capillary	structure	is	less	complex	[5].	Traditionally,	the	artery	

is	 constituted	 by	 3	 concentric	 layers,	 laminas	 o	 tunicas:	 Intima,	Media	

and	Adventitia	[1,4,6,7].	

1.1	Tunica	Intima	

The	 intima	 is	 the	 deepest	 layer	 of	 the	 artery	 wall	 composed	 by	 a	

single	layer	of	endothelial	cells	(ECs)	 located	on	a	thin	basal	lamina.	The	

sub-endothelial	 layer	 have	 variable	 thicknesses	 [8].	 ECs	 constitute	 the	

luminal	side	of	the	vessel	wall	 [9].	Commonly,	these	elongated	and	flat-

shaped	cells	can	suffer	changes	depending	on	the	direction	of	blood	flow	

and	 communicate	 to	 each	 other	 through	 a	 network	 of	 three	 types	 of	

junctions:	 a)	 Tight	 junctions,	 which	 regulate	 the	 delivery	 of	 substances	

across	the	endothelium;	b)	Adherent	junctions,	which	control	circulating	

cells	 by	 acting	 on	 endothelium	 permeability;	 c)	 Gap	 junctions,	 which	

allow	 the	 exchange	 of	 ions	 and	 metabolites	 between	 cells	 [10,11].	

Endothelial	 dysfunction	 is	 known	 to	 be	 an	 important	 factor	 in	

atherosclerosis	 initiation	and	progression	 [4,9,12,13]	The	 intima	 layer	 is	

mainly	composed	of	type	I	collagen,	and	of	type	III	and	IV	collagen	in	less	

proportion	 and	with	 different	 orientation	 patterns.	 The	 sub-endothelial	
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layer	contains	mainly	smooth	muscle	cells	(SMC)	and	collagen	fibrils	[14].	

The	 internal	 elastic	 lamina	 determines	 the	 limit	 between	 tunica	 intima	

and	 tunica	media.	 This	 elastic	 lamina	 is	 usually	 prominent	 in	 muscular	

arteries	and	thin	in	elastic	arteries.	The	main	functions	of	this	tunica	are	

the	 regulation	 of	 material	 transport	 between	 blood	 and	 tissues,	 the	

regulation	 of	 platelet	 function	 and	 the	 modulation	 of	 vascular	 tone	

[3,9,13].		

1.2	Tunica	Media	

The	media	 is	 located	 between	 the	 intima	 and	 the	adventitia	 and	 is	

the	most	important	layer	of	the	arteries	regarding	mechanical	properties.	

It	 is	 delimited	 by	 the	 internal	 elastic	 lamina	 and	 the	 external	 elastic	

lamina.	Tunica	media	is	mainly	composed	of	smooth	muscle	cells	(SMCs)	

that	 are	 normally	 distributed	 in	 a	 complex	 linkage	 with	 elastin	 and	

collagen	 [15].	 SMCs	 have	 a	 spindle	 shape,	 an	 elongated	 nucleus	 and	

adopt	 a	 particular	 orientation	 in	 arteries.	 In	 elastic	 arteries,	 SMCs	 are	

separated	 by	 elastin.	 ECM	 components	 are	 synthesized	 by	 SMC.	 These	

SMCs	are	essential	for	the	vasculature:	they	modulate	arterial	structural	

changes	 and	 diameter	 to	 endure	 blood	 flow	 dynamics	 and	 maintain	

blood	 pressure.	 SMCs	 can	 suffer	 phenotype	 changes,	 shifting	 from	

contractile	 to	 synthetic,	 and	 then	 display	 different	 cell	 shape,	 marker	

expression	 and	 proliferative	 and	 migration	 rates	 [16].	 This	 change	 on	

SMC	 phenotype	 from	 contractile	 into	 synthetic	 stimulates	 cell	

proliferation	 and	 invasion	 of	 the	 tunica	 intima,	 characteristic	 of	

atherosclerosis	[12,17,18].	This	tunica	is	responsible	of	the	elasticity	and	

contraction	of	the	vessel	[19].	
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1.3	Tunica	Adventitia	

The	 adventitia	 is	 the	 most	 external	 layer	 of	 the	 artery	 wall.	 It	 is	

mainly	 composed	 of	 fibroblasts,	macrophages,	 collagen	 and	matrix	 [8].	

Depending	on	the	localization	and	function	of	the	vessel	wall,	this	tunica	

exhibits	 variable	 levels	 of	 thickness.	 Collagen	 is	 one	 of	 the	 main	

constituents,	 offers	 support	 and	 strength	 to	 the	 arterial	 wall	 and	

prevents	an	excessive	distension	of	the	vessels.	Other	characteristic	parts	

of	 the	 adventitia	 are	 nerve	 fibers	 and	 vasa	 vasorum,	 which	 is	 an	

intravascular	 organization	 of	 small	 vessels	 [15].	 They	 act	 as	 a	 nutritive	

support	 to	 arteries	 when	 nutrient	 diffusion	 from	 the	 intima	 is	 not	

possible	 due	 to	 excessive	 thickness.	 Vasa	 vasorum	 may	 have	 an	

important	role	in	the	initiation	and	progression	of	atherosclerosis,	as	it	is	

involved	in	inflammatory	cell	infiltration	[20].	

2. ARTERIOSCLEROSIS

Arteriosclerosis	 is	 a	 Greek-derived	 term	 meaning	 “hardening	 of	 the	

arteries”	 [21].	 It	 is	 one	 of	 the	 top	 contributors	 to	mortality	 in	Western	

countries	 [22–25].	 Sections	 of	 the	 arterial	 tree	 with	 high	 or	 oscillatory	

endothelial	stress,	placed	near	branch	points	and	along	inner	curvatures,	

are	 the	 most	 vulnerable	 to	 suffer	 stiffening,	 thickening	 and	 loss	 of	

elasticity	 [2,26].	 Since	 1954,	 arteriosclerosis	 classification	 has	 been	

divided	in	three	lesion	types	[27]:	

a) Atherosclerosis.	 In	 this	 case,	 the	 atheroma	 is	 the	 characteristic

lesion	in	large	and	elastic	muscular	arteries.	The	lesion	is	mainly

located	 in	 the	 intima,	 where	 lipids,	 connective	 tissue,	 calcium

deposits,	inflammatory	cells	and	matrix	proteins	can	be	found.
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b) Mönckeberg	 medial	 calcific	 sclerosis.	 It	 is	 a	 calcification

development	that	involves	only	the	tunica	media	of	the	arteries.

The	arterial	lumen	is	not	generally	affected,	although	this	kind	of

arteriosclerosis	can	coexist	with	atherosclerosis.

c) Arteriolosclerosis.	The	lesion	takes	place	in	small	arterial	vessels

with	 1	 or	 2	 layers	 of	 SMC	 and	 it	 is	 classically	 linked	 with

hypertension	and	diabetes	mellitus.

Although	 this	 classification	 is	 currently	 being	 used,	 there	 is	 still	

controversy,	 as	 some	 authors	 believe	 terms	 do	 not	 describe	 exactly	

observed	facts	[21,28].	

3. ATHEROSCLEROSIS

Atherosclerosis	 is	a	progressive	and	multifactorial	disease	related	to

chronic	 inflammation	 in	 which	 a	 disturbed	 equilibrium	 in	 the	 arteries	

leads	 to	 plaque	 development	 [29–31].	 Coronary	 artery	 disease	 (CAD),	

cerebrovascular	 disease,	 atherosclerotic	 kidney	 disease	 and	 peripheral	

artery	 disease	 (PAD)	 are	 different	 kinds	 of	 atherosclerotic	 diseases	 [7].	

Although	 their	 symptoms	 are	 different,	 there	 are	 common	 risk	 factors	

including	genetic	conditions	and	inappropriate	lifestyle,	which	can	be	the	

origin	of	the	disease	[6,30,32].	Pathogenic	mechanisms	for	cardiovascular	

diseases	are	not	completely	understood,	mainly	due	to	their	complexity.	

Initial	 stages	 of	 atherosclerosis	 are	 asymptomatic	 and	 starts	 during	

childhood	 or	 adolescence,	 although	 its	 impact	 takes	 place	 at	 advanced	

ages	[7,9,33–35].	
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3.1 Risk	factors	

Cardiovascular	risk	factors,	which	can	be	genetic	and	environmental,	

are	thought	to	be	responsible	 for	the	onset	of	the	disease.	 In	2009,	the	

World	Health	Organization	(WHO)	showed	estimations	that	8	modifiable	

risk	 factors	 (tobacco,	 sedentary	 lifestyle,	 raised	 blood	 pressure,	 raised	

blood	 glucose	 and	 cholesterol,	 alcohol	 consumption,	 high	 body	 mass	

index	and	poor	consumption	of	fruit	and	vegetables)	contributed	for	61%	

of	all	cardiovascular	disease	deaths	[36].	

The	 most	 important	 cross-sectional	 and	 longitudinal	 epidemiologic	

studies	 performed	 in	 the	 general	 population	providing	 evidence	on	 the	

role	 of	 these	 risk	 factors	were	 The	 Framingham	 Study	 [37]	 and	 Project	

SCORE	 [38].	 The	 identification	 of	 these	 risk	 factors	 allowed	 the	

subsequent	 development	 of	 mathematical	 models	 to	 calculate	

cardiovascular	 risk	 in	 patients	 [39].	 The	 established	 risk	 factors	 can	 be	

classified	 as	 modifiable,	 which	 can	 be	 treated	 or	 changed,	 or	 non-

modifiable,	which	cannot	be	changed	(Table	1)	[7,32,40,41].	

3.2 Theories	of	atherogenesis	

Many	theories	have	been	proposed	in	order	to	explain	the	initiation	

of	atherosclerotic	lesion,	although	there	are	numerous	common	steps	in	

all	of	them:	I)	Proliferation	of	intimal	smooth	muscle	cells;	II)	Synthesis	of	

excessive	 extracellular	 components;	 III)	 Accumulation	 of	 lipids	 around	

cells;	 and	 IV)	 Entrance	 of	 monocytes/macrophages	 into	 affected	 area	

[42].		
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Table	1.	Main	cardiovascular	risk	factors	[31].	

Traditional	cardiovascular	risk	factors	
Non-modifiable	 Modifiable	

Age	
Gender	

Familiar	antecedents	

Smoking	
Obesity	

Hypertension	
↑LDL-cholesterol	and	↓	HDL-

cholesterol	
Type	2	diabetes	/	Insulin	resistance	

Metabolic	syndrome	
High-fat	diet	

↑	CRP	
Sedentary	lifestyle	

Other	emergent	cardiovascular	risk	factors	

↑	Triglycerides	
↑	Lipoprotein	(a)	

Dense	and	small	LDL	particles	
↑	Apolipoprotein	B	and	↓	apolipoprotein	A-I	

↑	total	cholesterol/HDL-cholesterol	
↑	Serum	homocysteine	
Endothelial	dysfunction	
Prothrombotic	factors	

Inflammatory	markers	(IL-6,	CCL2…)	
↑	Carotid	IMT	

LDL:	Low-density	lipoprotein;	HDL:	High-density	lipoprotein;	CRP:		C-reactive	
protein;	IL:	Interleukin;	CCL2:	Chemokine	(C-C	motif)	ligand	2;	IMT:	Intima-Media	
thickness.	

	 The	Lipid	theory	was	based	on	the	finding	that	lipids	accumulate	

in	 the	 intima.	 An	 increased	 plasma	 low-density	 lipoproteins	 (LDL)	

concentration	and	an	altered	permeability	of	the	endothelium	may	favor	

LDL-cholesterol	 accumulation	 and	 the	 subsequent	 inflammatory	

processes	[7,43].		

The	 Hemodynamic	 theory	 suggests	 that	 altered	 hemodynamics	

causes	 lesions	 in	 the	 artery	 wall.	 Oscillating	 flow	 may	 also	 modify	

endothelial	permeability	[2,7].	
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The	Fibrin	Incrustation	theory	was	proposed	on	19th	century	and	was	

based	 on	 a	 possible	 reorganization	 of	 the	 thrombus.	 This	 theory	

postulated	 that	when	 a	 thrombus	 is	 formed	on	 the	 luminal	 side	 of	 the	

artery	 it	 can	 be	 incorporated	 into	 the	 plaque	 and	 transformed	 into	

fibrous	 tissue,	 increasing	 plaque	 mass	 and	 size	 [7].	 Due	 to	 some	

inadequacies,	this	theory	has	evolved	and	now	is	focused	on	the	general	

process	of	thrombogenesis.	

The	Nonspecific	Mesenchymal	 Hypothesis	 describes	 the	 importance	

of	 SMC.	 Stimuli	 to	 the	 arterial	 wall	 induce	 the	migration	 of	 SMC	 (here	

Mesenchymal)	 from	the	media	 to	 the	 intima.	Then	 they	proliferate	and	

produce	connective	tissue	with	proteoglycans	and	collagen	[7,12].	

The	Response	to	Injury	Hypothesis	is	considered	an	improved	version	

of	 the	 Nonspecific	 Mesenchymal	 Hypothesis	 only	 applicable	 in	 some	

context.	 This	 theory	 postulates	 that	 an	 initial	 injury	 of	 the	 arterial	wall	

may	strip	the	endothelium	and	induce	platelet	adherence.	In	turn,	those	

platelets	secrete	platelet-derived	growth	 factor	 (PDGF)	and	this	 induces	

SMC	 migration	 to	 the	 intima,	 where	 they	 proliferate	 and	 synthesize	

connective	tissue	[7].		

3.3 Pathogenesis:	Initiation	and	progression	of	atherosclerosis	

Traditionally,	 LDL	 accumulation	 has	 been	 proposed	 as	 the	 principal	

initiation	 event	 for	 the	 atherosclerotic	 process	 (Figure	 1)	 [30,31,44].	

These	 LDL	 particles	 bind	 to	 intimal	 proteoglycans,	 and	 then	 the	

endothelium	 becomes	 more	 leaky.	 The	 increased	 expression	 of	
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lipoprotein-binding	 molecules	 improves	 the	 capacity	 to	 retain	 LDL	

[22,26].	

After	 departing	 the	 blood,	 LDL	 particles	 accumulate	 in	 the	 intima	

where	 they	 are	 exposed	 to	 oxidative	 modifications	 by	 macrophage	

lipoxygenase	 and	 myeloperoxidase	 and	 progress	 from	 minimally	

modified	LDL	(mmLDL)	to	oxidized	LDL	(oxLDL)	[45,46].	OxLDL	deposition	

in	the	arterial	wall	enhances	a	chronic	inflammatory	response	that	starts	

with	 the	 production	 of	 chemotactic	 molecules,	 such	 as	 monocyte	

chemoattractant	protein	1	(MCP-1),	also	known	as	chemokine	(C-C	motif)	

ligand	 2	 (CCL2),	 which	 induces	 monocytes	 to	 enter	 the	 plaque	 and	

differentiate	 into	 macrophages	 [18,23,31].	 Cell	 adhesion	 molecules	

expressed	on	endothelial	surface	mediate	this	recruitment:	Vascular	cell	

adhesion	 protein-1	 (VCAM-1),	 intercellular	 adhesion	molecule-1	 (ICAM-

1),	P-selectin	and	E-selectin	among	others	[31].		

Macrophages	express	scavenger	receptors	 that	can	recognize	oxLDL	

and	 imbibe	 them	 so	 becoming	 the	 prototypical	 cell	 in	 atherosclerosis:	

lipid-laden	macrophages	or	foam	cells	[6,23,31].	Foam	cells	form	a	typical	

yellow-colored	fatty	streak,	the	first	sign	of	atherosclerosis	[22,26]	
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Figure	 1.	 Schematic	 of	 the	 evolution	 of	 the	 atherosclerotic	 plaque.	 1,	 Accumulation	 of	
lipoprotein	particles	 in	 the	 intima	 (yellow	 spheres).	 2,	Oxidative	 stress	 can	 induce	 local	
cytokine	elaboration.	3,	These	cytokines	increase	expression	of	adhesion	molecules	from	
leukocytes	that	cause	their	attachment	and	chemoattractant	molecules	that	direct	their	
migration	 into	 the	 intima.	 4,	 Blood	monocytes	 entering	 the	 artery	 wall	 in	 response	 to	
chemoattractant	 cytokines.	 5,	 	 Scavenger	 receptors	 mediate	 the	 uptake	 of	 modified	
lipoprotein	particles	and	promote	the	development	of	foam	cells.	6,	SMCs	migrate	from	
the	media	 to	 the	 intima.	 7,	 SMCs	 can	 then	 divide	 and	 elaborate	 extracellular	 matrix,	
promoting	extracellular	matrix	accumulation	in	the	growing	atherosclerotic	plaque.	8,	In	
later	 stages,	 fibrosis	 continues,	 accompanied	 by	 SMC	 death,	 yielding	 a	 fibrous	 capsule	
surrounding	a	lipid-rich	core	that	also	may	contain	dying	or	dead	cells	and	their	detritus.	
Extracted	from	Libby	P.	(2015).	

Different	 immune	 cells	migrate	 into	 the	plaque	 and	 release	diverse	

types	 of	 cytokines	 that	 contribute	 to	 plaque	 progression	 or	 regression,	

depending	on	their	immunologic	role.	Inflammatory	and	pro-atherogenic	

cytokines	 increase	 macrophage	 recruitment,	 foam	 cell	 formation	 and	

apoptosis.	 M1	 macrophages,	 in	 turn,	 contribute	 to	 the	 oxidant	

environment	 by	 producing	 hydrogen	 peroxide,	 superoxides	 and	

myeloperoxidases,	which	initiate	endoplasmic	reticulum	(ER)	stress	[18].	

Extracellular	matrix	has	also	an	important	role	in	atherosclerosis,	as	ECM	

macromolecules	 breakdown	 and	 accumulate	 in	 atheroma	 [6].	 This	

contributes	 to	 the	 growth	 of	 the	 necrotic	 core	 and	 the	 lesion	 is	 then	

called	fibroatheroma	[47].		
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A	subsequent	evolution	of	the	atheroma	involves	SMC,	which	play	a	

critical	 role	 in	 the	progression	of	 atherosclerosis	 [6,18].	 	 In	 response	 to	

proinflammatory	 cytokines,	 growth	 factors,	 oxLDL	 and	 other	 stimuli,	

vascular	SMC	suffer	a	phenotypic	dedifferentiation:	 from	the	quiescent,	

contractile	 phenotype	 to	 an	 activated,	 synthetic	 phenotype	 [6,12,18].	

They	 become	 proliferative	 and	migratory,	 increasing	 the	 production	 of	

ECM	 proteins	 and	 invading	 tunica	 intima.	 Those	 migratory	 SMC	 differ	

from	those	 in	 the	normal	arterial	 tunica	media	 [6].	SMC	replication	and	

accumulation	 in	 the	atherosclerotic	plaque	 is	also	accompanied	by	SMC	

death.	However,	SMC	play	a	vital	role	in	the	formation	of	the	protective	

fibrous	cap,	characteristic	of	later	stage	atheroma	[18].	

In	 progressive	 atherosclerotic	 lesions,	 it	 is	 common	 to	 find	

calcifications,	 as	 necrotic	 core	 act	 as	 a	 focus	 for	 calcium	 granules	 in	 a	

process	 that	 shares	 mechanisms	 with	 bone	 formation	 [6].	 When	 the	

necrotic	 core	 fully	 calcifies,	 then	 calcifications	 represent	 the	major	part	

of	plaque	volume	[47].	

Advanced	 atherosclerotic	 plaques	 can	 lead	 to	 ischemia	 or	 plaque	

rupture	and	thrombosis	(Figure	2).	Ischemic	symptoms	take	place	due	to	

the	 progressive	 narrowing	 of	 the	 lumen.	 During	 plaque	 rupture,	 lipids	

and	 tissue	 factor	 react	 with	 blood	 components,	 and	 they	 induce	 the	

coagulation	 cascade	 with	 the	 subsequent	 platelet	 adherence	 and	

thrombosis	[31].	
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Figure	2.	 Plaque	Rupture	and	Thrombosis.	Necrosis	of	macrophage	and	 smooth	muscle	
cell–derived	 foam	 cells	 leads	 to	 the	 formation	 of	 a	 necrotic	 core	 and	 accumulation	 of	
extracellular	 cholesterol.	 Macrophage	 secretion	 of	 matrix	 metalloproteinases	 and	
neovascularization	 contribute	 to	 weakening	 of	 the	 fibrous	 plaque.	 Plaque	 rupture	
exposes	 blood	 components	 to	 tissue	 factor,	 initiating	 coagulation,	 the	 recruitment	 of	
platelets,	 and	 the	 formation	of	 a	 thrombus.	 Extracted	 from	Glass	C.K.	 and	Witztum	 J.L.	
(2001).	

4. PERIPHERAL	ARTERY	DISEASE	(PAD)

Peripheral	 artery	 disease	 is	 caused	 by	 the	 lack	 of	 perfusion	 in	 the

extremities	 as	 atherosclerotic	 plaque	 builds	 up	 in	 peripheral	 arteries,	

which	mainly	carry	blood	to	the	limbs	[48,49].	It	affects	approximately	27	

million	 people	 in	 Europe	 and	 United	 States	 [50].	 The	 Edinburgh	 Artery	

Study	 described	 that	 209	 out	 of	 1519	 (14%)	 apparently	 healthy	

volunteers	 developed	 PAD	 during	 a	 follow-up	 period	 of	 17	 years	 [51].	

Despite	 its	 common	 occurrence,	 PAD	 is	 often	 underdiagnosed	 and	 to	

prevent	 derived	 consequences	 becomes	 impossible	 [49,52].	 The	

progression	 of	 the	 disease	 is	 normally	 silent,	 so	 preventive	 measures	
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cannot	 be	 applied	 [49,52–54].	 In	 PAD	 patients,	 the	 overall	 amount	 of	

tissue	affected	of	atherosclerosis	is	far	superior	to	that	in	CAD,	due	to	the	

size	 of	 the	 arteries	 involved.	 This	 fact	 is	 of	 great	 importance	 when	

developing	diagnostic	and	therapeutic	strategies	[55–57].	

4.1	Definition	and	classification	

The	disease	can	be	defined	anatomically	or	functionally,	thus	dividing	

patients	 into	 asymptomatic	 and	 symptomatic.	 Anatomically,	 it	 can	 be	

defined	 as	 atherosclerotic	 arterial	 disease.	 Functionally,	 it	 is	 defined	 as	

arterial	 narrowing	 causing	 intermittent	 claudication,	 exercise	 limitation	

or	even	tissue	loss	[58].	PAD	has	a	wide	range	of	clinical	manifestations,	

from	asymptomatic	disease	and	 intermittent	 claudication	 (IC)	 to	 critical	

limb	ischemia	(CLI)	[59].		

Many	classification	schemes	have	been	proposed	to	characterize	the	

severity	of	the	disease.	The	most	commonly	used	classifications	are	those	

proposed	by	Fontaine	and	Rutherford	(Table	2)	[58,59].		

Table	2.	Fontaine	and	Rutherford	classification	systems	for	PAD.	

Fontaine	 Rutherford	
Stage	 Symptoms	 Stage	 Symptoms	

I	 Asymptomatic	 0	 Asymptomatic	
IIa	 Mild	claudication	 1	 Mild	claudication	
IIb	 Moderate	claudication	 2	 Moderate	claudication	

3	 Severe	claudication	
III	 Ischaemic	rest	pain	 4	 Ischaemic	rest	pain	
IV	 Ulceration	or	gangrene	 5	 Minor	tissue	loss	

6	 Major	tissue	loss	
Mild	 claudication	 is	 defined	 when	 symptoms	 appear	 after	 ambulating	 >200m	 and	
moderate	claudication	is	defined	when	symptoms	appear	after	ambulating	<200m.	
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4.2 Risk	factors	for	PAD	

Age	

The	prevalence	of	this	disease	 increases	with	age	after	40	years	

old	 [7].	 Young	 population	 have	more	 risk	 for	 PAD	 not	 only	 for	

age,	but	also	for	other	risk	factors,	meanwhile	people	over	70	are	

at	increased	risk	for	PAD	only	for	aging	[60–64].		

Gender	

Peripheral	 artery	 disease	 is	 generally	 more	 prevalent	 in	 men	

compared	 with	 women.	 This	 has	 been	 classically	 explained	 for	

the	 protective	 role	 of	 women	 hormones.	 In	 fact,	 after	

menopause,	 rates	 of	 PAD	 for	 women	 and	men	 become	 similar	

[7,65].		

Familiar	history	and	genetic	factors	

Patients	 with	 familiar	 antecedents	 of	 cardiovascular	 disease	

seem	 to	be	 at	major	 risk	 for	 PAD.	 The	 concrete	 contribution	of	

genetics	and	environmental	 factors	are	still	not	clear,	but	are	 in	

active	 research.	 Families	 with	 identified	 early	 onset	

atherosclerosis	have	an	increased	risk	for	PAD,	although	there	is	

not	genetic	marker	identified	[57,66].	

Smoking	

The	association	between	 smoking	and	peripheral	 artery	disease	

is	 well	 established.	 It	 is	 known	 that	 cigarette	 smoke	 influences	

the	development	and	progression	of	atherosclerosis	by	 inducing	

endothelial	 damage,	 arterial	 smooth	 muscle	 proliferation,	

thrombophilia,	inflammation,	and	other	metabolic	abnormalities	
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[67–70].	In	fact,	smoking	seems	to	be	a	higher	risk	factor	for	PAD	

than	for	CAD	[71–73].		

Hypertension	

There	 is	 a	 strong	 association	 in	 men	 and	 women	 between	 the	

development	 of	 atherosclerosis	 and	 hypertension.	 In	

hypertensive	 patients,	 the	 risk	 of	 developing	 symptomatic	 PAD	

(intermittent	 claudication)	 was	 twice	 that	 in	 patients	 without	

hypertension	 in	 the	 Framingham	 study	 [74,75].	 Moreover,	 the	

National	 Health	 and	 Nutrition	 Examination	 Survey	 (NHANES)	

study	 revealed	 that	 hypertensive	 patients	 have	 a	 higher	

prevalence	of	asymptomatic	PAD	[63].	

Hyperlipidemia	

Patients	 with	 abnormal	 concentration	 in	 total	 cholesterol,	 LDL,	

triglycerides	 and	 lipoprotein	 (a)	 have	 an	 increased	 risk	 for	

cardiovascular	 disease.	 PAD	 patients	 are	 more	 likely	 to	 have	

higher	 levels	 of	 triglycerides,	 cholesterol,	 lipoprotein	 (a),	 and	

very	 low-density	 lipoprotein,	 compared	with	healthy	 individuals	

[76–78].	 On	 the	 contrary,	 the	 levels	 of	 high-density	 lipoprotein	

(HDL)	 cholesterol	 and	 apolipoprotein	 A-I	 and	 A-II,	 the	 so-called	

"protective"	 lipoproteins,	 are	 lower	 in	 these	 patients	 [79].	

Lipoprotein	(a)	is	another	important	risk	factor	for	PAD.	Patients	

with	 premature	 PAD	 have	 lipoprotein	 (a)	 levels	 higher	 than	

controls	 [80].	 A	 fasting	 cholesterol	 concentration	 higher	 than	

270	mg/dL	was	 associated	 with	 an	 increased	 incidence	 of	

intermittent	 claudication	 in	 the	 Framingham	 study	 [75].	
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Progression	 and	 incidence	 of	 PAD	 may	 be	 decreased	 with	 a	

properly	treatment	of	hyperlipidemia.	

Diabetes	

Diabetes	 is	 another	 coronary	 artery	 disease	 risk	 equivalent.	 In	

the	 Framingham	 Heart	 Study,	 diabetes	 increased	 the	 risk	 for	

developing	 symptomatic	 PAD	 [75].	At	 initial	 diagnosis,	 patients	

with	 diabetes	 have	 more	 advanced	 arterial	 disease	 and	 minor	

outcomes	compared	to	non-diabetic	patients	[81,82].	The	risk	of	

atherosclerosis	 is	 also	 increased	 with	 a	 poor	 glycemic	 control	

[83].		

4.3 Symptoms	and	diagnostics	

Symptomatic	PAD	patients	usually	present	intermittent	claudication,	

which	is	a	muscle	pain	during	exercise	that	is	calmed	by	rest	[58,84].	Pain	

is	usually	felt	in	the	calf,	buttock	and	foot,	distal	to	the	arterial	occlusion.	

Estimated	 walking	 distances	 are	 used	 to	 measure	 the	 severity	 of	 the	

disease,	as	it	may	serve	as	an	indicator	of	improvement	or	deterioration	

[84].	Normally,	symptoms	appear	over	months	or	years	and	if	they	show	

rapid	exacerbation,	this	may	indicate	new	vessel	occlusion.		

Critical	 limb	 ischemia,	 the	 most	 severe	 manifestation	 of	 PAD,	 is	

characterized	 by	 ulceration,	 gangrene	 or	 rest	 pain	 for	 more	 than	 two	

weeks	 that	 affects	 the	 toes	or	 foot	 of	 the	 affected	 limb	 [59,84].	 In	 this	

stage,	 gradual	 ischemic	 conditions	 promote	 angiogenesis	 of	 collateral	

vessels	to	maintain	limb	perfusion	[59].	
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Due	 to	 acute	 thrombosis	 of	 a	 rupture	 atherosclerotic	 plaque,	 PAD	

patients	 are	 at	 risk	 of	 developing	 acute	 limb	 ischemia	 (ALI).	 It	 is	

manifested	 with	 the	 6Ps:	 pain,	 pallor,	 pulseless,	 perishing	 cold,	

paresthesia	and	paralysis	[59,84].	There	are	no	collateral	vessels	in	ALI	to	

maintain	blood	flow,	so	this	threatens	limb	integrity	[59].	

The	usual	evolution	of	PAD	 is	 to	 follow	a	gradual	progression,	 from	

asymptomatic	to	intermittent	claudication	and	CLI.	However,	more	than	

half	of	patients	with	CLI	did	not	show	ischemia	six	months	earlier	[84].		

To	 perform	 the	 diagnosis	 of	 PAD,	 vascular	 specialists	 perform	

physical	 examinations	 and	 questionnaires,	 supported	 by	 non-invasive	

and	invasive	techniques	[58,59,84].	Physical	examination	should	focus	on	

the	 arterial	 system:	 auscultation	 and	 palpation	 of	 the	 abdomen,	

palpation	 and	 gradation	 of	 femoral,	 popliteal	 and	 tibialis	 pulses…	

Moreover,	 limbs	 should	 be	 inspected	 to	 detect	 ulcers,	 calluses	 or	

xanthomas.	 Specific	 questionnaires,	 developed	 to	 detect	 symptomatic	

PAD,	consist	of	six	questions	and	a	diagram	to	indicate	the	location	of	the	

pain	[58].		

The	anche-brachial	index	(ABI)	is	a	non-invasive,	inexpensive,	simple	

test	used	to	diagnose	PAD	based	on	the	assessment	of	lower	extremities	

hemodynamics	 [59,85].	 It	 represents	 the	 ratio	 of	 the	 highest	 ankle	

pressure	 in	 each	 leg,	 obtained	 at	 the	dorsalis	 pedis	 and	 posterior	 tibial	

arteries	 with	 a	 Doppler	 probe,	 referred	 to	 the	 highest	 brachial	 artery	

pressure	 (Table	 3,	 Figure	 3).	 Although	 vascular	 specialists	 have	 been	

employing	ABI	 for	 some	 time,	 there	 is	 a	 lack	of	 standardization	 for	 the	

method	 of	 measuring	 ABI	 and	 results	 do	 not	 always	 reflect	 a	 real	
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situation	[56,85].	There	is	a	diminished	sensitivity	in	patients	with	medial	

calcification	due	to	hypertension,	diabetes	or	chronic	kidney	disease	[59].	

Moreover,	some	PAD	patients	have	normal	ABI	values	[86].	

Table	3.	Reference	values	for	ankle-brachial	test.	

Ankle-brachial	indices	
1.0	–	1.3	 Normal	
0.9	–	1.0	 Borderline	
0.7	–	0.9	 Mild	
0.4	–	0.7	 Moderate	
<0.4	 Severe	

Figure	3.	Ankle-Brachial	Index	test.	

Regarding	 anatomical	 definition,	 arteriography	 is	 the	 golden	

standard,	as	it	has	allowed	better	diagnosis	and	image	definition.	Due	to	

the	risk	of	nephrotoxicity	that	traditional	iodinated	contrast	agents	have,	

carbon	dioxide	arteriography	has	also	been	developed	[58].	
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4.4	Treatments	

PAD	 treatment	 can	 be	 divided	 in	 four	 strategies:	 management	 of	

cardiovascular	 risk	 factors,	 exercise	 and	 cardiovascular	 rehabilitation,	

pharmacologic	intervention	and	invasive	strategies	(Figure	4)	[57–59].	

Figure	4.	Four	main	PAD	therapeutic	strategies.	

In	 addition	 to	 required	 medications	 to	 modify	 risk	 factors	

(antihypertensives,	 cholesterol	 lowering	 agents…),	 antiplatelet	

medications	and	agents	that	increase	the	distance	to	claudication	can	be	

used	[58,84].	

If	 risk	 factor	 modification,	 exercise	 programs	 and	 pharmacologic	

treatment	 fail,	 then	 invasive	 interventions	 are	 considered	 [58,59].	 They	

can	 be	 endovascular	 (angioplasty	 or	 stenting)	 or	 surgical.	 For	 patients	

with	intermittent	claudication,	specialists	perform	angioplasty	or	stenting	

to	 a	 single	 arterial	 segment.	 Surgical	 bypass	 is	 only	 needed	 in	 some	

special	 cases,	 but	 especially	 appropriate	 in	 patients	 with	 critical	 limb	

ischemia.	 When	 revascularization	 is	 not	 successful	 or	 not	 considered,	

primary	amputation	is	the	choice	[59,84].	

4.5	Current	and	emerging	biomarkers	

The	Food	and	Drug	Administration	(FDA)	describes	a	biomarker	as	a	

defined	 characteristic	 that	 is	measured	which	 is	 an	 indicator	 of	 normal	

Management	of	
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Exercise	and	CV	
rehabilita�on	
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biological	 processes,	 pathogenic	processes	or	 response	 to	 interventions	

(including	therapeutics)	or	exposure	[87].	

There	 are	 some	 evidenced	 and	 established	 biomarkers	 for	 PAD,	

although	 not	 exclusively	 for	 it,	 as	 all	 cardiovascular	 diseases	 share	

common	 risk	 factors	 and	 pathophysiology	 [88].	 The	 majority	 of	

circulating	biomarkers	 for	PAD	have	a	 role	 in	 inflammatory	or	oxidative	

processes,	are	modulators	of	angiogenesis,	or	involved	in	the	thrombosis	

cascade	 [57,88].	Moreover,	 the	 list	 is	 still	 growing	 up,	 as	 the	 emerging	

“omics”	 (mainly	metabolomics	 and	 proteomics)	 allow	 the	 possibility	 to	

propose	novel	circulating	biomarkers	(Table	4).	

Table	4.	Main	established	and	emerging	biomarkers	for	PAD.	

Pathway	 Biomarkers	

Inflammation	
CRP	
IL-6	
β2-microglobulin	

Chemokines	and	
endothelial	activation	

VCAM-1	
ICAM-1	
P-selectin
CCL2
CD40	ligand

Thrombosis	cascade	
vWF	
tPA	
Fibrinogen	

Angiogenesis	
VEGF-A	
Angiopoietin-2	

Oxidative	stress	and	
other	biomarkers	

Homocysteine	
Protein	carbonyls	
PON1	
Isoprostanes	

CRP:	C-reactive	protein,	IL:	interleukin;	VCAM-1:	vascular	cell	adhesion	molecule-1;	ICAM-
1:	 intercellular	 adhesion	molecule-1;	 CCL2:	 chemokine	 (C-C	motif)	 ligand	 2;	 vWF:	 Von-
Willibrand	factor;	tPA:	tissue	plasminogen	activator;	VEGF-A:	vascular	endothelial	growth	
factor-A,	PON1:	paraoxonase-1.	Adapted	from	Hazarika	S.	2017	and	Fort-Gallifa	I.	2016.	
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5. VASCULAR	REMODELING

Vascular	 remodeling	 is	 an	 important	 process	 that	 affects	 the

pathophysiology	and	clinical	manifestation	of	common	conditions	[89].	It	

is	 an	 active	 process	 that	 involves	 structural	 changes	 in	 four	 cellular	

processes:	 cell	 growth,	 cell	 death,	 cell	 migration	 and	 synthesis	 or	

degradation	of	ECM	[90].	Vascular	 remodeling	starts	with	 the	detection	

of	 signals	due	 to	changes	 in	hemodynamic	conditions	 (sensors)	and	 the	

transduction	of	signals	 to	adjacent	cells.	Then,	depending	on	the	signal,	

there	 is	a	synthesis	and	release	or	activation	of	substances	 to	 influence	

one	of	the	four	aforesaid	processes	[90].	

The	endothelium	is	the	key	player	in	vascular	remodeling,	as	it	have	a	

prominent	 role	 in	 assessing	 hemodynamic	 and	 humoral	 signals	 and	

eliciting	 biological	 responses	 [89,90].	 Endothelial	 dysfunction	 and	

extracellular	 matrix	 turnover	 are	 important	 parts	 of	 this	 remodeling	

[89,90].	

5.1	Endothelial	dysfunction	

Endothelial	 dysfunction	 plays	 a	 key	 role	 in	 the	 initiation	 of	

atherosclerotic	 process	 [91].	 Vascular	 endothelium	 is	 a	 highly	 selective	

semipermeable	 layer	 of	 single-cell	 located	 between	 blood	 stream	 and	

vessel	 wall.	 It	 responds	 to	 hemodynamic	 and	 humoral	 stimuli	 and	

regulates	vascular	tone	[13].			

Physiologic	 and	 pathophysiologic	 stimuli	 can	 provoke	 changes	 in	

endothelial	 permeability.	 Those	 changes	 are	 believed	 to	 be	 an	 early	

event	and	contribute	to	disease	progression	in	atherosclerosis	(Figure	5),	
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as	 the	 dysfunctional	 endothelium	may	 allow	 LDL	 particles	 to	 enter	 the	

vessel	wall	[13,91].		

Proposed	 mechanisms	 of	 endothelial	 dysfunctions	 are	 related	 to	

oxidative	stress,	 inflammation,	 infection,	vitamin	D	deficiency	and	shear	

stress	[9,89].	Oxidative	stress	seems	to	be	the	most	common	underlying	

mechanism	 for	 endothelial	 dysfunction.	 Most	 of	 cardiovascular	 risk	

factors	 are	 associated	 with	 the	 up-regulation	 of	 oxidative	 stress	 and	

reactive	oxygen	species	(ROS),	promoting	among	others	endothelial	nitric	

oxide	 synthase	 (eNOS)	 uncoupling.	 In	 this	 uncoupled	 state,	 eNOS	

becomes	a	ROS	generator.	 	Because	of	 the	causal	 relationship	between	

oxidative	 stress	 and	 inflammation,	 vascular	 inflammation	 signaling	

pathways	 are	 amplified	 and	 many	 inflammatory	 markers	 have	 been	

associated	with	endothelial	dysfunction	in	atherosclerosis	[9,92–94].	

Figure	 5.	 Progression	 from	 risk	 factors	 to	 atherosclerosis	 through	 oxidative	 stress	 and	

endothelial	dysfunction.	Extracted	from	Park	K-A	et	al.	(2015).	
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5.2	Extracellular	matrix	

Inside	artery	 structure,	 extracellular	matrix	 (ECM)	has	a	 remarkable	

role	as	 it	represents	more	than	half	of	the	wall	mass	and	is	an	essential	

component	of	 the	cardiovascular	system	[95,96].	ECM	 is	 synthesized	by	

medial	SMC	and	by	adventitial	fibroblasts	and	is	implicated	in	the	control	

of	 many	 important	 functions	 of	 the	 heart	 and	 vessels:	 it	 maintains	

structural	 uprightness	 of	 vascular	 network,	 originates	 a	 scaffold	 for	 cell	

junction	 and	 function	 and	mediates	 cell	 adhesion	 and	 cell-cell	 contacts	

[8].	 Moreover,	 ECM	 controls	 remodeling	 during	 inflammation,	 vascular	

injury	and	growth,	acts	as	a	reservoir	of	cytokines,	proteases	and	growth	

factors,	 provides	 physical	 support	 and	 maintains	 the	 integrity	 of	 the	

tissue	[97].		

ECM	 constituents	 are	 mainly	 collagens,	 elastin,	 fibronectin,	

microbifrils	 (mainly	 fibrillins),	 abundant	 amorphous	 or	 soluble	

proteoglycans,	 and	 leucine-rich	 glycoproteins,	 which	 are	 differently	

distributed	among	artery	layers	(Figure	6)	[96].		

Elastin,	 the	 most	 prominent	 component	 of	 the	 arterial	 wall,	 is	 a	

hydrophobic	 and	 insoluble	 protein.	 It	 contributes	 to	 the	 elasticity	 and	

mechanical	 integrity	of	the	arteries	and	regulates	SMC	proliferation	and	

phenotype	[8].	It	represents	the	90%	of	elastic	fiber	total	weight	and	the	

50%	 of	 dry	 weight	 of	 the	 arterial	 wall	 [98].	 Elastin	 gene	 encodes	 for	

tropoelastin,	a	precursor	form	of	elastin.	The	mature	form	of	elastin	has	

a	half-life	of	40	years	and	aging	or	disease	provokes	its	degradation.	

Introduction	

UNIVERSITAT ROVIRA I VIRGILI 
PERIPHERAL ARTERY DISEASE: THE SEARCH FOR A BIOLOGICAL MARKER 
Anna Hernández Aguilera 



49	

Figure	6.	Vascular	matrix	by	arterial	layer.	(A)	Representation	of	the	arterial	intima,	media	
and	adventitia	 in	 a	human	 coronary	 artery.	 (B)	 Changes	 in	 vascular	matrix	 components	
among	different	arterial	layers.	Extracted	from	Yurdagul	A.	et	al	(2016).	

Collagen	is	a	300nm	triple	helix	protein	that	normally	consists	of	two	

identical	 chains	 and	 an	 additional	 one	 varying	 in	 its	 chemical	

composition.	 Collagen	 is	 a	 big	 family	 of	 proteins	 that	 includes	 24	

different	subtypes	whose	 function	 is	 to	 limit	excessive	vessel	distension	

[91].	Post-transcriptional	modifications	are	needed	for	the	maturation	of	

collagen.	 During	 arterial	 injury,	 there	 is	 an	 unbalance	 between	 the	

proportion	of	the	different	types	of	collagen	[99].	

Laminin	 and	 proteoglycans	 are	 other	 ECM	 proteins	 with	 important	

functions	 in	 blood	 vessels.	 Laminins	 are	 a	 big	 family	 of	 high	 cross-like	

heterodimeric	 glycoproteins	 involved	 in	 the	 development	 of	 the	

endothelium	 [96,100].	 Proteoglycans	 are	 complex	 macromolecules	

involved	 in	 the	 interaction	 between	 the	 endothelium	 and	 lipoproteins	
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[23,96].	 Their	 structure	 is	 composed	 of	 a	 protein	 core	 linked	 to	

glycosaminoglycan	 (GAG)	 chains	 [101].	 They	 participate	 in	 many	

biological	functions	in	arterial	wall:	ECM	assembly,	cell	proliferation	and	

regulate	 vascular	 permeability	 and	 lipid	 metabolism	 among	 others.	

Depending	on	the	GAG	type,	they	are	divided	into	four	types:	chondroitin	

sulfate	 proteoglycans	 (CSPG),	 heparan	 sulfate	 proteoglycan	 (HSPG),	

dermatan	sulfate	proteoglycan	(DSPG)	and	keratan	sulfate	proteoglycan	

(KSPG)	[8,23].	

ECM	 is	 a	 dynamic	 structure,	 constantly	 subjected	 to	 remodeling	

through	 the	 synthesis	 and	 degradation	 of	 its	 main	 components,	 and	

changes	 in	 its	 architecture	 to	ensure	a	 correct	 function	of	 the	 tissue.	 It	

plays	an	essential	role	in	the	development	of	many	pathological	states.	It	

is	 known	 that	 arterial	 stiffening	 is	 produced	 for	 the	 alteration	 of	 ECM	

composition	 and	 architecture	 [91].	 Matrix	 metalloproteinases	 (MMPs)	

are	 the	 main	 mediators	 of	 a	 healthy	 ECM	 remodeling	 but	 are	 also	

implicated	in	the	formation	of	atherosclerotic	plaque	formation	because	

foam	 cells	 generate	 oxidative	 stress	 which	 enhance	 MMPs	 expression	

[97,98,102,103].	 This	 excess	 of	MMPs	 removes	 extracellular	matrix	 and	

permits	an	easier	diapedesis	of	 inflammatory	cells.	MMPs	also	promote	

SMCs	 proliferation	 and	 the	 generation	 of	 monomeric	 collagen,	 which	

enhances	atheroma	growing	[99,103].		

5.3	Matrix	metalloproteinases	(MMPs)	

Matrix	metalloproteinases	(MMPs)	is	a	multi-gene	family	of	zinc	and	

calcium-dependent	 endopeptidases	 capable	 of	 cleaving	 ECM	

components	 [104].	 Most	 of	 MMPs	 are	 released	 as	 zymogens,	 latent	

precursors	 that	 are	 proteolytically	 activated	 in	 the	 extracellular	 space	

Introduction	

UNIVERSITAT ROVIRA I VIRGILI 
PERIPHERAL ARTERY DISEASE: THE SEARCH FOR A BIOLOGICAL MARKER 
Anna Hernández Aguilera 



51	

[103].	 Although	 its	 protein	 structure	 depends	 on	 the	 subgroup,	MMPs	

are	 generally	 composed	 of	 five	 domains:	 a	 signaling	 peptide,	 a	

hydrophobic	propeptide	domain,	a	catalytic	domain,	a	hinge	region	and	a	

hemopexin-like	 domain	 [47].	 Classification	 can	 be	 proposed	 according	

their	structure	and	the	substrate	they	can	hydrolyze,	with	at	least	seven	

subgroups	of	MMPs	described	[105].	

According	to	the	substrate	specificity,	they	can	be	classified	as:	

a) MMP-1,	-8,	-13	(Collagenases):	cleave	type	I,	II	and	III	collagen.

b) MMP-2,	 -9	 (Gelatinases):	 cleave	 heat	 denatured	 collagen

(gelatin).

c) MMP-3,	-10	(Stromelysins)

d) MMP-7,	-26	(Matrilysins)

e) Membrane-type	MMP	(MMP-14,	-15,	-16,	-17,	-24,	-25):	activate

MMPs	and	digest	type	I,	II	and	III	collagen.

f) Other	MMP,	including	MMP-12	(metalloelastase).

MMPs	biological	activity	 is	 strictly	controlled,	because	of	 its	protein	

degradation	 potential.	 There	 are	 three	 different	 levels	 of	 regulation:	

gene	transcription	and	translation,	pro-MMPs	(zymogens)	activation	and	

MMP	 inhibitors.	 Transcription	 process	 of	 MMPs	 can	 be	 inhibited	 by	

corticosteroids,	 retinoids	 and	 sex	 hormones	 but,	 on	 the	 contrary,	

inflammatory	 cytokines,	 hormones	 and	growth	 factors	may	enhance	 its	

function.	 The	 activation	 of	 zymogens	 is	 mediated	 by	 an	 enzymatic	

activator	 of	 MMPs,	 plasmin.	 Its	 regulation	 influences	 the	 amount	 of	

activated	 MMPs	 [97].	 Endogenous	 inhibitors	 can	 also	 modulate	 the	

activity	 of	 MMPs.	 Two	 of	 the	 most	 important	 inhibitors	 are	 α2-

macroglobulin	 and	 tissue	 inhibitors	 of	 metalloproteinases	 (TIMPs)	
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[104,105].	The	MMP/TIMP	balance	 is	believed	 to	be	a	key	 factor	 in	 the	

regulation	of	the	proteolytic	activity	of	the	individual	MMPs	[104].	

MMPs	are	involved	in	ECM	remodeling,	concretely	in	the	proteolysis	

of	its	components	[103,105].	They	mediate	for	a	healthy	ECM	remodeling	

during	 development,	 tissue	 morphogenesis	 and	 repair	 due	 to	

inflammatory	processes	(Figure	7)	[103]	

Figure	 7.	 Injury	 initiates	 a	 coordinated	 response	 to	 repair	 the	 damaged	 tissue	 and	 to	
defend	 against	 infection.	 Almost	 all	 resident	 cells	 participate	 in	 these	 processes	 and	
contribute	 to	 the	 regulation	 of	 inflammation.	 This	 occurs	 partly	 through	 the	 specific	
activity	 of	 a	 variety	 of	 matrix	 metalloproteinases	 (MMPs)	 that	 are	 produced	 by	 these	
cells.	Extracted	from	Parks	W.C.	et	al.	(2004).	
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6. ATHEROSCLEROSIS	AND	INFLAMMATION

In	 recent	 years,	 non-communicable	 diseases	 such	 as	 obesity	 and

atherosclerosis	have	related	to	inflammation	[6].	 Inflammation	is	one	of	

the	most	studied	processes	 today	because	of	 its	dual	and	contradictory	

role	 in	the	organism.	It	 is	considered	to	be	the	response	of	the	immune	

system	 to	 cellular	 or	 tissue	 damage	 caused	 by	 pathogens,	 physical,	

chemical	or	mechanical	agents.	This	 response	 is	 intended	to	ensure	 the	

survival	 of	 the	 species	 by	 its	 ability	 to	 manage	 infections	 or	 repair	

damage.	 However,	 a	 continuous	 and	 chronic	 inflammatory	 process	

produces	a	totally	opposite	effect	in	the	organism,	with	a	malfunction	of	

many	 tissues	 and	 organs,	 and	 a	 consequently	 alteration	 in	 energy	

homeostasis	[106,107].	

In	 the	 pathophysiology	 of	 complex	 diseases	 such	 as	 obesity	 or	

atherosclerosis,	there	are	interconnections	between	metabolic	pathways	

and	the	immune	system.	Cytokines	and	chemokines	play	an	essential	role	

in	 these	 connections.	 Proper	 coordination	 of	 cytokines	 and	 other	

components	such	as	hormones	or	cells	ensures	a	correct	energy	balance	

in	an	organism	subjected	to	various	metabolic	conditions	[108–110].		

Atherosclerosis	 has	 been	 defined	 as	 an	 immune-mediated	 disease	

because	 of	 immune	 activation	 and	 cytokine	 signaling	 in	 the	

atherosclerotic	 plaque	 [111].	 Chronic	 inflammation	 has	 been	 shown	 to	

transform	 an	 atherosclerotic	 plaque	 into	 an	 unstable	 and	 vulnerable	

lesion	 [109,110].	 Thus,	 inflammatory	 markers	 could	 play	 a	 key	 role	 as	

biological	markers	efficient	in	predicting	future	cardiovascular	problems.		
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Specifically,	 CCL2	 is	 one	 of	 the	 main	 effectors	 of	 chronic	

inflammation,	 and	 is	 also	 associated	 with	 different	 diseases	 such	 as	

cancer,	type	2	diabetes	and	cardiovascular	diseases	[110,112–115].	

6.1	Chemokines	and	cytokines	

Chemokines	are	small	proteins	(60-100	amino	acids)	that	are	part	of	

the	 chemoattractant	 cytokine	 family.	 They	 are	 characterized	 by	 the	

presence	 of	 four	 cysteine	 residues	 that	 form	 two	 disulfide	 bridges.	 Its	

secretion	 is	 induced	 by	 numerous	 signals,	 such	 as	 proinflammatory	

cytokines.	Its	main	function	is	to	regulate	cell	traffic,	having	an	important	

role	 in	 the	 selective	 recruitment	 of	 monocytes,	 neutrophils	 and	

lymphocytes	to	the	site	of	inflammation.	They	create	a	chemical	gradient	

known	 that	 allows	 cells	 to	 move	 to	 the	 sites	 with	 the	 highest	

concentration	 of	 chemokines.	 These	 chemokines	 are	 responsible	 for	

chemotaxis	and	macrophage	accumulation	in	the	fatty	streak	[116–118].	

There	are	four	subfamilies	depending	on	the	number	and	location	of	

the	 cysteine	 residue	at	 the	N-terminal	 end	of	 the	protein.	According	 to	

the	systematic	nomenclature,	we	have	[108,118]:	

- CXC	chemokines	(α-chemokine):	They	are	present	on	chromosome

4q13	and	are	formed	by	two	cysteine	separated	by	an	amino	acid.

- CC	 chemokines	 (ß-chemokine):	 they	 are	 related	 to	 homeostatic

process	 rather	 than	 to	 the	 inflammatory	 process.	 They	 have	 two

attached	cysteine	and	can	be	found	on	chromosomes	17q11	and	12.

- CX3C	 chemokines	 (δ-chemokine):	 they	 act	 on	 the	 endothelium

stimulating	chemotaxis.

- C	Chemokines	(γ-chemokine):	they	act	as	CX3C	chemokines.
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6.2 Chemokine	(C-C	motif)	ligand	2	(CCL2)	

Chemokine	 (C-C	 motif)	 ligand	 2	 (CCL2),	 also	 known	 as	 monocyte	

chemoattractant	 protein	 1	 (MCP-1)	 is	 a	 potent	 chemotactic	 factor	 for	

monocytes.	In	humans,	CCL2	is	made	up	of	76	amino	acids,	has	a	weight	

of	13kDa	and	 is	 located	on	chromosome	17q11.2,	encoded	by	 the	CCL2	

gene.	

CCL2	 is	 produced	 constitutively	 or	 by	 induction	 of	 different	 factors	

such	as	oxidative	 stress.	Different	 cell	 types,	 including	endothelial	 cells,	

fibroblasts,	 epithelium	and	 SMC	 synthesize	 this	 chemokine	 although	 its	

main	 production	 of	 CCL2	 is	 due	 to	 monocytes/macrophages.	 It	 is	

generally	 secreted	 in	 two	predominant	 forms,	 as	 results	of	 different	O-

glycosylation,	although	this	does	not	affect	its	ability	to	induce	monocyte	

migration.	 The	amino-terminal	 region	 is	 crucial	 for	 its	biological	 activity	

[117,119]	

This	 chemokine	 regulates	 the	 migration	 and	 infiltration	 of	

monocytes,	 T	 lymphocytes	 and	 Natural	 Killer	 cells.	 CCL2	 mediates	 the	

adhesion	of	monocytes	to	the	vascular	endothelium	and	its	extravasation	

towards	the	lesion	zone.	In	addition,	CCL2	regulates	the	expression	of	ß2	

integrin	 on	 the	 surface	 of	 monocytes	 and	 promotes	 adhesion	 of	

monocytes	to	extracellular	matrix	proteins	[117,119].	

CCL2	expression	occurs	in	different	tissues	during	the	progression	of	

diseases	related	to	inflammation,	such	as	atherosclerosis.	Agents	such	as	

IFN-γ,	 TNF-α	 and	 PDGF	 among	 others	 regulate	 its	 expression	 at	 the	

transcriptional	 level.	 They	 also	 have	 inhibitors	 that	 decrease	 their	

activity,	such	as	retinoic	acid	or	estrogens	[119].	
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CCL2	 mediates	 the	 infiltration	 of	 monocyte	 into	 atherosclerotic	

lesions	 by	 its	 interaction	with	 CCR2,	 although	 it	 can	 also	 bind	 to	 other	

nonspecific	 receptors,	 known	 as	 atypical	 chemokine	 receptors	 (ACKR)	

[111,118].	 CCL2	 is	 upregulated	 in	 atherosclerotic	 plaques.	 ApoE-/-	 mice	

also	 lacking	 CCR2	 and	 LDLr-/-	 mice	 lacking	 CCL2	 have	 decreased	

atherosclerotic	 lesion	 size	 [111,120,121].	 The	 monoclonal	 antibody	

MLN1202	 has	 been	 tested,	 as	 it	 inhibits	 CCL2	 binding	 to	 CCR2.	 It	

significantly	 decreased	 CRP	 levels	 after	 dosing,	 confirming	 than	

chemokine	 signaling	 is	 an	 interesting	 therapeutic	 target	 for	

atherosclerosis	[122].	

6.3 Chemokine	(C-C	motif)	receptor	2	

CCR2	is	a	seven-transmembrane	G-protein-coupled	receptor	 located	

on	 the	 lipid	 membrane	 of	 cell	 surface	 [111,119].	 When	 CCL2	 binds	 to	

CCR2,	 it	 triggers	 a	 set	 of	 cellular	 reactions	 that	 produces	 inositol	

triphosphate,	 with	 subsequent	 calcium	 release	 and	 protein	 kinase	 C	

activation.	 This	 causes	 NF-kβ	 activation,	 which	 regulates	 specific	 gene	

transcription.	CCR2	also	activates	proteins	of	Rho	family,	responsible	for	

leukocyte	migration	[119].	

6.4	Atypical	Chemokine	Receptors	(ACKR)	

Atypical	 chemokine	 receptors	 (ACKRs),	 also	 known	 as	 silent	 or	

promiscuous	 receptors,	 are	 a	 subfamily	 of	 chemokine	 receptors	with	 a	

strong	 structural	 resemblance	 to	 "classical"	 receptors,	 but	 unlike	 them,	

they	are	not	coupled	to	G	proteins	[123–125].	
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These	 silent	 receptors	 can	 modify	 the	 availability	 and	 signaling	 of	

chemokines:	when	 the	 ligand	binds	 to	 the	 receptor,	 signal	 transmission	

does	not	occur	and	consequently	there	is	no	cellular	response.	They	act	

favoring	 the	 transfer	 of	 cytokines	 through	 the	 endothelial	 barriers	 and	

act	as	traps	to	moderate	inflammatory	responses	[126,127].	

The	 most	 important	 silent	 receptors	 are	 DARC	 (ACKR1)	 and	 D6	

(ACKR2),	which	show	different	specificity	and	distribution	[124].	

DARC	receptor	(ACKR1)	

Duffy	 antigen	 receptor	 for	 chemokines	 (DARC)	 is	 a	 rhodopsin-line	

seven-helix	 transmembrane	 receptor.	 It	 has	 a	 broad	 range	 of	 affinities	

between	chemokines,	with	at	least	attraction	to	20	different	CC	and	CXC-

chemokines	 [124].	 Its	 expression	 takes	place	on	 the	 surface	of	 vascular	

endothelial	cells.	DARC	lacks	the	DRYLAIV	motif,	which	is	necessary	for	G	

protein	coupling	[126,127].	However,	it	binds	to	chemokines	and	there	is	

an	 internalization	 of	 both	 the	 receptor	 and	 the	 ligand	 by	 transcytosis,	

causing	the	removal	of	chemokines	[126].	

D6	receptor	(ACKR2)	

Chemokine	 binding	 protein	 2,	 also	 known	 as	 D6	 or	 ACKR2,	 is	 a	

member	 of	 the	 rhodopsin-like	 family,	 with	 seven	 transmembrane	

domains.	 It	 has	high	affinity	 for	14	 inflammatory	 chemokines	of	 the	CC	

subfamily	 [126,128].	 Its	 expression	 takes	 place	 in	 compartments	 of	

lymphatic	 endothelial	 cells	 and	 placenta,	 although	 it	 is	 also	 located	 in	

trophoblasts,	leukocytes,	macrophages	and	dendritic	cells.	D6	do	has	the	

DRYLAIV	motif	but	has	a	DKYLEIV	altered	motif	[124,126–128]	
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7. ATHEROSCLEROSIS	AND	OXIDATION

Oxidative	stress	plays	a	very	important	role	in	atherogenesis,	since	it

starts	 with	 oxidative	 modification	 of	 LDL	 in	 the	 arterial	 wall	 by	 ROS.	

Atherosclerosis	 risk	 factors	 increase	 the	 production	 of	 ROS	 mainly	 by	

macrophages	and	SMC	[129,130].	

The	 production	 of	 ROS	 induces	 the	 first	 step	 of	 atherosclerosis:	

endothelial	 dysfunction.	 OxLDL	 are	 easily	 captured	 by	 macrophages	

compared	 to	 non-oxidized	 LDLs.	 On	 the	 other	 hand,	 increased	 ROS	

production	 reduces	 NO	 production	 and	 its	 absence	 results	 in	

vasoconstriction,	 platelet	 aggregation	 and	 neutrophil	 adhesion	 to	 the	

endothelium.	ROS	also	affect	the	expression	of	adhesion	molecules,	since	

hydrogen	 peroxide	 impairs	 the	 expression	 of	 these	 molecules.	 ROS	

interfere	 in	 the	 proliferation	 and	 migration	 of	 SMC,	 apoptosis	 of	

endothelial	 cells,	 activation	 of	 metalloproteinases	 and	 alteration	 of	

vasomotor	activity	[129].	

There	are	different	cellular	mechanisms	 that	protect	 the	body	 from	

oxidative	 stress.	 Paraoxonase	 enzymes	 (PON)	 are	 noteworthy.	 These	

enzymes	 are	 linked	 to	 HDL,	 because	 they	 are	 responsible	 for	 their	

antioxidant	properties.	They	delay	 the	oxidation	of	 LDL	and	 thus	 inhibit	

the	initiation	and	progression	of	atherosclerosis	[130–133].	

In	humans,	the	PON	family	gene	includes	three	members	with	similar	

structural	homology	(about	65%)	and	located	adjacent	to	chromosome	7:	

PON1,	 PON2	 and	 PON3.	 They	 show	 antioxidant	 properties,	 play	 an	

important	 role	 in	 maintaining	 a	 low	 oxidative	 state	 in	 the	 blood	
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circulation	 and,	 therefore,	 are	 important	 for	 the	 prevention	 of	

atherosclerosis	[132,134].	

The	name	of	the	PON	family	comes	from	its	ability	to	hydrolyze	the	

ester	O-P	bond	of	organophosphates	and	pesticides,	 including	paraoxon	

(a	 metabolite	 of	 paration,	 diazoxon	 and	 other	 gases	 such	 as	 sarin	 and	

soman).	Thereby,	the	body	is	protected	from	poisoning.		

PON1	 is	 mainly	 present	 in	 serum	 coupled	 to	 HDL.	 There	 are	 small	

amounts	in	VLDL	and	chylomicrons	but	there	is	no	PON1	in	LDL.	PON3	is	

also	 located	 in	 serum	 associated	 with	 HDL,	 although	 PON1	 prevail	 in	

human	serum.	PON1	and	PON3	protect	serum	lipids	from	oxidation.	On	

the	other	side,	PON2	is	exclusively	intracellular	[131,134].		

7.1	Paraoxonase	1	

PON1	 is	 a	 serum	 esterase	 calcium-dependent	 enzyme,	 with	 a	

molecular	weight	of	43-45	kDa	and	composed	of	354	amino	acids	[135].	

PON1	 gene	 is	 on	 chromosome	 7,	 between	 q21.3	 and	 q22.1.	 Several	

genetic	polymorphisms	have	been	 characterized	 in	human	PON1,	being	

the	most	 important	 those	 at	 positions	 55	 (a	 leucine	 (L)	 for	methionine	

(M) at	position	55)	and	192	(a	glutamine	(Q)	 for	arginine	(R)	at	position

192) in	PON1	gene	[136].	 Its	secretion	 is	done	mainly	 in	the	 liver,	but	 it

can	 be	 found	 also	 in	 the	 brain,	 lungs,	 heart,	 kidney	 and	 serum,	where

circulates	 coupled	 to	 HDL	 particles	 [132,136,137].	 PON1	 is	 known	 to

downregulate	CCL2	(Annex	1)	[138].

When	 PON1	 is	 linked	 to	 HDL,	 it	 inhibits	 the	 oxidation	 of	 LDL	 thus	

protecting	 them	 from	 oxidative	 stress	 and	 decreasing	 foam	 cell	
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formation	and	atherosclerosis	development	(Figure	8).	In	fact,	it	is	known	

that	PON1-/-	mice	are	highly	susceptible	to	atherosclerosis	[132].	

Although	 its	 physiological	 substrates	 have	 not	 yet	 been	 identified,	

PON1	 hydrolyze	 a	 broad	 range	 of	 substrates	 thus	 exhibiting	 different	

activities:	 paraoxonase	 activity	 (organophosphorus),	 lactonase	 activity	

(lactones)	 and	arylesterase	activity	 (phosphorus	arylesters).	 Still	 sharing	

the	same	active	site,	different	residues	are	involved	in	each	activity	[139–

141].	

Figure	8:	The	protective	role	of	PON1	in	atherosclerosis.	In	an	oxidant	and	inflammatory	
environment,	 circulating	 monocytes	 are	 activated	 to	 become	 macrophages.	 oxLDL	
particles	are	internalized	into	macrophages,	which	are	transformed	into	foam	cells.	PON1	
hydrolyzes	 oxidized	 lipids	 in	 LDL,	 inhibiting	 the	 development	 of	 atherosclerosis.	 PON1	
favors	cholesterol	efflux	from	macrophages.	Extracted	from	Camps	J.	et	al	(2012).	
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7.2 Paraoxonase	2	

PON2	 is	 an	 intracellular	 protein	 not	 present	 in	 circulation	 and	

considered	 the	 oldest	 member	 of	 the	 PON	 family	 [142].	 It	 has	 a	

molecular	 weight	 of	 44kDa	 and	 has	 only	 lactonase	 activity,	 although	

PON2	 can	 hydrolyze	 bacterial	 products	 [143].	 Its	 gene	 expression	 is	

detected	different	human	tissue.	

PON2	 is	 thought	 to	 regulate	 mechanisms	 linking	 endoplasmic	

reticulum	 stress,	 atherosclerosis	 development	 and	 mitochondrial	

dysfunction	[144–147].	

7.3	Paraoxonase-3	

PON3	 is	 the	 newest	 member	 of	 PON	 family	 and	 the	 less	

characterized.	 It	 is	 a	 354-aminoacid	protein	with	 a	molecular	weight	 of	

44kDa.	It	is	bound	to	HDL	in	lower	concentration	and	has	only	lactonase	

activity	[148,149].	Function	and	cell-type	association	are	similar	to	PON2	

[150–152].	 Both	 human	 PON1	 and	 PON3	 delay	 LDL	 oxidation	 in	 vitro,	

although	PON1	is	more	effective	[132,133].	Several	polymorphisms	have	

been	recently	described,	mainly	 located	in	the	promoter	region	and	still	

with	an	unclear	physiological	role.		
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Hypothesis	

Inflammation,	 oxidation,	 vascular	 remodeling	 and	 mitochondrial	

dysfunction	 are	 implicated	 in	 the	 development	 of	 atherosclerosis.	

Understanding	these	processes	in	affected	tissues	and	the	assessment	of	

related	 circulating	markers	may	 provide	 possible	 therapeutic	 strategies	

and	 suggest	 potential	 biomarkers	 for	 an	 early	 diagnose	 or	 disease	

severity.	

Aims	

→ To	 increase	 knowledge	on	 the	 pathophysiological	 processes

involved	in	atherosclerosis.

→ To	 analyze	 the	 expression	 of	 inflammatory	 (CCL2	 and

associated	receptors)	and	oxidative	stress	(PON1	and	PON3)

markers	in	atherosclerotic	and	healthy	arteries.

→ To	assess	the	specific	proteome	of	diseased	arteries.

→ To	 identify	 candidate	 circulating	 biomarkers	 of	 disease

severity	based	on	ECM-degradation	products.

→ To	 explore	 energy	 metabolism	 status	 in	 plasma	 of	 PAD

patients.
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STUDY	1	
Immunohistochemical	analysis	of	

paraoxonases	and	chemokines	in	the	
arteries	of	patients	with	peripheral	artery	

disease	
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ABSTRACT	

Oxidative	 damage	 to	 lipids	 and	 lipoproteins	 is	 implicated	 in	 the	

development	 of	 atherosclerotic	 vascular	 diseases,	 including	 peripheral	

artery	disease	(PAD).	The	paraoxonases	(PON)	are	a	group	of	antioxidant	

enzymes,	 termed	PON1,	PON2,	and	PON3	 that	protect	 lipoproteins	and	

cells	 from	 peroxidation	 and,	 as	 such,	 may	 be	 involved	 in	 protection	

against	 the	 atherosclerosis	 process.	 PON1	 inhibits	 the	 production	 of	

chemokine	(C-C	motif)	ligand	2	(CCL2)	in	endothelial	cells	incubated	with	

oxidized	 lipoproteins.	 PON1	 and	 CCL2	 are	 ubiquitously	 distributed	 in	

tissues,	 and	 this	 suggests	 a	 joint	 localization	 and	 combined	 systemic	

effect.	The	aim	of	the	present	study	has	been	to	analyze	the	quantitative	

immunohistochemical	 localization	 of	 PON1,	 PON3,	 CCL2	 and	 CCL2	

receptors	 in	 a	 series	 of	 patients	 with	 severe	 PAD.	 Portions	 of	 femoral	

and/or	 popliteal	 arteries	 from	 66	 patients	 with	 PAD	 were	 obtained	

during	 surgical	 procedures	 for	 infra-inguinal	 limb	 revascularization.	We	

used	8	normal	 arteries	 from	donors	as	 controls.	 PON1	and	PON3,	CCL2	

and	 the	 chemokine-binding	 protein	 2,	 and	 Duffy	 antigen/chemokine	

receptor,	 were	 increased	 in	 PAD	 patients.	 There	 were	 no	 significant	

changes	 in	 C-C	 chemokine	 receptor	 type	 2.	 Our	 findings	 suggest	 that	

paraoxonases	 and	 chemokines	 play	 an	 important	 role	 in	 the	

development	 and	 progression	 of	 atherosclerosis	 in	 peripheral	 artery	

disease.	
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1. INTRODUCTION

Lower-extremity	 peripheral	 artery	 disease	 (PAD)	 is	 an	 important

health	 problem	 that	 is	 associated	 with	 severe	 impairment	 of	 different	

arterial	territories.	Indeed,	PAD	is	a	predictor	of	substantial	coronary	and	

cerebral	 vascular	 risk	 [1,2].	 The	 disease	 prevalence	 increases	 with	 age	

and,	in	people	over	the	age	of	55	years,	it	is	estimated	to	be	about	20%	

[3-6].	 Atherosclerosis	 affects	wide	portions	 of	 numerous	 arteries	 in	 the	

lower	 extremities	 of	 PAD	patients.	 This	 is	 the	 effect	 of	 a	 sustained	 and	

silent	 progression	 of	 the	 disease	 in	 which	 appropriate	 and	 effective	

prevention	measures	are	applied	too	 late,	or	not	 implemented	at	all	 [3-

8].		

Oxidative	 damage	 to	 lipids	 and	 lipoproteins	 is	 implicated	 in	 the	

development	 of	 atherosclerotic	 vascular	 diseases,	 including	 PAD	 [9-10].	

The	paraoxonases	(PON)	are	a	group	of	antioxidant	enzymes	that	protect	

lipoproteins	 and	 cells	 from	 peroxidation	 and	 are	 involved	 in	 the	

atherosclerosis	process	and,	consequently,	in	vascular	diseases	[11].	The	

PON	family	contains	three	enzymes:	PON1,	PON2	and	PON3,	the	genes	of	

which	are	 located	adjacent	 to	each	other	on	chromosome	7q21-22	 [12,	

13].	 PON1	 and	 PON3	 are	 found	 in	 many	 tissues,	 as	 well	 as	 in	 blood,	

where	 they	 are	 associated	 with	 high-density	 lipoproteins	 (HDL).	

Conversely,	 PON2	 is	 exclusively	 intracellular	 [14-17].	 Pioneer	 studies	

reported	that	oxidized	low-density	lipoprotein	uptake	by	macrophages	in	

tissue	 culture	and	 in	 vivo	 increases	 the	production	of	 the	 inflammatory	

chemokine	 (C-C	 motif)	 ligand	 2	 (CCL2).	 The	 consequence	 is	 the	

stimulation	of	arterial	 fatty	streak	 formation,	which	 is	 the	progenitor	of	

atheroma.	 PON1	 has	 been	 shown	 to	 inhibit	 these	 alterations	 [18-20].	

Chemokines,	CCL2	in	particular,	are	central	to	the	vascular	inflammatory	
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response	 in	mediating	monocyte	 recruitment	 into	 the	 arterial	wall	 [21-

22].	We	have	previously	 reported	 that	PON1	and	CCL2	are	ubiquitously	

distributed	in	mouse	tissues,	suggesting	a	joint	localization	and	combined	

systemic	 effects	 [23].	 Clinical	 data	 suggest	 that	 circulating	 CCL2	

concentrations	 or	 serum	 PON1	 activity	 are	 important	 biomarkers	 of	 a	

variety	 of	 diseases	 involving	 inflammatory	 response	 to	 an	 increased	

oxidative	stress	[24-29].	

Previous	studies	from	our	group	found	that	serum	PON1	activity	and	

concentration	were	significantly	lower,	and	CCL2	concentration	higher,	in	

PAD	 patients	 compared	 to	 controls,	 while	 the	 combination	 of	 plasma	

CCL2	 and	 PON1-related	 variables,	 discriminated	 controls	 from	 patient	

almost	 completely	 [30].	 In	 addition,	we	 observed	 an	 increase	 in	 serum	

PON3	 concentration	 in	PAD	patients,	 relative	 to	 the	healthy	population	

[31].	However,	data	on	the	protein	expression	of	these	molecules	at	the	

lesion	level	in	patients	with	PAD	are	scarce.	The	aim	of	the	present	study	

was	 to	 quantify	 the	 immunohistochemical	 localization	 of	 PON1,	 PON3,	

CCL2	and	CCL2	receptors	in	a	wide	series	of	patients	with	severe	PAD.	

2. EXPERIMENTAL	SECTION

2.1.	Study	population

Patients	 with	 clinically	 diagnosed	 PAD	 were	 recruited	 from	 the	

outpatient	 clinics	 of	Hospital	Universitari	 Joan	XXIII.	Diagnosis	was	with	

standard	 clinical	 assessments	 including	 measurement	 of	 the	 ankle-

brachial	 index	 (ABI),	 non-invasive	 imaging,	 and	 angiography	 when	

indicated.	 Symptoms	 of	 chronic	 ischemia	 were	 detected	 using	 the	

Fontaine	 classification,	 the	 standardized	 physician-administered	

questionnaire	 that	 seeks	 to	 identify	 the	 presence	 of	 calf	 discomfort	 on	
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exertion,	such	as	walking	uphill	or	walking	rapidly	[51].	Exclusion	criteria	

from	our	study	were	 the	presence	of	acute	 ischemia,	 signs	of	 infection,	

renal	 failure,	 liver	 disease,	 cancer,	 or	 autoimmune	 disease.	 Portions	 of	

femoral	 and/or	 popliteal	 arteries	 from	 patients	 were	 obtained	 during	

surgical	 procedures	 for	 infra-inguinal	 limb	 revascularization	 (n=66).	 All	

patients	 were	 at	 Stages	 III	 and	 IV	 of	 the	 Fontaine	 classification.	 Eight	

normal	arteries	obtained	 from	accident	victims	and	stored	at	 the	Blood	

and	 Tissue	 Bank	 of	 Catalonia	 (Banc	 de	 Sang	 i	 Teixits,	 Barcelona,	 Spain)	

were	 used	 as	 controls	

(http://www.bancsang.net/es/donants/donacio_teixits.html).	 All	 tissues	

(patients	and	controls)	were	kept	at	–80ºC	until	 thawed	 for	processing.	

After	 thawing,	 the	 tissues	 were	 rinsed	 in	 phosphate	 buffer	 to	 remove	

residual	 blood	 and	 placed	 in	 at	 least	 10	 volumes	 of	 buffered	 formalin	

using	 a	 standard	 protocol	 for	 embedding	 tissue	 in	 paraffin	 wax	 for	

subsequent	 histology	 slide	 preparation.	 Three	 sections	 per	 slide	 were	

used	 for	 histological	 and	 immunohistochemical	 analyses.	 A	 peripheral	

blood	 sample	 was	 also	 obtained	 from	 each	 patient	 (and	 control	

individual)	at	the	time	of	the	surgery	for	biochemical	and	hematological	

measurements.	The	hospital’s	Ethics	Committee	and	Institutional	Review	

Board	 approved	 the	 procedures	 of	 the	 study	 protocol,	 and	 written	

informed	consent	was	obtained	from	the	participants	prior	to	entry	into	

the	study	(10-04-29/4proj3;	11-10-27/10proj1).		

	

2.2	Biochemical	analyses	

Serum	 concentrations	 of	 glucose,	 cholesterol,	 HDL	 cholesterol,	

triglycerides,	fibrinogen,	C-reactive	protein,	total	proteins,	and	complete	

blood	 cell	 counts	were	performed	by	 standard	methods	 in	 the	Hospital	

Universitari	 Joan	 XXIII.	 LDL	 cholesterol	 concentrations	 were	 estimated	
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using	the	Friedewald	formula.	Serum	concentrations	of	PON1	and	PON3,	

and	 EDTA-plasma	 concentrations	 of	 CCl2	were	 determined	 by	 ELISA	 as	

previously	 reported	 [30,31].	 Serum	 concentrations	 of	 8-isoprostanes	

were	 analyzed	 by	 Enzyme	 Immunoassay	 (Cayman	 Chemical	 Co.,	 Ann	

Arbor,	Michigan,	USA).	 Serum	PON1	 lactonase	 activity	was	 analyzed	 by	

measuring	the	hydrolysis	of	5-thiobutyl	butyrolactone	[27].	

	

2.3	Histological	and	immunohistochemical	analyses	

Sections,	of	4-µm	thickness,	were	stained	with	hematoxylin-eosin	for	

arterial	histology.	Masson’s	trichrome	stain	(Masson’s	Trichrome	Goldner	

with	 light	 green,	 Bio	 Optica,	 Milano,	 Italy)	 was	 used	 to	 assess	 the	

structure	 and	 extent	 of	 fibrosis.	 Alizarin	 Red	 staining	 (Sigma-Aldrich,	

Steinheim,	Germany)	was	used	 to	 identify	 the	sites	of	micro-crystalline,	

or	 non-crystalline,	 calcium	 phosphate	 salts.	 The	 intima	 and	 media	

thicknesses	were	measured	 in	all	histological	 sections	as	an	estimate	of	

the	 extent	 of	 atherosclerosis.	 Antibodies	 against	 PON1	 and	 PON3	were	

raised	 in	 rabbits	 using	 peptides	 derived	 from	 specific	 sequences	 of	

mature	PONs,	as	previously	reported	[52-54].	PON1	and	PON3	antibodies	

were	used	at	a	dilution	of	1/50	and	1⁄300,	respectively.	A	previous	study	

already	 demonstrated	 that	 these	 antibodies	 were	 highly	 specific	 for	

PON1	 and	 PON3	 [54].	 Commercial	 primary	 antibodies	were	 purchased:	

CCL2	 (dilution	 1/200),	 CCR2	 (dilution	 1/100),	 and	 D6	 (dilution	 1/500)	

from	 Abcam	 plc	 (Cambridge,	 UK);	 antibodies	 against	 DARC	 (dilution	

1/200)	from	Abnova	(Taipei,	Taiwan);	and	antibodies	against	CD68	from	

Dako	 (Glostrup,	 Denmark).	 The	 appropriate	 biotinylated	 secondary	

antibodies	 (antirabbit,	 antimouse	 or	 antigoat;	 purchased	 from	 Vector	

Laboratories	Inc.,	Burlingame,	CA,	USA)	were	used	at	a	dilution	of	1:200.	

Detection	 was	 performed	 with	 the	 ABC	 peroxidase	 system	 (Vector	
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Laboratories)	 and	 DAB	 peroxidase	 substrate	 (Dako).	 The	 times	 of	 the	

detection	reactions	were	4	min.	for	PON1	and	PON3,	1	min.	for	DARC,	1.5	

min.	 for	 CCR2	 and	 D6,	 10	 min.	 for	 CCL2,	 and	 5	 min.	 for	 CD68.	 All	

immunohistochemical	 sections	 were	 counterstained	 with	 Mayer’s	

hematoxylin.	Negative	control	samples	were	processed	identically	to	the	

test	samples	except	 that	 the	primary	antibodies	were	omitted	 from	the	

incubation.	 The	positively-stained	area	was	quantified	automatically	 for	

each	 antibody	 using	 an	 image	 analysis	 system	 (AnalySIS®,	 Soft	 Image	

System	 GmbH,	 Olympus	 Corp.,	 Munster,	 Germany),	 and	 expressed	 as	

percentage	of	the	total	area.	 Initially	the	colors	of	the	 images	that	have	

been	stained	to	the	molecule	of	interest	were	defined.	Once	these	colors	

were	 defined,	 they	 were	 automatically	 detected	 in	 all	 samples.	 The	

software	 analyzed	 the	 stained	 area	 in	 relation	 to	 the	 total	 image	 area,	

which	 is	 termed	 phase	 analysis.	 The	 rationale	 for	 this	 method	 is	

described	 in	 more	 detail	 in	 the	 Supplementary	 Methods,	 and	 is	 also	

available	at		

ftp://ftp.ccmr.cornell.edu/utility/FEI%20temp/AnalySIS%20docs/Getting

%20Started.pdf.	This	 is	a	semi-quantitative	analysis	that	measures	areas	

and	 not	 intensities.	 The	 coefficient	 of	 variation	 is	 lower	 than	 10%.	 This	

method	 is	 commonly	 accepted	 and	 has	 been	 employed	 previously	 in	

several	 immunohistochemical	 studies	 by	 our	 group	 and	 other	 authors	

[23,28,40,54-58].	 Inter-assay	 coefficients	 of	 variation	 were	 as	 follows:	

PON1,	9.6%;	PON3,	7.3%;	CCL2,	4.5%;	CCR2,	5.3%;	D6,	6.4%;	DARC,	7.1%	

(n	=	20	for	each	variable).		

	

2.4	Statistical	analyses	

Significance	 of	 difference	 between	 groups	 was	 assessed	 by	 the	

Mann-Whitney	 U	 test.	 Results	 are	 expressed	 as	 medians	 and	 IQR	
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(Interquartile	 Range).	 All	 statistical	 analyses	 were	 performed	 with	 the	

Statistical	 Package	 for	 the	 Social	 Sciences,	 version	 22.0	 (SPSS	 Inc,	 IBM	

Corp,	Chicago,	IL,	USA).			

	3.	RESULTS		

Patients	with	PAD	did	not	significantly	differ	from	the	control	group	

in	 age	 and	 gender	 distribution.	 The	 patient	 group	 had	 a	 significantly	

higher	 percentage	 of	 smokers,	 and	 lower	 serum	 cholesterol	 and	 low-

density	lipoprotein	(LDL)	cholesterol	concentrations.	We	did	not	observe	

any	 significant	 difference	 in	 any	of	 the	other	 standard	biochemical	 and	

hematological	variables.	The	circulating	levels	of	CCL2	and	8-isoprostanes	

(a	marker	of	oxidative	stress)	were	significantly	 increased	 in	PAD,	while	

serum	PON1	concentrations	and	activities	were	decreased	(Table	1).	CRP	

protein	 levels	were	not	 significantly	 increased	 in	our	patients,	 a	 finding	

probably	 related	 to	 that	 they	 were	 treated	 with	 salicylates	 and	

antiplatelet	agents.		

	
The	histological	and	immunohistochemical	analyses	of	the	peripheral	

arteries	 revealed	 that	 PAD	 patients	 had	 a	 significantly	 thicker	 tunica	

intima	 relative	 to	 the	 tunica	media	 of	 the	 artery	wall	 (termed	 the	 I/M	

ratio).	 There	 were	 significant	 increases	 in	 the	 percentage	 positive	

staining	for	PON1,	PON3,	CD68	antigen	(a	marker	of	macrophages),	CCL2,	

and	 also	 in	 the	 CCL2	 receptors	 termed	 chemokine-binding	 protein	 2	

(CCBP2,	also	termed	D6),	and	Duffy	antigen/chemokine	receptor	(DARC).	

We	 did	 not	 observe	 any	 significant	 change	 in	 C-C	 chemokine	 receptor	

type	2	(CCR2)	staining	relative	to	controls	(Table	2).	Similar	results	were	

obtained	when	smokers	were	excluded	from	the	PAD	group	(Table	S1).	
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Table	 1.	 Selected	 descriptive	 characteristics	 and	 laboratory	 variables	 in	
participants.	

Parameter	 Control	
(n=8)	

PAD	
(n=66)	

p-
value	

Clinical	characteristics	 	 	 	
Age,	years	 66	(30	–	76)	 70	(62	–	77)	 0.223	
Male,	n	(%)	 5	(62.5)	 55	(85.9)	 0.094	
Smokers,	n	(%)	 1	(14.3)	 16	(31.4)	 0.048	
Complete	blood	count	 	 	 	
Red	blood	cells,	x1012/L	 4.32	(3.18	–	4.47)	 3.67	(3.14	–	4.24)	 0.449	
Hemoglobin,	g/dL	 12.46	(9.99	–	

13.28)	
10.85	(9.45	–	

12.93)	
0.468	

Leukocytes,	x109/L	 9.22	(8.58	–	10.17)	 9.89	(7.44	–	12.20)	 0.668	
Platelets,	x109/L	 227.5	(163.7	–	

246.2)	
312.5	(199.0	–	

419.0)	
0.080	

Biochemical	variables	in	serum	or	plasma	
Glucose,	mmol/L	 5.77	(5.11	–	6.77)	 6.38	(5.11	–	8.83)	 0.406	
Total	cholesterol,	mmol/L	 4.77	(3.87	–	6.39)	 3.39	(2.90	–	4.47)	 0.030	
HDL	–	cholesterol,	mmol/L	 1.24	(0.98	–	1.40)	 0.93	(0.83	–	1.20)	 0.074	
LDL	–	cholesterol,	mmol/L	 3.54	(3.11	–	4.42)	 1.95	(1.68	–	2.69)	 0.001	
Triglycerides,	mmol/L	 1.47	(1.13	–	2.15)	 1.31	(1.00	–	1.87)	 0.449	
Fibrinogen,	g/L	 5.51	(4.48	–	7.54)	 6.96	(5.34	–	8.11)	 0.237	
C-reactive	protein,	mg/L	 6.1	(0.6	–	7.2)	 8.1	(2.7	–	16.0)	 0.147	
Total	proteins,	g/L	 65	(55	–	68)	 60	(55	–	69)	 0.743	
CCL2,	ng/L	 373.4	(255.2	–	

431.8)	
622.8	(472.7	–	

898.4)	
<	

0.001	
PON1,	mg/L	 75.4	(56.7	–	143.8)		 25.2	(18.4	–	35.8)	 <	

0.001	
PON3,	mg/L		 1.95	(1.51	–	2.50)	 1.73	(1.43	–	2.27)	 0.490	
8-isoprostanes,	ng/L	 14.2	(2.0	–	37.2)	 100.8	(37.6	–	

314.7)	
<	

0.001	
PON1	 lactonase	 activity,	
U/L	

5.69	(5-02	–	6.29)	 3.04	(2.11	–	3.73)	 <	
0.001	

The	bold	numbers	highlight	the	statistically	significant	differences	
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Table	2:	Differences	in	selected	variables	between	control	individuals	and	
PAD	patients	

Parameter	 Control	
(n=8)	

PAD	
(n=66)	

p-value	

IMT	(mm)	 1.00	(0.70	–	1.30)	 1.29	(1.00	–	1.74)	 0.150	
I/M	ratio	 0.16	(0.13	–	0.65)	 2.10	(1.33	–	3.22)	 <0.001	
%	PON1	staining	 1.70	(1.54	–	3.72)	 11.19	(7.25	–	20.81)	 <0.001	
%	PON3	staining	 0.55	(0.22	–	0.73)	 3.25	(2.01	–	4.37)	 <0.001	
%	CCL2	staining	 2.26	(0.36	–	3.65)	 30.75	(9.63	–	44.41)	 <0.001	
%	CCR2	staining	 18.29	(7.02	–	27.56)	 22.99	(13.21	–	42.71)	 0.263	
%	CD68	staining	 1.10	(0.65	–	2.88)	 4.57	(2.40	–	9.24)	 0.007	
%	D6	staining	 0.83	(0.22	–	12.9)	 41.21	(24.55	–	58.39)	 <0.001	
%	DARC	staining	 3.29	(2.01	–	5.06)	 37.26	(18.06	–	51.85)	 <0.001	
IMT:	 Intima-Media	 thickness.	Results	 are	 shown	as	medians	 (IQR).	 Staining	 for	
chemokine	(C–C	motif)	 ligand	2	(CCL2),	C–C	chemokine	receptor	type	2	(CCR2),	
cluster	of	differentiation	68	 (CD68),	Duffy	antigen/chemokine	receptor	 (DARC),	
chemokine-binding	 protein	 2	 (D6),	 paraoxonase-1	 (PON1)	 and	 paraoxonase-3	
(PON3)	 were	 measured	 as	 the	 area	 of	 positive	 staining	 and	 expressed	 as	
percentage	of	the	total	area	examined	using	the	image	analysis	system	(see	text	
for	details).	The	bold	numbers	highlight	the	statistically	significant	differences.		
	

Affected	arteries	had	 severe	alterations	 compared	 to	 the	normal	artery	

histology	(Figure	1).	The	intima	was	thicker	and	had	extensive	deposits	of	

cholesterol	 and	 inflammatory	 cells.	 Calcium	 deposits	 were	 clearly	

identified	 in	 the	media.	Masson’s	 trichrome	 stain	was	used	 to	evaluate	

the	 arteries’	 architecture	 which,	 in	 affected	 arteries,	 highlighted	 an	

infiltration	 of	 smooth	 muscle	 cells	 from	 the	 media	 into	 the	 intima,	 or	

perhaps	a	loss	of	muscle	cells	from	the	media	and	increase	in	connective	

tissue,	and	greater	obstruction	of	the	arterial	lumen.		
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Figure	1.	 Representative	histological	 images	of	peripheral	 arteries;	 (A)	Arteries	
stained	with	Hematoxylin-Eosin.	The	 intima	 in	affected	arteries	was	thicker	and	
replete	with	cholesterol	deposits	and	 inflammatory	cells	 (arrow).	Magnification	
20x;	 (B)	 Alizarin	 Red	 staining	 to	 detect	 the	 presence	 of	 calcium.	 There	 were	
calcium	deposits	in	affected	arteries	located,	mainly,	in	the	media	and,	in	some	
cases,	 calcium	 was	 observed	 in	 the	 internal	 elastic	 lamina	 (arrows).	
Magnification	20x;	(C)	Masson’s	Trichrome	stain	showing,	in	affected	arteries,	an	
infiltration	 of	 smooth	muscle	 cells	 from	 the	media	 to	 the	 intima	 (arrow).	 The	
lumen	shows	partial	obstruction.	Magnification	40x.	(D)	Actin	staining	to	detect	
the	presence	of	smooth	muscle	cells.	The	arrow	shows	the	area	of	infiltration	of	
these	cells	 from	the	media	 to	 the	 intima.	 	Magnification	20x.	The	 inserts	 show	
higher	magnification	(100x)	images	of	the	indicated	areas.	
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In	 normal	 arteries,	 PON1	 expression	 was	 low	 and	 located	 in	 the	

intima	 and	 in	 the	 adventitia.	 PON3	 expression	 was	 imperceptible.	

Conversely,	 in	 the	arteries	of	PAD	patients,	PON1	and	PON3	expression	

were	 higher.	 PON1	 presented	 two	 types	 of	 localization:	 1)	 when	 the	

intima	was	only	moderately	enlarged,	PON1	was	located	in	the	adventitia	

vessels	 and	 the	media;	 2)	 when	 the	 intima	 was	 disorganized	 and	 with	

cholesterol	 deposits,	 PON1	 was	 found	 surrounding	 the	 cholesterol	

crystals	at	the	site	of	the	lesion.	In	affected	arteries,	PON3	was	found	in	

the	adventitia	or	in	the	injury	sites	of	the	intima	(Figure	2).	Areas	of	CD68	

staining	had	a	similar	spatial	distribution	than	those	of	paraoxonases	and	

CCL2	(Supplementary	Figures	1	and	2).	

	

In	normal	arteries,	CCL2	was	mildly	expressed	in	the	adventitia,	while	

CCR2	 was	 found	 mostly	 in	 the	media,	 with	 weaker	 expressions	 in	 the	

adventitia	 and	 intima.	 CD68,	 D6	 and	 DARC	 expressions	 were	 mild.	

Conversely,	the	arteries	of	PAD	patients	had	higher	expressions	of	CCL2,	

CD68,	D6	and	DARC.	CCL2	was	found	mostly	in	the	adventitia	while	CCR2	

was	found	mostly	in	the	media,	with	weaker	expressions	in	the	adventitia	

and	 intima,	 as	 found	 in	normal	arteries.	CD68	expression	was	observed	

mostly	 in	 the	 thickest	 areas	 of	 the	 intima.	 DARC	was	 located	mostly	 in	

the	 media,	 although	 it	 could	 also	 be	 found	 in	 the	 adventitia	 and/or	

intima	of	the	vessels.	D6	was	found	mostly	in	the	adventitia	(Figure	3).	
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Figure	 2.	 Representative	 immunohistochemical	 images	 for	 paraoxonase-1	 (PON1)	 and	 paraoxonase-3	 (PON3)	 staining	 of	 peripheral	
arteries;	(A)	PON1	expression	in	normal	artery	was	almost	undetectable,	and	located	in	the	media	and	adventitia.	PON1	had	two	types	of	
localization	in	affected	arteries:	when	the	intima	was	not	very	thick,	PON1	was	located	in	the	adventitia	and	media	of	the	vessels	(arrow).	
When	the	intima	was	disorganized	and	with	cholesterol	deposits,	PON1	was	expressed	in	the	lesion	site	(arrow);	(B)	PON3	expression	was	
undetectable	in	normal	tissue	whereas,	in	affected	arteries,	PON3	was	located	in	the	adventitia	or	in	the	injury	sites	of	the	intima	(arrow).	
Magnification	x20.	The	inserts	show	higher	magnification	(100x)	images	of	the	indicated	areas.	
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Figure	 3.	 Representative	 immunohistochemical	 images	 for	 inflammatory	
markers	in	peripheral	arteries:	(A)	Chemokine	(C–C	motif)	ligand	2	(CCL2)	was	
expressed	 in	 the	 adventitia	 in	 normal	 and	 affected	 arteries	 (arrow);	 (B)	 C–C	
chemokine	 receptor	 type	 2	 (CCR2)	 was	 expressed,	 mainly,	 in	 the	 media	 in	
normal	and	affected	arteries.	However,	it	can	also	be	found	in	the	intima	and	
in	 adventitia	 of	 the	 vessels	 (arrow);	 (C)	 Cluster	 of	 differentiation	 68	 (CD68)	
was	 mildly	 expressed	 in	 control	 arteries	 while,	 in	 affected	 arteries,	 the	
expression	 was	 higher	 and	 located,	 mainly,	 in	 the	 intima	 (arrow);	 (D)	
Chemokine-binding	 protein	 2	 (D6)	 expression	 was	 found,	 mainly,	 in	 the	
adventitia;	 (E)	Duffy	 antigen/chemokine	 receptor	 (DARC)	was	 found,	mainly,	
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in	the	media,		although	it	was	observed	as	well	in	the	adventitia	and/or	intima	
of	 some	 vessels.	 Magnification	 20×.	 The	 inserts	 show	 higher	 magnification	
(100×)	images	of	the	indicated	areas.		

4.	DISCUSSION	

The	present	study	shows	 (by	 immunostaining)	 that	paraoxonases,	

CCL2	 and	 several	 CCL2	 receptors	 are	 increased	 in	 peripheral	 arteries	

with	 indications	 of	 atherosclerosis.	 This	 could	 be	 a	 response	 to	

increased	 cellular	 oxidative	 stress	 as	 well	 as	 the	 migration	 of	

monocytes.	 In	PAD	patients,	we	observed	an	 increased	CD68	staining	

which	is	a	specific	marker	of	macrophages.	Macrophage	mitochondrial	

oxidative	 stress	 plays	 a	major	 role	 in	 atherosclerosis	 via	mechanisms	

involving	 the	 NF-κB-CCL2	 pathway	 [32].	 Paraoxonases	 prevent	

oxidative	 stress	 by	 reducing	 the	 amount	 of	 oxidized	 LDL	 in	 the	

circulation	as	well	 as	 the	vessel	wall.	 This,	 in	 turn,	 reduces	monocyte	

infiltration	 into	 the	vessel	wall	and,	as	 such,	 is	anti-inflammatory	 [33,	

34].	The	protein	expression	of	this	enzyme	has	been	observed	in	many	

tissues	 in	 humans	 [35]	 and	 mice	 [23].	 PON1	 reduces	 macrophage	

oxidation	of	LDL	as	well	as	macrophage	oxidative	stress,	and	increases	

cholesterol	efflux	from	macrophages	to	high-density	lipoprotein	(HDL),	

thus	 reducing	 foam	 cell	 formation	 and,	 as	 a	 consequence,	 the	

development	or	progression	of	atherosclerosis.	Therefore,	the	increase	

in	 PON1	 staining	 found	 in	 this	 study	 could	 indicate	 that	 a	 protective	

response	 to	 increased	 oxidative	 stress	 was	 occurring	 in	 the	

macrophages	 of	 the	 diseased	 arteries.	 For	 example,	 it	 is	 of	

considerable	 note	 that	 PON1	 expression	 was	 found	 surrounding	

cholesterol	 deposits	 in	 severely	 diseased	 arteries,	 and	which	 strongly	

supports	 the	 hypothesis	 of	 a	 protective	 role	 for	 this	 enzyme	 i.e.	 that	

PON1	 infiltrates	 the	 arterial	 tissue	 to	 combat	 the	 deposition	 of	 the	
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atherosclerosis-promoting	cholesterol.	The	physiological	 role	of	PON3	

is	 still	 unclear.	 Results	 from	 the	 present	 study	 support	 previous	

findings	 from	 our	 group	 showing	 increased	 serum	 PON3	

concentrations	in	patients	with	PAD	[31].	Studies	on	cellular	expression	

of	 this	 enzyme	 and	 the	 elucidation	 of	 its	 athero-protective	 role	 are	

scarce	 and	 inconclusive.	 PON3	 has	 lactonase	 but	 not	 paraoxonase	

activity	 [36,	 37].	 Previous	 studies	 reported	 that	 PON3	 attenuates	 the	

oxidation	 of	 LDL	 in	 vitro	 [38]	 and	 that	 the	 overexpression	 of	 human	

PON3	decreased	 atherosclerosis	 and	 adiposity	 in	mice	 [39].	 Although	

the	increase	in	PON3	protein	expression	in	the	arteries	of	PAD	patients	

is	quantitatively	small,	 it	needs	to	be	taken	 into	account	that	PON3	is	

about	 100	 times	 more	 potent	 per	 mg	 of	 protein	 than	 PON1,	 in	

protecting	 LDL	 against	 lipid	 peroxidation	 [36].	 Hence,	 the	 increase	 in	

the	 enzyme’s	 expression	 in	 these	 patients	 could	 be	 of	 clinical	

relevance.	

	

In	 the	 peripheral	 circulation,	 decreased	 PON1	 activities	 are	

associated	 with	 increased	 concentration	 of	 CCL2	 [30],	 and	 in	 vitro	

studies	 found	 that	 PON1	 inhibits	 the	 production	 of	 CCL2	 induced	 by	

oxidative	 stress	 in	 endothelial	 cells	 [20].	 However,	 this	 inverse	

relationship	 is	 not	 confirmed	 at	 tissue	 level.	 Indeed,	 both	 molecules	

are	 ubiquitously	 expressed	 in	 most	 tissues	 and	 are	 located	 in	 close	

proximity	 to	 one	 another,	 suggesting	 some	 manner	 of	 coordinated	

function	 [23,40].	 Results	 of	 the	 present	 study,	 and	 previous	 others,	

show	that	 the	expression	of	both	proteins	 is	 increased	 in	 the	arteries	

of	 patients	with	 atherosclerosis	 [40].	 This	 observation	would	 suggest	

that	the	variations	in	PON1	and	CCL2	concentrations	in	plasma	do	not	

necessarily	 correlate	 with	 their	 roles	 at	 cellular	 level.	 Perhaps	 PON1	
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protein	 expression	 is	 increased	 in	 diseased	 arteries	 to	 counteract	

oxidative	 stress	 and	 CCL2-induced	 inflammation.	 However,	 this	

hypothesis	has	to	be	confirmed	by	further	studies.	

	

CCL2	 is	 likely	 to	 have	 considerable	 impact	 on	 PAD	 since	 the	

biological	function	of	this	chemokine	is	to	induce	monocyte	migration	

and,	 as	 well,	 because	 the	 arteries	 with	 moderate	 atherosclerosis	

appear	 to	 accumulate	 CCL2	 in	 response	 to	 a	 variety	 of	 pro-

inflammatory	stimuli	[24,30,41-44].	Atherosclerosis	is	an	inflammatory	

disease,	and	the	consensus	is	that	CCL2	is	involved	in	its	pathogenesis	

[45].	 In	the	present	study,	we	found	increased	CCL2	expression	in	the	

arteries	of	PAD	patients,	together	with	an	increased	expression	of	two	

of	 the	 CCL2	 receptors	 i.e.	 D6	 and	DARC.	D6	 and	DARC	belong	 to	 the	

poorly-understood	chemokine	receptors	collectively	known	as	atypical	

or	 silent.	 These	 are	G-protein	 coupled	 receptors	 that	 do	 not	 activate	

conventional	 signaling	 events.	 Conversely,	 they	 may	 internalize,	

degrade	 or	 transport	 ligands	 (i.e.	 they	 have	 the	 potential	 to	 create	

clinically	 relevant	 chemokine	 patterns	 in	 tissues)	 [46].	 Their	 levels	 of	

expression	 have	 not	 been	 explored	 previously	 in	 diseased	 arteries	 of	

PAD	patients.	The	availability	of	CCL2	may	be	complicated	by	potential	

effects	induced	by	differential	expression	of	the	specific	receptor	CCR2	

and	the	presence	of	these	atypical	chemokine	receptors.	We	observed	

that	 the	 expression	 of	 these	 receptors	 was	 increased	 in	 diseased	

arteries,	 and	 that	 their	 histological	 distributions	 are	 not	 uniform.	 A	

pathogenic	 role	 is	 likely,	 and	 data	 suggest	 that	 atypical	 chemokine	

receptors	 modify	 chemokine	 availability	 in	 PAD.	 Although	 these	

receptors	 have	 no	 involvement	 in	 cell	 migration,	 their	 modulatory	

effect	on	inflammatory	response	is	likely.		
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Previous	studies	from	our	group	also	reported	increased	PON1	and	

PON3	 expressions	 in	 aortas	 from	 patients	 undergoing	 coronary	 or	

aortic	artery	bypass	grafting	[40].	This	 is	 relevant,	because	 it	suggests	

that,	 despite	 the	 atherosclerosis	 burden	 is	 higher	 in	 PAD,	 changes	

inside	 the	 tissue	 are	 similar	 at	 a	 molecular	 level.	 The	 mechanisms	

underlying	 the	 increased	 PON1	 and	 PON3	 immunohistochemical	

staining	in	the	arteries	of	PAD	patients	cannot	be	ascertained	from	the	

present	 investigation,	 but	 these	 patients	 had	 oxidative	 stress,	 as	

indicated	 by	 the	 elevated	 serum	 8-isoprostanes	 concentration.	

Oxidative	 stress	 stimulates	 PPARγ	 and	 NFκB-related	 pathways	 [47],	

and	 these	molecules	have	been	 reported	 to	 stimulate	 the	expression	

of	 paraoxonases	 [48,49].	 However,	 this	 increase	 is	 in	 an	 apparent	

contradiction	with	 the	 decrease	 in	 the	 serum	 levels	 of	 the	 enzymes,	

and	 a	possible	 explanation	 could	be	 an	 increase	 in	 PPARδ	 expression	

and	decreased	PON1	proteolysis.	This	is	the	case	in	a	rat	model	of	liver	

fibrosis	that	our	group	published	a	few	years	ago	[50].	Rats	with	CCl4-

induced	 liver	 fibrosis	 had	 oxidative	 stress	 and	 increased	 PPARδ	 gene	

expression.	 These	 alterations	were	 associated	 to	 an	 inhibition	 of	 the	

HDL	 synthesis	 and,	 consequently,	 a	 decreased	PON1	 secretion	 to	 the	

extracellular	medium.	 In	 addition,	 the	 hepatic	 levels	 of	 the	 protease	

cathepsin	 B	 were	 decreased,	 leading	 to	 an	 inhibition	 of	 protein	

degradation.	 Thus,	 hepatic	 PON1	 levels	 were	 elevated	 as	 a	

consequence	of	the	combination	of	a	decreased	HDL	secretion,	and	to	

an	inhibition	of	lysosomal	protein	degradation.	To	ascertain	if	the	same	

phenomena	 occur	 in	 the	 arteries	 of	 PAD	 patients	 requires	 further	

studies,	 but	 the	 strong	 decrease	 in	 HDL-cholesterol	 concentrations	

observed	in	our	patients	is	in	agreement	with	this	hypothesis.			
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A	caveat	of	the	present	study	is	that	we	could	not	analyze	PON2	in	

the	 arteries	 of	 PAD	 patients.	 This	 enzyme	 plays	 an	 important	 role	 in	

the	 intracellular	 protection	 against	 oxidative	 stress	 [14],	 and	 new	

investigations	focused	in	PON2	and	PAD	should	be	further	pursued.		

	
	

5.	CONCLUSION		

In	 conclusion,	 PON1	 and	 PON3,	 CCL2	 together	 with	 the	 D6	 and	

DARC	receptors	are	increased	in	the	arteries	of	patients	with	PAD.	The	

findings	 suggest	 that	 these	 molecules	 play	 an	 important	 role	 in	 the	

development	 and	 progression	 of	 atherosclerosis	 in	 peripheral	 artery	

disease.	
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ABSTRACT	

Background	and	objective:	The	prevalence	of	peripheral	artery	

disease	 (PAD)	 is	high	 (20-25%)	 in	 the	population	older	 than	65	years,	

and	patients	frequently	do	not	present	for	treatment	until	the	disease	

is	 advanced.	 Circulating	 markers	 of	 disease	 activity	 might	 provide	

patients	with	a	key	opportunity	to	be	treated.	The	established	role	of	

matrix	 metalloproteinases	 (MMPs)	 in	 vascular	 remodeling	 and	 their	

association	 with	 atherosclerosis	 progression	 is	 the	 basis	 on	 which	 to	

explore	 the	 feasibility	 of	 detecting	 blood-specific	 peptides	 generated	

during	the	degradation	of	the	extracellular	matrix	(ECM).	

Methods:	A	combined	histological	and	non-targeted	proteomic	

approach	using	liquid	chromatography	and	tandem	mass	spectrometry	

was	 used	 to	 assess	 the	 protein	 profile	 in	 arterial	 specimens	 from	

patients	undergoing	elective	surgery.	We	then	selected	a	panel	of	neo-

epitopes,	 likely	 indicating	 ECM	 turnover,	 and	 measured	 them	 by	

enzyme-linked	immunosorbent	assays	in	serum	samples	from	a	cohort	

of	195	PAD	patients	who	were	in	a	stable	state	and	exhibited	different	

disease	activity.	

Results:	 Histological	 and	 proteomic	 analyses	 confirmed	 the	

structural	disorganization	of	affected	arteries.	Several	proteins	(14	out	

of	81)	were	 identified	as	differentially	expressed	 in	diseased	arteries;	

most	of	them	were	related	to	ECM-components	and	the	difference	in	

expression	 was	 likely	 due	 to	 an	 imbalance	 in	 vascular	 remodeling.	

Multivariate	analyses	suggest	that	severe	 lesions	 in	PAD	patients	may	

have	a	specific	proteome.	Targeting	selected	neo-epitope	fragments	in	

the	 serum	 revealed	 that	 some	 but	 not	 all	 fragments	 had	 potential	

value	 in	 the	 clinical	 management	 of	 PAD.	 Notably,	 the	 detection	 of	
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neo-epitopes	 from	 fragments	 of	 MMP-mediated	 degradation	 of	

versican	and	collagen	type	IV	segregated	patients	with	mild/moderate	

PAD	 (intermittent	 claudication,	 Fontaine	 I-II)	 from	 those	 with	 severe	

PAD	(critical	limb	ischemia,	Fontaine	III-IV).	

	

Conclusion:	 We	 propose	 novel	 non-invasive	 candidate	

biomarkers	that	may	be	clinically	useful	across	the	PAD	spectrum.	
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1. INTRODUCTION	

Systemic	 atherosclerosis	 is	 a	 progressive,	 age-related	 disease	

underlying	 the	 most	 common	 causes	 of	 death.	 The	 prevalence	 of	

peripheral	artery	disease	(PAD)	 is	high,	with	over	200	million	afflicted	

patients	in	industrialized	countries,	and	is	further	increasing	due	to	the	

convergent	 epidemics	 of	 diabetes	 and	 obesity	 [1,2].	 Lesions	 in	 the	

arteries	 of	 the	 lower	 extremities	 represent	 a	 clinical	 spectrum	

encompassing	 asymptomatic	 and	 underdiagnosed	 illnesses	 as	well	 as	

symptomatic	 disorders	 in	 which	 the	 initial	 manifestations	 are	 either	

intermittent	 claudication	 (IC)	 or	 critical	 limb	 ischemia	 (CLI)	 [3,4].	 The	

challenge	 is	 to	 establish	 non-invasive	 biomarkers	 for	 predicting	

patients	 likely	to	progress	to	CLI	and	for	 improving	success	 in	offering	

preventive	medical	management.	

	

Changes	in	lumen	caliber	are	major	determinants	of	the	course	of	

PAD	symptoms,	and	wall	remodeling	in	peripheral	arteries	of	a	certain	

size	 and	 length	 seems	 to	 be	 a	 crucial	 process	 to	 understand	 the	

reaction	 of	 old	 and	 damaged	 tissue	 to	 atherosclerotic	 injuries	 [5].	

Mechanistic	 knowledge	 is	 incomplete,	 but	 the	 major	 role	 of	 the	

extracellular	 matrix	 (ECM)	 in	 providing	 a	 mechanical	 scaffold	 and	

support	to	cell	migration	 is	undisputed	[6].	The	dynamic	regulation	of	

the	 ECM	 is	 governed	 by	 the	 balance	 between	 synthesis	 and	

degradation	 of	 ECM	 components,	 which	 is	 context-specific	 and	

involves	 the	correct	 functioning	of	 cytokines,	enzymes	such	as	matrix	

metalloproteinases	 (MMPs)	 and	 growth	 factors	 [7-9].	We	 now	 know	

that	atherosclerosis-associated	remodeling	is	the	complex	response	to	

inflammatory	cells,	 lipid	deposition	and	mechanic	or	shear-dependent	

stimuli,	which	are	responsible	for	changes	in	ECM	composition	and	for	
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disrupted	cytoskeletal	architecture	[10-14].	Here	we	provide	an	insight	

into	 the	 proteome	 composition	 and	 the	 relative	 expression	 of	 ECM	

components	 in	 severely	 affected	 peripheral	 arteries	 and	 we	 test	 the	

hypothesis	 that	 a	 directed	 choice	 of	 neo-epitopes	 may	 provide	

clinically	useful	non-invasive	biomarkers	in	PAD	patients.	

	

2. MATERIALS	AND	METHODS	

Participants	and	study	design	

	The	 local	 Ethics	 Committee	 and	 Institutional	 Review	 Board	

approved	 the	 procedures	 involved	 in	 this	 study	 (Epinols/12-03-

09/3proj6).	 Written	 informed	 consent	 was	 obtained	 from	 all	

participants	 before	 inclusion.	 Patients	 (n=195)	 were	 consecutively	

enrolled	men	selected	from	among	those	attending	our	Department	of	

Vascular	Surgery	and	with	an	established	diagnosis	of	PAD	according	to	

Fontaine	classification	[15].	Patients	with	infected	lesions,	evidence	of	

neoplastic	 disease,	 chronic	 kidney	 disease,	 liver	 disease	 or	

inflammatory	disease	 (or	 receiving	anti-inflammatory	drugs)	were	not	

included.	 Ankle-brachial	 index	 (ABI)	 was	 measured	 per	 standard	

technique	in	both	lower	limbs	and	non-invasive	imaging	techniques	or	

arteriographies	 were	 performed	 according	 to	 the	 standard	 of	 care.	

Serum	was	collected	at	the	time	of	inclusion	and	stored	at	-80ºC	until	

analyses.	 Patients	 were	 followed	 up	 every	 3	 months	 for	 1	 year	 and	

there	 was	 no	 mortality	 during	 this	 period.	 No	 patient	 was	 included	

postoperatively	 or	 lost	 to	 follow-up	 but	 some	 patients	 needed	

infrainguinal	limb	revascularization	(n=18).	These	patients	were	invited	

to	 participate	 in	 a	 case-control	 study	 (Inflamet/15-04-30/4proj6)	 that	

required	 donating	 portions	 of	 diseased	 artery	 for	 proteomic	 analysis	

that	were	 compared	with	healthy	artery	 samples	obtained	 from	road	
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accident	 victims	 of	 a	 similar	 age	 range	 (66-70	 years).	 New	 informed	

consent	was	obtained	from	either	the	participants	or	a	next	of	kin.		

	

Histological	examination	

To	examine	tissue	morphological	features,	serial	sections	of	tissue	

were	 obtained	 from	 samples	 fixed	 in	 10%	 neutral-buffered	 formalin	

and	 embedded	 in	 paraffin.	 Hematoxylin	 and	 eosin	 staining	 (Sigma-

Aldrich,	 Steinheim,	 Germany)	 was	 used	 to	 identify	 different	 cellular	

structures.	Masson’s	trichrome	staining	(Bio	Optica,	Milano,	Italy)	was	

used	 to	 assess	 collagen	 fibers,	 smooth	 muscle	 cells,	 nucleus	 and	

cytoplasm	 and	 Sirius	 red	 staining	 (Direct	 Red	 80,	 Sigma-Aldrich,	

Steinheim,	Germany)	was	used	to	identify	collagen	fibers.	Images	were	

obtained	at	x200	magnification	and	the	 Intima/Media	ratio	(IMR)	was	

obtained	by	dividing	the	thickness	of	the	intima	by	the	thickness	of	the	

media	 measured	 using	 an	 optical	 microscope	 (Nikon,	 Eclipse	 E600,	

Madrid,	Spain)	equipped	with	image	analysis.	

	

Proteomics	

We	 have	 previously	 used	 these	 methods	 to	 analyze	 the	 protein	

secretion	 profile	 of	 carotid	 atherosclerotic	 plaques	 [16];	 ancillary	

methods	and	specific	details	may	be	found	in	supplementary	material	

and	 methods,	 S1.	 Briefly,	 sample	 arteries	 were	 cut	 into	 pieces	 and	

homogenized	 in	 the	 presence	 of	 type	 1	 collagenase	 (Sigma-Aldrich,	

Steinheim,	Germany).	Following	different	rounds	of	centrifugation	and	

chemical	 treatment,	 precipitated	 proteins	 were	 vacuum-dried	 and	

dissolved	 in	 0.5	 M	 triethylammonium	 bicarbonate,	 pH=	 7.2,	 to	 be	

sequentially	denatured,	reduced	and	alkylated.	For	digestion,	samples	

were	 incubated	with	sequencing-grade	trypsin	overnight	at	37	°C.	We	
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used	 a	mass	 spectrometry	 approach	 for	 quantification	by	 performing	

isobaric	 tag	 for	 relative	 and	 absolute	 quantitation	 (iTRAQ)	 labeling	

using	 iTRAQ	 8-plex	 reagent	 kits	 (SCIEX,	Madrid,	 Spain),	 as	 previously	

described	 [17].	 Labeled	 peptides	 were	 then	 purified	 using	 a	 SCX	

column	 (Strata®	 SCX	 55um,	 70Å,	 Phenomenex),	 desalted	 and	

concentrated	 through	 a	 C18	 Sep-Pak	 column	 (Waters,	 Bedford,	 MA,	

USA)	 and	 analyzed	 by	 using	 a	 C-18	 reversed	 phase	 nano-column	

coupled	 to	 a	 trap	 nano-column	 for	 real	 time	 ionization	 and	 peptide	

fragmentation	 on	 a	 LTQ-Orbitrap	 Velos	 Pro	 mass	 spectrometer	

(Thermo	 Fisher	 Scientific,	 San	 Jose,	 CA).	 To	 identify	 proteins,	

information	was	 obtained	 from	 tandem	mass	 spectra	with	 the	 aid	 of	

Proteome	Discoverer,	version	1.4.0.288,	from	Thermo	Fisher	Scientific.	

All	 MS	 and	 MS/MS	 samples	 were	 analyzed	 using	 Mascot	 (Thermo	

Fisher	Scientific;	version	2.4.1.0).	Protein	quantification	was	performed	

by	 comparing	 the	 peak	 intensity	 of	 the	 reporter	 ions	 in	 the	 MS/MS	

spectra	 to	 that	 of	 the	 selected	 peptides	 to	 assess	 the	 relative	

abundance	 of	 the	 peptides.	 Normalized	 concentrations	 of	 selected	

proteins	were	used	to	assess	the	increased	or	decreased	expression	of	

proteins	in	PAD	arteries.	

	

Enzyme-linked	immunosorbent	assays	(ELISA)		

Methods	 involved	 in	 monoclonal	 antibody	 development	 and	

technical	 evaluation	 of	 the	 assays	 were	 essentially	 similar	 to	 those	

recently	 described	 [18].	 Specific	 details	 may	 be	 found	 in	

supplementary	 material	 and	 methods,	 S2.	 The	 list	 of	 selected	 neo-

epitopes	 from	the	MMP-degraded	proteins	 is	 shown	 in	Table	S1,	and	

also	in	the	supplementary	information	and	the	references	therein.	This	

selection	 was	 made	 after	 confirming	 that	 these	 neo-epitopes	 were	
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consistent	with	proteomic	data	and	pathway	analysis	according	to	the	

ConsensusPathDB-human	platform	[19].	

	

Statistical	analysis	

	The	 Kolmogorov-Smirnov	 test	 was	 used	 to	 assess	 normal	

distribution	 of	 the	 variables.	 We	 used	 the	 Mann-Whitney	 U	 test	 to	

compare	 non-parametric	 variables,	 Student’s	 t-test	 for	 parametric	

variables	and	contingency	tables	and	the	chi-square	test	for	categorical	

variables.	For	multiple	comparisons,	the	Kruskal-Wallis	test	or	Analyses	

of	Variance	(one-way	ANOVA)	was	used.	The	results	were	expressed	as	

median	and	interquartile	range	or	percentage	of	the	total	participants.	

For	 proteomic	 analyses,	 principal	 component	 analysis	 (PCA)	 and	

hierarchical	clustering	analysis	were	performed	using	the	Mass	Profiler	

Professional	software	v.12.1	(Agilent	Technologies).	Only	proteins	that	

appeared	 in	more	than	70%	of	the	samples	were	considered,	and	the	

PANTHER	 system	 (www.pantherdb.org)	 was	 used	 for	 functional	

classification.	We	used	the	Benjamini−Hochberg	method	to	avoid	false	

positives	in	differences	due	to	multiple	testing.	Analyses	with	receiving	

operating	 characteristics	 (ROC)	 curves	 and	 binary	 logistic	 regression	

were	 performed	 using	 the	 Statistical	 Package	 for	 the	 Social	 Sciences,	

version	22.0	(SPSS	Inc.,	IBM	Corp,	Chicago,	IL,	USA).	MetaboAnalyst	3.0	

(http://www.metaboanalyst.ca/)	was	used	 to	generate	 scores/loading	

plots,	heatmaps	and	random	forest	analysis.	

	

3. RESULTS	

The	clinical	 characteristics	and	 laboratory	measurements	 (Table	 I)	

suggest	that	the	cohort	of	patients	used	for	this	study	is	representative	

of	 the	 clinical	 spectrum	 of	 PAD	 patients	 seeking	 attention	 in	 our	
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facilities.	 The	 high	 prevalence	 of	 cardiovascular	 risk	 factors	 and	

associated	 treatment,	 including	 the	 fact	 that	most	were	 smokers,	did	

not	significantly	affect	severity	of	disease,	with	the	possible	exception	

of	a	lower	prevalence	of	diabetes	in	Fontaine	I	patients.	However,	age	

was	 a	 significant	 factor	 in	 establishing	 disease	 severity	 and	 a	 major	

consideration	in	further	analyses.		

	

In	 a	 case-control	 study	 combining	 histology	 and	 proteomics,	 we	

first	 evaluated	 the	 differences	 in	 the	 integrity	 of	 arterial	 tissue	 and	

signs	of	vascular	remodeling,	 in	severely	 lesioned	and	normal	arteries	

(Figure	 I).	 Atherosclerosis	 was	 evident	 in	 all	 samples	 from	 the	 PAD	

patients.	 The	 tunica	 intima	 was	 disorganized	 and	 thicker,	 and	 the	

presence	of	lipid	vacuoles	and	cholesterol	crystals	and	other	histologic	

features	 (Figure	 1A)	 were	 consistent	 with	 the	 higher	 (p<0.0001)	

intima/media	 ratio	 observed	 in	 PAD	 patients	 (2.10	 [1.33-3.22])	 with	

respect	to	that	of	similarly	aged	donors	of	healthy	arteries	(0.16	[0.13-

0.65]).	 Furthermore,	 smooth	 muscle	 cells	 normally	 located	 in	 the	

media	 were	 also	 present	 in	 the	 intima	 of	 atherosclerotic	 arteries	

(Figure	1B)	and	the	distribution	of	collagen	fibers	was	disrupted	(Figure	

1C).	
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	Table	I.	Clinical	characteristics,	complete	blood	count	and	biochemical	characteristics	of	PAD	patients	segregated	by	Fontaine	classification	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 Fontaine	I	
N=11	

Fontaine	II	
N=	41	

Fontaine	III	
N=34	

Fontaine	IV	
N=109	

p-value		

Clinical	characteristics	 	

Age	(years)	 55	(50	–	69)	 70	(59.25-75)	 63	(55-69.25)	 71	(64-77)	 <0.001	

BMI	(kg/m2)	 28.9	(23.05-31.16)	 27.3	(23-29.4)	 25.5	(22.25-27.9)	 24	(22-27.8)	 ns	

Diabetes	(%)	 10	 69.4	 45.5	 79.8	 <0.001	
Hypertension,	(%)	 50	 63.2	 57.6	 75	 ns	

Dyslipidaemia,	(%)	 55.6	 41.7	 24.2	 36.7	 ns	

Complete	blood	count	 	
Red	blood	cells,	x1012/L	 5.11	(4.41-5.4)	 4.48	(3.95-4.79)	 4.29	(3.74-4.53)	 4.00	(3.34-4.59)	 <0.001	
Hemoglobin,	g/dL	 14.6	(13.23-16.35)	 13.1	(11.5-15.2)	 13.57	(12.02-14.07)	 11.5	(10.5-13.5)	 0.02	

Leukocytes,	x109/L	 7.44	(6.85-10.23)	 7.51	(6.3-9.42)	 7.61	(6.39-9.56)	 8.35	(6.4-10.1)	 ns	
Platelets,	x109/L	 217.25	(186-243.5)	 219	(183-268)	 252	(200.5-333.65)	 270	(209.5-343)	 0.011	

Biochemical	variables	 	

Total-cholesterol,	mmol/L	 4.06	(2.84-5.65)	 4.04	(3.72-4.74)	 3.95	(3.37-4.47)	 3.77	(3.1-4.51)	 ns	
HDL-cholesterol,	mmol/L	 0.8	(0.72-1.14)	 1.1	(0.86-1.29)	 1.1	(0.87-1.26)	 0.92	(0.74-1.14)	 ns	
LDL-cholesterol,	mmol/L	 2.04	(1.4-3.32)	 2.41	(1.94-3.4)	 2.2	(1.73-2.81)	 2.18	(1.72-2.83)	 ns	

Triglycerides,	mmol/L	 1.56	(1.18-4.53)	 1.51	(1.14-2.56)	 2.35	(1.87-3.47)	 1.97	(1.37-2.86)	 ns	

Glucose,	mmol/L	 6.69	(4.1-7.64)	 5.93	(4.96-8.82)	 5.59	(4.62-7.49)	 5.77	(4.59-7.6)	 ns	
ALT,	U/L	 19	(12.14-35)	 21	(16-26)	 22	(16-40)	 21	(13-32)	 ns	

Gamma-GT,	U/L	 27.5	(16.94-39.8)	 28	(18-47)	 24	(17.25-43)	 31.5	(17-48.8)	 ns	
AST,	U/L	 21	(12-27)	 19	(16-22)	 20	(14.75-31)	 19	(15-30)	 ns	

Fibrinogen,	g/L	 4.07	(3.6-5.48)	 4.84	(4.12-6.43)	 5.39	(4.27-6.11)	 5.82	(4.44-7.78)	 ns	
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BMI: Body mass index; HDL: High-density lipoprotein; LDL: Low-density lipoprotein; ALT: Alanine Aminotransferase; AST: 
Aspartate aminotransferase. Non-parametric variables are shown as median and IQR (25-75%). Qualitative variables are expressed as (%) 
of total participants. Multiple comparisons between groups using Kruskal-Wallis test. 
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Figure	1:	Representative	micrographies	of	peripheral	arteries	from	control	
group	and	PAD	patients	(x20).	Hematoxylin	&	Eosin	(A),	Masson’s	Trichrome	
staining	(B),	Sirius	Red	staining	(C)	were	performed	in	arteries	from	both	
groups.	CC:	Cholesterol	crystals;	LV:	Lipid	vacuoles;	SMC:	Smooth	muscle	cells;	
BF:	Broken	fibers	of	collagen.		
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Our	untargeted	proteomics	approach	 identified	and	quantified	81	

proteins	 present	 in	 both	 control	 and	 diseased	 arteries	 and	 in	 more	

than	70%	of	the	samples	(Table	S2).	However,	once	filtered,	corrected	

and	normalized,	we	identified	a	unique	subset	of	proteins	(n=14)	with	

statistically	 significant	 differences	 between	 diseased	 and	 healthy	

arteries	 and	 therefore	 with	 the	 potential	 to	 represent	 specific	

biomarkers	 (Figure	 2A).	 Putative	 functions	 of	 these	 proteins	 in	

atherosclerosis,	 according	 to	 the	 literature,	 are	 listed	 in	 Table	 S2.	

Notably,	most	of	these	proteins	were	ECM	or	cytoskeletal	components	

(Figure	 2B)	 suggesting	 that	 vascular	 remodeling	 provides	 a	 specific	

target	 that	 might	 be	 used	 to	 explore	 progression	 of	 atherosclerosis.	

Hierarchical	 clustering	 analyses	 and	 principal	 component	 analyses	

strongly	 suggest	 that	 severe	 disease	 in	 PAD	 patients	 may	 have	 a	

specific	proteome,	as	illustrated	in	Figure	2C-E.		
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Figure	 2:	 (A)	 Proteins	 showing	 statistically	 significant	 differences	 between	 control	 group	 and	 PAD	 patients.	 (B)	 Protein	 class	 (Left)	 and	
cellular	component	(Right)	percentage	of	selected	proteins	obtained	by	PANTHER	system.	(C)	Representation	of	the	fold-changes	obtained	
using	 normalized	 concentrations	 of	 selected	 proteins	 in	 both	 groups.	 D)	 Principal	 Component	 Analysis	 and	 E)	 Heatmap	 diagram	 of	
proteomics	results.	Q96IY4:	Carboxypeptidase	B2;	P01023:	Alpha-2-macroglobulin;	P01859:	Ig	gamma-2	chain	C	region;	P01857:	Ig	gamma-
1	 chain	 C	 region;	 P98160:	 Basement	 membrane-specific	 heparan	 sulfate	 proteoglycan	 core	 protein;	 P35580:	 Myosin-10;	 Q08431:	
Lactadherin;	 P13611:	Versican	 core	protein;	 P02790:	Hemopexin;	Q9UBX5:	 Fibulin-5;	 P35555:	 Fibrillin-1;	O75083:	WD	 repeat-containing	
protein	1;	P14618:	Pyruvate	kinase	isozymes	M1/M2;	P02545:	Prelamin-A/C	

UNIVERSITAT ROVIRA I VIRGILI 
PERIPHERAL ARTERY DISEASE: THE SEARCH FOR A BIOLOGICAL MARKER 
Anna Hernández Aguilera 



	 114	

Normalized	 concentrations	 identified	 some	 proteins	 that	 were	

either	 underexpressed	 or	 overexpressed	 in	 atherosclerotic	 arteries	

indicating	the	delicate	balance	between	production	and	degradation	or	

removal	 of	 proteins	 in	 ECM	 turnover.	 Nevertheless,	 we	 assumed	 an	

imbalance	 favoring	 degradation	 of	 ECM	 proteins	 to	 select	 candidate	

neo-epitopes	(Table	S1)	to	be	measured	in	the	serum	of	PAD	patients	

with	validated	ELISA	tests.	

	

Median	and	 IQR	values	 (Table	 II)	 indicated	 that	measurements	of	

specific	 fragments	 of	MMP-8-	 and	MMP-12-mediated	 degradation	 of	

versican	 (VCANM),	MMP-9-mediated	 degradation	 of	 alpha	 5	 chain	 of	

laminin	 (Lam-a5)	and	MMP-mediated	degradation	of	 type	 IV	collagen	

(C4M)	 had	 discriminative	 value	 in	 the	 clinical	 presentation	 of	 PAD	

patients.	This	was	further	confirmed	by	using	random	forest	analyses,	

but	 Lam-a5	 levels	 failed	 to	 discriminate	 patients	 with	 IC	 from	 those	

with	CLI	 and	were	not	 considered	 in	 further	analyses.	 Serum	VCANM	

concentration	 decreased	 progressively,	 was	 correlated	 with	 clinical	

severity,	and	the	analysis	of	ROC	curves	displayed	a	high	sensitivity	and	

specificity	to	distinguish	between	Types	I	and	IV	patients	(Figure	3A,	B).	

A	 similar	 discriminative	 value	 was	 obtained	 for	 C4M	 concentrations,	

but	this	variable	increased	according	to	disease	severity	(Figure	3C,	D).	

The	 combination	 of	 both	 potential	 biomarkers	 provided	 specificity	

higher	 than	 90%	 to	 discriminate	 between	 patients	 with	 mild	 IC	 and	

those	with	CLI	(Figure	3E).	
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Table	 II.	Differences	 in	 selected	 neo-epitopes	 between	 PAD	 patients	
segregated	by	Fontaine	classification.	

	
Results	are	expressed	in	pg/mL	and	as	median	(IQR	range)	for	non-parametric	
variables.	VCANM:	Specific	fragment	of	MMP-8	and	-12-mediated	degradation	
of	versican;	C4M:	MMP-mediated	type	IV	(alpha	1)	collagen	degradation;	Lam-
a5:	 Specific	 fragment	 of	 MMP-9	 mediated	 degradation	 of	 alpha	 5	 chain	 of	
laminin;	 CRPM:	 Specific	 fragment	 of	 MMP-1,	 -3,	 -8,	 -9,	 CatS/K,	 ADAMTS1-
mediated	 degradation	 of	 C-reactive	 protein;	 α-SMA:	 Alpha-smooth	 muscle	
actin,	 acetylated	 N-terminal;	 MIM:	 Specific	 fragment	 of	 MMP-9	 and	 -12-
mediated	 degradation	 of	 mimecan.	 Multiple	 comparisons	 between	 groups	
using	Kruskal-Wallis	test.	

	 Fontaine	I	
N	=	11	

Fontaine	II	
N	=	41	

Fontaine	III	
N	=	34	

Fontaine	IV	
N=	109	

p-
value	

VCANM	 1800			
(1640	–	1900)	

1610		
(1375	–	1830)	

1530		
(1055	–	1810)	

1250		
(1080	–	1560)	

<0.001	

C4M	 16530		
(13720	-21710)	

21480		
(16860	–	30120)	

24790		
(18095	–	31940)	

31730		
(22415	–	45165)	

<0.001	

Lam-a5	 5610		
(4630	–	8490)	

6660		
(4855	–	9810)	

6130		
(3928	–	8278)	

8710		
(6755	–	11960)	

<0.001	

CRPM	 7620		
(5690	–	11520)	

9380	
	(6780	–	14100)	

8645		
(6615	–	11590)	

9970		
(7775	–	12430)	

ns	

α-SMA	 3870		
(2830	–	4900)	

3620		
(2770	–	5570)	

3355		
(2283	–	4513)	

3600		
(2430	–	5100)	

ns	

MIM	 7600		
(3600	–	20370)	

7430	
	(3770	–	12090)	

6770	
	(2795	–	13635)	

8070		
(3885	–	13290)	

ns	

Extracellular	matrix	degradation	in	PAD	

UNIVERSITAT ROVIRA I VIRGILI 
PERIPHERAL ARTERY DISEASE: THE SEARCH FOR A BIOLOGICAL MARKER 
Anna Hernández Aguilera 



	
116	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Figure	3:	Candidate	biomarkers	for	disease	activity.	(A)	ROC	curve	for	VCANM	measurements	between	Fontaine	I	and	Fontaine	IV	patients.	
(B)	Graphical	representation	of	VCANM	concentrations	among	Fontaine	grades.	(C)	ROC	curve	for	C4M	measurements	between	Fontaine	I	
and	Fontaine	IV	patients.	(D)	Graphical	representation	of	C4M	concentrations	among	Fontaine	grades.	(E)	ROC	curve	for	the	combination	of	
VCANM	and	C4M	obtained	by	binary	logistic	regression	between	Fontaine	I	and	Fontaine	IV	patients	
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4. DISCUSSION	

Atherosclerosis	is	a	systemic	disease.	Despite	identical	pathogenesis,	

the	affected	vascular	territories	define	not	only	clinical	relevance	but	also	

different	 responses	 to	 injuries.	 Detecting	 asymptomatic	 stages	 and	 to	

predict	 or	monitor	 disease	 progression	 is	 currently	 an	 unmet	 need	 for	

vascular	 surgeons	 [20]	 that	 might	 be	 fulfilled	 by	 non-invasive	 blood	

biomarkers.	In	limb	arteries,	the	lumen	loss	(i.e.,	progression	to	ischemia)	

is	not	due	to	neointima	formation,	as	is	the	case	in	coronary	arteries	[21].	

As	 confirmed	by	our	histological	assessment,	an	 important	 contribution	

of	 the	 reparative	 response	 to	 promote	 vascular	 remodeling,	 which	

includes	inflammatory	mediators	and	ECM	degradation,	 is	 likely	[21-23].	

Our	 proteomics	 data	 indicate	 that	 severe	 atherosclerotic	 lesions	 in	

peripheral	arteries	have	a	specific	proteome	in	which	proteins	related	to	

tissue	 modeling	 and	 remodeling	 are	 underrepresented	 and	 those	

associated	 with	 inflammation	 seem	 overregulated.	 Among	 those	

overexpressed	proteins,	alpha-2-macroglobulin	and	carboxypeptidase	B2	

largely	 contribute	 to	 the	 differences	 observed	 between	 diseased	 and	

healthy	 arteries.	 Alpha-2-macroglobulin	 has	 been	 recently	 associated	

with	plaque	vulnerability	 in	carotid	arteries	using	a	 similar	 iTRAQ-based	

analysis	 [24]	and	carboxypeptidase	B2	may	be	a	potential	 indicator	of	a	

high	 risk	of	premature	peripheral	 artery	disease	 [25].	Conversely,	other	

proteins	were	 significantly	decreased	 in	diseased	arteries.	 For	 example,	

low	levels	of	lactadherin	may	indicate	advanced	atherosclerosis	and	poor	

adhesion	of	smooth	muscle	cells	to	elastin	fibers	[26].	We	also	observed	

low	levels	of	versican,	a	major	chondroitin	sulfate	proteoglycan,	which	is	

highly	 influenced	 by	 the	 increased	 MMP	 activity	 in	 diseased	 arteries	

[27,28].	 The	 relative	 amounts	 of	 laminin	 [29]	 and	 mimecan	 [30]	 with	

crucial	 roles	 in	cardiovascular	 function	and	migration	of	 smooth	muscle	
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cells,	 respectively,	 were	 also	 decreased	 in	 diseased	 arteries.	 Taken	

together,	 these	results	 indicate	the	coexistence	of	multiple	mechanisms	

involved	 in	 the	 maintenance	 of	 artery	 function	 in	 response	 to	

atherosclerotic	injury.	

	

The	results	highlight	the	central	role	of	connective	tissue	turnover	in	

the	 structural	 and	 signaling	 properties	 of	 arterial	 cells	 in	 PAD	 [14].	Our	

methods	 included	 identifying	 specific	 cleavage	 products	 generated	 by	

MMPs	or	age-related	processes	of	proteins	 involved	 in	matrix	 turnover,	

the	production	of	antibodies	 that	 recognize	 these	neo-epitopes	but	not	

native	proteins	and	 to	develop	 immunoassays	 searching	 for	biomarkers	

of	disease	severity	[31-34].	Based	on	histology	and	proteomic	data,	neo-

epitopes	generate	 from	alpha-smooth	muscle	actin	and	 laminin	alpha-5	

showed	 some	potential	 value	acting	 as	 surrogates	 for	 individual	 clinical	

endopoints.	 Further	 research	 may	 confirm	 this	 assumption	 but	 we	

focused	 our	 analyses	 in	 clinically	 separating	 patients	 with	 mild	 to	

moderate	 PAD	 (IC,	 Fontaine	 I-II)	 from	 severe	 PAD	 (CLI,	 Fontaine	 III-IV),	

and	we	observed	 that	 serum	measurements	 of	 versican	 (KTFGKMKPRY;	

VCANM)	 and	 type	 IV	 collagen	 (CGG-GTPSVDHGFL;	 C4M)	 degradation	

products	returned	the	best	specificity	and	sensitivity	levels.	Interestingly,	

VCANM	levels	decreased	and	C4M	levels	 increased	according	to	disease	

severity,	 probably	 confirming	 that	 both	 age	 and	 the	 specific	 context	

regulate	 the	activity	of	different	MMPs	as	previously	described	 [35,36].	

This	is	important	because	type	IV	collagens	are	a	major	component	of	all	

basement	membranes,	and	versican	plays	a	central	role	in	inflammation	

[37,38].	 The	 combination	 of	 both	 indicators	 might	 integrate	 cellular	

pathways	and	processes	reflecting	PAD	progression.		
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Our	exploratory	research	has	identified	candidate	biomarkers	of	PAD	

clinical	 severity,	 but	 their	 evaluation	 requires	 more	 detailed	

investigation.	 Our	 methods	 measured	 an	 objective,	 quantifiable	

characteristic	 successfully	 that	 apparently	 correlates	 with	 clinical	

endpoints.	 Therefore,	 these	 biomarkers	 may	 provide	 clinically	 relevant	

information.	 The	 next	 level	 of	 evaluation	 needs	 other	 designs	 to	

ascertain	predictive	power	in	other	populations,	especially	in	those	with	

asymptomatic	 PAD,	 and	 to	 validate	 efficacy.	 Laboratory-measured	

biomarkers	used	as	surrogate	endpoints	may	have	the	potential	to	speed	

drug	 development	 in	 PAD,	 a	 prevalent	 condition	 in	 which	 the	 use	 of	

primary	clinical	endpoints,	such	as	CLI,	in	clinical	trials	can	be	impractical	

or	 even	 unethical.	 Exploring	 and	 reevaluating	 the	 relationship	 between	

measurable	biological	processes	and	clinical	outcomes	 is	also	crucial	 for	

deepening	our	knowledge	on	arterial	pathophysiology.	

	

5. CONCLUSION	

Severe	 lesions	 in	PAD	are	characterized	by	a	specific	proteome	that	

significantly	 differs	 from	 that	 found	 in	 healthy	 arteries	 of	 persons	 of	

similar	 age.	 This	 proteome	 informs	 that	 both	 inflammation	 and	 ECM	

turnover	 (i.e.,	 vascular	 remodeling)	 are	 quantitatively	 the	 most	

important	 processes	 in	 diseased	 arteries.	 Subsequent	 studies	 indicate	

that	 remodeling	 of	 arterial	 tissue	 releases	 protein	 fragments	 into	 the	

blood,	where	 they	may	 be	 detected.	We	 propose	 versican	 and	 type	 IV	

collagen	 degradation	 products	 as	 laboratory-measured	 biomarkers	 of	

disease	activity	in	peripheral	artery	disease.	
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ABSTRACT	

Systemic	 atherosclerosis	 affecting	 lower	 extremities,	 also	 called	

peripheral	artery	disease	(PAD)	is	a	common	disease	affecting	20-25%	of	

old	population.	An	early	diagnostic	is	still	not	possible	because	symptoms	

become	evident	in	advanced	stages.	Inflammation,	impaired	metabolism	

and	 mitochondrial	 dysfunction	 may	 predispose	 to	 the	 disease,	 which	

normally	 is	 associated	 to	 other	 pathologies	 (type-2	 diabetes,	

dyslipidemia	 or	 hypertension).	 By	 using	 a	 targeted	 metabolomics	

approach,	 we	 measured	 metabolite	 concentration	 in	 atherosclerotic	

arteries	and	plasma	of	PAD	patients	segregated	by	Fontaine	classification	

and	 in	 plasma	 of	 healthy	 volunteers.	 Our	 results	 show	 that	 many	 of	

measured	 metabolites,	 specially	 branched	 chain	 amino	 acids,	 were	

associated	 not	 with	 the	 disease	 but	 with	 other	 comorbidities,	 age	 or	

body	 mass	 index.	 After	 removal,	 six	 potential	 candidates	 were	

considered.	 Among	 them,	 (iso)citrate	 and	 glutamate	 were	 the	

metabolites	with	 the	 best	 discriminant	 capacity	 between	 control	 group	

and	PAD	patients.	Moreover,	both	were	also	useful	for	an	early	detection	

of	 the	 disease,	 discriminating	 between	 control	 group	 and	 Fontaine	 I-II	

patients.	The	obtained	metabolic	fingerprint	in	PAD	patients	can	be	used	

as	a	source	of	novel	biomarkers	of	diagnosis	and	progression.	
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1. INTRODUCTION

Peripheral	artery	disease	 (PAD)	of	 the	 lower	extremities	 is	a	serious

global	 health	 problem	 with	 an	 increasing	 prevalence	 among	

atherosclerotic	 diseases	 and	 affecting	 20-25%	 of	 population	 over	 60	

years1.	There	is	a	wide	spectrum	between	signs	of	PAD	classified	in	four	

stages	attending	the	symptoms	using	the	Fontaine	scheme:	from	a	non-

symptomatic	stage	(Fontaine	I),	intermittent	claudication	(Fontaine	II)	to	

rest	pain	(Fontaine	III)	and	tissue	damage	and	necrosis	(Fontaine	IV).		

Hypertension,	 hypercholesterolemia,	 diabetes	 and	 smoking	 are	 the	

principal	risk	factors	to	develop	PAD.	Undesirable	lifestyle	can	leads	to	a	

pro-inflammatory	 situation	 inducing	 complications	 at	 the	 crossroads	 of	

metabolic	 stress	 and	 immunity2,3.	 Moreover,	 imbalance	 in	 energy	

metabolism,	 by	 which	 nutrients	 are	 transformed	 into	 ATP,	 can	

predispose	 to	 obesity,	 type-2	 diabetes	 (T2D)	 and	 atherosclerosis3-5.	

Alterations	in	metabolic	pathways	like	tricarboxylic	acid	(TCA)	cycle	may	

induce	 the	 production	 of	 reactive	 oxygen	 species	 (ROS)	 and	 oxygen	

deficiency	 (ischemia)6,7.	 Impaired	 bioenergetics	 in	 affected	 lower	

extremities	 can	 be	 probably	 due	 to	 abnormal	mitochondria	 in	 ischemic	

skeletal	muscles8,9.	

One	of	 the	main	challenge	 that	specialists	and	researches	 face	 is	 to	

improve	the	diagnose	of	PAD	even	in	the	asymptomatic	stages10,11.	Many	

plasma,	 serum	 and	 total	 blood	 biomarkers	 have	 been	 proposed	 and	

associated	to	a	high	cardiovascular	risk,	although	none	of	them	has	been	

established12.	 The	 emerging	metabolomics	 approaches	 are	 an	 essential	

tool	 to	 improve	 the	 interpretations	 of	 atherosclerotic	 pathologies13–15.	

These	 techniques	 are	 mainly	 focused	 on	 the	 quantification	 of	

metabolites	 to	 better	 understand	 the	 disease	 and	 propose	 new	
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therapeutic	 strategies14,16,17.	 	 In	 this	 sense,	metabolites	 involved	 in	 TCA	

cycle	have	been	proposed	as	cardiovascular	biomarkers8,9,18,19.		

In	 the	 present	 work	 we	 assume	 that	 the	 combination	 of	

inflammation,	disrupted	metabolism	and	mitochondrial	dysfunction	may	

predispose	 to	 atherosclerosis20–22.	 The	 obtaining	 metabolic	 profile	 in	

atherosclerotic	patients	 is	a	useful	 tool	 to	discover	new	biomarkers	and	

therapeutic	 targets	 and,	 for	 the	 first	 time,	 we	 propose	 potential	

metabolic	circulating	markers	of	initial	stages	of	peripheral	artery	disease	

by	using	a	targeted	metabolomics	approach.		

	

2.	MATERIALS	AND	METHODS	

2.1	Participants	and	study	design	

This	 observational,	 cross-sectional	 study	 implicated	 201	 men	 with	

clinically	diagnosed	peripheral	artery	disease	attending	Vascular	Surgery	

Service	 at	 Hospital	 Universitari	 Joan	 XXIII	 between	 2010	 and	 2015.	

Patients	were	classified	according	Fontaine	classification23	from	grade	I	to	

IV	and	obtained	plasma	and	serum	samples	were	 stored	at	 -80	ºC	until	

use.	 Artery	 samples	 were	 obtained	 during	 surgical	 procedures	 for	

infrainguinal	revascularization	and	stored	at	-80ºC.	

	

Inclusion	 criteria	 were	 men,	 older	 than	 18	 and	 with	 a	 confirmed	

diagnose	of	peripheral	artery	disease.	Diagnostic	criteria	 involved	ankle-

brachial	 index	 (ABI),	 non-invasive	 imaging	 techniques	 (computerized	

tomography	 scan	 or	 magnetic	 resonance	 imaging)	 and	 arteriography	

when	indicated.	The	exclusion	criteria	were	presence	of	acute	 ischemia,	

signs	 of	 infection,	 renal	 failure,	 liver	 disease,	 cancer	 or	 autoimmune	

disease.	 Clinical	 data	 and	 laboratory	 variables	 were	 obtained	 from	

patients’	 clinical	 records.	 Local	 Ethics	 Committee	 of	 the	 Hospital	
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approved	 the	 study	 (epinols/12-03-09/3proj6,	 inflamet/15-04-

30/4proj6).	 Written	 informed	 consent	 was	 obtained	 from	 the	

participants	prior	to	entry	the	study.		

	

For	comparisons,	we	used	bio-banked	samples	(n=48)	from	healthy,	

age-matched,	men,	whose	details	have	been	previously	described24.	

	

2.2. Metabolomics	analysis	

To	 detect	 and	 quantify	 metabolites	 of	 energy	 metabolism,	 we	

followed	the	method	developed	by	Riera-Borrull	et	al7.	Briefly,	25	mg	of	

tissue	were	 homogenized	 in	 1	mL	 of	methanol:water	 (8:2,	 v/v)	 using	 a	

Precellys	 24	 system	 (Bertin	 Technologies,	 Montigny-le-Bretonneux,	

France)	 working	 at	 5000rpm	 for	 10	 seconds	 three	 times.	 The	

homogenate	 was	 then	 centrifuged	 at	 14000	 rpm	 10	 min	 at	 4ºC	 and	

supernatant	 was	 collected.	 Lipids	 were	 removed	 following	 Folch	

protocol,	by	using	9	mL	of	chloroform25.	Samples	were	again	centrifuged	

at	 14000	 rpm	 for	 10min	 at	 4ºC;	 the	 aqueous	 phase	was	 collected	 and	

dried	under	N2	 flow.	Metabolites	 from	plasma	 (100	mL)	were	extracted	

using	 400	 mL	 of	 methanol/water	 (8:2,	 v/v)	 and	 proteins	 were	

precipitated	 for	 two	hours	at	 -20	 ºC.	After	 centrifugation	at	14000	 rpm	

for	10	minutes	at	4	ºC,	the	supernatant	was	collected	and	dried	under	N2	

flow.	Metabolites	were	then	derivatized	with	methoxyamine	 in	pyridine	

(40	 mg/mL)	 and	 N-methyl-N-(trimethylsilyl)-trifluoroacetamide	 and	

injected	into	a	gas	chromatograph	coupled	to	a	quadrupole	time-of-flight	

mass	 spectrometer	 by	 an	 electron	 impact	 source.	 Metabolites	 were	

detected	and	quantified	attending	the	standard	calibration	curves.	
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2.3. Statistical	analysis	

Statistical	 analyses	 were	 performed	 with	 SPSS	 22.0	 (IBM	 Corp,	

Chicago,	 IL,	 USA).	 MetaboAnalyst	 3.0	 (http://www.metaboanalyst.ca/)	

was	used	to	generate	scores/loading	plots	and	random	forest	analyses.		

	

3.	RESULTS	

3.1.	Participants’	characteristics	

		 Clinical	characteristics	and	biochemical	variables	of	control	group	

and	 PAD	 patients	 are	 shown	 in	 Table	 1.	 We	 chose	 an	 age-matched	

control	group	with	healthy	volunteers	without	any	cardiovascular	disease	

and	PAD	patients,	who	had	a	higher	BMI	 than	 control	 group	 (p=0.021).	

The	incidence	of	atherosclerosis-related	impairments	(T2D,	hypertension	

and	dyslipidemia)	was	only	present	in	PAD	patients	(p<0.001	in	all	cases).	

Consequently,	cholesterol,	triglycerides	and	glucose	concentrations	were	

altered	in	those	patients.	

	
3.2.	Significant	alterations	in	energy	metabolism		

We	 measured	 the	 concentration	 of	 energy	 metabolism	

intermediaries	 in	 plasma	 of	 both,	 control	 group	 and	 PAD	 patients.	 As	

shown	 in	 Figure	 1A,	 most	 of	 analyzed	 metabolites	 were	 significantly	

increased	 in	 PAD	 patients,	 excluding	 fumarate,	 lactate	 and	 succinate,	

which	were	decreased	in	patients.	

	

When	displayed	in	a	graphical	pathway	(Figure	1B),	we	observed	

that	 glutaminolysis	 was	 disrupted,	 as	 glutamate	 and	 glutamine	 were	

increased	 in	 PAD	 patients.	 Moreover,	 reactions	 involving	 amino	 acid	

catabolism	seemed	to	be	slowed	down,	as	serine,	valine,	 isoleucine	and	

leucine	 concentrations	 were	 higher	 compared	 to	 control	 group.	
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Tricarboxylic	acid	cycle	was	disturbed	in	2	ways:	some	metabolites	were	

higher	 in	PAD	patients	 ((iso)citrate,	 aconitate,	α-ketoglutarate,	 succinyl-

CoA	and	malate	and	others	were	diminished	 in	PAD	patients	 (fumarate	

and	succinate).		

	

Table	1.	 Clinical	 characteristics,	 complete	blood	 count	and	biochemical	

characteristics	of	Control	group	and	PAD	patients.	
BMI:	 Body	 mass	 index;	 HDL:	 high-density	 lipoprotein;	 LDL:	 low-density	
lipoprotein;	 ALT:	 alanine	 aminotransferase;	 AST:	 aspartate	 aminotransferase.	
Non-parametric	variables	are	shown	as	median	(IQR).	Qualitative	variables	are	
expressed	 as	 (%)	 of	 total	 participants.	 Kruskal-Wallis	 test	 has	 been	 used	 for	
multiple	comparisons	between	groups.	
	

	

	

	

	

	

	

	

	 Control	
(n	=	48)	

PAD	
(n	=	201)	

P-value	

BMI	(kg/m2)	 24	(22.5	–	25.3)	 25	(22.5	–	28)	 0.021	
Diabetes	(%)	 -	 64.1	 <0.001	
Hypertension	(%)	 -	 69.2	 <0.001	
Dyslipidemia	 -	 37.9	 <0.001	
Red	blood	cells,	x1012/L	 4.9	(4.4	–	5.2)	 4.16	(3.57	–	4.66)	 <0.001	
Hemoglobin,	mmol/L	 8.94	(8.32	–	9.43)	 13.30	(11.50	–	14.90)	 0.001	
Leukocytes,	x109/L	 6.8	(5.4	–	8.2)	 8.17	(6.50	–	10.22)	 0.003	
Platelets,	x109/L	 233	(205	–	273)	 253	(200	–	329)	 ns	
Total-cholesterol,	mmol/L	 4.85	(4.40	–	5.85)	 3.90	(3.31	–	4.94)	 <0.001	
HDL-cholesterol,	mmol/L	 1.34	(1.14	–	1.61)	 0.96	(0.78	–	1.19)	 <0.001	
LDL-cholesterol,	mmol/L	 2.82	(2.40	–	3.86)	 2.26	(1.77	–	2.79)	 <0.001	
Triglycerides,	mmol/L	 0.90	(0.70	–	1.38)	 1.99	(1.40	–	3.08)	 <0.001	
Glucose,	mmol/L	 4.70	(4.37	–	4.92)	 5.61	(4.60	–	6.88)	 <0.001	
ALT,	U/L	 20	(13.5	–	24.9)	 21.5	(15	–	34.8)	 ns	
AST,	U/L	 20	(17.7	–	24)	 21	(16	–	32)	 ns	
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Figure	 1.	Energy	metabolism	 in	 PAD	 patients.	 (A)	 Concentrations	 of	measured	
metabolites	in	PAD	patients	and	control	group,	expressed	as	median	(IQR),	fold-
change	 ratio	between	PAD	patients	and	control	group,	and	p-value.	 	*	p<0.05.	
ns:	 no	 significant.	 (B)	 Graphical	 display	 of	 fold-change	 ratios	 in	 energy	
metabolism.		
	

Impaired	energy	metabolism	in	PAD	

UNIVERSITAT ROVIRA I VIRGILI 
PERIPHERAL ARTERY DISEASE: THE SEARCH FOR A BIOLOGICAL MARKER 
Anna Hernández Aguilera 



	 134	

3.3.	Metabolites	are	linked	to	comorbidities,	age	and	BMI	

Changes	in	those	metabolites	could	be	used	for	disease	diagnose,	

but	 associated	 comorbidities	may	 act	 as	 confounding	 factors	 in	 almost	

80%	 of	 PAD	 patients	 as	 they	 presented	 some	 metabolic	 disturbances	

(hyperlipidemia,	 hypertension	 or	 T2D).	 For	 this	 reason,	 we	 segregated	

PAD	 patients	 according	 these	 disturbances	 to	 investigate	 whether	

metabolites	 were	 different	 among	 metabolically	 healthy	 or	 unhealthy	

patients.		

	

Univariant	 analyses	 confirmed	 that	 many	 metabolites	 were	

associated	 to	 T2D,	 hypertension	 or	 dyslipidemia	 (Table	 2)	 while	

multivariate	 analyses	 (principal	 component	 analyses)	 revealed	 that	 the	

combination	 of	 those	 metabolites	 were	 not	 able	 to	 separate	 groups	

regarding	 hypertension	 (Figure	 2A)	 and	 dyslipidemia	 (Figure	 2B).	 We	

discovered	 that	 glucose	 and	 isoleucine	 were	 associated	 to	 T2D	 in	 PAD	

patients	 and	 glucose	 had	 the	 highest	 discriminant	 capacity	 (Figure	 2C).	

Hyperlipidemic	 and	 normolipidemic	 patients	 showed	 differences	 in	

alanine,	aspartate,	glucose,	isoleucine,	lactate,	leucine,	succinyl-CoA	and	

valine	 concentrations,	 and	 among	 them,	 isoleucine	 had	 the	 higher	

discriminant	capacity	(Figure	2D).	Fumarate,	glucose,	 isoleucine,	 lactate,	

malate,	 serine	 and	 pyruvate	 were	 associated	 to	 hypertension	 in	 PAD	

patient	 and	 serine	 was	 the	 metabolite	 with	 the	 best	 discriminant	

capacity	(Figure	2E).	All	of	these	metabolites	were	discarded	for	being	a	

possible	PAD	biomarker.		
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Table	2.	Metabolite	concentration	in	PAD	patients	segregated	according	co-morbidities.	

Metabolite	
PAD	patients	

Normoglycemic	 Type-2	diabetic	 p-
value	 Normotensive	 Hypertensive	 p-

value	 Normolipidemic	 Hyperlipidemic	 p-
value	

0.27	(0.13	–	0-39)	 0.27	(0.14	–	0.40)	 ns	 0.21	(0.14	–	0.38)	 0.35	(0.14	–	0.42)	 ns	 0.31	(0.16	–	0.40)	 0.19	(0.13	–	0.419	 ns	
3.75	(2.38	–	6.50)	 4.60	(2.67	–	6.28)	 ns	 4.59	(2.54	–	6.65)	 4.13	(2.60	–	6.60)	 ns	 4.64	(2.91	–	6.61)	 4.22	(2.36	–	6.16)	 ns	
4.24	(2.56	–	7.22)	 4.13	(2.76	–	6.50)	 ns	 4.71	(2.81	–	6.67)	 3.70	(2.51	–	7.07)	 ns	 3.99	(2.44	–	6.55)	 5.05	(3.05	–	6.90)	 ns	

3-hydroxybutyrate 
Aconitate	
α-ketoglutarate	
Alanine 210.60	(147.51	–	

266.30)	
189.61	(139.04	–	

271.47)	
ns	 213.52	(152.77	–	

273.76)	
184.35	(137.34	–	

255.16)	
ns	 180.54	(125.18	–	

247.53)	
233.62	(171.42	–	

302.86)	
0.001	

Aspartate	 172.57	(133.37	–	
215.81)	

179.76	(143.01	–	
225.10)	

ns	 181.61	(141.46	–	
239.56)	

173.17	(137.30	–	
200.45)	

ns	 168.65	(134.12	–	
205.47)	

191.72	(148.8	–	
253.22)	

0.016	

Isocitrate	 721.78	(584.42	–	
867.38)	

665.64	(538.00	–	
880.59)	

ns	 721.80	(566.64	–	
934.03)	

654.24	(476.56	–	
815.96)	

ns	 678.64	(545.44	–	
864.55)	

712.36	(566.17	–	
959.17)	

ns	

Fumarate	 0.26(0.19	–	0.41)	 0.24	(0.18	–	0.37)	 ns	 0.27	(0.19	–	0.40)	 0.22	(0.17	–	0.30)	 0.035	 0.23	(0.18	–	0.36)	 0.27	(0.19	–	0.40)	 ns	
Glucose	 4546.02	(4104.05	–	

5115.56)	
4959.36	(440.88	–	

5804.93)	
0.001	 4955.95	(4459.14	–	

5679.69)	
4418.11	(4134.89	–	

5191.71)	
0.007	 4663.92	(4172.31	–	

5417.54)	
4925.38	(4503.68	–	

5684.91)	
0.027	

Glutamate	 1457.27	(743.06	–	
2912.42)	

1416.96	(671.78	–	
2684.24)	

ns	 1335.82	(725.07	–	
2628.52)	

1786.69	(691.16	–	
2891.74)	

ns	 1556.27	(679.84	–	
2785.70)	

1342.51	(763.74	–	
2372.15)	

ns	

Glutamine	 5073.46	(3054.24	–	
7754.55)	

4742.54	(1842.39	–	
8881.28)	

ns	 5083.38	(2842.09	–	
9072.22)	

4742.54	(1700.95	–	
7003.86)	

ns	 4742.54	(2007.90	–	
7169.01)	

5073.46	(2219.30	–	
10427.79)	

ns	

Isoleucine	 57.14	(47.71	–	
63.99)	

63.68	(52.83	–	
75.20)	

0.002	 63.52	(52.24	–	
75.19)	

57.88	(51.23	–	
63.22)	

0.050	 57.90	(49.81	–	68.46)	 65.02	(55.35	–	77.95)	 0.002	

Lactate	 367.23	(283.94	–	
423.66)	

341.07	(297.13	–	
441.68)	

ns	 373.57	(308.33	–	
452.52)	

332.36	(279.50	–	
405.92)	

0.047	 334.77	(274.24	–	
435.64)	

393.34	(323.21	–	
457.69)	

0.004	

Leucine	 85.07	(70.62	–	94.86)	 86.68	(69.33	–	
109.65)	

ns	 90.17	(71.33	–	
109.35)	

84.54	(69.77	–	
93.84)	

ns	 83.96	(66.70	–	98.71)	 92.19	(76.10	–	
109.92)	

0.011	

Malate	 2.38	(1.85	–	4.31)	 2.45	(1.88	–	3.56)	 ns	 2.79	(1.96	–	4.09)	 2.23	(1.75	–	3.08)	 0.043	 2.37	(1.83	–	3.66)	 2.87	(2.12	–	3.80)	 ns	
Pyruvate	 12.47	(3.64	–	22.87)	 12.83	(3.55	–	21.89)	 ns	 13.86	(3.85	–	24.11)	 8.78	(2.72	–	18.15)	 0.042	 9.50	(3.08	–	21.00)	 13.58	(6.00	–	25.78)	 ns	
Serine	 147.54	(101.70	–	

167.45)	
137.69	(109.40	–	

169.59)	
ns	 135.30	(106.14	–	

162.12)	
161.02	(103.62	–	

172.90)	
0.34	 150.04	(104.94	–	

170.39)	
131.92	(106.07	–	

18.82)	
ns	

Succinate	 9.57	(8.35	–	15.11)	 9.70	(8.47	–	15.23)	 ns	 9.15	(8.42	–	15.04)	 11.71	(8.49	–	15.47)	 ns	 10.82	(8.44	–	15.23)	 9.11	(8.46	–	15.15)	 ns	
Succinyl-CoA	 10.14	(7.74	–	15.12)	 10.46	(7.37	–	17.62)	 ns	 11.21	(7.72	–	16.31)	 9.94	(7.52	–	14.25)	 ns	 9.79	(6.71	–	14.00)	 13.36	(8.90	–	18.47)	 0.001	
Valine	 102.06	(83.06	–	

129.40)	
104.17	(80.70	–	

138.39)	
ns	 107.33	(86.67	–	

136.83)	
96.63	(78.83	–	

134.87)	
ns	 99.36	(78.62	–	

125.54)	
113.33	(89.62	–	

139.43)	
0.010	
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Figure	2.	Principal	component	analysis	(PCA)	between	hypertensive	and	normotensive	(A)	and	between	hyperlipidemic	and	normolipidemic	
(B) PAD	patients.	Random	Forest	analysis	shows	the	metabolites	with	the	best	discriminant	capacity	between	normoglycemic	and	diabetic
patients	(C),	between	normolipidemic	and	hyperlipidemic	patients	(D)	and	between	normotensive	and	hypertensive	patients	(E).
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Age	 and	 body	 mass	 index	 (BMI)	 were	 other	 two	 confounding	

variables.	 Subsequently,	 we	 analyzed	 whether	 any	 of	 the	 metabolites	

correlated	with	 age	or	BMI	between	PAD	patients.	Aconitate,	 fumarate	

and	 malate	 were	 associated	 to	 age,	 and	 aconitate,	 alanine,	 aspartate,	

glucose,	 isoleucine,	 leucine	 and	 valine	 correlated	 with	 BMI	 (Table	 3,	

Supplementary	figure	2).	

Table	3.	Spearman	correlation	coefficients	for	age,	body	mass	index	and	
related	metabolites.	

BMI:	Body	mass	index.	

Age	 BMI	
Spearman’s	

Rho	
p-value	 Spearman’s

Rho	
p-value

3-hydroxybutirate 0.057	 ns	 0.022	 ns	
Aconitate 0.205	 0.003	 -0.236 0.010	
α-ketoglutarate 0.054	 ns	 -0.031 ns	
Alanine -0.081 ns	 0.230 0.013	
Aspartate 0.083 ns	 0.256 0.005	
Citrate+Isocitrate 0.113 ns	 0.147 ns	
Fumarate 0.220 0.002	 -0.085 ns	
Glucose -0.031 ns	 0.202 0.029	
Glutamate 0.063 ns	 -0.032 ns	
Glutamine 0.007 ns	 0.157 ns	
Isoleucine 0.124 ns	 0.194 0.036	
Lactate -0.023 ns	 0.034 ns	
Leucine -0.005 ns	 0.220 0.017	
Malate 0.248 <0.001	 -0.079 ns	
Pyruvate -0.009 ns	 0.103 ns	
Serine 0.062 ns	 -0.112 ns	
Succinate 0.011 ns	 -0.145 ns	
Succinyl-CoA 0.038 ns	 0.134 ns	
Valine -0.122 ns	 0.241 0.009	
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3.4.	Metabolic	biomarkers	of	PAD	

PAD	 patients	 were	 segregated	 according	 Fontaine	 classification	 to	

perform	 a	 more	 accurate	 analysis	 (Table	 4).	 Remaining	 metabolites	

significantly	 different	 between	 control	 group	 and	 PAD	 patients	 were	

considered	 possible	 biomarkers	 of	 PAD:	 3-hydroxybutyrate,	 α-

ketoglutarate,	glutamate,	glutamine,	(iso)citrate	and	succinate	(Figure	3).	

Moreover,	 glutamate	 and	 (iso)citrate	 concentrations	 were	 statistically	

different	between	PAD	I-II,	III	and	IV	groups	(Figure	3C	and	3E).	

Figure	 3.	 Candidate	 biomarkers	 for	 PAD	 patients.	 Graphical	 representation	 of	
candidate	biomarkers	concentration	among	groups:	(A)	3-hydroxybutirate,	(B)	α-
ketoglutarate,	(C)	glutamate,	(D)	glutamine,	(E)	(Iso)citrate	and	(F)	succinate.	*:	p	
<	0.05;	**:	p	<	0.001.	
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Table	4.	Clinical	characteristics,	complete	blood	count	and	biochemical	characteristics	of	PAD	patients	segregated	by	
Fontaine	classification.	

BMI:	Body	mass	index;	HDL:	high-density	lipoprotein;	LDL:	low-density	lipoprotein;	ALT:	alanine	aminotransferase;	AST:	aspartate	
aminotransferase.	Non-parametric	variables	are	shown	as	median	and	IQR	(25-75%).	Qualitative	variables	are	expressed	as	(%)	of	
total	participants.	Multiple	comparisons	between	groups	using	Kruskal-Wallis	test.	

Fontaine	I	
(n	=	9)	

Fontaine	II	
(n	=	30)	

Fontaine	III	
(n	=	46)	

Fontaine	IV	
(n	=	116)	 P-value

Clinical	characteristics	
Age	(years)	 55	(51	–	69)	 73	(60	–	77)	 65	(61	–	75)	 71	(64	–	79)	 0.003	
BMI	(kg/m2)	 28.9	(25.2	–	30.6)	 27	(23.5	–	29.5)	 26	(22.5	–	28)	 24	(22-27.8)	 ns	
Diabetes	(%)	 12.5	 60.9	 38.1	 78.7	 <0.001	
Hypertension	(%)	 50	 74.1	 60	 73.3	 <0.001	
Dyslipidemia	 42.9	 42.3	 37.8	 36.4	 <0.001	
Complete	Blood	Count	
Red	blood	cells,	x1012/L	 5.1	(4.5	–	5-4)	 4.5	(4.1	–	4.8)	 4.2	(3.8	–	4.6)	 3.9	(3.3	–	4.4)	 <0.001	
Hemoglobin,	mmol/L	 9.12	(7.57	–	10.18)	 8.56	(8.01	–	9.56)	 8.87	(8.32	–	9.43)	 7.63	(6.70	–	8.50)	 <0.001	
Leukocytes,	x109/L	 7.4	(6.8	–	10.4)	 7.3	(6.3	–	8.9)	 7.6	(6.4	–	10.4)	 8.4	(6.6	–	10.7)	 ns	
Platelets,	x109/L	 205	(159	–	246)	 216.5	(173.5	–	257.2)	 251	(197	–	310)	 277	(213	–	361)	 0.001	
Biochemical	variables	
Total-cholesterol,	mmol/L	 4.06	(3.69	–	4.22)	 4.23	(3.74	–	4.91)	 3.94	(3.27	–	4.41)	 3.80	(3.20	–	43.21)	 ns	
HDL-cholesterol,	mmol/L	 0.80	(0.58	–	1.22)	 1.03	(0.80	–	1.27)	 1.27	(0.81	–	1.25)	 0.93	(0.78	–	1.16)	 ns	
LDL-cholesterol,	mmol/L	 2.04	(1.92	–	3.07)	 2.43	(1.92	–	3.08)	 2.22	(1.76	–	2.66)	 2.24	(1.75	–	2.81)	 ns	
Triglycerides,	mmol/L	 1.57	(1.07	–	3.29)	 1.81	(1.12	–	2.93)	 2.34	(1.88	–	3.44)	 1.85	(1.34	–	2.83)	 ns	
Glucose,	mmol/L	 6.99	(6.2	–	8.21)	 6.09	(5.01	–	7.05)	 5.29	(4.56	–	6.79)	 5.55	(4.40	–	6.85)	 ns	
ALT,	U/L	 18	(13.3	–	41-5)	 21	(16	–	28)	 23.5	(18.8	–	46.5)	 21	(13.7	–	35)	 ns	
AST,	U/L	 22.9	(16.2	–	32.4)	 21	(17	–	25.6)	 22.5	(18	–	44-7)	 20	(15	–	32)	 ns	
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To	 evaluate	 discriminant	 capacity,	 we	 perform	 random	 forest	

analyses	 and	 found	 that	 (iso)citrate	 and	 glutamate	 were	 the	 most	

powerful	 metabolites	 to	 separate	 control	 individuals	 from	 PAD	 group	

(Figure	 4A).	 ROC	 curve	 for	 these	metabolites	 showed	 good	 area	 under	

the	 curve	 (AUC)	 values	 for	 both	metabolites	 (Figure	 4B).	When	 testing	

discriminant	capacity	between	control	group	and	the	early	manifestation	

of	 PAD	 (Intermittent	 claudication,	 PAD	 I-II),	 (iso)citrate	 and	 glutamate	

were	again	the	best	discriminant	metabolites	(Figure	4C)	and	ROC	curve	

confirmed	 this	 potential	 (Figure	 4D).	 To	 follow	 disease	 progression	 in	

PAD	 patients,	 (iso)citrate	 and	 glutamate	 were	 also	 the	 best	 indicators	

(Figure	4E).	
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Figure	 4.	Validation	 of	 candidate	 biomarkers.	 Random	Forest	 analysis	 showing	
the	metabolites	with	the	best	discriminant	capacity	between	control	group	and	
(A) PAD	patients,	 (C)	 PAD	 I-II	 patients	 and	 (E)	 during	disease	progression.	 ROC
curve	for	the	best	candidates.	Discriminating	between	control	group	and	(B)	PAD
and	(D)	PAD	I-II	patients.	AUC,	area	under	curve.
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4. DISCUSSION

Dietary	 changes	 and	 lifestyle	 can	modify	 our	metabolome,	 and	

thus	 metabolomics	 gives	 feedback	 about	 the	 status	 of	 individuals	 and	

offers	 the	 opportunity	 to	 study	 pathologies	 and	 propose	 new	

interventions5,13,26.	 The	metabolomic	 characterization	 of	 atherosclerotic	

peripheral	 artery	 disease	 is	 gaining	 interest,	 as	 its	 incidence	 has	

increased	worldwide1,27.		

However,	 biological	 and	 technical	 limitations	 are	 present,	 and	

tissue	and	plasma	metabolome	does	not	provide	the	same	 information.	

In	 our	 case,	 and	 as	 expected,	we	were	 not	 able	 to	 quantify	 phosphate	

metabolites	 in	 plasma	 due	 to	 the	 impermeability	 of	 the	 cellular	

membrane	to	these	compounds	(Supplementary	Figure	1).		

Here,	we	found	alterations	in	energy	metabolism	in	PAD	patients,	

compared	 to	 control	 group,	 especially	 impairments	 in	 the	 connection	

citrate-aconitate-isocitrate.	The	mitochondrial	enzymes	involved	in	those	

reactions	 are	 isocitrate	 dehydrogenase	 (IDH2)	 and	 aconitase	 2	 (ACO2).	

IDH2	 has	 been	 related	with	 a	 proper	mitochondrial	 function,	 and	mice	

lacking	 IDH2	 exhibited	 mitochondrial	 dysfunction28.	 Moreover,	 7-

ketocholesterol	is	known	to	contribute	to	atherosclerosis	progression	by	

decreasing	 IDH2	 expression	 and	 increasing	 oxidative	 stress	 thus	

modifying	 mitochondrial	 function29.	 Furthermore,	 an	 oxidative	

environment	(mainly	superoxides)	can	inactivate	aconitase,	which	in	turn	

undergo	 age-dependent	 oxidative	 modification4.	 Whether	 IDH2	 and	
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ACO2	 may	 be	 the	 cause	 or	 consequence	 of	 the	 well-described	

mitochondrial	dysfunction	in	PAD	is	still	unknown8.	

Preventive	 treatment	 could	 slow	down	 the	 progression	or	 even	

stop	the	disease.	For	this	reason,	a	fast	diagnostic	is	necessary.	However,	

many	of	 the	current	biomarkers	are	based	on	 risk	 factors	associated	 to	

co-morbidities	 like	 dyslipidemia,	 hypertension	 or	 T2D10,12.	 In	 fact,	 non-

communicable	diseases	are	mostly	multi-factorial	and,	in	our	population,	

we	 found	 that	 approximately	 80%	 of	 these	 patients	 had	 any	 of	 these	

impairments,	 which	 could	 be	 affecting	 metabolites	 concentration.	

Among	 those	 metabolites,	 branched-chain	 amino	 acids	 (BCAAs)	 were	

influenced	by	hypertension,	T2D	and	dyslipidemia.	Our	results	ratify	the	

relationship	 between	 an	 impairment	 in	 branched	 chain	 amino	 acid	

(BCAA)	 catabolism	 and	 obesity	 and	 insulin	 resistance30,31.	 Moreover,	

increased	 serum	 concentration	 of	 BCAAs	 have	 been	 also	 associated	 to	

metabolic	 dyslipidemia32	 and	 BCAA	 supplementation	 during	 maternal	

food	restriction	has	been	related	to	a	less	hypertension	incidence	in	adult	

offspring33.		

After	 discarding	 the	 influenced	 metabolites,	 six	 candidates	

remained	 with	 statistically	 significant	 differences	 in	 concentration	

between	 control	 group	 and	 PAD	 patients:	 3-hydroxybutyrate,	 α-

ketoglutarate,	 glutamate,	 glutamine,	 (iso)citrate	 and	 succinate.	 Those	

candidates	were	useful	to	distinguish	between	PAD	patients	and	control	

group	 but	 also	 to	 discriminate	 between	 PAD	 grades.	 Isocitrate	 is	 an	

Impaired	energy	metabolism	in	PAD	

UNIVERSITAT ROVIRA I VIRGILI 
PERIPHERAL ARTERY DISEASE: THE SEARCH FOR A BIOLOGICAL MARKER 
Anna Hernández Aguilera 



144	

intermediate	 in	 the	 TCA	 cycle.	 Its	 conversion	 to	 α-ketoglutarate	 is	

mediated	 by	 IDH2.	 It	 was	 found	 that	 higher	 concentrations	 of	 this	

metabolite	are	associated	with	a	worse	cardiovascular	prognostic34.	PAD	

patients	 showed	higher	 concentrations	 of	 isocitrate,	 but	 PAD	 I	 patients	

showed	 higher	 levels	 than	 PAD	 IV	 patients.	 Glutamate,	 another	

metabolite	with	a	good	discriminant	capacity,	 is	 the	substrate	 for	many	

enzymes	 located	 in	 the	 mitochondria35.	 Glutamate	 plays	 an	 important	

role	in	heart	metabolism,	as	during	ischemia,	it	improves	the	mechanical	

function	 of	 the	 ischemic	 myocardium36.	 Maybe	 this	 increased	

concentration	 of	 glutamate	 in	 PAD	 patients	 could	 be	 an	 attempt	 to	

improve	biomechanical	functions	of	the	ischemic	portions	of	the	arteries.	

However,	 further	 research	 is	 needed	 to	 understand	 glutamate	

overproduction	in	blood	of	atherosclerotic	patients.	

To	 diagnose	 PAD	 in	 the	 asymptomatic	 or	 early	 symptomatic	

stages	(PAD	in	Fontaine	 I	and	 II;	 intermittent	claudication)	and	to	find	a	

clinical	 biomarker	 for	 these	 stages	 is	 of	 great	 interest.	 In	 our	 case,	

(iso)citrate	 and	 glutamate	 were	 able	 to	 distinguish	 control	 group	 from	

PAD	 patients	 in	 stages	 I-II.	 The	 implementation	 of	 (iso)citrate	 and	

glutamate	 measurements	 in	 clinical	 practice	 (bench-to-bed	 approach)	

would	allow	an	early	detection	of	the	disease	and	would	permit	vascular	

specialists	apply	better	treatments	to	delay	or	even	stop	the	disease.	

Our	study	provides	evidences	that	metabolic	fingerprints	can	be	

used	to	differentiate	PAD	patients	from	control	population.	We	propose	
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two	potential	 biomarkers	 for	 the	disease	–	 (iso)citrate	 and	glutamate	–	

that	 can	 be	 used	 for	 an	 early	 diagnosis.	 Although	 our	 results	 are	

potentially	translational	and	limited	to	little	population,	other	metabolic	

pathways	 and	 the	 validation	 in	 other	 cohorts	 may	 be	 considered	 for	

future	studies.		

5. CONCLUSION

Our	 metabolomics	 approach	 served	 to	 propose	 candidate	

biomarkers	 for	 PAD	 diagnosis	 after	 interpretation	 of	 the	 metabolome	

fingerprint.	 (Iso)citrate	 and	 glutamate	 were	 not	 influenced	 by	 other	

comorbidities	and	their	concentrations	differ	between	control	group	and	

PAD	 patients,	 allowing	 a	 good	 discrimination	 between	 stages.	 More	

important,	both	can	detect	PAD	I-II	patients,	the	less	symptomatic	stages	

of	the	disease.		
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PAD	 is	 a	 global	 pandemic	 disease	 affecting	 more	 than	 202	 million	

individuals	 [153].	Arteries	of	 the	extremities	are	affected,	and	there	 is	a	

stiffening,	thickening	and	loss	of	elasticity	of	the	artery	wall	[24–26,154].	

Despite	 its	 common	 occurrence,	 PAD	 is	 often	 underdiagnosed:	 first	

stages	 are	 asymptomatic	 and	 disease	 only	 becomes	 evident	 when	

associated	pathologies	come	to	light	implying	that	preventing	its	derived	

consequences	becomes	practically	impossible	[57,155].	

A	good	and	correct	diagnosis	is	generally	difficult.	Vascular	specialists	

normally	 perform	 examinations	 supported	 by	 non-invasive	 or	 invasive	

techniques	 [59,155,156].	 The	 ABI	 is	 one	 of	 the	 most	 used	 tests	 to	

perform	 the	 diagnostic	 of	 PAD	 regardless	 of	 its	 proven	 limitations	

[85,155].	 Once	 diagnosed,	 patients	 are	 normally	 classified	 using	 the	

Fontaine	 classification	 and	 then,	 depending	 on	 disease	 severity,	 they	

undergo	different	treatments.	Management	of	cardiovascular	risk	factors	

is	 the	 usual	 treatment	 for	 the	 initial	 stages	 of	 the	 disease.	 Exercise,	

rehabilitation,	 pharmacologic	 intervention	 and	 invasive	 surgical	

procedures	are	other	treatments	if	the	disease	aggravates	[59,156,157].	

A	 deeper	 understanding	 of	 the	 disease	 would	 provide	 novel	

biomarkers	 and	 also	 novel	 therapeutic	 strategies.	 Finding	 a	 worthy	

biomarker	for	PAD	is	an	unresolved	question.	Most	of	these	markers	are	

based	on	cardiovascular	risk	factors,	inflammation	or	oxidative	processes	

[55–57,88].	 However,	 there	 is	 still	 controversy	 about	 them,	 as	 they	

indicate	not	only	PAD	but	also	atherosclerosis	in	general.		
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Vascular	remodeling	is	an	important	characteristic	of	atherosclerosis.	

Inflammation	 and	 oxidation	 are	 also	 involved	 in	 this	 process:	 previous	

studies	 of	 our	 group	 revealed	 that	 serum	 PON1	 concentration	 was	

significantly	 lower	 and	 circulating	 PON3	 and	 CCL2	 concentration	 were	

higher	 in	 PAD	 patients	 compared	 to	 non-affected	 patients	 [158,159].	

However,	 there	 were	 limited	 data	 about	 protein	 expression	 of	 these	

molecules	in	arteries	from	PAD	patients.		

In	 our	 exploratory	 Study	 1,	we	 found	 that	 paraoxonases,	 CCL2	 and	

CCL2	 receptors	 were	 increased	 in	 atherosclerotic	 peripheral	 arteries,	

maybe	due	 to	 increased	 cellular	oxidative	 stress	and	 inflammation.	 The	

increased	PON1	staining	 in	affected	arteries	suggested	that	this	enzyme	

is	 reducing	 oxidative	 stress	 processes	 in	 macrophages	 and	 cell	 foam	

formation.	 Although	 the	 physiological	 role	 of	 PON3	 is	 still	 unclear,	 our	

results	support	our	previous	findings	in	which	serum	PON3	concentration	

were	increased	in	these	patients	[158].	The	causal	mechanisms	by	which	

paraoxonases	may	be	increased	in	atherosclerotic	arteries	are	not	clear,	

but	may	involve	PPARγ	and	NFκB-related	pathways	[160–162].	However,	

PON1	 is	 also	 regulated	 by	 proinflammatory	 cytokines	 (like	 IL-6),	

epigenetic	 mechanisms	 (DNA	 or	 histone	 methylation)	 and	 nuclear	

receptors	(PPAR,	AhR)	[163].	

Contradictorily	 to	 the	 increased	 expression	 of	 PON1	 in	

atherosclerotic	 arteries,	 our	 group	 had	 previously	 found	 that	 PON1	

concentration	 was	 decreased	 in	 the	 sera	 of	 PAD	 patients	 [159].	 A	
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possible	 explanation	 for	 this	 observation	 may	 be	 related	 to	 PPARδ	

expression.	 An	 increased	 PPARδ	 expression	 was	 associated	 to	 an	

inhibition	of	HDL	synthesis	and	consequently	decreased	PON1	secretion	

to	 extracellular	 medium	 [164].	 The	 diminished	 HDL-cholesterol	

concentration	 observed	 in	 PAD	 patients	may	 supports	 the	 concept	 but	

this	hypothesis	has	to	be	confirmed	by	further	studies.		

The	decrease	of	oxidative	stress	and	the	modulation	of	PON1	activity	

could	 be	 possible	 therapeutic	 targets.	 Many	 polyphenolic	 compounds	

and	phytoestrogens	have	been	proved	 to	 reduce	oxidative	 stress	 [165–

167].	 It	 has	 also	 been	 reported	 that	 curcumin,	 a	 natural	 polyphenol,	

improves	HDL	 functionality,	 thus	modulating	 the	activities	 and	 levels	of	

HDL	markers	 (i.e.	 PON1)	 [168].	Moreover,	 fibrates	 and	 statins	 used	 for	

treating	dyslipidemias	exert	effect	on	PON1	expression	[163,169].	

PON1	 inhibits	 the	 production	 of	 oxidative	 stress-induced	 CCL2	 and	

decreased	 PON1	 activity	 is	 associated	 with	 an	 increased	 of	 CCL2	

concentration	 in	 circulation	 [138,159,170].	 However,	 we	 found	 that	

PON1	 and	 CCL2	 were	 expressed	 together	 in	 arterial	 tissue,	 maybe	

suggesting	a	coordinated	role	[171,172].		

It	 is	 collectively	 accepted	 that	 chemokines	 play	 a	 crucial	 role	 in	

mediating	 the	 inflammatory	 and	 immune	 cell	 trafficking.	 CCL2,	 by	

inducing	monocyte	migration,	is	involved	in	atherosclerosis	development	

[112,113,120,173].	 We	 found	 that	 arteries	 from	 PAD	 patients	 had	
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increased	expression	of	CCL2	and	 their	 receptors	 (CCR2,	DARC	and	D6).	

DARC	 and	 D6	 (also	 known	 as	 ACKRs)	 are	 atypical	 chemokine	 receptors	

with	 no	 signal	 transmission:	 they	 internalize	 ligands	 and	 are	 able	 to	

modulate	 chemokine	 concentration	 [123,124,174].	 We	 found	 that,	

although	 increased,	 these	 receptors	 were	 not	 uniformly	 distributed	

among	arterial	tissue.	The	expression	of	ACKRs	in	atherosclerotic	arteries	

of	PAD	patients	has	not	been	previously	reported,	and	our	data	suggest	

that	 they	 may	 modify	 chemokine	 availability,	 and	 therefore	 indirectly	

modifying	cell	migration.		

The	 link	 between	 chemokines	 and	 their	 receptor	 has	 been	of	 great	

interest:	 novel	 therapeutic	 agents	 against	 these	 key	 inflammatory	

mediators	 are	 being	 tested	 in	 some	 prevalent	 diseases	 with	 promising	

results	 [29,118,175].	 Our	 results	 point	 to	 encouraging	 therapeutic	

strategies	based	on	the	blockade	of	CCL2/CCR2	axis	or	 in	 increasing	the	

availability	 of	 ACKRs	 to	 modulate	 CCL2	 concentration	

[29,113,120,125,174,176].	Nowadays,	many	CCR2	and	CCR5	antagonists,	

such	as	 the	pharmacological	drugs	maraviroc	or	 cenicriviroc,	have	been	

developed	and	many	of	them	are	in	the	last	stages	of	clinical	trials	[177–

181].	

As	confirmed	in	Study	1	and	in	previous	studies	by	our	group,	during	

atherosclerosis,	 the	 arterial	 tissue	 is	 governed	 by	 inflammatory	 and	

oxidative	 processes,	 [113].	 Vascular	 remodeling	 (concretely	 in	 ECM)	 is	

also	 implicated	 in	 atherosclerotic	 plaque	 formation	 but	 detailed	
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information	 about	 ECM	 composition	 and	 turnover	 in	 PAD	 patients	 has	

not	 previously	 reported.	 In	 Study	 2,	 we	 performed	 a	 histologic	 and	

proteomics	 approach	 to	 evaluate	 arterial	 remodeling	 and	 ECM	

composition	 in	 PAD	 patients	 compared	 to	 non-atherosclerotic	 control	

arteries.		

We	 confirmed	 an	 important	 vascular	 remodeling	 as	 a	 reparative	

response,	characterized	by	the	presence	of	 inflammatory	intermediaries	

and	 ECM	 turnover	 [23,96].	 Proteomics	 results	 confirmed	 that	 proteins	

related	 to	 inflammatory	 process	 (alpha-2-macroglobulin	 and	

carboxypeptidase	 B2)	 were	 overregulated,	 and	 proteins	 related	 with	

extracellular	 matrix	 components	 (versican,	 lactadherin)	 were	

underexpressed	 in	 affected	 arteries	 from	 PAD	 patients	 compared	 to	

healthy	non-atherosclerotic	arteries.	These	decreased	levels	of	structural	

proteins	may	be	associated	 to	a	deregulation	of	 the	normal	 function	of	

extracellular	 matrix.	 All	 results	 taken	 together	 suggest	 that	 there	 are	

multiple	mechanisms	involved	in	the	maintenance	of	artery	structure	and	

function	 during	 the	 atherosclerotic	 process	 [182].	 Recent	 data	 about	 a	

proteomics	 approach	 on	 carotid	 plaques	 also	 revealed	 a	 4-biomarker	

signature	of	ECM	related	proteins	that	may	be	used	to	 improve	the	risk	

prediction	and	diagnostics	of	cardiovascular	disease	[183],	seconding	the	

important	role	of	ECM	turnover	in	atherosclerotic	diseases.	

During	 ECM	 remodeling,	 there	 is	 a	 newly	 formed	 ECM	 scaffold	

constituted	 by	 collagen	 and	 proteoglycans.	 Macrophage	 derived	
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proteases	are	 secreted	 to	 remove	 this	 excessive	ECM	components,	 and	

this	degradation	processes	would	create	protein	 fingerprints	detectable	

in	bloodstream	[102,182].	

The	underexpressed	levels	of	ECM-related	proteins	in	atherosclerotic	

arteries	 were	 representative	 of	 the	 subtle	 equilibrium	 between	

production	 and	 degradation	 of	 ECM	 proteins	 during	 turnover	 by	MMP	

activity	 [103–105].	Consequently,	we	assumed	that	degradation	of	ECM	

proteins	was	 increased	 and,	 for	 this	 reason,	 candidate	 circulating	 ECM-

degradation	fragments	 (neo-epitopes)	were	selected	to	be	quantified	 in	

PAD	patients	in	order	to	propose	biomarkers	for	disease	severity.		

These	 neo-epitopes	 result	 from	 post-translational	 modifications	 of	

extracellular	 matrix	 proteins	 by	 proteinases,	 mainly	 MMPs.	 These	

cleavage	products	are	tissue-specific	and	disease-specific,	so	they	can	be	

used	as	novel	and	potential	biomarkers	 [184,185].	 In	 fact,	many	studies	

have	reported	impaired	levels	of	these	neo-epitopes	as	novel	biomarkers	

for	different	pathologies	[186–192].	

Based	 on	 the	 literature	 and	 on	 our	 previous	 histologic	 and	

proteomics	 results,	 we	 selected	 a	 panel	 of	 six	 neo-epitopes	 to	 be	

measured	 on	 PAD	 patients	 to	 assess	 their	 usefulness	 in	 separating	

patients	 with	 mild-moderate	 PAD	 (Fontaine	 I-II,	 IC)	 from	 severe	 PAD	

(Fontaine	III-IV,	CLI).	We	found	that	the	combination	of	VCANM	and	C4M	

could	 be	 useful	 in	 indicating	 PAD	 clinical	 severity,	 as	 they	 showed	 the	
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best	ability	to	discriminate	between	mild-moderate	PAD	and	severe	PAD,	

with	 high	 specificity	 and	 sensitivity.	 VCANM	 concentration	 tended	 to	

decrease	 during	 disease	 progression	 and	 C4M	 seemed	 to	 increase	

according	 disease	 severity,	 which	 may	 denote	 a	 difficult	 regulation	 of	

MMP	 activity	 generally	 depending	 on	 specific	 contexts	 [193,194].	

Proposed	 biomarkers	may	 have	 potential	 to	 benefit	 drug	 development	

for	 PAD.	 However,	 our	 findings	 need	 exhaustive	 evaluation	 and	 other	

designs	 considering	 predictive	 power	 in	 asymptomatic	 PAD	 need	 to	 be	

performed.	

The	 imbalance	 in	 ECM	 turnover,	 inflammation	 and	 oxidative	

processes	is	also	linked	to	metabolic	stress	and	immunity	[107,195–197].	

An	excessive	energy	intake	can	promote	a	disrupted	energy	metabolism,	

impaired	bioenergetics	and	mitochondrial	dysfunction	and	predispose	to	

non-communicable	 diseases	 such	 as	 atherosclerosis	 (Annex	 2	 and	 3)	

[130,197–199].	 In	 Study	 3,	 we	 performed	 a	 targeted	 metabolomics	

analysis	 to	 find	 any	 metabolic	 disturbances	 in	 atherosclerotic	 patients	

and,	 again,	 propose	 novel	 biomarkers	 or	 new	 therapeutic	 strategies	

[200].	

Metabolomics	 can	 provide	 a	 unique	 profile	 of	 metabolites,	 which	

reflects	 the	 outcomes	 of	 biochemical	 reactions	 in	 cellular	 physiology	

[200–202].	It	is	mainly	used	for	disease	diagnosis,	to	understand	disease	

mechanisms,	to	identify	new	druggable	targets	and	monitor	therapeutic	

outcomes	[203–205].		
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During	 our	 study,	 we	 found	 important	 technical	 and	 biological	

limitations	 to	 overcome.	 Firstly,	 isocitrate	 and	 citrate	 were	 not	

distinguished	during	the	quantification.	Secondly,	and	due	to	the	lack	of	

phosphate	 compounds	 in	 blood,	 there	were	 some	differences	 between	

using	 arterial	 tissue	 or	 plasma	 samples	 from	 individuals.	 Nevertheless,	

targeted	 metabolomics	 using	 mass	 spectrometry	 brings	 the	 necessary	

sensibility,	reproducibility	and	accuracy	for	the	unequivocal	identification	

and	quantification	of	metabolites.		

PAD	patients	showed	alterations	in	their	energy	metabolism,	mainly	

in	 the	 connection	 between	 citrate-aconitate-isocitrate,	 as	 those	

metabolites	 were	 increased	 in	 PAD	 patients.	 Enzymes	 regulating	 these	

reactions	 have	 been	 related	 with	 mitochondrial	 function,	 thus	 the	

accumulation	 of	 the	 metabolites	 may	 be	 linked	 to	 an	 abnormal	

enzymatic	activity	and	mitochondrial	impairment	[196,206–208].		

However,	we	found	out	that	80%	of	our	PAD	patients	had	associated	

comorbidities	 (dyslipidemia,	 hypertension	 or	 type-2	 diabetes)	 and	 this	

may	lead	to	a	significant	change	on	metabolite	concentrations.	We	then	

segregated	 PAD	 patients	 according	 comorbidities	 and	 observed	 that,	

among	 others,	 branched-chain	 amino	 acids	 were	 influenced	 by	 these	

comorbidities	and	also	by	age	and	BMI,	confirming	previous	results	[209–

212].	 Moreover,	 BCAA	 associations	 with	 diabetes	 and	 metabolic	

abnormalities	are	stronger	in	Caucasian	and	Hispanics	[213].	
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We	discarded	these	metabolites	 in	our	search	 for	a	PAD	biomarker,	

and	 we	 selected	 six	 remaining	 candidates	 with	 significant	 differences	

between	 control	 group	 and	 PAD	 patients:	 3-hydroxybutyrate,	 α-

ketoglutarate,	 glutamate,	 glutamine,	 (iso)citrate	 and	 succinate.	

Glutamate	 and	 (iso)citrate	 had	 the	 best	 discriminant	 capacity	 between	

control	group	and	PAD	patients,	between	PAD	grades	and	also	between	

control	 group	 and	 IC	 (Fontaine	 I-II).	 Isocitrate	 has	 been	 recently	

associated	with	a	worse	 cardiovascular	prognostic.	Glutamate	has	been	

related	to	biomechanical	function	in	ischemic	heart,	and	it	is	the	required	

substrate	for	different	enzymes	in	the	mitochondria	[214–216].	Although	

confirmation	 is	needed,	we	suspect	 that	 the	 increased	concentration	of	

glutamate	 may	 be	 related	 with	 an	 effort	 to	 recover	 biomechanics	 of	

ischemic	arteries.	

We	think	that	a	possible	implementation	of	(iso)citrate	or	glutamate	

measurements	 in	 clinical	 practice	 may	 facilitate	 an	 earlier	 diagnose	 of	

PAD.	Despite	metabolomics	does	not	display	real	fluxes	[200,217],	it	can	

reveal	 interesting	 metabolic	 fingerprints	 which	 in	 turn,	 are	 useful	 to	

propose	novel	biomarkers	or	therapeutic	targets	and	strategies.		
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→ Inflammation,	oxidation	and	vascular	remodeling	are	present

in	 atherosclerotic	 arteries	 and	 their	 effect	 may	 provide

clinically	useful	circulating	markers.

→ The	 relationship	 between	 ligands	 and	 receptors	 in

chemokine	 system	 and	 response	 to	 oxidative	 stress	 play	 a

role	in	atherosclerosis	progression.

→ There	is	a	specific	proteome	profile	in	PAD	arteries.

→ Circulating	 ECM	 products	 of	 degradation	 VCANM	 and	 C4M

may	be	useful	in	the	assessment	of	disease	progression.

→ Comorbidities	are	limitations	to	the	interpretation	of	plasma

metabolome.

Conclusions	
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Abstract: Oxidative damage to lipids and lipoproteins is implicated in the development 

of atherosclerotic vascular diseases, including peripheral artery disease (PAD). The 

paraoxonases (PON) are a group of antioxidant enzymes, termed PON1, PON2, and PON3 

that protect lipoproteins and cells from peroxidation and, as such, may be involved in 

protection against the atherosclerosis process. PON1 inhibits the production of chemokine 

(C–C motif) ligand 2 (CCL2) in endothelial cells incubated with oxidized lipoproteins. 

PON1 and CCL2 are ubiquitously distributed in tissues, and this suggests a joint 

localization and combined systemic effect. The aim of the present study has been to 

analyze the quantitative immunohistochemical localization of PON1, PON3, CCL2 and 

CCL2 receptors in a series of patients with severe PAD. Portions of femoral and/or 

popliteal arteries from 66 patients with PAD were obtained during surgical procedures for 
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infra-inguinal limb revascularization. We used eight normal arteries from donors as 

controls. PON1 and PON3, CCL2 and the chemokine-binding protein 2, and Duffy 

antigen/chemokine receptor, were increased in PAD patients. There were no significant 

changes in C–C chemokine receptor type 2. Our findings suggest that paraoxonases and 

chemokines play an important role in the development and progression of atherosclerosis 

in peripheral artery disease. 

Keywords: CCL2; chemokine receptors; chemokines; immunohistochemistry; paraoxonases 

1. Introduction

Lower-extremity peripheral artery disease (PAD) is an important health problem that is associated

with severe impairment of different arterial territories. Indeed, PAD is a predictor of substantial 

coronary and cerebral vascular risk [1,2]. The disease prevalence increases with age and, in people 

over the age of 55 years, it is estimated to be about 20% [3–6]. Atherosclerosis affects wide portions of 

numerous arteries in the lower extremities of PAD patients. This is the effect of a sustained and silent 

progression of the disease in which appropriate and effective prevention measures are applied too late, 

or not implemented at all [3–8]. 

Oxidative damage to lipids and lipoproteins is implicated in the development of atherosclerotic 

vascular diseases, including PAD [9,10]. The paraoxonases (PON) are a group of antioxidant enzymes 

that protect lipoproteins and cells from peroxidation and are involved in the atherosclerosis process 

and, consequently, in vascular diseases [11]. The PON family contains three enzymes: PON1, PON2 

and PON3, the genes of which are located adjacent to each other on chromosome 7q21–22 [12,13]. 

PON1 and PON3 are found in many tissues, as well as in blood, where they are associated with 

high-density lipoproteins (HDL). Conversely, PON2 is exclusively intracellular [14–17]. Pioneer 

studies reported that oxidized low-density lipoprotein uptake by macrophages in tissue culture and  

in vivo increases the production of the inflammatory chemokine (C–C motif) ligand 2 (CCL2). 

The consequence is the stimulation of arterial fatty streak formation, which is the progenitor of 

atheroma. PON1 has been shown to inhibit these alterations [18–20]. Chemokines, CCL2 in particular, 

are central to the vascular inflammatory response in mediating monocyte recruitment into the arterial 

wall [21,22]. We have previously reported that PON1 and CCL2 are ubiquitously distributed in mouse 

tissues, suggesting a joint localization and combined systemic effects [23]. Clinical data suggest 

that circulating CCL2 concentrations or serum PON1 activity are important biomarkers of a variety of 

diseases involving inflammatory response to an increased oxidative stress [24–29]. 

Previous studies from our group found that serum PON1 activity and concentration were 

significantly lower, and CCL2 concentration higher, in PAD patients compared to controls, while the 

combination of plasma CCL2 and PON1-related variables, discriminated controls from patient almost 

completely [30]. In addition, we observed an increase in serum PON3 concentration in PAD patients, 

relative to the healthy population [31]. However, data on the protein expression of these molecules at 

the lesion level in patients with PAD are scarce. The aim of the present study was to quantify the 
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immunohistochemical localization of PON1, PON3, CCL2 and CCL2 receptors in a wide series of 

patients with severe PAD. 

2. Results

Patients with PAD did not significantly differ from the control group in age and gender distribution.

The patient group had a significantly higher percentage of smokers, and lower serum cholesterol and 

low-density lipoprotein (LDL) cholesterol concentrations. We did not observe significant difference 

in any of the other standard biochemical and hematological variables. The circulating levels of CCL2 

and 8-isoprostanes (a marker of oxidative stress) were significantly increased in PAD, while serum 

PON1 concentrations and activities were decreased (Table 1). C-reactive protein (CRP) protein levels 

were not significantly increased in our patients, a finding probably related to that they were treated 

with salicylates and antiplatelet agents. 

Table 1. Selected descriptive characteristics and laboratory variables in participants. 

Parameter Control (n = 8) PAD (n = 66) p-Value

Clinical characteristics 
Age, years 66 (30–76) 70 (62–77) 0.223 

Male, n (%) 5 (62.5) 55 (85.9) 0.094 
Smokers, n (%) 1 (14.3) 16 (31.4) 0.048 

Complete blood count 
Red blood cells, ×1012/L 4.32 (3.18–4.47) 3.67 (3.14–4.24) 0.449 

Hemoglobin, g/dL 12.46 (9.99–13.28) 10.85 (9.45–12.93) 0.468 
Leukocytes, ×109/L 9.22 (8.58–10.17) 9.89 (7.44–12.20) 0.668 

Platelets, ×109/L 227.5 (163.7–246.2) 312.5 (199.0–419.0) 0.080 

Biochemical variables in serum or plasma
Glucose, mmol/L 5.77 (5.11–6.77) 6.38 (5.11–8.83) 0.406 

Total cholesterol, mmol/L 4.77 (3.87–6.39) 3.39 (2.90–4.47) 0.030 
HDL cholesterol, mmol/L 1.24 (0.98–1.40) 0.93 (0.83–1.20) 0.074 
LDL cholesterol, mmol/L 3.54 (3.11–4.42) 1.95 (1.68–2.69) 0.001 

Triglycerides, mmol/L 1.47 (1.13–2.15) 1.31 (1.00–1.87) 0.449 
Fibrinogen, g/L 5.51 (4.48–7.54) 6.96 (5.34–8.11) 0.237 

C-reactive protein, mg/L 6.1 (0.6–7.2) 8.1 (2.7–16.0) 0.147 
Total proteins, g/L 65 (55–68) 60 (55–69) 0.743 

CCL2, ng/L 373.4 (255.2–431.8) 622.8 (472.7–898.4) <0.001 
PON1, mg/L 75.4 (56.7–143.8) 25.2 (18.4–35.8) <0.001 
PON3, mg/L  1.95 (1.51–2.50) 1.73 (1.43–2.27) 0.490 

8-Isoprostanes, ng/L 14.2 (2.0–37.2) 100.8 (37.6–314.7) <0.001 
PON1 lactonase activity, U/L 5.69 (5.02–6.29) 3.04 (2.11–3.73) <0.001 

The bold numbers highlight the statistically significant differences. 

The histological and immunohistochemical analyses of the peripheral arteries revealed that PAD 

patients had a significantly thicker tunica intima relative to the tunica media of the artery wall (termed 

the intima-media, or I/M ratio). There were significant increases in the percentage positive staining for 

PON1, PON3, CD68 antigen (a marker of macrophages), CCL2, and also in the CCL2 receptors 
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termed chemokine-binding protein 2 (CCBP2, also termed D6), and Duffy antigen/chemokine receptor 

(DARC). We did not observe any significant change in C–C chemokine receptor type 2 (CCR2) 

staining relative to controls (Table 2). Similar results were obtained when smokers were excluded from 

the PAD group (Table S1). 

Table 2. Differences in selected variables between control individuals and PAD patients. 

Parameter Control (n = 8) PAD (n = 66) p-Value 

IMT (mm) 1.00 (0.70–1.30) 1.29 (1.00–1.74) 0.150 
I/M ratio 0.16 (0.13–0.65) 2.10 (1.33–3.22) <0.001 

% PON1 staining 1.70 (1.54–3.72) 11.19 (7.25–20.81) <0.001 
% PON3 staining 0.55 (0.22–0.73) 3.25 (2.01–4.37) <0.001 
% CCL2 staining 2.26 (0.36–3.65) 30.75 (9.63–44.41) <0.001 
% CCR2 staining 18.29 (7.02–27.56) 22.99 (13.21–42.71) 0.263 
% CD68 staining 1.10 (0.65–2.88) 4.57 (2.40–9.24) 0.007 

% D6 staining 0.83 (0.22–12.9) 41.21 (24.55–58.39) <0.001 
% DARC staining 3.29 (2.01–5.06) 37.26 (18.06–51.85) <0.001 

IMT: Intima-Media thickness. Results are shown as medians and interquartile ranges. Staining for chemokine 

(C–C motif) ligand 2 (CCL2), C–C chemokine receptor type 2 (CCR2), cluster of differentiation 68 (CD68), 

Duffy antigen/chemokine receptor (DARC), chemokine-binding protein 2 (D6), paraoxonase-1 (PON1) and 

paraoxonase-3 (PON3) were measured as the area of positive staining and expressed as percentage of the 

total area examined using the image analysis system (see text for details). The bold numbers highlight the 

statistically significant differences. 

Affected arteries had severe alterations compared to the normal artery histology (Figure 1).  

The intima was thicker and had extensive deposits of cholesterol and inflammatory cells. Calcium 

deposits were clearly identified in the media. Masson’s trichrome stain was used to evaluate the 

arteries’ architecture which, in affected arteries, highlighted an infiltration of smooth muscle cells from 

the media into the intima, or perhaps a loss of muscle cells from the media and increase in connective 

tissue, and greater obstruction of the arterial lumen. 

 

Figure 1. Cont. 
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Figure 1. Representative histological images of peripheral arteries: (A) Arteries stained 

with Hematoxylin-Eosin. The intima in affected arteries was thicker and replete with 

cholesterol deposits and inflammatory cells (arrow). Magnification 20×; (B) Alizarin Red 

staining to detect the presence of calcium. There were calcium deposits in affected arteries 

located, mainly, in the media and, in some cases, calcium was observed in the internal 

elastic lamina (arrows). Magnification 20×; (C) Masson’s Trichrome stain showing, 

in affected arteries, an infiltration of smooth muscle cells from the media to the intima 

(arrow). The lumen shows partial obstruction. Magnification 40×; (D) Actin staining 

to detect the presence of smooth muscle cells. The arrow shows the area of infiltration 

of these cells from the media to the intima. Magnification 20×. The inserts show higher 

magnification (100×) images of the indicated areas. 

In normal arteries, PON1 expression was low and located in the intima and in the adventitia. PON3 

expression was imperceptible. Conversely, in the arteries of PAD patients, PON1 and PON3 

expression were higher. PON1 presented two types of localization: (1) when the intima was only 

moderately enlarged, PON1 was located in the adventitia vessels and the media; (2) when the intima 

was disorganized and with cholesterol deposits, PON1 was found surrounding the cholesterol crystals 

at the site of the lesion. In affected arteries, PON3 was found in the adventitia or in the injury sites of 

the intima (Figure 2). Areas of CD68 staining had a similar spatial distribution than those of 

paraoxonases and CCL2 (Figures S1 and S2). 
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Figure 2. Representative immunohistochemical images for paraoxonase-1 (PON1) and 

paraoxonase-3 (PON3) staining of peripheral arteries: (A) PON1 expression in normal 

artery was almost undetectable, and located in the media and adventitia. PON1 had two 

types of localization in affected arteries: when the intima was not very thick, PON1 was 

located in the adventitia and media of the vessels (arrow). When the intima was 

disorganized and with cholesterol deposits, PON1 was expressed in the lesion site (arrow); 

(B) PON3 expression was undetectable in normal tissue whereas, in affected arteries, 

PON3 was located in the adventitia or in the injury sites of the intima (arrow). 

Magnification 20×. The inserts show higher magnification (100×) images of the  

indicated areas. 

In normal arteries, CCL2 was mildly expressed in the adventitia, while CCR2 was found mostly  

in the media, with weaker expressions in the adventitia and intima. CD68, D6 and DARC expressions 

were mild. Conversely, the arteries of PAD patients had higher expressions of CCL2, CD68, D6 and 

DARC. CCL2 was found mostly in the adventitia while CCR2 was found mostly in the media, with 

weaker expressions in the adventitia and intima, as found in normal arteries. CD68 expression was 

observed mostly in the thickest areas of the intima. DARC was located mostly in the media, although  

it could also be found in the adventitia and/or intima of the vessels. D6 was found mostly in the 

adventitia (Figure 3). 

 

Figure 3. Cont. 
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Figure 3. Representative immunohistochemical images for inflammatory markers in 

peripheral arteries: (A) Chemokine (C–C motif) ligand 2 (CCL2) was expressed in the 

adventitia in normal and affected arteries (arrow); (B) C–C chemokine receptor type 2 

(CCR2) was expressed, mainly, in the media in normal and affected arteries. However, it 

can also be found in the intima and in adventitia of the vessels (arrow); (C) Cluster of 

differentiation 68 (CD68) was mildly expressed in control arteries while, in affected 

arteries, the expression was higher and located, mainly, in the intima (arrow); 

(D) Chemokine-binding protein 2 (D6) expression was found, mainly, in the adventitia;

(E) Duffy antigen/chemokine receptor (DARC) was found, mainly, in the media, although

it was observed as well in the adventitia and/or intima of some vessels. Magnification 20×.

The inserts show higher magnification (100×) images of the indicated areas.

3. Discussion

The present study shows (by immunostaining) that paraoxonases, CCL2 and several CCL2 receptors

are increased in peripheral arteries with indications of atherosclerosis. This could be a response 

to increased cellular oxidative stress as well as the migration of monocytes. In PAD patients, 
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we observed an increased CD68 staining which is a specific marker of macrophages. Macrophage 

mitochondrial oxidative stress plays a major role in atherosclerosis via mechanisms involving the 

NF-κB-CCL2 pathway [32]. Paraoxonases prevent oxidative stress by reducing the amount of oxidized 

LDL in the circulation as well as the vessel wall. This, in turn, reduces monocyte infiltration into the 

vessel wall and, as such, is anti-inflammatory [33,34]. The protein expression of this enzyme has been 

observed in many tissues in humans [35] and mice [23]. PON1 reduces macrophage oxidation of LDL 

as well as macrophage oxidative stress, and increases cholesterol efflux from macrophages to 

high-density lipoprotein (HDL), thus reducing foam cell formation and, as a consequence, the 

development or progression of atherosclerosis. Therefore, the increase in PON1 staining found in this 

study could indicate that a protective response to increased oxidative stress was occurring in the 

macrophages of the diseased arteries. For example, it is of considerable note that PON1 expression was 

found surrounding cholesterol deposits in severely diseased arteries, and which strongly supports the 

hypothesis of a protective role for this enzyme, i.e., that PON1 infiltrates the arterial tissue to combat 

the deposition of the atherosclerosis-promoting cholesterol. The physiological role of PON3 is still 

unclear. Results from the present study support previous findings from our group showing increased 

serum PON3 concentrations in patients with PAD [31]. Studies on cellular expression of this enzyme 

and the elucidation of its athero-protective role are scarce and inconclusive. PON3 has lactonase but 

not paraoxonase activity [36,37]. Previous studies reported that PON3 attenuates the oxidation of LDL 

in vitro [38] and that the overexpression of human PON3 decreased atherosclerosis and adiposity 

in mice [39]. Although the increase in PON3 protein expression in the arteries of PAD patients 

is quantitatively small, it needs to be taken into account that PON3 is about 100 times more potent 

per mg of protein than PON1, in protecting LDL against lipid peroxidation [36]. Hence, the increase 

in the enzyme’s expression in these patients could be of clinical relevance. 

In the peripheral circulation, decreased PON1 activities are associated with increased concentration 

of CCL2 [30], and in vitro studies found that PON1 inhibits the production of CCL2 induced 

by oxidative stress in endothelial cells [20]. However, this inverse relationship is not confirmed 

at tissue level. Indeed, both molecules are ubiquitously expressed in most tissues and are located 

in close proximity to one another, suggesting some manner of coordinated function [23,40]. Results 

of the present study, and previous others, show that the expression of both proteins is increased in the 

arteries of patients with atherosclerosis [40]. This observation would suggest that the variations 

in PON1 and CCL2 concentrations in plasma do not necessarily correlate with their roles at the cellular 

level. Perhaps PON1 protein expression is increased in diseased arteries to counteract oxidative stress 

and CCL2-induced inflammation. However, this hypothesis has to be confirmed by further studies. 

CCL2 is likely to have considerable impact on PAD since the biological function of this chemokine 

is to induce monocyte migration and, as well, because the arteries with moderate atherosclerosis 

appear to accumulate CCL2 in response to a variety of pro-inflammatory stimuli [24,30,41–44]. 

Atherosclerosis is an inflammatory disease, and the consensus is that CCL2 is involved in its 

pathogenesis [45]. In the present study, we found increased CCL2 expression in the arteries of PAD 

patients, together with an increased expression of two of the CCL2 receptors i.e., D6 and DARC. 

D6 and DARC belong to the poorly-understood chemokine receptors collectively known as atypical 

or silent. These are G-protein coupled receptors that do not activate conventional signaling events. 

Conversely, they may internalize, degrade or transport ligands (i.e., they have the potential to create 
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clinically relevant chemokine patterns in tissues) [46]. Their levels of expression have not been 

explored previously in diseased arteries of PAD patients. The availability of CCL2 may be 

complicated by potential effects induced by differential expression of the specific receptor CCR2  

and the presence of these atypical chemokine receptors. We observed that the expression of these 

receptors was increased in diseased arteries, and that their histological distributions are not uniform.  

A pathogenic role is likely, and data suggests that atypical chemokine receptors modify chemokine 

availability in PAD. Although these receptors have no involvement in cell migration, their modulatory 

effect on inflammatory response is likely. 

Previous studies from our group also reported increased PON1 and PON3 expressions in aortas 

from patients undergoing coronary or aortic artery bypass grafting [40]. This is relevant, because  

it suggests that, despite the atherosclerosis burden being higher in PAD, changes inside the tissue  

are similar at a molecular level. The mechanisms underlying the increased PON1 and PON3 

immunohistochemical staining in the arteries of PAD patients cannot be ascertained from the present 

investigation, but these patients had oxidative stress, as indicated by the elevated serum 8-isoprostanes 

concentration. Oxidative stress stimulates PPARγ and NF-κB-related pathways [47], and these 

molecules have been reported to stimulate the expression of paraoxonases [48,49]. However, this 

increase is in an apparent contradiction with the decrease in the serum levels of the enzymes,  

and a possible explanation could be an increase in PPARδ expression and decreased PON1 proteolysis. 

This is the case in a rat model of liver fibrosis that our group published a few years ago [50]. Rats with 

carbon tetrachloride-induced liver fibrosis had oxidative stress and increased PPARδ gene expression. 

These alterations were associated to an inhibition of the HDL synthesis and, consequently, a decreased 

PON1 secretion to the extracellular medium. In addition, the hepatic levels of the protease cathepsin B 

were decreased, leading to an inhibition of protein degradation. Thus, hepatic PON1 levels were 

elevated as a consequence of the combination of a decreased HDL secretion, and to an inhibition of 

lysosomal protein degradation. To ascertain if the same phenomena occur in the arteries of PAD 

patients requires further studies, but the strong decrease in HDL-cholesterol concentrations observed in 

our patients is in agreement with this hypothesis. 

A caveat of the present study is that we could not analyze PON2 in the arteries of PAD patients. 

This enzyme plays an important role in the intracellular protection against oxidative stress [14], and 

new investigations focused in PON2 and PAD should be further pursued. 

4. Experimental Section 

4.1. Study Population 

Patients with clinically diagnosed PAD were recruited from the outpatient clinics of Hospital 

Universitari Joan XXIII. Diagnosis was with standard clinical assessments including measurement  

of the ankle-brachial index (ABI), non-invasive imaging, and angiography when indicated. Symptoms 

of chronic ischemia were detected using the Fontaine classification, the standardized physician-administered 

questionnaire that seeks to identify the presence of calf discomfort on exertion, such as walking uphill 

or walking rapidly [51]. Exclusion criteria from our study were the presence of acute ischemia, signs 

of infection, renal failure, liver disease, cancer, or autoimmune disease. Portions of femoral and/or 
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popliteal arteries from patients were obtained during surgical procedures for infra-inguinal limb 

revascularization (n = 66). All patients were at Stages III and IV of the Fontaine classification. Eight 

normal arteries obtained from accident victims and stored at the Blood and Tissue Bank of Catalonia 

(Banc de Sang i Teixits, www.bancsang.net/es/donants/donacio_teixits.html, Barcelona, Spain) were 

used as controls. All tissues (patients and controls) were kept at −80 °C until thawed for processing. 

After thawing, the tissues were rinsed in phosphate buffer to remove residual blood and placed in at 

least 10 volumes of buffered formalin using a standard protocol for embedding tissue in paraffin wax 

for subsequent histology slide preparation. Three sections per slide were used for histological and 

immunohistochemical analyses. A peripheral blood sample was also obtained from each patient (and 

control individual) at the time of the surgery for biochemical and hematological measurements. The 

hospital’s Ethics Committee (Institutional Review Board) approved the procedures of the study 

protocol on 31 July 2014, and written informed consent was obtained from the participants prior to 

entry into the study (OBESPAD 14-07-31/7proj3). 

4.2. Biochemical Analyses 

Serum concentrations of glucose, cholesterol, HDL cholesterol, triglycerides, fibrinogen, C-reactive 

protein, total proteins, and complete blood cell counts were performed by standard methods in the 

Hospital Universitari Joan XXIII. LDL cholesterol concentrations were estimated using the Friedewald 

formula. Serum concentrations of PON1 and PON3, and EDTA-plasma concentrations of CCL2 were 

determined by ELISA as previously reported [30,31]. Serum concentrations of 8-isoprostanes were 

analyzed by Enzyme Immunoassay (Cayman Chemical Co., Ann Arbor, MI, USA). Serum PON1 

lactonase activity was analyzed by measuring the hydrolysis of 5-thiobutyl butyrolactone [27]. 

Inter-assay coefficients of variation were as follows: Glucose, 1.8%; cholesterol, 1.5%; HDL cholesterol, 

2.0%; triglycerides, 2.2%; fibrinogen, 7.5%; C-reactive protein, 4.8%; total proteins, 1.3%; LDL 

cholesterol, 3.5%; PON1, 10.5%; PON3, 12.2%; CCL2, 7.3%; 8-isoprostanes, 10.2%; lactonase, 11.5% 

(n = 20 for each variable). 

4.3. Histological and Immunohistochemical Analyses 

Sections, of 4-µm thickness, were stained with hematoxylin-eosin for arterial histology. Masson’s 

trichrome stain (Masson’s Trichrome Goldner with light green, Bio Optica, Milano, Italy) was used to 

assess the structure and extent of fibrosis. Alizarin Red staining (Sigma-Aldrich, Steinheim, Germany) 

was used to identify the sites of micro-crystalline, or non-crystalline, calcium phosphate salts. The 

intima and media thicknesses were measured in all histological sections as an estimate of the extent of 

atherosclerosis. Antibodies against PON1 and PON3 were raised in rabbits using peptides derived 

from specific sequences of mature PONs, as previously reported [52–54]. PON1 and PON3 antibodies 

were used at a dilution of 1/50 and 1/300, respectively. A previous study already demonstrated that 

these antibodies were highly specific for PON1 and PON3 [54]. Commercial primary antibodies were 

purchased: CCL2 (dilution 1/200), CCR2 (dilution 1/100), and D6 (dilution 1/500) from Abcam plc 

(Cambridge, UK); antibodies against DARC (dilution 1/200) from Abnova (Taipei, Taiwan); and 

antibodies against CD68 from Dako (Glostrup, Denmark). The appropriate biotinylated secondary 

antibodies (anti-rabbit, anti-mouse or anti-goat; purchased from Vector Laboratories Inc., Burlingame, 
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CA, USA) were used at a dilution of 1:200. Detection was performed with the ABC peroxidase system 

(Vector Laboratories, Burlingame, CA, USA) and 3,3'-diaminobenzidine (DAB) peroxidase substrate 

(Dako). The times of the detection reactions were 4 min for PON1 and PON3, 1 min for DARC,  

1.5 min for CCR2 and D6, 10 min for CCL2, and 5 min for CD68. All immunohistochemical sections 

were counterstained with Mayer’s hematoxylin. Negative control samples were processed identically 

to the test samples except that the primary antibodies were omitted from the incubation. Representative 

immunohistochemical images of negative controls in control arteries and arteries from patients with 

PAD are shown in Figures S3 and S4. The positively-stained area was quantified automatically for 

each antibody using an image analysis system (AnalySIS®, Soft Image System GmbH, Olympus Corp., 

Munster, Germany), and expressed as percentage of the total area. Initially the colors of the images 

that have been stained to the molecule of interest were defined. Once these colors were defined, they 

were automatically detected in all samples. The software analyzed the stained area in relation to the 

total image area, which is termed phase analysis. The rationale for this method is described in  

more detail in the Supplementary Methods, and is also available on the Internet [55]. This is  

a semi-quantitative analysis that measures areas and not intensities. This method is commonly 

accepted and has been employed previously in several immunohistochemical studies by our group and 

other authors [23,28,40,54,56–59]. Inter-assay coefficients of variation were as follows: PON1, 9.6%; 

PON3, 7.3%; CCL2, 4.5%; CCR2, 5.3%; D6, 6.4%; DARC, 7.1% (n = 20 for each variable). 

4.4. Statistical Analyses 

Significance of difference between groups was assessed by the Mann–Whitney U-test. Results are 

expressed as medians and IQR (Interquartile Range). All statistical analyses were performed with the 

Statistical Package for the Social Sciences, version 22.0 (SPSS Inc., IBM Corp., Chicago, IL, USA). 

5. Conclusions 

In conclusion, PON1 and PON3, CCL2 together with the D6 and DARC receptors are increased  

in the arteries of patients with PAD. The findings suggest that these molecules may be involved in the 

development and progression of atherosclerosis in peripheral artery disease. 

Supplementary Materials 

Supplementary materials can be found at http://www.mdpi.com/1422-0067/16/05/11323/s1. 
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Supplementary Information 

Table S1. Differences in selected variables between control individuals and PAD patients, 

excluding smokers from the PAD group. 

Parameter Control (n = 8) PAD (n = 50) p-Value

IMT (mm) 1.00 (0.70–1.298) 1.35 (0.99–1.83) 0.133 
I/M ratio 0.16 (0.13–0.65) 2.14 (1.42–3.22) <0.001 

% PON1 staining 1.70 (1.54–3.72) 11.17 (6.16–15.37) <0.001 
% PON3 staining 0.55 (0.22–0.73) 3.34 (2.05–4.55) <0.001 
% CCL2 staining 2.26 (0.36–3.65) 30.75 (9.63–43.86) <0.001 
% CCR2 staining 18.29 (7.02–27.56) 20.42 (12.79–30.50) 0.650 
% CD68 staining 1.10 (0.65–2.88) 4.84 (1.43–9.23) 0.027 

% D6 staining 0.83 (0.22–12.9) 41.91 (27.85–56.15) <0.001 
% DARC staining 3.29 (2.01–5.06) 30.62 (17.79–46.76) <0.001 

IMT: Intima-Media thickness. Results are shown as medians (IQR). Staining for CCL2, CCR2, CD68, 

DARC, D6, PON1 and PON3 were measured as the area of positive staining and expressed as percentage of 

the total area examined using the image analysis system (see text for details). The bold numbers highlight the 

statistically significant differences. 

Figure S1. Representative immunohistochemical images of serial sections for CD68 and 

PON1 staining of peripheral arteries: (A) CD68; (B) PON1. Both stainings are observed at 

the lesion site. Magnification 20×. 
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Figure S2. Representative immunohistochemical images of sections from the same tissue 

block for CD68 and CCL2 staining of peripheral arteries: (A) CD68; (B) CCL2. 

Magnification 20×. 

Figure S3. Representative immunohistochemical images of negative controls in control 

arteries and arteries from patients with peripheral artery disease: (A) PON1; (B) PON3. 
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Figure S4. Representative immunohistochemical images of negative controls in control 

arteries and arteries from patients with peripheral artery disease: (A) CCL2; (B) CCR2; 

(C) CD68; (D) D6; (E) DARC.
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Supplementary Methods: Phase Analysis with the AnalySIS® System 

Objects in true-color images to be displayed in false color are defined with the Set color threshold 

command. Low and up threshold for the three basic color parameters (red, green and blue) are set and 

assigned a phase. Thresholds can also be interactively set in the image. To do this, a set of pixels is 

selected. For each phase, a false color for the respective object is selected. Areas of color ranges not 

assigned to a phase will not be calculated. This command generates an 8-bit false-color image in the 

destination image buffer. All gray-value areas assigned to a phase will be colored according to that phase. 

A measurement sheet is generated containing the absolute areas of the gray-value phases, as well as the 

percentage area of each phase relative to either the total image area or the area within the active frame. 

Sheet column headers contain phase name and lower and upper thresholds. The column header’s color 

corresponds to its respective phase. Phase analysis of various gray-value ranges enables to determine 

the percentage surface area of a particular material on a background. Surface area can be calculated in 

true-color images using selected color ranges. Summarized from the AnalySIS® User’s Guide, freely 

available at: ftp://ftp.ccmr.cornell.edu/utility/FEI%20temp/AnalySIS%20docs/Getting%20Started.pdf). 
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Background and objective: The prevalence of peripheral artery disease (PAD) 

is high (20-25%) in the population older than 65 years, and patients frequently 

do not present for treatment until the disease is advanced. Circulating 

markers of disease activity might provide patients with a key opportunity to be 

treated. The established role of matrix metalloproteinases (MMPs) in vascular 

remodeling and their association with atherosclerosis progression is the basis 

on which to explore the feasibility of detecting blood-specific peptides 

generated during the degradation of the extracellular matrix (ECM). 

Methods: A combined histological and non-targeted proteomic approach using 

liquid chromatography and tandem mass spectrometry was used to assess 

the protein profile in arterial specimens from patients undergoing elective 

surgery. We then selected a panel of neo-epitopes, likely indicating ECM 

turnover, and measured them by enzyme-linked immunosorbent assays in 

serum samples from a cohort of 195 PAD patients who were in a stable state 

and exhibited different disease activity. 

Results: Histological and proteomic analyses confirmed the structural 

disorganization of affected arteries. Several proteins (14 out of 81) were 

identified as differentially expressed in diseased arteries; most of them were 

related to ECM-components and the difference in expression was likely due to 

an imbalance in vascular remodeling. Multivariate analyses suggest that 

severe lesions in PAD patients may have a specific proteome. Targeting 

selected neo-epitope fragments in the serum revealed that some but not all 

fragments had potential value in the clinical management of PAD. Notably, the 

detection of neo-epitopes from fragments of MMP-mediated degradation of 

versican and collagen type IV segregated patients with mild/moderate PAD 

(intermittent claudication, Fontaine I-II) from those with severe PAD (critical 

limb ischemia, Fontaine III-IV). 

Conclusion: We propose novel non-invasive candidate biomarkers that may 

be clinically useful across the PAD spectrum. 

Keywords: Atherosclerosis; Biomarker; Collagen; Extracellular matrix; 

Laminin; Neo-epitopes; Versican. 
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INTRODUCTION 

Systemic atherosclerosis is a progressive, age-related disease underlying 

the most common causes of death. The prevalence of peripheral artery 

disease (PAD) is high, with over 200 million afflicted patients in industrialized 

countries, and is further increasing due to the convergent epidemics of 

diabetes and obesity.1, 2 Lesions in the arteries of the lower extremities 

represent a clinical spectrum encompassing asymptomatic and 

underdiagnosed illnesses as well as symptomatic disorders in which the initial 

manifestations are either intermittent claudication (IC) or critical limb ischemia 

(CLI).3, 4 The challenge is to establish non-invasive biomarkers for predicting 

patients likely to progress to CLI and for improving success in offering 

preventive medical management. 

Changes in lumen caliber are major determinants of the course of PAD 

symptoms, and wall remodeling in peripheral arteries of a certain size and 

length seems to be a crucial process to understand the reaction of old and 

damaged tissue to atherosclerotic injuries.5 Mechanistic knowledge is 

incomplete, but the major role of the extracellular matrix (ECM) in providing a 

mechanical scaffold and support to cell migration is undisputed.6 The dynamic 

regulation of the ECM is governed by the balance between synthesis and 

degradation of ECM components, which is context-specific and involves the 

correct functioning of cytokines, enzymes such as matrix metalloproteinases 

(MMPs) and growth factors.7-9 We now know that atherosclerosis-associated 

remodeling is the complex response to inflammatory cells, lipid deposition and 

mechanic or shear-dependent stimuli, which are responsible for changes in 

ECM composition and for disrupted cytoskeletal architecture.10-14 Here we 
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provide an insight into the proteome composition and the relative expression 

of ECM components in severely affected peripheral arteries and we test the 

hypothesis that a directed choice of neo-epitopes may provide clinically useful 

non-invasive biomarkers in PAD patients. 

 

MATERIALS AND METHODS 

Participants and study design. The local Ethics Committee and 

Institutional Review Board approved the procedures involved in this study 

(Epinols/12-03-09/3proj6). Written informed consent was obtained from all 

participants before inclusion. Patients (n=195) were consecutively enrolled 

men selected from among those attending our Department of Vascular 

Surgery and with an established diagnosis of PAD according to Fontaine 

classification15. Patients with infected lesions, evidence of neoplastic disease, 

chronic kidney disease, liver disease or inflammatory disease (or receiving 

anti-inflammatory drugs) were not included. Ankle-brachial index (ABI) was 

measured per standard technique in both lower limbs and non-invasive 

imaging techniques or arteriographies were performed according to the 

standard of care. Serum was collected at the time of inclusion and stored at -

80ºC until analyses. Patients were followed up every 3 months for 1 year and 

there was no mortality during this period. No patient was included 

postoperatively or lost to follow-up but some patients needed infrainguinal 

limb revascularization (n=18). These patients were invited to participate in a 

case-control study (Inflamet/15-04-30/4proj6) that required donating portions 

of diseased artery for proteomic analyses that were compared with healthy 

artery samples obtained from road accident victims of a similar age range (66-
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70 years). New informed consent was obtained from either the participants or 

a next of kin.  

Histological examination. To examine tissue morphological features, 

serial sections of tissue were obtained from samples fixed in 10% neutral-

buffered formalin and embedded in paraffin. Hematoxylin and eosin staining 

(Sigma-Aldrich, Steinheim, Germany) was used to identify different cellular 

structures. Masson’s trichrome staining (Bio Optica, Milano, Italy) was used to 

assess collagen fibers, smooth muscle cells, nucleus and cytoplasm and 

Sirius red staining (Direct Red 80, Sigma-Aldrich, Steinheim, Germany) was 

used to identify collagen fibers. Images were obtained at x200 magnification 

and the Intima/Media ratio (IMR) was obtained by dividing the thickness of the 

intima by the thickness of the media measured using an optical microscope 

(Nikon, Eclipse E600, Madrid, Spain) equipped with image analysis. 

Proteomics. We have previously used these methods to analyze the 

protein secretion profile of carotid atherosclerotic plaques16
; ancillary methods 

and specific details may be found in supplementary material and methods, 

S1. Briefly, sample arteries were cut into pieces and homogenized in the 

presence of type 1 collagenase (Sigma-Aldrich, Steinheim, Germany). 

Following different rounds of centrifugation and chemical treatment, 

precipitated proteins were vacuum-dried and dissolved in 0.5 M 

triethylammonium bicarbonate, pH= 7.2, to be sequentially denatured, 

reduced and alkylated. For digestion, samples were incubated with 

sequencing-grade trypsin overnight at 37 °C. We used a mass spectrometry 

approach for quantification by performing isobaric tag for relative and absolute 

quantitation (iTRAQ) labeling using iTRAQ 8-plex reagent kits (SCIEX, 
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Madrid, Spain), as previously described.17 Labeled peptides were then 

purified using a SCX column (Strata® SCX 55um, 70Å, Phenomenex), 

desalted and concentrated through a C18 Sep-Pak column (Waters, Bedford, 

MA, USA) and analyzed by using a C-18 reversed phase nano-column 

coupled to a trap nano-column for real time ionization and peptide 

fragmentation on a LTQ-Orbitrap Velos Pro mass spectrometer (Thermo 

Fisher Scientific, San Jose, CA). To identify proteins, information was 

obtained from tandem mass spectra with the aid of Proteome Discoverer, 

version 1.4.0.288, from Thermo Fisher Scientific. All MS and MS/MS samples 

were analyzed using Mascot (Thermo Fisher Scientific; version 2.4.1.0). 

Protein quantification was performed by comparing the peak intensity of the 

reporter ions in the MS/MS spectra to that of the selected peptides to assess 

the relative abundance of the peptides. Normalized concentrations of selected 

proteins were used to assess the increased or decreased expression of 

proteins in PAD arteries. 

Enzyme-linked immunosorbent assays (ELISA). Methods involved in 

monoclonal antibody development and technical evaluation of the assays 

were essentially similar to those recently described.18 Specific details may be 

found in supplementary material and methods, S2. The list of selected neo-

epitopes from the MMP-degraded proteins is shown in Table S1, and also in 

the supplementary information and the references therein. This selection was 

made after confirming that these neo-epitopes were consistent with proteomic 

data and pathway analysis according to the ConsensusPathDB-human 

platform.19 

Statistical analysis. The Kolmogorov-Smirnov test was used to assess 
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normal distribution of the variables. We used the Mann-Whitney U test to 

compare non-parametric variables, Student’s t-test for parametric variables 

and contingency tables and the chi-square test for categorical variables. For 

multiple comparisons, the Kruskal-Wallis test or Analyses of Variance (one-

way ANOVA) was used. The results were expressed as median and 

interquartile range or percentage of the total participants. For proteomic 

analyses, principal component analysis (PCA) and hierarchical clustering 

analysis were performed using the Mass Profiler Professional software v.12.1 

(Agilent Technologies). Only proteins that appeared in more than 70% of the 

samples were considered, and the PANTHER system (www.pantherdb.org) 

was used for functional classification. We used the Benjamini−Hochberg 

method to avoid false positives in differences due to multiple testing. Analyses 

with receiving operating characteristics (ROC) curves and binary logistic 

regression were performed using the Statistical Package for the Social 

Sciences, version 22.0 (SPSS Inc., IBM Corp, Chicago, IL, USA). 

MetaboAnalyst 3.0 (http://www.metaboanalyst.ca/) was used to generate 

scores/loading plots, heatmaps and random forest analysis.  

RESULTS 

The clinical characteristics and laboratory measurements (Table I) suggest 

that the cohort of patients used for this study is representative of the clinical 

spectrum of PAD patients seeking attention in our facilities. The high 

prevalence of cardiovascular risk factors and associated treatment, including 

the fact that most were smokers, did not significantly affect severity of 

disease, with the possible exception of a lower prevalence of diabetes in 
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Fontaine I patients. However, age was a significant factor in establishing 

disease severity and a major consideration in further analyses.  

In a case-control study combining histology and proteomics, we first 

evaluated the differences in the integrity of arterial tissue and signs of 

vascular remodeling, in severely lesioned and normal arteries (Figure I). 

Atherosclerosis was evident in all samples from the PAD patients. The tunica 

intima was disorganized and thicker, and the presence of lipid vacuoles and 

cholesterol crystals and other histologic features (Figure 1A) were consistent 

with the higher (p<0.0001) intima/media ratio observed in PAD patients (2.10 

[1.33-3.22]) with respect to that of similarly aged donors of healthy arteries 

(0.16 [0.13-0.65]). Furthermore, smooth muscle cells normally located in the 

media were also present in the intima of atherosclerotic arteries (Figure 1B) 

and the distribution of collagen fibers was disrupted (Figure 1C). 

Our untargeted proteomics approach identified and quantified 81 proteins 

present in both control and diseased arteries and in more than 70% of the 

samples (Table S2). However, once filtered, corrected and normalized, we 

identified a unique subset of proteins (n=14) with statistically significant 

differences between diseased and healthy arteries and therefore with the 

potential to represent specific biomarkers (Figure 2 A). Putative functions of 

these proteins in atherosclerosis, according to the literature, are listed in 

Table S2. Notably, most of these proteins were ECM or cytoskeletal 

components (Figure 2B) suggesting that vascular remodeling provides a 

specific target that might be used to explore progression of atherosclerosis. 

Hierarchical clustering analyses and principal component analysis strongly 

suggest that severe disease in PAD patients may have a specific proteome, 
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as illustrated in Figure 2C-E. Normalized concentrations identified some 

proteins that were either underexpressed or overexpressed in atherosclerotic 

arteries indicating the delicate balance between production and degradation 

or removal of proteins in ECM turnover. Nevertheless, we assumed an 

imbalance favoring degradation of ECM proteins to select candidate neo-

epitopes (Table S1) to be measured in the serum of PAD patients with 

validated ELISA tests. 

Median and IQR values (Table II) indicated that measurements of specific 

fragments of MMP-8- and MMP-12-mediated degradation of versican 

(VCANM), MMP-9-mediated degradation of alpha 5 chain of laminin (Lam-a5) 

and MMP-mediated degradation of type IV collagen (C4M) had discriminative 

value in the clinical presentation of PAD patients. This was further confirmed 

by using random forest analyses, but Lam-a5 levels failed to discriminate 

patients with IC from those with CLI and were not considered in further 

analyses. Serum VCANM concentration decreased progressively, was 

correlated with clinical severity, and the analysis of ROC curves displayed a 

high sensitivity and specificity to distinguish between Types I and IV patients 

(Figure 3A, B). A similar discriminative value was obtained for C4M 

concentrations, but this variable increased according to disease severity 

(Figure 3C, D). The combination of both potential biomarkers provided 

specificity higher than 90% to discriminate between patients with mild IC and 

those with CLI (Figure 3E). 
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DISCUSSION 

Atherosclerosis is a systemic disease. Despite identical pathogenesis, the 

affected vascular territories define not only clinical relevance but also different 

responses to injuries. Detecting asymptomatic stages and to predict or 

monitor disease progression is currently an unmet need for vascular 

surgeons20 that might be fulfilled by non-invasive blood biomarkers. In limb 

arteries, the lumen loss (i.e., progression to ischemia) is not due to neointima 

formation, as is the case in coronary arteries.21 As confirmed by our 

histological assessment, an important contribution of the reparative response 

to promote vascular remodeling, which includes inflammatory mediators and 

ECM degradation, is likely.21-23 Our proteomics data indicate that severe 

atherosclerotic lesions in peripheral arteries have a specific proteome in which 

proteins related to tissue modeling and remodeling are underrepresented and 

those associated with inflammation seem overregulated. Among those 

overexpressed proteins, alpha-2-macroglobulin and carboxypeptidase B2 

largely contribute to the differences observed between diseased and healthy 

arteries. Alpha-2-macroglobulin has been recently associated with plaque 

vulnerability in carotid arteries using a similar iTRAQ-based analysis24 and 

carboxypeptidase B2 may be a potential indicator of a high risk of premature 

peripheral artery disease.25 Conversely, other proteins were significantly 

decreased in diseased arteries. For example, low levels of lactadherin may 

indicate advanced atherosclerosis and poor adhesion of smooth muscle cells 

to elastin fibers.26 We observed low levels of versican, a major chondroitin 

sulfate proteoglycan, which is highly influenced by the increased MMP activity 

in diseased arteries. 27,28 The relative amounts of laminin29 and mimecan30 
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with crucial roles in cardiovascular function and migration of smooth muscle 

cells, respectively, were also decreased in diseased arteries. Taken together, 

these results indicate the coexistence of multiple mechanisms involved in the 

maintenance of artery function in response to atherosclerotic injury. 

The results highlight the central role of connective tissue turnover in the 

structural and signaling properties of arterial cells in PAD.14 Our methods 

included identifying specific cleavage products generated by MMPs or age-

related processes of proteins involved in matrix turnover, the production of 

antibodies that recognize these neo-epitopes but not native proteins and to 

develop immunoassays searching for biomarkers of disease severity.31-34 

Based on histology and proteomic data, neo-epitopes generated from alpha-

smooth muscle actin and laminin alpha-5 showed some potential value acting 

as surrogates for individual clinical endpoints. Further research may confirm 

this assumption but we focused our analyses in clinically separating patients 

with mild to moderate PAD (IC, Fontaine I-II) from severe PAD (CLI, Fontaine 

III-IV), and we observed that serum measurements of versican 

(KTFGKMKPRY; VCANM) and type IV collagen (CGG-GTPSVDHGFL; C4M) 

degradation products returned the best specificity and sensitivity levels. 

Interestingly, VCANM levels decreased and C4M levels increased according 

to disease severity, probably confirming that both age and the specific context 

regulate the activity of different MMPs as previously described.35, 36 This is 

important because type IV collagens are a major component of all basement 

membranes, and versican plays a central role in inflammation.37, 38 The 

combination of both indicators might integrate cellular pathways and 

processes reflecting PAD progression. 
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Our exploratory research has identified candidate biomarkers of PAD 

clinical severity, but their evaluation requires more detailed investigation. Our 

methods measured an objective, quantifiable characteristic successfully that 

apparently correlates with clinical endpoints. Therefore, these biomarkers may 

provide clinically relevant information. The next level of evaluation needs 

other designs to ascertain predictive power in other populations, especially in 

those with asymptomatic PAD, and to validate efficacy. Laboratory-measured 

biomarkers used as surrogate endpoints may have the potential to speed drug 

development in PAD, a prevalent condition in which the use of primary clinical 

endpoints, such as CLI, in clinical trials can be impractical or even unethical. 

Exploring and reevaluating the relationship between measurable biological 

processes and clinical outcomes is also crucial for deepening our knowledge 

on arterial pathophysiology. 

CONCLUSION 

Severe lesions in PAD are characterized by a specific proteome that 

significantly differs from that found in healthy arteries of persons of similar 

age. This proteome informs that both inflammation and ECM turnover (i.e., 

vascular remodeling) are quantitatively the most important processes in 

diseased arteries. Subsequent studies indicate that remodeling of arterial 

tissue releases protein fragments into the blood, where they may be detected. 

We propose versican and type IV collagen degradation products as 

laboratory-measured biomarkers of disease activity in peripheral artery 

disease. 
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Table I. Clinical characteristics, complete blood count and biochemical characteristics of PAD patients segregated by Fontaine classification. 

BMI: Body mass index; HDL: High-density lipoprotein; LDL: Low-density lipoprotein; ALT: Alanine Aminotransferase; AST: Aspartate aminotransferase. Non-
parametric variables are shown as median and IQR (25-75%). Qualitative variables are expressed as (%) of total participants. Multiple comparisons between 
groups using Kruskal-Wallis test. 

Fontaine I 
N=11 

Fontaine II 
N= 41 

Fontaine III 
N=34 

Fontaine IV 
N=109 

p-value

Clinical characteristics 
Age (years) 55 (50 – 69) 70 (59.25-75) 63 (55-69.25) 71 (64-77) <0.001
BMI (kg/m2) 28.9 (23.05-31.16) 27.3 (23-29.4) 25.5 (22.25-27.9) 24 (22-27.8) ns 
Diabetes (%) 10 69.4 45.5 79.8 <0.001 
Hypertension, (%) 50 63.2 57.6 75 ns 
Dyslipidaemia, (%) 55.6 41.7 24.2 36.7 ns 
Complete blood count 
Red blood cells, x1012/L 5.11 (4.41-5.4) 4.48 (3.95-4.79) 4.29 (3.74-4.53) 4.00 (3.34-4.59) <0.001 
Hemoglobin, g/dL 14.6 (13.23-16.35) 13.1 (11.5-15.2) 13.57 (12.02-14.07) 11.5 (10.5-13.5) 0.02 
Leukocytes, x109/L 7.44 (6.85-10.23) 7.51 (6.3-9.42) 7.61 (6.39-9.56) 8.35 (6.4-10.1) ns 
Platelets, x109/L 217.25 (186-243.5) 219 (183-268) 252 (200.5-333.65) 270 (209.5-343) 0.011 
Biochemical variables 
Total-cholesterol, mmol/L 4.06 (2.84-5.65) 4.04 (3.72-4.74) 3.95 (3.37-4.47) 3.77 (3.1-4.51) ns 
HDL-cholesterol, mmol/L 0.8 (0.72-1.14) 1.1 (0.86-1.29) 1.1 (0.87-1.26) 0.92 (0.74-1.14) ns 
LDL-cholesterol, mmol/L 2.04 (1.4-3.32) 2.41 (1.94-3.4) 2.2 (1.73-2.81) 2.18 (1.72-2.83) ns 
Triglycerides, mmol/L 1.56 (1.18-4.53) 1.51 (1.14-2.56) 2.35 (1.87-3.47) 1.97 (1.37-2.86) ns 
Glucose, mmol/L 6.69 (4.1-7.64) 5.93 (4.96-8.82) 5.59 (4.62-7.49) 5.77 (4.59-7.6) ns 
ALT, U/L 19 (12.14-35) 21 (16-26) 22 (16-40) 21 (13-32) ns 
Gamma-GT, U/L 27.5 (16.94-39.8) 28 (18-47) 24 (17.25-43) 31.5 (17-48.8) ns 
AST, U/L 21 (12-27) 19 (16-22) 20 (14.75-31) 19 (15-30) ns 
Fibrinogen, g/L 4.07 (3.6-5.48) 4.84 (4.12-6.43) 5.39 (4.27-6.11) 5.82 (4.44-7.78) ns 
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Table II. Differences in selected neo-epitopes between PAD patients segregated by Fontaine classification. 

Results are expressed in pg/mL and as median (IQR range) for non-parametric variables. VCANM: Specific fragment of MMP-8 and -12-mediated 
degradation of versican; C4M: MMP-mediated type IV (alpha 1) collagen degradation; Lam-a5: Specific fragment of MMP-9 mediated degradation of alpha 5 
chain of laminin; CRPM: Specific fragment of MMP-1, -3, -8, -9, CatS/K, ADAMTS1-mediated degradation of C-reactive protein; α-SMA: Alpha-smooth muscle 
actin, acetylated N-terminal; MIM: Specific fragment of MMP-9 and -12-mediated degradation of mimecan. Multiple comparisons between groups using 
Kruskal-Wallis test. 

Fontaine I 
N = 11 

Fontaine II 
N = 41 

Fontaine III 
N = 34 

Fontaine IV 
N= 109 

p-value

VCANM 1800  (1640 – 1900) 1610 (1375 – 1830) 1530 (1055 – 1810) 1250 (1080 – 1560) <0.001 
C4M 16530 (13720 -21710) 21480 (16860 – 30120) 24790 (18095 – 31940) 31730 (22415 – 45165) <0.001 

Lam-a5 5610 (4630 – 8490) 6660 (4855 – 9810) 6130 (3928 – 8278) 8710 (6755 – 11960) <0.001 
CRPM 7620 (5690 – 11520) 9380 (6780 – 14100) 8645 (6615 – 11590) 9970 (7775 – 12430) ns 
α-SMA 3870 (2830 – 4900) 3620 (2770 – 5570) 3355 (2283 – 4513) 3600 (2430 – 5100) ns 

MIM 7600 (3600 – 20370) 7430 (3770 – 12090) 6770 (2795 – 13635) 8070 (3885 – 13290) ns 
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Figure 1 

Representative micrographies of peripheral arteries from control group and PAD 

patients (x20). Hematoxylin & Eosin (A), Masson’s Trichrome staining (B), Sirius Red 

staining (C) were performed in arteries from both groups. CC: Cholesterol crystals; 

LV: Lipid vacuoles; SMC: Smooth muscle cells; BF: Broken fibers of collagen.  
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Figure 2 

(A) Proteins showing statistically significant differences between control group and PAD patients. (B) Protein class (Left) and cellular

component (Right) percentage of selected proteins obtained by PANTHER system. (C) Representation of the fold-changes obtained using

normalized concentrations of selected proteins in both groups. D) Principal Component Analysis and E) Heatmap diagram of proteomics

results. Q96IY4: Carboxypeptidase B2; P01023: Alpha-2-macroglobulin; P01859: Ig gamma-2 chain C region; P01857: Ig gamma-1 chain C

region; P98160: Basement membrane-specific heparan sulfate proteoglycan core protein; P35580: Myosin-10; Q08431: Lactadherin; P13611:

Versican core protein; P02790: Hemopexin; Q9UBX5: Fibulin-5; P35555: Fibrillin-1; O75083: WD repeat-containing protein 1; P14618:

Pyruvate kinase isozymes M1/M2; P02545: Prelamin-A/C.
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Figure 3 

Candidate biomarkers for disease activity. (A) ROC curve for VCANM measurements between Fontaine I and Fontaine IV patients. (B) 

Graphical representation of VCANM concentrations among Fontaine grades. (C) ROC curve for C4M measurements between Fontaine I and 

Fontaine IV patients. (D) Graphical representation of C4M concentrations among Fontaine grades. (E) ROC curve for the combination of 

VCANM and C4M obtained by binary logistic regression between Fontaine I and Fontaine IV patients. 
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Supplementary material corresponding to the manuscript: 

Identification of candidate biomarkers of 

disease activity in peripheral artery disease by 

targeting the extracellular matrix 

Anna Hernández-Aguilera MS1¶, Signe Holm Nielsen MS2,3¶, Cristina Bonache 
BS1, Salvador Fernández-Arroyo PhD1, Vicente Martín-Paredero PhD MD4, 
Montserrat Fibla PhD1,5, Morten A. Karsdal PhD2, Federica Genovese PhD2, 
Javier A Menendez PhD6 , Jordi Camps PhD1, Jorge Joven PhD MD1*. 

Supplementary material and methods S1: Proteomics protocol 

Tissue processing and protein preparation. Stored frozen pieces of arteries 

were cut in small pieces and placed into tubes with 8mg type 1 collagenase in 

2mL of Tris-CaCl2 buffer. Samples were incubated at 37ºC for 30 minutes with 

shaking. They were then centrifuged at 5000rpm at 4ºC, supernatants were 

stored at -80ºC and pellets were resuspended in 1.5 mL of urea lysis buffer + 

0.1% SDS. Samples were homogenized using Precellys 24 (Bertin 

Technologies, Montigny-le-Bretonneux, France) at 5000rpm for 10 seconds. 

Immediately, they were sonicated and then centrifuged again at 2100 rpm for 10 

minutes at 4ºC. Pellets were discarded and supernatants were transferred into 

new tubes, centrifuged at 14000 rpm for 1 hour at 4ºC and proteins precipitated 

with trichloroacetic acid. Samples were placed at 4ºC for 24 h and then 

centrifuged at 5000 rpm for 10 minutes at 4ºC. Supernatants were rejected and 

pellets resuspended in 1 mL of cold acetone. Samples were again centrifuged 

at 5000 rpm for 10 minutes at 4ºC, supernatants were rejected and pellets were 

resuspended in 0.5M triethylammonium bicarbonate pH=8.5 (TEAB). Protein 

quantification was performed and samples were stored at -80ºC. Protein 

digestion and validation. After being vacuum-dried, samples were 
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resuspended in 0.5M TEAB pH=7 and 2% sodium dodecyl sulfate (SDS) was 

added to denature proteins. Samples were reduced using 5mM tris(2-

carboxyethyl)phosphine (TCEP) in 50mM TEAB pH=7.9 for 1h at 60ºC and then 

alkylated with 3.65mM iodoacetamide during 30min at room temperature in the 

dark. For the digestion, samples were incubated with 1µg/µl trypsin sequencing-

grade in 500 mM TEAB at pH=7.9 overnight at 37ºC. Digestions were checked 

by analyzing a small aliquot using MALDI-TOF MS or nano-LC. Peptides were 

separated onto a C-18 reversed phase nano-column (75um I.D.; 15cm length; 

3um particle diameter, Nikkyo Technos Co. LTD, Japan) coupled to a trap 

nano-column (100 um I.D.; 2cm length; 5um particle diameter, Thermo Fisher 

Scientific, San Jose, CA, USA). Digested samples were analyzed by injecting 

18uL sample, using a continuous acetonitrile gradient of 0-35% in 13min, 35-

80% in 7min and 80-100% in 5min. In all the analysis, a flow rate of 300nL/min 

was used to elute peptides for real time ionization and peptide fragmentation on 

a LTQ-Orbitrap Velos Pro mass spectrometer (Thermo Fisher). An enhanced 

FT-resolution spectrum (resolution=30,000 FHMW) followed by data dependent 

MS/MS scan (R=15,000 FHMW) from most intense ten parent ions with a 

charge state rejection of one were analyzed along the chromatographic run. 

The MS/MS scan was acquired in the FT analyzer using a HCD collision cell 

with a normalized collision energy of 45 and dynamic exclusion of 0.5min.  

iTRAQ labeling. iTRAQ-8plex labeling reagents were added to samples 

according to manufacturer’s instructions and incubated at room temperature for 

2 hours. Quantification results are expressed as ratios of the different labeling 

tags versus a control tag, and these ratios were used for statistical purposes. 
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Labeled samples were purified using a SCX column (Strata® SCX 55um, 70Å, 

Phenomenex). Then, they were desalted and concentrated through C18 Sep-

Pak column (Waters, Bedford, MA, USA). Eluted peptides were dried and 

resuspended in 0.1% (v/v) formic acid for nanoLC-MS/MS detection. Labeled 

iTRAQ peptides were separated onto a C-18 reversed phase (RP) nano-column 

(75um I.D.; 15cm length; 3um particle diameter, Nikkyo Technos Co. LTD, 

Japan) coupled to a trap nano-column (100um I.D.; 2cm length; 5um particle 

diameter, Thermo Fisher Scientific, San José, CA, USA). All samples were 

analyzed by triplicate. For each analysis, 2 μg of sample was injected using a 

continuous acetonitrile gradient consisting of 0− 

5% B in 4 min, 5−15% B in 60 min, 15−35% B in 60 min, and 35−95% B in 10 

min, which was maintained for 20 min (A = water, 0.1% formic acid; B = 

acetonitrile, 0.1% formic acid). In all the analysis a flow rate of 300nl/min was 

used to elute peptides for real time ionization and peptide fragmentation on an 

LTQ-ObritrapVelosPro mass spectrometer (Thermo Fisher). An enhanced FT-

resolution spectrum (resolution = 30,000 FHMW) followed by data dependent 

MS/MS scan (R=15,000 FHMW) from most intense parent ions was analyzed 

throughout the chromatographic run. The MS/MS scan was acquired in the FT 

analyzer using an HCD collision cell with normalized collision energy of 45%, a 

precursor mass window selection of 2 m/z, a charge state rejection of +1, and a 

dynamic exclusion of 0.5 min. Protein identification analysis. Tandem mass 

spectra were extracted and charge state deconvoluted by Proteome Discoverer 

version 1.4.0.288 (Thermo Fisher Scientific). All MS and MS/MS samples were 

analyzed using Mascot (Thermo Fisher Scientific; version 2.4.1.0). Mascot was 

set up to search SwissProt_2012_03.fasta database (535248 entries), 
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restricting for human taxonomy (26944 sequences) and assuming trypsin 

digestion. Two missed cleavages were allowed and an error of 0.02 Da for 

fragment ion mass and 10.0 ppm for a parent ion were allowed. Oxidation of 

methionine, acetylation of N-termini and iTRAQ 8-plex were specified as 

variable modifications, whereas carbamidomethylation of cysteine was set as 

static modification. The false discovery rate (FDR) and protein probabilities 

were calculated by Target Decoy PSM Validator working between 0.01 and 0.05 

for Strict and relaxed respectively. For proteins identified with only one peptide, 

visual verification of fragmentation spectra was done. Quantitative proteome 

analysis. In tandem MS mode, which isolates and fragments peptides, each tag 

generates a unique reporter ion used for a relative quantification. Protein 

quantification compares the peak intensity of the reporter ions in the MS/MS 

spectra to assess the relative abundance of the peptides and the proteins they 

are derived from. The quantification method allows normalization using filters to 

measure the abundance of proteins in the sample using unique peptides of 

each protein.  
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Supplementary material and methods S2: ELISA protocol. 

The ELISAs were technically validated according to the Nordic Bioscience 

standard operating procedures. Linearity, lower detection limit (LDL), intra- and 

inter-variation, spiking recovery and assay stability were assessed. Protocols 

and buffers differ among assays. Generally, a 96-well streptavidin pre-coated 

plate was coated with the selected biotinylated synthetic peptide dissolved in 

specific buffer and incubated. The peptide calibrator or sample was added to 

appropriate wells, followed by the HRP-conjugated mAb, and again incubated. 

Finally, tetramethyl benzidine (TMB) developer (Kem-En-Tec cat.438OH, 

Taastrup, Denmark) was added, and the plate was incubated in the dark. All the 

above incubation steps included shaking. After each incubation step the plates 

were washed in washing buffer. TMB reaction was stopped by adding stopping 

solution and measured at an indicated wavelength. A standard calibration curve 

was also plotted.  
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Table S1: Overview of measured biomarkers to assess ECM degradation in 
serum. 

[1] Barascuk N, Genovese F, Larsen L, Byrjalsen I, Zheng Q, Sun S et al. A MMP derived
versican neo-epitope is elevated in plasma from patients with atherosclerotic heart disease. Int
J Clin Exp Med 2013;6:174-84. [2] Skjøt-Arkil H, Schett G, Zhang C, Larsen DV, Wang Y,
Zheng Q et al. Investigation of two novel biochemical markers of inflammation, matrix
metalloproteinase and cathepsin generated fragments of C-reactive protein, in patients with
ankylosing spondylitis. Clin Exp Rheumatol 2012;30:371-9. [3] Sand JM, Larsen L, Hogaboam
C, Martinez F, Han M, Røssel Larsen M et al. MMP mediated degradation of type IV collagen
alpha 1 and alpha 3 chains reflects basement membrane remodeling in experimental and
clinical fibrosis--validation of two novel biomarker assays. PLoS One 2013;8:e84934. [4]
Papasotiriou M, Genovese F, Klinkhammer BM, Kunter U, Nielsen SH, Karsdal MA et al. Serum
and urine markers of collagen degradation reflect renal fibrosis in experimental kidney diseases.
Nephrol Dial Transplant 2015;30:1112-21. [5] Barascuk N, Vassiliadis E, Zheng Q, Wang Y,
Wang W, Larsen L et al. Levels of Circulating MMCN-151, a Degradation Product of Mimecan,
Reflect Pathological Extracellular Matrix Remodeling in Apolipoprotein E Knockout Mice.
Biomark Insights 2011;6:97-106.

Biomarker Measurement Peptide Reference 

Upper normal 

level in 

general 

population 

(pg/mL) 

VCANM Specific fragment 
of MMP-8 and -12-
mediated 
degradation of 
Versican 

KTFGKMKPRY [1] 1500 

CRPM Specific fragment 
of MMP-1, -3, -8, -
9, CatS/K 
ADAMTS-
mediated 
degradation of C-
reactive protein 

KAFVFPKESDK [2] 7500 

C4M MMP-mediated 
type IV (alpha 1) 
collagen 
degradation in 
plasma 

CGG-
GTPSVDHGFL 

 [3] 21500 

Lam-a5 Specific fragment 
of MMP-9 
mediated 
degradation od 
alpha 5 chain of 
laminin  

DLELADAYYL Unpublished 10166 

a-SMA Acetylated N-
terminal fragment 
of alpha-smooth 
muscle actin 

EEEDSTALV [4] 1480 

MIM Specific fragment 
of MMP-9 and -12-
mediated 
degradation of 
mimecan 

EDIEDGTF- 
SKL 

[5] 5050 
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Table S2: Proteins identified in control and PAD human arteries by untargeted 
proteomics (in alphabetic order). 

Swiss-prot 

ID 
Compound Name Biological function 

P60709 Actin, cytoplasmic 1 ATP binding 

P63267 
Actin, gamma-enteric smooth 

muscle 
ATP binding 

P01009 Alpha-1-antitrypsin Glycoprotein, protease and binding 

P01023 Alpha-2-macroglobulin Enzyme, growth factor and protease binding. 

O43707 Alpha-actinin-4 
Involved in vesicular trafficking via its 

association with the CART complex 

P04114 Apolipoprotein B-100 Cholesterol transporter activity 

P02649 Apolipoprotein E 
Mediates the binding, internalization, and 

catabolism of lipoprotein particles 

P25705 
ATP synthase subunit alpha, 

mitochondrial 
Transmembrane transporter activity 

P02730 Band 3 anion transport protein 
Transporter mediates electroneutral anion 

exchange across the cell membrane 

P98160 

Basement membrane-specific 

heparan sulfate proteoglycan 

core protein 

Metal ion and protein C-terminus binding 

P51911 Calponin-1 Regulation of smooth muscle contraction

P00915 Carbonic anhydrase 1 Arylesterase activity 

Q96IY4 Carboxypeptidase B2 Metallocarboxypeptidase activity

P07339 Cathepsin D Aspartic-type endopeptidase activity 

P00450 Ceruloplasmin Chaperone and copper ion binding 

P10909 Clusterin 
Chaperone, misfolded protein and ubiquitin 

protein ligase binding 

P00488 Coagulation factor XIII A chain Metal ion binding. 

P12109 Collagen alpha-1(VI) chain Platelet-derived growth factor binding 

Q99715 Collagen alpha-1(XII) chain 
Extracellular matrix structural constituent 

conferring tensile strength 

Q05707 Collagen alpha-1(XIV) chain Extracellular matrix structural constituent 

P08123 Collagen alpha-2(I) chain Extracellular matrix structural constituent 

P12110 Collagen alpha-2(VI) chain Collagen VI acts as a cell-binding protein. 

P12111 Collagen alpha-3(VI) chain Serine-type endopeptidase inhibitor activity 

P01024 Complement C3 

C5L2 anaphylatoxin chemotactic receptor, 

cofactor, endopeptidase inhibitor and lipid 

binding 
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P07360 
Complement component C8 

gamma chain 
Retinol binding 

P02748 Complement component C9 
Constituent of the membrane attack complex 

(MAC) 

P00403 
Cytochrome c oxidase subunit 

2 
Cytochrome-c oxidase activity 

P60981 Destrin Actin polymerization or depolymerization 

P35555 Fibrillin-1 
Extracellular matrix constituent conferring 

elasticity 

P02671 Fibrinogen alpha chain Metal ion binding 

P02675 Fibrinogen beta chain Chaperone binding 

P02679 Fibrinogen gamma chain Cell adhesion molecule binding 

P02751 Fibronectin 
Heparin, integrin, mercury ion, protease and 

collagen binding 

Q9UBX5 Fibulin-5 Calcium, integrin, protein C-terminus binding. 

P21333 Filamin-A 

Promotes orthogonal branching of actin 

filaments and links actin filaments to 

membrane glycoproteins 

P06396 Gelsolin 
Actin, calcium, miosin II and protein domain 

specific binding 

P04406 
Glyceraldehyde-3-phosphate 

dehydrogenase 
Microtubule binding 

P00738 Haptoglobin Hemoglobin binding 

P69905 Hemoglobin subunit alpha Oxygen transporter activity 

P68871 Hemoglobin subunit beta Oxygen transporter activity 

P02790 Hemopexin Metal ion binding 

O60814 Histone H2B type 1-K DNA binding 

P01876 Ig alpha-1 chain C region Antigen binding 

P01857 Ig gamma-1 chain C region Antigen binding 

P01859 Ig gamma-2 chain C region Antigen binding 

P01765 Ig heavy chain V-III region TIL Antigen binding 

P01834 Ig kappa chain C region Antigen binding 

P01617 
Ig kappa chain V-II region 

TEW 
Antigen binding 

P01619 Ig kappa chain V-III region B6 Antigen binding 

P04433 
Ig kappa chain V-III region VG 

(Fragment) 
Antigen binding 

P01717 
Ig lambda chain V-IV region 

Hil 
Antigen binding 
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P0CG04 Ig lambda-1 chain C regions Antigen binding 

A0M8Q6 Ig lambda-7 chain C region Antigen binding 

P01871 Ig mu chain C region Antigen binding 

Q14624 
Inter-alpha-trypsin inhibitor 

heavy chain H4 

Serine-type endopeptidase inhibitor and 

endopeptidase inhibitor activity 

Q08431 Lactadherin 
Phosphatidylethanolamine and 

phosphatidylserine binding 

O15230 Laminin subunit alpha-5 Integrin binding 

P11047 Laminin subunit gamma-1 Extracellular matrix structural constituent 

Q16853 
Membrane primary amine 

oxidase 
Cell adhesion protein 

P35580 Myosin-10 Actin filament binding 

P35749 Myosin-11 DNA binding 

P59665 Neutrophil defensin 1 
Has antimicrobial activity against Gram-

negative and Gram-positive bacteria 

Q15063 Periostin 
Metal, cell adhesion molecule and heparin 

binding 

P32119 Peroxiredoxin-2 
Anotioxidant and thioredoxin peroxidase 

activity 

P00747 Plasminogen Apolipoprotein binding 

P02545 Prelamin-A/C Structural molecule activity 

Q9NQH7 
Probable Xaa-Pro 

aminopeptidase 3 
Aminopeptidase and metallopeptidase activity 

P02760 Protein AMBP Inhibits calcium oxalate crystallization. 

P14618 
Pyruvate kinase isozymes 

M1/M2 
Glycolytic enzyme 

Q13228 Selenium-binding protein 1 Selenium binding 

P02787 Serotransferrin 

Transport of iron from sites of absorption and 

heme degradation to those of storage and 

utilization 

P02743 Serum amyloid P-component 
Calcium ion, virion, unfolded protein and 

carbohydrate binding 

P24821 Tenascin Syndecan binding 

P07996 Thrombospondin-1 
Adhesive glycoprotein that mediates cell-to-cell 

and cell-to-matrix interactions 

P29401 Transketolase Cofactor and metal binding 

P68366 Tubulin alpha-4A chain Structural constituent of cytoskeleton 

O00159 Unconventional myosin-Ic ATP binding 

P13611 Versican core protein Calcium, carbohydrate, glycosaminoglycan and 
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hyaluronic acid binding 

P08670 Vimentin 
Vimentin is attached to the nucleus, 

endoplasmic reticulum, and mitochondria 

P04004 Vitronectin 
Vitronectin interact with glycosaminoglycans 

and proteoglycans 

O75083 
WD repeat-containing protein 

1 

Induces disassembly of actin filaments in 

conjunction with ADF/cofilin family proteins 
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ABSTRACT	

Systemic	 atherosclerosis	 affecting	 lower	 extremities,	 also	 called	 peripheral	 artery	 disease	 (PAD)	 is	 a	 common	 disease	 affecting	 20-25%	 of	 old	

population.	An	early	diagnostic	 is	 still	 not	possible	because	 symptoms	become	evident	 in	advanced	 stages.	 Inflammation,	 impaired	metabolism	and	

mitochondrial	 dysfunction	 may	 predispose	 to	 the	 disease,	 which	 normally	 is	 associated	 to	 other	 pathologies	 (type-2	 diabetes,	 dyslipidemia	 or	

hypertension).	 By	 using	 a	 targeted	metabolomics	 approach,	 we	measured	metabolite	 concentration	 in	 atherosclerotic	 arteries	 and	 plasma	 of	 PAD	

patients	 segregated	 by	 Fontaine	 classification	 and	 in	 plasma	 of	 healthy	 volunteers.	Our	 results	 show	 that	many	 of	measured	metabolites,	 specially	

branched	chain	amino	acids,	were	associated	not	with	the	disease	but	with	other	comorbidities,	age	or	body	mass	index.	After	removal,	six	potential	

candidates	were	considered.	Among	them,	(iso)citrate	and	glutamate	were	the	metabolites	with	the	best	discriminant	capacity	between	control	group	

and	 PAD	 patients.	 Moreover,	 both	 were	 also	 useful	 for	 an	 early	 detection	 of	 the	 disease,	 discriminating	 between	 control	 group	 and	 Fontaine	 I-II	

patients.	The	obtained	metabolic	fingerprint	in	PAD	patients	can	be	used	as	a	source	of	novel	biomarkers	of	diagnosis	and	progression.	

Keywords:	Peripheral	artery	disease;	metabolomics;	biomarkers;	comorbidies;	isocitrate;	glutamate		

1. INTRODUCTION

Peripheral	 artery	 disease	 (PAD)	 of	 the	 lower

extremities	 is	 a	 serious	 global	 health	 problem	 with	 an	

increasing	prevalence	among	atherosclerotic	diseases	and	

affecting	20-25%	of	population	over	60	years1.	There	is	a	

wide	 spectrum	 between	 signs	 of	 PAD	 classified	 in	 four	

stages	 attending	 the	 symptoms	 using	 the	 Fontaine	

scheme:	 from	 a	 non-symptomatic	 stage	 (Fontaine	 I),	

intermittent	 claudication	 (Fontaine	 II)	 to	 rest	 pain	

(Fontaine	 III)	 and	 tissue	 damage	 and	 necrosis	 (Fontaine	

IV).		

Hypertension,	 hypercholesterolemia,	 diabetes	 and	

smoking	 are	 the	 principal	 risk	 factors	 to	 develop	 PAD.	

Undesirable	 lifestyle	 can	 leads	 to	 a	 pro-inflammatory	

situation	 inducing	 complications	 at	 the	 crossroads	 of	

metabolic	stress	and	immunity2,3.	Moreover,	imbalance	in	

energy	metabolism,	 by	 which	 nutrients	 are	 transformed	

into	ATP,	can	predispose	to	obesity,	type-2	diabetes	(T2D)	

and	atherosclerosis3-5.	Alterations	 in	metabolic	pathways	

like	 tricarboxylic	 acid	 (TCA)	 cycle	 may	 induce	 the	

production	 of	 reactive	 oxygen	 species	 (ROS)	 and	 oxygen	

deficiency	 (ischemia)6,7.	 Impaired	 bioenergetics	 in	
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affected	 lower	 extremities	 can	 be	 probably	 due	 to	

abnormal	mitochondria	in	ischemic	skeletal	muscles8,9.	

One	 of	 the	 main	 challenge	 that	 specialists	 and	

researches	face	is	to	improve	the	diagnose	of	PAD	even	in	

the	 asymptomatic	 stages10,11.	 Many	 plasma,	 serum	 and	

total	 blood	 biomarkers	 have	 been	 proposed	 and	

associated	to	a	high	cardiovascular	risk,	although	none	of	

them	has	been	established12.	The	emerging	metabolomics	

approaches	 are	 an	 essential	 tool	 to	 improve	 the	

interpretations	 of	 atherosclerotic	 pathologies13–15.	 These	

techniques	 are	 mainly	 focused	 on	 the	 quantification	 of	

metabolites	 to	 better	 understand	 the	 disease	 and	

propose	 new	 therapeutic	 strategies14,16,17.	 In	 this	 sense,	

metabolites	involved	in	TCA	cycle	have	been	proposed	as	

cardiovascular	biomarkers8,9,18,19.		

In	the	present	work	we	assume	that	the	combination	

of	inflammation,	disrupted	metabolism	and	mitochondrial	

dysfunction	 may	 predispose	 to	 atherosclerosis20–22.	 The	

obtaining	metabolic	profile	in	atherosclerotic	patients	is	a	

useful	 tool	 to	 discover	 new	 biomarkers	 and	 therapeutic	

targets	 and,	 for	 the	 first	 time,	 we	 propose	 potential	

metabolic	 circulating	 markers	 of	 initial	 stages	 of	

peripheral	 artery	 disease	 by	 using	 a	 targeted	

metabolomics	approach.		

2. MATERIALS	AND	METHODS

2.1	Participants	and	study	design

This	 observational,	 cross-sectional	 study	 implicated	

201	 men	 with	 clinically	 diagnosed	 peripheral	 artery	

disease	 attending	 Vascular	 Surgery	 Service	 at	 Hospital	

Universitari	 Joan	 XXIII	 between	 2010	 and	 2015.	 Patients	

were	 classified	 according	 Fontaine	 classification23	 from	

grade	 I	 to	 IV	 and	 obtained	 plasma	 and	 serum	 samples	

were	 stored	 at	 -80	 ºC	 until	 use.	 Artery	 samples	 were	

obtained	 during	 surgical	 procedures	 for	 infrainguinal	

revascularization	and	stored	at	-80ºC.	

Inclusion	criteria	were	men,	older	than	18	and	with	a	

confirmed	 diagnose	 of	 peripheral	 artery	 disease.	

Diagnostic	 criteria	 involved	 ankle-brachial	 index	 (ABI),	

non-invasive	 imaging	 techniques	 (computerized	

tomography	 scan	 or	 magnetic	 resonance	 imaging)	 and	

arteriography	when	indicated.	The	exclusion	criteria	were	

presence	 of	 acute	 ischemia,	 signs	 of	 infection,	 renal	

failure,	 liver	 disease,	 cancer	 or	 autoimmune	 disease.	

Clinical	data	and	laboratory	variables	were	obtained	from	

patients’	 clinical	 records.	 Local	 Ethics	 Committee	 of	 the	

Hospital	 approved	 the	 study	 (epinols/12-03-09/3proj6,	

inflamet/15-04-30/4proj6).	 Written	 informed	 consent	

was	 obtained	 from	 the	 participants	 prior	 to	 entry	 the	

study.		

For	comparisons,	we	used	bio-banked	samples	(n=48)	

from	healthy,	age-matched,	men,	whose	details	have	

been	previously	described24.	

2.2. Metabolomics	analysis	

To	 detect	 and	 quantify	 metabolites	 of	 energy	

metabolism,	we	followed	the	method	developed	by	Riera-

Borrull	et	al7.	Briefly,	25	mg	of	 tissue	were	homogenized	

in	1	mL	of	methanol:water	 (8:2,	v/v)	using	a	Precellys	24	

system	 (Bertin	 Technologies,	 Montigny-le-Bretonneux,	

France)	working	at	5000rpm	 for	10	 seconds	 three	 times.	

The	homogenate	was	 then	 centrifuged	 at	 14000	 rpm	10	

min	 at	 4ºC	 and	 supernatant	 was	 collected.	 Lipids	 were	

removed	 following	 Folch	 protocol,	 by	 using	 9	 mL	 of	

chloroform25.	 Samples	 were	 again	 centrifuged	 at	 14000	

rpm	 for	 10min	 at	 4ºC;	 the	 aqueous	 phase	was	 collected	

and	 dried	 under	 N2	 flow.	Metabolites	 from	 plasma	 (100	

µL)	were	extracted	using	400	µL	of	methanol/water	(8:2,	

v/v)	and	proteins	were	precipitated	 for	 two	hours	at	 -20	

ºC.	After	centrifugation	at	14000	rpm	for	10	minutes	at	4	

ºC,	 the	 supernatant	 was	 collected	 and	 dried	 under	 N2	

flow.	 Metabolites	 were	 then	 derivatized	 with	

methoxyamine	 in	 pyridine	 (40	 mg/mL)	 and	 N-methyl-N-

(trimethylsilyl)-trifluoroacetamide	and	 injected	 into	a	gas	

chromatograph	 coupled	 to	 a	 quadrupole	 time-of-flight	

mass	 spectrometer	 by	 an	 electron	 impact	 source.	

Metabolites	were	detected	 and	quantified	 attending	 the	

standard	calibration	curves.	
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2.3. Statistical	analysis	

Statistical	 analyses	 were	 performed	 with	 SPSS	 22.0	

(IBM	 Corp,	 Chicago,	 IL,	 USA).	 MetaboAnalyst	 3.0	

(http://www.metaboanalyst.ca/)	 was	 used	 to	 generate	

scores/loading	plots	and	random	forest	analyses.		

3. RESULTS

3.1.	Participants’	characteristics

Clinical	 characteristics	 and	 biochemical	 variables	 of

control	group	and	PAD	patients	are	shown	in	Table	1.	We

chose	 an	 age-matched	 control	 group	 with	 healthy

volunteers	 without	 any	 cardiovascular	 disease	 and	 PAD

patients,	 who	 had	 a	 higher	 BMI	 than	 control	 group

(p=0.021).	 The	 incidence	 of	 atherosclerosis-related

impairments	 (T2D,	 hypertension	 and	 dyslipidemia)	 was

only	 present	 in	 PAD	 patients	 (p<0.001	 in	 all	 cases).

Consequently,	 cholesterol,	 triglycerides	 and	 glucose

concentrations	were	altered	in	those	patients.

3.2.	Significant	alterations	in	energy	metabolism	

We	 measured	 the	 concentration	 of	 energy	

metabolism	 intermediaries	 in	 plasma	 of	 both,	 control	

group	and	PAD	patients.	As	 shown	 in	Figure	1A,	most	of	

analyzed	metabolites	were	significantly	 increased	 in	PAD	

patients,	excluding	fumarate,	lactate	and	succinate,	which	

were	decreased	in	patients.	

When	 displayed	 in	 a	 graphical	 pathway	 (Figure	

1B),	 we	 observed	 that	 glutaminolysis	 was	 disrupted,	 as	

glutamate	and	glutamine	were	increased	in	PAD	patients.	

Moreover,	 reactions	 involving	 amino	 acid	 catabolism	

seemed	 to	be	 slowed	down,	 as	 serine,	 valine,	 isoleucine	

and	 leucine	 concentrations	 were	 higher	 compared	 to	

control	group.	Tricarboxylic	acid	cycle	was	disturbed	 in	2	

ways:	 some	 metabolites	 were	 higher	 in	 PAD	 patients	

((iso)citrate,	aconitate,	α-ketoglutarate,	 succinyl-CoA	and	

malate	 and	 others	 were	 diminished	 in	 PAD	 patients	

(fumarate	and	succinate).		

3.3.	 Metabolites	 are	 linked	 to	 comorbidities,	 age	 and	

BMI	

Changes	 in	 those	metabolites	 could	 be	used	 for	

disease	diagnose,	but	associated	comorbidities	may	act	as	

confounding	 factors	 in	 almost	 80%	 of	 PAD	 patients	 as	

they	 presented	 some	 metabolic	 disturbances	

(hyperlipidemia,	 hypertension	 or	 T2D).	 For	 this	 reason,	

we	segregated	PAD	patients	according	these	disturbances	

to	investigate	whether	metabolites	were	different	among	

metabolically	healthy	or	unhealthy	patients.		

Univariant	 analyses	 confirmed	 that	 many	

metabolites	 were	 associated	 to	 T2D,	 hypertension	 or	

dyslipidemia	 (Table	 2)	 while	 multivariate	 analyses	

(principal	 component	 analyses)	 revealed	 that	 the	

combination	 of	 those	 metabolites	 were	 not	 able	 to	

separate	 groups	 regarding	 hypertension	 (Figure	 2A)	 and	

dyslipidemia	(Figure	2B).	We	discovered	that	glucose	and	

isoleucine	 were	 associated	 to	 T2D	 in	 PAD	 patients	 and	

glucose	had	the	highest	discriminant	capacity	(Figure	2C).	

Hyperlipidemic	 and	 normolipidemic	 patients	 showed	

differences	 in	 alanine,	 aspartate,	 glucose,	 isoleucine,	

lactate,	 leucine,	 succinyl-CoA	 and	 valine	 concentrations,	

and	among	 them,	 isoleucine	had	 the	higher	discriminant	

capacity	 (Figure	 2D).	 Fumarate,	 glucose,	 isoleucine,	

lactate,	 malate,	 serine	 and	 pyruvate	 were	 associated	 to	

hypertension	 in	 PAD	 patient	 and	 serine	 was	 the	

metabolite	 with	 the	 best	 discriminant	 capacity	 (Figure	

2E).	 All	 of	 these	metabolites	were	 discarded	 for	 being	 a	

possible	PAD	biomarker.		

Age	and	body	mass	 index	 (BMI)	were	other	 two	

confounding	 variables.	 Subsequently,	 we	 analyzed	

whether	 any	 of	 the	 metabolites	 correlated	 with	 age	 or	

BMI	 between	 PAD	 patients.	 Aconitate,	 fumarate	 and	

malate	 were	 associated	 to	 age,	 and	 aconitate,	 alanine,	

aspartate,	 glucose,	 isoleucine,	 leucine	 and	 valine	

correlated	with	BMI	(Table	3,	Supplementary	figure	2).	

3.4.	Metabolic	biomarkers	of	PAD	

PAD	 patients	 were	 segregated	 according	 Fontaine	

classification	 to	perform	a	more	accurate	analysis	 (Table	

4).	Remaining	metabolites	significantly	different	between	

control	group	and	PAD	patients	were	considered	possible	
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biomarkers	 of	 PAD:	 3-hydroxybutyrate,	 α-ketoglutarate,	

glutamate,	 glutamine,	 (iso)citrate	 and	 succinate	 (Figure	

3).	 Moreover,	 glutamate	 and	 (iso)citrate	 concentrations	

were	 statistically	 different	 between	 PAD	 I-II,	 III	 and	 IV	

groups	(Figure	3C	and	3E).	

To	 evaluate	 discriminant	 capacity,	 we	 perform	

random	 forest	 analyses	 and	 found	 that	 (iso)citrate	 and	

glutamate	 were	 the	 most	 powerful	 metabolites	 to	

separate	control	 individuals	 from	PAD	group	 (Figure	4A).	

ROC	curve	for	these	metabolites	showed	good	area	under	

the	 curve	 (AUC)	 values	 for	both	metabolites	 (Figure	4B).	

When	 testing	 discriminant	 capacity	 between	 control	

group	 and	 the	 early	 manifestation	 of	 PAD	 (Intermittent	

claudication,	 PAD	 I-II),	 (iso)citrate	 and	 glutamate	 were	

again	 the	 best	 discriminant	 metabolites	 (Figure	 4C)	 and	

ROC	curve	confirmed	this	potential	(Figure	4D).	To	follow	

disease	 progression	 in	 PAD	 patients,	 (iso)citrate	 and	

glutamate	were	also	the	best	indicators	(Figure	4E).	

4. DISCUSSION

Dietary	 changes	 and	 lifestyle	 can	 modify	 our	

metabolome,	 and	 thus	 metabolomics	 gives	 feedback	

about	the	status	of	individuals	and	offers	the	opportunity	

to	study	pathologies	and	propose	new	interventions5,13,26.	

The	 metabolomic	 characterization	 of	 atherosclerotic	

peripheral	 artery	 disease	 is	 gaining	 interest,	 as	 its	

incidence	has	increased	worldwide1,27.		

However,	biological	and	technical	 limitations	are	

present,	 and	 tissue	 and	 plasma	 metabolome	 does	 not	

provide	 the	 same	 information.	 In	 our	 case,	 and	 as	

expected,	 we	 were	 not	 able	 to	 quantify	 phosphate	

metabolites	 in	 plasma	 due	 to	 the	 impermeability	 of	 the	

cellular	membrane	 to	 these	 compounds	 (Supplementary	

Figure	1).		

Here,	we	found	alterations	in	energy	metabolism	

in	 PAD	 patients,	 compared	 to	 control	 group,	 especially	

impairments	 in	 the	 connection	 citrate-aconitate-

isocitrate.	 The	 mitochondrial	 enzymes	 involved	 in	 those	

reactions	 are	 isocitrate	 dehydrogenase	 (IDH2)	 and	

aconitase	2	(ACO2).	 IDH2	has	been	related	with	a	proper	

mitochondrial	 function,	 and	mice	 lacking	 IDH2	 exhibited	

mitochondrial	dysfunction28.	Moreover,	7-ketocholesterol	

is	 known	 to	 contribute	 to	 atherosclerosis	progression	by	

decreasing	 IDH2	 expression	 and	 increasing	 oxidative	

stress	 thus	 modifying	 mitochondrial	 function29.	

Furthermore,	 an	 oxidative	 environment	 (mainly	

superoxides)	 can	 inactivate	 aconitase,	 which	 in	 turn	

undergo	age-dependent	oxidative	modification4.	Whether	

IDH2	and	ACO2	may	be	the	cause	or	consequence	of	the	

well-described	 mitochondrial	 dysfunction	 in	 PAD	 is	 still	

unknown8.	

Preventive	 treatment	 could	 slow	 down	 the	

progression	 or	 even	 stop	 the	 disease.	 For	 this	 reason,	 a	

fast	 diagnostic	 is	 necessary.	 However,	 many	 of	 the	

current	biomarkers	are	based	on	risk	factors	associated	to	

co-morbidities	like	dyslipidemia,	hypertension	or	T2D10,12.	

In	 fact,	 non-communicable	 diseases	 are	 mostly	 multi-

factorial	 and,	 in	 our	 population,	 we	 found	 that	

approximately	 80%	 of	 these	 patients	 had	 any	 of	 these	

impairments,	 which	 could	 be	 affecting	 metabolites	

concentration.	Among	those	metabolites,	branched-chain	

amino	 acids	 (BCAAs)	 were	 influenced	 by	 hypertension,	

T2D	 and	 dyslipidemia.	 Our	 results	 ratify	 the	 relationship	

between	 an	 impairment	 in	 branched	 chain	 amino	 acid	

(BCAA)	catabolism	and	obesity	and	 insulin	resistance30,31.	

Moreover,	increased	serum	concentration	of	BCAAs	have	

been	 also	 associated	 to	 metabolic	 dyslipidemia32	 and	

BCAA	 supplementation	 during	 maternal	 food	 restriction	

has	been	related	to	a	less	hypertension	incidence	in	adult	

offspring33.		

After	 discarding	 the	 influenced	 metabolites,	 six	

candidates	 remained	 with	 statistically	 significant	

differences	 in	 concentration	 between	 control	 group	 and	

PAD	 patients:	 3-hydroxybutyrate,	 α-ketoglutarate,	

glutamate,	 glutamine,	 (iso)citrate	 and	 succinate.	 Those	

candidates	 were	 useful	 to	 distinguish	 between	 PAD	

patients	 and	 control	 group	 but	 also	 to	 discriminate	

between	PAD	grades.	 Isocitrate	 is	an	 intermediate	 in	the	

TCA	 cycle.	 Its	 conversion	 to	 α-ketoglutarate	 is	mediated	

by	 IDH2.	 It	was	 found	 that	 higher	 concentrations	 of	 this	

UNIVERSITAT ROVIRA I VIRGILI 
PERIPHERAL ARTERY DISEASE: THE SEARCH FOR A BIOLOGICAL MARKER 
Anna Hernández Aguilera 



metabolite	 are	 associated	 with	 a	 worse	 cardiovascular	

prognostic34.	PAD	patients	showed	higher	concentrations	

of	isocitrate,	but	PAD	I	patients	showed	higher	levels	than	

PAD	 IV	 patients.	 Glutamate,	 another	 metabolite	 with	 a	

good	 discriminant	 capacity,	 is	 the	 substrate	 for	 many	

enzymes	 located	 in	 the	mitochondria35.	 Glutamate	 plays	

an	 important	 role	 in	 heart	 metabolism,	 as	 during	

ischemia,	 it	 improves	 the	 mechanical	 function	 of	 the	

ischemic	 myocardium36.	 Maybe	 this	 increased	

concentration	 of	 glutamate	 in	 PAD	 patients	 could	 be	 an	

attempt	 to	 improve	 biomechanical	 functions	 of	 the	

ischemic	 portions	 of	 the	 arteries.	 However,	 further	

research	 is	 needed	 to	 understand	 glutamate	

overproduction	in	blood	of	atherosclerotic	patients.	

To	 diagnose	 PAD	 in	 the	 asymptomatic	 or	 early	

symptomatic	stages	(PAD	in	Fontaine	I	and	II;	intermittent	

claudication)	 and	 to	 find	 a	 clinical	 biomarker	 for	 these	

stages	 is	 of	 great	 interest.	 In	 our	 case,	 (iso)citrate	 and	

glutamate	 were	 able	 to	 distinguish	 control	 group	 from	

PAD	 patients	 in	 stages	 I-II.	 The	 implementation	 of	

(iso)citrate	 and	 glutamate	 measurements	 in	 clinical	

practice	 (bench-to-bed	 approach)	 would	 allow	 an	 early	

detection	 of	 the	 disease	 and	 would	 permit	 vascular	

specialists	apply	better	 treatments	 to	delay	or	even	stop	

the	disease.	

Our	 study	 provides	 evidences	 that	 metabolic	

fingerprints	 can	 be	 used	 to	 differentiate	 PAD	 patients	

from	 control	 population.	 We	 propose	 two	 potential	

biomarkers	for	the	disease	–	(iso)citrate	and	glutamate	–	

that	 can	 be	 used	 for	 an	 early	 diagnosis.	 Although	 our	

results	 are	 potentially	 translational	 and	 limited	 to	 little	

population,	other	metabolic	pathways	and	the	validation	

in	other	cohorts	may	be	considered	for	future	studies.		

5. CONCLUSION

Our	 metabolomics	 approach	 served	 to	 propose	

candidate	 biomarkers	 for	 PAD	 diagnosis	 after	

interpretation	of	the	metabolome	fingerprint.	(Iso)citrate	

and	 glutamate	 were	 not	 influenced	 by	 other	

comorbidities	 and	 their	 concentrations	 differ	 between	

control	 group	 and	 PAD	 patients,	 allowing	 a	 good	

discrimination	between	stages.	More	important,	both	can	

detect	 PAD	 I-II	 patients,	 the	 less	 symptomatic	 stages	 of	

the	disease.		
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Tables	
Table	1.	Clinical	characteristics,	complete	blood	count	and	biochemical	characteristics	of	Control	group	and	PAD	
patients.	

BMI:	 Body	 mass	 index;	 HDL:	 high-density	 lipoprotein;	 LDL:	 low-density	 lipoprotein;	 ALT:	 alanine	 aminotransferase;	 AST:	
aspartate	aminotransferase.	Non-parametric	variables	are	shown	as	median	(IQR).	Qualitative	variables	are	expressed	as	(%)	
of	total	participants.	Kruskal-Wallis	test	has	been	used	for	multiple	comparisons	between	groups.	

Control	
(n	=	48)	

PAD	
(n	=	201)	 P-value

BMI	(kg/m2)	 24	(22.5	–	25.3)	 25	(22.5	–	28)	 0.021	
Diabetes	(%)	 -	 64.1	 <0.001	
Hypertension	(%)	 -	 69.2	 <0.001	
Dyslipidemia	 -	 37.9	 <0.001	
Red	blood	cells,	x1012/L	 4.9	(4.4	–	5.2)	 4.16	(3.57	–	4.66)	 <0.001	
Hemoglobin,	mmol/L	 8.94	(8.32	–	9.43)	 13.30	(11.50	–	14.90)	 0.001	
Leukocytes,	x109/L	 6.8	(5.4	–	8.2)	 8.17	(6.50	–	10.22)	 0.003	
Platelets,	x109/L	 233	(205	–	273)	 253	(200	–	329)	 ns	
Total-cholesterol,	mmol/L	 4.85	(4.40	–	5.85)	 3.90	(3.31	–	4.94)	 <0.001	
HDL-cholesterol,	mmol/L	 1.34	(1.14	–	1.61)	 0.96	(0.78	–	1.19)	 <0.001	
LDL-cholesterol,	mmol/L	 2.82	(2.40	–	3.86)	 2.26	(1.77	–	2.79)	 <0.001	
Triglycerides,	mmol/L	 0.90	(0.70	–	1.38)	 1.99	(1.40	–	3.08)	 <0.001	
Glucose,	mmol/L	 4.70	(4.37	–	4.92)	 5.61	(4.60	–	6.88)	 <0.001	
ALT,	U/L	 20	(13.5	–	24.9)	 21.5	(15	–	34.8)	 ns	
AST,	U/L	 20	(17.7	–	24)	 21	(16	–	32)	 ns	
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Table	2.	Metabolite	concentration	in	PAD	patients	segregated	according	co-morbidities.	

Metabolite	
PAD	patients	

Normoglycemic	 Type-2	diabetic	 p-
value	 Normotensive	 Hypertensive	 p-

value	 Normolipidemic	 Hyperlipidemic	 p-
value	

3-hydroxybutirate 0.27	(0.13	–	0-39)	 0.27	(0.14	–	0.40)	 ns	 0.21	(0.14	–	0.38)	 0.35	(0.14	–	0.42)	 ns	 0.31	(0.16	–	0.40)	 0.19	(0.13	–	0.419	 ns	
Aconitate	 3.75	(2.38	–	6.50)	 4.60	(2.67	–	6.28)	 ns	 4.59	(2.54	–	6.65)	 4.13	(2.60	–	6.60)	 ns	 4.64	(2.91	–	6.61)	 4.22	(2.36	–	6.16)	 ns	
α-ketoglutarate	 4.24	(2.56	–	7.22)	 4.13	(2.76	–	6.50)	 ns	 4.71	(2.81	–	6.67)	 3.70	(2.51	–	7.07)	 ns	 3.99	(2.44	–	6.55)	 5.05	(3.05	–	6.90)	 ns	
Alanine	 210.60	(147.51	–	

266.30)	
189.61	(139.04	–	

271.47)	
ns	 213.52	(152.77	–	

273.76)	
184.35	(137.34	–	

255.16)	
ns	 180.54	(125.18	–	

247.53)	
233.62	(171.42	–	

302.86)	
0.001	

Aspartate	 172.57	(133.37	–	
215.81)	

179.76	(143.01	–	
225.10)	

ns	 181.61	(141.46	–	
239.56)	

173.17	(137.30	–	
200.45)	

ns	 168.65	(134.12	–	
205.47)	

191.72	(148.8	–	253.22)	 0.016	

Isocitrate	 721.78	(584.42	–	
867.38)	

665.64	(538.00	–	
880.59)	

ns	 721.80	(566.64	–	
934.03)	

654.24	(476.56	–	
815.96)	

ns	 678.64	(545.44	–	
864.55)	

712.36	(566.17	–	959.17)	 ns	

Fumarate	 0.26(0.19	–	0.41)	 0.24	(0.18	–	0.37)	 ns	 0.27	(0.19	–	0.40)	 0.22	(0.17	–	0.30)	 0.035	 0.23	(0.18	–	0.36)	 0.27	(0.19	–	0.40)	 ns	
Glucose	 4546.02	(4104.05	–	

5115.56)	
4959.36	(440.88	–	

5804.93)	
0.001	 4955.95	(4459.14	–	

5679.69)	
4418.11	(4134.89	–	

5191.71)	
0.007	 4663.92	(4172.31	–	

5417.54)	
4925.38	(4503.68	–	

5684.91)	
0.027	

Glutamate	 1457.27	(743.06	–	
2912.42)	

1416.96	(671.78	–	
2684.24)	

ns	 1335.82	(725.07	–	
2628.52)	

1786.69	(691.16	–	
2891.74)	

ns	 1556.27	(679.84	–	
2785.70)	

1342.51	(763.74	–	
2372.15)	

ns	

Glutamine	 5073.46	(3054.24	–	
7754.55)	

4742.54	(1842.39	–	
8881.28)	

ns	 5083.38	(2842.09	–	
9072.22)	

4742.54	(1700.95	–	
7003.86)	

ns	 4742.54	(2007.90	–	
7169.01)	

5073.46	(2219.30	–	
10427.79)	

ns	

Isoleucine	 57.14	(47.71	–	63.99)	 63.68	(52.83	–	75.20)	 0.002	 63.52	(52.24	–	75.19)	 57.88	(51.23	–	63.22)	 0.050	 57.90	(49.81	–	68.46)	 65.02	(55.35	–	77.95)	 0.002	
Lactate	 367.23	(283.94	–	

423.66)	
341.07	(297.13	–	

441.68)	
ns	 373.57	(308.33	–	

452.52)	
332.36	(279.50	–	

405.92)	
0.047	 334.77	(274.24	–	

435.64)	
393.34	(323.21	–	

457.69)	
0.004	

Leucine	 85.07	(70.62	–	94.86)	 86.68	(69.33	–	
109.65)	

ns	 90.17	(71.33	–	109.35)	 84.54	(69.77	–	93.84)	 ns	 83.96	(66.70	–	98.71)	 92.19	(76.10	–	109.92)	 0.011	

Malate	 2.38	(1.85	–	4.31)	 2.45	(1.88	–	3.56)	 ns	 2.79	(1.96	–	4.09)	 2.23	(1.75	–	3.08)	 0.043	 2.37	(1.83	–	3.66)	 2.87	(2.12	–	3.80)	 ns	
Pyruvate	 12.47	(3.64	–	22.87)	 12.83	(3.55	–	21.89)	 ns	 13.86	(3.85	–	24.11)	 8.78	(2.72	–	18.15)	 0.042	 9.50	(3.08	–	21.00)	 13.58	(6.00	–	25.78)	 ns	
Serine	 147.54	(101.70	–	

167.45)	
137.69	(109.40	–	

169.59)	
ns	 135.30	(106.14	–	

162.12)	
161.02	(103.62	–	

172.90)	
0.34	 150.04	(104.94	–	

170.39)	
131.92	(106.07	–	18.82)	 ns	

Succinate	 9.57	(8.35	–	15.11)	 9.70	(8.47	–	15.23)	 ns	 9.15	(8.42	–	15.04)	 11.71	(8.49	–	15.47)	 ns	 10.82	(8.44	–	15.23)	 9.11	(8.46	–	15.15)	 ns	
Succinyl-CoA	 10.14	(7.74	–	15.12)	 10.46	(7.37	–	17.62)	 ns	 11.21	(7.72	–	16.31)	 9.94	(7.52	–	14.25)	 ns	 9.79	(6.71	–	14.00)	 13.36	(8.90	–	18.47)	 0.001	
Valine	 102.06	(83.06	–	129.40)	 104.17	(80.70	–	

138.39)	
ns	 107.33	(86.67	–	136.83)	 96.63	(78.83	–	134.87)	 ns	 99.36	(78.62	–	125.54)	 113.33	(89.62	–	139.43)	 0.010	
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Table	3.	Spearman	correlation	coefficients	for	age,	body	mass	index	and	related	metabolites.	

Age	 BMI	
Spearman’s	

Rho	
p-value Spearman’s	

Rho	
p-value

3-hydroxybutirate 0.057	 ns	 0.022	 ns	
Aconitate 0.205	 0.003	 -0.236 0.010	
α-ketoglutarate 0.054	 ns	 -0.031 ns	
Alanine -0.081 ns	 0.230 0.013	
Aspartate 0.083 ns	 0.256 0.005	
Citrate+Isocitrate 0.113 ns	 0.147 ns	
Fumarate 0.220 0.002	 -0.085 ns	
Glucose -0.031 ns	 0.202 0.029	
Glutamate 0.063 ns	 -0.032 ns	
Glutamine 0.007 ns	 0.157 ns	
Isoleucine 0.124 ns	 0.194 0.036	
Lactate -0.023 ns	 0.034 ns	
Leucine -0.005 ns	 0.220 0.017	
Malate 0.248 <0.001	 -0.079 ns	
Pyruvate -0.009 ns	 0.103 ns	
Serine 0.062 ns	 -0.112 ns	
Succinate 0.011 ns	 -0.145 ns	
Succinyl-CoA 0.038 ns	 0.134 ns	
Valine -0.122 ns	 0.241 0.009	

BMI:	Body	mass	index.	
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Table	4.	Clinical	characteristics,	complete	blood	count	and	biochemical	characteristics	of	PAD	patients	segregated	by	Fontaine	classification.	

BMI:	Body	mass	index;	HDL:	high-density	lipoprotein;	LDL:	low-density	lipoprotein;	ALT:	alanine	aminotransferase;	AST:	aspartate	aminotransferase.	Non-parametric	
variables	are	shown	as	median	and	IQR	(25-75%).	Qualitative	variables	are	expressed	as	(%)	of	total	participants.	Multiple	comparisons	between	groups	using	Kruskal-Wallis	
test.	

Fontaine	I	
(n	=	9)	

Fontaine	II	
(n	=	30)	

Fontaine	III	
(n	=	46)	

Fontaine	IV	
(n	=	116)	 P-value

Clinical	characteristics	
Age	(years)	 55	(51	–	69)	 73	(60	–	77)	 65	(61	–	75)	 71	(64	–	79)	 0.003	
BMI	(kg/m2)	 28.9	(25.2	–	30.6)	 27	(23.5	–	29.5)	 26	(22.5	–	28)	 24	(22-27.8)	 ns	
Diabetes	(%)	 12.5	 60.9	 38.1	 78.7	 <0.001	
Hypertension	(%)	 50	 74.1	 60	 73.3	 <0.001	
Dyslipidemia	 42.9	 42.3	 37.8	 36.4	 <0.001	
Complete	Blood	Count	
Red	blood	cells,	x1012/L	 5.1	(4.5	–	5-4)	 4.5	(4.1	–	4.8)	 4.2	(3.8	–	4.6)	 3.9	(3.3	–	4.4)	 <0.001	
Hemoglobin,	mmol/L	 9.12	(7.57	–	10.18)	 8.56	(8.01	–	9.56)	 8.87	(8.32	–	9.43)	 7.63	(6.70	–	8.50)	 <0.001	
Leukocytes,	x109/L	 7.4	(6.8	–	10.4)	 7.3	(6.3	–	8.9)	 7.6	(6.4	–	10.4)	 8.4	(6.6	–	10.7)	 ns	
Platelets,	x109/L	 205	(159	–	246)	 216.5	(173.5	–	257.2)	 251	(197	–	310)	 277	(213	–	361)	 0.001	
Biochemical	variables	
Total-cholesterol,	mmol/L	 4.06	(3.69	–	4.22)	 4.23	(3.74	–	4.91)	 3.94	(3.27	–	4.41)	 3.80	(3.20	–	43.21)	 ns	
HDL-cholesterol,	mmol/L	 0.80	(0.58	–	1.22)	 1.03	(0.80	–	1.27)	 1.27	(0.81	–	1.25)	 0.93	(0.78	–	1.16)	 ns	
LDL-cholesterol,	mmol/L	 2.04	(1.92	–	3.07)	 2.43	(1.92	–	3.08)	 2.22	(1.76	–	2.66)	 2.24	(1.75	–	2.81)	 ns	
Triglycerides,	mmol/L	 1.57	(1.07	–	3.29)	 1.81	(1.12	–	2.93)	 2.34	(1.88	–	3.44)	 1.85	(1.34	–	2.83)	 ns	
Glucose,	mmol/L	 6.99	(6.2	–	8.21)	 6.09	(5.01	–	7.05)	 5.29	(4.56	–	6.79)	 5.55	(4.40	–	6.85)	 ns	
ALT,	U/L	 18	(13.3	–	41-5)	 21	(16	–	28)	 23.5	(18.8	–	46.5)	 21	(13.7	–	35)	 ns	
AST,	U/L	 22.9	(16.2	–	32.4)	 21	(17	–	25.6)	 22.5	(18	–	44-7)	 20	(15	–	32)	 ns	
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Figures	

Figure	1.	Energy	metabolism	in	PAD	patients.	 (A)	Concentrations	of	measured	metabolites	 in	
PAD	patients	 and	 control	 group,	 expressed	as	median	 (IQR),	 fold-change	 ratio	between	PAD	
patients	and	control	group,	and	p-value.	 	*	p<0.05.	ns:	no	significant.	(B)	Graphical	display	of	
fold-change	ratios	in	energy	metabolism.		
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Figure	2.	Principal	component	analysis	(PCA)	between	hypertensive	and	normotensive	(A)	and	
between	hyperlipidemic	and	normolipidemic	(B)	PAD	patients.	Random	Forest	analysis	shows	
the	 metabolites	 with	 the	 best	 discriminant	 capacity	 between	 normoglycemic	 and	 diabetic	
patients	 (C),	 between	 normolipidemic	 and	 hyperlipidemic	 patients	 (D)	 and	 between	
normotensive	and	hypertensive	patients	(E).		
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Figure	 3.	 Candidate	 biomarkers	 for	 PAD	 patients.	 Graphical	 representation	 of	 candidate	
biomarkers	 concentration	 among	 groups:	 (A)	 3-hydroxybutirate,	 (B)	 α-ketoglutarate,	 (C)	
glutamate,	(D)	glutamine,	(E)	(Iso)citrate	and	(F)	succinate.	*:	p	<	0.05;	**:	p	<	0.001.	
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Figure	4.	Validation	of	candidate	biomarkers.	Random	Forest	analysis	showing	the	metabolites	
with	 the	best	discriminant	capacity	between	control	group	and	 (A)	PAD	patients,	 (C)	PAD	 I-II	
patients	and	(E)	during	disease	progression.	ROC	curve	for	the	best	candidates.	Discriminating	
between	control	group	and	(B)	PAD	and	(D)	PAD	I-II	patients.	AUC,	area	under	curve.	
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Plasma	metabolome	in	PAD	patients	unveils	limitations	derived	
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Supplementary	Figure	1.	Determined	metabolites	in	artery	(A)	and	plasma	samples	(B).	
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Supplementary	 figure	 2.	 (A)	Correlations	between	aconitate,	 fumarate	and	malate	with	age.	
(B) Correlations	between	aconitate,	alanine,	aspartate,	glucose,	 isoleucine,	 leucine	and	valine
with	body	mass	index.
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Abstract: Metformin is a biguanide that is widely employed in the treatment of type 2 diabetes mellitus and obesity.

The main mechanism of action is to decrease glucose absorption by the intestine and glucose production in the liver. It 

does not stimulate insulin secretion. Metformin also increases the affinity of the insulin receptor for insulin, reduces 

hyperinsulinemia and improves insulin resistance. Additionally, it promotes weight loss. Metformin is a pleiotropic 
compound but acts, largely, by activating 5' adenosine monophosphate (AMP)-activated protein kinase (AMPK). Several 

lines of evidence suggest that the therapeutic effects of this compound are mediated, at least in part, through an 

upregulation of paraoxonase-1 (PON1) synthesis. PON1 is a thiolactonase that degrades lipid peroxides, and 
downregulates the chemokine (C-C motif) ligand 2 (CCL2) which is a pro-inflammatory chemokine that stimulates the 

migration of monocytes to areas of inflammation where they differentiate into macrophages. Studies in PON1-deficient 

mice suggest that PON1 is essential for the successful activation of AMPK in the liver and for facilitating metformin’s 
therapeutic function. 

Keywords: Chemokine (C-C motif) ligand 2; Diabetes mellitus; Inflammation; Metabolic syndrome; Metformin; Paraoxonase-1 

PARAOXONASES CONSTITUTE AN ENDOGENOUS 
ENZYME SYSTEM AGAINST OXIDATIVE STRESS 

Independently of intake of exogenous antioxidants, the 

organism has several endogenous mechanisms to protect 

against oxidative stress. Most recent research has focused on 

a family of enzymes, the paraoxonases (PON) that play a 

determinant role in protecting cells against oxidative stress. 

The PON enzyme family comprises three members (PON1, 

PON2, and PON3) the genes for which are located adjacent 

to each other on chromosome 7q21–22 [1,2]. PON1 and 

PON3 are almost ubiquitously expressed in tissues and, as 

well, bound to high-density lipoprotein (HDL) in the 

circulation [3-7]. Conversely, PON2 is an intracellular 

enzyme also expressed by most cells but, unlike PON1 and 

PON3, is not found in plasma [8]. PON1 has esterase and 

lactonase activities [9]. It hydrolyzes thiolactones and active 

metabolites of several organophosphate insecticides 

(paraoxon, chlorpyrifos oxon, and diazoxon) as well as the 

nerve agents sarin and soman [10]. PON2 and PON3 are not 

active against xenobiotics, but have lactonase activity [11]. 

All the three PON enzymes degrade lipid peroxides in low-

density lipoproteins (LDL) [12], while PON2 reduces 

cellular oxidative stress and prevents apoptosis in several 

cell types [13].  

*Address correspondence to this author at the Unitat de Recerca Biomèdica, 
Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere 
Virgili, Universitat Rovira i Virgili, C. Sant Joan s/n, 43201 Reus,
Catalonia, Spain; Tel/Fax: ++34-977-310-300 (ext. 55409); E-mail:
jcamps@grupsagessa.com 

Extensive data indicate that the PON family plays a 

protective role in several diseases involving oxidative stress. 

These include cardiovascular disease, diabetes, Alzheimer’s 

disease, metabolic syndrome, and liver diseases [14, 15]. 

The first evidence demonstrating the role of PON1 in 

protecting cells against lipid peroxidation was reported by 

Mackness et al. [16]. These authors investigated the 

protection against LDL oxidation provided by HDL, in the 

course of which PON1 was isolated and purified. They 

observed that PON1 and HDL prevented lipoperoxide 

generation during the process of LDL oxidation, and 

concluded that this enzyme may be involved in the anti-

oxidative protective function of HDL. Further studies from 

this group, and others, demonstrated that PON1 protects 

LDL and HDL from lipid peroxidation by degrading specific 

oxidized cholesteryl esters and specific oxidized 

phospholipids contained in oxidized lipoproteins [17-23]. Of 

further note is that the PON1 free sulfhydryl group in 

cysteine 284 appears to be required for the enzyme’s activity 

against lipid peroxides [20], but not for its activity against 

paraoxon or other xenobiotics. This suggests that the 

mechanisms of hydrolysis and detoxification are somewhat 

different i.e. different binding sites in the enzyme that could 

explain the different activities of the enzyme. Studies in 

genetically modified mice provide further support for the in 

vitro experiments that indicated that the physiological 

function of PON1 was to hydrolyze oxidized lipids i.e. to 

function as an antioxidant enzyme. Decreased serum PON1 

activity and increased oxidative stress have been observed in 

Annex 1
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apolipoprotein E-deficient mice, as well as in dyslipidemic 

obese mice [12,24]. The most conclusive data have been 

generated in mouse models [25-27] in which PON1-deficient 

plus apolipoprotein E-deficient mice showed greater 

lipoprotein oxidation (and atherosclerosis) than the 

apolipoprotein E-deficient mice alone [26]. Corroborating 

these observations, HDL isolated from PON1-deficient mice 

is unable to prevent LDL oxidation in cultured arterial tissue, 

in contrast to HDL obtained from control mice [27,28]. 

Moreover, transgenic mice overexpressing human PON1 

have decreased HDL lipid peroxide formation and a 

preserved LDL structure and function [29]. 

PARAOXONASES, ATHEROSCLEROSIS, DIABETES 
AND OBESITY: THE ROLE OF THE CHEMOKINE 
(C-C MOTIF) LIGAND 2 

Mackness et al. [30] first demonstrated that PON1 

inhibits the production of the chemokine (C-C motif) ligand 

2 (CCL2, also termed monocyte chemoattractant protein-1, 

MCP-1) in endothelial cells incubated with oxidized LDL. 

These authors found that HDL, and recombinant PON1, 

abolished CCL2 production (Figure 1). PON1 inhibition of 

CCL2 appeared to be due to its capacity to inhibit LDL 

oxidation. CCL2 is a chemokine that regulates the migration 

of monocytes into tissues and their differentiation into 

macrophages; these responses playing a major role in the 

inflammatory reaction. It seems, then, than PON1 and CCL2 

play key roles linking oxidation and inflammation 

processes.

FIG. (1). PON1 is an anti-inflammatory enzyme. Incubation of endothelial 

cells with oxidized low-density lipoproteins (oxLDL) induces the synthesis 

of the pro-inflammatory chemokine (C-C motif) ligand 2 (CCL2). Co-
incubation with PON1-containing high-density lipoproteins (HDL) or with 

recombinant PON1 leads to oxLDL degradation and inhibition of CCL2 

synthesis  

Following tissue injury, CCL2 is upregulated and 

expressed by inflammatory and stromal cells. Being 

ubiquitous and jointly localized with PON1 suggests a 

systemic and coordinated role for both molecules [7,31]. 

CCL2 induces endoplasmic reticulum (ER) stress leading to 

autophagy, while regulating the nuclear factor ĸ-light-chain-

enhancer of activated B cells (NF-ĸB) by catalyzing de-

ubiquitination [32]. The inflammatory reaction is triggered 

by the activation of pattern-recognition receptors (PRR) such 

as toll-like receptors (TLR) and nucleotide oligomerization 

domain-like receptors (NLR), which recognize pathogens or 

pathogen-associated molecular patterns (PAMP). Products 

from damaged cells such as damage-associated molecular 

pattern (DAMP) initiate inflammation in a similar manner to 

pathogens [33]. The binding of PAMP/DAMP to a PRR 

leads to several molecular events resulting in inflammatory 

responses. NF-ĸB activation triggers the production of 

adhesion molecules and chemokines (including CCL2) that 

lead to infiltration of immune cells into the damaged tissue. 

There are other pathways which, when activated, result in 

similar outcomes. Examples are the mitogen-activated 

protein kinase (MAPK) pathway, the phosphoinositide 3-

kinase (PI3K)-related signaling pathway, and the Janus 

kinase/signal transducers and activators of transcription 

(JAK/STAT) signaling pathway. These changes are linked to 

ER stress and the unfolded protein response (UPR). The 

UPR [34] is initiated via three ER-localized transmembrane 

proteins: inositol-requiring enzyme (IRE), protein kinase-

like ER kinase (PERK), and activating transcription factor-6 

(ATF6) (Figure 2). 

FIG. (2). The unfolded protein response (UPR) is a cellular stress response 

related to the endoplasmic reticulum, and has been found to be conserved in 

mammalian species. 

The accumulation of unfolded, or misfolded, proteins in the lumen of the 

endoplasmic reticulum activates the response. It is designed, initially, to 
restore normal function of the cell by halting protein translation and 

activating the production of molecular chaperones involved in protein 

folding. If not achieved within a certain time-scale, or if the disruption is 
prolonged, the UPR drives toward apoptosis. Molecules involved in the 

three branches of this response are summarized in the figure.  

Notes: 
ATF: activating transcription factor; CHOP: CCAAT/enhancer binding 

protein (C/EBP), homologous protein; elF2: E74-like factor 2; Gadd 34: 

growth arrest and DNA damage inducible protein 34; IRE: inositol-
requiring enzyme; IRS-1: insulin receptor substrate 1; N-ATF: N-terminal 

ATF6; NF-kB: nuclear factor kappa-light-chain-enhancer of activated B 

cells; PERK: protein kinase-like ER kinase; PKK: protein kinase C-
associated kinase; SXBP-1: spliced X-box binding protein 1. 

Inflammatory cells generate chemokines and reactive 

oxygen species (ROS) which trigger ER stress. The UPR 

signal pathways are integrated with the inflammatory 

pathways through several mechanisms such as the regulation 

of intracellular calcium, the generation of ROS, or the 

production of acute phase proteins which upregulate the 

expression of the CCL2 receptor [35]. Nitrous oxide (NO) 
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can activate ER stress through disturbance of ER calcium 

homeostasis, or by enhancing ROS generation, or by 

inhibiting protein disulfide isomerase (PDI); the result being 

the subsequent accumulation of poly-ubiquitinated proteins 

[36]. All these effects are involved in obesity and diabetes. 

Several components of UPR signaling link ER stress to cell 

death and autophagy [37]. When the cell damage is 

affordable, autophagy helps the cells to survive through the 

lesion i.e. enabling full recovery and avoiding cell death by 

removing the toxic protein aggregates. However, when 

autophagy cannot maintain protein and organelle quality, the 

outcome is a form of non-apoptotic cell death. There is 

compelling evidence that ER stress is important in the 

instigation, development and progression of atherosclerosis, 

and that ER stress induced apoptosis in macrophages is a 

major contributor to the instability of atherosclerotic plaques 

[38].CCL2 links ER stress to cardiovascular diseases 

Further, CCL2 induces plaque destabilization by increasing 

the activity of the ubiquitin-proteosome system in 

inflammatory macrophages [39]. 

Processes in the heart such as ischemia/reperfusion, 

hypoxia, pressure overload, and inflammation result in 

activation of ER stress through mechanisms involving CCL2 

[40,41]. The pathogenic role of this chemokine in 

atherosclerosis is well established. Many stimuli, particularly 

oxidative stress, cause the production of CCL2 in vascular 

cells and stimulate foam cell formation, inflammation, and 

progression of the atherosclerotic lesion (Figure 3) [42-45].  

Fig. (3). Autophagy and inflammation are the consequences of oxidative 

stress and imbalanced nutrient intake, and are closely related to metabolic 
diseases, such as obesity, diabetes and cardiovascular diseases. 

An autopsy study found strong associations of 

upregulation of ER stress markers in coronary arteries versus 

atherosclerotic plaque rupture [46]. Moreover, CCL2 induces 

plaque destabilization by increasing activity of the ubiquitin-

proteosome system in macrophages [39]. CCL2 also plays a 

notable role in a variety of other inflammatory diseases. The 

nature of the genes induced by CCL2 is far from clear, but 

some experimental studies propose a novel class of zinc-

finger proteins in monocytes triggered by CCL2 binding to 

CCR2. Termed MCPIP (MCP-1–induced proteins) they are 

expressed in macrophage-associated organs [47,48]. 

Monocyte-macrophage differentiation related to 

inflammation is involved in adipogenesis and angiogenesis 

and, as such, highlights a possible role for CCL2 in 

cardiovascular diseases, type 2 diabetes mellitus, tumor 

growth, and obesity, with the MCPIP system playing a 

crucial role in these processes. CCL2 is an angiogenic factor 

that differentiates bone marrow monocyte-lineage cells into 

endothelial-like cells [49]. An increased expression of CCL2 

causes macrophage infiltration into adipose tissue while the 

acute increase in circulating concentration of CCL2 elicits 

systemic insulin resistance and, hence, type 2 diabetes. In 

humans, the increases in serum CCL2 levels correlate well 

with markers of metabolic syndrome [50,51]. 

Cell death and differentiation share common 

components, although the underlying mechanisms are 

unclear. In both processes, oxidative stress, ER stress, and 

autophagy have been described, but the relationships 

between them have yet to be elucidated. However, 

inflammation can lead to cell death and differentiation 

processes such as angiogenesis and adipogenesis. CCL2 is a 

plausible mediator in these processes [52] but the issue has 

not resolved although the involvement of macrophages 

appears to be critical. For instance, obesity is associated with 

cardiovascular disease, diabetes and cancer, and is frequently 

accompanied by metabolic disturbances in which the 

aforementioned processes are present. Obesity increases 

tissue infiltration by macrophages and proceeds via 

polarization to the pro-inflammatory M1 state of 

macrophages which is implicated in the development of 

insulin resistance [53]. Ascertaining the precise signal 

transduction pathways in macrophages that respond to these 

effects could present opportunities for new therapeutic 

procedures. The stress-responsive JNK signal transduction 

pathway (which is activated by obesity and is required for 

obesity-induced insulin resistance) has been identified 

recently as being important in the behavior of macrophages 

[54,55]. 

THE FATE OF PON1 AND CCL2 IS TO WORK 

COORDINATELY 

As stated above, oxidized LDL induces endothelial cell 

CCL2 synthesis. Hence, an increase in oxidation leads to the 

activation of the inflammatory reaction that further increases 

the oxidation; somewhat like a vicious circle. This 

phenomenon is observed in many non-communicable 

diseases including obesity, diabetes, cardiovascular disease, 

and cancer. PON1 plays a key role in breaking this cycle, by 

degrading lipid peroxides in LDL and preventing increased 

CCL2 synthesis [30]. For this reason, alterations in the 

circulating concentrations or intracellular levels of PON1 

and CCL2 are observed in many experimental models of 

disease, and in clinical studies. Depending on the 

circumstances of the process disease being studied, these 

changes can be unidirectional (PON1 and CCL2 proceeding 

to increase or decrease together) or bidirectional (CCL2 

increase and PON1 decrease). For example, in normal 

C57BL/6J mouse tissues, PON1 and CCL2 gene and protein 

expressions have been found in the vast majority of tissues 

including heart, aorta, liver, and most epithelia; both 

molecules co-express in the same cells and tissue structures, 

which would suggest coordinated roles [7]. In the livers of 

UNIVERSITAT ROVIRA I VIRGILI 
PERIPHERAL ARTERY DISEASE: THE SEARCH FOR A BIOLOGICAL MARKER 
Anna Hernández Aguilera 



4    Current Clinical Pharmacology, 2016, Vol. 0, No. 0 Camps  et al. 

rats with experimental fibrosis, high levels of PON1 and 

CCL2 expression have been observed in hepatocytes 

surrounding the fibrous septa and inflammatory areas. 

However, while PON1 protein expression was enhanced, the 

enzyme activity was decreased, and it was suggested that this 

was due to enzyme inactivation [15,56]. Patients with 

chronic liver disease have high levels of CCL2 and low 

levels of PON1 in the circulation, which is in agreement with 

observations in experimental models [57,58]. In peripheral 

artery disease, a condition characterized by extensive 

atherosclerosis of lower extremities, PON1 and CCL2 co-

localize at the sites of the atherosclerotic lesions. It was also 

evident that both proteins were increasingly expressed in 

progressively advanced lesions. However, serum PON1 

activity was much lower than in normal subjects, and was 

similar to that observed in patients with liver disease [59,60]. 

Taken together, these data suggest that the PON1-CCL2 duo 

could constitute an important target for pharmacological 

intervention, in most non-communicable diseases.  

MOLECULAR MODE-OF-ACTION OF METFORMIN 
IN THE ATHEROSCLEROSIS, OBESITY AND 
DIABETES PROCESSES 

Metformin is a biguanide with two methyl groups 

attached to the nitrogen nucleus of biguanide (Figure 4). This 

compound is derived from galegine, extracted from the plant 

Galega officinalis [61]. The drug has been approved for use 

in the treatment of hyperglycemia, metabolic syndrome, and 

polycystic ovary [62-64]. Following ingestion, it is absorbed 

into the circulation and tissues within 1-3 hours, and 90% is 

eliminated by the kidneys.  

Fig. (4). Chemical structure of metformin 

Metformin decreases glucose absorption by the 

intestine, and glucose production in the liver. However, 

insulin secretion in unaffected. It increases the uptake and 

utilization of glucose by muscle and adipose tissues. The 

lowering of blood glucose levels by metformin is only 

observed in patients with diabetes and insulin resistance, but 

has no effect on healthy individuals. Metformin also 

increases the affinity of the insulin receptor for insulin, 

reduces hyperinsulinemia and improves insulin resistance. 

Several days after its administration, insulin levels are 

reduced by 25-33% in both diabetic and non-diabetic 

patients. Metformin can also decrease fatty acid uptake and 

oxidation in muscle cells while lowering circulating levels of 

total cholesterol, LDL-cholesterol, and triglycerides. 

Additionally, metformin promotes weight loss. Generally, 

metformin is well tolerated, with only 5% of patients 

developing intolerance. The side effects are mild and 

reversible and include gastrointestinal perturbations (30%), 

metallic taste (3%), and decreased levels of vitamin B12 (in 

6% of patients after 29 weeks of treatment). Metformin is 

considered to be a safe drug with a low risk of lactic 

acidosis, a reaction that affects about 3 of 100,000 

people/year [65,66].  

Metformin is a pleiotropic compound, but largely elicits 

its effects by activating 5' adenosine monophosphate (AMP)-

activated protein kinase (AMPK). AMPK is a major 

metabolic sensor involved in the regulation of cellular 

energy homeostasis (Figure 5). When cellular stress is 

present (e.g. glucose deprivation, hypoxia, oxidative stress or 

Fig. (5). AMPK or 5’-adenosine monophosphate-activated protein kinase, is 

a heterotrimeric protein formed by , , and  subunits. Each subunit can be 

found in different isoforms: the  subunit can exist as either 1, 2, or 3 

isoform; the  subunit can exist as either 1 or 2 isoform; and the  

subunit can exist as either 1 or 2 isoform. Together, they make a 

functional enzyme that acts in cellular energy homeostasis. The increased 

concentrations of AMP produce a conformational change in the  subunit of 

AMPK as two AMP bind the two Bateman domains located on that subunit. 

This exposes the active site (Thr-172) on the  subunit to the action of  an 
upstream AMPK kinase (AMPKK). This modification increases the activity 

of AMPK. Conversely the loss of AMP and the lack of phosphorylation 

render the enzyme inactive. AMPKK is a complex of three proteins, STE-
related adaptor (STRAD), mouse protein 25 (MO25), and liver kinase B1 

(LKB1), which is a serine/threonine kinase. 

ischemia), the ratio of AMP/ATP increases which, then, 

induces the activation of AMPK [62]. Once activated, 

AMPK inhibits anabolic processes that require energy and, 

instead, activates catabolic processes that produce energy. 

The activation of AMPK is mediated by other proteins. 

These include the enzymes serine-threonine kinase-11 

(STK11), TGF-β-activated protein kinase 1 (TAK1), and 

calcium/calmodulin-dependent protein kinase (CaMKK) [67-

71].  hyperinsulinemia-mediated loss and/or mutation of 

STK11 are predictors of sensitivity to metformin [72]. One 
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of the consequences of AMPK activation is the inhibition of 

lipogenesis in tissues. The effects of metformin on energy 

homeostasis include the repressed activation or expression of 

key enzymes of fatty acid biosynthesis (e.g. acetyl-CoA 

carboxylase, fatty acid synthase, 3-hydroxy-3-

methylglutaryl-CoA reductase) and enhanced expression of 

regulators of mitochondrial biogenesis (e.g. peroxisome 

proliferator-activated receptor gamma coactivator 1-alpha) 

[73-78]. Together, these effects on energy homeostasis 

involve inhibition of endogenous fatty acid biosynthesis and 

a shift in cellular bioenergetics towards catabolism. In 

addition, the activated form of AMPK inhibits the 

mechanism of rapamycin (mTOR) activity via the 

phosphorylation and stabilization of the tuberous sclerosis 

complex 2 (TCS2). As such, metformin inhibits the mTOR-

signaling pathway in an AMPK-dependent manner. It should 

be noted that mTOR inhibition might also occur in the 

absence of AMPK activation, for example, by inhibiting the 

insulin-like growth factor-1 (IGF1), the insulin receptor and 

the serine-threonine protein kinase, AKT [79]. Therefore, 

metformin can inhibit mTOR by decreasing the levels of 

insulin and/or IGF1 independently of AMPK. 

METFORMIN TREATMENT INFLUENCES PON1 

AND CCL2 LEVELS AND VICE VERSA 

Few studies have investigated the interactions between 

metformin, PON1 and CCL2. Coll et al. [80] were the first to 

address this point. They studied the effect of treatment with 

1g of metformin twice daily for 26 weeks in patients infected 

with the human immunodeficiency virus, and with 

lipodystrophy. They observed an increase of approximately 

50% in serum PON1 activity, and a decrease of 25% in 

plasma CCL2 concentration. In addition, the postprandial 

levels of these molecules (PON1 and CCL2), following a 

high-fat meal, were not as strongly altered as in those 

patients receiving placebo. The methionine-choline-deficient 

rat is a model of non-alcoholic fatty liver disease which 

exhibits lower serum and liver PON1 activities than their 

corresponding controls. The administration of metformin of 

200 mg/kg for 15 weeks  in this model produced an increase 

in serum and liver PON1 and a decrease in oxidative stress 

markers [81]. A randomized trial in patients with type 2 

diabetes mellitus showed that the administration of 1g of 

metformin daily over a period of 3 months was associated 

with a significant increase in serum PON1 activity. This was 

paralleled with a decrease in advanced oxidation protein 

products and advanced glycation end-products; two markers 

of oxidative stress [82,83]. Similar results were reported 

recently in a study of obese children with metabolic 

syndrome as well as in women with polycystic ovary 

syndrome [84-87]. Regarding CCL2, available information is 

even scarcer. Metformin administration was found to be 

associated with significant decreases in the plasma 

concentration of this chemokine in diabetic rats [88,89] and 

in women with polycystic ovary syndrome [90]. Overall, 

clinical and experimental studies suggest that metformin 

increases serum and liver PON1 activity, and decreases 

plasma CCL2 concentration. As such, these mediators may 

play a role in the observed beneficial effects of metformin. 

The biochemical pathways linking metformin with 

PON1 and CCL2 are unclear. Since metformin decreases 

oxidative stress, there is the possibility that the observed 

increase in PON1 is merely an epiphenomenon. PON1 

degrades lipid peroxides but the PON1 active site for this 

process requires a free sulfhydryl group at cysteine 284. The 

result is that lipid peroxides react covalently with this site 

leading to enzyme inactivation [91]. This implies that every 

PON1 molecule degrading an oxidized lipid becomes 

inactivated, with a resultant overall decrease in enzyme 

activity. The same scenario would explain an inhibited 

CCL2 synthesis. However, some data suggest an active 

influence of metformin on PON1 and CCL2 synthesis 

through AMPK activation; similar manner to that reported 

for -carotene [92-94]. This terpenoid, when added to human 

endothelial cells, activates AMPK, up-regulates PON1, and 

down-regulates CCL2 gene expressions; these effects being 

reversed by STO-609, a CaMKK inhibitor. These findings 

indicate that -carotene regulates the expression of PON1 

and CCL2 via CaMKK and AMPK pathway activation [94]. 

That metformin acts via similar pathways is very likely, and 

warrants further investigation.  

Very recent data suggest that PON1 is necessary for 

metformin to generate its beneficial effects, at least in the 

liver. Several cases of metformin-induced aggravation of 

hepatic damage have been reported in patients with liver 

disease, and improvement in liver function occurred 

following discontinuation of the drug [95-98]. Severe liver 

impairment is associated with low hepatic and circulating 

PON1 levels. Indeed, serum PON1 activity is strongly 

decreased in patients with chronic hepatitis or cirrhosis, and 

the magnitude of the decrease is related to the extent of liver 

damage [99,100]. Further, a study found that a decreased 

hepatic PON1 activity was related to increased  lipid 

peroxidation and liver damage in rats with experimental 

fibrosis [101]. The question arises as to whether decreased 

hepatic PON1 activity is related to these toxic effects of 

metformin in patients with existing liver damage? This point 

was addressed by a study in PON1-deficient mice fed with 

either a standard chow diet or a high-fat and high-cholesterol 

diet. PON1-deficient mice presented with spontaneous 

hepatic steatosis resembling human non-alcoholic fatty liver 

disease [102]. In this experimental model, metformin 

administration was observed not to improve liver function 

but, conversely, increased the severity of steatosis, increased 

CC2 expression and the number of macrophages in the liver, 

and also increased the expression of the apoptosis marker 

caspase-9. Of note is that AMPK in inactivated by 

metformin in PON1-deficient mice [103]. These data suggest 

that PON1 plays a key role in metformin-induced AMPK 

activation, and the reported beneficial consequences of this 

drug. 

CONCLUSION 

Metformin is a well-established drug widely used since 

the 1960s in the treatment of diabetes and obesity. Recent 

studies indicate that some of the beneficial effects of 

metformin may be mediated by a stimulation of the synthesis 

of PON1 and inhibition of CCL2. However, the prescription 
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of metformin in patients with liver disease is controversial 

since, in some cases, this drug produces a worsening of liver 

function. Patients with chronic liver disease have decreased 

hepatic PON1 activity. A study in mice deficient in PON1 

suggested that this enzyme is essential for the successful 

activation of AMPK in the liver, and for metformin to 

demonstrate its therapeutic function. 
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ABBREVIATIONS 

AMP = Adenosine monophosphate 

AMPK = AMP-activated protein kinase 

AMPKK = AMPK kinase 

ATF = Activating transcription factor 

CaMKK = Ca/calmodulin-dependent protein kinase 

CCL2 = Chemokine (c-c motif) ligand 2 

C/EBP = CCAAT/enhancer binding protein 

CHOP =  C/EBP homologous protein 

DAMP = Damage-associated molecular pattern 

elF2 = E74-like factor 2 

ER = Endoplasmic reticulum 

GADD = Growth arrest and DNA damage inducible protein 

HDL =  High-density lipoprotein 

IGF1 = Insulin-like growth factor-1 

IRE = Inositol-requiring enzyme 

IRS-1 = Insulin receptor substrate 1 

JAK  = Janus kinase 

LDL = Low-density lipoprotein 

LKB1 = Liver kinase B1 

MAPK = Mitogen-activated protein kinase 

MCP-1 = Monocyte chemoattractant protein-1 

MCPIP = MCP-1-induced protein 

MO25 = Mouse protein 25 

mTOR = Mechanistic target of rapamycin  

NFB = Nuclear factor ĸ-light-chain-enhancer of activated B 

cells 

NLR = Nucleotide domain-like receptor 

PAMP = Pathogen-associated molecular pattern 

PDI = Protein disulfide isomerase 

PERK  = Protein kinase-like ER kinase 

PI3K = Phosphoinositide 3-kinase 

PKK = Protein kinase C-associated kinase 

PON = Paraoxonase 

PRR =  Pattern-recognition receptor 

ROS = Reactive oxygen species 

STAT = Signal transducer/activator of transcription 

STK11 = Serine-threonine kinase-11 

STRAD = STE-related adaptor 

SXBP-1 = Spliced X-box binding protein-1 

TAK1 = TGF-activated protein kinase-1 

TCS2 = Tuberous sclerosis complex 2 

TLR = Toll-like receptor 

UPR  = Unfolded protein response 
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a b s t r a c t

We live in a world fascinated by the relationship between disease and nutritional disequilibrium. The
subtle and slow effects of chronic nutrient toxicity are a major public health concern. Since food is
potentially important for the development of “metabolic memory”, there is a need for more information
on the type of nutrients causing adverse or toxic effects. We now know that metabolic alterations
produced by excessive intake of some nutrients, drugs and chemicals directly impact epigenetic regu-
lation. We envision that understanding how metabolic pathways are coordinated by environmental and
genetic factors will provide novel insights for the treatment of metabolic diseases. New methods will
enable the assembly and analysis of large sets of complex molecular and clinical data for understanding
how inflammation and mitochondria affect bioenergetics, epigenetics and health. Collectively, the ob-
servations we highlight indicate that energy utilization and disease are intimately connected by epige-
netics. The challenge is to incorporate metabolo-epigenetic data in better interpretations of disease, to
expedite therapeutic targeting of key pathways linking nutritional toxicity and metabolism. An addi-
tional concern is that changes in the parental phenotype are detectable in the methylome of subsequent
offspring. The effect might create a menace to future generations and preconceptional considerations.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

The rise in the prevalence of obesity and diabetes is commonly
attributed to changes in dietary patterns, but this view does not
explain their epidemic nature and the observed contribution of
mitochondrial dysfunction, oxidative stress, inflammation, meta-
bolism and epigenetics. There is a clear need for systematic efforts,
methodology and mechanistic support to repurpose data to the
concept of nutrient toxicity. The harmful excess of nutrients is not
limited to short-term effects and public health concerns are
currently focused on the effect of chronic excessive intake (Kristanc
and Kreft, 2016). Fatness and the lack of fitness are only part of the
problem; the association of obesity and diabetes (“diabesity”) with
non-communicable diseases such as cardiovascular disease and
cancer is also relevant (Camps et al., 2016). Indeed, obesity is not
only a “problem” or a “condition”, but also a chronic disease.
Contrary to what the “weight-loss industry” suggests, permanent
weight loss is out with the reach of the majority of people with
obesity. The word here is “permanent”. Humans are the only spe-
cies that become overweight and remain overweight. Losing
weight is easy but keeping it off is not. Indeed, the 5-year relapse
rate for weight re-gain is consistently greater than 90% and those
who do experience (or will experience) the health consequences of
obesity deserve better efforts than being simply told to “eat less”.

There is a non-genetic transmission of obesity and insulin
resistance (IR) (Huypens et al., 2016). It is appealing to consider the
hypothesis that a nutrient-associated spillover of energy-related
metabolites and inflammatory products from affected cells into
circulation provides signaling molecules that regulate gene
expression through epigenetic mechanisms. Crosstalk between
epigenetic signals and cellular metabolism in chromatin would
represent a sensor and a mechanism to convert metabolic changes
into stable patterns of altered gene expression (Katada et al., 2012).
But how is gene expression reprogrammed in response to meta-
bolic stimuli?

In addition to their anabolic and catabolic functions, metabolites
influence many cellular processes including cell migration and
differentiation, and they can interact directly with transcription
factors andmodulate transmembrane ion channels (Cai et al., 2008;
He et al., 2004; Martinez-Outschoorn et al., 2016; Tannahill et al.,
2013). These actions are triggered by specific metabolomic patterns
that initiate transcriptional regulation in cells (Takahashi and
Yamanaka, 2006). Genes do not remain automatically activated or
depressed if the metabolic event is not persistent, and the putative
regulators need to be continuously present to maintain the state of
expression (i.e., specificity and memory are both necessary).
Addressing basic questions such as which epigenetic factors are
involved in energy metabolism and whether epigenetic mecha-
nisms are causally linked to changes in metabolomic phenotypes,
may lead to novel therapeutic opportunities. Future research
combining data from several “omics” platforms is therapeutically
attractive because diabetes and obesity are potentially reversible
through nutritional and/or surgical interventions. These questions
require a comprehensive, systems-level understanding of disease
mechanisms and molecular alterations. For such a comprehensive
topic we found narrative review best suited to summarize primary
studies and to draw holistic interpretations contributed by our own
experience and existing models. The information was retrieved
through PubMedwithout restrictions using combined search terms
described in Fig. 1 and explicit criteria for inclusion.
2. Regulating food intake and health

There is a widespread claim that nutritionists are forever
changing their advice. This is conceivably due to the majority of
data relying on “associations” because of the obvious shortcomings
of observational studies and free-living experimental trials (Gorder
et al., 1986; Masana et al., 1991; Menotti, 1983). Studies linking food
and health should be seen as preliminary, dealing with un-
certainties, unknown confounding factors and without proving the
whole chain of events. Moreover, presumably through mechanisms
evolved to ensure adaptability, the clinical application of dietary
changes tend to converge towards non-significance in the long-
term and compliance is low (Bravata et al., 2003; Foster et al.,
2010; Gardner et al., 2007; Sacks et al., 2009; Shai et al., 2008).
These considerations are relevant because the abrupt increase in
the prevalence of obesity and type 2 diabetes mellitus (T2DM) is
now challenging former hypotheses. The main concerns are the
frequent coexistence of both conditions and the undisputed asso-
ciations with atherosclerosis and cancer (NCD Risk Factor
Collaboration, 2016; Twig et al., 2016). These are all age-related
diseases entangled with diet and linked to IR or obscure relation-
ships (Joven et al., 2007).

Hippocrates said, “persons who are naturally very fat are more apt
to die suddenly than those who are slender” (Aphorisms 2:44). This
concept and the Discourses on the sober life (1558e1562) by Alvise
Cornaro were highly influential for centuries to endorse caloric
restriction as a means to achieve longevity and health (Darby, 1990;
Howell, 1987). Clearly, these observations rebut the notion that
obesity is a recent phenomenon. Indeed, it probably occurs in
waves associated with affluence. A correlation between reduction
of food intake and extension of lifespan has been demonstrated in a
wide range of organisms (Fontana and Partridge, 2015), and it is
accepted that excessive food intake, when linked with sedentary
behavior, may result in obesity, T2DM and other non-
communicable diseases (Hamilton et al., 2007). However, it is not
clear whether obesity is truly preventable because there are neither
options that work well for most people nor real success in pre-
vention. The question of whether obesity will reverse the life-span
gains made over decades is an emerging issue.
2.1. Nutrient sensing and the distribution of energy

Changes in food intake may alter metabolic strategies to reset



Fig. 1. Food intake participates in the pathogenesis of age-related diseases. Un-
derstanding the effects on key pathways linking nutrition, metabolism and disease
may lead to preventive and therapeutic approaches. It will be important to determine
the ability of insulin resistance and nutrient sensing to modulate gene expression in
affected cells. mTOR, mechanistic target of rapamycin; AMPK, adenosine mono-
phosphate activated protein kinase.
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the distribution of energy into different tasks. These changes may
or may not be relevant to disease, but, when excessive and
continual, they may become toxic and trigger several deleterious
events, including chronic inflammatory response, oxidative stress,
mitochondrial dysfunction, adiposity, IR in skeletal muscle, and
decreased insulin production by pancreatic b cells (Camps et al.,
2016).

The perceived links and interactions (Fig. 1) can be interpreted
as evidence that a growing number of chronic diseases are associ-
ated with IR in a vicious cycle. As tissues become unresponsive to
insulin, more insulin is secreted by the pancreas and tissues grow
ever more resistant. Determining the precise mechanisms of IR is
complex because insulin is involved in the most fundamental
processes of biology (Fitzgibbons and Czech, 2016).

Investigating the mechanisms of nutrient sensing is important
to comprehend how food andmetabolism are coupled to disease. In
this context, several metabolic sensors have been well character-
ized. For example, the activated mechanistic target of rapamycin
(mTOR) regulates events that modulate protein synthesis, insulin
signaling, autophagic flux and mitochondrial function (Albert and
Hall, 2015). Sirtuins are also controlled by nutrient availability
and their activities regulate oxidative phosphorylation, fatty acid
oxidation and mitochondrial oxidant production (Barger et al.,
2015). Finally, adenosine monophosphate (AMP) activated protein
kinase (AMPK) is a critical link between nutrients and health and
regulates metabolic pathways that increase energy supplies and
reduce energy demand (Hardie et al., 2016). These sensors have
been successfully targeted pharmacologically. Notably, metformin
has been used for decades to activate AMPK and, if epidemiological
evidence is confirmed, has saved more lives from cancer than any
other drug in history (Menendez and Joven, 2014). In the overall
process of nutrient sensing, it is important to highlight the pro-
tective role of autophagy, the controlled degradation and recycling
of cellular components. In particular, the specific autophagic tar-
geting of dysfunctional mitochondria (mitophagy) eliminates
oxidative stress and mitochondrial damage in obesity and T2DM.
Mitophagy appears to be a crucial cellular process for the conver-
sion of functionally mature mitochondria to an immature state and
vice versa during reprogramming and differentiation, respectively
(Vazquez-Martin et al., 2016). Autophagy also mediates exercise-
induced increases in muscle glucose uptake, protects b cells
against endoplasmic reticulum stress and promotes adipocyte dif-
ferentiation. Conversely, decreased autophagic activity is impli-
cated in the progression of obesity to T2DM (Barlow and Thomas,
2015; Sarparanta et al., 2016). Given that sirtuins, mTOR and
AMPK all regulate autophagy and autophagy activators have
demonstrable effects on age-related diseases, the search for acti-
vating compounds is an emerging field of investigation (Hubbard
and Sinclair, 2014; Imai and Guarente, 2014; Kasznicki et al.,
2014; Menendez and Joven, 2014; Menendez et al., 2014).

2.2. Insulin resistance: a multifactorial condition

It is generally accepted that IR is associated with overnutrition
and the systemic response of poorly known metabolic feedback
loops, but its role in causing disease might be controversial. For
some investigators, proposed factors causing IR would work
through one or more mechanisms sequentially triggered by
excessive food intake: increased inflammation, changes in lipid
metabolism, and changes in the gastrointestinal microbiota
(Johnson and Olefsky, 2013). To pursue this causal chain may be
scientifically sound and the amount of basic and preclinical
knowledge supporting this hypothesis is compelling; however, this
approach is clinically ineffective.

Pharmacologic therapy based on targets relevant to
inflammation-induced IR has marked effects in rodents but has
been disappointing in humans. This has been shown for tumor
necrosis factor-a blocking agents (Bernstein et al., 2006; Solomon
et al., 2011; Stanley et al., 2011), IL-1b inhibitors (van Asseldonk
et al., 2011) and aspirin (Goldfine et al., 2010; Raghavan et al.,
2014). More targeted anti-inflammatory approaches may improve
efficacy in the future, but the role of tissue inflammation in causing
IR remains speculative. For example, the usefulness of ligands for
peroxisome proliferator-activated receptors (PPARs) has been cur-
tailed because of potential toxicities, even before the precise
mechanisms of action are known (Rull et al., 2014). Lipid accumu-
lation inmultiple tissues and the associatedmetabolic disturbances
might be considered a biological marker, but a consequence rather
than a contributing factor to IR (Calvo et al., 2015). Similarly, in
mice, the gastrointestinal microbiota influences energymetabolism
and systemic inflammation (Blumberg and Powrie, 2012; Burcelin
et al., 2012; Henao-Mejia et al., 2012), and may produce bioactive
metabolites, especially short-chain fatty acids, acetate and bile
acids derivatives (Beltr�an-Deb�on et al., 2015; Kau et al., 2011;
Nicholson et al., 2012). Data from experimental models point to
the potential of microbiota to modulate obesity and insulin sensi-
tivity; however, the same data fail to consider that humans live in
non-sterile conditions, are genetically heterogeneous, consume a
range of different diets and have microbiota that is frequently
perturbed by the administration of antibiotics.

Moreover, clinical measurements of insulin sensitivity are
challenging and considerable variation exists in healthy individuals
and in patients. Methodological flaws are not discarded because
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laboratory procedures do not measure how individual tissues
respond to insulin andmost studies are performed with the patient
fasting. These measurements are also limited by the observation
that IR changes dramatically over the course of a day, from day to
day, and in response to exercise and the quality and quantity of food
intake, among other factors (Zaccardi et al., 2016). The use of
indices combining glucose and insulin levels to predict insulin
sensitivity may represent a simplistic assessment of actual glucose
metabolism. Some investigators claim a significant (>10%) false-
negative rate in assessing IR compared with glucose tolerance
testing. These indices can certainly be used in clinical studies with a
secondary interest in glucose metabolism, but considering and
balancing possible inaccuracies (Lee et al., 2008; Martinez-Hervas
et al., 2011; Pisprasert et al., 2013). Specifically, genetic influence,
physical fitness and weight are recognized confounding factors that
only partially explainwhy a significant proportion of severely obese
patients are insulin sensitive. Thus, if obesity is not the cause of IR,
the search for underlying factor(s) causing both obesity and IR
needs to continue.

2.3. Mitochondria are not only providers of energy, but also
signaling units

The detrimental effects of IR are associated with liver distur-
bances, and the deposition of lipids into non-adipose tissues in-
terferes with insulin signaling. Several findings suggest that
mitochondrial dysfunction is a cause rather than a consequence of
IR. The distinction is important because diabetes and obesity are
strong predictors of non-alcoholic fatty liver disease, which is
characterized by damaged mitochondria and the progressive inhi-
bition of fatty acid oxidation. Several mechanisms apparently
converge to modulate the differential response of energetic and
biosynthetic intermediates. The overall picture is unclear, but
mitochondrial energetic efficiency, epigenetic signals and nutrient-
sensing pathways are necessarily combined (Rull et al., 2009;
Fontana and Partridge, 2015) to explain increased glucose oxida-
tion, decreased glucose formation, mitochondrial dysfunction and
the accumulation of metabolites that disturb glucose transport
activity (Finkel et al., 2015).

In this context, the consideration of obesity and diabetes as
likely mitochondrial diseases is clinically relevant. For instance,
mitochondrial activity, inflammation and the infiltration of mac-
rophages influence both the extent of atherosclerosis and the
pathogenesis of cancer. All of these diseases involve mitochondria
and are characterized by a decline in metabolic homeostasis and
gene deregulation. This association provides grounds to justify that
the detection of an unhealthy metabolic status requires novel, and
possibly crucial, testable therapeutic approaches, especially those:
1) modulating the ability of cells to alter their metabolism to
different energy requests, 2) therapeutically targeting glycolysis,
and 3) directly modulating mitochondrial activity (Suliman and
Piantadosi, 2016; Zaccardi et al., 2016a).

In the regulation of metabolism and energy production, mito-
chondria receive information from other parts of the cell and relay
information via retrograde signaling molecules that are not of
mitochondrial origin; in particular, reactive oxygen species (ROS),
Ca2þ, and cytochrome C (Goodwin et al., 2009; Houtkooper et al.,
2011; Sethe et al., 2006). Some investigators consider that mito-
chondrial ROS have evolved as a key communication method be-
tween the mitochondria and the cell to regulate homeostasis and
normal cellular function (Sena and Chandel, 2012). Moreover, new
findings suggest that mitochondria regulate metabolic homeostasis
at the cellular and organismal level via peptides encoded within
their genome. Themitochondrial transcriptome is a highly complex
system and several mitochondria-derived peptides have been
discovered. One such peptide, humanin, regulates critical processes
such as aging, inflammation, and stress resistance (Guo et al., 2003).
A second peptide, derived from mitochondrial 12S rRNA (MOTS-c),
is involved in regulating metabolic homeostasis (Lee et al., 2015).
Mitochondria modulate carbohydrate metabolism (Woo and
Shadel, 2011) and MOTS-c is proposed as a key endocrine signal
that systemically regulates in vivo glucose metabolism and muscle
insulin action. MOTS-c has physiological similarities to the anti-
diabetic metformin in terms of regulating glucose utilization,
mitochondrial and fatty acid metabolism, and body weight
(Ferguson et al., 2007) by targeting the folate cycle and one-carbon
metabolism (Corominas-Faja et al., 2012; Ducker et al., 2016) and
signaling via AMPK (Shaw, 2013). These data support an active role
for mitochondria in the regulation of metabolism and weight ho-
meostasis. Moreover, the significance of these peptides in the
regulation of obesity, diabetes, exercise, and longevity represents a
new frontier in mitochondrial signaling.

The appreciation of mitochondria as signaling organelles is also
illustrated by very recent findings (Morton et al., 2016). The authors
reasoned counterintuitively that because a substantial and stable
proportion of individuals remain non-obese despite modern
affluence, there might be genetic mechanisms for resistance to
obesity and diabetes or genes that contribute to healthy low
adiposity. To address this, the authors used a polygenic lean mouse
line generated through selection for low adiposity over 60 gener-
ations (Morton et al., 2005) to identify mitochondrial thiosulfate
sulfurtransferase as a beneficial regulator of adipocyte mitochon-
drial function that may have therapeutic significance for in-
dividuals with T2DM.

3. Metabolism and epigenetics: insights for an alternative
working hypothesis

Systems biology encompasses many different approaches to
systematically identify, analyze, control, and design metabolic
systems. The convergence of data from these methodologies in-
dicates that metabolites, which are directly related to the visible
phenotype of biological systems (Nov�ere, 2015), are organized in
genetic- and signaling-regulated metabolic networks.

The relationship between epigenetics and metabolomics may
provide immediate clinical applications; however, the extent to
which epigenetic information is transmitted and whether the
metabolic environment modulates this information are unan-
swered questions. Exploring how metabolic pathways are coordi-
nated in diabesity might clarify the impact of inflammation,
metabolic factors and nutrient excess on epigenetic pathways
affecting genomic regulation (Finkel, 2015; Hern�andez-Aguilera
et al., 2013; Katada et al., 2012). Key metabolites can accumulate
in the plasma over time and if this is maintained specific metabo-
lites have the capacity to regulate both epigenetic status and energy
supply (Riera-Borrull et al., 2016; Rodríguez-Gallego et al., 2015;
Menendez et al., 2016). Precisely how the effects of inflammation
and mitochondrial dysfunction collectively work is unknown, but
future investigations on chronic diseases should consider the
consequence of excessive food intake for the balance of associated
cellular pathways and biological mechanisms (Horng and
Hotamisligil, 2011; Locasale, 2013, Fig. 2). The metabolite-driven
changes in epigenetic regulation are mechanistically attractive
and are supported by recent concepts that have revolutionized our
understanding of chromatin-based epigenetic mechanisms and the
relationship with gene regulation in the pathogenesis of human
diseases. Nevertheless, interpreting the biological context and
integrating data from metabolite measurements in clinical,
epigenetic-guided studies is not an easy task (Dumas, 2012). The
challenge is to provide biological explanations in humans before
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and after therapeutic intervention.
3.1. Intermediates of metabolism influence chromatin structure:
mechanisms of epigenetic inheritance

Epigenetic mechanisms control chromatin structure through
posttranslational modifications, histone variants, RNA interference
and DNA methylation (Fig. 3). Several interacting components of
chromatin regulation, including enzyme kinases, acetyltransferases
and methyltransferases, use cellular metabolites as sources of
phosphate, acetyl or methyl groups, respectively. It is conceivable
that these enzymes may interpret the metabolic state of a specific
cell, but the level of a metabolite is unlikely to be the only deter-
minant of enzymatic activity. Information on intracellular concen-
tration and the dynamic changes in affinity or competition is sparse
(Katoh et al., 2011), and diffusion-controlled reactions are unlikely
in the viscous medium of nuclei. The concentration of proteins and
DNA may reach 200 g/L and the sensitivity to metabolic alterations
is not equally distributed in chromatin regions, favoring the het-
erogeneous occurrence of multiprotein complexes channeling re-
actions (Wei et al., 2011).

Changes in nutrition can impact gene expression patterns and
memory of former metabolic disturbances may be involved in the
progression of obesity and metabolic disease as shown in
Fig. 2. The study of the complex network of cellular pathways and biological mechanism
dietary-favored diseases is inflammatory and entails the modulation of mitochondrial funct
tend to converge from disturbances in which food is a major contributing factor.
epidemiological studies examining the offspring of extreme nutri-
tional deprivation during the periconceptual period or during fetal
development. This has been extensively studied in cohorts
suffering the Dutch Winter Hunger in 1944 (Kaati et al., 2002;
Painter et al., 2005; Heijmans et al., 2008). DNA methylation sig-
natures apparently link prenatal famine exposure to growth and
metabolism and there are evidences suggesting that epigenetic
modulation of pathways by prenatal malnutrition may promote an
adverse metabolic phenotype in later life (Tobi et al., 2014). Similar
data come from studies of offspring born during the severe Chinese
famine in 1958e1961 (Li et al., 2010) but the negative findings
obtained during the Siege of Leningrad suggest caution in
comparing retrospective analysis with different exposure windows
(Stanner et al., 1997). As discussed below (section 4.1) short-term
high fat overfeeding may suggest transient epigenetic regulation
in humans (Jacobsen et al., 2012).

The mechanisms directing the inheritance of these diseases are
unknown but epigenetics is an attractive candidate in animal
models. For example, studies in mice carrying the viable yellow
allele of agouti (Avy) indicate that a specific mammalian gene can
be subjected to germ-line epigenetic change (Cropley et al., 2006).
The ablation of key epigenetic enzymes in mice also mimics the
heritable effects of metabolic disturbances: mice with an inactive
allele of the gene encoding the histone demethylase KDM3a
s altered by excessive food intake requires a detailed roadmap. The overall setting of
ion, profound metabolic alterations and changes in epigenetic events. Chronic diseases



Fig. 3. Nutrition may influence epigenetic mechanisms. Epigenetics is the study of heritable changes in gene function not explained by changes in the primary DNA sequence.
DNA modifications may include changes across the entire organism or may operate on a tissue-specific level.
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become obese in adulthood and have increased levels of circulating
lipids (Tateishi et al., 2009). A defect in the genes encoding meta-
bolic enzymes also directly influences the enzymatic function of
epigenetic regulators in cells with major metabolic alterations
(Cuy�as et al., 2015; Menendez et al., 2016a). Some interesting
questions arise as to how plastic is the genome to dietary changes,
what magnitude of metabolic stimuli is required to switch between
metabolic states, and whether these metabolic-triggered epige-
netic changes are reversible.

During the germline cycle of development, the genetic material
is replicated in each round of cell division. Information not repli-
cated in the DNA sequencedepigenetic informationdis lost in each
generation. At least for epigenetic marks caused by DNA methyl-
ation, the information is not completely erased during germline
development and may remain in the promoters of protein-coding
genes resistant to demethylation (Tang et al., 2015). The evolution
of mechanisms conferring long-term epigenetic memory, and that
feedback between different epigenetic mechanisms contribute to
long-term inheritance, are plausible concepts (Klosin and Lehner,
2016); that is, each epigenetic mechanism alone is unlikely to be
used to transmit information reliably for more than one generation.
Small RNAs are potential carriers of epigenetic information in an-
imal germlines and their levels vary depending upon parental
exposure to high-fat diets (Grandjean et al., 2015). Overexpression
of histone demethylases during spermatogenesis alters histone
modifications in sperm that impair offspring health transgenera-
tionally (Siklenka et al., 2015). Indeed, the repression of repetitive
DNA and transposons is likely the main function of DNA methyl-
ation and a barrier for the transmission of information. However, at
least in mammals, this mechanism is insufficient and may also in-
fluence the expression of neighboring genes through generations
(Blewitt et al., 2006). In flies, the specificity in the transcriptional
response to low glucose diet is detected in the next generation
before the heterochromatin resets. If demonstrated in humans, this
mechanism could explain the inheritance of short-term epigenetic
effects. In fact, there is evidence in mice and humans that a high
glucose paternal diet can trigger obesity in offspring through
deregulation of paternally inherited heterochromatin (€Ost et al.,
2014). Therefore, germline-transmitted mechanisms are conceiv-
able and future research addressing if and how the diet-induced
metabolic perturbations of obesity and diabetes can alter epige-
netic information is warranted.
3.2. Energy metabolism and one-carbon metabolism: a targeted
metabolomic approach

Several metabolites generated by mitochondrial respiration are
implicated in stochastic chromatin remodeling. This is consistent
with studies indicating that glucose and body weight homeostasis
require an efficient management of energy. For instance, citrate can



A. Hern�andez-Aguilera et al. / Food and Chemical Toxicology 96 (2016) 191e204 197

UNIVERSITAT ROVIRA I VIRGILI 
PERIPHERAL ARTERY DISEASE: THE SEARCH FOR A BIOLOGICAL MARKER 
Anna Hernández Aguilera 
modulate the global levels of histone acetylation, and other me-
tabolites are obligatory co-substrates (a-ketoglutarate) or potent
inhibitors (succinate) of relevant mitochondrial enzymes
(Benayoun et al., 2015; Chin et al., 2014; Mentch et al., 2015).
Excessive calorie intake leads to mitochondria fragmentation.
Mitochondrial dynamics is abnormal in T2DM and the prevention
of excessive mitochondrial division ameliorates insulin function. In
the obese setting, changes in mitochondrial dynamics control
appetite- and diet-regulated signaling pathways in neurons (Roy
et al., 2015). Additionally, DNA methylation influences the expres-
sion of genes affecting energy homeostasis and is associated with
an imbalance in mitochondrial dynamics and IR (Gut and Verdin,
2013).

In contrast to the genome, which remains unchanged in most
cells, the combination of all chromatin modifications of a given cell
type directs a unique gene expression pattern that is shaped by
nutrition. Energy metabolism is important but distinguishing one-
carbon metabolism is essential to understand the methylation of
nucleic acids (Barth and Imhof, 2010). Accurate measurements of
implicated metabolites require targeted metabolomics (Fig. 4) to
establish the direct effect of one-carbon (and energy) metabolism
on the output of a defined methylated state (Mentch et al., 2015).

Methylation of cytosine is the predominant epigenetic modifi-
cation of DNA in vertebrates and DNA methylation inhibits the
binding of transcription factors or recruits proteins with repressive
properties (Tate and Bird, 1993; Bell et al., 2011). Methylation status
is dependent upon changes in the enzyme activity of methyl-
transferases and demethylases, and alterations in genes that
encode these enzymes are common in dietary-related diseases
(Dawson and Kouzarides, 2012). S-adenosylmethionine (SAM) is
the universal methyl donor in cells, yielding S-adenosylhomocys-
teine (SAH), and links metabolism and epigenetic status of cells
(Gut and Verdin, 2013). Whether changes in the levels of SAM or
SAH are sufficient to alter methyltransferase activity in vitro is
controversial, but in mice threonine catabolism affects methylation
status (Shyh-Chang et al., 2013) through indirect pathways
involving energy production and acetyl-coA metabolism (i.e.,
Fig. 4. Targeted metabolomics may increase the power of associations. Metabolites that
or enter one-carbon metabolism generating methyl donors (B). The tricarboxylic acid cycle
whereas removal of acetyl-CoA from mitochondria during glucose excess by the citrate shu
methylation. BHMT, betainedhomocysteine S-methyltransferase; DHFR, dihydrofolate redu
N-methyltransferase; MAT, aminomethyltransferase; MTHFR, methylenetetrahydrofolate re
thionine; SHMT, serine hydroxymethyltransferase; THF, Tetrahydrofolate; UDP, uridine diph
pyruvate and glycine metabolism). Moreover, deprivation or re-
striction of essential amino acids causes profound transcriptional
and metabolic responses (Anthony et al., 2013). In particular, di-
etary restriction of methionine produces responses that improve
biomarkers of metabolic health, limit fat accumulation, and even
prolong lifespan in rodents (Orentreich et al., 1993; Orgeron et al.,
2014).
3.3. Metabolites are signaling molecules

Metabolites and transcriptional regulators are likely connected
through as yet undefined mechanisms. Several G protein-coupled
receptors (GPCRs) that impact immunity and inflammation are
activated by intermediates of metabolism. For example, lactate,
produced in the cytoplasm and secreted through the plasma
membrane by solute carrier transporters, is recognized as a
bioactive molecule with profound effects on immune and stromal
cells. Although blood concentration of lactate is around 2 mM, it
can reach up to 10 mM in inflammatory sites and up to 30 mM in
tumor tissue. Among other effects, lactate is considered the driving
force of tumor-associated macrophage development during
epithelial-to-mesenchymal transition (Del Barco et al., 2011; Su
et al., 2014). Lactate signaling has been also implicated in
different features of chronic inflammatory diseases; for example,
increased lactate concentration favors its internalization in acti-
vated T cells through CD8þ and CD4þ T cell-specific transporters,
which causes inhibition of glycolysis and loss of responsiveness to
chemokines and partly explains how T cells are entrapped in
inflamed tissue (Haas et al., 2015). Acting as a ligand, signaling via
lactate modulates insulin-induced reduction of lipolysis by binding
to its cognate receptor, Gpr81, which is primarily expressed in ad-
ipocytes (Liu et al., 2009). Once considered a consequence of the
lack of oxygen, it is now known that lactate is formed continuously
in the presence of oxygen as an active part of mitochondrial
metabolism (Hashimoto et al., 2006). Over the years, many labo-
ratories have endeavored to identify ligands for orphan GPCRs (i.e.,
receptors unmatched to known ligands), but to date more than 100
regulate chromatin participate in pathways involved in intracellular energy balance (A)
links catabolic and anabolic pathways; glycolysis and b-oxidation generate acetyl-CoA,
ttle fuels lipogenesis. Folate enters a cyclic reaction generating methyl donors for DNA
ctase; DNMT, DNA methyltransferase; FAD, flavin adenine dinucleotide; GNMT, glycine
ductase; MTR, Methyltransferase; SAH, S-adenosylhomocysteine; SAM, S-adenosylme-
osphate.
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of these receptors remain orphans. For example, Gpr91 is a receptor
for succinate and Gpr80/99 is a receptor for alpha-ketoglutarate,
revealing that dicarboxylic acids are active signaling molecules
(He et al., 2004; Gonzalez et al., 2004). It is also known that ketone
bodies (beta-hydroxybutyrate), produced mainly in the liver as a
circulating glucose-sparing energy source, can also serve as
signaling molecules in neurons (Shimazu et al., 2013). Other in-
termediates of glycolysis, the citric acid cycle and undoubtedly
products of cellular fatty acid metabolism might also play signifi-
cant roles in non-metabolic activities (Haas et al., 2016). For
example, the polarization of macrophages into M2 cells is impor-
tant because of their role in wound healing. Two critical pathways
regulate this phenomenon: glutamine-related metabolism and the
UDP-GlcNAc pathway. These are major connecting hubs between
cellular metabolism and signaling. Certain dietary conditions might
lead to an interplay between macrophage polarization, meta-
bolism, and mTOR signaling, with the ability to manipulate
macrophage function in clinically relevant settings (Wellen and
Thompson, 2012; Jha et al., 2015). Similar concepts may be
applied to the cancer metabolism program and the responses of
healthy tissues during nutritional stress; the limitation of one en-
ergy source, glycolysis or mitochondrial metabolism, results in
tissue vulnerability to the inhibition of the other energy source (i.e.,
treatment of metabolic diseases should include both factors).

4. Metabolism and DNA methylation: a search for therapeutic
and diagnostic targets in obesity and diabetes

The discovery of endogenous metabolites signaling cell-fate
decisions demonstrates the integration of multiple cellular func-
tions. DNA methylation is the only epigenetic mark with strong
mechanistic support for both heritability and response to dietary
changes (Maddocks et al., 2016; Mentch et al., 2015; Mentch and
Locasale, 2016; Rodríguez-Gallego et al., 2015), and represents a
metabolo-epigenetic link that needs to be translated into clinical
investigations. In particular, the measurement of metabolic states
can be correlated with chromatin states and gene expression.

DNA methylation is currently used to construct models for
predicting chronological age at a population level because the
regulation of the chromatin landscape can alter lifespan (Benayoun
et al., 2015). These models have practical implications for studying
the role of methylation in age-related diseases, and to explain the
association of complex metabolic and inflammatory states with
early onset of diseases linked to aging, including atherosclerosis
and cancer (Hannum et al., 2013; Horvath et al., 2015). Human
immunodeficiency virus infection is characterized by early onset of
age-related diseases (Deeks, 2011; Alonso-Villaverde et al., 2013)
that are associated with changes in age-associated methylation
sites (Gross et al., 2016). Also, obese patients not undergoing gastric
bypass surgery (i.e., no changes in themetabolic state) have aworse
long-term survival as they age than among those undergoing sur-
gery, who present dramatic and beneficial metabolic changes
(Davidson et al., 2016). These effects have been observed in the
complexity of a whole organism, but it is now time to explore how
specific metabolic changes may affect chromatin, transcription and
consequences in health.

The chromatin landscape is dynamically configured throughout
life, and changes in chromatin marks, defined as “epigenetic drift”,
occur in response to nutritional, metabolic, environmental or
pathological signals. Do changes in diet or in metabolism that are
associated with obesity and diabetes lead to epigenetic drift? This
has yet to be fully established in humans, but, if confirmed, known
dietary manipulation or drugs that regulate methylation might be
used to slow the aging process and influence the onset of age-
related diseases. Alternatively, the assessment of DNA
methylation might increase the accuracy of biomarkers for evalu-
ating the risk of disease and may provide a mechanistic basis for
chronic diseases. More importantly, transmitted molecules beyond
DNA canmodify human development (e.g., genomic imprinting). To
which extent is phenotypic information transmitted? Might diet-
induced changes in metabolic or phenotypic traits in one genera-
tion affect the next?

4.1. Methodological source of errors: critical reflections

To prove the hypothesis of diet-induced adverse epigenetic
drifts is a demanding task. For example, epigenetic processes
continuously interpret dietary-induced metabolic alterations and
metabolomic studies and epigenome mapping should be concur-
rent. The choice of when to initiate the analysis is important
because chronic diseases evolve through a sequence of metabolic
stages over time, from a period when alterations are barely
detectable to a stage with complications in multiple tissues. It is
also important to consider which tissue to investigate (R€onn and
Ling, 2015), but to be worthwhile, markers should be explored in
blood where metabolic changes are readily detected and probably
affect more rapidly circulating cells. This is plausible in blood cells
in the context of DNA methylation involved in insulin secretion
(Toperoff et al., 2012) and insulin sensitivity (Nilsson et al., 2014).
Blood cells are also practical to explore differential DNA methyla-
tions during exposures to high-energy diets (Ling et al., 2007;
Jacobsen et al., 2012).

The metabolic changes in plasma reflect the metabolic state of
all body organs and each metabolite may be a functional inter-
mediate trait or a correlated biomarker in relation to obesity and
diabetes. The choice of analytical platforms and applications is also
important and most are currently suitable to modern clinical lab-
oratories. Applications are currently available for nuclear magnetic
resonance and gas (GC) and liquid (LC) chromatography coupled to
different mass spectrometry (MS) detectors, such as matrix-
assisted laser desorption and ionization/time-of-flight (MALDI-
TOF), quadrupole time-of-flight (QTOF) and triple quadrupole
(QqQ) mass spectrometers. The analytes may be defined in advance
to increase quality, but this comes at the cost of missing potentially
interesting metabolites (Menendez et al., 2016; Beltr�an-Deb�on
et al., 2015). We favor an overall design similar to that suggested
in Fig. 5. Current methods make it economically viable to analyze
the metabolic profile of thousands of samples over extended pe-
riods of time. The main constraint of this scaled-up process is that
samples cannot be run in a single analytical batch. To explore en-
ergy metabolism and mitochondrial status and function, GC-EI-
QTOF-MS is the method of choice. Conversely, LC-MS/MS
methods are preferred for the quantitative analysis of representa-
tive metabolites in one-carbon metabolism. Metabolically-related
inflammatory stimuli should include secreted cytokines, growth
factors and metalloproteinases, but there is no one individual
marker that provides sufficient information (Puig-Costa et al.,
2014).

The objective of the analysis is to compare changes in meta-
bolism and DNA methylation with chances of error lower than 5%
and criteria meeting genome-wide significance after Bonferroni
correction for all tested loci and all metabolic traits. All methods
should be combined in the quest of the ultimate goal, which is to
provide epigenetic associations with a dynamic view of the meta-
bolic phenotype (i.e., capturing the metabolome in its functional
interactions). Longitudinal studies (i.e., stable genetic contribution)
are currently favored with respect to other designs. A before-after
design adds further power and reliability in patients with diabe-
sity through successful dietary measures and bariatric surgery.
Currently, most methods associated with global DNA methylation



Fig. 5. The need for defined tasks in experimental analysis. The expected complexity in the interpretation of the relationships between metabolism and epigenetics requires
activities arranged as a workflow. The figure depicts basic steps.
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are performed with protocols from the reagents' manufacturers
with minor variations, but some mainly detect variations in re-
petitive DNA or transposons (Fern�andez-Arroyo et al., 2016). There
are also available methods to detect changes in individual meth-
ylated cytosine guanine dinucleotides (CpGs) and differentially
methylated regions (DMRs) through array-based, bisulfite-con-
verted, DNA methylation analysis (Ambatipudi et al., 2016; Chen
et al., 2016; Glossop et al., 2016; Louie et al., 2016; van den
Dungen et al., 2016).

This technique provides a subset of all potentially methylated
sites in the genome. Because it is more selective and because of the
limited tissue choices, the CpGemetabotype associations should be
likely limited to processes of DNAmethylation that are not cell-type
specific. However, interpretation requires being unambiguous to
distinguish between true functional associations and a mere cor-
relation, and the need for complementary approaches is likely. Full
sequencing may be used but the resulting loci will require further
validation since polymorphisms in the detected regionmay provide
potentially confounding associations. Typically, PCR products ob-
tained through a Sequenom EpiTyper Assay are pre-treated and
analyzed by MALDI-TOF MS. In particular, mechanisms linking the
DNA methylation of certain genes and not others have yet to be
fully established. Conversely, the replicated methylation sites could
be within the proximity of known genes with a possible regulatory
role in methylation. It is therefore necessary to compare global
methylation profiling of normal tissue samples from publically
available datasets, with DMRs. Finally, to establish correlations
between DNA methylation and gene expression changes, confir-
mation is required at the RNA level. In summary, the combination of
epigenetics and metabolomics involves decoding of the genome
information, transcriptional status and later phenotypes. Data
should be obtained in the complexity of a whole organism and
bioinformatic analysis will be required (Cordero et al., 2015;
Noureen et al., 2015; Preussner et al., 2015) with the objective of
finding mechanistic links between the pathological outcomes and
specific chromatin-based mechanisms.
4.2. Transgenerational epigenetic inheritance of obesity and
diabetes: current evidence in humans

The reviewed findings raise a crucial question. How do specific
nutritional or surgical interventions affect chromatin and tran-
scription and lead to beneficial effects on metabolic health? The
role of the epigenome in the development of obesity and diabetes,
although plausible, is not yet established. Epigenetics is a
comparatively new field of research and the first steps are now
being taken to identify potential biomarkers to predict an in-
dividual's obesity/diabetes risk before the phenotypes develop. It is
also clear that several epigenetic marks are modifiable, which im-
plies that there is the potential for interventions to transform or
rescue unfavorable epigenomic profiles (Kirchner et al., 2013;
Cheng and Almeida, 2014; de Mello et al., 2014; van Dijk et al.,
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2015). It should be clarified that in this review we only discuss the
transmission of epigenetic alterations that occur in the absence of
direct exposure to any specific environmental factor (i.e., the em-
bryo is not exposed during gestation). The development of nutri-
tional strategies and dedicated pharmaceuticals is plausible. For
example, dietary manipulations may contribute to promoter-
specific changes in DNA methylation and several clinical trials are
investigating the efficacy of epigenetic modifiers already in the
marketplace (Cooney et al., 2002; Foulks et al., 2012; Waterland
et al., 2006; Weaver et al., 2005). The few studies that have
assessed DNA methylation profiles in relation to weight loss in-
terventions indicate substantial variation over time and future
research will require establishing the relationships between DNA
methylation and metabolomic profile considering potential inter-
individual variation.

Interestingly, a recent issue of Diabetes Care is mostly devoted to
support bariatric surgery as a new treatment option in the man-
agement of T2DM. The recommended guidelines endorse in-
terventions initially designed to promote weight loss as an
intentional treatment to improve glucose homeostasis, which is
more effective than any known pharmaceutical or behavioral
approach. Postoperative improvements in metabolic control occur
rapidly and are out of proportion to weight loss, yet the physio-
logical and molecular mechanisms underlying these beneficial
glycemic effects remain unknown (Cefalu et al., 2016).

Children of obese fathers are at higher risk of developing
obesity. Economic status and access to food are not clearly associ-
ated and some findings provide insight into how obesity may
propagate metabolic dysfunction to the next generation. In
particular, changes in metabolism lead to changes in chromatin
with the potential of transgenerational inheritance. It has been
recently found that whereas spermatozoal histone positioning is
unaltered between lean and obese men, DNA methylation patterns
are markedly different. Moreover, the sperm methylome is altered
after bariatric Roux-en-Ygastric bypass (RYGB) surgery shortly after
the procedure (Donkin et al., 2016). Thus, weight loss-induced
changes in methylation are reversible. In this particular study, the
consequences for the offspring were not examined, but it is known
that children born after maternal bariatric gastrointestinal bypass
surgery are less obese and exhibit improved cardiometabolic risk
profiles carried into adulthood when compared with siblings born
before maternal surgery (Gu�enard et al., 2013). Both studies indi-
cate that human gametic epigenetic variation can be related to
nutritional status and that changes in parental phenotype are
detectable in the methylome of subsequent offspring. Interestingly,
these methylation patterns are detected in circulating leukocytes.

Patients before and after weight-loss surgery have also been
studied to demonstrate that methylation density in the leptin
promoter may be a control level for cell type-specific leptin
expression, and a main player in the regulation of energy homeo-
stasis (Marchi et al., 2011). A study in obesewomen before and after
RYGB surgery suggests that dynamic changes in DNA methylation
may be an early event that orchestrates metabolic gene transcrip-
tion involved in the regulation of insulin sensitivity in human
obesity (Barres et al., 2013). Other studies reporting changes in
methylation signatures before and after gastric bypass (i.e., with a
substantial modification in metabolic state) provide additional
evidence for the role of treatment-induced epigenetic organ
remodeling in humans (Ahrens et al., 2013; Horvath et al., 2014;
Benton et al., 2015; Dahlman et al., 2015; Nilsson et al., 2015).

Therefore, available data provide evidence that diet-induced
metabolic changes might influence preconceptional behavior
(Kirchner et al., 2013; Patti, 2013), but mechanistic insights are not
sufficient to explain the overall picture. Other environmental
stressors for the offspring should also be studied in combination,
especially those associated with intra-uterine exposure.

4.3. Genetic predisposition in response to bariatric surgery: changes
in the metabolome

It is apparent that there have to be internal underlying causes
that influence obesity in addition to the environmental factors and
excessive food intake. Genetic factors are known to play a role in
weight gain and obesity and genome-wide scans have revealed
several geneswith altered transcriptional activity and/or epigenetic
variations in obesity-related tissues (Levian et al., 2014). It is
therefore likely that genetic factors may also be involved in how an
individual loses weight following bariatric surgery. This issue,
however, is unclear.

There are few studies about the effect of single nucleotide
polymorphisms in body weight, body composition or weight gain
during a follow-up period after bariatric surgery. Among others,
variants in fat mass and obesity-associated (FTO) gene, leptin re-
ceptor gene, fatty acid amide hydrolase, Bsm1 vitamin D receptor,
ghrelin receptor, and melanocortin 4 receptor are known to pre-
dispose for response to surgical intervention (de Luis et al., 2010a;
de Luis et al., 2010b; Matzko et al., 2012; Hatoum et al., 2013; M€agi
et al., 2013; Moore et al., 2014; Alexandrou et al., 2015; Rodrigues
et al., 2015; Bandstein et al., 2016). However, these association
studies are limited to Caucasians and Roux-en-Y gastric bypass-
mediated weight loss. Bariatric surgery may also reverse obesity-
related metabolic alterations and changes in serum metabolites
as shown in women undergoing weight loss surgery (Gralka et al.,
2015). As expected, these metabolites are mostly implicated in IR.
For instance, circulating branched chain amino acids are reduced
after bariatric surgery but this is apparently a procedure-dependent
effect. (Mutch et al., 2009; Lips et al., 2014; Arora et al., 2015; Lopes
et al., 2015, 2016; Gralka et al., 2015). Future studies should be
conducted using metabolite profiling as a means to investigate
adaptations associated with bariatric surgery and to identify mo-
lecular markers that could be use as surrogate markers of thera-
peutic response.

5. Concluding remarks

The study of epigenetic inheritance of complex traits charac-
terized by metabolic disturbances, such as diabetes and obesity, is
an exciting new frontier. The pivotal regulatory role of energy
metabolism in transcriptional deregulation may suggest mecha-
nisms on how toxic nutritional disequilibrium influences gene
expression via cell metabolism, andmay change the perception and
pharmacological treatment of diabetes and obesity. We envision
that the use of metabolomics to explore endogenous metabolites
will reveal the existence of mechanisms accessible to intervention
and will aid in the characterization of molecular mediators in the
epigenetic information between generations.

The rising incidence of obesity and T2DM, major risk factors for
severe comorbidities, is a major worldwide public health issue.
These disorders threaten to reduce the length and quality of life of
current and future generations and there is a strong need for safe
and effective strategies for prevention and treatment. To improve
such strategies, a better understanding of contributing factors is
essential. We emphasize biological evidence indicating that living
organisms continuously adapt to fluctuations in the availability of
energy substrates. Consequently, the cellular transcriptional ma-
chinery and chromatin-associated proteins integrate inputs derived
from food to mediate homeostatic epigenetic responses through
gene regulation. Therefore, epigenetic mechanismsmay exacerbate
the epidemic of metabolic diseases by first contributing to the
development of obesity and T2DM and second, by passing
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modifications on to the subsequent generation. Fortunately,
epigenetic modifications are not maintained over the lifetime and
allow rapid adaptations. The challenge is to incorporate metabolo-
epigenetic data in ways that will allow better biological in-
terpretations, to provide clinical tools for diagnosis, prevention and
treatment.
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Obesity is not necessarily a predisposing factor for disease. It is the handling of fat and/or excessive energy intake that encompasses
the linkage of inflammation, oxidation, and metabolism to the deleterious effects associated with the continuous excess of food
ingestion. The roles of cytokines and insulin resistance in excessive energy intake have been studied extensively. Tobacco use and
obesity accompanied by an unhealthy diet and physical inactivity are the main factors that underlie noncommunicable diseases.
The implication is that the management of energy or food intake, which is the main role of mitochondria, is involved in the most
common diseases. In this study, we highlight the importance of mitochondrial dysfunction in the mutual relationships between
causative conditions. Mitochondria are highly dynamic organelles that fuse and divide in response to environmental stimuli,
developmental status, and energy requirements.These organelles act to supply the cell with ATP and to synthesise key molecules in
the processes of inflammation, oxidation, and metabolism. Therefore, energy sensors and management effectors are determinants
in the course and development of diseases. Regulating mitochondrial function may require a multifaceted approach that includes
drugs and plant-derived phenolic compounds with antioxidant and anti-inflammatory activities that improve mitochondrial
biogenesis and act to modulate the AMPK/mTOR pathway.

1. Background

The burden of noncommunicable diseases is increasing as
such diseases are now responsible for more than three in
five deaths worldwide. Atherosclerosis and cancer, in which
tobacco use and excessive energy intake are determining
factors, are the most frequently occurring of these diseases
and are potentially preventable [1, 2]. Obesity and associ-
ated metabolic disturbances, which have been increasing
worldwide in recent years, are the main factors that underlie
noncommunicable diseases and are the consequences of
unhealthy diets and physical inactivity [3]. Approximately
10–20% of patients with severe obesity, defined as a body
mass index (BMI) > 40, present with no other metabolic

complications. These patients are referred to by the oxy-
moronic designation of “metabolically healthy” obese [4–
7]. Such a designation implies that most obese patients are
not “metabolically healthy. ” Hence, risk factors for the
appearance of noncommunicable diseases have emerged.
The reasons for these two phenotypes are unknown; the
phenotypes might represent different transitions on a disease
timeline, and different levels of either chronic inflammation
or insulin resistance are likely contributors. Other con-
tributors include gradual differences in glucose tolerance,
inflammatory responses, adipose tissue distribution, patterns
of adipokine secretion, and age.

Emerging obesogenic factors are likely to present with
significant differences in the elderly, and consequently the
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prevalence of obesity is expected to increase with increasing
age. Therefore, it is likely not coincidental that most co-
morbidity associated with obesity and hence with non-
communicable diseases correlates with aging; the processes
may share basic mechanisms, particularly mitochondrial age
within an individual [7]. Of note, the prevalence of obesity is
lower in people over 70 years of age, an effect attributed to the
selective mortality of middle-aged people [8].

Current recommendations to decrease food intake and
increase physical exercise do result in metabolic improve-
ments, but such lifestyle changes are rarely sustained,
despite strong motivation. However, several communities
have undertaken initiatives to prevent noncommunicable
diseases, and the lessons learned from the implementation of
such initiatives should be examined further [9]. The active
manipulation of energy sensors and effectors might be a
possible alternative therapeutic procedure. Our aim is to
provide a succinct review of the scarce and disseminated
data that link mitochondrial dysfunction to the pathogenesis
of energy-related complications and to discuss a possible
multifaceted therapeutic approach.

2. Food Availability Links Mitochondrial
Dysfunction and the Vicious Cycle of
Oxidative Stress and Inflammation

Mitochondrial defects, systemic inflammation, and oxidative
stress are at the root of most noncommunicable diseases such
as cancer, atherosclerosis, Parkinson’s disease, Alzheimer’s
disease, other neurodegenerative diseases, heart and lung
disturbances, diabetes, obesity, and autoimmune diseases
[10–16]. Obesity and obesity-related complications as well
as impairment of mitochondrial function, which is required
for normal metabolism and health (Figure 1), are universally
associated with these conditions. The exact mechanisms that
associate mitochondrial dysfunction, obesity, and aging with
metabolic syndrome remain a topic of debate [17–22].

Body weight is controlled by molecular messengers that
regulate energy status in a limited number of susceptible
tissues, including the liver, adipose tissue, skeletal muscles,
pancreas, and the hypothalamus [7, 23]. Mouse models of
diet-induced obesity have revealed important morphological
and molecular differences with respect to humans, particu-
larly those related to the development of fatty liver (NAFLD:
nonalcoholic fatty liver disease) or nonalcoholic steatohep-
atitis (NASH) [24–30] (Figure 2). High expectations for
a human therapy after the generation of leptin-deficient
animals (Ob/Ob) were countered by the determination that
leptin is not a therapeutic option in humans [28].

Endoplasmic reticulum (ER) and mitochondrial stress,
with the consequent oxidative stress, are immediate conse-
quences of attempts to store excess food energy [23, 29].
Under normal weight conditions, adipose tissue-derived
adipokines maintain the homeostasis of glucose and lipid
metabolism; however, in obese conditions, the dysregu-
lated production of adipokines favours the development of
metabolic syndrome and related complications, particularly
the accumulation of triglycerides in nonadipose organs that

are not designed to store energy [19]. Other adipokines may
cause inflammation and oxidative stress [31], but unknown
factors are involved because interventions to ameliorate
insulin resistance do not lead uniformly to clinical improve-
ment [32]. It is of paramount importance to understand the
mechanisms that disrupt ER homeostasis and lead to the acti-
vation of the unfolded protein response and mitochondrial
defects in metabolic diseases in order to correctly manage
noncommunicable diseases [33].

Incidentally, the role of genetics in low-energy expendi-
ture and chronic food intake, although potentially significant,
remains poorly understood [29, 30]. The genetic-selection
hypothesis, which attempts to explain the high prevalence
of obesity and diabetes in humans, remains controversial,
since the recent abandonment of the “thrifty” gene hypothesis
[34–38]. As a result, the roles of oxidative stress, inflam-
mation, mitochondrial dysfunction, nutritional status, and
metabolism might be reinforced in hypotheses regarding the
pathogenesis of noncommunicable diseases (Figures 3 and 4).

Inflammation plays a vital role in host defence. Tissue
damage, fibrosis, and losses of function occur under chronic
inflammatory conditions. Growing evidence links a low-
grade, chronic inflammatory state to obesity and its coexist-
ing conditions as well as to noncommunicable diseases [10–
16]. This low-grade inflammatory state is aggravated by the
recruitment of inflammatory cells, mainly macrophages, to
adipose tissue. Inflammatory cell recruitment is likely due to
the combined effects of the complex regulatory network of
cells and mediators that are designed to resolve inflamma-
tory responses [7]. Anti-inflammatory drugs have shown to
reverse insulin resistance and other related conditions that
result from circulating cytokines that cause and maintain
insulin resistance [19, 23, 39–42]. Therefore, it is likely that
inflammation per se is a causal factor for noncommunicable
diseases rather than an associated risk factor.

It is also important to highlight that adipose tissue
is comprised of multiple types of cells that have intrin-
sic and important endocrine functions, particularly those
mediated by leptin and adiponectin. Recruited and res-
ident macrophages secrete the majority of inflammatory
adipokines, specifically tumour necrosis factor 𝛼 (TNF𝛼),
interleukin-6 (IL-6), andmonocyte chemoattractant protein-
1 (MCP-1), among others. The major roles of TNF𝛼 and
other inflammatory cytokines in the progression ofmetabolic
complications are likely related to oxidative stress [43, 44].
In adipose tissue macrophages, increased concentrations of
saturated free fatty acids (FFAs) stimulate the synthesis of
TNF𝛼 directly through the Toll-like receptor 4 (TLR4) or
indirectly through cellular accumulation. Both macrophages
and adipocytes possess TLR4 receptors that, upon lipid-
dependent activation, induce NF-KB translocation to the
nucleus and the subsequent synthesis of TNF𝛼 and IL-6
[7, 43, 44]. However, recruited macrophages have unique
inflammatory properties that are not observed in resident
tissue macrophages, and the recruitment of these cells is
mainly modulated by MCP-1, the most important molecule
of the CC chemokine family [7]. In this setting, the roles
and polarisation of adipose tissue macrophages (ATMs)
seem established [45]. M1 or “classically activated” ATMs
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Figure 1:Mutations inmitochondrial DNA are accompanied by different disease-suggestive phenotypes (myopathies, neuropathies, diabetes,
and signs of reduced lifespan and premature aging). Severe mitochondrial dysfunction triggers a high level of oxidative and inflammatory
damage, impairs tissue function, and promotes age-related diseases.

(a)

(b)

Figure 2: Clinically, it is evident that, in severe obesity, (a) the presence of liver steatosis may vary from more than 80% to less than 5% of
patients. Conversely, in most obese patients with some degree of liver steatosis (b), this condition disappeared in a relatively brief period of
time after significant weight loss due to bariatric surgery.

are increased, and M2 or “alternatively activated” ATMs are
decreased in the adipose tissues of both obesemice and obese
humans, as discussed below [46, 47].

It is frequently assumed that, in contrast to hormones,
chemokines influence cellular activities in an autocrine or
paracrine fashion. However, chemokines may be relevant

effectors in chronic systemic inflammation as the confine-
ment of these molecules to well-defined environments is
unlikely. Specifically, alterations in plasmaMCP-1 concentra-
tions in metabolic disease states, the presence of circulating
chemokine reservoirs, recent evidence of novel mechanisms
of action, and certain unexplained responses associated with
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Figure 3: The mitochondrial matrix hosts the mitochondrial metabolic pathways (TAC cycle, 𝛽-oxidation, and haem synthesis), and the
inner membrane contains the electron transport chain complexes and ATP synthase. Exchange carriers such as the malate-aspartate shuttle
are also essential. Under caloric restriction, the mitochondrion achieves the highest efficiency, and high caloric intake produces dysfunction
and a consequent increase in apoptosis, which promotes metabolic syndrome and age-related diseases.
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Figure 4: Schematic and abridged representation of the multiple
roles of mitochondria in cellular processes that are associated with
the pathogenesis of the more prevalent diseases.

metabolic disturbances suggest that MCP-1 might have a
systemic role inmetabolic regulation [48–50].How andwhen
obesity might initiate an inflammatory response remains
controversial, but the underlying mechanism likely depends
on the activation of the c-Jun N-terminal kinase (JNK)
in insulin-sensitive tissues, as JNK is likely the principal
mechanism through which inflammatory signals interfere
with insulin activity [7].

ER stress responses and mitochondrial defects are also
linked to the mTOR pathway, discussed below, which is
essential for the regulation of numerous processes, including
the cell cycle, energy metabolism, the immune response, and
autophagy. Therefore, the specific cellular changes associated
with metabolic alterations, particularly mitochondrial dys-
function, require further attention.

3. Mitochondria: Bioenergy Couples
Metabolism, Oxidation, and Inflammation

Mitochondria are essential organelles that, among other
functions, supply the cell with ATP through oxidative phos-
phorylation, synthesise key molecules, and buffer calcium
gradients; however, they are also a source of free radicals
(Figures 1, 3, and 4). It is not surprising that mitochondrial
health is tightly regulated and associated with the home-
ostasis and aging of the organism. Within these processes,
the antagonistic and balanced activities of the fusion and
fission machineries constantly provide adequate responses
to events caused by inflammation (Figure 5) [23, 50–54].
A shift towards fusion favours the generation of intercon-
nected mitochondria, which contribute to the dissipation
and rapid provision of energy. A shift towards fission
results in numerous mitochondrial fragments. Apparently,
the mixing of the matrix and the inner membrane allows
the respiratory machinery components to cooperate most
efficiently. Furthermore, fusion maximises ATP synthesis.
In quiescent cells, mitochondria are frequently present as
numerous morphologically and functionally distinct small
spheres or short rods [51, 55, 56]. Upon the exposure of
cells to stress, fusion optimises mitochondrial function and
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Figure 5: Mitochondrial fusion (a) and fission (b) processes in the liver (arrows). Mitochondrial morphology is basically controlled by
metabolism and inflammation, and each change in morphology is mediated by large guanosine triphosphatases of the dynamin family,
consistent with a model in which the capacity for oxidative phosphorylation is maximised under stressful conditions.
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Figure 6: The complete elimination of mitochondria by autophagy
(arrow) is a process linked to mitochondrial fission and fusion.
Mitochondria also employ quality-control proteases to eliminate
damaged molecules through the transcriptional induction of chap-
erones or the ubiquitin proteasome quality-control pathway.

plays a beneficial role in the maintenance of long-term
bioenergetics capacities. In contrast, the mitochondrial fis-
sion machinery contributes to the elimination of irreversibly
damaged mitochondria through autophagy [55–58]. This
process, also called mitophagy, is extremely important under
both physiological and pathological conditions (Figure 6).
A detailed discussion of the importance of mitophagy is
beyond the scope of this review; however, as an example
of its importance, recall that amino acids are not stored
in the body but are instead mobilised by proteolysis under
conditions such as starvation, reduced physical activity, and
disease [59]. Furthermore, intense exercise may modulate
hepatic metabolism through similar mechanisms [60]. More
recently, the mitochondrial E3 ubiquitin protein ligase 1 (Mul
1) was identified as a key protein that promotes mitophagy
and skeletal muscle loss [61]. Mitochondrial fission per se
triggers organelle dysfunction and muscle loss. The opposite
is observedwhenmitochondrial fission is inhibited.The same

authors [61] also demonstrated that the overexpression of
Forkhead box O3 (FoxO3) induces mitochondrial disruption
via mitophagy.

Therefore, it is not surprising that mitochondrial diseases
often have an associated metabolic component, and con-
sequently mitochondrial defects are expected in inflamma-
tion, aging, and other energy-dependent disturbances [58,
62]. In such disturbances, cellular oxidative damage caused
by the generation of reactive oxygen species (ROS) that
exceed the natural antioxidant activity is likely an initiating
factor in inflammation and aging [63, 64]. Several poten-
tial therapeutic approaches are currently available to slow
down age-related functional declines [65], including antiox-
idant treatments [66]; however, the effectiveness of existing
antioxidants is likely suboptimal because these antioxidants
are not selective for mitochondria [67]. However, recent
experiments with a mitochondria-targeted antioxidant have
been successful in animal models [67]. Similar assumptions
can be made for endothelial cells, in which oxidation and
the accompanying inflammation are recognised factors for
atherosclerosis. Oxidative stress, which is mainly derived
from mitochondrial dysfunction, decreases NO synthesis,
contributes to hypertension, upregulates the secretion of
adhesion molecules and inflammatory cytokines, and is
responsible for the oxidation of low-density lipoproteins [68,
69].

Defective mitochondrial function in muscle tissues leads
to reduced fatty acid oxidation and the inhibition of glucose
transport, indicating that insulin-stimulated glucose trans-
port is reduced. This is a hallmark of insulin resistance and
type 2 diabetes. The chronic production of excess ROS and
inflammation result inmitochondrial dysfunction potentially
inducing lipid accumulation in these tissues and the endless
vicious cycle of insulin resistance [70–74]. Mitochondrial
ROS have also been related to the increased activity of
uncoupling proteins (UCP), which uncouple ATP synthesis
fromelectron transport. UCP activity leads to heat generation
without ATP production, and long-term reductions in ATP
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levels affect cellular insulin signalling. The roles of the UCPs
and the metabolically relevant differences between brown
and white adipose tissues were reviewed recently [75–77].

The mitochondria of obese individuals are different from
those of lean individuals. Alterations in mitochondrial mor-
phology, impaired mitochondrial bioenergetics, increased
mitochondrial lipid peroxides, decreased ATP content, and
mitochondrial dysfunction further increase the risks of devel-
oping metabolic complications [78, 79]. In comparison to
those of lean individuals, mitochondria in obese individuals
have lower energy-generating capacities, less clearly defined
inner membranes, and reduced fatty acid oxidation. These
differences might promote the development and progression
of obesity and might also have therapeutic implications [80,
81]. Impaired mitochondrial function could account for the
insulin resistance that is closely associated with increased
lipid content in the muscles of patients with type 2 diabetes.
Altered mitochondrial function is the major factor that leads
to increased muscular lipid accumulation and decreased
insulin sensitivity [80, 81].More recently, amodel was created
in which the amount of mitochondrial activity in adipocytes
and hepatocytes can be altered based on the properties of
the mitochondrial protein mitoNEET, which is located at
the outer membrane [70]. Despite the prevalence of obesity
in this model, mitoNEET overexpression during periods
of high caloric intake resulted in systemwide improve-
ments in insulin sensitivity, thereby providing a model of
a “metabolically healthy” obese state with minimal tissue
lipotoxicity that is similar to the clinically observed condition
[82]. Alterations in mitoNEET expression might modulate
ROS concentrations and mitochondrial iron transport into
the matrix [70, 82, 83]. The mitochondrial fusion protein
mitofusin-2 (Mfn-2), another useful protein in studies of
mitochondrial dysfunction, regulates cellular metabolism
and controls mitochondrial metabolism. In cultured cells,
mitochondrial metabolism was activated in Mfn-2 gain-
of-function experiments, whereas Mfn-2 loss-of-function
reduced glucose oxidation, mitochondrial membrane poten-
tial, oxygen consumption, and mitochondrial proton leakage
[84]. It is defective in themuscles of obese and type 2 diabetes
patients in which mitochondrial size is reduced [71].

Therefore, a detailed characterisation of the proteins
involved in mitochondrial fusion and fission and studies of
themechanisms that regulate these two processes are relevant
to human pathology and might have a great therapeutic
potential to improve metabolism and to decrease the genera-
tion of oxidative stress and excessive inflammatory response
[85].

4. Is There a Link between Mitochondria and
Nutrient Availability? The Possible Roles of
Inflammation and Apoptosis

Apoptosis is another basic process to consider in metabolic
diseases. Excess food intake leads to mitochondrial dysfunc-
tion and higher apoptotic susceptibility. Mitochondria spe-
cialise in energy production and cell killing. Only 13 proteins
are encoded by the mitochondrial DNA, a circular molecule

of 16 Kb. The remaining necessary proteins are encoded in
the nuclear DNA [86]. Mitochondria are composed of outer
and inner specialised membranes that define two separate
components, the matrix and the intermembrane space [87].
Mitochondria regulate apoptosis in response to cellular stress
signals and determine whether cells live or die [88]. Thus, it
is conceivable that the availability or ingestion of nutrients
could be a main candidate in the regulation of cell death
and that mitochondria could have been selected as a nutrient
sensor and effector. This could explain the influence of
apoptosis-related proteins onmitochondrial respiration [89].

A common laboratory finding is that the morphology
of the mitochondria changes when mice are supplied with
a high-fat diet (Figure 7) and that optimal mitochondrial
performance is achieved under conditions of calorie restric-
tion. Excess food intake impairs respiratory capacities, likely
through mTOR, and increases the susceptibility of the
cell to apoptosis and additional stress [90, 91]. Of note,
apoptotic protein levels are increased in the adipocytes of
obese humans, and the depletion of proapoptotic proteins
protects against liver steatosis and insulin resistance in mice
fed a high-fat, high-cholesterol diet [92]. These conditions
are relevant to the development of metabolic syndrome, as
nutritional imbalances inWestern diets lead tomitochondrial
dysfunction and higher susceptibilities to inflammation,
apoptosis, and aging [22].

5. AMP-Activated Protein Kinase (AMPK) Not
Only Influences Metabolism in Adipocytes
but Also Suppresses the Proinflammatory
Environment

AMPKhas anti-inflammatory actions that are independent of
its effects on glucose and lipid metabolism [93].The action of
AMPK is not necessarily identical in all tissues. In adipose tis-
sues, the role ofAMPK is largely unknownbecause laboratory
techniques to explore the action of this kinase in terminally
differentiated adipocytes have not been fully established.
Several agents have been used to activate AMPK experimen-
tally, including AICAR (5󸀠-aminoimidazole-4-carboxamide
ribonucleoside), metformin, rosiglitazone, resveratrol and
other polyphenols, statins, and several adipocytokines. In
adipocytes, AMPK appears to increase the insulin-stimulated
uptake of glucose, likely by increasing the expression of
GLUT4, yet inhibits glucose metabolism [94]. Studies of the
effects of AMPK on lipolysis in adipocytes have been con-
troversial; some authors have reported an antilipolytic effect,
while others have suggested that AMPK stimulates lipolysis
[95, 96]. However, the activation of AMPK by metformin
in human adipose tissues increases the phosphorylation of
acetyl-CoA carboxylase (ACC) and decreases the expression
of lipogenic genes, leading to reductions in malonyl-CoA,
which is the precursor for fatty acid synthesis; malonyl-CoA
also regulates fatty acid oxidation through the inhibition of
carnitine palmitoyl-transferase 1, the rate-limiting enzyme
for fatty acid entry into the mitochondria [97, 98]. Adipose
tissue secretes adipocytokines, which influence metabolic
and inflammatory pathways through the recruitment of
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Figure 7: The nutrient availability of food in “natural” conditions for mice is likely low and near the condition known as calorie restriction.
In the laboratory, however, mice are usually fed ad libitum, and certain biases cannot be discarded. However, mitochondria from mice fed a
chow diet (a) display rapid morphological changes when mice are fed with high-fat diets (b).

macrophages and the consequent transition from the M2
state to M1 [7, 41]. These actions contribute to the develop-
ment of disease (Figure 8). Conversely, adiponectin has been
reported to induce adiposemacrophages to switch to the anti-
inflammatory M2 state [99]. AMPK is anti-inflammatory,
as it inhibits the synthesis of proinflammatory cytokines
and promotes the expression of IL-10 in macrophages;
adiponectin and leptin levels may also be regulated by AMPK
[100] (Figure 8). Finally, brown adipocytes contain high
numbers of mitochondria that express UCP1, which permit
thermogenesis. Exposure to cold temperatures stimulates
AMPK and may play a role in the differentiation of fatty
oxidising brown adipose tissue, thus leading to greater energy
expenditure [101]. Therefore, we hypothesise that the chronic
manipulation of the AMPK/mechanistic target of rapamycin
(mTOR) pathway might represent a therapeutic approach
for preventing noncommunicable diseases (Figure 8). Met-
formin, along with salicylate, polyphenols, and rapamycin,
has a long history of safe and effective use, but other
modulators are currently under development and will likely
permit the design of tissue-specific activators of this pathway.

6. Metformin and/or Rapamycin and
Plant-Derived Polyphenols: An Apparent
Treatment of Choice for Metabolic
Syndrome and Obesity-Related
Complications?

The first therapeutic approaches to metabolic disturbances
are reduced caloric ingestion and increased physical activity.
The effects are based mainly on weight reduction, but useful-
ness in other common complications remains incompletely
explored [102]. Bariatric surgery is also effective, even in
“metabolically healthy” patients [103, 104]. The effectiveness
of surgery for the treatment of metabolic disturbances is sur-
prisingly higher than expected, and mechanisms associated
with surgical effects are not completely understood.

Insulin resistance and mitochondrial dysfunction appear
to be the most significant alternative therapeutic targets.
Metabolic abnormalities are associated with inflammation.
Normally, glycolysis yields pyruvate, which is further oxi-
dised in the mitochondria. When oxygen becomes limit-
ing, mitochondrial oxidative metabolism is restricted. The
induction of an inflammatory response is an energy-intensive
process, and the involved cells rapidly switch from resting
to highly active states. This is observed in diseases such
as cancer, atherosclerosis, or autoimmune diseases, and
mechanistic insights suggest the common involvement of the
transcription factor hypoxia-inducible factor 1𝛼, AMPK, and
the mTOR pathway. In addition, the activation of sirtuins,
which act as NAD+ sensors that connect nutrition and
metabolism to chromatin structure, is anti-inflammatory
[105] (Figure 8).

The use of metformin, an AMPK activator used exten-
sively to treat type 2 diabetes, has been indicated for other
metabolic conditions based on the rationale that insulin-
sensitising agents might be effective [106], and the mode of
action ofmetformin has guided our own experiments on can-
cer, aging, and viral infection [65, 107, 108]. We have shown
that the beneficial effects of this biguanide class drug, which
was initially obtained from Galega officinalis, are universal
in patients with metabolic complications and negligible in
patients without such complications. The primary effect is
thought to be the suppression of hepatic glucose production
and hepatic lipogenesis [109]. Metformin activates AMPK
in hepatocytes, resulting in the phosphorylation and inacti-
vation of ACA, a rate-limiting enzyme in lipogenesis [110],
and theoretically might be useful and safe in the treatment
of NAFLD [111]. Surprisingly, the beneficial clinical effects
seem to be limited, despite the effects of metformin on
insulin resistance, most likely because long-term treatment
is an absolute requirement for the prevention of progressive
disease. Our own current experiments in animal models
suggest new insights into this phenomenon. Metformin
activates AMPK, but AMPK deficiency does not abolish

UNIVERSITAT ROVIRA I VIRGILI 
PERIPHERAL ARTERY DISEASE: THE SEARCH FOR A BIOLOGICAL MARKER 
Anna Hernández Aguilera 



8 Mediators of Inflammation

Adiponectin

Anti-inflammatory
environment Proinflammatory

environment

Obese

Lean

Blood vessel
Blood vessel

Excessive 
energy intake

TNF-𝛼
IL-6

MCP-1

IL-10

(a)

FOXOs

Polyphenols

Polyphenols

Inflammation

Rapamycin

Metformin

AMPK

mTOR Sirtuins

p53

(b)

Figure 8: Activation of AMPK inmacrophages promotes the switch from a proinflammatory to an anti-inflammatory phenotype by inducing
a shift from glycolysis towards mitochondrial oxidative metabolism. In obesity, there may be a shift towards proinflammatory states, whereas
in dietary restriction the balance may shift towards anti-inflammatory phenotypes through the activation of AMPK (a). The activation of
AMPK implies the inhibition of mTOR, and several compounds are known to regulate this pathway (b). The inhibition of mTOR extends
lifespan in model organisms and confers protection against a growing list of age-related pathologies. Several characterised inhibitors are
already clinically approved, and others are under development.

the effects of metformin on hepatic glucose production,
indicating that the role of AMPK is dispensable, as indicated
previously [112]. This suggests that the overall effect of
metformin is mediated through actions on mitochondrial
function through decreases in the hepatic energy state and
intracellular ATP content. Other studies suggest that met-
formin inhibits Complex I of the mitochondrial respiratory
chain, but the exact mechanisms and pathways involved are
unclear [113]. Sirtuin 3 (SIRT 3), a member of the family
of nicotinamide adenine dinucleotide (NAD+) dependent
deacetylase proteins, is a crucial regulator of mitochondrial
function that controls the global acetylation of the organelle
(all sirtuins regulate energy production and the cell cycle;
Figure 8). SIRT3 induces the activity of Complex I and pro-
motes oxidative phosphorylation. In SIRT3 knockout mice,
mitochondrial proteins are hyperacetylated, and cellular ATP
levels are reduced, effects that are aggravated by fasting
[114]. As a complement, peroxisome proliferator-activated
receptor gamma coactivator 1-alpha induces the expression
of SIRT3 in the liver [115]. Therefore, mitochondrial function
appears to be the key target of metformin; reductions in ATP
production may mediate the hepatic and antihyperglycemic
actions of the drug and downregulate SIRT3 expression [116].
However, metformin distinctively regulates the expression
of different sirtuin family members [117, 118]. In summary,
metformin acts against both insulin resistance andmitochon-
drial dysfunction and is currently an attractive candidate
agent of choice in the management of metabolic disorders.
We have recently reviewed this complex scenario and found
the following: (1) the unique ability of metformin to activate
AMPK while leading to the increased utilisation of energy
occurs because metformin inhibits AMP deaminase; and
(2) in metabolic tissues, metformin can inhibit cell growth

by functionally mimicking the effects of a multitargeted
antifolate [119].

Based on these and other findings, we have also demon-
strated that plant-derived phenolic compounds interact with
numerous targets and multiple deregulated signalling path-
ways that may be useful in the management of metabolic
conditions [120–123]. The proposed mechanisms are direct
antioxidant activity, attenuation of endoplasmic reticulum
stress, blockade of proinflammatory cytokines, and block-
ade of transcription factors related to metabolic diseases
[120]. Most polyphenols modulate oxidative stress and
inflammatory responses through relevant actions in the
process of macrophage recruitment. Interactions between
the chemokine/cytokine network and bioenergetics, likely
through the mTOR pathway, may also represent potential
mechanisms for the prevention of metabolic disturbances
[121]. Moreover, polyphenols attenuate the metabolic effects
of high-fat, high-cholesterol diets when administered contin-
uously at high doses, andwe have described beneficial actions
associated with the expression of selected microRNAs [122].

Inflammation lies at the heart of many diseases because
the entire body is under metabolic stress, which induces
symptoms and causes morbidity. Targeting altered metabolic
pathways in inflammation may enhance our understanding
of disease pathogenesis and point the way to new therapies.
As mentioned, metformin, polyphenols, AICAR, salicylates,
and corticoids all activate the AMPK/mTOR pathway. New
compounds such as A-769662 are under scrutiny. Finally,
rapamycin, which is also known as sirolimus and was
first isolated from Streptomyces hygroscopicus, and several
derivative compounds, including everolimus, temsirolimus,
ridaforolimus, umirolimus, and zotarolimus, have been
approved for a variety of uses, including posttransplantation
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therapy, the prevention of restenosis following angioplasty,
and as a treatment for certain forms of cancer. Drugs that
inhibit the mTOR pathway could one day be used widely
to slow aging and reduce age-related pathologies in humans
[124]. The development of chemical inhibitors of mTOR, as
well as drugs that target other components of the mTOR
pathway, promises to aid research greatlywhile also providing
drugs with potential therapeutic value.

7. Perspectives and Implications

Obesity, metabolic alterations, and age-related diseases are
complex conditions that require a multifaceted approach
that includes action on both the chemokine network and
energy metabolism [123, 125]. The underlying mechanisms
are far from being understood [126] although the association
between obesity and insulin resistance seems to be well
substantiated. However, obesity is not distributed normally
throughout the population, and type 2 diabetes mellitus is
not associated closely with increased body weight; also, the
relationship with noncommunicable diseases is not straight-
forward. A working hypothesis is that adipose tissue has
a limited maximum capacity to increase in mass. Once
the adipose tissue has reached the expansion limit, fat is
deposited in the liver and muscle tissues and causes insulin
resistance. This process is also associated with the activation
of macrophages, oxidative stress, and inflammation which
produce cytokines that have negative effects on insulin
sensitivity, induce the secretion of adipokines that cause
insulin resistance, and suppress those that promote insulin
sensitivity. However, a host of other mechanisms must be
involved because metabolic responses are different among
patients with maximum adipose tissue expansion. A more
popular and recent hypothesis suggests a differential effect
of lipophagy, which implies a tissue-selective autophagy with
cellular consequences from the mobilisation of intracellular
lipids. Defective lipophagy is linked to fatty liver tissues and
obesity and might be the basis for age-related metabolic
syndrome [127]. Increased adipose tissue autophagy may
be responsible for more efficient storage. Autophagy also
affectsmetabolism, oxidation, and proinflammatory cytokine
production. Very recent evidence suggests that autophagy
is increased in the adipose tissues of obese patients [128].
Inexpensive and well-tolerated molecules such as chloro-
quine, metformin, and polyphenols already exist and could
be used to fine-tune the metabolic alterations derived from
an excess of energy and, more specifically, to modulate
autophagy in the liver. Whether these therapies will dampen
the genetic expression of factors that affect the development
of noncommunicable diseases remains to be ascertained.
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[12] G. Medina-Gómez, “Mitochondria and endocrine function of
adipose tissue,” Best Practice & Research Clinical Endocrinology
& Metabolism, vol. 26, no. 6, pp. 791–804, 2012.

[13] G. Pagano, G. Castello, and F. V. Pallardó, “Sjøgren’s syndrome-
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dynamics proteins in the pathophysiology of obesity and type 2
diabetes,” International Journal of Biochemistry and Cell Biology,
vol. 41, no. 10, pp. 1846–1854, 2009.

[72] C. Aguer and M. E. Harper, “Skeletal muscle mitochondrial
energetics in obesity and type 2 diabetes mellitus: endocrine
aspects,” Best Practice & Research Clinical Endocrinology &
Metabolism, vol. 26, no. 6, pp. 805–819, 2012.

[73] Z. A.Ma, “The role of peroxidation ofmitochondrialmembrane
phospholipids in pancreatic 𝛽-cell failure,” Current Diabetes
Reviews, vol. 8, no. 1, pp. 69–75, 2012.

[74] C. Tang, K. Koulajian, I. Schuiki et al., “Glucose-induced beta
cell dysfunction in vivo in rats: link between oxidative stress and
endoplasmic reticulum stress,” Diabetologia, vol. 55, no. 5, pp.
1366–1379, 2012.

[75] A. Lde. Brondani, T. S. Assmann, G. C. Duarte, J. L. Gross, L. H.
Canani, and D. Crispim, “The role of the uncoupling protein
1 (UCP1) on the development of obesity and type 2 diabetes
mellitus,” Arquivos Brasileiros de Endocrinologia e Metabologia,
vol. 56, no. 4, pp. 215–225, 2012.

[76] A. Fedorenko, P. V. Lishko, and Y. Kirichok, “Mechanism of
fatty-acid-dependent UCP1 uncoupling in brown fat mitochon-
dria,” Cell, vol. 151, no. 2, pp. 400–413, 2012.

[77] B. Cannon and J. Nedergaard, “Cell biology: neither brown nor
white,” Nature, vol. 488, no. 7411, pp. 286–287, 2012.

[78] I. Grattagliano, O. de Bari, T. C. Bernardo, P. J. Oliveira,
D. Q. Wang, and P. Portincasa, “Role of mitochondria in
nonalcoholic fatty liver disease—from origin to propagation,”
Clinical Biochemistry, vol. 45, no. 9, pp. 610–618, 2012.

[79] G. Serviddio, F. Bellanti, G. Vendemiale, and E. Altomare,
“Mitochondrial dysfunction in nonalcoholic steatohepatitis,”
Expert Review of Gastroenterology and Hepatology, vol. 5, no.
2, pp. 233–244, 2011.

[80] N. C. Sadler, T. E. Angel, M. P. Lewis et al., “Activity-
based protein profiling reveals mitochondrial oxidative enzyme
impairment and restoration in diet-induced obese mice,” PLoS
ONE, vol. 7, no. 10, Article ID e47996, 2012.

[81] M. Carrer, N. Liu, C. E. Grueter et al., “Control ofmitochondrial
metabolism and systemic energy homeostasis by microRNAs
378 and 378,” Proceedings of the National Academy of Sciences
of the United States of America, vol. 109, no. 38, pp. 15330–15335,
2012.

[82] A. D. Karelis, M. Faraj, J. P. Bastard et al., “The metabolically
healthy but obese individual presents a favorable inflammation
profile,” Journal of Clinical Endocrinology and Metabolism, vol.
90, no. 7, pp. 4145–4150, 2005.

[83] C. M. Kusminski and P. E. Scherer, “Mitochondrial dysfunc-
tion in white adipose tissue,” Trends in Endocrinology and
Metabolism, vol. 23, no. 9, pp. 435–443, 2012.

[84] A. Zorzano, M. I. Hernández-Alvarez, M. Palaćın, and G. Min-
grone, “Alterations in the mitochondrial regulatory pathways
constituted by the nuclear co-factors PGC-1𝛼 or PGC-1𝛽 and
mitofusin 2 in skeletal muscle in type 2 diabetes,” Biochimica et
Biophysica Acta, vol. 1797, no. 6-7, pp. 1028–1033, 2010.

UNIVERSITAT ROVIRA I VIRGILI 
PERIPHERAL ARTERY DISEASE: THE SEARCH FOR A BIOLOGICAL MARKER 
Anna Hernández Aguilera 



12 Mediators of Inflammation

[85] A. Zorzano, D. Sebastián, J. Segalés, and M. Palaćın, “The
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