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SUMMARY 

Due to the increasing emission of greenhouse gases, the Earth’s climate is 

substantially changing faster according to the periodic assessments of the 

Intergovernmental Panel on Climate Change (IPCC). It has been confirmed that the 

global mean temperature increased by 0.6±0.2°C during the 20th century, while it is 

projected to increase up to 1.8-4.0°C by the end of the 21st century, under a range of 

probable greenhouse gas emission scenarios. Moreover, the increase in the surface 

UV‐B radiation, induced by ozone depletion, has received wide attention as an 

environmental issue of great concern. High latitude regions, such as Arctic or 

Antarctic, are those more severely affected. However, the Mediterranean region is 

also pointed out as a vulnerable zone, because it lays in the transition between high 

and low latitude processes. Therefore, the impact of climate change on the 

environment has become a topic of notable concern, not only globally but also locally. 

Temperature and UV-B radiation are key parameters that may alter the fate and 

behavior of a wide range of chemicals, such as persistent organic pollutants (POPs). 

Because of their toxicity, resistance to degradation, potential to be bioaccumulated 

and ability to be transported over long distances POPs are chemicals of concern. Other 

semi-volatile organic compounds (SVOCs) have also received wide attention, such as 

polycyclic aromatic hydrocarbons (PAHs). In addition to their potential toxicity and 

environmental occurrence, they have a photosensitive nature, and therefore, are 

vulnerable to climate change. 

The present thesis was aimed at studying the impact of an increase of 

temperature and light intensity on the fate of PAHs in Mediterranean soils. The 

monitoring of PAHs concentrations and ecotoxicity, as well as the identification of 

PAHs photodegradation by-products, was carried out at laboratory scale by the 

simulation of 2 climate scenarios: current and extreme climate change (RCP 8.5) for 

the Mediterranean region according to IPCC. In addition, a field experiment was also 

performed to assess the PAHs degradation under real Mediterranean conditions. 

Finally, PAHs levels were determined in soils collected in the Arctic, another 

vulnerable region to climate change. 

UNIVERSITAT ROVIRA I VIRGILI 
Climate change impact on the photodegradation of polycyclic aromatic hydrocarbons in soils 
Montserrat Marquès Bueno 



In Chapter 1, the state of the art of the impact of climate change on 

environmental concentrations of POPs, as well as on human health risks, was 

reviewed. Climate change and POPs are of broad and current interest, for which 

further attention should be paid not only by scientists, but also by policy makers to 

adapt outdated regulations. Most of the studies performed so far were found to be 

focused on legacy POPs, such as polychlorinated dibenzo-p-dioxins and dibenzofurans 

(PCDD/Fs), polychlorinated biphenyls (PCBs) and pesticides. However, the number of 

investigations assessing the impact of climate change on the environmental levels of 

PAHs was limited. Some studies pointed out that as a result of the special 

photosensitivity of PAHs, more toxic photodegradation byproducts may be formed in 

the future, resulting in adverse health effects. This has become an unquestionable 

gap, which deserves further investigations. 

Chapter 2 presents the results of a study on PAHs photodegradation in soils under 

the current Mediterranean climate scenario. Arenosol and fine-textured Regosol soils, 

representative of the typical Mediterranean soils, were spiked with PAHs and exposed 

to controlled conditions of temperature (20°C) and low light intensity (9.6 W m-2) for 

up to 28 days. Concentrations of PAHs were further monitored and supported with a 

Microtox® ecotoxicity assessment. In addition, hydrogen (H) isotopes of 

benzo(a)pyrene were analyzed to confirm its degradation. Photodegradation was 

found to be dependent on exposure time, specific physicochemical properties of each 

hydrocarbon, and soil texture. Sorption and photodegradation processes were more 

enhanced in fine-textured soil in comparison to Arenosol soil. Significant 

photodegradation rates were detected for a number of PAHs, namely phenanthrene, 

anthracene, benzo(a)pyrene, and indeno(123-cd)pyrene. Benzo(a)pyrene, commonly 

used as an indicator for PAH pollution, was below the limit of detection after 7 days 

of light exposure. The ecotoxicity assessment, showed a higher detoxification trend in 

fine-textured soil than in Arenosol soil, being in agreement with its higher 

photodegradation rates. Reported differences between both soils were mostly 

attributed to the higher content of metal oxides in fine-textured Regosol soil, as they 

may act as potential PAHs photocatalysts. Finally, the strong isotopic effect observed 

in benzo(a)pyrene suggested, on one hand, that compound-specific isotope analysis 

(CSIA) may be a powerful tool to monitor in situ degradation of PAHs, and on the other 
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hand, evidenced an unknown degradation process of benzo(a)pyrene simultaneously 

occurring in the darkness. 

Chapter 3 was aimed at explaining the differences in PAHs photodegradation 

rates found between Arenosol and fine-textured soil in chapter 2. It was hypothesized 

that the main difference could be related to the photocatalysis caused by the joint 

impact of light exposure and Fe2O3 presence in soils. The catalysis contribution was 

mostly attributed to Fe2O3 because it is the most abundant metal oxide in both tested 

soils, being higher in Regosoil than in Arenosoil. Reported results showed that Fe2O3 

had a significant effect on in the photocatalysis of fluorene, phenanthrene and 

benzo(a)pyrene. Therefore, Fe2O3 would not be the only responsible for the higher 

degree of PAHs photodegradation in fine-textured Regosol soil than in Arenosol soil. 

Soil is a complex matrix containing a number of elements, such as a wide range of 

metal oxides, humic acids, presenting a specific texture. Each one of these parameters 

has a specific role on PAHs fate. 

In chapter 4, the potential impact of the temperature and light intensity increase 

on the fate of PAHs in surface soils was assessed. The environmental temperature was 

increased 4°C, according to IPCC RCP 8.5 scenario, while it was set a high light intensity 

(24 W m-2), being samples exposed during 28 days. As expected, low molecular weight 

PAHs were rapidly volatilized when increasing both temperature and light intensity. 

However, photodegradation of medium and high molecular weight PAHs increased in 

the coarse-textured Arenosol soil under the climate change scenario, while those rates 

did not show any variation in fine-textured Regosol soil, regardless the climate 

scenario. The lower content of metal oxides in Arenosol soil requires a higher 

temperature and light intensity to achieve a full photodegradation of PAHs, pointing 

out the potential impact of climate change. In turn, H isotopes confirmed that 

benzo(a)pyrene was degraded in the climate change scenario, not only under light but 

also in the darkness, as previously occurred in the current climate scenario. Finally, 

the number of by-products and required time to be formed was enhanced by the 

increase of temperature and light intensity. Consequently, in an expected climate 

change scenario, the human exposure to PAHs might decrease while that to PAHs 

degradation by-products, which might be even more toxic than native compounds, 

may increase. 
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Chapter 5 provides the evaluation of PAHs photodegradation in surface soil 

caused by solar radiation exposure. Solar intensity was up to 20-times higher than that 

emitted by common light lamps used for photodegradation studies at lab scale. Soil 

samples spiked with PAHs were deployed in a methacrylate box, and exposed to solar 

radiation for 7 days, meaning a total solar energy of 102.6 MJ m-2. As hypothesized, 

individual PAHs were volatilized, sorbed and/or photodegraded, depending on their 

physicochemical properties and soil characteristics. Low and medium molecular 

weight PAHs were more sorbed and photodegraded in fine-textured Regosol soil, 

while a higher volatilization was observed in the coarse-textured Arenosol soil. In 

contrast, high molecular weight PAHs were more photodegraded in Arenosol soil, 

probably because of an enhanced light penetration in the coarse-textured soil. 

Specially high photodegradation rates and low half-lives were noted for anthracene, 

pyrene and benzo(a)pyrene, which had already been found to be the most sensitive 

to light exposure at laboratory scale. In addition to oxidation products of PAHs 

previously found at laboratory scale, new oxy-, as well as nitro- and hydro- PAHs, were 

also identified in the field study. The toxic and mutagenic potential of these PAHs by-

products is usually higher than that of the 16 US EPA priority PAHs commonly 

monitored. 

Finally, in chapter 6 results of a monitoring study to determine PAH 

concentrations in Arctic soils are presented. Pyramiden (Central Spitsbergen, Svalbard 

Archipelago) was selected because it is a potential contaminated site due to: i) the 

Long Range Atmospheric Transport (LRAT), ii) coal deposits, iii) previous coal-mining 

extraction, and iv) the current operating coal and diesel-based power plants in this 

settlement. Furthermore, trace elements were analyzed for further confirmation of 

anthropogenic pollution. PAHs profiles and molecular diagnostic ratios (MDRs) mostly 

indicated a common pyrogenic source: combustion in local power plants. However, 

the contribution of petrogenic sources due to the local geology should not be 

disregarded. The highest levels of PAHs and trace elements were found in soils close 

to power plants and those exposed to prevailing winds. Although PAH levels were 

higher than those found in the scientific literature, they only exceeded target 

concentrations in three sampling sites. Concentrations of trace elements were 

generally lower than threshold levels, with only a few exceptions (e.g., Be, Co, Hg, Mn, 
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Ni and Zn) punctually above them. The most polluted sites showed a higher organic 

matter content, highlighting a relevant role on retaining pollutants in soils. These 

unexpected high PAH levels found in Pyramiden demonstrated the importance of 

environmental monitoring programs in remote areas of the planet. In addition, in 

those regions there is a potential seasonal effect since the photodegradation of PAHs 

and the formation of oxy- and nitro- PAHs might be enhanced during the continuous 

light exposure of midnight sun season. The remobilization and formation of PAHs 

photodegradation products might be progressively enhanced in a climate change 

context. 

Photodegradation is here reported as an important degradation pathway for 

PAHs in soil surface in highly irradiated areas, such as the Mediterranean regions, and 

under a climate change context. Further attention needs to be paid on changes on 

human health risk, mainly in terms of toxic degradation products. Although PAHs 

photodegradation will lead to a decrease of PAHs in soils, the oxidation and 

nitrification reactions will simoultaneously cause the formation of oxy- and nitro- 

PAHs. These chemicals have lower lipophilicity, and therefore, higher potential 

mobility, bioavailability, toxicity, and even mutagenicity and carcinogenicity nature 

than their parent PAHs. Furthermore, there is no regulation regarding and 

consequently, they are not usually monitored in environmental surveillance 

programs. In addition, there is a lack of standardized analytical methods for most PAHs 

by-products which also difficults this monitoring and surveillance. Altogether, these 

findings highlight the need to update the list of 16 US EPA priority PAHs commonly 

monitored, and also to implement a regulation for PAHs derivatives. 
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RESUM 

Les avaluacions del Panell Intergovernamental del Canvi Climàtic han evidenciat 

que l’augment de les emissions de gasos amb efecte hivernacle ha causat un 

accelerament del canvi climàtic. Hi ha diversos estudis que confirmen que la 

temperatura mitjana global ha incrementat entre 0.6±0.2°C durant el segle XX, i 

s’espera que ho faci entre 1.8 i 4.0°C a finals del segle XXI, segons diferents escenaris 

d’emissió de gasos. A més a més, s’ha prestat més atenció al forat de la capa d’ozó i a 

l’increment de radiació UV-B que se n’ha derivat. Les regions situades en latituds altes, 

com per exemple l’Àrtic i l’Antàrtida, són les més severament afectades. Tot i així, la 

zona mediterrània també és una regió vulnerable ja que està en una àrea de transició 

afectada pels processos de les latituds altes i baixes. Conseqüentment, l’impacte del 

canvi climàtic és un tema que genera gran preocupació, no només a escala global, sinó 

també local. 

Es preveu que l'esperat augment de temperatura i radiació UV-B impacti sobre el 

comportament de diversos contaminants, com per exemple els contaminants orgànics 

persistents (COPs). Els COPs són compostos químics que desperten interès i 

preocupació per la seva toxicitat, resistència a la degradació, potencial per ser 

bioacumulats i capacitat per viatjar a grans distàncies de les fons a través dels corrents 

atmosfèrics i oceànics. També s’ha prestat atenció en altres compostos orgànics 

semivolàtils, com per exemple els hidrocarburs aromàtics policíclics (HAPs). A més de 

la seva toxicitat i ubiqüitat en el medi ambient, també són fotosensibles, i 

conseqüentment, potencialment vulnerables al canvi climàtic. 

L’objectiu d’aquesta tesi és estudiar l’impacte de l’increment de la temperatura i 

la intensitat de la llum en el comportament dels HAPs després de ser dipositats en dos 

sòls típicament mediterranis. Primerament, es va simular un escenari climàtic actual i 

un de canvi climàtic extrem (RCP 8.5) per aquesta regió segons les prediccions de 

l’IPCC. Es va analitzar la tendència de les concentracions dels HAPs i l’ecotoxicitat dels 

sòls, a la vegada que s’identificaren els subproductes derivats de la fotodegradació 

dels HAPs. A més a més, es va dur a terme un experiment en el camp per tal d’avaluar 

la degradació dels HAPs en condicions ambientals reals de la zona mediterrània. 
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Finalment, els nivells d’HAPs van ser determinats en una altra zona potencialment 

vulnerable al canvi climàtic: l’Àrtic. 

En el capítol I, es va fer una revisió bibliogràfica de l’impacte del canvi climàtic en 

les concentracions ambientals de COPs i riscos per la salut humana. El canvi climàtic i 

els COPs són un tema candent sobre el qual no només els científics hi haurien de 

prestar més atenció, sinó que també ho haurien de fer els responsables polítics per tal 

d’adaptar les legislacions ambientals. La majoria dels estudis es centren en els COPs 

que ja han estat prohibits o regulats, i que són una herència del passat, com les 

dioxines perclorades i furans (PCDD/Fs), bifenils perclorats (PCBs) i pesticides. 

Contràriament, el nombre d’investigacions avaluant l’impacte del canvi climàtic en 

nivells ambientals d’HAPs és limitat. Tot i així, els HAPs són potencialment vulnerables 

al canvi climàtic per la seva especial fotosensibilitat. A més a més, alguns estudis 

assenyalen que com a resultat de la seva fotodegradació es podrien formar en el futur 

subproductes més tòxics causant efectes adversos sobre la salut. Conseqüentment, 

aquest buit inqüestionable requereix ser avaluat. 

El capítol II presenta els resultats de l’estudi de la fotodegradació dels HAPs en 

sòls en condicions climàtiques actuals per la zona mediterrània. Es recolliren sòls 

Arenosol i Regosol de textura fina, escollits com a representants dels sòls típicament 

mediterranis, per contaminar amb concentracions conegudes d’HAPs, i 

posteriorment, es van incubar en una cambra climàtica a condicions controlades de 

temperatura (20°C), humitat (40%) i intensitat de llum baixa (9.6 W m-2) durant 28 

dies. Seguidament, es va analitzar les concentracions dels HAPs, a la vegada que es va 

avaluar l’ecotoxicitat dels sòls mitjançant el test Microtox®. A més a més, per tal de 

confirmar la probable degradació dels HAPs, es van analitzar els isòtops d’hidrogen 

(H) mitjançant la tècnica d’anàlisi d’isòtops de compostos específics. Els resultats van 

demostrar que la fotodegradació dels HAPs depèn del temps d’exposició, les 

propietats fisicoquímiques de cada HAP i el tipus de sòl. Els processos d’adsorció i 

fotodegradació van ser més notables en el sòl de textura fina, essent el fenantrè, 

antracè, benzo(a)pirè i indeno(123-cd)pirè significativament fotodegradats. En 

concret, el benzo(a)pirè, utilitzat habitualment com indicador de contaminació 

d’HAPs, va ser totalment degradat després de 7 dies d’exposició a la llum. L’avaluació 

de l’ecotoxicitat va mostrar una tendència a la detoxificació al llarg del temps, essent 
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més gran en el sòl de textura fina que en l’Arenosol. Aquest fet coincideix amb els 

resultats de concentracions en que els HAPs mostraren índex de fotodegradació més 

elevats en aquest tipus de sòl. Una probable explicació podria ser el contingut més 

elevat d’òxids metàl·lics en el sòl Regosol de textura fina que en l’Arensol, els quals 

podrien haver-se comportat com a fotocatalitzadors dels HAPs. Finalment, l’elevat 

efecte isotòpic que va mostrar el benzo(a)pirè va suggerir, per una banda, que l’anàlisi 

d’isòtops de compostos específics podria ser una valuosa eina per monitoritzar la 

degradació dels HAPs, tant a nivell de laboratori com en el camp, i d’altra banda, va 

evidenciar que el benzo(a)pirè en la foscor experimentà un procés de degradació 

inesperat i desconegut. 

L’objectiu del capítol III va ser explicar els diferents nivells de fotodegradació dels 

HAPs trobats en el sòl Arenosol i el Regosol de textura fina, diferències detectades en 

el capítol II. És a dir, confirmar la hipòtesi del rol fotocatalitzador dels òxids metàl·lics. 

Concretament, la contribució de la catàlisi va ser majoritàriament atribuïda a l’òxid de 

ferro (III) (Fe2O3), ja que tot i ser el més abundant en els dos sòls estudiats, el seu 

contingut era molt més elevat en el sòl de textura fina que en l’Arenosol. Els resultats 

van mostrar que el Fe2O3 afavoreix de manera significativa la fotocatàlisi del fluorè, 

fenantrè i benzo(a)pirè. Conseqüentment, sembla ser que el Fe2O3 no seria l’únic 

causant de la fotodegradació més elevada en el sòl Regosol de textura fina que en 

l’Arenosol. De fet, el sòl és una matriu complexa amb diversos elements, com un ampli 

rang d’òxids metàl·lics, a més a més d’àcids húmics i una textura específica, tenint 

cada un d’ells un rol específic en el comportament dels HAPs. 

En el capítol IV, es va avaluar l’impacte de l’increment de la temperatura i la 

intensitat de la llum en el comportament dels HAPs en sòls. La temperatura es va 

augmentar 4°C, d’acord amb l’escenari RCP 8.5 de l’IPCC 2013 per la regió 

mediterrània, mentre que es va fixar la llum a alta intensitat (24 W m-2), i la humitat 

(40%). L’exposició dels HAPs en la superfície dels sòls Arenosol i Regosol de textura 

fina es va dur a terme durant 28 dies. Tal i com era d’esperar, l’augment de la 

temperatura i la intensitat de la llum va causar una volatilització més ràpida dels HAPs 

de baix pes molecular. Pel que fa els HAPs de mig i alt pes molecular, la fotodegradació 

va augmentar en el sòl de textura grollera (Arenosol), mentre que no mostraren 

diferències significatives en el sòl de textura fina Regosol. En efecte, l’augment de la 
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temperatura i la intensitat de la llum podria haver provocat que els òxids metàl·lics 

presents en el sòl Arenosol s’activessin, donant lloc a la reacció completa de la 

fotodegradació dels HAPs, i assenyalant el possible impacte del canvi climàtic. D’altra 

banda, l’anàlisi d’isòtops va confirmar la degradació del benzo(a)pirè en l’escenari de 

canvi climàtic, no només quan els HAPs es van exposar a la llum, sinó que també en la 

foscor, tal i com havia succeït en l’escenari climàtic actual. Finalment, el nombre de 

subproductes i temps necessari per formar-se va augmentar en incrementar la 

temperatura i la intensitat de la llum. D’aquesta manera, com a conseqüència del 

canvi climàtic, l’exposició als HAPs podria disminuir segons el tipus de sòl, però a la 

vegada, podria augmentar l’exposició a derivats de la degradació dels HAPs, els quals 

podrien ser més tòxics que els compostos nadius. 

En el capítol V es va dur a terme l’avaluació de la degradació dels HAPs causada 

per la radiació solar en condicions reals de la zona mediterrània. La radiació solar té 

una intensitat 20 vegades més elevada que la que s’emet per làmpades típicament 

utilitzades en els experiments de fotodegradació a nivell de laboratori. 

Conseqüentment, el rol de la llum en la fotodegradació dels HAPs podria haver estat 

subestimat, a la vegada que es va omplir un buit en la recerca dels HAPs i 

fotodegradació ja que tal avaluació no s’havia dut a terme fins a dia d’avui. Les mostres 

del mateix tipus de sòls contaminades al laboratori amb HAPs es van dipositar en una 

caixa de metacrilat i van ser exposades a la radiació solar durant 7 dies, el que va 

significar una energia solar de 102.6 MJ m-2. La temperatura, humitat, precipitació i 

radiació solar es van monitoritzar de manera contínua. Al llarg de l’experiment els 

HAPs van volatilitzar-se, adsorbir-se al sòl i/o fotodegradar-se, segons les seves 

propietats fisicoquímiques i les del sòl. Els HAPs de baix i mig pes molecular es van 

adsorbir i fotodegradar més en el sòl Regosol de textura fina, mentre que el sòl 

Arenosol de textura grollera va afavorir la seva volatilització. Per contra, els HAPs d’alt 

pes molecular es van fotodegradar més en el sòl Arenosol, possiblement per l’elevada 

intensitat provinent dels rajos solars, la qual va penetrar més fàcilment entre les 

partícules del sòl. Concretament, es van trobar índex de fotodegradació elevats i 

temps de vida mitja baixos en l’antracè, pirè i benzo(a)pirè, HAPs que ja havien 

mostrat ser més sensibles a la llum en els experiments de laboratori. A part dels 

productes de reaccions d’oxidació que ja s’havien detectat prèviament, es van 
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identificar altres oxi-, nitro- i hydro- HAPs en aquest experiment de camp, els quals 

han mostrat tenir un potencial tòxic i mutagènic més elevat que els propis 16 HAPs 

prioritaris de l’EPA que s’avaluen normalment. 

Finalment, el capítol VI mostra els resultats d’un estudi de monitoratge ambiental 

per determinar les concentracions d’HAPs en sòls de l’Àrtic. Pyramiden (Centre de 

Spitsbergen, arxipèlag de Svalbard) va ser escollit per ser un lloc possiblement 

contaminat degut a: i) el transport atmosfèric de llarg recorregut, ii) els dipòsits de 

carbó degut a la geologia local, iii) la prèvia extracció minera de carbó, iv) les actuals 

plantes elèctriques en funcionament. A més dels nivells d’HAPs es van analitzar 

metalls per tal de confirmar el possible origen antropogènic de la contaminació. Tant 

els perfils d’HAPs com els índex de diagnòstic molecular van indicar fonts de 

contaminació pirogèniques a la majoria de les mostres, esdevenint la combustió de 

carbó i dièsel de les plantes de producció d’electricitat locals les fonts més probables. 

De totes maneres, la contribució amb origen petrògenic no es va descartar. Encara 

que els nivells d’HAPs van ser més alts de l’esperat, només hi ha tres punts que 

excediren els nivells de referència. En general, els metalls van estar per sota dels 

nivells de referència, només amb algunes excepcions. Els nivells més elevats d’HAPs i 

metalls es van trobar en sòls propers a les plantes i en aquells exposats a les direccions 

dels vents predominants. A més a més, aquests sòls tenien un contingut en matèria 

orgànica més elevat, deixant entreveure que aquesta podria estar retenint els 

contaminants en els sòls. Els nivells notables i inesperats d’HAPs demostraren la 

importància dels programes de monitoratge ambiental en regions remotes del 

planeta. A la vegada, la llum contínua durant el període de sol de mitjanit podria 

provocar un efecte estacional causant un increment en la fotodegradació dels HAPs i 

formació d’oxi- i nitro- HAPs. Aquesta tendència a l’alça es podria veure 

progressivament remarcada en un context de canvi climàtic. 

La fotodegradació és una via important de degradació dels HAPs en la superfície 

de sòls en zones amb elevada irradiació, com la regió mediterrània, i en un context de 

canvi climàtic. S’hauria de prestar més atenció als potencials canvis sobre els riscos 

per la salut humana, principalment derivats de la formació de productes de la 

degradació d’aquests compostos. Encara que la fotodegradació dels HAPs provocarà 

una disminució de les concentracions en sòls, les reaccions d’oxidació i nitrificació 
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causaran la formació simultània d’oxi- i nitro- HAPs. Aquests compostos són més 

hidròfils, i conseqüentment, més mòbils, biodisponibles, tòxics i fins i tot més 

mutagènics que els propis HAPs. A més a més, no hi ha cap tipus de regulació que els 

tingui en compte, i conseqüentment, no s’acostumen a considerar en els programes 

de control ambiental actuals. En efecte, la manca de mètodes analítics estandarditzats 

per la majoria de derivats dels HAPs també dificulta el seu control. Els resultats de la 

present tesi destaquen la necessitat d’una nova legislació dels HAPs, actualitzant els 

considerats actualment com a prioritaris, i incloent els seus subproductes.
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1. Climate change and POPs 

The reconstruction of the Earth’s historical climate trends has demonstrated that 

climate is constantly changing, showing peculiar oscillations at different time scales. 

However, a particular climate change acceleration has been observed over the last 

decades. The assessments of the Intergovernmental Panel on Climate Change (IPCC) 

have evidenced that, due to increasing greenhouse gases, the Earth’s climate is 

substantially changing (IPCC, 2013). The air temperature is projected to increase 1.8-

4.0°C by the end of the 21st century, under a range of probable greenhouse gas 

emission scenarios, being high latitudes those more severely affected (Noyes et al., 

2009).  

 

 
 
Fig. 1. Projected changes in global average temperatures under four emissions pathways (rows) 
for three different time periods (columns). Changes in temperatures are relative to 1986-2005 
averages. RCP2.6 is a very low emissions pathway, RCP4.5 is a medium emissions pathway, 
RCP6.0 is a medium-high emissions pathway, and RCP8.5 is the high emissions pathway. Source: 
IPCC, 2013. 
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Instrumental observations suggest that the Arctic has been changing faster than 

any other region on the Northern hemisphere over the past decades (Serreze and 

Barry, 2011; van der Bilt et al., 2015). This change is specially evidenced after melting 

of ice caps and glaciers, the rise of sea level and temperature increase (Jayawardena, 

2014). Moreover, the Mediterranean basin is considered one of the most vulnerable 

regions of the world to climate change, where according to IPCC (2013), air 

temperature is expected to increase up to 4°C in 2100 (Bangash et al., 2012; Sánchez-

Canales et al., 2012; Schröter et al., 2005; Terrado et al., 2014). This region is lying in 

a transition zone between the arid climate of North Africa and the temperate and 

rainy climate of central Europe, being therefore affected by interactions between mid-

latitude and tropical processes (Giorgi and Lionello, 2008). 

Persistent organic pollutants (POPs) have become chemicals of concern during 

the last decades due to: i) their considerable resistance to degradation, ii) their ability 

to be transported over long distances from sources by air and ocean currents, in a 

process known as Long Range Atmospheric Transport (LRAT), iii) their potential to be 

bioaccumulated through terrestrial and aquatic food webs, to levels that may result 

in adverse health effects for animals and humans (Hung et al., 2013), and iv) their 

potential toxic effects such as immunotoxicity, neurotoxicity, developmental toxicity, 

carcinogenicity, mutagenicity, and endocrine disruption (Chao et al., 2014; Domingo, 

2012; Gascón et al., 2013; Grandjean and Landrigan, 2006; Kim et al., 2013). 

One of the consequences of climate change that has recently attracted some 

interest is its potential to alter the environmental distribution and biological effects of 

chemical toxicants (Noyes et al., 2009). Environmental variables such as temperature, 

wind speed, precipitation, and solar radiation, have some influence, either directly or 

indirectly, on the environmental fate and transport of POPs (Gusev et al., 2012). As 

climate change will obviously alter most of those factors to varying degrees, it is 

generally accepted that climate change can influence every step along the fate, 

transport and distribution pathways of POPs and other semi-volatile organic chemicals 

(SVOCs), such as polycyclic aromatic hydrocarbons (PAHs) (Cai et al., 2014; Kallenborn 

et al., 2012; Schiedek et al., 2007; Teran et al., 2012). Although PAHs are not 

considered POPs, and consequently, they are not included in the Stockholm Protocol, 

the executive body of the United Nations Economic Commission for Europe (UNECE) 

UNIVERSITAT ROVIRA I VIRGILI 
Climate change impact on the photodegradation of polycyclic aromatic hydrocarbons in soils 
Montserrat Marquès Bueno 



included four PAHs (benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene 

and indeno(123-cd)pyrene) in the Protocol on POPs, signed in 1998 in Aarhus 

(Denmark). 

 

2. PAHs 

Polycyclic aromatic hydrocarbons (PAHs) are organic compounds composed of 

carbon and hydrogen atoms arranged in fused aromatic rings (linear, cluster or 

angular structures). PAHs form a family of over 200 ubiquitous environmental 

pollutants with toxic, mutagenic, and carcinogenic properties.  

 

 

 

   Naphthalene             Acenaphthylene      Acenaphthene                     Fluorene 

 

 

 

Phenanthrene  Anthracene            Pyrene   Fluoranthene 

 

 

 

 

Benzo(a)anthracene Chrysene  Benzo(b)fluoranthene   Benzo(k)fluoranthene 

 

 

 

 

 

Benzo(a)pyrene  Dibenzo(ah)anthracene      Indeno(123-cd)pyrene       Benzo(ghi)perylene 

 

Fig. 2. Chemical structure of 16 US EPA priority PAHs. 

 

Due to their frequency and/or risk, 16 PAHs were selected as priority pollutants 

by the United States Environmental Protection Agency (US EPA) in the 1970s (Ma et 
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al., 2009; Siciliano et al., 2010; Thavamani et al., 2011) (Fig. 1). In 2005, the European 

Commission (EC) recommended the monitoring of 15 EU priority PAHs along with an 

additional PAH highlighted by the Joint FAO/WHO Expert Committee on Food 

Additives (JECFA). Those 15+1 EU priority PAHs include benzo(a)anthracene, 

cyclopenta(cd)pyrene, chrysene, 5-methylchrysene, benzo(b)fluoranthene, 

benzo(k)fluoranthene, benzo(j)fluoranthene, benzo(a)pyrene, indeno(123-cd)pyrene, 

dibenzo(ah)anthracene, benzo(ghi)perylene, dibenzo(al)pyrene, dibenzo(ae)pyrene, 

dinezo(ai)pyrene, dibenzo(ah)pyrene + benzo(c)fluorene (European Comission, 2005). 

Up to eight PAHs are found in both United States and European priority lists. However, 

the 16 US PAHs identified by the US EPA are the most commonly used in monitoring 

programs. 

In terms of toxicity, the International Agency for Research on Cancer (IARC) 

classifies PAHs according to their carcinogenicity.  Benzo(a)pyrene is considered as 

carcinogenic to humans (Group 1), dibenzo(ah)anthracene as probably carcinogenic 

(Group 2A), and naphthalene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, 

benzo(k)fluoranthene and indeno(123-cd)perylene as possibly carcinogenic to 

humans (Group 2B). The remaining PAHs, with the exception of acenaphthylene, 

which is not yet considered by IARC, are not classifiable as to its carcinogenicity to 

humans (Group 3) (IARC, 2017). 

The European Union only regulates PAHs levels in air, food and drinking water. 

Thus, the 4th European Daughter Directive on Air Quality (European Union, 2004) 

established a target value for benzo(a)pyrene of 1 ng m-3 in air. Regarding to PAHs 

levels in foodstuffs, PAH4 (benzo(a)pyrene, benzo(a)anthracene, 

benzo(b)fluoranthene and chrysene) levels are regulated by the Commission 

Regulation (EU) No. 835/2011 (European Commission, 2011), an amendment to 

Regulation No. 1881/2006 (European Comission, 2006). Finally, benzo(a)pyrene has 

been limited in drinking water to 0.01 µg mL-1, while the sum of benzo(b)fluoranthene, 

benzo(k)fluoranthene, benzo(ghi)perylene and indeno(123-cd)pyrene should be 

lower than 0.10 µg mL-1, according to the Council Directive 98/83/EC (European 

Commission, 1998) . 
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2.1 Physicochemical properties 

PAHs are lipophilic compounds which tend to be rapidly adsorbed to particulate 

organic matter, rather than vaporized or dissolved in water (Stogiannidis and Laane, 

2014). However, they present a varying chemical structure, from 2 to 6 (and more) 

aromatic rings, leading to different physicochemical properties. Table 1 shows the 

molecular weight (MW), solubility in water, Log Kow and vapour pressure of 16 US EPA 

priority PAHs. According to that, PAHs can be classified into Low Molecular Weight 

(LMW), Medium Molecular Weight (MMW) and High Molecular Weight (HMW) PAHs 

(Gao et al., 2016). LMW PAHs are naphthalene, acenaphthene and acenaphthylene, 

MMW PAHs include fluorene, phenanthrene, anthracene, fluoranthene and pyrene, 

while HMW PAHs comprises benzo(a)anthracene, chrysene, benzo(b)fluoranthene, 

benzo(k)fluoranthene, benzo(a)pyrene, dibenzo(ah)anthracene, benzo(ghi)perylene 

and indeno(123-cd)pyrene. Generally, the electrochemical stability, persistence, 

resistance toward biodegradation, and carcinogenic potential of PAHs, increase with 

the increase of aromatic rings, structural angularity, and hydrophobicity, while 

volatility tends to be inversely proportional to molecular weight (Ghosal et al., 2016). 

These physicochemical properties control the fate and transport of these chemicals 

once they are released to the natural environment (Amjadian et al., 2016).  

 
Table 1. Physicochemical properties of 16 US EPA priority PAHs. 

Compound MW 
Solubility 
in water 
(mg L-1) 

Log Kow 
(at 25°C) 

Vapor pressure 
(mm Hg) 

Naphthalene 128 31.00000 3.37 0.087000 
Acenaphthylene 152 16.00000 4.00 9.12x10-4 
Acenaphthene  154 3.80000 3.92 2.5x10-30 
Fluorene 166 1.90000 4.18 3.2x10-40 
Phenanthrene 178 1.10000 4.57 1.21x10-4 
Anthracene 178 0.04500 4.54 2.67x10-6 
Pyrene 202 0.13000 5.18 4.5x10-60 
Fluoranthene 202 0.26000 5.22 9.22x10-6 
Benzo(a)anthracene 228 0.01100 5.91 1.54x10-7 
Chrysene 228 0.00600 5.91 6.23x10-9 
Benzo(b)fluoranthene 252 0.00150 5.80 5.0x10-70 
Benzo(k)fluoranthene 252 0.00080 6.00 9.7x10-100 
Benzo(a)pyrene 252 0.00380 5.91 5.49x10-9 
Dibenzo(ah)anthracene 278 0.00600 6.75  9.55x10-10 
Indeno(123-cd)pyrene 276 0.00019 6.50 1.3x10-10 
Benzo(ghi)perylene 276 0.00026 6.50 1.0x10-10 
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3. PAHs in the environment 

3.1 Emission sources 

PAHs naturally occur in coal, crude oil and gasoline, while they are also produced 

due to the incomplete combustion of organic matter (EPA, 2017). In turn, sources can 

be both natural (e.g., plant synthesis, organic matter diagenesis, and forest fires) and 

anthropogenic (e.g., industrial activities, residential heating, power generation, 

incineration, and traffic). Furthermore, industrial food processing from some domestic 

cooking practices can be another source of PAHs (Zelinkova and Wenzl, 2015). Finally, 

there is some evidence for biogenic PAHs formation in the environment. Overall, it is 

large stated that anthropogenic sources are predominant (Cabrerizo et al., 2011). 

PAHs are always emitted as a mixture, being the relative molecular concentration 

ratios characteristic of a given emission source (Tobiszewski and Namieśnik, 2012). 

Since the anthropogenic input to the environment far exceeds the natural sources, 

PAHs tend to be in greater concentrations in urban environments. However, the 

emission of PAHs, combined with global transport phenomena, result in a worldwide 

distribution (Ghosal et al., 2016). Therefore, PAHs are ubiquituous in the environment. 

In an interesting study, Zhang and Tao (2009) investigated PAHs emissions on a 

global scale. The global emissions of 16 PAHs were estimated in 520 Gg in 2004. The 

contributions of residential biomass burning and deforestation wildfires were 56.7 

and 17.0%, respectively. China (114 Gg), India (90 Gg) and USA (32 Gg) were the three 

countries with the highest total emissions. In 2007, PAHs global emissions increased 

in 1 Gg according to data provided by Tao et al. (2012). A parallel study carried out in 

China during 2012 quantified PAHs emissions in 121 Gg, which agrees well with the 

slightly global increase. European countries accounted for 9.5% of the total PAH 

emissions annually (Mu et al., 2015), being Spain the highest contributor (210 Mg), 

followed by Germany (177 Mg) and Poland (144 Mg). By contrast, EU-27 countries 

showed a decreasing trend during the last decades (58% between 1990-2011, and 

6.1% between 2010 and 2011) (IARC, 2013).  

3.2 PAHs fate 

Once PAHs are released to the atmosphere, they can be present in the vapour 

phase or associated to the particulate phase, according to their specific 
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physicochemical properties. Thus, LMW PAHs, with two and three aromatic rings, are 

mainly found in the gas phase, while MMW PAHs can be found in both gaseous and 

particulate phases. By contrast, HMW PAHs, with 4 or more rings, tend to be sorbed 

to particulates (Cuadras et al., 2016; Nielsen et al., 2015). 

 

 

 

 

 

 

 

 

 

Fig. 3. Environmental fate of PAHs. 

 

Air transport routes, including air-to-soil and soil-to-air exchange, are key 

processes in the environmental fate of PAHs, at both regional and global scales. Air-

to-soil transport occurs primarily through the deposition of aerosols via gravitational 

effects, wet deposition, and adsorption to soil constituents. In addition, soil-to-air 

occurs through the volatilization of deposited PAHs, which take place at different 

degrees depending on physicochemical properties of PAHs and soil characteristics, as 

well as other concurrent environmental parameters. Wind currents, storms and low-

pressure systems contribute to the transport of PAHs far from the sources, mainly 

placed in urban and industrial regions, to urban peripheries, rural regions, open seas, 

semi-rural areas and even open plateaus (Manzetti, 2013). As a consequence of that 

high mobility of both gaseous and particulate phases, PAHs are able to be deposited 

even in Polar regions, becoming therefore a transboundary environmental problem 
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(Ma et al., 2013). Finally, although PAHs are widely present as contaminants in air, 

aquatic environments, sediments, surface water and groundwater (Ghosal et al., 

2016), the soil is one of the major sinks of atmospheric PAHs (Nadal et al., 2011; Wang 

et al., 2014), playing therefore a key role in the fate of these pollutants. 

 

3.3 PAHs in surface soils 

PAHs fate in soils includes volatilization, adsorption on soil particles, leaching, 

microbial degradation, chemical oxidation, and photo-oxidation (Haritash and 

Kaushik, 2009), being physcochemical properties key parameters controlling their 

behavior. The heavier the molecular weight, the more likely to be deposited in soil 

surface (Nadal et al., 2004), becoming more resistant to soil-air exchange, and 

consequently, being accumulated in the top layer of soil (Majumdar et al., 2017). The 

lipophilic nature of PAHs, inherently, enhance PAHs sorption to organic matter, and in 

addition, hinder their leaching. This favours their occurrence in the top-layer of soil.  

Most PAHs in soil are bound to soil particles. Therefore, soil texture and 

physicochemical properties of PAHs have been identified as the most important 

factors influencing PAHs sorption and mobility. Furthermore, organic content, Kow 

coefficient and conductivity have a key role on PAHs movement. Briefly, as the Kow 

increases, and the aqueous solubility decreases, the tendency for sorption to a 

particular soil increases (Abdel-Shafy and Mansour, 2016).  

 

3.4 PAHs in water and sediments 

Similar processes controlling PAHs deposition to surface soil affect their 

deposition to water and sediments. In urban areas and surrounding areas, sediments 

are influenced by atmospheric deposition of PAHs. They also get inputs of PAHs from 

storm, urban and industrial sewer effluents, and roadway runoff. On the other hand, 

in rural areas, PAHs sorbed to atmospheric particles can settle on the surface of lakes, 

streams and oceans by dry or wet deposition. As PAHs are hydrophobic nature, they 

rapidly tend to stick with particulate/organic matter in aquatic environments. Ocean 

currents are responsible of their dispersion and eventually become integrated with 
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the sediment, becoming immobilized due to their own non-polar structures (Abdel-

Shafy and Mansour, 2016). Sediments are the most important reservoir of PAHs in the 

marine environment, especially those PAHs coming from pyrolysis processes, which 

are more resistant to microbial degradation than PAHs with petrogenic origin (Perra 

et al., 2009).  

 

3.5 PAHs in biota 

Air, soil, water and even sediments are potential pathways of PAHs intake by 

biota. For instance, lichens, which are symbioses of fungi and algae and/or 

cyanobacteria, have the remarkable ability to uptake and accumulate PAHs. 

Consequently, they are being considered potential air-PAHs biomonitors (Augusto et 

al., 2013; Vingiani et al., 2015). However, when referred to PAHs in biota, studies are 

mostly focused on aquatic organisms and the concentration of pollutants directly from 

water and sediments. In addition, the distribution among different trophic levels 

shows the PAHs capacity of bioaccumulation and biomagnification, leading to human 

health risks due to the consumption of contaminated aquatic organisms (Zhang et al., 

2015). Thus, mussels are generally used in marine monitoring programs to assess PAHs 

levels, while commercial fish species are further analyzed to understand the risk to 

the human food chain Law et al. (2014). Several biological effects of PAHs are 

associated to their exposure, such as tissue and genetic alterations, cancer, effects on 

growth and development and effects of immune function. Specifically, different fish 

species have shown increased levels of PAH metabolites, CYP1A, DNA-adducts and 

liver cancer, cardiotoxicity and reduced growth (Grung et al., 2016). 

 

4. Environmental transformation and degradation of PAHs 

Biological, chemical and photochemical processes are responsible of the 

transformation of PAHs during combustion processes or once they are in the 

environment. The reactivity of each PAH depends on its ionization potential (Jia et al., 

2014), which measures the difficulty of removing an electron or the strength by which 
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an electron is bound. Thus, the higher the ionization potential, the more difficult is to 

remove an electron. In addition, transformation reactions are highly regioselective, 

being those carbon positions with the highest electron density the most reactive 

regions (L-regions). For example, the L-regions of anthracene and benzo(a)anthracene 

are 9- and 10-positions, and 7- and 12-positions, respectively (Fig. 4) (Fu et al., 2012). 

Depending on the molecular structure, PAHs can also own different regions named K, 

M, N and bay region. Vijayalakshmi and Suresh (2008) reported that K and M regions 

are activating, while L region is deactivating the carcinogenic potential of PAHs. 

 

 

 

 

 

Fig. 4. Location of L, K, M and bay regions exemplified with benzo(a)anthracene. 

 

4.1 Biological degradation 

Algae, bacteria and fungus are microorganisms capable to cause PAHs 

degradation in terrestrial and aquatic ecosystems. Organisms produce the breakdown 

of organic compounds into less complex metabolites, through mineralization into 

inorganic minerals, H2O, CO2 (aerobic) or CH4 (anaerobic). The rate of microbial 

degradation depends on the kind of microorganisms, the nature and chemical 

structure of the PAHs, and even the environmental conditions. As an example, Fig. 5 

shows the chlorination and methoxylation of anthracene through fungal degradation. 

Those microorganisms are usually used under controlled conditions to degrade or 

detoxify contaminated soils by means of a technique called bioremediation. In turn, 

plants and their associated microorganisms are capable to extract, sequester and/or 

detoxify PAHs from contaminated sites.  

 

L-region 
K-region 

Bay-region M-region 
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Fig. 5. Typical spontaneous PAH-degradation processes exemplified on anthracene through 
fungal degradation. Adapted from Manzetti (2013). 

 

4.2 Chemical degradation 

The chemical reactions occurring during the transformation and degradation of 

PAHs are particularly catalyzed by sunlight. They involve oxidation, nitration and/or 

other chemical processes taking place as a result of the interaction between PAHs and 

any environmental matrix (atmosphere, soil and aqueous environments)  (Manzetti, 

2013). Although chemical reactions can occur in different matrices, they are more 

significant in air, either gas or particulate phase. Gas phase reactions with OH¯, NO3 

and O3 provide a significant pathway for atmospheric PAHs.  Fig. 6 displays a set of 

reactions that take place during the oxidation and nitration of anthracene, leading to 

its corresponding quinone and nitro derivative. The joint interaction of sunlight and 

O2 with the presence of a PAH, generates a quinone-PAH by effect of oxidation. On 

the other hand, the established mechanism of PAH reactions with the OH¯ involves 

the formation of a PAH-OH adduct, followed by a further reaction with NO2 or O3. In 

air, particled PAHs are adsorbed on different solid substrates, including carbonaceous 

aerosol (graphite, diesel exhaust, kerosene flame soot or ethylene flame soot) and 

mineral particles (silica or MgO). The reaction between OH, N2O5/NO3 and O3 drives 
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to heterogeneous an less comprehensive rates although depending on the reactant 

and also on the nature of the substrate (Keyte et al., 2013). 

 

4.3 Photodegradation 

As it has been mentioned, PAHs can be directly degraded after the absorption of 

sunlight radiation by direct chemical photoxidation. All PAHs are usually reported to 

absorb UV-A (320-400 nm), and those with five or more aromatic rings have also the 

capacity to absorb visible light (>400 nm) (Fu et al., 2012; Yu, 2002). On the other 

hand, although UV-B (280-300 nm) has a contribution of less than 1% of the total solar 

energy that reaches the Earth’s surface, it has been found to have a potential role due 

to its high photonic energy (Li et al., 2011; Nadal et al., 2006). 

 

 

During photoxidation, chemical transformation can simultaneously occur at 

different rates depending on sunlight intensity, overlapping spectral characteristics of 

solar radiation. This degradation pathway is called direct photodegradation (Fig. 7). In 
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Fig. 6. Typical spontaneously PAH-degradation processes exemplified on anthracene. 
Adapted from Manzetti (2013). 
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turn, PAHs deposited on surface soil are capable to suffer indirect photodegradation.  

This process occurs through the sorption of sunlight energy by other substances, such 

as clay and soil organic matter. Afterwards, the energy is transmitted to PAHs through 

electron orbital interactions (Pierzynski et al., 2000) (Fig. 7). 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Direct and indirect photo-reactions of PAHs in soils exposed to sunlight. 

 

Photodegradation, both direct and indirect, are important transformation 

pathways for most PAHs in the environment (Zhang et al., 2006). This process has been 

mainly studied in water (Bertilsson and Widenfalk, 2002; de Bruyn et al., 2012; 

Fasnacht and Blough, 2003; García-Martínez et al., 2005; Jacobs et al., 2008; Jing et 

al., 2014; Luo et al., 2014; Rivas et al., 2000; Shemer and Linden, 2007; Singh et al., 

2013; Xia et al., 2009), and at laboratory scale by means of artificial light (Gupta and 

Gupta, 2015; Zhang et al., 2008; Zhang et al., 2010; Zhang et al., 2006). In turn, natural 

sunlight, whose intensity is notably higher than that emitted by laboratory lamps, has 

been used to study the photodegradation in air of different organic compounds, such 

as organophosphate pesticides (Borrás et al., 2015), aromatic compounds (Pereira et 

al., 2015), organochlorines (Vera et al., 2015), and herbicides (Muñoz et al., 2014). 
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Unfortunately, the knowledge of PAHs photodegradation in soils at laboratory scale is 

rather limited, with only few investigations (Balmer et al., 2000; Frank et al., 2002; 

Gong et al., 2001; Xiaozhen et al., 2005). Furthermore, PAHs photodegradation has 

not been yet extensively studied under solar radiation, either in soils or any other 

environmental matrix.
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According to IPCC climate change projections, the average temperature is 

expected to raise up to 4°C in the Mediterranean region, as a consequence of the 

increasing trend of greenhouse gases emissions during the last century. In turn, the 

ozone layer depletion will cause an increase of solar radiation intensity, especially of 

the UV-B spectrum.  

Changes in environmental parameters, such as temperature and solar radiation, 

as a consequence of the climate change, are expected to alter the fate of pollutants, 

such as PAHs. These substances are known to be seasonal dependent, not only 

because of changes on emission patterns, but also for their sensitivity to temperature 

and light, which eventually cause their degradation. Despite of this, potential climate 

change impact on PAHs fate has not been deeply assessed, especially in surface soil 

which acts as a sink of these environmental pollutants.  

It is here hypothesized that the increase of temperature and light intensity in a 

climate change context may increase the photodegradation of PAHs found in surface 

soils. Changes on their environmental concentrations may ultimately have a 

significant impact on the human exposure to PAHs and the associated decreases.  

 

General objective: 

To assess the joint impact of temperature and light intensity increase derived 

from climate change on PAHs in soils surface under different climate scenarios. 

 

Specific objectives: 

- To review the state of the art of climate change and POPs. 

- To assess the photodegradation of PAHs over time under a current 

Mediterranean climate scenario (20°C and low light intensity) in two soils with 

different properties. 

- To assess the role of Fe2O3 as photocatalyst of PAHs reactions to understand 

differences between Arenosol and fine-textured Regosol soils. 

- To assess the photodegradation of PAHs over time under a RCP 8.5 climate 

change scenario (24°C) and high light intensity in two typical soils. 

- To assess the photodegradation of PAHs caused by solar radiation through a field 

experiment performed in the Mediterranean region. 
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- To determine the contamination with PAHs in Arctic soils, as a potential polluted 

and very vulnerable region to climate change.  
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ABSTRACT 

In recent years, the climate change impact on the concentrations of persistent 

organic pollutants (POPs) has become a topic of notable concern. Changes in 

environmental conditions such as the increase of the average temperature, or the UV-

B radiation, are likely to influence the fate and behaviour of POPs, ultimately affecting 

human exposure. The state of the art of the impact of climate change on 

environmental concentrations of POPs, as well as on human health risks, is here 

reviewed. Research gaps are also identified, while future studies are suggested. 

Climate change and POPs are a hot issue, for which wide attention should be paid not 

only by scientists, but also and mainly by policymakers. Most studies reported in the 

scientific literature are focused on legacy POPs, mainly polychlorinated dibenzo-p-

dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs) and 

pesticides. However, the number of investigations aimed at estimating the impact of 

climate change on the environmental levels of polycyclic aromatic hydrocarbons 

(PAHs) is scarce, despite of the fact that exposure to PAHs and photodegradation 

byproducts may result in adverse health effects. Furthermore, no data on emerging 

POPs are currently available in the scientific literature. In consequence, an 

intensification of studies to identify and mitigate the indirect effects of the climate 

change on POP fate is needed to minimize the human health impact. Furthermore, 

being this a global problem, interactions between climate change and POPs must be 

addressed from an international perspective. 

 

Keywords: climate change, persistent organic pollutants (POPs), environmental 

fate and transport, polycyclic aromatic hydrocarbons, legacy POPs, scientific literature 
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INTRODUCTION 

The reconstruction of the Earth’s historical climate trends has demonstrated that 

climate is constantly changing, showing peculiar oscillations at different time scales. 

However, in recent years a particular climate acceleration has been observed over the 

last decades. The assessments of the Intergovernmental Panel on Climate Change 

(IPCC) have evidenced that, due to increasing greenhouse gases, the Earth’s climate is 

substantially changing (IPCC, 2013). A number of studies have confirmed that the 

global mean temperature increased by 0.6±0.2°C during the 20th century (IPCC, 2001). 

In addition, the air temperature is projected to increase 1.8-4.0°C by the end of the 

21st century, under a range of probable greenhouse gas emission scenarios, being high 

latitudes those more severely affected (Noyes et al., 2009). The Mediterranean region 

is a vulnerable zone, where a number of climate-related events, such as higher sea 

levels, increased frequency of extreme climatic events including intense storms, heavy 

rainfall events and droughts (Kusangaya et al., 2014; McBean and Ajibade, 2009) are 

probably going to occur. Moreover, the increase in the surface UV‐B radiation induced 

by ozone depletion has received wide attention as an environmental issue of great 

concern (Watanabe et al., 2011). Hence, climate change is an increasingly urgent 

problem, with wide consequences for the environment and life on Earth (Kim et al., 

2014). The global change effects will impact not only animal species and ecosystem 

processes (Moe et al., 2013), but they will also alter the degree of human exposure to 

pollutants, changing the risks in the future (Balbus et al., 2013). A number of studies 

have identified the expected degree of these impacts in various regions. Instrumental 

observations suggest that the Arctic has been changing faster than any other region 

on the Northern hemisphere over the past decades (Serreze and Barry, 2011; van der 

Bilt et al., 2015), being evidenced by melting of ice caps and glaciers, as well as the 

rise of sea level and temperature (Jayawardena, 2014). Moreover, the Mediterranean 

basin is considered one of the most vulnerable regions of the world to climate change. 

According to IPCC (2013), air temperature is expected to increase up to 4°C (Sánchez-

Canales et al., 2012; Schröter et al., 2005; Bangash et al., 2012; Marquès et al., 2013; 

Terrado et al., 2014). This region is lying in a transition zone between the arid climate 

of North Africa and the temperate and rainy climate of central Europe, being therefore 
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affected by interactions between mid-latitude and tropical processes (Giorgi and 

Lionello, 2008). 

Persistent organic pollutants (POPs) have become chemicals of concern during 

the last decades due to: a) their considerable resistance to degradation, b) their ability 

to be transported over long distances from sources by air and ocean currents, in a 

process known as Long Range Atmospheric Transport (LRAT), c) their potential to be 

bioaccumulated through terrestrial and aquatic food webs, to levels that may result 

in adverse health effects for animals and humans (Hung et al., 2013), and d) their 

potential toxic effects such as immunotoxicity, neurotoxicity, developmental toxicity, 

carcinogenicity, mutagenicity, and endocrine disruption (Chao et al., 2014; Domingo, 

2012a; Gascón et al., 2013; Gasull et al., 2013; Kim et al., 2013). In 2001, the Stockholm 

Convention on Persistent Organic Pollutants elaborated a first list of POPs whose 

emissions and/or production must be eliminated, or at least notably reduced. That list 

included a variety of POP candidates: organochlorine pesticides (DDT, aldrin, 

chlordane, dieldrin, endrin, heptachlor, hexachlorobenzene (HCB), mirex, and 

toxaphene), as well as polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-

p-dioxins and dibenzofurans (PCDD/Fs) (commonly known as 'dioxins'). However, this 

is a dynamic list, and therefore, more compounds with similar properties have been 

added throughout time. In May 2009, a new set of chemicals, including other 

pesticides (chlordecone, α-hexachlorocyclohexane, β-hexachlorocyclohexane, 

lindane, pentachlorobenzene and pentachlorobenzene), polybrominated biphenyls 

(PBBs) (hexabromobiphenyl, hexabromodiphenyl ether and heptabromodiphenyl 

ether, tetrabromodiphenyl ether and pentabromodiphenyl ether), as well as 

perfluoroalkyl substances (perfluorooctanesulfonic acid (PFOS) and its salts, and 

perfluorooctanesulfonyl fluoride (PFOSF)), were also included in the list. Furthermore, 

endosulfan and hexabromocyclododecane were added in the Fifth and Sixth 

Conference of Parties, held in 2011 and 2013, respectively (Jennings and Li, 2015).  

Parallel initiatives have highlighted the PBT properties of other chemical 

pollutants. For instance, the Executive Body of the United Nations Economic 

Commission for Europe (UNECE) included four polycyclic aromatic hydrocarbons 

(PAHs) (benzo(a)pyrene, benzo(b)flouranthene, benzo(k)fluoranthene, and 

indeno(123-cd)pyrene) in the Protocol on POPs, signed in 1998 in Aarhus (Denmark). 
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PAHs were also included in the original list of POPs by the UNECE’s Convention on 

Long-Range Transboundary Air Pollution (CLRTAP). The above 4 PAHs are persistent, 

bioaccumulative, toxic, and can be transported to long distances through the air 

(LRAT). Consequently, they can be also considered as POPs. Thus, they were included 

in a list of 16 priority substances by the 1998 Aarhus Protocol on POPs together with 

eleven pesticides, two industrial chemicals, as well as two other by-

products/contaminants (UNECE, 2014). The Protocol banned the production of some 

substances (aldrin, chlordane, chlordecone, dieldrin, endrin, hexabromobiphenyl, 

mirex and toxaphene), while others (DDT, heptachlor, hexaclorobenzene, PCBs) were 

scheduled for elimination at a later stage. Moreover, the use of some products such 

as DDT, hexachlorocyclohexanes (HCHs) and PCBs, is severely restricted and 

provisions for dealing with the wastes of substances that will be banned are included. 

Finally, the Protocol obliges Parties to reduce their emission of PCDD/Fs, PAHs and 

HCB below their levels in 1990.  

The fate and behavior of POPs have attracted considerable political and scientific 

interest, particularly when local releases have resulted in dispersed contamination far 

from source regions (Paul et al., 2012). The transport distance and the number of air-

surface exchange episodes depend on the surface characteristics (e.g. soil, water, 

vegetation, etc.), as well as the physical-chemical properties of the compound. Thus, 

persistent chemicals, with a lower vapor pressure, will be preferably deposited in 

areas closer to the emission source, while those with a higher vapor pressure are more 

easily transported far away. In addition, there are other mechanisms and factors 

which influence the distribution of POPs in the atmosphere. These are the capacity of 

the environmental compartments to accumulate or degrade POPs, the general 

atmospheric patterns, and the kinetic of the air-surface exchange, among others. 

One of the consequences of climate change that has recently attracted some 

interest is its potential to alter the environmental distribution and biological effects of 

chemical toxicants (Noyes et al., 2009). Environmental variables such as temperature, 

wind speed, precipitation, and solar radiation, have influence, either directly or 

indirectly, on the environmental fate and transport of POPs (Gusev et al., 2012). As 

climate change will obviously alter most of those factors to varying degrees, it is 

generally accepted that climate change can influence every step along the fate, 
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transport and distribution pathways of semi-volatile organic chemicals, including PAHs 

and POPs (Cai et al., 2014; Kallenborn et al., 2012; Schiedek et al., 2007; Teran et al., 

2012). Temperature is one of the key meteorological parameters that is able to impact 

more severely the global distribution of POPs in the environment (Dalla Valle et al., 

2007). According to the results of multicompartment chemistry-transport models, the 

degradation rates of POPs in the environment are estimated to increase by a factor of 

two to three for every 10°C increment (Lammel, 2001; Macdonald et al., 2005). 

Therefore, global warming is probably influencing the environmental behavior of 

POPs. It enhances the volatilization from primary and secondary sources, and 

influencing their partitioning between soil, sediment, water and atmosphere, 

including air-surface exchange and wet/dry deposition (Noyes et al., 2009; Teran et 

al., 2012; Armitage et al., 2011). An increase of rainfall can cause a raise of POP 

deposition onto soil. The more frequent storm surges may enhance the mobilization 

of chemicals stored in the soil compartment, which can be transported by land 

runoffs, making them available to the aquatic organisms (Dalla Valle et al., 2007). In 

turn, cold temperatures can induce their deposition and accumulation in Arctic 

environmental media, resulting in the so-called cold-trapping effect (Rahn and 

Heidam 1981; Perrie et al., 2012). It has been also observed in other recent studies 

that the fate of POPs depends on the meteorological conditions, and therefore climate 

change will modify their concentrations and trends in the Arctic (Perrie et al., 2012), 

ultimately affecting the rest of the world. In addition to the Arctic, which is already 

experiencing substantial changes (Armitage and Wania, 2013), other world areas such 

as the Alps or the Mediterranean, are also sensitive to POP deposition. For instance, 

the central and eastern Mediterranean is a receptor area for POPs emitted in western, 

central and Eastern Europe, particularly during summer (Mulder et al., 2015). 

Furthermore, the role of climate change and eutrophication on POP dynamics is a 

topic that needs further consideration by scientists (Wania and Mackay, 1999).  

Despite of the lack of knowledge of climate change impacts on the POP 

occurrence, it has been suggested that the temperature increases should cause a 

faster degradation of these chemicals in the aquatic ecosystem, resulting in a 

reduction of the dietary exposure to POPs (McKone et al., 1996; Macdonald et al., 

2005; Ma et al., 2004; Bard 1999)). However, these pollutants could be also 
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transported to higher latitude areas where wet deposition would lead to a potentially 

elevated POP dietary intake among exposed northern and indigenous communities 

(Sonne et al., 2014). Health impacts of POPs are not immediate. They have usually 

resulted from chronic, cumulative and long-term exposure to one or more substances, 

being the major exposure route non-atmospheric. Hence, POPs do not usually cause 

respiratory health effects. In contrast, ingestion and bioaccumulation are routes of 

concern. Dietary exposure seems to be the most contributive exposure pathway for 

POPs and other semi-volatile chemical contaminants (Domingo et al., 2008, 2012b,c; 

Martí-Cid et al., 2010; Martorell et al., 2012; Perelló et al., 2015). Moreover, although 

toxic effects of POPs are elucidated at multiple endpoints, they are not well defined 

when evaluating mixtures of POPs (Hung et al., 2013).  

In the present paper, we have reviewed the state of the art regarding the 

influence of climate change on the environmental concentrations of POPs. This paper 

was aimed at gathering publicly available information on this topic. It should help to 

identify research gaps in the design of future environmental and health studies, 

considering plausible changes in human health risks, which are associated to global 

warming. 

 

CLIMATE CHANGE IMPACT ON POPs 

The scientific literature on the potential effect of climate change on POPs was 

reviewed by using the Scopus database (www.scopus.com). A first selection of papers 

was performed by using the terms: “climate change and POPs” or “global warming 

and POPs” in their title, abstract, or keywords. Afterwards, a specific choice was 

carried out by using, as keywords, “climate change” or “global warming”, as well as 

the name of each individual chemical. POPs were selected considering the current list 

addressed in the Stockholm Convention.  

Finizio et al. (1998) reported for the very first time the potential impact of climate 

change on POPs, and more specifically on some organochlorine pesticides (DDT, HCHs, 

chlordane, toxaphene, aldrin). Other halogenated chemicals such as PCDD/Fs and 

PCBs, were also mentioned. The authors remarked that the long-range transport of 

POPs in the environment was largely dependent on the environmental conditions, 

particularly air temperature, particulate air matter and wind direction/speed. 
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Consequently, a change of conditions might mean notable consequences for POP 

distribution. It was concluded that a change in the global atmospheric conditions, and 

therefore the average condition for a region, can influence the biogeochemical cycle 

of POPs and then their presence in a specific ecosystem. According to Finizio et al. 

(1998), there were no studies reporting these interactions at that moment. However, 

they suggested that some scenarios could be simulated with the use of “global 

chemodynamic models” as those previously developed by Wania and Mackay (1995).  

 

Pesticides 

Pesticides form the larger group of POPs included in the Stockholm Convention. 

Consequently, a considerable number of data from different perspectives are 

currently available. Ma and Cao (2010) aimed at quantifying the perturbations of POPs 

as result of the climate change. A perturbed air-surface coupled model was developed 

to simulate and predict perturbations of POP concentrations in various environmental 

media under several climate change scenarios. The selected chemicals were α- and γ-

HCHs, as well as HCB and PCB-153 congener. All POPs exhibited a strong response to 

specified climate change scenarios, as shown by their high concentrations 

perturbations in air. In the air-soil system, the model predicted 4-50% increases in the 

air concentrations of these chemicals associated to a potential increase of 0.05-

0.1°K/yr in the air temperature. The authors estimated that a 20% increase/decrease 

in precipitation may result in a 53% and 4% decrease/increase, in perturbed air 

concentration of γ-HCH and α-HCH, respectively (Ma and Cao, 2010).  

Wöhrnschimmel et al. (2013) applied a global-scale multimedia fate model to 

analyze and quantify the impact of climate change on emissions and fate of POPs, and 

their transport to the Arctic. Two climate scenarios (base-scale and IPCC-based SRES-

A2) were used to characterize the evolution over time of two well-characterized POPs 

(α-HCH and PCB) after an air temperature increase of 2.0-5.4°C. Regarding to climate 

change, four different spatially and temporally resolved generic emission scenarios 

were defined, covering the period 2020−2050. The model was run from the first year 

of emission (around 1950s) until 2100. The temporal evolution followed a plausible 

pattern for substances that were thought to be introduced in 2020, and successfully 

merchandised up to the saturation of the market in 2035, and then phased out over 
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the following 15 years. This phase-out would be linked to concerns on their hazard for 

the human health and/or the environment, or to their replacement in the market. 

These scenarios were used after considering both current climate conditions and with 

the climate change parameterization of BETR Research model described by MacLeod 

et al. (2011). Beyond temperature, other parameters of the model were air, land, and 

ocean surface temperatures, precipitation, atmospheric and oceanic circulation, land-

ice and sea-ice cover, and organic carbon content in soils. Reported results from the 

simulation showed that, in the atmosphere, according to the simulations, the 

maximum α-HCH value was 103 pg/m3 in 1980, decreasing to 10-4 pg/m3 in 2100. 

Reported α-HCH concentrations in ocean waters had a similar behavior, showing their 

maximum level around 1990, with a reported concentration of 1 ng/L. In turn, the 

minimum value (10-5 ng/L) was estimated to occur in 2010. 

Sun et al. (2005) attributed the increase of HCHs in coastal sediments to the 

glaciers meltwater derived from the regional warming from the early 1970s. 

Accumulation flux profiles and temporal trends of HCHs were determined through the 

analysis of two lake cores (NR and AX) collected from Niudu Lake in King George Island 

(West Antarctica). NR was a core under the influence of glacier meltwater, while AX 

was the control core. With respect to DDT, NR core showed an abnormal peak around 

1980s in addition to the expected one in 1960s. On the other hand, the accumulation 

flux of DDT in AX core showed a gradual decline after the 1960s peak. This difference 

was most probably caused by regional climate warming and the resulted discharge of 

the DDT stored in the Antarctic ice cap, into the lakes in the Antarctic glacier frontier. 

The revolatilization of α-HCH, DTT and cis-chlordane deposited in water and ice 

sinks was investigated by Ma et al. (2011). The records of their concentrations in Arctic 

air since the early 1990s were analyzed, and further compared with results from 

modelled simulations of the climate change effect. A correlation analysis was used to 

detect any evidence of POP revolatilization in the Arctic linked to regional warming. 

Strong correlations between POP air concentrations and mean surface air 

temperatures/sea-ice extent indicated the potential volatilization from secondary 

emission sources/reservoirs in water, snow, ice and land across the Arctic. POPs had 

been remobilized into the Arctic atmosphere over the past two decades as a result of 
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climate change, confirming that the Arctic warming could undermine global efforts to 

reduce environmental and human exposure to these toxic chemicals.  

To assess time trends and recycling of DDTs and HCHs, Cheng et al. (2014) 

analyzed the levels of these pollutants in lake sediment cores from five critical regions 

in the Tibetian Plateau. A recent increase of both chemicals was found, likely due to 

the retreat of glaciers in response to climate warming. In the past 30 years, and 

because of the climate warming, glaciers have shrunk more than 6606 km2 on the 

entire Tibetan Plateau, with the greatest retreat since the mid-1980s. Hence, glacier 

and snow melt due to climate warming is able to release stored contaminants 

accumulated during years of higher transport of such pollutants to this region. 

Consequently, a warmer climate is expected to enhance the amount of glacial water 

discharge into lakes and depositing more DDTs into lake sediments. In fact, these 

closed-basin lakes fed mainly by glacier meltwater in particular became a more 

sensitive monitor of global warming, in terms of temporal trends of organochlorine 

pesticides (OCPs). 

Bogdal et al. (2009) also reported a decrease in the usage and emissions of the 

OCPs in Switzerland in recent decades. The main reason was the ban of DDT in that 

country in 1972, and that of HCB and γ-HCH, dieldrin and heptachlor in 1986. Results 

obtained by means of sediment cores from Lake Oberaar (Switzerland) indicated low 

fluxes of pesticides in the deepest sediment sample, dated from the early 1950s. From 

late 1990s onwards, the fluxes of pesticides, as well as those of other compounds 

(PCDD/Fs, PCBs, as well as polychlorinated naphthalenes) clearly increased. When 

assessing the supposed accelerated release of DDT in lake Oberaar due to ice and 

snow melting, the same authors found similar results to other POPs, such as PCDD/Fs 

(Bogdal et al., 2010).  

Similar findings were also reported in different mountainous watersheds across a 

broad latitudinal, longitudinal and altitudinal range in the Canadian Cordillera in 

British Columbia and the Yukon, western Canada (Elliott et al., 2012). This 

bioaccumulation study investigated the temporal trends of DDT concentration in 

osprey eggs from those areas, which were in agreement with some modeled 

predictions of release from melting glaciers due to climate change. Predictions from 

the modeled dynamics of POPs released by a Swiss glacier were coincident with the 
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apparent temporal trends observed in ospreys (Bogdal et al., 2010), indicating that 

previous glacial melting might have been a factor influencing contaminant trends in 

western Canada. 

Studies on the effects of the climate change on POP dynamics in the marine 

environment also exist. Borgå et al. (2010) applied a bioaccumulation model to 

calculate the effect of two different climate change scenarios on the pelagic marine 

food web of the Arctic. The authors introduced a factor of change (i.e., the ratio of 

pollutant levels in a future climate scenario vs. current levels) to describe 

bioaccumulation and contaminant concentration changes in a projected future 

climate for each food web organism, and for 3 different pollutants (γ-HCH, PCB-52, 

and PCB-153). Two different scenarios were defined: 1) temperature in water and air 

increased by 2.0°C, and 2) raise of 4.0°C in both parameters. It was found that γ-HCH 

did not biomagnify. In turn, PCB-52 showed a higher degree of biomagnification. In 

addition, the modeled and measured biomagnification values of PCB-153 were even 

higher than those corresponding to PCB-52, with values increasing with the trophic 

position. γ-HCH showed the lowest and least spread in magnitude of the individual 

process rates and parameters. The effect of increased temperature on the octanol-

water (Kow) and octanol-air (Koa) partitioning coefficients, as well as the decreased lipid 

content, were the two most influential parameters resulting in reduced 

bioaccumulation on a wet weight basis. It was concluded that increased temperature 

would reduce the overall bioaccumulation of PCBs in Arctic marine food web. 

Hallanger et al. (2011) assessed the differences between Arctic and Atlantic fjord 

systems on the bioaccumulation of POPs in zooplankton. Samples of zooplankton and 

seawater were collected from Liefdefjorden and Kongsfjorden, Svalbard, Norway. In 

zooplankton, the predatory species tended to have higher values of POPs than other 

species, while the lowest concentrations of POPs were found in the herbivorous 

Calanus species. ΣPCBs and Σpesticides were higher in Kongsfjorden than in 

Liefdefjorden. Differences in POP concentrations were assumed to be due to fjord 

specific characteristics, such as ice cover and timing of snow/glacier melt. Hence, it 

was difficult to conclude where there were Artic vs. Atlantic specific differences, and 

to extrapolate these results to possible climate change effects on accumulation of 

POPs in zooplankton. 
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McKinney et al. (2015) reviewed the ecological impacts of global climate change 

on the pathways of POPs and mercury, as well as their exposure in Arctic marine 

ecosystems. Most of the reviewed studies reported changes in POP concentrations in 

biological tissues linked to climate change-induced changes in species trophic 

interactions, particularly in relation to sea ice changes. However, the influence of 

changing trophic interactions on POP levels and trends varied widely in both 

magnitude and direction.  

Recently, O’Driscoll et al. (2014) simulated, by means of HAMSOM and FANTOM 

models, the fate and cycling of γ-HCH and PCBs in the North Sea in the 21st century. 

Sediment concentrations of γ-HCH were estimated to be reduced in 2015, with 

respect to 2005 values as a consequence of the lower dry gas deposition. Although 

these authors concluded that the influence of climate change on those two POPs was 

small, the increased number and magnitude of storms in the 21st century will give 

place to POP resuspension and revolatilization processes. On the other hand, Morselli 

et al. (2014) created a combination of a dynamic fate model, and a hydrological 

module, capable of estimating water discharge and snow/ice melt contributions on an 

hourly basis. The resulting model, which was applied to the case study of the Frodolfo 

glacier-fed stream (Italian Alps), was fed with levels of PCBs and p,p'-DDE in stream 

water, being available four macroinvertebrate groups. The model showed to be 

appropriate to estimate pollutant concentrations under diverse climate change 

scenarios. 

According to climate change predictions, it is well established that the 

probabilities of flooding will increase (Wu et al., 2015). Flood events will make easier 

the sediments resuspension. It means that contaminants contained in polluted 

sediments will be more easily transferred to the surrounding water. Smit et al. (2009) 

carried out a laboratory experiment where flood events were simulated in a reactor 

to estimate the desorption of dieldrin from field aged sediments. The authors 

concluded that the concentration gradient plays a major role in desorption, while 

mass transfer was kinetically hindered within the sediment particles.  

Riou et al. (2012) assessed the influence of the increase of salinity in an estuary, 

as a consequence of the severe droughts induced by climate change in presence of 

waterbone DTT in a Tilapia species. The experiment was conducted with young adults 
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of Sarotherodon melanotheron, hatched and grown in constantly aerated freshwater 

at 29°C. S. melantheron was reported to be very resistant to waterborne DDT 

contamination. However, it was brought clear evidence that this pesticide affects the 

gill multi-functionality at different salinities. Although it seemed very resistant to 

short-term waterborne DDT contamination, the resulting alterations of the gill issue, 

cells and enzymes, might affect longer term respiration, toxicant depuration, and/or 

osmoregulation in highly fluctuating salinities. 

In a recent investigation, Komprda et al. (2013) assessed the influence of climate 

and land use change on the potential re-emission of organochlorine pesticides (HCB 

and DDE, as the prevalent DDT metabolite) from background and agricultural soils of 

the Czech Republic. The studied region presented a relatively large portion of the land 

covered by forest (32.6%). Regarding the influence of temperature change on POP 

emissions, an increase of air temperature by 1°C resulted in an increase of the total 

yearly volatilization flux by approximately 7.8% and 8.5%, for HCB and DDE, 

respectively, in all land use types. Data about the influence of land use change on POP 

emissions showed that the arable-to-grassland scenario had a strong influence on 

volatilization fluxes, resulting in a decline of secondary emission of -7.5%, for both 

POPs, at all altitudes. These results showed that the potential increase of emissions 

associated with increased temperature under climate change can be completely 

neutralized by projected changes in land use. The study also indicated that an increase 

of 1°C in air temperature would produce an increase of 8% in the averaged total 

volatilization flux. However, this effect could be neutralized by a change of land use of 

10% of the arable lands to grassland or forest (Komprda et al., 2013). 

Land use aspects are highlighted as an important issue to be considered in future 

assessments of climate change impacts on POP fate and distribution. The first 

outcomes of EU ArcRisk project on human health impacts in the Arctic owing to 

climate-induced changes in contaminant cycling were reported by Pacyna et al. 

(2015). They highlighted the need to characterize better the primary and secondary 

sources of POPs, as well as to quantify current and future releases of POPs from these 

sources, for a better prediction of the environmental exposure to these contaminants. 

Furthermore, not only direct effects of climate change (e.g., changes in temperature, 

ice and snow cover, precipitation, wind speed and ocean currents) on contaminants 
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fate and behavior but also indirect effects (e.g., alterations in carbon cycling, 

catchment hydrology, land use, vegetation cover, etc.) should be considered. It has 

been stated that the climate change has the potential to impact on the usage patterns 

of chemicals (e.g. pesticides) through land-use change (Paul et al., 2012). For example, 

agricultural land use may be forced to migrate due to alterations in temperature, 

precipitation or sea level, which may indirectly change the amount and dose of 

chemicals applied in the field. 

 

Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) 

Dalla Valle et al. (2007) applied a dynamic multimedia model to selected POP 

congeners to simulate the effects of different climate change scenarios on their 

distribution and fluxes over the next 50 years in the Venice Lagoon (Italy). A level IV 

dynamic model (Mackay, 2001), considering five compartments (air, soil, sediment, 

water, and suspended particulate matter), was developed and applied to this area. 

2,3,7,8-tetrachlorodibenzofuran (2,3,7,8-TCDF) and 1,2,3,4,7,8-

hexachlorodibenzofuran (1,2,3,4,7,8-HxCDF) were the selected PCDD/F congeners. 

Three different climate change scenarios (A, B, C) were tested, in accordance to the 

climate change scenarios envisaged by the 2001 IPCC climate change assessment 

report. Potential differences of PCDD/F concentrations in sediments and suspended 

particulate matter were observed among the three scenarios, showing a factor of 

around two between final levels in the two extreme scenarios. In turn, water 

concentrations of PCDD/Fs decreased in the same way, independently of the climatic 

conditions. Modelling results suggested that although global warming may have the 

potential of reducing the environmental levels of these chemicals, probably it 

enhances their mobility, and hence, their potential for long-range atmospheric 

transport. 

Focused on the water compartment, Carere et al. (2011) predicted the effects of 

climate change on the chemical quality in lakes species. The results showed an 

enhanced capacity of bioaccumulation of PCDD/Fs and dioxin-like PCBs (dl-PCBs) in an 

expected warming world. Thus, concentrations of POPs in fishes showed significant 

temperature correlations. An important aspect of POP cycling in these environments 

concerned the extent to which these pollutants may be remitted to atmosphere in the 
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snow/ice pack, or percolated to soils and water bodies, particularly during snow melt. 

Temperature was found to be an important driver to the global cycling of POPs, 

through its influence on emissions from primary and secondary sources, gas-particle 

distributions, reaction rates, air-surface exchange, and global transport. 

Regarding freshwater, Bogdal et al. (2009) hypothesized about a possible release 

of legacy pollutants from melting Alpine glaciers and their relevance. Two sediment 

cores retrieved in 2006 from Lake Oberaar (Switzerland) were extracted and further 

analyzed for PCDD/Fs, PCBs, DDT and their transformation products. The results 

revealed a consistent trend for all persistent organochlorinated compounds, showing 

a peak in 70s and an increase since 2000. In a subsequent investigation performed by 

the same research group, the release of POPs from Alpine glaciers was assessed in 

Lake Oberaar (Switzerland) by using a dynamic multimedia mass balance model 

(Bogdal et al., 2010). It was concluded that the effects of the climate warming will 

accelerate the release of previously deposited POPs. 

The results of one of the most meaningful studies on climate change effects over 

the fate and transport of PCDD/Fs were recently reported (Chi et al., 2013). 

Specifically, extreme weather events (winter monsoon, southeast biomass burning, 

and tropical cyclone -typhoon-) were explored in Taiwan. During the winter monsoon 

period, the quantity of PCDD/Fs absorbed onto air total suspended particles was 

found to increase. Therefore, the monsoon was not only found to bring cold air, but 

also to transport air pollutants and dust over long distances, from mainland China to 

Taiwan. The authors demonstrated the effect of typhoon events on the long-term 

remobilization of PCDD/Fs, as well as supported the hypothesis that such events 

would have the potential to remobilize previously deposited pollutants. 

Consequently, climate change will alter the primary and secondary release of 

PCDD/Fs, mainly because of higher wind speeds. Stronger air circulation will increase 

the airborne transport to downwind locations (e.g., Taiwan) from the main emission 

areas of the Asian continent. The possibility of an enhanced frequency and intensity 

of extreme weather events will also lead to increased release and a higher risk of 

remobilization of PCDD/Fs from soils, sediments, and other reservoirs of PCDD/Fs. 
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Polychlorinated biphenyls (PCBs) 

In addition to PCDD/Fs, Dalla Valle et al. (2007) also reported the reduction of the 

environmental concentrations of PCB-118 and PCB-180 congeners in a moderate 

climate change scenario. Concentration changes of POPs in sediments, water and 

suspended particulate matter of the Venice Lagoon (Italy), between 2000 and 2050, 

were simulated and compared to a baseline situation. The authors noted that 

environmental concentrations might differ by a factor of two in a moderate climate 

change scenario, compared to a situation with stable climate from 2000 to 2050. 

However, these results also suggested that global warming might have the potential 

of reducing the environmental levels of these chemicals, enhancing their mobility and 

their potential for long-range atmospheric transport. 

Wöhrnschimmel et al. (2013) applied a global-scale multimedia fate model to 

analyze and quantify the impact of climate change on the emissions and fate of POPs, 

and their transport to the Arctic, being PCB-153 the selected pollutant. Based on the 

model, there will be an atmospheric reduction from 5 to 10-3 pg/m3 between 1980 and 

2100.  According to the simulations, in ocean waters, PCB-153 concentration will be 

also decreased in 2100 with respect to data of 1980. Recently, Cabrerizo et al. (2013) 

assessed how changes in soil biogeochemistry driven by climate perturbations may 

increase to a larger degree the soil fugacity capacity of POPs. The potential 

perturbations of climate change on the remobilization and reservoirs of PCBs in the 

Antarctica, were explored. A climate change related increase of 1°C in air temperature 

was estimated to increase the Antarctic atmospheric burdens of PCBs by 21-45%. In 

addition, a concurrent increase of 0.5% of solid organic matter will counteract the 

influence of warming by reducing the POP fugacity in soil. A 1°C increase in Antarctic 

temperatures will induce an increase of soil-vegetation organic carbon and associated 

POP pools by 25%, becoming a net sink of POPs. Therefore, up to 70 times more POPs 

than the amount remobilized to the atmosphere, will be trapped. 

Lamon et al. (2012) developed and applied a Level III fugacity model to estimate 

the current mass balance of PCBs in the Adriatic Sea, and to examine the effects of 

climate change on the distribution of these pollutants. The model, which 

differentiated 3 bulk compartments (sediment, coastal water, and atmosphere), 

assessed the influence in the variation of up to 8 environmental parameters on the 
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environmental fate and transport of PCBs 52, 138 and 153. Two scenarios were 

considered: 20CE (1990 as 20th Century Scenario) and A1B (2100, as forecast under 

conditions described in the Special Report on Emission Scenarios by IPCC). Modeled 

fugacities of PCBs in air, water and sediments of the Adriatic Sea were in good 

agreement with experimental observations. Under the A1B climate scenario, modeled 

fugacities resulted to be higher because higher temperatures reduce the fugacity 

capacity of chemicals in air, water and sediments, and because diffusive sources to air 

are stronger. 

Ma and Cao (2010) also quantified the perturbations of PCBs (28 and 153), in 

addition to HCHs and HCB, as result of the precipitation decrease related to climate 

change. PCB-28 exhibited a trend similar to that of α-HCH, showing a concentration 

increase of 2%.  

Carrie et al. (2010) assessed the influence of climate change on the 

concentrations of PCBs in Mackenzie River (Canada) burbot (Lota lota), in which PCB 

levels were analyzed. Lipid-corrected concentrations over the period 1988-2008 for 

Σhexa-PCB and Σhepta-PCB showed a progressive increase with a minimum in early 

2000, and a maximum in 2008. A strong temporal correlation between increasing 

primary productivity and PCBs in burbot was found, suggesting that warming 

temperatures and reduced ice cover might lead to an increased exposure to these 

contaminants in high trophic level Arctic freshwater biota. 

Bogdal et al. (2009) also measured PCBs, which started to be globally produced in 

the 1930s and dramatically increased in the 1960s. PCBs were banned in Switzerland 

for open applications in 1972, while in 1986 a complete ban for all applications was 

established. However, PCB fluxes clearly increased again from 1990s to 2005. The 

same research group also considered PCBs in the forecast of POP melting release in 

an expected warming world (Bogdal et al., 2010). The amount of PCBs incorporated 

into the glacier between 1930-2006 was 335 g, following an increasing temporal trend. 

To assess the bioaccumulation of PCBs, Borgå et al. (2010) applied a 

bioaccumulation model to calculate the effect of two different climate change 

scenarios on the pelagic marine food web of the Artic. Based on the results of this 

group of pollutants, PCB-52 showed intermediate changes in the bioaccumulation 

compared to γ-HCH and PCB-153. Due to the temperature effect on Kow and Koa, there 
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was a higher reduction in the bioaccumulation of PCB-52 than that of PCB-153. This 

was a consequence of the temperature effect on growth rate, which was less 

influential for PCB-52 than for PCB-153. The former congener showed the largest 

reduction in bioaccumulation, and a large spread in direction and magnitude of 

influential parameters and processes. 

Ng and Gray (2011) coupled bioenergetic and bioaccumulation models to 

investigate the biological and chemical effects of climate change into three Great 

Lakes (US and Canada) fish species (round gobies, mottled sculpin, and lake trout). The 

accumulation of PCBs was calculated under four climate scenarios for Lake Erie and 

Lake Superior scenarios. Round goby and lake trouts showed the highest PCB 

concentration in Lake Superior under a 100-year projection (temperature increase of 

5°C). In turn, mottled sculpin did not show an important distinction in concentration 

terms between scenarios. In turn, Elliott et al. (2012) also reported temporal trends 

for PCB concentration in osprey eggs in different mountainous watersheds in western 

Canada, being coincident with some modeled predictions of release from melting 

glaciers. ƩPCB concentrations in eggs and plasma were up to 1420 and 28.2 ng/g, 

respectively. Similarly to other POPs, it was concluded that there would be lower 

levels of PCBs in relatively small lakes draining areas of large watersheds in the future. 

Recently, Hansen et al. (2015) applied The Danish Eulerian Hemispheric Model 

(DEHM) to investigate how projected climate changes will affect the atmospheric 

transport of 13 POPs -10 PCB congeners and 3 HCHs- to the Arctic and their 

environmental fate within that Ocean. Under the applied climate and emission 

scenarios, the total mass of all compounds was predicted to be up to 55% lower across 

the Northern Hemisphere, at the end of the 2090s, than in the 1990s. The mass of 

HCHs within the Arctic was predicted to be up to 38% higher, while the change in mass 

of the PCBs was predicted to range from 38% lower to 17% higher, depending on the 

congener and the applied initial environmental concentrations. 

MacLeod et al. (2005) developed the Berkeley-Trent Global model (BETR-Global) 

and evaluated its performance in describing atmospheric concentrations of individual 

PCB congeners and the dependence of these concentrations on large-scale climate 

variability. The role of the variability in global-scale climate conditions was proved to 

be very important. More specifically, they estimated that the maximum variability in 
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atmospheric PCB concentrations attributable to the North Atlantic Oscillation 

variability is approximately a factor of 2. In contrast, Kong et al. (2013) reported that 

the uncertainty in chemical properties (e.g., degradation half-life), and not the 

uncertainty associated to the climate change, dominates the variance of modelled 

absolute fate of POPs. These findings were reported when evaluating the influence of 

input data to multimedia models, on the modelled fate of 6 PCB congeners under 

various climate and emission scenarios. Long-term average environmental 

concentrations of PCBs were forecasted to change in a factor of 2, when comparing 

present conditions with those estimated for the period 2080-2099 (Kong et al., 2013). 

In another investigation (Kong et al., 2014), the same group of researchers calculated 

the steady-state concentrations of hypothetical perfectly persistent chemicals in the 

Baltic Sea water column under two alternative climate change scenarios (IPCC A2 and 

B2), being compared to results for a baseline climate scenario. The application of the 

POPCYCLING-Baltic multimedia chemical fate model highlighted temperature as the 

most influential individual climate parameter, being more relevant than precipitation, 

wind speed and particulate organic carbon.  

In a modelling study of the concentrations of PCB-153 in the North Sea during the 

21st century, O’Driscoll et al. (2014) found that the total mass of PCB-153 in sediments 

will decrease because of degradation, erosion and subsequent volatilization during 

storms. In contrast to γ-HCH, which was identified as a net depositional compound at 

the North Sea surface, PCB-153 was noted to be “volatilizational”. However, the 

influence of the climate change on PCB-153 was suggested to be small, while trends 

in emissions from primary and secondary sources will remain as the key driver. In turn, 

the net export of PCB-153 out of the Artic was suggested to increase under future 

climate conditions, according to the estimations of Octaviani et al. (2015) when 

studying the long-term atmospheric cycling and fate of POPs. These data contrasted 

with those found for DDT, for which a trend of decreasing net Arctic import would 

reverse to an increasing trend, 100 years after peak emission (Octaviani et al., 2015). 

Surface exchange (water/air and soil/air) is much more important for the cycling of 

PCB-153 than that of PCB-28 (because of short atmospheric lifetimes) and of DDT 

(because of very low volatility). 
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Polycyclic aromatic hydrocarbons (PAHs) 

The number of investigations focused on the effect of climate change on PAHs is 

very scarce, with a certainly limited number of approaches. The only two areas where 

the climate change impact on the fate of PAHs has been studied, are South Korea and 

the Arctic. Cai et al. (2014) quantitatively assessed the predicted impacts of the 

climate change on the transport and fate of PAHs within and across environmental 

media in South Korea. Simulations were conducted for the period from 2000 to 2049 

under the A1B scenario, being compared with a non-climate change scenario. Similarly 

to recent investigations on other POPs (Gouin et al., 2013; Kong et al., 2013), changes 

within a factor of 2 for the average concentration of PAHs in air, soil and water, were 

estimated. Degradation rate would play a leading role in the change of PAH levels in 

soils, while in water, runoff and degradation would be the key processes. 

On the other hand, the effects of PAH emissions for the period 2000-2050 and 

the climate change on the atmospheric transport of three PAHs (phenanthrene, 

pyrene, and benzo(a)pyrene) were investigated by Friedman et al. (2014). The GEOS-

Chem model, coupled to meteorology from a general circulation model, was used. The 

study was focused on impacts to Northern hemisphere midlatitudes and the Arctic. A 

small 2050 “climate penalty” for volatile PAHs, and “climate benefit” for particle-

bound PAHs, was estimated. Deposition and surface-to-air fluxes of the 3 analyzed 

PAHs were suggested to be the critical factors for the increase or decrease of 

environmental PAHs in air.  

In another study not entirely focused on the links between climate change and 

PAHs, Brinkmann et al. (2010) assessed how flood events will affect rainbow trout as 

a consequence of biomarker cascade, after exposure to PAH-contaminated sediment 

suspensions. The main motivation was the fact that temperatures of German rivers 

frequently exceed 25°C during summer, because of the recent changes in climate. 

Effects of re-suspension of sediments on biota under elevated temperature regimes 

are likely to differ from those under lower temperature regimes. On the other hand, 

Nadal et al. (2006) assessed the joint impact of UV-B radiation and temperature on 

the photodegradation of PAHs. This approach was experimentally performed by 

means of comparison of two different environments: Atlantic (Lancaster, UK) and 

Mediterranean (Tarragona, Catalonia, Spain) climatic conditions. A significant faster 
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photodegradation rates were detected, specially for light PAHs, suggesting some kind 

of synergistic effect when both temperature and UV-B dose increased. This synergism 

might have a great implication on the long-range transport of environmental organic 

pollutants, taking into account that low-latitude areas are the hottest and most 

irradiated of the planet. 

 

CONCLUSIONS 

Legacy POPs (pesticides, PCBs and PCDD/Fs) are the compounds to which 

researchers have paid more attention, when studying the influence of climate change 

on their environmental behavior. In general terms, it is estimated that the global 

change will alter the environmental concentrations of POPs within a factor of 2-3. In 

turn, information on PAHs is particularly scarce, even being likely to be significantly 

affected by the climate change. Moreover, few investigations have focused on PAHs 

and metabolites, whose incidence may be even higher than parent compounds. 

Furthermore, data on the effect of climate change on the environmental fate of 

emerging contaminants, such as polybrominated diphenyl ethers (PBDEs) and 

perfluoroalkyl substances (PFASs), are not currently available.  Consequently, more 

information is clearly necessary (Pacyna et al., 2015). 

Nonetheless, global modeling studies do not agree on whether climate change 

acts to reduce or increase environmental concentrations of POPs in the Arctic (Hansen 

et al., 2015), the area where the linking between the global change and the occurrence 

of POPs has been more extensively studied in recent years. Furthermore, as modeling 

uncertainty plays a key role, interpretation or speculation from data coming from the 

application of multimedia environmental fate models should be treated with caution 

(Gouin et al., 2013). Although very preliminary, a number of studies have remarked 

the effect of melting glaciers, as well as some extreme events, such as floods and 

droughts, on the remobilization and bioaccumulation of POPs. The influence of 

temperature increase and precipitation decrease, on the fate and transport of POPs, 

has been also investigated. However, studies considering the expected increase of UV-

B radiation as a consequence of ozone layer depletion have not been found. Sensitive 

areas, such as the Arctic, the Alps or the Mediterranean, should be particularly 

considered, as they are more exposed to variations resulting of the global warming. 
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Furthermore, the generation and toxicity of byproducts, as well as their potential 

interaction, deserves further attention. Finally, the lack of studies focused on 

assessing potential changes of health risks associated to the exposure to POPs, as a 

consequence of the climate change, needs also to be addressed. 
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DISCUSSION CHAPTER 1 

In recent years, the impact of climate change on the concentrations of POPs has 

become a topic of notable concern. Changes in the environmental conditions such as 

the increase of the average temperature or the UV-B radiation, are likely to influence 

the fate and behaviour of POPs, ultimately affecting human exposure. In addition, the 

way that climate especially can change biomagnification and exposure of wildlife and 

humans is via changes in the food web dynamics. Legacy POPs (pesticides, PCBs and 

PCDD/Fs) are the compounds to which researchers have paid more attention when 

studying the influence of climate change on their environmental behavior. In general 

terms, it is estimated that the global change will alter the environmental 

concentrations of POPs within a factor of 2-3. However, the number of investigations 

aimed at estimating the impact of climate change on the environmental levels of PAHs 

is scarce. Because of PAHs are potentially sensitive to sunlight, the impact of climate 

change on the fate and behaviour of PAHs deserves further attention. 
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ABSTRACT 

The photodegradation of polycyclic aromatic hydrocarbons (PAHs) in two typical 

Mediterranean soils, either coarse- or fine- textured, was here investigated. Soil 

samples, spiked with the 16 US EPA priority PAHs, were incubated in a climate 

chamber at stable conditions of temperature (20°C) and light (9.6 W m-2) for 28 days, 

simulating a climate change base scenario. PAH concentrations in soils were analyzed 

throughout the experiment, and correlated with data obtained by means of Microtox® 

ecotoxicity test. Photodegradation was found to be dependent on exposure time, 

molecular weight of each hydrocarbon, and soil texture. Fine-textured soil was able to 

enhance sorption, being PAHs more photodegraded than in coarse-textured soil. 

According to the EC50 values reported by Microtox®, a higher detoxification was 

observed in fine-textured soil, being correlated with the outcomes of the analytical 

study. Significant photodegradation rates were detected for a number of PAHs, 

namely phenanthrene, anthracene, benzo(a)pyrene, and indeno(123-cd)pyrene. 

Benzo(a)pyrene, commonly used as an indicator for PAH pollution, was completely 

removed after 7 days of light exposure. In addition to the PAH chemical analysis and 

the ecotoxicity tests, a hydrogen isotope analysis of benzo(a)pyrene was also carried 

out. The degradation of this specific compound was associated to a high enrichment 

in 2H, obtaining a maximum δ2H isotopic shift of +232‰. This strong isotopic effect 

observed in benzo(a)pyrene suggests that compound-specific isotope analysis (CSIA) 

may be a powerful tool to monitor in situ degradation of PAHs. Moreover, hydrogen 

isotopes of benzo(a)pyrene evidenced a degradation process of unknown origin 

occurring in the darkness.  

 

Keywords: polycyclic aromatic hydrocarbons (PAHs), photodegradation, soil, 

ecotoxicity, hydrogen isotopes.  
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INTRODUCTION 

Polycyclic aromatic hydrocarbons (PAHs) are a large group of semi-volatile 

organic compounds composed of two or more fused aromatic rings. Although these 

chemicals are mostly released to air, soil is considered as one of the major sinks of 

atmospheric PAHs (Nadal et al., 2011; Wang et al., 2014), being deposited via dry and 

wet processes (Nadal et al., 2004). PAH fate in the environment includes volatilization, 

adsorption on soil particles, leaching, microbial degradation, chemical oxidation, and 

photo-oxidation (Hartiash and Kaushik, 2009). Photodegradation is an important 

transformation pathway for most PAHs in the environment (Zhang et al., 2006), having 

been largely studied in water (Bertilsson and Widenfalk, 2002; de Bruyn et al., 2012; 

Fasnacht and Blough, 2003; García-Martínez et al., 2005; Jacobs et al., 2008; Jing et 

al., 2014; Luo et al., 2014; Rivas et al., 2000; Shemer and Linden, 2007; Singh et al., 

2013; Xia et al., 2009). In contrast, the knowledge regarding the photodegradation 

process of PAHs in soils is rather limited (Balmer et al., 2000; Frank et al., 2002; Gong 

et al., 2001; Xiaozhen et al., 2005). It has been reported that soil depth has an 

important role in the photodegradation of these chemicals, enhancing the resistance 

of PAHs to be photodegraded. In addition, temperature, soil particle size and humic 

acids also have a significant influence on photodegradation in soils under UV-B 

radiation (Zhang et al., 2010). Photodegradation of PAHs in soils has been shown to 

be not only limited by the light penetration capacity in soils, but also by its wavelength 

(Cavoski et al., 2007; Xiaozhen et al., 2005). Consequently, photodegradation depends 

on a number of variables, such as soil type, thickness of the soil layer, as well as light 

absorption spectrum of each compound (Zhang et al., 2010). This degradation process 

may play a key role on the fate of PAHs in areas such as the Mediterranean region, 

with high sunlight presence during the whole year. In turn, some PAH metabolites, 

which can even be more toxic than their parental compounds, may be generated 

during the degradation process. Overall, although PAH levels might be reduced in soils 

exposed to sunlight, toxicity may be increased (Huang et al., 1995; Mallakin et al., 

1999; McConkey et al., 1997). 

Compound-specific isotope analysis (CSIA) is a very valuable tool, which can be 

used to monitor in situ degradation processes of chemical pollutants, and as a source 

identification technique (Elsayed et al., 2014; Imfeld et al., 2014). CSIA is capable of 
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discriminating degradation from other attenuation processes naturally occurring in 

the environment,  that do not generate destruction of pollutants, such as dispersion, 

volatilization or sorption. CSIA is based on the isotopic effect produced during a 

degradation process, which is known as isotopic fractionation (Meckenstock et al., 

2004). This effect is based on the enrichment of heavy isotopes in the reacting 

compound, which is linked to the different strength of the bonds that contain heavy 

and light isotopes. Since nondestructive natural attenuation processes frequently do 

not entail significant isotope fractionation, a significant enrichment of the heavy 

isotope of organic pollutants confirms that a degradation process is occurring. 

Unfortunately, research on the hydrogen isotopic fractionation of PAHs during 

degradation is very scarce. To the best of our knowledge, the only precedent is the 

study of Bergmann et al. (2011), who reported a high hydrogen isotopic shift of 

naphthalene in two different microbial cultures. 

The present investigation aimed at assessing the photodegradation of 16 US EPA 

priority PAHs in two types of Mediterranean soils. Laboratory experiments were 

conducted in a climate chamber to simulate the current Mediterranean 

environmental conditions, keeping temperature and sunlight stable. Temporal 

changes of PAH concentrations and ecotoxicity levels were investigated, and jointly 

evaluated. Moreover, hydrogen isotopic analysis of benzo(a)pyrene, considered one 

of the most toxic PAHs and probably carcinogenic to humans (Aina et al., 2006), was 

complementarily performed to verify the findings. 

 

MATERIALS AND METHODS 

Soil characteristics 

Two common Mediterranean soils were selected to perform the 

photodegradation experiments. Physicochemical properties of both soils are given in 

Table 1. Soil samples were collected from the A horizon of remote areas of Catalonia 

(NE of Spain). The Arenosol soil, with granitic origin, is an acidic and coarse-textured 

soil that can be classified as Haplic Arenosol, according to the (FAO-UNESCO, 1998). It 

is commonly used for ecotoxicity tests in terrestrial environments. In turn, Regosol soil 

is an alkaline calcareous fine-textured soil formed of sedimentary materials, being 
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classified as Calcaric Regosol (FAO-UNESCO, 1998). Both soils are characterized by 

owing a low organic matter content (Table 1). In order to quantify titanium, iron, 

aluminum and manganese oxides, ammonium oxalate was used as extractant, 

according to the method described by Drees and Ulery (2008). 

 

Experimental design 

Photodegradation experiments were carried out in a Binder KBWF 240 climate 

chamber (Binder GmbH, Tuttlingen, Germany) with constant lighting, temperature 

and humidity. Temperature and daylight were set at 20°C and 9.6 W m-2, respectively, 

as current environmental conditions in the Mediterranean area. Because 

photodegradation reactions occur mainly in the surface, soil was air-dried. 

Consequently, to avoid the presence of water and any potentially associated 

biodegradation process, humidity was kept constant at 40%. Ten grams of air-dried 

soil were deployed in uncovered glass Petri dishes forming a thick layer of 1 mm of 

soil. A stock solution containing 16 US EPA priority PAHs at 2000 µg mL-1 in 

dichloromethane:benzene was provided by Supelco® (99.0% purity, Bellefonte, PA, 

USA). Each sample was 10-times spiked with 25 µL of this stock solution diluted with 

an hexane/dichloromethane (1:1) mixture (Scharlau Chemie S.A., Barcelona, Spain; 

hexane: 96% purity, dichloromethane: 99.5% of purity) to an individual PAH 

concentration of 100 µg mL-1, leading to a Σ16 PAHs concentration of 40 µg g-1 in soil. 

Afterwards, samples were incubated inside the climate chamber. In order to 

differentiate concentration decreases due to slow sorption and/or volatilization 

processes from photodegradation, a number of dark control samples covered with 

aluminum foil were exposed to the same environmental conditions. Duplicates of 

irradiated samples and dark controls of each soil were removed from the climate 

chamber after 1, 2, 3, 4, 5, 6, 7, 14, and 28 days. To verify the lack of any biotic 

reactions, before the experiment was initiated, soils were incubated at the same 

conditions in manometric respirometers (Oxitop®, WTW). Negligible oxygen 

consumption was observed during the incubation period, discarding biotic processes. 

Ten grams of soil without any spiking of PAHs were used as blank soil samples. 
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Table 1. Physico-chemical properties of the selected Mediterranean soils. 

 Arenosol soil Regosol soil 

pH 5.8 8.0 

Electrical conductivity at 25°C (dS m-1)a 0.06 0.13 

Organic C (%)b 0.71 1.70 

Total Kjeldahl N (%) 0.07 0.18 

C/N 10.1 9.44 

CaCO3 (%) 0.10 23.20 

Texture: sand/silt/clay (%)c 74.1/14.0/11.9 43.4/22.3/34.3 

Cation exchange capacity (meq 100 g-1)d 12.60 18.23 

Exchangeable calcium (mg CaO kg-1)d 4.80 12.55 

TiO2 (mg kg-1) 429 41.3 

MnO2 (mg kg-1) 573 648 

Al2O3 (mg kg-1) 3008 6070 

Fe2O3 (mg kg-1)  6686 13492 

Analytical methods: aAqueous extracts 1:2.5; bOxidizable C by Walkley-Black method; cRobinson 
Pipette method; d1 N ammonium acetate extracts. 

 

PAH analysis 

Prior to analysis, PAHs were extracted from soil samples by using 30 mL of a 

mixture of hexane/dichloromethane (1:1) (Scharlau Chemie S.A., Barcelona) in a 

Milestone Start E Microwave Extraction System (Milestone s.r.l., Sorisole, Italy), 

according to the US EPA method 3546. Subsequently, samples were filtered, 

concentrated to 1 mL and further evaporated with a gentle stream of purified N2. Since 

any interference with target analytes was found, cleanup was discarded in order to 

achieve suitable recoveries for low molecular weight PAHs. Regarding the quality 

control, d10-fluorene (98.3% purity, Supelco®) was used as surrogate, while d8-

naphthalene (99.8% purity, Supelco®) and d12-benzo(a)pyrene (98.5% purity, 

Supelco®) were used as internal standards. Dried samples were dissolved with a 

solution of internal standards at 50 µg mL-1 concentration in hexane/dichloromethane 

(1:1) mixture (Scharlau Chemie S.A., 99.5% of purity). Blank soil samples were also 

extracted following the same procedure in order to assure that collected soils were 

PAH-free. All samples were analyzed by means of gas chromatography-mass 

spectrometry (GC-MS) in accordance to the US EPA method 8270. A Hewlett-Packard 

G1099A/MSD5973 equipment with an HP-5MS 5% Phenyl Methyl Siloxane column (20 

m x 0.25 mm x 0.25 µm) was used to quantify the content of the 16 PAHs under study 
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in soil. The final experimental conditions were: 1 µL injection at 310°C in split-splitless, 

and pulsed splitless mode at 35 psi (for 0.05 min). Transfer line temperature was set 

at 280°C. Ultra-pure (99.9999%) helium was used as carrier gas, at a total flow rate of 

1.4 mL min-1. The GC oven temperature started at 80°C, being consecutively increased 

at 15°C min-1 until 180°C, at 8°C min-1 until 250°C, and at 3°C min-1 up to 300°C. At the 

end of each ramp, temperature was held for 1 min. Finally, an increase of 20°C min-1 

was executed until reaching 320°C, holding this temperature for 6 min. The detector 

was set to quantify the analytes covering specific masses ranging from 40 to 600 

atomic mass units. The mass spectrometer and source temperatures were 150°C and 

230°C, respectively. Samples were quantified using a six-point calibration curve (5, 10, 

25, 50, 60, 80 µg mL-1). Sample preparation for the PAH analyses was performed at 

the “Laboratory of Environmental Engineering” of the Universitat Rovira i Virgili (URV), 

while concentrations were determined at the “Servei de Recursos Científics i Tècnics” 

of the same institution (SRCiT-URV). 

 

Statistical analysis 

Results were statistically evaluated using XLSTAT Statistical Software for Excel. 

Repeated measures of the ANOVA were used to state significant differences between 

irradiated and non-irradiated samples through the time. A regression analysis was also 

executed to study the relationship between concentrations and time. Probability 

levels were considered as statistically significant at p<0.05. 

  

Ecotoxicological tests 

Soils were extracted by using an ultrasonic bath mixture (1:1) of n-hexane 95% 

(UV-IR-HPLC) PAI-ACS (Panreac, Castellar del Vallès, Barcelona, Spain) and acetone 

(Reag. Ph. Eur) PA-ACS-ISO (Panreac), following the US EPA method 3550C. Blank soil 

samples were simultaneously extracted following the same procedure. Afterwards, 

soil extracts were filtered, and the solvent was completely dried with a rotatory 

evaporator, being finally reconstituted with 2 mL of dimethyl sulfoxide (UV-IR-HPLC-

GPC) to a concentration of 2-4% in Microtox® diluent (2% NaCl of aqueous solution). 

Ecotoxicity values were quantified by means of the Microtox® 500 Analyser (SDI, USA), 
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following the ISO 11348-1:2007 norm. The bioluminescent bacteria V. fischeri was 

used to measure the inhibition of light emission when organisms were exposed to soil 

extract samples. EC50 values were estimated as the sample concentration causing 50% 

of light inhibition on the test organisms (Roig et al., 2013). Sample preparation and 

Microtox® test were performed at the “Laboratory of Environmental Engineering” of 

the URV. 

 

Hydrogen isotope analysis of benzo(a)pyrene 

For hydrogen isotope analysis, soil samples were also extracted with the same 

Milestone Start E Microwave Extraction System (Milestone s.r.l., Sorisole, Italy), 

according to the US EPA method 3546. The extract was treated by following the same 

procedure used to analyze PAH levels. Once the extract was completely dried, it was 

dissolved in 62.5 µL of dichloromethane (99.5%, Scharlau Chemie S.A.) free of any 

deuterated PAHs that could interfere in δ2H analysis. The hydrogen isotope 

composition of benzo(a)pyrene was analyzed using a gas chromatography-pyrolysis-

isotope ratio mass spectrometry system (GC-Pyr-IRMS) consisting of a Trace GC Ultra 

equiped with a split/splitless injector, coupled to a Delta V Advantage IRMS (Thermo 

Scientific GmbH, Bremen, Germany), through a combustion interface.  

The GC/Pyr/IRMS system was equipped with an Agilent Technologies DB-1 

column (30 m × 0.25 mm, 1.0 μm film thickness; Santa Clara, CA, USA). The oven 

temperature program was kept at 50°C for 1 min, heated again until 160°C at a rate 

of 25°C min-1, then up to 320°C at a rate of 3°C min-1, being finally held at 320°C for 20 

min. The injector was set to splitless mode at a temperature of 280°C. Helium was 

used as a carrier gas with a gas flow rate of 1.0 mL min-1. 

Hydrogen isotope ratios are reported relative to an international standard 

(Vienna Standard Mean Ocean Water, VSMOW), using the delta notation: 

 δ2H (‰) = (R/(Rstd - 1)) x 1000 

where R and Rstd are the isotope ratios (H2/H1) of the sample and the standard, 

respectively. All the measurements were run in duplicate, and the standard deviations 

of the δ2H values obtained were below ±10‰. The analytical system was daily verified 

using PAH control standards with known hydrogen isotope ratios, which were 

previously determined using a Carlo-Erba 1108 (Carlo-Erba, Milano, Italy) elemental 
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analyzer (EA) coupled in continuous flow to a Delta Plus XP isotope ratio mass 

spectrometer (Thermo Fisher Scientific, Bremen, Germany). The samples were 

prepared for the isotopic analyses in the “Mineralogia Aplicada i Geoquímica de 

Fluids” Research Group laboratory and analyzed at the “Centres Científics i 

Tecnològics” of the Universitat de Barcelona (CCiT-UB).  

 

RESULTS AND DISCUSSION 

Photodegradation of PAHs in soils 

The trends in the levels of naphthalene, phenanthrene, pyrene, benzo(a)pyrene, 

and benzo(ghi)perylene in Arenosol and Regosol soils, are depicted in Fig. 1. Those 

compounds were selected as representatives of 2-, 3-, 4-, 5- and 6-ringed PAHs, 

respectively. The results for other PAHs are shown in Annex 1 (Fig. S1).  

A different behavior for the 16 PAHs in coarse- and fine-textured soils over the 

time was observed, leading to different photodegradation rates, which were 

calculated considering the difference between irradiated samples and dark controls 

(Table 2). Statistical significances for the different exponential and linear rates are 

shown in Table 3. Three main processes might be related to the concentration 

decreases: volatilization (Wang et al., 2015), sorption (Liu et al., 2007; Zhang et al., 

2014), and photodegradation (EL-Saeid et al., 2015). However, the contribution of 

each process was different according to the physicochemical properties of each 

compound (SI, Table S1), as well as to the texture of each soil. In general terms, higher 

photodegradation rates were noted in some compounds for fine-textured soil, when 

comparing irradiated samples and dark controls. As expected, the lowest PAH 

recoveries were found for the most volatile compounds (naphthalene, 

acenaphthylene and acenaphthene). PAH recoveries 1 h after soil contamination were 

found to be higher in fine-textured Regosol soil (14%-127%) than in heterogeneous 

coarse-textured Arenosol soil (7%-92%). The latter has lower organic matter content, 

as well as a lower amount of fine fraction, causing a weaker retention of PAHs.  
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Fig. 1. Concentration of various PAHs in irradiated and dark control soil samples in Arenosol soil 
(left) and fine-textured Regosol soil (right). 
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Volatilization was probably the most significant process for 2- and 3-ringed PAHs. 

No differences of naphthalene concentrations were found between irradiated and 

dark control samples, indicating that naphthalene was not photodegraded in any soil, 

either Arenosol or Regosol. Because of its high vapor pressure, the decreasing content 

of naphthalene (85%) observed during the first hour after being spiked (SI, Table S1) 

could be related to volatilization processes (Liu et al., 2011). Similar results were also 

obtained for acenaphthylene, being 80% decreased in the same period of time 

elapsed. Regarding acenaphthene, similar and constant concentrations were noted 

for irradiated and dark control samples over the time, with slight decreasing rates in 

Arenosol and Regosol soils (1.5% and 2%, respectively). Consequently, a significant 

decrease of the concentration of this compound was not observed (p>0.05), indicating 

that photodegradation did not occur. 

Fluorene, phenanthrene, anthracene and fluoranthene showed higher decreasing 

concentration rates in Regosol than in Arenosol soil. In Regosol soil, phenantrene and 

anthracene exhibited photodegradation rates of 33% and 40%, respectively, after 28 

days of light exposure, being the differences between controls and irradiated samples 

statistically significant after 2 days.   

In Arenosol soil, pyrene, benzo(a)anthracene, chrysene and 

benzo(b+k)fluoranthene kept their concentrations constant in both irradiated samples 

and dark controls, suggesting lack of photodegradation. In contrast, decreasing 

concentrations of the same 4-ringed PAHs were found in fine-textured Regosol soil. 

Decreasing rates were up to 30% for these compounds at the end of the experiment. 

In turn, pyrene concentration was only slightly decreased (17%) over the experiment. 

This ratio is 10% lower than that reported by (Zhang et al., 2010) for pyrene in soil 

samples irradiated using UV lamps with a wavelength of 254 nm. However, no 

significant differences were noted in the current study between irradiated and control 

samples (p>0.05).  

Benzo(a)pyrene was sorbed to soil during the first day according to the fast 

concentration decrease, in both soils and both irradiated and non-irradiated samples. 

A decreased rate of 23% was estimated in coarse-textured Arenosol soil, which is in 

agreement with the findings of Zhang et al. (2006). In turn, higher rates were observed 

in fine-textured Regosol soil, showing a complete removal of benzo(a)pyrene after 7 
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days of incubation. Zhang et al. (2008) reported that titanium dioxide (TiO2) under UV 

light, accelerates the photodegradation process of phenanthrene, pyrene and 

benzo(a)pyrene on surface soil, being benzo(a)pyrene the most quickly degraded. 

Although the TiO2 content in fine-textured Regosol soil is lower than that in Arenosol 

soil, the higher content of other photocatalysts (e.g., Fe2O3, Al2O3, MnO2, or TiO2) in 

the fine-textured soil, as well as the higher fine fraction due to its clay content, might 

be responsible of this complete degradation (Gupta and Gupta, 2015; Zhang et al., 

2006; Zhao et al., 2004).  

 

Table 2. Photodegradation rates (%) of the 16 PAHs under study in Arenosol and Regosol soils. 

 Arenosol soil Regosol soil 

Naphthalene 0 0 

Acenaphthylene 0 0 

Acenaphthene 1.5 2 

Fluorene 3 9.5 

Phenanthrene 11.2 33.2 

Anthracene 19.7 39.8 

Fluoranthene 0 12.5 

Pyrene 0 17.1 

Benzo(a)anthracene + chrysene 0 30 

Benzo(b+k)fluoranthene 0 30 

Benzo(a)pyrene 23 4.9* 

Benzo(ghi)perylene 3.6 24.6 

Dibenzo(ah)anthracene 2 28.3 

Indeno(123-cd)pyrene 11.7 68.9 

*completely degraded after 7 days of light exposure. 

As a consequence of the high constant concentrations in irradiated samples and 

dark controls, it can be confirmed that dibenzo(ah)anthracene tended to be less 

adsorbed than other PAHs in both soils, since concentrations in dark controls were 

constant over the experiment. This compound seemed to suffer a slight 

photodegradation in the coarse-textured soil, while the degradation rate was 

substantially higher in fine-textured soil (<5% and 28%, respectively) over the 

experiment. After 28 days of exposure, only 12% of the indeno(123-cd)pyrene was 

photodegraded in Arenosol soil, while up to 69% was removed in fine-textured 

Regosol soil. Benzo(ghi)perylene was adsorbed more quickly in the coarsed soil, 
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finding a slightly higher decrease of its concentration in dark controls over the 

experiment when comparing to dibenzo(ah)anthracene. The photodegradation of 

benzo(ghi)perylene started in the 14th day of exposure, being the photodegradation 

rate <5% after 28 days. Contrastingly, this PAH was less adsorbed in Regosol soil, 

where a photodegradation of up to 25% was noted at the end of the experiment.  

Phenantrene, pyrene, benzo(a)pyrene and benzo(ghi)perylene showed a 

concentration decrease in dark conditions in Arenosol soil, indicating that unknown 

degradation processes, other than photodegradation, could be also occurring in the 

dark conditions for this type of soil. In contrast, in the Regosol soil, these same 

compounds showed constant concentrations in dark conditions, being therefore 

different from the levels observed under light conditions. 

 

Table 3. Statistical significance (p) of the regression associated to the photodegradation of 
PAHs.  

Compound Arenosol soil Regosol soil 

 regression p regression p 

Naphthalene exponential 0.277 exponential 0.955 

Acenaphthylene exponential 0.571 

 

exponential 0.023 

Acenaphthene exponential 0.005 exponential <0.0001 

Fluorene exponential 0.006 exponential <0.0001 

Phenanthrene exponential <0.0001 exponential <0.0001 

Anthracene exponential <0.0001 exponential <0.0001 

Fluoranthene exponential 0.548 exponential 0.152 

Pyrene exponential 0.06 linear 0.134 

Benzo(a)anthracene + 

chrysene 

exponential 0.137 linear 0.095 

Benzo(b+k)fluoranthene exponential 0.039 linear 0.454 

Benzo(a)pyrene exponential 0.017 exponential 0.114 

Benzo(ghi)perylene exponential 0.409 exponential 0.120 

Dibenzo(ah)anthracene exponential 0.058 exponential 0.131 

Indeno(123-cd)pyrene linear 0.289 exponential 0.004 

In bold, statistically significant regression. 
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Focusing on the differences between soil textures, our findings agree with those 

previously reported by Xiaozhen et al. (2005). These authors found that the photolysis 

rate of antrazine and the photolytic depth increased gradually from sand through silt 

to clay. Therefore, photochemical reactions may be accelerated when soil particles 

are smaller. This is likely related to the increase of the surface area per mass, hence 

showing a greater catalytic capability. By contrast, Zhang et al. (2010) found that the 

increase of soil particle size allows a higher scattering and permeation of light, 

therefore speeding up any photodegradation process. It must be stated that the 

current experiment was performed with the top soil layer (1 mm of depth), since the 

objective was to analyze the PAH photodegradation in soils due to atmospheric 

deposition. Consequently, in the present study the role of light penetration is 

discarded. Several studies have also highlighted the active function of Fe2O3, MnO and 

TiO2 to boost photodegradation processes. Zhao et al. (2004) found that the addition 

of α-Fe2O3 or TiO2 enhanced the photocatalytic degradation of gamma-

hexachlorocyclohexane (γ-HCH) in the soil surface. Similarly, Zhang et al. (2006) stated 

that the content of Fe2O3 and other semiconductor oxides, such as TiO2 and MnO2, in 

soils improved the photodegradation of benzo(a)pyrene. Notwithstanding, the 

presence of oxides available in fine-textured Regosol soil, as well as its clay content, 

might have some influence on the high photodegradation rates, even in the PAHs of 

high molecular weight. Nadal et al. (2006) reported that high molecular weight PAHs 

could not be photodegraded in an organic solvent after one week of UV-B exposure. 

In contrast, Guieysse et al. (2004) confirmed found out that UV-photolysis acts 

preferentially on large PAHs. In any case, the complexity of soils could give place to an 

enhancement and acceleration of photodegradation reactions.  

 

Effect of photodegradation over ecotoxicity of PAHs 

Microtox® has been established as a fast, useful and sensitive method to assess 

the toxicity of soils spiked with PAHs (Khan et al., 2012). According to Salizzato et al. 

(1997), 5 min.-EC50 values were found to be suitable for these organic compounds. In 

the present study, blank samples in Arenosol and Regosol soils, showed ecotoxicity 

values of 113 and 182 mg of soil mL-1 Microtox® diluent, respectively. These results 

are 10-times higher than toxicity results found in spiked soil samples before any 
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irradiation, showing values of 12.9 and 15.6 mg of soil mL-1 Microtox® diluent, in 

Arenosol and Regosol soil samples, respectively.  

The EC50 values of irradiated samples and dark controls in Arenosol and fine-

textured Regosol soils are depicted in Fig. 2. The coefficient of determination (R2) of 

EC50 vs. Σ16 PAH concentrations over the time was 0.75 and 0.78 in coarse- and fine-

textured soils, respectively. Both irradiated samples and dark controls tended to 

increase their EC50 over time. This slow detoxification would be mainly consequence 

of the volatilization, sorption and/or photodegradation of PAHs. In Arenosol samples, 

EC50 of irradiated and control samples showed a very similar trend. Therefore, no 

ecotoxicity differences were found, independently on the exposure to light, being in 

full agreement with the findings from the chemical analysis of PAHs.  In contrast, EC50 

in irradiated and dark control samples of fine-textured soils showed a different 

pattern (Fig. 2). Excluding data regarding one day after incubation, the EC50 curve of 

irradiated samples was more pronounced than that of dark controls, indicating a lower 

toxicity. Taking into account that irradiated and dark control samples were exposed 

to the same conditions, excepting light exposure, it is clear that light enhances the 

detoxification of fine-textured Regosol soil. Similarly to Arenosol soil findings, the 

current toxicity results also agree with the high photodegradation rates observed in 

the analytical experiment. Those 3-, 4-, 5- and 6-ringed PAHs, which were highly 

photodegraded, could be the responsible of the toxicity decrease. In the period of 

time elapsed between day 1 and before 2 and 3 days after incubation time in Regosol 

and Arenosol soils, respectively, the toxicity of irradiated samples was higher than in 

dark controls. This could be linked to the potential formation of metabolites, such as 

some oxygenated PAHs, even more toxic than the parental compounds (Bandowe et 

al., 2014; Knecht et al., 2013; Lundstedt et al., 2007). Anyhow, this finding deserves 

further investigation, which should confirm the relationship between the generation 

of by-products and the ecotoxicological status of soil. 
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Fig. 2. Ecotoxicity of Arenosol (left) and Regosol (right) soil samples spiked with 16 PAHs. 

 

The results of the Microtox® ecotoxicity test demonstrated that the light, 

together with other mechanisms such as sorption, volatilization, and abiotic 

degradation, enhances PAH detoxification on surface soil. This process is especially 

remarkable in fine-textured soils, which contain materials capable to act as 

photocatalysts. Anyway, although photodegradation and detoxification occurred, 

spiked soil samples did not achieve toxicity levels of blank samples 28 days after light 

exposure. Consequently, a longer exposure time, or an increase of light intensity, 

would be required to completely remove PAHs from soils. However, the outcomes of 

both chemical and ecotoxicological analyses indicate that photodegradation is an 

important process of PAH removal in soil.  

 

Hydrogen isotope effects on benzo(a)pyrene 

The hydrogen isotopic composition of benzo(a)pyrene in irradiated samples and 

dark controls is shown in Fig. 3. In Arenosol soil, benzo(a)pyrene of irradiated samples 

experienced a change in its hydrogen isotopic composition (after only 5 days of 

experiment) from -39‰ to +193‰. In agreement with data on PAH levels, this high 

isotopic shift clearly confirms degradation of benzo(a)pyrene under the selected 

climate conditions. Due to their too low concentrations, δ2H could not be obtained 

from the subsequent samples. Unexpectedly, a hydrogen isotopic change of 
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benzo(a)pyrene was also observed in dark control samples. Therefore, unknown 

degradation processes could be also occurring in absence of light (Fig. 3). Under 

darkness conditions, benzo(a)pyrene in Arenosol suffered a progressive enrichment 

in δ2H. Despite being slower than in irradiated samples, it increased from -39‰ to 

+181‰ after 28 days of incubation in the dark. It is suggested that there could be 

some abiotic degradation of benzo(a)pyrene, which would be the result of its reaction 

with organic and/or mineral phases of the soil. The hydrogen isotope results of 

benzo(a)pyrene in Regosol soil samples were similar to those corresponding to 

Arenosol soil. Benzo(a)pyrene hydrogen isotopic composition changed from -39‰ to 

+68‰ after only 3 days of experiment (Fig. 3). Five days after starting, a decrease in 

the δ2H value was observed, most likely as a result of reversible sorption processes, 

which might have released benzo(a)pyrene molecules with a lower degradation 

degree, and consequently, with a lower δ2H. However, this isotopic shift also confirms 

that benzo(a)pyrene in Regosol soil is degraded under the same climate conditions. 

Dark controls also showed a slow degradation, with an isotopic change from -39‰ to 

+35‰ after 28 days of experiment. Similarly to Arenosol soil samples, dark controls of 

Regosol soil showed a slower isotopic enrichment in 2H with respect to irradiated 

samples, confirming that the same process of PAH loss might be occurring. The 

evolution of the hydrogen isotopic composition of the dark controls shows 

fluctuations over the time that could be linked to sorption/desorption effects. 

Consequently, the hydrogen isotope analysis also seems to confirm that sorption 

processes of PAHs in soil were present, which is in agreement with the data from the 

chemical analysis of PAHs. Notwithstanding, since the relationship between the lack 

of hydrogen isotopic fractionation of PAHs with sorption processes in soil has not been 

described in the scientific literature, this hypothesis cannot be confirmed yet. Our 

results corroborate that benzo(a)pyrene is not only photodegraded, but also that this 

degradation is associated to a significant isotopic change. Moreover, they highlight 

the great potential of CSIA to be used as a powerful tool to monitor in situ PAH 

degradation. Furthermore, the abiotic degradation of benzo(a)pyrene without light 

intervention was proved to be a potentially relevant pathway of PAH loss in soil. 

However, further studies are still necessary to confirm the mechanisms of PAH 

degradation in dark conditions. 

UNIVERSITAT ROVIRA I VIRGILI 
Climate change impact on the photodegradation of polycyclic aromatic hydrocarbons in soils 
Montserrat Marquès Bueno 



 

 
 
Fig. 3. Hydrogen isotopic composition of benzo(a)pyrene in Arenosol and Regosol soils in 
irradiated and dark control experiments. 

 

CONCLUSIONS 

The photodegradation of PAHs in soils is highly dependent on the exposure time, 

the molecular weight of each hydrocarbon, and the soil texture. Low molecular weight 

PAHs are more influenced by volatilization and sorption, while medium and high 

molecular weight PAHs are able to undergo different photodegradation ratios. Soil 

properties (texture and metal oxides) were found to influence on volatilization, 

sorption and photodegradation of PAHs. Photodegradation in soils is a mechanism 

that mostly occurs in soil surface, being able to partially detoxify soil. Moreover, this 

process can be enhanced by solid phase soil composition, especially in soils with a 

finer fraction, as well as by the presence of semiconductor minerals, such as metal 

oxides. The evolution of 16 PAH concentrations over the time agrees well with 

Microtox® results, with a faster detoxification in fine-textured Regosol soil. However, 

after 28 days of incubation, soil samples were not completely detoxified. It is 

important to note that photodegradation is not the only process of PAH loss in soils. 

Other mechanisms, such as biodegradation and sorption, may also have important 

roles on the PAH behavior in soils. Moreover, in a climate change context, where an 
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increase of solar radiation is expected, photodegradation could become a very 

important process in PAH dynamics in soils.  

Finally, the complementary analyses of hydrogen isotopes of benzo(a)pyrene 

confirmed, at a molecular level, that this compound is degraded not only under light 

conditions, but also in the darkness. Furthermore, the strong isotopic effect observed 

in benzo(a)pyrene makes the CSIA a potentially suitable technique to give evidence of 

PAH degradation. Since its degradation involves a high hydrogen isotopic variation, 

CSIA is also a powerful tool to quantify in situ the degradation efficiency.  
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DISCUSSION CHAPTER 2 

When simulating a current Mediterranean climate scenario, PAHs deposited on 

surface soil showed a different behavior, depending on the exposure time, molecular 

weight of each PAH and soil properties. 

LMW PAHs were more easily sorbed and volatilized, while MMW and HMW PAHs 

were able to undergo different photodegradation degrees. Fine-textured soil 

enhanced sorption, being PAHs more photodegraded than in coarse-textured soil. In 

both soils, significant photodegradation rates were detected for a number of PAHs, 

namely phenanthrene, anthracene, benzo(a)pyrene, and indeno(123-cd)pyrene after 

28 days of exposure. Benzo(a)pyrene, commonly used as an indicator for PAHs 

pollution, was completely removed after 7 days of light exposure in fine-textured 

Regosol soil. Surprisingly, a remarkably decrease of benzo(a)pyrene concentrations in 

the darkness was observed, probably due to unknown degradation processes. 

Microtox® and hydrogen isotopes analysis were carried out in order to 

complement the results of PAHs monitoring. The decreasing trend of ∑16 PAHs 

concentrations over time agreed well with Microtox® findings, showing a faster 

detoxification in fine-textured soil. However, a complete detoxification was not 

observed. Despite there was a detoxification trend over time in both tested soils, 

particular oscillations of EC50 in irradiated samples and dark controls might indicate 

the formation of intermediate products with a high toxicity. The analyses of hydrogen 

isotopes of benzo(a)pyrene confirmed the degradation of this compound, not only 

under light conditions but also in the darkness.  

These suggested the need to analyze in more depth the potential role of iron 

oxide as catalyzer of the photodegradation of PAHs. In addition, toxicity oscillations 

reported by Microtox® test pointed out the need to further investigate the generation 

of PAHs by-products. Finally, as a result of the strong isotopic effect observed, CSIA 

was recognized as a powerful tool to assess PAHs degradation, and therefore, it was 

again applied in other experiments.
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ABSTRACT 

Laboratory experiments were conducted to study the photocatalytic capability of 

amorphous α-Fe2O3 to degrade polycyclic aromatic hydrocarbons (PAHs). Solutions 

containing 16 US EPA priority PAHs were spiked with Fe2O3 and incubated in a climate 

chamber at stable conditions of temperature (20°C) and light (9.6 W m-2) for 28 days. 

In addition, samples without Fe2O3 were also incubated. PAHs levels were monitored 

by means of GC-MS, and their toxicity was assessed using Microtox® bioassay. Low and 

medium molecular weight PAHs were more influenced by a quick volatilization and 

photodegradation, while photodegradation was especially relevant for some heavier 

compounds. The Fe2O3 had a significant photocatalytic effect on fluorene, 

phenanthrene and benzo(a)pyrene. On the other hand, photolysis was more notable 

than photocatalysis for benzo(a)anthracene and dibenzo(ah)anthracene. Anthracene 

presented the same photodegradation, regardless of the Fe2O3 content. Remaining 

PAHs were not photodegraded either with or without Fe2O3. These results indicated 

that, in some cases, Fe2O3 might act as a shield for PAHs. Other factors, such as the 

presence of the own soil matrix components (i.e. humic acid, other metals oxides, 

texture) or the chemical structure of the Fe2O3 may also play a role.  Photodegradation 

trends were supported by changes of EC50 values. A higher detoxification was 

observed under light exposure when Fe2O3 was absent, while EC50 results suggested 

the formation of toxic or more bioavailable by-products, when Fe2O3 was used as as 

photocatalyst. 

Keywords: polycyclic aromatic hydrocarbons, photodegradation, photocatalysis, 

iron oxide, Vibrio fischeri, Microtox®. 
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INTRODUCTION 

Polycyclic aromatic hydrocarbons (PAHs) are a class of semi-volatile organic 

compounds (SVOC), which are ubiquitous in the environment. The origin of PAHs may 

be either natural, such as petroleum or coal deposits, volcanic eruptions and forest 

fires, or anthropogenic, such as industrial production, residential heating, motor 

vehicle exhaust, waste incineration, and agriculture (Guo et al., 2011). PAHs, and 

especially those with four or more rings and their metabolites, are considered as 

hazardous pollutants because of their toxicity, mutagenicity and/or carcinogenicity, 

being classified as compounds with significant human health risk (Li et al., 2008; Yan 

et al., 2004).  

Due to their hydrophobic nature and low solubility, PAHs are resistant to 

biodegradation. They can be bioaccumulated in the environment, especially in soils 

where they are easily sorbed to the organic matter, eventually reaching the food chain 

(Nadal et al., 2004; Nadal et al., 2011).  The environmental fate of PAHs include a 

number of processes, being the most relevant volatilization, microbiological 

degradation, photo-oxidation, chemical oxidation, adsorption on soil particles and 

leaching (Lehto et al., 2000; Rababah and Matsuzawa, 2002; Siddiqi et al., 1994). Low 

molecular weight PAHs are more readily volatilized and biodegraded. In contrast, 

however, high molecular weight PAHs are recalcitrant, being biological degradation 

rather ineffective (Ukiwe et al., 2013). For this reason, researchers have recently paid 

attention to several chemical technologies, such as photodegradation, for 

bioremediation of soils contaminated by PAHs (Karaca and Tasdemir, 2013; Kohtani 

et al., 2005). Balmer et al. (Balmer et al., 2000) and Wang et al. (Wang et al., 2009) 

reported that temperature, soil particle size, humic acids, soil depth and light 

wavelength affect the nature of PAHs photoreactions in soils. Iron, zinc, titanium, 

aluminium, manganese and magnesium oxides, as well as oxalic and humic acids, also 

have been reported to directly and/or indirectly photocatalyse PAHs degradation in 

soils (Gupta et al., 2016; Marquès et al., 2016b; Vela et al., 2012; Zhang et al., 2008). 

Iron oxides are natural minerals found in soils and rocks, lakes and rivers, on the 

seafloor, and in air and organisms (Wang et al., 2009).  Goethite (α-FeOOH), hematite 

(α-Fe2O3) (IO), lepidocrocite (γ-FeOOH), and maghemite (γ-Fe2O3) are the most 

common iron oxides. Iron oxides have been found to be potential natural 
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photocatalysts for the degradation of organic pollutants in the environment (Li et al., 

2007; Wang et al., 2009). 

It has been demonstrated that the Mediterranean region is characterized by a 

high solar radiation. In the nature, solar radiation plays a key role in the 

photodegradation of PAHs in soil (Marquès et al., 2017). Content of oxides in soil is a 

significant parameter, as these substances may cause a photocatalytic effect. 

Specifically, a significant role was attributed to Fe2O3 because it was the most 

abundant (Marquès et al., 2016a; Marquès et al., 2016b). However, there is a gap 

regarding the influence with respect to other factors. The present study was aimed at 

investigating the photocatalytic degradation of 16 US EPA priority PAHs caused by iron 

(III) oxide (Fe2O3). The photocatalytic capability of Fe2O3, considered as indirect 

photodegradation, was compared to the photolytic effect of light, as direct 

photodegradation. Furthermore, concentration changes were additionally supported 

by Microtox® tests to correlate any variations in PAHs concentrations with ecotoxicity 

values. 

 

MATERIALS AND METHODS 

Chemicals 

A stock solution containing 16 US EPA priority PAHs (99% of purity) at a 

concentration of 2000 μg mL−1 in dichloromethane:benzene was obtained from 

Supelco® (Bellefonte, PA, USA). Hexane (≥96% of purity) and dichloromethane (≥99.5% 

of purity) were purchased from Scharlau Chemie S.A. (Barcelona, Spain). Amorphous 

alpha Iron(III) oxide (≥97% of purity) was provided by Sigma Aldrich (Saint Louis, MO, 

USA). A mixture of six labelled hydrocarbons containing d4-1,4-dichlorobenzene 

(≥99.8% of purity), d8-naphthalene (≥96.3% of purity), d10-acenaphthene (≥99.8% of 

purity), d10-phenanthrene (≥99.3% of purity), d12-chrysene (≥99.8% of purity), and d12-

perylene (≥99.5% of purity) at a concentration of 2000 μg mL−1 was provided by 

Supelco® (Bellefonte, PA, USA). Finally, two individual internal standards, d10-fluorene 

(≥98.3% of purity) and d12-benzo(a)pyrene (≥98.5% of purity), were supplied by 

Supelco® (Bellefonte, PA, USA).  
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For the Microtox® ecotoxicological test, acetone (≥99.5% of purity) and dimethyl 

sulfoxide (DMSO) (≥99.5% of purity) were obtained from Panreac (Castellar del Vallès, 

Spain), while both, Microtox® diluent (2% NaCl in ultra-pure water) and Microtox® 

Reactive (Vibrio fischeri), were provided as a freeze-dried reagent by Azur 

Environment (Workingham, England). The latter reagent was stored at −20°C and re-

hydrated prior to the test performance. 

 

Characterization of iron oxide 

The iron oxide images and qualitative microanalysis were obtained by FE-SEM 

microscope (Thermal field Emission Electron Microscope with energy dispersive X-ray 

spectroscopy analysis) JEOL JSM-7100F (Akishima, Tokyo, Japan). 

 

Photodegradation experimental design 

A solution containing 16 US EPA priority PAHs at 100 μg mL−1 in 

hexane/dichloromethane (1:1), diluted down from the parent solution, was 10-times 

spiked with 25 µL on uncovered glass Petri dishes (80 mm diameter) for two different 

tests: 1) iron oxide absence (OA); and 2) iron oxide presence (OP) by spreading a thin 

layer of amorphous Fe2O3 (total weight: 0.2 g). Petri dishes were incubated inside a 

Binder KBWF 240 climate chamber (Binder GmbH, Tuttlingen, Germany) setting 

constant temperature, light intensity and humidity (20°C, 9.6 W m−2 and 40%, 

respectively). Dark control samples subjected to the same conditions were set by 

covering the petri dishes with aluminium foil. In order to assess any potential 

contamination, blank samples were prepared by following the same steps. Triplicates 

of irradiated samples and dark controls for both tests (OA and OP) were removed from 

the climate chamber after 0, 1, 2, 3, 6, 7, 9, 10, 14, and 28 days of incubation. 

 

PAH extraction 

PAHs were recovered for GC-MS analysis by cleaning glass Petri dishes with 20 mL 

of hexane/dichloromethane (1:1). The extract was filtered (cellulose filter, Filter-Lab), 

and further concentrated down with a rotary evaporator and a gentle flow of N2 

(99.9999% of purity). In order to control the efficiency of each sample extraction, 25 
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μL of 6 labelled hydrocarbons mixture (d4-1,4-dichlorobenzene, d8-naphthalene, d10-

acenaphthene, d10-phenanthrene, d12-chrysene, and d12-perylene) were 10-times 

spiked before PAHs extraction. Finally, a solution containing both internal standards 

(d10-fluorene and d12-benzo(a)pyrene) in hexane/dichloromethane (1:1) was added to 

samples prior GC-MS analyses.   

 

Analysis by GC-MS of PAH 

The quantification of PAHs was performed on a Hewlett-Packard (HP) 

G1099A/MSD5973 gas chromatograph (GC) coupled to a mass spectrometer (MS) 

according to the US method 8270 (EPA, 2007). The routine GC column was a DB-5 (5%-

Phenyl)-methylpolysiloxane capillary column (60 m × 0 .25 mm id × 0.25 μm thickness). 

One μL of sample was injected in splitless mode at an injector temperature of 310°C. 

The temperature program for the GC was as follows: it was initiated at 90°C, being 

then increased at a rate of 15°C min-1 up to 200°C, changed at 6°C min-1 until 320°C, 

and finally left at 320°C for 20 min. The transfer line temperature was set at 280°C. 

The carrier gas was ultra-pure (99.9999%) helium, at a total flow rate of 1.4 mL min-1. 

The analysis was performed using a mass selective detector set to monitor specific 

masses ranging from 40 to 350 atomic mass units (AMU). The mass spectrometer and 

source temperatures were 150°C and 230°C, respectively.  PAH quantification was 

performed through the construction of a five-point calibration curve (20, 30, 50, 70 

and 80 μg mL-1). 

 

Calculations 

The photodegradation rate was obtained by applying the following equation: 

 

𝐿 =
𝐶𝑁−𝐶𝐼

𝐶𝑂
∙ 100  (Eq. 1) 

 

where L is the photodegradation rate (%) at time t, Co is the original concentration 

of the individual PAH, CN is the concentration of the same PAH in non-irradiated soil 

sample at time t, and CI is the concentration of the individual PAH in the irradiated 

sample at time t. 
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In order to determine the half-life of each compound, the following formulas 

were used: 

 

ln
𝐶𝑂

𝐶𝑡
= 𝑘 · 𝑡   (Eq. 2) 

𝑡1/2 = ln
2

𝑘
   (Eq. 3) 

 

where CO and Ct are the individual PAH concentration at t=0 and t, respectively, 

and k is the apparent constant reaction rate of the pseudo first order (1/day).  

 

Statistical analysis 

Results were statistically evaluated using XLSTAT Statistical Software for Excel. 

Repeated measures of the ANOVA were firstly used to state significant differences 

between irradiated and non-irradiated samples through the time, which indicated 

that photodegradation occurred. Subsequently, photodegradation rates for each 

single PAH and test (with Fe2O3 and without Fe2O3) were further calculated. 

Afterwards, ANOVA test was applied again to state significant differences between 

the photodegradation of each single PAH and test.  Probability levels were considered 

as statistically significant at p<0.05. 

 

Ecotoxicological test 

For the Microtox® ecotoxicological test, another set of irradiated and dark 

controls in presence/absence of Fe2O3 were incubated in the climate chamber. A batch 

of samples was also prepared.  Samples were removed from the climate chamber after 

0, 1, 3, 5, 7, 14, and 28 days of exposure. PAHs were extracted with 20 mL of acetone, 

filtered and dried with a rotary evaporator. Dried samples were reconstituted with 2 

mL of DMSO. 

The acute toxicity was measured by means of Microtox® M500 analyzer (SDI 

Europe, UK) according to the Microtox® User Manual (Microtox® Acute Toxicity Test- 

Standard procedure, 1998) and ISO 11348-3:2007. Dilution series of the extract in 

DMSO were prepared. V. fischeri were exposed to 2-4% of those dilutions in Microtox® 
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diluent, and after 5, 15 and 20 minutes of exposure at 15°C light emission was 

monitored. Results after 5 min were reported in terms of the effective concentration 

(EC50) of exposed PAHs that causes a 50% of decrease in the bioluminescence of the 

bacteria (Domingo et al., 2015; Marquès et al., 2016b; Roig et al., 2013). 

 

RESULTS AND DISCUSSION 

Fe2O3 effect on PAH photodegradation 

The electronic images (Fig. 1) indicated that iron oxides were a homogeneous 

agglomeration of globular structures, and the amorphous structure instead of a 

crystalline structure was confirmed. EDX patterns depicted the elemental 

composition, confirming the presence of Fe and O. 

The concentration trends of 5 PAHs (anthracene, benzo(a)anthracene, chrysene, 

benzo(a)pyrene and dibenzo(ah)antracene), selected as representatives of 2-, 3-, 4-, 

5-, and 6-ringed PAHs, in presence (OP) and absence (OA) of Fe2O3, are shown in Fig. 

2. Data about the remaining PAHs are included in Supplementary data (Fig. S1). The 

photodegradation rates of the same PAHs subjected to light radiation for 28 days,  

 

Fig. 1. Field Emission Scanning Electron Microscopy (FE-SEM) images and Energy Dispersive X-
Ray Analysis (EDX) patterns of iron oxide. 
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Fig. 2. Concentration trend of some 3-, 4-, 5-, and 6-ringed PAH in the absence (OA) and presence 
(OP) of Fe2O3. Error bars represent the average standard deviations (SD) of triplicates. 
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with and without Fe2O3, and together with the statistical significances between both 

groups are shown in Table 1.  

Finally, half-lives of PAHs exposed to light in OP and OA are shown in Fig. 3. 

Because of the total volatilization at the beginning of the experiment, 

naphthalene, acenaphthylene and acenaphthene could not be recovered.  

Consequently, they were excluded from data analysis. The recoveries of the remaining 

PAHs ranged between 87% and 108% in OA test while similar values were found in OP 

test (92%-109%). Due to the lack of any matrix, such as soil, PAHs concentration trends 

might be associated to two main processes: volatilization and photodegradation. 

However, the individual contribution of each process was different according to the 

physicochemical properties of each compound, the incubation time, as well as the 

presence of Fe2O3.  

For 2-, 3-, and some 4-ringed PAHs, volatilization was the most relevant process 

for concentration decrease. In contrast, chrysene, as well as other 5- and 6-ringed 

PAHs, were not volatilized, remaining their levels in dark controls constant. 

Differences between irradiated samples and dark controls in both tests were due to 

the impact of light exposure. However, photodegradation rates were only reported 

when the differences between PAH concentrations of irradiated samples and dark 

controls were statistically different. Thus, they were calculated for fluorene, 

phenanthrene, anthracene, benzo(a)anthracene and benzo(a)pyrene, with and 

without Fe2O3, and also dibenzo(ah)anthracene without Fe2O3. 

For fluorene, phenanthrene and benzo(a)pyrene photodegradation was 

statistically higher in presence of Fe2O3 than in its absence. In contrast, for 

benzo(a)anthracene it was significantly higher when Fe2O3 was absent than when it 

was present. Finally, the photodegradation of anthracene was similar either in 

presence and absence of Fe2O3 (p>0.05)   

Although fluorene presented a low recovery (49% - 58%), most probably due to 

its quick volatilization, its trend was clear. Fluorene decreased up to 94% in dark 

controls after the 1st day of exposure and it was undetected after the 2nd day of 

exposure. Although volatilization had a great impact on fluorene, photodegradation 

also had a role on PAH loss. Differences observed between irradiated and dark control 

samples on the 1st day of exposure indicated a quick photodegradation in both groups 

UNIVERSITAT ROVIRA I VIRGILI 
Climate change impact on the photodegradation of polycyclic aromatic hydrocarbons in soils 
Montserrat Marquès Bueno 



of samples, with and without Fe2O3 (Fig. S1, Supplementary data). A higher 

volatilization was noted in samples with no oxides, suggesting that Fe2O3 could be 

retaining PAHs by hindering PAHs volatilization, and therefore enhancing their 

photodegradation. This behaviour was not noted only for fluorene, but also for 

phenanthrene and anthracene (Fig. 2). As they were also quickly volatilized in both 

irradiated samples and dark controls, photodegradation rates were also calculated 

according to data from 1st day of exposure. Phenanthrene and anthracene showed a 

similar trend as fluorene, being volatilization a relevant process. However, recoveries 

were nearly 100%, indicating that volatilization was a slow process in contrast to 

fluorene. Regarding anthracene, although kinetics differed considerably between OA 

and OP, photodegradation rates remained similar. Photodegradation rates here 

reported for fluorene, phenanthrene and anthracene were slightly higher than those 

found in a previous experiment conducted by using different soil matrices (Marquès 

et al., 2016b). The higher photodegradation rates might be related to the absence of 

soil, which enhances light exposure and, boosts estimated here the photodegradation 

of these compounds. After one day of exposure, photodegradation of fluorene and 

phenanthrene was significantly higher with Fe2O3 than without Fe2O3, while that 

reported for anthracene was statistically the same in both groups of samples. 

Table 1. Photodegradation rates of PAHs in absence and presence of Fe2O3. 

  Fe2O3 absence Fe2O3 presence p 

Fluorene* 5.9 85 <0.001 

Phenanthrene* 42.5 63 0.014 

Anthracene* 74 70 >0.05 

Fluoranthene n.c n.c - 

Pyrene n.c n.c - 

Benzo(a)anthracene 68 25 0.003 

Chrysene n.c n.c - 

Benzo(b)fluoranthene n.c n.c - 

Benzo(k)fluoranthene n.c n.c - 

Benzo(a)pyrene 50 71 0.008 

Benzo(ghi)perylene n.c n.c - 

Dibenzo(ah)anthracene 23 n.c - 

Indeno(123-cd)pyrene n.c n.c - 

* Calculated at the 1st exposure day    
n.c = photodegradation rate is not calculated because irradiated samples and dark controls 
are not statistically different (p>0.05) 
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The concentration of benzo(a)anthracene, and other heavy molecular weight 

compounds, remained constant throughout the experiment in dark controls since 

volatilization had a lower effect on the decrease of concentration. Regarding 

benzo(a)anthracene, a photodegradation rate of 68% was estimated when Fe2O3 was 

lacked, being attributed to its photolysis. In contrast, photodegradation was 25% 

when the photocatalyst was present, being this rate statistically lower than that 

reported without Fe2O3. It suggests that Fe2O3 had no photocatalytic effect on 

benzo(a)anthracene, and it even hindered photolysis. A possible explanation for the 

low degradation rate in samples with Fe2O3 may be related to the scattering by 

catalyst particles on PAHs, which might attenuate their light absorption (Zhang et al., 

2008). 

Benzo(a)pyrene was the PAH with highest photodegradation at the end of the 

experiment, with rates of 50% and 71%, in absence and presence of Fe2O3, 

respectively. Statistical differences between these photodegradation rates confirmed 

that Fe2O3 has a very active photocatalytic role on the photodegradation of 

benzo(a)pyrene. Similar results were observed in a previous study, performed under 

the same climate conditions and time lapse but on the soil matrix (Marquès et al., 

2016b). Very interestingly, in the present study, benzo(a)pyrene had not been 

completely degraded after 28 days, remaining between 14% and 39% of 

benzo(a)pyrene in the petri dishes (OP and OA, respectively). In turn, benzo(a)pyrene 

was completely degraded under light when using soils. Furthermore, an extreme 

decrease was noted in the darkness. It denotes that the combination of other soil 

components, such as humic acids and other oxides, may be capable to enhance not 

only photoreactions in irradiated samples, but also unknown degradation reactions in 

the darkness. 

Chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(ghi)perylene, 

dibenzo(ah)anthracene and indeno(123-cd)pyrene presented a similar pattern, 

characterized by a lack of volatilization. However, photodegradation only occurred for 

dibenzo(ah)anthracene without Fe2O3, showing a rate of 23%. Light protection caused 

by Fe2O3 particles on PAHs is therefore greater than the joint impact of potential 

photolysis and photocatalysis. No significant differences were found when comparing 

concentrations of chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene and 
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benzo(ghi)perylene in irradiated samples and dark controls. These results are in 

agreement with previous findings performed in soils (Marquès et al., 2016b).  

The most volatile compounds (e.g., fluorene, phenanthrene and anthracene) 

showed the lowest half-lives, mainly because of the important role of volatilization. 

Although they own a higher molecular weight and lower vapor pressure, fluoranthene 

and pyrene, both belonging to the group of 4-ringed PAHs, also showed low half-lives, 

due to their notable volatilization. Similarly, benzo(a)anthracene was significantly 

photodegraded presenting a low half-life. Chrysene showed the highest half-life. 

Contrasting with other 5-, and 6-ringed PAHs, which were not or poorly degraded, 

benzo(a)pyrene presented a very low half-life, in accordance to its important 

photodegradation. 

 

 

 

In general terms, volatilization was found to be a key process in the behaviour of 

PAHs, not only for low but also for medium molecular weight PAHs. Volatilization of 

those compounds was even higher than that reported previously after an 

experimental study with soils (Marquès et al., 2016b). Therefore, it is evidenced that 

soils may trap PAHs and prevent their volatilization. Although fluoranthene and 

pyrene have a high molecular weight and low vapour pressure, their concentration in 

dark conditions decreased, irrespectively of the presence/absence of Fe2O3. Only 10% 

*Completely removed after 1 day of light exposure 
 
Fig. 3. Half-lives of 16 priority PAHs exposed to light with (OP) and without (OP) Fe2O3. 
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and 41%, respectively, remained at the end of the experiment. These results agree 

with previous data Marquès et al., 2016b, suggesting the effect of some unknown 

degradation processes in the darkness, in addition to photodegradation and 

volatilization. In turn, the concentration decrease in samples with no Fe2O3 and light 

exposure might be only attributed to their potential volatilization enhanced by the 

lack of matrix. Photodegradation has been identified as a key process of PAH loss. 

However, direct photodegradation, caused only by the impact of light, is not always 

more important than photodegradation by the joint impact of light and Fe2O3. 

Benzo(a)pyrene showed a different pattern in comparison to similar PAHs, as 

photodegradation was clearly accelerated in samples with Fe2O3. The 

photodegradation of benzo(a)pyrene followed well a pseudo first-order kinetics, 

being our results in agreement with others found in the scientific literature (Gupta 

and Gupta, 2015; Gupta et al., 2016; Marquès et al., 2016b; Zhang et al., 2008). 

However, the incomplete degradation found in this study suggests that 

photodegradation of PAHs in soils may be enhanced by the combination of iron oxide 

with other photocatalysts, such as aluminium, titanium and manganese oxides, 

commonly found in soils. In addition, the effects of soil texture and humic acids should 

not be disregarded. Balmer et al., 2000 found that soil texture has an important role 

in the degradation of organic pollutants. Although the present study was designed 

with absence any soil, it was noted that the presence of any matrix (e.g., Fe2O3 

particles) may prevent volatilization, and even photodegradation of some PAHs. 

Despite commercially and laboratory- synthesized pure iron oxides are commonly 

used in catalytic studies (Gupta and Gupta, 2015; Wang et al., 2009; Zhang et al., 2008; 

Zhao et al., 2004), it is hypothesized that the Fe2O3 used in the present study, with an 

homogeneous amorphous structure (Fig. 1), is probably less reactive than 

heterogeneous materials usually found in the environment. However, this needs 

further investigation. 

 

Toxicity assessment 

 In addition to the chemical analysis some bioassays were also conducted to 

assess the toxic effects of PAHs. Based on the literature, Vibrio fischeri inhibition test 
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is the most sensitive, rapid, cost-effective, easy to operate, reproducible test, while it 

avoids ethical problems related to the use of higher organisms, such as fish and rat 

(Parvez et al., 2006). Moreover, it was reported that Microtox® is an accurate test to 

assess the toxicity of PAHs (Khan et al., 2012; Salizzato et al., 1998). 

Despite DMSO was used as a co-solvent, an unusual behaviour of the dose-effect 

curves was observed, most probably due to the polarity of PAHs. It was noted that the 

longer is the contact time (from 5 min to 20 min) between the toxic compound and 

the bacterium, the lower the toxicity is (Fig. S2, Supplementary data). This might be 

related to the low aqueous solubility of PAHs in addition to the fact that the saline 

solution (2% of NaCl) might exacerbate its solubility. In an aqueous media, aromatic 

hydrocarbons tend to precipitate, even using DMSO and the low concentrations of 

PAHs (2-4%). Hence, although usually the EC50 values for Microtox® are collected at 15 

minutes of contact, some studies indicate that the 5-min EC50 is also suitable for this 

kind of organic compounds (Salizzato et al., 1998). Thus, 5-min EC50 values were here 

provided. 

Blank samples with and without Fe2O3 showed toxicity values of 329 and 751 mL 

of extract mL-1 Microtox® diluent, respectively. It was confirmed that DMSO and Fe2O3 

did not confer an additional toxicity, compared with PAH- spiked samples. 

The evolution of toxicity throughout the incubation period, expressed as EC50, is 

depicted in Fig. 4. Initially (t=0), toxicity of samples spiked with PAHs was markedly 

higher because of the lack of any volatilization or photodegradation process. Initial 

EC50 values for samples with Fe2O3 (OP), were slightly higher than those without Fe2O3 

(OA), suggesting that some PAHs could have been sorbed to Fe2O3, which would lower 

the toxicity.  

In general terms, a global decrease of the toxicity was observed irrespective of 

the content of Fe2O3. Toxicity of samples without Fe2O3 decreased with time until the 

3rd day of exposure, when EC50 remained stable until the end of the experiment. It 

would be related to the volatilization and photodegradation of PAHs. In contrast, 

toxicity of irradiated samples was lower than that of dark controls from the 1st day of 

exposure, which could be due to the quick photodegradation of some PAHs (e.g., 

fluorene, phenanthrene, and anthracene). After three days of incubation onwards, 

irradiated samples and dark controls did not show toxicity differences. 
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Irradiated samples and dark controls with Fe2O3 presented the same toxicity until 

the 1st day of exposure. However, irradiated samples presented higher toxicity than 

dark controls from the 3rd day until the end of the experiment. The higher toxicity of 

samples exposed to light could be associated to the potential formation of more 

soluble PAHs by-products (e.g. oxygenated PAHs). The higher the solubility of a 

compound is, the higher the bioavailability of that compound is, and therefore, a 

greater uptake by organisms occurs (Cochran et al., 2012; Ge et al., 2016). 

 

 

CONCLUSIONS 

The role of iron oxide Fe2O3 as a potential catalyser for PAH photodegradation 

was here analysed. Low and medium molecular weight PAHs were more influenced by 

a quick volatilization and photodegradation, while photodegradation was especially 

relevant for some heavier compounds. Fluorene, phenanthrene and benzo(a)pyrene 

showed significant higher photodegradation rates when Fe2O3 was present than when 

it was absent. The most relevant long-term photocatalytic effect of Fe2O3 was noted 

for benzo(a)pyrene. Photodegradation rate of benzo(a)pyrene was 71% when there 

was Fe2O3, and 50% when Fe2O3 was lacked. In contrast, the photodegradation of 

benzo(a)anthracene and dibenzo(ah)anthracene was significantly higher without 

Fe2O3 than when it was present. For the remaining PAHs, the lack of differences 

between irradiated samples and dark controls indicated that photodegradation, either 

photolysis or photocatalysis, did not occur. This fact suggests that, the presence of 

Fe2O3 may hinder the volatilization of LMW PAHs, enhancing their fast photocatalysis. 

Fig. 4.  Toxicity trends of samples with (OP) and without (OA) Fe2O3, exposed to light and in the 
darkness. 
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Oppositely, Fe2O3 may hamper the light to reach the PAHs, therefore preventing its 

photolysis. It also points out that other parameters, besides Fe2O3, may have been 

involved in the photocatalysis of PAHs. Furthermore, the reactivity of Fe2O3 may be 

different depending on the chemical structure of the oxide which can be either 

homogeneous (e.g., commercial products) or heterogeneous (e.g., natural).   These 

results highlight the different behavior of apparently similar compounds. It is 

especially relevant for benzo(a)pyrene, which is often used as a single indicator of PAH 

pollution. In this specific case, benzo(a)pyrene clearly cannot be used as standard for 

other PAHs when evaluating Fe2O3 as a photocatalyzer. 

PAH concentrations trends agreed well with bioassay tests. A general 

detoxification was found to some extent, mainly as a result of volatilization and 

photodegradation. However, after 28 days of exposure, samples were not completely 

detoxified, agreeing with the traces of PAHs. The increase of toxicity in irradiated 

samples containing Fe2O3, in comparison with dark controls, suggested that more 

bioavailable and toxic PAH by-products may be generated though photocatalysis. In 

order to increase the knowledge on the mechanisms involved in PAHs environmental 

fate, further investigations on the formation of PAH derivatives formation should be 

conducted. 
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DISCUSSION CHAPTER 3 

As highlighted in the chapter 2, an experimental study was performed to assess 

the role of metal oxides in soils as PAHs photocatalysts. For that purpose, an 

experiment was designed to discriminate the direct (photolysis) from the indirect 

(photocatalysis) photodegradation caused by iron (III) oxide (Fe2O3). It was chosen 

because a more significant photodegradation of PAHs was observed in Regosol soil, 

whose Fe2O3 content was higher than in coarse-textured Arensol soil.  

LMW PAHs (e.g., fluorene, phenanthrene and anthracene) were highly impacted 

by volatilization. For fluorene, phenanthrene and benzo(a)pyrene, photodegradation 

was significantly higher in the presence of Fe2O3 than in its absence. Anthracene was 

also photodegraded, although statistical differences were not found between both 

groups of samples (absence and presence of Fe2O3). In turn, photodegradation only 

occurred when dibenzo(ah)anthracene was without Fe2O3. All the remaining PAHs 

were not photodegraded since irradiated samples and dark controls were not 

statistically different. Consequently, it seems that Fe2O3 was not the only responsible 

for the enhancement of photodegradation found in Regosoil. Soil is a complex matrix 

with texture, humic acids, wide range of metal oxides, and other components. Each 

soil component has probably a specific contribution to PAHs fate in soil. In turn, matrix 

differences between both experiments should be considered. In fact, in this 

experiment the lack of matrix in samples without Fe2O3 might have enhanced 

volatilization of LMW and MMW PAHs, while in turn, heavier PAHs in spiked dishes 

were completely exposed to light. In contrast, Fe2O3 particles might have protected 

PAHs from light, leading to a higher photodegradation of some PAHs (e.g., 

benzo(a)anthracene and dibenzo(ah)anthracene) in samples without photocatalyst. 

Microtox® data confirmed that co-occurrence of PAHs, Fe2O3 and light leads to a 

higher toxicity than if they are lacked. These results suggest that, in any case, iron (III) 

oxide is responsible for the formation of more bioavailable, and toxic, PAHs 

degradation by-products. 

Very interestingly, benzo(a)pyrene showed a different behavior with respect to 

other HMW PAHs. It highlights the importance of studying different PAHs, avoiding 

the performance of tests in single PAHs. 
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ABSTRACT 

Polycyclic aromatic hydrocarbons (PAHs) are airborne pollutants that are 

deposited on soils. As climate change is already altering temperature and solar 

radiation, the global warming is suggested to impact the environmental fate of PAHs. 

This study was aimed at evaluating the effect of climate change on the PAH 

photodegradation in soils. Samples of Mediterranean soils were subjected to different 

temperature and light radiation conditions in a climate chamber. Two climate 

scenarios were considered according to IPCC projections: 1) a base (B) scenario, being 

temperature and light intensity 20°C and 9.6 W m-2, respectively, and 2) a climate 

change (CC) scenario, working at 24°C and 24 W m-2, respectively. As expected, low 

molecular weight PAHs were rapidly volatilized when increasing both temperature 

and light intensity. In contrast, medium and high molecular weight PAHs presented 

different photodegradation rates in soils with different texture, which was likely 

related to the amount of photocatalysts contained in both soils. In turn, the hydrogen 

isotopic composition of some of the PAHs under study was also investigated to verify 

any degradation process. Hydrogen isotopes confirmed that benzo(a)pyrene is 

degraded in both B and CC scenarios, not only under light but also in the darkness, 

revealing unknown degradation processes occurring when light is lacking. Potential 

generation pathways of PAH photodegradation by-products were also suggested, 

being a higher number of metabolites formed in the CC scenario. Microtox® results 

showed a higher detoxificiation in irradiated samples as temperature and light 

intensity increase. However, toxicity oscillations of those samples exposed to the light 

might be related to PAHs photodegradation byproducts, as it happened with the 

occurrence of naphthalic anhydride. Consequently, in a more or less near future, 

although humans might be less exposed to PAHs, they could be exposed to new 

metabolites of these pollutants, which might be even more toxic.  

 

Keywords: climate change, polycyclic aromatic hydrocarbons (PAHs), 

photodegradation, metabolites, hydrogen isotopes 
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INTRODUCTION 

The reconstruction of Earth’s past climate conditions has demonstrated that 

climate has been continuously changing. However, past changes have rarely been as 

quick as nowadays, with human influence playing a key role (Cubasch et al., 2013; 

Lamon et al., 2009; Wu et al., 2016). Human-caused greenhouse gases (GHG) are 

leading to an increase of the global temperature, which is usually known as climate 

change. Climate-induced changes strongly differ throughout the globe, especially 

along latitudinal gradient (Philippart et al., 2011). Although the high latitude regions 

will suffer the greatest warming (Noyes et al., 2009), the Mediterranean basin has 

been identified as one of the most vulnerable regions, since it lies in a transition zone 

between arid and temperate/rainy climates (Bangash et al., 2012; Marquès et al., 

2013; Sánchez-Canales et al., 2012; Schröter et al., 2005; Terrado et al., 2014). 

Moreover, it is pointed out as one of the world’s regions where projected future 

increases in greenhouse gases concentrations are most likely to cause significant 

changes in climate during the 21st century, with a high degree of consistency among 

different projections (Giorgi, 2006; Mariotti et al., 2015). The Fifth Assessment Report 

of the Intergovernmental Panel on Climate Change (IPCC) predicted an increase of the 

mean global temperature by 1 to 1.5°C in the period 2016–2035, resulting in an 

increase of up to 4.8°C at the end of the century with respect to temperatures 

registered between 1850 and 1900 (IPCC, 2013). 

One of the consequences of climate change is its potential to alter the 

environmental fate and transport of semi-volatile organic compounds (SVOCs) at 

environmentally relevant levels of human exposure (Armitage et al., 2011; Nadal et 

al., 2015). Temperature has a large influence on the partitioning of environmental 

pollutants in the atmosphere, as well as in soil and water (Manciocco et al., 2014; 

Noyes et al., 2009). Moreover, the increase of the temperature may enhance the 

mobilization of organic contaminants from reservoirs such as natural waters, soils and 

sediments, altering their rates of accumulation, sorption and degradation (Macdonald 

et al., 2003). Since reactivity, adsorption and accumulation are temperature-

dependent processes, climate change can influence every step along the transport 

and redistribution pathways of organic pollutants (Kallenborn et al., 2012; Macdonald 

et al., 2003; Schiedek et al., 2007; UNEP, 2010). Hence, many climate change policies 
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imply changes of several non-climatic exposure patterns known to be related to health 

(Perez et al., 2015). 

Polycyclic aromatic hydrocarbons (PAHs) are a group of SVOCs composed of two 

or more benzene and/or pentacyclic aromatic rings (Muckian et al., 2007). PAHs may 

enter the environment from both natural (e.g. plant synthesis, organic matter 

diagenesis and forest fires) and anthropogenic (e.g., industrial activities, residential 

heating, power generation, incineration and traffic) sources (Nadal et al., 2009). 

Generally, anthropogenic factors have a higher impact on PAH distribution in urban 

areas, whereas natural factors affect their distribution in remote areas. It must be 

remarked that, as a consequence of the emissions by heavy and light traffic, PAHs 

have become a major pollutant in urban areas (Jiang et al., 2009; Nadal et al., 2011; 

Wang et al., 2015).  

Some PAHs are resistant to biodegradation and susceptible to bioaccumulation. 

Although PAHs are present in all environmental compartments (Melnyk et al. 2015; 

Liu et al., 2014), they tend to deposit via dry and wet processes on the soil top layer 

(Nadal et al., 2004), becoming a special sink due to the PAH affinity to soil organic 

matter (Aichner et al., 2015; Sweetman et al., 2005). Moreover, PAHs can be 

transformed to more toxic compounds by chemical reactions such as sulfonation, 

nitration, photo-oxidation and photodegradation (Ras et al., 2009).  

Compound-Specific Isotope Analysis (CSIA) is a valuable tool to control the natural 

degradation of environmental pollutants, where other natural processes such as 

dispersion, volatilization or sorption, also occur. Among these non-destructive 

processes, CSIA is able of discriminating natural degradation reactions. The 

discrimination is linked to different reaction speeds of light (e.g., 12C, 1H, 35Cl) and 

heavy isotopes (e.g., 13C, 2H, 37Cl). Significant changes in isotope ratios (13C/12C, 2H/1H, 

37Cl/35Cl) over time and/or space, can be used to monitor the existence of degradation 

at contaminated sites (Elsner et al., 2012). Moreover, the enrichment factor -ε- value 

of a specific degradation process, which relates the amount of hydrogen isotope 

change with the concentration variation, makes possible to calculate the fraction of 

compound that has been lost through a specific degradation process. Unfortunately, 

in the scientific literature information regarding CSIA and PAHs is scarce, with very few 

approaches. Bergmann et al. (2011) investigated the hydrogen isotopic fractionation 
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of naphthalene due to biodegradation. Other studies report the hydrogen isotope 

fractionation of other organic substances, such as acetic acid and atrazine, subjected 

to light exposure (Hartenbach et al., 2008; Oba and Naraoka, 2007).  

As PAHs in soils are highly influenced by temperature and solar radiation (Balmer 

et al., 2000; Frank et al., 2002; Gong et al., 2001; Xiaozhen et al., 2005). The present 

study was aimed at estimating the photodegradation rate of PAHs in soils affected by 

climate change. Laboratory experiments were conducted in a climate chamber 

considering two climate scenarios in the Mediterranean region. In addition, the 

hydrogen isotopic composition of some PAHs under study was also investigated to 

verify any degradation. Since changes on ecotoxicity are expected due to PAH 

photodegradation and the potential to form reactive intermediates in soil (Gupta and 

Gupta, 2015; Woo et al., 2009), Microtox® test and PAHs photodegradation by-

products identification were carried out in both climate scenarios. 

 

MATERIALS AND METHODS 

Photodegradation experiment 

Details of the photodegradation experiment, including soil characteristics and 

contamination procedure, were previously given (Marquès et al., 2016). Briefly, two 

different soils with opposite characteristics were collected from the A horizon of 

remotes areas of Catalonia (NE of Spain): a) acidic and coarse-textured Arenosol soil, 

with granitic origin, and b) fine-textured Regosol soil, formed by sedimentary 

materials. A layer of 1 mm of soil was formed with 10 g of air-dried soil deployed in 

uncovered glass Petri dishes. Each soil sample was 10-times spiked with a solution 

containing 16 US EPA priority PAHs at 100 µg mL-1 in dichloromethane:benzene 

(Supelco®, 99.0% purity, Bellefonte, PA, USA). Soil samples were incubated inside a 

Binder KBWF 240 climate chamber (Binder GmbH, Tuttlingen, Germany). Two climate 

scenarios were considered. In the base (B) scenario, temperature and light intensity 

were set at 20°C and 9.6 W m-2, respectively, while in the climate change (CC) scenario, 

temperature and daylight were 24°C and 24 W m-2, respectively. In both cases, 

humidity was kept at 40% to minimize any biotic reaction. Further details on the B 

scenario were previously reported (Marquès et al., 2016). Dark control samples, 
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covered with an aluminum foil, were exposed to the same environmental conditions 

in order to differentiate concentration decreases due to slow sorption, volatilization 

and other degradation processes, from those related to photodegradation. Irradiated 

samples and dark controls of each soil were removed from the climate chamber on 

days 1, 2, 3, 4, 5, 6, 7, 14, and 28. 

Photodegradation rates for each one of the 16 PAHs were obtained by applying the 

following equation: 

L=
CN - CI

Co
 x 100   (Equation 1) 

where L is the photodegradation rate (in percentage) at time t, CN is the concentration 

of the individual PAH in non-irradiated soil sample at time t, CI is the concentration of 

the same PAH in irradiated sample at time t, and Co is the initial PAH concentration.In 

turn, the following equations were used to determine the PAH half-lives: 

 ln
Co

Ct
= k ∙ t   (Equation 2) 

T1
2⁄ =  

ln2

k
   (Equation 3) 

where T1/2 is the half-life of the individual PAH (in days), k is the apparent constant 

reaction rate of the pseudo first order (1/day), t is the exposure time (in days), Co is 

the initial PAH concentration in soil, and Ct is the initial soil concentration of the 

individual PAH. 

 

PAH extraction and analysis 

PAHs were extracted from soil samples with 30 mL of a mixture of 

hexane/dichloromethane (1:1) (Scharlau Chemie S.A., Barcelona, Spain) by using an 

ultrasonic bath for 10 min, according to the US EPA method 3550. This step was 

repeated three times, filtering the solvent after finishing each ultrasonic extraction in 

order to assure good PAH recoveries. Afterwards, samples were further concentrated 

with a rotatory evaporator, as well as with a gentle stream of purified N2. A procedure 

of quality control/quality assurance was carried out to verify the reported results. A 

mixture of six labeled hydrocarbons (d4-1,4-dichlorobenzene (99.8% purity), d8-

naphthalene (96.3% purity), d10-acenaphthene (99.8% purity), d10-phenanthrene 
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(99.3% purity), d12-chrysene (99.8% purity), and d12-perylene (99.5% purity) (all of 

them provided by Supelco®, Bellefonte, PA, USA), were used as surrogates. In 

addition, d10-fluorene (98.3% purity, Supelco®, Bellefonte, PA, USA), as well as d12-

benzo(a)pyrene (98.5% purity, Supelco®, Bellefonte, PA, USA), were used as internal 

standards for analytical control, being added to samples prior the analyses. A Hewlett-

Packard G1099A/MSD5973 equipment with a DB-5 5% Phenyl Methyl Siloxane column 

(60 m x 0.25 mm x 0.25 µm) was used for quantification of the 16 PAHs. One µL of 

sample was injected at 310°C in pulsed splitless mode. The transfer line temperature 

was set at 280°C. The carrier gas was ultra-pure (99.9999%) helium, at a total flow rate 

of 1.4 mL min-1. The gas chromatograph oven temperature started at 90°C, was 

increased at 15°C min-1 until 200°C, and at 6°C  min-1 up to 320°C, being finally held at 

320°C for 20 minutes. The detector was set to quantify the analytes covering specific 

masses ranging from 40 to 350 atomic mass units (AMU). The mass spectrometer and 

source temperatures were 150°C and 230°C, respectively. A five-point calibration 

curve (20, 30, 50, 70 and 80 µg mL-1) was done for PAH quantification. 

 

Microtox® test 

Soils ecotoxicity was assessed as previously described in chapter 2. Briefly, PAH 

spiked and blank soils were extracted by using an ultrasonic bath mixture (1:1) of n-

hexane 95% (UV-IR-HPLC) PAI-ACS (Panreac, Castellar del Vallès, Barcelona, Spain) and 

acetone (Reag. Ph. Eur) PA-ACS-ISO (Panreac), following the US EPA method 3550C. 

Afterwards, soil extracts were further filtered and completely dried with a rotatory 

evaporator, being finally reconstituted with 2 mL of dimethyl sulfoxide (UV-IR-HPLC-

GPC) to a concentration of 2-4% in Microtox® diluent (2% NaCl of aqueous solution). 

The bioluminescent bacteria V. fischeri was used to measure the inhibition of light 

emission when organisms were exposed to soil extract samples, following the ISO 

11348-1:2007. EC50 values were estimated as the sample concentration causing 50% 

of light inhibition on the test organisms. 
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Metabolites identification 

In order to identify PAH metabolites, individual compounds detected in both 

climate scenarios, B and CC, in the two soils, Arenosol and fine-textured Regosol, were 

identified using the MS library search NIST 11 (Scientific Instrument Services, Inc., 

Ringoes, NJ, USA). Possible pathways of such byproducts formed in samples under 

light exposure, for both soils and climate scenarios, were further studied. 

 

Hydrogen isotope analysis of PAHs 

For hydrogen isotope analysis of naphthalene, acenaphthene, fluorene, 

phenanthrene, anthracene, pyrene and benzo(a)pyrene, PAHs were extracted from 

duplicate samples specifically prepared for this isotopic study. The extraction method 

was the same as that used for concentration analysis, being the extract dissolved in 

62.5 µL of dichloromethane (99.5%, Scharlau Chemie S.A., Barcelona, Spain). To avoid 

any possible interference with the δ2H analysis, no deuterated PAHs were added to 

samples. Since the isotope composition of a compound does not depend on its 

concentration (Elsner et al., 2012), total mass recovery is not crucial for hydrogen 

isotopes analysis. The hydrogen isotope composition of each of the 7 individual PAHs 

was analyzed using a gas chromatography-pyrolysis-isotope ratio mass spectrometry 

system (GC-TC-IRMS), consisting of a Trace GC Ultra equipped with a split/splitless 

injector, coupled to a Delta V Advantage IRMS (Thermo Scientific GmbH, Bremen, 

Germany) through a high temperature pyrolysis interface. The column used in the GC-

TC-IRMS system was an Agilent Technologies DB-1 column (30 m × 0.25 mm, 1.0 μm 

film thickness; Santa Clara, CA, USA). The oven temperature program started at 50°C 

for 1 min, heated until 160°C at a rate of 25°C min-1, and then up to 320°C at a rate of 

3°C min-1, being finally held at 320°C for 20 min. The injector was set to splitless mode 

at a temperature of 280°C. Helium was used as a carrier gas, with a gas flow rate of 

1.0 mL min-1. 

Hydrogen isotope ratios are reported according to the international standard 

Vienna Standard Mean Ocean Water (VSMOW), using the delta notation, δ2H (‰) = 

(R/(Rstd-1)) x 1000; where R and Rstd are the isotope ratios (2H/1H) of the sample and 

the standard, respectively. Measurements were run in duplicate, achieving standard 
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deviations of the duplicates of δ2H values below ±10‰. The analytical system was 

daily verified using PAH control standards with known hydrogen isotope ratios, which 

were determined previously using a Carlo-Erba 1108 (Carlo-Erba, Milano, Italy) 

elemental analyzer (EA), coupled in continuous flow to a Delta Plus XP isotope ratio 

mass spectrometer (Thermo Fisher Scientific, Bremen, Germany). 

 

RESULTS AND DISCUSSION 

Photodegradation of PAHs 

Fig. 1 and Fig. 2 show the concentration changes of naphthalene, anthracene, 

pyrene, benzo(a)pyrene and benzo(ghi)perylene, as representatives of 2-, 3-, 4-, 5-, 

and 6- ringed PAHs, respectively, in Arenosol and fine-textured Regosol soils exposed 

for 28 days to B and CC scenarios. The complete list of photodegradation rates of the 

16 PAHs here analyzed on the 28th day of light exposure is summarized in Table 1. Half-

lives for the 16 PAHs in both kinds of soil, and in both simulated scenarios, are depicted 

in Fig. 3.  

Because of methodological difficulties, different solvent extraction procedures 

were used in both scenarios. A Microwave Extraction System was utilized in the B 

scenario, while an ultrasonic bath was applied in the CC scenario. Recovery 

percentages were better in the latter case. Therefore, the initial concentrations of all 

PAHs were higher in the CC scenario. On the other hand, minor fluctuations in the 

concentrations were noticed over time. However, since irradiated samples were 

always compared to dark controls, these changes were not relevant. Three main 

processes might be related to PAH concentration decreases in soils subjected to the 

experimental conditions of the current study: volatilization, sorption, and 

photodegradation (Marquès et al., 2016). However, the contribution of each process 

was different according to the physicochemical properties of each compound, the 

texture of each soil, and the climate conditions. In general terms, higher 

photodegradation rates were noted in PAHs under the CC scenario than under the B 

scenario in Arenosol soil. In contrast, fewer differences in photodegradation rates 

were found in fine-textured Regosol soil when both scenarios were compared. 
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Fig. 1. Concentration trends of some 2-, 3-, 4-, 5-, and 6- ringed PAHs exposed to B and CC 
scenarios in Arenosol soil. Relative Standard Deviations: naphthalene= 0.36-2.38%; 
anthracene= 0.48-2.43%; pyrene= 0.43-4.55%; benzo(a)pyrene= 0.04-0.70%; and 
benzo(ghi)perylene= 0.01-2.64%. 
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Fig. 2. Concentration trends of some 2-, 3-, 4-, 5-, and 6- ringed PAHs exposed to B and CC 
scenarios in fine-textured Regosol soil. Relative Standard Deviations: naphthalene= 0.36-
2.38%; anthracene= 0.48-2.43%; pyrene= 0.43-4.55%; benzo(a)pyrene= 0.04-0.70%; nd 
benzo(ghi)perylene= 0.01-2.64%. 
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In the B scenario, concentrations of naphthalene were the same in irradiated and 

dark control samples, indicating that it was not photodegraded in any of the soils. In 

the CC scenario, naphthalene was not detected in any soil sample, either irradiated or 

dark control, which could be due to the volatilization related to the increase of 

temperature. These findings agree with those reported by Cabrerizo et al. (2015), who 

found a higher volatilization of low molecular weight PAHs in correlation with the 

temperature. Acenaphthylene also dramatically decreased its concentration under CC 

conditions. However, this reduction was not as quick as that of naphthalene, achieving 

undetected levels after the 1st and the 7th day of soil incubation, in coarse- and fine- 

textured soils, respectively. Similarly to naphthalene, volatilization would be playing a 

key role in the loss of acenaphthylene. In contrast, in the B scenario both compounds 

could be detected at the end of the experiment in both soils. 

 

Table 1. Photodegradation rates (%) of 16 US EPA priority PAHs in Arenosol and fine-textured 
Regosol soils under B and CC scenarios. 

*T= 20°C; light intensity= 9.6 W m-2; ** T= 24°C; light intensity= 24 W m-2; Complete degradation 
after: a1 day, b4 days, c7 days, and d14 days. 

 

In Arenosol soil, photodegradation rates of acenaphthene, fluorene, 

phenanthrene and anthracene in the CC scenario (21.3%, 14.5%, 16.0% and 85.4%, 

 Arenosol soil Fine-textured Regosol soil 

 B 
scenario* 

CC 
scenario** 

B 
scenario* 

CC 
scenario** 

Naphthalene 0 0 0 0 

Acenaphthylene 0 0 0 0 

Acenaphthene 1.5 21.3 a 2 2.6 

Fluorene 2.9 15.4 c 9.5 7.8 

Phenanthrene 11.2 16.0 33.2 30.5 

Anthracene 19.7 85.4 b 39.8 36.4 d 

Fluoranthene 0 28.9 12.5 14.1 

Pyrene 0 60.1 17.1 18.6 

Benzo(a)anthracene + 
chrysene 

0 41.0 30 34.2 

Benzo(b+k)fluoranthene 0 20.2 30 16.8 

Benzo(a)pyrene 23.0 54.6 4.9 c 37.8 d 

Benzo(ghi)perylene 3.6 27.1 24.6 19.5 

Dibenzo(ah)anthracene 2.0 37.0 28.3 23.2 

Indeno(123-cd)pyrene 11.7 39.1 68.9 43.2 
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respectively) were notably higher than those obtained in the B scenario (1.5%, 2.9%, 

11.2% and 19.7%, respectively). It evidences that an increase of temperature and light 

enhances photodegradation. Moreover, only under more extreme conditions, 

acenaphthene, anthracene and fluorene could not be detected in soil after 1, 4 and 

14 days of light exposure, respectively. In contrast to Arenosol soil, similar 

photodegradation rates were found in fine-textured Regosol soil in both climate 

scenarios. Acenaphthene, fluorene, phenanthrene and anthracene showed 

photodegradation rates of 2.0%, 9.5%, 33.2% and 39.8% in the B scenario, while the 

loss of these compounds in the CC scenario was 2.6%, 7.8%, 30.5% and 36.4%, 

respectively. However, anthracene was completely photodegraded in soil when 

increasing the temperature and light intensity after 14 days of incubation. These 

results are in agreement with those previously reported by Coover and Sims (1987), 

who found different loss rates of 3-ringed PAHs according to the temperature (10°C, 

20°C and 30°C). 

In Arenosol soil, fluoranthene, pyrene, benzo(a)anthracene + chrysene, and 

benzo(b+k)fluoranthene were highly photodegraded under CC conditions, showing 

photodegradation rates of 28.9%, 60.1%, 41.0% and 20.2%, respectively. However, no 

photodegradation was noted for the same PAHs in the B scenario, where soil 

concentrations remained constant in both irradiated and dark control samples. These 

results also agree with those of Maliszewska-Kordybach (1993), who identified 4-

ringed PAHs as the most sensitive to temperature change. Finally, no differences in 

photodegradation rates were observed in fine-textured Regosol soil, irrespective of 

the climate scenario. Zhang et al. (2010) reported a higher photodegradation of 

pyrene under UV light irradiation in a fine-textured soil, with loss rates of 25% and 

35%, at 20°C and 25°C, respectively. In turn, lower rates were observed in both soils 

(17.1% and 18.6% in Arenosol and Regosol, respectively), probably because of 

differences in the light spectrum. 

Benzo(a)pyrene, benzo(ghi)perylene, dibenzo(ah)anthracene and indeno(123-

cd)pyrene presented a similar pattern to that of 3-ringed PAHs. The increase of 

temperature and light intensity enhanced the photodegradation of these PAHs in 

Arenosol soil. Photodegradation rates of benzo(a)pyrene, benzo(ghi)perylene, 

dibenzo(ah)anthracene and indeno(123-cd)pyrene increased from 23.0%, 3.6%, 2.0% 
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and 11.7% to 54.6%, 27.1%, 37.0% and 39.1%, respectively, after the increase of 

temperature and light related to the climate change. In fine-textured Regosol soil, 

these PAHs underwent more similar photodegradation rates under both simulated 

scenarios. Moreover, benzo(a)pyrene was completely lost before finishing the 

experiment regardless the climate conditions.  

Half-lives of PAHs in soils determined on the basis of Equations 2 and 3, confirmed 

the same trends (Fig. 2). Lower half-lives were noted for the most volatile compounds 

(e.g., acenaphthylene and acenaphthene), due to their volatilization, as well as for 

those that were more rapidly photodegraded (e.g., anthracene and benzo(a)pyrene). 

In Arenosol soil, most PAHs presented lower half-lives when simulating the CC 

scenario, while they were similar in fine-textured Regosol soil in both scenarios.   

 

 
Fig. 3. Half-lives of 16 PAHs exposed to B and CC scenarios in Arenosol and fine-textured Regosol 
soils. 

 
Higher degradation rates of PAHs were found in fine-textured Regosoil soil. Soil 

texture plays a key role in the photodegradation of these chemicals. Xiaozhen et al. 
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(2005) showed that the photolytic depth increases gradually from sand through silt to 

clay. Therefore, photochemical reactions may be accelerated when soil particles are 

smaller. Moreover, it has also been pointed out the important role of the 

photocatalysts content (manganese, magnesium, zinc, iron and aluminum oxides) in 

soil over PAH degradation rates (Zhang et al., 2006; Zhao et al., 2004). In contrast to 

Regosol soil, PAH photodegradation rates clearly increased in Arenosol soil, after 

applying CC conditions, being probably related to the need of more activation energy 

(increase of temperature and light intensity) to achieve the photodegradation of the 

PAHs in Arenosol soil. The higher amount of iron, aluminum and manganese oxides in 

fine-textured soil than in Arenosol soil, favors PAH photodegradation, even with no 

increase of temperature and light intensity. This fact highlights the tremendous 

importance of the soil properties on the PAH degradation, which makes hard compare 

the current results with those from the scientific literature. The values of volatilization 

and enhanced degradation of the mid-molecular weight PAHs found in this study were 

in agreement with those previously reported by a number of investigators. In contrast, 

the high photodegradation rates led to lower half-lives, in comparison to values from 

the scientific literature (Coover and Sims, 1987; Maliszewska-Kordybach, 1993; 

Oleszczuk and Baran, 2003). Furthermore, photodegradation of high molecular weight 

PAHs contrasts with previous findings in which these compounds had been reported 

to be very recalcitrant in soil, even when increasing the temperature up to 30°C 

(Coover and Sims, 1987; Maliszewska-Kordybach, 1993). In the present study, 

benzo(a)pyrene was more easily photodegraded when increasing the temperature 

under light exposure (Zhang et al., 2006). Nonetheless, it must be remarked that not 

only temperature, but also light intensity, were adjusted. Consequently, the current 

results might differ from others reported in the scientific literature, in which 

temperature was the only controlled parameter. It has been suggested that there 

might be a synergistic effect of PAH photodegradation when both temperature and 

light intensity are increased (Nadal et al., 2006). Anyhow, the assessment of two 

simultaneous variables makes more difficult the comparability between studies. 
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Ecotoxicity: Microtox® test 

Under current climate conditions, irradiated and dark control samples showed a 

similar ecotoxicity trend in Arenosol soil. By contrast, irradiated samples were more 

detoxified than dark controls in fine-textured soil. These differences between both 

soils agreed with concentrations results, since higher photodegradation rates were 

shown in fine-textured soil than in Arenosol soil when the current Mediterranean 

scenario was simulated.  

a) B scenario 

Arenosol soil   Fine-textured Regosol soil 

 

b) CC scenario 

Arenosol soil   Fine-textured Regosol soil 

 

 

 

Fig. 4. Ecotoxicity trend in Arensol and fine-textured Regosol soil under B and CC scenarios. 
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Contrary to the current climate scenario, irradiated samples became more 

detoxified than dark controls in Arenosol soil under the simulation of the climate 

change scenario. In fact, PAHs found in this kind of soil were more photodegraded 

when the temperature and light intensity increased. In fine-textured Regosol soil, EC50 

of irradiated samples and dark controls did not show many differences until 14th day 

of exposure, being afterwards irradiated samples more detoxified. Regardless of the 

soil and climate scenario, EC50 oscillations in irradiated samples, which in turn were 

more pronounced in climate change scenario, might probably be related to the 

formation of PAHs photodegradation by-products.  

 

Identification of PAH metabolites  

PAH metabolites were identified in irradiated samples and dark controls of both 

soils and under both climate scenarios (Table 2). Potential pathways for their 

formation are shown in Fig. 5 and Fig. 6.  

Table 2. Information about identified metabolites in both soils and climate scenarios. 

RAD= irradiated sample; DC= dark control; *T= 20°C; light intensity= 9.6 W m-2; ** T= 24°C; light intensity= 24 W m-2  

 m/z 
TR  

(min) 

Arenosol soil Fine-textured Regosol soil 

B 
scenario* 

CC  
scenario** 

B  
scenario* 

CC  
scenario** 

RAD DC RAD DC RAD DC RAD DC 

Benzophenone 182 12.40 x x x x x x x x 

9H-fluorene,9-methylene 252 6.72 x x   x x   

Methyl dehydroabietate 299 14.45 x x   x x   

1,2-dihydrobenzo(b)fluoranthene 253 16.86 x x   x x x x 

2,3-dihydrofluoranthene 202 12.22 x x   x x   

Acetophenone 120 6.93   x x   x x 

Benzaldehyde,3-hydroxy-4-
methoxy 

151 9.85   x x   x x 

Benzeneacetic acid 136 8.22   x x   x x 

2,6-dimethylbenzaldehyde 133 7.95       x x 

9,10-anthracenedione 208 16.85 x x x x x x x x 

7H-benzanthrene /  
11H-benzo(b)fluorene 

281 20.32       x x 

Benzo(a)anthracene-7,12-dione 258 24.98 x  x  x  x  

1-acenaphthenol 168 12.91       x  

2-naphthalenecarboxaldehyde 184 16.20       x  

Naphthalic anhydride 198 17.74   x    x  

9H-fluoren-9-one 180 13.88   x      

1(2H)-acenaphthylenone 168 12.93   x      
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a) Arenosol soil 

 

 

b) Fine-textured Regosol soil 

 

Fig. 5. Photodegradation by-products of PAHs in a) Arenosol soil and b) fine-textured Regosol 
soil, under the B scenario.  
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a) Arenosol soil 

 

 

 

b) Fine-textured Regosol soil 

 

 

Fig. 6. Photodegradation by-products of PAHs in a) Arenosol soil and b) fine-textured Regosol 

soil, under the CC scenario. 
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Up to 7 metabolites were identified when simulating the B climate scenario (Fig. 

4). Benzo(a)anthracene-7,12-dione was only found in soils exposed to light, while 

9,10-anthracenedione was formed under light and darkness conditions. The oxidation 

of anthracene and benzo(a)anthracene may lead to the formation of 9,10-

anthracenedione and benzo(a)anthracene-7,12-dione, respectively, as a consequence 

of photodegradation or other degradation processes (Cajthaml et al., 2006; Gabriel et 

al., 2004; Woo et al., 2009). 9,10-anthracenedione was found after 2 and 3 days of 

light exposure in fine-textured Regosol and Arenosol soils, respectively. It was also 

found in dark controls after 14 days of soil incubation, showing that unknown 

degradation processes could be also occurring in the dark. In addition, light could also 

enhance the oxidation of anthracene, leading to a quicker formation of 9,10-

anthracenedione. Although concentrations indicated that benzo(a)anthracene was 

only photodegraded in fine-textured Regosol soil, benzo(a)anthracene-7,12-dione 

was identified not only in fine-textured Regosol soil, after 14 days, but also 

unexpectedly in Arenosol soil after 28 days of light exposure. Therefore, a slight 

degradation could be also happening in Arenosol soil.  

The same metabolites that were found in the B scenario, were also identified 

under CC conditions (Fig. 5). 9,10-anthracenedione was found just the first day of 

incubation in both kinds of soil, in both irradiated samples and dark controls. 

Benzo(a)anthracene-7,12-dione was identified after 2 and 3 days of light exposure in 

fine-textured Regosol and Arenosol soils, respectively. It suggests that the formation 

of benzo(a)anthracene-7,12-dione could depend on soil texture and climate 

conditions. In contrast to concentration data, the increase of temperature and light 

intensity enhanced by-products formation in Regosol soil. Overall, these results clearly 

show the need to jointly evaluate the levels of the 16 priority US EPA PAHs together 

with those of the metabolites, when assessing the photodegradation of these organic 

compounds. As PAHs in soil can be influenced by a number of processes (e.g. 

volatilization and/or sorption/desorption), the presence of metabolites makes clear 

the degradation of parental compounds. 

The increase of the temperature, as well as the light intensity, led to the formation 

of new metabolites under CC conditions (Fig. 5). Acenaphthylene and 

benzo(a)anthracene-7,12-dione could have been transformed into naphthalic 
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anhydride (Cajthaml et al., 2006), which was detected after 3 and 5 days of light 

exposure in fine-textured Regosol and Arenosol soils, respectively. However, it was 

not detected between the 3rd and the 6th day in fine-textured Regosol soil, being the 

most plausible hypothesis the generation/degradation dynamics of this metabolite. 

According to Microtox® results, the occurrence of naphthalic anhydride matches with 

the occasionally toxicity increase in irradiated samples. However, there is not available 

data on naphthalic anhydride and that fact should be further studied. There were 

some by-products that were formed depending on the soil. In Arenosol soil, 

acenaphthylene and fluorene, which were completely lost before finishing the 

experiment, may be oxidized and transformed into oxy-PAHs. Woo et al. (2009) 

reported that the photodegradation of acenaphthylene leads to the formation of 

1(2H)-acenaphthylenone. On the other hand, Acevedo et al. (2011) stated that 

fluorene leads to the formation of 9H-fluorene-9-one when studying PAH 

biodegradation. In the present study, the oxygen consumption of soils was negligible, 

disregarding any biodegradation process. Hence, the occurrence of such metabolite 

on the 7th day of light exposure might come from the oxidation of fluorene, being light 

a key parameter.  

Since the 1st day, light exposure might have hydroxilized acenaphthene by 

attaching an -OH radical, ultimately generating acenaphthenol (Woo et al., 2009). 

Furthermore, naphthalene oxidation might have generated 2-

naphthalenecarboxaldehyde, after 5 days in fine-textured soil, therefore disregarding 

volatilization as the only process occurring in Regosol soil.  However, these findings 

still need further confirmation. 

The intermediate chemicals identified in the present study were quinones, 

ketones and aldehydes, whose high stability allows a higher resistance to degradation. 

However, although undetected, it cannot be discarded that intermediate compounds 

with lower stability may be formed, but quickly degraded. Moreover, the experiment 

was focused on the assessment of the 16 US EPA priority PAHs, whereas the 

identification and description of PAH metabolites might be somehow biased. 
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Hydrogen isotopes of PAHs 

In a context of climate change, benzo(a)pyrene showed a significant hydrogen 

isotope fractionation over time in both Arenosol and fine-textured Regosol soils (Fig. 

7). Additionally, a significant enrichment in 2H in benzo(a)pyrene was also observed in 

dark controls from both types of soil. 

 

a) B scenario 

Arenosol soil   Fine-textured Regosol soil 

 

b) CC scenario 

Arenosol soil   Fine-textured Regosol soil 

    

Irradiated samples  Dark controls 

Fig. 7. Hydrogen isotope composition of benzo(a)pyrene under (a) B and (b) CC scenarios over 
time in the Arenosol fine-textured Regosol soil. Error bars represent the standard deviation 
between analytical duplicates. 
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In Arenosol soil, benzo(a)pyrene in irradiated soil samples experienced hydrogen 

isotopic fractionation, with a change of hydrogen isotopic composition from -6‰ to 

+29‰ (Fig. 6b), after 5 days of experiment. In Regosol soil, a similar variation in 

hydrogen isotopic composition of benzo(a)pyrene was obtained (from -6‰ to +55‰ 

after 3 days of experiment, Fig. 6b). These results are in agreement with concentration 

data, confirming the degradation of benzo(a)pyrene under climate change conditions. 

Hydrogen isotopic changes of benzo(a)pyrene in dark controls (from -6‰ to +115‰ 

after 7 days of incubation in Arenosol soil, and from -6‰ to +129‰ after 4 days of 

incubation in Regosol soil, Fig. 6b) confirm its degradation in the dark, which is in 

agreement with the formation of metabolites under these conditions. Although none 

of the metabolites was linked to benzo(a)pyrene, non-stable byproducts could have 

been generated, but also quickly degraded. Therefore, the presence of unknown 

degradation processes of PAHs, occurring also in the dark, was confirmed from two 

lines of evidence: 1) metabolites formation from other PAHs, and 2) hydrogen isotopic 

fractionation of benzo(a)pyrene (Fig. 6). Since it could mean an important pathway of 

PAH loss in soil, the degradation of benzo(a)pyrene in the dark should be further 

studied. 

When comparing the hydrogen isotope fractionation of benzo(a)pyrene under 

light in both climate scenarios, a similar increasing tendency was observed. However, 

a higher degree of hydrogen isotope fractionation was achieved in the B scenario (Fig. 

6a). In Arenosol soil, after 5 days of irradiation, the total hydrogen isotopic change 

was 232‰ and 35‰ in the B and CC scenarios, respectively. In fine-textured Regosol 

soil, after 3 days, the hydrogen isotope fractionation of benzo(a)pyrene in the B and 

CC scenarios was 107‰ and 55‰, respectively. These results indicate a less hydrogen 

isotope discrimination under CC conditions. 

Contrastingly, global warming might lead a higher hydrogen isotope fractionation 

in the darkness. In Arenosol soil, a total fractionation of 121‰ was achieved after 7 

days in the CC scenario, while that in the B scenario was only 81‰. Finally, in Regosol 

soil, the fractionation was 136‰ vs. 74‰ in the CC and B scenarios, respectively.  

The differences in the degree of hydrogen isotope fractionation between the 

different soils and climate conditions, including darkness conditions, suggest that 

hydrogen isotope fractionation could discriminate different types of degradation. 
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Unfortunately, the presence of other processes occurring along the experiment such 

as volatilization and sorption, made impossible to calculate the degree of isotopic 

enrichment factor (ɛ value). To obtain the specific ɛ value of each degradation process, 

further studies should be designed to avoid other processes that may affect 

concentration variation.  

With respect to the other six PAHs analyzed during the isotopic study (namely, 

naphthalene, acenaphthene, fluorene, phenanthrene, anthracene and pyrene), 

naphthalene and acenaphthene were not detected. Therefore, no isotopic effects 

could be assessed for these two particular hydrocarbons. On the other hand, due to 

its interference with the deuterated fluorene used as internal standard for analytical 

control, fluorene could not be properly detected. Finally, phenantrene, anthracene 

and pyrene did not show any hydrogen isotope fractionation. According to the basis 

of isotopic fractionation (Elsner et al., 2012), the absence of isotopic effects on these 

three PAHs could be associated to low isotopes discrimination during the bond 

breakage produced by photodegradation. Further investigations should also confirm 

this hypothesis. 

 

CONCLUSIONS 

Climate change is able to impact on the photodegradation of PAHs depending on 

the exposure time, the molecular weight of each compound, and the soil texture. 

According to the results of the present study, when increasing the temperature and 

light intensity, low molecular weight PAHs are more rapidly volatilized. Moreover, 

medium and high molecular weight PAHs showed higher photodegradation rates in 

Arenosol soil, while their rates remained constant in fine-textured Regosol soil, 

regardless of the climate scenario. The important role of the required activation 

energy was confirmed, as it favours the photodegradation reactions in different kinds 

of soil. The content of photocatalysts in Arenosol soil needs more temperature and 

light intensity to enhance the photodegradation of PAHs. In turn, photocatalysts in 

fine-textured Regosol soil are able of fostering the photodegradation of PAHs under 

any climate condition. It was also noted that the formation of PAH metabolites, as a 

consequence of light exposure, takes place through different pathways, being the 

oxidation of parent compounds the most relevant. In the CC scenario, the formation 
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of by-products was clearly favoured in comparison with data from the B scenario, in 

which the amount of detected metabolites was notably lower. Consequently, in a 

more or less near future, although humans might be exposed to lower environmental 

concentrations of PAHs, they could be exposed to new PAH metabolites, which may 

be even more toxic (Ras et al., 2009). 

Finally, hydrogen isotope results confirm that benzo(a)pyrene is degraded in a CC 

scenario, in both light and darkness. The differences in the degree of hydrogen 

isotopic fractionation, according to the different climate conditions and types of soil, 

indicate the suitability of hydrogen isotopes to distinguish different degradation 

processes. Moreover, the significant hydrogen isotopic change obtained in the 

different case-studies emphasizes the great potential of CSIA as a powerful tool to 

monitor PAH degradation in the field. Furthermore, the degradation of 

benzo(a)pyrene without light intervention requires additional investigations, since it 

could be a potentially relevant pathway of PAH loss in soil. 
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DISCUSSION CHAPTER 4 

These results confirm that the expected increase of temperature and light 

intensity, resulting form climate change, will impact on the fate and behaviour of PAHs 

once they are deposited on surface soils. Exposure time, environmental parameters 

(e.g., temperature and light intensity), molecular weight of each hydrocarbon and soil 

texture were identified as the key parameters. 

LMW PAHs were more quickly volatilized in both soils (Arenosol and fine-textured 

Regosol) with the increment of temperature and light intensity. Medium and high 

molecular weight PAHs showed higher photodegradation rates in Arenosol soil surface 

when the climate change scenario was set. Photodegradation rates were: 

phenanthrene (11.2 and 16%), anthracene (19.7 and 85.4%), benzo(a)pyrene (23 and 

54.6%) and indeno(123-cd)pyrene (11.7 and 39.1%), as representative compounds, in 

the current and climate change scenario, respectively. In contrast, no difference was 

found in fine-textured soil, regardless the temperature and radiation increase. 

As previously mentioned, metal oxides may act as photocatalysts of PAHs. 

Although we found that iron oxide is not the only responsible photocatalizing PAHs 

degradation, it is evident photocatalysis occurs in Regosol soil, being probably caused 

by interactions of different soil components. Thus, a possible explanation for the 

enhancement of PAHs photodegradation in Arenosol soil in the climate change 

scenario could be its lower content of photocatalysts, which eventually result in a 

higher activation energy requirement. This is, they require higher temperature and 

light intensity to be photodegraded. On the other hand, PAHs photodegradation in 

fine-textured soil was not temperature - and light - dependent, possibly because of 

the higher content of metal oxides in this soil. Hence, a higher temperature and light 

intensity (climate change scenario) does not mean a higher photodegradation of 

PAHs, since the required activation energy was already achieved in the B scenario.  

The hydrogen isotope results confirmed that benzo(a)pyrene was degraded in a 

CC scenario, as it occurred in the B scenario, under light and in the darkness. 

Therefore, the degradation of benzo(a)pyrene without light intervention requires 

additional investigations, since it could be a potentially relevant pathway of PAH loss 

in soil. 
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The increase of temperature and light intensity clearly enhanced the formation 

of by-products, in terms of required energy and number of by-products, in both soils. 

Some of the identified by-products are known to own a higher toxicity than their 

parent PAHs. 

Despite PAHs have shown sensitivity to temperature and light exposure at 

laboratory scale, it is evident that intensity of solar radiation is, by far, higher. 

Consequently, lab-scale results might be underestimating photodegradation rates 

occurring in the environment. To solve this gap, a field experiment was conducted 

using the same design but assuming the occurrence of other degradation processes 

like biodegradation. 
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ABSTRACT 

The photodegradation of polycyclic aromatic hydrocarbons (PAHs) may be an 

important degradation pathway of PAHs in regions with a high solar radiation. The 

present investigation was aimed at studying the photodegradation of PAHs after their 

deposition on surface soils with different textures. Photodegradation by-products 

were also identified and semi-quantified, as well as correlated with the decrease of 

parent compounds. The experiment was performed by deploying soil samples spiked 

with a mixture of the 16 US EPA priority PAHs in a methacrylate box, exposed to solar 

radiation for 7 days, meaning a solar energy of 102.6 MJ m-2. As hypothesized, the 

individual PAHs were volatilized, sorbed and/or photodegraded, depending on their 

physicochemical properties, as well as the soil characteristics. Low and medium 

molecular weight PAHs were more sorbed and photodegraded in fine-textured 

Regosol soil, while a higher volatilization was observed in the coarse-textured 

Arenosol soil. In contrast, high molecular weight PAHs were more photodegraded in 

Arenosol soil. Especially low half-lives were noted for anthracene and benzo(a)pyrene, 

agreeing with previous findings at laboratory scale. Nine by-products were identified, 

including oxy-, nitro- and hydro-PAHs, whose toxic and mutagenic potential might be 

higher than the 16 priority PAHs. 

 

Keywords: Polycyclic aromatic hydrocarbons (PAHs), soil, solar radiation, 

photodegradation, by-products 
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INTRODUCTION 

Polycyclic aromatic hydrocarbons (PAHs) form a group of over 200 different 

organic compounds with two or more fused aromatic rings (Domingo and Nadal, 

2015). Since some PAHs have been classified as carcinogenic and teratogenic, this 

family of pollutants has reached a considerable international concern (Chen et al., 

2016). PAHs may enter the environment from both natural (e.g., plant synthesis, 

organic matter diagenesis, and forest fires) and anthropogenic (e.g., industrial 

activities, residential heating, power generation, incineration, and traffic) sources 

(Nadal et al., 2009). Once released to the atmosphere, gas phase PAHs are able to 

travel long distances before their deposition. Because of their low solubility and 

hydrophobic nature, high molecular weight (HMW) PAHs tend to be sorbed to 

particulates, being also widely transported through atmospheric routes. 

Consequently, they may mean a hazard, not only to human populations living in urban 

areas, but also to natural ecosystems (Augusto et al., 2015; Hu et al., 2014; Hung et 

al., 2005; Nadal et al., 2011; Ohkouchi et al., 1999). 

As organic molecules, PAHs may undergo various natural processes such as 

biodegradation, chemical transformation, and photolysis reactions (Jia et al., 2015). It 

has been suggested that the photolysis of PAHs on soil surfaces plays an important 

role in the environmental fate of these chemicals (EL-Saeid et al., 2015). Upon light 

irradiation, PAHs can absorb light energy to reach photo-excited states. Therefore, 

they react with molecular oxygen and coexisting chemicals to produce reactive oxygen 

species (ROS) and other reactive intermediates, such as oxygenated PAHs and free 

radicals (Fu et al., 2012).  

The photodegradation of organic compounds in various environmental matrices 

has been largely studied, mostly for remediation purposes. One of the applications is 

the use of light lamps to remove antibiotics in water (Batchu et al., 2014; Ge et al., 

2010; Pereira et al., 2007). Regarding PAHs, most photodegradation investigations 

have been performed at laboratory scale by means of artificial light (Gupta and Gupta, 

2015; Marquès et al., 2016a; Marquès et al., 2016b; Zhang et al., 2008; Zhang et al., 

2006; Zhang et al., 2010). Natural sunlight, whose intensity is notably higher than that 

emitted by laboratory lamps, has been used to study the photodegradation in air of 

different organic compounds such as organophosphate pesticides (Borrás et al., 
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2015), aromatic compounds (Pereira et al., 2015), organochlorines (Vera et al., 2015), 

and herbicides (Muñoz et al., 2014). However, there is a gap in the knowledge of the 

natural photodegradation of PAHs in soils and other environmental matrices. 

It has been hypothesized that PAHs photodegradation would be higher and faster 

under solar radiation than under lab-controlled light lamps. Consequently, PAHs by-

products, which may be even more toxic than their parent compounds, can be more 

easily generated (Ras et al., 2009). The evaluation of PAHs degradation products is 

highly valuable to assess human health risks derived from exposure to such 

compounds, which are not considered so far by environmental regulations.  

This study was aimed at assessing the photodegradation of the 16 US EPA priority 

PAHs under solar radiation in two types of soils frequently found in the Mediterranean 

region, as it naturally occurs. In addition, PAHs photodegradation by-products were 

identified and semi-quantified. The current results were finally compared to those 

obtained in a previous study performed at laboratory scale (Marquès et al., 2016a; 

Marquès et al., 2016b). 

 

MATERIALS AND METHODS 

Experiment design: photodegradation of PAHs 

Details of soil characteristics, as well as contamination procedure, were recently 

reported (Marquès et al., 2016b). Briefly, two different soils were collected from the 

A horizon of remotes areas of Catalonia (NE of Spain): a) an acidic and coarse-textured 

Arenosol soil, with granitic origin, and b) a fine-textured Regosol soil, formed by 

sedimentary materials. Ten grams of air-dried soil were weighed and deployed in 

uncovered glass Petri dishes of 7 cm of diameter. Each soil sample was spiked with a 

solution containing the 16 US EPA priority PAHs from Supelco® (Bellefonte, PA, USA) 

(naphthalene 99.3% purity, acenaphthylene 99.2% purity,  acenaphthene 99.3% 

purity, fluorene 98.2% purity, phenanthrene 97.6% purity, anthracene 99.0% purity, 

fluoranthene 99.5% purity, pyrene 98.9% purity, benzo(a)anthracene 98.5% purity, 

chrysene 97.4% purity, benzo(b)fluoranthene 97.3% purity, benzo(k)fluoranthene 

99.5% purity, benzo(a)pyrene 95.0% purity, dibenzo(ah)anthracene 99.0% purity,  

benzo(ghi)perylene 99.4% purity, and indeno(123-cd)pyrene 99.7% purity), leading to 
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an individual concentration of 2.5 µg g-1 of soil, and a Σ16 PAHs concentration of 40 µg 

g-1 of soil. 

The present study was carried out in a UV-light permeable methacrylate box 

placed on the roof of the School of Chemical Engineering, Universitat Rovira i Virgili, 

Tarragona (Catalonia, Spain). Although the methacrylate box protected the samples 

from the wind, it allowed the penetration of the whole light spectrum coming from 

solar radiation. The box owned eight holes of 2 cm of diameter, which facilitated the 

exchange of air and softened any temperature increase. The temperature inside the 

box was registered by using the temperature data logger EBI 300 (Ebro®, Ingolstadt, 

Germany) with 30 minutes of time-span. Once the samples were contaminated with 

PAHs, they were deployed inside the methacrylate box and exposed to sunlight. In 

addition to irradiated samples, dark controls were performed by covering half of 

samples with aluminum foil. The experiment was conducted during late boreal winter, 

from 8 to 15 March 2016. Triplicates of irradiated samples and dark controls of each 

soil were removed from the methacrylate box after the following exposure times: 0.5, 

1, 2, 3, 6, 24, 48, 72, 96 and 168 hours. Simultaneously, environmental parameters 

such as precipitation, humidity and global solar irradiance were continuously 

monitored in a meteorological station located nearby (Constantí, Tarragona, Spain). 

 

PAH extraction and analysis 

The methodology for the extraction and analysis of PAHs in soils was previously 

reported (Marquès et al., 2016a). Briefly, 30 mL of hexane/dichloromethane (1:1) 

(Scharlau Chemie S. A., Barcelona, Spain) were added to soil samples. Then, each 

sample was 3-times subjected to an ultrasonic bath programmed for 10 min. After 

each step, the solvent was filtered. Subsequently, the extract was slowly concentrated 

with a rotatory evaporator down to 2 mL, and finally with a gentle stream of purified 

N2 (99.9999%). In addition to irradiated and dark control samples, 10 g of soil free of 

PAHs were also extracted and used as blank soil samples. Analytes were quantified by 

using a gas chromatograph (Hewlett-Packard G1099A/MSD5973) coupled to a mass 

spectrometer (MSD5973). Separations were achieved on a DB-5 5% phenyl methyl 

siloxane column (60 m x 0.25 mm x 0.25 µm). A volume of 1 µL of sample was injected 

at 310°C in pulsed splitless mode, while the transfer line temperature was 280°C. The 
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initial column temperature was 90°C, being increased at a rate of 15°C min-1 up to 

200°C, and then at 6°C min-1 until 325°C, being this temperature held for 20 min. Ultra-

pure helium (99.9999%) was the carrier gas at a flow rate of 1.4 mLmin-1. PAHs were 

quantified by means of a five-point calibration curve (20, 30, 50, 70, 80 µg mL-1). In 

order to allow the identification of PAHs degradation products as a second step of the 

experiment, the mass spectrometer was set at full scan mode. 

 

Quality control 

To assess any potential loss, a mixture of 6 labeled hydrocarbons (d4-1,4-

dichlorobenzene (99.8% purity), d8-naphthalene (96.3% purity), d10-acenaphthene 

(99.8% purity), d10-phenanthrene (99.3% purity), d12-chrysene (98.8% purity), and d12-

perylene (99.5% purity)), provided by Supelco® (Bellefonte, PA, USA), was spiked to 

soil samples before extraction. In turn, two individual deuterated PAHs, also from 

Supelco® (d10-fluorene (98.3% purity) and d12-benzo(a)pyrene (98.5% purity)), were 

added to samples before GC-MS analyses. 

Naphthalene and d8-naphthalene were highly volatilized after being spiked in the 

soil, finding very low recoveries in both cases. Therefore, the results of naphthalene 

were not included and further investigated. The recoveries of the remaining PAHs 

ranged 54-106% and 76-117% in Arenosol and fine-textured Regosol soil, respectively. 

A complete list including recoveries of each hydrocarbon in both soils is summarized 

in Annex 4 (Table S1). 

 

Identification of PAHs degradation products 

Potential PAHs by-products, generated as a consequence of soil exposure to solar 

radiation, were identified by using the MS library search NIST 11 (Scientific Instrument 

Services, Inc., Ringoes, NJ, USA). Based on the similarity of their mass spectra with 

those in the library, only compounds fitting with a high probability (>90%) were 

confirmed. Afterwards, identified compounds were semi-quantified by considering 

peak areas of the degradation product divided by the peak area of the corresponding 

internal standard (A/AI). In addition, the correlations between their formation and the 

degradation of their parent compounds were graphically assessed. Finally, kinetics of 
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PAHs by-products were plotted, including corresponding equations and coefficients of 

determination, when each relative peak area was statistically different from others 

(Fig. 1).  

 

Statistical analysis 

XLSTAT Statistical Software for Excel was used to evaluate statistically the results. 

Significant differences in the changes of PAH levels with time were assessed by 

comparing results for irradiated and non-irradiated samples, applying a repeated 

analysis of variance (ANOVA). In addition, the same statistics test was performed to 

assess significant differences between by-products relative peak areas. Probability 

levels were considered as statistically significant at p<0.05. 

 

RESULTS AND DISCUSSION 

Meteorological data 

The average air temperature inside the box throughout the whole experiment 

was 14.4°C, with values ranging from 1.5 to 40.6°C. The mean global solar energy was 

0.6 MJ m-2, showing maximum irradiance peaks of 1.4 MJ m-2. As expected, there was 

some correlation between temperature and solar irradiance. Temperature versus 

irradiance and environmental humidity versus precipitation are shown in Annex 4 (Fig. 

S1 and Fig. S2, respectively). The solar energy doses over the experiment, associated 

to an exposure time of 0.5, 1, 2, 3, 6, 24, 48, 72, 96 and 168 hours, were 2.7, 4.1, 6.7, 

8.6, 10.1, 12.4, 28.3, 47.9, 67.9 and 102.6 MJ m-2, respectively. In consequence, the 

total solar energy to which PAHs were exposed at the end of the experiment was 102.6 

MJ m-2. 

 

PAH photodegradation and half-lives 

The photodegradation (%) was estimated by considering the impact of the 

sunlight exposure, as a difference between irradiated samples and dark controls when 

they were statistically different. In contrast, the half-life indicates the loss speed of a 

chemical exposed to solar radiation as well as to other co-occurring processes, such 

as volatilization, sorption or unknown degradation processes. The experiment was 
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performed with dried soils. Consequently, the availability of water was scarce. 

However, since the experiment was conducted in the field, it cannot be disregarded 

that the increase of environmental humidity might have induced other degradation 

processes, such as the biological oxidation of PAHs. Nevertheless, such process is not 

light-dependent and it may occur under the sunlight or in the darkness.  

Photodegradation (%) and half-lives of the 16 PAHs at three representative 

exposure times (24 h, 48 h, 168 h) and solar energy doses (12.4 MJ m-2, 47.9 MJ m-2 

and 102.6 MJ m-2), are summarized in Table 1. Details on the concentration trends of 

16 PAHs in irradiated samples and dark controls are provided as Annex 4 (Fig. S3). The 

photodegradation (%) of acenaphthylene, anthracene, pyrene, benzo(a)pyrene and 

benzo(ghi)perylene, as representatives of different molecular weight PAHs, in 

Arenosol and fine-textured Regosol soils, are depicted in Fig. 1. The kinetics were 

calculated only when photodegradation (%) showed statistical differences over time. 

In Arenosol soil, the photodegradation of anthracene, pyrene, benzo(a)pyene and 

benzo(ghi)perylene was clearly adjusted to lineal kinetics, showing R2 of 0.74, 0.91, 

0.73 and 0.91, respectively. By contrast, in fine-textured Regosol soil, only 

acenaphthylene was able to be adjusted to exponential trend with an acceptable R2 

(0.73). 

Three main processes are related to the fate of PAHs on surface soils: 

volatilization, sorption, and photodegradation (Marquès et al., 2016a; Marquès et al., 

2016b). Their importance depends not only on the physicochemical properties of each 

hydrocarbon, but also on the soil texture. Volatilization was the most important 

process for low molecular weight (LMW) PAHs, whose initial levels were low and 

followed a decreasing tendency in both sets of samples, under light and in the 

darkness. It suggests that volatilization of LMW PAHs is the key process leading to a 

reduction of concentration. On the other hand, photodegradation was more 

remarkable for medium molecular weight (MMW) and high molecular weight (HMW) 

PAHs. LMW and MMW PAHs tended to undergo a higher photodegradation in fine-

textured Regosol soil than in Arenosol soil. In contrast, HMW compounds (4-, 5-, and 

6- ringed PAHs) were more easily photodegraded in Arenosol soil, with percentages 

up to 70%. In addition, photodegradation trends of PAHs found in Arenosol soil were 

still increasing at the end of the experiment, while in fine-textured soil the maximum
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Table 1. Photodegradation and half-lives of PAHs under study in Arenosol and fine-textured Regosol soil. 

 

 No significant differences between irradiated samples and dark controls (p>0.05). 

  Concentration of irradiated sample < limit of quantification (loq). 

 
Arenosol soil Fine-textured Regosol soil 

Photodegradation (%) 

Half-life (days) 

Photodegradation (%) 

Half-life 
(days) 

Exposure time (h) 24 72 168 24 72 168 

Solar energy (MJ m-2) 12.4 47.9 102.6 12.4 47.9 102.6 

Acenaphthylene 50.0 ± 1.7   0.3 ± 0.05 63.7 ± 6.3   0.5 ± 0.1 

Acenaphthene  63.6 ± 18.2  0.9 ± 0.2 48.6 ± 14.8 54.7 ± 11.5  0.9 ± 0.2 

Fluorene  44.4 ± 1.7 45.6 ± 8.2 2.9 ±0.3  52.0 ± 15.5 61.0 ± 9.8 7.4 ± 2.4 

Phenanthrene   34.6 ± 2.2 8.7 ±1.4  37.1 ± 5.3 38.0 ± 2.4 13.0 ± 5.8 

Anthracene 22.6 ± 4.7 45.2 ± 3.9 60.8 ± 9.1 1.9 ±0.3 48.3 ± 14.3 57.3 ± 3.3 57.3 ± 6.5 2.6 ± 0.3 

Fluoranthene  10.3 ± 3.6 38.3 ± 2.7 4.5 ± 0.5  33.5 ± 18.2 53.7 ± 11.0 9.9 ± 2.0 

Pyrene  48.0 ± 7.2 61.1 ± 3.7 5.4 ± 2.0  29.3 ± 13.2 39.5 ± 6.8 6.7 ± 1.0 

Benzo(a)anthracene  41.6 ± 5.6 50.3 ± 3.5 7.8 ± 4.9  34.9 ± 6.5 33.7 ± 6.6 6.6 ± 1.2 

Chrysene  36.2 ± 5.5 45.5 ±6.1 8.7 ± 1.1  9.6 ± 1.0 13.5 ± 6.0 11.2 ± 1.6 

Benzo(b)fluoranthene   26.8 ± 1.9 17.2 ± 4.2  20.2 ± 1.8 22.4 ± 6.6 8.4 ± 1.6 

Benzo(k)fluoranthene    15.9 ± 2.1  20.7 ± 0.6 26.4 ± 7.5 9.2 ± 1.8 

Benzo(a)pyrene 35.2 ± 8.1 60.9 ± 1.3 69.7 ± 3.3 2.9 ± 0.1 28.6 ± 8.9 32.6 ± 9.7 32.7 ± 4.2 2.3 ± 0.1 

Benzo(ghi)perylene  21.8 ± 3.2 33.7 ± 3.4 3.1 ± 0.4  28.6 ± 9.4 23.0 ± 5.7 6.2 ± 0.6 

Dibenzo(ah)anthracene  25.8 ± 2.8 38.6 ± 2.3 8.3 ± 0.2  23.3 ±3.6 21.7 ± 5.5 5.6 ± 0.5 

Indeno(123-cd)perylene  31.7 ± 3.0 37.8 ± 1.4 5.4 ± 0.2  26.5 ± 3.5 26.8 ± 5.0 4.3 ± 0.3 
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level was generally reached with 47.9 MJ m-2 of solar energy dose (72h of exposure in 

the present experiment) (Table 1 and Fig. 1). Consequently, most compounds 

presented lower half-lives in Arenosol soil, regardless their final percentage of 

photodegradation. 

 

Fig. 1. Photodegradation trends of acenaphthylene, anthracene, pyrene, benzo(a)pyrene and 
benzo(ghi)perylene in Arenosol soil (above) and fine-textured Regosol soil (below). Bars 
indicate standard deviations between photodegradation calculated in three pairs of samples 
(irradiated samples and dark controls).  
*Photodegradation was not calculated when statistical differences between irradiated samples 
and dark controls were found, which was pointed out as 0 in the present Fig. ** Kinetics were 
adjusted only when statistical differences between the first and the last photodegradation value 
were found. 
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The concentrations of acenaphthylene and acenaphthene dramatically decreased 

after soil contamination, as a consequence of the important role of volatilization for 

the loss of those PAHs. However, differences between irradiated and dark control 

samples indicated the impact of sunlight exposure, suggesting that photodegradation 

also occurred. In Arenosol soil, acenaphthylene and acenaphthene under solar 

radiation could not be detected when the solar energy was low (28.3 and 67.9 MJ m-

2, respectively), leading to a final photodegradation of 50% and 64%, respectively 

(half-lives: 7.2 and 21.6h, respectively). In turn, the decrease of these PAHs in fine-

textured Regosol soil was softer, being both above the limit of detection of 47.9 MJ 

m-2 (72h of exposure). Since Regosol soils own a fine texture, they have an enhanced 

capacity to adsorb chemicals. The differences of PAH loss between irradiated and dark 

control samples, led to a similar accumulated photodegradation (64% and 55% for 

acenaphthylene and acenaphthene, respectively). 

Despite phenanthrene, fluoranthene, benzo(ghi)perylene, 

dibenzo(ah)anthracene and indeno(123-cd)perylene own a different number of 

aromatic rings, they behaved similarly in Arenosol soil. Their photodegradation at the 

end of the experiment ranged between 34% and 39% (half-lives: 3.1 – 8.7 days). 

Benzo(a)anthracene and chrysene showed a final photodegradation of 50% and 45%, 

and half-lives of 7.8 and 8.7 days, respectively, in Arenosol soil. Similarly, fluoranthene 

in fine-textured Regosol soil presented a photodegradation of 53.7% and a half-life of 

9.9 days. In contrast, chrysene was more resistant to solar radiation, showing only a 

slight photodegradation (13%) and high half-life (11.2 days) under the maximum solar 

energy dose (102.6 MJ m-2).  

As isomer compounds, benzo(b)fluoranthene and benzo(k)fluoranthene 

presented half-lives of 17.2 and 15.9 days, being the most resistant PAHs to be 

photodegraded in Arenosol soil. However, benzo(b)fluoranthene levels of irradiated 

samples and dark controls were only significantly different at the end of the 

experiment. In turn, benzo(k)fluoranthene in irradiated samples and dark controls 

were not statistically different during the whole experiment (p>0.05), and 

consequently, photodegradation did not take place. 

The remaining PAHs showed a similar degree of photodegradation in fine-

textured Regosol soil, with a slight decrease of the photodegradation percentage 
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when the molecular weight increased. Benzo(a)anthracene underwent 

photodegradation of 34% at the end of the experiment, being the half-lives estimated 

in 6.6 days. In addition to this 4-ringed PAH, benzo(b)fluoranthene and 

benzo(k)fluoranthene presented 22% and 26% of photodegradation, respectively 

(half-lives: 8.4 and 9.2 days, respectively). Phenanthrene, together with chrysene, was 

the most resistant to photodegradation in this kind of soil, with half-lives around 13.0 

days. Concentrations of those MMW and HMW PAHs in irradiated and non-irradiated 

samples showed significant differences (p<0.5) at 28.3 MJ m-2 (48h of exposure). 

Finally, the photodegradation of dibenzo(ah)anthracene, indeno(123-cd)perylene and 

benzo(ghi)perylene ranged between 22% and 27% at the end of the experiment, 

without finding statistical differences when solar energy was below 47.9 MJ m-2 (72h 

of exposure). Unlike Arenosol soil, fine-textured Regosol soil might have sorbed HMW 

PAHs more easily. Because of the small particle size of these soils, light cannot 

penetrate, reducing the photodegradation of LMW and MMW PAHs. 

Fluorene, anthracene, pyrene and benzo(a)pyrene, with 3, 4 and 5 aromatic rings, 

were the PAHs presenting the highest photodegradation. Fluorene was especially 

sensitive to solar exposure in fine-textured soil, showing a 60% of total 

photodegradation, although its half-life was not particularly low (7.4 days), and finding 

significant differences between samples and controls (p<0.05) with a solar energy 

dose higher than 28.3 MJ m-2 (48h of exposure). In turn, fluorene in Arenosol soil 

experienced a slightly lower total photodegradation (46%) as well as lower half-life 

(2.9 days), while statistical differences were noted slightly later (47.9 MJ m-2; 72h of 

exposure). Anthracene showed a final photodegradation and half-lives of 61% and 1.9 

days, in Arenosol, while it was up to 54% and 2.6 days in fine-textured Regosol soils, 

showing significant differences between samples and controls when reached a solar 

energy impact of 6.7 MJ m-2 and 4.9 MJ m-2, respectively, at a short exposure time (2h 

and 1h, respectively). In Arenosol soil, the concentration of fluorene and anthracene 

dramatically decreased over the time, not only in soils subjected to solar radiation, 

but also those in the darkness. In addition to volatilization, other degradation 

processes could be occurring in dark controls. On the other hand, in fine-textured 

Regosol soil, fluorene and anthracene probably experienced fewer changes in the 

darkness, as the concentrations of these compounds were constant with time. Pyrene 
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showed 61% of final photodegradation in Arenosol soil, while it was found to be 39% 

in fine-textured soil. However, half-lives were not extremely low, being 5 and 7 days, 

respectively, and significant differences between irradiated and non-irradiated 

samples were noted with 28.3 MJ m-2 of solar energy dose (48h of exposure in the 

present study). In turn, benzo(a)pyrene was the highest photodegraded PAHs in 

Arenosol soil (70%), being 2-times the photodegradation speed observed in fine-

textured Regosol soil (33%) at the end of the experiment. Moreover, minor differences 

were noted in the estimated half-lives (2.9 and 2.3 days, respectively). The levels of 

benzo(a)pyrene, as it occurred with fluorene and anthracene in Arenosol soil, 

remarkably decreased with time in all soils, both under solar radiation and in the 

darkness, which was probably due to simultaneously unknown degradation processes 

occurring without light condition. However, only a solar energy dose of 2.7 MJ m-2 was 

required to show statistically significant differences between benzo(a)pyrene in 

irradiated samples and dark controls, which means after half an hour of exposure in 

the present field study.  

Finally, the high sensitivity of anthracene, pyrene and benzo(a)pyrene to solar 

radiation could be somehow related to the use of these PAHs to estimate molecular 

diagnostic ratios (MDRs) as a function of distance. After travelling long distances, 

anthracene/(anthracene+phenanthrene) is halved while 

benzo(a)pyrene/benzo(ghi)perylene and fluoranthene/(fluoranthene+pyrene) are 

doubled (Katsoyiannis and Breivik, 2014). 

 

Comparing results: lab scale vs. field study 

The photodegradation of PAHs has been widely studied at laboratory scale by 

means of natural or UV light lamps (Gupta and B, 2015; Marquès et al., 2016a; 

Marquès et al., 2016b; Zhang et al., 2008b; Zhang et al., 2010; Zhang et al., 2006b). 

Recently, we performed a similar experiment with soils subjected to artificial light in 

a climate chamber (Marquès et al., 2016a), considering various climate scenarios in 

terms of temperature (20°C and 24°C), light intensity (9.6 and 24 W m-2) and energy 

dose (0.48 and 1.21 MJ m-2). The results of the current study indicate that PAH 

photodegradation is higher and quicker in the field than in lab-controlled tests, 

showing all the chemicals a shorter half-life (Fig. 2). In the laboratory, LMW PAHs were 
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only volatilized. By contrast, in natural conditions, not only volatilization, but also 

photodegradation could be detected as relevant degradation pathways. Half-lives of 

MMW and HMW PAHs ranged between 3 and 80 days in soils exposed to artificial light 

exposure. In turn, in the field experiment, they were remarkably lower, with half-life 

values from 7 hours to 18 days. 

Despite the photodegradation speed was more important in the field, 

concentration trends of the individual PAHs were similar in the lab and in the field. 

Especially low half-lives of anthracene and benzo(a)pyrene were found, resulting from 

their sensitivity to light exposure and also other co-occurring degradation processes. 

Moreover, benzo(a)anthracene, chrysene, benzo(b)fluoranthene and 

dibenzo(ah)anthracene were among the most resistant to photodegradation in both 

tested soils. 

Fig. 2. Comparison between half-lives of PAHs when simulating different climate scenarios at 
lab scale (adapted from chapter 4) and the current experiment in the field, for both tested soils. 
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when both temperature and radiation are low, as these photocatalysts enhance 

photodegradation reactions (Marquès et al., 2016b). In contrast, they had a very 

minor role when temperature and light intensity were increased (Marquès et al., 

2016a). As expected, a similar pattern was found in the field experiment.  Thus, the 

content of oxides in Regosol soil did not lead to an enhancement of PAH 

photodegradation. As above-mentioned, the coarse-texture of Arenosol soil facilitates 

a higher light penetration, leading to a higher photodegradation.  

 

Identification of PAHs by-products 

The occurrence of PAH degradation by-products in irradiated samples and dark 

controls was also investigated. However, potential by-products either generated 

under radiation or in the darkness, were not here considered, being focused on by-

products formed only when solar radiation is present. Fig. 3 shows a number of 

potential degradation pathways due to degradation of PAHs in soil samples exposred 

to solar radiation. Up to 9 PAH degradation compounds were detected in the samples 

exposed to a solar energy dose of 102.6 MJ m-2 (7 days of solar exposure in the present 

study). Table 2 shows a list of identified by-products, CAS number, match with NIST 

library, retention time, diagnostic ions and relative peak areas over the experiment. 

In addition, relative peak areas of PAHs by-products and corresponding native PAHs, 

including kinetics (equation and coefficient of determination) are depicted in Fig 4. A 

number of aldehydes, oxy- PAHs, hydro-PAHs and nitro-PAHs were formed. Five of 

them were already identified in our previous study performed at lab scale (Marquès 

et al., 2016a). Nevertheless, they were more quickly generated under solar radiation. 

Moreover, degradation reactions stepped forward by causing the formation of new 

nitro- and hydro-PAHs. 

Oxidation reactions are viewed as the most effective in chemical degradation 

(Ukiwe et al. 2013). However, some authors have suggested that photochemical 

reactions may also aid oxidative reaction processes. The most oxidation reactions in 

the environment are initiated by oxidants such as peroxides (H2O2), ozone (O3) and 

hydroxyl radicals generated by photochemical processes.  Ozone may attack double 

bonds directly or it can form reactive hydroxyl radicals (which attack double bonds) 

by decomposing water.  The reaction proceeds with complex pathways producing 
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numerous intermediates.  In agreement to our findings, the final reaction 

productsinclude a mixture of ketones, quinones, aldehydes, phenols and carboxylic 

acids for both oxidants. 

 

Benzo(a)anthracene-7,12-dione, 1-acenaphthenol and 1-

naphthalenecarboxaldehyde were formed with a solar energy dose of 2.7 MJ m-2 in 

Arenosol and fine-textured Regosol soil. It would be linked to the degradation of 

benzo(a)anthracene, acenaphthene and acenaphthylene, respectively (Cajthaml et 

al., 2006; Marquès et al., 2016a; Riva et al., 2016; Woo et al., 2009). There was a clear 

relationship between the degradation of benzo(a)anthracene and the formation of its 
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Fig. 3. Potential degradation pathways due to degradation of PAHs in soil samples exposed to 
solar radiation. *Dashed arrow drives to a non-detected intermediate although its presence is 
necessary for the formation of the following by-product. 

UNIVERSITAT ROVIRA I VIRGILI 
Climate change impact on the photodegradation of polycyclic aromatic hydrocarbons in soils 
Montserrat Marquès Bueno 



by-product, benzo(a)anthracene-7,12-dione, in both soils. Benzo(a)anthracene-7,12-

dione trend was adjusted to a lineal kinetics (R2= 0.98 and R2= 0.95 in Arenosol and 

fine-textured Regosol soil, respectively). In contrast, any relationship could be found 

between the formation of 1-naphthalenecarboxaldehyde and the degradation of 

acenaphthylene in Arenosol soil. It could be due to the low stability of this by-product. 

Although in fine-textured Regosol soil, 1-naphthalenecarboxaldehyde was poorly 

detected, a relative quantification could not be done. 

 

A clear inverse correlation in the concentrations of 1-acenaphthenol and 

acenaphthene was noted in fine-textured Regosol soil. Acenaphthene decreased, 

while 1-acenaphthenol increased throughout the whole experiment. In Arenosol 
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Fig. 4. PAHs concentrations vs corresponding by-products trends in soils under study. 
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soil,1-acenaphthenol was firstly formed, and then its concentration slightly decreased 

and finally it was kept constant, probably due to soil dynamics. In this case, soil 

textures might be playing a key role. The coarse texture may enhance the light 

penetration, facilitating a quicker formation of 1-acenaphthenol in Arenosol soil. 

However, the texture and the low organic matter content of this soil do not allow the 

sorption of this by-product, favoring its volatilization and degradation. 

Similarly, 1(2H)-acenaphthylenone was generated as a consequence of 

acenaphthylene and 1-acenaphthenol oxidation (Ghosal et al., 2016; Woo et al., 

2009). Again, generation processes depended on soil texture. 1(2H)-

acenaphthylenone was formed with 2.7 MJ m-2 of solar energy in Arenosol soil (half 

an hour of exposure), while almost the double of solar dose (4.1 MJ m-2) was required 

in fine-textured Regosol soil. Correlations between the degradation of the 

acenaphthylene and the formation of the 1(2H)-acenaphthylenone were very clear in 
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Fig. 4. (Continuation) PAHs concentrations vs corresponding by-products trends in soils 
under study. 
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Arenosol soil, being adjusted to logarithmical kinetics (R2= 0.96). By contrast, its trend 

is not clear in fine-textured Regosol soil since statistical differences over the 

experiment were not found. 1,2-naphthalic anhydride was formed after half an hour 

(2.7 MJ m-2) and two hours (6.7 MJ m-2) of exposure, in Arenosol and fine-textured 

Regosol soil, respectively. Potential precursors may be acenaphthylene, 

acenaphthene and benzo(a)anthracene-7,12-dione (Cajthaml et al., 2006; Marquès et 

al., 2016a; Zhou and Wenger, 2013), and it showed a logarithmical increasing trend in 

both soils (R2= 0.91 and R2= 0.90 in Arenosol and fine-textured Regosol soil, 

respectively). 

At the end of the experiment, after soils had been exposed to a solar energy dose 

of 102.6 MJ m-2, benzo(a)pyrene-7,8-dihydro was detected in Arenosol soil, being 

likely generated after the degradation of benzo(a)pyrene. As the experiment lasted 

only 7 days, no more information could be retrieved regarding the fate of 

benzo(a)pyrene-7,8-dihydro in soils. 

With respect to nitro-PAHs, 1-nitropyrene and 6-nitrobenzo(a)pyrene were 

detected in both soils. 1-nitropyrene was generated after only 3 h of exposure (8.6 MJ 

m-2) in Arenosol soil, while 6-nitrobenzo(a)pyrene was formed with 28.3 MJ m-2 of 

solar energy dose (48h of exposure in the present study). It was on that exposure time 

and solar energy dose when 1-nitropyrene and 6-nitrobenzo(a)pyrene were formed 

in fine-textured Regosol soil. Both nitro-PAHs experienced a lineal kinetics increase, 

showing relatively good R2 values in both soils (0.98 and 0.96 for 1-nitropyrene, and 

0.93 and 0.80 for 6-nitrobenzo(a)pyrene, in Arenosol and fine-textured Regosol soil, 

respectively). The formation of nitrated and oxygenated derivatives may occur 

through photo-reactions of PAHs with oxidative species such as ozone, hydroxyl and 

nitrate radicals, under UV radiation (Walgraeve et al., 2010; Zhang et al., 2011). In 

addition, the presence of NOx radicals in soils can accelerate the formation of nitro-

PAHs (Pham et al., 2015), by reacting with pyrene and benzo(a)pyrene. Sugiyama et 

al. (2001) demonstrated that nitrite (NO2
¯) and nitrate (NO3

¯) ions are sources of 

nitrated pyrenes in the presence of metallic oxides, which act as photocatalysts. Both 

tested soils contained nitrates, aluminum, iron and manganese oxides (Marquès et al., 

2016b), which could have a key role on the formation of nitro-PAHs. Nitro-PAHs  
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Table 2. By-product names, CAS number, match with NIST library (method of identification), retention time, diagnostic ions and relative abundance of the peaks 
at an exposure time and solar energy dose. 
 

 
aAverage of all samples; bA/AI: the area response of each compound relative to an internal standard; cAverage of three replicates; nd: non-detected.

  

By product name 
CAS  

number 

Match  
with 
NIST  

library  
(%)a 

Retention  
time 

(min)a 

Diagnostic 
ions 

Relative response area (A/AI)b,c 

 
Time (h) 

  

0  0.5 1 2 3 6 24 48 72 96 168 

Solar energy (MJ m-2) 

0 2.7 4.1 6.7 8.6 10.1 12.4 28.3 47.9 67.9 102.6 

A
re

n
o

so
l 

1(2H)-Acenaphthylenone 2235-15-6 92 11.139 168 140 113 nd 0.08 ± 0.01 0.08 ± 0.01 0.11 ± 0.005 0.10 ± 0.005 0.11 ± 0.01 0.12 ± 0.01 0.18 ± 0.04 0.18 ± 0.01 0.20 ± 0.01 0.20 ± 0.02 

1-acenaphthenol 6306-07-6 96 11.190 169 141 115 nd 0.01 ±  0.001 0.01 ± 0.003 0.02 ± 0.01 0.01 ± 0.003 0.01 ± 0.01 0.01 ± 0.004 0.01 ± 0.003 0.01 ± 0.001 0.01 ± 0.0003 0.01 ± 0.001 

1-Naphthalenecarboxaldehyde 66-99-9 90 14.160 184 155 127 nd nd nd nd 0.01 ± 0.01 0.01 ± 0.01 0.04 ± 0.01 0.02 ± 0.004 0.02 ± 0.01 0.01 ± 0.01 0.01 ± 0.003 

1,2-naphthalic anhydride 81-84-5 93 16.605 198 154 126 nd 0.01 ± 0.01 0.02 ± 0.01 0.03 ± 0.002 0.04 ± 0.004 0.04 ± 0.005 0.05 ± 0.01 0.07 ± 0.01 0.10 ± 0.01 0.16 ± 0.02 0.14 ± 0.01 

Benzo(a)pyrene-7,8-dihydro 17573-23-8 91 19.261 254 239 126 nd nd nd nd nd nd nd nd nd nd 0.03 ± 0.03 

Benzo(a)anthracene-7,12-
dione 2498-66-0 92 26.391 258 230 202 nd 0.06 ± 0.003 0.05 ± 0.003 0.08 ± 0.01 0.10 ± 0.003 0.06 ± 0.04 0.10 ± 0.01 0.13 ±  0.03 0.19 ± 0.003 0.28 ± 0.04 0.37 ± 0.03 

1-nitropyrene 5522-43-0 96 26.705 247 201 100 nd nd nd nd 0.01 ± 0.004 0.02 ± 0.002 0.02 ± 0.002 0.04 ± 0.01 0.05 ± 0.01 0.08 ± 0.01 0.10 ± 0.01 

6-nitrobenzo(a)pyrene 63041-90-7 90 36.984 297 267 239 nd nd nd nd nd nd nd 0.05 ± 0.02 0.13 ± 0.02 0.10 ± 0.07 0.17 ± 0.03 

R
eg

o
so

l 

1(2H)-Acenaphthylenone 2235-15-6 91 11.147 168 140 113 nd nd 0.09 ± 0.004 0.11 ±  0.01 0.10 ± 0.01 0.09 ± 0.004 0.06 ± 0.08 0.16 ± 0.001 0.17 ± 0.03 0.19 ± 0.02 0.13 ± 0.002 

1-acenaphthenol 6306-07-6 95 11.189 169 141 115 nd nd 0.01 ± 0.003 0.01 ± 0.002 0.01 ± 0.001 0.01 ± 0.001 0.01 ± 0.002 0.01 ± 0.004 0.01 ± 0.002 0.02 ± 0.004 0.02 ± 0.003 

1,2-naphthalic anhydride 81-84-5 96 16.579 198 154 126 nd nd nd 0.01 ± 2E-5 0.02 ± 0.002 0.01 ± 0.002 0.03 ± 0.004 0.03 ± 0.01 0.04 ± 0.01 0.07 ± 0.01 0.06 ± 0.005 

Benzo(a)anthracene-7,12-
dione 2498-66-0 98 26.391 258 230 202 nd 0.01 ± 0.003 0.03 ± 0.004 0.06 ± 0.01 0.06 ± 0.01 0.05 ± 0.002 0.07 ± 0.01 0.09 ± 0.01 0.14 ± 0.02 0.23 ± 0.03 0.25 ± 0.02 

1-nitropyrene 5522-43-0 98 26.705 247 201 100 nd nd nd nd nd nd nd 0.01 ± 0.01 0.02 ± 0.001 0.02 ± 0.01 0.04 ± 0.005 

6-nitrobenzo(a)pyrene 63041-90-7 90 36.984 297 267 239 nd nd nd nd nd nd nd 0.12 ± 0.04 0.13 ± 0.01 0.08 ± 0.07 0.18 ± 0.04 
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generally exhibit higher mutagenicity and carcinogenicity than their parent PAHs 

showing toxic effects for human health (Kameda, 2011; Nascimento et al., 2015). 

Some nitro-PAHs act directly as mutagens and carcinogens on living organisms.  In 

mammals, these chemicals may have a strong genotoxic potential, being similar to or 

even higher than that of benzo(a)pyrene (Busby et al., 1988; Onduka et al., 2015; 

Wislocki et al., 1986). 1-nitropyrene has been pointed out as a mutagenic substance 

in many bacterial and mammalian assay systems, as well as tumorigenic in 

experimentation animals (Hirose et al., 1984; McGregor et al., 1994; Rosenkranz and 

and Mermelstein, 1983; Rosenkranz and Mermelstein, 1985; Watt et al., 2007). In 

general terms, HMW nitro-PAHs tend to be resistant to photodegradation, partly due 

to their strong adsorption to soil organic matter, low solubility, large molecular size 

and polar character of the nitro group (Kielhorn et al., 2003). In addition, 6-

nitrobenzo(a)pyrene has been found as a potential NO donor due to its low stability, 

inducing DNA strand breaks upon photoirradiation (Fukuhara et al., 2001). 

Oxy-PAHs show a relatively high persistence, being usually formed in the practice 

of remediation of PAH contaminated soils. Because of their polarity, oxy-PAHs are 

more mobile in the environment than PAHs, showing a high tendency to spread from 

contaminated sites via surface water and groundwater (Lundstedt et al., 2007). 

Furthermore, they are also very bioavailable compounds (Arp et al., 2014). 

Benzo(a)anthracene-7,12-dione induces similar or more elevated genotoxic responses 

than their respective parent PAHs (Dasgupta et al., 2014; Gurbani et al., 2013). Its DNA 

damage is in fact comparable to that produced by a well-known environmental 

mutagen, benzo(a)pyrene, in fish embryos (Dasgupta et al., 2014). 

Because of the lack of regulations and standardized methods for their analysis, 

oxy- and nitro-PAHs are seldom included in monitoring and risk assessment programs 

(Lundstedt et al., 2014). However, recent investigations on some of these by-products 

have provided valuable information on their environmental occurrence and human 

toxicity (Jörundsdóttir et al., 2014; Pinto et al., 2014; Qiao et al., 2014). Therefore, 

environmental and health risks associated to exposure to these by-products is 

evident.  Since there is a gap on the environmental regulation of PAHs, it has been 

recently suggested that that the original list of 16 US EPA priority PAHs should be 

enlarged by including, at least, 10 oxy-PAHs, 10 nitro-PAHs and 6 amino-PAHs 
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(Andersson and Achten, 2015). Some of these PAH derivatives have been here 

identified as photodegradation by-products. Anyhow, further investigations on their 

fate and behavior should be conducted, paying especial attention to chemicals whose 

parent compounds are not only toxic, but also very photosensitive, like 

benzo(a)pyrene.   

 

CONCLUSIONS 

Although environmental parameters are continuously changing in the field, our 

results demonstrate the real high degree of PAHs photodegradation occurring in the 

field during the late boreal winter, being their half-lives considerably shorter than 

ones usually reported at lab scale. Thus, solar radiation exposure has been found to 

be an important pathway for PAHs loss as well as by-products formation. 

LMW PAHs tended to leave quickly the soil through volatilization. 

Photodegradation was more remarkable for LMW and MMW PAHs in fine-textured 

Regosol soil, whereas this pathway played only a role for HMW PAHs in Arenosol soil 

samples. Although those differences between both soils were very low, 

photodegradation of PAHs in fine-texture Regosol soil might have reached the 

maximum level after 7 days of exposure, while in Arenosol soil was probably still 

increasing over time. High photodegradation rates were reported for fluorene in fine-

textured Regosol soil, and anthracene, pyrene and benzo(a)pyrene in both soils. Low 

half-lives were especially estimated for anthracene and benzo(a)pyrene, while 

chrysene, benzo(b)fluoranthene and benzo(k)fluoranthene were the most resistant 

PAHs to solar radiation. The decrease in darkness of anthracene, fluorene, 

fluoranthene and benzo(ghi)perylene in Arenosol soil and benzo(a)pyrene in both 

soils indicated that other degradation processes, which should be further studied, are 

simultaneously occurring.  

Although the photodegradation of PAHs deposited on surface soils in highly 

irradiated regions might cause a decrease of the human exposure to such compounds, 

a number of by-products are also generated, including a variety of aldehydes, oxy-, 

hydroxy-and nitro-PAHs. Some of them (e.g., 1-naphthalenecarboxaldehyde, 1,2-

naphthalic anhydride, 1-acenaphthenol, 1(2H)-acenaphthylenone, and 

benzo(a)anthracene-7,12-dione) were already identified in photodegradation 
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experiments performed at laboratory scale. However, their formation is occurring 

faster in the field, and their concentrations increase as that of their parent compounds 

decrease over time. Moreover, other nitro-PAHs (1-nitropyrene and 6-

nitrobenzo(a)pyrene) and hydroxy-PAHs (benzo(a)pyrene-7,8-dihydro) were also 

detected throughout the experiment. Although few differences were found between 

soils, up to three metabolites were more quickly generated in Arenosol soil. 

Specifically, the highest photodegradation of pyrene in Arenosol soil than in fine-

textured Regosol soil might cause the quicker formation of 1-nitropyrene in Arenosol 

soil as well. In addition, benzo(a)pyrene-7,8-dihydro was only found in Arenosol and 

fine-textured Regosol soil, respectively. Some of these photodegradation by-products, 

such as 1-nitropyrene and 6-nitrobenzo(a)pyrene, which are not currently monitored 

and regulated in risk assessment programs, could drive to an increase in human health 

risk since they exhibit a high mutagenic potential (Gurbani et al., 2013). 
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DISCUSSION CHAPTER 5 

Working at laboratory scale is suitable to control environmental conditions and 

to avoid other degradation processes, such as biodegradation. However, the impact 

by light exposure may be easily underestimated because the intensity achieved by 

light lamps is, by far, lower than that natural. In order to investigate PAHs 

photodegradation in a more realistic scenario, the same experiment conducted in a 

climate chamber was repeated in the field, under natural conditions. 

In the field experiment, faster volatilization of LMW PAHs in both soils than that 

previously reported in the climate chamber, was observed. Photodegradation was 

more remarkable for LMW and MMW PAHs in fine-textured Regosol soil, whereas this 

pathway played only a role for HMW PAHs in Arenosol soil samples. Although 

differences between soils were very low, the photodegradation of PAHs in fine-texture 

Regosol soil might have reached the maximum level after 7 days of exposure. In 

contrast, it could continue to increase after the end of the study in Arenosol soil. High 

photodegradation rates were reported for fluorene in fine-textured Regosol soil, as 

well as anthracene, pyrene, and benzo(a)pyrene, in both soils. Low half-lives were 

especially estimated for anthracene and benzo(a)pyrene, while chrysene, 

benzo(b)fluoranthene and benzo(k)fluoranthene were the most resistant PAHs to 

solar radiation. In the darkness, some PAHs, such as anthracene, fluorene, 

fluoranthene and benzo(ghi)perylene, in Arenosol soil, and benzo(a)pyrene, in both 

soils were also degraded. It indicates that other degradation processes, which should 

be further studied, were simultaneously occurring.  

According to our results, the photodegradation of PAHs deposited on surface soils 

in highly irradiated regions may be significant, causing a decrease of their 

environmental levels. This leads to a reduction of the human exposure to these 

compounds. Several photodegradation by-products are also generated, including a 

variety of aldehydes, oxy-, hydro- and nitro-PAHs. In addition to those identified at 

laboratory scale, whose photodegradation was more enhanced, other nitro-PAHs (1-

nitropyrene and 6-nitrobenzo(a)pyrene), hydro-PAHs (benzo(a)pyrene-7,8-dihydro) 

were also detected throughout the experiment. Although few differences were found 

between soils, 3 by-products were more quickly generated in Arenosol soil. 

Specifically, 1-nitropyrene was formed from the photodegradation of pyrene, 
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especially in Arenosol soil. In turn, benzo(a)pyrene-7,8-dihydro was only found in 

Arenosol. The attachment of oxy- and nitro- radicals decrease the lipophilic character 

of PAHs, enhancing their bioavailability, and consequently, increasing their hazard. 

Importantly, some of these photodegradation by-products, such as 1-nitropyrene and 

6-nitrobenzo(a)pyrene, which are not currently monitored and regulated in risk 

assessment programs, exhibit a high mutagenic potential. 
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ABSTRACT 

This study was aimed at assessing the occurrence of polycyclic aromatic 

hydrocarbons (PAHs) and trace elements in soils from Pyramiden (Central Spitsbergen, 

Svalbard Archipelago). Due to long-range atmospheric transport, local geology, 

previous coal mining extractions, and the stack emissions of two operative power 

plants at this settlement, those soils might be a sink of pollutants during the free-ice 

season. Fieldwork was carried out in late summer of 2014 by collecting 8 top-layer soil 

samples, whose content of 16 US EPA priority PAHs and potentially toxic elements (As, 

Be, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sn, Tl, V, Zn) was determined. PAH levels showed 

a similar profile with pyrogenic molecular diagnostic ratios (MDRs) in most samples. 

The highest levels of PAHs and trace elements were found in sampling sites located 

near two power plants and downwind, being their concentrations even higher than 

typical threshold values. Two different indices, the Pollution Load Index (PLI) and the 

Geoaccumulation Index (Igeo), were calculated to determine the environmental 

status of Svalbard soils, in terms of metal pollution. Those samples collected in the 

area adjacent to the power plants were pointed out as moderately polluted by Hg. 

The significant correlations between the concentrations of some contaminants (e.g., 

naphthalene, phenanthrene, Mn, Pb, V, Cu, Zn, Tl and Be) and the organic matter 

content would suggest that soil properties play a key role for pollutant retention in 

the Arctic. Furthermore, the correlations between ∑16 PAHs and some elements (e.g., 

Hg, Pb, Zn and Cu) indicates that the main source of contamination is anthropogenic, 

although the contribution of the local geology should not be disregarded. 

 

Keywords: Svalbard, soil, pollution, polycyclic aromatic hydrocarbons, trace 

elements.  
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INTRODUCTION 

Environmental studies in remote areas are useful not only to identify 

transportation routes of chemical pollutants, but also to assist in the environmental 

risk assessment (Bazzano et al., 2015). Polar areas, both Arctic and Antarctica, are 

potential receptors of organic compounds and trace elements due to the long-range 

transport capacity of these substances to be deposited far away their emission 

sources (Bargagli, 2016; Ge et al., 2016; Nadal et al., 2015; Turetta et al., 2016). 

Although remote areas are the least disturbed habitats on the Earth, they are not free 

of being impacted by environmental pollution. Some of these high-latitude regions, 

such as the Svalbard archipelago, own settlements with industrial development and 

existing coal mining centers (Abramova et al., 2014), which have become a potential 

local source of pollution. 

In the northern part of Isfjorden (Billefjorden, Svalbard), an abandoned Russian 

settlement and coal-mining town called Pyramiden is located. Pyramiden was founded 

by Sweden in 1910, and sold to the Soviet Union in 1927. In 1983, agricultural soil was 

begun to be imported to supplement the thin layer of soils, which were characterized 

by a poor content of nutrients. It enabled the establishment of imported grasses as 

part of an “ecological action”. Despite of the unknown exact origin of these soils, they 

were classified as chernozem sourced from southern European Russia or Ukraine 

(Coulson et al., 2015). In 1998, Pyramiden was closed, although the infrastructure is 

still in place. Nowadays, the human impact is related to the coal and diesel combustion 

carried out in two different power plants, as well as traffic, harbor and heliport activity 

derived from tourism and research. This area has a tundra climate, and even in the 

summer, the ambient temperatures are very low. 

Polycyclic aromatic hydrocarbons (PAHs) and trace elements, such as mercury, 

are among the most harmful pollutants derived from human activities and coal-mining 

extraction. In fact, PAHs have been widely found in Svalbard atmosphere (Cecinato et 

al., 2000), water (Polkowska et al., 2011; Ruman et al., 2014), biota (Carrasco-Navarro 

et al., 2015; Nahrgang et al., 2013; Szczybelski et al., 2016; Wang et al., 2009), 

sediments (Konovalov et al., 2010; Sapota et al., 2009; van den Heuvel-Greve et al., 

2016), snow (Abramova et al., 2016), and soils (Gulińska et al., 2003; Wang et al., 

2009). In addition, there are recent findings of trace elements in air particulate matter 
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(Bazzano et al., 2015; Bazzano et al., 2016), sea water (Bazzano et al., 2014), biota 

(Fenstad et al., 2016; Węgrzyn et al., 2016), marine particulate and sediments (Ardini 

et al., 2016; Frankowski and Zioła-Frankowska, 2014), ice (Lehmann et al., 2016; Łokas 

et al., 2016), and soils (Gulińska et al., 2003; Krajcarová et al., 2016; Wojtuń et al., 

2013). 

Because of the deep snow and ice cover of Svalbard, the content of environmental 

pollutants has not been widely studied in the soil matrix. However, contaminants can 

be accumulated in the snow, and be transferred to soil through ice-snow melting 

(Perrette et al., 2013). In addition, Pyramiden soils are ice-free for almost 5 months 

every year (Koroleva, 2014), being pollutants able to be deposited on the soil surface. 

The present study was aimed at examining the presence of 16 US EPA prioirity PAHs 

and trace elements in soil samples from Svalbard, as well as to assess potential sources 

of contamination. 

 

MATERIALS AND METHODS 

Sampling campaign 

A soil sampling campaign was carried out in Pyramiden (Spitsbergen, Svalbard 

archipelago) in September 2-4, 2014. Seven soils (P1-P7) were sampled in Pyramiden 

town, while one soil sample (P8) was collected in a background area, at 2 km from any 

potential emission source (Fig. 1). Soil samples were collected from the surface layer 

(0-5 cm depth), kept in polyethylene bags, and immediately covered with aluminum 

foil. Afterwards, they were dried at 30°C to avoid the loss of volatile compounds. Once 

their weight was stable (±0.001 g), soil samples were sieved through a 2-mm mesh 

screen to standardize particle size. Finally, soil samples were kept again in 

polyethylene bags and placed in the freezer until further treatment. Qualitative data 

and physicochemical properties of all collected soils are included in Table 1. 
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Fig. 1. Localization of soil sampling sites in Pyramiden (Spitsbergen, Svalbard archipelago).  

 

Analytical procedure 

PAHs 

Briefly, PAHs were extracted with dichloromethane:hexane (1:1) (Scharlau 

Chemie S. A., Barcelona, Spain) by performing three 10-min subsequent extractions 

with ultrasonic bath. The resulting extracts were filtered and further concentrated 

with a rotatory evaporator. Afterwards, a Solid Phase Extraction (SPE), adapted from 

Khan et al. (2015) and Lundstedt et al. (2014), was conducted. Firstly, 6 mL DSC-18 

cartridges containing 500 mg of silica (Supelco®, Bellefonte, PA, USA) were 

conditioned with 10 mL of hexane. Secondly, the sample extract was run, followed by 

9 mL of dichloromethane:hexane (1:9), and finally, with 8 mL of dichloromethane. 

Finally, all extracts were concentrated with a gentle stream of N2 (99.9999%). Samples 

were run in a 7890A Series gas chromatograph coupled to a 7000 GCQqQ (Agilent 

Technologies), equipped with a J&W Scientific DB-XLB chromatographic column (30 m 
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x 0.25 mm i.d., 0.25 µm film) (Agilent Technologies). A volume of 1 µL of sample was 

automatically injected into a split/splitless inlet in splitless mode, being kept at 280°C 

of temperature. Helium (99.999% purity) was used as a carrier gas, at a flow rate of 

1.2 mL min-1 in constant mode. The oven program was set at an initial temperature of 

80°C, increased to 320°C at a rate of 10°C min-1, and held at 320°C for 22 min. Total 

running time was 46 min. Ionization was done by electronic impact (EI), with an 

electron energy of 70 eV and a source temperature of 230°C. Mass spectra data were 

recorded after a solvent delay of 3 min. The QqQ analyzer operated in MRM mode, 

under the conditions shown in Table S1 (Annex 5). 

 

Trace elements 

The contents of arsenic (As), beryllium (Be), cadmium (Cd), cobalt (Co), chromium 

(Cr), copper (Cu), mercury (Hg), manganese (Mn), molybdenum (Mo), nickel (Ni), lead 

(Pb), thallium (Tl), tin (Sn), vanadium (V) and zinc (Zn) were analyzed by inductively 

coupled plasma-mass spectrometry (ICP-MS) (Perkin Elmer Elan 6000), using rhodium 

(Rh) as internal standard. One-half of soil was digested with 5 mL of nitric acid (65% 

Suprapur, E. Merck, Darmstadt, Germany) in hermetic Teflon vessels. Samples were 

pre-digested for 8 h at room temperature, and subsequently they were heated at 80°C 

for 8 h. Once cooled down, the solutions were filtered and made up to 25 mL with 

ultrapure water. Finally, the extracts were maintained at -20°C until further metal 

analysis. Additional details of the determination of trace elements are provided 

elsewhere (Nadal et al., 2011; Rovira et al., 2010; Vilavert et al., 2015). 

 

Quality assurance and quality control (QA/QC) 

Triplicates of soil samples were spiked with PAHs in order to assess the method 

performance by reporting the average PAH recoveries and their reproducibility 

(standard deviations). The standard mixture contained the following 16 US EPA 

priority PAHs: naphthalene (99.7% of purity), acenaphthylene (99.4% of purity), 

acenaphthene (99.3% of purity), fluorene (98.7% of purity), phenanthrene (98.0% of 

purity), anthracene (99.0% of purity), fluoranthene (99.5% of purity), pyrene (99.2% 

of purity), benzo(a)anthracene (98.5% of purity), chrysene (97.4% of purity), 

UNIVERSITAT ROVIRA I VIRGILI 
Climate change impact on the photodegradation of polycyclic aromatic hydrocarbons in soils 
Montserrat Marquès Bueno 



benzo(b)fluoranthene (97.3% of purity), benzo(k)fluoranthene (99.5% of purity), 

benzo(a)pyrene (96.7% of purity), dibenzo(ah)anthracene (98.3% of purity), 

benzo(ghi)perylene (99.4% of purity), and indeno(123-cd)pyrene (99.0% of purity). 

Due to chromatographic limitations, benzo(b)fluoranthene and benzo(k)fluoranthene 

were quantified together as benzo(b+k)fluoranthene. In order to determine any 

potential laboratory contamination, extraction blanks were also performed. PAH 

recoveries were ranged between 43% and 123%, while those of surrogates were 

46±14%, 63±10%, 85±21% and 64±14% for d10-acenaphthene, d10-phenanthrene, d12-

chrysene and d12-perylene, respectively. Two compounds, d10-fluorene and d12-

benzo(a)pyrene, were used as internal standards, being added prior to the chemical 

analysis. The calibration curve for PAH quantitation covered concentrations from 0.5 

to 100 µg mL-1. The limits of quantification (LOQs) of the individual PAHs were in the 

range 2-70 pg g−1 of dry weight. 

Regarding trace elements, background levels were also determined in blank 

samples and standards, which were inserted in every batch. Loamy clay 1 (National 

Institute of Standards and Technology, USA) was used as certified reference material 

to check the accuracy of the method. Metal recoveries were ranged between 86% and 

106% (Zn and Co, respectively). The limits of detection (LODs) of trace elements were 

in the range 0.03-0.50 mg kg-1 of dry weight. 

 

Statistical analysis 

Pearson correlations were calculated by using XLSTAT 2016 (Addinsoft SARL™, 

Paris, France), with a significance value set at p<0.05. 

 

RESULTS AND DISCUSSION 

Soils characterization 

Qualitative information and results of the soil characterization are summarized in 

Table 1. All the soil samples collected in Pyramiden and surrounding area were non-

saline, alkaline (pH between 7.2 and 8.01) and calcareous. Most of them (P1, P2, P4, 

P5, P6 and P7) were coarse-textured, while P3 and P8 were fine-textured, with a 

notable content of silt and clay, respectively. A relatively higher content of organic 
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matter was found in 3 locations (2.25%, 4.68% and 4.08% in P3, P6 and P7, 

respectively) in comparison with the remaining sampling sites. In turn, nitrate 

contents were low, being ranged 4.2-29.6 mg kg-1. 

 

Table 1. Characterization of soils collected in Pyramiden (Svalbard Archipelago). 

 P1 P2 P3 P4 P5 P6 P7 P8 

Human 
activity 

 
Power 
plants 

 

Power 
plants 

In front 
coal-based 

power 
plant 

 
Power 
plants 

 

Power 
plant 

Traffic 
Heliport 

Power 
plants 

In front 
diesel-
based 
power 
plant 

Harbor 
No 

visible 

 
No 

visible 
 

GPS 
coordinates 

78.655°N 
16.337°E 

78.654°N 
16.336°E 

78.655°N 
16.336°E 

78.653°N 
16.336°E 

78.655°N 
16.337°E 

78.655°N 
16.355°E 

78.650°N 
16.331°E 

78.639°N 
16.354°E 

Level above 
the sea (m) 

9 7 9 7 9 20 10 43 

pHa 8.01 7.74 7.85 7.44 7.60 7.63 7.17 7.61 

Electrical 
conductivity 
at 25°C (µS 
cm-1)a 

1105 189 308 1145 170 1506 719 102 

Oxidizable Cb 
(%) 

0.86 0.39 1.30 0.52 0.25 2.71 2.36 0.25 

Organic 
Matterb (%) 

1.48 0.67 2.25 0.90 0.42 4.68 4.08 0.42 

Texture: 
sand/silt/clayc 

(%) 

85/9/6 88/7/5 62/26/12 83/8/9 73/21/6 72/21/7 84/11/5 67/14/19 

CaCO3
d c++ c++ c++ c++ c++ c+ c+ c+ 

NO3
- e(mg kg-1) 6.8 6.6 5.5 4.2 5.2 6.8 29.6 6.1 

a Aqueous extracts 1:2.5; b Organic Carbon by Walkley-Black method; c sedimentation method; d qualitative 
method: 0 < c+ < 10% and 10 ≤ c++ < 20%; e Extracted in soil to water ratio 1:10 elutriates and quantified by 
ion chromatography (Dionex D-300;  Chromeleon software v6.80). 

 

PAHs 

The concentrations of the individual 16 US EPA priority PAHs, the total amount, 

the sum of 7 carcinogenic PAHs, as well as the levels expressed as benzo(a)pyrene 

equivalents (BaPeq), are listed in Table 2, together with the limit of quantification (LoQ) 

of each hydrocarbon. All the studied PAHs were above detection limits, except for 

acenaphthylene, acenaphthene and anthracene in blank soil (P8). P3 was, by far, the 
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most contaminated site, showing a Σ16 PAH concentration of 11600 µg kg-1 of dry soil. 

P1 and P3 sampling sites were closely located each other, being both near two power 

plants (coal- and diesel-fired). However, the PAH values registered in P3 were much 

higher. As P3 was located downwind, it would indicate that prevailing winds (ENE and 

N) have a critical impact on the deposition of PAHs near the power plants. In addition, 

P6 and P7 sampling sites also presented notably high concentrations of PAHs (6370 

and 2350 µg kg-1 of dry soil, respectively). P6 is located 500 m upwind the power 

plants, and close to the harbor. In turn, P7 is in a zone with no visible human activity, 

but downwind the 2 power plants, which are located at a distance of 600 m. 

Contrastingly, the lowest value of PAHs in soil was found in the background point (P8), 

being quantified in 52.8 µg kg-1 of dry soil. Therefore, the concentration of Σ16 PAHs 

near the power plants was almost 220-times higher than that in the background area, 

evidencing the local impact of these facilities.  

Since there is a lack of threshold levels in Svalbard, as well as in Norway, target 

and intervention values for soil remediation from the Netherlands were used for 

comparison purposes (ESdat, 2000). According to the Dutch legislation, the sum of 10 

PAHs (naphthalene, anthracene, phenanthrene, fluoranthene, benzo(a)anthracene, 

chrysene, benzo(a)pyrene, benzo(ghi)perylene, benzo(k)fluoranthene, and 

indeno(123-cd)pyrene) should not exceed 1 mg kg-1, which is the target value for soils 

with an organic matter content  below 10%. Three sampling sites (P3, P6, and P7) 

showed levels above this target value (8.33, 5.63 and 2.07 mg kg-1, respectively). 

However, PAH levels did not exceed the intervention values, set at a level of 40 mg kg-

1 (Table 2).  

To the best of our knowledge, there exist only two scientific publications 

reporting soil concentrations of PAHs in Svalbard (Gulińska et al., 2003; Wang et al., 

2009). Because the Arctic surface is often covered by snow and ice, most of the 

scientific literature is focused on PAHs in snow, instead of soil. However, some spots 

are free of ice and snow in the summer, making easier the deposition of PAHs directly 

onto soil. Furthermore, ice and snow melting might be mean an addition input of PAHs 

to soil, in addition to that occurred through air deposition. 

The current concentrations of ∑16 PAHs in soils were clearly higher than those 

previously found by other researchers. In the first study, Gulińska et al. (2003) found  
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Table 2. Concentration of PAHs in soils (µg kg-1 of dry soil) sampled in Pyramiden (Svalbard) and reference values. 
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P1 133 12.1 5.88 14.5 139 19.2 95.5 79.0 52.2 60.2 100 53.6 9.43 24.8 38.6 837 349 666 82.0 

P2 66.9 6.10 2.64 6.07 69.2 5.68 22.0 20.4 12.3 15.2 20.6 10.7 2.47 5.12 10.5 276 79.6 228 14.4 

P3 622 333 43.4 108 1250 315.5 2360 1960 849 1160 1450 846 114 132 72.7 11600 5312 8330 1255 

P4 182 2.79 2.59 7.79 156 3.5 19.7 25.2 15.2 30.3 39.9 15.3 10.1 12.7 47.2 571 156 502 33.8 

P5 40.9 2.83 1.23 2.97 45.3 3.11 13.2 13.0 7.79 9.54 16.11 6.55 2.89 5.45 14.7 186 63.5 155 12.8 

P6 2290 57.1 31.6 134 1840 44.35 356 314 118 311 328 162 45.9 67.4 271 6370 1261 5620 281 

P7 893 19.7 14.0 93.5 707 18.71 93.3 91.0 47.3 108 104 44.3 14.6 15.9 84.6 2350 387 2060 81.1 

P8 
(background) 

31.9 <LoQ <LoQ 0.74 10.3 <LoQ 0.80 0.95 0.80 1.59 1.95 0.69 0.66 0.74 1.68 52.8 6.80 49.4 1.80 

Mean1 604 62.0 14.5 52.32 601 58.57 422 358 157 242 294 163 28.5 37.6 77.0 3170 1087 2203 221 

LoQ 0.02 0.02 0.05 0.02 0.01 0.06 0.002 0.003 0.01 0.01 0.004 0.07 0.03 0.05 0.07 - - - - 

Gulinska et al. 
(2003) 2 

42-48 NA 8-14 10-12 24-45 Nd-69 1.8-28 8-109 ND-18 Nd-22 ND-19 
ND-
18 

1-12 ND-28 
ND-
9.8 

- - - - 

Gulinska et al. 
(2003) 3 

42 NA 12 12 42 ND 23 8 ND ND 9 3 1 3 3 158 16 120.5 - 

Wang et al. 
(2009) 

12 0.4 3 10 59 5 10 10 7 10 18 7 0.5 3 3 157 38.5 125 13.48 

1 calculated without considering P8 (blank soil); 2 Range of all sampling sites; 3 Soil collected in Pyramiden; LoQ= Limit of Quantification; NA= No Analysed; ND= Non-Detected. 
7 carc. PAHs= chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(123-cd)pyrene, dibenzo(ah)anthracene. 
10 PAHs= naphthalene, anthracene, phenanthrene, fluoranthene, benzo(a)anthracene, chrysene, benzo(a)pyrene, benzo(ghi)perylene, benzo(k)fluoranthene, indeno(123-cd)pyrene. 
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that the total level of ∑16 PAHs in a sample of soil collected in Pyramiden was 158 µg 

kg-1 of dry soil. In July and August 2007, Wang et al. (2009) collected samples of surface 

soil, moss and reindeer dung from 12 sites at Ny-Ålesund, Svalbard. The mean 

concentration of PAHs in soil was 157 µg kg-1 of dry soil, with levels ranging from 37 

to 324 µg kg-1 of dry soil. 

PAH levels in soil samples collected in Svalbard were also compared with data 

regarding zones surrounding other power plants. Our results were of the same order 

of magnitude as those found in the vicinity of a coal-fired power station in Plomin, 

Croatia (Medunić et al., 2016). In addition, they fell in the upper part of the range in 

comparison to levels found in soils surrounding coal-fired power plants in Xuzhou, 

China (165-3495 µg kg-1 of dry soil), the Yangtze River Delta region, China (285-504 µg 

kg-1 of dry soil), or Korba, India (7-2100 µg kg-1 of dry soil) (Kumar et al., 2014; Ma et 

al., 2016; Wang et al., 2017). 

The contribution of each individual PAH to the sum of 16 PAHs is depicted in Fig. 

2. Naphthalene and phenanthrene were the most abundant PAHs, showing an 

average contribution of 33% and 25%. Therefore, similar emission sources might be 

responsible for PAH contamination in the area of study. However, the PAH profile was 

different in P3, where fluoranthene and pyrene were the most important contributors 

to the total concentration (20% and 17%, respectively). The contribution of 

naphthalene increased with the distance to the power plants. Naphthalene was 

identified as the most abundant hydrocarbon in the sampling site (P8), probably due 

its capacity to travel long distance. Low molecular weight PAHs may be present far 

away the potential emission sources, being ubiquitous in the environment. In turn, 

high molecular weight PAHs, which are more associated to the particulate matter, 

tend to be more deposited close to emission sources (Nadal et al., 2009). 

According to the International Agency for Research on Cancer (IARC), 

benzo(a)pyrene is a carcinogenic substance to humans, being classified as Group 1. 

Due to this carcinogenic potential, it is a good indicator for the assessment of the 

health risks associated to the exposure of environmental PAHs (Domínguez-Morueco 

et al., 2015).  Since the 16 US EPA priority PAHs do not have the same toxicity, the 

levels of PAH mixtures are sometimes expressed in terms of BaPeq concentrations 

(Albuquerque et al., 2016), which are calculated by summing the values obtained after 
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multiplying the value of each individual PAH by the corresponding toxicity equivalency 

factor (TEF), according to the following equation: 

 

BaPeq = ∑ PAHi

n

i=1

×TEFi 

 

Fig. 2. Contribution (%) of each PAH to the Σ16 PAHs. 

TEFs reported by Nadal et al. (2004), and adapted from Nisbet and LaGoy (1992) 

and Larsen and Larsen (1998), were here applied. The BaPeq concentrations of PAHs in 

each sampling site are summarized in Table 2. As expected, P3 showed the highest 

value (1255 µg BaPeq kg-1), being almost 700-times higher than the value in the 

background site (1.80 µg BaPeq kg-1). Considering the 7 sampling points in Pyramiden, 

the mean PAH concentration in soils was calculated in 221 µg BaPeq kg-1. This is a 

relatively high amount in comparison to data from other impacted areas, such as a 

chemical/petrochemical zone in Tarragona, Spain (Nadal et al., 2004), the industrial 

city of Changzhi, China (Liu et al., 2017) or several residential areas in Sahibabad-

Ghaziabad, India (Kumar et al., 2016). Despite naphthalene and phenanthrene were 
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the most abundant PAHs, their contribution to the ΣBaPeq was low (6.4% in average). 

In contrast, benzo(a)pyrene and dibenzo(ah)anthracene, whose contribution to Σ16 

PAHs was low (mean: 4.8%), had the greatest impact to ΣBaPeq, with an aggregated 

contribution of 77%. The importance of heavy PAHs in the total concentration of PAHs 

is a new evidence that, although Svalbard is located in a remote area of the planet, it 

is affected by local pollution, mainly associated to the presence of power plants. 

In order to assess potential emission sources of PAHs, Molecular Diagnostic Ratios 

(MDRs) are sometimes applied to a number of environmental matrices, including soils 

(Tobiszewski and Namieśnik, 2012). MDR calculations (Ant/Ant+Phe, Flt/Flt+Pyr, 

BaA/BaA+Chry, and IP/IP+BghiP) for the 8 soils collected in Svalbard, including 

typically reported values for some specific processes, are summarized in Table 3. As 

expected, most of these ratios pointed out combustion sources as the main 

contributor of PAHs in the area under study. Specifically, Flt/Flt+Pyr, BaA/BaA+Chry 

and IP/IP+BghiP showed a PAH pyrogenic origin, linking pollution to incomplete 

combustion of organic material. Contrastingly, BaA/BaA+Chry in P4, P6, P7 and P8 

presented a mixed source profile (pyrogenic and petrogenic). However, the 

petrogenic origin is not an unlikely scenario, due to the local geology and coal-mining 

extraction carried out in the past. Although these ratios have been satisfactorily used 

to identify emission sources (Agarwal et al., 2009; Plachá et al., 2009), atmospheric 

photoreactions prior to chemical deposition, may easily change the PAH profile 

(Tobiszewski and Namieśnik, 2012). In addition, Ant/Ant+Phe pointed out a petrogenic 

source in 5 out of 7 sampling locations (P2, P4, P5, P6 and P7). However, which is less 

likely according to the location of those sampling sites, very close to power stations. 

In the past, Brändli et al. (2008) already questioned the applicability of Ant/Ant+Phe 

ratio, since phenanthrene and naphthalene are also generated in soils by biogenic 

processes (Cabrerizo et al., 2011). Moreover, phenanthrene is more depleted by 

microbial degradation in comparison to anthracene (Enell et al., 2005; Sabaté et al., 

2006), while anthracene is more quickly photodegraded than phenanthrene (Marquès 

et al., 2017). The different behavior between pairs of PAHs may affect diagnostic 

ratios. Moreover, the high photoactivity expected in soils from high latitudes, 

especially during the midnight sun season, may lead to the formation of PAH oxidation 

products, and subsequently, nitrated derivatives (Marquès et al., 2017). 
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Table 3. Diagnostic ratios of soils collected soils in Pyramiden (Svalbard) and typical reported 
values for particular processes. 

 

P1 P2 P3 P4 P5 P6 P7 P8 

P
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Ant/Ant+Phe 0.12 0.08 0.20 0.02 0.06 0.02 0.03 0.031 <0.1 >0.1 

Flt/(Flt + Pyr) 0.55 0.52 0.55 0.44 0.50 0.53 0.51 0.46 <0.4 >0.4 

BaA/(BaA + Chry) 0.46 0.45 0.42 0.33 0.45 0.28 0.30 0.33 <0.2 >0.35 

IP/(IP + BghiP) 0.39 0.33 0.64 0.21 0.27 0.20 0.16 0.31 <0.2 >0.2 
1 Anthracene concentration was considered LoQ/2; 2 Katsoyiannis et al. (2011); Ant= anthracene; 
Phen=phenanthrene; Flt= fluoranthene; Pyr= pyrene; BaA= benzo(a)anthracene; Chry= chrysene; IP= 
indeno(123-cd)pyrene; BghiP= benzo(ghi)perylene. 

 

Trace elements 

The concentrations of trace elements in samples of soil collected in Svalbard are 

summarized in Table 4. All the elements showed values above their respective LODs. 

In general terms, the average content of trace elements was lower than the World Soil 

Average (WSA) (Kabata-Pendias, 2011). In addition, mean concentrations were also 

below the Target Values reported in the Netherlands (TVN) (ESdat, 2000) (Fig. 3).  

However, there existed some particular exceptions. Beryllium was found in higher 

amounts than the threshold value in P6 and P7 sites (1.25 and 1.61 mg kg-1, 

respectively, being >1.1 mg kg-1). In addition, Hg, Mn, Ni and Zn punctually exceeded 

the WSA. The levels of Hg were 0.28, 0.17 and 0.10 in P3, P6 and P7, respectively, 

higher than 0.07 mg kg-1, which is the WSA. Manganese showed the highest values in 

P1 and P8 (494 and 513 mg kg-1, respectively), while Ni exceeded WSA in P3 and P7 

(32.9 and 30.5 mg kg-1, respectively). Finally, Zn in P3 and P6 (100.1 and 120 mg kg-1, 

respectively), and Co in P3 and P6 (10.2 and 10.6 mg kg-1, respectively), were also 

above the TVN. The remaining trace elements (As, Cd, Cr, Cu, Mo, Sn, Tl and V) showed 

values below both WSA and TVN, in all the sampling points. 
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Table 4. The content of trace elements in soils (mg kg-1) sampled in Pyramiden (Svalbard) and scientific data. 

  

 As Be Cd Co Cr Cu Hg Mn Mo Ni Pb Sn Tl V Zn 

P1 3.50 0.72 0.23 8.43 15.9 14.8 0.03 494 0.48 21.4 13.4 0.10 0.08 13.1 62.7 

P2 2.71 0.66 0.21 8.75 16.5 14.2 0.01 350 0.42 22.5 11.9 0.05 0.09 13.6 55.5 

P3 4.81 0.77 0.26 10.2 24.9 30.4 0.28 307 0.76 32.9 23.3 0.40 0.13 16.6 101 

P4 3.12 0.70 0.16 8.42 13.8 18.0 0.01 347 0.35 22.2 10.6 0.05 0.12 14.2 59.7 

P5 2.96 0.75 0.24 8.91 17.6 14.5 0.01 353 0.42 23.7 12.2 0.10 0.09 14.2 57.3 

P6 2.58 1.25 0.27 7.90 15.6 22.6 0.17 202 0.35 22.3 25.8 0.20 0.28 17.9 120 

P7 2.22 1.61 0.22 10.6 32.0 31.4 0.10 95.5 0.46 30.5 16.9 0.79 0.18 22.1 77.6 

P8 

(background) 
1.22 0.45 0.05 3.88 8.99 10.8 0.01 513 0.12 10.5 4.84 0.01 0.16 8.19 15.9 

Mean1 3.13 0.92 0.23 9.04 19.5 20.8 0.09 307 0.46 25.1 16.3 0.24 0.14 15.9 76.2 

WSA2 6.83 1.34 0.41 11.3 59.5 38.9 0.07 490 1.1 29 27 2.5 0.5 129 70 

TVN3 29 1.1 0.8 9 100 36 0.3 - 3 35 85 - 1 42 140 

Gulińska et 

al. (2003) 

0.03-

0.2 

0.0068-

0.044 

0.001-

0.02 

0.06-

0.3 

0.11-

0.78 

0.12-

1.19 
NA 20-80 

0.00005-

0.06 
0.2-1 0.1-9 

0.00004-

0.42 

0.0006-

0.011 

0.04-

0.75 
1.0-13 

Wojtuń et al. 

(2013) NA NA 

0.05-

0.4 13-60 16-47 17-92 

0.01-

0.25 

240-

1450 NA 

12.0-

78 

9.0-

38 NA NA NA 70-300 

 Krajcarová 

et al. (2016) 4.46 NA 6.04 13.8 40.4 37.3 0.025 600 17.7 36.4 -  NA NA  NA 0.08 

NA= No Analyzed 2 Kabata-Pendias (2011); 3 ESdat (2000) 
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Fig. 3. Trace elements occurrence in Pyramiden soils (mean value of P1-P7) relative to their 
corresponding TVN. The red line shows TVN (in %).  
*Not calculated for Mn and Sn because corresponding TVN values are not reported in ESdat 
(2000).  
 

As it occurred with PAHs, the number of studies addressing the occurrence of 

trace element in polar soils is limited, being a good portion of them focused on 

Svalbard. Findings reported by Santos et al. (2005) when studying concentrations of 

some trace elements in Antarctica are in the same range as those here reported, with 

the exception of Ni and Mo which are two and one orders of magnitude higher and 

lower, respectively, in the present study. Wojtuń et al. (2013) reported levels of 35 

topsoil samples (depth of 0-3 cm) from the SW of Svalbard while Krajcarová et al. 

(2016) analyzed the top soil (>5 cm) and deeper soil (5-10 cm) of 13 localities in the 

vicinity of Pyramiden and its surroundings. One decade before, Gulińska et al. (2003) 

showed trace elements concentrations of the uppermost 20 cm of 8 soils collected in 

Pyramiden as well. Despite all those studies and the present applied different 

methods of analysis, similar results should be provided (Pavlíčková et al., 2003; Sastre 

et al., 2002). In fact, present results are in the same range as those reported by Wojtuń 

et al. (2013). Trace elements under study were also comparable to Krajcarová et al. 

(2016), with the exception of Zn which was currently found in three orders of 

magnitude higher, and Cd and Mo one and two orders of magnitude lower, 

respectively. By contrast, results reported by Gulińska et al. (2003) are much lower 
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than ours, and even other published results and the world average values of metal 

contents in soils. 

In turn, trace elements concentrations were aimed at comparing to those levels 

found around other power plants. Present results were in the same order as those 

also reported by Minkina et al. (2017) and Noli and Tsamos (2016) with the exception 

of Cr, which was found in one order of magnitude higher in those both studies 

performed in the surroundings of a Russian and Greek power plants. As, Cr and Ni 

concentrations from soils collected around a power plant from Turkey (Özkul, 2016) 

were one order of magnitude higher than ours. Finally, Hg concentrations here 

reported was lower by far than Hg levels found in a wide Spanish sampling campaign 

to assess the impact of several coal-fired power plants. 

As for PAHs, the number of studies addressing the occurrence of trace elements 

in polar soils is very limited. However, most of them have been performed in Svalbard 

soils. Wojtuń et al. (2013) investigated the concentrations of trace elements in 35 

topsoil samples (depth of 0-3 cm) from the SW of Svalbard, while Krajcarová et al. 

(2016) analyzed the top soil (>5 cm) and deeper soil (5-10 cm) in 13 sites surrounding 

Pyramiden. A few years before, Gulińska et al. (2003) studied the levels of trace 

elements in the uppermost 20 cm of soils collected in Pyramiden. Despite analytical 

methods were sometimes different, very similar results were obtained in all those 

studies, when compared to our data. The current concentrations of trace elements in 

Svalbard soils were actually of the same order of magnitude as those reported by 

Wojtuń et al. (2013), and comparable to those observed by Krajcarová et al. (2016), 

with only a few exceptions (e.g., Zn, Cd and Mo). By contrast, they are not in 

agreement with those published by Gulińska et al. (2003), who observed metal 

contents much lower than the rest of studies, and even lower than world average 

values. For comparison purposes, Santos et al. (2005) reported similar concentrations 

to those recently found in Svalbard, when studying trace elements in Antarctica, with 

the only exceptions of Ni and Mo. Because of the presence of power plants as 

important emission sources of chemical pollution, values were also compared with 

data from the scientific literature regarding areas impacted by power stations. Our 

results were very similar to those found by Minkina et al. (2017) and Noli and Tsamos 

(2016) in the surroundings of facilities in Russia and Greece, respectively. In turn, As, 
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Cr and Ni concentrations from soils collected around a power plant from Turkey were 

one order of magnitude higher than those found in Svalbard (Özkul, 2016). Finally, Hg 

concentrations here reported were much lower than soils levels found in a wide 

Spanish investigation to assess the impact of several coal-fired power plants 

(Rodríguez Martín and Nanos, 2016). 

Two methods, the pollution load index (PLI) and the geoaccumulation index 

(Igeo), are widely applied formulas to classify the environmental degree of pollution 

in a specific area (Adama et al., 2016; Akoto et al., 2016; Krajcarová et al., 2016; Tian 

et al., 2017; Zarei et al., 2014). Such parameters are calculated according to the 

following formulas:  

CF =
Cm

Bm
⁄     

PLI = √CF1 ∙ CF2 ∙ … ∙ CFn
n

 

Igeo = log2 (Cm 1.5 ∙ Bm)⁄  

Where CF is the Concentration Factor, Cm is the measured concentration of the 

trace element m, Bm is the geochemical background of the trace element m, taken 

from the Word Soil Average (Kabata-Pendias, 2011), and n is the number of trace 

elements under study. 

The results of both PLI and Igeo indexes are summarized in Table 5, which also 

gives in detail the categories of classification for each one. Soil values above the unity 

(PLI>1) are considered as polluted, while PLI<1 is linked to non-polluted soils. 

Regarding to the Igeo parameter, Müller (1969) provided an identification and 

classification of soil pollution level into seven grades (Table 5). The specific value 

resulting from Igeo calculations for each element and sampling site, is included in 

Table S2 (Annex 5). According to Igeo values, P6 was slightly polluted by Zn and Hg 

(0.19 and 0.66 Igeo grades, respectively), while soil from P3 was moderately polluted 

by Hg (1.41 Igeo grade). These two sampling sites, as well as P7, were identified as the 

locations showing the highest PLI values (0.63, 0.52 and 0.55 in P3, P6 and P7, 

respectively). However, all of them were lower than 1, being all sites classified as 

“unpolluted”, according to the PLI. Finally, as expected, P8 presented the lowest PLI, 

with a value of 0.17.   
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Correlation of PAHs and trace elements 

Pearson correlations were performed between the levels of PAHs and those of 

trace elements, as well as with the organic matter content (Table S3; Annex 5). The 

results showed strong correlations between ∑16 PAHs and some metals, such as Hg 

(0.989; p<0.01), Pb (0.836; p<0.01), Zn (0.769; p<0.05) and Cu (0.730; p<0.05), 

indicating a common source. It would highlight that the power plants operating in 

Svalbard are the main responsible of the chemical pollution in the area of study, at 

least in terms of PAHs and trace elements. However, notable differences between 

sampling sites were also found, and they cannot be explained only by the distance to 

the power plants. With respect to that, the organic content of soils would play a key 

role, as it showed a strong, significant correlation with some PAHs (i.e., naphthalene 

and phenanthrene) and trace elements (i.e., Mn, Pb, V, Cu, Zn, Tl and Be). Although 

the distance from the facilities to P1, P2, P3 and P5 sites was similar, P3 soil presented 

Table 5. Grades of geoaccumulation index (Igeo) and the pollution load index (PLI) for all the 
sampling points. 

Sampling 
point / 

element 
Zn Cd Hg As V Cr Pb Ni Mn Co Sn Tl Be Mo PLI 

P1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.38 

P2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.31 

P3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 0.63 

P4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.32 

P5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.35 

P6 2 1 2 1 1 1 1 1 1 1 1 1 1 1 0.52 

P7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.55 

P8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.17 

Grade Igeo  Pollution status 

1  Unpolluted 

2  Slightly polluted 

3  Moderately polluted 

4  Moderatedly to strongly polluted 

5  Strongly polluted 

6  Strongly to extremely polluted 

7  Extremely polluted 

Grade PLI  Pollution status 

<1  Unpolluted 

>1  Polluted 
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not only the highest concentrations of PAHs, but also the highest content of organic 

matter among them (2.25%). In turn, despite P6 and P7 were located far away 

combustion processes, PAHs also occurred in relatively high concentrations. This 

increase could be partly due to the high accumulation capacity of soils with a high 

content of organic matter (4.68 and 4.08% in P6 and P7, respectively). Soil organic 

matter clearly plays a key role in the adsorption/retention of pollutants by soils. 

Finally, the specific impact of local geology and previous coal extraction should be 

further assessed. 

 

CONCLUSIONS 

The results of the present investigation revealed that Pyramiden (Svalbard) soils 

are affected by environmental pollution, primarily from local emission sources. In 

addition, there is a potential impact of coal deposits and extraction activities carried 

out in the past. Concentrations of ∑16 PAHs reached up to 11 600 µg kg-1, being more 

than 200-times higher than values from a soil sample collected in a background site 

(52.8 µg kg-1). When expressed in terms of BaPeq, the difference was even higher, 

being the levels 700-fold higher in the surroundings of the power stations. 

Furthermore, the concentrations of Hg in soils from the vicinity of the power plant 

were very close to threshold levels (0.28 vs. 0.3 mg kg-1), according to Dutch Target 

Values. The application of the PLI pointed out that those soils were moderately 

polluted by Hg, with levels 4-times higher than the World Soil Average. Despite any 

differences in the total amount of Σ16 PAHs in soils, all the samples showed a similar 

profile, being associated to a common, pyrogenic source. 

These results strongly suggest the importance of environmental monitoring in 

remote areas of the planet. Moreover, this kind of actions should be a priority for 

regulators in areas where non-sustainable local emission sources are located. The 

complementarity of using other environmental matrices, such as air, ice/snow and 

biota, should be further considered. In addition, it must be highlighted that high PAH 

levels may lead to the formation of oxy- and nitro-PAHs, whose toxic/carcinogenic 

potential may be even higher than the parental compounds. Therefore, the 

assessment of emerging PAH derivatives is extremely important, especially in areas 

potentially vulnerable to soil radiation.  
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DISCUSSION CHAPTER 6 

Long Range Atmospheric Transport (LRAT) is a well known property of POPs, and 

also some PAHs and Hg, which may reach and be deposited in Polar regions. Pollutants 

can accumulate in snow and ice-packs, but also remobilized due to climate change. 

The increasing trend of average temperatures during the last century is causing a slow 

melting of glaciers. Depending on the physicochemical properties of those pollutants, 

they might be transported through atmospheric and ocean routes, or be in-situ 

degraded. However, the increase of human activities in remote areas is currently 

leading to an increase of environmental pollution in less disturbed regions. The 

exposure of temperature- and light- sensitive pollutants (e.g., PAHs), to sunlight 

makes easier their degradation and the formation of PAHs by-products. Consequently, 

the monitoring of pollution in Polar regions is highly valuable to stablish the current 

level of pollution and further assess the potential impact of climate change. 

Pyramiden (Central Spitsbergen, Svalbard Archipelago) is an Arctic settlement 

fulfilling both aforementioned situations: entrance of pollutants due to LRAT, local 

contamination derived from coal deposits and previous mining extraction, and 

currently operative power plants. In addition to PAHs, trace elements were also 

analyzed to confirm the hypothesis of local pollution sources. In general terms, trace 

elements in soils were lower than reference values, although some of them (Be, Co, 

Hg, Mn, Ni and Zn) punctually exceeded threshold levels. The sampling sites with the 

∑16 PAHs concentrations also presented the greatest values of trace elements. The 

high concentrations of PAHs and trace elements in soils were found to be dependent 

on the distance to the power plants, the prevailing winds (ENE and N), and the organic 

matter content. PAHs profiles and MDRs of all sampling points mostly demonstrated 

a pyrogenic source. In turn, correlations between Ʃ16 PAHs and Hg, Pb, Zn and Cu 

confirmed the anthropogenic nature of the contamination. Hence, the occurrence of 

PAHs and trace elements occurrence in Pyramiden might probably be related to the 

local contamination derived from power plants, although the contribution of coal 

deposits should not be disregarded. 

The significant pollution of the studied area strongly suggests it is important to 

continue with the environmental monitoring in such remote region. PAHs are able to 

travel long distances and, therefore, PAHs might be spread around the Arctic. In 
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addition, the occurrence of PAHs derivatives should be further investigated because 

they are formed during combustion processes. Finally, PAHs found in soil surface once 

exposed to light are photodegraded, and in turn, PAHs by-products are generated. 

Thus, the 24h/day sunlight exposure during the midnight sun season might probably 

be an important pathway for their formation in the Arctic.
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In recent years, the impact of climate change on the concentrations of persistent 

organic pollutants (POPs) has become a topic of notable concern. Some PAHs are 

classified as POPs, according to the Aarhus protocol. Moreover, PAHs are well known 

photosensitive substances, and hence, potentially vulnerable to climate change. 

The present thesis was aimed at investigating the impact of increasing 

temperature and light intensity on the fate of PAHs, after their deposition on typically 

Mediterranean soils. The monitoring of PAHs concentrations and ecotoxicity, as well 

as the identification of PAHs photodegradation by-products, was carried out at 

laboratory scale by the simulation of 2 climate scenarios: current and extreme (RCP 

8.5) for the Mediterranean region, considering estimations from the IPCC. Field 

experiments were performed to compare lab-controlled and natural conditions. On 

one hand, the photodegradation of PAHs caused by solar radiation in a Mediterranean 

area was assessed. On the other hand, PAHs levels were measured in soils collected 

in Pyramiden (Svalbard Archipelago), as another vulnerable location to climate 

change. 

It was confirmed that the increase of temperature and light intensity due to 

climate change may impact on the fate of PAHs, by enhancing their volatilization, 

photodegradation and, in turn, their capability to be transformed into PAHs by-

products. Temperature increase led to an acceleration of LMW PAHs volatilization, 

while soil properties were a key factor controlling the photodegradation of MMW and 

HMW PAHs. In fine-textured Regosol soil, they underwent similar photodegradation 

rates, regardless the climate scenario. In contrast, the photodegradation of these 

PAHs was more significant in Arenosol soil under the climate change scenario. In both 

soils, the increase of temperature and light intensity enhanced the formation of 

oxidation PAHs by-products. Microtox® results showed a higher soil detoxification in 

the climate change scenario than under current climate conditions. However, slight 

increases of toxicity over the decreasing trend were noted, which may probably be 

related to the formation of more toxic and bioavailable by-products.  

Differences between photodegradation trends of PAHs in Arenosol and fine-

textured Regosol soils were explained by the potential role of metal oxides as 

photocatalysts of PAHs photodegradation. It was hypothesized that the lower the 

content of metal oxides is, the higher the required activation energy is to achieve a 
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full PAHs photodegradation. In contrast, higher amounts of metal oxides in soils, such 

as the fine-textured Regosol soil, do not require a high activation energy to reach a 

complete photodegradation of PAHs. However, when assessing the role of Fe2O3 – the 

most abundant metal oxide in both tested soils – as a PAHs photocatalyst, it was found 

that this metal oxide is not the only responsible for PAHs photodegradation. Soil is a 

complex matrix with several elements (e.g., metal oxides, acid humics, and texture), 

each one with a different potential role on the PAHs fate.  

As expected, PAHs half-lives in the field were significantly shorter than at 

laboratory scale due to the higher temperatures and intensity of radiation. In addition, 

the wider spectra of sunlight than that of light lamps may enhance the 

photodegradation of PAHs. Notwithstanding, the effect of other co-occurring 

processes (e.g., biodegradation) should not be disregarded. Especially high 

photodegradation rates and low soil half-lives were noted for fluorene, anthracene, 

pyrene and benzo(a)pyrene. In addition, the formation of some oxidation compounds 

previously identified at laboratory scale was accelerated, while other 

photodegradation by-products (e.g., 1-nitropyrene, 6-nitrobenzo(a)pyrene, and 

benzo(a)pyrene-7,8-dihydro) were identified. 

Interestingly, all tests highlighted the especially high photodegradation rate 

observed for benzo(a)pyrene, regardless of the environmental conditions and tested 

soils. This fact could be related with the ionization potential (IP) of this compound. IP 

measures the difficulty of removing an electron or the strength by which an electron 

is bound, and therefore, provides the degree of reactivity. Benzo(a)pyrene is the single 

hydrocarbon among PAH under study which owns the lowest IP. Therefore, it is the 

PAH which can be most easily and quickly degraded. This finding highlights the 

limitation of using this compound as a single marker for PAHs pollution and regulation. 

Benzo(a)pyrene is generally used as a marker of PAHs pollution. However, its 

differential behaviour with respect to other PAHs requires the need to investigate the 

co-occurrence of other hydrocarbons, especially in terms of decision-making and 

policy development. Finally, the electron distribution over the PAH determines the 

most reactive positions of the molecule, which in turn, agrees with the localization of 

oxy- and nitro- radicals of by-products here identified. 
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A soil sampling campaign was carried out in the Arctic, one of the most vulnerable 

regions to climate change. Polar regions are especially affected by POP contamination, 

because of the LRAT capacity of these environmental contaminants. In addition, local 

emission spotlights may increase pollution levels in these areas. Substantially high 

PAHs levels were found in soils collected in Svalbard. This showed mostly pyrogenic 

sources of contamination and significant correlations with trace elements. Coal- and 

diesel- based power plants were pointed out as the important sources of soil pollution, 

although the contribution of coal deposits due to the local geology should not be 

disregarded. As a consequence of the wide light exposure during midnight sun season 

and the increase of solar intensity, especially that belonging to UV-B radiation, 

temperature- and radiation- dependent changes linked to the climate change may 

involve PAHs changes in surface soils and the generation of PAHs by-products. 

The physicochemical properties of PAHs and the soil properties are key factors 

determining the PAHs fate in surface soils. Climate change conditions will enhance the 

volatilization of LMW PAHs and the photodegradation of MMW and HMW PAHs in 

soils with coarse texture and low metal oxides content.  While volatilization and 

photodegradation are expected to decrease of PAHs concentrations in surface soils, 

oxidation and nitrification reactions may arise the levels of oxy- and nitro- PAHs. These 

PAHs derivatives own lower lipophilicity, and therefore, higher mobility and 

bioavailability. Furthermore, they are potentially more toxic than their parent PAHs. 

Unfortunately, these PAHs by-products are unregulated and environmental 

surveillance programs do not usually monitor they occurrence, being 16 US EPA 

priority PAHs the most commonly assessed. As the regulation of PAHs derivatives is 

very important, it would be necessary to develop new procedures considering 

different climate projections.
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Specific conclusions 

1. Physicochemical properties of each PAH and soil properties are the 2 key factors 

regulating PAHs photodegradation in soils. 

2. Climate change will enhance the volatilization of LMW PAHs in either Arenosol or 

fine-textured Regosol soil, and the photodegradation of MMW and HMW PAHs in 

Arenosol soil. 

3. Oxidation reactions were accelerated under a climate change scenario, being the 

photodegradation by-products more diversely formed than in the current 

Mediterranean environmental conditions. 

4. Volatilization, sorption and photodegradation of PAHs in surface soils led to a 

decrease of PAHs concentrations, and therefore, soils were detoxified over time. 

The toxic decline was more remarkable in the climate change scenario. However, 

punctual increases of toxicity, which were related with the formation of more 

bioavailable and toxic photodegradation by-products, were noted. 

5. Fe2O3 has a role on the photocatalysis of the most photosensitive PAHs (e.g., 

fluorene, phenanthrene and benzo(a)pyrene). However, other components of 

soil, which is a complex matrix with several elements (different metal oxides, 

humic acids and a specific texture), are also involved on PAHs fate in surface soils.  

6. Higher photodegradation rates, lower PAHs half-lives and a wider range of PAHs 

by-products were reported in the field than at lab scale. 

7. Benzo(a)pyrene was the most degraded compound in all experiments.  This fact 

agrees with its low ionization potential, and therefore, the high reactivity of this 

compound. Consequently, there is a clear limitation in the use and regulation of 

benzo(a)pyrene as a single indicator for PAHs pollution. 

8. Because of the local geology, previous coal-mining extraction, and power plants 

located in Pyramiden (Svalbard archipelago, Arctic), soils were greatly polluted by 

PAHs and some trace elements. The light exposure during midnight sun season, 

and the increase of temperature and light intensity due to the climate change, 

may enhance PAHs photodegradation, leading to an increase in by-products 

occurrence. 
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9. There is a clear need to include PAHs derivatives in environmental surveillance 

programs and regulations, as their occurrence will arise as a consequence of the 

climate change. 

 

General conclusion 

The expected increase of temperature and light intensity derived from climate 

change will impact differently on the fate of PAHs depending on soil characteristics. 

LMW PAHs will be more easily volatilized, while the photodegradation of MMW and 

HMW will be enhanced in soils with coarse texture and low metal oxides content. In 

addition, a wide range of PAHs by-products will be more rapidly formed. The 

emergence of PAHs photodegradation derivatives in soils poses a hazard for the 

ecosystems and human health due to their potential bioavailability and/or toxicity, 

becoming their regulation and monitoring even more necessary in a climate change 

context. 
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ANNEX 1 – Supporting information chapter 2 

Table S1. Physico-chemical properties of the 16 US EPA priority PAHs. 

Compound Structure CAS n. MW 
Log 
Kow 

Vapor Pressure 
(at 25°C) 

Naphthalene 
 

91-20-3 128 3.37 0.087 mm Hg 

Acenaphthylene 

 

208-96-8 152 4.00 9.12x10-4 mm Hg 

Acenaphthene  

 

83-32-9 154 3.92 2.5x10-3 mm Hg 

Fluorene 
 

86-73-7 166 4.18 3.2x10-4 mm Hg 

Phenanthrene 

 

85-01-8 178 4.57 1.21x10-4 mm Hg 

Anthracene 
 

120-12-7 178 4.54 2.67x10-6 mm Hg 

Pyrene 

 

120-00-0 202 5.18 4.5x10-6 mm Hg 

Fluoranthene 

 

206-44-0 202 5.22 9.22x10-6 mm Hg 

Benzo(a)anthracene 

 

56-55-3 228 5.91 1.54x10-7 mmHg 

Chrysene 

 

218-01-9 228 5.91 6.23x10-9 mm Hg 

Benzo(b)fluoranthene 

 

205—99-2 252 5.80 5.0x10-7 mm Hg 

Benzo(k)fluroanthene 

 

207-08-9 252 6.00 9.7x10-10 mm Hg 

Benzo(a)pyrene 

 

50-32-8 252 5.91 5.49x10-9 mm Hg 

Dibenzo(ah)anthracene 

 

53-70-3 278 6.75 9.55x10-10 mm Hg 

Indeno(123-cd)pyrene 

 

193-39-5 276 6.50 1.3x10-10 mm Hg 

Benzo(ghi)perylene 
 
 

 

191-24-2 276 6.50 1.0x10-10 mm Hg 
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Fig. S1. Concentration of various PAHs in irradiated and dark control soil samples. 
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Fig S2. Toxicity values at different times of exposure, according to the Microtox® test. 
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Fig S1. Concentration trend of some 3-, 4-, 5-, and 6-ringed PAH in the absence (OA) and 
presence (OP) of Fe2O3. Error bars represent the average Standard deviations (SD) of 
triplicates. 
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B scenario    CC scenario 
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Fig. S1. Concentration trends of various PAHs in irradiated and dark controls in Arenosol soil. 

Dark controls Irradiated samples 

UNIVERSITAT ROVIRA I VIRGILI 
Climate change impact on the photodegradation of polycyclic aromatic hydrocarbons in soils 
Montserrat Marquès Bueno 



B scenario    CC scenario  

   

0

20

40

60

80

100

0 5 10 15 20 25 30

C
o

n
ce

n
tr

at
io

n
 (

p
p

m
)

Time (days)

Acenaphthylene

0

20

40

60

80

100

0 5 10 15 20 25 30

C
o

n
ce

n
tr

at
io

n
 (

p
p

m
)

Time (days)

Acenaphthylene

0

20

40

60

80

100

0 5 10 15 20 25 30

C
o

n
ce

n
tr

at
io

n
 (

p
p

m
)

Time (days)

Acenaphthene

0

20

40

60

80

100

0 5 10 15 20 25 30C
o

n
ce

n
tr

at
io

n
 (

p
p

m
)

Time (days)

Acenaphthene

0

20

40

60

80

100

120

0 5 10 15 20 25 30

C
o

n
ce

n
tr

at
io

n
 (

p
p

m
)

Time (days)

Fluorene

0

20

40

60

80

100

120

0 5 10 15 20 25 30

C
o

n
ce

n
tr

at
io

n
 (

p
p

m
)

Time (days)

Fluorene

0

20

40

60

80

100

120

0 5 10 15 20 25 30

C
o

n
ce

n
tr

at
io

n
 (

p
p

m
)

Time (days)

Anthracene

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

C
o

n
ce

n
tr

at
io

n
 (

p
p

m
)

Time (days)

Anthracene

0

50

100

150

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

C
o

n
ce

n
tr

at
io

n
 (

p
p

m
)

Time (days)

Fluoranthene

0

50

100

150

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

C
o

n
ce

n
tr

at
io

n
 (

p
p

m
)

Time (days)

Fluoranthene

Irradiated samples Dark controls 

UNIVERSITAT ROVIRA I VIRGILI 
Climate change impact on the photodegradation of polycyclic aromatic hydrocarbons in soils 
Montserrat Marquès Bueno 



B scenario    CC scenario 

   

0

50

100

150

0 5 10 15 20 25 30C
o

n
ce

n
tr

at
io

n
 (

p
p

m
)

Time (days)

Benzo(a)anthracene + chrysene

0

50

100

150

0 5 10 15 20 25 30C
o

n
ce

n
tr

at
io

n
 (

p
p

m
)

Time (days)

Benzo(a)anthracene + chrysene

0

50

100

150

0 5 10 15 20 25 30

C
o

n
ce

n
tr

at
io

n
 (

p
p

m
)

Time (days)

Benzo(b+k)fluoranthene

0

50

100

150

0 5 10 15 20 25 30

C
o

n
ce

n
tr

at
io

n
 (

p
p

m
)

Time (days)

Benzo(b+k)fluoranthene

0

50

100

150

0 5 10 15 20 25 30

C
o

n
ce

n
tr

at
io

n
 (

p
p

m
)

Time (days)

Dibenzo(ah)anthracene

0

50

100

150

0 5 10 15 20 25 30

C
o

n
ce

n
tr

at
io

n
 (

p
p

m
)

Time (days)

Dibenzo(ah)anthracene

Irradiated samples Dark controls 

Fig. S2. Concentration trends of various PAHs in irradiated and dark controls in fine-textured 
Regosol soil. 
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Table S1. Recoveries (%) of each PAH and and labeled PAH in Arenosol and fine-textured 
Regosol soil. 

 Arenosol Fine-textured Regosol 

Naphthalene 34.5 ± 12.6 35.4 ± 27.2 

Acenaphthylene 54.4 ± 6.3 75.5 ± 7.4 

Acenaphthene 73.6 ± 9.6 88.2 ± 3.6 

Fluorene 82.0 ± 8.4 96.8 ± 8.0 

Phenanthrene 87.4 ± 7.9 102 ± 8.5 

Anthracene 75.0 ± 6.2 97.0 ± 11.9 

Fluoranthene 87.8 ± 7.5 101 ± 9.4 

Pyrene 87.6 ± 7.3 102 ± 9.9 

Benzo(a)anthracene 91.5 ± 11.0 102 ± 2.6 

Chrysene 96.1 ± 12.6 107 ± 0.9 

Benzo(b)fluoranthene 94.1 ± 10.2 105 ± 3.9 

Benzo(k)fluoranthene 94.9 ± 9.3 104 ± 2.4 

Benzo(a)pyrene 83.8 ± 8.0 94.1 ± 7.6 

Benzo(ghi)perylene 97.8 ± 11.2 109 ± 7.0 

Dibenzo(ah)anthracene 106 ± 11.6 117 ± 5.4 

Indeno(123-cd)pyrene 102 ± 11.1 110 ± 4.9 

d8-naphthalene 25.7 ± 12.1 30.3 ± 25.5 

d10-acenaphthene 94.3 ± 10.6 110 ± 1.1 

d10-phenanthrene 119 ± 7.5 134 ± 20.1 

d12-chrysene 96.6 ± 10.9 104 ± 3.1 

d12-perylene 82.0 ± 5.8 83.8 ± 4.3 
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Fig. S1. Temperature and global solar irradiance over the experiment. 

 

 

 

Fig. S2. Humidity and precipitation over 1 the experiment. 
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Arenosol soil   Fine-textured Regosol soil 
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Arenosol soil   Fine-textured Regosol soil

 

Fig. S3. Concentration trends of 16 PAHs under study in Arenosol soil (left) and fine-textured 
Regosol soil (right). Each point is the average of triplicates of samples. Bars indicate standard 
deviations between them. 
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ANNEX 5 – Supporting information chapter 6 

Table S1. Retention time and quantitative and qualitative transitions acquired for the studied 
compounds, with collision energy (CE) and dwell time applied.  

Compound 
rT 

(min) 
Segment 

Precursor 
ion 

(m/z) 

Product 
ion 

(m/z) 

Dwell 
time 
(ms) 

CE 
(V) 

Relat. 
Response 

(%) 
d4-1,4-Dichlorobenzene 3.34 1 150 115 100 10 100 

87 100 10 0.6 

78 100 40 85.3 

d8-Naphthalene 5.48 2 136 108 50 30 100 

84 50 30 54.1 

82 50 30 41.8 

Naphthalene 5.53 2 128 102 50 30 100 

78 50 30 61.1 

77 50 30 51.1 

Acenaphthylene 9.20 3 152 151 100 20 100 

150 100 30 38.5 

126 100 30 38.1 

d10-Acenaphthene 9.55 4 164 162 50 30 100 

160 50 30 51.4 

134 50 50 8.9 

Acenaphthene 9.64 4 153 152 50 20 100     
151 50 40 17.5     
77 50 40 10.6 

d10-Fluorene (IS) 10.89 5 174 172 50 30 100     
170 50 40 94.4     
122 50 30 78.3 

Fluorene 10.97 5 166 165 50 20 100     
139 50 40 5.6     
115 50 40 8.0 

d10-Phenanthrene 13.30 6 188 160 50 30 100     
184 50 30 67.3     
158 50 40 60.0 

Phenanthrene 13.37 6 178 152 50 30 100     
176 50 40 89.2     
151 50 40 65.0 

Anthracene 13.52 6 178 152 50 30 100     
176 50 40 89.2     
151 50 40 65.0 

Fluoranthene 16.43 7 202 200 150 40 100     
201 150 30 96.2 

Pyrene 16.98 7 202 200 150 40 100     
201 150 30 96.2 
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Compound 
rT 

(min) 
Segment 

Precursor 
ion 

(m/z) 

Product 
ion 

(m/z) 

Dwell 
time 
(ms) 

CE 
(V) 

Relat. 
Response 

(%) 
Benzo(a)anthracene 20.07 8 228 226 50 40 100     

224 50 60 13.0     
200 50 60 7.8 

d12-chrysene 20.08 8 240 236 50 40 100     
212 50 30 25.1     
208 50 30 0.8 

Chrysene 20.17 8 228 226 50 40 100     
224 50 60 13.0     
200 50 60 7.8 

Benzo(b+k)fluoranthene 22.68 
22.69 

9 252 250 100 40 100    
248 100 60 11.0    
224 100 60 13.2 

Benzo(a)pyrene 23.37 10 252 250 50 40 100     
248 50 60 11.0     

224 50 60 13.2 

d12-benzo(a)pyrene (IS) 23.48 10 264 260 50 40 100     
236 50 40 23.6     
232 50 60 17.5 

d12-perylene 23.52 10 264 260 50 40 100     
236 50 40 14.2     
232 50 60 10.0 

Dibenzo(ah)anthracene 25.85 11 278 276 50 40 100     
274 50 60 16.7     
250 50 60 6.5 

Indeno(123-cd)pyrene 25.89 11 276 274 50 40 100     
275 50 30 43.0     
272 50 60 8.8 

Benzo(ghi)perylene 26.60 11 276 274 50 40 100     
275 50 30 43.0 

    272 50 60 8.8 
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Table S2. Geoaccumulation index (Igeo) for all sampled soils. 

 

 

 

 

  

 
Cu Zn Cd Hg As V Cr Pb Ni Mn Co Sn Tl Be Mo 

P1 -1.98 -0.74 -1.44 -2.01 -1.55 -3.88 -2.48 -1.60 -1.02 -0.57 -1.01 -5.27 -3.15 -1.48 -1.79 

P2 -2.04 -0.92 -1.55 -3.30 -1.92 -3.83 -2.43 -1.77 -0.95 -1.07 -0.95 -6.36 -3.13 -1.61 -1.98 

P3 -0.94 -0.06 -1.24 1.41 -1.09 -3.54 -1.84 -0.80 -0.40 -1.26 -0.73 -3.22 -2.56 -1.39 -1.13 

P4 -1.70 -0.81 -1.93 -2.96 -1.71 -3.77 -2.70 -1.93 -0.97 -1.08 -1.01 -6.35 -2.68 -1.51 -2.25 

P5 -2.01 -0.87 -1.33 -2.97 -1.79 -3.77 -2.34 -1.73 -0.88 -1.06 -0.93 -5.17 -3.04 -1.42 -1.96 

P6 -1.37 0.19 -1.19 0.66 -1.99 -3.43 -2.52 -0.65 -0.97 -1.86 -1.10 -4.25 -1.42 -0.68 -2.23 

P7 -0.89 -0.44 -1.49 -0.04 -2.20 -3.13 -1.48 -1.26 -0.51 -2.94 -0.67 -2.24 -2.07 -0.32 -1.84 

P8 -2.44 -2.72 -3.49 -3.80 -3.07 -4.56 -3.31 -3.07 -2.05 -0.52 -2.13 -8.32 -2.19 -2.17 -3.81 
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