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CHAPTER 1

GENERAL INTRODUCTION

1.1 Forecasting

Forecasts of economic variables play an important role in business decision-

making, government policy analysis, and economic research. For example, ques-

tions related to the capital structure policy upon the growth rate of a firm, the

effects of changes in the monetary policies for the control of inflation upon produc-

tivity and employment, the impact of legislation about retirement income upon

saving behavior. This work is an attempt to contribute, using classical and popular

time series methods, to the multivariate forecasting methodology when additional

future information is available.

Forecasts often are model-based, in the sense that the forecasting operation

is carried out after the statistical identification and estimation of a suitable sto-

chastic model that employs the available time series data. The forecasting proce-

dures themselves are simply devices for utilizing the estimated model to project

its output into the future in stochastic terms, normally through the evolution

of the mean and the standard error bands associated with the forecast distrib-

ution. Some of the earliest and simplest univariate forecasting methods are the

1



1.1. FORECASTING 2

Exponential Smoothing methods introduced by Holt (1957) and Winters (1960).

Different versions of these forecasting procedures are based on the construction of

forecast functions that depend on discounted past observations. However, these

methods are ad hoc in the sense that they are implemented without respect to

a suitable statistical model. These ad hoc methods can be justified nowadays

by the univariate Auto-Regressive Integrated Moving Average (ARIMA) models.

The popularization of the ARIMA model and its associated forecasting method-

ology was a result of the publication of Box and Jenkins’ most influential book

Time-Series Analysis, Forecasting and Control (1970, 1976). The success of these

models lies in that they give the analyst a class of linear time series models which

is sufficiently easy to be employed in practice and is general enough to provide a

good representation of the data. In addition, ARIMA models have proved to be

very successful at forecasting as compared to other univariate linear models. The

ARIMA models will be used as a part of a two-stage forecast method in Chapter

4.

Quenouille (1957) and Tiao and Box (1981) introduced some important ex-

tensions of the univariate models to a multivariate framework in attempts to

describe the dynamic relationship between the variables into consideration: the

Vector Auto-Regressive (VAR) and the Vector Auto-Regressive Moving Average

(VARMA) models. The use of these models require stationary stable time series

systems. However, trends and variance fluctuations are quite common in practice.
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Differencing and nonlinear transformations are methods introduced by Box and

Jenkins (1970, 1976) for removing nonstationarities in the mean and variance of

time series respectively. Since any VARMA model can be expressed as an approx-

imately equivalent finite VAR model, and the estimation methods for the VAR

model are simpler (equation-by-equation using linear Least Squares methods), it

is preferred to use the latter. Due to the simple structure and linearity of the

VAR model, it enjoys enormous popularity in empirical macroeconomic research

and forecasting since Sims (1980) suggested its use as an alternative to classical

multi-equation macroeconomic models. See Lütkepool (1991) for a good exposi-

tion of VAR and VARMA models and Clements and Hendry (2004) Chapter 4 for

a description of several statistical forecasting models. An empirical illustration in

Chapter 4 for a bivariate system with Mexican economic variables uses the VAR

model.

Many economic time series have a trend behavior over time that makes them

non-stationary, but groups of these time series variables may tend to drift together.

The idea that non-stationary time series may keep together in the long-run is

captured by the concept of cointegration which has several important implications

in multiple time series analysis, as indicated by Engle and Granger (1987). The

Vector Error Correction (VEC) models, which introduce the long-run relationship

as a restriction into the VAR models, have proved to be useful when modeling

and forecasting these kind of variables. Johansen (1995) provides likelihood-ratio
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tests for specifying the cointegration rank, which has become a standard technique

nowadays. The methodological illustrations in Chapters 2 and 3 use a cointegrated

system for the Mexican economy, where VEC models are required. A Monte Carlo

simulation in Chapter 4 makes also use of this representation.

The model-based forecasting ability is crucial not only to determine the pre-

cision of the forecast but also to judge the adequacy of the model. There exist a

number of studies in which a time series model seems to fit well in-sample, but

perform poorly at obtaining out-of-sample predictions. Forecast comparisons are

often based on the trace of the Mean Square Error (MSE) matrix. However, there

are some works (e.g. Clements and Hendry, 1993) that criticized the use of the

standardMSEmeasure because it is not invariant to non-singular, scale-preserving

linear transformations. Lin and Tsay (1996) used the square root of the trace of

the covariance matrix of out-of-sample forecasts errors as the main criterion and

found that cointegration does not improve the forecast precision. Christoffersen

and Diebold (1998) dealt with forecasting cointegrated variables and showed that

nothing is lost by ignoring cointegration when forecasts are evaluated using the

trace of the MSE, since such a measure fails to value the long-run forecasts. Thus,

they suggested to use two MSE measures of forecasting performance. The first one

is the trace MSE of the cointegrating combinations of the forecast errors. While

the second one corresponds to a triangular representation of the cointegrated sys-

tem that incorporates both the standard MSE and that of the aforementioned
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cointegrating combinations. These measures will be used to quantify the forecast

precision in this work.

1.2 Restricted Forecasting

When forecasting time series variables, it is usual to use only the information

provided by past observations to foresee potential future developments. However,

if available, additional information should be taken into account to get the forecast.

For example, let us consider a case where the Government announces an economic

target for next year. Since the Government has the empowerment to implement

the economic or social policies to approach the target, an analyst that does not

consider this information to get the forecast and makes use only of the historical

record of the variables, will not anticipate the change on the economic system. In

fact, in a very influential article, Lucas (1976) established that predictions based

on historical data would be invalid when a policy change affects the economy, since

the economic agents are forward rather than backward-looking and adapt their

expectations and behavior to the new policy stance. Thus, given some targets for

the variables under study it is important to know the simultaneous future path

that will lead to achieving those targets.

This work considers the case in which a system of variables are to be fore-

casted with the aid of a VAR model with a cointegration relationship. The paths

projected forward into the future as a combination of the model-based forecasts
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and the additional information provides what is known as a restricted forecast.

When working with a single economic variable whose data consist of a uni-

variate time series, the problem of incorporating the additional information has

already been treated in the literature. Guerrero (1989) and Trabelsi and Hillmer

(1989) obtained the corresponding optimum forecast, in minimum Mean Square

Error (MSE) sense. Such a forecast allows an analyst to incorporate additional

information as binding or unbinding restrictions.

The literature on restricted forecasts for multiple time series includes several

papers. Doan, Litterman and Sims (1984), Green, Howrey and Hymans (1986),

van der Knopp (1987) and Pankratz (1989) dealt with the combination of histori-

cal information with additional information provided by way of linear restrictions.

Guerrero and Peña (2003) provided general results for the problem of combining

data from two different sources of information in order to improve the efficiency

of predictors. Some time series problems such as forecast updating when new

information is available, forecast combination, interpolation and missing value

estimation, among others, can be treated with their proposal. Pandher (2002) at-

tacked the problem of modeling and forecasting a contemporaneously constrained

system of time series within the state-space framework. Guerrero, Pena, Senra

and Alegría (2005) focussed on implementing a Vector Error Correction (VEC)

model for monitoring Mexican economic targets and verifying the compatibility

between historical and additional information. A Joint Compatibility Test (JCT)
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for the restriction was proposed to that end.

1.3 Contribution

This dissertation is an attempt to contribute to the literature on Restricted

Forecasting Theory for Multiple Time Series within the VAR framework. Specif-

ically, Chapter 2 decomposes the JCT into single tests by a variance-covariance

matrix associated with the restrictions and derives the formulas of a feasible JCT

that accounts for estimated parameters. Chapter 3 develops, by Lagrangian opti-

mization, the restricted forecasts of the multiple time series process with structural

change, as well as its mean squared error. In addition, the univariate time series

types of change presented by Tsay (1988) are considered here in a multivariate set-

ting. Finally, Chapter 4 derives a methodology for forecasting multivariate time

series that satisfy a contemporaneous binding constraint for which there exists a

future target. A Monte Carlo study of a VEC model with one unit root shows

that, for a forecast horizon large enough, the forecasts obtained with the proposed

methodology are more efficient. A more detailed account of these contributions is

provided below.

1.3.1 Chapter 2

This chapter presents a paper entitled Restricted forecasting with VAR models:

an analysis of a test for joint compatibility between restrictions and forecasts. This
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work proposes a decomposition of the JCT for VEC models. It is shown that a

variance-covariance matrix associated with the restrictions can be used to cancel

out model dynamics and interactions between restrictions. This allows an analyst

to interpret the joint compatibility test as a composition of the corresponding

single restriction compatibility tests. These tests are useful to appreciate the

contribution of each and every restriction to the joint compatibility between the

whole set of restrictions and the unrestricted forecasts.

Since the JCT introduced in Guerrero et al. (2005) is based on asymptotic

theory, a feasible version of this test was here derived. This new test also takes

into account the parameter estimation of the model. A comparison between the

JCT and the feasible JCT with the nominal test values, shows that the latter

turns out to have better performance than the original one.

The proposed methodology was illustrated with a six-variable Mexican eco-

nomic system with quarterly data. Implementation of the model focused on the

economic targets for GDP, inflation rate and trade balance deficit for 2003, see

SHCP (2002). A numerical simulation of this system was carried out to validate

the use of the feasible JCT in this situation. It turned out that the economic

targets were compatible with the unrestricted forecasts. Then, some unrealistic

targets were considered to illustrate an incompatibility situation.
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1.3.2 Chapter 3

Structural changes are commonly encountered in time series data analysis

and the presence of those extraordinary events in the forecast horizon could easily

mislead a time series model and its forecasts, thus resulting in erroneous conclu-

sions. Thus, Chapter 3, called Restricted VAR forecasts that take into account an

expected structural change, attacks the problem of forecasting when a structural

change is expected to occur on an economic system during the forecast horizon.

Both the deterministic and the stochastic structure of a VEC model are assumed

to be affected by the structural change. The available information about the

structural change is provided by a set of linear restrictions imposed on the future

values of the variables involved. The restricted forecasts of the multiple time series

process with structural change, as well as its mean squared error are here derived

by Lagrangian optimization. These results generalize those of the univariate case

obtained by Guerrero (1991). Furthermore, the univariate time series types of

change presented by Tsay (1988) are considered here in a multivariate setting.

Nowadays, in Mexico, economic as well as political efforts concentrate on

achieving the necessary consensus to advance in the fiscal, electric and pensions

reforms. That is why this chapter presents an empirical illustration that makes

use of Mexican macroeconomic data on six variables. The restricted forecasts

take into account the economic targets for year 2004 announced by the Mexican

Government (see, SHCP 2003) and an economic reform assumed for year 2005. It
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is also assumed that the economic reform will modify either the deterministic or

the stochastic part of a VAR model and that its effect will initially impact GDP

and prices.

1.3.3 Chapter 4

The last chapter is devoted to the paper Restricted VAR forecasts of economic

time series with contemporaneous constraints. Here, a methodology is derived

within the VAR framework, for forecasting multivariate time series that satisfy a

contemporaneous binding constraint for which there exists a future target. Two

ways of computing the restricted forecasts are proposed. The first one intro-

duces the target as a linear restriction on the future values of the system, while

the other introduces the target in the forecast of the aggregated variable (the

contemporaneous binding constraint of the time series vector) which, in turn, is

introduced as a restriction for the system forecasts. This methodology has nat-

ural applications when forecasting macroeconomic and financial time series that

must satisfy accounting constraints, which are binding. The methodology is illus-

trated with the contemporaneously constrained income-expenditure system of the

balance of payments account for the Mexican economy. Here the deficit (income

minus expenditure) is the contemporaneous binding constraint for which a future

restriction is given (i.e. the Government economic target, see SHCP 2004).

Since a cointegration relationship can be viewed as an unbinding contempo-
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raneous constraint, the proposed methodology has immediate implications when

forecasting cointegrated systems. The case of one unit root is considered in detail.

As a starting point, it is required that the equilibrium of the system be reached

at some finite point in the future. Such a restriction was imposed by letting the

error correction term be equal to zero at that point. A Monte Carlo simulation of

a VEC model with one unit root was carried out to compare the behavior of the

unrestricted forecasts against those of the cointegrating restricted forecasts. Since

the standard MSE has been severely criticized as a precision measure by several

researches, three different precision measures are used in the comparisons.

1.4 Further extensions

Nowadays, Ministry Treasury in Mexico (the government agency engaged in

tax collection and income distribution) faces a low tax collection problem. His-

torically, in Mexico the tax collection as a percentage of GDP is about 17% while

other developed countries as US receives the 30%, Canada 39% and Germany

27%. Of course, the low tax collection limits the impact of government policies

to deal with poverty, technological development, social security, energy, etc... For

this reason a fiscal reform, among others, as been considered necessary to con-

solidate macroeconomic stability. However, some political forces have put up a

lot of resistance to government proposals due to these are based mainly on the

value-added tax. The restricted forecast methodology derived in Chapter 3 that
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account for structural changes could be used to construct scenarios of the Mexican

economy with the main government proposals. This could contribute to judge the

value-add tax controversy.

In order to control the levels of stocks and production of bank notes the Bank

of Mexico (the Central Bank) needs to forecast the bank note circulation and

measure their average life. To do that Bank of Mexico is supplied with a multi-

anual monetary account (M1) time path forecast (the restriction). Nowadays, the

M1 is disaggregated with historical weights and the forecast of each bank note

is obtained by intervention analysis in the univariate ARMA setup. Therefore,

modeling the bank notes system with an intervention analysis in a contemporane-

ously constrained VAR framework and using the restricted forecast methodology

described in Chapter 4 could derive in a more precise bank note multivariate

forecasts.

Consider the case where we are interested in getting the forecast of a time series

with its unobserved components. For example, we decompose GDP into trend and

cycle. Since the GDP variable is equal to the sum of its components, we would like

to count on forecasts with the property that the forecast of GDP will be equal

to the sum of the trend and cycle forecasts. However, with standard forecast

methodologies, this adding-up property does not hold. In principle, a forecast

methodology like that derived in Chapter 4 could help us with the problem of

match the forecasts of a decomposed time series.
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CHAPTER 2

RESTRICTED FORECASTINGWITH VAR MODELS:

AN ANALYSIS OF A TEST FOR JOINT

COMPATIBILITY BETWEEN RESTRICTIONS AND

FORECASTS

2.1 Introduction

Decision making is mainly based on predictions of the most relevant variables

for the problem at hand and time series data are usually employed to get forecasts.

In the present case we let yt denote the value of the variable at time t, then a

forecast of the variable at time T + h with information up to T is given by

byT+h = f (yT , yT−1, . . .) .

If available, additional information should also be considered to get the fore-

cast. For example, let us consider a case where the Government announces an

economic target for next year. Since the Government has the empowerment to

implement the economic or social policies to approach the target, the future infor-

mation available (the target in this case) should be taken into account to get the

16
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forecast. Thus, given some targets for the variable under study it is important to

know the future path that will lead to achieving that target. The path obtained

as a combination of the forecasts from a model and the additional information

provided by the targets (known as restricted forecasts) produce such a scenario

of future values. Let us suppose that θT+i is the target for time T + i, thus the

forecast will be given by

eyT+h = f (θT+i, yT , yT−1, . . .) .

When working with a single economic variable whose data consist of a uni-

variate time series, the problem of incorporating the additional information has

already been treated in the literature. Guerrero (1989) and Trabelsi and Hillmer

(1989) obtained the corresponding optimum forecast, in minimum Mean Square

Error (MSE) sense. Such a forecast allows an analyst to incorporate additional

information as binding or unbinding restrictions.

The literature on restricted forecasts for multiple time series includes sev-

eral papers. Doan, Litterman and Sims (1984), Green, Howrey and Hymans

(1986), van der Knopp (1987) and Pankratz (1989) dealt with the combination

of historical information with additional information provided by way of linear

restrictions. Pandher (2002) attacked the same problem within the state-space

framework. Guerrero, Pena, Senra and Alegría (2005) focussed on implementing

a Vector Error Correction (VEC) model for monitoring Mexican economic targets

and verifying the compatibility between historical and additional information. A
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joint compatibility test (JCT) for the restriction was proposed to that end.

When the targets impose linearly independent restrictions on the forecasts we

can always obtain the corresponding restricted forecasts, no matter how discordant

the targets are from the historical information. So, the JCT proves to be a useful

tool to decide whether or not the targets are compatible with the forecasts based

only on the historical record. Knowing that these two sources of information

are compatible or not is useful in many ways. On the one hand, when the two

sources of information are compatible with each other, incorporating the targets

as additional information into the forecast will reduce the forecast MSE. On the

other, when the test rejects compatibility, we are led to analyze the reason why

this occurred. Then we would like to know which restrictions were the most likely

causes of rejection. However, the JCT does not provide any clue about this.

Therefore the need of being able to appreciate the individual contribution of each

restriction to the joint compatibility arises. Here we address this issue by means

of a decomposition of the JCT into tests for each individual restriction involved.

Since the JCT introduced in Guerrero et al. (2005) is based on asymptotic theory,

a feasible version of this test that works well with estimated parameters is here

derived.

This article is organized as follows. Section 2.2 presents the statistical method-

ology needed to get a restricted forecast with Vector Auto-Regression (VAR) mod-

els. In section 2.3 we show how a matrix associated with the uncertainty when
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imposing unbinding restrictions can be used to cancel out both model dynamics

and interactions between restrictions. This fact allows us to obtain the JCT as the

sum of several single compatibility tests (SCT), one for each individual restriction.

Section 2.4 presents a finite sample Monte Carlo study of the JCT in order to val-

idate its performance. This study led us to an adjustment for the fact that the

parameters are estimated. The corresponding restricted forecast formulas for the

feasible JCT are also derived. In section 2.5 we illustrate the methodology with an

empirical application that uses a model for the Mexican Economy and introduces

the economic targets for year 2003, announced by the Mexican Government at

the end of 2002. Finally, section 2.6 presents some conclusions.

2.2 Methodology

Many economic time series may tend to move up or down over time in a non-

stationary way, but groups of variables may drift together. A multiple time series

model is useful to analyze the relationships among these variables and cointegra-

tion analysis helps to discover the linear relationships that hold over the long-run.

If the variables are cointegrated the basic tool to use for analysis and forecast-

ing is a VEC model. The forecast restricted by extra-model information as well

as a compatibility test of unrestricted forecasts and extra-model information are

described.
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2.2.1 The VEC Model

Let yt = (y1t, . . . , ykt)
0 be a k× 1 vector of random variables at time t and let

us assume that yt follows a finite pth-order Gaussian VAR model,

yt = ΛDt +Π1yt−1 + · · ·+Πpyt−p + εt (2.1)

where Πi is a k × k coefficient matrix for i = 1, . . . , p, Dt = (D1t, . . . , Dnt)
0 is

an n × 1 vector that includes both deterministic variables to account for sea-

sonality and intervention effects, as well as exogenous variables with respect to

yt. εt = (ε1t, . . . , εkt)
0 is a k-dimensional independent and identically distributed

N(0,Σε) random error vector with time-invariant positive-definite covariance ma-

trix E(εtε0t) = Σε. The effects of Dt on yt are captured by the parameter matrix

Λ of order k × n.

Model (2.1) can also be written in terms of the lag operator B as

Π (B)yt = ΛDt + εt (2.2)

where Π(B) = I − Π1B − Π2B
2 − · · · − ΠpB

p is a matrix polynomial of order

p on the lag operator B such that Bnyt = yt−n for n ∈ N. This model can be

reparametrized as

Π∗ (B)∆yt = ΛDt −Π (1)Byt + εt, (2.3)

where ∆ is the first difference operator, Π(1) = I − Π1 − · · · − Πp and Π∗ (B)

is a matrix polynomial of order p − 1 on the lag operator B such that Π (B) =
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Π (1)B+Π∗ (B)∆. Of course, it is also possible to obtain the VAR in levels from

the VAR in differences. Thus equations (2.2) and (2.3) are equivalent representa-

tions of the same stochastic process (see for instance Clements and Hendry, 2004,

section 8.2).

When the variables in the VARmodel are integrated of order d ≥ 1, written as

I(d), Ordinary Least Squares (OLS) estimation of the parameters in model (2.2)

is subjected to hazards typical of regressions involving nonstationary variables,

see Park and Phillips (1988, 1989). The variables of a k-dimensional process

yt are cointegrated of order (d, b), briefly yt ∼CI(d, b), if all components of yt

are I(d) and there exists a linear combination cyt, with c = (c1, . . . , ck) 6= 0,

which is I(d − b). We assume det(Π (x)) 6= 0 for |x| < 1, that is, all the zeros

are on or outside the unit circle. If the determinantal polynomial has unit roots

with multiplicity one, then the variables of yt are I(1). Moreover, we assume

that the rank of Π (1) is r, implying that there are d = k − r unit roots in the

system. When r > 0 the variables are cointegrated, in the sense that there exists

a linear combination β0yt, with β = (β1, . . . , βk)
0 6= 0, which is I(0). In that case

−Π (1) = αβ0 where α and β are k× r full rank matrices. The rows of β0 are then

referred as the cointegration vectors of the system.

A result due to Engle and Granger (1987), known as Granger’s Representation

Theorem, is relevant here. It states that if the k variables of yt are CI(1, 1) then

there exists a VEC representation for the system, that is, equation (2.3) can be
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written as

Π∗ (B)∆yt = ΛDt + αzt−1 + εt,

where zt = β0yt is stationary, the term Π∗ (B)∆yt in this model captures the

short-run relationships among the variables and −Π (1)Byt = αzt−1 captures the

long-run relationships.

To introduce the restricted forecasting methodology with VEC models, let

us assume first that the model and its parameters are known. Therefore we will

not consider such issues as specification, estimation or validation of the model,

although they must be considered in practical applications. In section 2.4 we will

address the problem of forecasting with estimated parameters. Let us start with

the kT × 1 vector Y = (y01, . . . ,y
0
T )
0 that contains all the past information of the

multiple time series and let the kH × 1 vector YF =
¡
y0T+1, . . . ,y

0
T+H

¢0
contain

the H ≥ 1 future values to be forecasted for each series. The optimum (in MSE

sense) linear forecast of yT+h for h = 1, . . . , H, is its conditional expectation

E(yT+h|Y) = ΛDT+h +Π1E(yT+h−1|Y) + · · ·+ΠpE(yT+h−p|Y) (2.4)

where E(yT+h−i|Y) = yT+h−i for i ≥ h. Such a forecast produces the forecast

error vector

yT+h − E(yT+h|Y) =
h−1P
j=0

ΨjεT+h−j, for h = 1, . . . , H (2.5)

where Ψj =
jP

k=1

Ψj−kΠk with Ψ0 = I and Πk = 0 for k > p. It should be stressed

that, by virtue of the equivalence between (2.2) and (2.3), the forecast provided
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by (2.4) make use of all the information in the VEC model.

Expression (2.5) can be written as

YF − E(YF |Y) = Ψ²F (2.6)

where ²F =
¡
ε0T+1, . . . , ε

0
T+H

¢0 ∼ N (0, IH ⊗Σε) is a kH × 1 vector, with ⊗ the

Kronecker product. The kH × kH matrix Ψ is lower triangular with Ik in its

main diagonal, Ψ1 in its first subdiagonal, Ψ2 in the second subdiagonal and so

on. Thus the optimum unrestricted forecast of YF is its conditional expectation

YF,H =E(YF |Y), whose MSE is given by

ΣYF,H
≡ E[(YF −YF,H)(YF −YF,H)

0|Y]

= Ψ (IH ⊗Σε)Ψ
0.

The forecast MSE for an integrated process is generally unbounded as the

horizon H goes to infinity, that is, the forecast uncertainty increases without

limit, see for example Lütkepohl (1991, section 11.3).

2.2.2 Stochastic linear restrictions on future values

Suppose we have additional information on the future of yt. For example,

when the government wants to reach some economic targets, we assume the fore-

cast of the variables yt are restricted by those targets, at least to produce a

scenario. We also assume that the additional information is in the form of a

stochastic linear restriction

R = CYF + u. (2.7)
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Here C is an M × kH matrix of full row rank, R = (r1, . . . , rM)
0 is the M × 1

vector of values that the linear combinations take on and u = (u1, . . . , uM)
0 ∼

N (0,Σu) is an M × 1 random vector, with the ijth element of Σu given by

σij,u =cov(ui, uj), for i, j = 1, . . . ,M .

To illustrate this situation let us consider a bivariate VAR system where the

first variable must satisfy an isolated stochastic linear restriction as r = y1,T+H+u,

with u ∼ N (0, σu) . Then in terms of (2.7) we have R = r, u = u and YF =

(y1,T+1, y2,T+1, . . . , y1,T+H−1, y2,T+H−1, y1,T+H , y2,T+H)
0 withC = (0, 0, . . . , 0, 0, 1, 0)

where there are first H − 1 pairs of zeros and then the pair 1, 0. This kind of re-

striction arises when the government announces a target for the first variable for

the end of the year.

Another example considers the difference between two future values of the first

variable r1 = y1,T+H−y1,T+1+u1 with u1 ∼ N (0, σ11,u), while the second variable

has a restriction on the average of its future values r2 =
P

y2,T+i/H + u2 with

u2 ∼ N (0, σ22,u). Further, if u1 and u2 are uncorrelated, these two restrictions

can be written as

 r1

r2

 = CYF +

 u1

u2

 ;
 u1

u2

 ∼ N


 0

0

 ,

 σ11,u 0

0 σ22,u


 ,

where

C =

 −1 0 · · · 0 0 1 0

0 1
H

· · · 0 1
H

0 1
H

 .
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In the empirical example shown in section 2.5 we face the problem of imposing

three restrictions on the future values of a six-variable system of the Mexican

economy. One of those restrictions is of the difference type and the other two

involve averages.

2.2.3 Restricted forecasts

When forecasting YF we should consider both historical information, Y, and

additional information, R. The optimum forecast that takes into account both

sources of information is E(YF |Y,R) which will be denoted as YR
F,H . It can be

shown, see for instance Nieto and Guerrero’s (1995) Theorem 1, that

YR
F,H = YF,H +A(R−CYF,H)

whereA = ΣYF,H
C0Ω−1andΩ ≡ CΣYF,H

C0+Σu is anM×M symmetric positive-

semidefinite matrix. Moreover, its MSE is given by

MSE
¡
YR

F,H

¢ ≡ E
h¡
YF −YR

F,H

¢ ¡
YF −YR

F,H

¢0 ¯̄̄
Y,R

i
= (I −AC)ΣYF,H

.

Rearranging terms we have

ΣYF,H
=MSE

¡
YR

F,H

¢
+ACΣYF,H

,

since MSE
¡
YR

F,H

¢
and ACΣYF,H

are positive semidefinite matrices, we see that

YR
F,H is at least as precise as YF,H .
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2.2.4 Compatibility test

In spite of the optimality of YR
F,H , we should test if the two sources of in-

formation are compatible with each other, in which case the combination makes

sense. Guerrero et al. (2005) proposed to define an M × 1 distance vector

d ≡ R−CYF,H = CΨ²F + u, (2.8)

whose elements are denoted by di, i = 1, . . . ,M. Then R and YF,H are said to be

compatible if the distance vector is close to zero. From the normality assumption

of ²F and u, we know that before observing the values of YF,H and R,

d ∼ N (0,Ω) .

Thus the following JCT statistic arises naturally

K ≡ d0Ω−1d ∼ χ2M . (2.9)

Then, after observing the values of YF,H we say that R is in the compatibility

region at level α if

Kcalc = (R−CYF,H)
0Ω−1 (R−CYF,H) ≤ χ2M(α),

with χ2M(α) the (1 − α)th quantile of the χ2M distribution. This distribution is

exact when the matrices Ψ, Σε and Σu are known. When they are consistently

estimated, the χ2 distribution will be valid asymptotically. It should be noticed

that even though the yt variables are I(1), the statistic K follows a standard χ2
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distribution since it is derived from the distance vector d, which has a normal

distribution because of (2.6) and (2.7).

Let us note that the JCT is an omnibus test that does not consider any

specific alternative hypothesis. If the JCT leads us to conclude incompatibility

between sources of information, one reason could be that the additional infor-

mation imposed a binding restriction (Σu = 0), in which case the possibility of

having Σu 6= 0 arises as an alternative. It can also happen that only some of

the individual restrictions are incompatible with their corresponding unrestricted

forecasts. In such a case we require individual compatibility tests that enable us

to appreciate the contribution of each individual restriction to the JCT. These

last two issues will be studied in the following sections.

2.3 Additivity of the compatibility test

In what follows we shall refer to K as the JCT and the test of a single re-

striction will be called an SCT. In this section we analyze how the M SCTs are

related to K. Then we propose to modify the matrix Σu to achieve additivity.

2.3.1 Decomposition of the JCT into single tests

In analogy with (2.8), for the ith restriction, with i = 1, . . . ,M, we get
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di ≡ ri − CiYF,H

= CiΨ²F + ui,

where Ci is the ith row of C (representing the linear combinations of YF involved

in this single restriction) and ui ∼ N (0, σii,u). From here we have that di ∼

N (0, ωii) , where ωii ≡ CiΣYF,H
C 0
i + σii,u is the iith element of Ω. As before, we

define the SCT of the ith restriction as

Kii = diω
−1
ii di = ω−1ii d

2
i ∼ χ21.

The following proposition states that, in general, the JCT cannot be obtained

simply as the sum of the SCTs.

Proposition 1 Let ΣYF,H
be a symmetric real positive-definite matrix and C be

of full row rank. Then, the JCT can be written in terms of the SCTs as

K =
MP
i=1

ωiiωiiKii + 2
MP
i<j

ωijωijKij, (2.10)

where ωij and ωij denote the (i, j)−th elements of Ω and Ω−1 respectively. Besides

Kij ≡ ω−1ij didj if ωij 6= 0 and Kij ≡ 0 if ωij = 0, for i, j = 1, . . . ,M.

Proof: Since rank(C) =M,CΣYF,H
C0 is a symmetric positive-definite matrix.

Now, Σu is the symmetric and positive-semidefinite covariance matrix of u, thus

Ω = CΣYF,H
C0 + Σu is also a symmetric positive-definite matrix. Which means
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that det(Ω) >0, so that Ω−1 exists. Hence, substituting the elements of d and

Ω−1 directly into (2.9) the JCT takes the indicated form. ¤

When the matrix Ω involved in the distance vector d is diagonal, we get

K = ω−111 d
2
1 + · · ·+ ω−1MMd2M

= K11 +K22 + · · ·+KMM

that is, the SCTs add up to JCT.

The converse is not true, that is, K = K11 + · · ·+KMM does not imply that

Ω is diagonal. To see this let us consider a simple case with M = 2, so that

K = K11 +K22 = (ω22d
2
1 + ω11d

2
2) / (ω11ω22). Now, from (2.10) the general form

of JCT isK = (ω22d
2
1 + ω11d

2
2 − 2ω21d1d2) / (ω11ω22 − 2ω21). Thus, solving for the

correlation term ω21 = ω12, the JCT will be the sum of the SCTs only if ω21 = 0

or ω21 = 2d1d2/(K11 + K22). Therefore, this example shows that there exists a

non-diagonal matrix Ω that yields K = K11 +K22.

2.3.2 Decomposition of K

It should be clear that many factors that affect the economic system are not

under control of the government and usually imply some uncertainty on the tar-

gets. The problem in our case is how to assign this uncertainty. One possibility is

that Σu be given by the same external source that provides the linear restrictions,

for instance, when it comes from a competing forecasting method. Otherwise,

choosing this matrix should be done with care in order not to lose precision in
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YR
F,H . For example, Guerrero and Peña (2003) considered that this matrix has

a diagonal form and chose its elements to make the restrictions compatible with

the historical data. Here we propose another alternative.

We suggest to modify the matrix Σu to cancel out model dynamics and inter-

actions between restrictions and thus obtain additivity of the SCTs with respect

to the JCT. To that end, let us define

Σu (a) ≡
£
adiag (Q) + diag

¡
CΣYF,H

C0
¢−CΣYF,H

C0
¤
, (2.11)

for some real parameter a > 0 and Q anM×1 vector whose elements are denoted

by qi > 0 for i = 1, . . . ,M .1 These qi values will be interpreted as weights

associated to the uncertainty of the restrictions involved, as it will be seen in the

following section. More precisely, matrix (2.11) takes the form

Σu (a) =


aq1 −ω12 ... −ω1M

... ... ... ...

−ωM1 −ωM2 ... aqM

 .

Let λ1 (a) ≥ λ2 (a) ≥ · · · ≥ λM (a) denote the eigenvalues of this matrix and

define the modified matrix as

Σ∗u ≡ Σu (a
∗) s.t. λM (a

∗) = 0 (2.12)

1If A = (aij) is an n× n matrix and a = (ai) is an n× 1 vector, the operators
diag(A) =

Ã
a11 · · · 0
· · · · · · · · ·
0 · · · ann

!
and diag(a) =

Ã
a1 · · · 0
· · · · · · · · ·
0 · · · an

!
produce n×n diagonal ma-

trices.
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which, by construction, is a symmetric positive semidefinite matrix and defines a

covariance matrix. The function λM (a) may have more than one zero, in which

case the solution of (2.12) will not be unique. Below we shall see that this situation

is avoided by the form of Σu (a) . In fact, this follows from the linear dependence

of the eigenvalues on the parameter a.

Let vi be an eigenvector of Σu corresponding to λi, for i = 1, . . . ,M , thus

Σuvi = λivi; with v0ivi = 1.

The differential of this expression is

d (Σuvi) = diag (Q) d (a)vi + Σud (vi)

= d (λi)vi + λid (vi) = d(λivi)

see Magnus and Neudecker (2002). Premultiplying by v0i we have

v0idiag (Q) d (a)vi + v
0
iΣud (vi) = v

0
id (λi)vi + v

0
iλid (vi) .

Hence, since Σu is symmetric we get

v0idiag (Q) d (a)vi = v
0
id (λi)vi,

and

d (λi) = [v
0
idiag (Q)vi] d (a) ,

because the eigenvector vi is normalized by v0ivi = 1 and a and λi are scalars.

The last expression implies that

dλi (a)

da
= c for i = 1, . . . ,M, (2.13)
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Remark 1 It should be noticed that additivity is achieved by introducing uncer-

tainty in the restrictions. Although we introduce the minimum amount of uncer-

tainty in the sense of (2.12) it could be that an incompatible binding restriction

becomes a compatible unbinding restriction. This fact may be considered a draw-

back of this proposal, nevertheless it may be useful in the practical applications as

can be seen in the empirical application of this paper.

2.4 A feasible JCT for estimated processes

We study the finite sample properties of the JCT by way of a numerical

simulation of a bivariate system. Three typical restrictions and four sample sizes

T = 20, 50, 100 and 200 are used. This leads us to consider first that the process

is estimated and second that the covariance matrix of the distance vector should

take into account the sample size. Thus a feasible JCT for estimated processes

is obtained and its finite sample properties are studied in a similar way. Another

simulation with a model used in the following section for the Mexican Economy

was carried out for the JCT and for the feasible JCT in order to validate the

empirical application of these tests. We did not carry out a simulation study for

the univariate situation because Box and Tiao (1976) did that for a statistic similar

in nature toK. In fact, they found that the distribution of their statistic was Chi-

square as in (2.9). However, for an estimated AR(p) model with n observations

the "estimation errors inflate the mean value of χ2... by a factor approximating
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1 + (p/n)."

2.4.1 A Monte Carlo study of the JCT

We assume that the process follows the bivariate VAR(2) model given in

Lütkepohl (1991, 3.2.25-3.2.26).

yt =

 0.02

0.03

+
 0.5 0.1

0.4 0.5

yt−1 +
 0 0

0.25 0

yt−2 + εt, (2.14)

with error covariance matrix

Σε =

 9 0

0 4

× 10−4. (2.15)

As is usual in Monte Carlo experiments, we lose in generality in order to gain

in understanding the small sample properties of a particular case. Suppose that

the government announces at the end of the year the economic targets for next

year and that data are quarterly (data for the current quarter are still unavailable).

We consider three typical linear combinations of YF for the stochastic restriction

C1 =

 0 0 ... 0 0 1 0

0 0 ... 0 0 0 1

 , C2 =

 0 0 1
4
0 ... 1

4
0

0 0 0 1
4

... 0 1
4

 (2.16)

and

C3 =

 −1 0 0 0 ... 0 0 1 0

0 −1 0 0 ... 0 0 0 1

 . (2.17)

The C1 matrix puts a restriction at the end of the forecast horizon. This is

useful when the government announces the value of a variable for the end of the
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following year. C2 applies when the government announces the average value for

a variable in the following year. If the 1/4 values are replaced by 1 the restriction

is on the sum of the variable. This specification will be used in the empirical

illustration when dealing with the inflation rate (in logs). Finally, C3 restricts the

difference of values for the end of the year. This is used when dealing with the

rate of growth of a variable. We apply this restriction to GDP (in logs) in the

empirical illustration.

The Monte Carlo experiment was done with the following algorithm and pro-

gram routines were written in Matlab 6.5-Release 13 (MathWorks, Inc. Software).

Given C, Σu, T, H, and p:

1. Generate a series {yt}T+Ht=−p+1 with (2.14)-(2.15) and initial values E (yt) =

(0.07027, 0.15135)0. Following the partition used by Lütkepohl we have a

time series y1, . . . ,yT of length T as well as a presample y−p+1, . . . ,y0. The

future values of the series YF are given by yT , . . . ,yT+H .

2. Estimate the VAR(p) for the process. Compute YF,H and ΣYF,H
.

3. Generate a random vector u ∼ N (0,Σu). For binding restrictions (Σu = 0)

take u = 0.

4. Compute R = CYF + u.

5. Compute Ω, d and K.
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Steps 1-5 were replicated N = 1000 times for p = 2, T = 20, 50, 100, 200, with

three restrictions of the form (2.16)-(2.17) and considering H = 5 with Σu = 0

fixed. Since K is distributed as χ22 we know that P (K ≥ χ22 (α)) = α. In practice

we should expect the proportion of sample values of K that exceeds the χ22 (α)

quantile to be close to α. We denote this proportion by pα. Table 2.1 reports these

values for α= .10, .05 and .01. The pα values for T = 20, 50 and 100 are higher

than α. Thus the χ22 distribution leads to over-reject the compatibility hypothesis.

For example, when T = 20, C = C1 and α = 0.10 (Σu = 0, H = 5). The reported

value says that 32% of the trials producedK statistics above χ22 (.10). Notice that

for T = 20 and 50, the sampling distribution of K depends on the restriction

imposed. For example, the pα values with C2 are higher than those for C1 and

C3, this may be due to the fact that using the C2 matrix involves restricting more

values of YF than with C1 or C3.

This experiment was repeated with the matrix Σ∗u in place of Σu. Since this

matrix is computed once the VAR has been estimated, the algorithm described

above must be changed. Given C, T, H and p step 3 should be replaced by

3’. Compute Q as a diagonal matrix, with the squared values of υ= C (YF −YF,H)

in its main diagonal. Compute Σ∗u as defined in (2.12). Generate a random

vector u ∼ N (0,Σ∗u).

The Q matrix computed this way assigns uncertainty to each restriction in

accordance to the distance between the linear restriction without uncertaintyCYF
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Table 2.1: pα values for the compatibility test with binding restrictions

Sample size Combination matrix (H = 5)

C1 C2 C3

p.10 p.05 p.01 p.10 p.05 p.01 p.10 p.05 p.01

20 .32 .25 .14 .48 .40 .26 .30 .21 .11

50 .18 .12 .05 .22 .14 .05 .17 .10 .04

100 .14 .09 .02 .14 .09 .03 .14 .09 .02

200 .10 .06 .02 .10 .05 .01 .10 .06 .01

Proportion of Kcalc values exceeding the χ22 (α) quantile with Σu = 0 obtained with

N = 1000 Monte Carlo replications of (2.14)—(2.15).

(see 2.7) and the linear combinations of the unrestricted forecast CYF,H . Table

2.2 reports the pα proportions for this experiment.

In summary, the pα proportions are higher than α for small samples. This

result does not depend on whether the restriction is binding or unbinding, but

assigning uncertainty in this way leads the pα values closer to α than those reported

for the binding case. In the following section we propose an adjustment for the

JCT that also takes into account that the model parameters are estimated. As

we will see in the next subsection, this yields an additional improvement for small

samples.
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Table 2.2: pα values for the compatibility test with unbinding restrictions

Sample size Combination matrix (H = 5)

C1 C2 C3

p.10 p.05 p.01 p.10 p.05 p.01 p.10 p.05 p.01

20 .27 .19 .08 .35 .28 .17 .23 .17 .08

50 .14 .08 .03 .15 .11 .04 .12 .06 .02

100 .10 .05 .01 .12 .06 .01 .11 .06 .01

200 .10 .04 .01 .10 .06 .02 .10 .05 .01

Proportion of Kcalc values exceeding the χ22 (α) quantile with Σ
∗
u obtained with N =

1000 Monte Carlo replications of (2.14)—(2.15).

2.4.2 The VAR forecast for estimated processes

The optimal h-step forecast of (2.1) is given by (2.4), however, if the true para-

meters Θ = (Λ,Π1, . . . ,Πp) are replaced by their estimators bΘ = ³bΛ, bΠ1, . . . , bΠp

´
we get the forecast

bE(yT+h|Y) = bΛDT+h+ bΠ1bE(yT+h−1|Y)+· · ·+ bΠp
bE(yT+h−p|Y) for h = 1, . . . , H,

where bE(yT+h−i|Y) = yT+h−i for i ≥ h. By calling bYF,H the bE(YF |Y) vector we

have

YF − bYF,H = (YF −YF,H) +
³
YF,H − bYF,H

´
, (2.18)

= Ψ²F +
³
YF,H − bYF,H

´
.
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Under general conditions for the process yt, Dufour (1985) proved that the

forecast errors have zero conditional mean, E
³
YF − bYF,H |Y

´
= 0, so the forecast

is conditionally unbiased even if the parameters are estimated. On the right side

of (2.18), all the εt contained in ²F correspond to periods t > T whereas all the

yt contained in the second term correspond to t ≤ T . Therefore the two terms

are uncorrelated. Thus the MSE of bYF,H becomes

MSE
³bYF,H

´
≡ ΣYF,H

= ΣYF,H
+MSE

³
YF,H − bYF,H

´
, (2.19)

To evaluate the second term on the right hand side of this equation we need

the distribution of bΘ. Since small sample distributions of VAR estimators are

not available, we cannot hope to get more than an asymptotic distribution for

MSE
³
YF,H − bYF,H

´
. To obtain this we proceed as in Lütkepohl (1991, section

3.5). So, let β ≡vec(Θ) and bβ ≡vec(bΘ) be its OLS estimator, whose asymptotic
covariance matrix is Σβ and

√
T
³bβ − β´ d−→ N

³
0,Σβ

´
Then, under quite general conditions we have that, conditional on Y,

√
T
³bYF,H −YF,H |Y

´
d−→ N

µ
0,

∂YF,H

∂β0
Σβ

∂Y0
F,H

∂β

¶
. (2.20)

From here, an approximation to the MSE
³
YF,H − bYF,H

´
is T−1eΣ, where

eΣ = Eµ∂YF,H

∂β0
Σβ

∂Y0
F,H

∂β

¶
. (2.21)
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Therefore (2.19) becomes

ΣYF,H
≈ ΣYF,H

+ T−1eΣ,
the explicit expression for eΣ is derived in Appendix A.
2.4.2.1 Restricted forecast with an estimated process

The optimum restricted forecast with an estimated process is

bYR
F,H = bYF,H + bA hR−CbYF,H

i
where bA = ΣYF,H

C0 bΩ−1and bΩ ≡ CΣYF,H
C0 + Σu. Its MSE is given by

MSE
³bYR

F,H

´
≡ E

·³
YF − bYR

F,H

´³
YF − bYR

F,H

´0 ¯̄̄̄
Y,R

¸
=

³
I − bAC´ΣYF,H

.

As before, we have that bYR
F,H is at least as precise as bYF,H . These expressions are

derived in Appendix B.

2.4.2.2 The feasible JCT

A compatibility test must consider the distribution of the distance vector of

an estimated process as well, that is
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bd ≡ R−CbYF,H (2.22)

= CΨ²F +C
h√

T
³
YF,H − bYF,H

´i
/
√
T + u.

From the normality assumption of ²F , u and (2.20) we have, approximately

bd ∼ N
³
0,CΣYF,H

C0 + Σu
´
.

Thus, for estimated processes the statistic bd0 ³CΣYF,H
C0 + Σu

´−1 bd is plausible.
Consistent estimators of the MSE matrices are obtained by replacing the unknown

parameters by their estimators. The resulting estimator of ΣYF,H
will be denoted

by bΣYF,H
.

In addition to the estimated process adjustment we should adjust the statistic

for using an estimated rather than a known covariance matrix. This leads us to

divide the statistic by its degrees of freedom and then using an F distribution to

make inferences. Finally, the feasible JCT gets defined as

K = bd0Ω−1bd/M ∼ FM,T−Mp−1

where Ω ≡ CbΣYF,H
C0 + Σu.

Thus, R is not in the compatibility region at level of significance α if

Kcalc > FM,T−Mp−1(α)
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with FM,T−Mp−1(α) the (1 − α)th quantile of the FM,T−Mp−1 distribution. Since

MK has the same quadratic form asK, the results obtained in Section 2.3 remain

valid. For example, the modified matrix (2.12) makes use of

Σu (a) ≡
h
adiag (Q) + diag

³
CbΣYF,H

C0
´
−CbΣYF,H

C0
i

and the additivity property of the feasible JCT yields

MK = K11 +K22 + · · ·+KMM .

2.4.3 A Monte Carlo study for the feasible JCT

Table 2.3 presents the proportion, pα, of sample values of K exceeding the

quantile FM,T−Mp−1(α). The pα values are closer to α than those reported for

the JCT in Table 1. For sample sizes T ≥ 50 it can be seen that FM,T−Mp−1

approximates well the distribution of K. As before, it is also clear that the

sampling distribution of K depends on the restriction used.

The Monte Carlo experiment withK was also done for the unbinding case with

Σ∗u. Table 2.4 reports the corresponding proportions for this case. Magnitudes of

the pα values are similar to those in Table 2.3. So, the FM,T−Mp−1 distribution can

also be considered a good approximation for the finite distribution ofK for sample

sizes T ≥ 50, but its sampling distribution depends on the type of restriction

employed.

Remark 2 The simulations provide some evidence that the feasible JCT sta-
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Table 2.3: pα values for the feasible compatibility test with binding restrictions

Sample size Combination matrix (H = 5)

C1 C2 C3

p.10 p.05 p.01 p.10 p.05 p.01 p.10 p.05 p.01

20 .23 .14 .05 .30 .24 .13 .18 .11 .04

50 .13 .07 .02 .17 .11 .03 .12 .07 .01

100 .12 .06 .02 .15 .09 .03 .11 .06 .01

200 .11 .07 .01 .12 .06 .01 .11 .05 .01

Proportion of Kcalc values exceeding the FM,T−Mp−1(α) quantile with Σu = 0 obtained

with N = 1000 Monte Carlo replications of (2.14)—(2.15).

Table 2.4: pα values for the feasible compatibility test with unbinding restrictions

Sample size Combination matrix (H = 5)

C1 C2 C3

p.10 p.05 p.01 p.10 p.05 p.01 p.10 p.05 p.01

20 .16 .10 .04 .21 .15 .06 .13 .08 .01

50 .10 .06 .02 .12 .06 .02 .10 .06 .01

100 .09 .05 .01 .09 .05 .01 .09 .05 .01

200 .09 .05 .01 .10 .05 .01 .10 .05 .01

Proportion ofKcalc values exceeding the FM,T−Mp−1(α) quantile with Σ∗u obtained with

N = 1000 Monte Carlo replications of (2.14)—(2.15).
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tistic produces pα values closer to the nominal ones. However, the improvement

may not be enough for some applications. This should be taken into account when

making conclusions from a restricted forecasting analysis.

2.4.4 A simulation study for the Mexican data example

An empirical application for the Mexican Economy is presented in the follow-

ing section to illustrate the methodology. The VAR(3) model employed includes

six variables plus a constant and some dummy variables. Since the system turned

out to be CI(1, 1), the estimation was done with a VEC representation. After

adjusting by the order of the process the sample size is equal to T = 52.

A numerical algorithm similar to that described above was used for the VAR

process whose estimated results appear in Section 2.5.2 with N = 1000, T = 52,

p = 3, the C matrix given in (2.23), M = 3, and H = 8. Table 2.5 shows the pα

proportions of K and K for Σu = 0 and Σ∗u.

It is clear that K has better performance than K, even though the pα values

for K with Σ∗u are much smaller than α. Apparently the uncertainty distorts the

distribution of the JCTs for small samples. Nevertheless, the pα values forK with

Σ∗u are closer to α than those for K. So, the feasible JCT performs better than

the JCT for the VEC model of the Mexican economic system.
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Table 2.5: pα values for the estimated Mexican system

Covariance matrix (H = 8) Σu = 0 Σ∗u

Statistic p.10 p.05 p.01 p.10 p.05 p.01

K .41 .32 .18 .26 .18 .07

K .10 .04 .01 .04 .01 .00

Proportions of K and K for Σu = 0 and Σ∗u values exceeding their theoretical quantiles

for the estimated VEC of the Mexican economy with restrictions given by (2.23) and

forecast horizon of H = 8. The Monte Carlo experiment was done for N = 1000

replications.

2.5 Empirical illustration

At the end of 2002 the Mexican Government published the economic targets

for 2003 (see SHCP, 2002). There, it was foreseen that the rate of growth of GDP

would move from 1.7% in 2002 to 3.0% in 2003. The annual inflation rate was

targeted to be reduced from 4.9% in 2002 to 3.0% in 2003 and the trade balance

deficit was supposed to move from -15,234.6 (-2.4% of GDP in 2002) to -18,035.5

(-2.8% of GDP in 2003).

The data set consists of 55 quarterly observations. When the Mexican Gov-

ernment announced the targets the data available ran up to 2002:III. So, the

estimation period covers data from 1989:I to 2002:III. The data are available from

the web site at ITAM with the address http://allman.rhon.itam.mx/%7E guer-

rero/Series_VEC.pdf. A description of the variables employed follows.
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Gross domestic product (LGDP). Measured in thousands of Mexican

pesos at constant prices of 1993. Source: Instituto Nacional de Estadística Ge-

ografía e Informática, Sistema Nacional de Cuentas Nacionales. The series is log

transformed, LGDPt = ln(GDPt).

Mexican inflation rate (PMEX). First difference of log Consumer Price

Index (ipcmex) with base 1994=100. Source: Bank of Mexico. The Consumer

Price Index is monthly and the quarterly series are the values at the end of the

quarters. PMEXt = ln (ipcmext)− ln
¡
ipcmext−1

¢
.

Unemployment rate (LUNMP). Source: Instituto Nacional de Estadística

Geografía e Informática, National Urban Employment Survey. The data are log

transformed, LUNMPt = ln(UNMPt).

Real demand of money (LMONB). Currency held by the public plus

domestic currency and checking accounts in resident banks. This is a monthly

series given in nominal terms in thousand of Mexican pesos (basemon). The

quarterly series is obtained by averaging the monthly values and is deflated by

ipcmex. Source: Bank of Mexico. The series is log transformed, LMONBt =

ln (basemont/ipcmext) .

Trade balance deficit (TRDB). Defined as income minus expenditure of

the foreign sector. This is a quarterly series given in millions of dollars (DEF).

Source: Bank of Mexico. The series is transformed by dividing it by 10,000 to

homogenize the data, TRDBt =DEFt/10,000.



2.5. EMPIRICAL ILLUSTRATION 46

US inflation rate (PUSA). First difference of the log US Consumer Price

Index (ipcusa) with base 1982-84=100. Source: US Department of Labor, Bureau

of Labor Statistics. The US Consumer Price Index is monthly and the quar-

terly series are the values at the end of the quarters, PUSAt = ln (ipcusat) −

ln
¡
ipcusat−1

¢
.

2.5.1 Order of integration

The order of integration of the series was decided by Augmented Dickey-Fuller

(ADF) tests. The augmented regression model included a constant, centered

dummies for PMEXt, LUNMPt, TRDBt and PUSAt and a deterministic trend for

LGDPt and LMONBt. The general equation was

∆yt = α+ γ0t+
3X

i=1

γiDit + δ0yt−1 +
pX

j=1

δj∆yt−j + error

In order to account for the Mexican crisis of 1995 we included two dummy

variables for the first and second quarters of that year. Table 2.6 shows the results

of the ADF tests with and without dummy variables. That is, with and without

accounting for structural change (SC).

The order of the autoregression p was selected to guarantee no autocorrelation

of the residuals. The τ statistic allows one to test H0 : δ0 = 0. Critical values do

not consider intervention dummy variables to account for the 1995 crisis. Except

for domestic inflation (PMEX) in levels, the order of integration of the variables

did not depend on the inclusion of the dummy variables, but there still was some
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Table 2.6: ADF unit root test results

Variable H0 : I(1) H0 : I(2)

Without SC With SC Without SC With SC

p τ p τ p τ p τ

LGDP 0 −2.16 0 −3.06 0 −6.50∗ 0 −10.21∗

PMEX 3 −2.43 0 −5.70∗ 1 −7.76∗ 0 −9.34∗

LUNMP 1 −1.43 1 −2.42 0 −5.52∗ 0 −7.12∗

LMONB 1 −1.68 2 −0.25 0 −4.75∗ 2 −6.61∗

TRDB 0 −2.18 4 −1.66 0 −6.56∗ 1 −7.43∗

PUSA 3 −2.81 − − 1 −9.40∗ − −
Note: * indicates rejection of H0 at the 5% significance level.

doubt whether or not inflation is stationary. However, since the test result can be

distorted by the inclusion of dummy variables, we assumed that PMEX is I(1).

2.5.2 VEC estimation

The VAR model included the six economic variables previously described,

yt = (PMEXt,LGDPt, LMONBt, TRDBt, LUNMPt, PUSAt)
0, a constant, cen-

tered dummy variables to account for seasonal effects and two dummy variables

to account for the 1995 crisis, i.e. Dt =
¡
const, S1,t, S2,t, S3,t, I95:I,t, I 095:II,t

¢
. Al-

though the US inflation rate is basically exogenous to the Mexican economy, it

entered the model as an endogenous variable because in the estimation stage it

was found that not other variable in the system affects PUSA significantly. The
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system became CI(1, 1) and an integrated VAR(3) model provided a reasonable

representation for the system in levels. Therefore the system was estimated with

the following VEC model

∆yt = ΛDt + αβ0yt−1 +Π∗1∆yt−1 +Π∗2∆yt−2 + εt

The estimation results are as follows (t-values in parentheses)

bα = Ã −0.279
(−1.71)

0.642
(3.48)

−0.467
(−1.21)

−1.607
(−1.28)

−2.659
(−1.82)

0.049
(0.79)

!
,

bβ = µ 1 −0.038 0.058 −0.036 0.017 −0.221
¶
,

bΛ =



− − −0.028
(−2.13)

− 0.113
(9.02)

0.102
(5.30)

− −0.071
(−3.63)

−0.057
(−3.91)

−0.084
(−7.27)

−0.060
(−4.23)

−0.084
(−3.84)

0.018
(2.38)

−0.112
(−2.74)

−0.162
(−5.30)

−0.143
(−5.95)

−0.144
(−4.84)

−0.135
(−2.96)

− 0.348
(2.59)

0.213
(2.13)

− 0.637
(6.57)

0.372
(2.50)

− − 0.235
(2.02)

− 0.351
(3.12)

−

− 0.017
(2.60)

− 0.012
(3.00)

− −



,
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bΠ∗1 =



−0.350
(−2.16)

− − − − −

−0.588
(−3.20)

−0.525
(−3.56)

0.265
(3.13)

0.046
(2.03)

− 1.193
(2.32)

− − − − − −

− − − −0.548
(−3.57)

0.341
(2.27)

8.749
(2.50)

3.795
(2.61)

− − − − −

− − − − − −0.335
(−1.97)



,

bΠ∗2 =



−0.225
(−2.22)

− − − − 0.804
(2.09)

−0.224
(−1.95)

− − − − −

− − − − − −

− − − −0.313
(−2.42)

− 8.230
(2.76)

− − − − − −

− − − − − −



,

with R2 equal to 0.89, 0.96, 0.92, 0.78, 0.70, and 0.81 for ∆PMEX, ∆LGDP,

∆LMONB, ∆TRDB, ∆LUNMP and ∆PUSA, respectively. The matrices bΛ, bΠ∗1,
and bΠ∗2 show only the numerical values of those elements found significant at the
5% level.

The following matrix shows the contemporaneous residual correlations. By

symmetry, only the lower diagonal part is shown.
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PMEX LGDP LMONB TRDB LUNMP PUSA

PMEX

LGDP

LMONB

TRDB

LUNMP

PUSA



1.00

0.15 1.00

− 0.39 0.09 1.00

− 0.08 0.01 0.23 1.00

− 0.32 − 0.11 − 0.06 − 0.17 1.00

0.24 0.09 − 0.22 0.27 − 0.19 1.00


There is negative correlation between Mexican inflation rate and real demand

for money, as it should be expected. There is also positive correlation between

US inflation rate and trade balance deficit. In Table 2.7 we report the results of

Johansen tests (see for instance Johansen, 1988).

At the 5% significance level there are two cointegrating relationships and only

one at the 1% level. We decided to use only one cointegration relationship. The

resulting equation was

�t = PMEXt−0.038LGDPt+0.058LMONBt−0.036TRDBt+0.017LUNMPt−0.221PUSAt.

whose graph is shown in Fig. 2.1. The observed and fitted series of the VEC

model as well as their residuals are shown in Fig. 2.2.
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Table 2.7: Johansen cointegration analysis

NULL:
Trace

Statistic
Crit 95% Crit 99%

Eigen

Statistic
Crit 95% Crit 99%

r ≤ 0 124.23** 95.75 104.96 46.58** 40.08 45.87

r ≤ 1 77.65* 69.82 77.82 38.34* 33.88 39.37

r ≤ 2 39.31 47.86 54.68 20.12 27.59 32.72

r ≤ 3 19.19 29.80 35.46 14.63 21.13 25.87

r ≤ 4 4.56 15.49 19.94 4.41 14.26 18.52

r ≤ 5 0.15 3.84 6.64 0.15 3.84 6.64

Note: * rejection at 5% and ** indicates rejection at 1% level.
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Figure 2.1: Cointegration relationship
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Figure 2.2: Observed and estimated series in levels and corresponding residuals

of first differences, with ±2σ bands plotted as horizontal lines.
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2.5.3 Forecasts restricted to fulfill targets

The economic targets described above are written as

LGDP2003:IV − LGDP2002:IV = ln(1.03)

PMEX2003:I + PMEX2003:II + PMEX2003:III + PMEX2003:IV = ln(1.03)

TRDB2003:I +TRDB2003:II +TRDB2003:III +TRDB2003:IV = −18, 035.5/10, 000

Thus, the linear stochastic restriction (2.7) considers an H = 8 period-ahead

forecast and gets specified by

R =


ln(1.03)

ln(1.03)

−18, 035.5/10, 000

 and C =


−e2 0 0 0 e2 0 0 0

0 e1 e1 e1 e1 0 0 0

0 e4 e4 e4 e4 0 0 0


(2.23)

where 0 = (0, ..., 0) is the 1 × 6 zero vector and ei = (0, . . . , 1, . . . , 0) is a 1 × 6

vector with 1 in the ith position and zeros elsewhere. The restricted forecasts are

obtained for both the binding case (Σu = 0) and for the unbinding case with Σ∗u.

Table 2.8 reports the feasible JCT for Σu = 0 and Σ∗u as well as their SCTs.

The p−values were obtained from the F3,42 distribution. Neither the binding

nor the unbinding restrictions were rejected by the compatibility tests at the

usual significance levels. In the unbinding restriction case it can be verified that

3K = K1+K2+K3. Even though none of the single restrictions is incompatible,
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it is interesting to see that the restriction on inflation produces an SCT statistic¡
K2 = 0.19

¢
that contributes with 53% to the feasible JCT value

¡
3K = 0.36

¢
.

This result may be interpreted as saying that the inflation restriction could be the

main cause of incompatibility, in case that such incompatibility were significant,

which in fact was not.

Table 2.8: Feasible compatibility tests for Mexican economic targets

Covariance matrix Σu = 0 Σ∗u

Statistic Value p-value Value p-value

K1 0.12 0.73 0.10 0.76

K2 0.30 0.59 0.19 0.66

K3 0.08 0.77 0.07 0.79

K 0.15 0.93 0.12 0.95

Single and joint feasible compatibility tests for the Mexican economic targets in 2003,

with Σu = 0 and Σ∗u. Targets in 2003: 3.0% rate of growth for GDP, trade balance

deficit of −15, 234.6 (−2.4% of GDP) and 3.0% annual inflation rate.

The estimated matrix employed for getting additivity and its eigenvalues are

Σ∗u =


0.0006 −0.0002 0.0024

−0.0002 0.0001 −0.0013

0.0024 −0.0013 0.3728

 and Λ =


0.3728

0.0006

0.0000

 .

Fig. 2.3 shows the unrestricted and binding restricted (Σu = 0) forecast paths

with their 90% probability intervals for each of the six economic variables. The
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corresponding paths for the unbinding restricted (Σ∗u) forecasts are shown in Fig.

2.4.

Table 2.9 summarizes the 2003 Mexican Government economic targets, the

unrestricted forecast, the binding restricted forecast (Σu = 0) and the unbinding

restricted forecast (Σ∗u) . Here, we can appreciate that the Government is taking

into account the effects of its future monetary policies. For instance, the un-

restricted forecast leads to an economic growth and inflation rate of 4.01% and

5.28% respectively. Thus, the monetary policy that controls inflation to stay

around 3.00% yields a decrease in economic growth. Notice that the binding

restricted forecasts attain the targets exactly. These values are relaxed by the

unbinding restricted forecasts if uncertainty is allowed.

Table 2.9: Forecasts of the Mexican system

Variables Targets Forecasts

Unrestricted
Restricted

with Σu = 0

Restricted

with Σ∗u

GDP 3.00% 4.01% 3.00% 3.14%

PMEX 3.00% 5.28% 3.00% 3.53%

UNMP − 2.63% 2.68% 2.66%

MONB − 9.47% 9.92% 9.67%

DEF −18, 035.5 −16, 701.4 −18, 035.5 −17, 730.7
VEC forecasts results for the Mexican system in 2003.
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Figure 2.3: Restricted forecasts with 90% probability intervals for Σu = 0 and

unrestricted forecasts (origin at 2002:III).
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Figure 2.4: Restricted forecasts with 90% probability intervals for Σ∗u and unre-

stricted forecasts (origin at 2002:III).
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2.5.4 Forecasts restricted by unrealistic targets

Since the Mexican economic targets for 2003 turned out to be compatible

(2.5.3), that is, neither the JCT nor the SCTs provided evidence of incompat-

ibility, it is difficult to appreciate the relevance of using Σ∗u to identify which

restrictions were the most likely causes of rejection of the JCT. We therefore con-

sider an unrealistic case in which the targets are: 10.5% rate of growth for GDP

in 2003, trade balance deficit of −32, 151 (−5.0% of GDP) and 3.0% annual in-

flation rate. Table 10 reports the feasible JCT and the corresponding SCTs for

this situation. Considering a significance level of 10% we should reject the joint

compatibility hypothesis for the binding case (Σu = 0). As we can see, the sources

of incompatibility are GDP and TRDB, but at this point we should be cautious

when interpreting these results because of the lack of additivity of the SCTs with

respect to the JCT. On the other hand, additivity can be obtained at the cost

of introducing uncertainty in the sense of (2.12) yielding a JCT value lower than

that obtained with Σu = 0. Thus, some binding restrictions which are incompat-

ible may become compatible when introducing uncertainty. However, introducing

uncertainty by Σ∗u does not always make the restrictions compatible. This is the

case reported in Table 2.10, where the restriction on GDP becomes compatible,

while the restriction on TRDB remains incompatible. The joint compatibility test

also rejects compatibility. Of course, these results depend on the significance level

employed. Finally, from the additivity of the JCT with Σ∗u we can see that the
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main source of incompatibility is the TRDB restriction, which amounts to 58% of

the JCT value.

Table 2.10: Feasible compatibility tests for unrealistic economic targets

Covariance matrix Σu = 0 Σ∗u

Statistic Value p-value Value p-value

K1 4.65 0.04 2.69 0.11

K2 0.30 0.59 0.29 0.60

K3 11.27 0.00 4.08 0.05

K 4.71 0.01 2.35 0.09

Single and joint feasible compatibility tests for unrealistic economic targets in 2003,

with Σu = 0 and Σ∗u. Unrealistic economic targets in 2003: 10.5% rate of growth for

GDP, trade balance deficit of −32, 151 (3.0% annual inflation rate.

2.6 Conclusions

This paper presents a complement to the multivariate restricted forecasting

methodology to study compatibility between targets and unrestricted forecasts

from a VEC model. The compatibility test can be used to detect structural breaks

during the forecast horizon and to monitor the attainment of economic targets.

The restrictions can be binding or unbinding. In the latter case the uncertainty

may come from subject matter knowledge or, as it is proposed here, can be deduced

from the very data. We propose to compute the covariance matrix associated with
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the restrictions, so that it cancels out model dynamics and interactions between

restrictions and thus obtain additivity of the SCTs with respect to the JCT,

perhaps at the cost of inducing compatibility. This fact may be considered a

drawback of our proposal.

Since the compatibility test for multivariate series relies on asymptotic theory,

a numerical simulation was performed to check the small sample performance of

the JCT. Then, a feasible JCT that takes into account estimated parameters was

obtained and its finite sample properties were also studied. In general, for finite

sample sizes the feasible JCT proved to perform better than the original JCT.

The proposed methodology was illustrated with a six-variable Mexican eco-

nomic system with quarterly data. Implementation of the model focussed on the

economic targets for GDP, inflation rate and trade balance deficit for 2003. A nu-

merical simulation of this system was carried out to validate the use of the feasible

JCT in this situation. It turned out that the economic targets were compatible

with the unrestricted forecasts. Then, some unrealistic targets were considered to

illustrate an incompatibility situation.
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2.7 Appendices

2.7.1 Appendix A. Approximation of MSE(YF,H) for an estimated

process

To derive an expression for eΣ, the derivatives of ∂YF,H/∂β
0 are needed. They

can be obtained by noticing that expression (2.4) can be written as E(yT+h|Y) =

JBhZT , where

ZT =

µ
D0

T+H D0
T+H−1 · · · D0

T+1 y0T y0T−1 · · · y0T−p+2 y0T−p+1

¶0

is an (nH + kp)× 1 matrix of variables

B =



0n

In 0n

. . . . . .

. . . . . .

In 0n

Λ Π1 · · · Πp−1 Πp

Ik · · · 0k 0k

. . .
...

...

Ik 0k



,

is an (nH + kp)× (nH + kp) matrix of coefficients and

J =

µ
0k×n 0k×n · · · · · · 0k×n Ik 0k · · · 0k

¶



2.7. APPENDICES 62

is a k × (nH + kp) matrix.

Since

∂E(yT+h|Y)
∂β0

= (Z0T ⊗ J)
"
h−1X
i=0

(B0)h−1−i ⊗Bi

#
∂vec(B)
∂β0

=

"
h−1X
i=0

Z0T (B
0)h−1−i ⊗ JBi

#
∂vec(B)
∂β0

After some algebraic calculations, it can be shown that

∂vec(B)
∂β0

=
³eI⊗ J0´ and eI =

 0(H−1)n×(n+kp)

I(n+kp)×(n+kp)


are k × k(n+ p) and (Hn+ kp)× (n+ kp) matrices. Now, we can write

∂E(yT+h|Y)
∂β0

=
h−1X
i=0

Z0T (B
0)h−1−ieI⊗ JBiJ0.

From this we have that

∂YF,H

∂β0
=



Z0TeI⊗ JJ0
1P

i=0

Z0T (B
0)1−ieI⊗ JBiJ0

...

H−1P
i=0

Z0T (B
0)H−1−ieI⊗ JBiJ0


.

Let Yt =
¡
1,y0t, . . . ,y

0
t−p+1

¢0
be a (kp+ 1)×1 vector and Z = (Y0, . . . , YT−1) a

(kp+ 1)× T matrix. Thus the asymptotic covariance matrix of bβ can be written
as Σβ = Γ−1 ⊗ Σε where Γ ≡plimZZ 0/T and Σε is the error covariance matrix.

Thus expression (2.21) becomes

eΣ = E·∂YF,H

∂β0
¡
Γ−1 ⊗ Σε

¢ ∂Y0
F,H

∂β

¸
=
neΣm,n

o
for m,n = 1, . . . , H,
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where

eΣm,n =
m−1X
i=0

n−1X
j=0

tr
h
(B0)m−1−ieIΓ−1eI0Bn−1−jE (ZTZ

0
T )
i
ΨiΣεΨ

0
j for m,n = 1, . . . , H,

are k × k matrices and Ψi = JB
iJ0.

2.7.2 Appendix B. Restricted forecasts for estimated process

In this appendix we obtain the restricted forecast expression for the VAR

model with estimated coefficients bΘ. From the linear projection theory we know

that

bYR
F,H = bYF,H + bE³YF − bYF,H

¯̄̄
R−CbYF,H

´
,

where bYR
F,H ≡ bE (YF |Y,R) is the restricted forecast for an estimated process and

YF − bE(YF |Y) is orthogonal to Y conditional on R− bE(R|Y). Now
bE³YF − bYF,H

¯̄̄
R−CbYF,H

´
= bA³R−CbYF,H

´
for some bA which is an H×M matrix. By substituting (2.18) and (2.22) into the

following orthogonality condition we get

bEnh³YF − bYF,H

´
− bE³YF − bYF,H

¯̄̄
R−CbYF,H

´i³
R−CbYF,H

´o
= 0

so that

³
ΣYF,H

+ T−1eΣ´C0 − bAC³ΣYF,H
+ T−1eΣ´C0 − bAΣu = 0,

and

bA = ΣYF,H
C0 bΩ−1 where bΩ = CΣYF,H

C0 + Σu.
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Therefore, the optimal forecast of YF conditional on Y and R, for an esti-

mated VAR process is

bYR
F,H = bYF,H + bA³R−CbYF,H

´
.

Its forecast error vector is

YF − bYR
F,H = YF − bYF,H − bA³R−CbYF,H

´
=

³
I − bAC´nΨ²F + h√T ³YF,H − bYF,H

´i
/
√
T
o
− bAu,

hence

MSE
³bYR

F,H

´
≡ E

·³
YF − bYR

F,H

´³
YF − bYR

F,H

´0 ¯̄̄̄
Y,R

¸
=

³
I − bAC´³ΣYF,H

+ T−1eΣ´³I −C0 bA0
´
+ bAΣu bA0

=
³
I − bAC´ΣYF,H

.

Now, since

ACΣYF,H
= ΣYF,H

C0 bΩ−1CΣYF,H

is a symmetric semidefinite positive matrix and ΣYF,H
is the MSE

³bYR
F,H

´
we have

that bYR
F,H is at least as precise as bYF,H .
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CHAPTER 3

RESTRICTED VAR FORECASTS THAT TAKE INTO

ACCOUNT AN EXPECTED STRUCTURAL CHANGE

3.1 Introduction

Structural changes are commonly encountered when analyzing time series

data. The presence of those extraordinary events in the forecast horizon could

easily mislead a time series model and its forecasts, thus leading to erroneous

conclusions. For instance, a statistical forecast of the Mexican economy should

take into account the structural reform agenda. This happens because nowadays,

in Mexico, economic as well as political efforts concentrate on achieving the nec-

essary consensus to advance in the fiscal, energetic and pensions reforms. These

reforms are considered necessary to consolidate the macroeconomic stability. If

any of these economic reforms were approved, the forecasts based solely on the

historical record could mislead the economic expectations. In fact, in a very influ-

ential article, Lucas (1976) established that predictions based on historical data

would be invalid if some policy change affects the economy, since the economic

agents are forward rather than backward-looking and adapt their expectations

and behavior to the new policy stance. In this work we consider that an eco-

68
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nomic reform is likely to occur in the near future and it will cause a structural

change in the system. This paper considers the case in which a system of vari-

ables are to be forecasted with the aid of a Vector Auto-Regressive (VAR) model.

The probability of achieving a given target with the conventional VAR forecast

is negligible, unless additional information is taken into account as a restriction

on the forecast. We assume here that the expected economic reform will cause

a structural change that affects either the deterministic or the stochastic part of

the VAR model during the forecast horizon. By doing this we get around Lucas’

critique, since the model will not stay the same after the policy change and the

forecast will reflect that change. We shall also assume that all the information

available on the future effects of the structural change is provided by some eco-

nomic targets announced by the government. Those targets will be expressed as

linear restrictions on the forecasts. Derivation of the restricted forecasts is carried

out by Lagrangian optimization. These results generalize those of the univariate

case obtained by Guerrero (1991). Furthermore, the univariate time series types

of change presented by Tsay (1988) are considered here in a multivariate setting,

five of them correspond to deterministic changes and two more serve to capture

stochastic changes. Tsay et al. (2000) generalized the four most commonly used

types of deterministic disturbance effects that appear in univariate time series

analysis to the multivariate case.

The problem of incorporating external model information in the univariate
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time series forecast setting has already been treated in the literature. In fact,

Guerrero (1989) and Trabelsi and Hillmer (1989) obtained the optimum restricted

forecast, in Mean Squared Error (MSE) sense. The restricted forecast for multiple

time series includes diverse works such as those of van der Knopp (1987), Pankratz

(1989) and Guerrero et al. (2005). In these, the combination of historical infor-

mation with additional information in the form of linear restrictions, is provided

by formulas that consider Vector-Autorregressive and Moving Average (VARMA)

models. Within the state-space framework, Pandher (2002) attacked the problem

of modelling and forecasting multivariate time series with linear restrictions that

apply during the sample period. Such an approach differs from ours in that we

consider restrictions that apply in the forecast horizon.

This article is organized as follows. Section 3.2 presents the statistical method-

ology to get the restricted forecast with VAR models. In section 3.3 we show some

typical disturbance functions that are used to model structural changes. In sec-

tion 3.4 we derive the restricted forecasting formulas of a VAR process affected

in both its deterministic and stochastic components. In section 3.5 we illustrate

the methodology with an empirical application that uses a VAR model for the

Mexican economy. This application assumes that the economic targets for 2004,

announced by the government at the end of 2003, will be reached with certainty

and that an economic reform that initially will impact GDP and prices, will take

place at the beginning of year 2005.
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3.2 Methodology

Let yt = (y1t · · · ykt)0 be a k×1 vector of variables at time t and let us assume

that {yt} follows a finite pth-order Gaussian VAR model

Π(B)yt = Λδt + εt (3.1)

where Π(B) = I−Π1B− · · ·−ΠpB
p is a k×k matrix polynomial of finite degree p

and B is the backshift operator such that Byt = yt−1. δt = (δ1t · · · δnt)0 is an n×1

vector that includes deterministic variables to account for seasonality as well as

intervention effects, and exogenous variables with respect to yt. εt = (ε1t · · · εkt)0 is

a k×1 independent and identically distributed N(0,Σε) random error vector with

Σε a positive-definite covariance matrix whose i, jth element is σij =cov(εit, εjt),

for i, j = 1, 2, . . . , k and t = 1, 2, . . . , T. Thus the ε’s are serially uncorrelated but

may be contemporaneously correlated. The effects of δt on yt are captured by the

k× n parameter matrix Λ. We assume all the zeros of detΠ (z) are on or outside

the unit circle.

The VAR model (3.1) can also be written in its moving-average representation

form

yt = Ψ(B) (Λδt + εt)

where Ψ(B) =
P∞

i=0ΨiB
i whose coefficients matrices are given by Ψ0 = I and

Ψi =
Pi

k=1Ψi−kΠk (Πk = 0 for k > p) for i ≥ 1. Hence, we have Ψ(B)Π (B) =

Π (B)Ψ(B) = I.
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Subtracting yt−1 from both sides of (3.1) and rearranging terms we have

Π∗ (B)∆yt = Λδt −Π (1)Byt + εt, (3.2)

where ∆ is the first difference operator and Π∗ (B) = I +
Pp−1

i=1 Π
∗
iB

i is a matrix

polynomial of order p−1 with Π∗i =
Pp

j=i+1Πj. Thus Π (B) = Π (1)B+Π∗ (B)∆.

If {yt} is unit-root nonstationary (detΠ (1) = 0) and Π (1) 6= 0, then there

is cointegration in {yt} and we have that Π (1) = −γβ where γ and β are k × r

and r × k matrices with r the rank of Π (1), implying that there are d = k − r

unit roots in the system. Moreover, we assume the unit roots have multiplicity

one, meaning that the elements of {yt} are at most integrated of order 1, which

is written as I(1). When r > 0 the variables are cointegrated, in the sense that

there exists a linear combination βyt, with β = (β1 · · ·βk) 6= 0, which is I(0).

Equation (3.2) then becomes

Π∗ (B)∆yt = Λδt + γzt−1 + εt, (3.3)

where zt−1 = βyt−1 is stationary. The rows of β are then referred as cointegration

vectors of the system and equation (3.3) is known as the Vector Error Correction

(VEC) representation of (3.1). The term Π∗ (B)∆yt in this model captures the

short-run relationships among the variables, while Π (1)Byt = −γzt−1 captures

the long-run relationships.

To get the forecast and its MSE of (3.1) let us start by definingY = (y0−p+1 · · ·y0T )0,

a k (T + p)×1 vector containing all the past information of the multiple time series
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and let YF = (y
0
T+1 · · ·y0T+H)0 denote a kH × 1 vector that contains the H ≥ 1

values to be forecasted for each series. The optimal (in MSE sense) linear forecast

of yT+h, for h = 1, . . . , H, is its conditional expectation

E(yT+h|Y) = ΛδT+h +Π1E(yT+h−1|Y) + · · ·+ΠpE(yT+h−p|Y)

where E(yT+h−i|Y) = yT+h−i for i ≥ h.

Such a forecast produces the forecast error vector

yT+h − E(yT+h|Y) =
h−1X
j=0

ΨjεT+h−j, for h = 1, . . . , H. (3.4)

Stacking all the forecast errors (3.4) we have

YF − E(YF |Y) = Ψ²F

where ²F =
¡
ε0T+1 · · · ε0T+H

¢0 ∼ N (0, I ⊗Σε) is a kH × 1 random vector, with ⊗

the Kronecker product and the kH × kH matrix Ψ is lower triangular with Ψ0 in

its main diagonal, Ψ1 in its first subdiagonal, Ψ2 in the second subdiagonal and

so on. The MSE of E(YF |Y) is given by

MSE [E(YF |Y)] ≡ E[(YF − E(YF |Y))(YF − E(YF |Y))0|Y],

= Ψ (I ⊗Σε)Ψ
0.

3.3 VAR with structural change

When structural changes occur, the original series {yt} is disturbed and be-

comes unobservable. In such a case Lucas’ critique (see Lucas, 1976) applies and
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getting forecasts without taking into account the future effects of those changes

is a worthless task. Therefore, we should consider some specific ways in which

the model may be modified due to the structural change in the economic system.

Following Tsay (1988), let us assume that the observed series {eyt} follows the
model

eyt = yt + f(t) (3.5)

where f(t) is the vector disturbance function representing the exogenous effects

on {yt}. This function may be deterministic or stochastic depending on the

type of disturbances. As a generalization of the univariate case we present seven

typical disturbances that may affect a VAR model, five of them correspond to

deterministic changes and two more represent stochastic changes.

3.3.1 Deterministic changes

Suppose that a deterministic change (D) is expected to occur at time t =

T + h with 1 ≤ h ≤ H (an expected change in the forecast horizon). Using the

terminology and notation of Tsay et al. (2000) we known that this change can be

modeled by the following k × 1 vector disturbance function

f(t) = α(B)ωξ
(T+h)
t

where α(B) is a matrix polynomial in B to be defined below. ω = (ω1 . . . ωK)
0 is

the initial k× 1 impact vector of an outlier in the series {yt} and ξ(T+h)t is a k× 1



3.3. VAR WITH STRUCTURAL CHANGE 75

indicator time index T + h, that is ξ(T+h)T+h = 1 and ξ
(T+h)
t = 0 if t 6= T + h. The

function f(t) belongs to the class of intervention models of Box and Tiao (1975).

It has proved to have a general form which can be used to describe many dynamic

disturbances of a time series. Multiple disturbances can be treated in the same

manner by considering a vector disturbance function for each period.

To analyze the effect of cointegration on the outlier dynamics it is convenient

to compute the following filtered series {at}

at = eyt − Λδt −
pX

i=1

Πieyt−i (3.6)

where eyt = yt and at = εt for t < T + h. In the presence of outliers at 6= εt for

some t points, otherwise at = εt for all t. From (3.1) and writing this last equation

as Π(B)eyt = Λδt + at we have

at = εt +Π(B)α(B)ωξ
(T+h)
t . (3.7)

Thus the effect of an outlier on the filter depends on the interaction between

Π(B)α(B) and ω.

(a) An innovational outlier is produced when α(B) = Ψ(B). It represents

a change in the innovational series {εt} and has a dynamic effect on {yt} by

propagating through the Ψi-weights

eyt = Ψ(B)
³
ωξ

(T+h)
t + Λδt + εt

´
.

This innovational change will affect yt for t ≥ T + h. Equation (3.7) becomes

at = εt +ωξ
(T+h)
t . So, the innovational outlier affects at only at time t = T + h.
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(b) The additive outlier will be obtained when α(B) = I, so the observed

series will be given by

eyt = ωξ
(T+h)
t +Ψ(B) (Λδt + εt) .

Notice that the disturbance only affects yT+h.

The defined filtered series are at = εt+Π(B)ωξ
(T+h)
t = εt+[Π (1)B +Π∗ (B)∆]ωξ(T+h)t .

So, if {yt} is a unit-root nonstationary process and Π(1) 6= 0, then there is coin-

tegration on yt and Π(1) = −γβ. Let β⊥ be a k × (k − r) full rank orthogonal

matrix of β such that ββ⊥ = 0. The effect of ω on at is as follows.

(i) If ω is a linear combination of the columns of β⊥, thenΠ(1)ω = 0. Thus, the

outlier affects the filtered series at for t ≥ T + h only through the short-run

part of the model.

(ii) If ω is not a linear combination of the columns of β⊥, then Π(1)ω 6= 0.

Therefore, the outlier affects at for t ≥ T + h both through the short-run

and the long-run parts of the model.

(c) A temporary change is produced when α(B) = (1− ρB)−1 I with 0 <

ρ < 1. That is

eyt = (1− ρB)−1ωξ(T+h)t +Ψ(B) (Λδt + εt) ,

this model describes a disturbance ω that occurs at t = T + h and decays expo-

nentially to the zero vector with rate ρ. This transient change will affect {yt} for

t ≥ T + h.
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Equation (3.7) becomes at = εt+Π
∗(B)ωξ(T+h)t , where the coefficient matrices

Π∗i of Π
∗(B) are Π∗i =

Pi
j=1 ρ

i−jΠj − ρiI for i ≤ p and Π∗i = ρi−pΠ∗p for i > p.

Thus ω affects at for t ≥ T + h and the effect diminishes with time.

(d) A level shift will occur when α(B) = ∆−1I, so that

eyt = ∆−1ωξ(T+h)t +Ψ(B) (Λδt + εt) .

This expression says that a level shift ω occurs in the system at time t = T+h

and the change is permanent. Thus, this disturbance will affect {yt} for t ≥ T+h.

The effects of cointegration for the level shift case is analyzed in Tsay et

al. (2000) with the aid of the filtered series. In this case we have at = εt +

Π∗(B)ωξ(T+h)t , where the coefficient matrices Π∗i of Π
∗(B) are Π∗i =

Pi
j=1Πj − I

for i = 1, ..., p and Π∗i = Π∗p for i > p. In particular we have Π∗p = −Π(1). The

effect of ω on at is as follows.

(i) If ω is a linear combination of the columns of β⊥, then Π∗iω =−Π(1)ω = 0

for all i ≥ p. So the level shift only affects {at} for t = 1, ..., p− 1.

(ii) If ω is not a linear combination of the columns of β⊥, then Π∗iω 6= 0 for all

i ≥ p. Thus, the level shift affects {at} for t ≥ T + h.

(e) A gradual change is produced when α(B) = [∆ (1− ρB)]−1 I with 0 <

ρ < 1, that is

eyt = [∆ (1− ρB)]−1ωξ(T+h)t +Ψ(B) (Λδt + εt) .
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This model describes a disturbance ω that occurs at t = T + h and grows to

(1− ρ)−1ω. The gradual change will affect {yt} for t ≥ T + h.

The first four of these changes appear in Tsay et al. (2000) who generalized the

most commonly used deterministic disturbances in univariate time series analysis

to the k-dimensional vector autoregressive integrated moving-average (ARIMA)

case.

3.3.2 Stochastic changes

Suppose that a stochastic change (V) is expected to occur at time t = T + h

and assume that

f(t) = α(B)ζtS
(T+h)
t

where {ζt} is a sequence of k×1 random vectors i.i.d. N(0,Σζ) uncorrelated with

εt, where Σζ is the contaminating covariance matrix. S
(T+h)
t is the step variable

for the time index T + h, that is S(T+h)t = 1 for t ≥ T + h and zero otherwise.

This is a very simple but practical approach to contaminate the original process.

(f) A variance innovational change is produced when α(B) = Ψ(B), in

which case

eyt = Ψ(B)
³
ζtS

(T+h)
t + Λδt + εt

´
,

this change will affect the variance of {yt} for t ≥ T+h. Its univariate counterpart

can be found in Tsay (1988) where it is called variance change.

Equation (3.7) becomes at = εt + ζtS
(T+h)
t . So, the variance innovational
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change makes at 6= εt for t ≥ T + h. What is more, at∼N(0,Σε + Σζ) for

t ≥ T + h.

(g) The variance additive change is produced when α(B) = I, in such a

way that

eyt = ζtS
(T+h)
t +Ψ(B) (Λδt + εt) ,

this change will affect the variance of {yt} for t ≥ T + h.

The filtered series is given by at = εt + Π(B)ζtS
(T+h)
t . Thus the variance

additive change affects {at} for time t ≥ T + h.

In practice, to model the pattern of an exogenous disturbance in a multiple

time series setting, we prefer to use either (a) or (f) since the variables of the system

are then allowed to incorporate the dynamics of the VAR model. Otherwise the

disturbance effects will be unrealistic by affecting just one particular variable of

the system.

3.3.3 The forecast

An expression that allows for a deterministic change on the forecast horizon

can be obtained directly from (3.5) as

YF,D = YF +DF

where YF,D =
¡ey0T+1 · · · ey0T+H¢0 is a kH × 1 vector containing the future observed

values of the multiple time series and DF =
¡
d0T+1 · · ·d0T+H

¢0
is a kH × 1 deter-

ministic vector that accounts for the deterministic change, here dt = α(B)ωξ
(T+h)
t
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is a k × 1 vector. For example, consider the case of an innovational change, thus

dt = Ψ(B)ωξ
(T+h)
t , that can be written as a recursive equation

Π(B)dt = ωξ
(T+h)
t , for t ≥ T + h and dt = 0 otherwise.

In a similar fashion, an expression that allows for a stochastic change can be

written as

YF,V = YF +VF

where YF,V is a kH × 1 vector containing the future observed values and VF =¡
v0T+1 · · ·v0T+H

¢0
is a kH×1 stochastic vector that accounts for a stochastic change,

here vt = α(B)ζtS
(T+h)
t are k×1 random vectors. Consider for instance a variance

innovational change, in this case we have vt = Ψ(B)ζtS
(T+h)
t which can be written

as

Π(B)vt = ζtS
(T+h)
t , for t ≥ T + h and vt = 0 otherwise.

Thus, an expression that accounts for both deterministic and stochastic changes

can be written as

YF,D,V = YF +DF +VF .

The forecast of this process, given its historical record is

E (YF,D,V |Y) = E(YF |Y) +DF ,

and its forecast error vector can be written as

YF,D,V − E (YF,D,V |Y) = YF − E(YF |Y) +VF

= Ψ²F +VF .
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So, when a variance innovational change occurs the MSE of E(YF,D,V |Y) will

take the form

MSE [E (YF,D,V |Y)] = Ψ
h
(I ⊗Σε) +

³eI ⊗Σζ

´i
Ψ0.

Here eI =diag(0 · · · 01 · · · 1) is an H × H diagonal matrix whose h − 1 first

elements are 0 and the rest are 1. The corresponding expression for a variance

additive change will be

MSE [E (YF,D,V |Y)] = Ψ (I ⊗Σε)Ψ
0 +
³eI ⊗Σζ

´
.

3.4 Restricted forecasts of a VAR with structural change

We are concerned with obtaining the vector of forecasts when additional in-

formation about the future values of the series is given in the form of linear

restrictions, that is when

R = CYF,D,V (3.8)

here C is an M × kH matrix representing the particular linear combinations of

YF,D,V ,

C =



C1,1 · · · C1,k

...
. . .

...

CM,1 · · · CM,k| {z }
yT+1

· · ·

· · ·

· · ·

C1,k(H−1)+1 · · · C1,kH

...
. . .

...

CM,k(H−1)+1 · · · CM,kH| {z }
yT+H


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where the rows are independent, so that the rank of C is M . Besides R =

(r1 · · · rM)0 is the M × 1 vector of values that these linear combinations will take

on.

Thus the problem of finding the optimal restricted forecast vector (in MSE

sense) of YF,D,V can be posed as the Lagrangian minimization of

L = [YF,D,V − E (YF,D,V |Y)]0Σ−1F,D,V [YF,D,V − E (YF,D,V |Y)]

+2λ0 (R−CYF,D,V )

where ΣF,D,V ≡MSE[E (YF,D,V |Y)]. Thus, ∂L/∂YF,D,V = 0 implies

bYF,D,V = E (YF,D,V |Y) +ΣF,D,VC
0bλ

and ∂L/∂λ = 0 implies

R = CbYF,D,V .

These last two equations lead us to

bλ = (CΣF,D,VC
0)−1 [R−CE (YF,D,V |Y)] ,

thus the restricted forecast of a VAR process with structural change in the forecast

horizon is

bYF,D,V = E (YF,D,V |Y) +A [R−CE (YF,D,V |Y)]

where A = ΣF,D,VC
0 (CΣF,D,VC

0)−1 . The mean squared error of this vector of

forecasts is

MSE
³bYF,D,V

´
= (I −AC)ΣF,D,V .



3.5. EMPIRICAL ILLUSTRATION 83

3.5 Empirical illustration

As already mentioned, several economic reforms (fiscal, energetic, pensions,

etc.) have been proposed as necessary to achieve better growth in the Mexican

economy. The lack of such reforms has been considered the main reason for the

stagnation of the economy. Since an economic reform in the short-run seems likely

to occur, we consider the Mexican case appropriate to illustrate our methodology.

To that end let us pretend that a reform will occur in year 2005 and that this

will produce a recovering effect on the economy. We estimate a six-dimensional

integrated VAR model with Mexican data and get restricted forecasts that fulfill

the 2004 government targets and account for the 2005 expected structural change.

Two scenarios are considered: one in which the structural change is presented as a

deterministic change and other in which the change is considered to be stochastic.

Program routines for estimation and forecasting of the system were done in Matlab

6.5-Release 13 (MathWorks, Inc. Software).

3.5.1 The data

When the Mexican Government announced the targets for year 2004 the avail-

able data ran up to 2003:III. The data set consists of 59 quarterly observations

covering a period from 1989:I to 2003:III. A description of the variables that con-

form the system is as follows.

Mexican monthly inflation rate (PMEX): First difference of log Con-
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sumer Price Index (ipcmex) with base 1994=100. Source: Bank of Mexico. The

Consumer Price Index is a monthly series and the quarterly series is obtained with

the values at the end of each quarter. PMEXt = ln (ipcmext)− ln
¡
ipcmext−1

¢
.

Gross domestic product (LGDP): Measured in thousands of Mexican

pesos at constant prices of 1993. Source: Instituto Nacional de Estadística, Ge-

ografía e Informática, National Accounts System. The series is log transformed.

LGDPt = ln(GDPt).

Real demand of money (LMONB): Currency held by the public plus do-

mestic currency and checking accounts in resident banks. This is a monthly series

given in nominal terms in thousand of Mexican pesos (MONB). The quarterly se-

ries is obtained by averaging the monthly values and is deflated by ipcmex. Source:

Bank of Mexico. The series is log transformed. LMONBt = ln (MONBt/ipcmext) .

Trade balance deficit (TRDB): Defined as income minus expenditure of

the foreign sector. This is a quarterly series given in millions of dollars (DEF).

Source: Bank of Mexico. The series is transformed by dividing it by 10,000 to

homogenize the data scales. TRDBt =DEFt/10,000.

Unemployment rate (LUNMP): Source: Instituto Nacional de Estadística

Geografía e Informática, National Urban Employment Survey. The unemployment

data (UNMP) are log transformed. LUNMPt = ln(UNMPt).

US monthly inflation rate (PUSA): First difference of log US Consumer

Price Index (ipcusa) with base 1982-84=100. Source: US Department of La-
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bor, Bureau of Labor Statistics. The US Consumer Price Index is monthly and

the quarterly observations are the values at the end of each quarter. PUSAt =

ln (ipcusat)− ln
¡
ipcusat−1

¢
.

We consider PMEX, GDP, MONB, DEF, UNMP and PUSA as the original

variables. The series were transformed basically to stabilize their variances. Thus,

in this case the vector of variables that will be used is yt = F (xt) where xt

is the k × 1 vector of original variables at time t and F (·) is an appropriate

transformation.

3.5.2 Order of integration

The order of integration of the transformed series was decided on the basis of

Augmented Dickey-Fuller (ADF) tests. The regression model includes a constant

term, centered dummies for all the variables and a deterministic trend for LGDPt

and LMONBt. The general equation is

∆zt = a+ b0t+
nX
i=1

biδit + c0zt−1 +
pX

j=1

cj∆zt−j + εt

In order to account for the Mexican crisis of year 1995 we included in the

analysis two dummy variables for the first and second quarters of that year. Table

3.1 shows the results of the ADF tests with and without the dummy variables.

That is, with and without accounting for structural change (SC).

The τ statistic in Table 3.1 allows one to test H0 : c0 = 0. The symbol (*)

indicates rejection of the null hypothesis at the 5% significance level. The order,
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p, of the model was selected to guarantee no residual autocorrelation. Critical

values do not consider intervention variables to account for the 1995 crisis. Except

for domestic inflation (PMEX) in levels, all variables are I(1) and the order of

integration does not depend on the inclusion of dummy variables, but there still

is some doubt whether or not inflation is stationary. However, since the result can

be distorted by the inclusion of dummy variables, we assume here that PMEX is

I(1).

Table 3.1: ADF unit root tets results

Variable H0 : I(1) H0 : I(2)

Without SC With SC Without SC With SC

p τ p τ p τ p τ

PMEX 2 −1.93 2 −3.93* 1 −8.14* 0 −9.65*

LGDP 0 −2.20 1 −2.65 0 −6.72* 0 −10.26*

LMONB 1 −1.60 4 −0.46 0 −5.01* 2 −6.92*

TRDB 0 −2.24 4 −1.78 0 −6.96* 3 −4.44*

LUNMP 1 −1.56 1 −2.53 0 −5.47* 0 −6.84*

PUSA 2 −2.65 − − 1 −9.68* − −
The symbol * indicates rejection of H0 at the 5% significance level.

3.5.3 VEC estimation

The VEC model includes the six endogenous economic variables described

previously, yt = (PMEXt,LGDPt, LMONBt, TRDBt, LUNMPt, PUSAt)
0 , a con-
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stant term, centered dummy variables to account for seasonal effects and two

dummy variables to account for the 1995 economic crisis, that isDt = (const, S1,t,

S2,t, S3,t, I95:I,t, I
0
95:II,t

¢
. Although the USA inflation is basically exogenous to the

Mexican economy, it was considered as an endogenous variable since not other

variable in the system affects PUSA significantly. The system turned out to be

CI(1, 1) and an integrated VAR(3) model provided a reasonable representation

for the variables in levels. Therefore the system was estimated with the following

VEC model

∆yt = ΛDt + γβ
0yt−1 +Π∗1∆yt−1 +Π∗2∆yt−2 + εt

The estimation results are as follows (t-values in parentheses)

bγ = Ã −0.289
(−1.75)

0.746
(3.80)

−0.451
(−1.16)

−1.926
(−1.47)

−2.362
(−1.50)

0.047
(0.65)

!
,

bβ = µ 1 −0.029 0.043 −0.045 0.01 −0.446
¶
,

bΛ =



− − −0.029
(−2.32)

− 0.112
(9.19)

0.100
(5.37)

− −0.078
(−4.03)

−0.061
(−4.04)

−0.090
(−7.74)

−0.064
(−4.42)

−0.087
(−3.94)

0.020
(2.66)

−0.101
(−2.62)

−0.156
(−5.25)

−0.136
(−5.93)

−0.143
(−5.02)

−0.128
(−2.92)

− 0.418
(3.22)

0.243
(2.42)

− 0.615
(6.38)

0.393
(2.67)

− − 0.243
(2.01)

− 0.307
(2.65)

−

− 0.019
(2.71)

− 0.010
(2.35)

− −



,
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bΠ∗1 =



−0.327
(−2.04)

− − − − −

−0.658
(−3.45)

−0.468
(−3.35)

0.251
(2.93)

0.056
(2.47)

− −

− − − − − −

− − −1.173
(−2.06)

−0.580
(−3.80)

0.312
(2.15)

6.959
(2.18)

3.181
(2.08)

− − − − −

− − − − − −0.550
(−3.16)



,

bΠ∗2 =



−0.225
(−2.36)

− − − − 0.757
(2.07)

−0.279
(−2.46)

− 0.216
(2.31)

− − −

− − − − − −

− − − −0.325
(−2.56)

− 9.085
(3.13)

− − − − − −

− − − − − −



,

with R2 equal to 0.83, 0.93, 0.88, 0.67, 0.52 and 0.70 for ∆PMEX, ∆LGDP,

∆LMONB, ∆TRDB, ∆LUNMP and ∆PUSA, respectively. The matrices bΛ, bΠ∗1,
and bΠ∗2 show only the numerical values of those elements found significant at the
5% level.
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The following matrix shows the contemporaneous residual correlations.

PMEX LGDP LMONB TRDB LUNMP PUSA

PMEX

LGDP

LMONB

TRDB

LUNMP

PUSA



1.00

0.24 1.00

− 0.42 0.02 1.00

− 0.10 − 0.02 0.25 1.00

− 0.30 − 0.14 − 0.01 − 0.08 1.00

0.28 0.16 −0.21 0.32 − 0.22 1.00


Here we can appreciate the correlation between Mexican inflation rate and

real demand for money, with negative sign as expected. It is also worth noting

the positive correlation between USA inflation rate and trade balance deficit. In

Table 3.2 we report the results of Johansen tests.

Table 3.2: Johansen cointegration analysis

Null Trace Statistic Crit 95% Crit 99% Eigen Statistic Crit 95% Crit 99%

r ≤ 0 131.10** 95.75 104.96 54.43** 40.08 45.87

r ≤ 1 76.68* 69.82 77.82 36.29* 33.88 39.37

r ≤ 2 40.38 47.86 54.68 21.47 27.59 32.72

r ≤ 3 18.91 29.80 35.46 13.74 21.13 25.87

r ≤ 4 5.17 15.49 19.94 4.63 14.26 18.52

r ≤ 5 0.54 3.84 6.64 0.54 3.84 6.64

The symbol ** indicates rejection at 1% level and * rejection at 5%.
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Figure 3.1: Cointegration relationship

At the 5% significance level there are two cointegrating relationships and only

one at the 1% level. We decided to use only one cointegration relationship. The

resulting cointegration equation is

�t = PMEXt−0.029LGDPt+0.043LMONBt−0.045TRDBt+0.011LUNMPt−0.446PUSAt.

whose graph is shown in Fig. 3.1. The observed and fitted series of the VEC

model as well as their residuals are shown in Fig. 3.2.

3.5.4 Restricted forecasts of the Mexican economy

At the end of 2003 the Mexican Government published the economic policies

as well as the economic targets for 2004 (see SHCP, 2003). There, it was foreseen

that the rate of growth of GDP would move from 1.5% in 2003 to 3.1% in 2004.
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Figure 3.2: Observed and estimated series in levels and corresponding residuals

of their first differences, with ±2σ bands plotted as horizontal lines.
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The annual inflation rate was targeted to be reduced from 3.8% in 2003 to 3.0%

in 2004 and the trade balance deficit was supposed to move from -11,847.0 (-1.9%

of GDP in 2003) to -16,419.9 (-2.6% of GDP target in 2004). That is

PMEX2004:I + PMEX2004:II + PMEX2004:III + PMEX2004:IV = ln(1.03),

LGDP2004:IV − LGDP2003:IV = ln(1.031),

TRDB2004:I +TRDB2004:II +TRDB2004:III +TRDB2004:IV = −16, 419.9/10, 000.

Additionally, we suppose that the economic reform will have a positive effect

in the economy leading the inflation rate (PMEX) down to 3% and the annual

rate of growth of GDP up to 7%, so that

PMEX2005:I + PMEX2005:II + PMEX2005:III + PMEX2005:IV = ln(1.03),

LGDP2005:IV − LGDP2004:IV = ln(1.07).

Thus, the linear restriction (3.8) considers an H = 9 periods ahead forecast
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(to reach the end of 2005) and gets specified by

R =



ln(1.03)

ln(1.031)

−16, 419.9/10, 000

ln(1.03)

ln(1.07)


and C =



0 e1 e1 e1 e1 0 0 0 0

−e2 0 0 0 e2 0 0 0 0

0 e4 e4 e4 e4 0 0 0 0

0 0 0 0 0 e1 e1 e1 e1

0 0 0 0 −e2 0 0 0 e2


where 0 = (0 · · · 0) is the 1× 6 zero matrix and ei = (0 · · · 1 · · · 0) is a 1× 6 vector

with 1 in the ith position and zeros elsewhere.

Notice that R can be rewritten as R = (R0
1|R0

2)
0 where R1 is an M1 × 1

vector that collects the government economic targets in 2004 (with M1 = 3) and

R2 is an M2× 1 vector that collects the expected structural change in 2005 (with

M2 = 2). Similarly, the matrix C = (C01|C02)0 can be partitioned by rows. We use

this partition in the stochastic change scenario shown below.

3.5.4.1 Scenario 1, deterministic innovational change

We assume that the expected economic reform will affect primarily the LGDP

and PMEX variables and that PUSA is an exogenous variable. The rest of the

variables will be affected by the economic reform through a deterministic innova-

tional change that takes into account the system dynamics.

So, let the time path for LGDP and PMEX be determined by a gradual change,

i.e.

∆ (1− ρB) dit = ιiξ
(T+h)
t , with 0 < ρ < 1. (3.9)
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while dit = 0 for PUSA. Here, dit denotes the ith element of dt and ιi is the impact

disturbance variable on the ith variable.

To compute the impact disturbance variable ιi from these paths we consider

that E(YF,D|Y) achieves exactly the expected structural change for both LGDP

and PMEX. Therefore, DF should satisfy the corresponding restrictions

CiDF = ri − CiE(YF |Y) (3.10)

where Ci is the ith row of C.

For the LGDP variable, equation (3.10) becomes di,T+h+N − di,T+h−1 = ri −

CiE(YF |Y) while from (3.9), di,T+h+N = ιi
¡
1 + ρ+ · · ·+ ρN

¢
and di,T+h−1 = 0.

Thus, ιi = [ri − CiE(YF |Y)] /
¡
1 + ρ+ · · ·+ ρN

¢
. Here N + 1 is the number

of periods since the change takes place until the desired level is achieved. Pro-

ceeding in the same way for PMEX, equation (3.10) takes the form di,T+h +

· · · + di,T+h+N = ri − CiE(YF |Y) and di,T+h+n = ιi (1 + ρ+ · · ·+ ρn) for n =

1, . . . , N . Thus, the impact disturbance variable for PMEX turns out to be

ιi = [ri − CiE(YF |Y)] /
£
(N + 1) +Nρ+ · · ·+ ρN

¤
. We chose the value ρ = 0.6

as suggested by Tsay (1988).

We make use of the following multiple disturbance innovational change model

Π(B)dt =
NX
n=0

ωtξ
(T+h+n)
t , for t ≥ T + h and dt = 0 otherwise. (3.11)

Here the impact vectors ωt for t = 1, . . . , T +H were computed recursively using

the above deterministic change on LGDP, PMEX and PUSA variables. That is,
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ωt = 0 for t < T + h and the ith entry of ωT+h+n for n ≥ 0 corresponding to

LGDP or PMEX is given by

ωi,T+h+n = di,T+h+n − (Π1dT+h+n−1 + · · ·+ΠpdT+h+n−p)i for n = 0, ..., N

and that for PUSA is given by

ωi,T+h+n = − (Π1dT+h+n−1 + · · ·+ΠpdT+h+n−p)i ,

the rest of the elements of ωT+h+n were set equal to zero because no restrictions

apply to their corresponding variables. Putting this into (3.11) gives dT+h+n, then

we can compute ωT+h+n+1 in the same manner and so on.

Fig. 3.3 shows the results of the deterministic change DF on the system. Fig.

3.4 shows the unrestricted and restricted VAR forecasts with deterministic change

along with their 90% probability intervals for the six original economic variables.

Table 3.3 reports the forecasts for the original variables. The unrestricted and

restricted forecast of the original variables are denoted by bXF = F−1 (E(YF |Y))

and bXF,D = F−1
³bYF,D

´
respectively, where F−1 (·) is the inverse of the trans-

formation F (·) employed before. The Mexican Government economic targets for

year 2004, the assumed deterministic change in year 2005 and the unrestricted

forecast with deterministic change, bXF + D
∗
F = F−1 (E (YF,D|Y)) are also re-

ported in that table. By construction, the restricted forecasts of the process with

deterministic change, bXF,D, attain the economic targets for 2004 as well as the

expected deterministic change in 2005 exactly.
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Figure 3.3: Innovational deterministic change for the system. (Transformed) Mex-

ican prices and GDP follow a gradual change to achieve their corresponding targets

for year 2005, PUSA is unaffected by these changes.
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Figure 3.4: Unrestricted and restricted forecasts with a deterministic structural

change and 90% probability intervals (forecast origin at 2003:III).
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Table 3.3: VEC forecasts results for the Mexican system

Variable 2004 2005

Gov.

Target

bXF
bXF,D

Det.

Change

bXF
bXF +D∗

F
bXF,D

PMEX 3.00% 6.03% 3.00% 3.00% 4.24% 3.00% 3.00%

GDP 3.10% 3.16% 3.10% 7.00% 3.54% 7.00% 7.00%

MONB − 9.51% 9.41% − 9.38% 11.07% 7.13%

DEF −16419.9 −8923.2 −16419.9 − −11325.1 −12464.6 −20096.8

UNMP − 3.54% 3.38% − 3.51% 3.47% 3.26%

PUSA − 1.72% 0.26% − 1.61% 1.61% 1.00%

It is worth emphasizing the fact that the unrestricted and restricted forecasts

are drastically different. For instance, the unrestricted forecast of the Mexican in-

flation rate (PMEX) in year 2004 is 6.03%, twice the government target, and will

still be controlled in year 2005 around 3.00% if an economic reform occurs. The

restricted forecast of the rate of growth of GDP in year 2004 is near to the unre-

stricted one, however, an economic reform in year 2005 will increase significantly

the rate of growth of GDP. Except for MONB, in year 2005 the unrestricted fore-

casts with structural change added, bXF+D
∗
F , lie between the unrestricted and the

restricted forecasts. This behavior of MONB can be explained by the significant

correlation between TRDB and LMONB. Another interesting point to note in this

system is that if the restricted forecast for PMEX increase to its unrestricted path
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then the real demand of money will decrease as shown in Fig. 3.5.

3.5.4.2 Scenario 2, variance innovational change

When the stochastic structure is deemed to change due to the economic re-

form in year 2005 the contaminating covariance matrix can be used to introduce

uncertainty. As in the deterministic change, we first introduce the economic re-

form effect to PMEX and LGDP and propagate it to the rest of the variables by

assuming a variance innovational change. Consider for example that the contami-

nating covariance matrix is given by Σζ = aQ, here the contaminating parameter

is a > 0 and Q =diag(r24, r
2
5, 0, . . . , 0) is a 6× 6 matrix. Notice that the contam-

inating effect appears in PMEX and LGDP and is proportional to r24 and to r25

respectively. The problem now lies in selecting the contaminating parameter a

appropriately. To that end, let us define the following distance vector

η ≡ R2 −C2E (YF,V |Y) = C2Ψ²F +C2VF

then R2 and E(YF,V |Y) are said to be compatible if the distance vector is close

to zero.

From the normality assumption of ²F and ζ
T+h
t we have that

η ∼ N (0,Ω(a))

where Ω(a) = C2Ψ
h
(I ⊗Σε) + a

³eI ⊗Q´iΨ0C02 is an M2 ×M2 symmetric pos-

itive semidefinite covariance matrix. So, if Ω(a) is non-singular, a statistic for
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Figure 3.5: Unrestricted and restricted forecasts with a deterministic structural

change and 90% probability intervals. The restricted forecast of PMEX follows

its unrestricted path (forecast origin at 2003:III).
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testing compatibility between restrictions and unrestricted forecasts is defined as

K(a) ≡ η0Ω−1(a)η ∼χ2M2
,

which is of the type derived in Guerrero et al. (2005). We say that η is in the

compatibility region at a level α if

K(a) ≤ χ2M2
(α)

where χ2M2
(α) denotes the upper α percentage point of the χ2M2

distribution. Since

K(a) tends to zero as the contaminating parameter a goes to infinity (see the

Appendix) we should choose a large enough to obtain compatibility, but keeping

in mind that the larger the value of a the greater the uncertainty in the forecasts.

In the present case the compatibility test does not reject the compatibility

hypothesis for the typical significance levels. Nonetheless, just for illustrative

purposes we decided to take α = 0.5 so that χ22(0.5) = 1.386. Thus, a contam-

inating parameter a = 0.040 was required. Fig. 3.6 shows the unrestricted and

restricted forecasts with stochastic change of the original variables as well as 90%

probability intervals. Table 3.4 contains the restricted forecasts with stochastic

change of the original variables, bXF,V = F−1
³bYF,V

´
.

As pointed out above, consideration of extra model information helps the

forecasts to not only depend on the dynamics contained in the historical record

but to take into account what the government wants to attain. Except for MONB

and PUSA, the figures are similar to those shown in Table 3.3 for bXF,D. The main
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Figure 3.6: Unrestricted and restricted forecasts of the VAR with a variance

innovational change and 90% probability intervals (forecast origin at 2003:III).
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difference with the previous scenario is that uncertainty induces rates of growth

of MONB higher than those reported for the deterministic change.

Table 3.4: Restricted forecasts with stochastic change for the Mexican system,

bXF,V

Variable 2004 2005

PMEX 3.00% 3.00%

GDP 3.10% 7.00%

MONB 10.84% 9.02%

DEF −16419.9 −20952.9

UNMP 3.45% 3.10%

PUSA 0.07% 0.50%

3.6 Conclusions

This paper presents some extensions of the multivariate restricted forecast-

ing methodology which allows one to take into account an expected structural

change in the forecast horizon. The types of structural changes are presented

in a multivariate setting as a generalization of those introduced by Tsay (1988).

Since the forecasts should take into account the dynamics of the model we prefer

to use either the deterministic innovational change or the variance innovational

change. A combination of those changes can also be entertained, but the limited

amount of information provided by the restrictions available, as well as confusion
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of deterministic and stochastic effects prevented us from carrying out the exercise.

The restricted forecast formulas of a VAR with structural change are de-

rived by Lagrangian optimization. The methodology was illustrated with a six-

dimensional system for the Mexican economy, where an economic reform has been

pushed through by economic and political sectors. The application assumes that

the economic targets for 2004 as well as the expected effect of an economic reform

for 2005 will be reached with certainty. It is also assumed that the economic reform

will modify either the deterministic or the stochastic part of a VAR model and

that its effect will initially impact GDP and prices. In the empirical illustration

here presented, we obtained basically the same results with either the determin-

istic innovational change or the variance innovational change. Thus, in this case,

the choice depends on the simplicity of application and, in that sense, it is easier

to apply the variance innovational change formulation, but the interpretation of

effects is less clear with this approach than with the deterministic one. The com-

bination of extra model information with VAR forecasts results in more realistic

predictions since, in our case, the policies that the government has in mind are

taken into account.

3.7 Appendix. Shape of K(a)

Here we explore the dependence of the compatibility test statistic K(a) on

the contaminating parameter a. By construction the compatibility test is non-
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negative. Now, if C2Ψ
³eI ⊗Q´Ψ0C02 is a symmetric positive definite matrix

(then non-singular) we have that

lim
a→∞

K(a) = η0
h
lim
a→∞

a−1C2Ψ (I ⊗Σε)Ψ
0C02 +C2Ψ

³eI ⊗Q´Ψ0C02
i−1

η lim
a→∞

a−1

= 0

which means that compatibility can be reached by increasing the contamination

of the process.

Furthermore, K(a) is a non-increasing function. To see that let us first com-

pute its differential

dK = −η0Ω−1 (dΩ)Ω−1η

where

dΩ = C2Ψ
³eI ⊗Q´Ψ0C02da,

see Magnus and Neudecker, (2002). So, the derivative of K(a) is equal to

dK

da
= −η0Ω−1

h
C2Ψ

³eI ⊗Q´Ψ0C02
i
Ω−1η

which is non-positive. Thus, K(a) is a non-negative non-increasing function that

tends to zero as the parameter a tends to infinity.
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CHAPTER 4

RESTRICTED VAR FORECASTS OF ECONOMIC

TIME SERIES WITH CONTEMPORANEOUS

CONSTRAINTS

4.1 Introduction

When forecasting economic variables, it frequently happens that some compo-

nents of a multiple time series must satisfy a contemporaneous binding constraint.

Such constraints are intrinsic to macroeconomic and financial data structures un-

derlying the balance of payments, the monetary aggregates, etc. For instance, in

the balance of payments account, deficit equals income minus expenditure of the

foreign sector. So, the contemporaneous constraint on the bivariate time series is

the deficit, which may be considered as a univariate time series by itself. In fact,

when planning or implementing economic policies the government usually imposes

targets on this aggregated variable.

This paper presents a methodology, within the Vector Auto-Regressive (VAR)

framework, for forecasting multivariate time series that satisfy a contemporaneous

binding constraint for which there exists a future target. We consider two ways

108
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of obtaining the restricted forecasts of the system: (1) the target is introduced

directly into the forecasts as a linear combination of the future values of the time

series vector; (2) the restricted forecast of the aggregated variable (which becomes

the contemporaneous binding constraint of the time series vector) is first obtained

and then imposed to get the restricted forecasts of the system. It is well known

(see for instance, Pankratz 1989) that restricted forecasts of binding constrained

systems are at least as precise as the unrestricted forecasts, besides being internally

consistent. It is proved here that the second way of obtaining restricted forecasts,

as described above, produces forecasts at least as precise as with the first way.

The proposed procedures are illustrated with an example based on the balance of

payments account for the Mexican economy. Here, the income and expenditure

system of variables is constrained to satisfy a government target for the deficit.

Obtaining restricted forecasts of contemporaneously constrained time series

has immediate implications when forecasting cointegrated systems, since a coin-

tegration relationship can be seen as an unbinding contemporaneous constraint.

In fact, the restriction is imposed by letting the error correction term be equal to

zero at the end of the forecast horizon, so that the dynamical system is assumed to

be in equilibrium from that point onwards. By imposing the restriction this way

we implicitly define long-run in terms of the time needed for the error correction

term to disappear. A Monte Carlo simulation of an artificially generated Vector

Error Correction (VEC) model with one unit root was carried out to study the
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behavior of unrestricted and restricted forecasts. In the forecast comparison, four

forecast precision measures were used to judge the results empirically. These re-

sults indicate that the restricted forecasts are indeed better than the unrestricted

ones.

The restricted forecasting methodology for a multivariate time series has ap-

peared in such works as those of Pankratz (1989) and van der Knoop (1987).

In these, the extra-model information was introduced in the form of linear re-

strictions. Guerrero and Peña (2003) provided general results for the problem of

combining data from two different sources of information in order to improve the

efficiency of predictors. Some time series problems such as forecast updating when

new information is available, forecast combination, interpolation and missing value

estimation, among others, can be treated with their proposal. Pandher (2002) at-

tacked the problem of modeling and forecasting a contemporaneously constrained

system of time series within the state-space framework. On the other hand, sev-

eral criteria for comparing forecasts have appeared in the literature. Clements and

Hendry (1993) criticized the use of Mean Square Error (MSE) because it is not

invariant to non-singular, scale-preserving linear transformations. Lin and Tsay

(1996) used the square root of the trace of the covariance matrix of out-of-sample

forecasts errors as the main criterion to study the forecasting performance of coin-

tegrated variables with different number of unit roots. Christoffersen and Diebold

(1998) dealt with forecasting cointegrated variables and showed that nothing is
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lost by ignoring cointegration when forecasts are evaluated using the trace of the

MSE, since such a measure fails to value the long-run forecasts. Thus, they sug-

gested to use two MSE measures of forecasting performance. The first one is the

trace MSE of the cointegrating combinations of the forecast errors. While the sec-

ond one corresponds to a triangular representation of the cointegrated system that

incorporates both the standard MSE and that of the aforementioned cointegrating

combinations.

In this paper we proceed as follows. In section 4.2 we establish the notation

and standard results of VAR models and the restricted forecasting methodology.

In section 4.3, we derive a procedure to get restricted forecasts of a contempora-

neously constrained system. In section 4.4, we illustrate the methodology with an

empirical application to the balance of payment accounts for the Mexican econ-

omy. In section 4.5, we present a Monte Carlo study for an artificially generated

VEC model. The results of this study allows us to validate our proposal by way of

precision measures usually employed to compare forecasts. We conclude in section

4.6.

4.2 Preliminaries

In this section, we establish the notation and recall some standard results per-

taining to the VARmodel and to the corresponding restricted forecasting method-

ology.
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4.2.1 Models

Let yt = (y1t · · · ykt)0 be a k × 1 vector of variables observed at time t, for

t = 1, . . . , T and let us assume that yt follows a finite pth-order Gaussian VAR

model

yt = Λδt +Π1yt−1 + · · ·+Πpyt−p + εt, (4.1)

where Πi is a k × k matrix of parameters, for i = 1, . . . , p, δt = (δ1t · · · δnt)0

is an n × 1 vector that may include both deterministic variables to account for

seasonality, as well as intervention effects and exogenous variables with respect

to yt. εt = (ε1t · · · εkt)0 is a k × 1 random error vector independent and iden-

tically distributed N(0,Σε) with Σε a covariance matrix whose ijth element is

σij =cov(εit, εjt), for i, j = 1, 2, . . . , k. Thus the ε’s are serially uncorrelated but

may be contemporaneously correlated. The effects of δt on yt are captured by the

k × n parameter matrix Λ.

Subtracting yt−1 from both sides of (4.1) and rearranging terms we have

Π∗ (B)∆yt = Λδt −Π (1)Byt + εt, (4.2)

where ∆ is the first difference operator, Π(1) = I − Π1 − · · · − Πp and Π∗ (B) is

a matrix polynomial of order p − 1 such that Π (B) = Π (1)B + Π∗ (B)∆. We

assume the determinantal polynomial det(Π (x)) has all its zeros on or outside the

unit circle and the rank of Π (1) is r, implying that there are d = k− r unit roots

in the system. Moreover, we assume the unit roots have multiplicity one, meaning

that yt is at most integrated of order 1, which is written as I(1). When r > 0 the
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variables are cointegrated, in the sense that there exists a linear combination βyt,

with β = (β1 · · ·βk) 6= 0, which is I(0). In that case the matrix −Π (1) = αβ

where α and β are k× r and r×k full rank matrices respectively. Equation (4.2)

then becomes

Π∗ (B)∆yt = Λδt +αzt−1 + εt, (4.3)

where zt = βyt is stationary. The rows of β are then referred as cointegration

vectors of the system and equation (4.3) is known as the Vector Error Correction

(VEC) representation of (4.1).

4.2.2 Forecasts

Let us assume that Y = (y01 · · ·y0T )0 is a kT × 1 vector containing all the past

information of the multiple time series and let YF =
¡
y0T+1 · · ·y0T+H

¢0
denote a

kH × 1 vector containing the H ≥ 1 values to be forecasted for each series.

The optimal (in MSE sense) linear forecast of yT+h, for h = 1, . . . , H, is its

conditional expectation

E(yT+h|Y) = ΛδT+h +Π1E(yT+h−1|Y) + · · ·+ΠpE(yT+h−p|Y) (4.4)

where E(yT+h−i|Y) = yT+h−i for i ≥ h. Such a forecast produces the h-step-ahead

forecast error vector

eT ≡ yT+h − E(yT+h|Y) =
h−1P
j=0

ΨjεT+h−j, for h = 1, . . . , H (4.5)

where Ψj =
jP

k=1

Ψj−kΠk with Ψ0 = I and Πk = 0 for k > p, see Lütkepohl (1991,
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Section 11.3). It should be stressed that, by virtue of the equivalence between

(4.1) and (4.2), the forecasts provided by (4.4) make use of all the information in

the VEC model. Stacking the forecast errors (4.5) we write

eF ≡ YF − E(YF |Y) = Ψ²F

where ²F =
¡
ε0T+1 · · · ε0T+H

¢0 ∼ N (0, IH ⊗Σε) is a kH × 1 random vector, with

⊗ the Kronecker product and Ψ is a kH×kH lower triangular matrix with Ψ0 in

its main diagonal, Ψ1 in the first subdiagonal, Ψ2 in the second subdiagonal and

so on.

The MSE of E(YF |Y) is given by

ΣY ≡ E[(YF − E(YF |Y))(YF − E(YF |Y))0|Y],

= Ψ (IH ⊗Σε)Ψ
0.

When forecasting, we sometimes have additional information about the fu-

ture that cannot be included directly into the model. For instance, government

economic targets provide additional information, or extra-model information as

Pankratz (1989) called it, that cannot be included for estimation purposes, but

should be taken into account when making forecasts to reflect the idea that some

policy intervention is expected to occur. We want to introduce this additional in-

formation into the forecast of yt and assume that it is in the form of the following

stochastic linear restriction

R = CYF + u. (4.6)
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Here, C is an M × kH constant matrix containing the coefficients that define the

linear combinations of YF ,

C =



c1,1 · · · c1,k

...
. . .

...

cM,1 · · · cM,k| {z }
yT+1

· · ·

· · ·

· · ·

c1,k(H−1)+1 · · · c1,kH

...
. . .

...

cM,k(H−1)+1 · · · cM,kH| {z }
yT+H


where the rows are linearly independent, so that the rank of C isM . Besides, R =

(r1 · · · rM)0 is aM×1 vector of values that the linear combinations are expected to

take on and u is an M × 1 random vector such that u = (u1 · · ·uM)0 ∼ N (0,Σu),

with the ijth element of Σu given by σij,u =cov(ui, uj), for i, j = 1, . . . ,M .

It can be shown that the optimal restricted forecast, in MSE sense, is given

by

bYF = E(YF |Y) +A [R−CE(YF |Y)] , (4.7)

where A = ΣYC
0 (CΣYC0 + Σu)

−1 (see for instance, Pankratz 1989, for a proof)

and its MSE is given by

MSE
³bYF

´
= (I −AC)ΣY. (4.8)

For A and B two symmetric matrices we write A ≥ B if A − B is positive

semidefinite and A > B if A−B is positive definite. Hence, ΣY ≥MSE
³bYF

´
since

ACΣY is a positive semidefinite matrix, and we interpret this result as saying that

bYF is at least as precise as E(YF |Y).
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4.3 Restricted forecasts for contemporaneously constrained VAR

models

When studying economic variables, it some times happens that certain com-

ponents of a time series vector must satisfy a contemporaneous binding constraint.

Such a constraint might come from macroeconomic or financial identities. Here

we assume this constraint is a linear combination of the elements of yt, that is

zt ≡ cyt. When this happens, we shall call zt the contemporaneous constraint and

yt the contemporaneously constrained vector. Let Z = (z1 · · · zT )0 be a T×1 vector

containing all the past information of zt and let ZF = (zT+1 · · · zT+H)0 denote an

H × 1 vector that contains H ≥ 1 future values of {zt}.

When planning or implementing economic policies it is common to impose

targets on the aggregated variable zt. For example, in the Mexican foreign sector

the economic targets are imposed on the deficit. So, the problem of incorporat-

ing additional information into the forecasts of a contemporaneously constrained

system arises. To solve this problem, we assume the additional information is

binding and related to the future values of zt, so that equation (4.6) becomes

r = C0ZF , (4.9)

where C0 contains the coefficients of the linear combination of ZF .

In this setup, the restricted forecasts of yt can be obtained (1) by introduc-

ing the additional information directly into the forecasts. We shall call this the

one-stage restricted forecast. Or (2) by forecasting the univariate time series zt
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restricted by the additional information as a first step, and then introducing this

univariate restricted forecast as a restriction on the system, in a second step. We

will refer to the second approach as the two-stage restricted forecast. The arrays

involved with the univariate restricted forecasts will be denoted with the subindex

0. These forecasts are obtained as follows.

Univariate restricted forecast. When k = 1, equations (4.7) and (4.8)

provide the restricted forecasts for an AR(p) process. Fortunately, the formu-

las stay the same for ARIMA (Auto-Regressive Integrated and Moving Average)

processes, as it was proved in Guerrero (1989). We will take advantage of this

fact and allow for the use of ARIMA processes, since these are dynamically richer

than the AR processes. So, the restricted forecast of the vector ZF and its MSE

will be denoted by

bZF = E(ZF |Y) +A0 [r −C0E(ZF |Y)] (4.10)

MSE
³bZF

´
= (I −A0C0)ΣZ, (4.11)

where ΣZ =MSE[E(ZF |Y)] and A0 = ΣZC
0
0 (C0ΣZC

0
0)
−1. Let us notice in par-

ticular that ΣZ ≥MSE
³bZF

´
.

(1)One-stage restricted forecast. The additional information can be writ-

ten in terms of YF by noticing that r = C0ZF = C0
¡
cyT+1 · · · cyT+H

¢0
= C1YF ,

where C1 = C0⊗c is a 1×kH matrix. Hence, the multivariate restricted forecast

of YF and its MSE will be given by

bYF,1 = E(YF |Y) +A1 [r −C1E(YF |Y)] (4.12)
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MSE
³bYF,1

´
= (I −A1C1)ΣY, (4.13)

where A1 = ΣYC
0
1 (C1ΣYC

0
1)
−1 and ΣY is as defined previously.

(2) Two-stage restricted forecast. Another (more efficient) way to obtain

the multivariate restricted forecast consists of using the fact that bZF already

satisfies the additional information (C0bZF = r). So, if the forecast of YF is now

restricted by the univariate restricted forecast bZF with forecast error covariance

matrix given by MSE
³bZF

´
, then the stochastic linear restriction (4.6) becomes

bZF = C2YF + v; v ∼ N (0,Σv)

where C2 = IH ⊗ c is an H × kH matrix representing the contemporaneous

constraint bZF−v = C2YF (which can be interpreted as constraining the elements

of YF to satisfy bZF plus a forecast error) and Σv =MSE
³bZF

´
. The restricted

forecast and its MSE for this case are

bYF,2 = E(YF |Y) +A2

hbZF −C2E(YF |Y)
i

(4.14)

MSE
³bYF,2

´
= (I −A2C2)ΣY (4.15)

where A2 = ΣYC
0
2 (C2ΣYC

0
2 + Σv)

−1.

The following result simply states that the two-stage restricted forecast is at

least as precise as the one-stage restricted forecast.

Proposition 2 If the k × 1 vector time series {yt} given by (4.1) is contempo-

raneously constrained for t = 1, . . . , T and the additional information is given by

(4.9), then MSE
³bYF,1

´
≥MSE

³bYF,2

´
.
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Proof. First we see that

MSE
³bYF,1

´
−MSE

³bYF,2

´
= (I −A1C1)ΣY − (I −A2C2)ΣY

= (A2C2 −A1C1)ΣY

= ΣY
h
C02 (C2ΣYC

0
2 + Σv)

−1
C2 −C01 (C1ΣYC01)−1C1

i
ΣY.

Thus, the problem reduces to prove that

Ω ≡ C02 (C2ΣYC02 + Σv)
−1
C2 −C01 (C1ΣYC01)−1C1 (4.16)

is a positive semidefinite matrix.

By applying the Matrix Inversion Lemma (see Harvey 1993, page 104) and

noticing that C1 = C0C2, we have

(C2ΣYC
0
2 + Σv)

−1
=

h
2C2ΣYC

0
2 −C2ΣYC02C00 (C0C2ΣYC02C00)−1C0C2ΣYC02

i−1
=

1

2
(C2ΣYC

0
2)
−1
+
1

2
C00 (C0C2ΣYC

0
2C

0
0)
−1
C0

and from here we get

Ω =
1

2

h
C02 (C2ΣYC

0
2)
−1
C2 −C01 (C1ΣYC01)−1C1

i
. (4.17)

Thus, from equations (4.16) and (4.17), and applying again the Matrix Inver-

sion Lemma, we obtain

Ω = C02 (C2ΣYC
0
2)
−1
C2 −C02 (C2ΣYC02 + Σv)

−1
C2

= C02

·
(C2ΣYC

0
2)
−1 ³

Σ−1v + (C2ΣYC
0
2)
−1´−1

(C2ΣYC
0
2)
−1
¸
C2 (4.18)

which is clearly a positive semidefinite matrix. ¤
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The following proposition states a condition for equality of the one-stage and

two-stage restricted forecasts.

Proposition 3 If the k × 1 vector time series {yt} given by (4.1) is contempo-

raneously constrained for t = 1, . . . , T , with additional information given by (4.9)

and Σv = 0, then bYF,1 = bYF,2 and MSE
³bYF,1

´
=MSE

³bYF,2

´
.

Proof. Equation (4.10) can be written as

bZF −C2E(YF |Y) = A0 [r −C1E(YF |Y)]

since ZF = C2YF and C1 = C0C2. Now, from this equation and (4.14) we have

bYF,2 − E(YF |Y) = A2A0 [r −C1E(YF |Y)] .

Then, sinceA0 = C2ΣYC
0
2C

0
0 (C1ΣYC

0
1)
−1 andA2 = ΣYC

0
2 (C2ΣYC

0
2 + Σv)

−1

we get

bYF,2−E(YF |Y) = ΣYC
0
2 (C2ΣYC

0
2 + Σv)

−1
C2ΣYC

0
2C

0
0 (C1ΣYC

0
1)
−1
[r −C1E(YF |Y)] .

(4.19)

On the other hand, from (4.12) we know that

bYF,1 − E(YF |Y) = ΣYC
0
1 (C1ΣYC

0
1)
−1
[r −C1E(YF |Y)] .

Therefore, whenΣv = 0, we have bYF,1 = bYF,2, andMSE
³bYF,1

´
=MSE

³bYF,2

´
as indicated by expression (4.18). ¤

Some remarks are now in order:
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(i) If conditions of proposition 3 hold, we know bYF,1 = bYF,2, but it is preferable

(by simplicity) to calculate the one-stage rather than the two-stage restricted

forecast.

(ii) By applying the Matrix Inversion Lemma to expression (4.19) we get

bYF,2 = bYF,1 − ΣYC
0
2 (C2ΣYC

0
2)
−1 h

(C2ΣYC
0
2)
−1
+ Σ−1v

i−1
C00 (C1ΣYC

0
1)
−1 ×

[r −C1E(YF |Y)]

which says that bYF,2 can be obtained by first calculating bYF,1 and then

adding a term that depends on Σv.

(iii) The following forecast efficiency inequality holds true

ΣY ≥MSE
³bYF,1

´
≥MSE

³bYF,2

´
. (4.20)

4.4 An empirical illustration with the balance of payments account

The variables employed in this exercise are Current Account Deficit (DEF),

defined as income minus expenditure of the foreign sector, Income of the Foreign

Sector (INCM) and Expenditure of the Foreign Sector (EXPN). When the

Mexican Government published the economic targets for 2005 the data available

ran from 1980:1 to 2004:2. Thus, the data set consists of 98 quarterly observations

on each series expressed in millions of dollars (the data come from Bank of Mexico,

http://www.banxico.org.mx/).
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4.4.1 Order of integration

The order of integration of the series was decided on the basis of Augmented

Dickey-Fuller (ADF) tests. The regression model included a constant term, a de-

terministic trend for INCM and EXPN and centered dummies for all the variables.

We included three dummy variables, two for the first and second quarters of 1995

to account for the Mexican crisis, and one more for the first quarter of 2001. The

general equation employed was

∆xt = a+ b0t+
nP
i=1

biδit + c0xt−1 +
pP

j=1

cj∆xt−j + εt.

Table 4.1 shows the results of the ADF tests with and without the dummy

variables. The τ statistic allows us to test H0:c0 = 0. The symbol (*) indicates

rejection of the null hypothesis at the 5% significance level. Critical values do

not consider the presence of dummy variables. The order, p, of the autoregression

was selected to guarantee no residual autocorrelation. All variables turned out to

be I(1) and the order of integration does not depend on the inclusion of dummy

variables.

4.4.2 Model estimation

To illustrate the proposed methodology we estimated a model for the current

account deficit and another one for the income-expenditure system. The income-

expenditure system required also three dummy variables, two for the first and

second quarters of 1995 and another one for 2001:1.
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Table 4.1: Unit root ADF results

Variable H0 : I(1) H0 : I(2)

Without dummies With dummies Without dummies With dummies

p τ p τ p τ p τ

DEF 3 −2.19 4 −1.59 3 −4.18∗ 3 −4.46∗

INCM 0 −2.21 0 −1.93 0 −10.28∗ 0 −10.35∗

EXPN 2 −3.20 2 −2.95 4 −5.03∗ 2 −4.02∗

4.4.2.1 Deficit variable

A seasonal moving average model (with seasonality of order 4) was found

adequate for the current account deficit with regular and seasonal differencing,

including two dummy variables for the first and second quarters of 1995

∆∆4zt = 3324.5
(4.1)

I95:1 + 2606.8
(3.2)

I95:2 + (1− 0.742
(−9.7)

B4)εt; bσε = 1049.04.
The numbers in parentheses are t-statistics. Figure 4.1 presents the observed and

estimated series, together with the residuals.

4.4.2.2 Income-expenditure system

The income and expenditure variables turned out to be not cointegrated

(see the Johansen tests results in Table 4.2). Thus, a VAR model for ∆yt =

(∆INCMt,∆EXPNt)
0 will provide a reasonable representation for the system.

The AIC criterion led us to use p = 4 as the order of the autoregression. The
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Figure 4.1: Observed and fitted series in levels at the top, and corresponding

residuals with ±2bσ horizontal lines, at the bottom
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VAR model also included a constant term, centered dummy variables to account

for seasonal effects, two dummy variables to account for the 1995 economic cri-

sis and one more dummy for 2001:1. Hence, the deterministic vector became

δt = (const, S1, S2, S3, I95:1, I95:2, I01:1)
0 and the estimation of equation (4.1) pro-

duced the following matrices

bΛ =


294.8
(2.19)

−1741.4
(−4.18)

−93.7
(−0.25)

−486.1
(−1.21)

2133.6
(1.95)

−3012.7
(−2.33)

−3890.8
(−3.36)

226.0
(1.35)

−1396.4
(−2.69)

88.2
(0.19)

258.3
(0.52)

−4108.2
(−3.02)

−4615.7
(−2.87)

−6052.6
(−4.20)

 ,

bΠ1 =


0.544
(3.39)

−0.424
(−3.37)

0.507
(2.54)

−0.285
(−1.82)

 , bΠ2 =
 0.064

(0.45)
0.279
(2.59)

0.373
(2.13)

0.137
(1.02)

 ,

bΠ3 =


0.019
(0.13)

0.024
(0.23)

−0.105
(−0.59)

0.024
(0.18)

 , bΠ4 =

0.266
(1.94)

−0.223
(−2.04)

0.233
(1.37)

−0.002
(−0.02)

 ,

bΣε =

 948.82 815747.8

815747.8 1181.12

 .

with R2 = 0.58 and R2 = 0.61 for income and expenditure, respectively. Figure

4.2 shows the observed and estimated series of the income-expenditure system.

Table 4.2: Johansen cointegration analysis

Null Trace Statistic Crit 90% Crit 95% Eigen Statistic Crit 90% Crit 95%

r ≤ 0 10.53 13.43 15.49 8.59 12.30 14.26

r ≤ 1 1.94 2.71 3.84 1.94 2.71 3.84
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Figure 4.2: Observed and fitted series in first differences, and residuals with hor-

izontal lines corresponding to ±2bσ
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4.4.3 Restricted forecasts

At the end of year 2004, the Mexican Government published the economic

targets for 2005 (see SHCP, 2004). It was foreseen that the current account deficit

will move from -8,887.8 (-1.4% of GDP in 2004) to -14,237.4 (-2.1% of GDP in

2005).

4.4.3.1 Univariate restricted forecast of deficit

The above economic target can be written as

DEF2005:1 +DEF2005:2 +DEF2005:3 +DEF2005:4 = −14, 237.4

Since the current public administration will stay in power up to the end of year

2006, it was natural to choose the forecast horizon as H = 10. Thus the linear

stochastic restriction (4.9) for H = 10 periods ahead, gets specified by means of

r = (−14, 237.4) and C0 = ( 0 0 1 1 1 1 0 0 0 0 ).

Hence the univariate restricted forecast and its MSE are given by equations

(4.10) and (4.11). Figure 4.3 shows the unrestricted and restricted forecasts, with

their 90% probability intervals.

4.4.3.2 Income-expenditure system, one-stage restricted forecast

Since the current account deficit is defined as income minus expenditure of the

foreign sector, the additional information to get a forecast with H = 10 periods
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Figure 4.3: Restricted forecasts with 90% probability intervals (origin at 2004:2)

ahead gets determined by

r = (−14, 237.4) and C1 = ( 0 0 c c c c 0 0 0 0 )

where 0 is the 1 × 2 zero vector and c = ( 1 −1 ). The restricted forecast as

well as its MSE are given by equations (4.12) and (4.13). Figure 4.4 shows the

unrestricted and one-stage restricted forecast paths for the two variables, with

their 90% probability intervals.

4.4.3.3 Income-expenditure system, two-stage restricted forecast

Since the univariate restricted forecasts obtained for deficit take into account

the economic target, they can be introduced directly as future contemporaneous
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Figure 4.4: One-stage restricted forecasts with 90% probability intervals (origin

at 2004:2)



4.5. AN EXTENSION TO COINTEGRATED SYSTEMS 130

restriction for the system. Thus the additional information to get the forecasts is

given by bZF , Σv and C2 = I ⊗ c where c is as previously defined.

The two-stage restricted forecast of the system as well as its MSE are given

by equations (4.14) and (4.15). Figure 4.5 shows the corresponding paths of

the unrestricted and restricted forecasts for the two variables, with their 90%

probability intervals. There we corroborate that the two-stage method is more

efficient than the one-stage method empirically. For instance, the difference in

length of the probability intervals for INCM at the end of the forecast horizon is

433 million dollars, and that for EXPN is 1749 million dollars, both in favor of

the two-stage method.

4.5 An extension to cointegrated systems

The restricted forecasting methodology for contemporaneously constrained

VAR models of Section 4.3 has immediate implications when forecasting cointe-

grated systems with one unit root. In that case, a cointegration relationship may

be considered as an unbinding contemporaneous constraint. That is, the error cor-

rection term zt = βyt becomes a contemporaneous constraint on the time series

vector {yt} through the cointegration vector β. When planning or implementing

policies it could be convenient to fix a finite point in the future (say T +H) as the

moment when the equilibrium will be reached. Hence, the equilibrium restriction

on this contemporaneous constrained system can be imposed on the forecast by
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Figure 4.5: Two-stage restricted forecasts with 90% probability intervals (origin

at 2004:2)
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letting the error correction term be equal to zero at the end of the forecast horizon,

so that, zT+H = 0.

In this context, the basic aim of this work is to compare, for a one unit

root cointegrated system, the forecast efficiency for the unrestricted, one-stage

restricted and two-stage restricted forecasts, see expression (4.20). To that end,

we obtained N replications of a bivariate process (described below) and estimate

it to get the precision of out-of-sample forecasts measured as the square root of

the trace of the covariance matrix of the one-step-ahead forecast errors in the

forecast horizon (following an approach similar to Lin and Tsay’s, 1996),

E(H) =

vuut 1

N

NX
i=1

tracebΣi (4.21)

where bΣi is the standard MSE for the ith replication.

However, precision measures that use the standard MSE have been severely

criticized. For instance, Clements and Hendry (1993) found that MSE is not

invariant to non-singular, scale-preserving linear transformations and Christof-

fersen and Diebold (1998) pointed out that while the standard MSE measure fails

to value the long-run forecasts, the problem with the MSE of the cointegrated

combinations is that it values only the long-run forecasts. Due to this fact, they

proposed to compute the MSE of the triangular system that, in some way, takes

into account the two previous MSE measures.

Thus, we decided to judge the forecasting simulation results of the bivariate

system according to four MSE measures. So, bΣi is given by one of the following
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four criteria:

(1) The model-based MSE formulas derived in sections 4.2 and 4.3.

(2) The standard MSE defined as

MSE = eFe0F

where eF is a 2H × 1 vector containing the first H one-step-ahead forecast errors

of YF .

(3) The MSE of cointegrating combinations defined as

MSE = [(I ⊗ β) eF ] [(I ⊗ β) eF ]0 . (4.22)

where β is a 1× 2 matrix whose row is the cointegration vector of the system.

(4) The MSE of the triangular system as given by

MSE = (ΘuF ) (ΘuF )
0 ; with Θ =



01×2 β

−v v

01×2 β

−v v

. . .

01×2 β

−v v



(4.23)

where uF = (bεT , eF )0 is a 2(H + 1)× 1 vector, bεT is the 2× 1 vector of residuals
at time T , v = ( 0 1 ) and Θ is a 2H × 2(H +1) matrix. The other elements of

Θ not included in the diagonal shown in (4.23) are all zeros.
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To study the performance of the unrestricted and restricted forecasts, a Monte

Carlo experiment was done, so that the precision measures of these forecasts

were compared with the four MSE measures defined previously. The numerical

simulations were generated with the following VEC process

∆yt = Λ+αβyt−1 +Π∗1∆yt−1 + εt (4.24)

where Λ = (0 0)0, α = (0.2 0.1)0, β = (1 −4), Π∗1 =

 −0.40 0.25

0.10 −0.25

 and

εt ∼ N(0,Σε) with Σε =

 9 0

0 36

× 10−4.
The corresponding VAR representation is given by

yt =

 0.80 −0.55

0.20 0.35

yt−1 +
 −0.40 0.25

0.10 −0.25

yt−2 + εt, (4.25)

with eigenvalues λ0 = (1.00 0.79 −0.23 −0.41), which clearly show that the system

has one unit root.

The linear restrictions needed to get the univariate restricted forecast, and

the one-stage and two-stage multivariate restricted forecasts are, respectively

r = 0 with C0 = ( 0 · · · 0 1 ),

r = 0 with C1 = ( 0 · · · 0 β ),

and

R = bZF with Σv =MSE
³bZF

´
and C2 = I ⊗ β,
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where C0, C1 and C2 are 1×H, 1× 2H and H × 2H matrices respectively.

The Monte Carlo experiment was done with the following algorithm. Program

routines were written in Matlab 6.5-Release 13 (MathWorks, Inc. Software).

Given T, H, p and the restriction zT+H = 0:

1. Generate a series {yt}T+Ht=−p+1 with (4.25). Following the partition used by

Lütkepohl (1991) we have a time series of length p y1, . . . ,yT of length T , a

presample y−p+1, . . . ,y0 and H future values of the time series, yT+1, . . . ,yT+H .

2. Estimate the VEC model given by (4.24) and compute the error correction

term zt = bβyt.
3. Compute the unrestricted forecast E(YF |Y) and the trace of each MSE mea-

sure defined above.

4. Compute the one-stage restricted forecast bYF,1 and the trace of each MSE

measure defined above.

5. For zt, estimate the ARMA(p, q) model for p, q = 0, 1, 2 and 3, which min-

imizes the AIC criterion and compute the univariate restricted forecast as

well as its MSE.

6. Compute the two-stage restricted forecast bYF,2 and the trace of each MSE

measure defined above.

Steps 1-6 were replicated N = 1000 times for the forecast horizons H =

8, 16, 32 and 64.
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Tables 4.3 and 4.4 show the precision measures for the unrestricted forecasts,

as well as for the one-stage and two-stage restricted forecasts. The precision mea-

sures for the model-based MSE and for the standard MSE confirm that expression

(4.20) holds true. However, the precision measure results using the MSE of coin-

tegrating combinations and the MSE of the triangular system in the short-run

(H = 8) indicated no gain of bYF,2 over E(YF |Y). However, for a forecast horizon

large enough (H ≥ 16) the results corroborated what inequality (4.20) says.

Table 4.3: Forecast precision measures: model-based and standard MSEs

H E(H)* with model-based MSE E(H)* with standard MSE

Unrestricted 1S restricted 2S restricted Unrestricted 1S restricted 2S restricted

8 0.436 0.404 0.295 0.468 0.464 0.471

16 1.079 1.051 0.809 1.161 1.153 1.153

32 2.544 2.529 2.155 2.806 2.796 2.760

64 5.593 5.585 5.125 6.443 6.432 6.329

* See expression (4.21) for the definition of E(H).

To gain some insight into this study, let us follow one realization of the al-

gorithm. First, we generate a time series with equation (4.25) and estimate the
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Table 4.4: Forecast precision measures that take contegration into account

H E(H)* with MSE of cointegrating combinations E(H)* with MSE of the triangular system

Unrestricted 1S restricted 2S restricted Unrestricted 1S restricted 2S restricted

8 0.866 0.861 0.867 0.891 0.887 0.894

16 1.274 1.265 1.265 1.308 1.299 1.301

32 1.844 1.837 1.832 1.891 1.885 1.881

64 2.627 2.623 2.620 2.693 2.690 2.687

* See expression (4.21) for the definition of E(H).

VEC of equation (4.24), so we have

bΛ =


−0.0005
(−0.13)

−0.0147
(−1.95)

 , bα = µ 0.197
(11.12)

0.106
(2.84)

¶0
, bβ = µ 1 −4.033

¶

bΠ∗1 =


−0.376
(−3.39)

0.269
(3.68)

0.149
(0.64)

−0.236
(−1.53)

 , bσε1 = 0.029 and bσε2 = 0.062.
with R2 = 0.71 and R2 = 0.34 for y1 and y2 respectively. Figure 4.6 shows

the observed and estimated series of this realization. The corresponding error

correction term was fitted by an AR(2) model

(1− 0.514
(5.13)

B − 0.257
(2.55)

B2)zt = εt; bσε = 0.250.
Figure 4.7 shows the estimated error correction term, its fitted values and the

univariate restricted forecasts for H = 16. We chose this value of H by looking

for the forecast horizon at which the error correction term becomes practically

equal to zero, without forcing it to be zero by way of the restriction.
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Figure 4.6: Cointegrated system with fitted time series, and residuals with hori-

zontal lines correspondig to ±2bσ
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Figure 4.7: Estimated error correction term, fitted series and residuals with hori-

zontal lines corresponding to ±2bσ, at the top. Univariate restricted forecasts for
H = 16, at the bottom
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Figure 4.8 allows us to appreciate visually the fact that the precision of the

two-stage forecast is higher than that of the one-stage forecast. Thus, if we do not

incorporate the cointegrating relationship as a future contemporaneous constraint

we may be wasting information.

4.6 Conclusions

We presented a forecasting methodology for multivariate time series that sat-

isfy a contemporaneous binding constraint for which there exists a future target.

Two ways of computing the forecasts are derived. The first one introduces the

target as a linear restriction of the future values of the system, while the other

introduces the target in the forecast of the aggregated variable (the contempora-

neous binding constraint of the time series vector) which, in turn, is introduced

as a restriction for the system forecasts. It was shown that the second way pro-

vides more precise forecasts than the first one, while the forecasts produced with

the first way are more precise than the unrestricted forecasts. The methodology

was illustrated with the income-expenditure system of the balance of payments

account for the Mexican economy (with quarterly data). Here, the forecasts of

the system are usually restricted to satisfy a government target for the deficit.

Since a cointegration relationship can be viewed as an unbinding contempo-

raneous constraint, the proposed methodology has immediate implications when

forecasting cointegrated systems. Here we considered in detail the case of one unit
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Figure 4.8: One-stage restricted forecasts with 50% probability intervals (with

origin at 100) at the top. Two-stage restricted forecasts with 50% probability

intervals, at the bottom
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root. We started by requiring the equilibrium of the system to be reached at some

finite point in the future, such a restriction was imposed by making zero the error

correction term at that point. A Monte Carlo simulation of a Vector Error Cor-

rection (VEC) model with one unit root was done to compare the behavior of the

unrestricted forecasts against those of the cointegrating restricted forecasts. Since

the standard MSE has been severely criticized as a precision measure by several

researchers, in our comparisons we used three additional precision measures.
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