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Chapter 1
Introduction

There is now a vast literature on two-sided matching markets. The term two-
sided refers to the fact that agents belong to one of two disjoint sets and can never
interchange roles. Each agent has ordinal preferences over the other side of the
market and the prospect of being unmatched and the matching problem reduces to
the process that brings the members of these two sets together.
Matching is a pervasive phenomenon arising in several economic and social

settings. The admission of students to colleges, the assignment of civil servants to
civil service positions, entry-level labor markets�as the widely explored market
for graduating physicians�, or even the assignment of kidneys to patients needing
a kidney transplant are among the matching situations that have gained attention
in the last four decades. The working of centralized and deterministic matching
procedures, along with strategic issues that confront individuals in these contexts,
have been scrutinized. Such matching markets typically work by having each
agent submit a rank ordered preference list of acceptable partners to a central clear-
inghouse, which then produces a matching by processing all the preference lists
according to an algorithm. Usually, this algorithm delivers a unique outcome for
each preference pro�le and is, therefore, deterministic. Apart from a few notable
exceptions, the study of random mechanisms, which assign to each preference
pro�le a probability distribution on the set of matchings, has been neglected.
The importance of allowing for random matching in markets that are central-

ized lies in equity considerations. In fact, in discrete problems, any deterministic
mechanism is bound to favor a subset of the agents involved. This problem is even
more pertinent in two-sided matching models where the opposition of interests
between the two sides of the market is particularly acute.
On the other hand, in most labor markets no central planning authority exists

to assign workers to �rms. The process of �nding the best-suited worker for a
job or the ideal �rm to work for is in the huge majority of cases organized along
decentralized lines. Firms and workers place advertisements, go to employment
agencies, mobilize local networks, and read newspapers when looking for the
perfect partner; then, offers are tendered using the telephone, by mail, or through
the Internet. Decentralized decision making in such complex environments may
introduce some randomness into which assignments are made: which workers �ll
which positions may depend on the order in which proposals are issued. The exact
set of rules that governs a centralized market, making it particularly amenable to
analysis, is no longer present when matching is organized in a decentralized way.
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2 Chapter 1 Introduction

Moreover, strategic issues mount in complexity: in a decentralized market agents
do not merely choose which list of preferences to submit; instead, they can decide,
after each interview or telephone call what to do next. The size of the strategy
space is thus extremely large and has precluded analysis by means of standard
matching tools.
The purpose of this thesis is to explore the functioning of labor markets where

workers are assigned to �rms by means of random processes, either centralized or
decentralized, using the simple matching tools. It is divided into four chapters that
should be regarded as self-contained papers. In what follows, I will consider each
paper separately and brie�y describe the main results.

1.1 On Random Matching Markets: Properties and Equilibria
In Chapter 2, the starting point of the analysis is an algorithm that starts with any
matching situation and proceeds by creating, at each step, a provisional matching.
At each moment in time, a �rm is randomly chosen and the best worker on its list
of preferences is considered. If this worker is already holding a �rm he prefers, the
matching goes unchanged. Otherwise, they are (temporarily) matched, pending
the possible draw of even better �rms willing to match this worker. Some features
of this algorithm are explored; namely, it encompasses other algorithms in the
literature, as Gale-Shapley's famous deferred-acceptance algorithm. I then ana-
lyze the incentives facing agents in the revelation game induced by the proposed
algorithm. The random order in which �rms are selected when the algorithm is
run introduces some uncertainty in the output reached. Since agents' preferences
are ordinal in nature, I use ordinal Nash equilibria, based on �rst-order stochastic
dominance. This guarantees that in equilibrium each agent plays his best response
to the others' strategies for every utility representation of the preferences.

1.2 Incentives in Decentralized Random Matching Markets
I take a further step further in Chapter 3 by considering a sequential game that
represents the functioning of a decentralized labor market. The original feature is
that available strategies exhaust all possible forms of behavior: agents act in what
they perceive to be their own best interest throughout the game, not necessarily
according to a list of possible matches. The game starts with a move by Nature
that determines the order of play, re�ecting the inherently uncertain features of a
decentralized market. Then, �rms are selected according to the drawn order and
given the opportunity to offer their positions. In order to account for the dynamic
nature of the game, I characterize subgame perfect ordinal Nash equilibria. In the
main result of the paper, I show that every play of such an equilibrium where �rms
best reply by acting according to their true preferences leads to a stable matching.
And stable matchings are those that we expect to see in practice: if a matching is
unstable, there is an agent or a pair of agents (consisting of a �rm and a worker)
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with incentives to circumvent the matching. This provides an explanation for the
success of some decentralized labor markets.

1.3 Random Stable Mechanisms in the College Admissions
Problem

Following a different approach, in Chapter 4, I consider the game where agents
from the two sides of the market meet bilaterally in a random fashion and, upon
meeting, match if this is consistent with their strategies, and separate otherwise.
Strategies are lists but, contrary to Chapter 2, all matchings achieved with positive
probability are stable for the revealed preferences. In this paper, I characterize
ordinal Nash equilibria, providing simultaneously some results that extend to de-
terministic mechanisms. In particular, a matching can be obtained as the outcome
of a play of the game where �rms reveal their true preferences if and only if it is
stable with respect to the true preferences. In closing, I relate equilibrium strategy
pro�les in the games induced by both random and deterministic stable mecha-
nisms: for any random stable mechanism that always assigns positive probability
to two different matchings, I show that a strategy pro�le is an ordinal Nash equilib-
rium if and only if it has a unique stable matching and there exists a deterministic
stable mechanism where it is a Nash equilibrium.

1.4 Giving Advice and Perfect Equilibria in Matching Markets
It is well-known that in the game induced by a stable mechanism, every individ-
ually rational matching can be sustained in equilibrium. In this last Chapter I
attempt to provide a better prediction of the outcomes of such games by imposing
additional rationality requirements. Hence, Chapter 5 is a preliminary analysis of
ordinal perfect equilibria in matching markets. I show that, in the game induced
by a random stable mechanism, an ordinal perfect equilibrium strategy is exhaus-
tive, listing all the acceptable partners. It follows that some individually rational
matchings cannot be sustained in an ordinal perfect equilibrium. When either the
�rm-optimal or the worker-optimal mechanisms are considered, truth telling is the
unique ordinal perfect equilibrium that may emerge. It is thus apparent that ordinal
perfect equilibria rarely exist; in fact, truth telling is an ordinal perfect equilibrium
if and only if it is a Nash equilibrium in dominant strategies.
From a different point of view, the results in this paper allow for advising

agents about how to participate in these markets. I show that agents who are poorly
informed and aim at minimizing the probability of being unmatched, should list
all the acceptable partners in the game induced by a random stable mechanism. In
the game induced by the �rm-optimal or the worker-optimal stable mechanisms, I
go farther to suggest the honest revelation of one's preferences as a sensible form
of behavior.



Chapter 2
On Random Matching Markets:
Properties and Equilibria

2.1 Introduction
Simple models of two-sided matching have proved to be very useful in understand-
ing the organization and evolution of many markets, namely labor markets, as
well as other economic environments. The term �two-sided� refers to the fact that
agents belong to one of two disjoint sets and can never interchange roles. Thus,
we may have, for instance, �rms and workers, hospitals and interns, colleges and
students, men and women. Each agent has preferences over the other side of the
market and the prospect of being unmatched and the matching problem reduces
to assigning the members of these two sets to one another. When each agent may
be matched with at most one agent of the opposite set we speak of a �marriage
model.� This tractable model gives a lot of insight on many phenomena observed
in real markets as documented in the large body of literature devoted to it.1

Stable matchings are those that we may expect to observe in practice: if the
market outcome is unstable, there is an agent or a pair of agents (henceforth, a
�rm and a worker) with an incentive to circumvent the matching. Under a stable
matching every agent prefers his partner to being alone and, moreover, no pair
of agents, consisting of a �rm and a worker, who are not matched to each other
would rather prefer to be so matched. In a seminal paper, Gale and Shapley (1962)
demonstrated that at least one stable matching exists for every marriage market.
Their proof of existence of stable matchings consists of a procedure, the �deferred-
acceptance� algorithm which, for every stated preferences, transforms the empty
matching (in which all agents are unmatched) into a stable matching.
In this paper we consider an extension to Gale and Shapley's algorithm or,

to be precise, to the version proposed by McVitie and Wilson (1970). We start
from an arbitrary matching and the algorithm proceeds by creating, at each step, a
provisional matching. Hence, at each moment in time, a �rm is randomly chosen
and the best worker on its list of preferences is considered. If this worker is already
holding a �rm he prefers, the matching goes unchanged and this particular worker
is removed from the �rm's list. Otherwise, they are (temporarily) matched, pend-
ing the possible draw of even better �rms willing to match this worker. McVitie
and Wilson's algorithm is an instance of the one we are proposing, when the initial
matching is the empty matching. Moreover, it also encompasses the algorithm pro-

1 For an excellent survey on the matching problem, see Roth and Sotomayor (1990).
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posed by Blum, Roth, and Rothblum (1997) to explore the vacancy chain problem
when the input matching is �rm-quasi-stable (i.e., a matching whose stability was
disrupted by the emergence of a new position or the retirement of a worker).
We then analyze incentives in a centralized market where agents submit or-

dered lists of preferences on prospective partners to a clearinghouse, which then
produces a matching by processing these lists according to the algorithm we pro-
pose. The random order in which �rms are selected when the algorithm is run
introduces some uncertainty in the output reached. It may happen that, starting
with the same input matching, different executions of the algorithm yield different
outcomes for the same preference pro�le. Since agents' preferences are merely
ordinal in nature, we use a concept of equilibrium based on �rst-order stochastic
dominance. This guarantees that in equilibrium each agent plays his best response
to the others' strategies for every utility representation of the preferences.2 We
prove the existence of equilibria and show that some stability is preserved in every
equilibrium. Following the literature, we then focus on equilibria in which one
side of the market, in particular the �rms' side, tells the truth and provide a partial
characterization of such equilibria. Contrary to Gale and Shapley, possibly not
every stable matchings can be supported at equilibrium, since the initial matching
constrains the set of achievable matchings, but we will show that some stable
matchings can be reached with probability one. Furthermore, we prove that, even
though workers may not play straightforwardly, stability with respect to the true
preferences holds for any matching that results from a play of equilibrium strate-
gies in which �rms reveal their true preferences.
We proceed as follows. In Section 2.2 we present the simple marriage model

and introduce notation. We formally describe the algorithm in Section 2.3, show-
ing that it captures other algorithms. In addition, some of its features are explored.
In Section 2.4 we turn our attention to a different class of questions, related to
individual decision making. The matching process is modeled as a game and its
equilibria are characterized. Some concluding remarks follow in Section 2.5.

2.2 The Marriage Model
Consider two �nite and disjoint sets F = ff1; :::; fng and W = fw1; :::; wpg,
where F is the set of �rms and W is the set of workers. Let V = F [ W:
Sometimes we refer to a generic agent by v and we use f and w to represent
a generic �rm and worker, respectively. Each agent has a strict, complete, and
transitive preference relation over the agents on the other side of the market and re-
maining unmatched. The preferences of a �rm f , for example, can be represented
by Pf = w3; w1; f; w2; :::; w4, indicating that f 's �rst choice is to be matched to
w3, its second choice is w1 and it prefers remaining unmatched to being assigned
2 This concept has been used in the context of matching markets with incomplete information in
Roth and Rothblum (1999), Ehlers (2003, 2004), and Ehlers and Massó (2003).
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to any other worker. Sometimes it is suf�cient to describe only f 's ranking of
workers it prefers to remaining unmatched, so that the above preferences can
be abbreviated as Pf = w3; w1. Let P = (Pf1 ; :::; Pfn ; Pw1 ; :::; Pwp) denote
the pro�le of all agents' preferences; we sometimes write it as P = (Pv; P�v)
where P�v is the set of preferences of all agents other than v. Further, we may
use PU , where U � V , to denote the pro�le of preferences (Pv)v2U . We write
v0Pvv

00 when v0 is preferred to v00 under preferences Pv and we say that v prefers
v0 to v00. We write v0Rvv00, when v likes v0 at least as well as v00 (it may be
the case that v0 and v00 are the same agent). Formally, a marriage market is a
triple (F;W; P ). Let A(Pf ) denote the set of workers that are acceptable to �rm
f , i.e., A(Pf ) = fw 2 W : wPffg; A(Pw) is de�ned analogously. A pair
(f; w) 2 F �W is acceptable if f and w are acceptable to each other.
An outcome for a marriage market, a matching, is a function � : V �! V

satisfying the following: (i) for each f in F and for each w in W , �(f) = w if
and only if �(w) = f ; (ii) if �(f) 6= f then �(f) 2 W ; (iii) if �(w) 6= w then
�(w) 2 F . If �(v) = v, then v is unmatched under �, while if �(w) = f , we
say that f and w are matched to one another. A description of a matching is given
by � = f(f1; w2); (f2; w3)g, indicating that f1 is matched to w2, f2 is matched
to w3 and the remaining agents in the market are unmatched. A matching � is
individually rational if each agent is acceptable to its partner, i.e., �(v)Rvv, for
all v 2 V . We denote the set of all individually rational matchings by IR(P ).
Two agents f and w form a blocking pair for � if they prefer each other to the
agents they are actually assigned to under �, i.e., fPw�(w) and wPf�(f). A
matching � is stable if it is individually rational and it is not blocked by any pair of
agents. A matching � is �rm-quasi-stable if it is individually rational and if every
blocking pair for � contains an unmatched �rm. We denote the set of all stable
matchings by S(P ) and the set of all �rm-quasi-stable matchings by QS(P ). The
set S(P ) forms a lattice (see Roth and Sotomayor (1990) for a formal statement of
this result, attributed to John Conway), with the extreme elements being the �rm-
optimal stable matching �F and the worker-optimal stable matching �W . There
exists no stable matching � that matches any �rm f to a partner that it prefers to
�F (f). Analogously, �W is optimal for workers. Finally, we de�ne a �rm f and
a worker w to be achievable for each other if f and w are paired at some stable
matching.

2.3 The Algorithm
In this section, we provide an informal description of Gale and Shapley's algo-
rithm, as well as of the one proposed by Blum, Roth, and Rothblum (1997). Sub-
sequently, we present the generalized deferred-acceptance algorithm and explore
some of its properties.
Gale and Shapley (1962) showed that a stable matching exists for every mar-
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riage market. Their proof is in fact an algorithm for �nding such a matching.
Starting from a situation where no agent is matched, in the �deferred-acceptance�
algorithm (DA-algorithm), �rms propose to workers who can hold at most one
unrejected offer at any time. At any step of the algorithm, every rejected �rm
proposes to its next choice, as long as there are acceptable workers on its list to
whom it has not made an offer yet. The algorithm stops after the step in which
every rejected �rm has proposed to all of its acceptable workers.
McVitie and Wilson (1970) proposed a different version of this algorithm,

which turned out to be a key piece in obtaining the full set of stable matchings. The
difference with respect to the DA-algorithm is that at each step of this algorithm
only one randomly chosen �rm makes an offer. Nevertheless, the output matching
of McVitie and Wilson's algorithm is independent of the order in which �rms are
selected to propose and it coincides with the output produced by the DA-algorithm.
Furthermore, it is the �rm-optimal stable matching �F . (Alternatively, if in any of
the two algorithms described the workers proposed, �W would be obtained.)
These algorithms were used to study entry-level markets, characterized by the

availability of cohorts of vacant positions and, simultaneously, of candidates in
need of a position. Blum, Roth, and Rothblum (1997) developed a deferred-
acceptance algorithm to model senior level labor markets, where positions become
available when an incumbent worker retires or when a new �rm comes into the
market. This leads to vacancy chains, since as one �rm succeeds in �lling its
vacancy it may cause another �rm to have one. The algorithm starts with an
arbitrary matching, selects a �rm whose position is vacant and lets it approach
its most preferred workers in order of preference. At each step a blocking pair is
satis�ed, but only when the �rm's position is vacant and the offer is acceptable.
This process is iterated until there is no �rm eligible to propose. It is shown that
all executions of this algorithm with the same input terminate after a �nite number
of steps and yield the same output matching. Moreover, when the input matching
is �rm-quasi-stable, the algorithm terminates at a stable matching.

2.3.1 De�nition of the DA�I -Algorithm
In what follows, we describe a modi�ed version of McVitie and Wilson's algo-
rithm to be applied to any input matching. It differs from the algorithm proposed
by Blum, Roth, and Rothblum (1997) in the fact that not only �rms with vacancies
can make proposals. Indeed, any �rm can be greedy and invite the most preferred
workers on its list of preferences. Thus, starting with an arbitrary matching �I ,
at each step, a randomly selected �rm, say f , approaches the �rst worker on its
preference list to whom it has not made an offer yet, say w. If the worker rejects,
no change occurs. If the worker accepts, a new matching is formed where f and w
are matched and their previous partners�if any�remain unmatched. This process
is repeated until no �rm is willing or able to make a new offer (either its proposal
was accepted and is held by some worker or the �rm has already proposed to all
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the acceptable workers on its list). Formally:

De�nition 2.1 The Generalized Deferred-Acceptance Algorithm (DA�I -algorithm):

Input: a matching �I ; a preference pro�leP .
Initialization.

1. (a) For all f 2 F; A0f = A(Pf ) [ ffg;
(b) �0 = �I ; i := 1;

2. If, for all f 2 F , �i�1(f) = maxPf Ai�1f , then stop with �i�1.
3. Else, take any �rm f such that:

(a) eithermaxPf A
i�1
f = f and �i�1(f) 6= f , leading to �i = �i�1 nf(f; �i�1(f))g;

(b) ormaxPf A
i�1
f = w and �i�1(f) 6= w, in which case:

I. if �i�1(w)Pwf , then �i = �i�1 andAif = A
i�1
f nfwg,Aif 0 = Ai�1f 0 , for all

f 0 6= f ;
II. else:

(i) if �i�1(f) = f and �i�1(w) = w, then �i = �i�1 [ f(f; w)g and
Aif 0 = A

i�1
f 0 , for all f

0 2 F ;
(ii)if �i�1(f) 6= f and �i�1(w) = w, then �i = (�i�1 [ f(f; w)g)n
f(f; �i�1(f))g andAif 0 = Ai�1f 0 , for all f

0 2 F ;
(iii)if �i�1(f) = f and �i�1(w) 6= w, then �i = (�i�1 [ f(f; w)g)n
f(�i�1(w); w)g andAi�i�1(w) = A

i�1
�i�1(w)nfwg; Aif 0 = A

i�1
f 0 , for all

f 0 6= �i�1(w);
(iv)if �i�1(f) 6= f and �i�1(w) 6=w, then �i = (�i�1 [ f(f; w)g)n
f(f; �i�1(f));
(�i�1(w); w)g andAi�i�1(w) = A

i�1
�i�1(w)nfwg; Aif 0 = A

i�1
f 0 , for all

f 0 6= �i�1(w);
4. i := i+ 1; go to 2.

2.3.2 Properties of the DA�I -Algorithm
In the DA�I -algorithm no �rm proposes to the same worker twice: if a �rm, say
f , is rejected by some worker w at step i, he will not be part of Ai+1f and hence,
permanently removed from its list of workers to be proposed. This feature guar-
antees that cycling is avoided, ensuring that every execution of the algorithm with
an arbitrary input matching terminates after a �nite number of iterations. Still, as
the following example shows, for a given input matching and a preference pro�le,
the output matching need not be unique.
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Example 2.1 The outcome depends on the selection of the order by which �rms
propose.

Let (F;W; P ) be a marriage market with P such that

Pw1 = f2; f1 Pf1 = w1; w2
Pw2 = f1; f2 Pf2 = w2; w1:

Consider the DA�I -algorithm applied to P , with �I = f(f1; w2)g.
Start by considering the case in which f1 is the �rst to make an offer. Ac-

cording to the algorithm (step 3(b)IIii), f1 proposes to w1 and w1 accepts this
proposal, as he is initially unmatched and f1 is an acceptable �rm. Then, f2's
opportunity comes and it proposes to its most preferred worker, w2, who is cur-
rently unmatched (step 3(b)IIi). As both �rms are matched to the workers they
proposed to, the algorithm stops (step 2). The �rm-optimal matching �F =
f(f1; w1); (f2; w2)g is obtained.
Nevertheless, if the �rst randomly chosen �rm is f2, its proposal to w2 is

refused, as this worker is still matched to f1 (step 3(b)I). Then, we can either
have f2 proposing again or f1, both to w1. If f2 proposes �rst, w1 accepts (step
3(b)IIi); next, it must be f1's turn to propose to w1, who rejects this offer (step
3(b)I), and �nally to w2, who accepts it. On the other hand, if f1 proposes w1
�rst, he accepts (step 3(b)IIii); however, he exchanges it for f2, when this �rm
is given the opportunity to move (step 3(b)IIiii). Thus, according to this order of
proposals, f1 is also assigned to w2. In both cases, the worker-optimal matching
�W = f(f1; w2); (f2; w1)g is reached as the outcome of the DA�

I -algorithm. �

This example shows that different executions of the DA�I -algorithm with the
same input matching may yield different output matchings. In what follows we
will be more precise in describing this uncertainty and introduce some notation.
We consider lotteries over sequences of �rms, where each sequence corre-

sponds to an order in which �rms are given the opportunity to make an offer. The
randomization over the set of �rms is not simple: only �rms whose preference
lists have not been exhausted and that are not matched to their best elements are
contemplated. Therefore, given a sequence, we start from the last �rm that has
been considered and take the next �rm in the sequence that ful�lls these require-
ments. In between, every ineligible �rm (i.e., a �rm that is currently matched to
the best worker on its list of preferences or whose list of workers is already empty)
is discarded. The game ends when every �rm in the remainder of the sequence is
ineligible to propose. In order to ensure that, once started, every execution of the
algorithm is run to completion, we will allow for in�nite sequences, where each
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�rm appears an in�nite number of times. The sample space over which lotteries
are considered is denoted by �.
Although a random element appears each time a �rm is chosen, all the un-

certainty is fully translated into a probability distribution over the set of match-
ings. For each input matching and for each pro�le of preferences, a lottery over
matchings is obtained. Hence, �x a probability distribution on � and take an
initial matching �I , a preference pro�le P , and an arbitrary worker w: We will
letgDA�I [P ] denote the probability distribution over the set of matchings induced
by the DA�I -algorithm andgDA�I [P ](w) be the distribution thatgDA�I [P ] induces
over F [ fwg. The expression PrfgDA�I [P ] = �g represents the probability
that � is the output of the DA�I -algorithm with preferences P . Observe that this
probability rests on the probability distribution on�, but all results hold regardless
of this lottery. Finally, for all w 2 W , v 2 F [ fwg, the subset of all possible
orders leading to an output matching where w is assigned to v is denoted by �v;w.
In the particular case that the input matching is the empty matching, ;, a degen-

erate probability distribution over the set of matchings is obtained. In fact, it turns
out that, when �I = ;; the DA�I -algorithm specializes to McVitie and Wilson's
algorithm and the �rm-optimal stable matching is obtained with probability one.
For illustration, consider the matching market in Example 2.1 and assume the
algorithm starts with the empty matching. If f1 is the �rst �rm to propose, it
invites w1 and w1 accepts this proposal. Then, f2 follows and proposes to w2,
who also accepts. If we reverse the order of events and f2 is the �rst to move,
w2 accepts its proposal, given that he is currently unmatched; f1 invites the best
worker on its list, w1, who also accepts. Thus, we always reach �F for every order
of proposals.

Proposition 2.1 For any matching market (F;W; P ), PrfgDA;[P ] = �Fg = 1.
Proof. First, we will show that no worker rejects a proposal from its partner at
�F in any execution of the algorithm. By contradiction, assume that there exists
an order of proposals under which at least one worker rejects its partner at �F .
Suppose that w is the �rst worker to reject �F (w). Let f = �F (w) 2 F . This
implies w obtained a proposal from a �rm he strictly prefers, say bf . So, bfPwf ;
given that �F is stable, we must have �F ( bf)P bfw. Then, before inviting w; bf must
have proposed to �F ( bf) and �F ( bf) must have rejected its proposal, contradicting
the fact that w was the �rst worker to reject his partner at �F .
It follows that, in the output matching, for every order in which �rms propose,
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every �rm must be assigned to a worker at least as good as its mate at �F . Suppose
that there exists an output matching � and a �rm, say f 0, matched to some w0 2 W
under �, such that w0Pf 0�F (f 0). This implies that � is not stable by de�nition of
�F . Naturally, no �rm ever proposes to a worker that it �nds unacceptable; on the
other hand, a worker never accepts a proposal from an unacceptable �rm. Together
with the fact that every agent is unmatched in the initial matching, this implies that
� is individually rational. Thus, if � is not stable there must exist a pair that blocks
�; say f 00 and w00. Since w00

Pf 00�(f
00
), f 00 must have proposed to w00 and w00 must

have rejected this proposal. But this means w00 received a better offer, from a �rm
he strictly prefers to f 00. Then, �(w00

)Pw00f
00 , contradicting the fact that f 00 and w00

block �. As a consequence, no �rm can be matched to a worker it strictly prefers
to its partner at �F . Therefore, for every order of proposals, �F is the matching
that is reached as the outcome of the DA;-algorithm.

Another case worth describing is when the input matching is a �rm-quasi-
stable matching, as de�ned by Sotomayor (1996) and Blum, Roth, and Rothblum
(1997). In Proposition 2.2 we show that when the initial matching is �rm-quasi-
stable, the same stable output matching is obtained, independently of the order in
which �rms propose.
Remark 2.1 turns out to be crucial in what follows.

Remark 2.1 The DA�I -algorithm implies that once a �rm proposes to a worker
and he accepts, this �rm cannot �re him nor exchange him for another worker.
In fact, when the proposal is made, the �rm reveals that this particular worker
is the best among all who have not rejected it. If the worker accepts, the only
occasion under which the �rm can make a proposal again is when the worker it
holds accepts an offer from a different �rm.

Proposition 2.2 Let (F;W; P ) be a matching market. For all �I 2 QS(P ), there
is some � 2 S(P ) such that PrfgDA�I [P ] = �g = 1:
Proof. Take �I 2 QS(P ). For every order of proposals, the �rst �rm to have
its offer accepted must be unmatched at �I . In fact, by de�nition of �rm-quasi-
stability, if (f; w) blocks �I , f must be unmatched at �I . Assume hence that f
proposes to w and that this proposal is the �rst to be accepted. It follows that, after
this acceptance, w is strictly better off and every other worker is holding its initial
partner. The rest of the proof now follows using an induction argument.
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Suppose that up to step i in the algorithm only �rms with vacancies have had
their proposals accepted. Let �i be the matching at the beginning of step i + 1.
Assume that all workers are weakly better off at �i than at the initial matching �I .
We will show, by way of contradiction, that the next �rm to be accepted by some
worker must be unmatched. So assume that f is matched to w at �i, it proposes
to w0 and this proposal is accepted. Thus, at �i+1, f and w0 are matched to each
other and their former partners are unmatched. By Remark 2.1, if f is matched
to w at �i and it is willing to propose to another worker, it must be the case that
�I(f) = w. Now, by assumption, �i(w0)Rw0�I(w0). Since fPw0�i(w0), we have
fPw0�

I(w0). Further, w0Pf�I(f) = w. Thus, (f; w0) form a blocking pair to �I
and �I(f) 6= f , contradicting the fact that �I 2 QS(P ).
The algorithm starts with an unmatched �rm having its proposal accepted and

we have proved that it must continue to be so. It follows that the DA�I -algorithm
reduces to Blum, Roth, and Rothblum's algorithm when �I is �rm-quasi-stable
and all of its results are replicated. Thus, given a matching market (F;W; P ) and
an input matching �I 2 QS(P ), the same stable matching will be obtained in any
execution of the algorithm.

Starting with a �rm-quasi-stable matching, the DA�I -algorithm replicates Blum,
Roth, and Rothblum's algorithm and a stable matching is obtained with probability
one. In the general case, however, we have shown that in a market (F;W; P ),
given �I , different outcomes may be reached depending on the order in which
�rms propose. Furthermore, as the following example shows, unstable matchings
may be obtained with positive probability.

Example 2.2 An output matching may not be stable.

Let (F;W; P ) with F = ff1; f2g,W = fw1; w2g and preferences such that

Pw1 = f2; f1 Pf1 = w1
Pw2 = f2 Pf2 = w2; w1:

Let the initial matching be �I = f(f2; w1)g and suppose f1 is the �rst �rm to make
a proposal. Then, f1 invites w1, the only worker on its list of preferences and w1
rejects this proposal, given that he is still holding f2 (step 3(b)I). When f2 is given
its turn to move, it proposes to w2. Since he is alone and f2 is the only acceptable
�rm, w2 accepts this offer (step 3(b)IIii) and the matching � = f(f2; w2)g is
obtained. It is easy to see that f1 and w1 block �: �

An execution of the DA�I -algorithm with arbitrary input matching need not
be stable. Further, any worker involved in instability of the output matching �
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must have been matched under the input matching.3 And, if some �rm is part of a
blocking pair for �, it must have been rejected by the worker with whom it forms
a blocking pair for � along the execution of the algorithm.4

In the following results we describe some further characteristics of the output
of the DA�I -algorithm as a function of the initial matching �I . First, it is shown
that if a worker ends up strictly worse off in the output matching, then there must
be at least one worker that strictly improves his match. The only instance under
which this can be violated is when the input matching is not individually rational.

Proposition 2.3 Let (F;W; P ) be a marriage market and �I 2 IR(P ). Let � 6=
�I be such that, for all w 2 W , �I(w)Rw�(w). Then, PrfgDA�I [P ] = �g = 0.
Proof. By contradiction, let us suppose that, given an individually rational �I , a
matching � such that � 6= �I and �I(w)Rw�(w) for all w 2 W is reached under
some execution of the algorithm. This means that every worker weakly prefers the
initial matching �I and that there exists at least one worker that strictly prefers it.
No unmatched worker would accept to �ll a position in an unacceptable �rm.

Therefore, a worker who is strictly worse off in the output matching � must have
started matched. Moreover, he must have been �red by his initial partner. So,
assume w1 is the �rst worker to be �red by �I(w1). This implies that either
�I(w1) �red w1 to be alone or it proposed to another worker, say w2, and he
accepted. In the former case the individual rationality of �I is contradicted. In
the latter case, since by assumption w2 is still holding �I(w2), we must have
�I(w1)Pw2�

I(w2). By Remark 2.1, w2 will never end up worse off in the output
matching, contradicting the de�nition of �.

A slightly weaker result holds for the �rms. An output matching where every
�rm is matched to a worker ranked lower than its initial partner in its preference list
cannot be reached with positive probability. Example 2.3 shows that the require-
ment of having every �rm strictly worse off in the output matching is necessary.
Subsequently, we state the result.

3 The instability of � may be due to lack of individual rationality for some worker or to the
existence of some blocking pair. In both cases, it is necessary that the worker involved is matched
to a �rm at �I ; in particular, if � is not individually rational for some worker, then �I cannot be
individually rational either.
4 In fact, the only instance under which a blocking pair may arise is when at some point a
worker rejects a proposal from an acceptable �rm, say f , because he is still holding the initial
partner, ranked higher in his list of preferences. In this case, it may happen that the worker ends
up being assigned to a �rm he considers worse than f and, as a consequence, he will block the
output matching together with f .
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Example 2.3

Let (F;W; P ) be a matching market where P is given by:

Pw1 = f1; f2 Pf1 = w2; w1
Pw2 = f2; f3; f1 Pf2 = w1; w2

Pf3 = w2;

and let the input matching be �I = f(f1; w2); (f2; w1)g. Every execution of
the algorithm leads to the matching � = f(f1; w1); (f2; w2)g. In fact, for
every order in which �rms propose, when f3 is given the opportunity to act, it
makes a successful offer to w2, who is still holding f1 at that point. Later, f1 is
forced to propose to w1 and f2 ends up matched to w2. Hence, � 6= �I such that
�I(f)Rf�(f) for every f 2 F is reached with probability one. �

Proposition 2.4 Let (F;W; P ) be a marriage market, and let �I be an arbi-
trary input matching. Let � be such that �I(f)Pf�(f); for all f 2 F . Then,

PrfgDA�I [P ] = �g = 0.
Proof. Notice that if some �rm is not matched at �I , then the result trivially holds,
since no �rm will ever propose to an unacceptable worker. So, let us assume every
�rm in F is matched under �I . The argument now follows by contradiction. Let
� be such that �I(f)Pf�(f); for all f 2 F and assume that there is an execution
that leads to �.
Claim 1 The set of unmatched workers is the same under both �I and �.
Proof. Notice that every worker who is initially assigned to a �rm cannot end

up alone in the output matching �. Assume not and, without loss of generality,
let us say w such that �I(w) 2 F is unmatched under �. This implies that
�I(w) �red w. In addition, it follows from Remark 2.1, that no �rm, including
�I(w), proposed to w later on. But if this is so, �I(w) must end up matched to
a worker ranked higher than w in its list of preferences. This contradicts the fact
that �I(f)Pf�(f); for all f 2 F .
Claim 2 Every �rm is matched under �.
Proof. Immediate from Claim 1 and the fact that every �rm starts matched.
Claim 3 An initially unmatched worker accepts no proposals along the execu-

tion.
Proof. This follows from Remark 2.1 and Claim 1.
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Consider the last step at which a proposal is made by a �rm f and accepted
by a worker w. (Note that if no proposal is accepted along the execution, then
� = �I , contradicting the de�nition of �:) At the last step of the algorithm, w
must be unmatched when he accepts f 's proposal. Otherwise, the �rm held by w
would be unmatched under �, which contradicts Claim 2.

By Claim 3, w must be matched under �I , let us say bf = �I(w). Firm f
is not w's initial partner, or else �I(f) = �(f), contradicting the de�nition of
�. By Claim 2 and given that we are considering the last step of the algorithm,bf is matched at this stage. Given that every �rm is worse off under the output
matching, it must be the case that bf is matched to a worker ranked lower than w in
P bf . As a consequence, bf must have proposed to w and this proposal was rejected.
By Remark 2.1, this implies that w is matched to a �rm preferred to bf at this last
step of the algorithm and we get another contradiction: w was not alone when he
accepted f 's proposal.

2.4 The Game

We have so far informally described an algorithm in terms of the actions of the
agents�proposals by the �rms, and acceptances and rejections by the workers.
Consider now a mechanism where agents face the single decision of submitting
lists of preferences over prospective partners to a central clearinghouse, which
uses this information to arrange a matching of workers to �rms by means of the
generalized deferred-acceptance algorithm. Clearly, in the game induced by this
mechanism, agents may behave strategically: �rms may choose not to reveal how
they rank the workers in the market, or it may be sensible for workers to put
forward other than their true ordering of positions. Therefore, we will now turn
to a different class of questions, investigating how we may expect individuals to
behave. In this section we discuss the strategic environment facing the agents in
the revelation game induced by the DA�I -algorithm.
Since we are dealing with a centralized market, the strategy space of a player in

the game is con�ned to the set of all possible preference lists over the other side of
the market. Hence, strategies will be represented by the corresponding preference
pro�le�Q; for instance�while true preferences will always be denoted by P .
To address strategic questions we need to develop ideas about what constitutes

a �best decision� to be taken by an agent. With this purpose in mind, take two
probability distributions over the set of matchings, e� and e�0. Without loss of
generality, consider w 2 W (what follows also holds for a representative �rm,
with the obvious modi�cations); e�(w) and e�0(w) denote the distributions induced
over w's set of assignments by e� and e�0, respectively. We say that e�(w) �rst order
stochastically Pw-dominates e�0(w) if Prfe�(w)Rwvg � Prfe�0(w)Rwvg, for all
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v 2 F [ fwg. Thus, for all v 2 F [ fwg, the probability of w being assigned
to v or to a strictly preferred agent is higher under e�(w) than under e�0(w). Now,
consider the problem that player w would face if the strategy choices Q�w of the
other players were known. In this case, any strategy Qw by w would determine
the probability distribution induced by the mechanism over the set of matchings.
Therefore, a particular strategy choice Qw is preferred if the induced probability
distribution over the set of matchings stochastically dominates the one induced by
any other alternative strategy.

De�nition 2.2 GivenQ�w and the preferences Pw, we say that a strategyQw sto-
chastically Pw-dominates another strategy bQw if, for all v 2 F [fwg, PrfgDA�I [
Qw; Q�w] (w)Rwvg � PrfgDA�I [ bQw; Q�w](w) Rw vg. In a similar way, given
Q�f and the preferences Pf , we de�ne stochastic Pf -dominance.

In a problem like the one described here, each agent must make a decision
without knowing the strategies of the others. It may happen that an arbitrary agent
v has a strategy that is a best response to every pro�le of strategies that the other
players may choose. In this case, we say v has a dominant strategy.

De�nition 2.3 Given an initial matching �I and the preferences Pv, a domi-
nant strategy for v 2 V is a strategy Qv that, for every Q�v, stochastically
Pv-dominates every alternative strategy bQv:
In Example 2.1, we have shown that the outcome of the generalized deferred-

acceptance algorithm may depend on the random order in which �rms' lists are
considered. Thus, the study of Nash equilibria in the game induced by the mech-
anism we have described would require us to consider not merely agents' pref-
erences over riskless outcomes, but also over lotteries. Since agents' preferences
are ordinal and no natural utility representation of these orderings exists, we will
adopt the following equilibrium notion.

De�nition 2.4 Given an initial matching �I and a pro�le of preferences P , the
pro�le of strategies Q is an ordinal Nash equilibrium (ON equilibrium) if, for
each player v in V , Qv stochastically Pv-dominates every alternative strategy bQv,
given Q�v.

It is clear that we will be concerned in �nding a pro�le of strategiesQ with the
property that once they are adopted by the agents, no one can pro�t by unilaterally
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changing his strategy; further, this is true for all possible utility representations of
agents' preferences. This means that by using a strategy other than Qv, for any v0
(an agent with whom it may end up matched), v will not be able to strictly increase
the probability of obtaining v0 and all agents ranked higher than v0 in Pv.

2.4.1 Strategic Questions
In the revelation game induced by Gale and Shapley's DA-algorithm, straightfor-
ward behavior is not in every agent's best interest. This means that some agent
may have an incentive to misrepresent its preferences. Given that the DA�I -
algorithm replicates Gale and Shapley's when the initial matching is the empty
matching, truth telling may not be an ordinal Nash equilibrium in the revelation
game induced by the DA�I -algorithm.
Nevertheless, acting according to the true preferences is a dominant strategy

for �rms in Gale and Shapley's environment (Dubins and Freedman, 1981, and
Roth, 1982). So, in what �rms are concerned, there is a clear sense in which
honesty is the best policy under the DA�I -algorithm in the particular case that �I
is the empty matching. Moreover, if �I is �rm-quasi-stable, �rms' true preferences
remain a dominant strategy (Blum, Roth, and Rothblum, 1997). Unfortunately, as
shown in the example below, truth is not a dominant strategy for �rms when an
arbitrary input matching is considered. Clearly, a �rm will not bene�t from using
a truncation of its true preference list (i.e., a strategy that, besides ranking the
workers in the same way as the true preference relation, each of its acceptable
workers is under the true preferences both acceptable and preferred to any worker
which is unacceptable in the truncation strategy). Other manipulations, however,
like ranking as acceptable an unacceptable worker, may be bene�cial.

Example 2.4 Revealing the true preferences is not a dominant strategy for all
�rms.

Let (F;W; P ) be a matching market with P given by:

Pw1 = f2 Pf1 = w2
Pw2 = f3; f1 Pf2 = w1
Pw3 = f3 Pf3 = w3; w2:

Let �I = f(f3; w2)g. Let Qf1 = w1, w2 be an alternative strategy for f1. Assume
that every agent except for f1 submits the true preferences. By using either Pf1
or Qf1 , f1 may end up matched to w2 or unmatched. Consider every sequence
for which f1 is unmatched under the output matching when using Qf1 , i.e., every
sequence where f1's second draw happens to be before f3 is considered for the
�rst time. Clearly, in these sequences, the �rst time f1appears is also before f3,
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so that f1 also ends up unmatched by using Pf1 . However, consider, for instance,
the sequence that starts with f1, immediately followed by f3: In this case, f1 ends
up matched to w2 only if it acts according to Qf1 . Otherwise, by using Pf1 , the
�rst time f1 is drawn and its willingness to match w2 is taken into account, w2 is
still holding f3. Since w2 prefers f3 to f1, this worker keeps f3 and f1 ends up
unmatched. It follows that f1 pro�ts by deviating from its true preferences. �

2.4.2 Ordinal Nash Equilibria
We have observed that faithfully transmitting the true preferences is not necessar-
ily an ordinal Nash equilibrium. Therefore, we need to ask whether ordinal Nash
equilibria always exist in the revelation game induced by the DA�I -algorithm.
Proposition 2.6 will show that they do: when �I is individually rational, every
element of a non-empty subset of IR(P ) can be sustained in equilibrium with
probability one.

De�nition 2.5 Let �I be an arbitrary matching. We say that � is individually ra-
tional with respect to �I if � 2 IR(P ) and if, for all f 2 F , w0 = �I(f)Pf�(f),
implies �(w0) 6= w0.

We will denote by IR�I (P ) the set of all individually rational matchings with
respect to �I . For illustration, in the particular case that �I is the empty matching,
the set of all individually rational matchings with respect to this initial match-
ing coincides with the set of individually rational matchings (i.e., IR?(P ) =
IR(P )).5 In what follows we show that this set is always non-empty.

Proposition 2.5 Let �I be an individually rational matching for (F;W; P ). Then,
S(P ) is a subset of IR�I (P ).

Proof. Consider � 2 S(P ). We will prove that � 2 IR�I (P ) using a contra-
diction argument. Assume that � 2 S(P ): By de�nition of stability, this implies
� 2 IR(P ), but assume that there exists a �rm f such that w0 = �I(f)Pf�(f)
and �(w0) = w0. Stability of � implies that w0Pw0f and we get a contradiction:
�I is not individually rational. Therefore, every stable matching is an element of
IR�

I
(P ).

5 This holds since if fPf�(f), then �(f) 6= f .
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Proposition 2.6 Let �I be an individually rational matching for (F;W; P ) and
let � 2 IR�I (P ). Then, there exists an ordinal Nash equilibrium Q in the revela-
tion game induced by the DA�I -algorithm that leads to �. Furthermore, PrfgDA�I
[Q] = �g = 1.

Proof. De�ne Qv = �(v), for all v 2 V . It is clear that every play of the game
with the pro�le Q will lead to the output matching �. Thus, PrfgDA�I [Q] = �g =
1.
Let us show that for every �rm f , Qf is a best reply to Q�f . First, as long as

�(f) 6= �I(f), f never holds its initial match under �. Indeed, it is clear that if
�I(f)Pf�(f), then �I(f) receives and accepts another �rm's proposal (and in the
case that �(f)Pf�I(f), �I(f) is not a temptation). Hence, when �(f) 2 W , given
that the only worker willing to accept f 's proposal is �(f), the only choice f can
actually make is between being assigned to this worker or staying alone. From
individual rationality we have �(f)Pff which implies that f will not be able to
pro�t from deviating from Qf . Obviously, for f such that �(f) = f , no worker
accepts f 's proposal and it can do no better than staying alone.
Finally, for any w, Qw is a best reply to Q�w. In fact, given �rms' strategies,

w gets at most one proposal and, considering � is individually rational, the best he
can do is to accept it. This completes the proof.

Although the strategies used can be seen as an amazing act of coordination,
they serve the purpose of �nding a suf�cient condition for ordinal Nash equilib-
rium outcomes. In what necessary conditions for equilibrium are concerned, it is
obvious that every output matching reached with positive probability in equilib-
rium must be individually rational with respect to true preferences. Furthermore,
in the result that follows, we will show that some stability is preserved in every
ordinal Nash equilibrium.

Theorem 2.1 Let �I be an individually rational input matching for (F;W; (QF ;
PW )). Assume that the strategy pro�le Q is an ordinal Nash equilibrium in the
revelation game induced by the DA�I -algorithm. Then, the probability distribution
obtained over the set of matchings is such that every element in its support is a
member of S(QF ; PW ).

Proof. Suppose that f�1; :::; �kg is the support of the distribution induced by the
DA�I -algorithm over the set of matchings. Assume that for some i 2 f1; :::; kg;
�i =2 S(QF ; PW ). We will prove that Q is not an ON equilibrium.
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To start, notice that for every �rm f it must be the case that its assignment,
�i(f), is individually rational with respect to Qf , as this is the strategy �rm f is
using. On the other hand, individual rationality with respect to P must hold for
every worker. Assume that this is not the case and that there exists a worker, say
w, such that wPw�i(w). Individual rationality of the matching �I implies �i(w) 6=
�I(w). Hence,wmust have, at some point, accepted �i(w)'s proposal. This means
that under Qw we have �i(w)Qww. Now take an alternative strategy eQw in which
all �rms are considered unacceptable, meaning that no offer is accepted by w. By
using eQw, w may end up unmatched or matched to his original �rm �I(w), but he
is never assigned to a �rm considered unacceptable under Pw. Thus, the following
holds:

1 = PrfgDA�I [ eQw; Q�w](w)Rwwg > PrfgDA�I [Q](w)Rwwg
and Qw is not a best reply to Q�w.
We have proved that �i is individually rational. Thus, there must exist a block-

ing pair for �i when the preference pro�le (QF ; PW ) is considered. Let us say
(f; w) blocks �i, i.e., fPw�i(w) and wQf�i(f). This implies that f proposed to
and was rejected by w in the course of every execution leading to �i. By Remark
2.1, either �i(w)Qwf (case (i)) or, if not, w must have rejected f while he was still
holding �I(w) and �I(w)Qwf (case (ii)).
(i) Assume �i(w)Qwf . We will prove that Qw is not a best reply to Q�w.

De�ne eQw that preserves the same ordering as in Qw, except that f holds the �rst
position under eQw. Formally, for all v, bv 2 (Fnffg) [ fwg, [v eQwbv () vQwbv]
and f eQwv.
Let us prove that the probability of being assigned to f is strictly higher undereQw than under Qw. We know that in a path leading to �i, �rm f must have pro-

posed to w. If, instead of using Qw, w deviates and acts according to eQw, w holds
f until the algorithm stops. Thus, every order that originally lead to �i results in
an output matching where f and w are together. If, under Qw, �f;w = ;, so that
f and w are never matched under the original strategy pro�le, then the probability
of having f and w matched is strictly increased when w deviates. Otherwise, for
�f;w 6= ;, by moving f up in the ranking of w's preferences, f is still assigned to
w for every element of �f;w. Indeed, under any such order of offers, f proposes
to w, whether w is using Qw or eQw, and in both cases w accepts this offer. Hence,
the probability of having f and w matched is also strictly increased when w useseQw.
In order to prove Qw is not a best reply to Q�w, assume, without loss of

generality, that Pw = f1, f2,..., fm�1, f , fm+1,..., w,..., fn. Consider a �rm fj , with
j = 1; :::; m � 1, and consider �fj ;w when Qw is used. It cannot be guaranteed
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that every element in �fj ;w still gives fj assigned to w when he deviates and acts
according to eQw. Clearly, if fj is ranked below f in Qw, no change occurs. If fj
is ranked higher than f , for all the orders in �fj ;w that involved f proposing w
at some step of the algorithm, by using eQw, w now holds f 's proposal until the
end. Thus, for every element of �fj ;w, w either ends up matched with fj or with
f . Hence,

PrfgDA�I [ eQw; Q�w](w)Rwfg > PrfgDA�I [Q](w)Rwfg;
contradicting that Q is an ON equilibrium.
(ii) Now take the case in which �I(w)QwfQw�i(w) (notice f 6= �i(w), other-

wise f and w could not block �i). De�ne the deviation, eQw, as before. Under eQw,
w accepts f at any step of the algorithm and hold its offer until the end. Then, it is
obvious that the chances of having f matched to w in the �nal output increase�at
least�in the probability of all orders of proposals that originally lead to �i.
Again, suppose Pw = f1, f2,..., fm�1, f , fm+1,..., w,..., fn. Using the same

argument as before, we can guarantee that for any order of proposals that gives w
matched to any �rm fj , j = 1; :::; m� 1, by acting according to eQw, w will either
be assigned to f or to fj . Once more, it is true that Qw is not a best reply to Q�w
as

PrfgDA�I [ eQw; Q�w](w)Rwfg > PrfgDA�I [Q](w)Rwfg:
This completes the proof.

An immediate implication of this result is worth noticing. As proved in McVi-
tie and Wilson (1970) and Roth (1982), in a market (F;W; P ) with strict prefer-
ences, the set of unmatched agents is the same for all stable matchings. Hence,
for any two matchings that arise with positive probability under an ordinal Nash
equilibrium, the set of unmatched agents is the same�when agents act strategi-
cally, no one can hold chance responsible for ending up unmatched. This provides
a further step towards describing ordinal Nash equilibria.
The following result is an important special case of Theorem 2.1.

Corollary 2.1 Let �I be an individually rational input matching for (F;W; P ).
Assume (PF ; QW ) is an ordinal Nash equilibrium in the revelation game induced
by the DA�I -algorithm. Then, the probability distribution obtained over the set of
matchings is such that every element in its support is a member of S(P ).

Proof. Immediate from Theorem 2.1 with QF = PF .
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Remarkably, in any equilibrium in which �rms play straightforwardly stability
with respect to true preferences is recovered. This result generalizes a known
feature of the game induced by Gale and Shapley's mechanism (Roth, 1984b),
as well as a result obtained by Blum, Roth, and Rothblum (1997) with a �rm-
quasi-stable matching as an input. Focusing on truth telling is easily justi�able. In
some settings, sophisticated strategic play by one side of the market does not even
make sense (e.g., universities select students according to their grades). Also, in
an environment where agents do not know how the others will play and given the
multiplicity of available strategies, acting according to the true preferences can be
seen as an easy resort.
When the initial matching is empty, any stable matching can result from some

equilibrium where �rms play according to their true preferences (Gale and So-
tomayor, 1985). Thus, a group of workers with more than one achievable out-
come can reveal preferences to compel any jointly achievable outcome. Moreover,
Blum, Roth, and Rothblum (1997) have shown that this result can be generalized
to a game that starts at a �rm-quasi-stable matching as long as agents must use
strategies that are identi�able with preference lists. It is no longer the case that
every stable matching can be reached; what happens is that any jointly achievable
outcome for the workers that are unmatched at �I can result from an equilibrium
in which �rms use their true preferences. In the next proposition we extend these
results.

De�nition 2.6 Let � 2 S(P ). Let �I be an arbitrary matching. We say that �
is stable with respect to �I if, for all f 2 F such that �I(f)Pf�(f); we can
de�ne a non-empty subset of �rms bF (f) = ff1; f2; :::; frg, r � n, for which the
following conditions hold:

1. �(fi+1) = �I(fi); for all i = 1; :::; r � 1, and �(f1) = �I(fr);
2. �(�I(f)) 2 bF (f);
3. �(fi)Pfi�I(fi), for some i = 1; :::; r:

Let S�I (P ) be the set of all stable matchings with respect to �I . This set may
be empty, as the following example shows.

Example 2.5 (Example 2.3 continued)

In the matching market of Example 2.3, the only stable matching is � =
f(f1; w1); (f2; w2)g. Comparing � with the initial matching �I = f(f1; w2);



2.4 The Game 23

(f2; w1)g, it is clear that no �rm is strictly better off under � than under �I :Hence,
condition 3 is not ful�lled and S�I (P ) is empty. �

We will show that, when �I is individually rational and S�I (P ) is non-empty,
there is an ordinal Nash equilibrium where �rms tell the truth leading to each
element of S�I (P ). As it will become clear when the equilibrium strategies are
described, a lot of coordination is still needed to achieve a particular equilibrium.

Proposition 2.7 Let �I be an individually rational input matching for (F;W; P ).
Let � 2 S�

I
(P ). Then, there exists an ordinal Nash equilibrium (PF ; QW ) in

the revelation game induced by the DA�I -algorithm that leads to �. Moreover,
PrfgDA�I [PF ; QW ] = �g = 1.
Proof. De�neQw = �(w), for all w 2 W . Let us start by showing that the pro�le
of strategies (PF ; QW ) always leads to the matching �, i.e., PrfgDA�I [PF ; QW ] =
�g = 1. If this is not the case, then there exists an order of proposals leading
to b� 6= �. But this is equivalent to having a �rm, say f , whose partner, b�(f), is
different from �(f) after some execution of the algorithm. Given the strategies of
the workers, we can either have b�(f) = f�when f 6= �(f)�or b�(f) = �I(f)�
if �I(f) 6= �(f). To start, assume that b�(f) = f . Since �(f) would accept f 's
proposal and f is acting according to its true preferences, it must be the case that
fPf�(f). But this contradicts the stability of �. Now suppose that b�(f) = �I(f),
with �I(f) 6= �(f). Again, given f 's strategy, we must have �I(f)Pf�(f). Be-
sides, �I(f) cannot be matched under �. Otherwise, he would receive and accept
a proposal from its assignment at � (notice that from the de�nition of S�I (P )
there exists bf 2 bF (f) such that �( bf)P bf�I( bf), guaranteeing that such a proposal
would actually be made). So assume that �I(f) is unmatched at �. However,
we know that fP�I(f)�I(f) by individual rationality of �I . Also, as � is stable,
�I(f)must prefer to be matched to its partner at �, rather than staying with f , i.e.,
�(�I(f))P�I(f)f . Thus, we have �(�I(f)) 6= �I(f) and, once more, we obtain a
contradiction.
Let us now prove that, for every �rm f , Pf stochastically Pf -dominates every

other strategy Qf . We will consider the most general case, assuming that �I(f)
and �(f) 2 W and �I(f) 6= �(f) (the proofs for other cases follow easily from
this one). Given that the only worker who is willing to accept f is �(f), by
choosing its strategy appropriately, f can either be alone, hold �(f) or, eventu-
ally, remain with �I(f) under the output matching. By stability of �, �(f)Pff .
If, additionally, �(f)Pf�I(f); �rm f can do no better than obtaining �(f) and
truth telling guarantees �(f) is assigned to f with probability one. Otherwise, if
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�I(f)Pf�(f), f is not able to retain �I(f). In fact, given the de�nition of S�
I
(P ),

�I(f) is matched to some �rm under � and obtains a proposal from this �rm. Thus,
f cannot do better than being assigned to �(f) and Pf stochastically Pf -dominates
every other strategy Qf .
Now take the case of an arbitrary worker, w. Suppose, by way of contradiction,

thatQw does not stochastically Pw-dominate a different strategy bQw. This implies
that PrfgDA�I [PF ; bQw; Q�w](w)Rw�(w)g = 1 and that there exists a �rm, say

f , such that the following holds: fPw�(w) and PrfgDA�I [PF ; bQw; Q�w](w) =
fg > 0. But this means that, for some order of proposals, f approaches w before
making an offer to �(f). In fact, it cannot be the case that f proposes to �(f) �rst
and he does not accept it, as �(f) is acting according to his original strategy,Q�(f).
Thus, f must prefer w to �(f). However, in this case (f; w) forms a blocking pair
for �, contradicting the fact that � is stable.

Proposition 2.7 showed that there are ordinal Nash equilibria at which �rms
reveal their true preferences and the output is stable for the true preferences.
These equilibria involve misrepresentation by the workers. Further, by misstating
their preferences �appropriately,� workers can compel the best achievable stable
matching. However, as the following example shows, the above proposition does
not exhaust all ordinal Nash equilibria.

Example 2.6 (Example 2.3 continued) There may be more ordinal Nash equilib-
ria than those given in Proposition 2.7.

Recall that in the matching market in Example 2.3, when �I = f(f1; w2);
(f2; w1)g is considered, every execution of the algorithm with P leads to � =
f(f1; w1); (f2; w2)g: Under �; workers obtain the best possible positions and
�rms cannot improve by deviating. No manipulation will enable f1 and f2 to keep
the workers they hold under �I ; given the presence of f3. As a result, P is an
ordinal equilibrium, even though S�I (P ) is empty. �

2.5 Concluding Remarks

In this paper we have tried to extend the theoretical analysis of two-sided match-
ing models, by describing a mechanism that generalizes the original deferred-
acceptance algorithm proposed by Gale and Shapley (1962). In fact, we consider
matching beginning from arbitrary input matchings instead of just from the empty
matching, under which all candidates and positions are available. Furthermore,
we have shown that the outlined mechanism encompasses Blum, Roth, and Roth-
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blum's, in the particular case that we start from a �rm-quasi-stable matching (a
stable matching destabilized by the entry of a �rm or the retirement of a worker).
The strategic decisions facing players were also considered, in a revelation

game that follows the rules laid out by the algorithm at hand. The uncovered
results extend those obtained for the Gale and Shapley's DA-algorithm. It is shown
that in general truth revealing behavior is not an equilibrium, but that there may
be equilibria at which �rms behave straightforwardly. A class of equilibria is
described in which this side of the market plays according to the true preferences
and, although the workers need not be frank about their preferences, outcomes
are stable. Nevertheless, some of the presented equilibria are unlikely to be ob-
served in reality. In fact, the strategies described for the workers require a lot
of coordination among them and the multiplicity of equilibria gives no clue to the
form that a sensible strategy should have. A perhaps more serious drawback of this
analysis concerns truth telling by �rms. How plausible is straightforward behavior
by �rms is a question to be explored. A natural direction to pursue further research
will be into characterizing equilibria in a more precise way, in particular equilibria
where �rms are not restricted to truth telling. It was shown that a good part of the
individually rational matchings can be obtained as a result of an equilibrium play
and that every equilibrium output obeys some form of stability.
In closing, when describing the algorithm, we have assumed that only one side

of the market��rms, to be precise�can actually make proposals. However, some
of the above results can be extended to a mechanism in which, at each step, an
arbitrarily chosen agent��rm or worker�is selected to make a proposal. It turns
out that, starting from an arbitrary matching, every ordinal Nash equilibrium out-
come must be individually rational. Conversely, every individually rational output
matching can be obtained with probability one in equilibrium. Finally, in what
equilibria where one side of the market tells the truth are concerned, every stable
matching that agents belonging to the truthful side of the market weakly prefer
to the initial matching can be sustained as the unique outcome of an equilibrium
play.



Chapter 3
Incentives in Decentralized Matching

Markets

3.1 Introduction

The study of centralized markets has been privileged in the two-sided matching
literature. The introduction of centralized matching procedures in markets that
experienced certain kinds of failures is partially responsible for such dedication.
In fact, a number of markets�for physicians, lawyers, dentists, and osteopaths,
among others�have adopted central clearinghouses after periods of uncontrolled
unraveling of appointment dates and chaotic recontracting.6 These markets now
work by having each agent of the two sides of the market submit a rank ordered
preference list of acceptable matches to the central clearinghouse, which then pro-
duces a matching by processing all the preference lists according to an algorithm.
Roth (1984a, 1991) showed that the algorithms used in most of the successful
clearinghouses roughly follow the lines of Gale and Shapley's deferred acceptance
algorithm (Gale and Shapley, 1962). This procedure generates a matching of
workers to positions that is stable in terms of the submitted preferences in the
sense that no worker and �rm that are not matched to each other would prefer to
be so matched.7

In contrast, decentralized markets have received relatively little attention.8 The
exact set of rules that governs a centralized market, making it particularly amenable
to analysis, is no longer present when matching is organized in a decentralized
way. Moreover, decentralized markets involve different strategic issues from those
of centralized markets. In fact, when a clearinghouse exists, agents must simply
decide what preference lists to submit to the matchmaker, after which the match
is created. However, in a decentralized market agents do not submit lists; instead,
they can decide, after each interview or telephone call what to do next. The size
of the strategy space is thus extremely large and has precluded analysis by means
of standard matching tools.
The purpose of this paper is to apply the extremely simple marriage model

to the study of decentralized labor markets. The starting point of the analysis is
any matching situation, providing a framework to the study of both entry-level

6 See Roth and Xing (1994) and Niederle and Roth (2003).
7 See Roth and Sotomayor (1990) for a comprehensive study of two-sided matching markets.
8 There are notable exceptions, namely Blum, Roth, and Rothblum (1997), Haeringer and
Wooders (2004), Roth and Vande Vate (1991), Roth and Xing (1997), among others.
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and senior level markets. The matching process is then modeled as an extensive
form game, where �rms sequentially offer their positions. Clearly, decentralized
decision making in complex environments may introduce randomness in the order
in which offers are made. The speed of the mail, the telephone network, or the
internal structure of �rms making some react faster than others determine the
success in establishing communication with the desired workers. Such inherently
uncertain features of the market are modeled here as chance moves that determine
the order of play. Hence, at each moment in time, any �rm�even if already
matched�is randomly selected and given the opportunity to offer its position to
a worker. This worker may reject the new offer or he may (temporarily) hold it,
pending the possible arrival of even better offers. We assume that, once rejected,
the �rm is not willing to propose to the same worker again, but it may obviously
offer its position to a different worker when given the opportunity to act.9

In our setting, there is more to a job than just a salary. Hence, we consider
that monetary transfers are embodied in agents' preferences and these preferences
are ordinal in nature. Furthermore, the random order in which �rms are selected
introduces some uncertainty in which matchings are achieved. In fact, it may
happen that starting with the same initial matching, different plays of the game
yield different outcomes for the same strategy pro�le. It follows that, in order
to compare different probability distributions over matchings, we use a solution
concept based on �rst-order stochastic dominance. The notion of ordinal Nash
equilibrium guarantees that each agent is an expected utility maximizer for every
utility representation of his preferences.10 We go beyond this concept to account
for the dynamic nature of the game and characterize subgame perfect ordinal Nash
equilibria. Despite the strength of this concept, we prove the existence of subgame
perfect ordinal Nash equilibria and, in particular, equilibria where �rms use pref-
erence strategies (i.e., strategies that can, up to some point, be identi�ed with a list
of preferences). On the other hand, every such equilibrium delivers matchings that
are stable with respect to a particular pro�le of preferences. This has two appealing
implications. First, for any equilibrium where �rms adhere to preference lists, all
outcomes are such that the set of unmatched agents is the same. Second, in the
particular case that �rms act according to their true preferences, stability with
respect to the true preferences is guaranteed in a subgame perfect ordinal Nash
equilibrium. This provides an explanation for the success of some decentralized
labor markets. In fact, if we expect equilibria where �rms act straightforwardly
to prevail, only stable matchings are obtained and no individual agent or pair of
agents (consisting of a �rm and a worker) will have the incentive to circumvent
9 This assumption guarantees that every play of the game ends in a �nite number of steps. It
does not appear that allowing for any �nite number of repeated proposals would materially change
the validity of the results that follow.
10 This concept was introduced in d'Aspremont and Peleg (1988); it has been used in the context
of voting theory in Majumdar and Sen (2004) and in matching markets in Ehlers and Massó
(2003), and Majumdar (2003).
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the matching. Moreover, revealing the true preferences can be easily justi�ed.
The decisions of a �rm do not usually re�ect the opinion of a single individual;
instead, such actions embody a complex process of assembling the opinions of
several individuals. We may conjecture that establishing a list of candidates and
using it as guidance is a more plausible form of behavior than deciding, at each
moment in time, whom to propose to. In addition, in some settings �rms obey
objective criteria to admit workers, so that strategic behavior on the �rms' side
looses its meaning. The (partially) converse statement holds when we start from
a situation where all agents are unmatched: every stable matching for the true
preferences can be reached as the outcome of an equilibrium play where �rms act
straightforwardly according to their true preferences.
The paper is organized as follows. In Section 3.2 we introduce the matching

model, and review some results on matching markets. We formally present the
model in Section 3.3. In Section 3.4 we turn our attention to questions related to
individual decision making and characterize equilibria. Some results and underly-
ing assumptions are discussed in Section 3.5. We conclude in Section 3.6. Some
proofs can be found in the Appendix.

3.2 The Marriage Model

Consider two �nite and disjoint sets F = ff1; :::; fng and W = fw1; :::; wpg,
where F is the set of �rms andW is the set of workers. We let V = W [ F and
sometimes refer to a generic agent by v, while w and f represent a generic worker
and �rm, respectively. Each agent has a strict, complete, and transitive preference
relation over the agents on the other side of the market and the perspective of
being unmatched. The preferences of a �rm f , for example, can be represented
by Pf = w3; w1; f; w2; :::; w4, indicating that f 's �rst choice is to be matched to
w3, its second choice is w1 and it prefers remaining unmatched to being assigned
to any other worker. Sometimes it is suf�cient to describe only f 's ranking of
workers it prefers to remaining unmatched, so that the above preferences can be
abbreviated as Pf = w3; w1. Let P = (Pf1 ; :::; Pfn ; Pw1 ; :::; Pwp) denote the
pro�le of all agents' preferences; we sometimes write it as P = (Pv; P�v) where
P�v is the set of preferences of all agents other than v. Further, we may use PU ,
where U � V , to denote the pro�le of preferences (Pv)v2U . We write v0Pvv00 when
v0 is preferred to v00 under preferences Pv and we say that v prefers v0 to v00. We
write v0Rvv00, when v likes v0 at least as well as v00 (it may be the case that v0 and
v00 are the same agent). A worker is acceptable if the �rm prefers to employ him
rather than having its position un�lled; similarly, a �rm is acceptable to a worker
if he prefers occupying its position, rather than being unemployed.
Formally, a marriage market is a triple (F;W; P ). An outcome for a marriage

market, a matching, is a function � : V �! V satisfying the following: (i) for
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each f in F and for each w in W , �(f) = w if and only if �(w) = f ; (ii) if
�(f) 6= f then �(f) 2 W ; (iii) if �(w) 6= w then �(w) 2 F . If �(v) = v, then
v is unmatched under �, while if �(w) = f , we say that f and w are matched
to one another. A description of a matching is given by � = f(f1; w2); (f2; w3)g,
indicating that f1 is matched to w2, f2 is matched to w3 and the remaining agents
in the market are unmatched. A matching � is individually rational if each agent
is acceptable to its partner, i.e., �(v)Rvv, for all v 2 V . We denote the set of all
individually rational matchings by IR(P ). Two agents f and w form a blocking
pair for � if they prefer each other to the agents they are actually assigned to
under �, i.e., fPw�(w) and wPf�(f). A matching � is stable if it is individually
rational and it is not blocked by any pair of agents. We denote the set of all stable
matchings by S(P ).

3.3 The Decentralized Job Matching Game

3.3.1 Description of the Game
In this section, we de�ne the Decentralized Game. The game is given by a market
(F;W; P ) and an initial matching �I . In general, we consider �I to be individually
rational under the true preferences. The rules of the game are as follows.
The game begins with a node at which nature chooses a sequence of �rms at

random. Each sequence corresponds to an order at which �rms are given the
opportunity to make proposals. Following nature's move, the �rst �rm in the
selected sequence has the chance to make a proposal. If unmatched under �I ,
the �rm may propose to any worker or pass its turn. If matched under �I , it may
simply �re its initial partner, propose to a different worker, or pass its turn and
keep the initial partner.
In the case that a proposal is actually made, the game continues by having the

proposed worker deciding whether to accept or to reject the offer. If he accepts, a
new matching is formed where this worker and the proposing �rm are together and
their previous partners, if any, are unmatched. If he rejects, �I goes on unchanged.
In the case that the �rm simply chose to �re its initial worker, a new matching is
formed where the �rm and its former partner are unmatched, whereas if the �rm
chose �pass,� the initial matching is preserved.
The second �rm then moves and the game continues by giving �rms the oppor-

tunity to make offers, in accordance with the order of the sequence. Each time a
�rm is called to play, the available moves depend on whether its position is vacant
or not. If vacant, the �rm may propose to any worker to whom it has not proposed
before or simply pass its turn. Otherwise, it may �re the worker it holds, propose
to a worker different from its current match and from any worker it has already
proposed to, or pass its turn. When a worker receives a proposal, he may accept
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the offer or reject it and keep his former partner. Note that a matched worker is
only allowed to reject his current position if he obtains and accepts an alternative
offer.
The game continues as long as there is at least one �rm wishing to make a

new offer or to �re the incumbent worker. As soon as every �rm in the market
sequentially passes its turn, the game ends.
To complete the description of the game, we still have to specify the infor-

mation that each agent possesses throughout the game. It is sensible to assume
that in labor markets where myriads of �rms and workers interact, each agent
only becomes aware of events as they directly impinge on him. In the particular
case of a �rm, this means that it learns only if the proposal it made was accepted
or rejected, or if its position became vacant. Hence, a �rm's information set is
de�ned by its initial partner and an ordered list of workers to whom it proposed,
along with their reactions. Similarly, a worker is only aware of events that directly
affect him. A worker's information set is identi�ed by his initial position, as well
as an ordered list of proposals received, his own responses, and �rings. The initial
chance move is never observable.11

3.3.2 Chance Move
Let us now focus on nature's move. At each moment in time, a randomly selected
�rm is given the chance to play. This random selection should not be interpreted
merely as every �rm having equal probability of proposing at each step. It may re-
�ect some institutional�and perhaps inherently uncertain�features of the market
which are not modeled. In fact, in decentralized markets matching is performed
over the telephone network, using the mail, or through the Internet. In such envi-
ronments, randomness determines the order in which agents communicate: it may
depend on which telephone call goes through, on the speed of the mail, or on how
fast �rms react to eventual proposals. Or it may even be the case that there exists a
natural order in which �rms are expected to propose��rms that have potentially
more to gain will certainly devote more resources into �nding the right worker for
their position and are, therefore, more likely to make offers.
To be precise, the game starts with a lottery prescribing a sequence of �rms that

de�nes the subsequent moves. A sequence corresponds to one of the innumerable
possible orders in which �rms are allowed to act. We assume that every sequence
is in�nite and that, in each sequence, every single �rm appears in�nitely many
times. We also assume that every sequence has positive probability of occuring.
The sample space over which this probability distribution is de�ned is denoted by
O and o is an arbitrary sample point, a sequence of �rms.
11 Such low information environment may be enriched. It may be the case that agents learn of
the actions of the others, even though they are not immediatly affected by them. The validity of
the results that follow will be discussed for broader information structures.
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Note that, even though we consider in�nite sequences of �rms, every play of
the game ends in �nite time. In fact, as �rms are only allowed to propose to
each worker once and, obviously, �ring is possible only if matched, the moment
comes when every �rm chooses to pass its turn if called to play, either because it is
happy with the incumbent worker, or because passing is the only available action.
Moreover, the fact that a �rm appears in�nitely many times in each sequence
guarantees that this moment comes and the �rm is actually called to play. The
end is then reached for every play of the game.

3.3.3 The Strategy Space
In what follows, we will describe agents' strategies and introduce some notation.
A player's strategy in the Decentralized Game complies with the usual de�nition
of behavioral strategy in an extensive form game, i.e., a plan of action for each
information set where he is called to act. However, in the context of a matching
market there is a class of strategies worth emphasizing, strategies that resemble
those used in a centralized market. Following Blum, Roth, and Rothblum (1997)
we will call these strategies �preference strategies.� Such strategies obey a consis-
tency criterion in which agents decide how to move at any information set basing
on a list of preferences, including those information sets that would not be reached
had that list actually been used. Hence, deviations are regarded as temporary
mistakes and further moves �t in the original list. To make things clear, when
using a preference strategy, a �rm selects an ordered list of potential matches and,
whenever called to propose, makes the offer to the best worker on its list to whom
it has not proposed before; likewise, a worker decides whether to accept or to
reject a new proposal by comparing it with his current position on his list.
Even though the lists of preferences that serve as guidance do not have to

faithfully reveal agents' true preferences, the set of preference strategies represents
merely a small part of the set of feasible strategies.12 For example, a worker w's
strategy of accepting only the �rst proposal he gets and rejecting all the others is
not consistent with any list of preferences. In fact, different plays of the game
induce different orders of proposals; thus, depending on the play of the game, w's
�rst proposal may be from, say, f and f 0. It follows that f may be revealed
preferred to f 0 by w or vice-versa, which clearly cannot be consistent with a
preference list.
As for notation, actions are taken at decision nodes, typically denoted by

x. A strategy pro�le � speci�es a strategy for each agent; we sometimes write
� = (�v; ��v), where �v denotes the strategy of v and ��v denotes the strategy
pro�le of the other agents. Preference strategies will be denoted by the correspond-
ing preference pro�le�Qv, for example, is a preference strategy for v�while Pv
12 We refer to Chapter 2 for the analysis of a job matching game where the strategy space is
con�ned to the set of preference strategies.
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always denotes v's true preferences. A sequence of �rms o and a strategy pro�le
� determine a play of the game, denoted by �.

3.3.4 Random Matching and Ordinal Nash Equilibria
In the Decentralized Game, different plays of the game with the same strategy
pro�le may yield different output matchings, depending on the order of proposals.
This applies even in the case that agents use preference strategies, as the following
example illustrates.

Example 3.1 The outcome depends on the selection of the order by which �rms
propose.

Let (F;W; P ) be a marriage market with P such that

Pw1 = f2; f1 Pf1 = w1; w2

Pw2 = f1; f3; f2
Pf2 = w2; w1
Pf3 = w2:

Note that the unique stable matching for this market is � = f(f1; w2); (f2; w1)g.
Now consider the Decentralized Game with �I = f(f1; w2)g when agents play
according to their true preferences P .
Start by considering the case in which f3 is the �rst to make an offer. Given that

f3 is using Pf3 , it proposes to the only acceptable worker, w2, and w2 rejects this
proposal, as he is initially matched to f1, the best �rm on his list. Then, it may be
the case that either f1's or f2's opportunity comes. Let us say f1 makes an offer;
it proposes to w1, the �rst worker in Pf1 , who is currently unmatched and thus
accepts the proposal. Once this proposal is accepted, w2 is left unmatched. Hence,
when f2 is given the chance to propose, w2 accepts its offer. In the following
moves every �rm passes its turn, so that the game ends with the �nal non-stable
matching �̂ = f(f1; w1); (f2; w2)g.
Nevertheless, if the �rst randomly chosen �rm is f2, its proposal to w2 is

refused, as this worker is still matched to f1 and f1 is preferred to f2 in Pw2 .
The next �rm to propose can either be f1, f2, or f3. Assume f2 is the �rst to
propose. It proposes to w1, the second worker on its list, and w1 accepts. Next,
if f1's turn comes, it proposes to w1, who rejects this offer, since he is matched
to his top choice f2. So imagine f1 is called to propose once more, tendering an
offer to w2, who accepts it. When �nally f3 proposes to w2, he rejects the offer,
given that he is already holding the highest ranked �rm in his preference list. This
play of the game terminates when the three �rms are given the chance to pass their
turns and the matching � = f(f1; w2); (f2; w1)g is reached as the outcome of the
game. �
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Given an initial matching and a strategy pro�le, all the uncertainty on the
order of play as described above is fully translated into a probability distribution
over the set of matchings. Hence, �x a probability distribution on O and take
an initial matching �I , a preference pro�le P , and an arbitrary worker w (what
follows also holds for a representative �rm, with obvious modi�cations). We
will let gDG�I [�] denote the probability distribution over the set of matchings
induced by the Decentralized Game starting from �I when the strategy pro�le
� is used andgDG�I [�](w) is the distribution thatgDG�I [�] induces over F [ fwg.
The expression PrfgDG�I [�] = �g represents the probability that � is the �-
nal matching of the Decentralized Game with the strategy pro�le �. Moreover,
PrfgDG�I [�](w)Rwvg is the probability that, in the Decentralized Game, w ob-
tains a partner at least as good as v when � is adopted. Observe that these proba-
bilities rest on the probability distribution on O, but all the results that follow hold
regardless of this lottery.
To address strategic questions we need to develop ideas about what constitutes

a �best decision� to be taken by an agent. With this purpose in mind, let � be
a strategy pro�le and again consider w 2 W . We say that, given ��w, the
strategy �w stochastically Pw-dominates �0w in the Decentralized Game if, for
all v 2 F [ fwg, PrfgDG�I [�w; ��w](w)Rwvg � PrfgDG�I [�0w; ��w](w)Rwvg.
Thus, for any level of satisfaction, the probability thatw's match exceeds that level
of satisfaction is greater under gDG�I [�w; ��w] than under gDG�I [�0w; ��w]. This
provides the basis for the solution concepts we will adopt throughout the paper.

De�nition 3.1 Let (F;W; P ) be a matching market and let �I be the initial match-
ing. The pro�le of strategies � is an ordinal Nash equilibrium (ON equilib-
rium) in the Decentralized Game if, for each player v in V , �v stochastically
Pv-dominates every alternative strategy �0v given ��v.

Thus, by using a strategy other than �v, v will not be able to strictly increase
the probability of obtaining any v0 (an agent with whom it may end up matched)
and all agents ranked higher than v0 in its true preference list, Pv. This means
that we will be concerned in �nding a pro�le of strategies � with the property
that, once adopted by the agents, no one can pro�t by unilaterally deviating for all
possible utility representations of the agents' preferences.
Finally, the notion of ordinal Nash equilibrium can be re�ned to account for

the dynamic nature of the Decentralized Game.
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De�nition 3.2 Let (F;W; P ) be a matching market and let �I be the initial match-
ing. The pro�le of strategies � is an ordinal subgame perfect Nash equilibrium
(OSPN equilibrium) in the Decentralized Game if it induces an ordinal Nash
equilibrium in every subgame of the Decentralized Game.

3.4 Equilibrium Analysis

We begin this section by exploring the relationship between ordinal Nash and
subgame perfect ordinal Nash equilibria.

Proposition 3.1 Let jF j � 2. Then, no information set is a singleton.

Lemma 3.1 Let jF j � 2: Let x and x0 be the two last decision nodes of the play
of the game �, such that x0 precedes x. Then, x and x0 belong to two different �rms
and both �rms choose the action �pass� at these nodes.

Proof. First, notice that the game ends when every �rm has sequentially chosen
�pass.� Given that x and x0 precede the terminal node reached with � and that
jF j � 2, it follows that the action taken at these nodes must be �pass.� Now
suppose, by contradiction, that both x and x0 are �rm f 's decision nodes. Since,
when � is considered, the game ends after f chooses �pass� at x, every �rm other
than f must have chosen �pass� in the nodes that precede x. Hence, every �rm
other than f has passed its turn in the nodes that precede x0. The rules of the
game thus imply that the game ends immediately after f chooses �pass�at x0 and
we reach a contradiction: x is not a decision node.

Lemma 3.2 Let jF j � 2: Let � be a play of the game and let x be a node of f
reached along �, such that the game does not end after f 's choice at x along �.
Then, there exists a �rm f 0 that still has a chance to act in �.

Proof. Immediate from Lemma 3.1.
Proof. [Proof of Proposition 3.1] Let x be a node that belongs to f in � when
nature draws the sequence o. Let f 's move at x correspond to the kth element of
o. We will prove that there exists a sequence o0 and a node x0 reached when nature
draws o0, such that x and x0 belong to the same information set.



3.4 Equilibrium Analysis 35

First, assume that the game does not end after f 's choice at x along �. By
Lemma 3.2, there exists a �rm f 0 that still has the chance to act along �. Now let
o0 be a sequence whose k �rst elements are the same as those in o, but that differs
from o in that f is inserted in position k + 1 and all the remaining elements are
identical. Consider any play of the game where nature draws o0 and every agent
chooses exactly the same actions as along � up to the point where o0k+1 is called to
play. Let x0 be the node corresponding to f 's move in position k of the sequence
o0. It is clear that x0 belongs to the same information set as x, since every action,
except for the unobservable nature's move, is the same along � and �0.
Now let x be a node of f , reached along �, such that f 's action at x is the last

action in �. By Lemma 3.1, there exists a �rm f 0 6= f that has had the chance
to move immediately before f moves at x, i.e., in position ok�1 of the sequence,
and both have chosen �pass.� Now let o0 be a sequence whose �rst k� 1 elements
coincide with those of o, but where f 0 occupies the position ok and f occupies the
position ok+1. Consider the play of the game �0 where nature draws o0, every agent
up to the element k � 1 in the sequence chooses exactly the same action as in �,
and f 0 chooses �pass� when called to play at the kth position of the sequence. Let
x0 be the node reached in �0 where f acts in position k+1. Since f cannot observe
nature's moves nor f 0's action, it holds exactly the same information in both x and
x0. Hence, x0 belongs to the same information set as x.
Now consider � where nature draws o and along which some worker w may

accept or reject a proposal made by �rm f . Let x be the node where w acts and
let f 's proposal correspond to the kth element of o. Lemma 3.1 ensures that the
game does not end after w's move at x. Hence, let o0 be any sequence whose k �rst
elements are the same as those in o, but such that the elements in position k + 1
are different. De�ne �0 as a play of the game in which nature draws o0 and every
other player chooses the same actions as along � up to the point where w reacts
to f 's proposal. Let x0 be the node where w takes such decision. Since nature's
draws are not observable, w's information is exactly the same in x and in x0. It
follows that the information set containing x is not a singleton.
An immediate implication of this result is that the set of ordinal Nash and

subgame perfect ordinal Nash equilibria coincide. In fact, given that all informa-
tion sets are non-singletons, the Decentralized Game has no proper subgames. It
may be conjectured that this is due to the low information environment we have
assumed. And there are labor markets in which agents may become aware of
events that do not affect them directly�acquaintances and social networks in gen-
eral may play an important role. However, considering an enriched information
environment where agents perceive all the offers that are made, as well as the pro-
posed workers' reactions, the arguments in the above proof remain valid, as long
as nature's move remains unobservable. Roughly speaking, for every decision
node x along some play of the game that includes a draw of nature o, it is always
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possible to �nd a decision node x0 belonging to the same information set of x by
building a different play of the game in the following way: add a single �rm to
o, let it choose �pass� in its new decision node, and let agents choose exactly the
same actions as in the original play in every other node. The conclusion follows
since every proposal, acceptance, and rejection is made respecting the original
order. Hence, even in this extreme case, ordinal subgame perfect Nash coincide
with ordinal Nash equilibria. In what follows, we will refer to these concepts
indistinctly as ordinal equilibria.
The following theorem is the main result of this section. Individual rationality

is an obvious necessary condition that every ordinal equilibrium outcomemust ful-
�ll. Here, we state that under every ordinal equilibrium play of the Decentralized
Game where �rms use lists of preferences, some form of stability is preserved. To
be more precise, every matching that can be obtained under such a play is stable
for the same pro�le of preferences. The following remark is used in the proof of
the theorem.

Remark 3.1 When using a preference strategy, a �rm will not �re a worker it
proposed to nor exchange him for another worker along any play of the Decentral-
ized Game. In fact, when a proposal is made, the �rm reveals that this particular
worker is the best among all who have not rejected it. If the worker accepts, the
only occasion under which the �rm makes a proposal again is when the worker it
holds resigns from his position.

Theorem 3.1 Let �I be an individually rational input matching for (F;W; (QF ;
PW )). Assume that the strategy pro�le � = (QF ; �W ) is an ordinal equilibrium in
the Decentralized Game. Then, the probability distribution obtained over the set
of matchings is such that every element in its support is a member of S(QF ; PW ).

Proof. Suppose that f�1; :::; �kg is the support of the distribution induced over
the set of matchings when agents use �. Assume that for some i 2 f1; :::; kg;
�i =2 S(QF ; �W ). We will prove that � is not an ordinal equilibrium.
Let � be a play of the game that results in �i. To start, notice that for every

�rm f it must be the case that its assignment, �i(f), is acceptable with respect
to Qf . In fact, once using Qf , f never proposes, under any play of the game, to
a worker that, according to Qf , is considered worse than being unmatched. On
the other hand, every worker must consider his partner acceptable with respect to
P . Assume that this is not the case and that there exists a worker, say w, such
that wPw�i(w). Individual rationality of the matching �I implies �i(w) 6= �I(w).
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Hence, �w must include, at some point along �, accepting �i(w)'s proposal. Now
take an alternative strategy �̂w according to which no offer is accepted by w. By
using �̂w, w may end up unmatched or, if initially matched, keep his original
partner �I(w), but he is never assigned to a �rm considered unacceptable under
Pw. Thus, the following holds:

1 = PrfgDG�I [�̂w; ��w](w)Rwwg > PrfgDG�I [�](w)Rwwg
and �w is not a best reply to ��w.
We have proved that �i is individually rational. Thus, there must exist a block-

ing pair for �i when the preference pro�le (QF ; PW ) is considered. Let us say
(f; w) blocks �i, i.e., fPw�i(w) and wQf�i(f). This implies that f proposed to
w and, by Remark 3.1, was rejected by w in the course of �. Hence, �w includes
rejecting f in at least one of w's information sets. Now, de�ne �̂w as the strategy
according to which w chooses the same actions as under �w at every information
set, except for those that lead to rejecting f . When using �̂w, if f proposes to w,
w accepts this proposal and rejects every subsequent offer.
First, let us prove that the probability of being assigned to f is strictly higher

under �̂w than under �w. Recall that � is a play of the game leading to �i and let o
be nature's move in �. We know that �rm f must have proposed to w along �. If,
instead of using �w, w deviates and acts according to �̂w, by Remark 3.1, w will
end up matched to f when nature draws o and ��w is used. Now let �0 be the play
of the game in which nature draws o0, with o0 6= o, and players use (�̂w; ��w). If f
does not propose to w along �0, w acts exactly as if using �w and ends up matched
to the same partner as when nature draws o and players use �. Otherwise, f and w
are matched in the �nal matching. It follows that the probability of having f and
w matched is strictly increased when w uses �̂w.
In order to prove �w is not a best reply to ��w, assume, without loss of gen-

erality, that Pw = f1, f2,..., fm�1, f , fm+1,..., w,..., fn. Consider a �rm fj , with
j = 1; :::; m�1, and consider all the plays of the game where � is used and where
w and fj end up together in the �nal matching. Some of these plays may not give
fj assigned to w when he deviates and acts according to �̂w. However, the only
occasion under which this happens is when w obtains a proposal from f and ends
up matched to f . Hence, the probability of having w matched to f or to a �rm he
considers better than f is strictly increased when w uses �̂w. We have

PrfgDG�I [�̂w; ��w](w)Rwfg > PrfgDG�I [�](w)Rwfg;
contradicting that � is an ordinal equilibrium.
The importance of this result lies in two of its implications. Since the set

of unmatched agents is the same for every matching that is stable in a matching



38 Chapter 3 Incentives in Decentralized Matching Markets

market (McVitie and Wilson, 1970, and Roth, 1982), the same agents remain
unmatched in every possible outcome of an ordinal equilibrium where �rms use
lists of workers to guide their decisions. Moreover, when we focus on equilibria
where �rms act according to their true preferences, stability with respect to the
true preferences is guaranteed. Such straightforward form of behavior can be
easily justi�ed. In some settings, �rms obey objective criteria when selecting
whom to hire (e.g., universities select students according to their grades, some
�rms choose their workers basing on scores given by a recruiting agency, student
placement mechanisms assign students to public schools according to the area of
residence,...). Even when �rms are not constrained to follow such rules, hiring new
workers embodies a process of aggregating the opinions of different individuals
that compose a recruiting committee; hence, we may expect that a list of workers
is �xed and all decisions are taken basing on that list. Having to decide what to do
next at each moment in time seems to be a less plausible form of behavior. Finally,
reverting to the true preferences is always an easy resort, given the multiplicity of
available strategies and the complexity of the environment.
Ordinal equilibria always exist when the initial matching is individually ratio-

nal. In particular, the following results show the existence of ordinal equilibria
where �rms use preference strategies.

De�nition 3.3 Let �I be an arbitrary matching. We say that � is individually ra-
tional with respect to �I if � 2 IR(P ) and if, for all f 2 F , w0 = �I(f)Pf�(f),
implies �(w0) 6= w0.

We will denote by IR�I (P ) the set of all individually rational matchings with
respect to �I . This set is always non-empty since it includes S(P ), the set of stable
matchings (see Proposition 2.5).

Proposition 3.2 Let �I be an individually rational matching for (F;W; P ). Then,
S(P ) is a subset of IR�I (P ).

Proof. Consider � 2 S(P ). We will prove that � 2 IR�I (P ) using a contra-
diction argument. Assume that � 2 S(P ): By de�nition of stability, this implies
� 2 IR(P ), but assume that there exists a �rm f such that w0 = �I(f)Pf�(f)
and �(w0) = w0. Stability of � implies that w0Pw0f and we get a contradiction:
�I is not individually rational. Therefore, every stable matching is an element of
IR�

I
(P ).

Since a stable matching exists for every marriage market (Gale and Shapley,
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1962), IR�I (P ) is not empty for every individually rational matching �I .

Proposition 3.3 Let �I be an individually rational matching for (F;W; P ) and
let � 2 IR�I (P ). Then, there exists an ordinal equilibrium � = (QF ; �W ) in the
Decentralized Game that leads to � with probability one.

Proof. De�ne Qf = �(f), for every �rm f and let �w = Qw = �(w). It is clear
that every play of the game with the pro�le � will lead to the output matching �.
Let us show that for every �rm f , Qf is a best reply to Q�f . First, as long as

�(f) 6= �I(f), f never holds its initial match under �. Indeed, it is clear that if
�I(f)Pf�(f), then �I(f) receives and accepts another �rm's proposal (and in the
case that �(f)Pf�I(f), �I(f) is not a temptation). Hence, when �(f) 2 W , given
that the only worker willing to accept f 's proposal is �(f), the only choice f can
actually make is between being assigned to this worker or staying alone. From
individual rationality we have �(f)Pff which implies that f will not be able to
pro�t from deviating from Qf . Obviously, for f such that �(f) = f , no worker
accepts f 's proposal and it can do no better than staying alone.
Finally, for any w, �w is a best reply to ��w. In fact, given �rms' strategies, w

gets at most one proposal and, considering � is individually rational, the best he
can do is to accept it. This completes the proof.

One particular case worth exploring is the case in which the starting point is the
empty matching. The Decentralized Game then becomes a stylized model of an
entry-level labor market without commitment, where cohorts of vacant positions
and cohorts of candidates become simultaneously available, and decisions are
taken in a decentralized way. It turns out that starting from the empty matching
allows us to take the analysis farther.

Proposition 3.4 Let �I be the empty matching and let � 2 S(P ). Then, there
exists an ordinal equilibrium in the Decentralized Game where �rms reveal their
true preferences that yields � with probability one.

Proof. Let � = (PF ; �W ) and de�ne �w as follows. For every worker w
matched under �, �w is the strategy of accepting only �(w) and rejecting every
other proposal, while it leads to the rejection of all proposals, without exception,
when w is unmatched under �.
We start by showing that the pro�le of strategies � always leads to the matching

�, i.e., PrfgDG�I [�] = �g = 1. If this is not the case, then there exists a play of
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the game leading to b� 6= �. But this is equivalent to having a �rm, say f , that ends
up matched to a partner, b�(f), different from �(f) for some instance of the game.
Given that f is unmatched in the initial matching and that the only worker willing
to accept f is �(f), we must have b�(f) = f (as long as f 6= �(f); otherwise it
must be the case that b�(f) = �(f) and we have a contradiction). So assume thatb�(f) = f . Since �(f) would accept f 's proposal and f is acting according to its
true preferences, it must be the case that fPf�(f). Hence, �(f) is not acceptable
and the stability of � is contradicted.
Let us now prove that, for every �rm f , Pf stochastically Pf -dominates every

other strategy �f . We will start by considering the case in which �(f) 6= f . Given
that the only worker who is willing to accept f is �(f), by choosing its strategy
appropriately, f can either be alone or hold �(f) under the output matching. By
stability of �, �(f)Pff ; since truth telling guarantees that �(f) is assigned to f
with probability one, f cannot improve by switching its strategy. In the case that
�(f) = f , no worker accepts its proposal, and the best it can achieve is staying
unmatched. It follows that f cannot do better than being assigned to �(f) and Pf
stochastically Pf -dominates every other strategy �f .
Now take the case of an arbitrary worker,w. Suppose, by contradiction, that �w

does not stochastically Pw-dominate strategy �̂w. This implies that PrfgDG�I [PF ;
�̂w; ��w](w)Rw�(w)g = 1 and that there exists a �rm, say f , such that the follow-
ing holds: PrfgDG�I [PF ; �̂w; ��w](w) = fg > 0 and fPw�(w). But this means
that, for some draw of nature, f approaches w before making an offer to �(f). In
fact, it cannot be the case that f proposes to �(f) �rst and he does not accept it,
as �(f) is acting according to his original strategy, ��(f), de�ned above. Thus, f
must prefer w to �(f). However, in this case (f; w) forms a blocking pair for �,
contradicting the fact that � is stable.

Hence, in a decentralized entry-level labor market every stable matching can
be reached as the outcome of an ordinal equilibrium play of the game where
�rms stick to their true rankings. The (partially) converse statement is given by
Theorem 3.1, ensuring that every such ordinal equilibrium guarantees stability.
These results may be viewed as an extension of some known features of the game
induced by Gale and Shapley's centralized mechanism (Roth, 1984b), where the
underlying strategy space is con�ned to the set of preference strategies.

3.5 Discussion

In this section we put our results in perspective and discuss some of the underlying
assumptions.
As mentioned in the Introduction, centralized procedures have been introduced
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in many matching markets in response to certain market failures. It has been ar-
gued that the stability of the mechanisms employed is crucial for their success. In
fact, those centralized procedures that achieved stable outcomes resolved the mar-
ket failures, while those producing unstable outcomes continued to fail.13 Since
many matching markets do not employ centralized matching procedures, and yet
are not observed to experience such problems, we can suspect that some markets
may reach stable outcomes by means of decentralized decision making without
commitment. Theorem 3.1 provides support to this conjecture. To make things
clear, let us return to Example 3.1. We have seen that some plays of the game
lead to unstable outcomes for the true preferences (the matching �̂ is not stable).
Nevertheless, Theorem 3.1 implies that if we expect agents to use equilibrium
strategies and, by best replying, �rms faithfully reveal their true preferences, then
a stable matching is reached. Hence, if equilibrium predictions are to be taken
seriously, the success of some decentralized markets is explained.
It is now probably worth discussing the robustness of the results to some

changes in the rules of the game. First, throughout the game matchings are formed
and dissolved as agents act in what they perceive to be their own best interest. We
may think of this as a mere negotiation process, where no contracts are signed
and where these temporary matchings would be the ones prevailing should ne-
gotiations suddenly stop. Alternatively, considering that provisional matchings
are indeed consummated amounts to assuming that agents are free to recontract
without any restrictions whatsoever. In the other extreme, we can consider that
it is too costly to �re a worker. Hence, only �rms with vacancies will actually
make proposals and the Decentralized Game falls in the realms of Blum, Roth,
and Rothblum's analysis. Blum, Roth, and Rothblum (1997) study how markets
for senior positions may be re-stabilized after new �rms have been created or
workers have retired. In fact, stability for the true preferences is achieved in every
equilibrium where �rms act according to their true preferences, as long as the
starting point is a �rm-quasi-stable matching, i.e., a matching whose stability has
been disrupted by the creation of a new position or the retirement of a worker.
Hence, Theorem 3.1, which allows for having any individually rational as an initial
matching, no longer holds. The validity of Proposition 3.3 is also compromised:
if we start form an initial matching where every �rm is matched, no �rm will be
allowed to hire a new worker and the initial matching situation will be preserved,
independently of the strategies used. In this setting, the majority of the results on
equilibria depend on having a �rm-quasi-stable matching as a starting point.
A different issue concerns providing workers with the initiative to propose. In

some real labor markets, not only �rms, but also workers may defy their preferred
�rms and we may account for this in the Decentralized Game. Hence, suppose that

13 See, for example, Roth (1984a, 1990, 1991).
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at each moment in time, an agent, either a �rm or a worker, is randomly selected
and makes an offer to someone in the other side of the market to whom it has never
proposed to nor received a proposal from. The agent that receives the offer can
only accept, or reject and keep his former partner, if a former partner existed. The
game ends when every agent in the market passes its turn. It turns out that, starting
from an arbitrary matching, every individually rational matching can be obtained
in an ordinal equilibrium play of the game, so that the scope of Proposition 3.3
is enhanced. In what Theorem 3.1 and its implications are concerned, stability
is robust to sophisticated behavior by the one side of the market, provided that
the other side acts in accordance with the true preferences. To be precise, every
matching sustained at an ordinal equilibrium is stable with respect to the true pref-
erences whenever �rms (respectively workers) faithfully transmit their preferences
and workers (respectively �rms) behave strategically by using strategies that may
reveal different orderings of the other side of the market in different executions
of the algorithm. Finally, in the particular case that the initial matching is the
empty matching, every stable matching can be reached with probability one in an
equilibrium where one side of the market truthfully reveals its preferences.14

3.6 Concluding Remarks

The present paper attempts to extend the two-sided matching theory by construct-
ing a game that mimics the behavior of decentralized labor markets. Equilibrium
analysis in a random context is performed at the expense of using an ordinal
equilibrium concept�justi�ed by the ordinal nature of agents' preferences�but
that allows for obtaining some interesting results. Namely, equilibria where �rms
use preference strategies always exist and lead to matchings that preserve stability
for a particular pro�le of preferences. Furthermore, when we consider an ordinal
equilibrium where �rms act truthfully, stability for the true preferences is achieved
in every outcome matching. This fact may account for the success of some decen-
tralized labor markets. A case of particular interest has the empty matching as
the starting point of the game. Here we give a fairly complete characterization of
ordinal equilibria.
It is natural to ask to what extent the stylized model constructed here can serve

as a description of a real decentralized labor market. The marriage model is per-
haps too simple. Aside from the assumption that each �rm has a unique position to
�ll, the important unrealistic feature lies in considering that the salary associated
with each position is a �xed part of the job description, rather than something to be
negotiated between each �rm and prospective worker. It thus remains important to
explore models where these assumptions are relaxed, even though we believe that

14 A formal statement of these results and their proofs are given in the Appendix, in Propositions
3.5, 3.6, and 3.7.
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the present analysis provides a good starting point to understand the functioning
of some decentralized labor markets.

3.7 Appendix

In this section we extend some of the above results to the case in which both
sides of the market are able to tender offers. First, it can easily be shown that no
information set is a singleton, as long as there are at least two agents in the market,
i.e., jV j � 2.15 It follows that subgame perfect ordinal Nash equilibria coincide
with ordinal Nash equilibria. The remaining results are proved in what follows.

Proposition 3.5 Let �I be an arbitrary matching in (F;W; P ) and let � 2 IR(P ).
Then, there exists an ordinal equilibrium in the Decentralized Game that leads to
� with probability one.

Proof. Let Qv = �(v), for all v 2 V . Clearly, every play of the game with
strategy pro�le Q leads to �. We will show that Q is an ordinal equilibrium. In
the case that v is such that �(v) 6= v, the only agent that proposes to or accepts a
proposal from v is �(v). Hence, no deviation will improve v's match. Otherwise,
for v such that �(v) = v, no agent is willing to match v. As before, by switching
strategy, v cannot end up matched and improve his position.
In what follows, we extend Theorem 3.1. The result is stated for equilibria in

which �rms use preference strategies and workers are allowed to have other forms
of behavior. Note however that we restrict to equilibria where a worker's strategy
is consistent with a list of preferences along each play of the game (even though
it may correspond to incompatible lists when different plays of the game are con-
sidered). A similar result, where the roles of �rms and workers are interchanged,
can be proved.

Proposition 3.6 Let �I be an arbitrary matching in (F;W; P ). Assume that the
strategy pro�le � = (QF ; �W ) is an ordinal equilibrium in the Decentralized
Game, where �w is consistent with a list of preferences in each play of the game,
for all w 2 W . Then, the probability distribution obtained over the set of match-
ings is such that every element in its support is a member of S(QF ; PW ).

Proof. Suppose that f�1; :::; �kg is the support of the distribution induced over
15 The reasoning behind the proof of Proposition 3.1 remains valid, but instead of analysing
decision nodes that belong to �rms and to workers as separate cases, the distinction to be made is
between nodes where proposals are issued, and those where acceptances or rejections take place.
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the set of matchings when agents use � and assume that for some i 2 f1; :::; kg;
�i =2 S(QF ; �W ). We will prove that � is not an ordinal equilibrium.
We will denote by � a play of the game leading to �i. To start, notice that

for every �rm f it must be the case that its assignment, �i(f), is acceptable with
respect to Qf . In fact, once using Qf , f never proposes to nor accepts a proposal
from a worker that, according to Qf , is considered worse than being unmatched.
On the other hand, every worker must �nd his partner acceptable. Assume that
this is not the case and that there exists a worker, say w, such that wPw�i(w).
Now take an alternative strategy �̂w according to which w resigns from �I(w)�
if w is initially matched�and accepts no offers. By using �̂w, w ends up un-
matched in every play of the game. Hence, 1 = PrfgDG�I [�̂w; ��w](w)Rwwg >
PrfgDG�I [�](w)Rwwg and �w is not a best reply to ��w.
Individual rationality of �i of (QF ; PW ) is proven. Thus, there must exist a

blocking pair for �i when the preference pro�le (QF ; PW ) is considered. Let us
say (f; w) blocks �i, i.e., fPw�i(w) and wQf�i(f). This implies that, in the
course of �, either (i) f proposed to w or (ii) w proposed to f . If (i) holds, by
Remark 3.1, f was rejected by w and we can prove that �w is not a best reply to
��w using the same arguments as in the proof of Theorem 3.1. Otherwise, in case
(ii), since w uses a strategy that is consistent with a list of preferences under �, f
must have rejected w. (The reasoning behind this relies in arguments similar to
those of Remark 3.1.) In this case we can �nd a successful deviation for f . In
fact, de�ne �̂f as the strategy according to which f chooses the same actions as
under �f at every information set, except for those that lead to rejecting w when
w proposes. Hence, when using �̂f , if w proposes to f along a play of the game,
f accepts this proposal and holds it until the end of this play. For every play of the
game in which w does not propose to f , f acts exactly as when using �f .
First, we will prove that the probability of being assigned to w is strictly higher

under �̂f than under �f . Recall that � is a play of the game leading to �i and let o
be nature's move in �. We know that w must have proposed to f along �. Once f
deviates and acts according to �̂f , f will end up matched tow when nature draws o
and ��f is used. Now let �0 be the play of the game in which nature draws o0, with
o0 6= o, and players use (�̂f ; ��f ). If w does not propose to f along �0, f ends up
matched to the same partner as when nature draws o and players use �. Otherwise,
f and w are matched in the �nal matching. It follows that the probability of having
f and w matched is strictly increased when f uses �̂f .
In order to complete the proof that �f is not a best reply to ��f , assume,

without loss of generality, that Pf = w1, w2,..., wl�1, w, wl+1,..., f . Consider a
worker wj , with j = 1; :::; l� 1, and consider all the plays of the game where � is
used and where f andwj end up together in the �nal matching. Such plays may not
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give wj assigned to f when f switches to �̂f . However, the only occasion under
which this happens is when f obtains a proposal from w and ends up matched to
him. Hence, the probability of having f matched to w or to a worker it considers
better than w is strictly increased when f uses �̂f . We have

PrfgDG�I [�̂f ; ��f ](f)Rfwg > PrfgDG�I [�](f)Rfwg;
contradicting that � is an ordinal equilibrium.

Proposition 3.7 Let �I be the empty matching and let � 2 S(P ). Then, there
exists an ordinal equilibrium in the Decentralized Game where one side of the
market reveals its true preferences that yields � with probability one.

Proof. We analyze the case in which �rms act according to their true preferences;
the same arguments hold, with the roles of �rms and workers reversed, when
workers act straightforwardly. Hence, consider � = (PF ; �W ) and de�ne �w as
follows: if w is matched under �, �w is the strategy of always choosing �pass�
when called to propose and accepting only �(w)'s proposal; while if w is such
that �(w) = w, no proposal is made nor accepted by w.
We start by showing that the pro�le of strategies � always leads to the matching

�. If this is not the case, then there exists a play of the game leading to b� 6= �. But
this is equivalent to having a �rm, say f , that ends up matched to a partner, b�(f),
different from �(f) for some instance of the game. Given that workers make no
proposals and that the only one willing to accept f is �(f), we must have b�(f) = f
(as long as f 6= �(f); otherwise it must be the case that b�(f) = �(f) and we have
a contradiction). So assume that b�(f) = f . Since �(f) would accept f 's proposal
and f is acting according to its true preferences, it must be the case that fPf�(f).
Hence, �(f) is not acceptable and the stability of � is contradicted.
Let us now prove that, for every �rm f , Pf stochastically Pf -dominates every

other strategy �f . We will start by considering the case in which �(f) 6= f . Given
that workers do not issue offers and that the only worker who is willing to accept
f is �(f), by choosing its strategy appropriately, f can either be alone or hold
�(f) under the output matching. By stability of �, �(f)Pff ; since truth telling
guarantees that �(f) is assigned to f with probability one, f cannot improve by
deviating. In the case that �(f) = f , no worker accepts its proposal nor proposes
to f , and the best it can achieve is staying unmatched. It follows that f cannot do
better than being assigned to �(f) and Pf stochastically Pf -dominates every other
strategy �f .
Now take the case of an arbitrary worker,w. Suppose, by contradiction, that �w

does not stochastically Pw-dominate a different strategy �̂w. Then, PrfgDG�I [PF ;
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�̂w; ��w](w)Rw�(w)g = 1 and that there exists a �rm, say f , such that the fol-

lowing holds: PrfgDG�I [PF ; �̂w; ��w](w) = fg > 0 and fPw�(w). Let � be a
play of the game where f and w are matched. By stability of �, �(f)Pfw, so that
f proposes to �(f) in the course of �. Given the outcome matching, �(f) rejects
f 's proposal. This contradicts the de�nition of �(f)'s strategy.



Chapter 4
Random Stable Mechanisms in the
College Admissions Problem

4.1 Introduction

The study of two-sided matching has been mainly devoted to centralized markets.
These matching markets work by having each agent of the two sides of the market
submit a rank ordered preference list of acceptable matches to a central clear-
inghouse, which then produces a matching by processing all the preference lists
according to some algorithm. Typically, such mechanisms are deterministic in the
sense that the outcome depends on the submitted lists in a way that involves no
element of chance. As a consequence, the existing results do not generally allow us
to address behavior in many labor markets and other two-sided matching situations
where lotteries ultimately determine the outcome. In discrete problems where
agents have opposite interests randomization is surely one of the most practical
tools to achieve procedural fairness.16 Hence, equity considerations provide an
important justi�cation for the introduction of chance in many instances of central-
ized matching. On the other hand, lotteries are especially attractive as a means
of representing the frictions of a decentralized market. Indeed, in the extremely
complex environment of a real life market, decentralized decision making will
often lead to uncertain outcomes: the question of who will match with whom
depends on the realization of random events�random meetings.
This paper studies a class of matching mechanisms that are random: given

agents' behavior, chance determines the �nal outcome. These mechanisms may
be used in centralized markets as a means to promote procedural fairness. Or
they may arise in the context of decentralized decision making: starting from an
arbitrary matching, agents from the two sides of the market meet bilaterally in a
random fashion. We assume that each individual has preferences over the other
side of the market and the prospect of being unmatched; however, they are not
compelled to behave in a straightforward manner, according to these true pref-
erences. Instead, agents are confronted with a game in which they act in what
they perceive to be their own best interest. Hence, upon meeting, the paired
agents match if this is consistent with their strategies, and separate otherwise.
Since one of the clearest lessons from the study of deterministic procedures is that

16 At least to move towards procedural fairness. A random matching mechanism is procedurally
fair whenever the sequence of moves for the agents is drawn from a uniform distribution. See
Moulin (1997, 2003).
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understanding such incentives is crucial to understand the behavior of the market,
the paper is devoted to equilibrium analysis.
Our study was largely motivated by Roth and Vande Vate (1990, 1991). In the

context of the marriage problem where matching is one-to-one, Roth and Vande
Vate (1990) proved that, starting from an arbitrary matching, the decentralized
decision making process of allowing randomly chosen blocking pairs to match
will converge to a stable matching with probability one. Under a stable matching
no individual or pair of agents has incentives to circumvent the matching. It is
argued that such process can be thought of as an approximation to real life dy-
namics. In the related paper Roth and Vande Vate (1991), strategic considerations
are made for the marriage market, focusing on the class of truncation strategies,
i.e., strategies that are order-consistent with true preferences, but may regard fewer
partners as acceptable. In a one-period game in which every agent states a list of
preferences and then a matching stable with respect to those preferences is selected
at random, it is shown that all stable matchings can be reached as equilibria in
truncations. However certain unstable matchings can also arise in this way. A
multi-period extension is then considered to rule out such undesirable outcomes.
As in Roth and Vande Vate (1991) we assume that random meeting among

agents will eventually converge to a stable matching with respect to the chosen
strategy pro�le. Hence, such process induces a lottery exclusively over stable
outcomes. However, the present paper extends their contribution in two ways.
First, we take equilibrium analysis further, going beyond the analysis of trun-
cations. A concept of equilibrium based on �rst-order stochastic dominance is
used, given that preferences are ordinal in nature and probability distributions over
matchings are to be compared. The notion of ordinal Nash equilibrium guarantees
that each agent plays his best response to the others' strategies for every utility
representation of the preferences.17

Second, the analysis is conducted in the context of the college admissions
model. In this model, agents belonging to two disjoint sets (henceforth �rms and
workers) have preferences over the other side of the market; in addition, each �rm
can employ at most some �xed number of workers, while each worker can �ll only
one position. Strategic issues in this context have been studied for a deterministic
stable matching mechanism. Roth (1985) shows that no stable mechanism exists
that makes it a dominant strategy for all players to report their true preferences.
Moreover, he proves that there are equilibrium misrepresentations that generate
any individually rational matching with respect to the true preferences.18 Ma
(2002) shows that in order to obtain stability with respect to true preferences, we
17 This concept was introduced in d'Aspremont and Peleg (1988); it has been used in the context
of voting theory in Majumdar and Sen (2004) and in matching markets in Ehlers and Massó
(2003), and Majumdar (2003).
18 For a detailed explanation of these and other results see Roth and Sotomayor (1990), a
comprehensive treatment of the matching problem.
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have to use a re�nement of the Nash equilibrium concept and restrict to truncations
at the match point (i.e., strategies that preserve the ordering of the true preferences,
but rank as unacceptable all the agents that are less preferred than the current
match). More precisely, all strong equilibria in truncations at the match point
produce stable outcomes. Further, he establishes that every Nash equilibrium
pro�le admits at most one stable matching with respect to the true preferences;
if, indeed, such a matching is admitted, it will always be achieved.
In this paper we characterize equilibria arising in the game induced by a ran-

dom stable mechanism, providing simultaneously some results that extend to de-
terministic mechanisms. First, we show that when ordinal Nash equilibria are
considered, a unique matching is obtained as the outcome of the random process.
In addition, this outcome is individually rational with respect to the true prefer-
ences. Since every individually rational matching for the true preferences can be
achieved as an equilibrium outcome, we establish that a matching can be reached
at an ordinal Nash equilibrium if and only if it is individually rational for the true
preferences. We then turn our attention to equilibria where �rms behave straight-
forwardly. In fact, there are reasons to contemplate truth telling as a salient form
of behavior in situations involving uncertainty; further, sophisticated strategic play
does not even make sense in settings where �rms follow an objective criterion to
�ll their positions. We prove that, even though workers may not play straight-
forwardly, stability with respect to the true preferences holds for any matching
that results from a play of equilibrium strategies in which �rms reveal their true
preferences. Conversely, every matching that is stable for the true preferences
can be achieved as an equilibrium outcome. In closing, we relate the equilibrium
strategy pro�les in the games induced by both random and deterministic stable
mechanisms. In particular, for any random stable mechanism that always assigns
positive probability to two different stable matchings (when they exist), we show
that a strategy pro�le is an ordinal Nash equilibrium if and only if it has a unique
stable matching and there exists a deterministic stable mechanism where it is a
Nash equilibrium.
We proceed as follows. In Section 4.2 we present the college admissions

model and introduce notation. We describe the random matching mechanism and
the equilibrium concept in Section 4.3. In Section 4.4 we turn our attention to
individual decision making. The matching process is modeled as a one-period
game and its equilibria are then characterized. In Section 4.5 we brie�y discuss
equilibria in the context of a sequential game. Some concluding remarks follow in
Section 4.6.

4.2 The Model

The agents in the college admissions model consist of two �nite and disjoint sets,
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the set W = fw1; :::; wpg of workers and the set F = ff1; :::; fng of �rms. We
let V = W [ F and sometimes refer to a generic agent by v, while w and f
represent a generic worker and �rm, respectively. Each worker w can �ll at most
one position and has a strict preference relation Pw over the set F [ fwg. Each
�rm f has a quota qf , the maximal number of workers it may employ, and a strict
preference ordering Pf over the set W [ ffg. For example, the preferences of f
can be represented by Pf = w3; w1; f; w2; :::; w4, indicating that the best worker
for f is w3, its second choice is w1 and it prefers having a position un�lled to
hiring any other worker. A worker is acceptable if the �rm prefers to employ him
rather than having a position un�lled; in the above example, the set of acceptable
workers is A(Pf ) = fw1; w3g. Similarly, given Pw we can de�ne an acceptable
�rm and the setA(Pw). In general, we describe only rankings of acceptable agents,
so that the above preferences are abbreviated as Pf = w3; w1. Let P = (Pf1 ; :::;
Pfn ; Pw1 ; :::; Pwp) denote the pro�le of all agents' preferences; we sometimes write
it as P = (Pv; P�v) where P�v is the set of preferences of all agents other than v.
We write v0Pvv00 when v0 is preferred to v00 under preferences Pv and we say that v
prefers v0 to v00. We write v0Rvv00, when v likes v0 at least as well as v00 (note that
v can only be indifferent if v0 = v00).
Formally, a matching market is a triple (F;W; P ). De�ne an unordered family

of elements of V to be a collection of elements in which the order is immaterial.
Let �V denote the set of unordered families of elements of V . An outcome for the
matching market (F;W; P ) is a matching, a function � from the set V to the set �V
satisfying the following: (i) j�(w)j = 1 for every w 2 W and �(w) 2 F whenever
�(w) 6= w; (ii) j�(f)j = qf for every f 2 F and if jW \ �(f)j < qf then �(f) is
�lled to qf with copies of f ; (iii) �(w) = f if and only if w 2 �(f).
Each worker's preferences over matchings correspond precisely to his prefer-

ences over his own assignments at the matchings. Similarly, �rms' preferences
over matchings are tantamount to the preferences over its assignments. Hence, in
order to compare matchings, each �rm with quota greater than one must be able
to compare groups of workers. Following Roth (1985), it will be suf�cient for
the purpose of this paper to consider only the �rms' preferences over individual
workers, as long as their preferences over outcomes are responsive to the prefer-
ences over single agents. We say that a preference �Pf for f over sets of workers
is responsive to its preference Pf over single workers if, for any two matchings
� and �0, whenever �(f) = �0(f) [ fwgnf�g for � 2 �0(f) and w =2 �0(f),
then �(f) �Pf�0(f) if and only if wPf�. Responsive preferences are assumed
throughout the paper. Finally, for any �rm f with quota qf , its choice set from
any set �W of workers, denoted by ChPf ( �W ), is the set of f 's qf most preferred
acceptable workers in �W if j �W \ A(Pf )j � qf , and the entire set �W \ A(Pf ) if
j �W \ A(Pf )j < qf .
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A matching � is individually rational if for every w 2 W , �(w)Rww, and if
for every �rm f and w in �(f), wPff . A �rm f and a worker w are a blocking
pair for � if they are not matched under � but prefer one another to one of their
assignments, i.e., fPw�(w) and wPf� for some � in �(f). A matching � is
stable if it is individually rational and if there is no blocking pair for �. Note
that the stability of � depends on preferences over individuals, irrespectively of
the responsive extension that is being used. We let IR(P ) and S(P ) denote the
set of all individually rational and the set of all stable matchings respectively with
respect to a pro�le P . A �rm f and a worker w are achievable for each other if f
and w are matched under some stable matching.
The proof of existence of stable matchings in Gale and Shapley (1962) is con-

structed by means of the deferred-acceptance algorithm. For a given a preference
pro�le P , proposals are issued by one side of the market accordingly, while the
other side merely reacts to such offers by rejecting all but the best in P . In the case
that �rms make job offers, the algorithm arrives at the �rm-optimal stable match-
ing �F , with the property that all �rms are in agreement that it is the best stable
matching. The deferred-acceptance algorithm with workers proposing produces
the worker-optimal stable matching �W with corresponding properties. Further,
the optimal stable matching for one side of the market is the worst stable matching
for every agent on the other side of the market, a result presented in Knuth (1976)
but attributed to John Conway.
Finally, a matching mechanism ' is a function from preference pro�les to

matchings and we say that ' is stable if it produces a stable outcome for every
preference pro�le, i.e., '[P ] 2 S(P ) for every preference pro�le P . We let 'F
and 'W denote the matching mechanisms that yield �F and �W , respectively.

4.3 Random Matching and Ordinal Nash Equilibria

Many matching markets do not employ centralized procedures. Agents are free
to issue offers and make acceptations and rejections as they please and matching
is performed over the telephone network, using the mail, or through the Internet.
In such environments, randomness determines the order in which agents com-
municate: it may depend on which telephone call goes through, on the speed
of the mail, or on how fast �rms react to eventual proposals. When a central
clearinghouse does exist, chance is widely used to restore procedural fairness�
any deterministic mechanism is bound to favor a subset of the agents involved.
In two-sided matching markets, the need for compromise solutions is especially
intense given the strong polarization of interests of agents re�ected in the struc-
ture of the stable set. Some real life applications of random procedures concern
allocation problems as on-campus housing, namely in American universities, or
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public housing.19 Student placement mechanisms that assign students to colleges
are another example of mechanisms where randomness plays a role, as well as
procedures used to match students to optional courses or even children to summer
camps.20 Finally, randomness is present in any matching mechanism where the
position in a queue or the order of arrival may in�uence assignments.
Formally, a random mechanism is a mapping from preference pro�les to lot-

teries over the set of matchings. A random mechanism ~' and a preference pro�le
Q induce a random matching ~'[Q]. Throughout the paper, we only consider
random stable matchings. Hence, ~'[Q] denotes the probability distribution in-
duced over the set of stable matchings S(Q) and ~'[Q](v) is the probability dis-
tribution induced over agent v's achievable matches. We will use, for example,
Prf~'[Q](v)Rvv̂g to denote the probability that v obtains a partner at least as good
as v̂ according to v's true preferences when the pro�leQ is used in the mechanism
~'. Whenever the probability distribution ~'[Q] is degenerate, we will abuse the
notation slightly by letting ~'[Q] denote the unique outcome matching. Observe
however that in general the support of ~'[Q], denoted by supp~'[Q], is a subset of
the set of stable matchings S(Q).
In a matching market (F;W; P ), we consider a game induced by ~' in which

agents are each faced with the decision of what strategies to act on. As a �rst
approach, we examine a one-period game where the strategy space of a player in
the game is the set of all possible preference lists. Hence, given the true preference
ordering Pv, each player v may eventually reveal a different order Qv over the
players on the other side of the market, and then a matching � stable with respect to
the stated preferences Q is selected at random among all the potential matchings,
i.e., the elements of supp~'[Q], with probability Prf~'[Q] = �g. An extension of
the results obtained to a more complex setting is discussed in Section 5.
To address strategic questions we need to develop ideas about what constitutes

a �best decision� to be taken by an agent. With this purpose in mind, let Q̂ be a
strategy pro�le and consider w 2 W (what follows also holds for a representative
�rm, with obvious modi�cations). Given a random stable mechanism ~', we say
that, given Q̂�w, the strategy Qw stochastically Pw-dominates Q0w if, for all v 2
F [ fwg, Prf~'[Qw; Q̂�w](w)Rwvg � Prf~'[Q0w; Q̂�w](w)Rwvg. Thus, for all
v 2 F [ fwg, the probability of w being assigned to v or to a strictly preferred
agent is higher under ~'[Qw; Q̂�w](w) than under ~'[Q0w; Q̂�w](w). Hence, if we
consider the problem that player w faces given the strategy choices Q̂�w of the
other players, a particular strategy choice Qw may be preferred if, given Q̂�w, it
stochastically dominates every other alternative strategy. This provides the basis
for the solution concept we will adopt throughout the paper.

19 See Abdulkadiroglu and Sönmez (1999).
20 See Abdulkadiroglu and Sönmez (2003) for a description of student assignment mechanisms.
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De�nition 4.1 Given the pro�le of preferences P , the pro�le of strategies Q is
an ordinal Nash equilibrium (ON equilibrium) in the game induced by ~' if, for
each player v in V , Qv stochastically Pv-dominates every alternative strategy Q0v
given Q�v.

Thus, by using a strategy other than Qv, v will not be able to strictly increase
the probability of obtaining any v0 (an agent with whom it may end up matched)
and all agents ranked higher than v0 in its true preference list, Pv. This means that
we will be concerned in �nding a pro�le of strategies Q with the property that,
once adopted by the agents, no one can pro�t by unilaterally changing its strategy
for all possible utility representations of the agents' preferences.

4.4 Equilibrium Analysis

We now turn to characterize ordinal Nash equilibria in the game induced by a
random stable mechanism ~'. Proposition 4.1 asserts that no ordinal equilibrium
supports more than one stable matching. Using the decentralized interpretation,
we can say that the outcome in equilibrium is immune to the order in which
agents meet when players behave strategically, even though truth revealing often
leads to a lottery over matchings. Agents manipulate to protect themselves against
uncertainty.

Proposition 4.1 Let Q be an ordinal Nash equilibrium in the game induced by a
random stable mechanism ~'. Then, a single matching is obtained with probability
one.

Proof. By contradiction, assume that Q is an ON equilibrium and jsupp~'[Q]j �
2. Then, there exists a worker w 2 W and matchings �, �̂ 2 supp~'[Q] such
that �(w) 6= �̂(w). Let �0(w) be the best match among all given by the elements
of supp~'[Q], i.e., �0(w)Rw�(w); for all � 2 supp~'[Q]. De�ne Q0w = �0(w)
and Q0 = (Q0w; Q�w): Note that �0 is stable for Q and, once w changes his
strategy, it remains stable for Q0 (it remains individually rational and no block-
ing pairs emerge). Further, since the set of matched agents is the same under
every stable matching, w is matched to �0(w) under every matching in S(Q0):
Then, 1 = Prf~'[Q0](w)Rw�0(w)g > Prf~'[Q](w)Rw�0(w)g and Qw does not
stochastically Pw-dominate Q0w. It follows that Q is not an equilibrium.

As a consequence, in the particular case that the random mechanism always
assigns positive probability to at least two different matchings (if such matchings
exist), the set of stable matchings of each ordinal Nash equilibrium is a singleton.
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In general, however, the set of stable matchings of an ordinal Nash equilibrium
may contain several elements. As proved in Ma (2002) for a deterministic stable
mechanism, the random stable mechanism then chooses the matching that is unan-
imously preferred among all the stable matchings with respect to the submitted
pro�le.

Lemma 4.1 Let Q be an ordinal Nash equilibrium in the game induced by a
random stable mechanism ~'. Then, for any matching � 2 S(Q),

1. ~'[Q](w)Rw�(w) for every w 2 W and
2. ~'[Q](f) �Rf�(f) for every f 2 F and every responsive extension �Rf of Rf .

Proof. By Proposition 4.1, ~'[Q] is a single matching. The result then follows
from Lemma 6 in Ma (2002).

For illustration, consider the following example.

Example 4.1

Let F = ff1; f2g, W = fw1; w2g, and qf1 = qf2 = 1. Suppose that the
true preferences are as follows:

Pw1 = f1; f2 Pf1 = w1; w2
Pw2 = f2; f1 Pf2 = w2; w1:

De�ne Qw1 = f2; f1 and Qw2 = f1; f2 and note that the preference pro�le
Q = (Qw1 ; Qw2 ; PF ) is an ordinal Nash equilibrium in the game induced by
the mechanism that yields the �rm-optimal stable matching. Now let ~' be a
random mechanism that assigns probability 0:5 to both the worker-optimal and
�rm-optimal stable matchings. Clearly, the support of the probability distribution
induced by ~'[Q] includes both �F [Q] = f(f1; w1); (f2; w2)g and �W [Q] = f(f1;
w2); (f2; w1)g. By Proposition 4.1, Q is not an ordinal Nash equilibrium in the
game induced by ~'. In fact, every worker can successfully deviate. For example,
by using his true preferences, w1 obtains his preferred �rm f1 with probability
one. �

In the context of deterministic mechanisms, Roth (1985) shows that by suitably
falsifying their preferences, agents can induce any individually rational matching
with respect to the true preferences. Unfortunately, this is not a very illuminating
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result: the set of individually rational matchings includes all the matchings that
are remotely plausible. Moreover, the possibility of sustaining matchings where
agents hold non-acceptable partners is not ruled out, although individual rational-
ity appears to be a minimum requirement for an equilibrium outcome.
The results that follow establish that � can be supported as an ordinal equi-

librium if and only if it is individually rational. Hence, we provide a complete
characterization of ordinal Nash equilibria outcomes in the game induced by ~'.
Furthermore, it can easily be shown that Proposition 4.3 can be extended to the
deterministic case, providing a necessary condition for Nash equilibria in games
induced by deterministic stable mechanisms.

Proposition 4.2 Let � be any individually rational matching for (F;W; P ) and
let ~' be a random stable mechanism. Then, there exists an ordinal Nash equilib-
rium Q that supports � in the game induced by ~'.

Proof. Let Qw = �(w), for every w 2 W , and let Qf be such that A(Qf ) =
�(f)\W , for every f 2 F . Clearly, S(Q) = f�g and � is reached with probability
one. Moreover, no agent can pro�tably deviate. To see this, take an arbitrary
worker w. The only agent that accepts w is �(w): Hence, w faces the choice of
holding �(w), if �(w) 2 F , or being unmatched. Since �(w)Rww, w has no
pro�table deviation. Now consider f 2 F . Only those workers in �(f) are willing
to accept �lling a position in f: Moreover, �(f) �RfW S , for every W S � �(f),
by individual rationality of �. It follows that f cannot improve upon �(f) by
deviating. Hence, Q is an ON equilibrium in ~'.

Proposition 4.3 Let Q be an ordinal Nash equilibrium in the game induced by
a random stable mechanism ~'. Then, the unique equilibrium outcome ~'[Q] is
individually rational for the true preferences P .

Proof. By Proposition 4.1, a single matching is achieved in any equilibrium play
of the game. Let us say ~'[Q] = �. We will prove that � is individually rational.
First, by contradiction, assume there exists a worker w such that wPw�(w).

Suppose that, instead of acting according to Qw, w uses Q0w = w and de�ne
Q0 = (Q0w; Q�w): By considering every �rm unacceptable, w is alone under
every matching in S(Q0). Hence, 1 = Prf~'[Q0](w)Rwwg > Prf~'[Q](w)Rwwg
and Qw does not stochastically Pw-dominate Q0w: It follows that Q is not an ON
equilibrium.
Now suppose that there is a �rm f such that WG = ChPf (�(f) \ W ), for

WG  (�(f) \ W ). Consider Q0f , an alternative strategy for f , where only
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the elements of WG are considered acceptable. We will show that Qf does not
stochastically Pf -dominate Q0f .

To start, consider the matching �0 such that �0(f) = WG and �0(f̂) = �(f̂),
for every f̂ 6= f . Let WB = (�(f) \ W )nWG (note that WB 6= ;) and Q0 =
(Q0f ; Q�f ). Now consider the matching market (F;WnWB; Q0R), where Q0R is
the pro�le as Q0, but restricted to WnWB. We will prove that �0 is stable for
Q0R in this reduced market. Clearly, since � is individually rational for Q, �0 is
individually rational forQ0R. Now suppose that (f̂ ; w) blocks �0, i.e., f̂Q0Rw�0(w)
and wQ0R

f̂
�, with � 2 �0(f̂). Since only the elements of �0(f) are considered

acceptable in Q0Rf , we must have f̂ 6= f . Hence, Q0Rf̂ = QR
f̂
: By de�nition

of �0, we have �0(f̂) = �(f̂); for every f̂ 6= f , and �0(w) = �(w), for every
w 2 WnWB. This implies that f̂QRw�(w) and wQRf̂ �, with � 2 �(f̂); hence, in
the unrestricted market, f̂Qw�(w) and wQf�, with � 2 �(f̂) and (f̂ ; w) block �
under Q, contradicting � 2 S(Q). Thus, �0 is stable in (F;WnWB; Q0R). Note
that, since f is matched to WG under a stable matching, it must hold exactly
WG under the �rm-optimal stable matching for (F;WnWB; Q0R), by de�nition
of Q0Rf and of the �rm-optimal stable matching.
SupposeWB join in. By Theorem 5.35 in Roth and Sotomayor (1990), every

�rm must be at least as well off in the new �rm-optimal stable matching. Since
only WG are considered acceptable by f in the strategy Q0f , f cannot improve
uponWG. Thus, it must be matched toWG under the �rm-optimal stable match-
ing of the market (F;W;Q0).
Finally, notice that, by de�nition of matching, qf = j�(f)j. Since WB 6=

;, we have qf > jWGj. Hence, Theorem 5.13 in Roth and Sotomayor (1990)
guarantees that f must hold the same workers under every stable matching in
(F;W;Q0). Therefore, by deviating and acting according to Q0f , f will get WG

with probability one instead of �(f). Concluding, Qf does not stochastically Pf -
dominate Q0f .

The above result is as uninformative as large the set of individually rational
matchings may be. Ma (2002) shows that one way to make a sharper prediction of
equilibrium outcomes and guarantee stability is to go as far as re�ning the notion
of Nash equilibrium to strong Nash and require the use of a particular kind of
strategies: truncations at the match point (i.e., deleting the (m + 1)th and less
preferred partners when matched to the mth choice). We provide a different nec-
essary condition for stability in the game induced by a random stable mechanism
~': every ordinal Nash equilibrium where �rms behave straightforwardly is stable
for the true preferences. Truth telling by �rms is natural in markets where �rms
obey some kind of objective criterion to �ll their positions (e.g., universities admit
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students on the basis of examination scores, student placement mechanisms assign
students to public schools according to the area of residence, �rms hire workers
according to scores given by recruiting agencies). Moreover, in situations involv-
ing uncertainty agents may have no clue about the form that effective strategies
might have and straightforward behavior is always an easy resort.

Proposition 4.4 Let Q = (PF ; QW ) be an ordinal Nash equilibrium in the game
induced by a random stable mechanism ~'. Then, the unique equilibrium outcome
~'[Q] is stable for the true preferences P .

Proof. By Proposition 4.1, a unique matching is achieved as the outcome of
an ordinal Nash equilibrium. Let us say that ~'[Q] = �. By Proposition 4.3,
� 2 IR(P ). We will prove that � 2 S(P ) by contradiction. Hence, suppose
that (f; w) blocks � when the true preferences are considered, i.e., fPw�(w) and
wPf�, for some � 2 �(f). Consider the alternative strategy for w given by Q0w =
f and de�ne Q0 = (Q0w; Q�w). We will prove that w is matched to f under every
matching in S(Q0).
Let �� be the matching that corresponds to � in the related marriage market and

let fi denote the position of �rm f that holds � under ��. By Roth (1984a), under
every stable matching for Q0, w is either always unmatched or always matched to
(possibly different) positions in �rm f , the only positions he �nds acceptable.
Let us assume that w is unmatched. This implies that every position of �rm
f , in particular fi, is matched to a worker better than w under every matching
in S(Q0), in particular under the worker-optimal stable matching ��W [Q0]. Thus,
��W [Q

0](fi)Pfiw. Since wPfi� and, by de�nition of worker-optimal stable match-
ing, �Rfi��W [Q](fi), we have ��W [Q0](fi)Pfi��W [Q](fi). Nevertheless, ��W [Q0]
is the worker-optimal stable matching in the reduced market (F;Wnfwg; QR),
with QR representing the same orderings of preferences as in Q, but restricted
to Wnfwg. This contradicts Theorem 2.25 in Roth and Sotomayor (1990) since,
under the worker-optimal stable matching, no �rm can be matched to a better
worker in the restricted market. Therefore, w must be matched to a position of
�rm f under every element of S(Q0).
In conclusion, by acting in accordance with Q0w, w will be matched to f with

probability one. Hence, Qw does not stochastically Pw-dominate Q0w and we have
a contradiction.

Two remarks are in order. First, this result can easily be applied to games aris-
ing from deterministic stable mechanisms. Hence, stability for the true preferences
is obtained in any Nash equilibrium where �rms are truthful for any stable match-
ing mechanism. Second, in accordance with the claims in Roth and Sotomayor
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(1990) concerning deterministic mechanisms, the analogous result with workers
telling the truth and �rms acting strategically does not hold, although it would hold
when all quotas equal one.21 The college admissions problem, unlike the marriage
problem, is not symmetric between the two sides of the market and there are
substantial differences between the two when strategic issues are contemplated.
Any �rm with a quota greater than one resembles something like a coalition rather
than an individual. Hence, allowing for manipulation on the �rms side is similar to
giving such powers to sets of agents in a marriage market and, in equilibria where
workers tell the truth, stability is lost.
The converse result is given in Proposition 4.5, asserting that every stable

matching for the true preferences can be supported as the outcome of an ordinal
Nash equilibrium where �rms act according to the true preferences. In fact, work-
ers can compel any jointly achievable outcome in the game induced by a random
stable mechanism, while �rms behave straightforwardly.

Proposition 4.5 Let � be any stable matching for (F;W; P ) and let ~' be a ran-
dom stable mechanism. Then, there exists an ordinal Nash equilibrium Q =
(PF ; QW ) that supports � in the game induced by ~'.

Proof. De�ne Qw = �(w), for every w 2 W . Clearly, S(Q) = f�g and � is
reached with probability one.
Let us now prove that Q is an ON equilibrium. Take an arbitrary worker w

and suppose that there exists a �rm f such that fPw�(w). We claim that w cannot
deviate to get matched to f . In fact, the stability of � with respect to P implies
that �Pfw, for every � 2 �(f). Since �(�) = f we have Q(�) = f , for every
� 2 �(f), and f will end up matched to �(f). Now consider �rm f . The only
workers to accept f are those in �(f). Furthermore, individual rationality of �
implies that �(f) �RfW S , for everyW S � �(f). It follows that f cannot improve
upon �(f) by deviating. In conclusion, Q is an ON equilibrium in ~'.

Our next results establish a strong link between equilibria in games induced
by random and by deterministic stable mechanisms. We start by pointing out
that every ordinal Nash equilibria of the random process must be a simple Nash
equilibrium of some mechanism where chance plays no role.

Proposition 4.6 Let Q be an ordinal Nash equilibrium in the game induced by a
random stable mechanism ~'. Then, there exists a stable mechanism ' where Q is
a Nash equilibrium.
21 See Roth (1985).
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Proof. Assume that Q is an equilibrium that yields � in the game induced by ~'.
Proposition 4.1 guarantees that � is the only element in supp~'[Q] and, by Propo-
sition 4.3, � 2 IR(P ). Now suppose, by contradiction, that there exists no stable
matching mechanism where Q is a Nash equilibrium. In particular, consider any
' such that '[Q] = ��such a mechanism exists since � 2 S(Q)�and assume
that some agent has a pro�table deviation.
Let such agent be a worker, w. Then, there exists a strategy Q0w such that

'[Q0](w)Pw�(w), with Q0 = (Q0w; Q�w). This implies that '[Q0](w) 2 F since
� 2 IR(P ). De�ne f = '[Q0](w) and Q00w = f . Observe that under any matching
in S(Q00w; Q�w), w is matched to f ('[Q0] is stable for (Q00w; Q�w) since it remains
individually rational and no blocking pairs emerge once w uses Q00w). Therefore,
under every matching in supp~'[(Q00w; Q�w)], w holds f , and Qw does not stochas-
tically Pw-dominate Q00w. We get a contradiction: Q is not an ON equilibrium in
the game induced by ~'.
Now assume that f 2 F can pro�t by deviating from Qf . This means that

there exists Q0f such that '[Q0](f) �Pf�(f), with Q0 = (Q0f ; Q�f ). Since � 2
IR(P ), '[Q0](f) \ W 6= ?. De�ne Q00f such that A(Q00f ) = '[Q0](f) \ W .
Since '[Q0] 2 S(Q0), once only the workers in '[Q0](f) are considered accept-
able by f , we can guarantee that '[Q0] 2 S(Q00). The de�nition of Q00f and
the fact that under every stable matching �rms have the same number of posi-
tions �lled (Theorem 5.12 in Roth and Sotomayor (1990)) imply that f holds
'[Q0](f) in every element of S(Q00). Therefore, 1 = Prf~'[Q00](f)Rf'[Q0](f)g >
Prf~'[Q](f)Rf'[Q0](f)g = 0 and Q is not an ON equilibrium in the game in-
duced by ~'.

In Proposition 4.7, we establish a partially converse statement: the set of ordi-
nal Nash equilibria in a random stable mechanism includes all the strategy pro�les
that are simultaneously equilibria in the mechanisms that yield the �rm-optimal
and the worker-optimal stable matchings.

Proposition 4.7 Let Q be a Nash equilibrium in the games induced by 'F and
by 'W . Then, Q is an ordinal Nash equilibrium in the game induced by a random
stable mechanism ~'.

The following Lemma is useful in proving Proposition 4.7.

Lemma 4.2 Let Q be a Nash equilibrium in the games induced by 'F and by
'W . Then, the set S(Q) is a singleton.
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Proof. Assume that Q is a Nash equilibrium in the games induced by both 'F
and 'W . Suppose, by contradiction, that jS(Q)j � 2. Clearly, this implies that
'F [Q] 6= 'W [Q]. Lemma 4.1 in Ma (2002) implies that, for any matching � 2
S(Q), we have 'F [Q](w)Rw�(w), for every w 2 W . Since Q is an equilibrium
in 'W , the same lemma guarantees that 'W [Q](w)Rw�(w), for every w 2 W and
for any � 2 S(Q). It follows that 'F [Q](w) = 'W [Q](w), for every w 2 W and
we contradict the initial assumption that 'F [Q] 6= 'W [Q].

Proof. [Proof of Proposition 4.7] Suppose that Q is a Nash equilibrium in the
games induced by both 'F and 'W . By Lemma 4.2, jS(Q)j = 1. Let us say that
S(Q) = f�̂g and assume, by contradiction, that Q is not an ON equilibrium in the
game induced by ~'.
Suppose then that there exists a worker w 2 W and an alternative strategy

Q0w such that Qw does not stochastically Pw-dominate Q0w. Since ~'[Q] = �̂, this
implies that Prf~'[Q0w; Q�w] (w)Pw�̂(w)g > 0. Note that, since Q is a Nash
equilibrium in a stable mechanism, �̂ 2 IR(P ). Hence, �̂(w)Rww and it must
be the case that w is matched to a �rm under every matching in S(Q0w; Q�w).
Let �0 be such that �0(w)Pw�(w), for every � 2 supp~'[Q0w; Q�w]g and de�ne
Q00w = �0(w). Since �0 2 S(Q00w; Q�w) (it is still individually rational and no
blocking pairs emerged), Theorem 5.12 in Roth and Sotomayor (1990) ensures
that w is matched to f under every matching in S(Q00f ; Q�f ). Then, there exists no
stable matching mechanism where Q is a Nash equilibrium, since for every stable
matching mechanism ', '[Q00](w) = f and fPw�̂(w). It follows that no worker
can pro�tably deviate in the game induced by ~'.
Hence, there exists a �rm f and a strategy Q0f such that Qf does not stochas-

tically Pf -dominate Q0f , i.e., we have Prf~'[Q0f ; Q�f ](f) �Pf �̂(f)g > 0. Since
�̂ 2 IR(P ), �̂(f) �Rf? and under all matchings in S(Q0f ; Q�f ), f has, at least, one
position �lled. Let �0 be such that �0(f) �Pf�(f), for every � 2 supp~'[Q0f ; Q�f ]g.
De�ne Q00f such that A(Q00f ) = �0(f) \W . Note that �0 2 IR(Q00f ; Q�f ) and that
no pair of agents blocks �0 under the preference pro�le (Q00f ; Q�f ). Therefore,
�0 2 S(Q00f ; Q�f ) and, since �rms have the same positions �lled under every
stable matching (Theorem 5.12 in Roth and Sotomayor (1990)), the de�nition
of Q00f guarantees that f holds �0(f) in every element of S(Q00f ; Q�f ). Finally, for
every stable matching mechanism ', '[Q00f ; Q�f ](f) = �0(f) and �0(f) �Pf �̂(f). It
follows that there exists no stable mechanism where Q is a Nash equilibrium.

The proof of the above result reveals that a suf�cient condition for an ordinal
Nash equilibrium is in fact being a Nash equilibrium in every deterministic stable
mechanism. This appears to be an extremely strong condition to ful�ll. Neverthe-
less, we will now describe a class of randommechanisms for which such condition
becomes necessary for an ordinal Nash equilibrium.
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In the particular case that �I is the empty matching, Roth and Vande Vate
(1990) have shown that, in the marriage model, every element of the stable set
for the revealed preferences can be achieved with positive probability when the
random mechanism they de�ne is applied. In fact, starting from a situation in
which all agents are unmatched, by successively satisfying all the pairs of a stable
matching, we can guarantee that this matching is reached with positive probability.
This random process is an instance of what we will name as really random stable
mechanisms.
A really random stable mechanism ~' assigns positive probability to at least two

different elements of the set of stable matchings, i.e., jsupp~'[Q]j � 2 for every Q
such that jS(Q)j � 2. In Example 4.1, the mechanism that assigns probability 0:5
to the �rm-optimal and to the worker-optimal stable matchings is clearly a really
random stable mechanism. The following result is an implication of Propositions
4.6 and 4.7 in the particular case that ~' is really random.

Corollary 4.1 Let ~' be a really random stable mechanism. Then, the pro�le of
strategiesQ is an ordinal Nash equilibrium in the game induced by ~' if and only if
the set of stable matchings S(Q) is a singleton and there exists a stable mechanism
' where Q is a Nash equilibrium.

Proof. Follows directly from Propositions 4.6 and 4.7, and the fact that Propo-
sition 4.1 implies supp~'[Q] = S(Q) for a really random stable mechanism ~'.

For illustration, consider once more Example 4.1 and note that the set of stable
matchings for truthtelling is a singleton; further, it can easily be shown that it is
an equilibrium in the mechanism that yields, say, the �rm-optimal stable match-
ing. Corollary 4.1 thus implies that straightforward behavior is an ordinal Nash
equilibrium in the random stable mechanism described in the example.

4.5 Non-Preference Strategies

We have explored the game induced by a random mechanism, claiming that one of
the main motivations of this paper is the study of some decentralized markets. This
may be objected on the grounds that up to this point we have restricted our analysis
to a one-period game where strategies are preference lists, which perfectly mirrors
the functioning of a centralized market, but falls short of an illustration of a decen-
tralized market. In particular, in matching processes of the kind described by Roth
and Vande Vate (1990), at each moment in time, a pair of randomly chosen agents
meets and (temporarily) matches if this is consistent with both agents' strategies.
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This clearly �ts the structure of a sequential game. In this context, restricting
each agent to hold the potential partner that is higher on some �xed preference
ordering sustains the validity of the results of the preceding section. However, in
a sequential game, agents can be expected to use richer strategies, conditioning
behavior on the history of the game, and not necessarily acting consistently with
a unique preference ordering. The strategy of matching with the �rst partner one
meets and rejecting every other agent is an example of such kind of strategies.
One of the dif�culties that arises in attempting to capture such complex forms

of behavior concerns the very essence of the mechanism that, following Roth and
Vande Vate (1990), we assume to be stable with respect to the revealed prefer-
ences. In fact, such de�nition is compromised when, for some play of the game,
no list of preferences is compatible with the strategy of a player. Hence, the set
of feasible strategies of the sequential game is simply too large and precludes
analysis in the theoretical framework we have been using. One potential course
of action is therefore to impose that under any play of the sequential game the
choices actually made are consistent with some preference ordering, even though
they may correspond to incompatible preference orderings when several plays are
considered. We can then speak of preference orderings that are �revealed� in the
course of the play. A workerw that entertains the described strategy in the example
above, would match the �rst �rm to tender an offer to him under any play of the
game, and reveal that this �rm is preferred to every other �rm that he eventually
meets in the course of that play. Since meeting is random, this worker would
reveal distinct preference lists under different plays of the game.
Hence, consider a sequential game where, starting from an arbitrary matching,

at each moment in time, a pair of randomly chosen agents, composed of a �rm
and a worker, meets. Agents match upon meeting if this is consistent with their
strategies. We assume that strategies are restricted to those compatible with a
preference ordering for each play of the game, the revealed preference ordering,
even though the information gathered in the course of the play might allow for
other forms of behavior.22 According to Roth and Vande Vate (1990), once the
probability that a given pair of agents meets is bounded away from zero, each play
of the game yields a matching stable with respect to the revealed orderings in the
course of that play.
In Proposition 4.8, we show that the ordinal Nash equilibria in preference

strategies obtained for the one-period game, characterized in Section 4, are robust
to the enlarged strategy space. In fact, given a pro�le of preference strategies, if
by means of a strategy that is not consistent with a unique preference ordering, an

22 The lack of precision in de�ning what each player knows along the game is deliberate. The
result that follows is valid in a perfect information setting, as well as when agents are only
partially aware of the history of the game.
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agent may improve his position, he is certainly capable of doing so using a simple
preference strategy.

Proposition 4.8 In the sequential game induced by a random stable mechanism
~', for any collection of stated preferences Q�v for agents other than an arbitrary
agent v, agent v always has a best response that is consistent with a unique pref-
erence ordering.

Proof. First, consider an arbitrary worker w and �x Q�w. Let sw denote
an arbitrary strategy for w, revealing a preference ordering (not necessarily the
same) under each play of the game. Denote by Qiw the preference ordering that
is consistent with sw under some play i. In general, we have supp~'[sw; Q�w] =
f�1; :::; �kg, where �i 2 S(Qiw; Q�w), for i = 1; :::; k. Now let Qw = �j(w)

where �j(w)Rw�i(w); for all �i 2 f�1; :::�kg. Since �j 2 S(Qjw; Q�w), we must
have �j 2 S(Qw; Q�w) (it is still individually rational and there are fewer blocking
pairs). Hence, given that the same agents are matched under any two elements of
the stable set and the only �rm w �nds acceptable is �j(w), this worker is matched
to �j(w) under every matching in S(Qw; Q�w). It follows that any lottery over
S(Qw; Q�w) gives w a partner at least as good as any lottery over S(sw; Q�w).
Since sw and Q�w are arbitrary, this completes the proof for a worker w.
Now take an arbitrary �rm f . Let sf denote a strategy for f with the same

properties as the strategy for w above. De�ne Qif as the preference ordering
over individual workers that is consistent with sf for some play i of the game.
Let supp~'[sf ; Q�f ] = f�1; :::; �kg, where �i 2 S(Qif ; Q�f ), for i = 1; :::; k.
Consider any alternative strategy Qf for f such that A(Qf ) = �j(f) \W where
�j(f) �Rf�i(f); for all �i 2 f�1; :::; �kg and for every responsive extension �Rf
of Rf . Then, �j 2 IR(Qf ; Q�f ) since �j 2 IR(Qjf ; Q�f ). Moreover, �j 2
S(Qf ; Q�f ) since �j 2 S(Q

j
f ; Q�f ) and no blocking pairs emerged. Given that

the same positions of a �rm are �lled under any element of a stable set and by
de�nition of Qf , f is matched to �j(f) under every matching in S(Qf ; Q�f ).
Since sf and Q�f are arbitrary, this completes the proof.

Nevertheless, this is far from being a characterization of equilibria in this new
setting. In fact, the set of ordinal Nash equilibria is larger here, as the following
example demonstrates.

Consider the matching market in Example 4.1. Let the strategy of each agent
be de�ned as follows: sf = �match only with wi if f1 is the �rst �rm to meet a
worker; match only with wj otherwise� and swi = �match only with fi if f1 is
the �rst �rm to meet a worker; match only with fj otherwise,� for i = 1; 2. This
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strategy pro�le leads to a non-degenerate probability distribution over matchings.
Namely, both � = f(f1; w1); (f2; w2)g and �̂ = f(f1; w2); (f2; w1)g are obtained
with a 50% probability. Hence, Proposition 4.1 rules out the possibility that s can
be reproduced by an equilibrium in preference strategies. Still, s is an ordinal
Nash equilibrium, since any unilateral deviation of a �rm or worker may either
leave the probability distribution unchanged or leave the deviator unmatched with
positive probability. �

4.6 Concluding Remarks

At the expense of using an ordinal equilibrium concept, we have provided a char-
acterization of equilibria that arise in the game induced by a random stable mecha-
nism. The analysis is set in the college admissions problem. First, we have proved
that every ordinal Nash equilibrium yields a unique matching, while when agents
act straightforwardly according to the true preferences several matchings may be
obtained with positive probability. Hence, agents avoid uncertainty when behaving
strategically. Furthermore, a matching can be reached at an ordinal Nash equilib-
rium if and only if it is individually rational for the true preferences. Ordinal
equilibria where �rms best reply by behaving straightforwardly always produce a
matching stable for the true preferences. Conversely, every stable matching can
be reached as the outcome of an equilibrium play of the game. In a different
direction, we relate ordinal Nash equilibria induced by a random mechanism with
Nash equilibria arising in the games induced by deterministic mechanisms. In
particular, a preference pro�le is an ordinal equilibrium of the game induced by a
mechanism that always assigns positive probability to two different matchings (if
such matchings exists) if and only if the set of stable matchings is a singleton and it
is a Nash equilibrium in some deterministic stable mechanism. In the last section
of the paper we have tried to extend the above results, derived for a one-period
game where the set of available strategies coincides with the set of all possible lists
of preferences, to the sequential game that may arise in a decentralized market.
Here we assume agents may use strategies that correspond to different preference
orderings when different plays of the game are considered. We have shown that
ordinal Nash equilibria in preference strategies are robust to the enlarged strategy
space.
In what the above results are concerned, a couple of remarks is in order. The

�rst observation concerns fairness and random matching mechanisms. In opposi-
tion to deterministic mechanisms, which are bound to favor one side of the market
over the other, we have claimed that random matching mechanisms promote pro-
cedural fairness.23 Nevertheless, �endstate� justice is a different issue. Indeed,
23 For example, in the kind of process described in Roth and Vande Vate (1990), each pair of
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the results that relate equilibria in the games induced by random and deterministic
mechanisms imply that every equilibrium outcome in a random mechanism may
be obtained by means of a deterministic mechanism. It follows that, based on
these results and in what �endstate� justice is concerned, we should not expect
random matching mechanisms to improve upon deterministic ones if equilibrium
behavior is to be taken seriously.
Second, the aim of the last section is to shed some light on what happens once

we move towards allowing for history-dependent strategies, preserving the stabil-
ity of the mechanism. The purpose of this paper is to explore strategic behavior
induced by random stable mechanisms, and not to provide a thorough analysis
of the incentives agents face in decentralized markets. Therefore, relaxing the
restriction we impose over the strategy sets would compromise our main goal.
To conclude, equilibrium behavior in random mechanisms has barely been

treated in the matching literature. One of the dif�culties that arises in attempting
to apply the common game theoretical tools stems from the need to compare the
probability distributions over matchings generated by a random mechanism when
preferences are ordinal. By means of the concept of ordinal Nash equilibrium
we have taken a step towards �lling the gap in the literature, providing a fairly
complete characterization of equilibrium behavior.

agents has the same probability of meeting at a certain point in the procedure, and this determines
procedural fairness.



Chapter 5
Giving Advice and Perfect Equilibria in

Matching Markets

5.1 Introduction

There is a vast literature on two-sided matching markets. Theoretical investiga-
tions in matching exhaust issues on the existence of stable matchings, the structure
of the set of such outcomes, and computational algorithms designed to reach them.
The strategic decisions that confront individuals under matching mechanisms have
also been broadly inspected, focusing particularly on incentives in stable matching
mechanisms. That every individually rational matching can be reached as the
outcome of an equilibrium play in the game induced by a stable mechanism is
a well-known fact (Alcalde, 1996). Nevertheless, agents are, in general, poorly
informed and this casts some doubts on the signi�cance of the statement. Indeed,
a great deal of information about the preferences of the other agents may be needed
to compute an equilibrium; furthermore, the multiplicity of equilibria entails a lot
of coordination among agents. Attention is then devoted to a more reasonable
class of equilibria, narrowing the set of probable outcomes. In the mechanism
that yields the optimal stable matching for one side of the market, Roth (1984b)
showed that, although agents may have an incentive to misrepresent their prefer-
ences, every equilibrium in undominated strategies produces a matching that is
stable with respect to the true preferences.
The purpose of this paper is to take this analysis further aiming at a charac-

terization of perfect equilibria in markets organized to produce stable outcomes.
Ordinal preferences entail the use of a perfect equilibrium concept with an ordi-
nal �avor. In fact, in an ordinal perfect equilibrium agents play best replies to
particular pro�les of completely mixed strategies. A best reply, in this context,
�rst-order stochastically dominates every alternative strategy against the mixed
strategy pro�le being considered. Surprisingly, in the mechanism that induces the
optimal stable matching for one side of the market, truth telling emerges as the
unique ordinal perfect equilibrium. Hence, if acting straightforwardly is, in fact,
an ordinal perfect equilibrium, we may postulate that the unique stable matching
for the true preferences is the outcome of the game.
Nevertheless, only seldom is truth a Nash equilibrium in the game induced by

the optimal stable mechanism for one side of the market. We can thus anticipate
that the existence of ordinal perfect equilibria is exceptional. In reality, a necessary
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requirement for honesty to be an ordinal perfect equilibrium is being dominant for
every agent. Hence, the set of ordinal perfect equilibria and Nash equilibria in
dominant strategies coincide in these markets.
Still, the described results may be seen from a brighter perspective. Provided

agents are poorly informed, truth telling may be prescribed as a very prudent
form of behavior. In the complete information framework, Gale and Sotomayor
(1985) have proved that, when any stable mechanism is in use, at least one agent
can pro�tably misrepresent its preferences, except when there is a unique stable
outcome. Yet, in order for participants to identify some strategies that perform
better than truth telling, a lot of information about others' revealed preferences is
needed. In the game induced by the mechanism that yields the �rm-optimal stable
matching, when each agent has certain beliefs about others' strategies, it is still a
dominant strategy for each �rm to act straightforwardly (Roth, 1989). On the other
hand, Roth and Rothblum (1999) have shown that if workers do not have detailed
information about the preferences revealed by other agents in the course of play,
the scope of potentially pro�table strategic behavior is signi�cantly reduced, if
we compare it with the complete information case. If such information exhibits
a certain kind of symmetry, reversing the true order of two acceptable �rms is to
be considered imprudent behavior, but submitting a truncation of the true prefer-
ences may be bene�cial. Informally, a truncation is a preference ordering that is
order-consistent with the true preferences, but under which the worker restricts
the number of �rms he applies to. Ehlers (2004) takes a further step in the search
of advice for workers in a matching market, providing a weaker condition on a
worker's beliefs to obtain the conclusions of Roth and Rothblum (1999). Loosely
speaking, a worker should not reverse the true ranking of two acceptable �rms
whenever he is not able to anticipate which new proposals he is going to receive
after having rejected others. Moreover, Ehlers (2004) gives advice to workers who
can distinguish between three sets of �rms: the �rms that will certainly propose
to him, the �rms that may propose, and those from which he does not expect a
proposal.
Hence, there seems to be a clear consensus about how harmful altering the

true order of �rms may be in a low information environment. The results in this
paper suggest that, when a worker contemplates obtaining a proposal from any
acceptable �rm, he should reveal his whole true preference ordering if he wants
to minimize the probability of being unmatched. In fact, truncations may lead to
more favorable outcomes, but at the expense of increasing the chances of being
alone. Regardless of the incentives to act strategically, honesty thus remains a
fundamental form of behavior.
These conclusions already stem from Barberà and Dutta (1995). Barberà and

Dutta (1995) show that acting straightforwardly is the unique protective strategy
for every agent. Loosely speaking, this means that when an agent compares
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truth telling with any misrepresentation of its preferences, there exists a poten-
tial partner with whom, by manipulating, it ends up matched for a larger set of
actions of the other players, while less preferred potential partners are obtained,
by either acting straightforwardly or strategically, against the same pro�les for
the rest of society. The concept of protective behavior is based on a re�nement
of a maxmin criterion and is particularly appropriate for games where agents are
poorly informed and suf�ciently risk averse.
We proceed as follows. In Section 5.2, we formally present the marriage model

and introduce notation. We de�ne the concept of ordinal perfect equilibrium in
Section 5.3. In Section 5.4 we develop the main results. We conclude in Section
5.5 on further research.

5.2 The Marriage Model

Consider two �nite and disjoint sets F = ff1; :::; fng and W = fw1; :::; wpg,
where F is the set of �rms andW is the set of workers. We let V = W [ F and
sometimes refer to a generic agent by v, while w and f represent a generic worker
and �rm, respectively. Each agent has a strict, complete, and transitive preference
relation over the agents on the other side of the market and the perspective of
being unmatched. The preferences of a �rm f , for example, can be represented by
Pf = w3; w1; f; w2; :::; w4, indicating that f 's �rst choice is to be matched to w3,
its second choice is w1 and it prefers remaining unmatched to being assigned to
any other worker. Equivalently, we may say that w3 is the lowest ranked worker
in Pf , with rank 1 (rPf (w3) = 1), w1 is ranked second (rPf (w1) = 2), being
unmatched is ranked third (rPf (f) = 3), and every other worker has a higher
ranking in Pw. A worker is acceptable if the �rm ranks him lower than having its
position un�lled; in the above example, the set of acceptable workers is A(Pf ) =
fw1; w3g. Similarly, given Pw we may de�ne an acceptable �rm and A(Pw). It
is suf�cient to describe only the ordering of acceptable partners, so that the in the
above example preferences can be abbreviated as Pf = w3; w1. Let P = (Pf1 ; :::;
Pfn ; Pw1 ; :::; Pwp) denote the pro�le of all agents' preferences; we sometimes write
it as P = (Pv; P�v) where P�v is the set of preferences of all agents other than
v. Further, we may use PU , where U � V , to denote the pro�le of preferences
(Pv)v2U . We write v0Pvv00 when v0 is preferred to v00 under preferences Pv and we
say that v prefers v0 to v00. We write v0Rvv00, when v likes v0 at least as well as v00
(it may be the case that v0 and v00 are the same agent).
Formally, a marriage market is a triple (F;W; P ). An outcome for a marriage

market, a matching, is a function � : V �! V satisfying the following: (i) for
each f in F and for each w in W , �(f) = w if and only if �(w) = f ; (ii) if
�(f) 6= f then �(f) 2 W ; (iii) if �(w) 6= w then �(w) 2 F . If �(v) = v, then
v is unmatched under �, while if �(w) = f , we say that f and w are matched
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to one another. A description of a matching is given by � = f(f1; w2); (f2; w3)g,
indicating that f1 is matched to w2, f2 is matched to w3 and the remaining agents
in the market are unmatched. A matching � is individually rational if each agent
is acceptable to its partner, i.e., �(v)Rvv, for all v 2 V . We denote the set of all
individually rational matchings by IR(P ). Two agents f and w form a blocking
pair for � if they prefer each other to the agents they are actually assigned to
under �, i.e., fPw�(w) and wPf�(f). A matching � is stable if it is individually
rational and it is not blocked by any pair of agents. We denote the set of all stable
matchings by S(P ). A �rm f and a worker w are achievable for each other if f
and w are matched under some stable matching.
The proof of existence of stable matchings in Gale and Shapley (1962) is

constructed by means of the deferred-acceptance algorithm. At each step of the
algorithm, proposals are issued by one side of the market according to its prefer-
ences, while the other side merely reacts to such offers by rejecting all but the best.
Hence, in the case that �rms make job offers, the algorithm starts with each �rm
proposing to the �rst worker on its list and each worker rejecting all proposals but
the best. This yields the �rst tentative matching. Next, every rejected �rm makes
an offer to its second favorite worker and again workers only hold the one they
prefer among those just received and the one held from the previous step. The
algorithm proceeds by creating, at each step, a tentative matching and terminates
when each �rm is either held by a worker or has been rejected by every worker on
its list of preferences. This algorithm arrives at the �rm-optimal stable matching,
with the property that all �rms are in agreement that it is the best stable matching.
The deferred-acceptance algorithm with workers proposing produces the worker-
optimal stable matching with corresponding properties. Further, the optimal stable
matching for one side of the market is the worst stable matching for every agent
on the other side of the market, a result presented in Knuth (1976) but attributed to
John Conway. Still, there is a set of agents who are indifferent between any stable
matching. The �rst statement of this result appears in McVitie and Wilson (1970);
later, it was proved in Roth (1984b) and Gale and Sotomayor (1985). We state it
formally in the next Proposition for further reference.

Proposition 5.1 In a matching market (F;W; P ), the set of unmatched agents is
the same for all stable matchings.

Finally, a matching mechanism ~' maps preference pro�les into lotteries over
matchings. In what follows, in a matching market (F;W; P ), we consider the
revelation game induced by ~' in which agents are each faced with the decision
of what strategies to act on. The strategy space of a player in the game is the
set of all possible preference lists: given the true preference ordering Pv, each
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player v may eventually reveal a different order Qv over the players on the other
side of the market. A matching mechanism ~' and a preference pro�le Q induce a
random matching ~'[Q]. Throughout the paper, we only consider stable matching
mechanisms. Hence, ~'[Q] denotes the probability distribution induced over the
set of stable matchings S(Q) and ~'[Q](v) is the probability distribution induced
over agent v's achievable matches. We use, for example, Prf~'[Q](v)Rvv̂g to
denote the probability that v obtains a partner at least as good as v̂ according to
v's true preferences Rv when the pro�le Q is used in the mechanism ~'. In the
particular case that the mechanism is deterministic, we let ~'[Q] denote the unique
outcome matching. The mechanism that yields the �rm-optimal stable matching
with certainty is an example of a deterministic stable matching mechanism and
will be denoted by 'F . We let 'W represent the mechanism that leads to the
worker-optimal stable matching.

5.3 Ordinal Perfect Equilibria

In this section we de�ne ordinal perfect equilibria. We present all de�nitions for
stable mechanisms in general, even though many results refer to the particular case
of deterministic mechanisms, namely the mechanisms that yield the optimal stable
matching for one side of the market.
Consider w 2 W (what follows also holds for a representative �rm, with

obvious modi�cations) with true preferences Pw and let Q�w be a strategy pro�le
for all the agents other than w. Given a stable mechanism ~' and given Q�w, we
say that the strategy Qw stochastically Pw-dominates Q0w if, for all v 2 F [ fwg,
Prf~'[Qw; Q�w](w)Rwvg � Prf~'[Q0w; Q�w](w)Rwvg. Thus, for all v 2 F [fwg,
the probability of w being assigned to v or to a strictly preferred agent is higher
under ~'[Qw; Q�w](w) than under ~'[Q0w; Q�w](w). Hence, if we consider the
problem that player w faces given the strategy choices Q�w of the other players, a
particular strategy choiceQw may be preferred if it stochastically dominates every
other alternative strategy. In this case we say that Qw is a best reply to Q�w.

De�nition 5.1 Given the pro�le of preferences P , the pro�le of strategies Q is
an ordinal Nash equilibrium (ON equilibrium) in the game induced by ~' if, for
each agent v in V , Qv is a best reply to Q�v.

The concept of ordinal Nash equilibrium deserves a couple of remarks. First,
it was introduced in d'Aspremont and Peleg (1988) and its use is required given
the very nature of random matching.24 In fact, agents' preferences are ordinal in
24 This concept was also used in the context of voting theory in Majumdar and Sen (2004) and in
matching markets in Ehlers and Massó (2003), and Majumdar (2003).



5.4 Results 71

nature. Since no natural utility representation of these preferences exists (and no
expected utilities can be computed), this ordinal criterion provides a means for
comparing probability distributions over potential partners. Second, it is quite a
strong equilibrium concept. Under an ordinal Nash equilibrium, each agent plays
its best response to the others' strategies for every utility representation of the
preferences. However, in the particular case that ~' is a deterministic mechanism,
the concept boils down to plain Nash equilibrium.
For our purposes, some of the above de�nitions have to be extended to mixed

strategies. We let � denote a mixed strategy and we let �(Q) =
Q
v2V
�v(Qv) be

the probability of pro�le Q under the mixed strategy �. Given a stable mechanism
~' and a mixed strategy pro�le �, we let ~'[�] denote the probability distribution
induced over the whole set of matchings that satis�es the following: Prf~'[�] =
�g =

P
Q2supp�

�(Q) � Prf~'[Q] = �g. As before, given a mixed strategy pro�le

��w, the pure strategyQw stochastically Pw-dominatesQ0w if, for all v 2 F [fwg,
Prf~'[Qw; ��w](w)Rwvg � Prf~'[Q0w; ��w](w)Rwvg. The strategy Qw is a best
reply to ��w if it stochastically Pw-dominates every alternative pure strategy. We
are now in condition to de�ne ordinal perfect equilibria.

De�nition 5.2 Given the pro�le of preferences P , the pro�le of strategies Q
is an ordinal perfect equilibrium in pure strategies (OP equilibrium) in the
game induced by ~' if there exists a sequence of completely mixed strategies �k,
f�kg���!

k!1Q, with the property that, for every k � 1, Qv is a best reply to �k�v, for
every agent v in V .

Hence, we require that the pro�le Q be a limit of a sequence of totally mixed
pro�les �k and thatQv stochastically Pv-dominates every alternative pure strategy
when the opponents use the perturbed strategies �k�v.

5.4 Results

The �rst couple of results apply to any stable matching mechanism. In Theorem
5.1, we take a prescriptive point of view and establish that no unacceptable part-
ners should be included in one's list if not matching unacceptable partners is the
major concern. Moreover, if an agent wishes to minimize the probability of being
unmatched, it should submit a comprehensive preference ordering. In fact, the
existence of even the slightest chance of being matched to an acceptable partner
should not be neglected.
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Theorem 5.1 Let ~' be a stable mechanism. If Qv is agent v's best reply to
a completely mixed strategy pro�le ��v, then Qv lists all the partners that are
acceptable according to v's true preferences Pv (i.e., A(Qv) = A(Pv)).

Proof. Let v be an arbitrary worker. Since the model is symmetric between �rms
and workers, what follows also holds for an arbitrary �rm.
First, we will show that ranking an unacceptable �rm f 0 as acceptable in Qv

is not a best reply to a completely mixed strategy pro�le for agents other than v,
��v.
(i) Take anyQ�v and note that under any matching � 2 S(Pv; Q�v), v is either

always unmatched or always matched to an acceptable �rm. Hence, Prf~'[Pv; Q�v]
(v)Rvvg = 1, for all Q�v. It follows that Prf~'[Pv; ��v](v)Rvvg =

P
Q�v2supp��v

�(

Q�v) � Prf~'[Pv; Q�v](v) Rvvg = 1.
(ii) Now consider Q̂�v such that Q̂f 0 = v and no other �rm ranks v as accept-

able. Then, v will be matched to f 0 in every matching that is stable for (Qv; Q̂�v).
Consequently, Prf~'[Qv; Q̂�v](v)Rvvg = 0.
(iii) Given that Q̂�v has positive probability under ��v, (ii) implies Prf~'[Qv;

��v](v) Rvvg =
P

Q�v2supp��v
�(Q�v) �Prf~'[Qv; Q�v](v)Rvvg < 1. Hence, Prf~'[

Pv; ��v](v)Rvvg > Prf~'[Qv; ��v](v)Rvvg and Qv is not a best reply to ��v.
So, let Qv only rank acceptable �rms. We will now prove that deleting an

acceptable �rm from Pv cannot be a best reply to the completely mixed strategy
pro�le ��v. So let f 2 A(Pv), but f =2 A(Qv). Let Q0v be such that the restriction
ofQv and ofQ0v toA(Qv) coincide, but f 2 A(Q0v) and f 0Q0vf , for all f 0 2 A(Qv).
Note that A(Q0v) � A(Pv). We will show that Qv does not stochastically Pv-
dominate Q0v when the other players choose ��v.
(i) If, for everyQ�v, v is unmatched under � 2 S(Qv; Q�v), we havePrf~'[Qv;

Q�v](v) Pvvg = 0, for all Q�v. Since A(Q0v) � A(Pv), we also have Prf~'[Q0v;
Q�v](v)Pvvg � 0. Hence, Prf~'[Q0v; Q�v](v)Pvvg � Prf~'[Qv; Q�v](v)Pvvg; for
every Q�v.
(ii) Otherwise, take any Q�v such that �(v) 2 F , with � 2 S(Qv; Q�v). Let

Q0 = (Q0v; Q�v). We will prove that � 2 S(Q0). Clearly, � 2 IR(Q0), by de�-
nition of Q0. Now assume, by contradiction, that (f 0; w) block �, i.e., f 0Q0w�(w)
and wQ0f 0�(f 0). Since Q0f 0 = Qf 0 , for every f 0 2 F , we have wQf 0�(f 0). Also,
given that Q0w = Qw, for every w 6= v, the stability of � for Q implies that w = v.
Hence, f 0Q0v�(v) and vQf 0�(f 0). It follows from the de�nition of Q0v and the
stability of � for Q that f 0 = f and that �(v) = v. This contradicts the initial
assumption �(v) 2 F .
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We proved that, if �(v) 2 F , for some � 2 S(Qv; Q�v), we have � 2 S(Q0).
Since the set of unmatched agents is the same for all stable matchings (the �rst
statement of this result appears in McVitie and Wilson, 1970; it also appears in
Gale and Sotomayor, 1985, and Roth, 1984), v is matched under every match-
ing that is stable for Q0. It follows that, for all Q�v, Prf~'[Q0v; Q�v](v)Pvvg �
Prf~'[Qv; Q�v](v)Pvvg:
(iii) To see that there exists some Q̂�v for which v ends up alone when stating

Qv, but matched when using Q0v, suppose Q̂f = v and no other �rm ranks v
as acceptable. Then, v is matched to f with certainty at (Q0v; Q̂�v), whereas he
stays alone if using Qv. As a consequence, there exists a Q̂�v such that 1 =
Prf~'[Q0v; Q̂�v](v)Pvvg > Prf~'[Qv; Q̂�v](v)Pvvg = 0.
(iv) Since all pro�les of preferences Q�v have positive probability in the com-

pletely mixed strategy pro�le ��v, v will be unmatched with higher probability
when using Qv than when using Q0v, we have Prf~'[Q0v; ��v](v)Pvvg > Prf~'[Qv;
��v](v)Pvvg and Qv is not a best reply to ��v.
Since ordinal perfect equilibrium strategies are best replies to completely mixed

strategy pro�les it immediately follows from the above result that ordinal perfect
equilibrium strategies have to be exhaustive, listing all the acceptable partners, but
leaving out those considered unacceptable. We state this formally in the following
corollary.

Corollary 5.1 Let ~' be a stable mechanism. If Q is an ordinal perfect equilib-
rium in the game induced by ~', every agent v ranks in Qv all the partners that
are acceptable according to its true preferences Pv (i.e., A(Qv) = A(Pv), for all
v 2 V ).

Two further implications of the above theorem are worth noticing. The �rst
and most immediate goes against the celebrated properties of strict truncations.
Formally, a strict truncation of an agent v's true preferences Pv containing p
acceptable partners is a strategy that lists the �rst p0, p0 < p, elements of Pv as
acceptable, preserving their order in Pv. Revealing a strict truncation of the true
preferences may not be wise when one highly esteems being matched; further-
more, strict truncation strategies cannot be part of an ordinal perfect equilibrium
in the game induced by a stable mechanism.
Second, it allows us to restrict the set of potential outcomes. As it will be

readily understood, not every individually rational matching is sustainable as the
outcome of an equilibrium play where agents fully reveal whom they are willing
to match. In what follows, we describe those matchings that are beyond reach and
state the result.
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De�nition 5.3 Let U(P ) be the set of all individually rational matchings � such
that at least one of its blocking pairs either includes one agent that is unmatched
under � or consists of a pair of unmatched agents under �.

Proposition 5.2 Let ~' be a stable mechanism. Let � be a matching in U(P ). In
the game induced by ~', � is not sustainable in an ordinal perfect equilibrium.

Proof. By Theorem 5.1, listing all the acceptable partners is a necessary require-
ment for an ordinal perfect equilibrium strategy. So, let Q be an ordinal Nash
equilibrium such that A(Qv) = A(Pv) for all v. We will show that Q cannot
support � 2 U(P ):
By contradiction, assume that it does. In the game induced by a stable mecha-

nism, every Nash equilibrium yields a single matching with probability one (Pais,
2004). Hence, Q leads to � with probability one. By de�nition of �, there exists
at least one blocking pair for � consisting of a �rm f and a worker w such that
either f or w or both are unmatched under �. If both are unmatched under �,
since f 2 A(Qw) and w 2 A(Qf ), we have fQw�(w) and wQf�(f). Hence, �
is not stable for Q and it cannot be reached as the outcome of a random stable
mechanism where agents use Q.
So, let � be blocked by (f; w) such that one of its members is unmatched,

while the other one is matched under �. Since the model is symmetric between
�rms and workers, it is suf�cient to prove the proposition for, say, f unmatched
and w matched under �. Now let Q0w be identical to Qw, but such that f is listed
�rst inQ0w even if it occupies a worse position inQw. De�neQ0 = (Q0w; Q�w). We
will show that Q0w is different from Qw (i.e., Qw does not list f �rst); in addition,
Q0w is a pro�table deviation toQw, since f and w are matched with certainty under
any matching in S(Q0).
To prove that f is matched to w under the �rm-optimal stable matching at

Q0, we will use the deferred-acceptance algorithm with �rms proposing. Since
Q0v = Qv, for every agent v 6= w, all proposals, acceptances, and rejections take
place exactly the same way as when Q was being used, up to the point where w
holds f 's proposal. This moment comes since w 2 A(Qf ) and f is the �rst �rm
in Q0w. Also, w will not reject f until the �nal matching is reached, so that f and
w are together under the �rm-optimal stable matching.
It follows from the de�nition of worker-optimal stable matching that w holds

f or a �rm ranked higher than f at Q0w under any stable matching for Q0. Since f
is the �rst �rm in Q0w, w is matched to f under all stable matchings. This implies
that Q0w 6= Qw; otherwise, (f; w) could not block �.
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To conclude, we have 1 = Prf~'[Q0w; Q�w](w) = fg. Since Q leads to �
with certainty, Prf~'[Q](w) = fg = 0. Hence, Prf~'[Q0w; Q�w](w)Rwfg >
Prf~'[Qw; Q�w](w)Rwfg and Qw is not a best reply to Q�w, contradicting that
Q is a Nash equilibrium. Since no Nash equilibrium where agents list all the
acceptable partners can sustain a matching in U(P ), no ordinal perfect equilibrium
will.
In the other direction, it may be shown that every matching in IR(P )nU(P )

may be sustained as the unique outcome of an equilibrium play of the game where
all agents reveal the full set of acceptable partners.

Proposition 5.3 Let ~' be a stable mechanism. Let � be a matching in IR(P )nU(P ).
Then, there exists an ordinal Nash equilibrium Q in the game induced by ~' with
the following properties:

1. every agent v ranks as acceptable in Qv all of its acceptable partners under
Pv

2. Q sustains � with probability one.

Proof. Let � be a matching in IR(P )nU(P ) and consider agent v. Let Qv be
such that (i) A(Qv) = A(Pv) and (ii) if v is matched under �, �(v)Qvv0, for all
v0 2 A(Pv), i.e.:

Qv =

8>>>><>>>>:
All elements ofA(Pv) in any orderz }| {

�(v); :::::::::::::::::::::::::::::::; v if �(v) 6= v

:::::::::::::::::::::::::::::::::::::::| {z }
All elements ofA(Pv) in any order

; v if �(v) = v
:

We will show that Q has all the described properties.
First, we will show, by contradiction, that � 2 S(Q). By de�nition of Q, it is

clear that � 2 IR(Q). So assume (f; w) blocks �when the pro�leQ is considered.
By (ii), this implies that f and w are unmatched under �. We thus have wQff
and fQww. Since A(Qv) = A(Pv) for every agent v, it follows that wPff and
fPww. Hence, (f; w) are unmatched under � and block � for preferences P . This
contradicts that � 2 IR(P )nU(P ).
Now we will prove that � is the unique matching in S(Q). Assume not and

take any matching �̂; �̂ 6= �, in S(Q). Let v be such that �(v) = v. Then,
�̂(v) = v since, by Proposition 5.1, the same set of agents is unmatched under
every matching that belongs to S(Q). On the other hand, for v̂ such that �(v̂) 6= v̂,
we must have �̂(v̂) = �(v̂) by (ii). Otherwise, (v̂; �(v̂)) blocks �̂. Hence, �̂ = �
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and � is the only matching in S(Q). As a consequence, every random stable
mechanism leads to � with probability one.
To complete the proof, we must show that Q is an ordinal Nash equilibrium.

By contradiction, suppose �rm f can pro�tably deviate by matching worker w
(the same argument holds for an arbitrary worker). This implies that there exists a
worker w willing to accept f , i.e., such that fQw�(w). By (ii), we must have
�(w) = w and, by (i), fPw�(w). Since � 2 IR(P )nU(P ), it follows that
�(f)Pfw and we contradict the initial assumption: matching w is not a pro�table
deviation for f .
We now state an important result for deterministic stable mechanisms that fol-

lows from Barberà and Dutta (1995). In this paper, revealing the true preferences
is most convenient for agents who are extremely risk averse. In fact, when an agent
compares straightforward behavior with any misrepresentation of its preferences,
there exists a potential partner with whom, by manipulating, it ends up matched for
a larger set of actions of the other players; further, less preferred potential partners
are obtained, by either acting straightforwardly or strategically, against the same
pro�les for the rest of society. It thus follows that when an agent's beliefs are
such that all preference pro�les for the other agents may be revealed with positive
probability, behaving strategically is never a best reply. We state this formally in
the next Theorem. Even though the result applies to the mechanism producing the
�rm-optimal stable matching, it is straightforward to extend it to a market using
the worker-optimal stable mechanism.

Theorem 5.2 [Barberà and Dutta (1995)] In the game induced by 'F , if Qv is a
best reply to a completely mixed strategy pro�le ��v, then Qv are agent v's true
preferences (i.e., Qv = Pv).

It clearly follows that only truth telling may be an ordinal perfect equilibrium
in the game induced by the mechanism that yields an optimal stable matching. We
state this as a corollary to Theorem 5.2.

Corollary 5.2 In an ordinal perfect equilibrium of the game induced by 'F every
agent states its true preferences.

This result anticipates that ordinal perfect equilibria only seldom exist in match-
ing markets. The following example supports this observation.

Example 5.1 A market where there are no ordinal perfect equilibria in pure
strategies.
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Let (F;W; P ) be a marriage market with P such that

Pw1 = f2; f1 Pf1 = w1; w2
Pw2 = f1; f2 Pf2 = w2; w1:

Consider the game induced by the mechanism that produces the �rm-optimal sta-
ble matching. Corollary 5.2 establishes that, under an ordinal perfect equilibrium
in this game, every agent chooses the honest announcement of preferences. In
this case, the mechanism would yield the matching � = f(f1; w1); (f2; w2)g.
Nevertheless, truth telling fails to meet the basic requirement of being a Nash
equilibrium of the game, since both workers can pro�tably deviate. For example,
submitting Qw1 = f2 is a deviation for worker w1, conveying the position in f2. �

We can extend the above result to random stable mechanisms that only assign
positive probability to the �rm-optimal and to the worker-optimal stable match-
ings.

Proposition 5.4 Let ~' be a stable mechanism that yields the �rm-optimal stable
matching with probability � and the worker-optimal stable matching with proba-
bility 1� �, 0 < � < 1. In an ordinal perfect equilibrium in the game induced by
~' every agent states its true preferences.

Proof. Let w be an arbitrary worker. We will show that Pw is the only strategy
that can be part of an OP equilibrium in the game induced by the random stable
mechanism ~' as de�ned above. We omit the proof for an arbitrary �rm f , since
the same arguments, with obvious modi�cations, can be applied.
Let Qw be a strategy for w such that Qw 6= Pw. Assume that Qw is a best

reply to a completely mixed strategy pro�le ��w. This has two implications.
First, by Corollary 5.1, A(Qw) = A(Pw). Second, Prf~'[Qw; ��w](w)Rwvg �
Prf~'[Pw; ��w](w)Rwvg, for every v, a potential partner of w. By de�nition of ~',
we have �Prf'F [Qw; ��w](w)Rwfg+ (1��) Prf'W [Qw; ��w](w)Rwfg � �Pr
f'F [Pw; ��w](w)Rwfg+ (1��) Prf'W [Pw; ��w](w)Rwfg, for every v. Never-
theless, since truth telling is a dominant strategy for workers in the game induced
by the worker-optimal stable mechanism, it is a best reply to any mixed strategy
pro�le and Prf'W [Pw; ��w](w)Rwfg � Prf'W [Qw; ��w](w)Rwfg. Moreover,
Theorem 5.2 states that honestly revealing the true preferences is a best reply in
the game induced by the �rm-optimal stable mechanism, so that Prf'F [Pw; ��w]
(w)Rwfg � Prf'F [Qw; ��w](w)Rwfg. It follows that 'W [Pw; ��w](w) = 'W [
Qw; ��w](w) and 'F [Pw; ��w](w) = 'F [Qw; ��w](w). Since ��w is a com-
pletely mixed strategy pro�le, these distributions have full support, i.e., every
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�rm in A(Pw) is obtained as a partner with positive probability. This implies
that Qw = Pw, contradicting the initial assumption.
As a consequence, only Pw can be a best reply to a mixed strategy; thus only

Pw can be part of an OP equilibrium.
Finally, con�rming our conjecture on the existence of ordinal perfect equilib-

ria, in the next result we show that truth telling can only be an ordinal perfect
equilibrium if it is a dominant strategy for every agent. Hence, the concept of
ordinal perfect equilibrium and the apparently stronger concept of Nash equilibria
in dominant strategies coincide.

Theorem 5.3 In the game induced by 'F , the sets of ordinal perfect equilibria
and of Nash equilibria in dominant strategies coincide.

Proof. It is clear that every Nash equilibrium in dominant strategies is an OP
equilibrium. In fact, a dominant strategy is a best reply to all pro�les of prefer-
ences stated by the other players; hence, it is also a best reply to any completely
mixed strategy pro�le. The converse statement will be shown in what follows.
Theorem 5.2 imposes as a necessary requirement for an OP equilibrium that

every agent states its true preferences. Hence, let P be an OP equilibrium in 'F ,
but assume that stating the true preferences is not a dominant strategy for some
worker w. Then, there exists at least one instance, i.e., a strategy pro�le for the
other players, under which playing strategically pays for worker w. Denote by
Q�w such a strategy pro�le and let Qw be the best reply to Q�w. Formally,

'F [Qw; Q�w](w)Pw'
F [Pw; Q�w](w) and (5.1)

'F [Qw; Q�w](w)Rw'
F [ �Qw; Q�w](w), for every �Qw. (5.2)

Let, without loss of generality, Pw = f1; f2; :::; fm and fj = 'F [Qw; Q�w](w),
with 1 � j � m.
Now de�ne Q0w = fj; fj�1; :::; f1. Observe that 'F [Qw; Q�w] 2 S(Q0w; Q�w),

since it remains individually rational once w uses Q0w and there are potentially
fewer blocking pairs for 'F [Qw; Q�w]. Hence, Proposition 5.1 implies that w is
matched under every matching in S(Q0w; Q�w); in addition, the de�nition of Q0w
implies that he is matched to a �rm at least as good as fj according to Pw. By (5.2),
'F [Qw; Q�w](w)Rw'

F [Q0w; Q�w](w), so that we must have 'F [Q0w; Q�w](w) =
fj . Then, if Qw gives w matched to fj against Q�w, Q0w also matches w to fj .
Hence, for the pro�leQ�w, condition (5.1) yields fj = 'F [Q0w; Q�w](w)Pw'F [Pw;
Q�w](w).

Now let us prove that there is no instance Q̂�w under which Pw matches w to



5.4 Results 79

a �rm at least as good as fj , while Q0w leaves w unmatched. By contradiction,
assume that, by playing truthfully, w is matched to fi, i � j, but unmatched when
using Q0w against Q̂�w in the game induced by 'F . If this is so, by Proposition
5.1, w is unmatched under every matching that is stable for (Q0w,Q̂�w) and, in
particular, we have 'W [Q0w; Q̂�w](w) = w. On the other hand, by de�nition
of worker-optimal stable matching, 'W [Pw; Q̂�w](w)Rw'F [Pw; Q̂�w](w) = fi.
Since fiRwfj , we have 'W [Pw; Q̂�w](w) 2 A(Q0w). Now imagine Q0w are w's
true preferences. By acting strategically and using Pw, w is better off than by
straightforwardly revealing Q0w. This contradicts the fact that truth is a dominant
strategy for workers in the game induced by 'W . Hence, w is matched to a �rm
at least as good as fj with Pw, by manipulating and using Q0w, w will also be
matched to a �rm at least as good as fj . We thus have, for every �Q�w that yields
'F [Pw; �Q�w](w)Rwfj , that 'F [Q0w; �Q�w](w)Rwfj .
Consider a completely mixed strategy pro�le ��w. In the game induced by

'F , when playing against ��w, Q0w yields a higher probability of being matched
to a �rm at least as good as fj than Pw. Clearly, Pw cannot be part of an OP
equilibrium, contradicting the initial assumption.
The whole picture changes when we depart from the ordinal framework. As

shown in the following example, if agents are able to go beyond an ordering of the
possible matches and provide a measure of their preferences, strategic behavior
may be held in a perfect equilibrium.

Example 5.2 (Example 5.1 (revisited)) Acting strategically may be a perfect equi-
librium when agents can give a cardinal meaning to their preferences.

Consider the game induced by the mechanism that yields the �rm-optimal
stable matching in the matching market described above. Consider the pro�le
of strategies Q = (PF ; QW ), such that each worker only �nds his �rst choice ac-
ceptable inQ (i.e., Qw1 = f2 andQw2 = f1). We will show that, depending on the
utility representation of the workers' preferences, Q may be a perfect equilibrium
of the game.
Each agent has �ve different strategies at its disposal (two of them stating

two acceptable matches, other two naming only one, and the strategy where all
potential partners are unacceptable). Let �k be a sequence of completely mixed
strategy pro�les such that, for k � 1 and for every agent v, �k(Q̂v) = 1

k+4
,

for all Q̂v 6= Qv, and �k(Qv) = 1 � 4
k+4
. Note that f�kg���!

k!1Q. Revealing
the true preferences is a dominant strategy for each �rm f in this game (Dubins
and Freedman, 1981, and Roth, 1982), outperforming every alternative strategy
for every pro�le chosen by the other agents, namely �k�f , for every k � 1. So,



80 Chapter 5 Giving Advice and Perfect Equilibria in Matching Markets

consider worker w1 (by symmetry, what follows also holds for w2); we will prove
that Qw1 is a best reply to �k�w1 .
(i) ConsiderQ0w1 = w1; note thatw1 is always unmatched when using this strat-

egy against any pro�le of strategies of the other players. Hence, w1 is unmatched
with certainty when playingQ0w1 against �

k
�w1 . It follows thatQ

0
w1
is stochastically

Pw1-dominated by every other strategy that w1 may use, in particular by Pw1when
playing against �k�w1 .
(ii) The strategy Q00w1 = f1 is also stochastically Pw1-dominated by Pw1 =

f2; f1 against �k�w1 . In fact, if w1 is unmatched when using Pw1against Q�w1 ,
he will certainly be unmatched with Q00w1 . So, when playing against �

k
�w1 , w1 is

matched with higher probability if he uses Pw1 . Moreover, there exist pro�les of
strategies for the other players such that w1 is matched to f2 under the outcome of
the deferred-acceptance algorithm when revealing Q000w1 , but not with Q

00
w1
, where

f2 is considered unacceptable. The conclusion follows.
(iii) Now consider Q000w1 = f1; f2. Note that w1 is unmatched when using this

strategy if and only if he is unmatched with Pw1 = f2; f1. Furthermore, for every
pro�le of the other players such that w1 is assigned to f2 with Q000w1 , he is also
assigned to f2 when using Pw1; and there are pro�les of strategies for the other
players such that w1 is matched to f2 when revealing Pw1 , but not with Q000w1 . It
follows that Pw1 stochastically Pw1-dominates Q000w1 against any completely mixed
strategy pro�le �k�w1 .
(iv) Since Pw1 outperforms Q0w1 , Q

00
w1
, and Q000w1 , it is suf�cient to �nd under

which conditions Qw1 may be preferred to Pw1 . There is an instance under which
submitting Qw1 provides w1 with a better partner. In fact, f2 is w1's partner under
the �rm-optimal stable matching with (Qw1 ; Q̂w2 ; Pf1 ; Pf2), where Q̂w2 = f1; f2;
by using Pw1 against the same pro�le for the others, w1 ends up matched to f1.
Nevertheless, w1 is unmatched when revealing Qw1 against a larger set of pro�les
of the other players, than when using Pw1 . It turns out that Qw1 is a best reply to
�k�w1 , if the following condition holds: (k)

2[u(f2)� u(f1)] � (4(k+4)2� 17k�
51)[u(f1)�u(w1)].25 In particular, when u(f2)�u(f1) is larger than u(f1)�u(w1),
w1 bene�ts from listing only his �rst choice. �

5.5 Further Research

As mentioned in Chapter 1, the aim of this paper is to narrow the set of potential
equilibrium outcomes by imposing stronger rationality constraints than those un-
derlying the concept of Nash equilibrium. Nevertheless, the analysis performed

25 This expression results from considering the outcomes of the deferred-acceptance algorithm
when w1 uses Pw1 and Qw1 for all possible combinations of the other agents' preferences. This
calls for performing a total of 53 tedious comparisons that we leave out for obvious reasons.
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here should be considered very preliminary. We have shown that only truth telling
may be a best reply to a completely mixed strategy pro�le and, thus, part of
an ordinal perfect equilibrium. Such negative result on the existence of ordinal
perfect equilibria calls for a weaker concept. One possible course of action lies in
considering that agents never submit strategies that are stochastically dominated
against a completely mixed strategy pro�le, while those that are not stochastically
dominated should be regarded as potential choices. Such concept is closer in spirit
to the notion of perfect equilibrium in expected utilities. In fact, each of the latter
strategies should be a best reply to a completely mixed strategy pro�le for some
utility representation of the true preferences. We can then show that strategies
that do not list the best partner �rst are stochastically dominated and conclude
that a strict subset of the individually rational matchings can be sustained in weak
ordinal perfect equilibria.
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