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Chapter 1. Bargaining with Outside
Options: an introduction.

1.1 Introduction

A bargaining problem is a situation in which agents have the possibility

of concluding a mutually beneficial agreement while there is a conflict of

interests about which agreement to conclude and no agreement may be

imposed on any agent without her approval. Agreement may be delayed

or never be reached. In real life, an impasse in negotiations is not the

only route that may lead to a failure of agreement; they may terminate

in disagreement when one of the bargainers unilaterally abandons the

negotiation table to take up an opportunity elsewhere. This could be the

case of an alternative job in a wage negotiation, a judicial intervention

in a divorce proceeding, an alternative buyer/seller in a trade, etc. In

all these situations the agent’s decision to take up her outside option is

not an accident, it is a strategic decision.

The game-theoretic literature on bargaining with outside options has

addressed the important issue of the impact of such options on the out-

come of the bilateral negotiations, by studying how outcomes change

depending on who and when may opt out. Most of the initial models

are extensions of Ariel Rubinstein’s alternating offer bargaining game,

and they specify at which points of the bargaining process a player is

allowed to abandon her partner. It is a well established result that bar-

gaining procedures may have a significant impact on the efficiency and

uniqueness of the bargaining outcome. If a player is allowed to opt out

after she has rejected an offer made by the other player, then an outside
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option affects the bargaining outcome only if the value of this option

is larger than the equilibrium share in the game without the possibil-

ity to opt out. However, if a player can opt out each time her offer is

rejected, then we a multiplicity of equilibria may exist, including some

with significant delay.

Indeed, many questions about the impact of the outside options on

negotiations remain open. Models of bargaining with outside options

usually assume that the payoffs resulting from the outside options are

independent of the actions taken by bargainers during the negotiation

process. However, in many negotiation contexts, the outside option does

depend on what the parties have done during the negotiation phase.

One such context is that of negotiations in presence of a third party,

an arbitrator. The possibility that bargainers may call in an arbitrator

to solve the dispute may be considered from a game-theoretic point of

view an external option that bargainers have. The value of this outside

option is not exogenous, since arbitrators generally consider the views

and actions of the bargainers in their arbitrated outcomes.

This thesis makes several contributions to the theory of bargaining

with outside options, emphasizing situations in which outside options

arise by the intervention of arbitrators. In the remainder of this chapter,

I survey the literature and I summarize the results.

1.2 Opting out. The role of procedures.

Rubinstein’s model of bargaining has been consecrated as the fundamen-

tal extensive form to study bargaining situations. It specifies a procedure

of bargaining where the players take turns to make offers to each other

until an agreement is secured. Although making offers and counteroffers

lies at the heart of many real-life situations, it is also true that in most

situations agents are not constrained, as Rubinstein assumed, to bargain

until they reach an agreement, but they can freely quit whenever they

3



wish so and take up an opportunity elsewhere.

An outside option is defined to be the best alternative that a player

can command if she withdraws unilaterally from the bargaining process.

Clearly, the bargainer decision to take up her outside option is a strategic

decision. She can use her outside option to gain leverage by threatening

to leave the negotiation. The first strategic models of bargaining with

outside options show that the credibility of the opting out threat depends

on the rules of the bargaining process that include matters such as who

can opt out and when.

Outside options can be incorporated in Rubinstein model by modify-

ing the extensive form. Shaked and Sutton (1984) and Binmore, Shaked

and Sutton (1988) proposed a first modification that consisted in allow-

ing, at each node of the game where a player has to respond to an offer,

the additional alternative of withdrawing from the negotiation and en-

forcing the outside option. Consider the following simplified version of

this game where only player 2 has an outside opportunity. The structure

of the negotiation is the following: First player 1 proposes a division of

the pie x = (x1, x2) such that x1 +x2 = 1. Player 2 may accept this pro-

posal, reject it and opt out, or reject and continue bargaining. If player

2 decides to opt out player 1 receives 0 and player 2 receives b > 0.

If player 2 rejects and continues bargaining, play moves into the next

period, when it is player 2’s turn to make an offer that player 1 may

accept or reject. In the event of rejection, another period elapses, and

once again it is player 1´s turn to make an offer. If 0 < δ < 1 is the

common discount factor, then the following results hold:

1. If b 6 δ
1+δ

then the game has a unique subgame perfect equilibrium.

That is, player 1 always proposes the agreement ( 1
1+δ

, δ
1+δ

) and accepts

any proposal in which x1 ≥ δ
1+δ

, and player 2 always proposes ( δ
1+δ

, 1
1+δ

)

and never opts out, and accepts any offer in which x2 ≥ δ
1+δ

.

2. If b > δ
1+δ

, then the game has a unique subgame perfect equilibrium
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in which player 1 always proposes (1− b, b) and accepts any proposal in

which x1 ≥ δ(1− b) and player 2 always proposes (δ(1− b), 1−δ(1− b)),

accepts any proposal such that x2 ≥ b and rejects and opts out if x2 < b.

In the unique subgame perfect equilibrium (SPE), players reach an

agreement at time 0. Although player 2 does not take up her outside

option, its presence does influence the equilibrium partition of the pie;

if the outside option of player 2 is less than or equal to the share she

receives in the SPE of Rubinstein’s model then the outside option has no

influence on the SPE partition. On the other hand, if the outside option

strictly exceeds her Rubinsteinian SPE’s share, then her SPE share is

equal to her outside option. This result is known as the Outside Option

Principle.

As modeled above, a player cannot leave the bargaining table without

first listening to an offer from her opponent, who therefore always has a

last chance to save the situation. It was Shaked (1994) that recognized

that the Outside Option Principle did not resist a minor change of the

procedure. He showed that, if one of the players may opt out each time

an offer is rejected, the strategic consequences are markedly different.

Intuitively, a player then has the opportunity to make an offer with a

threat that the offer is final. A simplified version of Shaked’ model is

presented by Osborne and Rubinstein (1990); player 2 may opt out only

after player 1 rejects her offer, in which case player 2 gets b and player

1 gets nothing. The following results are obtained:

1. If b < δ2

1+δ
then the game has a unique subgame perfect equilibrium.

That is, Player 1 always proposes the agreement ( 1
1+δ

, δ
1+δ

) and accepts

any proposal in which x1 ≥ δ
1+δ

, and player 2 always proposes ( δ
1+δ

, 1
1+δ

)

and never opts out, and accepts any offer in which x2 ≥ δ
1+δ

.

2. If δ2

1+δ
6 b < δ2 then there are many subgame perfect equilibria.

In particular, for every ξ ∈ [
1− δ, 1− b

δ

]
there is a subgame perfect

equilibrium that ends with immediate agreement on (ξ, 1 − ξ). In every
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subgame perfect equilibrium player 2’s payoff is at least δ
1+δ

.

3. If δ2 6 b < 1 there is a unique subgame perfect equilibrium, in

which player 1 always proposes (1−δ, δ) and accepts any offer and player

2 always proposes (0, 1) accepts any offer in which x2 > δ, and always

opts out.

If the outside option payoff’s of player 2 is sufficiently large or suffi-

ciently small the game has a unique equilibrium. However, there exists

an intermediate range of outside options for which there exists multiple

equilibria. In particular, there are equilibria in which the player 2
′
pay-

off exceeds the value of her outside option. This is so, because in these

equilibria, the threat of opting out is credible, that is, the outside option

of player 2 exceeds her continuation value in case she does not leave the

game.

Ponsati and Sakovics (1998) showed that Shaked’assumption that

only one of the players has the opportunity to take her outside option,

incurs in a significant loss of generality. They consider the Rubinstein’s

alternating offer bargaining game and they add the possibility that both

players leave the negotiation after a rejection, in which case they obtain

a payoff of bi i = 1, 2. Assuming that b1 + b2 ≤ 1 and δi i = 1, 2 as the

discount factor they get the following result:

1. If either b1 > δ1(1−b2) or b2 > δ2(1−b1) there is a unique subgame

perfect equilibrium outcome that consists in an immediate agreement at

(1− b2, b2).

2. If bi 6 δi(1 − bj) i = 1, 2 the outcomes that can be supported by

a subgame perfect equilibrium are either immediate efficient agreements

that give Player 1 a payoff in [1− δ2(1− b1), 1− b2] or, for any period

t > 0, any agreement that gives Player 1 a share in

[
(1− δ2(1− b1))δ

−t
1 , 1− (1− δ1(1− b2))δ

−t
2

]
.

Contrary to Shaked’ result, they find that, even if both players get

zero from opting out (bi = 0 for i = 1, 2), there is a continuum of
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subgame perfect equilibrium outcomes. And, as usual in this type of

models, the existence of multiple equilibria allows for some of significant

delay. The delayed agreements are supported by strategies where, up to

the equilibrium date of agreement, only non-serious offers are made.

Finally, Mariotti and Manzini (2001) present a model where the de-

cision to opt out must be reached by consensus; in other words, either

player can veto the decision of her opponent to opt out. Their outside

option is an arbitrator who is called by both players to settle the dis-

pute. The structure of the proposed game is the following; first player i,

i = 1, 2, proposes a partition of the pie which player j can either accept

or reject. If player j rejects, she can either follow with a counteroffer

in the subsequent round, or propose to opt out. The opting out payoffs

are (b1 − ε, b2 − ε) with ε 6 min [b1, b2] and b1 + b2 = 1. If opting out

is proposed, player i has to decide whether to accept, in which case the

game ends with the players receiving the opting out payoff, or to reject

and let player i again propose a partition of the surplus in the following

round.

Their results show that, even if a consensus is needed, the possibility

of opting out drives the outcome of the negotiations:

1. ∀(b1, b2) ∈ [0, 1]×[0, 1], ∀δ ∈ (0, 1), and ∀ε ≤ (1−δ)min[b1,b2]
1+δ

there is

a subgame perfect equilibrium in which agreement is reached immediately

on the partition (b1 + ε, b2 − ε).

2. If bi − ε > δ
1+δ

∀i, then ∀δ ∈ (0, 1),and ∀ε ≤ (1−δ)min[b1,b2]
1+δ

the

unique subgame perfect equilibrium payoff is (b1 + ε, b2 − ε).

3. If bi − ε 6 δ
1+δ

for some i, there is a subgame perfect equilibrium

in which agreement is reached immediately on the partition ( 1
1+δ

, δ
1+δ

).

4. If bi − ε 6 δ
1+δ

for some i and ε > (1−δ)min[b1,b2]
1+δ

then the unique

subgame perfect equilibrium payoff is ( 1
1+δ

, δ
1+δ

).

If ε is sufficiently small, there exists a subgame perfect equilibrium

where the negotiated agreement is reached immediately on the partition
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(b1 + ε, b2 − ε) and this equilibrium is unique when the opting out par-

tition is not exceedingly favorable to one of the bargainers. When the

opting out partition is particularly favorable to one of the two players,

the standard Rubinstein outcome can also be supported in equilibrium.

And, as in the previous models, the presence of two extreme equilib-

ria supports a a continuum of equilibrium partitions, and allows for the

possibility of delays.

1.3 The nature of the outside option.

All models presented in the previous section assume that the payoffs re-

sulting from the outside options are exogenous to the bargaining process

and well known. In many negotiation contexts though, the value of out-

side option does depend on the outcomes of other negotiations or on what

the players have done during the negotiation phase or are uncertain.

When the outside option is another negotiation.

The central common idea underlying in these models is that, agents

of opposite types meet in pairs, via a matching process, and then the

matched pair engages in bilateral bargaining, according to some par-

ticular procedure, over the terms of the trade. A main objective is to

explore the conditions under which the equilibrium outcome of the game

approximates the Walrasian outcome of the market. The great variety

of models present in the literature differ in their treatment of several key

issues. First, there is the information structure, that is, the specifica-

tion of what does a player know about the events in other bargaining

sessions. Second, there is the modeling of the search technology through

which the bargainers get matched. And finally, the detailed structure of

the pairwise bargaining games. I will not do an exhaustive examination

of the existing models (see Osborne and Rubinstein (1990) for an excel-

lent survey of this literature). For illustrative purposes I will limit my

discussion to Bester (1988) and Muttoo (1993).
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Bester (1988) presents a bargaining approach to equilibrium price

dispersions. It considers a one-commodity market in which there is a cost

for the consumer to switching from one store to another. There are two

types of agents in the model, producers and consumers. The producers’

type are represented by a characteristic θ ∈ [
θ, θ

]
and the quality of the

producer θ’ supply is represented by a function q(θ). Each consumer only

knows the distribution of the producers’ characteristics F (θ). She desires

to purchase a single unit of the good and chooses at random one of the

sellers who are in the market. The central assumption is that the price

at each store, p(θ), is determined in an equilibrium of a bargaining game

between the producer and the consumer. The bargaining procedure is

described by a modified version of the Rubinstein’ model. First one of

the two parties is selected randomly to propose a price at which it is

willing to exchange the good. With probability 1− λ the first proposal

is made by the producer and the consumer may accept or reject. If she

rejects she can make a counteroffer or she can quit the actual producer

and start negotiations with another producer, but at some cost. Entering

the market or switching from one producer to another requires ∆ time

units. The consumer’s expected gain from entering the market at t

is denoted by δtv. The consumer’s ability to quit bargaining so as to

search for another producer is incorporated into this game as an outside

option. The value of this option depends upon the expected bargaining

outcome in all other stores. The market equilibrium simultaneously

determines the set of producers who operate in the market, the price

at each store, and the consumers’expected utility level v. The set of

producers who operate in equilibrium depends upon the value of the

consumers’ outside option v. In equilibrium, the set of stores which

are active in the market consists of all producers θ for whom q(θ) ≥ v.

It is described by h(θ, v) = 1 if q(θ) ≥ v and h(θ, v) = 0 otherwise.

Denote as Γp the bargaining game at which the first proposal is made
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by the producer and Γc the one at which the first proposal is made by

the consumer. The following results hold:

1. If q(θ) ≥ v, then, the equilibrium prices of the bargaining games

Γp and Γc are unique and are given by p∗p(θ) = min
[

q(θ)
1+δ

, q(θ)− v
]

and

p∗c(θ) = min
[

δq(θ)
1+δ

, δ(q(θ)− v)
]

respectively.

2. The consumer’s expected utility of entering the market is given by

v =
R

H δ∆[q(θ)−p(θ)]h(θ,v)dF (θ)R
H h(θ,v)dF (θ)

where p(θ) is the expected price for commodity

θ, so that p(θ) = (1− λ + λδ) min
[

q(θ)
1+δ

, q(θ)− v
]
.

An important feature of the equilibrium is that the consumer never

actually quits bargaining. She makes use of her outside option at most to

enforce a lower price. As long as q(θ) ≥ v the consumer cannot improve

upon the equilibrium outcome by searching for another store. Bester

shows that, competition among producers is reduced if the consumer in-

curs high delay costs in breaking off negotiations with a producer. Due

to this lack of competition, prices at different store do not reflect only dif-

ferences in qualities but also a certain degree of monopoly power on the

part of the producers. Differences between the sellers’types create price

dispersions and the number of active producers increases with higher

search costs. And the market equilibrium converges to the competitive

equilibrium under perfect information when search costs become small.

Muttoo (1993) proposes a market game in which the bargaining pro-

cedure is a Rubinstein-type infinite horizon process, with the added fea-

ture that a matched agent can choose to opt out after rejecting her

opponent’s offer and rejoin the matching process. At any point in time

a player will either have left the market after having executed a transac-

tion, or be unmatched and thus, will be taking part in the random match-

ing process, or be matched and thus, will be in a bargaining process. The

market considered in this model opens with a finite number S of identical

sellers and a finite number of identical buyers B, where B > S ≥ 1. The

rate at which a match occurs in nmλ given that n sellers and m buyers
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are taking part in the random matching process and λ is exogenously

given. When a match occurs a seller and a buyer are paired randomly,

in such a way that each of the n sellers and each of the m buyers are

picked with equal probability. After they are matched at t they begin

a bargaining according to the following procedure; one of the players is

selected randomly to be the proposer. The responder either accepts or

rejects this first proposal. If she rejects she may counteroffer at t + ∆

or abandon the proposer and rejoin the matching process at t. If a

seller (resp.buyer) agrees at t on a price p he gets a payoff of pe−rt(resp.

(1− p)e−rt) where r is the rate of time preference. The following result

is obtained:

The market game has a unique subgame perfect equilibrium. In equi-

librium, the ith matched seller and buyer ( where i = 1, 2....S) reach

agreement immediately on the price xi or yi according to whether it is a

the buyer or the seller who is selected to be the proposer. The equilibrium

prices (xi, yi)
S
i=1 are defined inductively by the following equations:

xi=max {V s
i , Rs

i} 1-yi=max
{
V b

i , Rb
i

}

Vs
i=λ(B − i + 1)(xi+yi

2
+ (S − i)V s

i+1)r + (B − i + 1)(S − i + 1)λ

Vb
i=λ(S − i + 1)(1−xi+1−yi

2
+ (B − i)V b

i+1)r + (B − i + 1)(S − i + 1)λ

with V s
S+1 = V b

S+1 = 0 and

Rs
i = e−r∆

[
q = i

S∑xq+yq

2
P q

i

]
Rb

i = e−r∆

[
q = i

S∑1−xq+1−yq

2
P q

i

]

where P q
i is the probability that q − i matches occur in ∆ units of

time given that S − i sellers and B − i buyers are taking part in the

matching process.

For each i = 1, ...S, V s
i (resp.V b

i ) is the equilibrium value of the out-

side option to a seller (resp., buyer) who has just become part of the

ith match. Muthoo analyzes this unique subgame perfect equilibrium

and finds that, under frictionless conditions, the market is Walrasian if
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it is the case that a seller can credibly threaten a buyer that she can

go though an infinite number of bargaining-relationships in a negligible

amount of time. Moreover, if it takes the seller a non-negligible amount

of time to go through an infinite number of bargaining-relationships,

then, since time is valuable, a matched buyer can extract some positive

surplus, thus generating non-Walrasian outcomes.

History-dependent outside options.

Compte and Jehiel (1997) analyze the effect of an outside option

which value does depend on what players have done during the negoti-

ation phase. In their model, two players negotiate on the partition of

a pie of size one. Each player may either make in turn a concession

on what has not been conceded yet or opt out. The game ends when

either there is nothing left to be conceded or one of the players opts

out. After opting out, players receive a payoff that depends on the total

concessions received by each player. They denote as X t
i the total con-

cession that player i has received until t, the value of the outside option

as vout
i (Xi, Xj) and the efficiency loss resulting from the option phase as

γ(X1, X2) = 1− vout
1 (X1, X2)− vout

2 (X1, X2). Their main results are the

following:

1. When it is party i’s turn to move, in any subgame perfect equilib-

rium, either player i opts out or player i makes a concession no greater

than γ(X1, X2)/λj (where λj is a lower bound on
∂vout

j

∂Xj
).

2. If γ < 1− δn−1 then in equilibrium, the first mover opts out right

away, where γ is an upper bound on γ(X1, X2) and n is the smallest

integer greater than iminλi

γ
.

Their main finding is that the presence of history-dependent outside

options may force equilibrium concessions to be gradual, which in turn

may be responsible for delays in reaching agreements. The size of these

concessions depends on the extent to which conceding increases the other
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player’s outside option and/or the efficiency of the outside option. How-

ever, delaying the agreement is costly. When the inefficiency associated

with the outside option γ(•) is low, many rounds of negotiation are nec-

essary to reach an agreement if no player is to opt out. If the efficiency

loss which results from the delay is larger than the efficiency loss induced

by the outside option, the players have incentives to opt out.

Uncertain outside options

Sutton (1986) analyzes a bargaining model where the decision of opt-

ing out is not always available. In a modified version of the Rubinstein

model (1982), a player can choose to opt out only when a random event

occurs with probability p. He shows that, in equilibrium, agreement is

reached at t=0 and, if both options are small, both players strictly prefer

to continue bargaining rather than take up their options, when they are

available. However, if the options are sufficiently big, both options are

worth taking, when available.

Wolinsky (1987) presents a model where players may search for out-

side opportunities during the bargaining process and this search is costly.

The bargaining positions of the players are determined endogenously by

the players’ decisions concerning the intensities with which they search

and the acceptance criteria they apply to alternatives. He finds that the

outcome of the bargaining does not depend only on the parties’ relative

efficiency in interrupted search, but also on how aggressively each player

credibly threatens to search in the event that the agreement is delayed.

Vislie (1988) adds uncertainty about the presence of a second po-

tential bargainer to the model of Shaked and Sutton (1984) and derives

the corresponding unique equilibrium. In his model, one seller of some

indivisible object has the possibility to bargain with two types of buy-

ers, which differ in their valuation of the object, and their likelihood

for entering the market. The seller has the possibility of of abandoning
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the negotiation with one type of buyer and start negotiation with the

other type with some probability. If the random event fails to occur, the

seller is constrained to continue bargaining with the same type of buyer.

The equilibrium determines not only the price that will be paid but also

who the buyer will be. Vislie shows that if the ratio between the two

reservation prices is sufficiently high, in equilibrium the seller prefers to

wait for the second type of buyer to turn up.

Ponsati and Sakovics (1999) deal with the uncertainty about the size

of the outside options. In their model the value of the outside options are

random variables distributed according to some conditional distribution

function that is common knowledge between the players. There are

three important dates: T is the date at which the outside option is

available, T ∗ is the date at which the uncertainty is revealed and the

realization of the random outside options become common knowledge,

and T ∗∗ is the date at which the options cease to be available if they

have not been taken before it. They find that if the distribution of the

outside option has a large variance then the players may find in their

interest to delay agreement until their information about their outside

opportunities improves. If the revelation date is too far in the future

then the players will prefer to end the game immediately.

1.4 Plan of the the Tesis: Exploring New Models

of Bargaining with Outside Options.

In the present thesis I study three models of bargaining with history-

dependent and uncertain outside options. Each chapter is presented as a

self-contained paper. The reader should have no problem alterning their

order.

Chapter 2 and chapter 3 study the dynamics of bargaining when

players have the possibility of calling an arbitrator in order to solve the

dispute. Arbitration is modelled as a history-dependent outside option
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since the arbitrator generally considers the views of the players in order

to make his arbitrated outcome. And chapter 4 explores the role of

uncertain outside options in a War of Attrition.

Chapter 2, analyzes the effects of arbitration in negotiations when the

use of this institution is voluntary. We consider a bargaining by conces-

sions model where the parties have the possibility of calling an arbitrator

with the consent of the other party. I show that introducing arbitration

distorts the negotiated outcome. This distortion depends on the relative

costs of implementation of the partition obtained by negotiating and the

one obtained by arbitrating. If the arbitration cost is small relative to

the cost of negotiation then the negotiated partition approximates the

one proposed by the arbitrator, and in extreme cases arbitration is used

in equilibrium. However players do not always choose the most efficient

method to solve their dispute: sometimes they negotiate when it would

be more efficient to use arbitration.

Chapter 3 studies the effects of different arbitration procedures on

the bargaining outcome and its efficiency, in a bargaining model where

players make non-increasing demands and an arbitrator is called if and

only if negotiations are declared broken. Two arbitration procedures

are analyzed: the conventional arbitration (CA) where the arbitrator is

free to choose a settlement and the final-offer arbitration (FOA) where

the arbitrator is constrained to pick one of the players’ last offers. I

show that, if players are sufficiently patient and the arbitrator follows a

Final-Offer Arbitration procedure, the equilibrium negotiated outcome

may involve some delay. But if he follows a Conventional Arbitration

procedure, in equilibrium, players always use the arbitrator to solve the

dispute.

Finally, chapter 4 discusses the role played by the outside options in

negotiations when there is incomplete information about their existence.

I examine a War of Attrition where players enjoy private information
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about their possibility of leaving the negotiation to take an outside op-

tion. There are two types of players: a weak type who has a valueless

outside option-she always prefers conceding rather than opting out- and

a strong type who has a valuable outside option that she prefers to take

rather than conceding. The main message that emerges from the analysis

of this game is that uncertainty about the possibility that the opponent

opts out improves efficiency, since it increases the equilibrium probabil-

ity of concession. More precisely, if the probability that the opponent is

strong is relatively high, in equilibrium, the negotiation eventually ends

with a sure concession. On the other extreme, if the likelihood of a weak

opponent is high, strong types will eventually leave the negotiation and

opt out with probability 1 leaving weak types to play from that time on

the inefficient symmetric equilibrium of the classical War of Attrition.

Even in this case, the probability of concession along the uncertainty

phase of the equilibrium play increases.
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Chapter 2. Concession Bargaining
and Costly Arbitration

2.1 Introduction

Arbitration is an extended procedure of dispute resolution in which bar-

gainers accept the decision of a neutral third party when direct nego-

tiation has failed. It is used in divorce proceedings, the settlement of

grievances in union-management contracts, the dissolution of partner-

ships, and international trade. It is sometimes included as a clause in

contracts and sometimes it is imposed by law. The impact of this in-

stitution in the form, frequency, and outcome of negotiations has been

treated in the industrial relations literature and its performance has been

studied empirically.

From a game-theoretic point of view, it is natural to view arbitra-

tion as an external option that bargainers have during the negotiation

process. The game-theoretic literature on bargaining with outside op-

tions1 discusses how outcomes change depending on the value of the

options, as well as on the identity and strategic role of players that may

opt out. In this literature, external options are independent of the ac-

tions taken during the negotiation process, an unsatisfactory feature if

one wants to address the role of arbitration as an outside option. In

fact, the empirical studies display strong evidence that the history of

negotiations prior to the intervention of arbitrators crucially affects the

arbitrated outcomes.2

1See Shaked and Sutton (1984), Binmore et al. (1989), Shaked(1994) and Ponsati

and Sakovics (1998).
2See Ashenfelter and Bloom (1984), Farber and Bazerman, (1986).
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Compte and Jehiel (1997) and Mariotti and Manzini (2001) precede

us in exploring bargaining models with the possibility of arbitration.

Compte and Jehiel (1997) analyze the effects of an arbitrator modelled

as an outside option which value does depend on the history of the nego-

tiation process, assuming that either party can unilaterally impose the

use of arbitration. The later assumption might be justified in situations

where prior to beginning negotiations parties commit to allow each other

this possibility. In many cases, however, parties negotiate without this

prior commitment. The decision of using an arbitrator is then voluntary

and the agreement of both parties is necessary before the arbitrator is

called.3 Mariotti and Manzini (2001) point out that the voluntary na-

ture of arbitration has been overlooked in the literature on arbitration, a

literature largely influenced by the U.S. institutional setting where arbi-

tration is often compulsory. In Mariotti and Manzini (2001) the decision

to call an arbitrator must be reached by consensus; the decisions of their

arbitrators, however, are fixed and history independent, and their cost

are time invariant.

In this chapter, we consider a model with the following distinct fea-

tures:

1. Proposals take the form of concessions, that cannot be claimed

back, and each round of concession takes an interval of time. Play-

ers enjoy what has been conceded to them only when the negotia-

tion is over.

2. At any point of the process, a player can propose to call the ar-

bitrator. If the opponent agrees then the arbitrated outcome is

implemented. Otherwise the bargaining process continues. Thus,

players have veto power over the opponent’s decision to opt out.

3In U.K, the labour conflicts are resolved by an arbitrator only with the consent

of both parties.
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3. The arbitrator observes the sequence of concessions during the

negotiation and assigns to each player the total concession granted

by the opponent plus an equal share of the unlocated surplus.4

4. Arbitration is costly because it takes time. The span of time

needed by the arbitrator to implement or decide the arbitrated

outcome is measured as a portion of the time interval necessary

between concessions.

One may think that, if a player has the right to veto arbitration,

she will use this right when the arbitrated outcome is unfavorable, neu-

tralizing the presence of the arbitrator. Contrary to this intuition, we

will show that the presence of an arbitrator may have a strong influ-

ence on the bargaining outcome, even when the consent of both parties

is required. The impact of arbitration depends on the relative costs of

implementing outcomes under the two procedures. When negotiation is

cheaper than arbitration, that is, when it takes longer for the arbitra-

tor to do her job than for one party to concede, the classical Rubinstein

partition prevails in equilibrium. When arbitration resolves matters sub-

stantially faster than a negotiation process, then the arbitrator is called

at the beginning of the game. When arbitration is quicker than negoti-

ation but not by a great deal, the arbitrator is not used. Still, the po-

tential presence of the arbitrator affects the outcome and the negotiated

shares approach the (1/2,1/2) allocation than the arbitrator imposes if

she intervenes at the beginning of the game.

In Compte and Jehiel (1997) arbitration has a negative effect nego-

tiations because they may force equilibrium concessions to be gradual,

which in turn may delay agreements. Abandoning the assumption of a

pure outside option in favor of one where the consent of both parties is

needed changes this result dramatically. In our framework (apart from

4This is as in Compte and Jehiel (1997).
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the one period loss inherent to the structure of the concession game)

there are no delays. A different type of inefficiency appears; players may

insist on negotiating when arbitration would be more efficient.

The remainder of the chapter is organized as follows. In the next

section the model is presented. In section 3 we study the equilibria of

this game. Conclusions are gathered in the last section.

2.2 The model

Two players, i = 1, 2, bargain to share one unit of surplus. The game

takes place over time and players are risk neutral and impatient. Each

period t = 0, 1, 2.... players may offer each other, in alternating order

with player 1 moving first, mutual concessions or they may agree to

resort to arbitration. Thus, at each t, and given the cumulative con-

cessions in periods 0 to t − 1, player i must either offer to concede a

non-negative additional portion of the surplus or she can propose to call

an arbitrator, a proposal that j must accept or reject. Unless i concedes

all the contested surplus at t or an agreement to resort to arbitration

arises, the game continues with j moving first at t + 1.

Perpetual disagreement yields a zero payoff to both players. All

other outcomes of the game are one of the following: N (x, 1− x, t) a

negotiated agreement in period t allocating x to 1 and (1 − x) to 2,

0 6 x 6 1; or A (x, y, t) an agreement in period t to use arbitration after

1 has conceded y and 2 has conceded x, 0 6 x, y 6 1, and x + y < 1.

Under a negotiated agreement N (x, 1− x, t) each player enjoys the

accumulated concessions at the date of agreement, i.e. payoffs are

(
xδt, (1− x)δt

)
,

where 0 < δ < 1.

On the other hand, in arbitration players obtain the concessions re-

ceived prior to arbitration plus an equal share of the contested surplus.

Arbitration is costly, usually in the form of direct fees paid to the arbi-
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trator. Since these fees generally increase in the time spent by the ar-

bitrator, we assume that implementing the arbitrated termination takes

some interval of real time, and we treat the costs of arbitration as delay

costs. That is, while 1−δ, δ = exp(−r), measures the cost imposed by a

one period of delay in the negotiations, a share of the surplus obtained

under an arbitrated outcome has a cost 1 − α, α = exp(−rh), where h

is the real time interval of delay imposed by the arbitrator. Note that

α 6 δ if and only if h > 1, i.e. if and only if arbitration takes longer than

one round of bargaining. Hence, payoffs upon an arbitrated termination

A (x, y, t) are

(
α

(
x +

1− x− y

2

)
δt, α

(
y +

1− x− y

2

)
δt

)
.

Following Compte and Jehiel (1995) we denote by Ct
i the amount con-

ceded by i to j at its turn t, by xt
i the cumulative concession from player

j to player i prior to time t and X t denote the amount of pie that has

not yet been conceded X t = 1 − xt
1 − xt

2. A bargaining state is a triple

(x1, x2, X) indicating the shares conceded to each player and the con-

tested surplus. At period t and at the bargaining state (x1, x2, X), if it

is player 1’s turn, she may:

1. Concede the rest of the pie X terminating the game at (x1, x2 +

X, t).

2. Concede C1 < X, leading to a continuation game at t + 1 with a

new bargaining state, (x1, x2 + C1, X − C1).

3. Propose arbitration. If 2 accepts then the game terminates at

(x1 + 1−x1−x2

2
, x2 + 1−x1−x2

2
, t). If 2 rejects, then the game continues

at t + 1 with the same bargaining state (x1, x2, X).

Ours is a bargaining game of complete information and infinite hori-

zon. In spite of the close relationship of the present game to the standard
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bargaining games of alternating proposals, there are important differ-

ences that it is worthwhile to clarify. A first and fundamental difference

is that players cannot claim back what they concede. Consequently, af-

ter each positive concession, the set of continuation strategies available

to the players changes because the set of possible proposed partitions

is smaller. Moreover, since equilibria where the first mover concedes all

can easily be ruled out, negotiated agreements take at least one period.

Second, proposing arbitration is not equivalent to conceding one half

of the contested surplus. Rejecting arbitration prompts a continuation

game at t + 1 with the bargaining state unchanged, while a concession

Ci = X
2

leads to continuation game at t+1 with a bargaining state with

contested surplus X
2
. Moreover, if arbitration is accepted, then the delay

cost is different.

A pure strategy of player i specifies the action at each subgame: a

concession or an arbitration proposal if i moves first at t, or a reply to

the opponent’s proposal of arbitration if she moves second. In general,

strategies are extremely complex since actions (concessions and propos-

als of arbitration) at any subgame may depend arbitrarily on the entire

history of actions up to that point, and the set of histories is large. How-

ever the bargaining state summarizes all information of a history that is

relevant to a player’s choice.5 Consequently, we will constraint attention

to stationary strategies, that is, those in which the actions at each sub-

game depend exclusively on the bargaining state, being constant with

respect to the particular history prior to attaining that subgame. An

equilibrium will be a profile of stationary strategies that constitute a

subgame perfect equilibrium.

Before we proceed to characterize the equilibrium of our game it is

useful to discuss the concession game when arbitration is not a possibil-

ity. In the absence of arbitration only one player moves at each period

5See Osborne and Rubinstein (90) pag 41
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and she can either concede the rest of the pie, or make a partial conces-

sion Ct
i ∈ (0, X t). The equilibrium outcome is the standard Rubinstein

partition, attained with one period of delay.

Proposition 1 (Compte and Jehiel). In equilibrium, player 1 con-

cedes δ1 + δ and player 2 concedes the rest, 11 + δ, in the following

period.

Proof. See Compte and Jehiel (1997).

Without arbitration players concede up to the point where the op-

ponent, given that she is impatient, is willing to terminate the game by

conceding what is left. Since payoffs are only realized upon agreement,

players do not benefit from the concessions they receive until the game

ends. Therefore a player that has been granted a concession becomes

effectively more impatient, delay is more costly for her that than for an

opponent that has still nothing assured. If the first concession is large

enough the optimal response is to terminate by conceding the rest of the

pie.

We now turn our attention to the effect that voluntary arbitration

has in the preceding concession game.

2.3 Equilibria with Arbitration

Arbitration is a voluntary outside option. Consequently, analyzing the

equilibrium behavior of players under voluntary arbitration parallels the

analysis of a bargaining game with outside options. The crucial insight

is that outside options are not always relevant, and this is likewise with

arbitration. However, since arbitration is an option of endogenous value,

varying at the different states of bargaining, its relevance is more delicate

than that of fixed outside options.

At any bargaining state, the first mover controls the rate at which

payoffs are discounted. If she concedes, payoffs are discounted by δ; if she
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proposes arbitration and the opponent accepts, payoffs are discounted by

α. In the later case, her bargaining power is limited by the veto power

of opponent. In equilibrium, arbitration is rejected if the responder

expects that the payoff of continuing the negotiation is greater than the

payoff from the arbitrated termination. At a given bargaining state the

arbitration option is active for player i when the best response of the

opponent is to accept it.

Strategies specify actions at each bargaining state (a concession or

the proposal of arbitration and thresholds of acceptance of the oppo-

nent’s proposal of arbitration). In order to characterize equilibria we

identify sets of bargaining states for which players have the same opti-

mal actions. For each set of bargaining states (x1, x2, X), optimal actions

will be identified by sequential elimination of weakly dominated strate-

gies.

Since proposing arbitration is dominated in states where the op-

ponent optimally rejects it, the acceptance rules can be omitted and

the characterization of equilibria requires only that we specify the op-

timal action of the first mover at each bargaining state. A nice fea-

ture of the present approach is that it is easily represented graphi-

cally. In Figure 1 bargaining states (x1, x2, X) are represented on a

plane, where we place X = 1 − x1 − x2 and ρ = x2 − x1 respectively

in the horizontal and vertical axis. A concession 0 < C1 < X of

player 1 to player 2, changing the bargaining state from (x1, x2, X)

to (x1, x2 + C1, X − C1), is a move upwards on the plane from point

a = (X, ρ) to point b = (X
′
, ρ

′
) = (X − C1, ρ + C1). A concession

0 < C2 < X of player 2 to player 1 is a move downwards from a = (X, ρ)

to c = (X
′′
, ρ

′′
) = (X−C2, ρ−C2).dtbpFU212.625pt279.125pt0ptFigure

1Figure

The following terminology simplifies the exposition. We say that
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arbitration is slow when (α, δ) ∈ S, where

S = S1 ∪ S2,

S1 =

{
(α, δ)suchthatα 6 Max

{
δ,

2δ

1 + 2δ

}}
,

and

S2 =

{
(α, δ)suchthatδ < α < Min

{
2δ2,

2δ

1 + δ

}}
.

Arbitration is quick when (α, δ) ∈ Q, where

Q = Q1 ∪Q2 ∪Q3,

Q1 =

{
(α, δ)suchthatMax

{
2δ2, 1 + 2δ −

√
1 + 4δ

}
6 α <

2δ

1 + δ

}
,

Q2 =

{
(α, δ)suchthatα > Max

{
2δ2,

2δ

1 + δ

}}
,

and

Q3 =

{
(α, δ)suchthat

2δ

1 + δ
< α < 2δ2

}
.

In the intermediate case that (α, δ) ∈ I,

I =

{
(α, δ)suchthatMax

{
2δ2,

2δ

1 + 2δ

}
6 α < 1 + 2δ −

√
1 + 4δ

}
.

we refer to medium speed. The partition of the space of parameters into

slow, speedy and medium speed arbitration is represented in Figure 2.

dtbpFU405pt275pt0ptFigure 2Figure

In Proposition 2 that follows we characterize equilibrium actions

when arbitration is slow.

Proposition 2. Under slow arbitration the optimal actions are as

follows.
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(i) When (α, δ) ∈ S1

state i j

xi > δ(xi + X)i = 1, 2 X X

xi > δ(xi + X)andxj < δ(xj + X) X 0

xi < δ(xi + X)i = 1, 2, xi > δ
1+δ

X 0

xi, xj < δ
1+δ

C∗
i = δ1 + δ − xj C∗

j = δ1 + δ − xi

(ii) When (α, δ) ∈ S2 and the state (x1, x2, X) satisfies α(xj + X
2
) <

δ2(xj + X):

state i j

xi > α(xi + X
2
) X 0

xi > δ
1+δ

, xi < α(xi + X
2
) X 0

xi < δ
1+δ

i = 1, 2, xi 6 2δ2−α
α(+δ)

andxj > 2δ2−α
α(1+δ)

C∗
i (∗)

xi < δ
1+δ

xi > 2δ2−α
α(1+δ)

i = 1, 2 (∗) (∗)
xi < δ

1+δ
andxi 6 2δ2−α

α(1+δ)
i = 1, 2 C∗

i C∗
j

(∗) concedes Ci = Max
[
C∗

i , C
♦
i

]
, where C∗

i = δ
1+δ

− xj and xj + C♦
i =

α(xj +
X+C♦

i

2
).

Otherwise, if the state (x1, x2, X) is such that α(xi+
X
2
) > δ2(xi+X)

i = 1, 2 the optimal actions are coincide with those stated in Proposition

3 for parameters (α, δ) ∈ I.

Proof. We prove (i). The proof of (ii) is in the appendix.

We examine the optimality of the proposed actions at each subset of

states.

STEP 1: If xi > δ(xi + X) for i = 1, 2, both players concede X.

Let 1 move first (and note that the symmetric argument holds when

2 moves first). She must take one of the following actions: a) concede

X and receive a payoff of x1; b) concede nothing obtaining at most

δ(x1 + X) in the continuation; c) concede 0 < C1 < X, obtaining at
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most δ(x1 + X −C1); d) Propose arbitration, which pays at best (when

2 accepts) α(x1 + X
2
). Since x1 > δ(x1 + X) > δ(x1 + X − C1) and

x1 > α(x1 + X
2
) implying that the optimal action is to concede X.6

This last inequality is straight forward when α 6 δ = Max
{
δ, 2δ

1+2δ

}
.

When α 6 2δ
1+2δ

= Max
{
δ, 2δ

1+2δ

}
, x1 > δ(x1 + X) is equivalent to

x1− x2 6 1− 1+δ
1−δ

X. But 1− 1+δ
1−δ

X < 1− 1
1−α

X since α2 < δ1 + δ. And

x1 − x2 < 1− 1
1−α

X is equivalent to x1 > α(x1 + X
2
).

STEP 2: If x2 > δ(x2 + X) and x1 < δ(x1 + X) player 2 concedes

X and player 1 concedes nothing.

Consider player 2. Since she faces the same situation as in Step 1 she

will optimally concede X. Consider now the game from the perspective

of player 1 : if she concedes nothing, player 2 will concede X in the

following period, and 1 can obtain δ(x1 + X). This payoff is greater

than what 1 would get if she concedes X since δ(x1 +X) > x1. Likewise

δ(x1 +X) > δ(x1 +X−C1) implying that C1, 0 < C1 < X is dominated.

To call the arbitrator, with the consent of player 2, is dominated as well

since δ(x1 + X) > α(x1 + X
2
). If Max

[
δ, 2δ

1+2δ

]
= δ > α this inequality

is straight forward. Assume now that Max
[
δ, 2δ

1+2δ

]
= 2δ

1+2δ
> α. If

x1 < δ(x1 + X) or x2 − x1 > 1− 1+δ
1−δ

X > 1− δ
α−δ

X since α
2

< δ
1+δ

. But

x2 − x1 > 1− δ
α−δ

X is equivalent to δ(x1 + X) > α(x1 + X
2
).

Step 1 and 2 are displayed in Figure 3.dtbpFU304.25pt298.6875pt0ptFigure

3Figure

STEP 3: If xi < δ(xi + X), i = 1, 2 and x2 > δ
1+δ

player 2 concedes

X and player 1 concedes nothing.

A) We first consider (α, δ) such that 11 + δ 6 2(1− α)2− α.

Player 2 may a) concede X and obtain a payoff of x2; b) concede
∼
C2

and obtain δ(x2+X−
∼
C2), where

∼
C2 is the minimal concession such that

6If x1 = δ(x1+X) player 1 will be indifferent between conceding X and conceding

nothing if the optimal strategy of his opponent will be to concede X at his turn. In

this case we will assume that player 1 will concede X.
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1 concedes all the contested surplus at t + 1, i.e. x1+
∼
C2= δ(x1 + X)

by Step 1; c) concede C2 >
∼
C2, that yields a payoff of δ(x2 + X − C2)

since at the new bargaining state x1 + C2 > δ(x1 + X) holds and, by

Step 1, player 1 will optimally concede X −C2; d) concede 0 6 C2 <
∼
C2

; and e) propose arbitration, that yields payoff of α(x2 + X
2
), provided

that 1 accepts it. Note that a) dominates b) and c): concessions
∼
C2 or

C2 >
∼
C2 are dominated by concession X since x2 > δ

1+δ
> δ(x2 + X−

∼
C2

) > δ(x2 + X − C2). At the same time a) dominates arbitration as well

provided that 11 + δ 6 2(1− α)2− α. The later inequality implies that

if x2 < δ(x2 + X), x1 < δ(x1 + X) and x2 > δ
1+δ

then x2 > α(x2 + X
2
)

since (1− α)x2 > (1− α) δ
1+δ

> α
2(1+δ)

> α
2
X.

Thus it only remains to show that a) dominates d) as well. A conces-

sion C2 <
∼
C2 leads to a new bargaining state that may lie in the subset of

states described in Step 2 (where player 1 concedes nothing at her turn)

that yield payoff δ2x2 that is dominated by a). Concession C2 may be

small enough that the subsequent bargaining state still lies in the set of

bargaining states that we are presently examining. On the other hand,

following C2 <
∼
C2, 2 cannot expect from 1 a concession greater than

∼
C1,

the concession that will makes player 2 ready to finish the game at her

next turn. Therefore, conceding C2 <
∼
C2 pays 2 at most δ2(x2+

∼
C1). If

x2 > δ2(x2+
∼
C1), or substituting

∼
C1, x2 > δ3(x2 + X), concession X

dominates C2, 0 6 C2 <
∼
C2. If x2 > δ3(x2 + X) holds then a) dominates

d).

If the optimal action for player 2 is to concede X, then, it is easy to

check that x1 < δ(x1 + X) implies that the optimal action of player 1 is

to concede nothing.

Suppose that x2 < δ3(x2 + X) is not satisfied, a situation displayed

in Figure 4. Consider a bargaining state such as point d in Figure 4 and

examine the payoffs attained by concessions C2, 0 6 C2 6 X (arbitration

is a dominated strategy). If C2 < X is such player 1 will concede nothing
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at her turn, player 2 obtains a final payoff of δ2x2. If C2 is such that at

the new bargaining state x2 < δ(x2 + X) x1 < δ(x1 + X), x2 > δ
1+δ

and

x2 < δ3(x2 + X), the largest concession 2 can expect in response from

player 1 is C
′
1, a concession that makes player 2 ready to concede the

rest of the pie, that is, x2 + C
′
1 = δ3(x2 + X). Then, if x2 > δ2(x2 + C

′
1),

or substituting C
′
1, x2 > δ4(x2 + X), X dominates any C2 < X.

dtbpFU354.625pt295.9375pt0ptFigure 4Figure

Again; x2 > δ4(x2+X) may or may not be satisfied. But it is strictly

satisfied for some subset. For any δ we there is a natural number n > 3

such that δn+1(x2+X) < x2 < δn(x2+X). In bargaining states satisfying

x2 > δ(x2 +X) x1 < δ(x1 +X) x2 > δ
1+δ

and δn(x2 +X) < x2, conceding

X dominates any other action for player 2 . In bargaining states such

that x2 < δ(x2 + X) x1 < δ(x1 + X) x2 > δ
1+δ

and x2 < δn(x2 + X)

the greatest concession player 2 can expect from player 1 is C1 such that

x2 +C1 = δn(x1 +X). Therefore the maximal expected payoff of from a

concession smaller than X, is δ2(x2+C1) = δ2+n(x2+X) < δn+1(x2+X),

and this completes Step 3 A).

B) Let 11 + δ > 2(1− α)2− α.

Arbitration is no longer dominated by conceding X. Nevertheless

there is a subset of states for which x2 > α(x2 + X
2
); the equilibrium

actions in this subset are X for player 2 and 0 for player 1.

dtbpFU354.625pt295.9375pt0ptFigure 5Figure

Let us now consider states such that x2 < α(x2 + X
2
). Player 2

prefers arbitration rather than conceding X. However the acceptance

of player 1 is needed. It is easy to check δ2(x1 + X) > α(x1 + X2)7.

Rejecting arbitration, player 1 can ensure a payoff of δ2(x1 + X − C¦
1)

since she may follow rejection with a concession C¦
1 such that x2 +C¦

1 =

7In this set of bargaining states it is satisfied x2−x1 ≥ 2δ−α(1+δ)
α(1+δ) . But 2δ−α(1+δ)

α(1+δ) >

1− δ2

α−δ2 X since α ≤ δ. Then x2−x1 > 1− δ2

α−δ2 X, that is equivalent to α(x1+ X
2 ) ≤

δ2(x1 + X).
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α (x2 + X + C¦
12) and at the new bargaining state 2 will concede the

rest of the pie in the next period. If δ2(x1 + X − C¦
1) > α(x1 + X2),

then, player 1 will optimally reject the arbitration proposal. For the

bargaining states sufficiently near to the set of bargaining states such

that player 2 concedes X this condition is satisfied since C¦
1 is very

small (as bargaining state s in Figure 5). To propose arbitration is then

a dominated option for player 2.

To complete Step 3 B), we repeat the arguments in Step 3 A).

STEP 4: If xi < δ
1+δ

i = 1, 2, player i concedes C∗
i such that x1 +

C∗
i = δ

1+δ
.

At these bargaining states player i can make a concession such ensur-

ing her a payoff δ1 + δ. This concession is C∗
i such that xi + C∗

i = δ
1+δ

.

This concession is such that j responds conceding the rest of the pie

(by Step 3). To concede more than C∗
i is clearly dominated. To con-

cede less is also dominated; in that case, at the new bargaining state,

player i cannot expect to receive from player j more than C∗
j , such that

xi + C∗
j = δ1 + δ. By conceding less than C∗

i , player 1 can get, at most,

δ31 + δ < δ
1+δ

. Arbitration is dominated as well; since it pays (if the

opponent accepts) α (x1 + X2) < δ
1+δ

.

Steps 1 to 4 cover all possible states.

Propositions 3 and 4 specify the optimal actions when the speed of

arbitration is respectively intermediate and quick.

Proposition 3. When arbitration proceeds at intermediate speed the

optimal actions are:
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state i j

xi > δ(xi + X)i = 1, 2 X X

xi > δ(xi + X)andxj > δ(xj + X) X 0

xi < δ(xi + X)i = 1, 2, xi > δ
1+δ

andxi > α(xi + X
2
) X 0

xi < δ(xi + X)i = 1, 2, xi > δ
1+δ

andxi < α(xi + X
2
) A C♦

j

xi < δ
1+δ

i = 1, 2andxi − xj > 2δ
α(1+δ)

− 1 A C♦
j

xi < δ
1+δ

i = 1, 2and1− 2δ
α(1+δ)

< xi − xj < 2δ
α(1+δ)

− 1 (∗) (∗)

(∗) concedes Ci = Max
[
C∗

i , C
♦
i

]
where xj + C∗

i = δ
1+δ

and xj + C♦
i =

α(xj +
X+C♦

i

2
).

Proof. See appendix.

Proposition 4. The optimal actions when arbitration is quick are

as follows:

(i) Let (α, δ) ∈ Q1. For states satisfying xi > δ
1+δ

the optimal actions

coincide whit those that prevail when (α, δ) ∈ I. Otherwise

state i j

xi > 1− δ(2−α)
α(1+δ)

i=1,2 C∗
i C∗

j

xi − xj > 2δ
α(1+δ)

− 1 A C♦
j

1− 2δ
α(1+δ)

< xi − xj < 2δ
α(1+δ)

− 1

andxi > 1− δ(2−α)
α(1+δ)

C∗
i (∗)

1− 2δ
α(1+δ)

< xi − xj < 2δ
α(1+δ)

− 1

andxi < 1− δ(2−α)
α(1+δ)

i− 1, 2
(∗) (∗)

(∗) Arbitration if α(xi + X
2
) > δ(xi + X − Ci) and Ci otherwise with

Ci = Max
{
C∗

i , C
♦
i

}
. C♦

i is defined as xj + C♦
i = α(xj +

X+C♦
i

2
) and C∗

i

as xj + C∗
i = δ

1+δ
.

(ii) When (α, δ) ∈ Q2
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state i j

xi > α(xi + X
2
)i = 1, 2 X X

α(xi + X
2
) > δ(xi + X)i = 1, 2

xi > α(xi + X
2
)andxj < α(xj + X

2
)

X A

α(xi + X
2
) > δ(xi + X),xi < α(xi + X

2
)i = 1, 2 A A

α(xi + X
2
) > δ(xi + X),α(xj + X

2
) < δ(xj + X),

xi > α(xi + X
2
)andxj < α(xj + X

2
)

X 0

α(xi + X
2
) > δ(xi + X),α(xj + X

2
) < δ(xj + X)

xi < α(xi + X
2
)i = 1, 2

A (∗)

α(xi + X
2
) < δ(xi + X)i = 1, 2 (∗) (∗)

(∗) Arbitration if α(xi +
X
2
) > δ(xi +X−C♦

i ) and C♦
i otherwise, where

xj + C♦
i = α(xj +

X+C♦
i

2
).

(iii) Let (α, δ) ∈ Q3. For states satisfying α(xi + X
2
) > δ2(xi + X)

i = 1, 2 the optimal actions are the ones specified for Q2. Otherwise

state i j

xi > α(xi + X
2
) and α(xi + X

2
) > δ2(xi + X) X 0

xi < α(xi + X
2
) and α(xi + X

2
) > δ2(xi + X) A (∗)

α(xj + X
2
) < δ2(xj + X) (∗) (∗)

(∗) Arbitration if α(xi +
X
2
) > δ(xi +X−C♦

i ) and C♦
i otherwise, where

xj + C♦
i = α(xj +

X+C♦
i

2
).

Proof. See appendix.

With a full characterization of the optimal actions at each possible

bargaining state the full characterization of the equilibrium outcomes is

straight forward. It suffices to observe that the optimal actions at the

initial state must necessarily yield either an arbitrated termination or

a negotiated agreement that occurs in two steps of concession, and the
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measure of these concessions are given in Propositions 2 or 3 depending

on the values of (α, δ).

We are now ready to state our main result, characterizing the equi-

librium outcome for all possible parameters α and δ.

Proposition 5. There is a unique equilibrium. Arbitration prevails

if and only if it is quick, and this outcome occurs at t = 0. Otherwise a

negotiated agreement is reached at t = 1. The negotiated partition that

prevails when arbitration is slow is ( 1
1+δ

, δ1 + δ), otherwise the split is

(2(1−α)
2−α

, α
2−α

).

Proof. Let (α, δ) ∈ S1, at t = 0 the bargaining state (0, 0, 1) is

such that xi < δ
1+δ

for i = 1, 2. Then by Proposition 2 the first mover

concedes δ
1+δ

. The game reaches the bargaining state (0, δ
1+δ

, 1
1+δ

) at

which, Proposition 2 prescribes that the opponent concedes the rest of

the pie.

When (α, δ) ∈ S2, I, Q the result follows immediate from Proposi-

tions 2, 3 and 4 in the same fashion.

Observe that α > δ may hold even for parameters (α, δ) in the area

of slow arbitration. In this case, arbitration is the superior procedure to

solve the dispute since an arbitrated termination would take less than a

bargaining round. Still, players ignore it in equilibrium.

Under slow arbitration, the equilibrium consists in two consecutive

concessions; the first mover concedes δ1 + δ and the other player con-

cedes the rest, 1
1+δ

, in the following period. The negotiated equilibrium

outcome is independent of the possibility of arbitration and depends only

on the cost of negotiation.

To gain some intuition consider, for example, the case α 6 δ. After

1 concedes 1
1+δ

, i.e. at the bargaining state (0, δ
1+δ

, 1
1+δ

), player 2 has the

opportunity to propose arbitration. If the arbitrator is slow (if α 6 δ and
2(1−α)
2−α

> 1
1+δ

) player 2 will never propose arbitration because conceding
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the rest of the pie yields a payoff δ
1+δ

that strictly dominates the payoff

of arbitration α( δ
1+δ

+ 1
2(1+δ)

). If arbitration proceeds at a medium speed,

it still takes longer that a round of negotiation but by not so much, that

is, (2(1−α)
2−α

< 1
1+δ

). In this situation the payoff to 2 in the arbitrated

termination are greater than δ
1+δ

dominating any other continuation;

but player 1 will never agree to arbitration, because she can attain a

higher payoff rejecting arbitration and forcing player 2 to concede the

rest of the pie next period. In either case the equilibrium strategies will

be as if it were impossible to use an arbitrator and (as in Rubinstein

(1982)) the relative impatience of the players is the only force driving

the equilibrium concessions.

The equilibrium under intermediate speed arbitration consists also in

two consecutive concessions; the first mover concedes α
2−α

and the other

player the rest of the pie, 2(1−α)
2−α

, in the next period.

When we consider an intermediate speed arbitrator, the possibility

of opting for arbitration may have a dramatic effect on the equilibrium

behavior of the players. Suppose the bargaining state is (0, δ
1+δ

, 1
1+δ

).

If there is no arbitrator, the impatience of the opponent dictates that

she concedes the rest of the pie. But if 2δ2 < α player 2 can call the

arbitrator at her turn and get a higher payoff. Player 1 cannot reject

this arbitration proposal; if she refuses she can get at most δ2

1+δ
(she

does not concede at her turn waiting for a concession of 1
1+δ

at the

next period) while she gets α
2(1+δ)

> δ2

1+δ
under arbitration. Thus, in

state (0, δ
1+δ

, 1
1+δ

) proposing arbitration dominates conceding the rest of

the pie. Anticipating that in some bargaining states player 2 credibly

threatens with the use of arbitration player 1 is forced to concede, in

equilibrium, a share larger than δ
1+δ

.

The opponent’s threat to call an arbitrator drives the dynamics of

the concessions in equilibrium; the first mover makes a concession that

leaves the opponent indifferent between conceding the rest of the pie
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and calling an arbitrator. Notice that it is only the cost of arbitration

which determines the equilibrium partition. As the cost of arbitration

decreases the equilibrium share of the opponent increases. Therefore, a

voluntary outside option may reduce the first mover advantage. This

player could call the arbitrator at t = 0, but the payoff she would get in

an arbitrated termination is smaller than what she gets by making the

equilibrium concession.

Following the argument, if the arbitrator is very fast, so that the first

mover must concede almost all, she will choose to use arbitration. In the

equilibrium under a quick arbitration the arbitrator is called at t = 0.

The threat that the opponent calls the arbitrator without resistance

is credible in almost all the bargaining states. The first concession neces-

sary to avoid bargaining states where the opponent can credibly call the

arbitrator is so large that the first mover prefers to call the arbitrator

right away rather than conceding. Here there is no inefficiency- the most

efficient method is used to share the pie.

Proposition 5 shows that an endogenous outside option affects the

equilibrium outcome differently than when the outside option is exoge-

nous. When is exogenous, players may agree at the shares that yield

the same payoff as the exogenous option. In contrast, players do not

negotiate the arbitrated outcome; either they opt out to arbitration or

they use the threat of arbitration to attain a larger share.

We can also infer some interesting comparative statics regarding this

effect of arbitration costs on the efficiency of the negotiation process.

On one hand, when arbitration cost is high relative to the negotiation

cost, we see that a negotiated outcome is reached in two rounds which

are quite efficient. On the other hand, we also see that, when arbitration

cost is very small the arbitrator is called in an efficient way. Inefficiency

arises for intermediate ranges of arbitration costs. In these cases, players

negotiate without appealing to the arbitrator institution, when it would
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be more efficient to do so.

Figures 6 and 7 display the equilibrium share of the first mover for

each arbitration cost α respectively for δ = 1
3

and δ = 3
4
.

dtbpFU253.875pt209.0625pt0ptFigure 6Figure

In Figure 6, we see that arbitration does not affect the equilibrium

share for α < 2
5
. It does for 2

5
< α < 5−√13

3
. For α > 5−√13

3
arbitration

is used in equilibrium.dtbpFU253.875pt194.25pt0ptFigure 7Figure

In Figure 7, the final partition is unaffected by the cost of arbitration;

is either ( 1
1+δ

, δ
1+δ

), or (1
2
, 1

2
). The inefficiency is located in the range of

α ∈ [
3
4
, 6

7

]
. Here players negotiate even though it would be more efficient

to arbitrate.

Thus, the effect of the arbitration procedure on the equilibrium par-

tition depends of the relative patience of the players. When players are

patient this effect is nil. As they become more impatient, however these

costs may completely determine the negotiated shares in equilibrium.

2.4 Conclusions

We have explored the impact of arbitration on negotiations, address-

ing the equilibrium features of bargaining games with endogenous and

voluntary outside options requiring mutual consent. We conclude that

voluntary arbitration has two distinctive effects:

a) It alters the negotiated partition of the surplus relative to the

situation in which arbitration is unavailable. This only occurs if the rel-

ative cost of arbitration is not too high, since arbitration turns irrelevant

when it is excessively costly. When arbitration is relevant, the negotia-

tion positions of the players approach those sustained by the arbitrator

and this implies a reduction of the first mover advantage. As the cost

of arbitration vanishes players immediately resort to arbitration, and an

equal split of the surplus prevails.

b) The two procedures may not be used efficiently. For some range
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of parameters α and δ, players negotiate even though arbitration is the

more efficient scheme.
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Chapter 3. Bargaining over Finite
Alternatives and Arbitration

3.1 Introduction

In negotiations, agreement may be delayed or never reached. The strate-

gic approach to bargaining has analyzed what causes these inefficiencies

using game theoretic models of non-cooperative bargaining. The first

successful attempt to justify equilibrium outcomes with delayed agree-

ments comes from the literature on bilateral bargaining with incomplete

information. The main idea is that delays occur because they are used as

a signalling device. By delaying the negotiated agreement a player can

persuade his opponent about the type of bargainer he is (his valuation

or his discount factor).

But delay can arise in equilibrium of complete information games.

Delays can appear when we enlarge the set of alternatives available to

the players during the negotiations; when each player can choose when

to make an offer (Sakovics, 1993), when one player can destroy surplus

after her own offer is rejected (Fernandez and Glazer 1991), or when

bargainers can freely quit whenever they wish so, even if their outside

option is zero (Ponsati and Sakovics, 1998). The present chapter adds

to results on delays in bargaining under complete information. Under

certain conditions, the possibility of an arbitrator intervention to solve

the dispute induces delay.

This chapter is also related with the industrial relations literature

which has been concerned with the effect of arbitration procedures on

the efficiency and outcome of negotiations. Two arbitration rules are in
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wide use: the conventional arbitration (CA) where the arbitrator is free

to choose a settlement and the final-offer arbitration (FOA) where the

arbitrator is constrained to pick one of the negotiators’ last offers. Some

empirical studies that study the rules followed by arbitrators 8 found

that the negotiated settlement rates are much higher under FOA than

under CA. The theoretical reasons for this are not clear and controversy

is unsolved about the extent to which arbitration inhibits genuine bar-

gaining (this phenomena is referred as the chilling effect of arbitration)

and more generally about the effect on the positions taken by the two

sides during the bargaining phase.9

The theoretical literature has used the idea of the ”contract zone” to

explore the positions taken by bargainers facing alternative arbitration

rules. In these static models players simultaneously make a final proposal

to the arbitrator who then makes his decision. Since they do not allow for

an explicit temporal setting they do not permit the study of the dynamics

of the negotiation process that may take place before final proposals.

By contrast in this chapter we propose a sequential bargaining with

which we can analyze this dynamics. Specifically a bargaining model of

alternating offers where the set of possible partitions is finite and have

the possibility of asking for an arbitrator that solves the dispute using a

procedure known by the players.

Our main finding is that if players are sufficiently patient and the

arbitrator uses a Final-Offer Arbitration type-procedure the negotiated

equilibrium outcome may involve some delay. Under FOA, if players

perceive that if they don’t make concessions they may be punished by

the arbitrator choosing the opponent’offer, they will never use arbitra-

tion in equilibrium. Under this threat they will decrease their demands

progressively until an agreement on an equal partition of the surplus

8See Ashenfelter and Bloom (1984), Bazerman and Farber (1985) and Bloom

(1986)
9For a discussion and survey see Farber and Bazerman (87).
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is reached. However if the arbitrator uses a Conventional Arbitration

procedure and splits the difference between the players last offers, there

will be a tendency to use arbitration in order to settle disputes without

wasting time.

The chapter is organized in three sections. In the next section, the

model is presented. In the third section we analyze the bargaining game

under the two arbitration rules. Conclusions are presented in the last

section.

3.2 The model

The following bargaining situation is studied. Two players bargain about

how to share N units of surplus that will be available only when they

reach an agreement. An agreement is denoted by a pair of positive

integers yi i = 1, 2, that indicates the number of units assigned to player

i. That is, the set of possible agreements are the elements of the set:

Y = {(y1, y2) | y1 + y2 ≤ N, andy1, y2 arepositiveintegers}

and the set of efficient agreements Y e are (y1, y2) ∈ Y such that y1+y2 =

N.

We assume that offers are made sequentially. The game proceeds

as follows: in each period t, one of the players, say i, selects an offer

and player j either accepts it or rejects it. An offer (or a proposal) is

a partition of the N units. If the offer is accepted, then the bargaining

ends, and the agreement is implemented. If the offer is rejected, then

play moves to period t + 1 where player j proposes and player i accepts

or rejects. The game ends when a proposal is accepted or when the

arbitrator is called. In order to call the arbitrator a player must break the

negotiation. We consider that a player breaks the negotiation when she

demands at least as many units as in her previous proposal. Moreover,

at t = 0 the first mover breaks the negotiation if she asks for N units.
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If the arbitrator is called she imposes a partition and the game ends.10

Players are assumed to be risk neutral and impatient. Their impa-

tience is modeled by a common discount factor, normalized to be δ per

unit of time. If at time t players reach an agreement on a partition

(y1, y2) payoffs are:

(δty1, δ
ty2)

If players break the negotiation at t and the arbitrator is called, a

partition (y1a, y2a) with y1a + y2a = N prevails at t + 1 and payoffs are:

(δt+1y1a, δ
t+1y2a)

The partition (y1a, y2a) depends on the rule that the arbitrator uses.

We will study two arbitration rules or procedures. Under Final-Offer

Arbitration the arbitrated partition is equal to the last proposal of the

player that does not break the negotiation. Under Conventional Arbi-

tration the the arbitrated partition splits the difference11 between the

players last two offers.12

The present a bargaining games are of games of complete information

and infinite horizon. A pure strategy of player i specifies the action

10In the context of international negotiations the arbitration phase is exogeneously

triggered after a deadline or after an impasse where an impasse may understood as

a phase without any significant concession from either party.
11If (N −x2, x2) is the last offer of player 1 and (x1, N −x1) the last offer of player

2, then the arbitrated partition will be (x1 + N−x1−x2
2 , x2 + N−x2−x1

2 ) whenever

N −x1−x2 > 2. If N −x1−x2 = 1, we assume that the arbitrator favors the player

that did not break the negotiation, says player 1, by implementing the partition

(N − x2, x2).
12The empirical literature has found that a more accurate description of arbitrators’

actual behavior is one in which the final choice of the arbitrator also depends on

his own expertise of the case. Yet a dependence on the parties positions exists.

Since arbitrators are chosen (at least to some extent) by the players, and arbitrators

care about their chances to be hired again, the arbitrator must use the information

provided by players’ offers.
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at each subgame: a proposal if player i moves first at t or a reply to

the opponent’s proposal if she moves second. In general, strategies are

extremely complex since actions at any subgame depend arbitrarily on

the entire history of actions up to that point. We will, however, restrict

our attention to stationary strategies, that is, strategies in which actions

depend only on the bargaining state. A bargaining state is defined as

the triple (x1, x2, X) where (N − x2, x2) and (x1, N − x1) are the last

offer of player 1 and 2 respectively, and X = N−x1−x2 is the contested

surplus. A pure stationary strategy specifies the offer a player makes as

proposer and a reply to the opponent’s proposal as responder for each

bargaining state. An equilibrium will be a profile of stationary strategies

that constitute a subgame perfect equilibrium.

3.3 Equilibria under Final Offer Arbitration

Consider the bargaining game under FOA. If player 1 breaks the negoti-

ations at some t when the bargaining state is (x1, x2, X), the arbitrated

the partition (x1, x2+X) = (x1, N−x1) is implemented one period later.

We denote as Z1 the smallest number of units such that Z1 ≥ δ(Z1 +

1). And as I(X) an indicator function that takes values of I(X) = 0 if

X is even and I(X) = 1 if X is odd.

In the proposition that follows we characterize the equilibrium moves

at each bargaining state.

Proposition 6: Assume that the arbitrator uses a FOA procedure

and let N and δ such that Z1 > N
2
. The optimal actions at each possible

bargaining state are as follows:

At (x1, x2, X) player i accepts any offer that gives him a number of

units xi + l ≥ Z1, or xi + X − 1 if xi + 1 < Z1. Otherwise, she rejects

and she demands a number of units:
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state i demands

xj ≥ Z1 − 1 xi + X − 1

xi ≤ xj < Z1 − 1 and vi(x1, x2, X) ≤ N − Z1 N − Z1

xi ≤ xj < Z1 − 1 and vi(x1, x2, X) > N − Z1 xi + X − 1− I(X)

xj < xi < Z1 − 1 and vi(x1, x2, X) ≤ N − Z1 xi + X − 1

xj < xi < Z1 − 1 and vi(x1, x2, X) > N − Z1 xi + X − 1− I(X)

xi ≥ Z1 − 1 xi + 1

vi(x1, x2, X) = δ
X−2−I(X)

2 (xi + X−I(X)
2

)

Proof. See appendix.¥
Under FOA players never break the negotiation process in order to

force arbitration because they can always replicate the arbitrated parti-

tion without the one period delay needed for arbitration. Thus, under

a FOA, an impasse in the negotiation process never occurs because, at

each state, players are forced to agree or decrease their demands.

With a full characterization of the optimal actions at each possi-

ble bargaining state, we are now ready to characterize the equilibrium

outcomes. At the initial state (0, 0, N), the first mover either proposes

(N − Z1, Z1) and the opponent accepts or she demands N − 1 − I(N)

units and the opponent rejects. After a path of consecutive offers and

rejections players finally agree on the partition (N−I(N)
2

, N+I(N)
2

).

Proposition 7: Assume that the arbitrator uses a FOA procedure

and let δ and N such that Z1¿
N
2
. If δ

N−2−I(N)
2 (N−I(N)

2
) > N − Z1, in

equilibrium the partition
(

N−I(N)
2

, N+I(N)
2

)
is accepted after N−2−I(N)

2

periods. Otherwise, the partition (N − Z1, Z1) is accepted at t=0.

Proof. Assume first that N = 3 and without loss of generality, let

player 1 be the first mover. At the initial bargaining state (0, 0, 3) player
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1 proposes (1, 2) since v1(0, 0, N) ≥ N − Z1 and player 2 accepts since

x2 + 1 < Z1.

Now consider N > 3 and N even. At the initial bargaining state

(0, 0, N) x1 = x2 < Z1 − 1. If v1(0, 0, N) = δ
N
2
−1 N

2
≤ N − Z1, the

optimal proposal of player 1 is (N − Z1, Z1) which player 2 optimally

accepts. If v1(0, 0, N) = δ
N
2
−1 N

2
> N − Z1, player 1 proposes (N −

1, 1) and player 2 rejects since x2 + 1 < N
2

< Z1. At t = 1, the new

bargaining state is (0, 1, N − 1) with x1 < x2 < Z1 − 1, N − 1 odd and

δ
N−4

2 (1 + N−2
2

) > δ
N
2
−1 N

2
> N − Z1. Player 2 proposes (2, N − 2) and

player 1 accepts if N = 4 and rejects if N > 4 since 2 ≤ N
2

< Z1. At

t = 2 the bargaining state is (2, 1, N − 3) with x2 < x1 < Z1 − 1 and

δ
N−6

2 (2 + N−4
2

) > δ
N
2 (N

2
) > N − Z1. Player 1 proposes (N − 3, 3) and

player 2 accepts if N = 6, and rejects otherwise. And so on, and so

forth. At t = N
2
− 1 the bargaining state is (N

2
− 1, N

2
− 2, 3) and player

1 proposes (N
2
, N

2
) and player 2 accepts it.¥

Under a FOA, the efficiency of the equilibrium outcome may be af-

fected. If players are sufficiently patient, in equilibrium players delay

an agreement on the partition (N
2
, N

2
) (or the ’almost equal’ partition

if N is odd). The threat of arbitration forces players to decrease their

demands until an agreement is reached. However if they are sufficiently

impatient, the first mover will make a proposal that the opponent will

not reject.

The intuition is the following: suppose that the bargaining state is

such that x1 ≥ Z1 − 1 and x2 < Z1 − 1. Recall that Z1 the smallest

number of units such that Z1 ≥ δ(Z1 +1). Since x2 < Z1, and a player’s

demand must be reduced in at least one unit to avoid arbitration, player

2 finds worthy to delay the agreement one period if she can gain at least

one more unit. Player 1, however, prefers to finish the negotiation by

accepting player 2’s demand of N − x1 − 1 units.

If we are at a bargaining state with xi < Z1 − 1 for i = 1, 2, both
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players have incentives to delay the agreement and decrease their de-

mands by the minimal amount. That behavior is responsible for delay

in reaching the agreement. However, if the resulting payoff for player 1

is smaller than N−Z1, she will choose to propose the partition offering a

number of units that 2 will not reject, i.e. Z1. There will be no rejection

since if player 2 does reject, at the next turn, any proposal different than

(N −Z1− 1, Z1 + 1) will be rejected by player 1 leaving player 2 clearly

worse off.

This arbitration procedure has effect on the negotiation equilibrium

behavior even under the present assumption that arbitration consumes

one period to be implemented. In the present model arbitration is an

outside option that has a “negative value”. Opting out is not a credible

threat since it is a dominated strategy for any subgame. It is, never-

theless, an impasse solving device that prevents that players stick to a

proposal paralyzing negotiations.

In the absence of arbitration, Van Damme, Selten and Winter (1990)

have shown that, for given N if Z1 ≥ N , any immediate efficient agree-

ment can be supported as a SPE. The argument is quite simple; any offer

(x, N − x) can be sustained as an equilibrium: If player i wants more

than x she must ask for at least x + 1. But if δ is sufficiently large, then

player j may optimally reject this offer. Since there is a multiplicity of

equilibria, alternative equilibria that involve delays and even perpetual

disagreement can be supported as a SPE. Constructing this equilibria,

however, requires the use of non-stationary strategies.

Adding arbitration has an immediate consequence: strategies that

sustain an immediate agreement on (x,N − x) cannot be supported as

SPE strategies anymore. If player 1 asks for x, rejecting this proposal is

profitable for player 2. After rejection she can propose, at her turn, (x−
1, N − x + 1). Player 1 cannot reject this proposal without punishment

by the arbitrator. If she rejects, the game reaches the bargaining state
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(x − 1, N − x, 1) and if she asks for more than x − 1 the arbitrator is

called. Thus, the offer of player 2 is such that player 1 cannot reject; and

player 2 gets a payoff δ(N − x + 1) > N − x since Z1 ≥ N .

Under FOA, if agreement is not immediate, delay is related to the

number of units N . When agreement is immediate, the first mover gets

a share smaller than her opponent’s since N − Z1 < Z1. Hence, under

certain conditions, if the set of alternatives is finite, the introduction of

a FOA eliminates first-mover advantage.

3.4 Equilibria under Conventional Arbitration

Let us now consider Conventional Arbitration. At the bargaining state

(x1, x2, X), if the negotiation is broken by player 1, the arbitrated par-

tition

(x1 + X−I(X)
2

, x2 + X+I(X)
2

)ifX > 2

(x1, x2 + 1)ifX = 1

is implemented one period later.

We will denote as Zl the smallest number of units such that Zl ≥
δ(Zl + 1). Notice that if Z1 > N

2
then Z2 ≥ N .

With this arbitration procedure, at any bargaining state (x1, x2, X)

a player can guarantee herself a payoff of δ(xi + X−I(X)
2

). Then, if she

chooses to continue the negotiation by offering her opponent xj +y with

y ≥ 1 she must expect a payoff greater than δ(xi + X−I(X)
2

).

Proposition 8 that follows characterizes the equilibrium actions at

each bargaining state and shows that, contrary to what happens with

under FOA, there are bargaining states from which players may find

optimal to force arbitration.
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Proposition 8: Assume that the arbitrator uses a CA procedure

and let N and δ such that Z1 > N
2
. The optimal actions at each possible

bargaining state are as follow:

For (x1, x2, X) with X < 6 players follow the optimal actions speci-

fied in proposition 1.

For (x1, x2, X) with X ≥ 6, player i accepts any offer that gives

him a number of units xi + l ≥ Max {Z1, xi + X − 5}. Otherwise, she

rejects. And she demands a number of units:

state i demands

xj ≥ Z1 − 1 and xi + 5 ≥ va
i (xi, xj, X) xi + 5

xj ≥ Z1 − 1 and xi + 5 < va
i (xi, xj, X) xi + X

xi ≤ xj < Z1 − 1, xi + 5 ≥ N − Z1 ≥ va
i (xi, xj, X) N − Z1

xi ≤ xj < Z1 − 1, xi + 5 ≥ N − Z1

andN − Z1 < va
i (xi, xj, X)

xi + X

xi ≤ xj < Z1 − 1, va
i (xi, xj, X) ≤ xi + 5 < N − Z1 xi + 5

xi ≤ xj < Z1 − 1, xi + 5 < N − Z1

andxi + 5 < va
i (xi, xj, X)

xi + X

xj < xi < Z1 − 1, δZ1 > va
i (xi, xj, X)

andxj + 5 ≥ N − Z1 ≥ va
j (xi, xj + 1, X − 1)

xi + X − 1

xj < xi < Z1 − 1,δZ1 ≤ va
i (xi, xj, X)

andxj + 5 ≥ N − Z1 ≥ va
j (xi, xj + 1, X − 1)

xi + X

xj < xi < Z1 − 1, xj + 5 < N − Z1 xi + X

xi ≥ Z1 − 1 xi + X

va
i (x1, x2, X) = δ(xi + X−I(X)

2
)

va
j (x1, x2 + 1, X − 1) = δ(xj + 1 + X−1−I(X−1)

2
)

Proof. See Appendix.¥
The equilibrium outcomes are easily characterized from Proposition

8. Our main result for Conventional Arbitration is that when players are
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sufficiently patient, in equilibrium they will always resort to arbitration

when the number of units N to share is sufficiently large.

Proposition 9: Assume that the arbitrator uses a CA procedure and

let N and δ such that Z1 > N
2
. Then if N ≥ 6, in equilibrium the first

mover asks for all the N units, the opponent rejects, and the arbitrator

is called at t=1.

Proof. Notice that if Z1 > N
2
, then N −Z1 < N

2
< Z1 and N −Z1 <

δ(N −Z1 + 1) ≤ δ(N
2
). If N ≥ 6, at the initial bargaining state (0, 0, N)

with x1 = x2 = 0 < Z1−1 and N−Z1 < δ(N
2
) = va

i (0, 0, N), the optimal

action of the first mover will be to force arbitration by asking for the N

units.¥

Remark 1. For N < 6 the optimal strategies of the players are

the same as the specified strategies in proposition 1 and the equilibrium

outcome is described in proposition 2.

In order to be true we must prove that forcing arbitration is a dom-

inated strategy for any player at any bargaining state (x1, x2, X) with

X < 6. At bargaining states (x1, x2, X) with X = 1, 2, 3 arbitration pays

either δxi or δ(xi + 1). To force arbitration is clearly a dominated strat-

egy since a player can always ask for one unit and the opponent will

accept this partition without wasting one period. At (x1, x2, X) with

X = 4, 5 arbitration pays δ(xi + 2). It is easy to check that arbitration

is a dominated alternative for player i at the bargaining states such that

xi ≥ Z1 − 1 and at the bargaining states such that xj > Z1 − 1. And at

the bargaining states satisfying xi ≤ xj < Z1 − 1 or xj < xi < Z1 − 1,

arbitration gives the player, at most, the same payoff as the one she gets

if she follows the strategies specified in table 1.

If players are sufficiently patient, that is if Z1 > N
2
, for any bargaining

state, players are ready to delay the agreement at least one period in
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order to get two or more units since N < Z2. The conventional arbitrator

implements a partition that gives the player half of contested units X one

period later. Then, for X large enough opting out becomes an attractive

alternative.

Unlike under the Final Offer Arbitration, the outside option has a

“positive value” and may be a credible threat for a player in some bar-

gaining states. Players never make proposals such that the opponent

will optimally reject to opt out for arbitration. Since avoiding these

bargaining states requires very generous proposals, players prefer arbi-

tration right away.13 Let us illustrate this point. Suppose we are at the

bargaining state (x1, x2, X) and that player 1 proposes (x1+X−l, x2+l).

If l is not sufficiently large, 2 opponent will optimally reject and break

the negotiation at the next turn since x2 + l < δ2(x2 + l + X−l−I(X−l)
2

)

for X−l−I(X−l)
2

≥ 4 given that N < Z2.

3.5 Conclusions

In this chapter we have analyzed the effect of two different arbitration

rules on negotiations with a finite set of agreements. Under a Final Offer

Arbitration, where the arbitrator imposes the last offer of the agent not

breaking negotiations, we found that, in equilibrium, players will nego-

tiate the partition of the pie and will never resort to arbitration. Under

a Conventional Arbitration, where the arbitrator splits the difference

between the last offers of the players, arbitration is used in equilibrium.

These results are compatible with the observed higher rate of negotiated

settlements under FOA than under CA and support the intuition that

the later scheme leads to arbitration as the dominant settlement mode

13This result is consistent with Compte and Jehiel (1997) that explore the present

model where the set of alternatives is continuum. One important result is that due

to the form of outside option, equilibrium concessions are gradual, and delay may be

an equilibrium outcome. When the efficiency loss in case of delayed agreement is too

high then, players use the arbitrator right away.
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(a phenomenon known as the narcotic effect).

Arbitration systems and arbitration provisions take a wide variety

of forms. Although we do not claim full generality for our approach,

our model does capture the basic features of actual arbitration and thus

provides sound theoretical basis for a number of claims commonly made

about the effects of arbitration.
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Chapter 4. Opting Out in the War
of Attrition

4.1 Introduction

This aim of this chapter is to study the role played by the outside op-

tions in negotiations when there is incomplete information about their

existence. For this purpose we focus our analysis on the War of Attrition

since this is the simplest model of conflict that yields inefficient equilibria

under complete information. It is well known that, in a symmetric War

of Attrition without outside options, the unique symmetric equilibrium

consists in players randomizing at a constant probability between con-

ceding and not conceding, a very inefficient outcome indeed. We show

that the presence of uncertain outside options improves efficiency.

The relevance of outside opportunities available to the players on the

outcome of a negotiation has been well established in models of bargain-

ing with complete information (Shaked and Sutton (1984), Binmore et

al.(1986), Shaked (1987), and Ponsati and Sakovics (1998)). In these

models the decision of a bargainer to take up her outside option is a

strategic decision and outcomes depend crucially on who has this possi-

bility and when. If it is the responder who has the outside opportunity,

then, in the unique subgame perfect equilibrium, this player obtains a

payoff equal to the value of her option if this is larger than her equilib-

rium share in the game without the possibility to opt out. Otherwise,

the option has no effect on the outcome ( this is known as Outside Op-

tion Principle, see Shaked and Sutton (1984)). But if it is the proposer

who can threaten to take her outside option, she can appropriate the

entire surplus making a take-it-or-leave-it offer and, in this case, there

is multiplicity of equilibria for a range of outside options.
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Considering uncertainty about outside options is a natural exten-

sion of the literature that deserves attention. Nevertheless, bargaining

models devoted to that subject are scarce.14 Wolinsky (1987) presents a

model where players may search for outside opportunities during the bar-

gaining process. He shows that the outcome of the bargaining does not

depend only on the players’ relative efficiency in searching, but also on

how aggressively each party can credibly threaten to search in the event

that the agreement is delayed. Vislie (1988) extends Shaked and Sut-

ton’s model (1984) by allowing the presence of a second random outside

option for the seller, and finds the conditions under which the equilib-

rium price is affected by this random appearance. And finally, Ponsati

and Sakovics (1999) analyze a bargaining game where both players have

outside options but they are uncertain about their size. In all these

models players do not know with certainty either the existence or the

size of their own outside options. By contrast, in this chapter we present

a model where players enjoy private information about their possibilities

of opting out, but they do not know their opponent’ opportunities.

We carry out our analysis within the simple framework of a War

of Attrition, a situation where there are only two available agreements

and each player favors one of them. The decision problem of each player

consists in deciding when to give in by accepting her opponent´s favorite

agreement. The distinctive feature of our model is that, since outside

options are present yielding takes two forms: a player can give in by

accepting her opponent’s favorite agreement, or by contrast, she can

14The literature of pretrial negotiation has an apparent similarity to models of

sequential bargaining with incomplete information and outside options. In these

models of litigation and pretrial negotiation (see Spier (1992), Wang et al, (1994))

only the plaintiff can opt out forcing the trial. But an important difference is that

in bargaining models both players would like to come to an agreement immediately

while in pretrial negotiation the plaintiff would like to settle as soon as possible and

the defendant to pay as late as possible.
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give up, taking her option, and leaving her current partner to take her

outside payoff as well. Both players have private information about their

own outside options and are impatient in that delaying is costly. There

are two types of players: a weak type who has no outside option (or

whose outside option is without value) and a strong type who has a

valuable outside option that she prefers to take rather than conceding.

We show that introducing the possibility of opting out in a War of

Attrition has a dramatic effect on the outcomes.15 We find that, if the

probability of facing a weak opponent is sufficiently low, in equilibrium,

the negotiation will surely end at some future date, since weak types

eventually become sufficiently pessimistic about the prospect of reaching

their preferred agreement so that, in fear that the opponent might opt

out, they concede with probability 1. On the other extreme, if the

likelihood of a weak opponent is high, strong types eventually opt out

with probability 1, leaving weak types to play, from that time on, the

symmetric inefficient equilibrium of the complete information War of

Attrition. Even in this case, the probability of concession along the

uncertainty phase of the equilibrium play increases.

The following section presents our bargaining model and character-

izes equilibria of this game. In section 3 we turn to an asymptotic

analysis of this game considering the limit as δ → 1, and carry out

comparative statics. Conclusions are presented in the last section.

15In a very different model, Compte and Jehiel (2000) find also that outside options

have a positive effect on bargaining. They show that the existence of outside options

may cancel out the effect of obstinacy in bargaining.
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4.2 The model

The following bargaining situation is studied. Two players bargain about

how to share one unit of surplus that will be available only when they

reach an agreement. An agreement is denoted by x, where x indicates

the portion of the surplus assigned to player 1. There are only two

possible agreements; either x = 1− a or x = a with 0 < a < 1
2
. Players

may also decide to break the negotiation by opting out, in which case,

they receive a payoff bi i = 1, 2.

In this game there are three possible bargaining outcomes; either an

agreement is reached, or negotiations break, or perpetual disagreement

prevails.

Players are assumed to be risk neutral and impatient. Their impa-

tience is modeled by a common discount factor, normalized to be δ per

unit of time. And the payoffs are as follows: if players perpetually dis-

agree, they both receive zero payoff. If only player i concedes at time t,

then player i gets aδt and player j gets (1−a)δt. If both players concede

at the same time each players gets aδt16. And if either or both players

opt out, payoffs are biδ
t for i = 1, 2.

Each player i has private information about the value of her outside

opportunity, which can be either bi = 0 or bi = b, a < b < 1 − a. A

player with no outside option (or whose outside option is 0) is a weak

type, denoted as W, and a player with an outside option b > 0 is a strong

type, denoted as S. Strong types always prefer opting out rather than

conceding and weak types prefer conceding rather than opting out. The

players entertain beliefs about each other’s type and they are represented

by an initial probability 0 < πi
0 < 1, that is, the probability that player

i is weak. We assume that these probabilities are common knowledge

16This assumption is computationally convenient. Results do not change substan-

tially if we assume that in the case that both players concede at the same time a

lottery is used to decide the outcome.
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and we set πi
0 = π0 for simplicity.

The game is played in discrete time, starting at t = 0. At each

time (a stage), both players decide simultaneously either: (i) to propose

her preferred agreement, (ii) to concede by proposing her opponent’s

favorite agreement or (iii) to leave the negotiation and opt out. The

game ends whenever a player or both, at the same time, concedes or

opts out. Otherwise, disagreement occurs, discounting applies and the

game proceeds to a new stage.

The history ht observed by the players is just the fact that no player

has yielded before t (no player has conceded or has opted out).

A strategy σi(τ) of player i with type τ = W,S is defined as a pair

of sequences σi(τ) = {αi
t(τ), βi

t(τ)}∞t=0 where αi
t(τ) is the probability of

conceding at t and βi
t(τ) is the probability of opting out at t, given that

no player yields before that time. Let σ = (σi(W ), σi(S), σj(W ), σj(S)).

A system of beliefs πi for player i maps each observed history into

some probability measure on the types W and S of player j. Let Π =

(πi, πj).

Given a strategy-belief profile (σ, Π), the expected payoff of player i

of not conceding at t, conditional on the history ht, is

V iW
t = πj

t α
j
t (1− a) + δ

[
1− πj

t α
j
t − (1− πj

t )β
j
t

]
V iW

t+1 ,

and the expected payoff of not opting out at t is

V iS
t = πj

t α
j
t (1− a) + (1− πj

t )β
j
t bi + δ

[
1− πj

t α
j
t − (1− πj

t )β
j
t

]
V iS

t+1.

Since we are interested on the role played by outside options on the

efficiency and outcome of the War of Attrition, we find appropiate to

examine the Symmetric Perfect Bayesian Equilibria of this game given

that inefficiency arises in a War of Attrition when players are constrained

to use symmetric strategies.

The Symmetric Perfect Bayesian Equilibrium (SPBE) is defined in

the usual way. A strategy-belief profile (σ, Π) is a SPBE if, at any stage
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of the game, strategies are optimal given the beliefs, and the beliefs are

obtained from equilibrium strategies and observed actions using Bayes’

rule:

πi
t = πi

t−1(1− αi
t−1)πt−1(1− αi

t−1) + (1− πi
t−1)(1− βi

t−1).

Notice that πi
t is not defined if αi

t−1 = βi
t−1 = 1. If the optimal

strategy tells a player to concede and opt out at some t with probability

1, then to stay at t + 1 is a probability 0 event and Bayes’ rule does not

pin down posterior beliefs. Any posterior beliefs are then admissible.

Symmetry in strategies implies that αi
t = αj

t = αt and βi
t = βj

t = βt.

Since in a SPBE a weak type will never opt out and a tough type

will never concede, in an abuse of terminology, we will identify the prob-

abilities of conceding αt with the strategy of the weak type, and the

probabilities of opting out βt with the strategy of the tough type.

The first result is quite straight forward.

Proposition 10. There is no SPBE in pure strategies.

Proof. See Appendix.¥
We next turn attention to profiles where players randomize. In a

SPBE in mixed strategies, it must be true that the payoff of conceding

at t, conditional on the opponent not having conceded or opted out

previously, must be equal to the payoff of conceding at t+1. At the

same time, the payoff of opting out at t, conditional on the opponent

not having yielded in before, must be equal to the payoff of opting out

at t+1:

a = (1− a)πtαt + aδ(1− πtαt − (1− πt)βt),

b = (1− a)πtαt + b(1− πt)βt + bδ(1− πtαt − (1− πt)βt).
(1)

Next lemma points out that, in a SPBE it is not possible to have

both types yielding at the same time with probability 1. And if the
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equilibrium is such that weak types concede with probability 1 at some

t, then strong types certainly opt out at t+1.

Lemma 1. If {αt}∞0 and {βt}∞0 are SPBE, then:

(i) there is no t such that αt = βt = 1

(ii) If αt = 1 and 0 < βt < 1 then βt+1 = 1.

Proof. Statement (i) indicates that, in equilibrium, it is not possible

that both types yield at the same time with probability 1. If the strategy

of the opponent is to concede and to opt out at some t with probability

1, then a strong player will have always incentives to wait one period

since b < (1− a)πt + b(1− πt), breaking the symmetry of the strategies.

Statement (ii) establishes that, if the weak type strategy yields a period

t probability of conceding of unity, then to opt out at t+1 dominates

doing so in t+2, since waiting until period t+2 discounts their payoff

and provides no additional probability that a weak type will make a

concession.¥
In a SPBE, both types distribute concessions across time. The equi-

librium strategies are characterized by the pair of difference equations

(1). To simplify notation let,

H = ab(1− δ)aδ(1− a− δb) + b(1− δ)(1− a− δa),

G = (1− δ)(1− a)(b− a)aδ(1− a− δb) + b(1− δ)(1− a− δa).

Our system of equations (1) can be rewritten as

αtπt = H.

βt(1− πt) = G.

Substituting these expressions on the posterior probability πt, we

have the difference equation that rules the posterior:

πt − πt−11−H −G + H1−H −G = 0.

Solving this difference equation with the initial condition π0,
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πt =
H

H + G
+ (π0 − H

H + G
) (11−H −G)t .

For what follows we analyze the different profiles that can be sus-

tained as equilibria.

Concession Equilibria

A Concession Strategy Profile is a strategy profile where weak types

eventually concede with probability 1.

Define T as the natural number that solves:

H
H+G

+ (π0 − H
H+G

)(11−H −G)t≤ H ≤ H
H+G

+ (π0 − H
H+G

)(11−H −G)t−1.

Our result, stated below as Proposition 11, shows that if the initial

probability of facing a weak type is π0 ∈
(
0, H

H+G

)
in equilibrium players

will not continue in the game indefinitely. Instead, we can identify a

period T , which depends upon the parameters of the game (a, b, δ, π0),

with the property that weak types will never delay play beyond period

T and strong types never stay beyond T + 1. Moreover, if π0 ∈ (0, H] ,

the game ends at T = 0.

A Concession Equilibrium is described by finite pairs of sequences

{αt}T
t=0 and {βt}T+1

t=0 identifying the indifference valuations in each period

and a sequence of beliefs {πt}T
t=0. The posterior πt deteriorates over time;

as time passes, players become more pessimistic about their opponents

being a weak type. That fact will naturally affect the probability of

conceding αt which increases over time and the probability of opting

out βt which decreases. At some time t = T the probability that her

opponent is strong is so high that a weak type optimally concedes with

probability 1 since the chance to receive her preferred agreement is too

small. And, as stablished on Lemma 1, a strong type will opt out at

T + 1 with probability 1 if this agent infers that her opponent is strong.
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If the period T is reached by which a weak type would have conceded, the

strong type infers that the opponent is as strong as she is. If both players

prefer opting out rather than conceding, they will leave the negotiation

immediately since there is no possibility to receive 1 − a from their

opponents and delaying their way out only decreases their payoffs.

The formal statement of this result follows:

Proposition 11. If π0 ∈ (0, H] , there is a unique SPBE such that

αt = βt+1 = 1 ∀t ≥ 0 and β0 = b(1− δ)− π0(1− a− δb)b(1− δ)(1− π0).

And if π0 ∈
(
H, H

H+G

)
, the unique SPBE is such that :

αt = H
H

H+G
+(π0− H

H+G
)(11−H−G)t ,∀t < T ,

βt = G

1−[ H
H+G

+(π0− H
H+G

)(11−H−G)t]
,∀t ≤ T ,

and αt = βt+1 = 1 ∀t ≥ T .

Proof. We prove Proposition 11 for π0 ≤ H. The rest is detailed in

the appendix.

Let us check first the optimal response of both types to the oppo-

nent’s strategy ({αt}∞0 {βt}∞0 ) such that αt = βt+1 = 1 ∀t ≥ 0 and

β0 = b(1−δ)−π0(1−a−δb)
b(1−δ)(1−π0)

. Notice that, given this strategy of the opponent,

πt = 0 ∀t ≥ 1.

A weak type concedes optimally at t=0 if:

a > π0α0(1− a) + aδ(1− π0α0 − (1− π0)β0), fort = 0.

a > πtαt(1− a) + aδ(1− πtαt − (1− πt)βt),∀t ≥ 1.

The second inequality is automatically satisfied since πt = 0. And

the first inequality is satisfied since π0 6 H.

Consider now a strong type. If the strategy of her opponent is to

concede at t=0 with probability 1, then, by Lemma 1, she will opt out
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with probability 1 at t=1. And at t=0 she opts out with probability β0 =

1
1−π0

−( π0

1−π0
) (1−a−δb)

b(1−δ)
since b = π0(1−a)+b(1−π0)β0+bδ(1−π0)(1−β0).

Now we prove that if π0 ≤ H, then the unique SPBE must be

({αt}∞0 , {βt}∞0 ) such that αt = 1 ∀t ≥ 0 and β0 = b(1−δ)−π0(1−a−δb)
b(1−δ)(1−π0)

βt = 1 ∀t ≥ 1. To see that, indeed this is the unique SPBE, we explore

all the other possible candidates.

First, assume that there is a SPBE (
{ ∼

αt

}∞
0

,
{∼

βt

}∞
0

) with 0 <
∼
α0< 1,

0 <
∼
β0< 1 and

∼
β0 6= b(1−δ)−π0(1−a−δb)

b(1−δ)(1−π0)
. If these were equilibrium strategies,

then it must be true that:

π0
∼
α0= H.

(1− π0)
∼
β0= 1−G.

But since π0 ≤ H then
∼
α0≥ 1, a contradiction.

Second, assume that (
{ ∼

αt

}∞
0

,
{∼

βt

}∞
0

) is an equilibrium with
∼
α0=

1 and 0 <
∼
β0< 1 with

∼
β0 6= b(1−δ)−π0(1−a−δb)

b(1−δ)(1−π0)
. Then if these strategies

constitute a SPBE, it must be true that:

a > (1− a)π0 + aδ(1− π0)(1−
∼
β0),

and

b = (1− a)π0 + b(1− π0)
∼
β0 +bδ(1− π0)(1−

∼
β0).

But if
∼
β0 6= b(1−δ)−π0(1−a−δb)

b(1−δ)(1−π0)
, the second condition is violated; either a

strong type will deviate by opting out at t=0 if
∼
β0<

b(1−δ)−π0(1−a−δb)
b(1−δ)(1−π0)

or

by never opting out if
∼
β0>

b(1−δ)−π0(1−a−δb)
b(1−δ)(1−π0)

.

Finally, assume that (
{ ∼

αt

}∞
0

,
{∼

βt

}∞
0

) is an equilibrium with 0 <
∼
α0<

1 and
∼
β0=

b(1−δ)−π0(1−a−δb)
b(1−δ)(1−π0)

. Then,

a = (1− a)π0
∼
α0 +aδ(1− π0

∼
α0 −(1− π0)

∼
β0).

b = (1− a)π0
∼
α0 +b(1− π0)

∼
β0 +bδ(1− π0

∼
α0 −(1− π0)

∼
β0).
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But if
∼
β0=

b(1−δ)−π0(1−a−δb)
b(1−δ)(1−π0)

the first condition is not satisfied since
∼
α0>

1.¥

Opting Out Equilibria

An Opting Out Profile is characterized by strong types taking their

outside opportunities at some time with probability 1, leaving weak types

to play as in the complete information War of Attrition from that time

on.

Define as T the natural number that solves:

HH + G+(π0−HH + G)(11−H −G)t−1 ≤ 1−G ≤ HH + G+(π0−HH + G)(11−H −G)t.

The next proposition shows that, if the probability of facing a weak

type is relatively high, the optimal strategy of a strong type is such

that she opts out at period T > 0 with probability 1, and the optimal

strategy of a weak type, from time T on, is to concede with a constant

probability.

Proposition 12. If π0 ∈
(

H
H+G

, 1−G
)
, the unique SPBE is such

that:

αt = H
H

H+G
+(π0− H

H+G
)(11−H−G)t , ∀t ≤ T ,

βt = G

1−[ H
H+G

+(π0− H
H+G

)(11−H−G)t]
, ∀t < T ,

βt = 1 and αt+1 = α = a(1−δ)
1−a−δa

∀t ≥ T .

And if π0 ∈ [1−G, 1) βt = 1 ∀t > 0 and α0 = a(1− δπ0)(1− a− δa)π0,

αt = α = a(1− δ)(1− a− δa) ∀t ≥ 1.

Proof. See Appendix.¥
In an Opting Out Equilibrium, weak types place a small probability

of concession at each period. The posterior of facing a weak type op-

ponent πt increases over time, but the probability αt that weak types

concede decreases. In equilibrium, there will be some time t = T such
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that the optimal concession probability of the weak types cannot induce

strong types to stay in the game beyond T since the payoff they get by

opting out at that time, b, is greater than the expected payoff of wait-

ing an aditional period for (1− a). After T the posterior probability of

facing a weak opponent is 1. Players that are still at the negotiation

table recognize themselves as weak types and thus, from that period T

on, they play the Symmetric Perfect Equilibrium of the complete infor-

mation War of Attrition without outside options. In this continuation

the equilibrium concession probability remains constant over time at

αt+1 = a(1−δ)
1−a−δa

∀t ≥ T .

On the other hand, Proposition 12 also tells us that if the initial

probability of facing a weak type is close to 1, that is, if π0 ∈ [1−G, 1),

then, in equilibrium, strong types opt out with probability 1 at T = 0.

In this case, even if the probability of facing a weak opponent is very

high, the probability of receiving the preferred agreement is sufficiently

low to make it worthwhile for a strong type to leave the negotiation

immediately.

In an Opting Out Equilibrium players try to screen each other´s type

by prolonging the game and thus imposing a delay cost on the opponent,

as well as on themselves. After some time, strong types are convinced

that they will never receive their preferred agreement and decide to opt

out. From that moment on, nothing can convince players that the other

will ever concede for sure, and thus they adopt the symmetric equilibrium

strategies of the classical War of Attrition.

Pooling Equilibrium

The next proposition establishes the unique combination of parame-

ters (a, b, δ, π0) for which the SPBE is pooling. Players follow strategies

such that both types randomize at the same constant rate between yield-

ing and not yielding. Therefore, there is no learning and T = ∞.
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Proposition 13. If π0 = H
H+G

, the unique symmetric PBE is αt =

βt = H + G, ∀t ≥ 0.

Proof. See Appendix.¥
If the probability of facing a weak opponent is exactly π0 = H

H+G
, in

equilibrium, both types remain indifferent about conceding and opting

out at every time. That is, in terms of randomized strategies, each

player believes, at each time, that the probabilities that the opponent

concedes or opts out at subsequent times are exactly so as to make

continuation marginally worthwhile. No information is revealed along

this equilibrium. No player updates his beliefs about the weakness of

her opponent since if players concede and opt out at each time with the

same probability, the posterior πt is constant over time.

The next table summarizes our results so far:

dtbpF356.5625pt183.4375pt0ptFigure

Our characterization of the unique SPBE allows meaningful compar-

ative statics results. We carry out this exercise for the limit, as δ → 1.

This is the object of the next section.

4.3 Comparative Statics.

In this section we conduct comparative statics by analyzing the effects of

change in the parameters in the limit of the game as the interval between

periods becomes arbitrarily small. Let the length of each period in real

time be denoted by ∆, 0 << 1(there are 1
∆

periods per unit of time), so

that we can replace the term δ by e−∆. We are interested in the limit of

SPBE as ∆ → 0.

It is easily checked that HH + G is independent of ∆ and that

∆ → 0lim H = 0, ∆ → 0lim G = 0. The limit period T , beyond which

weak types will never continue in the negotiation in a Concession Equi-

librium (see Proposition 11) and the limit period T , beyond which strong

types will surely opt out in an Opting Out Equilibrium (see Proposition
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12), are given as functions17 of the parameters of the game (a, b, π0) as:

T (π0, a, b) = −a(1− a− b)(b− a(1− a)) ln [b(a− π0) + aπ0(1− a)ab] , forπ0 ∈ (0, HH + G) ,

T (π0, a, b) = −a(1− a− b)(b− a(1− a)) ln [b(π0 − a)− aπ0(1− a)(1− a)(b− a)] forπ0 ∈ (HH + G, 1) .

Next figure displays T and T as functions of π0 for a representative

case ( a = 1
4
, b = 3

8
).
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We want to evaluate how T and T change as the result of changes in

the parameters (a, b, π0). We carry out this exercise in order to measure

the effect on those parameters changes in the efficiency. We conjecture

that efficiency improves as T decreases and T increases. A general proof

for this conjecture is work in progress.

Next proposition establishes that an increase in the likelihood that

the opponent has a valuable outside option reduces T and increases T .

Proposition 14. T decreases and T increases as π0 decreases.

Proof. See Appendix.¥
Next we will analyze the effect of an increase of a on the limit periods

T and T . Define the following sets of parameters:

S1 =
{
(a, b)suchthatb ≤ (1− a)2

}
,

S2 =

{
(a, b)suchthatb > (1− a)2and

a(1− a− b)(b− a2)

(1− a)(b− a)(b− (1− a)2)
> 1

}
,

S3 =

{
(a, b)suchthatb > (1− a)2and0 <

a(1− a− b)(b− a2)

(1− a)(b− a)(b− (1− a)2)
< 1

}
.

17See appendix for the derivation of these functions.

64



Let x = b(π0 − a)− aπ0(1− a)(1− a)(b− a) and
∼
x be the solution

to:

(b−(1−a)2) ln [x]+a(1− a− b)(b− a2)(1− a)(b− a)(
1

x
−1) = 0. (2)

Proposition 15. (i) T decreases as a increases. (ii) T increases as

a increases ∀(a, b) ∈ S1 ∪ S2. If (a, b) ∈ S3, then ∂T
∂a
≥ 0 if x ∈

(
0,
∼
x
]

and ∂T
∂a

< 0 if x ∈ (
∼
x, 1).

Proof. See Appendix.¥
We see that efficiency improves as a increases if a and b are close

since an increase on a reduces the time at which weak types concede

with probability 1 in a Concession Equilibrium, and increases the time

at which strong types opt out with probability 1 in an Opting Out

Equilibrium. However, the effect of the concession payoff a on T when

a and b are far, depends on the relationship between a, b and π0. In

the next example we find the initial probability π∗0 such that ∂T
∂a

> 0 if

π0 ∈
(

H
H+G

, π∗0
]

and ∂T
∂a

< 0 if π0 ∈ (π∗0, 1).

a b π∗0
1
3

58
100

0.722556

1
3

6
10

0.631353

1
3

62
100

0.562209

If the value of the outside option is only slightly greater than the

concession payoff, then the range of probabilities π0 for which an increase

of the size of the concession payoff improves efficiency is bigger.

Finally we analyze the effect of an increase in the value of the outside

option, b, on T and T . Define y = b(a− π0) + aπ0(1− a)ab and let
∼
y

the solution to:

ln [y] + a(1− a− b)b(1− a)(
1

y
− 1) = 0. (2)
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Proposition 16. (i) T increases as b increases. (ii) ∂T
∂b
≤ 0 if y ∈(

0,
∼
y
]

and ∂T
∂b

> 0 if y ∈ (
∼
y, 1).

Proof. See Appendix.¥
If the value of the outside option increases, strong types take longer to

opt out with probability 1 in an Opting Out Equilibrium. However, the

effect of b on T , is not clear cut. In this case the sign of this derivative will

depend on the relationship between a, b and π0. Since is not possible to

find an analytical solution to the equation (2), we make some numerical

computations. Notice that finding
∼
y is equivalent to find the initial

probability π∗0 such that ∂T
∂b

< 0 if π0 ∈ (0, π∗0] and ∂T
∂b

> 0 if π0 ∈
(π∗0,

H
H+G

). The following table shows some numerical examples:

a b π∗0
1
3

2
5

0.638251

1
4

2
5

0.413369

1
5

2
5

0.301117

We see that the difference between a and b matters. If the value of

the outside option is only slightly greater than the concession payoff,

then the range of probabilities π0 for which an increase of the size of the

outside option improves efficiency is bigger.

4.4 Conclusions.

In this chapter we have explored the effect of the private information

about outside options on the outcomes of negotiations. In order to ad-

dress this issue we analyzed a War of Attrition allowing players to leave

the negotiation in order to opt out and we characterized the Symmetric

Perfect Bayesian Equilibrium of this game. There are two types of play-

ers: a weak type who has a valueless outside option-she always prefers

conceding rather than opting out- and a strong type who has a valu-

able outside option that she prefers to take rather than conceding. We
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show that uncertainty about the possibility that the opponent opts out

improves efficiency, since it increases the equilibrium probability of con-

cession. More precisely, if the probability that the opponent is strong

is relatively high, in equilibrium, the negotiation eventually ends with a

sure concession. In these cases, we are able to identify a time T at which

a player with a valueless outside option, will concede with probability 1,

and a player with an outside option will wait to obtain a concession until

T + 1; then, she will opt out with probability 1. On the other extreme,

if the likelihood of a weak opponent is high, strong types stay in the

game for a while and eventually leave the negotiation and opt out with

probability 1. From that date T on, weak types play the (inefficient)

symmetric equilibrium of the classical War of Attrition with complete

information. Even in this case, the probability of concession by weak

types along the uncertainty phase of the equilibrium play increases.
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Appendix

Proof of Proposition 2 (ii).

STEP 1: For states that satisfy α(xi +
X
2
) ≥ δ2(xi +X), i = 1, 2, the

statement is proved as in the proof of Proposition 3 that follows.

These states displayed in Figure 8.
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STEP 2: If x2 ≥ α(x2 + X
2
) and α(x1 + X

2
) < δ2(x1 + X) player 2

concedes X and player 1 concedes nothing.

For player 2 arbitration is dominated by conceding X since x2 ≥
α(x2+ X

2
). If player 2 concedes

∼
C2 such that x1+

∼
C2= δ(x1+X) she gets

a payoff of δ(x2 + X−
∼
C2) < x2 since x2 ≥ δ

1+δ
. If she concedes nothing

(or make a concession C2 such that the new bargaining state belongs to

the same set), she will get, at most, δ2(x2+
∼
C1) and x2 > δ2(x2+

∼
C1).

Thus, player 2 concedes X.

For player 1 conceding 0 dominates any other concession 0 < C1 ≤ X

since player 2 will concede at her turn the rest of the pie, and player 1

will get δ(x1 + X) > x1. To propose arbitration is also a dominated

alternative since δ(x1 + X) > δ2(x1 + X) > α(x1 + X
2
).

STEP 3: If x2 ≥ δ
1+δ

, x2 < α(x2 + X
2
) and α(x1 + X

2
) < δ2(x1 + X)

player 2 concedes X and player 1 concedes nothing.

If player 2 concedes C2, 0 ≤ C2 < X, the game continues. If C2 is

such that, at the new bargaining state, player 1 concedes nothing player 2

gets a final payoff of δ2x2 < x2. If C2 is such that, at the new bargaining

state, the maximal concession she can expect from her opponent is C¦
1 ,

player 2 gets at most δ2(x2 + C¦
1) < x2, or equivalently x2 > δ2α

2−α−αδ2 X

(x2 ≥ δ
1+δ

> δ2α
2−α−αδ2

1
(1+δ)

since α
2

< δ
1+δ

and δ2α
2−α−αδ2

1
(1+δ)

≥ δ2α
2−α−αδ2 X
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since X ≤ 1
1+δ

). Thus, for player 2 conceding X dominates any other

concession. On the other hand, 2 does not propose arbitration because

player 1 will reject it since rejection gives player 1 at least δ2(x1 + X) >

α(x1 + X
2
).

For player 1, to concede nothing dominates arbitration since δ(x1 +

X) > δ2(x1 + X) > α(x1 + X
2
); and any concession 0 < C1 ≤ X is

dominated as well since δ(x1 + X) > δ(x1 + X − C1).

Steps 2 and 3 are summarized in Figure 9.
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STEP 4: If xi < δ
1+δ

i = 1, 2, x1 ≤ 2δ2−α
α(1+δ)

and x2 > 2δ2−α
α(1+δ)

player 1

concedes C∗
1 such that x2 + C∗

1 = δ
1+δ

and player 2 makes a concession

C2 = Max {C∗
2 , C

¦
2} where x1 + C∗

2 = δ
1+δ

and x1 + C¦
2 = α(x1 +

X+C¦2
2

).

This set corresponds to set 1 in Figure 9. If player 1 concedes C∗
1 the

opponent concedes the rest of the pie in the next turn, and she gets a

final payoff of δ
1+δ

. To propose arbitration is dominated by conceding C∗
1

since α(x1 + X
2
) < α

2
< δ

1+δ
. Clearly to make a concession C1 > C∗

1 too.

Suppose now that player 1 concedes C1 < C∗
1 . At the new bargaining

state the opponent may optimally:

(i) call the arbitrator and player 1 would get a final payoff of αδ(x1 +

X−C1

2
) < δ

1+δ
.

(ii) concede at most C∗
2 and player’s 1 final payoff is δ3

1+δ
< δ

1+δ
.

(iii) concede at most C¦
2 and player 1 gets at most δ2(x1 +C¦

2) < δ
1+δ

.

Then, the best alternative for player 1 is to concede C∗
1 .

In order to prove that player 2 concedes C2 = Max {C∗
2 , C

¦
2} we use

the same argument as in step 5 of proposition 3.

STEP 5: If xi < δ
1+δ

xi > 2δ2−α
α(1+δ)

i = 1, 2 and α(x1+ X
2
) < δ2(x1+X)

both players concede Ci = Max {C∗
i , C

¦
i } with C∗

i defined as xj + C∗
i =

δ
1+δ

and C¦
i defined as xj + C¦

i = α(xj +
X+C¦i

2
).

This set corresponds to set 2 in Figure 9. We use here the same

argument as the one used in step 5 proposition 3 to prove that player 2
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concedes C2 = Max [C∗
2 , C

¦
2 ].

STEP 6: If xi < δ
1+δ

and xi ≤ 2δ2−α
α(1+δ)

i = 1, 2 then both players

concede C∗
i defined as xj + C∗

i = δ
1+δ

.

This set corresponds to set 3 in Figure 9. We use here the same

argument as in step 4 to prove that player i concedes C∗
i .

Proof of Proposition 3.

STEP 1: For states such that xi ≥ δ(xi + X) for at least one player

the proof follows as in Steps 1 and 2 of the proof of Proposition 2 (i).

STEP 2: For states such that xi < δ(xi + X) for i = 1, 2, x2 ≥ δ
1+δ

and x2 ≥ α(x2 + X2) the proof follows as in step 3 of the proof of

Proposition 2 (i).

STEP 3: For states such that xi < δ(xi + X) for i = 1, 2, x2 ≥ δ
1+δ

and x2 < α(x2+X2) player 2 proposes arbitration and player 1 concedes

C¦
1 such that x2 + C¦

1 = α(x2 +
X+C¦1

2
).

If x2 < α(x2 + X
2
) conceding X is a dominated strategy for player 2

if the proposal of arbitration cannot be vetoed by her opponent. Player

1 cannot reject this proposal since if she does she will get, at most, a

payoff of δ2(x1+X) < α(x1+ X
2
) since α ≥ Max

{
2δ2, 2δ

1+2δ

}
. To propose

arbitration also dominates to make any other concession 0 ≤ C2 < X.

Consider now player 1. If she makes a concession C¦
1 such that x2 +

C¦
1 = α(x2 +

X+C¦1
2

), at the new bargaining state player 2 optimally

concedes the rest of the pie (by step 2). To make a concession C1 > C¦
1

is clearly dominated. If she concedes C1, 0 ≤ C1 < C¦
1 , the new state is

such that xi < δ(xi + X) for i = 1, 2, x2 ≥ δ
1+δ

and x2 < α(x2 + X2),

at which player 2 (optimally) proposes arbitration. Thus, if player 1

concedes 0 ≤ C1 < C¦
1 she gets at most αδ(x1 + X−C1

2
) < α(x1 + X

2
).

And finally, to propose arbitration is dominated by conceding C¦
1 since

α(x1 + X
2
) ≤ α(α(1+δ)−δ

α(1+δ)
) < 2δ(1−α)

2−α
≤ δ(x1 +X−C¦

1) given that 11 + δ ≥
2(1− α)2− α. Thus, proposing C¦

1 dominates the other alternatives.
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To characterize optimal actions for states such that xi < δ
1+δ

for

i = 1, 2 it is convenient to consider the following partition into subsets

L1,L
+
2 , its symmetric L−2 and L3 defined as follows:

L1 =

{
(x1, x2, X)suchthatxi <

δ

1 + δ
,xi ≥ 1− δ(2− α)

α(1 + δ)
i = 1, 2

}

L+
2 =

{
(x1, x2, X)suchthatxi <

δ

1 + δ
i = 1, 2andx2 − x1 ≥ 2δ

α(1 + δ)
− 1

}

L−2 =

{
(x1, x2, X)suchthatxi <

δ

1 + δ
i = 1, 2andx2 − x1 ≤ 1− 2δ

α(1 + δ)

}

L3 =

{
(x1, x2, X) /∈ L1,L

+
2 ,L−2 andxi <

δ

1 + δ
i = 1, 2

}
.

Figure 10 displays L1,L
+
2 , L−2 and L3:
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STEP 4: If (x1, x2, X) ∈ L1 player 2 concedes C∗
2 such that x1+C∗

2 =

δ
1+δ

and player 1 concedes C∗
1 such that x2 + C∗

1 = δ
1+δ

.

If 2 concedes C∗
2 she gets a payoff of δ

1+δ
because player 1, at her turn,

will concede the rest, X −C∗
2 . Any another C2 6= C∗

2 is dominated. The

case C2 > C∗
2 is clear, while if C2 < C∗

2 player 2 cannot expect more than

δ3

1+δ
< δ

1+δ
. Finally, C∗

2 dominates arbitration since α(x2 + X2) ≤ δ
1+δ

.

By the same argument we prove that 1 concedes C∗
1 .

STEP 5: If (x1, x2, X) ∈ L+
2 player 2 proposes arbitration and player

1 concedes C¦
1 such that x2 + C¦

1 = α(x2 +
X+C¦1

2
).

Take player 2 and consider in turn states such as e and f in Figure

11.
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Let the state be e. If 2 concedes C∗
2 she gets δ

1+δ
. To concede more

than C∗
2 is clearly dominated. To concede less than C∗

2 is also dominated:

A concession C2 < C∗
2 leads to a new state in L1, L3 or still in L+

2 . If the
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new state lies in L1 player 2 can get at most δ3

1+δ
, if it lies in L3 or L+

2 the

concession of player 1 is at most C¦
1 such that x2 + C¦

1 = α(x2 +
X+C¦1

2
),

and 2 gets at most δ2(x2 + C¦
1). Hence, arbitration dominates any other

alternative since δ2(x2 + C¦
1) ≤ δ3

1+δ
< δ

1+δ
≤ α(x2 + X2). Player 1 must

accept arbitration since α(x1 + X
2
) > δ2(x1 + X) > δ2(x1 + X − C¦

1)

and α(x1 + X
2
) > δx1. Consider now states such as f. If 2 concedes

C¦
2 she gets a payoff δ(x2 + X − C¦

2). To concede more than C¦
2 is

dominated. If she concedes C2 < C¦
2 , the new bargaining state lies

in L3 or L−2 . If it lies in L3, player 2 can expect at most δ3

1+δ
since

δ2(x2 + C¦
1) < δ3

1+δ
and δ3

1+δ
< δ(x2 + X − C¦

2). At the same time,

to concede C¦
2 is dominated by arbitration since δ(x2 + X − C¦

2) <

δ(x2 + X − C∗
2) = δ

1+δ
≤ α(x2 + X2). If the new state lies in L−2 player

2 cannot expect more than αδ(x2 + X−C2

2
) < α(x2 + X

2
).

Let us now see that player 1 must concede C¦
1 . Note first that arbitra-

tion is dominated since α(x1 + X2) ≤ δ
1+δ

≤ δ(x1 + X −C¦
1). Moreover,

while conceding C1 > C¦
1 is obviously dominated, a concession C1 < C¦

1

leads the game to a state where player 2 proposes arbitration and player

1 accepts. Since this alternative pays δα(x1 +X − C12) < α(x1 +X2) ≤
δ

1+δ
≤ δ(x1 + X − C¦

1), player 1 must concede C¦
1 .

STEP 6: If (x1, x2, X) ∈ L3 player 1 concedes C1 = Max {C∗
1 , C

¦
1}

and player 2 concedes C2 = Max {C∗
2 , C

¦
2} where xj + C∗

i = δ
1+δ

and

xj + C¦
i = α(xj +

X+C¦i
2

).
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Consider player 1. If C∗
1 ≥ C¦

1 (as in state g in Figure 12) player 1

concedes C∗
1 , getting a final payoff of δ

1+δ
. This alternative dominates

arbitration since α(x1 + X2) ≤ δ
1+δ

. To concede more than C∗
1 is easily

ruled out. To concede less leads to a state in L1 or L3. If the new state

is in L1, then 2 responds conceding C∗
2 and 1 obtains δ3

1+δ
< δ

1+δ
. If the

new state remains in L3, 1 can expect at most δ(x1 + X − C¦
2) ≤ δ2α

2−α
(
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C¦
2 is at most α

2−α
). But δ2α

2−α
< 2δ(1− α)2− α < δ1 + δ.18

If C∗
1 < C¦

1 (as in state h in Figure 12) player 1 concedes C¦
1 , and

obtains δ(x1 + X − C¦
1). Arbitration is dominated since α(x1 + X2) <

δ(x1 + X − C¦
1). To concede more than C¦

1 is dominated. And to con-

cede less that C¦
1 is dominated as well since the new state is either in

L+
2 or in L3. If the new state is in L+

2 player 2 calls the arbitrator at

her turn. If the new state remains in L3, the greatest concession that

1 can expect from 2 is C2 = Max {C∗
2 , C

¦
2}, and this pays at most

Max {δ31 + δ, δ2α2− α} ≤ 2δ(1− α)2− α ≤ δ(x1 + X − C¦
1).

Observe now that 2 faces the same situation as player 1; then, for

player 2 to concede C2 = Max {C∗
2 , C

¦
2} dominates all the other alter-

natives.

We have exhausted all possible bargaining states for (α, δ) ∈ I.

Proof of Proposition 4

Consider (α, δ) ∈ Q1. Unless the state is in L3, the optimal action

for parameters Q1 are the same as the optimal actions for I.

STEP 1: If (x1, x2, X) ∈ L3 player i concedes Ci = Max
{
C♦

i , C∗
i

}

if δ(xi + X − Ci) ≥ α(xi + X
2
). Otherwise she proposes arbitration.

Consider player 1. As in step 6 of proposition 3 if player 1 considers to

make a concession that must be C1 = Max
{
C♦

1 , C∗
1

}
. This alternative

dominates to propose arbitration if δ(x1+X−C1) ≥ α(x1+
X
2
). If δ(x1+

X −C1) < α(x1 + X
2
) player 1 proposes arbitration and player 2 accepts

this proposal. Accepting pays α(x2 + X
2
) > Max {δ2(x2 + X), δx2} since

α ≥ 2δ2 and α > δ.

Let us now consider when (α, δ) ∈ Q2.

STEP 1: If xi ≥ α(xi + X2) for i = 1, 2 both players concede X.

Arbitration is clearly dominated for both players. To concede 0 ≤
18Since α

2 < 2δ(1−α)
2−α and δ < α, then α ≤ 2

3 . That means that α
2−α < 2(1−α)

2−α and
δ2α
2−α < 2δ(1− α)2− α .
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Ci < X is dominated as well, since xi ≥ α(xi + X2) > δ(xi + X) >

δ(xi + X − Ci).

STEP 2: If α(xi +
X
2
) ≥ δ(xi +X) for i = 1, 2, x2 ≥ α(x2 +X2) and

x1 < α(x1 +X2) player 2 concedes X and player 1 proposes arbitration.

The optimal strategy of player 2 is to concede X as in Step 1. Player

1 prefers to propose arbitration rather than conceding C1, 0 ≤ C1 ≤ X

since α(x1 + X2) > x1 ≥ δ(x1 + X) > δ(x1 + X −C1). Player 2 accepts

the arbitration proposal since if she rejects, at her turn, she concedes X

getting a payoff of δx2 < α(x2 + X2) since α > δ.

STEP 3: If α(xi +
X
2
) ≥ δ(xi +X), xi < α(xi +X2) for i = 1, 2,both

players propose arbitration.

Consider player 2. To propose arbitration dominates to concede C2,

0 ≤ C2 ≤ X since α(x2 + X2) > x2 and α(x2 + X2) ≥ δ(x2 + X) >

δ(x2+X−C2). Player 1 accepts this proposal, since if she rejects she will

get at most max [δx1, δ
2(x1 + X)] < α(x1 + X2). The same argument

applies for player 1.

Next figure shows steps 1,2 and 3 of proposition 4 (ii).
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STEP 4: If x2 ≥ α(x2 + X2), x1 < α(x1 + X2), α(x2 + X2) ≥
δ(x2 +X) and α(x1 +X2) < δ(x1 +X) player 2 concedes X and player

1 concedes nothing.

Player 2 concedes X since dominates to propose arbitration (x2 ≥
α(x2 + X2)) and conceding C2,0 ≤ C2 < X (x2 ≥ α(x2 + X2) ≥ δ(x2 +

X) > δ(x2 + X − C2). Player 1 concedes nothing since her opponent

concedes the rest of the pie next period and she gets a payoff of δ(x1 +

X )̇ > α(x1 + X2) > x1 and δ(x1 + X) > δ(x1 + X − C1).

STEP 5: If xi < α(x2 + X2) for i=1,2, α(x2 + X2) ≥ δ(x2 + X)

and α(x1 + X2) < δ(x1 + X) player 2 proposes arbitration and player

1 concedes C¦
1 such that x2 + C¦

1 = α(x2 +
X+C¦1

2
) if δ(x1 + X − C¦

1) ≥
α(x1 + X2) and proposes arbitration if δ(x1 + X − C¦

1) < α(x1 + X2).
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Consider player 2. she proposes arbitration since this alternative

dominates conceding C2, 0 ≤ C2 ≤ X since α(x2 + X2) > x2 and

α(x2 + X2) ≥ δ(x2 + X) > δ(x2 + X − C2). Player 1 accepts this

proposal since α(x1 + X2) > Max {δ2(x1 + X), δx1}.
Now consider player 1. Player 1 will not concede X since it is dom-

inated by proposing arbitration. If player 1 proposes arbitration player

2 accepts since α(x2 + X2) > max [δx2, δ
2(x2 + X)]. She can also make

a concession C¦
1 defined as x2 + C¦

1 = α(x2 +
X+C¦1

2
) such that player 2

will concede the rest of the pie next period. She will not concede more

or less than this amount. Obviously, to concede more than C¦
1 is a dom-

inated strategy. And to make a concession C1 < C¦
1 too since, at the

new bargaining state, player 2 will optimally propose arbitration. Thus

player 1 optimally concedes C¦
1 if α(x1 + X2) < δ(x1 + X − C¦

1) and

optimally proposes arbitration if α(x1 + X2) ≥ δ(x1 + X − C¦
1).

STEP 6: If xi < α(x2+X2) and α(xi+X2) < δ(xi+X) for i = 1, 2.

player i makes a concession C¦
i defined as xj + C¦

i = α(xj +
X+C¦i

2
) if

δ(xi+X−C¦
i ) ≥ α(xi+X2) and proposes arbitration if δ(xi+X−C¦

i ) ≥
α(xi + X2).

To prove this step we apply the same argument as the one applied

to player 1 in step 5.

And finally we will prove the optimal actions when (α, δ) ∈ Q3.

The graphical representation for Q3 is displayed in Figure 14.

dtbpFU354.625pt245pt0ptFigure 14Figure

We will not prove the optimal actions of both players for bargaining

states satisfying α(xi + X
2
) ≥ δ2(xi + X) for i = 1, 2 since the proof

is identical than for Q2. Without loss of generality we will prove the

optimal actions for the bargaining sets that satisfy α(x1 + X
2
) < δ2(x1 +

X).

STEP 1: If x2 ≥ α(x2 + X2) and α(x2 + X
2
) ≥ δ2(x2 + X) player 2

concedes X and player 1 concedes nothing.
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For player 2 conceding X dominates arbitration and conceding C2,

0 ≤ C2 < X since x2 ≥ α(x2+X2) and x2 ≥ δ(x2+X) > δ(x2+X−C2).

Player 1 concedes nothing since she gets δ(x1+X) > x1 and δ(x1+X) >

α(x1 + X
2
).

STEP 2: If x2 < α(x2 + X2) and α(x2 + X
2
) ≥ δ2(x2 + X) player

2 proposes arbitration and player 1 concedes C¦
1 such that x2 + C¦

1 =

α(x2 +
X+C¦1

2
) if δ(x1 + X −C¦

1) ≥ α(x1 + X2) and proposes arbitration

if δ(x1 + X − C¦
1) ≥ α(x1 + X2).

In order to prove this assertion suppose player 2 concedes C2 < X.

she knows that some concessions lead the game to bargaining states

where player 1 optimally proposes arbitration and others concessions

lead the game to bargaining states where player 1 concede C¦
1 . Thus, if

she considers conceding, she gets either δα(x2 + X−C2

2
) or δ2(x2 + C¦

1).

But proposing arbitration dominates to conceding since α(x2 + X
2
) ≥

δα(x2+ X−C2

2
), then α(x2+ X

2
) ≥ δ2(x2+C¦

1) and α(x2+ X
2
) > x2. Player

1 accepts this proposal since α(x1 +X2) > Max [δ2(x1 + X − C¦
1), δx1] .

Now consider player 1. Player 1 will not concede X since it is dom-

inated by proposing arbitration. If player 1 proposes arbitration player

2 accepts since α(x2 + X2) > max
[
δx2, δ

2(x2 + X − C♦
2 )

]
. She can also

make a concession such that player 2 will concede the rest of the pie next

period, that is, C¦
1 defined as x2 +C¦

1 = α(x2 +
X+C¦1

2
). She will not con-

cede more or less than this amount. Obviously, to concede more than C¦
1

is a dominated strategy. And to make a concession C1 < C¦
1 too since,

at the new bargaining state, player 2 will optimally propose arbitration.

Thus player 1 optimally concedes C¦
1 if α(x1 + X2) < δ(x1 + X − C¦

1)

and optimally proposes arbitration if α(x1 + X2) ≥ δ(x1 + X − C¦
1).

STEP 3: If α(x2 + X
2
) < δ2(x2 + X) player i concedes C¦

i if δ(x1 +

X − C¦
i ) ≥ α(xi + X2) and proposes arbitration if δ(xi + X − C¦

i ) ≥
α(xi + X2).

The proof of this step is straight forward using the same argument
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as the one applied to prove the optimal action of player 1 in step 2

Proof of Proposition 6

Define as Pl = {(x1, x2, X)suchthatX = l}. We use the method of

induction to prove proposition 1. First, we prove that these strategies

are optimal for Pl with l ≤ 4. We assume that are optimal for Pl such

that l < n and prove that are optimal for Pn. Without loss of generality

we consider i = 1 and j = 2.

(i) For (x1, x2, X) ∈ P1, P2 player 1 proposes (x1, x2 + 1) and (x1 +

1, x2+1) respectively and player 2 accepts. The proof is straight forward.

(ii) Take now any bargaining state that belongs to P3. The equilib-

rium strategies of players are:

state i demand j response

xj ≥ Z1 − 1 xi + 2 A

xi ≤ xj < Z1 − 1 xi + 1 A

xj < xi < Z1 − 1 xi + 1 A

xi ≥ Z1 − 1 xi + 1 A

STEP 1: If x2 ≥ Z1− 1 player 1 proposes (x1 +2, x2 +1) and player

2 accepts.

Suppose that player 2 rejects player’s 1 offer. The new bargaining

state belongs to P2 and player 2 offers (x1 + 2,x2 + 1) and player 1

accepts. Player 2 gets a payoff of δ(x2 + 2) < x2 + 1 since x2 ≥ Z1 − 1.

Clearly, player 1 will not make a different offer since is the best offer she

can make.

STEP 2. If x1 ≤ x2 < Z1 − 1 player 1 proposes (x1 + 1, x2 + 2) and

player 2 accepts.

Player’s 2 optimal response is clear since if he rejects he will have to

make the same proposal, (x1 + 1, x2 + 2) to avoid arbitration.

Suppose player 1 proposes (x1 +2, x2 +1). Player 2 optimally rejects

this offer and at the new bargaining state that belongs to P2 he proposes
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(x1 + 1, x2 + 2) which will be accepted by player 1. Player 2 gets δ(x2 +

2) > x2 +1 since x2 + 1 < Z1. Then, if player 1 proposes (x1 +2, x2 +1)

she gets δ(x1 + 1) < x1 + 1.

STEP 3. If x2 < x1 < Z1 − 1 player 1 proposes (x1 + 1, x2 + 2) and

player 2 accepts.

Here the situation is identical to 2).

STEP 4. If x1 ≥ Z1−1 player 1 proposes (x1 +1, x2 +2) and player

2 accepts .

Player 2 accepts (x1 +1, x2 +2) for the same reason as in 2). If player

1 offers (x1 + 2, x2 + 1), player 2 will optimally reject it and propose, at

next turn, (x1 + 1, x2 + 2) which will be accepted by player 1. Player 1

gets δ(x1 + X) < x1 + 1.

We have exhausted all the bargaining states (x1, x2, X) that belong

to P3.

(iii) Consider now all the bargaining states belonging to P4. The

equilibrium strategies are:

bargaining state i demands j response

xj ≥ Z1 − 1 xi + 3 A

xi ≤ xj < Z1 − 1 and δ(xi + 2) ≤ N − Z1 N − Z1 A

xi ≤ xj < Z1 − 1 and δ(xi + 2) > N − Z1 xi + 3 R

xj < xi < Z1 − 1 xi + 3 R

xi ≥ Z1 − 1 xi + 1 A

STEP 1: If x2 ≥ Z1−1 player 1 proposes (x1 +3, x2 +1) and player

2 accepts.

Suppose player 2 rejects this offer. A rejection leads the game to a

new bargaining state that belongs to P3 with x2 + 1 > Z1 − 1. Thus, if

player 2 rejects he gets δ(x2 + 2) < x2 + 1 since x2 + 1 ≥ Z1.

Player 1 will not make a different proposal since this is the best she

can get.
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STEP 2: If (x1, x2, X) ∈ P4, x1 ≤ x2 < Z1−1 and N−Z1 > δ(x1+2)

player 1 proposes (N − Z1, Z1) and player 2 accepts.

If player 2 rejects the offer, the new bargaining state may belong to

P1, P2 or P3 with x2 > Z1 − 1. If it belongs to P2 or P3 player 2 gets

a payoff of δ(Z1 + 1) ≤ Z1. If the new bargaining state belongs to P1

player 2 gets δZ1 < Z1.

Now consider the alternatives to player 1. If N − Z1 > δ(x1 + 2)

and x1 < Z1 − 1, then either N − Z1 = x1 + 3 or N − Z1 = x1 + 2. If

N − Z1 = x1 + 3 player 1 will not consider to make a different proposal

since this is the best share she can get. And if N − Z1 = x1 + 2 and

player 1 proposes (x1 + 3, x2 + 1), player 2 will optimally reject. The

new bargaining state belongs to P3 with x1 < x2 + 1 < Z1 and player 1

will get a final payoff of δ(x1 + 2) < x1 + 2 = N − Z1.

STEP 3: If x1 ≤ x2 < Z1 − 1 and N − Z1 < δ(x1 + 2) player 1

proposes (x1 + 3, x2 + 1) and player 2 rejects.

First, we will prove that player 2 will optimally reject this pro-

posal. By rejecting player’s 1 offer, the game reaches the bargaining

state belonging to P3 with x2 + 1 < Z1. Player 2 will optimally propose

(x1 + 2, x2 + 2) and player 1 will accept it. Then, by rejecting, player

2 gets δ(x2 + 2) > x2 + 1 since x2 + 1 < Z1. Player 1 gets a payoff of

δ(x1 + 2).

If N − Z1 < δ(x1 + 2) and x1 ≤ x2 < Z1 − 1 then N − Z1 = x1 + 1.

If player 1 proposes (x1 + 1, x2 + 3) player 2 accepts and player 1 gets

x1+1 < δ(x1+2). If player 1 proposes (x1+2, x2+2), player 2 optimally

rejects and propose and his turn (x1 + 1, x2 + 3) which will be accepted

by player 1. Player’s 1 final payoff will be δ(x1 + 1) < δ(x2 + 2).

STEP 4: If x2 < x1 < Z1 − 1 player 1 proposes (x1 + 3, x2 + 1) and

player 2 rejects.

Player 2 rejects player’s 1 offer (x1 + 3, x2 + 1) and, at the new

bargaining state that belongs to P3 with x2 + 1 ≤ Z1 − 1, he proposes
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(x1+2, x2+2) which player 1 accepts. He gets a payoff of δ(x2+2) > x2+1

since x2 + 1 < Z1.

By proposing (x1 + 3, x2 + 1) player 1 gets δ(x1 + 2). Instead if she

proposes (x1 + 1, x2 + 3) player 2 will accept and player 1 final payoff is

x1 + 1 < δ(x1 + 2). And if she proposes (x1 + 2, x2 + 2), player 2 rejects,

the new bargaining state belongs to P2 and player 1 gets a final payoff

of δ(x1 + 1) < δ(x1 + 2).

STEP 5: If x1 ≥ Z1−1 player 1 proposes (x1 +1, x2 +3) and player

2 accepts.

Player 2 accepts (x1 + 1, x2 + 3) since x2 + 3 is the best share he can

get. If player 1 either proposes (x1 + 2, x2 + 2) or (x1 + 3, x2 + 1) he will

receive a final payoff of δ(x1 + 1) < x1 + 1.

We have exhausted all the bargaining states (x1, x2, X) ∈ P4

(iv) And finally, assume players follow the strategies specified above

for any bargaining state (x1, x2, X) such that X < n. We will show that

for any bargaining state (x1, x2, X) ∈ Pn, the optimal strategies must be

the proposed ones. Without loss of generality we will prove them for n

even:

Bargaining state i demand j response

xj ≥ Z1 − 1 xi + n− 1 A

xi ≤ xj < Z1 − 1 and δn2−1(xi + n
2
) ≤ N − Z1 N − Z1 A

xi ≤ xj < Z1 − 1 and δn2−1(xi + n
2
) > N − Z1 xi + n− 1 R

xj < xi < Z1 − 1 xi + n− 1 R

xi ≥ Z1 − 1 xi + 1 A

STEP 1: If x2 ≥ Z1 − 1 player 1 proposes (x1 + n − 1, x2 + 1) and

player 2 accepts.

If player 1 proposes (x1 + n − 1, x2 + 1) player 2 accepts since if he

rejects this offer, at the new bargaining state that belongs to Pn−1 with

x2 + 1 > Z1 − 1, he optimally proposes (x1 + n− 2, x2 + 2) and player 1
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accepts. He gets a payoff of δ(x2 + 2) ≤ x2 + 1 since x2 + 1 ≥ Z1
19.

If player 1 makes a different proposal she will get a smaller payoff

since x1 + n− 1 is the best share she can get.

STEP 2: If x1 ≤ x2 < Z1 − 1, and δ
n
2
−1(x1 + n

2
) > N − Z1 player 1

proposes (x1 + n− 1, x2 + 1) and player 2 rejects.

If player 2 rejects, then the game reaches the bargaining state, (x1, x2+

1, n−1) ∈ Pn−1 with x2+1 ≤ Z1−1 and n−1 odd. From this bargaining

state on players follow the specified strategies. The next table resumes

the path of the game after player´s 2 rejection.

for i = 0, 1, 2, 3...

At, t+2i+1, (x1, x2, X) ∈ Pn−1−4i and δ
n−4i−2

2
−1(x2+2i+1+n−4i−2

2
) >

N − Z1 since x2 > x1.

state x1 + 2i < x2 + 2i + 1 < Z1 − 1 x2 + 2i + 1 = Z1 − 1

2 proposes (x1 + 2i + 2, x2 + n− 2i− 2) (x1 + n− 2i− 2, x2 + 2i + 2)

1 responds R A

At t+2i+2 (x1, x2, X) ∈ Pn−3−4i and δ
n−4i−4

2
−1.(x1+2i+2+ n−4i−4

2
) >

δ
n
2
−1.(x1 + n

2
) > N − Z1.

state x1 + 2i + 2 < x2 + 2i + 1 < Z1 − 1 x1 + 2i + 2 = Z1 − 1

1 proposes (x1 + n− 2i− 3, x2 + 2i + 3) (x1 + 2i + 3, x2 + n− 2i− 3)

2 responds
Aifx2 + 2i + 3 = Z1

Rifx2 + 2i + 3 < Z1

A

At (x1 + n
2
− 1, x2 + n

2
− 2, 3) player 1 proposes ((x1 + n

2
, x2 + n

2
) and

player 2 accepts.

If the game ends at some time where player 2 is the proposer, then

his final payoff is δ2i+1(x2+2i+2) and δ2i+1(x2+2i+2) > δ2i(x2+2i+1)

19It could be that δ(x2+2) = x2+1 if x2+1 = Z1 and Z1 is such that Z1 = δ(Z1+1).

In this case, player 2 will be indifferent between accepting or rejecting the proposal

of player 1. We assume that he accepts.
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since x2 + 2i + 1 < Z1. Thus, player 2 optimally rejects the initial offer

(x1 + n− 1, x2 + 1).

If the game ends at some t where player 1 is the proposer, then

player’s 2 final payoff is either δ2i+2(x2 +2i+3) or δ2i+2(x2 +n−2i−3).

In both cases, player 2 gets a higher payoff rejecting the initial offer

rather than accepting it since x2 + 1 < Z1 and either x2 + 2i + 3 = Z1

or x2 + n− 2i− 3 = N − Z1.

Suppose now that player 1 makes a different proposal (x1+n−k, x2+

k), with n and k ≥ 1 even. If x2 + k ≥ Z1 player 2 accepts this proposal

and player 1 would get a payoff of x1 + n− k < N −Z1 < δ
n
2
−1(x1 + n

2
).

If x2 +k < Z1, then player 2 rejects this offer and the continuation game

is as follows:

At t+1 (x1, x2 + k, n− k)

state x1 < x2 + k < Z1 − 1 x2 + k = Z1 − 1

2 proposes (x1 + 1, x2 + n− 1) (x1 + n− k − 1, x2 + k + 1)

1 responds R A

At t+2 (x1 + 1, x2 + k, n− k − 1) and x1 + 1 < x2 + k < Z1 − 1

state δ
n−k−2

2
−1(x1 + 1 + n−k−2

2
) > N − Z1 δ

n−k−2
2

−1(x1 + 1 + n−k−2
2

) ≤ N − Z1

1 proposes (x1 + n− k − 2, x2 + k + 2) (N − Z1, Z1)

2 responds
Aifx2 + k + 2 = Z1

Rifx2 + k + 2 < Z1

A

At t+3 (x1 + 1, x2 + k + 2, n− k − 3)

state x1 + 1 < x2 + k + 2 < Z1 − 1 x2 + k + 2 = Z1 − 1

2 proposes (x1 + 3, x2 + n− 3) (x1 + n− k − 3, x2 + k + 3)

1 responds R A

At t+4 (x1 + 3, x2 + k + 2, n− k − 5), x1 + 3 < x2 + k + 2 < Z1 − 1

and

δ
n−k−6

2 (x1 + 3 + n−k−6
2

) > δ
n−k−2

2
−1(x1 + 1 + n−k−2

2
) > N − Z1.
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1 proposes (x1 + n− k − 4, x2 + k + 4)

2 responds
Aifx2 + k + 4 = Z1

Rifx2 + k + 4 < Z1

At t+5 (x1 + 3, x + k + 4, n− k − 7)

state x1 + 3 < x2 + k + 4 < Z1 − 1 x2 + k + 4 = Z1 − 1

2 proposes (x1 + 5, x2 + n− k − 5) (x1 + n− k + 5, x2 + k + 5)

1 responds R A

.......

At (x1 + n−k
2
−2, x2 +k−1+ n−k

2
, 3) player 2 proposes (x1 + n−k

2
, x2 +

k + n−k
2

) and player 1 accepts.

In all the cases player 1 gets a payoff smaller than δ
n
2
−1(x1 + n

2
) since

δ
n
2
−1(x1 + n

2
) > N − Z1 and δ

n
2
−1(x1 + n

2
) > δ

n−k
2
−1(x1 + n−k

2
). Then,

the best proposal player 1 can make is (x1 + n− 1, x2 + 1).

STEP 3: If x1 ≤ x2 < Z1 − 1 and δ
n
2
−1(x1 + n

2
) < N − Z1 player 1

proposes (N − Z1, Z1) and player 2 accepts.

Suppose that player 2 rejects the offer. The game reaches the bar-

gaining state (x1, Z1, n−Z1) with x2 = Z1 and X = n−Z1 < n. Player

2 proposes (x1 + n− Z1 + 1, Z1 + 1) and player 1 accepts. By rejecting

player’s 1 offer player 2 gets δ(Z1 + 1) ≤ Z1.

Consider now player 1. Suppose she offers the opponent Z1 − k. If

player 1 wants to avoid arbitration, Z1−k = x2 + g with g > 0. Assume

that g is even. Player 2 optimally rejects this offer since x2 + g < Z1

and the game reaches the bargaining state (x1, x2 + g, n− g) with x1 <

x2 + g < Z1 − 1, and δ
n−g−2

2
−1(x1 + 1 + n−g−2

2
) ≶ N −Z1. Following the

path after player 2 rejection, we can compute the final payoff of player 1

as in step 2. This will be either δr(N−Z1) with r ≥ 2 or δ
n−g

2
−1(x1+

n−g
2

)

both smaller than N − Z1.
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STEP 4: If x2 < x1 < Z1 − 1 player 1 proposes (x1 + n− 1, x2 + 1)

and player 2 rejects this proposal.

First we will prove that for player 2 it is optimal to reject the proposal

of player 1. After rejection, the bargaining state is (x1, x2 + 1, n − 1)

with x2 + 1 ≤ x1 < Z1 − 1 and either δ
n
2
−1(x2 + 1 + n−2

2
) ≤ N − Z1 or

δ
n
2
−1(x2 +1+ n−2

2
) > N−Z1. If δ

n−2
2 (x2 +1+ n−2

2
) ≤ N−Z1 he proposes

(Z1, N −Z1) and player 1 accepts. His final payoff is δ(N −Z1) > x2 +1

since x2+1 < Z1−1 and N−Z1 ≥ x2+2. However, if δ
n−2

2 (x2+1+n−2
2

) >

N −Z1, he proposes (x1 +2, x2 +n−2) and the game follow a path such

that player 2 will receive a payoff of δ
n
2 (x2 + n

2
). To reject is better than

to accept player’s 1 proposal since x2 + 1 < δ
n
2 (x2 + n

2
).

Now consider player’s 1 strategy and assume that δ
n
2
−1(x2+1+n−2

2
) ≤

N −Z1. If she proposes (x1 + n− 1, x2 + 1) she gets δZ1. If she makes a

different proposal, say (x1+n−k, x2+k), player 2 accepts if x2+k ≥ Z1.

In that case, player 1 gets x1 + n− k ≤ N − Z1 < δZ1. Player 2 rejects

if x2 +k < Z1. At the new bargaining state (x1, x2 +k, n−k) with n−k

even players follow the specified strategies.

1) If x2 + k ≤ x1 < Z1− 1 and δ
n−k

2
−1(x2 + k + n−k

2
) ≤ N −Z1 player

2 proposes, at his turn, (Z1, N − Z1) and player 1 accepts it. Player 1

gets δZ1.

2) If x2 + k ≤ x1 < Z1 − 1 and δ
n−k

2
−1.(x2 + k + n−k

2
) > N − Z1,

player 2 proposes (x1 + 1, x2 + n− 1) and player 1 rejects. Player 1 will

receive a payoff of δr(Z1) with r ≥ 2 or δ
n−k

2
−1(x1 + n−k

2
), both smaller

than δZ1.

3) If x1 < x2 + k < Z1 − 1. Since n − k is even player 2 proposes

(x1+1, x2+n−1) and player 1 rejects. At (x1+1, x2+k, n−k−1) player

1 proposes (N −Z1, Z1) and player 2 accepts if x1 +1 ≤ x2 + k < Z1− 1

and δ
n−k−2

2
−1(x1 +1+ n−k−2

2
) < N−Z1. Player 1 will get a final payoff of

δ2(N−Z1) < δZ1. Player 1 proposes (x1+n−k−2, x2+k+2) if x1+1 ≤
x2 + k < Z1 − 1 and δ

n−k−2
2

−1(x1 + 1 + n−k−2
2

) > N − Z1 and player 2
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rejects. Following the path of the game after the rejection of his proposal

by player 2, player´s 1 final payoff will be δ
n−k−2

2
+1(x1+1+ n−k−2

2
) < δZ1.

Now assume that δ
n
2
−1(x2 +1+ n−2

2
) > N −Z1 and suppose player 1

proposes (x1+n−k, x2+k) with k > 1. If x2+k ≥ Z1 player 2 accepts and

player 1 will get payoff of x1+n−k < N−Z1 < δ
n
2 (x1+

n
2
). If x2+k < Z1

player 2 rejects and the new bargaining state is (x1, x2 + k, n− k) with

x1 ≷ x2 + k. Then, if:

1) x2 + k ≤ x1 < Z1 − 1, since δ
n−k

2
−1.(x2 + k + n−k

2
) > δ

n−1
2
−1.(x2 +

1 + n−2
2

) > N − Z1, then the game follows a path such that the player’s

1 final payoff will be δ
n−k

2 (x1 + n−k
2

) < δ
n
2 (x1 + n

2
).

2) x1 < x2 + k < Z1 − 1 player 2 proposes (x1 + 1, x2 + n − 1)

and player 1 rejects. At (x1 + 1, x2 + k, n − k − 1) player 1 proposes

(N −Z1, Z1) if δ
n−k−2

2
−1(x1 + 1 + n−k−2

2
) ≤ N −Z1 and player 2 accepts.

Then, the final payoff for player 1 will be δ2(N −Z1) < δ
n
2 (x1 + n

2
). And

if δ
n−k−2

2
−1(x1 + 1 + n−k−2

2
) > N − Z1, player 1 will get a final payoff

δ
n−k

2 (x1 + n−k
2

) < δ
n
2 (x1 + n

2
).

STEP 5: If x1 ≥ Z1 − 1 player 1 proposes (x1 + 1, x2 + n − 1) and

player 2 accepts.

If player 1 proposes (x1 + 1, x2 + n − 1), player 2 obviously accepts

because it is the best share he can get. Suppose player 1 makes a different

proposal (x1 +k, x2 +n−k), with k > 1, and k even. Player 2 will reject

this proposal since x2 +n−k < Z1 and the game reaches the bargaining

state (x1, x2 +n−k, k) with X = k < n and x1 ≥ Z1. At his turn, player

2 proposes (x1 + 1, x2 + n− 1) and his opponent accepts. Player 1 will

get a payoff δ(x1 + 1) < x1 + 1.¥

Proof of proposition 8

For any bargaining state (x1, x2, X) such that X < 6 the optimal

strategies of the players are the same as the specified strategies in propo-

sition 1. Notice that if a player forces arbitration at bargaining states
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(x1, x2, X) ∈ P2, P3 she will get a payoff of δ(xi + 1). But this is a dom-

inated strategy since she can always make an offer asking for one unit

and the opponent will accept this partition without wasting one period.

If (x1, x2, X) ∈ P4, P5 arbitration pays δ(xi + 2). It is easy to check

that arbitration is a dominated alternative for player i at the bargaining

states such that xi ≥ Z1 − 1 and xj ≥ Z1 − 1. And at the bargaining

states satisfying xi ≤ xj < Z1 − 1 or xj < xi < Z1 − 1, arbitration gives

the player, at most, the same payoff as the one she gets if she follows

the strategies specified in table 1.

Assume that δ2(xi + 4) > xi + 1 ∀xi. We will prove the optimal

actions for X = 6, 7. Thereafter we will assume that are optimal for

X < n and we will prove that are optimal for X = n.

(i) Consider any bargaining state (x1, x2, X) ∈ P6. For these bar-

gaining states xi + 5 > va
i = δ(xi + 3), and if xi ≤ xj < Z1 − 1 then

xi + 5 > N − Z1 since xi + 6 = N − xj > N − Z1 + 1.

state i demand j response

xj ≥ Z1 − 1 xi + 5 A

xi ≤ xj < Z1 − 1andN − Z1 ≥ va
i N − Z1 A

xi ≤ xj < Z1 − 1, xi + 5 ≥ N − Z1andN − Z1 < va
i xi + 6 R

xj < xi < Z1 − 1, xj + 5 ≥ N − Z1andδZ1 > va
i xi + 5 R

xj < xi < Z1 − 1, xj + 5 ≥ N − Z1andδZ1 ≤ va
i xi + 6 R

xi ≥ Z1 − 1 xi + 6 R

STEP 1: If x2 ≥ Z1−1 player 1 proposes (x1 +5, x2 +1) and player

2 accepts.

If player 2 rejects player’s 1 proposal, at the new bargaining state

(x1, x2 + 1, 5) player 2 will propose (x1 + 4, x2 + 2) and player 1 will

accept (by proposition 1). Then, a rejection pays δ(x2 + 2) < x2 + 1

since x2 ≥ Z1 − 1. For player 1 this accepted offer is the best deal he

can get.
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STEP 2: If x1 ≤ x2 < Z1 − 1 and N − Z1 ≥ δ(x1 + 3) player 1

proposes (N − Z1, Z1) and player 2 accepts.

If player 2 rejects, at the bargaining state (x1, Z1, N −Z1− x1) with

N −Z1− x1 ≤ 5 she proposes (N −Z1− 1, Z1 + 1) and player 1 accepts

(by proposition 1). But Z1 ≥ δ(Z1 + 1).

For player 1 arbitration is a dominated strategy. Since N − Z1 ≥
δ(x1 + 3) then either:

a) N −Z1 = x1 + 5. Player 1 will not make a different proposal since

this is the best share he can get.

b) N − Z1 = x1 + 4. If player 1 proposes (x1 + 5, x2 + 1) player 2

optimally rejects and at the new bargaining state (x1, x2 + 1, 5) since

x2 + 1 = Z1 − 1 player 2 proposes (N − Z1, Z1) which is accepted by

player 1. Player 1 gets δ(N − Z1) < N − Z1.

c) N − Z1 = x1 + 3. If player 1 proposes either (x1 + 5, x2 + 1) or

(x1 + 4, x2 + 2) player 2 will reject both and player 1 will end up with a

payoff of δ2(N − Z1) and δ(N − Z1) respectively.

STEP 3: If x1 ≤ x2 < Z1−1 and N−Z1 < δ(x1 +3) player 1 forces

arbitration.

If player 1 offers (x1+6, x2) he breaks the negotiation and the arbitra-

tor is called to implement the partition (x1 + 3, x2 + 3) one period later.

Instead, player 1 may propose either (x1 + 3, x2 + 3) or (x1 + 4, x2 + 2)

or (x1 + 5, x2 + 1). In all the cases, if the offered share to player 2 is

Z1 − 1, she will reject the offer and, at her turn, she will ask for Z1.

Player 1 will get δ(N − Z1) < δ(x1 + 3). If the offered share to player 2

is smaller than Z1− 1, she will reject and player 1 will get a final payoff

of δ2(x1 +2) or δ2(x1 +3) (by proposition 1) both smaller than δ(x1 +3).

STEP 4: If x2 < x1 < Z1− 1, x2 + 5 > N −Z1 and δ(x1 + 3) < δZ1

player 1 proposes (x1 + 5, x2 + 1) and player 2 rejects.

If player 2 rejects (x1+5, x2+1), then at the bargaining state (x1, x2+

1, 5) with x2 + 1 ≤ x1 < Z1 − 1 and N − Z1 > δ(x2 + 3) she proposes
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(Z1, N−Z1) and player 1 accepts (proposition 1). Then, by rejecting the

player’s 1 offer she gets δ(N −Z1) > x2 +1, since x2 +1 < N −Z1 < Z1.

By proposing (x1 + 5, x2 + 1), player 1 gets δZ1. Suppose he makes a

different proposal (x1 + n− k, x2 + k). If the offered share is greater or

equal to Z1 player 2 accepts, but player 1 gets x1 +k < N−Z1 < δZ1. If

the offered share is equal to Z1− 1 player 2 rejects and proposes, at her

turn, (N − Z1, Z1) which will be accepted and player 1 will get a final

payoff of δ(N − Z1) < δZ1. If the offered share is smaller than Z1 − 1,

player 2 rejects. We use proposition 1 to find the final payoff of player 1

and check that in all cases these payoffs are smaller than δZ1.

STEP 5: If x2 < x1 < Z1 − 1 and δ(x1 + 3) > δZ1 player 1 forces

arbitration.

By forcing arbitration, player 1 gets δ(x1 + 3). Suppose he makes an

offer (x1 + n− k, x2 + k). Player 2 accepts if x2 + k ≥ Z1, but player 1

gets x1 + 6− k < N − Z1 < δZ1 < δ(x1 + 3). If player 2 rejects because

x2 + k ≤ Z1 − 1, then the final payoff of player 1 will be smaller than

δ(x1 +3). Since after rejection the new bargaining state (x1, x2, X) ∈ Pl

with l ≤ 5, proposition 1 applies. It is easy to check that in all cases

player 1 gets a payoff smaller than δ(x1 + 3).

STEP 6: If x1 ≥ Z1 − 1 player 1 forces arbitration.

Player 1 proposes (x1 + 6, x2), the arbitrator is called and player 1

gets δ(x1 +3). If player 1 makes a different proposal (x1 +6−k, x2 +k),

player 2 rejects and, at (x1, x2 +k, 6−k) since x1 ≥ Z1−1 and 6−k ≤ 5,

she proposes the partition (x1 +1, x2 +5) which player 1 accepts. Player

1 gets a final payoff of δ(x1 + 1) < δ(x1 + 3)

(ii) Consider now any bargaining state (x1, x2, X) ∈ P7. For these

bargaining states xi + 5 > va
i = δ(xi + 3), and if xi ≤ xj < Z1 − 1 then

xi + 5 ≥ N −Z1 since xi + 7 = N − xj > N −Z1 + 1. Assume first that

δ2(xj + 4) > xj + 1. The optimal strategies are:
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state i demand j response

xj ≥ Z1 − 1 xi + 5 A

xi ≤ xj < Z1 − 1andN − Z1 ≥ va
i N − Z1 A

xi ≤ xj < Z1 − 1, xi + 5 ≥ N − Z1andN − Z1 < va
i xi + 7 R

xj < xi < Z1 − 1, xj + 5 ≥ N − Z1andδZ1 > va
i xi + 5 R

xj < xi < Z1 − 1, xj + 5 ≥ N − Z1andδZ1 ≤ va
i xi + 7 R

xi ≥ Z1 − 1 xi + 7 R

STEP 1: If x2 ≥ Z1− 1 player 1 proposes (x1 +5, x2 +2) and player

2 accepts.

If player 2 rejects the proposal of player 1, at the new bargaining

state (x1, x2 + 2, 5) player 2 proposes (x1 + 4, x2 + 3) being accepted by

her opponent ( see proposition 6). Then, by rejecting she gets δ(x2+3) <

x2 + 2 since x2 ≥ Z1 − 1.

For player 1, forcing arbitration is a dominated strategy since δ(x1 +

3) < x1 + 5. He may offer the partition (x1 + 6, x2 + 1), but player

2 optimally rejects and forces arbitration at her turn since she will get

δ2(x2 + 4) > x2 + 1.

STEP 2: If x1 ≤ x2 < Z1 − 1 and N − Z1 > δ(x1 + 3) player 1

proposes (N − Z1, Z1) and player 2 accepts.

If she rejects, at the bargaining state (x1, Z1, N − Z1 − x1) with

N − Z1 − x1 ≤ 5 player 2 proposes (N − Z1 − 1, Z1 + 1) and player 1

accepts. But Z1 ≥ δ(Z1 + 1).

For player 1 forcing arbitration is a dominated strategy since N −
Z1 ≥ δ(x1 + 3). Since x2 < Z1 − 1, then N − Z1 may be equal to:

a) N − Z1 = x1 + 5. If player 1 proposes (x1 + 6, x2 + 1), player 2

optimally rejects and forces arbitration at her turn since x2 +1 = Z1−1.

Player 1 gets δ2(x1 + 3) < x1 + 5 = N − Z1.

b) N−Z1 = x1+4. If player 1 proposes (x1+6, x2+1) player 2 rejects

and at the new bargaining state (x1, x2 +1, 6) with x1 < x2 +1 < Z1−1,
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x1 + 5 > N − Z1 and δZ1 = δ(x2 + 3) < va
2 = δ(x2 + 4) player 2

forces arbitration and player 1 gets a final payoff of δ2(x1 +3) < N −Z1.

Instead, if player 1 proposes (x1+5, x2+2), player 2 rejects and proposes

(x1 + 4, x2 + 3) which is accepted by player 1 that gets a final payoff

δ(N − Z1) < N − Z1.

c) N − Z1 = x1 + 3. Player 1 may propose either (x1 + 6, x2 + 1), or

(x1 + 5, x2 + 2) or (x1 + 4, x2 + 3). It is easy to check that in the first

two cases player 1 ends up with a payoff of δ2(x1 + 3) and in the last

case δ(N − Z1).

STEP 3: If x1 ≤ x2 < Z1−1 and N−Z1 < δ(x1 +3) player 1 forces

arbitration.

Player 1 gets δ(x1 +3) if he forces arbitration. Instead, player 1 may

propose (x1 + 7− k, x2 + k) with 1 < k ≤ 4. If x2 + k = Z1− 1, player 2

rejects the offer and asks for Z1 at his turn. Player 1 gets a final payoff

of δ(N − Z1) < N − Z1. If x2 + k < Z1 − 1, player 2 rejects and since

the number of units left to be negotiated is smaller than 6 proposition

1 applies and is easy to check that the final payoff of player 1 is smaller

than δ(x1 + 3). And finally, if player 1 proposes (x1 + 6, x2 + 1) player

2 rejects and forces arbitration at her turn. Player 1 receives a payoff of

δ2(x1 + 3) < δ(x1 + 3).

STEP 4: If x2 < x1 < Z1−1, N−Z1 > δ(x2+3) and δ(x1+3) < δZ1

player 1 proposes (x1 + 6, x2 + 1) and player 2 rejects.

If player 2 rejects (x1 + 6, x2 + 1), then at (x1, x2 + 1, 6) he proposes

(Z1, N − Z1) since x2 + 1 ≤ x1 < Z1 − 1 and N − Z1 > δ(x2 + 3) and

player 1 accepts. Then, rejection pays δ(N − Z1) > x2 + 1.

By proposing (x1 + 6, x2 + 1) player 1 gets δZ1. Suppose she makes

a different proposal, that is (x1 + 7 − k, x2 + k) with 1 < k ≤ 5. If

x2 + k = Z1 − 1 player 2 rejects and proposes, at his turn (N − Z1, Z1)

and player 1 gets δ(N − Z1) < δZ1. If x2 + k < Z1 − 1, player 2 rejects.

We use proposition 1 to find the final payoff of player 1. It is easy to
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check that player 1 will receive a payoff smaller than δZ1.

STEP 5: If x2 < x1 < Z1 − 1 and δ(x1 + 3) > δZ1 player 1 forces

arbitration.

By forcing arbitration, player 1 will get δ(x1 + 3). If she makes

a proposal (x1 + 7 − k, x2 + k) with 1 ≤ k ≤ 5 player 2 rejects if

x2 + k < Z1, and accepts otherwise. If he accepts, then player 1 gets

x1 + 7− k < N − Z1 < δZ1 < δ(x1 + 3). If he rejects any proposal with

k > 1, we know by proposition 1 the continuation game and it is easy

to check that the payoff of player 1 is smaller than δ(x1 + 3). If player 1

proposes (x1 + 6, x2 + 1), player 2 surely rejects. Since x1 + 3 > Z1 then

x2 + 4 < N − Z1 and by step 2 and 3 player 2 proposes (Z1, N − Z1) if

x2 + 4 < δ(N −Z1) and forces arbitration if x2 + 4 > δ(N −Z1). Player

1 still do not improve the arbitrated payoff.

STEP 6: If x1 ≥ Z1 − 1 player 1 forces arbitration.

Player 1 forces arbitration and gets δ(x1 + 3). Instead, if player 1

proposes (x1 + 1, x2 + 6) player 2 accepts but player 1 gets x1 + 1 <

δ(x1 + 3). If he makes a different proposal (x1 + 7 − k, x2 + k), with

k ≤ 5, player 2 rejects. At the bargaining state (x1, x2 + k, 7 − k) with

1 < k ≤ 5 player 2 proposes (x1 +1, x2 +6) and player 1 accepts. Player

1 gets a final payoff of δ(x1 + 1) < δ(x1 + 3). If k = 1 player 2 forces

arbitration and player 1 gets δ2(x1 + 3) < x1 + 3.

(iii) Finally consider a bargaining state (x1, x2, X) with 6 ≤ X < n

and assume that players follow the proposed strategies. Then, take a

bargaining state (x1, x2, n):

STEP 1: If x2 ≥ Z1 − 1 and x1 + 5 ≥ va
1 = δ(x1 + n−I(n)

2
) player 1

proposes (x1 + 5, x2 + n− 5) and player 2 accepts.

If player 2 rejects, at the new bargaining state (x1, x2 + n− 5, 5) he

proposes (x1 + 4, x2 + n − 4) (by proposition 1) and player 1 accepts.

But δ(x2 + n− 4) < x2 + n− 5 since x2 ≥ Z1 − 1.

If player 1 makes a different proposal, (x1 + n − k, x2 + k), with
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n − k ≥ 5, then player 2 rejects. After a rejection, at the bargaining

state (x1, x2 + k, n− k), since x2 + k ≥ Z1− 1 player 2 forces arbitration

and gets a payoff of δ2(x2 + k + n−k−I(n−k)
2

) > x2 + k.20 By proposing

(x1+n−k, x2+k) player 1 gets a final payoff of δ2(x1+
n−k+I(n−k)

2
) < x1+5

since δ2(x1 + n−k+I(n−k)
2

) < δ(x1 + n−I(n)
2

) < x1 + 5. Finally, player 1

may consider to force arbitration but δ(x1 + n−I(n)
2

) ≤ x1 + 5.

STEP 2: If x2 ≥ Z1 − 1 and x1 + 5 < va
1 = δ(x1 + n−I(n)

2
) player 1

forces arbitration.

Player 1 forces arbitration by offering (x1 +n, x2) and he gets δ(x1 +
n−I(n)

2
). If he makes a different proposal, (x1 + n − k, x2 + k), player

2 may accept or reject this offer. If n − k < 5 player 2 accepts and

player 1 gets x1 + n − k < x1 + 5 < δ(x1 + n−I(n)
2

). If n − k ≥ 5

player 2 rejects and forces arbitration at her turn and player 1 gets

δ2(x1 + n−k−I(n−k)
2

) < δ(x1 + n−I(n)
2

).

STEP 3: If x1 ≤ x2 < Z1− 1, x1 + 5 > N −Z1 and δ(x1 + n−I(n)
2

) <

N − Z1 player 1 proposes (N − Z1, Z1) and player 2 accepts.

If player 2 rejects (N−Z1, Z1), at the new bargaining state, (x1, Z1, N−
Z1 − x1), player 2 only asks for 1 more unit, since the pie left to be ne-

gotiated N − Z1 − x1 < 5, and this proposal is accepted by player 1.

Player 2 gets δ(Z1 + 1) < Z1.

For player 1 arbitration is dominated by proposing (N−Z1, Z1) since

δ(x1+
n−I(n)

2
) < N−Z1. If he makes a different proposal (x1+n−k, x2+k)

with x1 + n − k > N − Z1 player 2 rejects it. The game reaches the

bargaining state (x1, x2 + k, n − k) with x1 + 5 > N − Z1 and either

Z1 − 1 = x2 + k or x1 < x2 + k < Z1 − 1.

a) If Z1− 1 = x2 + k and n− k ≤ 5 player 2 rejects and proposes, at

her turn, (N −Z1, Z1) which is accepted. Player 1 gets δ(N −Z1) < Z1.

b) If Z1 − 1 = x2 + k and n− k > 5, player 2 forces arbitration and

20If n−k ≥ 8 , δ2(x2+k+ n−k−I(n−k)
2 ) > δ(x2+k+2) > x2+k. And if n−k = 6, 7,

then x2 + k < δ2(x2 + k + 3) since x2 + 1 < δ2(x2 + 4).
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player 1 gets a final payoff of δ2(x1 + n−k+I(n−k)
2

) < δ(x1 + n−I(n)
2

) <

N − Z1.

c) If x1 < x2 + k < Z1− 1 then player 2 proposes (x1 + 1, x2 + n− 1)

if δ(x1 + 1 + n−k−I(n−k)
2

) < N − Z1 and δZ1 > δ(x2 + k + n−k−I(n−k)
2

).

Player 1 rejects this offer and proposes at his turn (N − Z1, Z1) that is

finally accepted. 1 gets a final payoff of δ2(N − Z1) < N − Z1. Instead,

if δZ1 < δ(x2 + k + n−k
2

) player 2 forces arbitration and player 1 gets

getting a payoff of δ2(x1 + n−k+I(n−k)
2

) < δ(x1 + n−I(n)
2

) < N − Z1.

STEP 4: If x1 ≤ x2 < Z1− 1, x1 + 5 > N −Z1 and δ(x1 + n−I(n)
2

) >

N − Z1 player 1 forces arbitration.

By asking for all the rest of the pie, player 1 knows that an arbitrator

is going to implement the partition (x1 + n−I(n)
2

, x2 + n+I(n)
2

) one period

later, getting a final payoff of δ(x1 + n−I(n)
2

). Other alternatives are

dominated by this one. Player 1 may propose (x1 + n− k, x2 + k) being

k even. Player 2 accepts the proposal if x2 + k ≥ Z1. But that means

that x1 +n−k < N −Z1 < δ(x1 + n
2
). Player 2 he rejects if x2 +k < Z1.

Then, as we saw above, at the new bargaining position (x1, x2+k, n−k),

player 2 finishes the game by proposing:

a) (N − Z1, Z1) if x2 + k = Z1 − 1. Player 1 accepts it.

b) (x1+1, x2+n−1) if x1 < x2+k < Z1−1, δ(x1+1+ n−k−1
2

) < N−Z1

and Z1 > x2 + k + n−k
2

. Player 1 rejects and proposes (N −Z1, Z1) that

is accepted.

c) forcing arbitration if x1 < x2 +k < Z1− 1 and .Z1 < x2 +k + n−k
2

.

In all the cases it is easy to check that player 1 gets a higher payoff by

forcing arbitration rather than making the proposal (x1 +n− k, x2 + k).

STEP 5: If x1 ≤ x2 < Z1−1, x1+5 < N−Z1 and x1+5 < δ(x1+ n
2
)

player 1 forces arbitration

If player 1 deviates making a proposal, (x1 + n− k, x2 + k), player 2

may accept or reject it. If n− k ≤ 5, player 2 will accept this proposal

and player 1 will get a final payoff of x1 + n− k < x1 + 5 < δ(x1 + n
2
). If
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n− k > 5, player 2 will reject and will force arbitration at his turn since

x2 + k < δ2(x2 + k + n−k
2

). Then, player 1 would better force arbitration

first, rather than wait for the opponent to do it in the next turn.

STEP 6: If x1 ≤ x2 < Z1−1, x1+5 < N−Z1 and x1+5 ≥ δ(x1+ n
2
)

player 1 proposes (x1 + 5, x2 + n− 5) and player 2 accepts it.

If player 2 rejects player’s 1 proposal, at the new bargaining state,

he will propose (x1 + 4, x2 + n − 4) being accepted by player 1. Then,

for player 2 it will be better to accept rather than reject it because

x2 + n− 5 > δ(x2 + n− 4) since x2 + n− 5 > Z1.

If player 1 makes a different proposal, (x1 + n − k, x2 + k), with

n − k > 5, player 2 will reject and will force arbitration at his turn,

because x2 +k < δ2(x2 +k + n−k
2

). For player 1, this alternative is worse

than to propose (x1+5, x2+n−5) since x1+5 ≥ δ(x1+
n
2
) > δ2(x1+

n−k
2

).

If n− k < 5, then player 2 will accept the proposal and player 1 will get

a smaller final payoff since x1 + n− k < x1 + 5.

STEP 7: If x2 < x1 < Z1 − 1, x2 + 5 > N − Z1 player 1 asks for

x1 + n− 1 if δ(x2 + 1 + n−2
2

) < N −Z1 and δZ1 > δ(x1 + n
2
) and player

2 rejects.

If player 1 proposes (x1 + +n− 1, x2 + 1), player 2 will reject it, the

game will reach (x1, x2 + 1, n − 1) with x2 + 5 > N − Z1 and he will

propose at his turn (Z1, N − Z1), being accepted by his opponent. By

rejecting, player 2 gets δ (N − Z1) greater than the payoff he gets if he

accepts, x2 + 1. Player 1 gets a payoff of δZ1.

To force arbitration is clearly dominated since δZ1 ≥ δ(x1 + n
2
). To

make a different proposal, too. If he proposes (x1 +n−k, x2 +k), player

2 may accept or reject it. If he rejects, at the new bargaining state it

happens that:

a) Z1 − 1 = x2 + k. Player 2 will propose, at his turn, (x1 + n− k −
1, x2 + k +1) and player 1 will accept it and x1 + k < δ(x1 + k +1). But

player 1 will get δ(x1 + n− k − 1) = δ(N − Z1) smaller than δ(x1 + n
2
).
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b) x2 + k < x1 < Z1 − 1. Player 2 will reject player’s 1 offer and

propose (Z1, N − Z1) if δ(x2 + k + n−k
2

) < N − Z1, and he will force

arbitration if the opposite happens. In the first case, player 1 accepts,

and player 2 gets a payoff of δ(N − Z1) > x1 + k. Player 1 get a final

payoff of δZ1, the same payoff as if he would propose (x1 +n−1, x2 +1).

In the second case player 2 forces arbitration if δ(x2+k+ X−k
2

) > N−Z1

getting a higher payoff than the one he gets by accepting the initial offer

of player 1 since δ2(x2 + k + X−k
2

) > x2 + k. For player 1 this is clearly

worse since δ2(x1 + n−k
2

) < δZ1.

c) x1 < x2 + k < Z1 − 1.By rejecting the game reaches a bargaining

state where, at player’s 2 turn he will either propose (x1 + 1, x2 + n− 1)

knowing that the opponent will reject and propose, at his turn, (N −
Z1, Z1) or he will force arbitration. In the first case, by rejecting, player

2 gets δ2Z1 and in the second case δ2(x2 + k + X−k
2

). In both cases these

payoffs are greater than x2+k. For player 1, to propose (x1+n−k, x2+k)

mean to get or δ2(N −Z1) or δ2(x1 + n−k
2

) both payoffs smaller than δZ1

the one he gets by proposing (x1 + n− 1, x2 + 1).

STEP 8: If x2 < x1 < Z1 − 1, x2 + 5 > N − Z1 player 1 forces

arbitration if δZ1 < δ(x1 + n
2
).

If he forces arbitration by proposing (x1 + n, x2) he will get a payoff

of δ(x1 + n
2
). To make a different proposal (x1 + n − k, x2 + k) leads

the game to a bargaining state belonging to a), b), or c) and as we have

just seen, player 2 optimally rejects this proposal. Player 1 gets a final

payoff in case a) x1 + n− k, in case b) δZ1 or δ2(x1 + n−k
2

), and finally

in case c) δ2(N − Z1) or δ2(x1 + n−k
2

). In all these cases these payoffs

are smaller than the one player 1 gets by forcing arbitration right now.

STEP 9: If x2 < x1 < Z1 − 1, x2 + 5 < N − Z1 player 1 forces

arbitration.

If player 1 forces arbitration he gets δ(x1+
n
2
). If he makes a proposal,

(x1 + n− k, x2 + k) and x2 + k < Z1 player 2 will reject, the game will
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reach a bargaining state where either x2 +k +5 ≶ N −Z1. Suppose first

that x2 + k + 5 > N − Z1and:

a) Z1− 1 = x2 + k. Player 2 rejects and asks for one more unit since

δZ1 > Z1 − 1. Player 1 prefers to get δ(x1 + n
2
) by forcing arbitration

rather than δ(N − Z1).

b) x2 + k ≤ x1 < Z1 − 1. Player 2 will reject theoffer since he

can get a higher payoff by proposing (N − Z1, Z1) if δ(x2 + k + n−k
2

) <

N − Z1. By rejecting he gets δ(N − Z1) that is greater than x2 + k. If

δ(x2 + k + n−k
2

) > N − Z1 he will reject in order to force arbitration at

his turn, getting a payoff of δ2(x2 + k + n−k
2

) > x2 + k. In both cases

player 1 get worse by trying with (x1 +n−k, x2 +k) rather than forcing

arbitration since he gets or δZ1 or δ2(x1 + n−k
2

).

c) x1 < x2 + k < Z1 − 1. By rejecting, player 2 will ask for (x1 +

1, x2 +n− 1), knowing that player 1 will reject and propose, at his turn,

(N−Z1, Z1) if δ(x1 +1+ n−k−2
2

) < N−Z1 and Z1 > x2 +k+ n−k
2

. Player

1 gets a final payoff of δ2(N −Z1) smaller than δ(x1 + X
2
). Player 2 will

reject and force arbitration, at his turn, if Z1 < x2 + k + n−k
2

. Naturally,

player 1 will prefer to force arbitration right now, rather than wait for

the opponent to do it in the next period.

Now assume that x2 + k + 5 < N − Z1and:

a) x2 + k ≤ x1 < Z1 − 1. If player 2 rejects the initial offer of player

1, he will propose, at his turn, (x1 +n−k−5, x2 +k +5) or he will force

arbitration. In the first case, player 1 gets δ(x1 +n−k−5) smaller than

δ(x1 + n
2
) and in the second case, this alternative is clearly dominated

by proposing arbitration right now.

b) x1 < x2+k < Z1−1. If this happens, player 2 will force arbitration.

For player 1 is better to force arbitration right now rather than wait for

player 2 to do it in the next turn.

STEP 10: If x1 ≥ Z1 − 1.Player 1 forces arbitration.

If player 1 forces arbitration he gets a payoff of δ(x1+ n
2
). If he makes
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a different proposal, for example, (x1+n−k, x2+k), player 2 may accept

or reject it. If he rejects, the new bargaining state (x1, x2+k, n−k), may

have n−k ≶ 5. If n−k ≤ 5, then player 2 proposes21 (x1 +1, x2 +n−1)

and player 1 accepts it. Then player 2 will reject player’s 1 proposal

since δ(x2 + n − 1) > x2 + k since x1 ≥ Z1 − 1. For player 1, it will

be better to force arbitration instead of proposing (x1 + n − k, x2 + k)

because δ(x1 + n
2
) > δ(x1 + 1). If n − k > 5, player 2 will reject and

proposes (x1 +n−k−5, x2 +k+5) and player 1 accepts it if x2 +k+5 ≥
δ(x2 + k + n−k

2
) and forces arbitration if the opposite happens. Then,

arbitration dominates to propose (x1 + k, x2 + n− k), since, in the first

case δ(x1 + n
2
) > δ(x1 + n− k − 5)22and in the second case δ(x1 + n

2
) >

δ2(x1 + n−k
2

).¥

Proof of Proposition 10

A pure strategy for player i type τ = W,S, is a time tτi at which she

plans to yield (to concede is she is weak and to opt out is she is strong)

given than no player yields before that time. If a pure SPBE exists, then

tWi = tWj = tW and tSi = tSj = tS. Assume that tS ≤ tW . Thus, strong

types know that, in equilibrium, weak types do not concede before they

opt out with certainty. Then, it is optimal for a strong type to opt out at

period 0, so she avoids any discounting of the payoff. The same happens

to a weak type, since she knows she is not going to get any concession

from her opponent. Thus, if there is a SPBE with tS ≤ tW , it must be

tW = tS = 0. But this cannot be an equilibrium since strong types will

deviate from this strategy by delaying at least one period the decision

of opting out since b < (1− a)π0 + b(1− π0).

21The game reaches the bargaining position with X < 6 .Players follow the strate-

gies of proposition 1 that, in that case, specify to player 1 to ask for only one unit,

and for player 2 to accept it.
22x2 + k + 5 ≥ δ(x2 + k + X−k

2 ) if 5 ≥ X−k
2 since x2 < Z1 − 1. Then, δ(x1 + X

2 ) >

δ(x1 + X − k − 5)
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The other potential equilibrium is tW < tS in which case tW = 0 and

tS = x with x ≥ 1. If weak types concede in equilibrium at t=0, then

it must be true that a ≥ (1 − a)π0 + aδ(1 − π0) or π0 ≤ a(1−δ)
1−a−δa

. Since

π0 ≤ a(1−δ)
1−a−δa

< b(1−δ)
1−a−δb

, strong types deviate and opt out at t=0 since

b > (1− a)π0 + bδ(1− π0).¥

Proof of Proposition 11.b

Consider the equation that rules the posterior:

πt =
H

H + G
+ (π0 − H

H + G
) (11−H −G)t .

If π0 < H
H+G

, πt is decreasing over time and, thus αt = Hπt increases.

At some period t, αt reaches the value of 1. We denote that time as T .

In order to identify the time T we must use:

πT−1αT−1 = H,

πT αT ≤ H.

Since αT = 1 and αT−1 < 1 then πT−1 ≥ H ≥ πT . Using the solution

for πt, T will be the natural number that solves:

HH + G+(π0−HH + G)(11−H −G)t ≤ H ≤ HH + G+(π0−HH + G)(11−H −G)t−1.

By lemma 1 we know that if αT = 1 then βT+1 = 1.¥

Proof of Proposition 12

If H
H+G

< π0 < 1−G, then πt is increasing over time and βt increases

until, at some point, it reaches the value of 1. We denote as T that time

and

(1− πT ∗H−1)βT−1 = G,
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(1− πT )βT ≤ G.

Since βT = 1 and βT−1 < 1, then 1− πT−1 ≥ G ≥ 1− πT . Using the

solution of πt, T will be the natural number that solves:

HH + G+(π0−HH + G)(11−H −G)t−1 ≤ 1−G ≤ HH + G+(π0−HH + G)(11−H −G)t.

Since βT = 1, then πt = 1 ∀t ≥ T + 1. Players that are still playing

are weak types and thus αt = a(1−δ)
1−a−δa

for t > T + 1.

If 1−G 6 π0, the SPBE is βt = 1 ∀t ≥ 0 and α0 = a(1− δπ0)(1− a− δa)π0

αt = a(1− δ)1− a− δa ∀t ≥ 1. Then, a weak type will optimally ran-

domize between conceding and not conceding at each t if:

a = π0α0(1− a) + aδ(1− π0α0 − (1− π0)β0),

a = πtαt(1− a) + aδ(1− πtαt − (1− πt)βt)∀t ≥ 1.

Given these strategies, πt = 1 ∀t ≥ 1. We substitute βt = 1 ∀t ≥ 0

and α0 = a(1− δπ0)(1− a− δa)π0 αt = a(1− δ)1− a− δa in those

equations and check if they are satisfied ∀t.
Consider now a strong type. Given the opponent’s strategy, βt = 1

∀t ≥ 0 and α0 = a(1− δπ0)(1− a− δa)π0 αt = a(1− δ)1− a− δa ∀t ≥
1 he will opt out with probability 1 from period 0 on if:

b > π0α0(1− a) + b(1− π0)β0 + bδ(1− π0α0 − (1− π0)β0) = 0,

b > πtαt(1− a) + b(1− πt)βt + bδ(1− πtαt − (1− πt)βt)fort ≥ 1

Since πt = 1 ∀t ≥ 1, the second condition is satisfied if b > αt(1 −
a) + bδ(1− αt). Substituting αt,

b > a(1− δ)1− a− δa(1− a) + bδ(1− a(1− δ)1− a− δa).
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Or b(1−δ)
1−a−δb

> a(1−δ)
1−a−δa

that is true since b > a.

At t=0 it must be satisfied that b > π0(1−a)α0 +b(1−π0)+bδπ0(1−
π0α0). Substituting α0 and β0 it is easy to check that this equation is

satisfied only if π0 ≥ 1−G.

Now we will prove that if π0 ≥ 1−G, the unique symmetric SPBE is

{{αt}∞0 {βt}∞0 } such that βt = 1 ∀t ≥ 0 and α0 = a(1− δπ0)(1− a− δa)π0,

αt = a(1− δ)1− a− δa ∀t ≥ 1. We will explore all possible candidates

and see that, indeed, this is the unique SPBE.

First, consider a SPBE

{{ ∧
αt

}∞
0

,

{ ∧
βt

}∞

0

}
such that 0 <

∧
αt< 1 and

0 <
∧
βt< 1 ∀t ≥ 0. Then,

a = (1− a)πt
∧
αt +aδ(1− πt

∧
αt −(1− πt)

∧
βt),

b = (1− a)πt
∧
αt +b(1− πt)

∧
βt +bδ(1− πt

∧
αt −(1− πt)

∧
βt),

for ∀t ≥ 0. At t=0 these conditions are rewritten as:

∧
α0 π0 = H,

∧
β0 (1− π0) = G.

But since π0 ≥ 1 − G,
∧
β0≥ 1 contradicting the assumption that

0 <
∧
βt< 1 ∀t ≥ 0.

Second, assume that there is a SPBE such that
∧
βt= 1 ∀t ≥ 0 and

0 <
∧
αt< 1 such that

∧
α0 6= a(1− δπ)(1− a− δa)π,

∧
αt 6= a(1− δ)1− a− δa

∀t ≥ 1. Notice that if
∧
β0= 1 and 0 <

∧
α0< 1 then π1 = 1. But this

cannot be an equilibrium since a weak type will deviate and concede with

probability 1 at t = 1 if
∧
α1<

a(1−δ)
1−a−δa

since a > (1 − a)
∧
α1 +aδ(1− ∧

α1)

and will never concede if
∧
αt>

a(1−δ)
1−a−δa

. The same happens at t=0.

And finally, assume that there is a SPBE with 0 <
∧
βt< 1 ∀t ≥ 0 and

∧
α0= a(1− δπ0)(1− a− δa)π0,

∧
αt= a(1− δ)1− a− δa ∀t ≥ 1. In that

case, at t=0, it must be true that:
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a = (1− a)π0
∧
α0 +aδ(1− π0

∧
α0 −(1− π0)

∧
β0)

b = (1− a)π0
∧
α0 +b(1− π0)

∧
β0 +bδ(1− π0

∧
α0 −(1− π0)

∧
β0)

Substituting
∧
α0= a(1− δπ0)(1− a− δa)π0 in the first condition, it

must be that
∧
β0= 1 contradicting that 0 <

∧
βt< 1 ∀t ≥ 0.¥

Proof of Proposition 13

Now consider the case π0 = H
H+G

. Then πt = π0 and αt = Hπ0 =

H + G and βt = G
1−π0

= H + G ∀t ≥ 0.¥

The derivation of T and T .

We reduce the length of each period to 0 < ∆ < 1 (there are 1
∆

periods per unit of time) and the term δ is replaced by e−∆. Define:

H
′
= ab(1− e−∆)ae−∆(1− a− e−∆b) + b(1− e−∆)(1− a− e∆a)

G
′
= (1− e−∆)(1− a)(b− a)ae−∆(1− a− e−∆b) + b(1− e−∆)(1− a− e−∆a)

H
′
H

′
+ G

′
= abb− a(1− a)

H
′

H
′
+G

′ is independent of ∆. It is easily checked that ∆ → 0limH
′
= 0

and ∆ → 0lim1−G = 1..

Proposition 2 establishes that we can identify an ending period T at

which the equilibrium probability of conceding is 1 if π0 ∈
(
H

′
, H

′

H′+G′

)
.

This T is the natural number that solves:

HH + G+(π0−HH + G)(11−H −G)
t
∆ ≤ H ≤ HH + G+(π0−HH + G)(11−H −G)

t
∆
−∆.

Or, for each possible expected delay T we have a compatible interval

of π

101



π0 ∈
(
H

′
H

′
+ G

′
(1− (1−H

′ −G
′
)

t
∆ ), H

′
H

′
+ G

′
(1− (1−H

′ −G
′
)

t
∆

+∆
]
.

The size of this interval tends to 0 as ∆ → 0. Hence, in the limit, we

have a function

π0 =
H

′

H ′ + G′
[
1− e−tI

]

with I = b−a(1−a)
a(1−a−b)

. Or, given the parameters of the game (a, b, π0)

T =
−1

I
ln(1−H

′
+ G

′
H

′
π0)

We consider now the interval of probabilities π0 ∈
(

H
′

H′+G′ , 1−G
′
)
.

Proposition 4 shows that, in equilibrium, strong types won’t remain in

the game beyond some period T that can be identified as the natural

number that solves:

HH + G+(π0−HH + G)(11−H −G)
t
∆
−∆ ≤ 1−G ≤ HH + G+(π0−HH + G)(11−H −G)

t
∆

We compute the interval of probabilities for which T = t
∆

,

π0 ∈
[
H

′
H

′
+ G

′
+ G

′
H

′
+ G

′
(1−H

′ −G
′
)

t
∆

+∆, H
′
H

′
+ G

′
+ G

′
H

′
+ G

′
(1−H

′ −G
′
)

t
∆

]

As ∆ goes to 0 the size of this interval tends also to 0 and

π0 =
H

′

H ′ + G′ +
G
′

H ′ + G′ e
−tI

Therefore

T =
−1

I
ln

[
π0(

H
′
+ G

′

G′ )− H
′

G′

]

Proof of Proposition 14
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We simply compute the partial derivatives of T and Twith respect to

π0. Denote as y = b(a− π0) + aπ0(1− a)ab and x = b(π0 − a)− aπ0(1− a)(1− a)(b− a).

Then,

∂T∂π0 = (1− a− b)by > 0,

∂T∂π0 = −a(1− a− b)(1− a)(b− a)x < 0,

since 0 < y < 1, 0 < x < 1 and a < b < 1− a.¥

Proof of Proposition 15

The partial derivative ∂T∂a is,

∂T∂a = 1(b− a(1− a))2

[
b(b− (1− a)2) ln [y]− (1− a− b)(b− a2)(

1

y
− 1)

]
.

In order to prove that ∂T∂a < 0 we will consider two cases:

(i) b > (1 − a)2. The sign of the derivative is clearly negative since

0 < y < 1 and a < b < 1− a.

(ii) b < (1− a)2. We study the function

F (y) = b(b− (1− a)2) ln [y]− (1− a− b)(b− a2)(
1

y
− 1)

It is easy to check that F (1) = 0, F (0) = −∞ and F (y) has a

maximum on y∗ = −(1−a−b)(b−a2)
b2−b(1−a)2

. Since −(1−a−b)(b−a2)
b2−b(1−a)2

> 1 then F (y) < 0

∀y ∈ (0, 1).

The derivative ∂T∂a is

∂T∂a = b(b− a(1− a))2

[
(b− (1− a)2) ln [x] + a(1− a− b)(b− a2)(1− a)(b− a)(

1

x
− 1)

]

We study the sign of this derivative and find two cases:

(i) b ≤ (1−a)2. Clearly ∂T∂a > 0 since 0 < x < 1 and a < b < 1−a.

(ii) b > (1−a)2. The sign of ∂T∂a = signF (x) with F (x) = (b−(1−
a)2) ln [x]+a(1− a− b)(b− a2)(1− a)(b− a)

[
1
x
− 1

]
. This function has
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a minimum at x∗ = a(1−a−b)(b−a2)
(1−a)(b−a)(b−(1−a)2)

since F
′′
(x∗) > 0 and takes the

values F (0) = +∞ and F (1) = 0. Thus, if x∗ > 1, then ∀x ∈ (0, 1)

F (x) > 0. Otherwise, if x∗ < 1, then ∂T∂a > 0 ∀x ∈ (0,
∼
x) and

∂T∂a < 0 ∀x ∈ (
∼
x, 1) where

∼
x is the unique root of F (x) on the range

x ∈ (0, 1).¥

Proof of Proposition 16

First, we compute the partial derivative of T with respect to b:

∂T∂b = a(1− a)r(b− a(1− a))2

[
(1− a) ln [x]− a2(1− a− b)(b− a)(1− a)(

1

x
− 1)

]
< 0,

Now we derive ∂T∂b that is,

∂T∂b = a(1− a)2r(b− a(1− a))2

[
ln [y] + a(1− a− b)b(1− a)(

1

y
− 1)

]
.

It is clear that sign∂T∂b = signJ(y) with J(y) = ln [y]+a(1− a− b)b(1− a)( 1
y
−

1).

This function takes values J(0) = +∞ and J(1) = 0 and its deriva-

tive J
′
(y∗) = 0 with y∗ = a(1− a− b)b(1− a). It is easy to check that

J(y∗) < 0 and that J(y) is decreasing on (0, y∗) and increasing on (y∗, 1).

Since a(1− a− b)b(1− a) < 1, then J(y) has a unique root on the range

y ∈ (0, 1). This root is the
∼
y that solves the equation

ln [y] + a(1− a− b)b(1− a)(
1

y
− 1) = 0.

Then, J(y) > 0 if y ∈ (0,
∼
y) and J(y) < 0 if y ∈ (

∼
y, 1).¥
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