

Towards multiprogrammed GPUs

by

Ivan Tanasić

ADVERTIMENT La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del r e p o s i t o r i i n s t i t u c i o n a l
UPCommons (http://upcommons.upc.edu/tesis) i el repositori cooperatiu TDX
(h t t p : / / w w w . t d x . c a t /) ha estat autoritzada pels titulars dels drets de propietat intel·lectual
únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza
la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc
aliè al servei UPCommons o TDX.No s’autoritza la presentació del seu contingut en una finestra
o marc aliè a UPCommons (framing). Aquesta reserva de drets afecta tant al resum de presentació
de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom
de la persona autora.

ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del repositorio institucional UPCommons
(http://upcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale-
attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual
únicamente para usos privados enmarcados en actividades de investigación y docencia. No
se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde
un sitio ajeno al servicio UPCommons No se autoriza la presentación de su contenido en una
ventana o marco ajeno a UPCommons (framing). Esta reserva de derechos afecta tanto al
resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes
de la tesis es obligado indicar el nombre de la persona autora.

WARNING On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the i n s t i t u t i o n a l r e p o s i t o r y UPCommons
(http://upcommons.upc.edu/tesis) and the cooperative repository TDX (http://www.tdx.cat/?locale-
attribute=en) has been authorized by the titular of the intellectual property rights only for private
uses placed in investigation and teaching activities. Reproduction with lucrative aims is not
authorized neither its spreading nor availability from a site foreign to the UPCommons service.
Introducing its content in a window or frame foreign to the UPCommons service is not authorized
(framing). These rights affect to the presentation summary of the thesis as well as to its contents.
In the using or citation of parts of the thesis it’s obliged to indicate the name of the author.

http://upcommons.upc.edu/tesis
http://www.tdx.cat/
http://www.tdx.cat/?locale-attribute=es
http://www.tdx.cat/?locale-attribute=es
http://upcommons.upc.edu/tesis
http://www.tdx.cat/?locale-attribute=en
http://www.tdx.cat/?locale-attribute=en

Towards Multiprogrammed GPUs

by
Ivan Tanasi¢

Advisor: Prof. Nacho Navarro
Co-advisors: Dr. Isaac Gelado, Prof. Eduard Ayguade

DISSERTATION
Submitted in ful�llment of the requirements

for the degree of Doctor of Philosophy (Doctor per la UPC)
in the Department of Computer Architecture

Universitat Politècnica de Catalunya
Barcelona, Spain

Fall 2016

Abstract

Programmable Graphics Processing Units (GPUs) have recently become the
most pervasive massively parallel processors. They have come a long way,
from �xed function ASICs designed to accelerate graphics tasks to a pro-
grammable architecture that can also execute general-purpose computations.
Because of their performance and e�ciency, an increasing amount of software
is relying on them to accelerate data parallel and computationally intensive
sections of code. They have earned a place in many systems, from low power
mobile devices to the biggest data centers in the world. However, GPUs
are still plagued by the fact that they essentially have no multiprogram-
ming support, resulting in low system performance if the GPU is shared
among multiple programs. In this dissertation we set to provide the rich
GPU multiprogramming support by improving the multitasking capabilities
and increasing the virtual memory functionality and performance.

The main issue hindering the multitasking support in GPUs is the non-
preemptive execution of GPU kernels. Here we propose two preemption
mechanisms with di�erent design philosophies, that can be used by a sched-
uler to preempt execution on GPU cores and make room for some other
process. We also argue for the spatial sharing of the GPU and propose a
concrete hardware scheduler implementation that dynamically partitions the
GPU cores among running kernels, according to their set priorities. Opposing
the assumptions made in the related work, we demonstrate that preemptive
execution is feasible and the desired approach to GPU multitasking. We fur-
ther show improved system fairness and responsiveness with our scheduling
policy.

We also pinpoint that at the core of the insu�cient virtual memory sup-
port lies the exceptions handling mechanism used by modern GPUs. Cur-
rently, GPUs o�oad the actual exception handling work to the CPU, while
the faulting instruction is stalled in the GPU core. This stall-on-fault model
prevents some of the virtual memory features and optimizations and is espe-
cially harmful in multiprogrammed environments because it prevents context
switching the GPU unless all the in-�ight faults are resolved. In this disser-

i

tation, we propose three GPU core organizations with varying performance-
complexity trade-o� that get rid of the stall-on-fault execution and enable
preemptible exceptions on the GPU (i.e., the faulting instruction can be
squashed and restarted later). Building on this support, we implement two
use cases and demonstrate their utility. One is a scheme that performs con-
text switch of the faulted threads and tries to �nd some other useful work to
do in the meantime, hiding the latency of the fault and improving the system
performance. The other enables the fault handling code to run locally, on
the GPU, instead of relying on the CPU o�oading and show that the local
fault handling can also improve performance.

ii

Acknowledgements

This thesis has been a great journey which would not be possible without
many great people that helped me along the way. For that, I wish to thank
them all.

First and foremost, I would like to thank my advisors for their guidance
and continuous support during my time in Barcelona. They have thought
me so many things and helped me so many times that I will not be able to
repay them, ever. Nacho Navarro always made sure that I have resources
and freedom to pursue my research. I thank him for inspiring con�dence in
my research and his readiness to help with any issue I faced. It is a great
loss that he is not here with us anymore. I know how proud and happy he
would be to see me �nish this thesis. Isaac Gelado has been another great
role model who set the bar high with his strong work ethic. I am grateful
for his dedication, patience, and the ability to still �nd time for me, years
after leaving Barcelona. Eduard Ayguade has stepped in after Nacho passed
away and made sure I actually �nish this thesis. I appreciate all the help he
provided during this last year.

I would like to thank Mateo Valero for providing the opportunity and a
great environment to do my PhD, as well as helping with my ISCA 2014
paper. My thanks also go to Alexander Veidenbaum for suggestions that im-
proved that paper, Alex Ramirez for his generous help and advice during my
PhD, Wen-mei Hwu for being a great teacher and helping with the GPGPU
2013 paper, and Veljko Milutinovic for helping me get here in the �rst place.

Two internships that I had during my PhD were remarkable learning
opportunities. I would like to thank Santosh Abraham and the rest of the
Advanced Processor Lab for the fantastic four months at Samsung Research
America. It was an eye-opening experience during which I learned so much
about GPUs and computer architecture in general. I would also like to thank
Steve Keckler, Arslan Zul�qar and the rest of the Architecture Research
Group for the great three months at NVIDIA. The work and discussions
done during this internship have inspired me to pivot the second half of the
thesis towards exception handling mechanisms, rather than use-cases.

iii

I was very fortunate to be a member of GSO, an extraordinary group of
people that made my PhD studies so memorable and special. My sincere
thanks go to all of the GSO members with whom I had the pleasure to work
with and who were unfortunate enough to sit through my numerous pre-
sentation rehearsals and provided endless paper reviews. I overlapped with
Carlos Villavieja the least, yet he is one of the guys that helped me the most.
From helping me get internship opportunities to practicing job interviews,
Carlos still keeps his title of an eminent GSO member, �ve years after leaving
Barcelona. Javier Cabezas and Lluis Vilanova have been like a father and a
mother to me and other younger students. Their knowledge, technical ability
and sel�essness never cease to amaze me. Ramon Bertran served as a proof
that hard work, focus and positive attitude can get you far. Lluc Alvarez
kept me on my toes and provided his expertise in microarchitecture. Marc
Jorda was a true brother in arms, always ready to get down in the trenches
with me. Victor Garcia, Diego Marron and Pau Farre helped me �nish my
PhD by requiring way less support and attention than I required at the be-
ginning. I would go as far as saying that I cannot imagine a better research
group, except that I do not see GSO as just a research group, but rather
something more special. Comradeship during both work time and playtime
was astonishing. And there was plenty of both.

A great group of students at Barcelona Supercomputing Center made
my time here more enjoyable. Many discussion about life or work were held
over co�ee, lunch and beers with Nikola Rajovic, Milovan Duric, Michalis
Alvanos, Thomas Grass, Alex Rico, Karthikeyan Palavedu Saravanan, Milan
Pavlovic, Ugljesa Milic, Darko Zivanovic, Branimir Dickov and many others.

Last, but certainly not least, I want to thank my family for providing their
endless love, support, and inspiration to start and �nish this journey. My
father Branislav with his dedication to everything that he started, my mother
Miroslava with her con�dence in better tomorrow and my wife Dorotea with
her endless patience for me. I am not done learning from you.

The work on this thesis was performed at Barcelona Supercomputing
Center and was �nancially supported by the European Commission through
TERAFLUX: Exploiting Data�ow Parallelism in Teradevice Computing project
(contract FP7-249013), Spanish Ministry of Science and Technology through
projects Computación de Altas Prestaciones V (contract TIN2007-60625)
and Computación de Altas Prestaciones VI (contract TIN2012-34557), and
NVIDIA Corporation through the GPU Center of Excellence grant.

iv

Contents

1 Introduction 1
1.1 Contributions . 3

1.1.1 Enabling Preemptive Multitasking 3
1.1.2 Design of a GPU Kernel Scheduler 4
1.1.3 Enabling Preemptible Exceptions 4
1.1.4 Page Fault Latency Hiding Scheme 5
1.1.5 Handling Page Faults on the GPU Cores 5

1.2 Organization . 5

2 GPU Systems Background 7
2.1 GPU Accelerated Systems . 7
2.2 GPU Architecture . 10
2.3 Base GPU Execution Engine 12
2.4 Core Architecture . 13

3 Multiprogrammed Systems 17
3.1 Process Scheduling . 18

3.1.1 CPU Scheduling . 18
3.1.2 GPU Scheduling . 19

3.2 Virtual Memory . 21
3.2.1 CPU Virtual Memory 22
3.2.2 GPU Virtual Memory 22

3.3 Exception Handling . 24
3.3.1 Precise Exceptions . 24
3.3.2 Other Exception Handling Approaches 25

4 Methodology 27
4.1 Benchmarks . 27
4.2 Simulators . 28

4.2.1 Full System . 28
4.2.2 Microarchitectural . 29

v

5 Enabling Preemptive Multitasking 31
5.1 Motivation . 33
5.2 Architecture . 34

5.2.1 Concurrent Execution of Processes 34
5.2.2 Preemptive Kernel Execution 35
5.2.3 Scheduling Framework 37
5.2.4 Dynamic Spatial Sharing Policy 39

5.3 Evaluation . 41
5.3.1 Methodology . 41
5.3.2 E�ectiveness of the Preemption Mechanisms 44
5.3.3 Overheads of the Preemption Mechanisms 46
5.3.4 Example Policy: Equal Spatial Sharing 47

5.4 Summary and Concluding Remarks 50

6 Enabling Preemptible Exceptions 53
6.1 Motivation . 55
6.2 Problem Statement . 58
6.3 Support for GPU Page Faults 59

6.3.1 Approach 1: Warp Disable 59
6.3.2 Approach 2: Replay Queue 61
6.3.3 Approach 3: Operand Log 62

6.4 Use Cases . 64
6.4.1 Block Switching on Fault 64
6.4.2 Local Handling of Faults 65

6.5 Evaluation . 66
6.5.1 Evaluation Methodology 66
6.5.2 The Performance Cost of Preemptible Faults 68
6.5.3 Use Case 1: Thread Block Switching on Fault 70
6.5.4 Use Case 2: Local Handling of GPU Faults 72
6.5.5 Summary and Concluding Remarks 74

7 Conclusions and Future Work 75
7.1 Conclusions . 75
7.2 Future Work . 76

7.2.1 Fast and E�cient Preemption 76
7.2.2 Kernel Scheduler Design 77
7.2.3 Fault Aware Scheduling 77
7.2.4 Heterogeneous Memory Management 78

A Publications 79
A.1 Thesis Related Publications 79

vi

List of Figures

2.1 GPU accelerated systems in their basic forms: a) descrete
GPU model with GPU and graphics memory on the expansion
card, and b) fused GPU model with CPU and GPU integrated
in the same chip. 8

2.2 Simple SAXPY GPU program with explicit data transfers
(programmer managed). 8

2.3 Simple SAXPY GPU program with automatic data transfers
(demand paging). 9

2.4 On demand page migration. 10

2.5 GPU architecture with its main components: Command (CMD)
Dispatcher, Data Transfer (DT) Engine, and Execution Engine. 11

2.6 Execution engine architecture. 12

2.7 SM microarchitecture. 14

4.1 Full system simulation work�ow. 29

4.2 Microarchitectural simulation work�ow. 29

5.1 Execution of soft real-time application with (a) FCFS (cur-
rent GPUs), (b) non-preemptive priority and (c) preemptive
priority schedulers. K1 and K2 are low-priority kernels, while
K3 is high-priority. 33

5.2 Operation of the SM driver. Dashed objects are proposed
extensions. 36

5.3 Scheduling framework. The rest of the execution engine (SM
Driver and SMs) is shaded. 38

5.4 Turnaround time improvement of the high-priority process
over its non-prioritized execution (higher is better). Showing
workloads with 2 to 8 processes. Benchmarks in each group
are listed in Table 5.2 as Class 1. 45

vii

5.5 System throughput (STP) degradation when the prioritized
kernel has exclusive and shared access to the execution engine
(lower is better). Showing workloads with 2 to 8 processes. . . 46

5.6 Turnaround time improvement with equal sharing (higher is
better). Showing workloads with 2 to 8 processes. The list of
benchmarks in each group is given in Table 5.2 as Class 2. . . 47

5.7 Average Normalized Turnaround Time (ANTT) for all the sim-
ulated workloads (lower is better), sorted by the increasing
ANTT. 48

5.8 System fairness improvement (higher is better) and system
throughput degradation (lower is better) with equal sharing.
Showing workloads with 2 to 8 processes. 50

6.1 Performance of in-order issue and in-order commit cores, nor-
malized to the baseline SM. 54

6.2 Number of in-�ight faults (top timeline) and number of active
warps (showing only four SMs) for an execution of the BFS
benchmark (showing cycles on the x axis). 56

6.3 Timeline showing the culprits of non-preemptble faults: sparse
replay and RAW on replay. All instructions are from the same
warp. Stages are Fetch, Issue, OpRead, Execute and Commit. 58

6.4 Pipeline timing diagram with the warp disable approach. Global
memory instruction disables the warp until it can be guaran-
teed that it will not fault. 60

6.5 Last TLB check for a warp memory instruction: the earliest
point in the pipeline where memory instruction is guaranteed
not to cause a page fault. 60

6.6 Pipeline timing diagram with the replay queue approach. . . . 61

6.7 The snapshot of issue queue and replay queue after a) ld is
issued and b) ld has faulted, and the rest drained. 61

6.8 Pipeline timing diagram with the operand logging approach. . 62

6.9 Design of the operand log with active path during a) �rst issue
and b) replay of a faulted instruction. 63

6.10 Block switching. 65

6.11 Performance of warp disable and replay queue pipeline orga-
nization that support preemptible faults, normalized to the
baseline SM with stall on fault approach (higher is better). . . 69

6.12 Performance of the operand log scheme with various log sizes
normalized to the baseline SM (higher is better). 70

viii

6.13 Performance improvement with thread block switching on a
fault over baseline stall on fault approach. Showing NVLink
and PCIe con�gurations with normal context switching and
ideal 1 cycle context switching. 71

6.14 Performance improvement when handling faults to pages that
are backing up dynamically allocated memory on GPU over
baseline handling by the CPU. 73

6.15 Performance improvement when handling faults to output pages
on GPU over baseline handling by the CPU. 73

ix

List of Tables

4.1 Parboil benchmarks used for the evaluation. 28
4.2 Halloc benchmarks used for the evaluation. 28

5.1 Simulation parameters used in the experimental evaluation in
Section 5.3. ∗Default con�guration of the shared memory. . . . 41

5.2 Statistics of all the kernels from benchmark applications used
in the experimental evaluation. 43

6.1 Simulation parameters used in the experimental evaluation in
Section 6.5. 67

xi

Glossary

ASIC Application Speci�c Integrated Circuit
CMP Chip Multi-Processing
CMT Chip Multi-Threading
CPU Central Processing Unit
DRAM Dynamic Random Access Memory
DSM Distributed Shared Memory
FCFS First Come First Served
GPU Graphics Processing Unit
HPC High Performance Computing
ILP Instruction Level Parallelism
I/O Input / Output
IPC Inter Process Communication
IR Intermediate Representation
ISA Instruction Set Architecture
NUMA Non-Uniform Memory Access
MMU Memory Management Unit
OoO Out of Order
OS Operating System
RaW Read after Write
SIMD Single Instruction Multiple Data
SIMT Single Instruction Multiple Threads
SM Streaming Multiprocessor
SMT Simultaneous Multithreading
SoC System on Chip
SRAM Static Random Access Memory
TB Thread Block
TLB Translation Lookaside Bu�er
TLP Thread Level Parallelism
VLIW Very Long Instruction Word
WaR Write after Read

xiii

Chapter 1

Introduction

Over the course of the last several decades, an increasing amount of chal-
lenging and computationally intensive tasks in 2D and 3D rendering has
been migrated from software into specialized hardware accelerators. Due to
the evolution of integrated circuit technology a single-chip solution emerged,
today known as the Graphics Processing Unit (GPU).

In order to enhance the quality of the rendered images and make them
more realistic, GPUs have been improving �exibility and performance with
each new generation. Greater �exibility was achieved through increased pro-
grammability, that is moving from the rendering pipeline with con�gurable
stages [142] to the rendering pipeline with programmable stages [101, 111,
102, 172]. Greater performance was achieved through increasing the memory
bandwidth and the number of cores to exploit the inherent data parallelism
of graphics workloads [111, 19]. Increasing parallelism resulted in GPUs with
higher peak performance than general-purpose CPUs, and this performance
gap keeps growing1.

The trend of increasing performance gap was noticed by researchers and
developers who started leveraging GPUs to improve the performance of other,
non-graphics related computations [123, 122]. Ultimately, NVIDIA intro-
duced the Tesla G80 [102] architecture with hardware and software improve-
ments geared speci�cally towards general-purpose computing. Other ven-
dors, like AMD [67, 105] and Intel in the desktop market, as well as others
in the mobile market (Qualcomm, Imagination, ARM, etc.) followed closely.
These improvements have a goal of abstracting away the graphics pipeline
and its limitations. They include the uni�ed shader core capable of exe-
cuting vertex, fragment and compute shaders (i.e., procedures) [102] on the

1Currently the gap is an order of magnitude increase in double precision arithmetic
performance and memory bandwidth [120].

1

hardware side, and dedicated programming languages like CUDA [120] and
OpenCL [57] on the software side.

Today, GPUs are the most pervasive massively parallel processors and can
be found in wide range of systems. On one end of the spectrum are the mobile
SoCs that power smartphones and embedded systems. Their GPUs are used
for computational photography [131, 130, 12, 64], augmented reality [107] or
other computer vision tasks [168] such as face recognition [29] or road sign
detection [114] in autonomous vehicles.

In the middle of the spectrum are traditional GPU markets like desk-
top (running 3D games) and workstation (running CAD and modeling tools)
that have also bene�ted from general-purpose features. Games today per-
form physical based simulation (e.g., cloth [136], particle [85] and �uid [61]
simulations) on the GPU to achieve complex visual e�ects. Similarly, CAD
and other engineering tools can use the GPU for computation (e.g., photo
realistic rendering with ray tracing [132, 127]).

On the other end of the spectrum are large scale machines used in HPC [46,
84, 165] and warehouse scale computers [13]. Recent advances in machine
learning [16, 91, 75] have created a surge of intelligent services that rely
on speech recognition, natural language processing and image classi�cation.
GPUs are playing a central role in this revolution, speeding up their adoption
in data centers and public clouds [63, 62].

Even though a major e�ort was invested in making them useful beyond
graphics applications, GPUs are still missing features that prevent them from
being considered as truly general-purpose processors. The reason for holding
back the evolution of GPU architectures is to avoid hurting the performance
and e�ciency of interactive 3D rendering (e.g., computer games), which is
still the primary GPU market. One notable consequence is the lack of mul-
tiprogramming support typically found in general-purpose systems.

The concept of multiprogramming was originally introduced with the goal
of improving the system throughput by �lling the execution gaps (e.g., during
I/O operations) of one process with work from another process. However,
system throughput is not the only metric that matters in multiprogrammed
systems. For example, in interactive systems it is equally important to pro-
vide responsiveness to prevent sluggish performance which would otherwise
frustrate the users. Similarly, in multi-tenant system it is also important to
provide fairness, so that the customers get the resources that they payed for.

GPUs, designed �rst and foremost as graphics accelerators, were intended
to be used by a single application at a time. This is progressively becoming
an issue, as GPUs are �nding their way into inherently multiprogrammed en-
vironments, such are desktop and cloud. Traditionally, the OS is at the heart
of multiprogrammed system, providing resource virtualization and, through

2

CHAPTER 1. INTRODUCTION

it, numerous bene�ts like protection (i.e., security), performance isolation,
programmability, etc. Because GPUs are missing most of the multiprogram-
ming support, GPU-accelerated systems are unable to provide key multipro-
grammed workload requirements.

In this dissertation we focus on solving the two fundamental obstacles that
are hindering the multiprogramming support in GPUs. The �rst is the non-
preemptive execution of GPU kernels which means that once a GPU kernel
starts its execution, it has to run until completion. The non-preemptive
execution makes it impossible for the system to perform resource allocation
(i.e., assign GPU cores to di�erent processes) at will and through it enforce
system properties (e.g., responsiveness). The second is the non-preemptible
exceptions on the GPU which means that the instruction that caused the
exception is stalled in the middle of the pipeline, while servicing the exception
has to be o�oaded to the CPU. This has become a problem because the
latest generation of GPUs implement on-demand page migration (i.e., page
swapping) between CPU and GPU memories using the page fault mechanism
(a type of exceptions) [175]. Migrating pages is costly and can leave GPU
cores underutilized for signi�cant amount of time during which a context
switch of the GPU core cannot be performed.

1.1 Contributions

The objective in this dissertation is to show that, with moderate amount of
added complexity, multiprogramming support can be introduced to current
GPU architectures without harming the performance of single-application
execution.

We argue and provide experimental data to support the claims that pre-
emptive multitasking and preemptible exceptions can be implemented in such
a way that accomplishes the objective. We further study, analyze and eval-
uate the implementation and performance issues that arise when enabling
multiprogramming support in GPUs. Following is the list of contributions in
the �eld of computer architecture made in this dissertation.

1.1.1 Enabling Preemptive Multitasking

In this dissertation we demonstrate that preemptive multitasking is not only
desired but also a feasible approach to multiprogramming on GPUs. We
introduce two preemption mechanisms with di�erent e�ectiveness and dis-
cuss their implementations. One is inspired by the classic operating system
preemption mechanism where the execution on GPU cores is stopped and

3

1.1. CONTRIBUTIONS

their context is saved to memory, implementing true preemptive multitask-
ing. The other mechanism exploits the semantics of the GPU programming
model and the nature of GPU applications to implement a form of cooperative
multitasking. We study the performance of the two mechanisms in terms of
preemption latency and introduced overheads, as well as how they translate
to �nal system performance. Finally, we show that both mechanisms provide
improvements in multiprogrammed systems, increasing responsiveness and
fairness at the expense of a small loss in throughput.

1.1.2 Design of a GPU Kernel Scheduler

We further propose hardware extensions that remove the constraint of one
process having exclusive access to the GPU and allow the utilization of GPU
cores individually. These extensions enable di�erent processes to concur-
rently execute GPU kernels on di�erent sets of GPU cores and provide a
framework for implementing kernel schedulers that use the previously in-
troduced preemption mechanisms. Here we also present Dynamic Spatial
Sharing (DSS), a concrete scheduler implementation that dynamically par-
titions the GPU cores and allocates them for di�erent processes according
to the priorities assigned by the OS. Finally, we demonstrate the improved
responsiveness and system fairness of DSS over the baseline scheduling policy.

1.1.3 Enabling Preemptible Exceptions

In this dissertation we also propose novel approaches to supporting pre-
emptible exceptions, without resorting to a full-on precise exceptions model.
Avoiding the precise exceptions is necessary in order to keep the high per-
formance and e�ciency of the GPU core pipeline. Instead, we impose the
minimal amount of execution constraints and track the minimal amount of
additional state so that a well-de�ned restart point is provided, at which
context switch can be performed. We present three low-overhead design
choices with varying performance-complexity trade-o�s. The simplest ap-
proach introduces limitations to the execution model and requires minimal
changes to the GPU pipeline at the cost of decreased performance. The most
comprehensive solution introduces additional hardware structures resulting
in a small increase in the area of the GPU core due to extra storage, but
completely preserves the performance of the baseline GPU pipeline.

4

CHAPTER 1. INTRODUCTION

1.1.4 Page Fault Latency Hiding Scheme

We introduce a scheme for hiding the latency of page faults by performing
a context switch on a fault in this dissertation. Servicing a page fault can
take a signi�cant amount of time, which in turn leads to severe system un-
derutilization and performance loss. Instead of waiting for the fault to be
resolved, this scheme switches out the faulted threads and frees the resources
that can be used to execute some other useful work in the meantime. We
present scheduler extensions that allow oversubscribing the GPU core with
threads and selecting non-faulted threads for execution, exploiting the na-
ture of GPU applications to improve their performance in the presence of
page faults. Previously introduced preemptible exception support enables
the restartability of the context switched threads, once the fault is resolved.
We demonstrate that this technique can provide performance improvement
for applications that are neither execution nor data transfer bound.

1.1.5 Handling Page Faults on the GPU Cores

This dissertation also proposes handling certain type of GPU-triggered page
faults on the GPU itself, instead of o�oading all the handling work to the
CPU as the current GPUs do. This enables another standard feature of
general-purpose systems, the lazy allocation of memory, by locally handling
the page faults caused by writing to pages with no physical memory assigned
(i.e., on-demand allocation of physical memory). The GPU code runs its
own physical memory allocator, which reserves the required memory and
�xes the GPU page table without interrupting the CPU and occupying the
system interconnect. Only page faults that do not need to transfer data from
the CPU (i.e., accesses to the GPU heap and output bu�ers) can be handled
locally. Preemptible exceptions support clears the pipeline of faulted requests
and thus guarantees that the fault handler can be safely executed on the
faulted GPU core. We demonstrate improved performance on kernels with
signi�cant number of concurrent faults, which is the case for a considerable
amount of benchmarks.

1.2 Organization

The rest of this dissertation is organized as follows:

Chapter 2: GPU Systems Background introduces all the technical
details of modern GPU systems that are necessary for understanding the

5

1.2. ORGANIZATION

proposals made in this dissertation. The chapter introduces the baseline
architecture in a top-down fashion, going through the architecture of a GPU-
accelerated system, GPU itself, its execution engine, and �nishing with the
GPU core microarchitecture.

Chapter 3: Multiprogrammed Systems discusses the state of the art
in multiprogramming. It brie�y summarizes the mechanisms and policies
used to provide multitasking on CPUs, and gives a detailed review of related
work in GPU multitasking. It further describes some common CPU virtual
memory features and discusses the recent proposals found in the literature,
made to circumvent the lack of these features in GPUs. Finally, it surveys the
exception handling approaches previously proposed in the literature, focus-
ing on both precise exceptions and alternative approaches to implementing
preemptible exceptions.

Chapter 4: Methodology describes the workloads used for the evalua-
tion and provides the basic information on the two simulation methodologies
used to validate and evaluate the proposals in this dissertation.

Chapter 5: Enabling Preemptive Multitasking covers contributions
1 and 2, providing the motivation, detailed architecture of the proposals,
performance evaluation and details of the evaluation methodology.

Chapter 6: Enabling Preemptive Exceptions covers contributions 3,
4, and 5, providing the motivation, detailed architecture of the proposals,
performance evaluation and details of the evaluation methodology.

Chapter 7: Conclusions and Future Work concludes the dissertation.
It reviews the key contributions and insights presented in this dissertation
and presents potential future work and open research lines.

6

Chapter 2

GPU Systems Background

In this chapter we present the architecture of the baseline system used
throughout this dissertation in a top-down manner. The focus is only on
the details necessary for understanding our proposals.

2.1 GPU Accelerated Systems

Originally, GPUs have started life as system expansion components, resid-
ing on the add-in-boards (here referred to as the discrete GPUs). Increasing
commoditization resulted in inclusion of GPUs into the motherboard chip-set
for desktop and laptop computers (the integrated GPU mode, mostly aban-
doned today). Finally, the raise of graphics requirements in mobile markets
resulted GPUs in becoming part of the system-on-chip (SoC) (referred to as
the fused GPU model). The two common form factors (discrete and fused)
are shown in Figure 2.1.

In the discrete GPU model, a GPU card is connected to a system through
the system expansion bus (e.g., PCI express or NVLink). In its most basic
form, the system has one CPU attached to its own system memory, while
the expansion card has one GPU attached to the graphics memory. Tra-
ditionally, the two memories have been incoherent, and it was the job of
the programmer to keep them coherent by performing explicit data trans-
fers [86, 120]. Con�gurations with multiple CPUs and/or GPUs are common
in high performance environments, and further increase the complexity of
the system [27].

Alternatively, the fused GPU model puts the CPU cores and GPU cores
on the same die. Both GPU and CPU in this case use the same physical mem-
ory (system memory). Implementations range from physically partitioned
memory (in which case the explicit data transfers between two partitions are

7

2.1. GPU ACCELERATED SYSTEMS

CPU

System
Memory

GPU

Graphics
Memory

PCIe

System Memory

GPU CoresCPU Cores

NoC

a) b)

Mem. ControlSoC

Figure 2.1: GPU accelerated systems in their basic forms: a) descrete GPU model with
GPU and graphics memory on the expansion card, and b) fused GPU model with CPU
and GPU integrated in the same chip.

still necessary) [22] to the latest designs that keep the CPU and GPU cache
coherent [73]. Despite the improved programmability of the cache coherent
design, the discrete model is likely to stay dominant, especially in the HPC
and data center domains, because of the much higher performance1.

In general case a GPU application consists of (usually in repetitive bursts):

• CPU execution that performs control, preprocessing or I/O operations,
as well as serial portion of the algorithm;

• GPU execution of kernels that performs computationally demanding
tasks (parallel portion of the algorithm); and

• data transfers between CPU and GPU that bring input data to the
GPU memory and return the outputs to the CPU memory.

float *x, *y, *dev_x, *dev_y;

... // 2 x malloc + 2 x cudaMalloc
read_from_file(N, x, y, ...);

cudaMemcpy(dev_x, x, N, cuadMemcpyHostToDevice);
cudaMemcpy(dev_y, y, N, cudaMemcpyHostToDevice);

saxpy<<<GDIM, BDIM>>>(N, 2.0, x, y);

cudaMemcpy(y, dev_y, N, cuadMemcpyDeviceToHost);

write_to_file(N, y, ...);
... // 2 x free + 2 x cudaFree

I/O

I/O

GPU kernel
Data Transfers

Figure 2.2: Simple SAXPY GPU program with explicit data transfers (programmer man-
aged).

An example program performing the SAXPY linear algebra operation on
the GPU is shown in Figure 2.2. It �rst allocates the bu�ers on CPU and

1Discrete GPUs usually have higher core count (they are on a separate chip) and
memory bandwidth (graphics memory uses wider buses and runs at higher frequency than
CPU memory).

8

CHAPTER 2. GPU SYSTEMS BACKGROUND

GPU and loads the data from a �le into the CPU bu�ers. Data is then
copied to the GPU memory, before the saxpy kernel is launched to compute
the result. The output is then copied back to the CPU memory, and written
to a �le.

CUDA is a Single Program Multiple Data (SPMD) style programming
model [38] and a kernel launch consists of a number of threads executing the
same code. Threads are grouped into thread blocks that are independent of
each other. Only threads from the same thread block can cooperate using
barrier synchronization and communication through local memory (shared
memory in CUDA terminology).

The GPU device driver (executing in the CPU, as part of the OS) is in
charge of performing the bookkeeping tasks for the GPU (e.g., managing
the GPU memory space). GPU kernel invocations (kernel launch in CUDA
terminology), initiation of data transfers, and GPU memory allocations are
performed in the CPU code (referred to as commands in the rest of this text).

GPU programming models provide software work queues (streams in
CUDA terminology) that allow programmers to specify the dependences
between commands. Commands in di�erent streams are considered inde-
pendent and may be executed concurrently by the hardware. Because the
latency of issuing a command to the GPU is signi�cant [77], commands are
sent to the GPU as soon as possible. Once commands are issued to the GPU,
the software has no control over them anymore. Each process that uses a
GPU gets its own GPU context, which contains the page table of the GPU
memory and the streams de�ned by the programmer.

float *x, *y;

x = malloc(...); y = malloc(...);

read_from_file(N, x, y, ...);

saxpy<<<GDIM, BDIM>>>(N, 2.0, x, y);

write_to_file(N, y, ...);

free(x); free(y);

Single pointer

Automatic Transfers

//flaot *dev_x, *dev_y;

//cudaMalloc(&&dev_x, ...); cudaMalloc(&&dev_y, ...);

//cudaMemcpy(dev_x, x, N, cuadMemcpyHostToDevice);
//cudaMemcpy(dev_y, y, N, cudaMemcpyHostToDevice);

//cudaMemcpy(y, dev_y, N, cuadMemcpyDeviceToHost);

//cudaFree(dev_x); cudaFree(dev_y);

Figure 2.3: Simple SAXPY GPU program with automatic data transfers (demand paging).

The latest generation of NVIDIA GPUs, GP100 Pascal, supports the de-
mand paging between CPU and GPU memories [121, 37]. On demand page

9

2.2. GPU ARCHITECTURE

migration eliminates the need for explicit programmer data transfers, signif-
icantly improving the programmability of the system. Furthermore, it also
allows oversubscription of the GPU memory, increasing the number of appli-
cations that can bene�t from GPU acceleration. Figure 2.3 shows the version
of the SAXPY program from Figure 2.2, rewritten to rely on the new demand
paging feature, instead of programmer controlled data transfers. Noticeable
is the lack of double pointers (host and device), associated allocations and
deallocations, as well as data transfer calls.

CPU

0x5000

GPU

ld R3, [0x6000]

1

3

4

2

5

6
VA PAS

... ...

0x6000... ...
0x3000

VA PAS
... ...

0x4000... ...

Figure 2.4: On demand page migration.

Figure 2.4 illustrates the steps taken by the baseline system while per-
forming demand paging. When the kernel running on the GPU performs an
access to a page owned by the CPU, after walking through the GPU page
table the MMU determines that the page is not present in the GPU memory
(1) and sends an interrupt to the CPU (2). The CPU interrupt handler,
implemented by the GPU OS device driver (3), transfers the contents of the
faulting page from the CPU memory to the GPU memory, updates both CPU
and GPU page tables to re�ect the new location of the page (4), and noti-
�es the GPU that the page has been successfully migrated (5). The MMU
broadcasts this information to GPU cores, in order to resend the faulted
requests [175]. Note that this only replays the memory request (from the
microarchitectural state) and does not replay the instruction itself. On the
retried page table walk, the MMU �nds a valid translation and sends it back
to the core which now can let the faulting instruction continue execution (6).
E�ectively, this scheme treats GPU page faults as very long latency TLB
misses which stall the execution of the instructions causing the page fault.

2.2 GPU Architecture

The base architecture assumed in this paper is depicted in Figure 2.5. The
GPU has an execution engine and a data transfer engine used to copy the
data between CPU memory and GPU memory. Even though it typically has

10

CHAPTER 2. GPU SYSTEMS BACKGROUND

Interconnect

CMD Dispatcher

Execution
EngineDT Engine

D U

CPU
Memory

CPU

GPU

GPU Memory

Figure 2.5: GPU architecture with its main components: Command (CMD) Dispatcher,
Data Transfer (DT) Engine, and Execution Engine.

multiple cores, the execution engine is treated as one unit for kernel schedul-
ing purposes. The interface to the CPU implements several hardware queues
(i.e., NVIDIA Hyper-Q) used by the CPU to issue GPU commands [117, 23].
The GPU device driver maps streams from the applications on the command
queues. The command dispatcher is in charge of inspecting the top of the
command queues and issuing commands to the corresponding engine. Data
transfer commands are issued to the data transfer engine via DMA queues
while kernel launch commands are issued to the execution engine via the
execution queue. After issuing a command, the dispatcher stops inspect-
ing that queue until the command completes. Commands from di�erent
command queues that target di�erent engines can be concurrently executed.
Conversely, commands coming from the same command queue are executed
sequentially, following the semantics of the stream abstraction de�ned by the
programming model. Traditionally, a single command queue was provided,
but newer GPUs use several queues to remove the problem of false depen-
dencies introduced by the design with one command queue [171], and further
increase the opportunities to overlap independent commands.

The GPU also includes a set of global control registers that hold the GPU
context information used by the engines. These control registers hold process-
speci�c information, such as the location of the virtual memory structures
(e.g., page table), the GPU kernels registered by the process, or structures
used by the graphics pipeline.

At any given moment, the GPU is executing commands from one context
only2. This constraint, coupled with non-preemptive execution leaves room

2Note that the GPU memory however can hold data from multiple contexts at the same
time.

11

2.3. BASE GPU EXECUTION ENGINE

SM SM

L1 $ + TLB L1 $ + TLB

Fill

...

L2 $ + TLB

SM
Driver

KSR

CPU

GPU Memory

CMD
Dispatcher

Figure 2.6: Execution engine architecture.

for very coarse grained sharing, only. All commands submitted to the GPU
must complete before switching to another context.

2.3 Base GPU Execution Engine

The base GPU execution engine we assume in this paper is shown in Fig-
ure 2.6. It has a number of computation cores (Streaming Multiprocessors,
or SMs, in CUDA terminology) that varies, depending on the deployment
environment, from one (targeting mobile SoCs) to several few dozens (tar-
geting HPC). Each SM has a private L1 cache and L1 TLB, while the L2
cache and TLB are shared between all SMs. A shared �ll unit implements
the hardware logic of page table walkers and communication with the CPU
in case of page faults.

The SM driver sits at the front of the execution engine and distributes
the work to the SMs. It receives kernel launch commands via the execution
engine queue, and sets up the Kernel Status Registers (KSR) with the control
information such as number of work units to execute, kernel parameters
(number and stack pointer), etc. The SM driver uses the contents of these
registers, as well as the global GPU control registers, to setup the SMs before
the execution of a kernel starts. The execution queue can contain a number
of independent kernel commands coming from the same context, that are
scheduled for execution in a �rst-come �rst-serve (FCFS) manner.

When a thread block is issued to an SM, it remains resident in that SM
until all of its threads �nish execution. An SM can execute more than one
thread block in an interleaved fashion. Concurrent execution of thread blocks
relies on static hardware partitioning, so the available hardware resources
(e.g., registers and shared memory) are split among all the thread blocks in
the SM. The resource usage of all the thread blocks from a kernel is the

12

CHAPTER 2. GPU SYSTEMS BACKGROUND

same and it is known at kernel launch time. The number of thread blocks
that can run concurrently is thus determined by the �rst fully used hardware
resource.

After the setup of the SM is done, the SM driver issues thread blocks to
each SM until they are fully utilized (i.e., run out of hardware resources).
Whenever a SM �nishes executing a thread block, the SM driver gets noti�ed
and issues a new thread block from the same, active, kernel to that SM. This
policy combined with static partitioning of hardware resources means that
kernels with enough thread blocks will occupy all the available SMs, forcing
the other kernel commands in the execution queue to stall. As a result,
concurrent execution among kernels is possible only if there are free resources
after issuing all the work from previous kernels. This back-to-back execution
happens when a kernel does not have enough thread blocks to occupy all
SMs or the scheduled kernel is �nishing its execution, and SMs are becoming
free again. Today's GPUs, however, do not support concurrent execution of
commands from di�erent contexts on the same engine. That is, only kernels
from the same process can be concurrently executed.

2.4 Core Architecture

We illustrate the detailed SM pipeline in Figure 2.7. Each thread block exe-
cuted on the SM is further divided into warps, groups of 32 threads adhering
to the Single Instruction Multiple Threads (SIMT) execution model [102].
Threads in a warp execute in a lock-step, acting as a single thread of the
Single Instruction Multiple Data (SIMD) execution model [52], until threads
take di�erent paths on a conditional branch. At that point a compiler con-
trolled [95] mechanism in the form of a stack (usually referred to as the
reconvergence stack [53]) is used to execute both paths of a branch, one after
the other [97, 53]. Our baseline uses the immediate post-dominator basic
block as the reconvergence point [53]. Threads of the same thread block can
be synchronized with each other using barriers. A hardware barrier unit in
each SM keeps track of blocked and active threads of a thread block and
reactivates them all when each one has executed the barrier instruction.

Because the SM is a throughput oriented processor, designers have opted
for multithreaded execution of warps as a mean of hiding the pipeline laten-
cies [146, 170]. Thus each clock cycle, the warp scheduler (WS) picks one
ready warp, for which an instruction line will be fetched from the instruc-
tion cache (IC) in the next cycle and sent to the issue queue. The uni�ed
issue queue contains instructions from multiple warps and can issue multiple
instructions per cycle, from one or di�erent warps. A score-boarding (SB)

13

2.4. CORE ARCHITECTURE

SB

O
P

 R
e

ad

Math

Special Function

Shmem

Global

C
o

m
m

it

A
G

U

ExecuteIssue

IC IL

WS

Fetch

Branch

Figure 2.7: SM microarchitecture.

mechanism [157] is at the heart of instruction scheduling, making sure that
dependencies among instructions from the same warp are enforced. The issue
logic (IL) thus implements out-of-order issue for most instruction types, as
long as dependencies are honored. However, unlike typical out of order pro-
cessors, SM does not support speculation nor register renaming. Both control
�ow and memory dependence speculation are avoided by brie�y disabling the
fetch for a warp upon fetching a control �ow or memory instruction. Mem-
ory instructions re-enable the warp at issue time, forcing the in-order issue
with respect to other memory instructions of the same warp. Control �ow
instructions re-enable the warp during commit.

Once issued, instructions go through the operand read stage, in which
the register �le is accessed and the data is dispatched to the execution units.
The SM has a very large uni�ed (integer and �oating point) register �le
that is partitioned among all resident warps. The execution stage consists
of several math units, a branch unit, a special functions unit and di�erent
memory pipelines. The shared memory pipeline accesses the on-chip scratch-
pad memory that holds CUDA shared address space objects, which are not
subject to memory translation (each SM is used by only one user process at
a time). The global memory pipeline performs the accesses to the o�-chip
memory that go through the cache hierarchy and memory translation (global
memory can hold allocations from di�erent processes at the same time).

Upon completion, each instruction is sent to the commit stage, resulting
in out-of-order commit. Manipulating the score-boards is split between the
operand read stage, in which source operands are released (after reading), and
the commit stage, where the destination operand is released (after writing).
Early score-board release for source operands mitigates the WAR (Write
After Read) hazard in absence of register renaming.

Several features discussed in this dissertation require running system soft-
ware (i.e., trap handling routine and page fault handler) on the GPU. To
prevent the user code from directly modifying system data structures, such

14

CHAPTER 2. GPU SYSTEMS BACKGROUND

as the GPU page table and the physical memory allocator, the privileged
execution mode is required. There is no public evidence that GPUs sup-
port privileged execution, but it is easy to see how su�cient support for our
use cases is easy to achieve. We can assume two di�erent privilege (user
and system) execution levels which �rst requires keeping additional bit per
warp to distinguish the privilege level and using it to detect violations. The
bit is checked in the decode stage to protect the user level code from exe-
cuting privileged instructions. The GPU page table entires also need to be
extended with one bit that distinguishes pages from user and supervisor (i.e.,
system), similar to what modern CPUs do [72]. This bit is then checked dur-
ing memory translation, together with other access violations checks (e.g.,
write protected pages) to protect the system memory.

15

Chapter 3

Multiprogrammed Systems

Today most computers, spanning the full spectrum from a portable media
player to the fastest supercomputer in the world, are multiprogrammed, al-
lowing several programs (potentially from di�erent users) to run concur-
rently. Essential in enabling the multiprogramming capability is the operat-
ing system, who's role is to provide the management of the machine resources
and isolation of applications running on the machine. The OS achieves this
through the concept of virtualization, creating an illusion that the program
is running on the system alone.

Virtualization of the processor is typically achieved through OS controlled
time-multiplexing of programs on the processor. Periodically, the execution
of a program gets suspended by the timer interrupt and the OS gains control
of the processor. The OS can then choose to run another program for some
time and perform a context switch by saving the context of the preempted
process to memory, and restoring the context of another process. Di�erent
processor scheduling techniques have been proposed in e�ort to improve the
performance on di�erent metrics such as system fairness, improved respon-
siveness, or overall system throughput.

Virtualization of the memory is achieved through a set of mechanisms
collectively referred to as virtual memory. Virtual memory provides isolation
between the programs, so that they cannot access each other's data (inten-
tionally or by accident), unless explicitly allowed. Isolation is maintained by
using one virtual address space per process and translating (mapping) mem-
ory accesses from the virtual address space to the actual memory present in
the system (i.e., physical address space). Memory translation also enables
another great feature of the virtual memory, allowing the virtual address
space to be much bigger than the physical memory installed in the system.
If the program uses more memory than available, the OS can transparently

17

3.1. PROCESS SCHEDULING

move the data (i.e., demand paging) between the DRAM and slower but
bigger store such as hard drives, using the page fault mechanism to detect
accesses to data residing in the backing store.

Some of the mechanisms used for processor and memory virtualization
are built on the same low-level mechanisms. Timer interrupts and page
faults are both built on top of the exceptions mechanism that is used to
signal events which require special attention. When the exception is raised,
the processor stops executing the current process and invokes the exception
handler implemented in the OS (or at least registered with it). If the cause of
the exception is resolved by the handler (e.g., the exception was not caused
by an illegal memory access), the interrupted process can be restarted.

The reminder of this chapter is a survey of the state of the art in process
scheduling, virtual memory and exceptions handling.

3.1 Process Scheduling

The process scheduler plays a part in sustaining the illusion of each process
having the system to itself. To do that, the scheduler usually needs to balance
few, sometimes contrary requirements. That is, it needs to preserve fairness
between processes while keeping the system responsive (more important in
interactive systems) and not let any process starve. It also needs to make
sure that the machine resources are well used, keeping the system throughput
as high as possible. Since balancing all these metrics is quite hard (or even
impossible) to achieve, schedulers usually focus on few of them, depending
on the environment the system is deployed in.

3.1.1 CPU Scheduling

Some of the classical approaches to process scheduling include the �rst come
�rst serve (FCFS), round robin (RR) [88], and shortest job �rst (SJF) [32]
and its preemptive sibling shortest time to completion �rst (STCF) [33] al-
gorithms. Of these three, perhaps round robin only deserves to be called
a scheduler, as SJF and STCF are mostly impractical (in general case the
length of each job is unknown) and FCFS only performs basic queueing.
Multi-level feedback queues (MLFQ) [35] is a very common scheduling paradigm,
used in Solaris, BSD derivatives, and Windows NT based systems [106, 96,
150, 11]. In essence, the MLFQ schedulers tries to predict the behavior of
processes based on their past (length of the CPU burst) and prioritize the
interactive and I/O bound processes (short CPU burst).

18

CHAPTER 3. MULTIPROGRAMMED SYSTEMS

Another common category are the proportional share (or fair-share) sched-
ulers [79], that aim to guarantee a certain percentage of CPU time to a
process (usually proportional to their priority). Stochastic implementations
such is the lottery scheduler [166] or deterministic such is the borrowed virtual
time scheduler (BVT) [41] have been proposed. Proportional share sched-
ulers are most commonly used for the processors scheduling at the hypervisor
level [30]. In the past few years, Linux has transitioned from the MLFQ-
like O(1) scheduler [20] to the proportional share completely fair scheduler
(CFS) [110, 124].

As the processors became more concurrent and complex, so did the sched-
ulers. Increased levels of concurrency are making current implementations
ine�ective [89, 103]. Furthermore, contention of shared resources (e.g., caches
and memory controllers) have elevated the problem of performance interfer-
ence [70, 83, 155, 133, 115, 113, 116, 34], which makes the current SMP
schedulers even less e�ective. Several approaches to improve performance
through OS level scheduling have been proposed for SMT [26, 48], CMT [47],
CMP [49, 177], and NUMA [18].

3.1.2 GPU Scheduling

Improving the multiprogramming (or multitasking, in general) capabilities
of the GPU was one of the early goals set by the research community.
GERM [15] and TimeGraph [77] focus on improving responsiveness of the
graphics applications running on the GPU. Both provide a GPU command
scheduler integrated in the device driver, that chooses the context from which
commands should be submitted to the GPU next. Once the command is sub-
mitted to the GPU, their scheduling cannot be controlled any more. Because
of the high cost of submitting the command to the GPU commands are sub-
mitted in batches, requiring the scheduler to balance the cost of command
submission versus the longer execution of the command batch.

RGEM [76] is a software runtime library targeted at providing respon-
siveness to prioritized CUDA applications by scheduling DMA transfers and
kernel invocations. One of the problems that RGEM tries to solve are the
non-preemptive DMA transfers. Their approach is to implement memory
transfers as a series of smaller transfers and thus create the potential schedul-
ing points, lowering the stall time due to the competing memory transfers.

Gdev [78] is built around these principles, but integrates the runtime
support for GPUs into the OS. Disengaged scheduling proposed in [109]
aims at providing the safe and fair scheduling conducted by the OS, while
minimizing the overhead introduced by crossing the user/kernel boundary
on each command submission. PTask [137] is another approach on making

19

3.1. PROCESS SCHEDULING

the OS GPU aware by using a task-based data �ow programming model and
exposing the task graph to the OS kernel.

Li et al. [100] introduced a software virtualization layer that makes all
the participating processes execute kernels in the same GPU context. They
instantiate a proxy process that receives requests from client processes and
executes them on the GPU. This approach, later adopted by NVIDIA's own
Multi-Process Service (MPS) runtime system [118], eliminates the overheads
imposed by the constraint that only one context can be active at a time,
and is especially bene�cial for the GPU accelerated MPI applications [118].
Running one MPI rank per core is the common approach in HPC, especially
with legacy applications, and since a typical GPU accelerated node has a ratio
of half a dozen or so CPU cores to each GPU, sharing eliminates the overheads
and improves utilization of the GPU [21, 171]. However, sharing the context
breaks the memory isolation between the participating processes and thus
it is not a general solution. Furthermore, since the GPU execution engine
does not expose its internals to software, none of these systems can control
assignment of SMs to di�erent kernels or implement preemptive scheduling
policies.

Several software techniques have been proposed in the past to increase
the concurrency between di�erent kernels running in the GPU. Kernel fu-
sion is a technique that statically transforms the code of two kernels into one
that is launched with the appropriate number of thread blocks. Fused kernel
contains an if statement to check which one of the original computations
is to be performed. Because kernels use their thread and block id to �nd
inputs and produce outputs, ids have to be recalculated to accommodate
this scheme. Guevara et al. [58] proposed a runtime system for CUDA which
chooses between running the fused kernel or running the kernels sequentially.
Wang et al. [167] used a similar technique, and observed the improved energy
e�ciency as a result of the better GPU utilization. Extending this approach,
Gregg et al. [56] implemented an OpenCL kernel that occupies the whole
GPU and dynamically invokes kernels to be executed, acting as a scheduler.
Kernel fusion approaches were the �rst take on improving the concurrency of
the GPU execution engine. As such, their contribution is mostly in demon-
strating the bene�ts rather than proposing a concrete implementation, since
they are highly impractical.

Alternatively, several software approaches have been proposed to imple-
ment spatial partitioning of the GPU. The common idea is to underutilize
the GPU by one application, and rely on the back-to-back execution so that
concurrent execution could be achieved. Ravi et al. [135] rely on the molding
technique, that is changing the dimensions of grid and thread blocks while
preserving the correctness of the computation (if possible). Molding is not

20

CHAPTER 3. MULTIPROGRAMMED SYSTEMS

a generic technique and can be only applied to a small number of existing
kernels, without developer having to transform the code to comply to re-
quirements. Pai et al. [125] propose a similar technique and associated code
transformation based on iterative wrapping [153] that produces an elastic
kernel. These techniques rely on developer or compiler transformation to
prepare the programs for concurrent execution. Furthermore, the back-to-
back execution, which is the key enabler of these proposals, only works for
kernels from the same context.

Similarly, several software techniques have been proposed to implement
time multiplexing on GPUs. The kernel slicing technique used in [14, 125,
176] transforms the kernel so that the code is oblivious to the kernel launch
parameters (e.g., the number of thread blocks). Such transformed kernel is
then launched multiple times, passing the launch o�set so that each slice
performs only a part of the original computation, but all launches together
perform the full computation. Static slice size [125, 14], or the smallest slice
size in case of dynamic slicing schemes [176], are chosen a priori for the spe-
ci�c system con�guration, by the user. Softshell [151] is a GPU programming
model with multitasking support. It relies on developers explicitly declaring
preemption points (similar to the yield() function in collaborative multitask-
ing) or preempting on the thread block boundary to enable the scheduling
of tasks.

In [3], the authors make a case for spatial sharing of the GPU execution
engine by simulating execution of several kernels from di�erent applications
running in parallel. They statically partition SMs among applications, since
the emphasis of their work is on showing the bene�ts of spatial multitasking,
rather then proposing the mechanisms to implement it. Partitioning is chosen
by the user and is performed at the beginning of the simulation, at the simul-
taneous launch of all benchmark applications, and cannot be changed after
that. Furthermore, compute units are not reassigned to another application
once the application executing on them completely �nishes.

3.2 Virtual Memory

Memory can easily become a scarce resource in multiprogrammed systems
due to the additional pressure from multiple processes. Hence, it is impor-
tant that the OS manages it fairly and prevents starvation of any process.
Similarly, the demand paging can cause performance bottlenecks and the OS
must try to minimize the impact and maintain the high system throughput.
Some of the classic solutions include scheduling other ready processes while
on a page fault, and page prefetching and page stealing optimizations.

21

3.2. VIRTUAL MEMORY

3.2.1 CPU Virtual Memory

Operating systems have advanced the use of virtual memory beyond provid-
ing the basic features of process isolation and memory swapping. Several
techniques that rely on the virtual memory mechanisms have been adopted
to improve performance or programmability of the system. Lazy allocation
of physical memory is a commonly employed technique where no physical
memory is assigned to a page until that page is written to for the �rst time.
Lazy memory allocation thus improves the utilization of physical memory
and avoids performing functions such as physical frame lookups, page ta-
ble updates and page zeroing, unless it is really necessary. Copy-on-write
(COW) is another related optimization, used to optimize the process cloning
(i.e., fork() system call) [20] and IPC [1], among other things. COW defers
copying the shared data, unless one of the copies needs to be changed. Linux
kernel also implements an inverse operation to COW, called kernel same-
page merging (KSM) [9]. The KSM �nds duplicate pages and maps them to
the same physical memory, which proved to be very useful for increasing the
number of guest OS instances in virtualized systems.

Operating systems today expose protection violation handles to user level
applications [50, 8], facilitating further innovative uses of virtual memory
mechanisms. Examples include garbage collection [7], program checkpoint-
ing [99], transaction locking [134], and transactional memory [31].

Another common use of virtual memory mechanisms is providing a shared
memory abstraction on a distributed memory machine. Some Distributed
Shared Memory (DSM) use memory protection hardware to detect accesses
to the shared data. Coherence operations, such are page replication and
invalidation, are then performed to migrate the page to the requesting node
and allow accessing the data locally. Both OS level [51, 39] and user level
library [98, 28, 17, 81] implementations have been proposed in the past.

3.2.2 GPU Virtual Memory

Pichai et al. [128] and Power et al. [129] have recently conducted simulation
studies of GPU MMUs. Typical of modern general purpose processors [72],
they studied TLBs accessed before or in parallel with the L1 cache, and con-
cluded that a certain degree of concurrency in both TLB access and page
table walking needs to be maintained, or the performance will su�er due to
large working set and massive concurrency of GPU cores. Vesely et al. [164]
studied the performance of virtual memory on the AMD APU, a fused CPU-
GPU SoC, and proposed directions for further improvements. Among other
things, they observed that faults caused by the GPU have much higher la-

22

CHAPTER 3. MULTIPROGRAMMED SYSTEMS

tency and much lower scalability of handling than faults caused by the CPU.

Saha et al. [140] have proposed a programming model for heterogeneous
x86 based systems which have a host Intel x86 CPU and the accelerator
card carrying the Intel Larrabee x86 based processor. As part of the im-
plementation, they had a software DSM between the host and accelerator
memories, using page faults on both host and accelerator to trigger data
transfers between the two memories. Such implementation is possible, be-
cause Larrabee is e�ectively x86 CMP with in-order cores derived from Intel
Pentium core [143]. Thus it comes with all the features expected from an
x86 core, including exceptions (page faults) handling.

In order to circumvent the lack of page faulting capabilities on older GPU
architectures Gelado et al. [55] have proposed to implement an asymmetric
DSM (ADSM). It uses only CPU page faulting capabilities to track the state
of shared pages (annotated by the programmer), but had to be conservative
since no page faults could be used to detect data accesses on the GPU. Jablin
et al. [71] extended this work with compiler support, so that regular malloc
function can be used instead of the special allocator for the shared allocations.

Several solutions have been proposed to allow oversubscription of the
GPU memory (i.e., allowing an application to use a data set larger than
the GPU physical memory). Ji et al. [74] have proposed a software scheme
that keeps track of used data via CPU runtime software and a GPU runtime
software that acts as a software translation layer. Lee et al. [94] have proposed
another software solution that uses compiler generated inspector kernel to
extract the working set required for the workload partitions (thread blocks)
and iteratively schedule as much blocks as can �t in the GPU memory, until
all blocks have executed. These techniques that aim at enabling on-demand
page migration and memory oversubscription for the GPU have been out-
dated, since the latest generation of GPUs (i.e., NVIDIA Pascal) supports
them natively.

Shahar et al. [145] argue for page fault handling on GPUs, in order to
enable their paging techniques and demonstrate performance improvement
with applications that oversubscribe the GPU memory. Because of limita-
tions of the current hardware, they had to introduce a software layer that
performs address translation. Additional complexity and runtime cost of the
software address translation can be avoided by introducing the exception
handling mechanism on the GPU.

23

3.3. EXCEPTION HANDLING

3.3 Exception Handling

High performance processor implementations that utilize pipelining or out-
of-order execution (or both, in most cases) need to take special care, in order
to provide the correct exception recovery and handling. The problem arises
because the processor is overlapping execution of multiple instructions (i.e.,
pipelining) or executing instructions out of their program order (i.e., out-of-
order execution). An older instruction in the program order might signal an
exception after a younger instruction has �nished and updated the program
state. Thus, the processor needs to make sure that the execution can be
correctly restarted after the exception cause has been �xed.

Additional complexity is introduced by the fact that all general purpose
processors (following the von Neumann architecture) promise the sequential
instruction execution interface to the programmer. This has the biggest im-
pact on debugging capabilities, since it can make the state of the processor
at the exception point di�erent from what programmer expects (sequential
execution in the program order), making it hard to debug. For this rea-
son, modern general purpose CPUs support precise exceptions, which entails
bringing the processor to the precise sate, before the exception is handled.
This state is consistent with the state as if instructions would have been exe-
cuted sequentially in program order, and execution stopped right before the
faulting instruction. This way, it is enough to set the program counter to
that of the faulting instruction and the execution can be restarted correctly.

3.3.1 Precise Exceptions

Early pipelined processors did not fully support precise exceptions. IBM Sys-
tem/360 model 91 [6] had a �oating point unit (scheduled using Tomasulo's
algorithm [158]) that was causing imprecise exceptions. Other high perfor-
mance computers like the CDC 6600 [157] and Cray Research Cray-1 [139]
vector machine implemented out-of-order commit, thus they did not support
precise interrupts, and virtual memory for that matter.

In their seminal paper Smith and Pleszkun [147] discussed three mech-
anisms to recover from an exception in a precise manner: reorder bu�er,
history �le, and future �le. Another classical mechanism, the checkpoint-
repair, was proposed by Hwu and Patt [68]. Sohi [149] and Moudgill et
al. [112] discuss the use of the uni�ed register �le that holds architectural
and speculative state. All of these proposals are focused on supporting ex-
ception recovery to precise architectural state by signi�cantly increasing the
storage to include architectural and speculative state (e�ectively register re-
naming). They can also be used as a missprediction recovery mechanism,

24

CHAPTER 3. MULTIPROGRAMMED SYSTEMS

which is crucial because most of the modern general-purpose processors (the
high performance ones, at least) employ speculation and dynamic instruc-
tion scheduling (and already doing renaming to improve performance). As
a result, some variation of these mechanisms is usually used in commercial
high performance processors [174, 82, 65, 156]

Implementing exceptions in vector processors has proven to be a challeng-
ing task, also. For that reason, many vector machines omitted the support
for virtual memory [139, 162, 87]. IBM System/370 allowed only one vector
instruction to be in-�ight [25], which simpli�es the support for exceptions,
but limits the performance. Several vector processors / extensions have been
proposed in academia which support precise [43] (using the reorder bu�er
approach) or restartable exceptions [90] (using the history �le approach).
Tarantula was a vector extension for the canceled Alpha EV8 processor [42].
It also supported precise exceptions, piggybacking on the host EV8 renaming
capabilities.

There have been several proposals for exception handling in multi threaded
processors [80, 178], that stall the faulting thread, while handling the excep-
tion in another execution thread. The goal of this approach is to start execut-
ing the handler code as soon as possible by avoiding the instruction �ushing,
state repairing and context switching latencies. These approaches still need
the hardware support for precise exceptions to allow process restart, in case
that the handler decides that context switch is needed, after all.

Implementing precise exceptions on the GPU through these classical meth-
ods is not deemed very practical [108]. Because of their throughput ori-
ented nature, GPUs use very large register �les already, and increasing this
state signi�cantly is not feasible. Furthermore, such increased complexity
is justi�ed in latency oriented machines (i.e., general-purpose processors)
because it enables speculative execution. With GPUs relying on massive
multi-threading for latency hiding, it is expected that additional performance
achieved through speculation would not justify the high complexity.

3.3.2 Other Exception Handling Approaches

As a way of handling exceptions in exposed pipeline processors, Rudd [138]
proposed redirecting the output of the pipelines into a replay bu�er instead
of feeding them to the write-back stage. After the exception is resolved, the
replay is performed by draining the replay bu�er (which now acts as the ex-
ecute stage) to the write-back stage. Sentinel scheduling [104] is a compiler
technique for detecting exceptions of speculatively scheduled instructions in
VLIW processors. It is focused on correct signaling only, i.e., not restarting
the process after the exception is handled. To tackle the restartability issue,

25

3.3. EXCEPTION HANDLING

Bringmann et al. [24] has proposed the write-back suppression scheme as a
method of recovery for speculatively scheduled instructions in VLIW proces-
sors. Both replay queue and write-back suppression schemes perform result
bu�ering akin to that of the reorder bu�er from [147].

Snapshotting the microarchitectural state of the machine, saving, and
restoring it during the context switch is one of the ways to implement restartable
exceptions. Reportedly, the CDC CYBER 200 designers chose this path, with
the invisible exchange package [147], while the DEC VAX designers took a
similar approach for the vector unit [60]. In case of GPUs this would entail
directly manipulating the state of the warp scheduler, score-boards, SIMT
divergence hardware, load/store unit that holds dozens of coalesced memory
requests, etc. Besides the increased context, another drawback is that most
of these units would need to be extended to support such state read/write
operations. Torng et al. [159] proposed a scheme that does a snapshot of
the issue queue and treats it as a part of the context. Their solution was
developed for a single threaded processor, and as such, it is not suitable for
our baseline multithreaded SM.

Hampton and Asanovic have proposed the software restart markers [60] as
a way to support virtual memory in vector processors without implementing
precise exceptions. Their architecture executes idempotent regions of the
program (regions that can be executed multiple times with the same result)
constructed by the compiler. Execution of the regions does not overlap, so in
case of an exception, all the instructions can be squashed, and replayed later,
from the start of the region. Kruijf et al. [40] proposed using idempotent
region execution to provide speculation recovery and precise interrupts for
scalar processors, while Menon et al. [108] applied idempotent processing
to GPUs. Idempotent processing approach on GPUs introduces runtime
overheads due to the additional instructions (generated by the compiler)
that perform register spills that perform state preservation [108].

26

Chapter 4

Methodology

In this chapter we present the experimental methodology used in the disser-
tation. First, we describe our workloads and provide the reasoning behind
our choice of benchmarks. We then describe the simulation infrastructure
developed for the evaluation of our proposals.

4.1 Benchmarks

To evaluate most of our proposals we use the CUDA implementation of Par-
boil benchmarks [154] developed by the IMPACT research group at Univer-
sity of Illinois at Urbana Champaign. Table 4.1 lists all Parboil benchmarks.
The Parboil suite is chosen over other benchmark options for several reasons.
First, we �nd that this suite covers more diverse computational patterns and
has more heterogeneous behavior compared to other GPGPU benchmark
suites. Furthermore, Parboil is now being standardized as part of the SPEC
ACCEL benchmark [36]. Finally, our group teaches CUDA programming
using those benchmarks, and thus we have a fairly good understanding of
their behavior.

None of the standard CUDA benchmarks, including Parboil benchmarks,
perform dynamic memory allocations from the kernel (i.e., device side mal-
loc). In order to evaluate our proposals on local GPU page fault handling,
we use the benchmarks distributed with Halloc CUDA dynamic memory
allocator [2]. Table 4.2 lists halloc benchmarks.

27

4.2. SIMULATORS

Mnemonic Benchmark

sgemm Single precission dense matrix multiplication
cutcp Coulombic potential calculation
histo Histogram
sad Sum of absolute di�erences
tpacf Two-point angular correlation function
bfs Breadth �rst graph search
mri-griddin MRI cartesian gridding
stencil 3D stencil code
spmv Sparse matrix vector multiplication
lbm Lattice-Boltzman method simulation
mri-q MRI non-cartesian Q matrix calculation

Table 4.1: Parboil benchmarks used for the evaluation.

Mnemonic Benchmark

add-strings Performs string concatenation
random-graph Constructs a random graph
grid-points Inserts points into a grid

Table 4.2: Halloc benchmarks used for the evaluation.

4.2 Simulators

For the purpose of this thesis, we have developed two simulators with dif-
ferent levels of abstractions, each one geared towards the task at hand. We
evaluate our multitasking proposals using a higher level system simulator
that simulates full execution of multiple CUDA applications. Our propos-
als on exception handling are evaluated using a detailed microarchitectural
simulator that simulates the execution of only one CUDA kernel.

4.2.1 Full System

The full system simulator used in this dissertation is a trace-driven simulator
based on the methodology of [44]. It models a multi-core CPU connected to a
discrete GPU through a PCIe bus. The simulator performs a coarse-grained
modeling of the CPU and �ne grained modeling of the GPU, tracing the
execution of our benchmarks on the real machine. We perform parametrized
simulation of the PCIe bus.

Figure 4.1 shows the work work�ow with our system simulator. Bench-
marks are compiled with NVIDIA nvcc compiler, and run two times on a
real machine, to gather CPU and GPU traces. All the benchmark applica-
tions are traced from the �rst CUDA call to the last CUDA call, capturing
all the memory transfer, kernel execution and CPU execution phases. CPU

28

CHAPTER 4. METHODOLOGY

Hand
instrumented

Source code

Instrumented
device binary

Instrumented
host binary

Execution

Execution

Interposed
libcudart

cpu.trace

kernel.trace

Workload
Generator

Traces

Simulator

nvcc

nvcc

Figure 4.1: Full system simulation work�ow.

traces consist of a starting and ending timestamp for each API call to CUDA
runtime library, obtained using interposed libcudart. GPU traces consist of
warp start and �nish timestamps, obtained using hand instrumented kernels
to gather the timing. Workload generator creates multiprogrammed work-
loads by randomly picking benchmarks that will be run at the same time.

4.2.2 Microarchitectural

The microarchitectural simulator used in this dissertation is a trace-driven
cycle-level timing simulator. It consumes dynamic instruction and memory
traces generated by an execution-driven functional simulator that emulates
and traces all kernel invocations of a benchmark. The simulator models
detailed SMs (except for the ideal instruction cache), cache hierarchy and
MMU (TLBs and �ll unit) attached to a constant latency and bandwidth
DRAM model. We do not simulate texture caches and constant caches, thus
benchmarks that use texture or constant memory spaces are modi�ed to
use global memory instead. The simulator uses an ISA designed to mimic
modern GPU ISAs with all the distinguishing features such as a large uni�ed
register �le, explicit management of the divergence stack, fused-multiply-add
instruction, approximate complex math instructions, etc.

Source code
Functional
Simulator

bb.dict

mem.trace

Traces

nvcc Kernel IR feynmancc bb.trace

CPU binary

Timing
Simulator

GPU binary

Figure 4.2: Microarchitectural simulation work�ow.

Figure 4.2 shows the work work�ow with our microarchitectural simula-
tor. Benchmarks are compiled from their CUDA sources using NVIDIA nvcc
compiler to generate the LLVM intermediate representation (IR) assembly
for all the kernels. The kernel IR is then compiled to the target ISA by our
compiler back-end (feynmancc), built on LLVM [93], and assembled before
the functional simulation. The functional simulator emulates the kernel exe-

29

4.2. SIMULATORS

cution and generates the basic block dictionary (list of instructions for each
basic block in the kernel code) and basic block1 of and memory traces for
each thread.

1Using the basic block dictionary with basic block traces is equivalent to using instruc-
tion traces, but also achieves the compression e�ect.

30

Chapter 5

Enabling Preemptive

Multitasking

As we have previously discussed in Section 2, GPUs have been designed to
maximize the performance of a single application, sacri�cing the multitasking
capabilities. Issues when sharing a GPU, such as priority inversion and no
fairness, have already been noticed by operating systems [137, 77, 78, 125] and
real-time [76, 14] research communities. Moreover, with the integration of
programmable GPUs into mobile SoCs [141, 10] and consumer CPUs [5, 69],
as well as increased deployment in the cloud and datacenter [63, 62], the
demand for GPU sharing is likely to increase. In this chapter we argue that
support for �ne-grained sharing of GPUs must be implemented and provide
our proposals on how to do so.

To enable true sharing, GPUs need a hardware mechanism that can pre-
empt the execution of GPU kernels, rather than waiting for the program
to release the GPU. Such mechanism would enable system-level schedul-
ing policies that can control the execution resources, in a similar way the
multitasking operating systems do with the CPUs today. The assumed rea-
son [3, 125] for the lack of a preemption mechanism in GPUs is the expected
high overhead of saving and restoring the context of SMs (up to 256KB of
register �le and 48KB of on-chip scratch-pad memory per SM), which can
take up to 44µs in GK110, assuming the peak memory bandwidth. Com-
pared to the context switch time of less than 1µs on modern CPUs, this
might seem to be a prohibitively high overhead.

In this chapter we demonstrate that preemptive multitasking is a feasible
approach to multiprogramming on GPUs. We design two preemption mech-
anisms with di�erent e�ectiveness and implementation costs. One is similar
to the mechanism in classic operating systems where the execution on SMs is

31

stopped, and their context is saved to the o�-chip memory by a trap handling
routine. The other mechanism exploits the semantics of the GPU program-
ming model and the nature of GPU applications to implement preemption
by stopping the issue of new work to preempted SMs, and draining them
from currently running work. We show that both mechanisms can be used to
provide improvements in system responsiveness and fairness at the expense
of a small loss in throughput.

GPU sharing can be done at three di�erent levels:

1. Time multiplexing the whole GPU, with all SMs belonging to one pro-
cess.

2. Spatially sharing the GPU with an SM granularity.

3. Sharing the SM among multiple processes in the SMT fashion.

We argue that the spatial sharing is a natural choice for GPUs due to its
simplicity and e�ectiveness. Our baseline GPU has private virtually tagged
L1 and shared physically tagged L2 caches, as well as a large enough number
of SMs, which makes the sharing with the SM granularity a good choice.
Since the baseline GPU constraint of exclusive access to the execution engine
prevents the spatial sharing out of the box, we propose further hardware
extensions that allow the utilization of SMs, individually. These extensions
enable di�erent processes to concurrently execute GPU kernels on di�erent
sets of SMs.

Spatial sharing requires only slightly more complex logic than the time
multiplexing of the whole GPU, yet provides bene�ts such is a decreased
number of context switches, as well as a smaller context to save and re-
store on each switch. Even though sharing the SM in the SMT fashion [66,
144, 173, 161] could have a positive impact on the system throughput, it
requires changes to the SM scheduling logic and �rst level of memory hierar-
chy. Furthermore, due to the dynamic partitioning of register �le and shared
memory, resource fragmentation could become a problem, leading to lower
SM utilization. We thus leave the SM sharing for the future work.

With the preemption mechanisms in place and the sharing level chosen, a
scheduler is required to complete the multitasking picture. As with the shar-
ing, scheduling decisions can be done at multiple levels. Scheduling can be
done in software, running on the CPU or GPU (e.g., adding general-purpose
core designated to running operating system tasks). Alternatively, schedulers
can be implemented in hardware as part of the existing SM scheduling logic
(i.e., SM driver). In this chapter we present Dynamic Spatial Sharing (DSS),
a hardware scheduling policy that dynamically partitions the resources (SMs)

32

CHAPTER 5. ENABLING PREEMPTIVE MULTITASKING

Figure 5.1: Execution of soft real-time application with (a) FCFS (current GPUs), (b) non-
preemptive priority and (c) preemptive priority schedulers. K1 and K2 are low-priority
kernels, while K3 is high-priority.

and assigns them to di�erent processes. We opted for the hardware approach
because of the signi�cantly lower latency of the scheduler, which should sim-
plify the scheduling decisions. Still, to make it �exible, we expose it to the
SW, allowing the OS to in�uence the GPU scheduling by assigning priorities
to processes.

5.1 Motivation

Let us consider an example that illustrates how scheduling support in current
GPUs is not su�cient. Figure 5.1 shows a soft real-time (i.e., interactive)
application competing for resources with some other applications. The exe-
cution on a modern GPU is shown in Figure 5.1a, where the kernel with a
deadline (K3) does not get scheduled until all previously issued kernels (K1
and K2) have �nished executing. A software implementation [76] or a mod-
i�cation to GPU command scheduler could allow priorities to be assigned to
processes, resulting in the timeline shown in Figure 5.1b.

A common characteristic of the previous approaches is that the execution
latency of K3 depends on the execution time of previously launched kernels
from other processes. This is an undesirable behavior from both system's
and user's perspective, and limits the e�ectiveness of the GPU scheduler. To
decouple the scheduling from the latency of a kernel running on the GPU, we
need a preemption mechanism. Figure 5.1c illustrates how the latency of the
kernel K3 could decrease even further if kernel K1 can be preempted. Allow-
ing GPUs to be used for latency sensitive applications is the �rst motivation
of this work.

Preemptive execution on GPUs is not only useful to speed up high-pri-
ority tasks, it is also required to guarantee forward progress of applications
in multiprogrammed environments. The persistent threads pattern of GPU
computing, for instance, uses kernels that occupy the GPU and actively wait

33

5.2. ARCHITECTURE

for work to be submitted from the CPU [4, 59]. Preventing starvation when
this kind of applications run in the multiprogrammed system is the second
motivation of this work.

There is a widespread assumption that preemption in GPUs is not cost-
e�ective due to the large cost of context switching [3, 125]. Even though it
is clear that in some cases it is necessary [92], it is not clear if bene�ts can
justify the disadvantages when preemption is used by �ne-grained schedulers.
Comparing bene�ts and drawbacks of the context saving and restoring ap-
proach to preemption with an alternative approach where no context is saved
or restored on preemption points is the third motivation of this work.

5.2 Architecture

Following the standard practice of systems design, we separate mechanisms
from policies that use them. We provide two generic preemption mechanisms
and a policy that is completely oblivious to the preemption mechanism used.
To simplify the implementation of policies, we further abstract the common
hardware in a scheduling framework.

5.2.1 Concurrent Execution of Processes

To support multiprogramming, the memory hierarchy, the execution engine
and the SMs all have to be aware of multiple active contexts. The memory
hierarchy of the GPU needs to support concurrent accesses from di�erent pro-
cesses, using di�erent address spaces. Modern GPUs implement two types of
memory hierarchy [128]. In one, the shared levels of the memory hierarchy
are accessed using virtual addresses and the address translation is performed
in the memory controller. The cache lines and memory segments of such
hierarchy have to be tagged with an address space identi�er. The other
implementation uses address translation at the private levels of the memory
hierarchy, and physical memory addresses to access shared levels of the mem-
ory hierarchy. The mechanisms that we describe here are compatible with
both approaches. We assume that latter approach is implemented, hence no
modi�cations are required to the memory subsystem.

If only one GPU context executes kernels, SMs can easily get the context
information from the global GPU control structures. We extend the execu-
tion engine to include a context table with information of all active contexts.
The context information is sent to the SM during the setup, before it starts
receiving thread blocks to execute. The SM is extended with a GPU context
id register, a base page table register and other context speci�c information.

34

CHAPTER 5. ENABLING PREEMPTIVE MULTITASKING

The base page table register is used on a TLB miss to walk the per-process
page table stored in the main memory of the GPU. This is in contrast to the
base GPU architecture where the same page table was used by all SMs, since
they execute kernels from the same context. Similarly, the GPU context id
register is used when accessing the objects associated with the GPU context
(e.g., kernels) from an SM. We extend the context of the SM, rather than
reading this information from the context table that would otherwise require
many read ports to allow concurrent accesses from SMs.

5.2.2 Preemptive Kernel Execution

The scheduling policy is always in charge of �guring out which kernel should
be scheduled to run, as well as when and where (i.e., on which of the SMs).
If there are no idle SMs in the system, it can use a preemption mechanism
to free up some SMs. To provide a generic preemption support to di�erent
policies, we need to be able to preempt the execution on each SM individually.
We provide this support by extending the SM driver. Figure 5.2 shows the
operation of the SM driver, with dashed objects showing our extensions.
When there are kernels to execute, the SM driver looks for an idle SM,
performs the setup, and starts issuing thread blocks until the SM is fully
occupied. The SM driver then repeats the procedure until there are no more
idle SMs. When there are thread blocks left, the baseline SM driver issues
a new thread block every time an SM noti�es the driver that it �nished
executing a thread block.

We extend this operation and allow the scheduling policy to preempt the
execution on an SM (independent of which preemption mechanism is used)
by labeling it as reserved. After receiving a noti�cation of �nished thread
block from the SM, the SM driver checks if the SM is reserved. If not, it
proceeds with the normal operation (issuing new thread blocks). If reserved,
the driver waits for preemption to be done, sets up the SM for the kernel
that reserved it, and continues with the normal operation. In Section 5.2.3
we describe the hardware extensions used by the SM driver to perform the
bookkeeping of SMs and active kernels.

The �rst preemption mechanism that we implement, context switch, fol-
lows the basic principle of preemption used by operating system schedulers.
The execution contexts of all the thread blocks running in the preempted
SM are saved to o�-chip memory, and these thread blocks are issued again,
later on. Each active kernel has a preallocated memory where the context
of its preempted thread blocks are kept. When a preempted thread block is
issued, its execution context is �rst restored so the computation can continue
correctly. This context consists of the architectural registers used by each

35

5.2. ARCHITECTURE

SM Reserved

Last TB? Last TB?

Get an idle SM

Setup the SM and
issue initial thread blocks

Wait for an SM to finish
executing a thread block

Work

Yes

No

Yes

No

Yes

Yes

No

Free SMs left?
Yes

No

Issue the next TB (if any)

No

Figure 5.2: Operation of the SM driver. Dashed objects are proposed extensions.

thread of the thread block, the private partition of the shared memory, and
other state that de�nes the execution of the thread block (e.g., the pointer to
the reconvergence stack and state of the barrier unit). Saving and restoring
the context is performed by a software trap handler. Each thread saves all of
its registers, while the shared memory of the thread block is collaboratively
saved by its threads. This operation is very similar to the context save and
restore performed on device-side kernel launch when using the dynamic par-
allelism feature of GK110 [119]. Since preemption is an asynchronous event,
the problem of imprecise exceptions needs to be dealt with [147]. However,
unlike page faults or similar instruction generated exceptions, handling of
the preemption signal can be deferred to a more convenient time. Thus we
opt for the simplest solution of draining the pipeline from all the in-�ight
instructions, before jumping to the trap routine1. The main drawback of the
context switch mechanism is that during the context save and restore, thread

1This work was done before the GPU on-demand paging was implemented by the GPU
vendors, and thus does not take it into account. The pipeline draining approach, even
though correct, is ine�cient when there are in-�ight page faults caused by the preempted
SM. We discuss our solutions to the problem of context switching an SM under faults in
Section 6.

36

CHAPTER 5. ENABLING PREEMPTIVE MULTITASKING

blocks do not progress with useful work, leading to a complete underutiliza-
tion of the SM. This underutilization could be improved by using context
minimization techniques, such as iGPU [108].

The second mechanism that we implement, SM draining, tries to avoid
this underutilization by preempting the execution of the kernel on a thread
block boundary (i.e., when a thread block �nishes execution). Since thread
blocks are independent and each one has its own state, no context has to
be saved nor restored this way. This mechanism deals with the concurrent
execution of thread blocks in an SM by draining the whole SM when the
preemption happens. To perform the preemption by draining, the SM driver
stops issuing any new thread blocks to the given SM. When all the thread
blocks issued to that SM �nish naturally, the execution on that SM is pre-
empted.

The context switch mechanism has a relatively predictable latency that
mainly depends on the amount of data that has to be moved from the SM
(register �le and shared memory) to the o�-chip memory. The draining mech-
anism, on the other hand, tries to trade the predictable latency for higher
utilization of the SM. Its latency depends on the execution time of currently
running thread blocks, but SMs still get to do some useful work while drain-
ing. The draining mechanism naturally �ts the current GPU architectures as
it only requires small modi�cations to the SM driver. The biggest drawback
is its inability to e�ectively preempt the execution of applications with very
long running thread blocks or even preempt the execution of malicious or
persistent kernels at all.

5.2.3 Scheduling Framework

We extract a generic set of functionalities into a scheduling framework that
can be used to implement di�erent scheduling policies. The framework pro-
vides the means to track the state of kernels and SMs and to allow the
scheduling policy to trigger the preemption of any SM. The scheduling pol-
icy logic plugs into the framework and implements the logic of the concrete
scheduling algorithm. Both the scheduling framework and scheduling poli-
cies are implemented in hardware to avoid the long latency of issuing com-
mands to the GPU [77]. Both the context switch and draining preemption
mechanisms are supported by our framework. Scheduling policies perform-
ing prioritization, time multiplexing, spatial sharing or some combination of
these can be implemented on top of it. The OS can tweak the priorities on
the �ight, but is not on the critical path of the scheduling process. Thus, we
do not introduce any additional OS noise.

Figure 5.3 shows the components of the scheduling framework. An exam-

37

5.2. ARCHITECTURE

Figure 5.3: Scheduling framework. The rest of the execution engine (SM Driver and SMs)
is shaded.

ple of interaction between the scheduling policy and the framework is given
in Section 5.2.4. Command Bu�ers receive the commands from the com-
mand dispatcher and separate the execution commands from di�erent con-
texts. Each command bu�er can store one command. The Active Queue
stores the identi�ers of the active (running or preempted) kernels. When
there are free entries in the active queue, the scheduling policy can read a
command (kernel launch) from one of the command bu�ers and allocate an
entry in the Kernel Status Register Table (KSRT). KSRT is used to
track active kernels and each valid entry is a KSR of one active kernel, aug-
mented with the identi�er of its GPU context. The active queue is used by
the policy to search for scheduling candidates by indexing the KSRT. The
SM Status Table (SMST) is used to track the SMs. Each entry in the
SMST contains the KSR index of the kernel being executed, the state of the
SM (Idle, running or reserved), the number of running thread blocks, and
the KSR index of the next kernel (when in reserved state). The SMST is
accessed by the SM driver when issuing a thread block to �nd the KSR and
the state of the SM. When setting up the SM that was reserved, the SM
driver uses the next �eld of the SMST to �nd the kernel that the SM was
reserved for.

The Preempted Thread Block Queues (PTBQ) are used to store
the handlers of preempted thread blocks. Each queue is associated with one
KSR and its entries contain the id and stack pointer of a preempted thread
block. Each time the driver is about to issue a new thread block from a
kernel, it checks if there are any previously preempted thread blocks from
that kernel. If there are, the thread block from the top of the associated

38

CHAPTER 5. ENABLING PREEMPTIVE MULTITASKING

PTBQ will be issued. Otherwise, the next thread block will be issued. We
choose to issue preempted thread blocks �rst in order to keep their number
limited, thus allowing their handlers to be stored on-chip, for quick access.
Still, we allow all active thread blocks of a kernel to be preempted, not to
limit the type of sharing that the scheduling policy can implement. Notice
that the draining mechanism does not need PTBQs, as thread blocks run to
completion.

In our implementation we limit the number of active kernels to the number
of SMs, to allow spatial partitioning granularity of one kernel per SM. This
also allows us to keep the PTBQs on chip, for fast access. Thus SMST, KSRT
and the active queue all have NSMs (the number of SMs) entries. There is
also NSMs PTBQs, each one with NSMs ∗ Tmax entries, where Tmax is the
maximum number of active thread blocks in an SM. This number of active
kernels is also adequate for time multiplexing in large GPUs, but it could be
changed (e.g., to allow time multiplexing in mobile GPUs with one SM), since
the mechanisms and the policy described in Section 5.2.4 can also support
di�erent ratios of active kernels to SMs. Fixing the number of active kernels
means that when active queue is full, new kernels submitted to the GPU will
not be considered for scheduling until one of the active kernels �nishes.

Hardware overheads of the framework are minor for our baseline archi-
tecture with 13 SMs. Command bu�ers, KSRT, SMST, and active queue
together take less than 0.5KB of on-chip SRAM. PTBQs take 21KB of on-
chip SRAM (for the whole GPU) and are present only if the context switch
mechanism is implemented.

5.2.4 Dynamic Spatial Sharing Policy

Here we present the Dynamic Spatial Sharing (DSS) policy that is designed
to perform dynamic spatial partitioning of the execution engine by assigning
disjoint sets of SMs to di�erent kernels. The DSS policy is based on the
concept of tokens that represent the ownership of the resource (SM in this
case). It allows the OS, runtime system or a user to assign a number of
tokens to each kernel that represents their SM budget. One token is taken
from the kernel (by decrementing its token count) when an SM is assigned
to it. When an SM gets released by the kernel, due to the preemption or
the kernel �nishing execution, the token is returned to it. To prevent the
underutilization of resources that would happen when there are more SMs
than tokens are assigned, kernels are allowed to occupy more SMs, by going
to debt (have a negative token count). The DSS policy is formally given in
Algorithm 1.

The scheduling algorithm can be invoked by a periodic timer or by some

39

5.2. ARCHITECTURE

Algorithm 1 Partitioning Algorithm
function partitioning_procedure

repeat

idle_sm← find_idle(SMSR.state)
ksr_max← max(KSR.count)
ksr_min← min(KSR.count)
if KSR[ksr_max] = KSR[ksr_min] then

return

end if

if idle_sm then

SMSR[idle_sm].state← running
KSR[ksr_max].count← KSR[ksr_max].count− 1

else

SMSR[ksr_min].state← reserved
SMSR[ksr_min].next← ksr_max
KSR[ksr_min].count← KSR[ksr_min].count+ 1
KSR[ksr_max].count← KSR[ksr_max].count− 1

end if

until KSR[ksr_max].count ≤ KSR[ksr_min].count+ 1
end function

events occurring in the system. We choose to execute the algorithm only on
the following two events: (1) a kernel is inserted in the active queue (increase
in the number of active kernels), and (2) an SM becomes idle (increase in
number of idle SMs). The logic that implements the policy �nds the kernel
with the highest token count (that has thread blocks to issue), the kernel with
the lowest token count, and checks if there are any Idle SMs in the system.
If these two kernels have the same number of tokens, no repartitioning is
performed. If there are idle SMs, the token count is decremented, and the
kernel is scheduled to execute on that SM. Otherwise, the policy �nds the
running kernel with the lowest current token count and switches the state
of one of its assigned SMs from running to reserved, triggering the kernel
preemption on that SM. It also increments the token count of the preempted
kernel and decrements the token count of the newly assigned kernel. This
procedure is repeated until the di�erence between the current token counts
of all the active kernels is no bigger than one (to prevent a livelock) at which
point the system gets into the steady state.

Compared to the CPUs, preempting the execution on the GPU can take a
relatively large amount of time (with both mechanisms), yet the duration of
a computation can be fairly short. In order to cope with the dynamic nature
of the system and long latency operations, we allow the scheduler to change
the decision of the next kernel (the kernel for which an SM is reserved) during
the preemption of that SM.

40

CHAPTER 5. ENABLING PREEMPTIVE MULTITASKING

CPU GPU

Clock: 2.8 GHz Clock: 706 MHz
Cores: 4 SMs: 13
Threading: 2-way Memory Bandwidth: 208 GB/s
PCIe Bus Registers (per SM): 65536
Clock: 500 MHz Thread Blocks (per SM): 16
Lanes: 32 Threads (per SM): 2048
Burst: 4 KB Shared memory (per SM): 16KB∗/ 32KB / 48KB

Table 5.1: Simulation parameters used in the experimental evaluation in Section 5.3.
∗Default con�guration of the shared memory.

The policy uses the contents of the SMST, KSRT and the active queue
to partition the available SMs among the running kernels. Searching for the
kernels with the biggest and smallest amount of tokens and searching for
the idle SM can all happen in parallel. Since the operation is not on the
critical path, we perform the search serially, by one counter going through
the SMST and KRST. This operation takes as many cycles as SMs (13 in
our con�guration). Because of the simplicity of our DSS scheduler, we expect
the area and energy overhead of the implementation to be negligible.

5.3 Evaluation

5.3.1 Methodology

We evaluate our proposals presented in this chapter using the full system
simulator described in Section 4.2.1. The simulator parameters, based on an
early version of Kepler GPU with 13 SMs (K20c) and Intel Core i7 930 CPU
that were used to obtain traces, are provided in Table 5.12. We assume the
FCFS scheduling inside the data transfer engine, unless otherwise noted.

We use ten, out of eleven, benchmarks from the Parboil benchmark
suite [152] in our evaluation. We do not use the BFS benchmark in our
evaluation since it uses the global synchronization that our trace-driven in-
frastructure cannot model accurately. All the kernels are compiled for the
NVIDIA compute architecture 3.5 (native for the Kepler GK110 chips) using
the NVCC version 5.0 and GCC 4.6.3 for the host code.

We create multiprogrammed workloads by co-scheduling several bench-
mark applications chosen randomly. We run all benchmarks in the workload,
replaying them once they complete until all benchmarks have been executed

2If the default con�guration does not allow the kernel to be launched because it needs
more shared memory, the SM will be con�gured for the �rst bigger con�guration that
satis�es the shared memory requirement.

41

5.3. EVALUATION

at least 3 times. We are using multiprogrammed workloads with 2, 4, 6, and
8 processes. Replaying shorter benchmarks provides even workload for the
longer benchmarks. Replaying even the longest benchmarks provides di�er-
ent workload interleavings. Running the whole applications provides more
realistic execution workloads, as opposed to running kernels only. Statistics
are gathered only for the completed executions and then averaged. This
methodology is based on [160] and [163]. We choose the input sets of the
benchmarks (shown in square brackets in Table 5.2) in a way that minimizes
the extreme di�erences in the execution times of the benchmarks and thus
cut back on our simulation time. Still, there is plenty of variability between
benchmarks.

All the metrics used for evaluation in this chapter are calculated as sug-
gested by Eyerman et al. [45]. Metrics are calculated based on the per-
formance (execution time) of applications run in isolation and run in the
multiprogrammed workload.

• Normalized Turnaround Time (NTT) is the measure of application
slowdown when executed as part of the multiprogrammed workload,
compared to the isolated execution.

• Average Normalized Turnaround Time (ANTT) is calculated as the
arithmetic average of turnaround times of all applications in a work-
load, normalized to their isolated execution.

• System Throughput (STP) is the measure of system's overall perfor-
mance and expresses the amount of work done in a unit of time.

• Fairness is the measure (number between one and zero) of equal progress
of applications in a multiprogrammed workload, relative to their iso-
lated execution, and it ranges between perfect fairness (all the processes
experience equal slowdown over isolated execution) and no fairness at
all (some processes completely starve).

Table 5.2 shows the characteristics of the benchmark applications. For
each kernel we show the number of launches, the execution time of the kernel,
the number of thread blocks, the average execution time of the thread blocks,
the shared memory usage of each thread block, the number of registers used
by each thread block, the maximal number of concurrent thread blocks in an
SM, the amount of on-chip SRAM (shared memory and register �le) resource
utilization of an SM, and the projected context save time when preempting
an SM (assuming only its share of global memory bandwidth).

42

Benchmark
Kernel

Num. of Avg. Time Num. Time/TB Sh. M. # Regs TBs Resour. Save
Class 1 Class 2

& Dataset Launches (µs) TBs (µs) /TB (B) /TB /SM /SM (%) Time (µs)
lbm [short] StreamCollide 100 2905.81 18000 2.42 0 4320 15 83.26 16.20 MEDIUM LONG
histo [default] �nal 20 70.24 42 5.02 0 19456 3 75.00 14.59 SHORT MEDIUM

prescan 20 20.87 64 1.30 4096 9216 4 52.63 10.24
intermediates 20 77.88 65 4.79 0 8964 4 46.07 8.96
main 20 372.58 84 4.44 24576 16896 1 29.61 5.76

tpacf [small] genhists 1 14615.33 201 72.71 13312 7680 1 14.14 2.75 LONG MEDIUM
spmv [medium] spmvjds 50 42.38 374 1.81 0 928 16 19.08 3.71 SHORT SHORT
mri-q [large] ComputeQ 2 3389.71 1024 26.48 0 5376 8 55.26 10.75 MEDIUM SHORT

ComputePhiMag 1 4.70 4 4.70 0 6144 4 31.58 6.14
sad [large] largersadcalc8 1 8174.21 8040 16.27 0 3328 16 68.42 13.31 LONG LONG

largersadcalc16 1 1529.38 8040 3.04 0 832 16 17.11 3.33
mbsadcalc 1 15446.02 128640 0.84 2224 2135 7 24.20 4.71

sgemm [medium] mysgemmNT 1 3717.18 528 98.56 512 4480 14 82.89 16.13 MEDIUM SHORT
stencil [default] block2Dregtiling 100 2227.30 256 8.70 0 41984 1 53.95 10.50 MEDIUM LONG
cutcp [small] lattice6overlap 11 1520.11 121 37.69 4116 3328 3 16.80 3.27 MEDIUM MEDIUM
mri-gridding binning 1 2021.41 5188 1.56 0 4096 4 21.05 4.10 LONG LONG
[small] scaninter1 9 7.59 29 4.14 665 1173 16 27.54 5.36

scanL1 8 826.12 2084 1.19 4368 9216 3 39.74 7.73
uniformAdd 8 127.30 2084 0.24 16 4096 4 21.07 4.10
reorder 1 2535.30 5188 1.95 0 8192 4 42.11 8.19
splitSort 7 3838.84 2594 4.44 4484 10240 3 43.79 8.52
griddingGPU 1 208398.47 65536 31.80 1536 3648 10 51.81 10.08
splitRearrange 7 1622.93 2594 1.88 4160 5888 3 26.71 5.20
scaninter2 9 8.81 29 4.80 665 1173 16 27.54 5.36

Table 5.2: Statistics of all the kernels from benchmark applications used in the experimental evaluation.

5.3. EVALUATION

5.3.2 E�ectiveness of the Preemption Mechanisms

To measure the performance of the mechanisms, isolated from the poten-
tial bene�ts and overheads of the scheduling policies implemented on top of
them, we evaluate them by implementing the simple priority queues sched-
uler. This scheduler (used in our example in Section 5.1) always schedules
the kernel with the highest priority. We quantify the bene�ts of preemptive
execution and compare the performance of the two described preemption
mechanisms by comparing the priority queues schedulers that implement
preemption (preemptive priority queues-PPQ) and the implementation of
priority queues scheduler with no preemption (NPQ). For this experiment,
the scheduling policy in the data transfer engine is always NPQ. We generate
random workloads in which one process has higher priority than the rest of
the processes in the workload. All the benchmark applications appear the
same number of times as the high-priority process of the workload.

We measure the turnaround time of the prioritized application and in
Figure 5.4 show the improvement of the application's NTT when prioritized
over its non-prioritized execution. When using the non-preemptive prior-
itization scheme, turnaround time improves for workloads with 4 or more
processes (from 1.1x to 1.6x on average as the number of processes grows).
The NPQ scheduler allows the high-priority application to start executing
as soon as SMs become available, thus the high-priority kernel has to wait
only for the currently running kernel to �nish. The non-preemptive scheduler
does not bring any improvement for workloads with only 2 processes since
in this case the scheduler actually never has any choice. The only potential
scenario that improves the turnaround time over the FCFS is if a kernel from
the high-priority process and a kernel from the low-priority process are both
launched while the execution engine is already running another kernel of the
high-priority process. The newly launched high-priority kernel has to wait
in the command dispatcher until the previously launched kernel �nishes. By
the time it reaches the execution engine, the ready, low-priority kernel will
already be scheduled.

Preemptive priority queues (PPQ) scheduler shows a much higher turnaround
time improvement of the high-priority process, since the high-priority ker-
nels do not have to wait for the whole low-priority kernel to �nish, just
the usually much shorter preemption latency. Both preemption mechanisms
improve turnaround time over the NPQ scheduler, but using the context
switch mechanism the improvements, on average, are much higher (from
2x to 15.6x as number of processes grows) than the draining mechanism
(from 1.6x to 6x as number of processes grows). This di�erence comes from
the, on average, lower preemption latency of the context switch mechanism.

44

CHAPTER 5. ENABLING PREEMPTIVE MULTITASKING

LONG MEDIUM SHORT AVERAGE
2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 80

1

2

3

4

5

6

7

8
NT

T
im

pr
ov

em
en

t o
ve

r F
CF

S
(t

im
es

) 15
.4

34
.2

9.
1

11
.2

63
.7

15
.6

16
.2

NPQ
PPQ Context Switch
PPQ Draining

Figure 5.4: Turnaround time improvement of the high-priority process over its non-
prioritized execution (higher is better). Showing workloads with 2 to 8 processes. Bench-
marks in each group are listed in Table 5.2 as Class 1.

Only 8 of 24 kernels from our benchmark suite use more than half of the
available storage resources (register �le and shared memory), resulting in
a longest projected context save time of 16.2µs (StreamCollide kernel from
lbm). On the other hand, 6 kernels have an average thread block execution
time longer than 16.2µs, with the longest one being 98.56µs (mysgemmNT
from sgemm). Since the thread block execution time dictates the preemption
latency when using the draining mechanism, the latency of preempting is on
average smaller when using context switch.

The PPQ scheduler has variable e�ectiveness for di�erent benchmark ap-
plications. In Figure 5.4, benchmarks are grouped by the average execution
time of their kernels (Class 1 in Table 5.2). Both groups and execution times
are listed in Table 5.2. Three benchmarks, from the LONG group, have at
least one very long kernel (> 10000 µs). They observe the smallest improve-
ment in performance (from 1.26x to 1.76x with context switch and 1.54x with
the draining mechanism, as the number of processes in the workload grows)
since their kernels dominate the execution. The improvements that they
achieve mainly come from the workloads where they are mixed with other
benchmarks from the LONG group. Half of the benchmarks (�ve of them),
averaged in the MEDIUM group have at least one medium kernel (between
1000 µs and 3500 µs). They achieve bigger improvements (from 1.06x to 4.6x
with the context switch and from 1.33x to 4.5x with the draining mechanism).
The remaining two benchmarks, averaged in the SHORT group have only
short kernels (< 350 µs). They observe very big improvements in turnaround
time (from 5.1x to 63.7x with the context switch and from 2.84x to 16.2x

45

5.3. EVALUATION

2 4 6 81.0

1.1

1.2

1.3

1.4

1.5

ST
P

de
gr

ad
at

io
n

ov
er

 N
PQ

 (t
im

es
) PPQ Context Switch

PPQ Draining

(a) Exclusive access.

2 4 6 81.0

1.1

1.2

1.3

1.4

1.5

ST
P

de
gr

ad
at

io
n

ov
er

 N
PQ

 (t
im

es
) PPQ Context Switch

PPQ Draining

(b) Shared access.

Figure 5.5: System throughput (STP) degradation when the prioritized kernel has exclu-
sive and shared access to the execution engine (lower is better). Showing workloads with
2 to 8 processes.

with the draining mechanism) since the execution times of their kernels are
very short compared to the other benchmarks. Preemption thus minimizes
the waiting time of these kernels signi�cantly. The bene�ts of the context
switch mechanism accumulate with every preemption of the kernels with long
running thread blocks, resulting in a big di�erence in the e�ectiveness of the
two mechanisms, especially in the SHORT group. The shorter the kernels
are, the more time will they be launched (because of the replay of bench-
marks described in Section 4), increasing the chance of preempting a kernel
with very long thread blocks.

5.3.3 Overheads of the Preemption Mechanisms

The preemption mechanisms on average improve the turnaround time of the
high-priority process, but they come at the price of a lower utilization of
the execution engine. The degradation in the STP due to the preemption
mechanisms is quanti�ed in Figure 5.5. We implement two slightly di�er-
ent PPQ schemes. The �rst scheme, shown in Figure 5.5a grants the high-
priority process an exclusive access to the execution engine. Even if some
resources become available, low-priority kernels will not be scheduled while
high-priority kernels are still active. On average, PPQ with the context save
mechanism has 1.08x to 1.12x STP overhead over NPQ while PPQ with the
draining mechanism has an STP overhead between 1.09x and 1.38x. The big-
ger overhead of the draining mechanism comes from preemptions of kernels
that can execute many (long) thread blocks concurrently. The more thread

46

CHAPTER 5. ENABLING PREEMPTIVE MULTITASKING

SHORT MEDIUM LONG AVERAGE
2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 80.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
NT

T
im

pr
ov

em
en

t o
ve

r F
CF

S
(t

im
es

) 4.
0

DSS Context Switch
DSS Draining

Figure 5.6: Turnaround time improvement with equal sharing (higher is better). Showing
workloads with 2 to 8 processes. The list of benchmarks in each group is given in Table 5.2
as Class 2.

blocks per SM a kernel can run, the bigger is the chance that the variable
execution times of the thread blocks will leave the SM running underutilized
(i.e., running a number of thread blocks lower than its actual capacity).

The other PPQ scheme that we implement uses the free resources to
schedule low-priority kernels, even in the presence of high-priority kernels in
the execution engine. It is modeled after current GPUs that try to perform
back-to-back scheduling of the independent kernels (from the same process)
to improve the STP. Such a technique works with the simple FCFS policy,
but it is counterproductive in the case of preemptive prioritization, since
some applications tend to asynchronously enqueue many kernel invocations.
The back-to-back execution, described in Section 2.3, allows a low-priority
kernel to start executing as soon as some SMs become free. These kernels
get preempted soon after they start executing and actually waste resources,
instead of saving any. Hence, this scheme, shown in Figure 5.5b, results in
higher overheads than the exclusive-access one, from Figure 5.5a.

5.3.4 Example Policy: Equal Spatial Sharing

We use the DSS scheduling policy described in Section 5.2.4 to allow all active
kernels to run concurrently. By ensuring that all the active kernels progress,
the policy seeks to prevent the starvation of processes with short kernels and
at the same time fairly partition the resources among all running kernels. We
setup the DSS policy to perform equal sharing by assigning equal priorities
(token count) to all the processes (tc = bNsm/Npc). Since there is thirteen

47

5.3. EVALUATION

 0% 100%
2-process workloads

0
2
4
6
8

10
12
14
16

AN
TT

 0% 100%
4-process workloads

0
2
4
6
8

10
12
14
16

AN
TT

 0% 100%
6-process workloads

0
2
4
6
8

10
12
14
16

AN
TT

 0% 100%
8-process workloads

0
2
4
6
8

10
12
14
16

AN
TT

FCFS
DSS Context Switch
DSS Draining

 0% 100%
2-process workloads

0
2
4
6
8

10
12
14
16

AN
TT

 0% 100%
4-process workloads

0
2
4
6
8

10
12
14
16

AN
TT

 0% 100%
6-process workloads

0
2
4
6
8

10
12
14
16

AN
TT

 0% 100%
8-process workloads

0
2
4
6
8

10
12
14
16

AN
TT

FCFS
DSS Context Switch
DSS Draining

Figure 5.7: Average Normalized Turnaround Time (ANTT) for all the simulated workloads
(lower is better), sorted by the increasing ANTT.

SMs in our simulated systems, but we evaluate with 2, 4, 6 and 8 process
workloads, not all processes actually get the same number of SMs. The rest
of the SMs that cannot be evenly distributed (r = Nsm mod Np) are assigned
to the r kernels that �rst reach the active queue. We use both draining and
context switch mechanisms to evaluate this policy. The scheduling policy in
the data transfer engine is FCFS, in all cases.

We �rst analyze the e�ects on the NTT of each benchmark application
in all workloads and show their average improvements in Figure 5.6. Bench-
marks applications are grouped by their execution time (Class 2 in Table 5.2).
Short applications (<5ms), averaged in Figure 5.6 as SHORT, achieve the
biggest improvement in their turnaround time (2.45x to 4x with the context
switch and 2.2x to 3.7x with the draining mechanism, as the number of pro-
cesses in the workload grows), since their waiting time is lowered by spatially
sharing the SMs. Medium long ones (between 30ms and 115ms), averaged as
MEDIUM, achieve a signi�cant improvement in their turnaround time (1.3x
to 1.7x with the context switch and 1.2x to 1.4x with the draining mecha-
nism). The improvements in both SHORT and MEDIUM classes come at
the expense of very long (>400ms) applications, averaged as LONG, that
get their turnaround time degraded (from around 0.9x to 0.55x with both
mechanisms). On average, DSS improves the normalized turnaround time
compared to FCFS with both preemption mechanisms. The improvement
is bigger when using the context switch (from 1.5x to 2x) compared to the
draining mechanism (from 1.4x to 1.65x).

48

CHAPTER 5. ENABLING PREEMPTIVE MULTITASKING

Figure 5.7 shows the ANTT achieved with the FCFS and DSS policies
with both context switch and draining mechanisms for each workload. Work-
loads in Figure 5.7 are sorted by the increasing ANTT (to form the smoother,
readable lines). For workloads with 2 processes, equal sharing improves the
ANTT signi�cantly for about 20% of the simulated workloads. In the other
80% of workloads, there is not much to improve because the interleaved
execution phases of the benchmark applications and application's ability to
partially tolerate latency by using asynchronous GPU commands keep ANTT
low. The percentage of workloads with improved ANTT grows with the num-
ber of processes in the workload (70% for 4 processes), to almost all workloads
(6 and 8 processes) having improved ANTT over the baseline FCFS scheduler
with both preemption mechanisms.

Workloads with 4, 6, and 8 processes also show a clear cross point, after
which the policy implemented with the draining mechanism starts showing
lower ANTT than the policy implemented with the context switch mecha-
nism. In all con�gurations, this point is around half of the workloads that
improve the ANTT over the FCFS. The crossing point appears because
the two preemption mechanisms have di�erent e�ects on di�erent kernels.
Contrary to the kernels with very long thread block execution times (dis-
cussed in Section 5.3.2), some kernels have a context switch time much larger
than their average thread block execution time (all of the kernels from histo,
StreamCollide from lbm, mbsadcalc from sad, reorder from mri-griddingetc.).
Even though DSS with the context switch mechanism achieves better aver-
age NTT, these results show that, depending on the workload at hand, the
draining mechanism can also be a viable option for low latency preemption.

With equal sharing of resources, this scheduler also aims at improving the
fairness among the processes. We show the relative improvement of the fair-
ness of the DSS policy compared to the baseline FCFS policy in Figure 5.8a.
The FCFS scheduler does not aim at optimizing the fairness, but does not
cause complete starvation in our experiments because there are no persistent
kernels in our benchmarks. Compared to it, the DSS policy achieves better
fairness with both preemption mechanisms, thanks to its semi-equal resource
allocation. The improvement is higher when using context switch (from 1.1x
to 3.35x as the number of processes grows) compared to the draining mech-
anism (from 1.05x to 2.7x) thanks to the lower latency of preemption, as
discussed in Section 5.3.2. Like with the ANTT in Figure 5.7, fairness is not
improved much in the workloads with 2 processes.

Equally sharing the execution unit, on the other hand achieves lower
STP, mainly due to the lower utilization caused by the execution preemp-
tions. The e�ects of preempting are quanti�ed with the STP degradation,
illustrated in Figure 5.8b. The average STP degradation compared to the

49

5.4. SUMMARY AND CONCLUDING REMARKS

2 4 6 80.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fa
irn

es
s

im
pr

ov
em

en
t o

ve
r F

CF
S

(t
im

es
)

DSS Context Switch
DSS Draining

(a) System fairness improvement

2 4 6 80.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ST
P

de
gr

ad
at

io
n

ov
er

 F
CF

S
(t

im
es

) DSS Context Switch
DSS Draining

(b) System throughput degradation

Figure 5.8: System fairness improvement (higher is better) and system throughput degra-
dation (lower is better) with equal sharing. Showing workloads with 2 to 8 processes.

FCFS scheduler is lower when using context switch (1.06x to 1.34x as the
number of processes grows) compared to the draining mechanism (1.08x to
1.5x). Even though, intuitively, one might expect the context switch mecha-
nism to achieve lower STP than the draining mechanism, this is not the case.
Analyzing the throughput of individual workloads, a crosspoint similar to the
one in Figure 5.7 can be observed. This time, however, the improvements in
STP with the draining mechanism are negligible, while improvements with
the context switch mechanism are signi�cant.

Comparing the improved average normalized turnaround time and the
system fairness (especially in the case of the context switch mechanism) to
the degradation of STP shows that the preemptive equal sharing policy is a
viable option when a little bit of overall system performance (STP) could be
spared to the user perceived performance (application turnaround time) or
system fairness. We thus believe that the equal sharing policy would be a
good candidate for deployment in single-user multiprogrammed environments
such as desktop or mobile systems, as well as multi-tenant cloud or server
nodes.

5.4 Summary and Concluding Remarks

Current GPUs do not provide the necessary mechanisms for the operating
system to manage �ne-grained sharing of the GPU resources. As a result,
fairness, responsiveness, and quality of service of applications using GPUs
cannot be controlled. As future systems continue further deployment of

50

CHAPTER 5. ENABLING PREEMPTIVE MULTITASKING

GPUs in the cloud and data centers and integration of CPUs and GPUs
in the same SoC, this problem will only escalate.

In this chapter we introduced hardware extensions to modern GPUs that
enable e�cient sharing of GPUs among several applications and the imple-
mentation of �exible scheduling policies for multiprogrammed workloads. We
proposed two execution preemption mechanisms and the DSS scheduling pol-
icy that uses these mechanisms to implement dynamic spatial sharing of the
SMs across kernels that belong to di�erent processes. Moreover, DSS can be
controlled by the OS to enforce system-wide scheduling policies.

Experimental results show that hardware preemption mechanisms are
necessary to obtain lower and more deterministic turnaround times for ap-
plications while having lower overheads than what was previously assumed,
thus opening the possibility of the utilization of GPUs to perform computa-
tions in multiprogrammed interactive environments. We also showed that a
dynamic scheduling policy that assigns di�erent SMs to concurrently running
kernels can greatly improve system-wide metrics such as fairness. Finally,
we experimentally demonstrated that the wide-spread believe that context
switching in GPUs is prohibitively expensive does not hold.

51

Chapter 6

Enabling Preemptible

Exceptions

Recently, AMD and NVIDIA have commercialized discrete GPUs with sup-
port for automatic data transfers between CPU and GPU memories [92,
121]. On-demand page migration �nally removes the need for explicit data
transfers, improving programmability [54, 140, 55, 71], and enabling over-
subscription of the GPU memory [78, 74, 94, 169]. However, demand paging
requires using page faults on the GPU, a processor that does not support
precise exceptions [148, 108]. To overcome this limitation, GPUs rely on
o�oading all the fault handling work to the CPU, while the faulted instruc-
tion on the GPU is stalled [175]. In this model the SM is not even aware
of the exception (i.e., treated as a very long TLB miss). This is in contrast
to CPUs, where exceptions trigger the execution of handling code on the
core that raised the exception. The exception handler is then capable of
saving the context of the faulting thread and restore its execution after the
exception condition is resolved.

Preemptible exceptions are widely used in modern systems. For instance,
both lazy memory allocation and on-demand paging are implemented in most
modern operating systems using page faults. Whenever a thread causes a
page fault, the operating system exception handler checks if the faulting vir-
tual address corresponds to a memory page that has never been allocated
(lazy allocation) or has been swapped out to disk (on-demand paging). In
both cases, the operating system �rst saves the context of the running thread
and switches into the fault handling routine. In case of lazy memory allo-
cation, the OS needs to �nd an available physical page, updates the page
table to re�ect the new mapping, and restores the execution of the thread.
On-demand paging requires the OS to bring the swapped out page from

53

cu
tcp lbm sad

sgemm
spmv

ste
ncil

tpacf
mri-q hist

o

mri-g
rid

ding bfs
GEOM

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
P
e
rf

o
rm

a
n
ce

 n
o
rm

a
liz

e
d
 t

o
 b

a
se

lin
e
 S

M

Figure 6.1: Performance of in-order issue and in-order commit cores, normalized to the
baseline SM.

disk, which is a very long latency operation. Instead of waiting for the fault
to be resolved, the OS typically schedules some di�erent thread to run, to
maximize the system throughput.

Besides ensuring the preemptability of exceptions, most modern CPUs
also guarantee the architectural state to be precise when an exception hap-
pens. Precise exceptions support allows a very clean context switch and later
restart of the faulting process. However, supporting precise exceptions on a
modern GPU seems unfeasible. One option is to use simple in-order execu-
tion cores (in-order issue and in-order commit) that support precise excep-
tions by design. However, as Figure 6.1 shows, that option does not provide
enough performance to meet the performance expected from modern GPUs.
Another option is to implement in-order commit, similar to that of modern
CPUs. However, this would increase the area and power consumed by each
SM, and in turn decreasing the overall SM count and the overall system per-
formance. Instead, we argue for the third option of supporting preemptible
exceptions, whose architectural state is not precise, as a mean to provide the
functionality needed by the system software (i.e., context switching) without
harming the GPU performance.

In this chapter we present three alternative preemptible exceptions imple-
mentations on a modern GPU with varying performance-complexity trade-
o�s. We tailor our designs to support preemptible page faults only, because
that is the main use of preemptible GPU exceptions today. Still, our de-
signs can be extended to support other types of exceptions with an analo-
gous approach, treating other potentially faulting instructions as we treat

54

CHAPTER 6. ENABLING PREEMPTIBLE EXCEPTIONS

the memory instructions in our proposals. The simplest approach achieves
preemptible faults by introducing limitations to the execution model. As
such, it does not require any additional hardware structures, but it does
result in decreased performance. In our second approach, we relax some
of the execution constraint with a mechanism that collects non-committed
instructions for later replay. The most comprehensive solution introduces ad-
ditional hardware structures and increases the area of the GPU core due to
extra storage. With su�cient amount of resources, it can completely preserve
the performance of the baseline GPU pipeline.

We further explore two use cases that aim to improve the system through-
put thanks to the ability to context switch under a fault. In the �rst use case,
we context switch out faulting threads during page faults, and context switch
in new threads to execute while the fault is being resolved. We aim to hide
the latency of the page migration that caused the fault by �nding other work
that the GPU can execute in the meantime. In the second use case, we handle
page faults to non-committed physical memory (i.e., lazy memory allocation)
on the GPU itself, instead of o�-loading it to the CPU. The GPU code runs
its own physical memory allocator, which reserves the required memory and
�xes the GPU page table without interrupting the CPU and occupying the
system interconnect.

6.1 Motivation

Exceptions are, by their very nature, events that happen rarely during the
life of a thread and, thus, have a minor impact on the system performance.
However, the massive amount of concurrent threads (e.g., 32768 in our base-
line GPU) running on a GPU make such a rare event at the thread level
to become quite common at the GPU level. For instance, on-demand page
migration [121] can cause individual threads to trigger multiple page faults
in a single instruction. Having in mind the concurrency level of the GPU, it
is fairly common for a kernel to trigger dozens of concurrent page faults. We
use this page fault handing in the GPU as the driving example to motivate
our work.

Both signaling and data transfers between CPU and GPU are performed
over the system interconnect which has a serializing e�ect on the handling.
During this time, instructions that faulted cannot make any progress. More-
over, it is very likely that other warps (in the same, or di�erent SM) are also
trying to access one of the pending pages, and therefore are stalled as well,
resulting in a severely underutilized system.

We demonstrate these issues on the execution of BFS benchmark with

55

6.1. MOTIVATION

0 1000000 2000000 3000000 4000000 5000000
0

10

20

30

40

In
fl
ig

h
t

fa
u
lt

s
(a

ll
S
M

s)

0 1000000 2000000 3000000 4000000 5000000
0

5

10

15

20

25

30

S
M

0
 a

ct
iv

e
 w

a
rp

s

0 1000000 2000000 3000000 4000000 5000000
0

5

10

15

20

25

30

S
M

1
 a

ct
iv

e
 w

a
rp

s

0 1000000 2000000 3000000 4000000 5000000
0

5

10

15

20

25

30

S
M

2
 a

ct
iv

e
 w

a
rp

s

0 1000000 2000000 3000000 4000000 5000000
0

5

10

15

20

25

30

S
M

3
 a

ct
iv

e
 w

a
rp

s

Figure 6.2: Number of in-�ight faults (top timeline) and number of active warps (showing
only four SMs) for an execution of the BFS benchmark (showing cycles on the x axis).

56

CHAPTER 6. ENABLING PREEMPTIBLE EXCEPTIONS

on-demand paging in Figure 6.2. The top timeline is showing the number
of unique in-�ight faults for the whole GPU and their bursty nature. The
GPU tends to fault in spikes, after which migrations are resolved (one by
one) until the next spike. The four timelines at the bottom are showing the
number of active (non faulted) warps on four SMs (the behavior is similar for
the remaining 8 SMs). Here, we can observe that most of the time (except
for the very end of the execution) there is very few active warps. We can also
observe that multiple warps can fault on the same page and do not make
much progress until that fault is resolved (e.g., big spike in active warps
around cycle 2.2 million, when most in-�ight migrations have completed).

In an analogous CPU situation, after faulting on a page that needs to
be brought from disk, operating systems typically context switch the process
that faulted, and schedule some other process ready to run. Such context
switching is not possible on GPUs, due to the stall on fault execution. This is
an unfortunate situation because the GPU programming model encourages
programmers to request the execution of a number of independent thread
blocks much higher than the number of thread blocks the GPU can con-
currently execute. Therefore, when a page fault happens it is very likely
that there are pending thread blocks ready to be executed. Allowing con-
text switching in the GPU during the page faults motivates us to enable
preemptible faults in the GPU. We detail the design of such scheme in Sec-
tion 6.4.1.

Low context switching latency is the key to achieving good multitasking
performance on the GPU, as demonstrated by us in Section 5 and Park et
al. in [126]. These studies were done for the legacy systems without support
for on-demand page migration, which further complicates the matter. Due
to the stall on fault execution, all the in-�ight faults need to be serviced
before the scheduler can perform the context switch to another process. The
underutilization of the system while being context switches lowers the system
throughput, while long latencies make it harder to improve responsiveness
and system fairness. Therefore, stall on fault execution would possibly void
any e�ort to improve system performance through scheduling. Facilitating
the implementation of simpler and more e�ective schedulers for improved
multiprogrammed system performance is another motivation of this work.

Finally, the inability to do the context switch under a fault stands in
the way of handling the page faults on the GPU itself, because the forward
progress of the fault handling routine cannot be guaranteed. In Section 6.4.2
we detail the design of a system that, instead of o�oading the fault handling
to the CPU, handles faults on the SMs that have faulted, in the cases where
it is feasible to do so.

57

6.2. PROBLEM STATEMENT

1 2 3 4 5 6 7 8 9 10

R3 ← ld [R2] F I O E E E E E E E

R2 ← add R7, 8 F I O E C

R8 ← mul R3, 3 F

R9 ← sub R9, 4 F I O E C

1
2

5

3

4

Figure 6.3: Timeline showing the culprits of non-preemptble faults: sparse replay and
RAW on replay. All instructions are from the same warp. Stages are Fetch, Issue, OpRead,
Execute and Commit.

6.2 Problem Statement

To understand why exactly does the baseline pipeline prevent preemtible
faults, let us consider the simpli�ed pipeline operation in Figure 6.3. The
oldest instruction in program order, ld, goes through the fetch, issue, operand
read stages and arrives to the global memory pipeline for execution. The
global memory pipeline is deep, variable latency, and at some point (cycle
10 in the example) a page fault is detected. The second instruction, add, is
fetched but stalled for one cycle, due to the WAR hazard with the ld instruc-
tion. When ld reads R2 at the cycle 3, it releases the score-board, clearing
add for issue. At cycle 7, add will commit, having previously written the
new value to the register R2. The third instruction, mul will be stalled after
the fetch, because of the RAW hazard with ld, the producer of R3. Finally,
the youngest instruction, sub, goes through all the stages, and commits at
cycle 8.

When ld faults at cycle 10, the instruction cannot be just squashed and
later replayed from a saved architectural state (context). The �rst problem
is that after the fault we have to replay ld (the faulting instruction) and
mul, but we must not replay add and sub, which have been already com-
mitted. However, no information is available in the pipeline to prevent the
replay of add and sub. Note that this problem exists even with in-order issue
pipelines, if for example two memory instructions fault but instructions in-
between execute normally. We refer to this problem as sparse replay. The
second problem is that the early source score-board release (implemented
in our baseline pipeline) during the operand read stage allows add to write
a new value to the register R2 at commit. Therefore, when we replay ld,
the instruction reads the value in R2 produced by add, leading to incorrect
execution of the program. We refer to this problem as RAW on replay.

58

CHAPTER 6. ENABLING PREEMPTIBLE EXCEPTIONS

6.3 Support for GPU Page Faults

In this section we present three di�erent approaches to support preemtible
faults on our baseline GPU architecture. The �rst approach (warp disable)
treats memory instructions as code barriers. In case a memory instruction
causes a fault, all younger instructions are committed and the faulting in-
struction is replayed after the fault is resolved. The second approach (replay
queue) keeps in-�ight memory instructions in a replay queue: they enter the
queue when issued and exit the queue at commit. When a fault is detected,
all in-�ight instructions are squashed and the content of the replay queue
is saved. After the fault is resolved, all the saved instructions are replayed.
Finally, the third approach (operand log) logs the source operands of memory
instructions during their execution. When replaying faulted instructions, the
source operands are read from the log instead of the register �le.

Each of these approaches presents a di�erent trade-o� between the amount
of ILP the architecture can exploit and the additional hardware needed.
Warp disable introduces no hardware modi�cations, but limits the amount
of ILP exploited by the SM. Operand log exploits as much ILP as our baseline
architecture, but requires the most additional hardware. Replay queue is an
intermediate solution.

6.3.1 Approach 1: Warp Disable

This scheme addresses both sparse replay and RAW on replay problems de-
�ned in Section 6.2 by treating global memory instructions (i.e., the only
instructions that can potentially page fault) as an instruction barrier. We
enforce this by disabling the warp fetch once a global memory instruction is
fetched and re-enabling it once the instruction commits. The execution of
other warps is not a�ected and they can continue with the normal execution.
By the time the instruction is ready to commit it had �nished all the work,
including the TLB accesses for all the active threads. Thus, at commit time
we can guarantee that the memory instruction will not fault and will not
need to be replayed. If the fault does occur, the limitation of the model has
provided us with two bene�ts. First, we guarantee that only one of the warp
in-�ight instruction can fault. Second, we know that it is the last fetched
and issued instruction for the warp that faulted. Hence, we only need squash
and later replay that one faulted instruction.

The pipeline timing diagram in Figure 6.4 illustrates how warp disable
works. If ld instruction �nishes successfully, we can enable the fetch again (1)
and let the younger add, mul and sub execute. However, if ld faults, the only
other instructions potentially in the pipeline are older instructions that never

59

6.3. SUPPORT FOR GPU PAGE FAULTS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

R3 ← ld [R2] F I O E E E E E E E C

R2 ← add R7, 8 F I O E C

R8 ← mul R3, 3 F I O E C

R9 ← sub R9, 4 F I O E C

1

Figure 6.4: Pipeline timing diagram with the warp disable approach. Global memory
instruction disables the warp until it can be guaranteed that it will not fault.

Warp
Instruction

T31T0 T1 T2 T30T29...

Coalescer Rc Rb Ra

Last
Request

T
L
B

L
1
C

Last Check OK?

To L2

Figure 6.5: Last TLB check for a warp memory instruction: the earliest point in the
pipeline where memory instruction is guaranteed not to cause a page fault.

cause a page fault. To recover from the fault, we squash the faulting instruc-
tion and drain all other in-�ight instructions of the warp, before invoking the
exception handler. To restart the execution, the exception handler restores
the program counter to instruction that caused the exception. This way the
faulting instruction is replayed once the handler has resolved the exception.

We can further optimize the performance of this scheme by realising that
in all cases, we could enable the warp before the commit stage. Because a
warp consists of 32 threads, one memory instruction of a warp can be access-
ing multiple pages at the same time. As shown in Figure 6.5, the instruction
�rst goes through the coalescing unit that generates one memory request for
each unique cache line accessed by the warp (part of the baseline SM). The
earliest cycle where we can re-enable the warp so that it continues fetching
instructions is right after the TLB check for the last generated request has
completed successfully. The result of moving fetch-enable to the earliest cy-
cle possible is letting other instructions enter the pipeline as soon as possible
and therefore recovering some of the lost ILP.

The negative side of the warp disable scheme is that hinders the ILP
achieved by the baseline SM by temporarily disabling the warp on a memory
instruction. Since the SM is a throughput oriented processor that heavily
relies on multi-threading to achieve high performance we can expect smaller
performance impact than a similar technique would have on a CPU. Fur-
thermore, since other instruction types cannot page fault, their execution is

60

CHAPTER 6. ENABLING PREEMPTIBLE EXCEPTIONS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R3 ← ld [R2] F I O E E E E E E E C

R2 ← add R7, 8 F I O E C

R8 ← mul R3, 3 F I O E C

R9 ← sub R9, 4 F I O E C

1

2

3

4

Figure 6.6: Pipeline timing diagram with the replay queue approach.

 add R2, R7, 8

 mul R8, R3, 3

 sub R9, R9, 4

 inst

 ld R3, [R2]

Issue Queue Replay Queue

 inst

 ld R3, [R2]

 add R2, R3, 3

 mul R8, R3, 3

Issue Queue Replay Queue

a) b)

Faulted

Fetched
but not
issued

TB0

TB0

TB0

TB1

TB0 TB1 TB0

TB0

TB0

Figure 6.7: The snapshot of issue queue and replay queue after a) ld is issued and b) ld
has faulted, and the rest drained.

unchanged from the original SM. The positive side is that we have enabled
preemptible faults without requiring any additional hardware.

6.3.2 Approach 2: Replay Queue

The goal of this scheme is to remove the instruction barrier semantics imposed
by the warp disable scheme, so the processor can exploit larger amounts of
ILP. We �rst deal with the RAW on replay problem by releasing the source
operands after the last TLB check has completed successfully, which only
leaves the problem of the sparse replay open. Let us consider the pipeline
timing diagram for our example program in Figure 6.6. Add is stalled (1)
over a WAR hazard on register R2, while mul is stalled (2) over RAW hazard
on register R3. Sub has no dependencies, so it gets issued and commits a
few cycles later (3). If ld does not fault (4), execution continues normally
(shaded green in Figure 6.6). Otherwise, if ld faults, we must replay ld, add,
and mul when the fault is resolved, but the committed sub instruction must
not be replayed.

To deal with the sparse replay problem, we introduce the replay queue
next to the issue queue, as shown in Figure 6.7. Memory instructions (the
only ones that can cause a page fault) are inserted in the replay queue on
issue, and removed once they commit. In case of a fault, we �rst drain all

61

6.3. SUPPORT FOR GPU PAGE FAULTS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R3 ← ld [R2] F I O E E E E E E E C

R2 ← add R7, 8 F I O E C

R8 ← mul R3, 3 F I O E C

R9 ← sub R9, 4 F I O E C

1

2

3

Figure 6.8: Pipeline timing diagram with the operand logging approach.

the non-faulted in-�ight instructions, and then squash all the faulted ones.
Once this is done, we need to drain the issue queue of the warp's fetched,
but not yet issued instructions, and insert them to the replay queue also.

The instructions in the replay queue now become part of the context and
need to be saved during a context switch. On context restore, the saved
instructions are replayed �rst, before we continue with normal execution.
Because the replay instructions are captured in the program order (relative
to each other), the baseline issue logic can guarantee correct execution.

The negative side of the replay queue scheme is that it introduces ad-
ditional hardware to the baseline SM and increases the complexity of the
software that also needs to save the replay queue as part of the context.
The positive side is that the replay queue is an unobtrusive addition to the
pipeline that improves the ILP over the warp disable scheme by eliminating
the barrier instruction semantics. Furthermore, the replay queue does not
hold any data (i.e., registers) produced or consumed by the instructions, an
important property bearing in mind that a warp instruction is basically a
32 wide SIMD instruction. As such, we assume that the logic needed to
implement the replay queue is negligible compared to the rest of the SM.

6.3.3 Approach 3: Operand Log

Our �nal scheme is designed to complement the replay queue scheme. It
improves the performance by removing the constraint of releasing the source
operands after the last TLB check has completed successfully. Instead, we
wish to release the score-board during the operand read stage, just like in
the baseline SM. Let us consider the pipeline timing diagram for our example
program in Figure 6.8. The WAR hazard on register R2 is removed in the
cycle when ld reads the R2 value (1), and add gets issued in the next cycle.
mul is stalled because of the RAW hazard on register R3, while sub gets
issued (3). By the time the potential fault is raised (3), add and sub have
committed and updated the values of registers R2 and R9. During the replay,
ld would read the wrong (updated) value of R2 and load data from a wrong

62

CHAPTER 6. ENABLING PREEMPTIBLE EXCEPTIONS

...

0xFF00

...

 R2

 R3

 R7

 R8

 R9

 L0

 L1

...

0xFF08

...

 R2

 R3

 R7

 R8

 R9

0xFF00 L0

 L1

a) b)

replay replay

Register
File

Operand
Log

Register
File

Operand
Log

Figure 6.9: Design of the operand log with active path during a) �rst issue and b) replay
of a faulted instruction.

address.
To handle the RAW on replay problem, we augment the SM with an

operand log that holds the source data of in-�ight global memory instructions
(the only ones that can cause a page fault). Note that the operand log
only eliminates the RAW on replay problem, so we still need the replay
queue in order to handle the sparse replay problem. The allocation of the
log entries is performed during issue of a memory instruction. During the
operand read stage, data read from the register �le is written to the log.
To optimize the use of log space, load instructions take up only one log
entry (source address), while store instructions take two (source data and
destination address). Entries are released once we know the instruction is
not faulting (after the last TLB check for the instruction has completed).
On replay, the instruction accesses the log instead of the register �le in order
to read the input data. The log makes it safe to release the score-boards
in the operand read stage, since there is now a copy of the source operands
that is used on replay. Just like the contents of the replay queue, the log
is now also part of the context and needs to be saved and restored during
context switch. Since we need to provide the context switching at a thread
block granularity, the log is partitioned so that each running block gets its
own partition. Thus, kernels with lower number of active thread blocks (SM
occupancy) will have higher number of log entires per thread block, and vice
versa.

The negative side of the operand log scheme is that it introduces further
hardware overheads (i.e., the log itself), and because of the increased context
size it causes a higher context saving and restoring latency. The area over-
heads of this scheme are further explored in Section 6.5.2 where we analyze
the performance as a function of the log size. The positive side is that now
both culprits of preemptible faults (sparse replay and RAW on replay) are
eliminated, and we can achieve both the performance of the baseline SM and

63

6.4. USE CASES

enable the preemptible faults (with a su�ciently large log).

6.4 Use Cases

In this section, we present two use cases that require preemptible page fault
support in the GPU. In the �rst use case we context switch the SM when
a page fault triggers an on-demand page migration from the CPU, which is
a long latency operation. In the second use case, we rely on page faults to
perform on-demand allocation of physical memory on the GPU.

6.4.1 Block Switching on Fault

In Section 2.1 we discussed how the baseline GPU observes page faults as very
long latency memory accesses because of the stall-on-fault execution [175].
Although the SM can still issue other instructions that do not depend on
the faulting memory access, oftentimes the pool of available independent
instructions gets exhausted before the faulting memory access completes.
Hence, the SM sits idle waiting for the fault to be resolved, underutilizing its
hardware resources.

The preemptible exception support presented in this chapter opens the
door to context switch the SM when a page fault happens, so that some other
threads can use the SM resources while the fault is being resolved. The pro-
gramming model of the GPU maximizes the likelihood of pending threads
to be available for execution when a page fault happens. The number of
thread blocks executing concurrently on the GPU depends on the available
hardware resources of each speci�c GPU chip (i.e., depends on the GPU mi-
croarchitecture and number of SMs). For that reason, the GPU programming
model encourages programmers to launch a much larger number of thread
blocks than the GPU can concurrently execute. This oversubscription is key
to preserve the scalability of the application as newer GPU chips are capable
of concurrently executing larger number of thread blocks [120]. Hence, it is
likely that when an instruction from a thread block causes a page fault, we
can �nd pending thread blocks to execute.

The context switch in an SM has to be performed with a thread block
granularity. The GPU programming model provides a notion of shared mem-
ory region that is accessible by all threads within a thread block. Unless we
context switch the full thread block, we can not release its shared memory
and schedule another thread block to run in its place.

We augment the SM with a thread block scheduler. This scheduler tracks
the thread blocks running on the SM, as well as those thread blocks that

64

CHAPTER 6. ENABLING PREEMPTIBLE EXCEPTIONS

Local Scheduler

TB4

TB5

TB2

TB3

TB0

TB1

TB13 TB14 TB15TB12

Active TBsSM0

Global Scheduler

SM0 Off-chip TBs

Local Scheduler

TB8

TB9

TB6

TB7

Active TBsSM1

TB10

TB11

SM1 Off-chip TBs

Pending TBs

...

Figure 6.10: Block switching.

have been preempted. The fault handler can trigger a thread block context
switch, depending on the warps waiting for a page fault to be resolved and
thread blocks ready to execute. On a context switch, the handler noti�es the
scheduler, which �rst inspects if there are thread blocks switched out whose
page faults have been resolved. If no thread block is found, the SM requests
a new pending thread block to the global scheduler (i.e., the SM driver),
in a similar way the SM currently does whenever a thread block �nishes its
execution. To prevent explosion of the o�-chip memory space used for the
thread block contexts, the local scheduler is allowed to bring only a limited
number of extra blocks to the SM. Once this limit is reached, the SM cycles
through the active and o�-chip blocks only.

6.4.2 Local Handling of Faults

In the description of the GPU on-demand paging so far, we assumed that the
page being accessed by the GPU was previously written by the CPU and,
thus, resides in system memory. When the CPU has not previously initialized
that memory, the faulting memory page is not present in system memory
and, therefore, no migration is required. However, the CPU is still in charge
of managing both CPU and GPU page tables and physical address spaces.
Hence, the CPU still needs to allocate the physical memory on the GPU
and update the GPU page table before the faulted instruction can continue.
There are several cases that lead to such faults on the GPU, including the
pages that hold the output data of the kernel or backing a memory allocation
(i.e., malloc) performed by the kernel itself.

The preemptible exception support we introduce in this chapter allows
us to run a page fault handler in the GPU that performs physical memory
allocation and page table management. To prevent the user code from di-
rectly modifying system data structures, such as the GPU page table and the

65

6.5. EVALUATION

physical memory allocator, we also assume two di�erent privilege execution
levels in the GPU: user and system. When an exception is detected, the SM
switches to system mode and executes the corresponding exception handler.
The page fault exception handler checks the faulting address and determines
whether it corresponds to memory owned by the CPU, has no physical mem-
ory assigned, or is an invalid memory access. If the page is owned by the
CPU, the handler sends the data migration request to the CPU. If the ad-
dress is an invalid memory access, it requests the device driver running on
the CPU to abort the kernel execution. Finally, if the address has not been
assigned any physical memory yet, it marks the page as owned by the GPU
(to prevent the CPU from allocating memory for this page), calls the GPU
physical memory allocator to allocate a new physical memory page, updates
the GPU page table, and restarts the execution.

This lazy physical memory allocation scheme allows many GPU threads to
allocate physical memory in parallel, instead of serializing allocations through
the CPU. We expect this scheme to improve the performance of those codes
that rely on dynamic memory and have single-use output data structures.

6.5 Evaluation

6.5.1 Evaluation Methodology

The results in this chapter are obtained using the microarchitectural sim-
ulator described in Section 4.2.2. The simulator parameters, based on a
hypothetic modern GPU, are given in Table 6.1.

The evaluation in this chapter is performed with Parboil benchmarks [152].
Additionally, some of the evaluation in Section 6.5.4 are also performed us-
ing benchmarks distributed with the Halloc CUDA dynamic memory alloca-
tor [2]. We simulate one kernel from each benchmark to its completion. If a
benchmark has multiple kernels, we choose the main kernel for simulation. If
the chosen kernel is lunched multiple times, we simulate the launch with the
biggest amount of thread blocks. We choose the input sets of the benchmarks
to minimize the simulation time, yet guarantee that there is enough thread
blocks to occupy all SMs for several rounds of execution1.

In experiments that do perform the on-demand page migration, all data
is initially residing in the CPU memory. We assume 4KB [129, 128, 175]
pages. Related work [175] and our own experiments indicate that some form
of prefetching is necessary to make the on-demand migration competitive

1By a round of execution we refer to the amount of TBs to occupy the SM. For example,
two rounds of TBs means two times more TBs than the SM can run concurrently.

66

CHAPTER 6. ENABLING PREEMPTIBLE EXCEPTIONS

SM

Frequency 1GHz
Max TBs 16
Max Warps 64
Register File 256KB
Shared memory 32KB
Issue type Nonspeculative out of order
Issue ways 2 instrcutions total from 1 or 2 warps
Issue queue 96 entry uni�ed for all warps
Backend units 2 math, 1 special function, 1 ld/st, 1 branch
L1 cache 32KB / 4-way LRU / 128B line

32 MSHRs / 40 clk latency / virtual
L1 TLB 32 entires / 8-way LRU
System

Number of SMs 16
L2 cahce 2MB / 8-way LRU / 128B line

70 clk latency / 512 MSHRs
L2 TLB 1024 entries / 8-way LRU

128 MSHRs / 70 clk latency
Numer of PT walkers 64
Walking latency 500 clk
DRAM bandwidth 250 GB/s
DRAM latency 200 clk

Table 6.1: Simulation parameters used in the experimental evaluation in Section 6.5.

67

6.5. EVALUATION

in performance. Thus, in experiments that include page migration (Sec-
tion 6.5.3 and Section 6.5.4) we do handling with a 64KB granularity. This
helps to amortize the high cost per fault caused by communication, system
software and ine�cient small data transfers.

We use the execution time in cycles as our performance metric in this
chapter. The execution time is measured until all instructions of all thread
blocks for a given kernel �nish. Because the GPU has multiple cores and
kernels can launch arbitrary number of TBs of arbitrary lengths, kernel ex-
ecution leads to the inevitable tail e�ect which is in negligible in most cases
(but not all).

6.5.2 The Performance Cost of Preemptible Faults

As we have discussed in Section 6.3, the di�erent pipeline organizations that
support preepmtible faults are by design expected to have di�erent perfor-
mance. We use as baseline a GPU architecture without preemptible exception
support, and thus it represents the maximum performance our proposals can
achieve. In Figure 6.11 we show the performance normalized to the baseline
of two warp disable scheme variants described in Section 6.3.1 (warp disable
until commit - WD-commit and warp disable until last TLB check - WD-
lastcheck), alongside the performance of the replay queue scheme described
in Section 6.3.2. We are here foremost interested in the performance of kernel
execution that does not cause any faults (e.g., expert written program that
uses explicit data management). Such execution will show us exactly how
much performance loss is caused by our pipeline changes.

Comparing the geometric mean performance achieved across all bench-
marks, we can see that WD-commit achieves only 85% of the baseline perfor-
mance while WD-lastcheck achieves 91% of the baseline performance. The
di�erence between these two schemes is related to how early in the pipeline
we re-enable warp fetch. This results show that with a simple modi�cation
to the warp disable scheme (WD-lastcheck), we are able to recover signi�-
cant amount of performance. The replay queue scheme is able to close this
gap further, achieving 94% of the baseline performance. There are few cases
where even the replay queue scheme is not su�cient, most notable with lbm
that achieves only 59% of the baseline performance.

We have already explained in Section 6.3.3 that the operand log scheme
can, by design, achieve the performance of the baseline SM if a su�ciently
large log is used. In order to �nd out what is su�ciently large log size,
we show the performance normalized to the baseline of operand log scheme
with various log sizes in Figure 6.12. We start exploring log sizes from 8KB
because it is the smallest log that guarantees that all thread blocks of a ker-

68

CHAPTER 6. ENABLING PREEMPTIBLE EXCEPTIONS

cu
tcp lbm sad

sgemm
spmv

ste
ncil

tpacf
mri-q hist

o

mri-g
rid

ding bfs
GEOM

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
e
rf

o
rm

a
n
ce

 n
o
rm

a
liz

e
d
 t

o
 b

a
se

lin
e
 S

M

WD-commit

WD-lastcheck

replay-queue

Figure 6.11: Performance of warp disable and replay queue pipeline organization that
support preemptible faults, normalized to the baseline SM with stall on fault approach
(higher is better).

nel with maximum occupancy (i.e., 16 in our baseline system) can execute
concurrently. Indeed, the biggest amount of source data that an instruc-
tion needs to log is 512B, assuming 8B address and 8B data (times the 32
threads). Thus such log guarantees that each thread block can have at least
one memory instruction in case that the SM occupancy is 16 thread blocks.

Comparing the geometric mean performance achieved across all bench-
marks, we can see that even the 8KB log is capable of achieving 96.9% of the
baseline performance, while 16KB log is capable of achieving 99.8%. To put
these log sizes into perspective, the register �le in the baseline SM is 256KB
while the uni�ed L1 data cache and scratch-pad memory is 64KB, making
the 16KB log a 5% increase in the overall context size. This is not to be
confused with 5% area increase, since the log overhead is amortized across
the rest of the SM (frontend with all the scheduling logic and 32 wide SIMT
backend) and the GPU itself (host interface, interconnects, L2 of memory
hierarchy. etc.). The operand log scheme is the most e�ective with the lbm
benchmark, where a 16KB log improves the performance from 67% to 96%
of the baseline, compared to the replay queue scheme. Due to the low thread
block occupancy lbm runs only 8 warps (one eighth of the total warps sup-
ported by the SM), resulting in the lowest IPC of all evaluated kernels. This
demonstrates that the operand log scheme is e�ective across kernels with
various levels of TLP, but it is the most compelling with di�cult codes that
exhibit insu�cient parallelism to saturate a modern GPU. Such codes are
easy to come across because GPUs are constantly increasing in size, exposing

69

6.5. EVALUATION

cu
tcp lbm sad

sgemm
spmv

ste
ncil

tpacf
mri-q hist

o

mri-g
rid

ding bfs
GEOM

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
P
e
rf

o
rm

a
n
ce

 n
o
rm

a
liz

e
d
 t

o
 b

a
se

lin
e
 S

M

8 KB

16 KB

20 KB

32 KB

Figure 6.12: Performance of the operand log scheme with various log sizes normalized to
the baseline SM (higher is better).

performance portability issues of legacy code.

6.5.3 Use Case 1: Thread Block Switching on Fault

In Section 6.4.1 we have described a thread block scheduling scheme that con-
text switches faulted thread blocks and schedules ready thread blocks in their
place. We show the performance of this scheme in Figure 6.13 for NVLink
and PCI express 3.0 interconnects. We have measured several principal com-
ponents that add up to the round trip latency of a page fault (page pinning,
physical frame allocation and data transfer itself) and combined them with
interconnect latencies to compute the cost of a page fault. We estimate the
separate costs of faults for the case when there is a data transfer and for the
case when only the allocation is necessary (pages not dirty in the CPU page
table). These estimates are 12µs /10µs for NVLink and 25µs /12µs for PCIe,
respectively. We have setup the local scheduler to allow a maximum of 4 ex-
tra thread blocks per SM, consider switching out the thread block once all
the warps in a thread block are blocked (faulted or at a barrier) and consider
switching in once all the faults for the thread block have been serviced. For
each interconnect, the execution time is normalized to the on-demand paging
implementation with stall on fault approach.

Starting from the NVLink, we can observe that several benchmarks show
notable performance improvement. These are sgemm with 13.6%, stencil
with 7.6% and histo with 9.9%. With the PCIe interconnect, the same
benchmarks exhibit performance improvement, albeit a lower one (histo is

70

CHAPTER 6. ENABLING PREEMPTIBLE EXCEPTIONS

cu
tcp lbm sad

sgemm
spmv

ste
ncil

tpacf
mri-q hist

o

mri-g
rid

ding bfs
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

P
e
rf

o
rm

a
n
ce

 n
o
rm

a
liz

e
d
 t

o
 b

a
se

lin
e
 S

M

nvlink

nvlink 1 cycle switch

pcie

pcie 1 cycle switch

Figure 6.13: Performance improvement with thread block switching on a fault over baseline
stall on fault approach. Showing NVLink and PCIe con�gurations with normal context
switching and ideal 1 cycle context switching.

the highest with 4.6%). We also show the performance of this scheme with
ideal context switching (1 cycle save and 1 cycle restore). Notice that there
are only small improvements, mainly with sgemm in the PCIe con�guration.
Performance with ideal context switching demonstrates how our local sched-
uler is doing a good job on avoiding unnecessary context switching. It also
shows that we captured most of the performance improvement that can be
achieved by increasing the set of active thread blocks. We have studied this
performance further, and found out that out of 11 benchmarks, 5 have ei-
ther a very low or very high interconnect utilization. Thus, any scheme that
tries to overlap computation with transfers is not going to improve perfor-
mance on these benchmarks. From the rest of the benchmarks, three have
either unfavorable access patterns such is faulting at the end of the block, or
su�er from severe tail e�ect. Performance degradation of mri-gridding coun-
ters the improvement of other benchmarks, resulting in unchanged average
performance.

It is important to note that no benchmark has a notable performance
degradation except mri-gridding which achieves 86% of the original perfor-
mance due to the massive load imbalance that the kernel exhibits. In this
benchmark there is a two orders of magnitude di�erence in thread block ex-
ecution time, owing to the di�erent amount of work performed by di�erent
thread blocks. We have traced the execution and noticed that the original
thread block distribution happens to spread the longest blocks more or less
evenly across the SMs. Once context switching starts changing this order,

71

6.5. EVALUATION

most SMs �nish faster due improved latency hiding, but a minority of SMs
get penalized with extra long blocks. Since we measure the execution time
of the kernel as the cycle when the last thread block �nishes, this ultimately
leads to longer execution. This is further evident from mri-gridding perfor-
mance with one cycle context switching being lower than with normal context
switching.

6.5.4 Use Case 2: Local Handling of GPU Faults

In Section 6.4.2 we have described a fault handling scheme that allows han-
dling page faults on the GPU itself, if the data transfer from the CPU is not
required. The prime example of this are pages that are backing up memory
allocations performed by the kernel itself (e.g., through the CUDA device
version of malloc). Since Parboil kernels do not use device side malloc, we
evaluate the performance using benchmarks that ship with Halloc CUDA
dynamic memory allocator [2]. There is no page migrations in this experi-
ment (i.e., explicit transfers), and all the page faults are caused by accesses
to unmapped pages (�rst use). We prototyped the fault handler code and
measured performance and scalability on a real GPU. We estimate the la-
tency of the GPU handler to be 20µs, an order of magnitude more than the
estimated latency of CPU handler (2µs) used in the rest of this section.

Figure 6.14 shows performance improvement with the geometric mean
speedup of 80% and 98% for NVLink and PCIe respectively. The reason
for such performance improvement, even with the 10x higher latency of the
handler, lies in the number of concurrent page faults. The GPU is running
many threads concurrently, and even though the frequency of fault in each
thread is low (as the name exceptions imply, these are not very common
events), the large working set of a GPU produces enough faults to overwhelm
the system interconnect and the CPU who have to handle them one by one.
In contrast, handling them on the GPU results in a clear throughput win,
despite the longer latency of each fault.

In Figure 6.15 we show performance of handling the faults to output
pages caused by Parboil kernels. These pages hold the output data of the
kernel that is not used by the CPU until the execution of the kernel is �n-
ished. Benchmarks like lbm and histo show signi�cant performance increase
in both con�gurations. Contrary to the results in Section 6.5.3, this time the
PCIe con�guration shows overall bigger performance improvement than the
NVLink con�guration. Geometric mean across all benchmarks for NVlink
is 4%, and for PCIe is 8%. Bigger performance improvement is seen with
PCIe because the higher fault cost compared to the NVLink leads to higher
contention of the system interconnect.

72

CHAPTER 6. ENABLING PREEMPTIBLE EXCEPTIONS

grid
-points

random-graph

add-st
rin

gs
GEOM

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

P
e
rf

o
rm

a
n
ce

 n
o
rm

a
liz

e
d
 t

o
 b

a
se

lin
e
 s

y
st

e
m

nvlink

pcie

Figure 6.14: Performance improvement when handling faults to pages that are backing up
dynamically allocated memory on GPU over baseline handling by the CPU.

cu
tcp lbm sad

sgemm
spmv

ste
ncil

tpacf
mri-q hist

o

mri-g
rid

ding bfs
GEOM

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

P
e
rf

o
rm

a
n
ce

 n
o
rm

a
liz

e
d
 t

o
 b

a
se

lin
e
 S

M

nvlink

pcie

Figure 6.15: Performance improvement when handling faults to output pages on GPU
over baseline handling by the CPU.

73

6.5. EVALUATION

6.5.5 Summary and Concluding Remarks

In this chapter we have presented three di�erent approaches to support ex-
ception on modern GPU architectures. There is a trade-o� between the ad-
ditional hardware required to add this support and the overhead introduced
in the baseline architecture. We show how with a relatively small increase
in the area, exceptions can be supported on a modern GPU while achieving
99.8% of the baseline performance.

We have also explored two potential use cases for exceptions on modern
GPUs, context switching during page migrations and lazy physical memory
allocations. Although context switching produces modest average perfor-
mance improvements on our baseline system, it boosts the performance of
two of the most common applications for GPUs: sgemm and stencil. This
performance improvement is likely to bene�t a large number of applications,
ranging from physical simulations, to linear algebra solvers. The performance
of lazy physical memory allocation for output data pages is also encourag-
ing. However, being able to apply this technique to device side malloc greatly
improves its usefulness. Without the ability of allocating physical memory
on demand, current implementations of device side malloc are required to
statically allocate large portions of GPU physical memory at the application
load time. This e�ectively reduces the available memory on the GPU for ap-
plications and, thus, most programmers avoid using device side malloc. By
allowing device side malloc to only consume those physical memory actually
required, we expect this functionality to be more widely used.

Besides the use cases we have discussed, the exception support in the GPU
we have presented in this chapter opens the door for further facilities provided
by the operating system in the CPU to become available to GPU codes. This
would increase the number of applications suitable to be accelerated by GPUs
and, overall, improve the programmability of such systems.

74

Chapter 7

Conclusions and Future

Work

7.1 Conclusions

A constant shift towards visually immersive computing has put graphics pro-
cessing units into most personal computing devices, from phones to worksta-
tions. The boom of deep learning techniques has further increased the GPU
reach, making them indispensable in the data center, too. With evolving pro-
grammability and ever increasing performance, GPUs are often being used
to accelerate the computationally intensive and data parallel code sections
in many domains.

The increased use of GPUs with non-graphics applications is becoming a
problem because sharing of the GPU is starting to take place, yet GPUs have
practically no multiprogramming support. As the result, unresponsiveness
is common in the interactive systems, if the GPU sharing occurs, and QoS
hard to enforce in the data center.

In this dissertation we made initial necessary steps towards enabling mul-
tiprogramming on GPUs. We have �rst focused on improving the multi-
tasking support by eliminating the constraint of non-preemptive GPU ker-
nel execution and implemented a scheduler that controls the sharing of the
GPU among multiple kernels. In an e�ort to further improve the multipro-
gramming support, we improve the GPU virtual memory functionality and
performance through improved exceptions support.

We have introduced two GPU speci�c preemption mechanisms in this
dissertation: the draining mechanism and the GPU tailored context switch
mechanism. If only one them is to be implemented, we argue for the context
switch mechanism because of its greater usability and on average higher

75

7.2. FUTURE WORK

performance. However, we demonstrated the performance bene�ts of both
and concluded that some form of a hybrid preemption mechanism could
bring the best of both worlds. We have also introduced the Dynamic Spatial
Sharing scheduling policy that uses these mechanisms to improve system
responsiveness and fairness through spatial sharing of the GPU execution
engine.

We have further identi�ed the problem of non-preemptible exceptions
as the main culprit behind inadequate virtual memory support in GPUs
and proposed three solutions that would enable them. All three solutions
provide the same functionality but at a di�erent performance-complexity
trade-o�. We showcase the utility of preemptible faults by introducing two
use cases that require context switches to be performed on a fault. The
thread block context switching scheme improves performance of a kernel by
�nding other useful work to perform in place of faulted thread blocks and this
way hides the long latency of handling the fault. We also demonstrate how
local handling of GPU faults can improve system performance and introduce
new programmability features.

The work presented in this dissertation outlines the initial architectural
support that enables the true multiprogramming on GPUs. Even though
further research could be conducted in order to improve the performance,
e�ciency, and software functionality, we believe that the proposals made in
this dissertation would be a great �rst implementation.

7.2 Future Work

The work presented in this dissertation opens up new research lines in the
�eld of GPU architecture and accelerator-aware operating systems. These
new research lines are translated in the potential future work outlined in this
section.

7.2.1 Fast and E�cient Preemption

We have observed that many workloads have a clear bias towards one of
the two preemption mechanisms, performance-wise. Since the draining and
context switch mechanisms can co-exist, we could introduce some logic to
decide which preemption mechanism should be used and when. This can
be a simple heuristic such as to start draining and then context switch, if
preemption is not �nished in some time frame, or something more complex
like prediction or pro�le based policy.

Another direction that should be explored is minimizing the amount of

76

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

context that is saved, and subsequently restored on the context switch. Sev-
eral optimizations can be made in this direction. One is that the compiler
can emit the information about the live register range, therefore only the
live registers need to be saved and restored. Doing a partial context save
and restore by lazily saving pieces of the context could be another way to
improve the latency of the context switch. For example, if the next scheduled
kernel does not use shared memory, we can leave all the shared memory of
the preempted kernel in place and only save it if some other kernel needs this
space in the future.

7.2.2 Kernel Scheduler Design

We have opted to implement our DSS kernel scheduling policy in hardware
because of its simplicity. We believe that hardware schedulers are great initial
candidates, but they tend to be rigid and not very con�gurable by design.
As such, we see future GPU schedulers moving some of the scheduling logic
into software. Further research is necessary in order to decide how to split
the scheduling responsibilities between hardware and software. Likewise, the
question of where does the software portion of it run (on the CPU, general-
purpose core on the GPU, or the SMs themselves) remains open.

The DSS policy that we introduced in this dissertation does not try to
directly optimize any of the multiprogramming metrics. Instead, it takes
the more general approach of spatial sharing to improve the fairness and
turnaround time. We see the need to develop di�erent scheduling policies
that can be deployed in di�erent environments, similar to the CPU sched-
ulers. However, simply adopting the CPU scheduling policies is not ap-
propriate because of di�erent design constraints such as increased scheduling
latency, longer preemption time and overall di�erent nature of the workloads.
More research is necessary on designing the new scheduling algorithms that
could target a speci�c metric.

7.2.3 Fault Aware Scheduling

Previous research on GPU multitasking was not taking into the account the
demand page migrations, since it predates the GPU paging implementations.
In our experiments, we have observed the tendency of many warps to fault
on the same page, making the GPU excessively underutilized. We have also
noticed that some benchmarks are data-transfer bound and thus no amount
of execution resources provided could improve their performance. As such,
using the migration information (i.e., number of in-�ight faults) while making

77

7.2. FUTURE WORK

the scheduling decision could improve performance by giving the execution
resources to kernels that can most bene�t from them.

Furthermore, the classic optimization of context switching on a fault, in
order to hide the migration latency could be applied also. Similar to our
proposal of thread block switching on a fault, the scheduler could decide to
vacate an underutilized SM and schedule some other process to run on it
until the migrations are performed.

7.2.4 Heterogeneous Memory Management

Our proposals on local handling of GPU faults require some level of synchro-
nization and communication with the CPU, in order to keep the CPU and
GPU memory management structures coherent. This communication can be
less involved when dealing with the lazy memory allocation than in the gen-
eral fault handling case. Design of the heterogeneous memory allocator and
coherence protocol for the CPU and GPU hosted allocator structures is still
an open problem. Further research on the synchronization primitives (e.g.,
system wide atomic operations and memory fences) over system intercon-
nects (e.g., PCI-Express and NVLink) is necessary to support deeper system
integration of accelerators with good performance.

78

Appendix A

Publications

A.1 Thesis Related Publications

• �E�cient Exception Handling Support for GPUs�. Ivan Tanasic, Isaac
Gelado, Marc Jorda, Eduard Ayguade, Nacho Navarro. Submitted for
review to the 44th International Symposium on Computer Architecture
(ISCA 2017). Toronto, Canada. June 2017.

• �Enabling Preemptive Multiprogramming on GPUs�. Ivan Tanasic, Isaac
Gelado, Javier Cabezas, Álex Ramirez, Nacho Navarro, Mateo Valero.
Published in Proceedings of the The 41st International Symposium on
Computer Architecture (ISCA 2014). Minnesota, USA. June 2014.

• �Hardware Support for GPU Multiprogramming�. Ivan Tanasic, Isaac
Gelado, Javier Cabezas, Alex Ramirez, Nacho Navarro, and Mateo
Valero. Poster in the NVIDIA GPU Technology Conference (GTC
2014). San Jose, USA. March 2014.

• �CUsched: Multiprogrammed Workload Scheduling on GPU Architec-
tures�. Ivan Tanasic, Isaac Gelado, Javier Cabezas, Nacho Navarro,
Alex Ramirez, and Mateo Valero. UPC-DAC-RR-CAP-2013-7 Techni-
cal Report. Barcelona, Spain. March 2013.

79

Bibliography

[1] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard
Rashid, Avadis Tevanian, and Michael Young. Mach: A new kernel
foundation for unix development. 1986.

[2] Andrew V. Adinetz and Dirk Pleiter. Halloc: a high-throughput dy-
namic memory allocator for gpgpu architectures, 2014.

[3] Jacob T Adriaens, Katherine Compton, Nam Sung Kim, and Michael J
Schulte. The case for GPGPU spatial multitasking. In High Perfor-
mance Computer Architecture (HPCA), 2012 IEEE 18th International
Symposium on, pages 1�12. IEEE, 2012.

[4] Timo Aila and Samuli Laine. Understanding the e�ciency of ray traver-
sal on GPUs. In Proceedings of the Conference on High Performance
Graphics 2009, pages 145�149. ACM, 2009.

[5] AMD. AMD A-Series Processor-in-a-Box, 2012.

[6] DW Anderson, FJ Sparacio, and Robert M Tomasulo. The ibm sys-
tem/360 model 91: Machine philosophy and instruction-handling. IBM
Journal of Research and Development, 11(1):8�24, 1967.

[7] A. W. Appel, J. R. Ellis, and K. Li. Real-time concurrent collection on
stock multiprocessors. In Proceedings of the ACM SIGPLAN 1988 Con-
ference on Programming Language Design and Implementation, pages
11�20. ACM, 1988.

[8] Andrew W. Appel and Kai Li. Virtual memory primitives for user
programs. In Proceedings of the Fourth International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems, pages 96�107. ACM, 1991.

81

BIBLIOGRAPHY

[9] Andrea Arcangeli, Izik Eidus, and Chris Wright. Increasing memory
density by using ksm. In Proceedings of the Linux symposium, pages
19�28, 2009.

[10] ARM. ARM Mali, 2012.

[11] Remzi H Arpaci-Dusseau and Andrea C Arpaci-Dusseau. Operating
systems: Three easy pieces. Arpaci-Dusseau, 2015.

[12] Jongmin Baek, Dawid Paj¡k, Kihwan Kim, Kari Pulli, and Marc Levoy.
Wysiwyg computational photography via view�nder editing. ACM
Transactions on Graphics (TOG), 32(6):198, 2013.

[13] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. The datacenter
as a computer: An introduction to the design of warehouse-scale ma-
chines. Synthesis lectures on computer architecture, 8(3):1�154, 2013.

[14] Can Basaran and Kyoung-Don Kang. Supporting preemptive task
executions and memory copies in GPGPUs. In Real-Time Systems
(ECRTS), 2012 24th Euromicro Conference on, pages 287�296. IEEE,
2012.

[15] M. Bautin, A. Dwarakinath, and T. Chiueh. Graphic engine resource
management. In SPIE 2008, volume 6818, page 68180O, 2008.

[16] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin,
Razvan Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-
Farley, and Yoshua Bengio. Theano: A cpu and gpu math compiler in
python. In Proc. 9th Python in Science Conf, pages 1�7, 2010.

[17] B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon. The midway
distributed shared memory system. In Compcon Spring '93, Digest of
Papers., pages 528�537, Feb 1993.

[18] Sergey Blagodurov, Sergey Zhuravlev, Alexandra Fedorova, and Ali
Kamali. A case for numa-aware contention management on multicore
systems. In Proceedings of the 19th international conference on Parallel
architectures and compilation techniques, pages 557�558. ACM, 2010.

[19] David Blythe. Rise of the graphics processor. Proceedings of the IEEE,
96(5):761�778, 2008.

[20] Daniel P Bovet and Marco Cesati. Understanding the Linux kernel. "
O'Reilly Media, Inc.", 2005.

82

BIBLIOGRAPHY

[21] Thomas Bradley. Hyper-q example. NVidia Corporation, 2012.

[22] Alexander Branover, Denis Foley, and Maurice Steinman. AMD Fusion
APU: Llano. Micro, IEEE, 32(2):28�37, 2012.

[23] Ian Bratt. HSA queueing. In 2013 IEEE Hot Chips 25 Symposium
(HCS). IEEE, 2013.

[24] Roger A Bringmann, Scott A Mahlke, Richard E Hank, John C Gyllen-
haal, and Wen-mei W Hwu. Speculative execution exception recovery
using write-back suppression. In Microarchitecture, 1993., Proceedings
of the 26th Annual International Symposium on, pages 214�223. IEEE,
1993.

[25] Werner Buchholz. The ibm system/370 vector architecture. IBM sys-
tems journal, 25(1):51�62, 1986.

[26] James R Bulpin and Ian Pratt. Hyper-threading aware process schedul-
ing heuristics. In USENIX Annual Technical Conference, General
Track, pages 399�402, 2005.

[27] Javier Cabezas Rodríguez et al. On the programmability of multi-gpu
computing systems. Materia (s), 29:06�2015, 2015.

[28] John B. Carter, John K. Bennett, and Willy Zwaenepoel. Implemen-
tation and performance of munin. In Proceedings of the Thirteenth
ACM Symposium on Operating Systems Principles, SOSP '91, pages
152�164. ACM, 1991.

[29] Kwang-Ting Cheng and Yi-Chu Wang. Using mobile gpu for general-
purpose computing�a case study of face recognition on smartphones.
In VLSI Design, Automation and Test, 2011 International Symposium
on, pages 1�4. IEEE, 2011.

[30] Ludmila Cherkasova, Diwaker Gupta, and Amin Vahdat. Compari-
son of the three cpu schedulers in xen. SIGMETRICS Performance
Evaluation Review, 35(2):42�51, 2007.

[31] Weihaw Chuang, Satish Narayanasamy, Ganesh Venkatesh, Jack Samp-
son, Michael Van Biesbrouck, Gilles Pokam, Brad Calder, and Osvaldo
Colavin. Unbounded page-based transactional memory. In Proceed-
ings of the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 347�358. ACM,
2006.

83

BIBLIOGRAPHY

[32] Alan Cobham. Priority assignment in waiting line problems. Journal
of the Operations Research Society of America, 2(1):70�76, 1954.

[33] Edward G Co�man Jr and Leonard Kleinrock. Computer scheduling
methods and their countermeasures. In Proceedings of the April 30�
May 2, 1968, spring joint computer conference, pages 11�21. ACM,
1968.

[34] Henry Cook, Miquel Moreto Planas, Sarah L Bird, Khanh Dao, David
Patterson, and Krste Asanovic. A hardware evaluation of cache par-
titioning to improve utilization and energy-e�ciency while preserving
responsiveness. In ISCA 2013: the 40th Annual International Sympo-
sium on Computer Architecture: conference proceedings: June 23-27,
2013: Tel-Aviv, Israel, pages 308�319. ACM, 2013.

[35] Fernando J Corbató, Marjorie Merwin-Daggett, and Robert C Daley.
An experimental time-sharing system. In Proceedings of the May 1-3,
1962, spring joint computer conference, pages 335�344. ACM, 1962.

[36] Standard Performance Evaluation Corporation. SPEC ACCELL
benchmark, 2016.

[37] Foley Denis Danskin John. Pascal GPU with NVLink. In Proceedings
of the 28th annual symposium on High Performance Chips (HotChips).
IEEE, 2016.

[38] Frederica Darema. The SPMD model: Past, present and future. In
European Parallel Virtual Machine/Message Passing Interface Users'
Group Meeting, pages 1�1. Springer, 2001.

[39] Partha Dasgupta, Richard J. LeBlanc, Mustaque Ahamad, and Umak-
ishore Ramachandran. The clouds distributed operating system. IEEE
Computer, 24(11):34�44, 1991.

[40] Marc de Kruijf and Karthikeyan Sankaralingam. Idempotent processor
architecture. In Proceedings of the 44th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 140�151. ACM, 2011.

[41] Kenneth J. Duda and David R. Cheriton. Borrowed-virtual-time (bvt)
scheduling: Supporting latency-sensitive threads in a general-purpose
scheduler. In Proceedings of the Seventeenth ACM Symposium on Op-
erating Systems Principles, pages 261�276. ACM, 1999.

84

BIBLIOGRAPHY

[42] Roger Espasa, Federico Ardanaz, Joel Emer, Stephen Felix, Julio Gago,
Roger Gramunt, Isaac Hernandez, Toni Juan, Geo� Lowney, Matthew
Mattina, et al. Tarantula: a vector extension to the alpha architec-
ture. In Computer Architecture, 2002. Proceedings. 29th Annual Inter-
national Symposium on, pages 281�292. IEEE, 2002.

[43] Roger Espasa, Mateo Valero, and James E Smith. Out-of-order vector
architectures. In Proceedings of the 30th annual ACM/IEEE inter-
national symposium on Microarchitecture, pages 160�170. IEEE Com-
puter Society, 1997.

[44] Yoav Etsion, Felipe Cabarcas, Alejandro Rico, Alex Ramirez, Rosa M
Badia, Eduard Ayguade, Jesus Labarta, and Mateo Valero. Task super-
scalar: An out-of-order task pipeline. In Microarchitecture (MICRO),
2010 43rd Annual IEEE/ACM International Symposium on, pages 89�
100. IEEE, 2010.

[45] Stijn Eyerman and Lieven Eeckhout. System-level performance metrics
for multiprogram workloads. Micro, IEEE, 28(3):42�53, 2008.

[46] Zhe Fan, Feng Qiu, Arie Kaufman, and Suzanne Yoakum-Stover. Gpu
cluster for high performance computing. In Proceedings of the 2004
ACM/IEEE conference on Supercomputing, page 47. IEEE Computer
Society, 2004.

[47] Alexandra Fedorova, Margo Seltzer, Christopher Small, and Daniel
Nussbaum. Performance of multithreaded chip multiprocessors and
implications for operating system design. pages 395�398, 2005.

[48] Alexandra Fedorova, Margo Seltzer, and Michael D Smith. A non-work-
conserving operating system scheduler for smt processors. In Proceed-
ings of the Workshop on the Interaction between Operating Systems and
Computer Architecture, in conjunction with ISCA, volume 33, pages
10�17, 2006.

[49] Alexandra Fedorova, Margo Seltzer, and Michael D Smith. Improving
performance isolation on chip multiprocessors via an operating sys-
tem scheduler. In Proceedings of the 16th International Conference on
Parallel Architecture and Compilation Techniques, pages 25�38. IEEE
Computer Society, 2007.

[50] Robert Fitzgerald and Richard F Rashid. The integration of virtual
memory management and interprocess communication in accent. ACM
Transactions on Computer Systems (TOCS), 4(2):147�177, 1986.

85

BIBLIOGRAPHY

[51] B. Fleisch and G. Popek. Mirage: A coherent distributed shared mem-
ory design. In Proceedings of the Twelfth ACM Symposium on Operat-
ing Systems Principles, pages 211�223. ACM, 1989.

[52] Michael J Flynn. Some computer organizations and their e�ectiveness.
IEEE transactions on computers, 100(9):948�960, 1972.

[53] Wilson WL Fung, Ivan Sham, George Yuan, and Tor M Aamodt. Dy-
namic warp formation and scheduling for e�cient GPU control �ow. In
Proceedings of the 40th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 407�420, 2007.

[54] Isaac Gelado, John H Kelm, Shane Ryoo, Steven S Lumetta, Na-
cho Navarro, and Wen-mei W Hwu. Cuba: an architecture for ef-
�cient cpu/co-processor data communication. In Proceedings of the
22nd annual international conference on Supercomputing, pages 299�
308. ACM, 2008.

[55] Isaac Gelado, John E. Stone, Javier Cabezas, Sanjay Patel, Nacho
Navarro, and Wen-mei W. Hwu. An asymmetric distributed shared
memory model for heterogeneous parallel systems. In Proceedings of the
Fifteenth Edition of ASPLOS on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS XV, pages 347�358,
New York, NY, USA, 2010. ACM.

[56] Chris Gregg, Jonathan Dorn, Kim Hazelwood, and Kevin Skadron.
Fine-grained resource sharing for concurrent GPGPU kernels. In Pro-
ceedings of the 4th USENIX conference on Hot Topics in Parallelism,
pages 10�10. USENIX Association, 2012.

[57] Khronos OpenCL Working Group et al. The opencl speci�cation. Ver-
sion, 1(29):8, 2008.

[58] Marisabel Guevara, Chris Gregg, Kim Hazelwood, and Kevin Skadron.
Enabling task parallelism in the CUDA scheduler. In Workshop on
Programming Models for Emerging Architectures, pages 69�76, 2009.

[59] Kshitij Gupta, Je� A Stuart, and John D Owens. A study of persistent
threads style GPU programming for GPGPU workloads. In Innovative
Parallel Computing (InPar), 2012, pages 1�14. IEEE, 2012.

[60] Mark Hampton and Krste Asanovic. Implementing virtual memory
in a vector processor with software restart markers. In Proceedings

86

BIBLIOGRAPHY

of the 20th annual international conference on Supercomputing, pages
135�144. ACM, 2006.

[61] Mark Harris. Fast �uid dynamics simulation on the gpu. GPU gems,
1:637�665, 2004.

[62] Johann Hauswald, Yiping Kang, Michael A. Laurenzano, Quan Chen,
Cheng Li, Trevor Mudge, Ronald G. Dreslinski, Jason Mars, and
Lingjia Tang. Djinn and tonic: Dnn as a service and its implications
for future warehouse scale computers. In Proceedings of the 42nd An-
nual International Symposium on Computer Architecture, pages 27�40.
ACM, 2015.

[63] Johann Hauswald, Michael A. Laurenzano, Yunqi Zhang, Cheng Li,
Austin Rovinski, Arjun Khurana, Ronald G. Dreslinski, Trevor Mudge,
Vinicius Petrucci, Lingjia Tang, and Jason Mars. Sirius: An open end-
to-end voice and vision personal assistant and its implications for future
warehouse scale computers. In Proceedings of the 20th International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 223�238. ACM, 2015.

[64] Felix Heide, Markus Steinberger, Yun-Ta Tsai, Mush�qur Rouf, Dawid
Paj¡k, Dikpal Reddy, Orazio Gallo, Jing Liu, Wolfgang Heidrich, Karen
Egiazarian, et al. FlexISP: a �exible camera image processing frame-
work. ACM Transactions on Graphics (TOG), 33(6):231, 2014.

[65] Glenn Hinton, Dave Sager, Mike Upton, Darrell Boggs, et al. The
microarchitecture of the pentium R© 4 processor. In Intel Technology
Journal. Citeseer, 2001.

[66] H Hirata, K Kimura, S Nagamine, Y Mochizuki, A Nishimura,
Y Nakase, and T Nishizawa. An elementary processor architecture
with simultaneous instruction issuing from multiple threads. In Com-
puter Architecture, 1992. Proceedings., The 19th Annual International
Symposium on, pages 136�145. IEEE, 1992.

[67] M Houston. Anatomy of amd's terascale graphics engine. URL
http://s08.idav.ucdavis.edu/houston-amd-terascale.pdf, 2008.

[68] Wen-mei W. Hwu and Yale N Patt. Checkpoint repair for out-of-order
execution machines. In Proceedings of the 14th annual international
symposium on Computer architecture, pages 18�26. ACM, 1987.

[69] Intel. 4th generation Intel Core processors are here, 2012.

87

BIBLIOGRAPHY

[70] Ravi Iyer. Cqos: a framework for enabling qos in shared caches of cmp
platforms. In Proceedings of the 18th annual international conference
on Supercomputing, pages 257�266. ACM, 2004.

[71] Thomas B Jablin, James A Jablin, Prakash Prabhu, Feng Liu, and
David I August. Dynamically managed data for cpu-gpu architectures.
In Proceedings of the Tenth International Symposium on Code Gener-
ation and Optimization, pages 165�174. ACM, 2012.

[72] Bruce Jacob and Trevor Mudge. Virtual memory in contemporary
microprocessors. IEEE Micro, 18(4):60�75, 1998.

[73] Davies Jem. Bifrost, the new GPU architecture and its initial imple-
mentation, Mali-G71. In Proceedings of the 28th annual symposium on
High Performance Chips (HotChips). IEEE, 2016.

[74] Feng Ji, Heshan Lin, and Xiaosong Ma. Rsvm: a region-based soft-
ware virtual memory for gpu. In Proceedings of the 22nd international
conference on Parallel architectures and compilation techniques, pages
269�278. IEEE, 2013.

[75] Yangqing Jia, Evan Shelhamer, Je� Donahue, Sergey Karayev,
Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor Dar-
rell. Ca�e: Convolutional architecture for fast feature embedding. In
Proceedings of the 22nd ACM international conference on Multimedia,
pages 675�678. ACM, 2014.

[76] Shinpei Kato, Karthik Lakshmanan, Aman Kumar, Mihir Kelkar, Yu-
taka Ishikawa, and Ragunathan Rajkumar. RGEM: A responsive
GPGPU execution model for runtime engines. In Real-Time Systems
Symposium (RTSS), 2011 IEEE 32nd, pages 57�66. IEEE, 2011.

[77] Shinpei Kato, Karthik Lakshmanan, Ragunathan Raj Rajkumar, and
Yutaka Ishikawa. TimeGraph: GPU scheduling for real-time multi-
tasking environments. In 2011 USENIX Annual Technical Conference
(USENIX ATC'11), page 17, 2011.

[78] Shinpei Kato, Michael McThrow, Carlos Maltzahn, and Scott Brandt.
Gdev: First-class GPU resource management in the operating system.
In USENIX ATC, volume 12, pages 37�37, 2012.

[79] Judy Kay and Piers Lauder. A fair share scheduler. Communications
of the ACM, 31(1):44�55, 1988.

88

BIBLIOGRAPHY

[80] Stephen W Keckler, Andrea Chang, WSLS Chatterjee, and William J
Dally. Concurrent event handling through multithreading. Computers,
IEEE Transactions on, 48(9):903�916, 1999.

[81] Pete Keleher, Alan L Cox, Sandhya Dwarkadas, and Willy Zwaenepoel.
TreadMarks: distributed shared memory on standard workstations and
operating systems. In Proceedings of the USENIX Winter 1994 Tech-
nical Conference, pages 10�10. USENIX Association, 1994.

[82] Richard E Kessler. The alpha 21264 microprocessor. IEEE micro,
19(2):24�36, 1999.

[83] Seongbeom Kim, Dhruba Chandra, and Yan Solihin. Fair cache shar-
ing and partitioning in a chip multiprocessor architecture. In Proceed-
ings of the 13th International Conference on Parallel Architectures and
Compilation Techniques, pages 111�122. IEEE, 2004.

[84] Volodymyr V Kindratenko, Jeremy J Enos, Guochun Shi, Michael T
Showerman, Galen W Arnold, John E Stone, James C Phillips, and
Wen-mei Hwu. Gpu clusters for high-performance computing. In 2009
IEEE International Conference on Cluster Computing and Workshops,
pages 1�8. IEEE, 2009.

[85] Peter Kipfer, Mark Segal, and Rüdiger Westermann. Uber�ow: a gpu-
based particle engine. In Proceedings of the ACM SIGGRAPH/EURO-
GRAPHICS conference on Graphics hardware, pages 115�122. ACM,
2004.

[86] David Kirk and Wen-mei Hwu. Programming massively parallel pro-
cessors. 201software 0.

[87] Kenji Kitagawa, Satoru Tagaya, Yasuhiko Hagihara, and Yasushi
Kanoh. A hardware overview of sx-6 and sx-7 supercomputer. NEC
research & development, 44(1):2�7, 2003.

[88] Leonard Kleinrock. Analysis of a time-shared processor. Naval research
logistics quarterly, 11(1):59�73, 1964.

[89] Rob Knauerhase, Paul Brett, Barbara Hohlt, Tong Li, and Scott Hahn.
Using os observations to improve performance in multicore systems.
IEEE micro, 28(3):54�66, 2008.

[90] Christos Kozyrakis and David Patterson. Overcoming the limitations
of conventional vector processors. In Proceedings of the 30th Annual

89

BIBLIOGRAPHY

International Symposium on Computer Architecture, ISCA '03, pages
399�409. ACM, 2003.

[91] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E Hinton. Imagenet
classi�cation with deep convolutional neural networks. In Advances in
neural information processing systems, pages 1097�1105, 2012.

[92] George Kyriazis. Heterogenious System Architecture: a technical re-
view, 2012.

[93] Chris Lattner and Vikram Adve. Llvm: A compilation framework for
lifelong program analysis & transformation. In Code Generation and
Optimization, 2004. CGO 2004. International Symposium on, pages
75�86. IEEE, 2004.

[94] Janghaeng Lee, Mehrzad Samadi, and Scott Mahlke. Vast: the illusion
of a large memory space for gpus. In Proceedings of the 23rd inter-
national conference on Parallel architectures and compilation, pages
443�454. ACM, 2014.

[95] Yunsup Lee, Vinod Grover, Ronny Krashinsky, Mark Stephenson,
Stephen W Keckler, and Krste Asanovic. Exploring the design space of
spmd divergence management on data-parallel architectures. In 2014
47th Annual IEEE/ACM International Symposium on Microarchitec-
ture, pages 101�113. IEEE, 2014.

[96] Samuel J Le�er. The design and implementation of the 4.3 BSD UNIX
operating system. Addison Wesley, 1989.

[97] Adam Levinthal and Thomas Porter. Chap-a simd graphics processor.
In ACM SIGGRAPH Computer Graphics, volume 18, pages 77�82.
ACM, 1984.

[98] Kai Li and Paul Hudak. Memory coherence in shared virtual memory
systems. ACM Transactions on Computer Systems (TOCS), 7(4):321�
359, 1989.

[99] Kai Li, J Naughton, and James Plank. Concurrent real-time check-
point for parallel programs. In Proceedings of the 2nd ACM SIGPLAN
Symposium on Princiles & Practice of Parallel Programming, 1990.

[100] Teng Li, Vikram K Narayana, Esam El-Araby, and Tarek El-Ghazawi.
GPU resource sharing and virtualization on high performance comput-
ing systems. In Parallel Processing (ICPP), 2011 International Con-
ference on, pages 733�742. IEEE, 2011.

90

BIBLIOGRAPHY

[101] Erik Lindholm, Mark J Kilgard, and Henry Moreton. A user-
programmable vertex engine. In Proceedings of the 28th annual confer-
ence on Computer graphics and interactive techniques, pages 149�158.
ACM, 2001.

[102] Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym.
NVIDIA Tesla: A uni�ed graphics and computing architecture. Micro,
IEEE, 28(2):39�55, 2008.

[103] Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fabien Gaud,
Vivien Quéma, and Alexandra Fedorova. The linux scheduler: a decade
of wasted cores. In Proceedings of the Eleventh European Conference
on Computer Systems, page 1. ACM, 2016.

[104] Scott A. Mahlke, William Y. Chen, Wen-mei W. Hwu, B. Ramakr-
ishna Rau, and Michael S. Schlansker. Sentinel scheduling for vliw and
superscalar processors. In Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
pages 238�247. ACM, 1992.

[105] Micheal Mantor and Mike Houston. Amd graphic core next: Low power
high performance graphics & parallel compute. AMD Fusion Developer
Summit, 2011.

[106] Richard McDougall and Jim Mauro. Solaris internals: Solaris 10 and
OpenSolaris kernel architecture. Pearson Education, 2006.

[107] Soham Uday Mehta, Kihwan Kim, Dawid Pajak, Kari Pulli, Jan Kautz,
and Ravi Ramamoorthi. Filtering environment illumination for in-
teractive physically-based rendering in mixed reality. In Eurographics
Symposium on Rendering, 2015.

[108] Jaikrishnan Menon, Marc De Kruijf, and Karthikeyan Sankaralingam.
igpu: Exception support and speculative execution on gpus. In Pro-
ceedings of the 39th Annual International Symposium on Computer
Architecture, pages 72�83. IEEE, 2012.

[109] Konstantinos Menychtas, Kai Shen, and Michael L. Scott. Disengaged
scheduling for fair, protected access to fast computational accelera-
tors. In Proceedings of the 19th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
pages 301�316. ACM, 2014.

91

BIBLIOGRAPHY

[110] Ingo Molnar. Modular scheduler core and completely fair scheduler
[cfs]. Linux-Kernel mailing list, 2007.

[111] John Montrym and Henry Moreton. The geforce 6800. IEEE Micro,
25(2):41�51, 2005.

[112] Mayan Moudgill, Keshav Pingali, and Stamatis Vassiliadis. Register
renaming and dynamic speculation: an alternative approach. In 26th
annual international symposium on Microarchitecture, pages 202�213.
IEEE, 1993.

[113] Onur Mutlu and Thomas Moscibroda. Stall-time fair memory access
scheduling for chip multiprocessors. In Proceedings of the 40th An-
nual IEEE/ACM International Symposium on Microarchitecture, pages
146�160. IEEE Computer Society, 2007.

[114] P�nar Muyan-Özçelik, Vladimir Glavtchev, Je�rey M Ota, and John D
Owens. A template-based approach for real-time speed-limit-sign
recognition on an embedded system using gpu computing. In Joint
Pattern Recognition Symposium, pages 162�171. Springer, 2010.

[115] Kyle J Nesbit, Nidhi Aggarwal, James Laudon, and James E Smith.
Fair queuing memory systems. In 2006 39th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO'06), pages 208�222.
IEEE, 2006.

[116] Kyle J Nesbit, James E Smith, Miquel Moreto, Francisco J Cazorla,
Alex Ramirez, and Mateo Valero. Multicore resource management.
IEEE micro, 28(3):6�16, 2008.

[117] NVIDIA. Next generation CUDA computer architecture Kepler
GK110, 2012.

[118] NVIDIA. Sharing a GPU between MPI processes: multi-process service
(MPS) overview, 2013.

[119] NVIDIA. Programming guide - CUDA toolkit documentation, 2014.

[120] NVIDIA. CUDA C programming guide, 2016.

[121] NVIDIA. NVIDIA Tesla P100 white paper, 2016.

[122] John D Owens, Mike Houston, David Luebke, Simon Green, John E
Stone, and James C Phillips. GPU computing. Proceedings of the
IEEE, 96(5):879�899, 2008.

92

BIBLIOGRAPHY

[123] John D Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens
Krüger, Aaron E Lefohn, and Timothy J Purcell. A survey of general-
purpose computation on graphics hardware. In Computer graphics fo-
rum, volume 26, pages 80�113. Wiley Online Library, 2007.

[124] Chandandeep Singh Pabla. Completely fair scheduler. Linux Journal,
2009(184):4, 2009.

[125] Sreepathi Pai, Matthew J Thazhuthaveetil, and R Govindarajan. Im-
proving GPGPU concurrency with elastic kernels. In Proceedings of
the eighteenth international conference on Architectural support for pro-
gramming languages and operating systems, pages 407�418. ACM, 2013.

[126] Jason Jong Kyu Park, Yongjun Park, and Scott Mahlke. Chimera: Col-
laborative preemption for multitasking on a shared GPU. In Proceed-
ings of the Twentieth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, pages 593�
606. ACM, 2015.

[127] Steven G Parker, James Bigler, Andreas Dietrich, Heiko Friedrich,
Jared Hoberock, David Luebke, David McAllister, Morgan McGuire,
Keith Morley, Austin Robison, et al. Optix: a general purpose ray
tracing engine. In ACM Transactions on Graphics (TOG), volume 29,
page 66. ACM, 2010.

[128] Bharath Pichai, Lisa Hsu, and Abhishek Bhattacharjee. Architectural
support for address translation on gpus: Designing memory manage-
ment units for cpu/gpus with uni�ed address spaces. In Proceedings
of the 19th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 743�758. ACM,
2014.

[129] Jason Power, Mark D Hill, and David A Wood. Supporting x86-64
address translation for 100s of gpu lanes. In 2014 IEEE 20th In-
ternational Symposium on High Performance Computer Architecture
(HPCA), pages 568�578. IEEE, 2014.

[130] Kari Pulli, Anatoly Baksheev, Kirill Kornyakov, and Victor Eruhimov.
Real-time computer vision with opencv. Communications of the ACM,
55(6):61�69, 2012.

[131] Kari Pulli, Wei-Chao Chen, Natasha Gelfand, Radek Grzeszczuk, Mar-
ius Tico, Ramakrishna Vedantham, Xianglin Wang, and Yingen Xiong.

93

BIBLIOGRAPHY

Mobile visual computing. In Ubiquitous Virtual Reality, 2009. Inter-
national Symposium on, pages 3�6. IEEE, 2009.

[132] Timothy J Purcell, Ian Buck, William R Mark, and Pat Hanrahan. Ray
tracing on programmable graphics hardware. In ACM Transactions on
Graphics (TOG), volume 21, pages 703�712. ACM, 2002.

[133] Moinuddin K Qureshi and Yale N Patt. Utility-based cache partition-
ing: A low-overhead, high-performance, runtime mechanism to par-
tition shared caches. In Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 423�432. IEEE
Computer Society, 2006.

[134] George Radin. The 801 minicomputer. IBM Journal of Research and
Development, 27(3):237�246, 1983.

[135] Vignesh T Ravi, Michela Becchi, Gagan Agrawal, and Srimat Chakrad-
har. Supporting GPU sharing in cloud environments with a transparent
runtime consolidation framework. In Proceedings of the 20th interna-
tional symposium on High performance distributed computing, pages
217�228. ACM, 2011.

[136] Javier Rodríguez-Navarro and Antonio Susín Sánchez. Non structured
meshes for cloth gpu simulation using fem. In 3rd Workshop in Vir-
tual Reality Interactions and Physical Simulation, pages 1�7. EURO-
GRAPHICS, 2006.

[137] Christopher J Rossbach, Jon Currey, Mark Silberstein, Baishakhi Ray,
and Emmett Witchel. PTask: operating system abstractions to manage
GPUs as compute devices. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, pages 233�248. ACM,
2011.

[138] Kevin W Rudd. E�cient exception handling techniques for high-
performance processor architectures. Technical report, Technical Re-
port CSL-TR-97-732. Coordinated Science Laboratory, Stanford Uni-
versity, 1997.

[139] Richard M Russell. The cray-1 computer system. Communications of
the ACM, 21(1):63�72, 1978.

[140] Bratin Saha, Xiaocheng Zhou, Hu Chen, Ying Gao, Shoumeng Yan,
Mohan Rajagopalan, Jesse Fang, Peinan Zhang, Ronny Ronen, and

94

BIBLIOGRAPHY

Avi Mendelson. Programming model for a heterogeneous x86 platform.
In ACM Sigplan Notices, volume 44, pages 431�440. ACM, 2009.

[141] Samsung. Samsung Exynos, 2012.

[142] Mark Segal and Kurt Akeley. The design of the opengl graphics inter-
face. In Silicon Graphics Computer Systems, 1994.

[143] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael
Abrash, Pradeep Dubey, Stephen Junkins, Adam Lake, Jeremy Sug-
erman, Robert Cavin, et al. Larrabee: a many-core x86 architecture
for visual computing. In ACM Transactions on Graphics (TOG), vol-
ume 27, page 18. ACM, 2008.

[144] Mauricio J Serrano, Roger Wood, and Mario Nemirovsky. A study on
multistreamed superscalar processors. University of California, Santa
Barbara, Tech. Rep. Technical Report, pages 93�05, 1993.

[145] Sagi Shahar, Shai Bergman, and Mark Silberstein. Activepointers: a
case for software address translation on gpus. In Proceedings of the 43rd
Annual International Symposium on Computer Architecture, 2016.

[146] Burton J Smith. Architecture and applications of the HEP multipro-
cessor computer system. In 25th Annual Technical Symposium, pages
241�248. International Society for Optics and Photonics, 1982.

[147] James E. Smith and Andrew R. Pleszkun. Implementation of precise
interrupts in pipelined processors. In Proceedings of the 12th annual
International Symposium on Computer Architecture, ISCA '85, pages
36�44, 1985.

[148] James E Smith and Andrew R Pleszkun. Implementing precise in-
terrupts in pipelined processors. Computers, IEEE Transactions on,
37(5):562�573, 1988.

[149] Gurindar S Sohi et al. Instruction issue logic for high-performance, in-
terruptible, multiple functional unit, pipelined computers. IEEE trans-
actions on computers, 39(3):349�359, 1990.

[150] David A Solomon and Helen Custer. Inside Windows NT. Microsoft
Press, 1998.

95

BIBLIOGRAPHY

[151] Markus Steinberger, Bernhard Kainz, Bernhard Kerbl, Stefan
Hauswiesner, Michael Kenzel, and Dieter Schmalstieg. Softshell: dy-
namic scheduling on GPUs. ACM Transactions on Graphics (TOG),
31(6):161, 2012.

[152] J Stratton, C Rodrigues, I Sung, N Obeid, L Chang, G Liu, and
W Hwu. The Parboil benchmarks. Technical report, Technical Report
IMPACT-12-01, University of Illinois at Urbana-Champaign, 2012.

[153] John Stratton, Sam Stone, and Wen-mei Hwu. MCUDA: An e�cient
implementation of CUDA kernels for multi-core CPUs. LCPC 2008,
pages 16�30, 2008.

[154] John A. Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-
Wen Chang, Nasser Anssari, Geng D. Liu, and Wen-mei W. Hwu. Par-
boil: a revised benchmark suite for scienti�c and commercial through-
put computing. Technical report, 2012.

[155] G Edward Suh, Larry Rudolph, and Srinivas Devadas. Dynamic par-
titioning of shared cache memory. The Journal of Supercomputing,
28(1):7�26, 2004.

[156] Joel M Tendler, J Steve Dodson, JS Fields, Hung Le, and Balaram
Sinharoy. Power4 system microarchitecture. IBM Journal of Research
and Development, 46(1):5�25, 2002.

[157] James E Thornton. Design of a computer�the control data 6600. 1970.

[158] Robert M Tomasulo. An e�cient algorithm for exploiting multiple
arithmetic units. IBM Journal of Research and Development, 11(1):25�
33, 1967.

[159] Hwa C. Torng and Martin Day. Interrupt handling for out-of-order
execution processors. IEEE Transactions on Computers, 42(1):122�
127, 1993.

[160] Nathan Tuck and Dean M Tullsen. Initial observations of the simul-
taneous multithreading Pentium 4 processor. In Proceedings of 12th
International Conference on Parallel Architectures and Compilation
Techniques, PACT 2003, pages 26�34. IEEE, 2003.

[161] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultane-
ous multithreading: Maximizing on-chip parallelism. In Proceedings of
the 22Nd Annual International Symposium on Computer Architecture,
pages 392�403. ACM, 1995.

96

BIBLIOGRAPHY

[162] Teruo Utsumi, Masayuki Ikeda, and Moriyuki Takamura. Architec-
ture of the vpp500 parallel supercomputer. In Proceedings of the 1994
ACM/IEEE conference on Supercomputing, pages 478�487. IEEE Com-
puter Society Press, 1994.

[163] Javier Vera, Francisco J Cazorla, Alex Pajuelo, Oliverio J Santana,
Enrique Fernandez, and Mateo Valero. FAME: Fairly measuring multi-
threaded architectures. In Parallel Architecture and Compilation Tech-
niques, 2007. PACT 2007. 16th International Conference on, pages
305�316. IEEE, 2007.

[164] J. Vesely, A. Basu, M. Oskin, G. H. Loh, and A. Bhattacharjee. Ob-
servations and opportunities in architecting shared virtual memory for
heterogeneous systems. In 2016 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pages 161�
171, 2016.

[165] Je�rey S Vetter, Richard Glassbrook, Jack Dongarra, Karsten Schwan,
Bruce Loftis, Stephen McNally, Jeremy Meredith, James Rogers, Philip
Roth, Kyle Spa�ord, et al. Keeneland: Bringing heterogeneous gpu
computing to the computational science community. Computing in
Science and Engineering, 13(5):90�95, 2011.

[166] Carl A Waldspurger and William E Weihl. Lottery scheduling: Flexi-
ble proportional-share resource management. In Proceedings of the 1st
USENIX conference on Operating Systems Design and Implementation,
page 1. USENIX Association, 1994.

[167] Guibin Wang, YiSong Lin, and Wei Yi. Kernel fusion: an e�ective
method for better power e�ciency on multithreaded GPU. In Green
Computing and Communications (GreenCom), 2010 IEEE/ACM Int'l
Conference on & Int'l Conference on Cyber, Physical and Social Com-
puting (CPSCom), pages 344�350. IEEE, 2010.

[168] Guohui Wang, Yingen Xiong, Jay Yun, and Joseph R Cavallaro. Ac-
celerating computer vision algorithms using opencl framework on the
mobile GPU-a case study. In 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 2629�2633. IEEE, 2013.

[169] Kaibo Wang, Xiaoning Ding, Rubao Lee, Shinpei Kato, and Xiaodong
Zhang. Gdm: Device memory management for gpgpu computing. In
The 2014 ACM international conference on Measurement and modeling
of computer systems, pages 533�545. ACM, 2014.

97

BIBLIOGRAPHY

[170] W-D Weber and A Gupta. Exploring the bene�ts of multiple hard-
ware contexts in a multiprocessor architecture: Preliminary results. In
Computer Architecture, 1989. The 16th Annual International Sympo-
sium on, pages 273�280. IEEE.

[171] Florian Wende, Thomas Steinke, and Frank Cordes. Multi-threaded
kernel o�oading to gpgpu using hyper-q on kepler architecture. ZIB-
Report 14-19 June 2014, 2014.

[172] Craig M Wittenbrink, Emmett Kilgari�, and Arjun Prabhu. Fermi
GF100 GPU architecture. Micro, IEEE, 31(2):50�59, 2011.

[173] Wayne Yamamoto and Mario Nemirovsky. Increasing superscalar per-
formance through multistreaming. In Conference on Parallel Architec-
tures and Compilation Techniques, pages 49�58, 1995.

[174] Kenneth C Yeager. The mips r10000 superscalar microprocessor. IEEE
micro, 16(2):28�41, 1996.

[175] T. Zheng, D. Nellans, A. Zul�qar, M. Stephenson, and S. W. Keckler.
Towards high performance paged memory for gpus. In 2016 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pages 345�357. IEEE, 2016.

[176] Jianlong Zhong and Bingsheng He. Kernelet: High-throughput GPU
kernel executions with dynamic slicing and scheduling. arXiv preprint
arXiv:1303.5164, 2013.

[177] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova. Ad-
dressing shared resource contention in multicore processors via schedul-
ing. In Proceedings of the Fifteenth Edition of ASPLOS on Archi-
tectural Support for Programming Languages and Operating Systems,
pages 129�142. ACM, 2010.

[178] Craig B Zilles, Joel S Emer, and Gurindar S Sohi. The use of multi-
threading for exception handling. In Proceedings of the 32nd annual
ACM/IEEE international symposium on Microarchitecture, pages 219�
229. IEEE Computer Society, 1999.

98

	1 Introduction
	1.1 Contributions
	1.1.1 Enabling Preemptive Multitasking
	1.1.2 Design of a GPU Kernel Scheduler
	1.1.3 Enabling Preemptible Exceptions
	1.1.4 Page Fault Latency Hiding Scheme
	1.1.5 Handling Page Faults on the GPU Cores

	1.2 Organization

	2 GPU Systems Background
	2.1 GPU Accelerated Systems
	2.2 GPU Architecture
	2.3 Base GPU Execution Engine
	2.4 Core Architecture

	3 Multiprogrammed Systems
	3.1 Process Scheduling
	3.1.1 CPU Scheduling
	3.1.2 GPU Scheduling

	3.2 Virtual Memory
	3.2.1 CPU Virtual Memory
	3.2.2 GPU Virtual Memory

	3.3 Exception Handling
	3.3.1 Precise Exceptions
	3.3.2 Other Exception Handling Approaches

	4 Methodology
	4.1 Benchmarks
	4.2 Simulators
	4.2.1 Full System
	4.2.2 Microarchitectural

	5 Enabling Preemptive Multitasking
	5.1 Motivation
	5.2 Architecture
	5.2.1 Concurrent Execution of Processes
	5.2.2 Preemptive Kernel Execution
	5.2.3 Scheduling Framework
	5.2.4 Dynamic Spatial Sharing Policy

	5.3 Evaluation
	5.3.1 Methodology
	5.3.2 Effectiveness of the Preemption Mechanisms
	5.3.3 Overheads of the Preemption Mechanisms
	5.3.4 Example Policy: Equal Spatial Sharing

	5.4 Summary and Concluding Remarks

	6 Enabling Preemptible Exceptions
	6.1 Motivation
	6.2 Problem Statement
	6.3 Support for GPU Page Faults
	6.3.1 Approach 1: Warp Disable
	6.3.2 Approach 2: Replay Queue
	6.3.3 Approach 3: Operand Log

	6.4 Use Cases
	6.4.1 Block Switching on Fault
	6.4.2 Local Handling of Faults

	6.5 Evaluation
	6.5.1 Evaluation Methodology
	6.5.2 The Performance Cost of Preemptible Faults
	6.5.3 Use Case 1: Thread Block Switching on Fault
	6.5.4 Use Case 2: Local Handling of GPU Faults
	6.5.5 Summary and Concluding Remarks

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work
	7.2.1 Fast and Efficient Preemption
	7.2.2 Kernel Scheduler Design
	7.2.3 Fault Aware Scheduling
	7.2.4 Heterogeneous Memory Management

	A Publications
	A.1 Thesis Related Publications

